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Editorial on the Research Topic

Editorial: Artificial Intelligence for Precision Medicine

SCOPE AND AIM OF THIS RESEARCH TOPIC

Fueled by advances in computing power, algorithms, and big data, the last decade has witnessed
widespread applications of artificial intelligence (AI) in every major field, including medicine and
healthcare. Generally speaking, AI is expected to help realize the promise of precision medicine
in three major areas: (1) disease prevention, (2) personalized diagnosis, and (3) personalized
treatment. In this Research Topic, “Artificial Intelligence for Precision Medicine,” we aim to set
up an open stage in the community where breakthrough application examples of AI for precision
medicine are presented. We envisage that AI technologies, if applied openly, fairly, robustly, and
in close collaboration with human intelligence, will open new doors for effective and personalized
healthcare worldwide.

TOPICS COVERED IN THIS RESEARCH TOPIC

- AI-aided diagnosis and early detection of diseases: Hart et al.
- AI-enhanced treatment and delivery: Chen et al.; Jensen et al.; Mistro et al.; Wang et al.
- Clinical decision support with AI techniques: Barua et al.
- Enhancing patient care via AI applications: Luo
- Radiomics and quantitative imaging: Zhang et al.
- Bioinformatics for more effective healthcare: Kapelner et al.; Namdar et al.
- Innovative AI applications for patient safety: Chan et al.

PAPERS INCLUDED IN THIS RESEARCH TOPIC

In their work, Hart et al. developed seven machine learning algorithms based solely on personal
health data from the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), and
compared themwith 15 practicing physicians in stratifying endometrial cancer risk for 100 women.
The results indicate that their random forest model achieves a testing AUC of 0.96, 2.5 times better
at identifying above-average risk women with a 2-fold reduction in the false-positive rate. A novel
concept named “Statistical Biopsy” was proposed for the first time.

Chen et al. reported their development of a deep-learning convolutional neural network
(DCNN) for enhanced organ-at-risk (OAR) segmentation on cone beam computed tomography
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(CBCT), trained with forty post-operative head and neck cancer
patients. The developed DCNN improved CBCT in terms
of Hounsfield unit (HU) accuracy, image contrast, and OAR
delineation accuracy.

Using a cohort of 100 prostate cancer patients, Jensen et
al. demonstrated that their novel machine learning model can
be used to quickly estimate the Pareto set of feasible dose
objectives in cancer radiotherapy, which may directly accelerate
the treatment planning process and indirectly improve final
plan quality by allowing more time for plan refinement. Their
model outperforms the existing machine learning techniques by
utilizing optimization priorities and output initialization.

As a first attempt, Mistro et al. have demonstrated that
knowledge models can be effectively used as teaching aid to bring
inexperienced planners to a level close to experienced planners
in fewer than 2 days. The proposed tutoring system can serve
as an essential component in an AI ecosystem that will enable
clinical practitioners to use knowledge-based planning effectively
and confidently for personalized radiation treatment.

Based on 85 training cases and 15 test cases, Wang et al.
have demonstrated a novel deep learning framework for pancreas
stereotactic body radiation therapy (SBRT) planning, which can
predict a fluence map for each beam, hence bypassing the lengthy
inverse optimization process.

In their work, Barua et al. demonstrated that a Multivariate
Functional Principal Component Analysis (MFPCA) approach
can be used to characterize the temporal trajectories of
mandibular subvolumes receiving radiation. Their work
suggests that temporal trajectories of radiomics features derived
from sequential pre- and post-RT CT scans correlate with
radiotherapy-induced mandibular injury, which may be used
to aid in earlier management of osteoradionecrosis, a major
side-effect in radiation therapy of oropharyngeal cancer patients.

In a mini-review, Luo summarized three major approaches
currently employed in predicting cervical cancer outcomes:
statistical models, medical images, and machine learning, and
discussed some of the challenges in making clinical outcome
prediction more accurate, reliable, and practical.

Zhang et al. proposed a transfer learning-based
prognostication model for overall survival in pancreatic
ductal adenocarcinoma patients. The model achieved the area
under the receiver operating characteristic curve (AUC) of 0.81,
significantly higher than that of the traditional radiomics model
of 0.54. Their result suggests that transfer learning-based models
may significantly improve prognostic performance in typical
small sample size medical imaging studies.

To evaluate the overall effectiveness of personalized medicine,
Kapelner et al. introduced and discussed a novel R package
called “Personalized Treatment Evaluator (PTE)” developed by
them. They combined randomized comparative/controlled trial
(RCT) data with a statistical model of the response to estimate
outcomes under different treatment allocation protocols. Their
PTE package can be used to evaluate personalization models in
medicine as well as fields outside of medicine.

In their paper, Namdar et al. presented first a comprehensive
review of AUC metric, and then proposed a modified version
of AUC that takes confidence of the model into account

and incorporated AUC into Binary Cross Entropy (BCE) loss
function. They demonstrated the validity of the new concept on
MNIST, prostate MRI, and brain MRI datasets.

In a review paper, Chan et al. discussed and summarized
the various applications of machine learning approaches in
machine-specific and patient-specific quality assurance (QA),
a key component in safeguarding patient safety during the
radiation treatment of cancer patients.

CONCLUSIONS

Precisionmedicine is an evolving healthcare approach focused on
tailoring medical decisions, treatments, practices, and products
to individual patients based on their genetic, environmental,
lifestyle, and other factors. In this Research Topic, eleven teams
reported promising results from their experience in applying
AI for precision medicine. Moving forward, we anticipate that
more work needs to be done to eliminate biases in the AI
models andmake thesemodels interpretable, therefore ultimately
achieving the promise of precision medicine, i.e., delivering the
right treatment to the right patient at the right time.
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Commonwealth University, Richmond, VA, United States, 5Department of Health Technology and Informatics, Hong Kong

Polytechnic University, Hong Kong, China

Purpose: Artificial intelligence (AI) employs knowledge models that often behave as a

black-box to the majority of users and are not designed to improve the skill level of

users. In this study, we aim to demonstrate the feasibility that AI can serve as an effective

teaching aid to train individuals to develop optimal intensity modulated radiation therapy

(IMRT) plans.

Methods and Materials: The training program is composed of a host of training

cases and a tutoring system that consists of a front-end visualization module powered

by knowledge models and a scoring system. The current tutoring system includes a

beam angle prediction model and a dose-volume histogram (DVH) prediction model.

The scoring system consists of physician chosen criteria for clinical plan evaluation as

well as specially designed criteria for learning guidance. The training program includes

six lung/mediastinum IMRT patients: one benchmark case and five training cases.

A plan for the benchmark case is completed by each trainee entirely independently

pre- and post-training. Five training cases cover a wide spectrum of complexity from

easy (2), intermediate (1) to hard (2). Five trainees completed the training program with

the help of one trainer. Plans designed by the trainees were evaluated by both the scoring

system and a radiation oncologist to quantify planning quality.

Results: For the benchmark case, trainees scored an average of 21.6% of the

total max points pre-training and improved to an average of 51.8% post-training.

In comparison, the benchmark case’s clinical plans score an average of 54.1%

of the total max points. Two of the five trainees’ post-training plans on the

benchmark case were rated as comparable to the clinically delivered plans

by the physician and all five were noticeably improved by the physician’s

standards. The total training time for each trainee ranged between 9 and 12 h.
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Conclusion: This first attempt at a knowledge model based training program brought

unexperienced planners to a level close to experienced planners in fewer than 2 days.

The proposed tutoring system can serve as an important component in an AI ecosystem

that will enable clinical practitioners to effectively and confidently use KBP.

Keywords: knowledge model, lung cancer, machine learning, tutoring system, intensity modulated

radiation therapy

INTRODUCTION

Knowledge models collect and extract important patterns and
knowledge from high quality clinical plans and utilize them to
predict clinically optimal solutions for new cases. For treatment
planning, this comes in the form of selected beam angles,
optimized collimator settings, predicted achievable dose-volume
histogram (DVH) endpoints for inverse optimization, and
combined multiple parameter predictions for a fully automated
treatment planning process (Zhu et al., 2011; Breedveld et al.,
2012; Zhang et al., 2012, 2018, 2019a,b; Good et al., 2013; Voet
et al., 2013; Zarepisheh et al., 2014; Sheng et al., 2015, 2019;
Yuan et al., 2015, 2018; Hazell et al., 2016). Knowledge models
have been successfully used in the clinical workflow for fully
automated planning for some simpler cancer sites like prostate
(Voet et al., 2014), but for more complicated sites, there may yet
be some hurdles to overcome. Due to the limitation of training
samples and other factors, they are often simplified to improve
generalizability by regulating the capability of handling a wide
array of niche scenarios in which a human planner would be
better fit to tackle. Despite this, there is a lot to be gained
from investigating the implicit knowledge of these models. The
simple, logical principles that most of these models are built
upon can not only start a foundation for less experienced users
to progress toward clinical reliability but also bridge the gap
between human and model knowledge in what to look for in
evaluation and identification of planning intricacies. The goal
is to make a human-centered artificial intelligence (AI) system
to exploit the strengths from both ends and efficiently train
competent planners.

While extensive training and arduous hours of practice can
certainly cultivate competent and professional planners, more
effective training programs are urgently needed to help more
planners become proficient in the clinic as technologies continue
to become more advanced and more complex. Of course, there
are aspects of planning that can only be obtained by years of
nuanced planning, but plan quality is not always shown to be
better in those who have more experience (Nelms et al., 2012).
Some planners with planning experience may encounter a bottle-
neck in improving their versatility in planning various scenarios,
due to the lack of understanding of the underlying subtlety which
can be readily provided and instructed by the knowledge-based
models. In addition, training a planner to a highly proficient
level in a traditional mentor-tutor fashion is expensive in time
and resources, and sometime the limited training resources are
dispatched to more entry level learners and/or regional centers.
A person can quickly learn how to plan well if the teaching

is well-thought out and provides the base for the person to
build their own intuition. A training program that introduces
the benefit of knowledge-based models can accomplish this and
aid in tearing down the notion of these models being entirely a
black box which has been restrictive to clinical usage of models.
Such a program can be a catalyst to bring more models into
routine clinical work by showing how they work and what the
best practice is. This study examines the workflow and feasibility
of a training program that takes advantage of two knowledge-
based models (Yuan et al., 2012, 2018) with carefully developed
scoring criteria to facilitate efficient and quality learning of lung
IMRT treatment planning to help establish intuition to trainees
with no previous clinical planning experience.

The proposed training program lays the foundation for an
entirely self-sufficient training module that will be designed as
a constraint-based intelligent tutoring system (ITS) (Mitrovic
et al., 2007, 2013; Dermeval et al., 2018). The constraint-based
approach supports the type of learning problem that does not
have an explicit solution or path for a user to follow as is
the case of IMRT planning. The constraints are defined in
the form of the scoring system, and the end goal is for the
user to learn the planning actions that optimize the scoring
system to obtain the highest score possible. In this constraint
based framework, the user has to forge their own path from
the information that is directed to them, and two people can
take entirely different strategies and arrive at good solutions.
This is a proof-of-concept study to show that there is valuable
information to be gained from the knowledge models and
they can be effectively and efficiently used in training new
planners and give them the ability to utilize these models to
generate quality plans. Here, we define new planners as those
who have completed adequate medical physics course work but
have minimal clinical treatment planning practice. As such,
they would have completed classroom instructions of radiation
therapy physics and advanced treatment planning. They would
have basic operational knowledge of the TPS system, but have no
experience in planning real clinical cases.

METHODS AND MATERIALS

Training Program Design
Program Overview
The overall training program design is shown in Figure 1. At
the core of the training program is the tutoring system which
consists of a front-end visualization module powered by KBP
models and a plan scoring system. The visualization module

Frontiers in Artificial Intelligence | www.frontiersin.org 2 August 2020 | Volume 3 | Article 667

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mistro et al. IMRT Planning Training System

FIGURE 1 | System design diagram for the training program which includes a tutoring system at its core and a host of training cases. The tutoring system brings

together the trainee, trainer, and the TPS. A trainer is optional for assisting the interaction between the trainee and the tutoring system. The tutoring system is powered

by a scoring system and a set of knowledge models.

(Figure 2) provides the vital interactive workspace for the trainee
and trainer, while the KBP models and scoring system provides
back-end knowledge support. The KBP models currently include
a beam bouquet prediction model and a dose-volume histogram
(DVH) prediction model, while the scoring system consists
of physician chosen criteria for clinical plan evaluation as
well as specially designed criteria for learning guidance. These
additional specially designed criteria were designed to help
trainee understand the full scope of treatment planning and
eventually achieve the ability to create a high quality plan,
especially focusing on the criteria that are often qualitatively
evaluated by the physician such as the overall isodose line
conformity. Further, the tutoring system works in concert
with the clinical treatment planning system (TPS) as trainees
learn to generate clinically plans in a realistic clinical planning
environment. In this study, we use the Eclipse R© TPS (Varian
Medical Systems, Palo Alto, CA) which provides fluence map
optimization and dose calculation.

The current training program utilizes six lung/mediastinum
IMRT patient cases: one benchmark case (shown in Figure 3)
and five training cases. Each case is composed of clinical images,
structures, and a delivered plan which were de-identified before
incorporated into the training program. The benchmark case is
used to track skill development. The five training cases cover
the complexity from easy (2), intermediate (1) to hard (2) in
lung IMRT planning. The difficulty level is determined by an
experienced planner who evaluated the prescription, tumor size,
complexity of shape, and proximity to organs-at-risk (OARs).
The benchmark case, considered “intermediate-to-hard,” has a
target volume of 762.8 cc and a prescription of 62Gy; two “easy”
training cases have an average target volume of 113.8 cc and
prescription of 40Gy (reduced dose due to prior treatment); the
“intermediate” training case has a target volume of 453.0 cc and a

prescription of 60Gy; two “hard” training cases have an average
target volume of 845.7 cc and prescriptions of 60 Gy.

Before training begins, each trainee undergoes a
benchmarking process to determine baseline score. In this
process, the trainee is introduced to the treatment planning
system with functionality they might not be familiar with as they
have no prior experience. They are provided with the scoring
metrics and asked to plan the benchmark case without any
intervention from the trainer or the tutoring system (referred
to as the baseline plan). The trainee is instructed that they have
the choice of 6 or 10MV beams and could have no more than 11
beams to align with current clinical practice.

Training Workflow
Figure 4 illustrates the typical training workflow (solid lines)
for learning to plan one training case. The cases are selected
sequentially from the easy ones to the difficult ones. For each
case, a trainee goes through two phases of training: the beam
selection phase and the fluence map optimization phase. In
both phases, each training episode involves three main steps:
(1) the trainee makes a decision (or takes an action); (2) the
training program generates a plan corresponding to the decision
and displays relevant dose metrics; (3) the training program
then generates a comparison plan according to predictions
from knowledge models and displays the same set of relevant
dose metrics for comparison. The majority of interaction
centers around the process with which the trainee learns to
explain the differences between their plan and the comparison
plan, as well as the resulting dosimetric implications of those
differences.

During the beam selection phase, the trainee can choose
the number of beams (seven to 11) and the direction of
beams. The comparison plans are those generated with beams
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FIGURE 2 | Interactive user interface of the tutoring system. Within the system, the trainee is capable of checking the current plan’s metrics against the clinical plan

and knowledge model DVH prediction.

determined by the knowledge-based beam selection model. Both
trainee plans and comparison plans are created by an automatic
KBP algorithm. The trainee determines whether they prefer to
move along the direction of model prediction or continue with
their own direction. At the end of this phase, the final beam
comparison provides an assessment of the expected dosimetric
differences contributed by trainee’s beam design.

When the optimization training phase begins, the trainee
creates the initial optimization objectives and finishes the
planning process. In parallel, a comparison plan is generated with
the KBP beam setting using trainee’s dose-volume constraints.
Dosimetric comparisons between plans allow the trainee to
appreciate whether the results aligned with their expectations
during the aforementioned assessment, which builds a forward
intuition on beam choice implications.

Following this, the KBP DVH model is imported and the
trainee is able to compare their plan’s DVHs and dose objectives
to where the DVHmodel predicts they should be able to achieve.
The trainee then makes changes based on what they see is

obtainable. After the changes are made and the plan is scored, a
final comparison is done with the clinically delivered plan. The
trainee works backwards by looking at the scoring and DVH
of the clinical plan and ponders on how the clinically delivered
plan might have been achieved. This is to further ingrain a
backwards intuition for the metrics related to certain collective
beam arrangements.

As shown in Figure 4, the training workflow also includes a
few steps (dashed boxes) that are designed for people with little
to no knowledge of treatment planning. These steps are optional
when trainees are at more advanced stages during the training
process. The first beam assessment is an initial guidance with the
trainer about the best beam direction to select if they were to
make a plan with only a single beam. This step encourages the
trainee to think about how each individual beam will contribute
to the final dose distribution. The second beam assessment helps
the trainee make an optimal plan when only two beams are used.
This helps planners understand how multiple beams interact
with one another (i.e., the second best beam isn’t necessarily the
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FIGURE 3 | Screenshot of the benchmark case in (a) axial, (b) coronal, and (c) sagittal view. The clinically delivered plan’s isodose is displayed.

best beam to work with the first). Lastly, the “basic constraint
assessment” step is a simple check to ensure that the trainee has
at least one objective for all the relevant structures and two for
the target.

The current training program takes the trainee through the
workflow described in Figure 4 five times, one for each training
case, in increasing order of difficulty. After completing all five
cases, the trainee returns to the benchmark case and creates a
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FIGURE 4 | Training diagram that is largely based on comparison between trainee’s results and knowledge-based planning (KBP) models. Blue-colored process is

geometry-based assessment. Red-colored process is objective-based assessment. Green-colored process is geometry and objective based assessment. Dashed

box is considered optional step. Cylindrical block is based on knowledge-based model.

new plan entirely on their own without any intervention from
the trainer, knowledge models, or the tutoring system. This
post-training plan in comparison to the baseline plan on the same
case provides an objective way to assess if there is any significant
improvement in their planning ability.

Tutoring System Design
As introduced in the previous section, the current tutoring
system includes three major components: a visualization module
for user interaction, knowledge models for planning guidance,
and a scoring system for plan assessment. The visualization
module is integrated with the Eclipse R© TPS and is currently
implemented as a script using the Eclipse R© API. In the following,
we provide a brief description of the knowledge models and the
scoring system.

Beam Angle Selection Model
The beam model (Yuan et al., 2015, 2018) predicts the best beam
configuration for each new case, including the number of beams
and the angle of the beams. It operates on a novel beam efficiency
index that tries to maximize the dose delivered to a PTV and
minimize the dose delivered to OARs based on a number of
weighting factors. It also introduces a forced separation among
good quality beams to cover sufficient co-planar space. The
weighting factors and other parameters of the beam model are
learned from a set of high quality prior clinical cases (Yuan et al.,
2018). For the purposes of simplicity of introduction to new
planners, all beams in the current training program are restricted
to co-planar beams.

DVH Prediction Model
The DVH prediction model estimates the best achievable DVH
of the OARs based on a number of anatomical features:
distance-to-target histogram (DTH) principal components, OAR

volume, PTV volume, OAR-PTV overlapping volume, and out-
of-field OAR volume (Yuan et al., 2012). The model is trained
with a set of prior lung cases with a variety of tumor sizes
and locations. For this study, the model predicts DVHs that
are useful for the trainees during the learning and planning.
Organs-at-risk included in each DVH are cord, cord+3mm,
lungs, heart, and esophagus.

Plan Scoring System
A plan scoring system was designed to help trainees understand
the quality of different plans from the choices of beams and DVH
parameters. Therefore, the scoring system incorporates both
physician’s clinical evaluation criteria and planning knowledge.
The metrics with their respective max point values are shown in
Table 1. As noted, since each case has its own unique anatomy
and complexity, the most achievable points of a plan is always
less than the total max points, while more difficult cases have
lower best achievable points. The best achievable points of each
plan are not normalized so the trainees are encouraged to rely
on the actual planning knowledge to “do their best,” rather than
to get “100 percent score” or gaming the system. There were a
total of 164 points, with which the raw score was normalized to
represent the percentage score. A maximum scoring would have
100% percentage score. Normalization was performed after the
training was done as a summary of the data. It is worth reiterating
that the trainee was unaware of the maximally achievable score
for each case so they couldn’t game the system. Note that even
clinically delivered plans may not be perfect in all categories, and
therefore, may not achieve the highest possible scores.

An effective scoring system can be created in many ways.
The current system starts with the logic of rewarding dosimetric
endpoints that are clinically relevant as explained in RTOG
reports (Chun et al., 2017), other clinical considerations (Kong
et al., 2011; Baker et al., 2016) and planning competitions
powered by ProKnow (ProKnow Systems, Sanford, FL;
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TABLE 1 | Metrics chosen to be a part of the scoring system and their respective maximum point value.

Target Max Lung Max Heart Max Esophagus Max Spinal cord Max

PTV D98% 21 Max dose 5 Max dose 5 Max dose 7 Cord max dose 10

PTV min dose 10 Mean dose 5 Mean dose 7 Mean dose 5 Cord+3mm max dose 10

GTV min dose 10 V20Gy 10 V30Gy 5

CN 95% 12 V5Gy 15 V40Gy 5

CI 50% 12

Location of max dose 10

PTV, Planning Target Volume; GTV, Gross Tumor Volume; CN, Conformity Number; CI, Conformity Index.

www.proknowsystems.com). The conformity index (CI)
(Knoos et al., 1998) aims to limit the isodose volume. The
conformation number (CN) or Paddick conformity index
(Paddick, 2000) follows similar logic to CI but focuses on the
portion of that isodose volume within the target.

Training Program Assessment
To assess the effectiveness of the training program, five trainees
who satisfy the criteria of new planners went through the entire
training program. For all five trainees, the baseline and post-
training plans of the benchmark case were scored and analyzed
for evidence of learning. Furthermore, the post-training plans
of all the training cases as well as all the clinically delivered
plans were also scored and analyzed for trainee performance and
potential knowledge gaps.

Moreover, to assess how the overall scores given by the scoring
system closely reflect true plan quality in a real clinical scenario,
a physician who specializes in the treatment of lung cancer
evaluated each of the plans to provide an expert opinion on their
clinical quality. For each trainee, the post-training plan of the
benchmark case was first compared with the baseline plan of the
same case and then against the clinically delivered plan by the
physician. Each comparison was categorized on a simplified 5-
point scale of (1) significantly worse, (2) moderately worse, (3)
comparable, (4) moderately better, and (5) significantly better.
The physician also evaluated the trainee’s post-training plans on
whether they could be approved for clinical delivery.

RESULTS

Scoring Results
Five trainees went through the training program and their
scores are shown in Figure 5. All trainees went through multiple
classroom courses on radiation physics, anatomy, radiation
biology, and treatment planning/dosimetry. They also completed
a basic practicum course to learn the essential operations of
a treatment planning system. After training, the overall score
of all trainees was unanimously improved from the baseline
and was much closer to that of the clinically delivered plan
(Figure 5A). Trainee 1 and 3 received a planning score point
that was slightly above that of the clinically delivered plan, with
an average of 54.4%, while the other three were marginally
lower with an average of 50.1%. In comparison, the score of

the clinically delivered plan was 54.1%. Detailed scores are listed
in Table 2. For the five cases used within the training program
(Figure 5B), every trainee obtained a score in the final plan that
was greater than that of the clinically delivered plan with the
exception of case 3 for trainee 5 and there was an overall average
of 12.6 raw planning score point improvement over the respective
clinically delivered plans. Detailed breakdown of each trainee’s
performance on each training case is listed in Table 3.

Physician Evaluation Results
Table 4 shows the physician evaluation of the trainee’s post-
training plans as compared to the benchmark plans and the
clinically delivered plans for the benchmark case. Two plans
designed by trainees #1 and #3 that scored slightly better than the
clinical plan per the scoring system were deemed as comparable
to the clinical plan by the physician. The other plans were rated
as marginally worse. All trainee’s post-training plans were rated
moderately better than the initial benchmark plans. Only one of
the trainee’s plan was deemed appropriate for clinical use based
on the physician’s discretion.

DISCUSSION

This is the first attempt at developing an effective training
program for IMRT planning that capitalizes on the implicit
planning tactics that is built into knowledge models for lung
IMRT. As trainees go through the training program, the
prediction from knowledgemodels provides guidance at multiple
steps and the carefully thought-out scoring objectives direct them
toward appropriate choices or skills to create a clinically viable
plan. The initial assessment indicates that the knowledge model
based training program can substantially improve the planning
knowledge of novice trainees in a short period of time (9–12 h in
this study). Furthermore, for some trainees their knowledge may
approach a clinical proficient level within this short period.

This training program demonstrates the feasibility that
knowledge models can be effective teaching aids to help
human planners understand the key steps toward generating a
clinically viable plan. This is an important first attempt to use
knowledge models in a human training process. We hypothesize
that by giving trainees opportunities to compare and reflect
on the predictions from knowledge models and their own
understanding of the planning process, these human planners
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FIGURE 5 | (A) For each trainee (column), the total score for the benchmark case: pre-training plan (purple dot) and post-training plan (green dot) compared to the

clinically delivered plan (black line). (B) For each training case (column), and for each trainee (color dots), the score difference between the trainee plan and the

clinically delivered plan (black line indicating 0).

TABLE 2 | Scores of the benchmark plan for each trainee before and (“Initial”)

after (“Final”) training.

Trainee ID Plan Raw score Percentage score

Trainee 1 Initial 46.69 28.47

Trainee 2 Initial 30.64 18.68

Trainee 3 Initial 37.53 22.88

Trainee 4 Initial 16.83 10.26

Trainee 5 Initial 45.42 27.70

Trainee 1 Final 89.54 54.60

Trainee 2 Final 85.18 51.94

Trainee 3 Final 88.96 54.24

Trainee 4 Final 83.56 50.95

Trainee 5 Final 77.74 47.40

will have a better and more concrete understanding of the
knowledge models and thus have confidence in making their
planning decisions rather than simply accepting the predicted
results. While further research is needed to design more effective
mechanisms for incorporating knowledge models in human
learning, this study has shown that proper design of a plan
scoring system provides one effective approach to helping
trainees understand the effects of beams and constraints. Further
development and testing of the scoring system are warranted
since five cases are not likely to cover the possible case variations
and review by only one physician may not be sufficient to cover
variations in clinical considerations.

While the beam and DVH prediction models used in
this study make for a good foundation, additional and more
sophisticated knowledge models are needed to address the
skills and knowledge that are currently provided by trainers
throughout the training to produce clinically viable plans.
Examples of important considerations during planning include

collimator optimization and strategies to fine-tune small regions
that are less optimal.

In the current implementation, the plan scoring system serves
multiple purposes. First, the total score should measure the
overall quality of a plan. Second, the less than satisfactory
scores should emphasize the most important metrics that require
attention. Third, in an indirect way, we want the total score
to measure a trainee’s mastery of planning knowledge and the
difference in scores on the same case to measure the trainee’s
level of improvement (i.e., learning). Scoring for the first purpose
has been studied in quality assurance literature (Mayo et al.,
2017). Unfortunately, this scoring will always have an ad hoc
nature as physicians’ preferences will vary, and one scoring
system that is in perfect agreement with one physician may not
hold true for another. Moreover, some metrics are prioritized
conditionally depending on other metrics. One such scoring
difficulty is in terms of the metrics that physicians utilize
to make decisions based on seemingly minor differences. For
example, in some cases, the esophagus may not be prioritized
as highly as the lung or the heart, but if the other metrics
are at an acceptable level then even small differences in the
esophageal metrics may be considered more important than
moderate differences in lung dose. This is because most people
with locally-advanced lung cancer will experience some degree
of esophagitis (Chapet et al., 2005) while a much smaller
percentage will experience pneumonitis. This type of conditional
prioritization poses significant challenges for scoring system
design and require further investigation. Scoring systems for
the latter two purposes have not been previously studied. One
challenge that we faced is the exploitation of the scoring system
by trainees. That is, poorly designed scoring systems tend to allow
trainees to attain high scores without actually understanding
planning knowledge and actually creating high quality plans.
We have improved our scoring system iteratively by adjusting
the priority (i.e., max point) assignments based on pilot testing
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TABLE 3 | Scores of five plans during training for each of five trainees. Score

difference is defined as the difference between trainee’s plan’s score vs. the

clinical plan’s score.

Trainee ID Raw score Score difference Plan

1 129.02 11.9 Easy 1

2 133.84 16.74 Easy 1

3 138.49 21.39 Easy 1

4 126.8 9.7 Easy 1

5 132.71 15.61 Easy 1

1 120.51 1.77 Easy 2

2 144.27 25.53 Easy 2

3 128.36 9.62 Easy 2

4 136.75 18.01 Easy 2

5 133.79 15.05 Easy 2

1 54.75 3.53 Intermediate 1

2 56.49 5.27 Intermediate 1

3 70.42 19.2 Intermediate 1

4 55.08 3.86 Intermediate 1

5 48.27 -2.95 Intermediate 1

1 60.66 33.48 Hard 1

2 44.78 17.6 Hard 1

3 48.32 21.14 Hard 1

4 34.7 7.52 Hard 1

5 50.4 23.22 Hard 1

1 83.91 14.68 Hard 2

2 72.32 3.09 Hard 2

3 73.17 3.94 Hard 2

4 73.72 4.49 Hard 2

5 80.91 11.68 Hard 2

TABLE 4 | Physician evaluation of trainee post-training plan on 5-point scale

(significantly worse to significantly better) and clinical feasibility rating.

Trainee # Comparison to

clinical

Comparison to

benchmark

Clinically

feasible

1 Comparable Moderately better No

2 Moderately worse Moderately better No

3 Comparable Moderately better Yes

4 Moderately worse Moderately better No

5 Moderately worse Moderately better No

results. It is also important not to adjust the scoring priority
for every plan or trainee because there will always be new ways
to exploit any scoring system. One possible solution to this is
to have a progressive scoring system that adjusts priority when
reaching certain thresholds. Another approach is to use entirely
separate and different mechanisms for the latter two purposes.
For example, instead of using a score to measure a trainee’s
knowledge, wemay use a Bayesianmodel to assess the probability
of the trainee’s understanding of a case as is done in modern
Intelligent Tutoring Systems (Santhi et al., 2013).

The current training program has many limitations. We
can observe one example by comparing the left and right

of Figure 5. As seen in the right figure, after training using
the knowledge models, all five trainees were able to generate
plans that score higher than clinically delivered plans for
all five training cases. However, as shown in the left figure,
when the trainees returned to the benchmark case, only two
trainees were able to achieve near or just at the level of the
clinically delivered plans. It can be inferred that some of the
trainees might not have fully absorbed the knowledge that was
presented to them through the training program. It is also
possible that the benchmark case requires special knowledge
that is not well-presented to the trainees. In addition, we
noticed that during physician plan evaluation, only one of
two plans that outscored the benchmark case’s clinical plan
was deemed clinically acceptable. It is possible that additional
plan quality related metric could be introduced in the scoring
system to better quantify a plan’s clinical applicability. Further
research in all aspects of the program, including the knowledge
models, the scoring system, the coverage of essential knowledge,
and the selection of training cases, is necessary to improve
the effectiveness of the training program. Finally, the current
implementation is based on a specific commercial TPS platform
and its existing application programming interface. While
general principles of training workflow design are applicable to
other commercial platforms, methods for adapting the proposed
design to other planning technologies and platforms deserve
further investigation.

Even though the current training program has shown
encouraging results that demonstrate its feasibility, there are
clearly much to be done to develop a truly effective training
program for knowledge-based IMRT planning. The immediate
next stage includes the need to enhance the scoring system,
extend knowledge models, and expand to a larger study with
more training cases and with a variety of sites beyond just
the lung. Another important task is to conduct a larger study
with more trainees and more physicians to fully evaluate the
benefits of the training program centered around knowledge-
based models. As discussed in the introduction, our ultimate goal
is to develop the training program into a fully asynchronous
intelligent tutoring system as we gain a better understanding
of the essential components and algorithms that are required
by such a training system. Having a human trainer in
the current program will provide important feedback for
future designs. With permission of trainees, all conversations
can be recorded in order to find where and how best to
provide certain learning materials and pertinent hints. An
intelligent training system operating asynchronously may be
invaluable for reducing costs of planner training, providing an
educational resource to graduate programs, tearing down the
black box mindset of knowledge models in clinical practices,
and improving the quality of care in cancer centers across the
world (Zubizarreta et al., 2015).

CONCLUSION

We have demonstrated that knowledge models can be effectively
used as teaching aid in a training program to bring unexperienced
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planners to a level close to experienced planners in a short period
of time. The assessments indicate that the knowledge models
helped trainees improve their knowledge and skills for producing
higher quality plans. We believe this knowledge model based
training program can serve as an important component of an
AI ecosystem that will enable clinical practitioners to effectively
and confidently use KBP in radiation treatment. Further efforts
are needed to enhance, validate, and ultimately automate the
training program.
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Purpose: Treatment planning for pancreas stereotactic body radiation therapy (SBRT)

is a difficult and time-consuming task. In this study, we aim to develop a novel deep

learning framework to generate clinical-quality plans by direct prediction of fluence maps

from patient anatomy using convolutional neural networks (CNNs).

Materials and Methods: Our proposed framework utilizes two CNNs to predict

intensity-modulated radiation therapy fluence maps and generate deliverable plans: (1)

Field-dose CNN predicts field-dose distributions in the region of interest using planning

images and structure contours; (2) a fluence map CNN predicts the final fluence map

per beam using the predicted field dose projected onto the beam’s eye view. The

predicted fluence maps were subsequently imported into the treatment planning system

for leaf sequencing and final dose calculation (model-predicted plans). One hundred

patients previously treated with pancreas SBRT were included in this retrospective study,

and they were split into 85 training cases and 15 test cases. For each network, 10%

of training data were randomly selected for model validation. Nine-beam benchmark

plans with standardized target prescription and organ-at-risk constraints were planned

by experienced clinical physicists and used as the gold standard to train the model.

Model-predicted plans were compared with benchmark plans in terms of dosimetric

endpoints, fluence map deliverability, and total monitor units.

Results: The average time for fluence-map prediction per patient was 7.1 s. Comparing

model-predicted plans with benchmark plans, target mean dose, maximum dose

(0.1 cc), and D95% absolute differences in percentages of prescription were 0.1,

3.9, and 2.1%, respectively; organ-at-risk mean dose and maximum dose (0.1 cc)

absolute differences were 0.2 and 4.4%, respectively. The predicted plans had fluence

map gamma indices (97.69 ± 0.96% vs. 98.14 ± 0.74%) and total monitor units

(2,122 ± 281 vs. 2,265 ± 373) that were comparable to the benchmark plans.
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Conclusions: We develop a novel deep learning framework for pancreas SBRT

planning, which predicts a fluence map for each beam and can, therefore, bypass the

lengthy inverse optimization process. The proposed framework could potentially change

the paradigm of treatment planning by harnessing the power of deep learning to generate

clinically deliverable plans in seconds.

Keywords: deep learning, artificial intelligence, fluence map, treatment planning, convolutional neural network,

pancreas, SBRT

INTRODUCTION

Pancreatic cancer is an aggressive and lethal malignancy that
accounted for an estimated 4.5% of all cancer-related deaths
worldwide in 2018 (Bray et al., 2018). Stereotactic body
radiation therapy (SBRT) utilizes sophisticated image-guidance
and motion-management techniques to allow the delivery of
a highly conformal dose of radiation to the target while
sparing the surrounding normal tissues. Due to the nature of
the higher fractional dose, achieving steeper dose gradients is
prioritized to better spare the gastrointestinal (GI) organs at risk
(OARs), such as the stomach and duodenum/small bowel. In
addition, the highly variable planning target volume (PTV) and
OAR geometry make the planning task extremely challenging.
Although limiting the OARmaximum dose frequently outweighs
target coverage, a trial-and-error process attempts to cover
as much of the target with a prescription dose as possible.
The consistency of plan quality is hard to maintain due
to time pressure and the planner’s experience, which may
result in suboptimal plans. A system capable of maintaining
consistently high plan quality is warranted in modern radiation
oncology departments.

Over the last decade, efforts have been made to implement
treatment-planning automation. Machine learning (ML)
algorithms have been utilized to extract clinical knowledge
from existing plans and apply it in various formats to create
plans for new patients, which is known as knowledge-based
planning (KBP). One KBP approach relies on patient-specific,
dose-volume histogram (DVH) prediction to guide inverse
optimization. Such modeling is based on the patient’s anatomical
structures and prior planning knowledge. Traditional ML
techniques have seen significant success in DVH prediction for
many treatment sites (Zhu et al., 2011; Yuan et al., 2012; Good
et al., 2013; Skarpman Munter and Sjolund, 2015). Another
approach is voxel-wise dose prediction–based treatment-
planning guidance. Over the past several years, a shape-based
method (Liu et al., 2015), atlas-selection methods (Sheng et al.,
2015; McIntosh and Purdie, 2016, 2017), and artificial neural
network methods using handcrafted features (Shiraishi and
Moore, 2016; Campbell et al., 2017) were proposed. Recently,

Abbreviations: BEV, beam’s eye view; CNN, convolutional neural network;

CT, computed tomography; DAO, direct aperture optimization; DL, deep

learning; DVH, dose-volume histogram; FD, field dose; FM, fluence map; GI,

gastrointestinal; iGTV, internal gross tumor volume; KBP, knowledge-based

planning; MAE, mean absolute error; MU, monitor unit; OAR, organ-at-risk; PTV,

planning target volume; ROI, region of interest; SBRT, stereotactic body radiation

therapy; TPS, treatment planning system.

convolutional neural networks (CNNs) have shown success
in predicting 3-D dose distributions (Kearney et al., 2018;
Barragán-Montero et al., 2019; Chen et al., 2019; Fan et al., 2019;
Nguyen et al., 2019a,b). This type of model is typically referred
to as a deep learning (DL) model. A majority of these models
employ network structures similar to U-Net, which was initially
developed for biomedical image segmentation (Ronneberger
et al., 2015). However, in this approach, a second step of plan
generation via inverse optimization is necessary to create a
treatment plan aiming to achieve the predictions (McIntosh
et al., 2017; Fan et al., 2019), either as DVH-based optimization
or as voxel-based dose mimicking.

We contend that high-quality radiotherapy plans with
standardized dose constraints and beam settings can be directly
created by predicting their fluence maps without optimization
or dose mimicking. We refer to this process as direct plan
generation (as opposed to the automated planning process used
in the literature that generally requires two steps as mentioned
above). Few publications have focused on direct fluence map
prediction (Lee et al., 2019; Sheng et al., 2019). In the case of
whole breast irradiation, fluence prediction was achieved with a
random forest model proposed by Sheng et al. (2019). Lee et al.
(2019) show that, given the organ contours and the complete set
of field-dose distributions, fluence maps for seven-beam prostate
IMRT could be reconstructed by a modified U-Net with high
accuracy. However, the study did not investigate how to obtain
the known field dose. Rather, the authors assumed the field
doses were a prerequisite for their technique to work. Indeed,
solving the field dose of each beam remains a challenge. We
hypothesize that anatomical planning features, together with the
physician’s planning objectives, could lead to accurate prediction
of the field doses of each beam and their corresponding fluence
maps. The expert planner incorporates the physician’s planning
objectives during manual planning. Therefore, these planning
objectives are embedded in these plans, and DL models should
be able to capture such information in the training data. In this
feasibility study, we present a novel deep learning framework for
direct fluence map prediction (a.k.a. direct plan generation) and
demonstrate its performance using clinical pancreas SBRT cases.

MATERIALS AND METHODS

Patient Selection and Radiation Therapy

Plan
One hundred pancreatic cancer patients previously treated with
SBRT at Duke University Medical Center between 2014 and
2019 were included in this retrospective study. This study
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FIGURE 1 | Overall workflow of the DL modeling and validation. The prediction pipeline generates fluence maps from CT data and structure contours.

was approved by the institutional review board. In clinical
plans, the dose prescription to the PTV was 25Gy, often with
a simultaneous integrated boost to the internal gross tumor
volume (iGTV) with 33 or 40Gy. The GI OAR (stomach,
C-loop/duodenum, and bowels) dose constraints varied in
maximum dose and maximum volume according to the different
physician preferences. We aim to develop a model that is capable
of generating clinical-quality pancreas SBRT IMRT plans. In
this feasibility study, each case was replanned by experienced
clinical physicists who specialized in GI SBRT using unified
planning objectives and a standardized IMRT protocol with a
single prescription level. The prescription for both the PTV and
iGTV were 33Gy in five fractions. All plans were designed with
nine equally spaced coplanar 10-MV photon beams. Stomach,
C-loop/duodenum, and bowels were combined and referred to
as the OAR. The maximum dose for the OAR was limited to
25Gy (0.1 cc). This protocol creates the scenario of an inverted
relationship of target and OAR dose prescription, a clinical
scenario that often has to be handled manually by an experienced
planner for each case. In the following, we refer to the resulting
standardized plans as the benchmark plans, which were used
to train the model. The same beam orientations, including
gantry angles, and beam shape definition via its open field dose,
referred to as beam templates, were also included as input for
the DL models. The 100 patient cases were divided randomly
into an 85:15 training:testing ratio. All treatment plans were
generated in the Eclipse R© Treatment Planning System (TPS)
(Varian Medical Systems, Palo Alto, CA) version 13.7 with the
volume dose calculated by the Analytical Anisotropic Algorithm
version 13.7.14. A Varian Millennium 120 multi-leaf collimator
(MLC) was used to deliver the modulated fluence maps. The
leaf-sequencing algorithm used was Smart LMC version 13.7.14.

Study Workflow
The overall study workflow is summarized in Figure 1. The
proposed framework adopts a pipeline structure, in which two
CNNs make consecutive predictions to generate the complete
plan with fluence maps. The input into the pipeline includes
planning computed tomography (CT) images as well as contours
of the PTV and OARs. First, the field-dose CNN (FD-CNN)
predicts 9 individual IMRT field dose distributions, i.e., FD-CNN

field dose from CT and structure contours. Next, each 3-D field
dose is projected along the beam’s eye view (BEV), generating the
2-D BEV dose map. Finally, the fluence map CNN (FM-CNN)
predicts the fluence map for each beam from the corresponding
BEV dose map. The two CNNs were implemented in Keras with
the Tensorflow backend and trained separately. The entire model
was trained on a workstation with an Intel Xeon E5 v4 processor,
64 GB of RAM, and an NVIDIA Quadro M4000 graphics card.
In order to evaluate the proposed framework’s performance,
we compared the automatically generated plans using the DL
technique described in this research study, referred to as “model-
predicted plans,” against the benchmark plans generated by
human experts using the standard inverse planning process.

Data Preprocessing

All plans, including CT images, contours, field doses, and fluence
maps, were exported from the Eclipse TPS as DICOM files. As
the original plans have different spatial resolutions, resampling
was performed on dose and contour images with 1mm axial
resolution and 2mm slice thickness. Linear interpolation was
used to increase the resolution of dose distributions to facilitate
more accurate dose prediction. Relative values were used in field
doses with the prescription dose of 33Gy normalized to 100%.
Axial slices were cropped to a 192 × 192 pixel image centered
at the isocenter. Fluence maps and other BEV projections had
a resolution of 2.5 × 2.5 mm2 at the isocenter plane. All
the training data were randomly shuffled before holding out a
validation set.

Field Dose Prediction

The objective of FD-CNN is to predict field doses fromCT images
and structure contours. The network architecture of FD-CNN is
illustrated in Figure 2, and it operates on a slice-by-slice basis.
To predict field dose in one query slice, the main input includes
seven PTV slices (the query slice and six adjacent slices) and the
OAR query slice, which are all 192 × 192 binary masks. The
adjacent PTV slices were included to account for PTV shape
change in the superior–inferior direction. In the downsampling
block, the contour masks were downsampled three times using
strided 2-D convolution to produce 128 channels of 24 ×

24 feature images. An upsampling block produced 72-channel
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FIGURE 2 | Simplified network architecture of FD-CNN. FD-CNN takes contour masks and beam templates as input and predicts nine field doses in an axial slice.

The details of downsampling, upsampling, and convolutional blocks (rounded rectangles) are omitted to highlight the transformation process from the inputs to the

output. PTV±n refers to the n th PTV slice superior or inferior to the query slice. OAR includes only the OAR contour in the query slice. Each rectangle block

represents a layer with the number of channels on the top and image dimensions labeled on the bottom of each layer.

feature images, using strided 2-D transposed convolution three
times to restore the 192 × 192 resolution. CT images were
incorporated in the form of beam templates (Input II in Figure 2)
calculated by the TPS and concatenated to the 72-channel feature
images. A final convolution block was applied to produce nine
field doses for the nine equally spaced beams. The prediction
region was limited to a region of interest (ROI), which was
the PTV expanded by 1 cm. The Swish activation function
(Ramachandran et al., 2017) was used in the network to introduce
non-linearity. Swish is the product of an identity function and a
sigmoid function, which can be expressed as

Swish (x) =
x

e−x + 1
. (1)

In predicting all field doses, the total dose was acquired
automatically by summation. The loss function of FD-CNN
(LFD) was the sum of two parts: field dose (FD) error and total
dose (TD) error in the ROI, which is formulated as

LFD =
1

N (ROI)
[

∑

beam

∑

ROI

(

FDbench − FDpred

)2
+ µ·

∑

ROI

(

TDbench − TDpred

)2

]

(2)

N (ROI) is the number of ROI pixels. FDbench and TDbench are
the benchmark plan field and total doses. FDpred and TDpred

are the predicted field and total doses. The field and total dose
error terms were summed with the regularization term of µ as
tuned by validation. All slices with ROI were used to predict
field dose by FD-CNN. For each patient, all the predicted 2-D
dose slices were stacked together to form the predicted 3-D dose
distributions of a given beam. In total, there were 3,238 slices
from all 85 training cases. The benchmark plan’s field dose is
used as the ground truth for model training. Ten percent of the
training slices were held out for validation. FD-CNN was trained
using an Adam optimizer (Kingma and Ba, 2014) with a learning
rate of 0.001 and early stopping with patience of eight epochs
(training terminates when validation loss does not improve for
eight epochs).

Fluence Map Prediction

The second DL model is the FM-CNN, which predicts one
fluence map from each 3-D field dose. The network architecture
of FM-CNN is illustrated in Figure 3. It adopts a customized U-
Net shape, which includes three resolution hierarchies (96, 48,
and 24 pixels). The inputs of FM-CNN are the BEV dose map
and the BEV PTV map, and the output is the fluence map. For
one beam, the BEV dose map is the projection of the predicted
field dose along the BEV, and the BEV PTV map is the binary
projection of the PTV contour along the BEV. The upsampling
and downsampling were achieved with strided 2-D convolution
and strided 2-D transposed convolution, respectively. The BEV
dose maps and fluence maps of the benchmark plans serve
as ground truth for model training. The loss function of FM-
CNN (LFM) is a modified mean absolute error (MAE), which is
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FIGURE 3 | Network architecture of FM-CNN. For each beam, FM-CNN predicts the fluence map from the dose map and PTV map (concatenated). Three hierarchies

of image dimension (96, 48, 24 pixels) are used. Each rectangular block represents a layer with the number of channels on the top and image dimensions labeled on

the left of each hierarchy.

formulated as

LFM = (1 + λ)

∑

∣

∣

∣
ybench − ypred

∣

∣

∣

N
(

ybench > 0
) (3)

where ybench and ypred are the benchmark and predicted values
of the fluence map, and N(ybench > 0) is the count of
benchmark fluence map pixels with non-zero values. The factor
λ is the regularization term to prevent FM-CNN from over- or
underestimating the fluence maps overall. It is expressed as

λ =
∣

∣

∣
N

(

ybench − ypred > 0.001
)

−N
(

ybench − ypred < − 0.001
)
∣

∣

∣

N
(

ybench > 0
)

(4)

Because fluence intensity is directly linked to field dose, the
fluence prediction error should have a mean value close to
zero in order to avoid overdosing and underdosing. Therefore,
this regularization factor is added to control the mean value of
prediction error for all pixels and keep the numbers of positive
and negative errors at the same level.

The total training data size was 765 for 85 patients, of which
10%were held out for validation. The model was trained using an

Adam optimizer with a learning rate of 0.001 and early stopping
with patience of 15 epochs.

In the final validation step, these predicted fluence maps
were subsequently imported into the TPS for leaf sequencing
and dose calculation. The resulting plans are referred as model-
predicted plans and are compared to the benchmark plans for
overall performance.

Model Assessment
For model evaluation, the benchmark plan is considered
as the ground truth. Each of the two models is evaluated
separately and then collectively for dosimetric quality and
deliverability. The FD-CNN field dose is compared with the
corresponding field dose of the benchmark plan to evaluate
FD-CNN performance. To evaluate FM-CNN performance,
a special plan, the FM-CNN plan, is generated by FM-
CNN using the field dose from the benchmark plan, thus
eliminating error contamination from the first CNN model.
The model-predicted plan is the final plan created with
the fluence map predicted by the complete model (i.e.,
both CNNs) and, thus, evaluates the overall performance of
the framework.

The 15 cases not included in model training were used as an
independent test set, which consists of 638 slices and 135 fluence
maps. For each test case, an FD-CNN field dose, an FM-CNN
plan, and a model-predicted plan were created. The voxel-wise
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TABLE 1 | Model training and calculation details.

Trainable parameters Training data size Epochs Training time Calculation time per image Calculation time per patient

FD-CNN 3,351,185 3,238 48 3 h 0.026 s 1.100 s

BEV projection n/a n/a n/a n/a 0.663 s 5.966 s

FM-CNN 203,621 765 134 4min 0.003 s 0.030 s

The training details of two CNNs include the number of trainable parameters, training epochs, and training time. BEV projection is a deterministic process that requires no training. The

calculation times listed are average prediction time of CNNs and average calculation times of BEV projection.

TABLE 2 | Dose differences between all predicted plan groups and benchmark plans.

Plan type Dose type Region Voxel dose difference [%] Dmean difference [%] Dmax difference [%]

FD-CNN dose Total dose (CNN) ROI 1.79 ± 2.21 0.41 ± 0.28 0.48 ± 0.31

PTV 0.91 ± 0.79 0.57 ± 0.25 0.48 ± 0.31

ROI–PTV 2.65 ± 2.75 0.51 ± 0.34 0.49 ± 0.54

Field dose (CNN) ROI 1.25 ± 1.11 0.51 ± 0.42 1.82 ± 1.44

FM-CNN plan Total dose (TPS) PTV 1.22 ± 0.96 0.88 ± 0.65 1.46 ± 1.19

OAR 0.86 ± 0.75 0.30 ± 0.17 0.86 ± 0.52

Model-predicted plan Total dose (TPS) PTV 2.41 ± 1.87 1.24 ± 0.74 4.10 ± 2.35

OAR 2.70 ± 2.45 0.94 ± 0.65 4.77 ± 2.84

Model-predicted plans exhibit larger dose differences than FD-CNN doses and FM-CNN plans.

percentage dose difference 1D is calculated as

1D(V ) =
1

N(V)

∑

i∈V

∣

∣

∣

∣

∣

∣

D
(i)
bench − D

(i)
pred

Dprescription

∣

∣

∣

∣

∣

∣

×100 (5)

V is the calculation volume, and N(V) is the number of voxels
in this volume. Several dosimetric endpoints were also used for
assessment. These include PTV max dose (0.1 cc), mean dose,
D95% for the PTV, andmean andmax doses (0.1 cc) for the OARs.
To provide a direct assessment of fluence map prediction, MAEs
were calculated between FM-CNN and benchmark fluence maps.

In Eclipse TPS, optimal fluence maps, generated by inverse
optimization or deep learning models, are converted to actual
fluence maps by leaf-sequencing algorithms to enable delivery
on the machine. Unrealistic optimal fluence map features,
such as extremely heterogeneous regions or high transmission
value at a single pixel, could potentially result in a large
discrepancy between optimized and delivered doses. Therefore,
the deliverability of fluence maps was measured by the gamma
index between optimal (before leaf sequencing) and actual
fluence maps (after leaf sequencing) for both benchmark and
predicted plans. We employed the gamma analysis in a similar
fashion and intent as IMRT quality assurance. Here, a high
gamma passing rate indicates that the optimal fluence map is
physically realistic and could be achieved by the leaf-sequencing
algorithm. Gamma analysis was performed using an in-house
program with a 3%/3mm criterion. Total monitor units (MUs)
from benchmark and model-predicted plans were compared.

After the DL framework was completely trained and tested,
we reduced the training cases for both CNNs and calculated
the loss values on the test set. In addition, a series of ablation
studies were conducted, in which certain CNN components were
removed to test the model performance. For the FD-CNNmodel,

we removed the input of one, two, or three pairs of adjacent PTV
slices or beam templates. For the FM-CNN model, we removed
the input of the PTV map. The reduced models were evaluated
on the same test set and compared with the original models.

RESULTS

Model Training
The model training details are summarized in Table 1. FD-CNN
has 3.35 million trainable parameters and took 3 h to train. FM-
CNN has a much less complex architecture with 0.20 million
trainable parameters and took 4min to train. The projection of
field dose and PTV along the BEV is relatively time-consuming
compared to CNN predictions. On average, prediction of nine
fluence maps for each patient took 7.1 s, including 1.10 s for FD-
CNN prediction, 5.97 s for BEV projection, and 0.03 s for FM-
CNN prediction. In the entire workflow, the computation time of
the model is typically less than that of TPS dose calculation. A DL
model-predicted plan was generated within 1 to 2min, including
calculating themodel-predicted plan dose in TPS, as compared to
the traditional manual planning, which takes between 1 and 3 h.

Model Assessment
The dosimetric evaluation results are summarized in Table 2.
Here, the ground truth is the dose from the benchmark plans.
Model-predicted plans have the largest dose differences among
the three evaluation plans, and they represent the overall
performance of the workflow. In the deliverable plans, i.e., FM-
CNN and model-predicted plans, PTV and OAR (stomach, C-
loop/duodenum, and bowels combined) maximum dose errors
are larger than mean dose errors. Figure 4 compares the total
dose distribution between the model-predicted and benchmark
plans of an example case. Figure 5 compares the DVH for the
same case. As shown in the figure, the predicted fluence map
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FIGURE 4 | Examples of fluence map and dose comparisons with the benchmark in one test case. The model-predicted fluence map recreated the fluence contrast

in the benchmark. The model-predicted plan achieved a similar total dose as the benchmark. The first row shows the benchmark (A) and model-predicted (B) fluence

maps of one beam, and the difference (C). The second row shows one axial slice of the dose distribution of benchmark plan (D) and model-predicted plan (E) and the

dose difference (F). PTV contour is marked with black lines in (D,E).

FIGURE 5 | An example of PTV (solid) and OAR (dashed) DVH comparison in

one test case between the benchmark (blue) and model-predicted (red) plans.

The benchmark plan has slightly better PTV homogeneity than the

model-predicted plan with the FM-CNN plan in between.

achieves similar fluence modulation as the fluence map of the
benchmark plan. Further, the TPS-calculated dose distribution
of the predicted plan exhibits small differences from the
corresponding benchmark plan, indicating highly similar plan

quality. The distributions of PTV and OAR dose metrics of
benchmark and model-predicted plans are plotted in Figure 6.

In terms of fluence map deliverability, the average ±

standard deviation gamma passing rate was 98.14% ± 0.74% for
benchmark plans and 97.69%± 0.96% formodel-predicted plans,
respectively, which demonstrates highly similar deliverability.
The average ± standard deviation of total MU per patient is
2,122 ± 281 in model-predicted plans and 2,265 ± 373 in
benchmark plans.

The model performance of FD-CNN and FM-CNN were
plotted against the number of training cases used, as shown
in Figure 7. It can be seen that the testing loss of FD-CNN
plateaued after 55 cases although FM-CNN required only 35
cases to achieve reasonably good performance. The ablation
study showed that, for FD-CNN, removing the beam template
input would increase the testing loss by 20%; using only four, two,
and zero adjacent PTV slices would increase the testing loss by 7,
25, and 66%, respectively. For FM-CNN, removing the PTVmap
input would only slightly increase the testing loss by 1%.

DISCUSSION

We develop a novel deep learning framework to generate clinical-
quality pancreas SBRT plans in seconds. It offers the advantage
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FIGURE 6 | Test set distributions of PTV (Left) and OAR (Right) dose metrics comparing benchmark and model-predicted plans. Model-predicted plans have higher

PTV and OAR maximum dose and lower D95% than the other plan groups. Dose values are reported as percentage of the prescription dose. Dmax, maximum dose;

Dmean, mean dose; D95%, minimum dose received by 95% of the volume.

FIGURE 7 | The number of training cases vs. testing loss for both CNNs. The testing loss stabilized when using 55 or more training cases for FD-CNN (Left) and 35

or more cases for FM-CNN (Right).

of bypassing lengthy optimization, during which the planner
needs to adjust optimization objectives and aims to achieve
similar performance as the human expert exercising inverse
optimization. This study demonstrates the novel approach of
AI-driven treatment planning via predicting fluence maps, thus
providing a more complete approach to generating deliverable
high-quality plans, which has not been sufficiently addressed in
previous studies (Liu et al., 2015; Skarpman Munter and Sjolund,

2015; Kearney et al., 2018; Barragán-Montero et al., 2019; Chen
et al., 2019; Nguyen et al., 2019a,b). Translating predictions from
previous KBP models, either DVH-based or 3-D dose guidance,
to the final deliverable plan has been challenging and remains
a key implementation bottleneck in clinics. Efforts have been
made to complement KBP models to arrive at the final plan
(McIntosh et al., 2017; Long et al., 2018; Fan et al., 2019).
The aim of the proposed DL solution is to garner knowledge
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from existing plans and generate deliverable plans for new
patients, which falls under the broad KBP vision. Our approach
directly predicts fluence maps rather than predicting achievable
DVH/doses in other KBP approaches. More specifically, we
use CNNs to establish the correlation between patient anatomy
patterns and each individual beam’s dose/fluence map, which has
not been investigated in previous KBP studies. This approach
is built upon beamlet-based fluence optimization, with which a
subsequent leaf-sequencing process converts the fluence maps
to MLC motion parameters. By replacing the FM-CNN, the
proposed approach could also be employed along with direct
aperture optimization (Shepard et al., 2002) in step-and-shoot
IMRT, which would offer the advantage of fewer segments and
MUs. This is an area of potential study that warrants future effort.
It would also be of interest to compare the proposed approach
with other KBP-based plan-generation methods in future studies.

We redesigned the entire radiation therapy treatment-
planning workflow by incorporating DL models for dose
prediction and fluence map generation, thereby completing AI-
driven plan generation in seconds. Our results demonstrate that
such AI-driven plans have similar quality when compared to
manually generated inversely optimized plans although, more
importantly, a ready-to-deliver plan is generated with no further
human intervention needed. In dose prediction, the total dose in
PTV predicted by FD-CNN achieved a similar level of accuracy
as existing deep learning–based dose-prediction models. The
input of adjacent PTV slices provided superior–inferior contour
change information efficiently, which significantly reduced the
testing loss while maintaining lower memory consumption than
3-D networks. The second step of our framework, i.e., fluence
map prediction from an existing field dose, directly converts an
individual field dose into its corresponding fluence map, which
eliminates interplay among beams and require no optimization
or intermediate dose calculation. With the existing ground truth
field dose, we achieved similar fluence map MAE (mean value:
2.06 × 10−3) as Lee et al. (2019) (median value: 9.95 × 10−4).
With similar fluence map prediction accuracy, our proposed
framework is capable of directly predicting a fluence map from
contour and CT alone, which Lee et al. (2019) has yet to achieve.

We used standardized nine-beam IMRT plans as a benchmark
in this study, and this increased consistency in plan quality
and reduced the need for a large amount of training data. We
argue that the training data meticulously generated by human
experts is optimal in terms of the endpoints of target coverage
and luminal structure maximum dose. One limitation of the
model is that the training and testing cases must have the

same beam arrangement, dose prescription level, and physician
preferences. Substantially more training data are anticipated

to be required to train a model that incorporates different
beam arrangements and dose constraints. This study focuses
on pancreas SBRT although we are modifying and testing the
model for other disease sites. With the current model, we do
not think it is generically applicable to other disease sites. We
anticipate that data from each specific site are required to
train a robust model. Further study is underway to address
these challenges.

CONCLUSION

We develop a deep learning framework utilizing two CNNs to
directly generate a clinical-quality IMRT plan from CT images
and contours for pancreas SBRT. This framework changes the
traditional approach of inverse treatment planning by replacing
the inverse optimization engine with the intelligent neural
networks. The proposed method has great potential to improve
clinical efficiency and plan quality consistency for challenging
treatment sites.
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The use of machine learning and other sophisticated models to aid in prediction and

decision making has become widely popular across a breadth of disciplines. Within

the greater diagnostic radiology, radiation oncology, and medical physics communities

promising work is being performed in tissue classification and cancer staging, outcome

prediction, automated segmentation, treatment planning, and quality assurance as well

as other areas. In this article, machine learning approaches are explored, highlighting

specific applications in machine and patient-specific quality assurance (QA). Machine

learning can analyze multiple elements of a delivery system on its performance over

time including the multileaf collimator (MLC), imaging system, mechanical and dosimetric

parameters. Virtual Intensity-Modulated Radiation Therapy (IMRT) QA can predict

passing rates using different measurement techniques, different treatment planning

systems, and different treatment delivery machines acrossmultiple institutions. Prediction

of QA passing rates and other metrics can have profound implications on the current

IMRT process. Here we cover general concepts of machine learning in dosimetry and

various methods used in virtual IMRT QA, as well as their clinical applications.

Keywords: artificial intelligence, machine learning, radiotherapy, quality assurance, IMRT, VMAT

INTRODUCTION

Machine learning (ML) has the potential to revolutionize the field of radiation oncology in many
processes and workflows to improve the quality and efficiency of patient care (Feng et al., 2018).
The delivery of radiotherapy is complex and each step in the integrated process requires quality
assurance (QA) to prevent errors and to ensure patients receive the prescribed treatment correctly.
The recent research in machine learning efforts in the QA has produced a variety of proofs-of-
concept, many with promising results (Kalet et al., 2020). In this article, we review the machine
learning applications in radiotherapy QA.

The first question we seek to answer is why we want to integrate ML in radiotherapy QA. The
term, machine learning, refers to the automated detection of meaningful patterns in data. In the
past few years, it has become a major area of research and a common tool in many processes in
radiotherapy (Feng et al., 2018). In this review paper, we will focus onmachine learning applications
to QA. As medical physicists, we perform an increasing number of QA tasks in our daily work, and
prioritizing those that will help deliver the safest treatment is of paramount importance as stated
in the American Association of Physicists in Medicine (AAPM) Task Group (TG) 100 (Huq et al.,
2016). As such, learning from our QA data to choose those tasks that need early intervention is
essential for our profession as more complex treatments are adopted. Currently, most of the data
acquired during QA is utilized only as a one-time evaluation measurement but there is a lot of
QA data available from which we can “learn” using machine learning methods and utilize past
experience as knowledge.
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This review will begin by introducing some general machine
learning concepts for those who are not as familiar with this field.
We will then combine these descriptions with explanations of
their direct applications to QA.We also provide a non-exhaustive
analysis of the literature on the applications of ML to QA data.
This article hopes to demonstrate the power of machine learning
and the advantages it offers to our QA programs.

Artificial Intelligence and Machine Learning
Machine Learning maybe somewhat misleadingly referred as
Artificial intelligence (AI), is already part of our everyday lives.
The easiest way to explain the relationship of AI and ML is
to visualize them as concentric circles with AI - the idea that
came first, the largest; then ML - which blossomed later. In
AI a general purpose algorithm that can reason about different
problems is sought while in ML this idea is abandoned to search
for a specific model that maps an input to an output using
statistical learning techniques. Many classes of algorithms exist
within ML that fit different functions, such as linear models
like Lasso and Ridge regression (Hastie et al., 2009), Decision
Trees (Luna et al., 2019); ensembles like Random Forrest and
Gradient Boosting (Hastie et al., 2009), and Neural Networks
(Rumelhart et al., 1986). All these algorithms are needed because
one cannot guarantee a priori that an algorithm will be better
than another in a random problem, a theorem knows as a no
free lunch theorem (Wolpert, 1996). In practice, certain classes
of algorithms work better than others in classes of problems.
For instance, for the analysis of images, Convolutional Neural
Network (CNN), a deep learning network, excels while for the
analysis of tabular data Gradient Boosting has the lead. In the
majority of problems. CNN uses convolution filters to extract
general concepts that are later combined with other concepts
that resemble how the visual cortex in animals works and puts
emphasis in the local importance of each pixel (Le Cun and
Bengio, 2002). Additionally, max pooling layers that take average
of pixel and data augmentation techniques make it somewhat
independent of translation and rotations of the images, all
important part of their success. For the analysis of tabular data,
however, this customization is not needed and an algorithm
that is better at handling missing values, performs automatic
feature selection, does not depend onmonotonic transformations
of the input variables and it is easy to train and regularize
is more important. This is the case for Gradient Boosting
(Friedman, 2001).

Types of Learning
Machine learning algorithms use computational methods to
“learn” information directly from data. There are two main
types of learning: unsupervised learning and supervised learning.
In unsupervised learning, the training data does not include
label responses or desired outputs and the objective is to model
the probability distribution of the given inputs. On the other
hand, in supervised learning the training data does include labels
or desired outputs and allows for the learning of a mapping
between the input variables and the output (e.g., classification,
regression, etc.).

Unsupervised Learning

Unsupervised learning is a type of machine learning algorithm
used to draw inferences from datasets consisting of input data
without labeled responses. The most common unsupervised
learning method is cluster analysis, which is used for exploratory
data analysis to find hidden patterns or grouping in data.
The clusters are modeled using a measure of similarity
(MathWorks.com, 2020). Li et al. utilized unsupervised learning
tools of K-means and hierarchical clustering algorithms
to analyze patients’ breathing curves extracted from 4D
radiotherapy data (Li et al., 2017). The authors classified
patients’ breathing patterns into sub-groups, such as perfect,
regular, and irregular breathers. The breathing signals and
frequency spectrum were extracted from 341 real-time position
management (RPM) datasets. Correlation plots of 6 features
(frequency, amplitude, standard deviation of amplitude, spread
of frequency spectrum) were chosen for the clustering task. Two
clustering algorithms were used by the authors: hierarchical
clustering and k-means. Hierarchical clustering generates more
consistent results than k-means but requires a more (and usually
prohibiting) training time than k-means (Li et al., 2017). This
could lead to inefficiency in large datasets. K-means is extremely
sensitive to cluster center initialization; therefore, some degrees
of prior knowledge about the data is required for its effective
usage. We will also demonstrate that the same RPM data could
be used for both unsupervised and supervised learning to achieve
different goals, although this topic might not be directly related
to radiotherapy QA.

Supervised Learning

Supervised learning is the machine learning task of learning a
function that maps an input to an output based on example
input-output pairs (Russell and Norvig, 2010). A supervised
learning algorithm takes a known set of input data and responses
(output) to learn the regression/classification model. A learning
algorithm is then used to train a model and generate a prediction
for the response to new data or the test dataset. When statistical
learning algorithms are used (e.g., Random Forest, Gradient
Boosting, Decision Trees) features that are expected to describe
the output need to be defined and calculated (Shobha and
Rangaswamy, 2018). Therefore, for each observation features are
extracted and associated with the label sought to be predicted.We
can then use these features and output to learn a mapping from
one to the other using ML algorithms. Thus, when a new IMRT
plan is generated, the same features can be extracted to be used
in the trained predictive model to show the expected label such
as pass/fail (classification) or passing rate (regression). This is the
approach first proposed in Virtual IMRT QA (Valdes et al., 2016)
and further validated (Valdes et al., 2017).

Supervised learning was also used with the same RPM data
described in section Unsupervised Learning above (Lin et al.,
2019). With over 1,700 RPM data from 3 institutions, a Long
short-term memory (LSTM) model was built by Lin et al. to
predict different types of patients’ respiratory motions in real-
time (Lin et al., 2019). LSTM is a recurrent neural network (RNN)
recently designed to alleviate the issues with vanishing gradients
seen in earlier RNN. LSTM is specifically useful for the analysis
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of sequence data like text or this RPM data (Lin et al., 2019).
In this study, the authors used a sliding window technique to
partition the RPM data into the input and supervised output.
This study demonstrates the potential of using deep learning
models in respiratory signal prediction and incorporating the
motion into treatments. This example, though slightly removed
from radiotherapy QA, is chosen to emphasize the fact that
applying different learning algorithms on the same dataset could
serve different purposes.

Semi-supervised Learning

Semi-supervised learning falls between unsupervised learning
and supervised learning. In semi-supervised learning, part of the
training data does not contain a label. However, by leveraging
the correlation structure of the input variables, a model that
explains the label portion is obtained. Naqa et al. performed a
multi-institutional study with data from eight Linacs and seven
institutions (El Naqa et al., 2019). The authors investigated
the use of machine learning methods for the automation of
machine QA. A total of 119 EPID (electronic portal imaging
device) images of a special QA phantom were fed into the
support vector data description (SVDD) clustering algorithm
(unsupervised learning). QA test data was first mapped to a
higher dimensional space to identify the minimal enclosing
sphere. This sphere was then mapped back to the input space
to detect outliers. The separate clusters generated were further
used to evaluate the tolerance boundaries and limits as indicated
in the AAPM TG-142. The prediction tests included gantry
sag, radiation field shift, and multileaf collimator (MLC) offset
data. This study demonstrated that machine learning methods
with SVDD clustering are promising for developing automated
QA tools.

Validation of ML Models
Inmachine learning, model validation is referred to as the process
where a trained model is evaluated with a testing data set. The
test data set should be a separate portion of the same data set
from which the training set is derived. The main purpose of
using the testing data set is to validate the generalizability of a
trained model (Alpaydin, 2010). Validation of a predictive model
is an essential part of the model building process, and is used
to assess the quality of a model. When conducting a machine
learning study, commonly used validation methods include: (1)
using different machine learning algorithms on the same data to
compare the results, (2) using cross-validation to obtain an error
estimation on out of sample data, (3) using a hold-out sample
for testing, (4) comparing with other well-establishedmodels that
are not necessary machine-learning models, (5) validating using
a sample not from the training period but acquired at a later time,
(6) validating using a sample that is selected from a different
population than that used to build the model (e.g., different
clinic). Model validation is usually carried out after model
training to find the optimalmodel with the best performance. The
two most popular types of validation methods used in predictive
models of radiotherapy QA are splitting training/test/holdout
datasets and k-fold cross-validation. There are multiple ways
to split the data. One method is to split the data pool into

roughly 70% used for training the model and 30% for testing the
model, and another method splits the data into three with, for
example, 60% for training, 30% for testing, and the remaining
10% for holdout. Validating on the holdout set is done to check
if the model suffers from overfitting due to optimization of the
model hyperparameters. Instead of the data splitting as described
above, k-fold cross-validation splits the data into k folds, then
trains the data on k-1 folds and tests on the remaining fold to
evaluate the model (Alpaydin, 2010; Russell and Norvig, 2010).
The procedure is repeated k times with a different group of
observations treated as a validation set each time. The most
frequently used in radiotherapy QA applications is either 5- or
10-fold cross-validation. The model accuracy can be evaluated
using a variety of metrics including, but not limited to, the mean
squared error (MSE), root mean square error (RMSE), mean
absolute error (MAE), receiver operating characteristic (ROC),
correlation coefficient, regression plot, residual error histogram,
sensitivity and specificity.

MACHINE LEARNING APPLICATIONS IN

MACHINE QA

In this section, we will focus on the general applications of ML
to Linac QA before discussing IMRT QA. There have been many
studies of machine learning applications in Linac QA including
prediction of machine dosimetry as well as discrepancies of MLC
positioning and their impact on the actual dose delivery.

ML Model Built From Dosimetric QA or

Beam Data
Another application, Li and Chan developed a model to predict
the performance of Linac over time (Li and Chan, 2017). The
study applied Artificial Neural Networks (ANNs) time-series
prediction modeling to the longitudinal data of 5-years of daily
Linac QA. A set of one hidden layer, six hidden neurons, and two
input delays were chosen after a trial-and-error process to form
the network architecture. The predictive model was compared
with a well-established model, autoregressive integrated moving
average (ARIMA). The ANN time-series mode was found to be
more accurate than the ARIMA techniques to predict the Linac
beam symmetry accurately (Li and Chan, 2017). Zhao et al. (in
press) utilized 43 sets of commissioning and annual QA beam
data from water tank measurements to build a machine learning
model that could predict the percent depth doses (PDD) and
profiles of other field sizes such as 4 × 4 cm2, 30 × 30 cm2

accurately within 1% accuracy with 10× 10 cm2 data input. This
application would potentially streamline the data acquisition for
the entire commissioning process in TPS as well as optimize
periodic QA of Linacs to a minimum set of measurements.

ML Model Built From Delivery Log Files
Carlson et al. were the first to use machine learning techniques to
train models to predict these discrepancies (Carlson et al., 2016).
Predictive leaf motion parameters such as leaf position and speed
were calculated for the models. Differences in positions between
synchronized DICOM-RT files and Dynalog files from 74 VMAT
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plans were used as a target response for training the models.
Threemachine learning algorithms were used—linear regression,
random forest, and a cubist model. They found that the cubist
model outperformed all other models in terms of accuracy to
predict MLC position errors. The objective of these predictions
was to incorporate them into the TPS and provide clinicians
with a more realistic view of the dose distribution as it will truly
be delivered to the patient. Osman et al. (2020) collected 400
delivery log files and trained a model with feed-forward ANN
architecture mapping the input parameters with the output to
predict the MLC leaf positional deviations with a train/test split
of 70 and 30%. The ANN model achieved a maximum MSE
of 0.0001 mm2 in predicting the leaf positions for each leaf in
the test data. The results of the study could be extended to
utilizing this information in the dose calculation/optimization
algorithm. Chuang et al. developed a machine learning model
using prior trajectory log files generated from 116 IMRT and 125
VMAT plans to predict the MLC discrepancies during delivery
and provide feedback of dosimetry (Chuang et al., in press). A
workflow was developed to extract discrepancies and mechanical
parameters from trajectory logs and use the proposed machine
learning algorithm to predict discrepancy. The authors used
multiple machine learning models including linear regression,
decision tree, and ensemble methods.

ML Model Built From Proton Fields
Sun et al. used 1,754 proton fields with various range and
modulation width combinations to train an output factor (OF)
model in three different algorithms (Random Forest, XGBoost,
and Cubist) with a train/test split of 81 and 19% (Sun et al.,
2018). They found that the Cubist—based solution outperformed
all other models with a mean absolute discrepancy of 0.62%
and maximum discrepancy of 3.17% between the measured
and predicted OF. They concluded that machine learning
methods can be used for a sanity check of output measurements
and has the potential to eliminate time-consuming patient-
specific measurements. Similarly, Grewal et al. utilized 4,231
QA measurements with a train/test split of 90 and 10% to
build models to predict OF and MU for uniform scanning
proton beams with two learning algorithms—Gaussian process
regression and shallow neural network (Grewal et al., 2020). They
found that the prediction accuracy of machine and deep learning
algorithms is higher than the empirical model currently used
in the clinic. They have used these models in the clinic as a
secondary check of MU or OF.

Table 1 lists the studies on radiotherapy machine QA using
machine learning techniques. All of these studies showed that
machine learning techniques can give physicists insights into
past QA data and to predict potential machine failures. This
would alert physicists to take proactive actions and make
informed decisions.

MACHINE LEARNING APPLICATIONS IN

IMRT/VMAT QA

This section will now focus on describing the applications of
Machine Learning to IMRT QA. Features can be extracted

from each IMRT plan and compute multiple complexity metrics
associated with passing rates. These features can be used to build
a model that can predict the passing rate for any new IMRT plan.

ML Applied to IMRT QA
Early ML Models

Valdes et al. developed the first virtual IMRT QA using a
Poisson regression machine learning model to predict passing
rates (Valdes et al., 2016). The initial dataset contained 498
clinical IMRT plans from the University of Pennsylvania, with
QA results from a MapCHECK (Sun Nuclear Corporation,
Melbourne, FL) QA device. An additional dataset was obtained
containing 203 clinical IMRT beams also planned from Eclipse
(Varian Medical Systems, Palo Alto, CA) but QA results were
obtained using portal dosimetry. The plans from the University
of Pennsylvania were used to identify 78 important features.
Additionally, 10 further features were added to take into account
the specific characteristics of portal dosimetry (Valdes et al.,
2017). All parameters of each IMRT beam were automatically
extracted from Eclipse with SQL queries and scripts were written
to read the MLC positions and collimation rotation from the
files. Matlab (The MathWorks Inc., Natick, MA) functions
were developed to calculate the features for each beam. For
MapCHECK, the important features extracted included the
fraction of area delivered outside a circle with a 20 cm radius
(to capture symmetry disagreements), duty cycle, the fraction
of opposed MLCs with an aperture smaller than 5mm (to
quantify the effects of rounded leaves in the MLC), etc. For portal
dosimetry, the important features included the CIAO (Complete
Irradiated Area Outline) area, the fraction of MLC leaves with
gaps smaller than 20 or 5mm, the fraction of area receiving<50%
of the total calibrated MUs, etc. (Valdes et al., 2017).

A machine learning algorithm was trained to learn the
relationship between the plan characteristics and the passing
rates. There are 80 complexity metrics being used in the
calculation in the initial modeling with Penn data using the
MapCHECK QA data. A learning curve for the initial model was
established to show that around 200 composite plans are needed
to adequately train the model. A strong correlation between the
MapCHECK measurement and virtual IMRT predicted passing
rates for data that the algorithm had not seen was obtained. All
predictions of passing rates were within±3% error.

For the portal dosimetry model, a learning curve was also
performed to estimate the number of IMRT fields needed, and
it was shown that close to 100 individual IMRT fields are
sufficient to build a reliable predictive model. In total there
were 90 continuous variables used for the virtual IMRT QA
model which predicted EPID panel passing rates. The authors
presented the residual errors of the passing rates prediction
for the two institutions (the University of Pennsylvania and
Memorial Sloan Kettering Cancer Center). Although the passing
rates are site-dependent, different models were not built for
each site because, conditional on the plan characteristics, this
dependency disappears.

In order to implement virtual IMRT QA in a clinic the
following workflow should be followed: (1) collect or access
IMRT QA data, (2) extract all the parameters of the IMRT fields
from plan files, (3) extract the features for the calculation of all
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TABLE 1 | Summary of studies on machine QA using machine learning techniques in a chronological order.

References QA Source Data Source ML Model Task

Carlson et al. (2016) DICOM_RT, Dynalog

files

74 VMAT plans Regression, Random Forest,

Cubist

MLC Position Errors

Detection

Li and Chan (2017) Daily QA Device 5-year Daily QA Data ANN Time-Series, ARIMA

Models

Symmetry Prediction

Sun et al. (2018) Ion Chamber 1,754 Proton Fields Random Forrest, XGBoost,

Cubist

Output for Compact Proton

Machine

El Naqa et al. (2019) EPID 119 Images from 8 Linacs Support Vector Data

Description, Clustering

Gantry Sag, Radiation Field

Shift, MLC Offset

Grewal et al. (2020) Ion Chamber 4,231 Proton Fields Gaussian Processes, Shallow

NN

Output and Patient QA

Proton Machine

Osman et al. (2020) log files 400 machine delivery log

files

ANN MLC Discrepancies during

Delivery & Feedback

Chuang et al. (in

press)

Trajectory log files 116 IMRT plans, 125 VMAT

plans

Boosted Tree Outperformed LR MLC Discrepancies during

Delivery & Feedback

Zhao et al. (in press) Water Tank

Measurement

43 Truebeam PDD, Profiles Multivariate Regression (Ridge) Modeling of Beam Data

Linac Commissioning

complexity metrics affecting the passing rates, (4) use a machine
learning algorithm to build a virtual IMRT QA model. During
this process, we identify the most impactful features that affect
the passing rate.

Deep Learning Models

The process described in the previous section Early ML
Models requires carefully designing features that describe the
correlation between plan characteristics and passing rates. Using
an algorithm capable of designing their own features, Dr. Valdes
and his group compared a Deep Neural Network against their
own Poisson regression model using the same patient QA data
previously described (Interian et al., 2018). The input to the
CNN, a special type of neural network designed to analyze
images, was the fluence map for each plan without the need
of expert designed features. The models were trained to predict
IMRTQA gamma passing rates using TensorFlow andKeras. The
authors concluded that CNNs with transfer learning can predict
IMRT QA passing rates by automatically designing features
from the fluence maps without human expert supervision. The
predictions from the CNNs were comparable to the virtual IMRT
QA system described above which was carefully designed by
physicist experts.

Tomori et al. built a prediction model for gamma evaluation
of IMRT QA based on deep learning (Tomori et al., 2018) using
sixty IMRT QA plans. Fifteen-layer CNN were developed to
learn the planar dose distributions from a QA phantom. The
gamma passing rate was measured using EBT3 film. The input
training data also included the volume of PTV, rectum, and
overlapping region, and the monitor unit for each field. The
network produced predicted gamma passing rates at four criteria:
2%/2mm, 3%/2mm, 2%/3mm, and 3%/3mm. Five-fold cross-
validation was applied to validate the performance. A linear
relationship was found between the measured and predicted
values for all criteria. These results also suggested that deep

learning methods may provide a useful prediction model for
gamma evaluation of patient-specific QA.

Lam et al. applied 3 tree-based machine learning algorithms
(AdaBoost, Random Forest, and XGBoost) to train the models
and predict gamma passing rates using a total of 1,497 IMRT
beams delivered with portal dosiemtry (Lam et al., 2019). They
reported that both AdaBoost and Random Forest had 98± 3% of
predictions within 3% of the measured 2%/2mm gamma passing
rates with a maximum error < 4% and a MAE < 1%. XGBoost
showed a slightly worse prediction accuracy with 95% of the
predictions < 3% of the measured gamma passing rates and a
maximum error of 4.5%. The three models identified the same
nine features in the top 10 most important ones that are related
to plan complexity and maximum aperture displacement from
the central axis or the maximum jaw size in a beam. Their results
demonstrated that portal dosimetry IMRT QA gamma passing
rates can be accurately predicted using tree-based ensemble
learning models.

Nyflot et al. investigated a deep learning approach to
classify potential treatment delivery errors and predict QA
results using image and texture features from 186 EPID
images (Nyflot et al., 2019). Three sets of planar doses
were exported from each QA plan corresponding to (a) the
error-free case, (b) a random MLC error case, and (c) a
systematic MLC error case. Each plan was delivered to an
EPID panel and gamma analysis was performed using the
EPID dosimetry software. Two radiomic approaches (image
and texture features) were used. The resulting metrics from
both approaches were used as input into four machine learning
classifiers in order to determine whether images contained the
introduced errors. After training, a single extractor is used as
a feature extractor for classification. The performance of the
deep learning network was superior to the texture features
approach, and both radiomic approaches were better than
using gamma passing rates in order to predict the clinically
relevant errors.
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ML Applied to VMAT QA
ML applications have been extended to volumetric modulated
arc therapy (VMAT) QA. Granville et al. built a ML model
with 1620 VMAT plans (Elekta) to predict the results of VMAT
QA measurements using not only treatment plan characteristics
but also Linac performance metrics (Granville et al., 2019).
They trained a linear Support Vector Classifier (SVC) to
classify the results of VMAT QA. The outputs in this model
were simple classes representing the median dose difference
(±1%) between measured and expected dose distributions
rather than passing rates. In the model development phase, a
recursive feature elimination (RFE) cross-validation technique
was used to eliminate unimportant features. Of the ten features
found to be most predictive of VMAT QA measurement
results, half were derived from treatment plan characteristics
and a half from Linac QA metrics. Such a model has the
potential to provide more timely failure detection for patient-
specific QA. Ono et al. utilized 600 VMAT plans and their
corresponding ArcCHECK measurements to build prediction
models using three machine learning algorithms—regression
tree analysis, multiple regression analysis, and neural network.
They found that the neural networks model achieved slightly
better results among the 3 models in terms of prediction error
(Ono et al., 2019).

Li et al. investigated the impact of delivery characteristics
on the dose accuracy of VMAT (Li et al., 2019a). Ten metrics
reflecting VMAT delivery characteristics were extracted from
344 QA plans. The study found that leaf speed is the most
important factor affecting the accuracy of gynecologic, rectal, and

head and neck plans, while the field complexity, small aperture
score, and MU are the most important factors influencing the
accuracy of prostate plans. Li et al. also studied the accuracy
of prediction using machine learning for VMAT QA (Li et al.,
2019b). The authors presented the workflows for two prediction
models; the classic Poisson regression model, and the newly
constructed Random Forest classification model. To test the
prediction accuracy, 255 VMAT plans (Varian) with 10-fold
cross-validation were used to explore the model performance
under different gamma criteria and action limits. In clinical
validation, independent 48 VMAT plans without cross-validation
were used to further validate the reliability ofmodels. The authors
also showed the absolute prediction error with both technical and
clinical validations. The prediction accuracy was greatly affected
by the absolute value of the measured gamma passing rates and
gamma criteria. The regression model was able to accurately
predict those passing rates for the majority VMAT plans, but the
classification model had a much better sensitivity to accurately
detect failed QA plans. Later the same group further improved
their prediction model using autoencoder based classification-
regression (ACLR) to generate gamma passing rates predictions
for three different gamma criteria from 54 complexity metrics
as input (Wang et al., in Press). With an additional 150 VMAT
plans available for clinical validation to evaluate the generalized
performance of the model, the group reported that such a hybrid
model significantly improved prediction accuracy over their early
model, Poisson Lasso regression.

Wall and Fontenot used 500 VMAT and MapCHECK2 data
to build predictive models using four different machine learning

TABLE 2 | Summary of studies on patient-specific QA using machine learning techniques.

Group TPS/Delivery QA Source Data Source ML Model Research Highlight

Valdes et al. (2016) Eclipse/Varian MapCHECK2 498 IMRT Plans Poisson Regression Founding Paper

Valdes et al. (2017) Eclipse/Varian Portal Dosimetry 203 IMRT Beams Poisson Regression Multi-sites Validation

Interian et al. (2018) Eclipse/Varian MapCHECK2 498 IMRT Plans Convolutional Neural

Network

Fluence Maps as Input

Tomori et al. (2018) iPlan/Varian EBT3 film 60 IMRT Plans Convolutional Neural

Network

Planar Dose, Volumes,

MU

Lam et al. (2019) Eclipse/Varian Portal Dosimetry 1,497 IMRT Beams AdaBoost, Random

Forest, XGBoost

Tree-based High

Accuracy

Nyflot et al. (2019) Pinnacle/Elekta EPID 186 IMRT Beams Convolutional Neural

Network

Image, Texture

Features

Granville et al. (2019) Monaco/Elekta Delta4 1,620 VMAT Beams Support Vector

Classifier

1st VMAT & w/ QC

Metrics

Ono et al. (2019) RayStation,

Eclipse/Vero, Varian

ArcCHECK 600 VMAT Plans Regression Tree,

Multiple Regression,

Neural Network

ML Models

Comparison

Li et al. (2019b) Eclipse/Varian MatriXX 255 VMAT Beams Poisson Lasso &

Random Forest

Specificity & Sensitivity

Wang et al. (in Press) Eclipse/Varian MatriXX 576 VMAT Beams Hybrid Model

ACLR

High Prediction

Accuracy

Wall and Fontenot

(2020)

Pinnacle/Elekta MapCHECK2 500 VMAT Plans Linear Regression,

SVM, Tree-based, ANN

ML Models

Comparison

Hirashima et al.

(2020)

RayStation, Eclipse/

Vero, Varian

ArcCHECK 1,255 VMAT Plans Hybrid Model

XGBoost

Plan Complexity &

Dosiomics
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algorithms and then compared their performance (Wall and
Fontenot, 2020). They found that the SVM model, trained
using the 100 most important features selected using the linear
regression method, gave the lowest cross-validated testing MAE
of 3.75% as compared to linear models, tree-based models, and
neural networks. More recently, Hirashima et al. (2020) used
Gradient Boosting, the most accurate algorithm up to date for the
analysis of tabular data, to create a model to predict ArcCHECK
measurements using plan complexity and dosiomic features
extracted from 1,255 VMAT plans, also showing the validity of
virtual VMAT QA.

Table 2 lists the studies on virtual IMRT/VMAT QA. In short,
there have been multiple studies that all find similar conclusions
independent of the brand of Linac, TPS, and QA tool used: QA
results can be predicted accurately using machine learning.

SUMMARY AND FUTURE DIRECTIONS

Since the early ML models applied to machine and patient-
specific QA were reported in early 2016, a significant
improvements have been seen in more recent models as
machine learning techniques in radiotherapy QA matured. The
models grew from simple Poisson regressions to deep learning
classification models, and then to complex hybrid models which
improved prediction accuracy. Therefore, it is expected that
future ML models built on the foundation of existing knowledge
can continue to be refined. With deep learning models, there
is a greater potential to make QA processes more efficient and
effective in clinical settings. In the meantime, it is very important
to fully understand the limitations of virtual QA. Kalet et al. has
highlighted some of the unique challenges of ML applications
in radiotherapy QA including data quality, model adaptability,
and model limitations (Kalet et al., 2020). Data quality is by
far the most basic and essential requirement for building an
accurate prediction model. Not only can incomplete data, such
as small sample size, lead to wrong conclusions, but “true” QA
data from detectors, especially for extremely small/large field size
or large low dose regions, can also lead to imperfect prediction

models due to detector system limitations (Valdes et al., 2017).
Multi-institutional validation is often helpful to validate and
generalize the ML models. In addition to the challenges of data
integrity, Kearney et al. raised awareness of some persistent
misuse of deep learning in the field (Kearney et al., 2018).

To date, many applications of ML to radiotherapy QA have
focused on predicting machine performance and IMRT/VMAT
QA results. Fully understanding and dissecting all factors that
govern delivery accuracy is extremely important for clinical
physicists to be able to implement a risk-based program as
suggested in the AAPM TG-100 report. Further developments
could lead to QA predictions being included in the treatment
planning optimizer so that all QA could pass. We could also
know ahead of time that we need to run a clinically-relevant QA
on those plans with the lowest expected passing rates. It is clear
that prediction of QA results could have profound implications
on the current radiotherapy process. Before implementing in-
house or commercial MLmodels to perform sanity check, second
check, and automated or virtual QA in any clinical setting, we
should carefully assess and address the limitations of both data
and ML models.
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Background: Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most aggressive

cancers with an extremely poor prognosis. Radiomics has shown prognostic ability in

multiple types of cancer including PDAC. However, the prognostic value of traditional

radiomics pipelines, which are based on hand-crafted radiomic features alone is limited.

Methods: Convolutional neural networks (CNNs) have been shown to outperform

radiomics models in computer vision tasks. However, training a CNN from scratch

requires a large sample size which is not feasible in most medical imaging studies. As an

alternative solution, CNN-based transfer learning models have shown the potential for

achieving reasonable performance using small datasets. In this work, we developed and

validated a CNN-based transfer learning model for prognostication of overall survival in

PDAC patients using two independent resectable PDAC cohorts.

Results: The proposed transfer learning-based prognostication model for overall

survival achieved the area under the receiver operating characteristic curve of 0.81 on

the test cohort, which was significantly higher than that of the traditional radiomics model

(0.54). To further assess the prognostic value of the models, the predicted probabilities

of death generated from the two models were used as risk scores in a univariate Cox

Proportional Hazard model and while the risk score from the traditional radiomics model

was not associated with overall survival, the proposed transfer learning-based risk score

had significant prognostic value with hazard ratio of 1.86 (95% Confidence Interval:

1.15–3.53, p-value: 0.04).

Conclusions: This result suggests that transfer learning-basedmodels may significantly

improve prognostic performance in typical small sample size medical imaging studies.

Keywords: transfer learning, radiomics, prognosis, pancreatic cancer, survival analysis
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INTRODUCTION

Pancreatic Ductal Adenocarcinoma (PDAC) is one of the most
aggressive malignancies with poor prognosis (Stark and Eibl,
2015; Stark et al., 2016; Adamska et al., 2017). Evidence suggested
that surgery can improve overall survival in resectable PDAC
cohorts (Stark et al., 2016; Adamska et al., 2017). However, the 5-
year survival rate of patients who went through surgery is still low
(Fatima et al., 2010). Thus, it is important to identify high-risk
and low-risk surgical candidates so that healthcare providers can
make personalized treatment decisions (Khalvati et al., 2019a).
In resectable patients, clinicopathologic factors such as tumor
size, margin status at surgery, and histological tumor grade have
been studied as biomarkers for prognosis (Ahmad et al., 2001;
Ferrone et al., 2012; Khalvati et al., 2019a). However, many of
these biomarkers can only be assessed after the surgery and thus,
the opportunity for patient-tailored neoadjuvant therapy is lost.
Recently, quantitative medical imaging biomarkers have shown
promising results in prognostication of the overall survival for
cancer patients, providing an alternative solution (Kumar et al.,
2012; Parmar et al., 2015; Lambin et al., 2017).

As a rapidly developing field in medical imaging, radiomics
is defined as the extraction and analysis of a large number of
quantitative imaging features from medical images including CT
and MRI (Kumar et al., 2012; Lambin et al., 2012; Khalvati et al.,
2019b). The conventional radiomic analysis pipeline consists
of four steps as shown in Figure 1. Following this pipeline,
several radiomic features have been shown to be significantly
associated with clinical outcomes including overall survival or
recurrence in different cancer sites such as lung, head and
neck, and pancreas (Aerts et al., 2014; Coroller et al., 2015;
Carneiro et al., 2016; Cassinotto et al., 2017; Chakraborty et al.,
2017; Eilaghi et al., 2017; Lao et al., 2017; Zhang et al., 2017;
Attiyeh et al., 2018; Yun et al., 2018; Sandrasegaran et al.,
2019). Using these radiomic features, patients can be categorized
into low-risk or high-risk groups guiding clinicians to design
personalized treatment plans (Chakraborty et al., 2018; Varghese
et al., 2019). Although limited work has been done in the context
of PDAC, recent studies have confirmed the potential of new
quantitative imaging biomarkers for resectable PDAC prognosis
(Eilaghi et al., 2017; Khalvati et al., 2019a).

Despite recent progress, radiomics analytics solutions have
a major limitation in terms of performance. The performance
of radiomics models relies on the amount of information that
radiomics features can capture from medical images (Kumar
et al., 2012). Most radiomics features represent morphology,
first order, or texture information from the regions of interest
(Van Griethuysen et al., 2017). The equations of these radiomic
features are often manually designed. This is a sophisticated and
time-consuming process, requiring prior knowledge of image
processing and tumor biology. Consequently, a poor design of

Abbreviations:ROC, Receiver operating characteristic; AUC, Area under the ROC

curve; CT, Computed tomography; CI, Confidence interval; CNN, Convolutional

neural network; GLCM, Gray-Level Co-occurrence matrix; NSCLC, Non-small-

cell lung cancer; PDAC, Pancreatic ductal adenocarcinoma; ROI, Region of

interest; SMOTE, Synthetic minority over-sampling technique.

the feature bank may fail to extract important information from
medical images, having a significant negative impact on the
performance of prognostication. In contrast, the ability of deep
learning for automatic feature extraction has been proven and
shown to achieve promising performances in different medical
imaging tasks (Shen et al., 2017; Yamashita et al., 2018; Yasaka
et al., 2018).

A convolutional neural network (CNN) (Schmidhuber, 2014;
LeCun et al., 2015) performs a series of convolution and pooling
operations to get comprehensive quantitative information from
input images (LeCun et al., 2015). Compared to hand-crafted
radiomic features that are predesigned and fixed, the coefficients
of CNNs are modified in the training process. Hence, the final
features generated from a successfully trained CNN are tuned
to be associated with the target outcomes (e.g., overall survival,
recurrence). It has been shown that CNN architectures are
effective in different medical imaging tasks such as segmentation
for head and neck anatomy and diagnosis for the retinal disease
(Dalmiş et al., 2017; De Fauw et al., 2018; Nikolov et al., 2018;
Irvin et al., 2019).

However, to train a CNN from scratch, millions of parameters
need to be tuned. This requires a large sample size which is not
feasible to collect in most medical imaging studies (Du et al.,
2018). As an alternative solution, CNN-based transfer learning
is more suitable for medical imaging tasks since it can achieve
a comparable performance using a limited amount of data (Pan
and Yang, 2010; Chuen-Kai et al., 2015).

CNN-based transfer learning is defined as taking images from
a different domain such as natural images (e.g., ImageNet) to
build a pretrained model and then apply the pretrained model to
target images (e.g., CT images of lung cancer) (Ravishankar et al.,
2017). The idea of transfer learning is based on the assumption
that the structure of a CNN is similar to the human visual cortex
as both are composed of layers of neurons (Pan and Yang, 2010;
Tan et al., 2018). Top layers of CNNs can extract general features
from images while deeper layers are able to extract information
that is more specific to the outcomes (Yosinski et al., 2014).

Transfer learning utilizes this property, training top layers
using another large dataset while finetuning deeper layers using
data from the target domain. For example, the ImageNet dataset
contains more than 14 million images (Russakovsky et al.,
2015). Hence, pretraining a model using this dataset would help
the model learn how to extract general features using initial
layers. Given that many image recognition tasks are similar, top
(shallower) layers of the pretrained network can be transferred to
another CNN model. In the next step, deeper layers of the CNN
model can be trained using the target domain images (Torrey and
Shavlik, 2009). Since the deeper layers are more target-specific,
finetuning them using the images from the target domain may
help the model quickly adapt to the target outcome, and hence,
improve the overall performance.

Inmedical imaging, the target dataset is often so small that it is
impractical to properly finetune the deeper layers. Consequently,
in practice, a pretrained CNN can be used as a feature extractor
(Hertel et al., 2015; Lao et al., 2017). Given that convolution layers
can capture high-level and informative details from images,
passing the target domain images through these layers allows
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FIGURE 1 | Conventional radiomics analytics pipeline.

extractions of features. These features can be further used to
train a classifier for the target domain, enabling building a high-
performance transfer learning model using a small dataset.

In this study, using two independent small sample size
resectable PDAC cohorts, we evaluated the prognosis
performance of a transfer learning model and compared its
performance to that of a traditional radiomics model. The goal
of the prognostication was to dichotomize PDAC patients who
were candidates for curative-intent surgery to high-risk and
low-risk groups. We found that the transfer learning model
provides better prognostication performance compared to
the conventional radiomics model, suggesting the potential
of transfer learning in a typical small sample size medical
imaging study.

METHODS

Dataset
Two cohorts from two independent hospitals consisting of
68 (Cohort 1) and 30 (Cohort 2) patients were enrolled in
this retrospective study. All patients underwent curative intent
surgical resection for PDAC from 2007–2012 to 2008–2013
in Cohort 1 and Cohort 2, respectively, and they did not
receive other neoadjuvant treatment. Preoperative portal venous
phase contrast-enhanced CT images were used. Overall survival
(including survival as duration and death as the event) was
collected as the primary outcome and it was calculated as the
duration from the date of preoperative CT scan until death. To
exclude the confounding effect of postoperative complications,
patients who died within 90 days after the surgery were excluded.
Institutional review board approval was obtained for this study
from both institutions (Khalvati et al., 2019a).

An in-house developed Region of Interest (ROI) contouring
tool (ProCanVAS Zhang et al., 2016) was used by a radiologist
with 18 years of experience who completed the contours blind to
the outcome (overall survival). Following the protocol, the slices
were contoured with the largest visible 2D cross-section of the
tumor on the portal venous phase. When the boundary of the
tumor was not clear, it was defined by the presence of pancreatic
or common bile duct cut-off and the review of pancreatic phase

FIGURE 2 | A manual contour of CT scan from a representative patient in

cohort 2.

images (Khalvati et al., 2019a). An example of the contour is
shown in Figure 2.

Radiomics Feature Extraction
Radiomics features were extracted using the PyRadiomics library
(Van Griethuysen et al., 2017) (version 2.0.0) in Python. Voxels
with Hounsfield unit under−10 and above 500 were excluded so
that the presence of fat and stents will not affect the values of the
features. The bin width (number of gray levels per bin) was set
to 25. In total, 1,428 radiomic features were extracted from CT
images within the ROI for both cohorts. Table 1 lists different
classes of features used in this study (Khalvati et al., 2019a).

Transfer Learning
We developed a transfer learning model (LungTrans) pretrained
by CT images from non-small-cell lung cancer (NSCLC) patients.
The Lung CT dataset was published on Kaggle for Lung Nodule
Analysis (LUNA16), containing CT images from 888 lung cancer
patients and the outcome (malignancy or not) (Armato et al.,
2011). All input ROIs were resized to 32×32 greyscale. An
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8-layer CNN was trained from scratch using LUNA16 CT
images with batch size 16 and learning rate 0.001 (Figure 3).
This configuration was shown to have high performance in
differentiating malignancy vs. normal tissue in the LUNA16
competition (DeWit, 2017). In addition, given small ROI sizes of
data in this study (32×32) and the fact that images are grayscale
instead of RGB color, off-the-shelf deep CNNs such as ResNet
(He et al., 2015) do not provide adequate performance. Each
convolutional layer except for Conv_5 has Kernel size as 3×3
with stride of 1 with zero padding. Conv_5 has 2×2 kernel size
and stride of 1 without padding. All the Max Pooling layers have
2×2 kernel size. Previous research has shown that top layers in

TABLE 1 | List of radiomic feature classes and filters.

First-order features Histogram-based features

Second-order texture features Features extracted from Gray-Level

Co-Occurrence matrix (GLCM)

Morphology features Features based on the shape of the region

of interest

Filters No filter, exponential, gradient, logarithm,

square, square-root, local binary pattern,

wavelet

the CNN extract generic features from the image, while bottom
layers can extract features specific to the tasks (Yosinski et al.,
2014; Paul et al., 2019). Since our pretrained domain (lung CT)
and target domain (PDAC CT) are rather similar, we extracted
features from the bottom layer. In addition, the number of
features (coefficients) in the CNN significantly decreases as the
layers become deeper, due to Max pooling. If we picked a layer
above the final layer, the number of extracted features would
increase significantly. Considering the sample size of our training
(68) and test (30) datasets, all the convolution layers were frozen
and features were extracted from the end of the CNN (Conv_5).
As a result, for each ROI from PDACCT images, 64 features were
extracted. This was the ideal number of intermediate features
tested in LUNA16 dataset (De Wit, 2017).

TABLE 2A | Summary of models’ performances in AUC.

Training cohort (n = 68) Test cohort (n = 30)

(5-Fold cross validation)

PyRadiomics model 0.57 (95% CI: 0.42–0.73) 0.54 (95% CI: 0.32–0.76)

Transfer learning model 0.72 (95% CI: 0.58–0.86) 0.81 (95% CI: 0.64–0.98)

Tables 2B,C show Confusion Matrix for Random Forest models using PyRadiomics and

LungTrans features, respectively, in the test cohort.

FIGURE 3 | Architecture for pretrained CNN using LUNA16 data.
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Prognostic Models
To have a proper and robust validation, training and test datasets
were collected from two different institutions. In Cohort 1
(training cohort, n = 68), two prognostic models for overall
survival were trained using features extracted from conventional
radiomics feature bank (PyRadiomics) and transfer learning
model (LungTrans). The prognosis models were built using
the Random Forest classifier, which is a common classifier in
radiomics analytic pipeline, with 500 decision trees (Chen and
Ishwaran, 2012; Zhang et al., 2017). Random Forest classifier is
highly data-adaptive, which have shown the potential to handle
large P small N problem by choosing the best subset of features
for classification (Chen and Ishwaran, 2012). The “data-adaptive”
characteristic makes the random forest a good candidate for
our study where transfer learning and PyRadiomics offered
different numbers of features. The number of variables available
for splitting at each tree node (mtry) was determined by the
best performing mtry option in the training cohort. Due to the
imbalanced outcome in the training data, (Cohort 1: 52 Deaths
vs. 16 Survivals), a data balancing algorithm, SMOTE (Ryu et al.,

TABLE 2B | Confusion Matrix of PyRadiomics model in the test cohort.

Test cohort Deceased patients Survived patients

Predicted death 12 10

Predicted survival 3 5

Accuracy: 0.57, Sensitivity: 0.8, Specificity: 0.33, Precision: 0.55.

TABLE 2C | Confusion matrix of transfer learning model in the test cohort.

Test cohort Deceased patients Survived patients

Predicted Death 13 4

Predicted Survival 2 11

Accuracy: 0.80, Sensitivity: 0.87, Specificity: 0.73, Precision: 0.76.

2002), was applied in the training process to artificially balance
the training data.

The prognostic values of these two models were evaluated in
Cohort 2 (n = 30, 15 Deaths vs. 15 Survivals) using the area
under the receiver operating characteristic (ROC) curve (AUC).
DeLong test, as one of the common comparison tests, was used
to test the difference between the two ROC curves (DeLong
et al., 1988). To further assess the prognosis values, the predicted
probabilities of death generated from the two classifiers were used
as risk scores in survival analyses. These risk scores were tested
in Cohort 2 using univariate Cox Proportional Hazards Model
for their Hazard Ratio and Wald test p-value (Cox, 1972). These
analyses were done in R (version 3.5.1) using “caret,” “pROC,” and
“survival” packages (Kuhn, 2008; Therneau, 2020).

RESULTS

Prognostic Models Performance
Using features from the PyRadiomics feature bank, the Random
Forest model yielded AUC of 0.54 [95% Confidence Interval (CI):
0.32–0.76] in the test cohort (Cohort 2) (mtry: 2). In contrast,
using LungTrans features, the AUC of the Random Forest model
reached 0.81 (95% CI: 0.64–0.98) in the test cohort (mtry: 17).
The performances of these two models for both training and
test cohorts are listed in Table 2A. We performed a 5-fold cross-
validation to produce AUCs for the training cohort. The AUCs
for the test cohort were generated using the models trained by
the training cohort.

To investigate the prognostic value of each PyRadiomics
features, variable importance indices were calculated using the
Caret Package in R. The top ten features were first order
entropy, first order uniformity, first order interquartile range,
GLSZM gray level non-uniformity normalized, GLRLM run
length non-uniformity normalized, GLCM cluster tendency,
NGTDM busyness, GLSZM small area high gray level emphasis,
GLSZM low gray level zone emphasis, and GLSZM large area
high gray level emphasis. This confirming previous studies in

FIGURE 4 | (A) ROC curve for the test cohort for PyRadiomics model (AUC = 0.54). (B) ROC curve for the test cohort for Transfer Learning (LungTrans) model

(AUC = 0.81).
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this field where similar radiomic features have been reported to
be prognostic of PDAC (Eilaghi et al., 2017; Chu et al., 2019;
Khalvati et al., 2019a; Li et al., 2020). It is worth noting that
morphologic features were not ranked as top features in the
list. This may be attributed to the challenges associated with
contouring the PDAC regions of interest, leading to the low
robustness of morphology features.

Comparing the ROC curves using Delong ROC test (DeLong
et al., 1988), the LungTrans (Transfer Learning) prognosis model
had significantly higher performance than that of PyRadiomics
feature bank with a p-value of 0.0056 (AUC of 0.81 vs. 0.54). This
result indicated that the transfer learning model based on lung
CT images (LungTrans) significantly improved the prognostic
performance compared to that of the traditional radiomics
methods (PyRadiomics). Figure 4 shows the ROC curves for the
two models for the test cohort.

Risk Score
In univariate Cox Proportional Hazard analysis, the risk score
from the PyRadiomics model was not associated with overall
survival. In contrast, the risk score from the LungTrans model
had significant prognostic value with a Hazard Ratio of 1.86
[95%Confidence Interval (CI): 1.15–3.53], p-value: 0.04 as shown
in Table 3.

Using the risk scores, patients can be categorized into low-
risk or high-risk groups based on the median values. As shown
in Kaplan-Meier plots in Figure 5, the LungTrans model was
able to differentiate patients with high risk from those with low
risk. This result further confirms that the transfer learning feature
extractor pretrained byNSCLCCT images is capable of providing
prognostic information for PDAC patients.

TABLE 3 | Performance of risk score models in Cox Proportional Hazard analysis.

Hazard ratio and CI p

PyRadiomics based risk score 1.03 (95% CI: 0.60–1.76) 0.91

Transfer learning based risk score 1.86 (95% CI: 1.15–3.53) 0.04

DISCUSSION

In this study, we developed and compared two prognostic models
for overall survival for resectable PDAC patients using the
PyRadiomics and transfer learning features banks pretrained by
lung CT images (LungTrans). The LungTrans model achieved
significantly better prognosis performance compared to that of
the traditional radiomics approach (AUC of 0.81 vs. 0.54). This
result suggested that the transfer learning approach has the
potential of significantly improving prognosis performance in the
resectable PDAC cohort using CT images.

Previous transfer learning studies in medical imaging research
often utilized ImageNet pretrained models (Chuen-Kai et al.,
2015; Lao et al., 2017). In our study, we used a lung CT
pretrained CNN (LungTrans) as feature extractor and showed the
potential of transfer learning in a typical small sample size setting.
Although CNNs are capable of achieving high performance in
image recognition tasks, training these networks needs a large
sample size. If a CNN with the same architecture as LungTrans
was trained from scratch in the training cohort (Cohort 1), it
could not provide any prognostic value in the test cohort (Cohort
2) (AUC of ∼0.50). Transfer learning, unlike conventional
deep learning methods which need large datasets, can achieve
reasonable performance using a limited number of samples,
making it suitable for most medical imaging studies. Although
the training cohort in our study was small (n= 68), in the PDAC
test cohort, our transfer learning model had positive predictive
value (Precision) of 76%, demonstrating its prognostic value in
finding high-risk patients. This may significantly benefit patients
by providing personalized neoadjuvant or adjuvant therapy for
better prognosis.

Although the proposed transfer learning model outperformed
the conventional radiomics model, this was not an indication to
discard radiomic features altogether. These hand-crafted features
have been shown to be prognostic for survival and recurrence in
different cancer sites (Kumar et al., 2012; Balagurunathan et al.,
2014; Haider et al., 2017). In the PDAC radiomics field, more
than forty features have been found to be significantly associated
with tissue classification or overall survival for PDAC patients
(e.g., sum entropy, cluster tendency, dissimilarity, uniformity,

FIGURE 5 | Kaplan-Meier plots for overall survival in Cohort 2. (A) PyRadiomics based risk score (p = 0.91). (B) Transfer Learning (LungTrans) based risk score

(p = 0.04).
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and busyness) (Cassinotto et al., 2017; Chakraborty et al.,
2017; Attiyeh et al., 2018; Yun et al., 2018; Chu et al., 2019;
Sandrasegaran et al., 2019; Li et al., 2020; Park et al., 2020).
Furthermore, a few radiomics features have been found to
be associated with tumor heterogeneity and genomics profile
(Lambin et al., 2012; Itakura et al., 2015; Rizzo et al., 2016;
Li et al., 2018). Hence, radiomics features can provide unique
information about the lesions. Thus, studying the associations
between radiomics and transfer learning features, together with
feature fusion analysis, may further improve the prognostication
performance in future research.

Despite achieving promising results, we should also note
that the differences between NSCLC and PDAC are substantial,
in terms of their biological profiles and prognoses, and thus,
they may not have similar appearances in CT images. This is a
limitation of the present study. A larger PDAC dataset would
allow us to address these differences and test different transfer
learning approaches in the context of PDAC prognosis. For
example, finetuning a few layers of the CNNpretrained byNSCLS
CT images using PDAC CT images would allow the network
extract features that may further adapt to the PDAC images and
lead to better performance.

In this study, we aimed to improve the accuracy of the
survival model using the transfer learning approach. For
diseases with poor prognosis, including PDAC, providing
binary survival classifications offers limited information for
clinicians for decision making since the survival rates are
usually low. It would be more beneficial to provide time
vs. risk information, e.g., identify the high-risk time intervals
for a resectable PDAC patient using CT images. Future
studies may choose to combine the transfer learning-based
features extraction methods with the recent work on deep
learning-based survival models (e.g., DeepSurv Katzman et al.,
2018) to provide more practical prognosis information for
personalized care.

CONCLUSION

Deep transfer learning has the potential to improve the
performance of prognostication for cancers with limited sample
sizes such as PDAC. In this work, the proposed transfer
learning model outperformed a predefined radiomics model for
prognostications in resectable PDAC cohorts.
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Population-Based Screening for
Endometrial Cancer: Human vs.
Machine Intelligence
Gregory R. Hart 1, Vanessa Yan2, Gloria S. Huang3, Ying Liang1, Bradley J. Nartowt1,
Wazir Muhammad1 and Jun Deng1*

1Department of Therapeutic Radiology, Yale University, New Haven, CT, United States, 2Department of Statistics and Data
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Incidence and mortality rates of endometrial cancer are increasing, leading to increased
interest in endometrial cancer risk prediction and stratification to help in screening and
prevention. Previous risk models have had moderate success with the area under the
curve (AUC) ranging from 0.68 to 0.77. Here we demonstrate a population-basedmachine
learning model for endometrial cancer screening that achieves a testing AUC of 0.96.

We train seven machine learning algorithms based solely on personal health data, without
any genomic, imaging, biomarkers, or invasive procedures. The data come from the
Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO). We further
compare our machine learning model with 15 gynecologic oncologists and primary
care physicians in the stratification of endometrial cancer risk for 100 women.

We find a random forest model that achieves a testing AUC of 0.96 and a neural network
model that achieves a testing AUC of 0.91.We test bothmodels in risk stratification against
15 practicing physicians. Our random forest model is 2.5 times better at identifying above-
average risk women with a 2-fold reduction in the false positive rate. Our neural network
model is 2 times better at identifying above-average risk women with a 3-fold reduction in
the false positive rate.

Our machine learning models provide a non-invasive and cost-effective way to identify
high-risk sub-populations who may benefit from early screening of endometrial cancer,
prior to disease onset. Through statistical biopsy of personal health data, we have
identified a new and effective approach for early cancer detection and prevention for
individual patients.

Keywords: endometrial cancer, cancer screening, early detection, machine learning, statistical biopsy

INTRODUCTION

Endometrial cancer is the fourth most common cancer among women (Howlader et al., 2017).
Symptoms such as bleeding or spotting often manifest early in the disease, resulting in the early
detection of most cancers and a relatively high 5-years survival rate of 82% (American Cancer
Society, 2017). The standard method for detecting endometrial cancer is endometrial biopsy,
although transvaginal ultrasounds are sometimes used for detection as well (Smith et al., 2001;
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Smith et al., 2018). Screening recommendations from the
American Cancer Society (ACS) have remained constant since
2001 (Smith et al., 2018).Womenwith average or elevated risk are
not recommended to get screened; instead, they should discuss
with their doctor about the risks and symptoms of endometrial
cancer at the onset of menopause. For very high-risk women such
as those with Lynch syndrome, a high likelihood of being a
mutation carrier, or families with suspected autosomal-dominant
predisposition to colon cancer, ACS recommends annual
screening (Smith et al., 2001).

While the 5-years survival rate for endometrial cancer is high,
incidence and death rates of endometrial cancer have increased
from 2010 (Howlader et al., 2017) and are expected to continue to
increase (Arnold et al., 2015). It is expected that endometrial
cancer will soon surpass ovarian cancer as the leading cause of
gynecological cancer death. This has led to academic interest in
improving endometrial cancer detection and prevention.

Two previous studies have been carried out to predict
endometrial cancer risk (Pfeiffer et al., 2013; Hüsing et al.,
2016). Both studies use traditional epidemiological models and
non-invasive data for decision-making on targeted screening and
preventive procedures. Hüsing et al trained a model on a dataset
of 201,811 women (mostly aged 30–65 years), with 855 positive
cases of endometrial cancer (0.4%). This model achieved an AUC
of 0.77 (Hüsing et al., 2016). Pfeiffer et al’s model (Pfeiffer et al.,
2013), which produced an AUC of 0.68, was trained on the same
PLCO dataset that we used, in addition to the NIH-AARP dataset.
Their full dataset had a total of 304,950 women with 1,559
positive cases of endometrial cancer (0.51%). Noting the
moderate performance of endometrial risk stratification
models that were previously created (Hüsing et al., 2016), and
the promising results of our previous work in using machine
learning for cancer risk stratification (Hart et al., 2018; Roffman
et al., 2018a; Roffman et al., 2018b; Muhammad et al., 2019), we
decided to develop machine learning models to achieve greater
performance in predicting endometrial cancer risk. We were able
to surpass the performance of both these models with an AUC
of 0.96.

Finally, a recent review suggests that a risk prediction model
that divides the population up into low-, medium-, and high-risk
groups would be useful for developing tailored cancer prevention
strategies for each patient (Kitson et al., 2017). Such a model can
help clinicians target high-risk populations, for whom clinicians
could suggest interventions to modulate endometrial cancer risk,
such as dietary and exercise changes, progestin or anti-estrogen
therapy, insulin-lowering therapy, and scheduled endometrial
biopsies. This is why we further applied our machine learning
model to stratify patients into low-, medium, and high-risk
groups. We compared our model’s performance on the 3-tier
risk stratification with physicians’ judgment and achieved
promising results.

METHODS
The PLCO Dataset
In this study we developed our machine learning models based on
the Prostate, Lung, Colorectal, and Ovarian Cancer Screening

Trial (PLCO) dataset (Kramer et al., 1993). PLCO was a
randomized, controlled trial investigating the effectiveness of
various screenings for prostate, lung, colorectal, and ovarian
cancers. It was a prospective study that enrolled participants
from November 1993 through July 2001. Participants were
between 55 and 75 years old. Shortly after enrollment,
participants completed a baseline survey detailing their health
history and current health condition. They were then followed
until they were diagnosed with cancer or died, or when 13 years
had passed. From the PLCO dataset, we sub-selected the 78,215
female participants for whom we have data on whether they
developed endometrial cancer within 5 years of enrolling in the
PLCO trial. 961 of these females developed endometrial cancer
within five years of enrolling. This gave 77,254 non-cancer cases
(98.8%) and 961 cancer cases (1.2%) on which we train our
model. For full details about this data and its collection see
Kramer et al., 1993.

With authorization from the National Cancer Institute (NCI)
to access PLCO trial data (PLCO-365), we used the following
inputs for our model: age (Howlader et al., 2017), BMI(Renehan
et al., 2008; Crosbie et al., 2010), weight (20 years, 50 years,
present) (Hosono et al., 2011; Aune et al., 2015), race
(Howlader et al., 2017), smoking habits (Zhou et al., 2008),
diabetes (Anderson et al., 2001), emphysema, stroke,
hypertension (Aune et al., 2017), heart disease, arthritis
(Parikh-Patel et al., 2009), another cancer, family history of
breast, ovary, and endometrial cancer, ovarian surgery (Dossus
et al., 2010), menarche age (Dossus et al., 2010), parity (Dossus
et al., 2010), use of birth control (Dossus et al., 2010), and age at
menopause (Dossus et al., 2010). Many of these inputs, such as
BMI, diabetes and family history, were selected because they
correlate strongly with endometrial cancer incidence (Anderson
et al., 2001; Dossus et al., 2010; Aune et al., 2015) and were also
used as inputs in other works on endometrial cancer risk
prediction (Pfeiffer et al., 2013; Hüsing et al., 2016; Kitson
et al., 2017). Other factors, such as smoking habits,
emphysema and heart disease, were included because they
contributed to good performance in our past works. (Hart
et al., 2018; Roffman et al., 2018a; Roffman et al., 2018b;
Muhammad et al., 2019). There are other known risk factors
such as Hereditary Non-polyposis Colorectal Cancer (HNPCC)
or Lynch Syndrome which would be good to include in a model
but are not in the PLCO dataset. All inputs were scaled to within
the range of [0, 1].

To evaluate the different algorithms, we randomly split the
dataset 70%/30% into training and testing sets, keeping the
proportion of those with and without cancer constant between
the two datasets. The final model was trained on the full training
set and evaluated on the testing set. This gives our model a
Transparent Reporting of a multivariable prediction model for
Individual Prognosis Or Diagnosis (TRIPOD) level 2a of
robustness (Collins et al., 2015).

Machine Learning Algorithms
In creating our risk prediction models, we trained algorithms that
produce continuous output from 0 to 1, which indicated the
probability that a woman would develop endometrial cancer
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within five years since the input data was gathered. The
algorithms we used were: logistic regression (LR), neural
network (NN), support vector machine (SVM), decision tree
(DT), random forest (RF), linear discriminant analysis (LDA),
and naive Bayes (NB) (Bishop, 2006). The logistic regression was
fit using the NN code with 0 hidden layers. The NN was fit using
the in-house MATLAB code we developed for previous works
(Hart et al., 2018; Roffman et al., 2018a; Roffman et al., 2018b;
Muhammad et al., 2019). It was a multilayer perceptron
consisting of two hidden layers with 12 neurons each and a
logistic activation function. We then used the built-in MATLAB
function “fitrsvm” with a Gaussian kernel to fit the SVM, and we
used the function “fitctree” to create the decision tree. The
random forest was fit with the built-in MATLAB function
“TreeBagger” with 50 trees. The LDA was fit using the built-in
MATLAB function “fitcdiscr,” with “discrimType” set to
“diaglinear”. Lastly, the NB was fit using the built-in
MATLAB function “fitcnb,” with “OptimizeHyperparameters”
set to “auto”. For “fitctree”, “fitcdiscr”, and “fitcnb,” the “score”
from the “predict” function was used to get continuous output,
akin to that returned by the LR, NN, and SVM. We used these six
algorithms because they are well-established machine learning
techniques.

In selecting the algorithm for the final model(s), we used 10-
fold cross-validation within the training and testing sets to
determine the mean AUC of each algorithm. We identified the
twomodels that achieved the highest testing mean AUCs between
training and testing performance. These two models were then
trained on the full training set and evaluated on the testing set.
Afterward, for each of the two best models, we selected a
threshold for determining the sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (NPV),
by maximizing the sum of the training sensitivity and
specificity, i.e., maximizing the balanced accuracy.

Risk Stratification
Once we selected the two best models, we used them to stratify the
population into below, at, or above-average risk, to facilitate a
comparison of our models’ prediction to physicians’ judgment in
the clinic. Specifically, in selecting the boundaries based on the
training data, we considered the bottom 15.9% of risks as below
average, the top 15.9% of risks as above average, and the middle
68.2% as average risks.

Human Intelligence (HI) vs. Artificial
Intelligence (AI)
For comparison of the models’ prediction against physicians’
judgment, we created an online survey (https://yalesurvey.ca1.
qualtrics.com/jfe/form/SV_3TVh1XP27eaktud) with a sub-data
set of 100 women from our original dataset. The survey presented
the information used by our model to physicians and asked them
to rate each woman as below, at, or above-average for endometrial
cancer risk. Clinicians were given no instructions on how to
classify individuals, so that we would get results representative of
what would happen in practice. In an effort to get high-quality
data, we limited the length of the survey by only showing each

physician a random subset of 20 of the 100 women. The answers
from the various physicians were aggregated and averaged for
each woman. We then used our model to stratify the same group
of women. We invited physicians from Yale, Harvard, and
University of Michigan Departments of Obstetrics,
Gynecology, and Reproductive Science/Biology, as well as
primary care physicians from INOR Cancer Hospital
(Abbottabad, Pakistan) and Yale Health Center to participate.
We received usable responses from 15 physicians.

RESULTS

We evaluated seven different algorithms: logistic regression (LR),
neural network (NN), support vector machine (SVM), decision
tree (DT), random forest (RF), linear discriminant analysis
(LDA), and naïve Bayes (NB). Table 1 presents the mean
average area under the receiver operating characteristic (ROC)
curve (AUC) with one standard deviation, from the 10-fold cross-
validation on both the training and testing datasets. The training
AUCs range from 0.68 to 0.99 and the testing AUCs range from
0.68 to 0.95. There is no significant difference in the training and
testing performance for four of the algorithms (LR, NN, LDA and
NB), but SVM, DT, and RF have a significant drop in
performance going from training to testing. The highest
testing performance was for the RF, although NN and RF
testing performance are within one standard deviation of each
other. For the remainder of this paper we will be focusing on the
random forest and neural network models because these two
models achieved the highest mean testing AUCs during cross-
validation.

Selecting the random forest and neural network as the top
models, we then trained them on the full training dataset and
evaluated them on the testing dataset. When calculating the
models’ performance on both the training and testing datasets,
we calculated 95% confidence intervals of the AUC, sensitivity,
specificity, PPV, and NPV (Hanley and McNeil, 1982).

Figure 1A shows the sensitivity and specificity as a function of
the decision threshold for the random forest on both the training
and testing datasets. The same is done for the neural network in
Figure 1B. For the random forest, the sensitivity decreases as the
threshold value increases, while the specificity is above 99.9% on
both the training and testing datasets. For the neural network
model, the sensitivity hovers around 60% and the specificity
remains above 99.9% for most threshold values on both the
training and testing datasets. Given a threshold value that
maximizes the sum of the training sensitivity and specificity,
the random forest model’s sensitivity is 98.4% for the training set
and 75.7% for testing. The specificity is 98.9 and 98.3% for
training and testing respectively. The neural network model’s
sensitivity is 77.2% for the training set and 67.7% for testing. The
specificity is 91.2 and 91.1% for training and testing, respectively.

Using the sensitivity, specificity, and prevalence of
endometrial cancer, we calculate the PPV and NPVs as well.
For random forest, the PPV is 28.2 and 16.3% for the training and
testing datasets respectively. The NPV is 99.9 and 99.9% for
training and testing respectively. For the neural network, the PPV
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is 3.8 and 3.3%, and the NPV is 99.9 and 99.8%, for the training
and testing datasets respectively. The ROC curves for the random
forest and neural network are shown in Figures 2A,B. For the
random forest, the AUC for training and testing are, respectively,
0.99 (95% CI: 0.99–1.00) and 0.96 (95% CI: 0.94–0.97). For the
neural network, the AUC for the training data is 0.91 (95% CI:
0.90–0.93) and for testing it is 0.88 (95% CI: 0.86–0.91).

Following the recommendation of Ref 8, we used the random
forest and neural network models to create a 3-tiered risk
stratification scheme. Based on the risk boundaries selected using
the training data, we stratified the testing data into three groups:
below, at, and above-average risk. Figures 3A,B show Kaplan-Meier

plots for these three groups over the full 13 years they were followed.
The figures clearly show that women classified as above-average risk
have the highest chance of developing endometrial cancer. This is
supported further by the hazard ratio (HR) between the above-
average group and the two other groups.

TABLE 1 | Mean AUC (standard deviation) over 10 cross-validation folds for the seven algorithms tested.

LR NN SVM DT RF LDA NB

Training 0.68 (0.11) 0.89 (0.05) 0.99 (0.00) 0.98 (0.00) 0.99 (0.01) 0.81 (0.00) 0.72 (0.12)
Testing 0.68 (0.10) 0.88 (0.07) 0.80 (0.03) 0.85 (0.04) 0.95 (0.01) 0.81 (0.03) 0.72 (0.12)

FIGURE 1 | A) The sensitivity and specificity of the random forest for
both the training and testing data as a function of the threshold value and (B)
The sensitivity and specificity of the neural network for both the training and
testing data as a function of the threshold value.

FIGURE 2 | A) Area under the ROC curve for the random forest on both
the training and testing data. Similar performance on both datasets indicates
that the random forest has no overfit and (B) Area under the ROC curve for the
neural network on both the training and testing data. Similar
performance on both datasets indicates that the neural network has no overfit.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2020 | Volume 3 | Article 5398794

Hart et al. Endometrial Cancer Screening HI vs. AI

47

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


In fact, as shown in Table 2, 90.3% of those in the testing set
who developed endometrial cancer during the next 5 years were
labeled by the random forest model as above-average risk and
15.7% of those who did not develop cancer were labeled as below-
average risk. The incidence rates in the below-average, average,
and above-average risk groups are 0.03, 0.17, and 6.17%,
respectively. Similar performances were observed for the
neural network as shown in Table 3

Tables 4, 5 show the comparison of our models with
practicing clinicians in assessing risk for 100 women. In the
below-average risk population, the physicians identified 2.8 times
as many women who did not develop cancer as being below-

average risk, compared to our random forest model (39.5 vs.
14.0%), and 1.65 times as many as our neural network model
(39.5 vs. 24.0%). However, the physicians misidentified twice as
many women who did not develop cancer as being high risk,
compared to the random forest model (27.9 vs. 14.0%), and
3.5 times as many compared to the neural network (27.9 vs.
8.0%). Furthermore, our model was much better than physicians
at aptly stratifying patients who would develop endometrial
cancer. Physicians misidentified 22% of those who did develop
cancer as having below average risk, whereas our random forest
and neural network models predicted none. Additionally,
compared to physicians’ predictions, our random forest model
identified 2.5 times as many women who did develop cancer (94.0
vs. 38.0%) as above-average risk, and our neural network model
identified almost twice as many as the physicians did (70.0 vs.
38.0%). Finally, there is a large inter-observer variability on the
physicians’ assessments, while our models return the same
predictions every time.

DISCUSSION

We created seven different models to predict the probability of an
individual woman developing endometrial cancer in five years
based on readily available personal health data. Of these seven
models we found that the random forest model performed best in
terms of testing AUC, and the neural network performed second
best. We then used both models to stratify the population into
three risk categories. The above-average risk category captured
the majority of those who developed cancer in five years. This
above-average risk population could benefit from regular
screening procedures such as endometrial biopsy and/or
transvaginal ultrasounds.

Of our seven models, logistic regression and naive Bayes
performed the worst and had the most variation between
cross-validation folds. We think that the relatively poor
performance of logistic regression and naive Bayes is due to

FIGURE 3 | (A) Kaplan-Meier plot of the below- (green), at- (yellow), and
above- (red) average risk groups created from the testing data by our random
forest model. Also shown are the p-value and hazard ratio (HR) between each
group. Those in the above-average risk group clearly have the highest
chance of developing cancer and (B) Kaplan-Meier plot of the below- (green),
at- (yellow), and above- (red) average risk groups created from the testing data
by our neural network model with 95% confidence intervals (shaded). Also
shown are the p-value and hazard ratio (HR) between each group. Those in
the above-average risk group clearly have the highest chance of developing
cancer.

TABLE 2 | Stratifying the testing data into three risk groups by the random forest.

Below average
risk

Average
risk

Above average
risk

Number % Number % Number %

Cancer 1 0.3 27 9.4 260 90.3
No cancer 3,628 15.7 15,592 67.3 3,956 17.1

The percentages in each row sum up to 1.

TABLE 3 | Stratifying the testing data into three risk groups by the neural network.

Below average
risk

Average
risk

Above average
risk

Number % Number % Number %

Cancer 3 1.0 76 26.7 206 72.3
No cancer 3,705 16.0 15,920 68.7 3,553 15.3

The percentages in each row sum up to 1.
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the lack of interaction terms in these models. Without
interactions between the input factors, these models have no
advantage over traditional epidemiological models. A neural
network with at least one hidden layer allows for mixing of
the input parameters, which may explain its outperforming the
other algorithms we tested.

Four of the models (LR, NN, LDA and NB) generalized well with
similar training and testing AUCs, while SVM andDT overfit on the
training data. Even though SVM, DT and RF achieved near-perfect
AUC on the training data, they still performed better on the testing
data than previous works; a phenomenon we also saw with lung
cancer (Hart et al., 2018). The neural network achieved an AUC of
0.88 on both the 10-fold cross-validation and the testing set. The
random forest achieved a testing AUC of 0.96. Both our random
forest and neural network models significantly outperformed two
previous risk prediction models, including the model introduced by
Pfeiffer et al which achieved an AUC of 0.68 (Pfeiffer et al., 2013).
This improvement is particularly interesting because Pfeiffer et al
trained their model on not only the PLCO data, but also data from
the National Institutes of Health-AARP Diet and Health Study.
Although our model outperforms their model, theirs is more robust
since it has been validated on an external data set, making it
TRIPOD level 3 compared to our level 2a. Another previous
work, by Hüsing et al, achieved an AUC of 0.77 (Hüsing et al.,
2016). Their improvement wasmade by explicitly adding interaction
terms to the epidemiological model. They used cross-validation
making it TRIPOD level 1b. We are seeking access to the
datasets used in these other works as external testing on our model.

With our random forest and neural network models
outperforming previous works, we turn our attention to
comparing our models with clinical judgment. The ultimate
goal of this and our previous work is to create a risk
prediction tool that can support physicians in their clinical
decision-making about cancer prevention and screening for
individuals prior to disease onset. In stratifying 100 women
into below-, at-, and above-average risk groups, the physicians’

true negative rate in the below-average group was 1.6 times better
than that of our neural network model (39.5 vs. 24.0%). However,
physicians’ judgment resulted in a worse false negative rate in the
below-average group (22 vs. 0%) and lower true positive rate in
the above-average group, compared to both our random forest
and neural network models. Thus, we have shown that our
machine learning models are better than practicing physicians
at identifying high-risk above average risk women.

While current guidelines only recommend screening for very
high-risk women, our models may be capable of identifying a larger
population who would benefit from screening. In fact, when
stratifying the population based on stricter criteria (Hart et al.,
2018; Roffman et al., 2018a; Roffman et al., 2018b; Muhammad
et al., 2019) than what was used in this paper, our neural network
model identifies a high-risk group in which 47% of women
developed endometrial cancer within 5 years, among whom most
developed the cancer under a year (data not shown). In addition to
informing women and their physicians in their discussion of the
potential pros and cons of screening, our models can help prompt
life-style changes and other preventive measures or intervention (see
Arnold et al., 2015). Admittedly, the downside to our models for this
application is that understanding the contribution of individual
input factors to the overall risk is not intuitive. So, while the
current model can stratify the population and suggest the above-
average risk group to participate in preventive strategies, it does not
offer much help in deciding which strategies (e.g., diet and exercise,
progestin or anti-estrogen therapy, and insulin-lowering therapy
etc.) would be most effective. We will carry out this study in our
future works. Nevertheless, our machine learning approach shows
great promise in aiding early detection of endometrial cancer, as the
approach yields high-accuracy predictions based solely on personal
health information prior to disease onset, without need for any
invasive or costly procedures like endometrial biopsy or transvaginal
ultrasounds. Furthermore, it could be integrated into existing electronic
medical record systems, giving risk predictions directly to primary care
physicians when they see patients.

TABLE 4 | Random forest model vs. physician stratification of 50 women with cancer (ground truth positives) and 50 women without cancer (ground truth negatives) into
below-, at-, or above-average risk groups.

Below average risk Average risk Above average risk

Model Physicians Model Physicians Model Physicians

Ground truth positives 0.0 22.0% (17%) 6.0 40.0% (16%) 94.0 38.0% (24%)
Ground truth negatives 14.0 39.5% (22%) 72.0 32.6% (16%) 14.0 27.9% (20%)

Inter-observer variability for the physicians is captured by a standard deviation in parenthesis.

TABLE 5 | Neural network model vs. physician stratification of 50 women with cancer (ground truth positives) and 50 women without cancer (ground truth negatives) into
below-, at-, or above-average risk groups.

Below average risk Average risk Above average risk

Model Physicians Model Physicians Model (%) Physicians

Ground truth positives 0.0 22.0% (17%) 30.0 40.0% (16%) 70.0 38.0% (24%)
Ground truth negatives 24.0 39.5% (22%) 68.0 32.6% (16%) 8.0 27.9% (20%)

Inter-observer variability for the physicians is captured by a standard deviation in parenthesis.
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Compared with clinical judgment, the strong performance of
our models, combined with other strongly discriminatory models
for non-melanoma skin cancer (Roffman et al., 2018a), prostate
cancer (Roffman et al., 2018b), lung cancer (Hart et al., 2018), and
pancreatic cancer (Muhammad et al., 2019), presents a real
opportunity to perform a “statistical biopsy” on individuals
prior to disease onset. Analogous to traditional biopsy, which
analyzes cells from a specimen, and the recently developed
liquid biopsy, which evaluates circulating DNA from a blood
sample to diagnose cancer, our machine learning approach to
cancer prediction is essentially a statistical biopsy that mines
personal health data of an individual for early cancer detection
and prevention. Different from traditional biopsy and liquid
biopsy, statistical biopsy seeks to decipher the invisible
correlations and inter-connectivity between multiple medical
conditions and health parameters via statistical modeling. By
mining personal health data via statistical biopsy, it is possible
to generate a holistic profile of an individual’s risk for a variety of
cancer types, with little cost in time or money and no side effects.
Furthermore, if integrated into a modern electronic medical record
(EMR) system, statistical biopsy may help inform preventive
interventions and/or screening decisions in real time. As we test
our models on external datasets and expand the types of cancer
covered, we hope to build a comprehensive model available to
primary care physicians worldwide, allowing for statistical biopsies
during routine clinical care for the general public.

CONCLUSION

In this work we construct machine learning models to predict the
five-year risk of developing endometrial cancer for individual
women based solely on personal health data, without any
genomic or imaging biomarkers, or invasive procedures. We
test seven different algorithms and find that the random forest
performs optimally and outperforms previous models. We
further demonstrate that the random forest is superior to the
15 physicians in stratifying the population into three risk groups,
with a 2.5-fold increase in true positive rate, 2-fold reduction in
false positive rate, and reduction to zero in false negative rate.
With strong discriminatory power, our random forest offers a
cost-effective and non-invasive method to population-based
screening for endometrial cancer prior to disease onset and is
capable of targeting the sub-population with above-average risk.
The ability to identify female patients with above-average risk can

in turn inform the adoption of early cancer prevention strategies,
including both immediate actions like screening and long-term
preventative measures such as chemoprevention.
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Clinical Enhancement in AI-Based
Post-processed Fast-Scan Low-Dose
CBCT for Head and Neck Adaptive
Radiotherapy
Wen Chen1,2, Yimin Li2,3, Nimu Yuan4, Jinyi Qi4, Brandon A. Dyer5, Levent Sensoy2,
Stanley H. Benedict2, Lu Shang2, Shyam Rao2* and Yi Rong2,6*

1Department of Radiation Oncology, Xiangya Hospital, Central South University, Changsha, China, 2Department of Radiation
Oncology, University of California Davis Medical Center, Sacramento, CA, United States, 3Department of Radiation Oncology,
Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, China, 4Department of Biomedical Engineering,
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Purpose: To assess image quality and uncertainty in organ-at-risk segmentation on cone
beam computed tomography (CBCT) enhanced by deep-learning convolutional neural
network (DCNN) for head and neck cancer.

Methods: An in-house DCNN was trained using forty post-operative head and neck
cancer patients with their planning CT and first-fraction CBCT images. Additional fifteen
patients with repeat simulation CT (rCT) and CBCT scan taken on the same day (oCBCT)
were used for validation and clinical utility assessment. Enhanced CBCT (eCBCT) images
were generated from the oCBCT using the in-house DCNN. Quantitative imaging quality
improvement was evaluated using HU accuracy, signal-to-noise-ratio (SNR), and
structural similarity index measure (SSIM). Organs-at-risk (OARs) were delineated on
o/eCBCT and compared with manual structures on the same day rCT. Contour accuracy
was assessed using dice similarity coefficient (DSC), Hausdorff distance (HD), and center
of mass (COM) displacement. Qualitative assessment of users’ confidence in manual
segmenting OARs was performed on both eCBCT and oCBCT by visual scoring.

Results: eCBCT organs-at-risk had significant improvement on mean pixel values, SNR
(p < 0.05), and SSIM (p < 0.05) compared to oCBCT images. Mean DSC of eCBCT-to-rCT
(0.83 ± 0.06) was higher than oCBCT-to-rCT (0.70 ± 0.13). Improvement was observed for
mean HD of eCBCT-to-rCT (0.42 ± 0.13 cm) vs. oCBCT-to-rCT (0.72 ± 0.25 cm). Mean
COM was less for eCBCT-to-rCT (0.28 ± 0.19 cm) comparing to oCBCT-to-rCT (0.44 ±
0.22 cm). Visual scores showed OAR segmentation was more accessible on eCBCT than
oCBCT images.

Conclusion: DCNN improved fast-scan low-dose CBCT in terms of the HU accuracy,
image contrast, and OAR delineation accuracy, presenting potential of eCBCT for adaptive
radiotherapy.

Keywords: deep convolutional neural network, image quality, cone beam CT, head and neck cancer, adaptive
radiotherapy
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INTRODUCTION

Head and neck cancer (HNC) is reported as the eighth leading
cause of cancer-related death worldwide (Parkin et al., 2005).
HNC can have heterogeneous responses to definitive
chemoradiotherapy regarding locoregional control and overall
survival (Yan et al., 2012). Anatomic changes due to tumor
response or weight loss may lead to under- or over-dosage to
target volumes or overdosage to organs at risk (OARs) during
radiotherapy. Changes in the plan dosimetry may result in
increased risk of toxicity and/or impact tumor control (Chen
et al., 2014; Castelli et al., 2015). In recent years, adaptive
radiation therapy (ART) has been proposed to account for
changes in tumor and normal organs to enhance the
therapeutic ratio (Castadot et al., 2010; Schwartz, 2012).
However, ART requires re-segmentation of OARs and
treatment target volumes on each re-planning CT image. This
process, if performed manually, is time-consuming with high
intra- and inter-observer segmentation variability (Brouwer et al.,
2012; Nelms et al., 2012; Lim and Leech, 2016).

Cone beam CT (CBCT) is the most common and readily
available onboard imaging system for online ART (Lu et al., 2006;
Woerner et al., 2017). Previous studies (Nijkamp et al., 2008;
Foroudi et al., 2011) have proved that CBCT is helpful in ART for
reducing the volume of irradiated healthy tissue and the dose
delivered to OAR. In offline ART, CBCTs are used for anatomic
change monitoring during the treatment. When needed, a new
planning CT is often acquired for plan adaptation to those organ
or tumor volume changes. An ideal image dataset for ART should
have accurate electron density for dose calculation and high soft
tissue contrast resolution for accurate and robust image
registrations and/or organ segmentation. For online ART,
daily images acquired for treatment alignment are used for
adapting the plan to anatomic and tumor changes prior to
daily treatment. Unfortunately, online adaptive CBCT is
hampered by poor image quality because of scatter artifact
and lack of soft-tissue contrast. Furthermore, CBCT image
values have poor correlation to electron density which requires
post-image processing for correction (van Zijtveld et al., 2007).
Poor image quality on CBCT also limits the ability to identify
organ boundaries, thus resulting in high inter-observer variability
in contour delineation (Lutgendorf-Caucig et al., 2011; Altorjai
et al., 2012). Deformable image registration for contours
propagation has shown high uncertainties due to poor CBCT
image quality (Pukala et al., 2013). Increasing scan settings might
improve the image quality and electron density accuracy for
CBCT images (Dyer et al., 2019), yet at a cost of increasing
imaging dose to patients, which might not be trivial when adding
all fractions together.

Recently, deep learning algorithms were proposed to improve
CBCT image quality using different network models (Jain, 2008;
Xie et al., 2012; Dong et al., 2016). Deep convolutional neural
networks (DCNN) can denoise images, reduce blurring, and
improve soft tissue contrast resolution (Jain, 2008; Dong et al.,
2016). Specifically for those fast-scan-low-dose CBCT scans, a
U-NET based DCNN was developed for enhancing image quality
for HNC patients, with improved HU accuracy, signal-to-noise

ratio, and small anatomical structure preservation (Yuan et al.,
2019). Such image quality enhancement should bring clinical
benefits specifically for ART, including improved CT-CBCT
image registration accuracy, thus improved contour
propagation accuracy and better visualization for identifying
organs at risk on CBCT images. The present study aimed to
evaluate these clinical benefits with the image quality
improvements in enhanced CBCT images.

MATERIALS AND METHODS

Patient Data
Forty post-operative HNC patients with a planning CT (pCT)
and the first fraction CBCT were retrospectively identified and
used for network training. A 2D U-Net shape architecture with
19-layers in 5 depths was specially optimized and trained using a
total of 2080 CT and CBCT slice. The network design and
architecture were described in the previous study (Yuan et al.,
2019). Additional 15 patients with pCT, and replanning CT (rCT)
3–4 weeks into treatment with the same-day CBCT in relation to
rCT were selected for DCNN validation. All CBCT scans were
acquired with a kV x-ray imaging system mounted on a Synergy®
linear accelerator (Elekta AB, Stockholm, Sweden). The CT
parameters were set as follows: 512 * 512 matrix size on the
axial plane, 1.183 mm * 1.183 mm pixel size, and 3.0 mm
thickness. CBCT parameters were set to 270 * 270 matrix size,
1.0 mm * 1.0 mm pixel size, and 3.0 mm thickness. The original
CBCT (oCBCT) images were fed into the trained DCNNmodel to
obtain enhanced image quality from CBCT images, namely
eCBCT. These images are synthetic CT images created based
on the CT-CBCT paired trained DCNN model.

Organs at Risk Selection
For all patients, OARs included: left/right parotid, left/right
submandibular gland (SMG), larynx, brainstem, and spinal
cord. The reference contours on both pCT and rCT for each
patient were manually delineated on the RayStation treatment
planning system (Raysearch Laboratory, Stockholm, Sweden) by
a radiation oncologist specialized in HNC and confirmed by a
senior radiation oncologist. Contours on rCT were directly
copied to the corresponding eCBCT and oCBCT through the
gray-values based rigid image registration frame as comparison
references. To eliminate the potential impact of registration
differences between eCBCT and oCBCT images, the eCBCT
was first registered to rCT and then the registration result of
eCBCT was copied to oCBCT. All organs for delineation were
completely covered in the field of CBCT view.

Image Quality Evaluation
The manually segmented OARs on rCT was considered the
ground truth for image comparison. Image quality was
quantified as the difference of mean pixel values among the
region of interests (ROIs) between rCT and CBCT (oCBCT,
eCBCT) images, denoted ROIm. Seven ROIs (left/right parotid,
left/right SMG, larynx, brainstem, spinal cord) were used for all
patients.
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The definition for signal-to-noise-ratio (SNR) is the ratio of
signal power to noise power. The structural similarity index
measure (SSIM) is the similarity between two images by
comprehensively evaluating different properties such as
luminance, contrast, and structure, which is one of human
visual system-based metrics. The SNR and the SSIM of CBCTs
were measured based on the seven ROIs used in the calculation of
spatial non-uniformity for each patient.

SNR � 10 · log10[ ∑​ ∑​ [ICT(x, y)]2∑​ ∑​ [ICT(x, y) − IeCBCT(x, y)]2]
In the formula, ICT represents the CT scan slice and IeCBCT

represents the eCBCT scan slice.

SSIM � (2μeCBCTμCT + C1)(2δeCBCT&CT + C2)(μ2eCBCT + μ2CT + C1)(δ2eCBCT + δ2CT + C2)
μ represents the mean value, δ2 represents the variance, the
parameters C1 � (k1Q)2 and C2 � (k2Q)2 are used to stabilize
the division with weak denominators, k1 � 0.01 and k2 � 0.02. Q
is the dynamic range of the pixel-values.

Contour Accuracy Assessment
For each patient, the CBCT pairs (oCBCT and eCBCT) and the
same day rCT were imported into RayStation treatment planning
system (TPS). All oCBCTs and eCBCTs were rigid registered
based on skull and spine bony anatomy to the pCTs.
Subsequently, a deformable image registration was performed
between pCT and CBCTs, for organ contour propagation from
pCTs to CBCTs image sets (both oCBCT and eCBCT)
(Weistrand and Svensson, 2015). The image similarity term
measured by correlation coefficient of the anatomically
constrained deformation algorithm (ANACONDA) was used

for CT/CBCT image comparison/registration. The whole body
structure was used to define the registration region. After contour
propagation, an experienced HNC radiation oncologist reviewed
contours on oCBCT and eCBCT images and made contour
modification if necessary. For the same patient, the type of
images was not disclosed to the user at the time of contouring
to avoid observer bias among different image modalities.

Accuracy of corrected propagated contours on oCBCT and
eCBCT images were evaluated against the reference contours on
rCTs (Whitfield et al., 2013). Quantitative assessment includes:
dice similarity coefficient (DSC), Hausdorff distance (HD), and
center of mass (COM) displacement. The DSC was adopted to
evaluate the overlap of volumes between two contours. And it is
calculated as follows:

DSC � 2 × Volume1∩ ​ Volume2
Volume1 + Volume2

Volume 1 and volume 2 represent the volumes of selected
reference contours. A result of 1 means a complete overlap
and a result of 0 means no overlap. The HD is to measure the
max distance of all the nearest points between contours, define as:

HD � max{min d(a)
a ∈ A

,
min d(b)
b ∈ B

}
“a” and “b” are points in contours A and B, respectively, where
min
a∈A

d(a) is the minimum distance of all points on the contour A
to points on the contour B, so as the same definition used for
min
b∈B

d(b). While the center of mass displacement (COM) acts as a
metric of the overall shift between two contours. It is calculated
based on the following equation:

COM �






























(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)22

√

FIGURE 1 | Comparison of image quality for one representative patient. eCBCT has lower image noise and less streak artifacts in the soft tissue region than the
oCBCT. eCBCT also has higher image contrast than oCBCT for parotid and submandibular gland areas (see green box).
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x (1, 2), y (1, 2), z (1,2) are coordinates of the geometric centroid
of the contours in comparison (Kumarasiri et al., 2014).

To further evaluate the clinical accessibility of CBCT image
quality for manual segmentation, three HNC radiation
oncologists visually scored OAR structures on both eCBCT
and oCBCT images using a scale 1–3 according to the
following criteria: 1) the outline of the structure cannot be

identified; 2) the outline of the structure can be identified with
moderate difficulty; 3) the image quality is close to CT simulation
and the outline of the structure can be clearly identified.

Statistical Analysis
All Statistical analyses were performed in SPSS software version
24.0 (SPSS Inc., Chicago, IL, United States) and GraphPad

FIGURE 2 | Differences in HU, SNR and SSIM between eCBCT and oCBCT. Box plots on the left side showing the ROIm (HU) variations (A), signal-to-noise-ratio
(SNR) (B), structural similarity index measure (SSIM) (C) for parotids, submandibular glands, larynx, brainstem, spinal cord, respectively. The limits of each box represent
the 25th and 75th percentiles, the middle black line represents the median, and the upper and lower whiskers represents the highest and lowest values, respectively. The
bar graphs on the right side for (A)–(C) showing the overall ROIm (HU), SNR, SSIM variations for all organs, respectively.*Indicates that the p value < 0.05, and error
bars are standard deviations.
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version 6.0. p < 0.05 was considered statistically significant. The
Wilcoxon test was used to compare the image quality and the
contouring difference between eCBCT and oCBCT.

RESULTS

Figure 1 shows image quality as an example. eCBCT images had
lower noise and less streak artifacts in the soft tissue region than
oCBCT. eCBCT images also had higher image contrast than
oCBCT, particularly in the parotid and submandibular gland
regions. A quantitative analysis of image quality for OARs is
summarized in Figure 2. Seven ROIs were segmented on rCT
and the mean pixel values were calculated for each ROI on rCT,
oCBCT, and eCBCT images. When compared with rCT, the mean
difference in CT values of ROIm between rCT and oCBCT were 90
HU, while the difference between rCT and eCBCT reduced to 50
HU. This suggests that the CT values of OARs on eCBCT images
more closely match those on rCT than oCBCT. When oCBCT and
eCBCT SNR and SSIM were compared, eCBCT was significantly
better than oCBCT (p < 0.05). This suggests that the DCNN
method performs effectively in reducing image noise and
improving image quality in eCBCT images, more closely
resembling the corresponding rCT images. Metrics of image
quality (ROIm, SNR, and SSIM) were calculated and compared
for all OARs on rCT, oCBCT, and eCBCT images. We found that

eCBCT showed significant improvement compared to oCBCT for
all studied OARs (p < 0.05) (Figure 2).

Figure 3 shows OAR contours on transverse slices of rCT,
oCBCT, and eCBCT images for one representative patient. The
mean value of DSC, HD and COM difference for OARs on oCBCT
and eCBCT images are shown in Figure 4. The average DSC for
eCBCT-to-rCT and oCBCT-to-rCT was 0.83 ± 0.06, and 0.70 ±
0.13. The average HD for eCBCT-to-rCT was 0.42 ± 0.13 cm
and for oCBCT-to-rCT was 0.72 ± 0.25 cm. The mean COM for
eCBCT-to-rCT was 0.28 ± 0.19 cm and for oCBCT-to-rCT was
0.44± 0.22 cm eCBCTOARs had a higher DSC than oCBCT for all
the structures (p < 0.05), except for brainstem. Similarly, the results
of HD and COM all showed that OARs delineated on eCBCTwere
closer to rCT than oCBCT. Statistically, the difference between
OARs on eCBCT vs oCBCT for HD and COMwere significant for
most organs. Table 1 shows the reported visual scores for OAR
identification by three physicians. The scores are higher for all
OAR structures on eCBCT vs oCBCT images—particularly for
parotid structures. This implies that eCBCT improves ease of
manual segmentation compared with oCBCT.

DISCUSSION

The studied DCNN method quantitatively improved CBCT image
quality for head and neck patients. The impact of eCBCT image

FIGURE 3 | OARs delineated on transverse slices of oCBCT, eCBCT and rCT images for a representative HNC patient. OARs are outlined: brainstem (top, yellow
line), parotids [middle, yellow (right) and green (left) lines], spinal cord (middle, light blue line),submandibular glands [bottom, blue (right) and yellow (left) lines], larynx
(bottom, purple line).
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quality improvements in a clinical context was evaluated. SNR and
SSIMof eCBCT both improved comparedwith those of oCBCT. An
overall improvement in image quality also helped users’ judgment
in identifying OARs and their subsequent contour correction on
eCBCT compared with those for oCBCTs.

The inaccurate CBCT Hounsfield units will subsequently
compromise dose calculation accuracy (Richter et al., 2008; Usui
et al., 2013). Several approaches have been proposed to deal with
the shortcomings of CBCT, such as anti-scatter grids and software-

based solutions (Letourneau et al., 2007; Stankovic et al., 2017).
According to Letourneau et al.’s study (Letourneau et al., 2007),
they quantified the magnitude of CBCT image artifacts following
the use of an anti-scatter grid and a nonlinear scatter correction. Then
the corrected CBCT images were used for online planning and the
dosimetric accuracy was satisfied with accepted RT standards. Veiga
et al. (2014) indicated that using CT to CBCT deformable image
registration provides the tools for calculating "dose of the day" without
the need to obtain a new CT. However, they are limited by the time

FIGURE 4 | Quantitative assessment of OARs for rCTs vs. oCBCT and eCBCT images. Box plot showing Dice similarity coefficient (DSC) variations (A), Center of
mass (COM) displacement (B), Hausdorff distance (HD) variations (C) for parotids, submandibular glands, larynx, brainstem, spinal cord, respectively. The limits of each
box represent the 25th and 75th percentiles, the middle black line represents the median, and the upper and lower whiskers represents the highest and lowest values,
respectively. *Indicates that the p value < 0.05.
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required to correct the image, and if there are large anatomical changes,
these methods will also face problems due to a large challenge to the
registration algorithms used in thesemethods. In our study, we present
a fast method for intensity correction for CBCT based on a
convolutional neural network. Previously, amongst those using
DCNN methods, Kida et al. (2018) showed improved CBCT image
quality and noise reduction for 20 prostate cancer patients using a
DCNN model. Hansen et al. (2018) presented a proof-of principle of
using deep learning techniques for pelvic CBCT correction and dose
calculation accuracy, which is superior to conventional methods of
mapping image value from the planning CT to CBCT (van Zijtveld
et al., 2007), or deforming the planning CT to match a daily CBCT for
the dose calculation (Veiga et al., 2015). Original CBCT often suffers
from severe scatter contaminations, resulted in significant image value
inaccuracy compared to that of CT. In our study, enhanced CBCT
images reduced scatter artifacts, improved soft tissue contrast, and
improved the HU image values within each OARs.

We compared OAR segmentation on eCBCTs and oCBCTs in
reference to rCT, which was acquired on the same day as the
CBCT images. Our results indicate that the eCBCTs consistently
outperforms oCBCTs in all metrics. The average DSC for parotid
glands in eCBCT was more than 0.80. This result is very close to
previous studies. According to Zhang et al. (2014), the average
DSC for parotid was 0.80 in compressed sensing based CBCT.
They also proved that compressed sensing based CBCT can help
to improve manual delineation of targets. Although DSC is widely
used as a performance metric, it has limitation that the structure
volume affects its values. Previous studies (Kumarasiri et al., 2014;
Zhang et al., 2018) reported that DSC shows a positive correlation
with structure volume, regardless how good the structure overlap
is. Therefore, COM and HD were also used as complementary
measures to better understand the quality of volume overlaps.

We chose to evaluate DCNN for CBCT image improvement in
HNC patients for practical consideration. Due to the complexity of
head and neck anatomic structures, and low soft tissue contrast, it is
challenging to perform a manual OAR segmentation on the original
CBCT. Many had attempted to create a simulated CT from
deforming the planning CT to the original CBCT. However, the
significant scatter artifacts on CBCT can affect the DIR accuracy. In
addition, it was reported (Hou et al., 2011) that deforming contours
fromCT to CBCT to evaluate anatomic changes or calculate adapted
dose during treatment is not reliable or requires significant manual
modification.With the current CBCT image quality overall, it seems
to be a common clinical practice to obtain propagated contours from
the original CT to CBCT after image registration (either rigid or
deformable) and correct for any obvious inaccuracy on CBCT. This
of course has never been an easy task to users due to the poor quality
of CBCT. Thus we included visual scoring as one of the evaluation
criteria in this study. Visual score results indicated that physicians
felt higher confidence in identifying the outline of those structures on
eCBCT, compared to those of oCBCT.

Manual contours defined by experienced physicians were used
as the comparison reference. Using manual contours as the “gold
standard” is clinically feasible, andmany researchers (Li et al., 2016;
Zhang et al., 2014) have used this method to evaluate the
delineation accuracy. A major limitation of the study is that
only a small number of patients’ scans were available for this
study. Future study should include more patient data and explore
other anatomical regions. Moreover, contouring accuracy of gross
tumor volume (GTV) on eCBCT was not studied, due to limited
image quality for target delineation on both oCBCT and eCBCT.
Therefore, it is worthy of noting that even though the present study
has shown significant improvement toward CBCT-based ART,
eCBCT image quality still has room for improvement, i.e. on the
aspects of target visualization. Yet this study is still valuable for
ART, in that eCBCThas improvedHUaccuracy and can serve for a
quick on-line dose verification. The dosimetric deviation can be a
trigger for ART, where a regular or high-dose CBCT can be
acquired for better image quality should ART is determined
necessary. This study presented that DCNN-processed low dose
fast scan CBCT images, i.e. eCBCT, have the potential for head and
neck adaptive radiotherapy.

CONCLUSION

We validated a DCNN model for improving low-dose-fast-scan
CBCT image quality, and enhanced CBCT has the potential to
improve delineation accuracy for head and neck patients. These
results support that enhanced CBCT has potential for adaptive
radiotherapy. In addition, the CBCT image quality may still have
room for improvement. Future study includes further improve
the performance of the DCNN method, using enhanced CBCT
for a direct dose calculation to validate the accuracy by comparing
with dose distribution calculated on planning CTs.
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TABLE 1 | Visual score (mean ± SD) for OAR segmentation ranked by three HNC physicians.

Parotid-R Parotid-L SMG-R SMG-L Cord Larynx Brainstem

eCBCT 2.3 ± 0.6 2.2 ± 0.5 1.9 ± 0.3 1.9 ± 0.4 1.8 ± 0.5 1.7 ± 0.5 1.3 ± 0.5
oCBCT 1.5 ± 0.3 1.2 ± 0.4 1.1 ± 0.2 1.1 ± 0.3 1.1 ± 0.2 1.3 ± 0.4 1.1 ± 0.3
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Abdallah S. R. Mohamed 3, Clifton D. Fuller 3,7*, Stephen Y. Lai 9* and Arvind Rao 1,2,10*

1Department of Electrical and Computer Engineering, Rice University, Houston, TX, United States, 2Department of
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Osteoradionecrosis (ORN) is a major side-effect of radiation therapy in oropharyngeal

cancer (OPC) patients. In this study, we demonstrate that early prediction of

ORN is possible by analyzing the temporal evolution of mandibular subvolumes

receiving radiation. For our analysis, we use computed tomography (CT) scans from

21 OPC patients treated with Intensity Modulated Radiation Therapy (IMRT) with

subsequent radiographically-proven ≥ grade II ORN, at three different time points:

pre-IMRT, 2-months, and 6-months post-IMRT. For each patient, radiomic features

were extracted from a mandibular subvolume that developed ORN and a control

subvolume that received the same dose but did not develop ORN. We used a

Multivariate Functional Principal Component Analysis (MFPCA) approach to characterize

the temporal trajectories of these features. The proposed MFPCA model performs

the best at classifying ORN vs. Control subvolumes with an area under curve (AUC)

= 0.74 [95% confidence interval (C.I.): 0.61–0.90], significantly outperforming existing

approaches such as a pre-IMRT features model or a delta model based on changes at

intermediate time points, i.e., at 2- and 6-month follow-up. This suggests that temporal

trajectories of radiomics features derived from sequential pre- and post-RT CT scans can

provide markers that are correlates of RT-induced mandibular injury, and consequently

aid in earlier management of ORN.

Keywords: osteoradionecrosis, computed tomography, radiomics, longitudinal, radiotherapy, head and neck

cancer, oropharyngeal cancer, functional principal component analysis
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INTRODUCTION

Radiotherapy (RT) is a highly utilized modality in the treatment
of head and neck (H&N) cancers with well-established local
control and survival benefits (Pan et al., 2016). Advances
in radiation delivery techniques from 2-dimensional (2D)
and 3-dimensional (3D) techniques to intensity-modulated
radiotherapy (IMRT) with the ability to manipulate the beam
path to spare normal tissues has significantly improved cure
rates and toxicity profile (Allison et al., 2014). Despite that,
osteoradionecrosis is a late complication from radiation to the
mandibular bone with a serious impact on the quality of life for
a growing population of younger surviving head and neck cancer
patients (Oh et al., 2004). The incidence of ORN varied between
different modalities ranging from 2 to 40% in the conventional
era to 0–6% in the IMRT era. Different risk factors were
identified to play a role in the development of ORN following
radiotherapy treatments (Allison et al., 2013; Zhang et al., 2017).
Osteoradionecrosis has a great impact on the patients’ quality of
life if not detected and managed properly (Tucker et al., 2016;
Wong et al., 2017). Diagnosis of ORN mainly relies on clinical
and radiological tools such as computed tomography (CT) and
magnetic resonance imaging (MRI) with their limited capacity
for early detection (Tsien et al., 2014).

Fortunately, the recent advances in biomedical imaging were
coupled with the rise of radiomics in terms of extracting
quantifiable imaging features, possibly of high information yield
and subsequent computation of these features kinetics (e.g.,
delta-radiomics) derived from sequential images (Cacicedo et al.,
2016). Paired with machine learning techniques, we hypothesize
that radiomic feature kinetics can characterize and distinguish
mandibular bone subvolumes at higher risk of developing future
ORN. These “temporal virtual digital biopsies” might have the
potential to empower earlier intervention and hence improve
patients’ quality of life.

Consequently, the aims of this study are to:

1. Determine bone radiomic features derived from contrast-
enhanced CT (CECT) images that are significantly different
between ORN and non-ORN mandibular subvolumes.

2. Develop a predictive radiomic-based signature of
ORN based on CECT temporal changes in high-risk
mandibular subvolumes

3. Hypothesis generation for future prospective studies.

MATERIALS AND METHODS

Study Population
Following approval from an institutional review board (IRB)
at our institution, data for biopsy-proven OPC patients treated
between 2002 and 2013 who underwent radiation therapy as
a single or multimodality definitive therapy were considered
for the current investigation (n = 83). This investigation and
relevant methodology were performed in compliance with the
Health Insurance Portability and Accountability Act (HIPAA) as
a retrospective study where the need for informed consent was
waived (Freymann et al., 2012). Electronic medical records were
scanned for documented diagnosis of mandibular ORN following

IMRT in the absence of any prior head and neck re-irradiation
along the same lines as a previous ORN study by our team
(Mohamed et al., 2017). The aspects of our institutional IMRT
approach for oropharyngeal cancer patients were previously
reported in detail (Garden et al., 2013). All patients received
pre-radiotherapy Dental Oncology service clearance, and, if
indicated, prophylactic dental extraction and fluoride trays were
prescribed as per standard Head and Neck Service operating
procedure (Tsai et al., 2013). Inclusion and exclusion criteria for
patients’ selection are illustrated in Figure 1.

ORN Staging
The severity of ORN was graded I through IV as follows:
grade I, i.e., minimal bone exposure requiring conservative
management; grade II: minor debridement required; grade III:
hyperbaric oxygen therapy (HBOT) received; grade IV: major
surgery mandated. This staging system is very comprehensively
given its emphasis on response to treatment as a standard to
categorize ORN (Tsai et al., 2013). Patients who subsequently
suffered from radiographically &/or pathologically proven grade
II or worse ORN were included in this study.

CT Acquisition Protocol and Eligibility
Criteria
According to our institutional protocol, CECT images were
obtained as a prerequisite for pre-treatment diagnostic work-up.
Subsequent post-IMRT CECT scans for response evaluation and
further surveillance were routinely performed at 2 and 6-month
time points and then at regular preset intervals thereafter. Our
study revolved about extracting quantitative imaging biomarkers
from CECT at pre-IMRT (i.e., baseline), 2-month (post-RT2),
and 6-month (post-RT6) post-IMRT, as well as the time instance
corresponding to the development of ORN. To that end,
CECT scans with available non-reconstructed axial cuts at the
aforementioned 4 time points were retrieved. CT slices with
evident ORN lesions that were obscured or otherwise affected by
visible metal artifacts were not contoured and were not included
in the analysis.

All CT scans were attained with a multi-detector row
CT scanner. Scan parameters were as follows: slice thickness
reconstruction (STR) ranges between 1 and 3mm, with a median
STR of 1mm, X-ray tube current of 99–584mA (median:
220mA) at 120–140 kVp. All images acquired at our institution
were composed of 512 × 512 pixels and were acquired following
a 90 s delay after intravenous contrast administration. One-
hundred and twenty milliliters of contrast were injected at a
rate of 3 ml/s. To standardize the image voxel sizes for use in
texture feature calculations, all the CT scans were resampled, via
a trilinear interpolation voxel resampling filter (Shafiq-ul-Hassan
et al., 2017).

Image Segmentation and Registration
We specifically selected CECT scans demonstrating the earliest
radiographically evident ORN characteristic lesion(s) as reported
by radiologists and further confirmed by physical examination by
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FIGURE 1 | Patient selection. Flowchart of selection process of patients for this study.

physicians in Head &Neck Surgery as well as in Dental Oncology
[ORN CECT].

The original delivered DICOM-RT clinical treatment
plans were restored from Pinnacle treatment planning
system (Pinnacle, Phillips Medical Systems, Andover, MA)
into commercially available image registration software
(VelocityAITM 3.0.1). Diagnostic CECT scans at baseline, post-
RT2, post-RT6, and ORN were also imported. Radiographically
evident bony lesions were delineated manually by a radiation
oncologist (HE) to constitute the ORN volumes of interest
(VOIs). Physical exam and other available imaging modalities
such as dental-dedicated panoramic X-rays were utilized to guide
the segmentation of VOIs.

Planning CT was co-registered with ORN CECT using
deformable image registration algorithm of VelocityAITM 3.0.1.
The 3D reconstructed dose grid of RT plan was then overlaid
to the ORN CECT. A neighboring radiographically intact
mandibular subvolume within the same isodose distribution

volume was manually segmented and designated as “Control
VOI” at the ORN CECT. Subsequently, baseline, post-RT2,
post-RT6 CECT scans were co-registered with ORN CECT using
rigid registration algorithms of VelocityAITM 3.0.1. Both “ORN”
& “Control” VOIs were propagated from ORN CECT to other
CECT scans at all three prior time points (Figure 2).

Radiomics Features Extraction
Computed tomography scans with corresponding contoured
VOIs were then extracted in the Digital Imaging and
Communications in Medicine format (DICOM), as DICOM-
RT and RT-STRUCT files, respectively. These files were then
imported into an in-house image biomarker explorer (IBEX)
software, built on MATLAB for subsequent radiomics feature
extraction (Zhang et al., 2015) along the same lines as previous
studies (Elhalawani et al., 2018; Yang et al., 2018).
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FIGURE 2 | Imaging workflow. Registration of CECT scan at time of diagnosis of ORN to radiation dose grid as well as previous CECT scans at: baseline, 2-month,

and 6-month post-RT for each patient with subsequent propagation of ORN & “Control” VOIs.

Radiomic features were derived from two VOIs that
correspond to ORN and Control in the 3 prior time points: pre-
IMRT, post-RT2, and post-RT6 CECT scans. The number of
radiomic features extracted for each VOI summed up to 1,645
individual features. They included a myriad of first- and second-
order radiomic features (Supplementary Table 1). Second-order
radiomic features were calculated in both full 3-dimensional
images (3D) as well as 2.5D, i.e., features calculated for each 2-
dimensional slice and results were then combined. Other than
shape features, a trilinear interpolation voxel resampling filter
to 3mm slice thickness and 1 mm2 pixel spacing was applied
prior to feature extraction to standardize voxel size. First-order
feature categories include shape, intensity direct, and intensity
histogram. Whereas second-order feature categories encompass:
Gray level co-occurrence matrix (GLCM), gray level run length
matrix (GLRL) as well as neighborhood intensity difference.
For GLCM and GLRL features, calculations from multiple
spatial directions were combined to produce one value (Materka
and Strzelecki, 1998). For NID, 3 different permutations of
neighborhood, i.e., 3, 5, or 7 were employed as in previous
projects (Elhalawani et al., 2018,a,b).

Radiomics Features Pre-selection and
Reduction
Initially, we worked with radiomic features computed from VOIs
corresponding to ORN and Control for 24 patients. The number
of radiomic features extracted for each patient is 1,628. Three
patients did not have radiomic features computed for the post-
RT6 time point and hence completely excluded from subsequent
analysis. For these 21 patients, we only kept the radiomic features
whose values are available for (i) all 3 time points, and (ii) both
in “ORN” and “Control” VOIs. One patient has 2 distinct ORN
lesions; accounting for a total number of 43 individual VOIs (22

“ORN” and 21 “Control” VOIs). Thus, we are then left with 1,628
radiomic features from 43 VOIs, i.e., 22 “ORN” and 21 “Control.”

Feature reduction by correlation was critical to ensure that
the performance of any machine learning algorithm is not
degraded because of a high degree of correlation in the features,
or multicollinearity (Garg and Tai, 2013). We first compute
the Spearman correlation (Landberg et al., 1999; Zar, 2005)
for the 1,628 radiomic features at the pre-IMRT time point.
We filter out the features whose average correlation level
with all the remaining features is greater than a user-defined
threshold (Kuhn, 2008). For our data, we used a threshold of
0.5. The threshold was chosen to reasonably balance the dual
requirements of multicollinearity reduction and capturing data
variation. Following correlation filtering, we reduced the number
of features we analyze to 16 features (Supplementary Table 2).

First—as a proof of concept—, we sought to establish that
radiomics can quantitatively discriminate between ORN and
non-ORN mandibular subvolumes. Mann-Whitney test (Mann
and Whitney, 1947) was used to identify specific radiomic
features that show statistically significant differences between
ORN and non-ORN high-risk VOIs.

Functional Principal Component Analysis
We hypothesize that we can predict the risk of ORN by looking
at the temporal evolution of radiomic features. A standard way
of identifying temporal signatures in time series data is by
using functional principal component analysis (FPCA) (Shang,
2014; Aue et al., 2015). FPCA takes multiple time series curves,
as an input, and tries to find the underlying shape signatures
that optimally can be used to represent all the curves. These
shape signatures are called the functional Principal Components
(PC). Each time series can now be represented by a weighted
combination of each of the PCs. This technique has been used
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FIGURE 3 | Visual explanation of the FPCA algorithm and its advantages. The first row displays the 3 functional principal components (FPCs). On the left column, the

temporal evolution of a Gray Level Co-occurrence Matrix (GLCM)-3D feature is shown for three mandibular regions namely Regions 1,2, and 3. Regions 1 and 2 did

not develop ORN, while 3 did. We note that Regions 1,2, and 3 all have similar baseline values, so cannot be distinguished by a model built solely on pre-radiotherapy

features. Further, Regions 2 and 3 also have similar change in their values, which a delta radiomics model would see as equivalent scenarios. On the other hand, the

difference in the temporal kinetics is efficiently encoded in the 3 FPCs. The color and length of the arrows indicate the sign (+ve or –ve) and magnitude (large or low) of

relative contribution made by each FPC in explaining the time series. So, for example, Region 2 and Region 3, which appear alike to a pre-radiotherapy model and a

delta radiomics model, can be readily distinguished because of the difference in relative contribution made by the 3rd FPC.

to predict outcomes from sequential data in a wide variety
of fields such as remote sensing (Cardot et al., 2003), stock
markets (Foutz and Jank, 2010), electroencephalogram (EEG)
analysis (Shou et al., 2015), and cancer pathology (Barua
et al., 2018). Since our data is multivariate, in that we have
a time series for multiple features for the same patient, we
can compute the functional PCs for each feature. One way of
representation would be to assume each feature is independent,
concatenate the PC weights for each feature, and use this
concatenated representation as input to a machine learning
model. However, since each pair of features is correlated to
various degrees, we use a technique called multivariate FPCA
(MFPCA), which explicitly accounts for the relationship between
the features (Dauxois et al., 1982; Berrendero et al., 2011;
Chiou et al., 2014; Happ and Greven, 2018). We utilized
the R package MFPCA for our temporal kinetics analysis
(Happ and Greven, 2018).

The importance of FPCA is visually explained in Figure 3.
We display 3 temporal trajectories from our data on the
leftmost column. We observe that all 3 sequences T1, T2, and
T3, have similar starting points. Further time series T2 and
T3 have similar end points too. This mimics a significant

scenario which we try to address, whereby neither the pre-
radiotherapy features, nor the delta features can distinguish
between the patients. However, FPCA can distinguish all 3,
by accounting for both, the values taken by the time series,
and the shape of the trajectory. The top 3 FPCs representing
the dataset are shown visually in the top row. The relative
contribution of each FPC to each of the time series is shown
with arrows, the length of the arrows representing themagnitude,
and green and red color indicating the sign (positive and
negative, respectively) of the contributions. We can see that
the magnitude and sign of the individual contributions from
the PCs are quite different, and thus can help distinguish the
three-time series.

Training the Random Forest
We used repeated random sampling to produce random forests
where validation (Breiman, 2001) ensued where validation of
each forest was performed using the left out observations, and the
overall accuracy was calculated by averaging the class predictions
of each of the forests. The random forest has been shown to
be robust to over-fitting and among the most effective of the
commonly used classifiers (Breiman, 2001). Each forest used 500
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trees, and each split was determined using
√
p features where p

is the number of features. The random forest calculations were
performed using the random Forest package for R software (Liaw
and Wiener, 2002). To further examine the performance of the
model, the ROC curves were plotted and the area under the curve
(AUC) was calculated using pROC package for R (Robin et al.,
2011).

RESULTS

Patient Information
Twenty-one patients with oropharyngeal cancer (OPC)
were identified to have developed ORN after their definitive
radiotherapy± chemotherapy course, either in induction and/or
concurrent settings as in Figure 1. Eight patients developed grade
2 ORN, whereas 2 patients and 11 patients developed grade 3
and 4 ORN, respectively. The median time to ORN diagnosis was
20.3 months. Table 1 represents patient demographics, tumor,
radiation dose, and ORN disease characteristics.

Radiomics Can Distinguish Between ORN and

Non-ORN
An initial set of 1,628 radiomic features were computed for
each ORN and Control volume of interest (VOI) obtained
from the 21 eligible patients across 3 time points of interest
representing baseline (pre-IMRT), 2-month (post-RT2) post-
IMRT, and 6-month (post-RT6) post-IMRT. Sixteen radiomics
features were ultimately nominated as non-interrelated and
consistently available for all three time points. As an initial
exploratory step, we computed which of these 16 radiomic
features were significantly different between the ORN and
Control volumes of interest (VOIs) using a Mann-Whitney test.
Furthermore, we also computed if each of these features is larger,
or smaller, on average for the ORNVOI compared to the Control
VOI. This demonstrates that certain radiomic features differ
significantly between ORN and non-ORN regions, motivating us
to investigate if their evolution can foretell ORN incidence. The
significantly different features and their associated p-values are
reported in Table 2.

The radiomics features which values are significantly different
between the “ORN” and “Control” VOIs at the ORN time point
identified using a Mann-Whitney test. The corresponding p-
value is reported in the second column. We also report the
direction of the difference of means between the ORN and
Control VOI feature values in the third column.

Model Construction
We trained random forest models using 500 trees for each of
multiple approaches as outlined below: (Figure 4)

• Baseline: Radiomic features computed on the pre-IMRT
CECT scans.

• Delta (2-month follow-up): Relative change in the radiomic
features from pre-IMRT to post-RT2

• Delta (6-month follow-up): Relative change in the radiomic
features from pre-IMRT to post-RT6.

• Temporal Trajectory: The model built using the proposed
multivariate functional principal component analysis

TABLE 1 | Patients, disease, and treatment characteristics.

Characteristics N (%)

SEX

Male 20 (95.2%)

Female 1 (4.8%)

Age at diagnosis, years: median (range) 61 (57–68)

ETHNICITY

White or Caucasian 17 (81%)

Hispanic or Latino 2 (9.5%)

African American 2 (9.5%)

SMOKING STATUS

Current 10 (47.6%)

Former 5 (23.8%)

Never 6 (28.6%)

Smoking pack-years (median; IQR) 10 (0–40.5)

TUMOR LATERALITY

Right 9 (42.9%)

Left 11 (52.4%)

Midline 1 (4.7%)

OROPHARYNX SUBSITES

Base of tongue 12 (57.1%)

Tonsil 7 (33.3%)

NOS* 2 (9.6%)

T CATEGORY

T1 2 (9.5)

T2 10 (47.6%)

T3 5 (23.8%)

T4 4 (19.1%)

N CATEGORY

N0 2 (9.5%)

N1 0

N2 19 (90.5%)

N3 0 (0)

THERAPEUTIC COMBINATION

Induction chemotherapy (IC) followed by concurrent

chemoradiation

10 (47.6%)

IC followed by radiation alone 1 (4.8%)

CC 10 (47.6%)

VITAL STATUS

Alive 14 (66.7%)

Dead 7 (33.3%)

Radiation dose (median; IQR) [Gy] 70 (66–70)

Radiation fractions (median; IQR) 33 (30–33)

Onset of post-RT ORN (median; IQR) 20.3 (7.5–95)

ORN LATERALITY (IN RELATION TO PRIMARY TUMOR)

Ipsilateral 17 (81%)

Contralateral 2 (9.5)

Bilateral 2 (9.5%)

RADIATION DOSE AT THE ORN VOLUME (MEDIAN; IQR) [GY]

Mean dose 67.9 (59.5–71.2)

Minimum dose 51 (44–59.4)

Maximum dose 68.9 (67.6–73.1)

IQR, inter-quartile range; Gy, Gray; NOS, Not otherwise specified;

ORN, osteoradionecrosis.
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TABLE 2 | Significantly differing radiomics features between ORN and

Control VOIs.

Feature p-value Mean difference of feature value

between ORN and Control

feature values

Gray Level Co-occurrence Matrix

25-333-1

InformationMeasureCorr1

0.028 Negative

Gray Level Co-occurrence Matrix

312-4 Cluster Shade

0.034 Positive

Gray Level Co-occurrence Matrix

310-1 Dissimilarity

0.009 Positive

Gray Level Co-occurrence Matrix

38-1InverseDiffMomentNorm

0.0002 Negative

Intensity- Mean 2.43E-7 Negative

Intensity- Local entropy median 4.65E-6 Negative

FIGURE 4 | Overview of radiomics features based approaches. Various

approaches to integrate radiomics features obtained at multiple (≥1) time

points toward building predictive models.

(MFPCA) approach that models the temporal kinetics of the
features. Since the time points are not uniformly spaced, we
used cubic spline sequence completion to fill in radiomic
features at intermediate monthly time points.

• Baseline + Temporal Trajectory: We combined the
predictions from the baseline model and the temporal
trajectory model to give a more robust ORN-risk predictor.

A complete step-by-step guide for the model construction
pipeline is presented in Appendix A1.

The corresponding areas under the curves (AUCs) and 95%
confidence intervals (C.I.) for the prediction of occurrence of
ORN “Yes vs. No,” in both “ORN” and “Control” VOIs according
to the 5 models are depicted in Table 3 and illustrated in
Figure 5. We noticed that the baseline features model gives
an AUC of 0.59 (95% C.I: 0.41–0.76), while the temporal
trajectory gives an AUC of 0.74 (95% C.I: 0.61–0.9). We further
built an ensemble model that combines the predictions of the
baseline model and the temporal trajectory model, to see if these
two models have complementary information that improves
performance. We achieved an AUC of 0.68 (95% C.I: 0.53–
0.86), likely due to the poor performance of the baseline model
which consequently was detrimental to the performance of the
combined model. This suggests a more careful approach is
needed when choosing pre-IMRT features. Surprisingly, models

TABLE 3 | A comparison of the Areas under the curves (AUCs) and the 95%

confidence intervals for the various approaches.

Method AUC (95% CI)

Baseline 0.59 (0.41–0.76)

Delta (2-month follow-up) 0.64 (0.46–0.81)

Delta (6-month follow-up) 0.56 (0.39–0.74)

Temporal trajectory 0.74 (0.61–0.90)

Baseline + Temporal trajectory 0.68 (0.53–0.86)

constructed using percent changes “or delta changes” of the
radiomic feature values, performed poorly in predicting ORN
incidence with AUCs of 0.64 (95% C.I: 0.46–0.81) and 0.56 (95%
C.I: 0.39–0.74) for 2 and 6-month delta changes, respectively.
We further observe that the temporal trajectory and combined
models have a consistent performance in both low-specificity
and high-specificity regimes, in contrast to the delta models
which performance is dependent on the regime of choice. This
demonstrates that greater reliability is achieved by incorporating
the temporal kinetics of the radiomic features. We do note that
as a result of the small sample size, the confidence intervals
of the models are wide and overlapping. As such, larger
validation studies are needed to gauge the true performance of
the models.

To enable the use of our temporal trajectory model for
the stated aim of ORN prediction, we compute the optimal
point on the ROC curve as the point that maximizes
the Youden’s index (sensitivity+specificity-1) (Youden, 1950).
As shown in Supplementary Figure 1, the optimal point
corresponds to a sensitivity of 0.73 and specificity of 0.62.
The optimal threshold for the temporal trajectory model,
which represents the cutoff probability value above which
a given mandibular region is predicted to be “Control” is
found to be 0.54. Thus, if the temporal trajectory model
predicts the likelihood of a given region as lower than 0.54,
the region is classified as “ORN” and if the probability is
higher, the region is classified as “Control.” We next generate
the confusion matrix for the 43 regions classified using the
optimal threshold value; 72.7% of ORN regions and 61.9%
of Control regions were correctly classified as shown in
Supplementary Figure 2.

DISCUSSION

The incidence of head and neck cancer is on the rise, despite
reductions in smoking, owing to the recent prevalence of
the human papillomavirus (HPV)-associated OPC epidemic
(Ang et al., 2010). Forward, it’s projected that hundreds
of thousands of locally advanced OPC patients worldwide
will receive radiation to the head and neck as a definitive
treatment modality (Chaturvedi et al., 2011). This rise in RT
recipients implies that mandibular bone, which comprises the
borders of the oropharynx, will be necessarily irradiated
to ensure adequate tumor coverage with subsequently
growing incidence of crippling sequelae such as ORN
(Gomez et al., 2011).
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FIGURE 5 | ROC curves computed for various radiomics feature based

approaches. The temporal trajectory model using MFPCA (blue) performs

better than the other four models: (i) baseline model (red), (ii) delta model after

2-month follow-up (orange), (iii) delta model after 6-month follow-up (purple),

and (iv) an ensemble of baseline and temporal trajectory models (black).

Osteoradionecrosis ranges from superficial, slowly progressive
bone erosion/devitalization to pathological fracture in a
previously irradiated field and may cause significant hardship
in the afflicted individual (Mendenhall, 2004; Hamilton
et al., 2012). This is particularly apparent when considering
devastating lifelong issues with oral hygiene, nutritional
inadequacies, and difficulty with speech and resultant preclusion
of social interaction (Bonner et al., 2006). Early diagnosis and
intervention, whether conservative or surgical, are key for
improving outcomes (Ben-David et al., 2007). This essentially
applies for grade II ORN, where no consensus has been reached
regarding definitive treatment procedures (Oh et al., 2009;
Jacobson et al., 2010).

Using CT Radiomics to Identify Mandibular
Subvolumes At-Risk of ORN
To date, no imaging modality/clinical nomogram have been
shown to precisely foresee the potential risk of developing
osteoradionecrosis following IMRT (Allison et al., 2014). Being
fully integrated throughout various phases of HNCmanagement,
sequential CECT scans via radiomics analytics can provide a
plethora of data that can serve as quantifiable surrogates of tissue
vitality and vascularity, among others (Wong et al., 2016). To
our knowledge, this study is the first to characterize the kinetics
of radiomics features of various mandibular subvolumes, before
and after exposure to IMRT, to identify subvolumes at high risk
ahead of developing ORN. Radiomics features were analyzed
longitudinally for quantifying temporal changes in mandibular
bone structure in a cohort of OPC patients.

Applying FPCA to Capture Longitudinal
Changes in Mandibular Radiomic Features
This has been subsequently integrated into a framework for early
prediction of ORN solely based on sequential diagnostic CECT

scans. We implemented a Functional Principal Component
Analysis (FPCA)-based approach that efficiently models the
temporal evolution of radiomic features. The model built using
a multivariate FPCA (MFPCA) representation of the entire
temporal dataset, predicts the likelihood of ORN development
with an AUC = 0.74 (95% C.I 0.61–0.9). We further built an
ensemble model that combines the predictions of a baseline
model built using pre-IMRT features, and the MFPCA-based
model, to leverage information from both baseline feature values
and temporal evolution of feature values, which achieved an AUC
of 0.68 (0.53–0.86). This emulates the pathophysiology theories
that combine pre-irradiation bone condition and RT-induced
alterations on tissue, cellular and cytokine levels (Fan et al., 2014).
The latter involves: (1) endarteritis and vascular thrombosis
with subsequent bone hypoxia and hypocellularity as well as
atrophic fibrosis as a consequence of RT-induced activation and
dysregulation of fibroblastic activity (Marx, 1983; Jacobson et al.,
2010). The fact that the ensemble model does not perform better
than theMFPCA-only model suggests the need to choose the pre-
IMRT features in a way that is more clinically meaningful than a
purely data-driven correlation thresholding approach.

Bone texture analysis has been investigated for years as a
potential biomarker of a myriad of structural bone changes
related to osteoporosis (Ollivier et al., 2013; Roberts et al.,
2013). Interestingly, first-order bone texture features derived
from simulation CT scans were correlated to the risk of radiation-
induced insufficiency fractures in patients undergoing pelvic
radiation (Nardone et al., 2017). Along the same lines, for
vascularization status, a previous study by Yin et al. investigated
the correlation between angiogenesis (or: new blood vessel
formation) in primary renal cell carcinoma and radiomic imaging
features from positron-emission tomography (PET) and/or MRI
(Yin et al., 2017).

Our study identifies the bone radiomics features which
temporal evolution is critical in determining ORN risk. These
represent quantifiable imaging biomarkers that capture various
intensity and spatial texture dimensions of the aforementioned
RT-related bone environment changes in the irradiated field.
Most of the discriminating features belong to: “Neighborhood
intensity difference” (NID) and “Gray level co-occurrence
matrix” (GLCM) categories. The GLCM is amatrix that expresses
how combinations of discretized gray levels of neighboring
pixels, or voxels in a 3D volume, are distributed along one of
the image directions. Generally, the neighborhood for GLCM
is a 26-connected neighborhood in 3D and an 8-connected
neighborhood in 2D (Liang et al., 2016). The “NID 2.5D Texture
strength” quantifies how uniform a texture is, i.e., complex
textures are non-uniform and rapid changes in gray levels are
common (Amadasun and King, 1989). GLCM3 Cluster shade
is a measure of the skewness or asymmetry of the matrix and
is believed to be a more objective uniformity metric (Unser,
1986). On the other hand, GLCM3 Contrast gauges gray level
variations in the volume of interest, i.e., the difference between
the highest and the lowest values of a continuous set of pixels
(Haralick et al., 1973). GLCM3Correlation is ameasure of texture
smoothness, where higher values denote regions with similar
gray-levels (Yang et al., 2012). Nonetheless, it is unclear how
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these radiomic features are linked to well-known physiological
underpinnings of ORN evolution. A future validation study
including biological imaging is warranted to investigate the link
between these radiomic features and physiological properties.

We have seen that there is significant information regarding
ORN progression in the first 6 months after radiotherapy that
can be robustly correlated to risk of ORN. Functional principal
component analysis is an efficient statistical algorithm to capture
the temporal evolution of the mandible landscape. Competing
techniques such as pre-radiotherapy only models and delta
radiomics models do not encapsulate how different features
evolve with time. The FPCA efficiently encodes the temporal
kinetics of the features into its functional principal components
(FPCs). The radiomics data can now be compactly represented
by only a small set of numbers but can still capture its time-
varying properties.

Furthermore, we implement a multivariate FPCA (MFPCA)
that accounts for the correlations that exist between various
radiomics features. MFPCA distills a large set of features to a
few specific ones that encompass most of the data variation.
This makes our prediction model more likely to generalize to
new, unseen data (Happ and Greven, 2018). We observe from
the receiver operating characteristic curves that the temporal
trajectory model performs consistently better than the other
models in both the high- and low-specificity or false positive
regions. This demonstrates the reliability of using temporal
kinetics, for example, compared to a delta model, which we
observed to have vastly different performance depending on
the specificity value. The combined prediction model does
not improve over the temporal trajectory only model, possibly
because of the extremely poor performance of the baselinemodel.
However, the combined model also performs consistently in both
the low- false positive or high false positive regimes. We envisage
that with amore careful choice of features, the baselinemodel can
be improved, which will significantly improve the performance
of the combined model. We note however that while the average
performance of the MFPCA model is at least 10 percentage
points better than either the baseline or the two delta models, the
respective confidence intervals are overlapping across models. As
such, larger validation studies are needed to find out the true
predictive ability of each of the models investigated.

The preliminary feature filtering step was performed by
setting an upper limit of 0.5 on average correlation value for
a given radiomic feature. Meaning, if a given radiomic feature
correlated with all other features more than 0.5 on average, it
was dropped from our feature set. The choice of value was made
to whittle the number of features down from a mammoth 1,628
to a more manageable 16 given the small sample size of our
cohort. The reduction of features is necessary to compute robust
functional principal components as well as reduce the possibility
of overfitting by the random forest models. We also found that
reducing the number of features further led to a drop in the
model performance, which suggests loss of information crucial
to prediction performance.

Our study accounted for the fact that artifacts from metal
dental fillings are known to encumber target delineation and
subsequent radiomics analysis (Leijenaar et al., 2015; Block

et al., 2018). For this purpose, the presence of visible dental
artifacts effect anywhere in the slices that encompassed “ORN”
or “Control” VOIs at any time point precluded the integration of
this scan and hence the patient’s data as an input to the model.

Study Limitations
The fact that we excluded these patients with metal dental fillings,
combined with the low event rate of ORN in the IMRT era, as well
as the fact that we excluded patients with grade I ORN with no
radiographically-evident bone lesions to delineate, contributed
to the low sample size; hence limiting the generalizability
of the resulting model. The small sample size limited us to
apply automatically generated radiomics features instead of
engineering features that are explicit surrogates for early vascular
injuries of the mandible. Sub-group analysis based on variables
such as T-stage, radiation dose, and chemotherapy usage were
infeasible because smaller sample sizes within each group reduces
the robustness of the functional principal components computed
and hence the statistical value of any subsequent sub-group
analysis. Another limitation of this study is the conceivable
uncertainties introduced from varied acquisition parameters or
incongruence among various scanners, or even between different
models from the same vendor (Mackin et al., 2015). Most patients
had their scan performed at our center along the same acquisition
parameters. Moreover, we have applied a pre-processing trilinear
interpolation aiming at standardizing voxel size to reduce or
eliminate relevant variability in radiomics features (Mackin
et al., 2017). The results also suggested that the performance
changed rapidly when we changed the number of features, which
suggests the need for a more careful feature-filtering algorithm.
Designating a “Control” VOI that share the same image, time
point, and deposited radiation dose with the “ORN” VOI is an
approach we have used and would recommend for future multi-
institutional radiomics studies. However, it should be noted that
our model was trained on a homogenous, carefully selected set
of patients with OPC where mandibles received similarly high
doses of radiation; hence limitingmodel generalization to varying
clinical scenarios.

Future Directions
Not far from longitudinal imaging studies, our team previously
showed that Dynamic Contrast-Enhanced (DCE-MRI) can
provide biomarkers that are physiological correlates of acute
mandibular vascular injury and recovery temporal kinetics (Joint
and Neck Radiotherapy, 2016). This has further motivated a
National Institute of Dental and Craniofacial Research (NIDCR)-
funded prospective trial that explores the correlation between
DCE-MRI derived spatiotemporal parameter maps following
external beam radiation therapy (EBRT) and subsequent
development of ORN (ClinicalTrials.gov S., 2020). Upon accrual
completion, CT scans from this study will be used for re-training
and externally validating our model. This could potentially
optimize model generalization since patients will display more
diverse and representative head and neck cancer sites, radiation
doses, and other clinical variables. Our results may prompt
the investigation of DCE-MRI-derived radiomics analytics and
subsequent integration into the overall predictive model; thus,
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providing more physiologically and biologically cognizant data
inputs for the machine learning techniques tested.

Furthermore, the availability of larger cohorts will provide
potential avenues for model validation and generalization over
the whole mandible in patients with ORN vs. healthy controls.
Specifically, a larger cohort wouldmake it possible to examine the
performance of our FPCA-based model across T-stage, radiation
dose, and chemotherapy usage, providing additional insights into
the impact of these variables on ORN development. In future
validation studies, we plan to enroll more patients with more
evenly distributed variable levels. A proposed application would
be engineering radiomics features that are explicit surrogates
for osteoclastic dysregulation and subsequent fibro-atrophic
bone changes, and maybe monitoring the response to common
therapeutic maneuvers, such as pentoxifylline.

CONCLUSION

Radiomics analysis allows for quantification of changes in RT-
related bone structure from diagnostic imaging modalities with
subsequent integration of serially derived radiomics features into
an ORN probability computational tool. Computationally, FPCA
efficiently encodes the temporal kinetics of a given radiomic
feature. The MFPCA then compactly combines the temporal
information from FPCA from multiple radiomic features.

In summary, we hope this study calls professionals’ attention
to non-traditional inputs (radiomics), dimensions (temporal
kinetics), and innovative statistical approaches (MFPCA) to
improve interpretation and integration of imaging biomarkers
into RT toxicities prediction andmitigation. In this work, we have
thus provided an end-to-end framework for predicting the risk of
RT-related ORN based entirely on radiomic features.
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A Novel Machine Learning Model for
Dose Prediction in Prostate
Volumetric Modulated Arc Therapy
Using Output Initialization and
Optimization Priorities

P. James Jensen, Jiahan Zhang, Bridget F. Koontz and Q. Jackie Wu*

Department of Radiation Oncology, Duke Cancer Institute, Durham, NC, United States

Treatment planning for prostate volumetric modulated arc therapy (VMAT) can take

5–30min per plan to optimize and calculate, limiting the number of plan options that

can be explored before the final plan decision. Inspired by the speed and accuracy of

modern machine learning models, such as residual networks, we hypothesized that

it was possible to use a machine learning model to bypass the time-intensive dose

optimization and dose calculation steps, arriving directly at an estimate of the resulting

dose distribution for use in multi-criteria optimization (MCO). In this study, we present a

novel machine learning model for predicting the dose distribution for a given patient with

a given set of optimization priorities. Our model innovates upon the existing machine

learning techniques by utilizing optimization priorities and our understanding of dose

map shapes to initialize the dose distribution before dose refinement via a voxel-wise

residual network. Each block of the residual network individually updates the initialized

dosemap before passing to the next block. Our model also utilizes contiguous and atrous

patch sampling to effectively increase the receptive fields of each layer in the residual

network, decreasing its number of layers, increasingmodel prediction and training speed,

and discouraging overfitting without compromising on the accuracy. For analysis, 100

prostate VMAT cases were used to train and test the model. The model was evaluated by

the training and testing errors produced by 50 iterations of 10-fold cross-validation, with

100 cases randomly shuffled into the subsets at each iteration. The error of the model is

modest for this data, with average dose map root-mean-square errors (RMSEs) of 2.38

± 0.47% of prescription dose overall patients and all optimization priority combinations

in the patient testing sets. The model was also evaluated at iteratively smaller training

set sizes, suggesting that the model requires between 60 and 90 patients for optimal

performance. This model may be used for quickly estimating the Pareto set of feasible

dose objectives, which may directly accelerate the treatment planning process and

indirectly improve final plan quality by allowing more time for plan refinement.

Keywords: dose prediction, multi-criterial optimization, treatment planning, prostate VMAT, machine learning,

artificial intelligence, residual neural networks
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INTRODUCTION

Volumetric modulated arc therapy (VMAT) is a cancer treatment
option that can effectively irradiate a target while minimizing
the nearby healthy tissue irradiation in relatively short delivery
times (Otto, 2008; Teoh et al., 2011). Dual-arc VMAT has been
shown to be an effective treatment technique for prostate cancer
(Guckenberger et al., 2009; Zhang et al., 2010). VMAT treatment
planning relies on inverse planning techniques that perform
dose optimization and dose calculation to create a deliverable
treatment plan. To employ existing single-functionminimization
algorithms, VMAT optimization techniques typically scalarize
the dose objectives into a weighted sum to use as the optimization
loss function, with the weights (priorities) decided by a treatment
planner. Dose objective scalarization allows the treatment
planner to create and evaluate several plans by providingmultiple
priority combinations to the optimizer to create a subjectively
optimal treatment plan. This problem can be formulated as
a multi-criteria optimization (MCO) problem, in which the
treatment planner has to learn about the set of feasible plan doses
which cannot be strictly improved, which is historically named,
the Pareto surface (Hwang and Masud, 1979; Miettinen, 1999).
MCO has been studied extensively and many methods for exactly
sampling the Pareto surface have been implemented for radiation
therapy treatment planning systems (Craft et al., 2007; Monz
et al., 2008; Bokrantz and Forsgren, 2013).

However, these contemporary MCO methods ultimately
require the generation of many treatment plans to sample
the Pareto surface. In this framework, the treatment planner
samples the Pareto surface and linearly interpolates the sampled
plans to infer the feasible ranges of dose trade-offs. However,
VMAT treatment planning using current commercial treatment
planning systems can take 5–30min per plan to optimize and
calculate, so that the exact methods for sampling the Pareto
surface can take a longer time to run. This time cost reduces the
remaining amount of time that the planner has for manual plan
refinement and also limits the precision of the surface sampling,
decreasing the accuracy of any subsequent surface interpolations
and limiting the understanding of the planner with regard to
feasible dose trade-offs. All these factors combine to reduce the
quality of the final treatment plan.

The primary goal of this study is to present a method
for quickly estimating the dose distribution for a given set of
optimization priorities. This method would be able to quickly
and accurately estimate the Pareto surface for a given patient and
indirectly improve the quality of the final plan by allowing the
treatment planner more time for plan refinement.

In recent years, machine learning has seen success in image
classification and processing tasks, due to the ability of modern
convolutional neural network variants, such as residual networks

Abbreviations: VMAT, volumetric modulated arc therapy; MCO, multi-criteria

optimization; TPS, treatment planning system; PTV, planning target volume;

IMRT, Intensity-modulated radiation therapy; HI, homogeneity index; ResNet,

residual network; RMSE, root-mean-square error; APD, average projected

distance; ANPD, average nearest point distance; ICRU, International Commission

on Radiation Units and Measurements; AAPM, the American Association of

Physicists in Medicine; FC, fully connected; L-ReLU, leaky rectified linear unit; SS,

scaled softsign.

(ResNets) and U-Nets, to quickly detect and manipulate learned
image patterns (Simonyan and Zisserman, 2014; Ronneberger
et al., 2015; He et al., 2016). Inspired by the speed and accuracy
of these results, we hypothesized that it was possible to use a
similar model to bypass the time-intensive dose optimization and
dose calculation steps in treatment planning, arriving directly
at the resulting dose distribution and computing the relevant
dose objectives. Such a model would greatly benefit the treatment
planning system (TPS), as it would provide a way to quickly
estimate the dose distributions of many treatment plans to infer
the Pareto surface of a given patient for feasible dose objectives.

In this study, we present a novel machine learning model
for predicting the TPS-simulated dose distribution for a given
patient. Similar models have previously been implemented which
are more directly drawn from the U-Net architecture (Babier
et al., 2019; Nguyen et al., 2019), but these models have
undergone only modest modification for the specific task of dose
prediction. The primary motivation behind our model is to use
our understanding of the general shape of dose distributions to
remove much of the non-linearity of the dose prediction problem
and decreasing the difficulty of subsequent network predictions.
Ourmodel takes the optimization priorities of the treatment plan,
which were taken into account during dose prediction, and infers
feasible dose distributions across a range of optimization priority
combinations, allowing for indirect Pareto surface inference. This
model is also relatively fast (0.05 s per plan), and it is capable of
sampling the entire Pareto surface much faster than commercial
dose optimization and dose calculation engines.

METHODS

Patient Cohort and Treatment Planning

Technique
Hundred prostate cancer patients were retrospectively included
in this study. The data of each patient consisted of an abdominal
CT scan and contours of their planning target volume (PTV), the
bladder, the rectum, the left femoral head, and the right femoral
head. After anonymization, patient datasets were imported to
a commercial treatment planning system for dose optimization
and dose calculation. The PTV dose prescription was set to
70Gy in 29 fractions, as is the current standard for clinical
practice at our institution. During treatment planning, each plan
included two concentric, coplanar VMAT beams centered on
the PTV, with field sizes set to encompass the PTV during a
358-degree beam rotation. Beam collimators were set at 15◦ and
345◦ to reduce the effect of collimator leaf gap overlap. During
optimization, priorities were placed on the PTV homogeneity
index (HI = D2%–D98%), bladder D25%, and rectum D25%.
These objectives were chosen to represent the dimensions of
trade-off during treatment planning, since the primary goals of
prostate VMAT are uniform PTV coverage, bladder sparing,
and rectum sparing. These objectives had different optimization
priority combinations for each plan to sample the Pareto surface
of dose trade-offs. After optimization, plans were normalized
such that PTV D95% equaled 100% of the dose prescription
of the target. Fixed constraints for each plan optimization
included PTV D93% < 101% to reduce the dose-shifting effect
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of plan normalization, as well as D0.01cc < 65% for both
femoral heads in accordance with the standard practice of our
institution for normal critical structure constraints. Variable
constraints included PTV HI < 10%, the bladder D25% < 30%
of prescription, and the rectum D25%. For each patient, the
Pareto surface was sampled by optimizing and calculating 25
plans that follow. Each plan had a different optimization priority
combination and therefore sampled a different location on the
Pareto surface. Bounding points on the surface were chosen
throughmanual plan optimization such that the bounding points
represented clinically feasible plans. Subsequent points on the
surface were created using linear combinations of the objective
priorities of the bounding points; this ensured that all interior
points also represented clinically feasible plans on the Pareto
surface. Beamlet fluence optimization and dose calculation were
performedwith the commercial treatment planning system. After
each plan was calculated, the corresponding dose map, critical
structure maps, and optimization priority combination were
exported for use during model training and evaluation.

Dose Prediction Model Architecture
An overview of the architecture of the dose prediction is
depicted in Figure 1. The inputs of the model are the objective
priorities and structure maps of the PTV, the bladder, and
the rectum, resized to slices of 128 × 128 voxels to increase
model efficiency. These structure maps are binary image-domain
representations of the corresponding structures, indicating for
each pixel whether that pixel is inside the contour of the
structure. These structure maps have been scaled by the objective
priorities of their corresponding structure for each plan. This is a
straightforward way to incorporate objective trade-off priorities
without complicating the architecture of the model.

Dose Initialization

The model begins by creating an initial dose distribution via an
inverse fit of inter-slice and intra-slice PTV distance maps on a
voxel-wise basis. The functional form of the initialized dose fit is
as follows:

Di =
[

1+ a1 ∗ ISD
a2
1 + c ∗ ISD

a3
2

]−1

where ISD1 refers to the inter-slice distance from the voxel to
the nearest PTV location within the slice of the voxel, ISD2

refers to the intra-slice distance from the voxel to the nearest
PTV location at the row and column of the voxel, and a1,
a2, and a3 are variables that need to be fitted. The purpose of
this initialization is to allow the subsequent neural network to
predict the shift between the initialization and the TPS-simulated
dose distribution rather than the dose distribution itself. We
hypothesize that these shifts are more likely linear than the dose
distribution itself and therefore more easily learned.

Patch Extraction

The model proceeds by extracting three sets of 9 × 9 transverse
patches from all structure maps and the initialized dose map at
each voxel. Each set of patches has a different atrous rate, which
is the number of voxels skipped between the sampled voxels.
The first patches have an atrous rate of 1, i.e., they do not skip
any voxel and are contiguous. These patches allow the model to

infer local structure information near the pixels on which they
are centered. For the second patches, the structure maps are
smoothed by convolution with a uniform 3 × 3 kernel, and the
patches are extracted with an atrous rate of 3. Similarly, the third
patches are extracted with an atrous rate of 10 from the structure
maps after smoothing by a 10 × 10 kernel. The smoothing
convolutions are performed to make each voxel within the atrous
patches contain structure information from the nearby voxels
that the atrous sampling skips.

The idea of atrous convolution (also called, dilated
convolution) was originally presented by Yu and Koltun
(2015). The motivation for including multiple patches with
different atrous rates is to capture the features of the input
data at both coarse and fine levels. This removes the need
for traditional downsampling and upsampling layers in the
network. For the patches with atrous rates >1, the combination
of average smoothing and atrous sampling essentially increases
the receptive field size per layer of the model, so that the model
can infer the effect of critical structures at both large and short
distances without significantly increasing the amount of memory
or model parameters required. It is to be noted that the model
architect can choose the number of patches and the atrous
rates of every patch, and a similar model with atrous rates near
1, 3, and 10 will produce results similar to the result of this
model. For this model, the atrous rates were chosen based on
the nature of the input data. The patches with an atrous rate
of 1 captured every fine detail, the patches with an atrous rate
of 10 spanned most of the images and captured every coarser
detail, and the patches with an atrous rate of 3 reflected the
more intermediate features. The patches are then cast into
81-element vectors per voxel, and the vectors and optimization
priorities are all concatenated voxel-wise to serve as input for the
residual network.

Residual Network

The model then uses the patch vectors as inputs for a neural
network, which is inspired by the recently developed ResNet (He
et al., 2016). This network is used to determine an update to the
dose initialization rather than computing the dose from scratch.
The natural choice for the construction of this intermediate
network was the residual network (ResNet), because the residual
blocks of ResNets were originally designed with a similar concept
in mind. As explained by He et al., residual blocks tend to
perform much better than the conventional network blocks at
a higher depth when the effects of the input features resemble
linear residuals. This happens partially because the residual
formalism makes the gradients to be less susceptible to vanishing
or exploding, improving the convergence (He et al., 2016).
Unpublished internal testing confirmed that the performance of
our model degrades when it replaces the residual blocks with
standard convolutional or fully connected (FC) blocks.Moreover,
residual blocks have been shown to make the performance of
the model less dependent on the number of blocks included,
which reduces the need for fine-tuning the number of blocks in
the model.

Our network consists of a series of six residual blocks that
sequentially update the initialized dose map. Each residual block,
depicted in Figure 2, consists of three FC layers. The first two
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FIGURE 1 | Overview of the dose prediction model architecture.

FIGURE 2 | Graphical depiction of a residual block within the neural network.

layers have 100 output units and leaky rectified linear unit (L-
ReLU) activations are defined as follows;

L− ReLU (x ) = x when x > 0 and L− ReLU (x )

= 0.2x when x ≤ 0.

These first two layers extract quasi-linear features from the patch
vectors. The last layer has a single output and scaled softsign (SS)
activation, defined as, SS(x) = 0.3x/(1+|x|). The purpose of this
last activation function is to take the quasi-linear combinations
from the previous layer andmap them to a suitable dose shift with
a limited range. Since each residual block changes the initialized
dose map, the dose map patches need to be reextracted after
each update. The number of residual blocks, layers per block,
and output units per layer were chosen somewhat subjectively,
and we anticipated that the accuracy achieved by this neural

network can be achieved through similar network designs and
hyperparameter tunings.

Model Training
The training loss function was the root-mean-square error
(RMSE) between the predicted dose map and TPS-simulated
dose map, restricted to voxels within the body contour and
restricted to slices containing at least one critical structure.
Dose initialization variables were fit according to the RMSE
between the initialized dose map and the TPS-simulated dose,
and these variables were trained before the residual network
variables. Gradients for the loss function were estimated using
batches of training data, with each batch containing several
slices approximately equal to the typical number of slices that a
patient would have. Slices in the batches were sampled diagonally,
such that the batch slices were located at different levels within
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different patients. This sampling means that each batch contains
slices from most patients in the training set at most slice
positions, such that each batch is a good representation of
the entire cohort. Therefore, the gradients computed from the
batches were in close approximations to the gradients of the loss
function applied to the entire cohort, improving the optimization
of convergence and stability. The model was trained using the
Adam optimization algorithm, which was designed for stochastic
gradient-based optimization (Kingma and Ba, 2014). Kingma
and Ba recommend specific hyperparameters, including step size
α = 0.001, decay hyperparameters β1 = 0.9, and β2 =

0.999, and error epsilon ǫ = 10−8, all of which are used in
the training of our model. The Adam optimizer is particularly
appropriate here because the batch gradient computations are
stochastic. The trainable parameters in each layer were initialized
using the Glorot uniform initializer, which initializes variables
by sampling randomly from a uniform distribution bounded
by ±

√

6 /(number of inputs+ number of outputs) (Glorot and
Bengio, 2010). The Glorot uniform initializer was designed to
model the inherent variance of rectified linear unit activation
functions, similar to the activation functions used in our residual
network. All aspects of the model, including optimization
and evaluation, were implemented using the Tensorflow
machine learning platform with an NVIDIA Quadro M4000.
Optimization proceeded for 2,000 iterations before termination.

Predicted Pareto Surface Evaluation
Pareto surfaces are generated from the model by passing several
optimization priority combinations as inputs and evaluating the
relevant dose-volume metrics from the resulting dose maps. For
analysis, this study compared the Pareto surfaces of the clinical
and predicted dose maps using the same optimization priority
combinations for both surfaces, allowing for direct comparison
of matched plans which should produce the same dose maps
and objective metrics. However, when evaluating the accuracy
of a predicted Pareto surface, we were more interested in the
entire surface as a connected set rather than a few points which
sample the surface. Although we can use the sampled points to
interpolate the Pareto surface, distances between the sampled
points do not necessarily represent the distances between points
which are interpolated from the sampled points (Jensen et al.,
2020). For this reason, we believe that it is insufficient to simply
evaluate the RMSEs between the sampled points in Pareto space
as a metric for the closeness of the represented predicted Pareto
surface to the TPS-simulated Pareto surface. To our knowledge,
no previous publications on dose prediction for radiation therapy
have directly evaluated the distance between the Pareto surfaces
generated by their models.

To overcome this insufficiency, we tested three metrics
in addition to RMSE between the matched points in Pareto
space. The first additional metric is the Hausdorff distance,
mathematically defined between the two sets A and B are
as follows:

dH (A,B) = max

{

sup
xǫA

inf
yǫB

∣

∣x− y
∣

∣ , sup
yǫB

inf
xǫA

∣

∣x− y
∣

∣

}

where A and B, in this case, represent the vertices (sampled
points) of each Pareto surface. One benefit of the Hausdorff
distance is that it is sensitive to outliers so that the Hausdorff
distance between the sets of Pareto surface vertices should be
similar to the Hausdorff distance between the actual Pareto
surfaces as interpolated sets. However, this sensitivity to outliers
causes Hausdorff distances to represent the maximum error
rather than the average error more strongly. In the context of
machine learning, this is a drawback because the outliers which
influence the Hausdorff distance can fluctuate because of the
random initial conditions of the model.

The second additional metric is the average projected
distance (APD) in Pareto space, which addresses some of the
insufficiencies of Pareto space RMSE and Hausdorff distance. A
more abstract discussion has been published about the properties
of the APD and why this metric is superior to the RMSE
in Pareto space (Jensen et al., 2020). The APD examines the
vector displacements between matched points between two sets
and then averages the displacements when projected along the
direction of the average vector displacement. The APD between
two sets, A and B is mathematically defined as follows:

APD (A,B) = E
[(

xi − yi
)

· E
[

xi − yi
]]

/
∣

∣E
[

xi − yi
]∣

∣

where the
(

xi, yi
)

symbols enumerate the matched pairs of points
between sets, A and B (in our case, the TPS-simulated and
predicted Pareto surfaces), and E refers to taking an average over
these matched pairs for one patient. The primary motivation
behind the APD as a Pareto space metric is depicted in Figure 3,
in which we can see that overall Pareto surface interpolation
accuracy is not affected by the pointwise error components
along the respective Pareto surfaces. APDs first remove these
error components, so we expect the APD to better measure the
closeness of the interpolated Pareto surfaces compared to the
RMSE or HD.

The third metric is the average nearest point distance (ANPD)
in the Pareto space, which supersamples the simplicial complex
representations of the Pareto surfaces and averages the distance
from each sampled point of one surface to the simplicial complex
of the other surface. The ANPD between the two sets, A and B is
mathematically defined as follows:

ANPD (A,B) = avg

{

avg
yǫS(B)

inf
xǫS(A)

∣

∣

∣

∣x− y
∣

∣

∣

∣

2
, avg
xǫS(A)

inf
yǫS(B)

∣

∣

∣

∣x− y
∣

∣

∣

∣

2

}

where the sets A and B represent the vertices of each Pareto
surface and S (A) and S(B) represent the simplicial complexes
spanned by the vertices ofA and B, respectively. Here, each Pareto
surface vertex corresponds to one dose distribution generated
by different optimization priorities. The primary motivation
behind the ANPD as a Pareto space metric is that it reflects
the individual distances from each point on one surface to the
other surface, which we imagine to be the “true” distance between
that point and the surface. Like the APD, the ANPD has already
been discussed according to its properties and comparison to
the RMSE in another publication (Jensen et al., 2020). For this
publication, all these metrics are presented because a consensus
about the optimal metric has not yet been established.
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FIGURE 3 | Graphical depiction of the effect of matched point error along the Pareto surfaces on RMSE and APD. Despite the lower surfaces being very similar, the

central matched pair has a much larger contribution to Pareto RMSE in the right case while the APD remains approximately the same.

Model Evaluation
When evaluating this model, a single instance of training and
testing the model is insufficient because the performance of
the model depends on the specific training set and testing
set. To counteract the randomness associated with choosing a
training set and testing set, the following evaluation scheme
was used. After the model was designed and developed, it was
evaluated using a 10-fold cross-validation repeated 50 times.
In this evaluation, one repetition of 10-fold cross-validation
involves randomly partitioning the patient dataset into ten 10-
patient subsets and training the model 10 times, with each
training set using a different subset for testing and the rest of
the subsets for evaluation. In one repetition of 10-fold cross-
validation, each patient appears in training sets exactly nine
times, and each patient appears in the testing sets exactly once.
Therefore, the 10-fold cross-validation partially negates the effect
of randomly assigning patients into training and testing sets. In
this evaluation, 10-fold cross-validation was repeated 50 times,
with the patient dataset partitioned into different subsets for
each repetition. By repeating the cross-validationmany times, the
randomness associated with the random selection of the training
and testing sets is reduced further. Overall, this evaluation
involved training and testing the model 500 times, which is
10 training/testing pairs for each of the 50 cross-validation
repetitions. The results from all 500 model validations were
aggregated by the training set and the testing set using themetrics
described in the sections above.

To test the performance of the model with smaller training
datasets, another set of cross-validations was performed using
different ratios of training data to testing data. These cross-
validations evaluated the performance of the model with
training-to-testing data set ratios of 90%:10%, 80%:20%,
70%:30%, 60%:40%, 50%:50%, 40%:60%, 30%:70%, 20%:80%, and
10%:90%. For example, the second of these cross-validations
used 80 patients to train each model and 20 patients to test
each model. For this cross-validation, the patients were grouped

into ten 10-patient subsets, enumerated #1, #2, #3, #4, #5, #6,
#7, #8, #9, and #10. The first model validation in the cross-
validation was trained on subsets #1-8 and tested on subsets #9
and #10; the second validation was trained on subsets #2-9 and
tested on subsets #10 and #1; the third validation was trained
on subsets #3-10 and tested on subsets #1 and #2; and so on.
In this way, each of the cross-validations at smaller training-to-
testing ratios evaluated the model ten times. This is not strictly
a 10-fold cross-validation, but it is a cross-validation because
every patient appears in the same number of training subsets
and the same number of testing subsets. For comparison, the
cross-validation with an 80%:20% ratio evaluates 10 trainings
of the model, while normal 5-fold cross-validation evaluates 5
trainings of the model. The utility of this approach can be seen
clearly for the 50%:50% case, where the corresponding 2-fold
cross-validation only involves training the model twice. Clearly,
this is not thorough enough, but the other extremity of testing
every possible 50%:50% partition of the data is not feasible due to
time constraints. This approach of cycling through the ten subsets
strikes a compromise between thoroughness and efficiency when
evaluating the model at smaller training set sizes. For each cross-
validation, the performance of the model on the training and
testing sets was aggregated to evaluate the performance of the
model while reducing the randomness associated with grouping
the patients into training and testing subsets.

RESULTS

Direct Dose Map Evaluation
Figure 4 shows the dose map RMSE for the aggregated training
and testing sets during a randomly selected model instance
training. After training, the mean dose map RMSEs were 2.44
± 0.89% and 2.42 ± 0.47% for the training and testing set
dose predictions, respectively, across all cross-validations. These
errors demonstrate that the model can achieve good prediction
accuracy on a voxel-by-voxel basis. The difference between the
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FIGURE 4 | Graph of dose map root-mean-square error for the training set (blue, dashed) and testing set (red, solid) as a function of the number of iterations during

model training.

training and testing dose map RMSEs is less than their standard
deviations, suggesting that the performance of the model is
similar for both the training and testing datasets. The dose map
RMSEs due to the initialization fit alone were 5.12 ± 0.55%,
and 5.54 ± 1.30% for the training and testing sets, respectively.
This indicates that the residual network makes a measurable
improvement to the dose initialization and that the model
successfully learns after the dose initialization. Note that these
values differ from the general dose map RMSE of the model at
0 iterations into training because the residual parameters and
effects of the network on prediction are non-zero and initialized
randomly. For comparison, the International Commission on
Radiation Units and Measurements (ICRU) and Task Group 142
of the American Association of Physicists in Medicine (AAPM)
have stated that a 5% maximum dosimetric uncertainty is
appropriate for standard intensity-modulated radiation therapy
(IMRT) treatments (ICRU, 1976; Klein et al., 2009). Therefore,
these dose map RMSEs are comparable to the maximum error
permitted in treatment delivery.

Figures 5, 6 show side-by-side comparisons between the effect
of prioritizing PTV HI or prioritize rectum D25% in a dose map
prediction and its corresponding TPS simulation. Visually, we
can see that the dose map predictions are jagged compared to
their respective TPS-simulated dose maps, specifically around
the 30% isodose line. We expect this to be the case because the
neural architecture of the network does not explicitly promote
local smoothness in the dose distribution predictions. However,
real dose distributions tend to be smooth and continuous, so
that the artificial jaggedness in the prediction of our model is
a drawback reflecting the artificial nature of the model. Note
that the jaggedness makes the isodose lines look dissimilar, but
the general location of the isodose lines corresponds much more
strongly to voxel-by-voxel error than the precise shape of the

isodose lines. Additionally, we see that the region of the largest
isodose displacement is the low dose region anterior to the PTV.
Note that this region is not near the PTV or the surrounding
critical structures, so that the inaccuracy in this region has a small
impact on the predicted PTV/OAR doses.

Figures 7, 8 show the performance of the model on training
and testing sets as a function of the ratios of training set data
to testing set data, so that they show the effect of decreasing
the number of patients used to train the model. Figure 7 shows
that the training set errors decrease as training set size decreases.
On the other hand, Figure 8 shows that the testing set errors
increase as training set size decreases. From these results, we can
see that the performance of the model degrades slightly as the
amount of training data shrinks because it increases overfitting
to the training data. It is difficult to conclude from these figures
exactly how much data is needed to properly fit to the data,
but that number is likely between 60 and 90 patients based on
the figures (though this number might not generalize to other
treatment sites). Figures 7, 8 also suggest that the spread of errors
becomes larger with smaller training data sizes, indicating that
the performance of the model is more random with smaller
training data sizes.

Model Evaluation Time
Total dose prediction requires an average of 1.26 s to evaluate
an entire 25-plan Pareto surface for one patient, or just
0.05 s per plan. This is significantly faster than current
commercial dose optimization and dose calculation engines,
which can take ∼5–30min per plan. Due to this speed, we
anticipate that this model can be used in real-time without
needing to interpolate plan doses from a set of previously
predicted doses.
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FIGURE 5 | Side-by-side comparisons between the effect of prioritizing PTV HI (a,c) or prioritizing rectum D25% (b,d) in a dose map prediction (a,b) and its

corresponding TPS-simulated dose map (c,d). Transverse slices are taken from the center of the PTV, and the patient was randomly sampled from the testing dataset.

FIGURE 6 | Side-by-side comparisons between the effect of prioritizing PTV HI or prioritizing rectum D25% in a DVH prediction and its corresponding TPS-simulated

DVH.

Predicted Pareto Surface Evaluation
The mean Pareto space RMSEs were 10.33 ± 3.57% and
10.11 ± 4.61% for the training and testing sets, respectively,
when aggregated over the fifty splits of 10-fold cross-validation.

These errors indicate that the training and testing set dose
predictions have similar distances to their corresponding
TPS-simulated doses in objective space. This contrasts the
dose map RMSEs for the training and testing set, which
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FIGURE 7 | Box-and-whisker plots representing the training set errors of the model as a function of decreasing training-to-testing set split ratios. Each

box-and-whisker plot represents the aggregate errors from one split of 10-fold cross-validation.

FIGURE 8 | Box-and-whisker plots representing the testing set errors of the model as a function of decreasing training-to-testing set split ratios. Each

box-and-whisker plot represents the aggregate errors from one split of 10-fold cross-validation.

were more dissimilar than the Pareto space RMSEs. Note
that the Pareto space RMSE combines the errors across the
objectives via accumulation rather than averaging, so we
expected these numbers to be significantly larger than dose
map RMSE.

The mean Pareto space Hausdorff distances were 14.98 ±

5.91% and 14.79 ± 5.77% for the training and testing set dose
predictions, respectively, when aggregated over the fifty splits of
10-fold cross-validation. These errors are notably larger and have
more variance than the corresponding Pareto RMSEs. However,
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Hausdorff distances, in general, are more sensitive to outliers
than set averaged RMSEs, so we expect this increased magnitude
and variance. We see that the training and testing set Hausdorff
distances are also similar, indicating that the errors of our model
primarily occur at low-dose regions away from the PTV and at
critical structures.

The mean Pareto space APDs were 10.17 ± 3.52% and
9.81 ± 4.74% for the training and testing set dose predictions,
respectively, when aggregated over the fifty splits of 10-
fold cross-validation. These results confirm that the model
fitting is not significant, as the training and testing sets had
comparable projected distances. As expected, the Pareto APDs
are slightly lower than the Pareto RMSEs and Pareto space
Hausdorff distance.

The mean Pareto space ANPDs were 8.44 ± 3.29% and
8.85 ± 4.21% for the training and testing set dose predictions,
respectively, when aggregated over the fifty splits of 10-fold cross-
validation. The ANPD results demonstrate that the performance
of the model in Pareto space is similar for both training and
testing set predictions. As expected, the Pareto ANPDs are
lower than the three other distance metrics because the minimal
distance between Pareto surface interpolations tends to be lower
than the distance between their vertices.

DISCUSSION

In this work, we have presented a novel machine learning dose
prediction model which takes optimization objective priorities
into account, allowing for indirect Pareto surface estimation.
Our results indicate that the model can predict doses with good
accuracy, as the predicted dose map RMSEs have few percentages
of their corresponding TPS-simulated doses. These dose map
RMSEs are less than the maximum error tolerance proposed by
the ICRU and AAPM TG 142, suggesting that our predictions
may be appropriate for clinical dose distribution estimation.
Moreover, the model produces just a dose distribution without
actually creating a plan, so the model requires a final real
plan optimization and dose calculation which will correct these
dose map prediction errors prior to treatment delivery. This
means that the error in the results of our model only affects
treatment planning and not treatment delivery. The evaluated
Pareto surface metrics indicate that these dose map predictions
make reasonable translations in Pareto space. Our results also
indicate that the overfitting of the model to training data dose
map RMSE is modest because the training and testing errors
are similar.

The prediction speed of ourmodel is particularly encouraging.
By predicting each plan in ∼0.05 s, our model may be used
for real-time treatment planning without needing to interpolate
between previously sampled points, allowing the treatment
planner to very quickly estimate the doses produced by a given
optimization priority combination. This indirectly gives the
planner more time to plan per patient, which may improve
the quality of the final plan. Moreover, our model only
requires patient anatomy and optimization priorities, so it can
generate samples from the Pareto surface automatically. This is

potentially useful for large-scale automatic theoretical dosimetric
investigations of new treatment planning paradigms, such as
testing the effects of pushing a dose limit past its historical value
or determining the feasibility of treating new structures. More
research is needed to investigate these possibilities.

We believe that the speed, accuracy, and proper fitting of our
model are due to the design of the model. The implementation of
a dose initialization combined with a residual neural network is a
novel proposal that appears to model the dose prediction process
well. Also, the combination of contiguous and atrous patches
during contour processing increases the effective receptive field
size of each layer in the ResNet. Achieving a similar effective
field-of-view in a more traditional convolutional neural network
would involve either increasing the size of each convolution
kernel or adding many more layers to the network. However,
both of these options involve more model parameters, have
increased computational requirements, and are more prone
to overfitting. The patch extraction process of our model
innovates by incorporating local and global information within
each layer without increasing computational requirements or
promoting overfitting.

Despite its potential advantages, our model has some
limitations which hinder its accuracy and utility. The dose
initialization of our model assumes an isotropic inverse
exponential decay of dose as a function of inter-slice and intra-
slice distances from the PTV. Although this assumption is only
appropriate for VMAT plans which involve beam arcs wrapping
nearly 360◦ around the patient, it is likely that other forms of dose
initialization exist which are appropriate for IMRT or VMAT
with significantly fewer than 360◦ per arc. Additionally, the
model required several hyperparameters (i.e., 6 residual blocks
in the neural network, 100 output units for the first two layers in
each block, atrous rates of 1, 3, and 10 in patch sampling, etc.),
and it is not immediately clear how to determine the optimal
values for these hyperparameters aside from trial and error.
However, we expect that slight adjustments from our chosen
values for the hyperparameters should not significantly change
the model performance. Finally, since the output of the model
is a dose distribution without an actual plan optimization or
dose calculation, the model can only be used to determine the
subjectively optimal optimization priorities, which then need
to be used in a real plan optimization and dose calculation to
actually create a deliverable plan.

This study itself also has several shortcomings that make it
difficult to be certain of the performance and generalizability of
the model. Due to time constraints and the size of the dataset,
it was not feasible to compute the gamma index passing rates
of the plans predicted by our model. Gamma index analysis
could be useful for confirming the quality of our results, and
future research should seek to include this data. However, gamma
indices are more generous than their dose difference thresholds
(typically 3%, which is higher than our model’s performance of
2.42%), so we anticipate that the gamma index passing rates of
our data would be quite high. Also, gamma passing rates have
been shown to increase in the presence of random noise, so we
anticipate that the slight noisiness of our data makes gamma
passing rates less useful.
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It is also difficult to confirm whether these results would
extend to other treatment sites. The dataset in this study is
likely large enough to sufficiently represent the population
of prostate VMAT treatment cases because of the similarity
between our training and testing set errors. This coincides with
our expectations because the relevant anatomical structures of
prostate cases all tend to be somewhat similar. However, it is
not immediately clear how this result is generalizable with other
training sets, which may experimentally find that they require
more or less training data. Also, this study does not include
treatment planning data from other treatment sites, so it is
difficult to determine whether this model would generalize well
to model another treatment site. Further research needs to be
done to test this model on other treatment sites. In particular,
the current structure of the model is not built to process the data
frommultiple treatment sites concurrently. However, it is feasible
to modify the structure of this model to learn from multiple
treatment sites by incorporating the structure maps alongside
their DVH constraints. Further research needs to be done to test
these claims.

We have implemented several metrics for evaluating the error
between a predicted Pareto surface and its corresponding TPS-
simulated Pareto surface. Our metrics reported similar values
around 8–15% of dose prescription for both training and testing
sets. Again, it is worth noting that these metrics accumulate the
errors from each dimension rather than averaging them, which is
why these surface metrics are significantly larger than the dose
map RMSE of 2–3%. Most of these metrics have an inherent
limitation in that they measure errors from the matched pairs of
plans which sample their respective surfaces rather than measure
errors from the surfaces themselves. Of the metrics presented,
we hypothesize that the ANPD is the most appropriate of these
metrics due to its use of point-by-point nearest distances between
the surfaces, which likely reflects the actual distance between
the Pareto surfaces. However, a more theoretical investigation is
required to justify the ANPD here as the appropriate metric. Our
results show that these metrics are significantly different from
each other, which provides evidence that there exists an optimal
metric to represent the distance between Pareto surfaces. Also,
to our knowledge, no other body of research has applied Pareto

space metrics to evaluate the Pareto surfaces of radiation therapy
dose predictions. This prevents us from comparing our Pareto
space results with previous dose prediction research. To account
for this, we have included all these metrics for ease of comparison
with future research.

CONCLUSION

We have presented a novel machine learning dose prediction
model which takes optimization objective priorities into account.
The error of the model is modest when applied to our prostate
VMAT cases, with average dose map RMSEs of 2.42 ± 0.47%
overall patients and all optimization priority combinations in
the patient testing set. This model may be used for quickly
estimating the Pareto set of feasible dose objectives, which
may directly accelerate the treatment planning process and
indirectly improve the final plan quality by allowing more
time for plan refinement. Future research needs to be done to
determine the generalizability of this model to other treatment
sites and datasets.
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We present methodological advances in understanding the effectiveness of personalized
medicine models and supply easy-to-use open-source software. Personalized medicine
involves the systematic use of individual patient characteristics to determine which
treatment option is most likely to result in a better average outcome for the patient.
Why is personalized medicine not done more in practice? One of many reasons is because
practitioners do not have any easy way to holistically evaluate whether their personalization
procedure does better than the standard of care, termed improvement. Our software,
“Personalized Treatment Evaluator” (the R package PTE), provides inference for
improvement out-of-sample in many clinical scenarios. We also extend current
methodology by allowing evaluation of improvement in the case where the endpoint is
binary or survival. In the software, the practitioner inputs 1) data from a single-stage
randomized trial with one continuous, incidence or survival endpoint and 2) an educated
guess of a functional form of a model for the endpoint constructed from domain
knowledge. The bootstrap is then employed on data unseen during model fitting to
provide confidence intervals for the improvement for the average future patient (assuming
future patients are similar to the patients in the trial). One may also test against a null
scenario where the hypothesized personalization are not more useful than a standard of
care. We demonstrate our method’s promise on simulated data as well as on data from a
randomized comparative trial investigating two treatments for depression.

Keywords: personalized medicine, inference, bootstrap, treatment regimes, randomized comparative trial,
statistical software

1 INTRODUCTION

Personalized medicine, sometimes called “precision medicine” or “stratified medicine” (Smith,
2012), is a medical paradigm offering the possibility for improving the health of individuals by
judiciously treating individuals based on his or her heterogeneous prognostic or genomic
information (Zhao and Zeng, 2013). These approaches have been described under the umbrella
of “P4 medicine,” a systems approach that combines predictive, personalized, preventive and
participatory features to improve patient outcomes (Weston and Hood, 2004; Hood and Friend,
2011). And the interest in such personalization is exploding.

Fundamentally, personalized medicine is a statistical problem. However, much recent statistical
research has focused on how to best estimate dynamic treatment regimes or adaptive interventions
(Collins et al., 2004; Chakraborty and Murphy, 2014). These are essentially strategies that vary
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treatments administered over time as more is learned about how
particular patients respond to one or more interventions.
Elaborate models are often proposed that purport to estimate
optimal dynamic treatment regimes from multi-stage
experiments (Murphy, 2005b) as well as the more difficult
situation of inference in observational studies.

Thus, the extant work, at least in the field of statistics, is
highly theoretical. There is a dearth of software that can
answer two fundamental questions practitioners will need
answered before they can personalize future patients’
treatments: 1) How much better is this personalization
model expected to perform when compared to my previous
“naive” strategy for allocating treatments? 2) How confident
can I be in this estimate? Can I reject a null hypothesis that it
will perform no better than the standard of care? Chakraborty
and Moodie (2013), page 168 believe that “more targeted
research is warranted” on these important questions; and
the goal of our paper is to provide a framework and usable
software that fills in part of this gap.

Personalized medicine is a broad paradigm encompassing
many real-world situations. The setting we focus on herein is
a common one: using previous randomized comparative/
controlled trial (RCT) data to be able to make better decisions
for future patients. We consider RCTs with two treatment options
(two-arm), with one endpoint measure (also called the “outcome”
or “response” which can be continuous, binary or survival) and
where the researchers also collected a variety of patient
characteristics to be used for personalization. The practitioner
also has an idea of a model of the response (usually a simple first-
order interaction model). Although this setting is simplistic, our
software can then answer the two critical questions listed above.

Our advances are modest but important for practitioners. 1)
Practitioners now have easy-to-use software that automates the
testing of their personalization models. 2) We introduce a more
intuitive metric that gauges how well the personalization is
performing: “improvement” vs. a baseline strategy. 3) Our
estimates and hypothesis tests of improvement are all cross-
validated, making the estimates honest even when the data at
hand was overfit and thereby generalizable to future patients. This
external validity is only possible if future patients can be thought
to come from the same population as the clinical trial, a
generalization that is debated but beyond the scope of our
work. 4) We have extended this well-established methodology
to the setting of binary and survival endpoints, the most common
endpoints in clinical trials.

The paper proceeds as follows. In Section 2, we review the
modern personalized medicine literature and locate our method
and its limitations within. Section 3 describes our methods and
its limitations in depth, by describing the conceptual framework
emphasizing our methodological advances. We then carefully
specify the data and model inputs, define the improvement
metric, and illustrate a strategy for providing practitioners
with estimates and inference. Section 4 applies our methods
to 1) a simple simulated dataset in which the response model is
known, 2) a more complicated dataset characterized by an
unknown response model and 3) a real data set from a
published clinical trial investigating two treatments for major

depressive disorder. Section 5 demonstrates the software for all
three types of endpoints: continuous, binary and survival.
Section 6 concludes and offers future directions of which
there are many.

2 BACKGROUND

Consider an individual seeking one of two treatments, neither of
which is known to be superior for all individuals. “What
treatment, by whom, is most effective for this individual with
that specific problem, and under which set of circumstances?”
(Paul, 1967).1 Sometimes practitioners will select a treatment
based informally on personal experience. Other times,
practitioners may choose the treatment that their clinic or
peers recommend. If the practitioner happens to be current on
the research literature and there happens to be a published RCT
whose results have clear clinical implications, the study’s superior
treatment (on average) may be chosen.

Each of these approaches can sometimes lead to improved
outcomes, but each also can be badly flawed. For example, in a
variety of clinical settings, “craft lore” has been demonstrated to
perform poorly, especially when compared to very simple
statistical models (Dawes, 1979). It follows that each of these
“business-as-usual” treatment allocation procedures can in
principle be improved if there are patient characteristics
available which are related to how well an intervention performs.

Personalized medicine via the use of patient characteristics is
by no means a novel idea. As noted as early as 1865, “the
response of the average patient to therapy is not necessarily the
response of the patient being treated” (translated by Bernard,
1957). There is now a substantial literature addressing
numerous aspects of personalized medicine. The field is quite
fragmented: there is literature on treatment-covariate
interactions, locating subgroups of patients as well as
literature on personalized treatment effects estimation.
However, a focus on inference is rare in the literature and
available software for inference is negligible.

Byar (1985) provides an early review of work involving
treatment-covariate interactions. Byar and Corle (1977)
investigates tests for treatment-covariate interactions in
survival models and discusses methods for treatment
recommendations based on covariate patterns. Shuster and
van Eys (1983) considers two treatments and proposes a linear
model composed of a treatment effect, a prognostic factor, and
their interaction. Using this model, the authors create confidence
intervals to determine for which values of the prognostic factor
one of two treatments is superior.

1Note that this problem is encountered in fields outside of just medicine. For
example, finding the movie that will elicit the most enjoyment to the individual
(Zhou et al., 2008) or assessing whether a certain unemployed individual can
benefit from job training (LaLonde, 1986). Although the methods discussed herein
can be applied more generally, we will employ examples and the vocabulary from
the medical field.
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Many researchers also became interested in discovering
“qualitative interactions,” which are interactions that create a
subset of patients for which one treatment is superior and another
subset for which the alternative treatment is superior. Gail and
Simon (1985) develop a likelihood ratio test for qualitative
interactions which was further extended by Pan and Wolfe
(1997) and Silvapulle (2001). For more information and an
alternative approach, see Foster (2013).

Much of the early work in detecting these interactions required
a prior specification of subgroups. This can present significant
difficulties in the presence of high dimensionality or complicated
associations. More recent approaches such as Su et al. (2009) and
Dusseldorp and Van Mechelen (2014) favor recursive
partitioning trees that discover important nonlinearities and
interactions. Dusseldorp et al. (2016) introduce an R package
called QUINT that outputs binary trees that separate participants
into subgroups. Shen and Cai (2016) propose a kernel machine
score test to identify interactions and the test has more power
than the classic Wald test when the predictor effects are non-
linear and when there is a large number of predictors. Berger et al.
(2014) discuss a method for creating prior subgroup probabilities
and provides a Bayesian method for uncovering interactions and
identifying subgroups. Berk et al. (2020) uses trees to both locate
subgroups and to provides valid inference on the local
heterogeneous treatment effects. They do so by exhaustively
enumerating every tree and every node, running every possible
test and then providing valid post-selection inference (Berk et al.,
2013b).

In our method, we make use of RCT data. Thus, it is important
to remember that “clinical trials are typically not powered to
examine subgroup effects or interaction effects, which are closely
related to personalization . . . even if an optimal personalized
medicine rule can provide substantial gains, it may be difficult to
estimate this rule with few subjects” (Rubin and van der Laan,
2012). This is why a major bulk of the literature does not focus on
finding covariate-treatment interactions or locating subgroups of
individuals, but instead on the entire model itself (called the
“regime”) and that entire model is then used to sort individuals.
Holistic statements can then be made on the basis of this entire
sorting procedure. We turn to some of this literature now.

Zhang et al. (2012a) consider the context of treatment regime
estimation in the presence of model misspecification when there
is a single-point treatment decision. By applying a doubly robust
augmented inverse probability weighted estimator that under the
right circumstances can adjust for confounding and by
considering a restricted set of policies, their approach can help
protect against misspecification of either the propensity score
model or the regression model for patient outcome. Brinkley et al.
(2010) develop a regression-based framework of a dichotomous
response for personalized treatment regimes within the rubric of
“attributable risk.” They propose developing optimal treatment
regimes that minimize the probability of a poor outcome, and
then consider the positive consequences, or “attributable benefit,”
of their regime. They also develop asymptotically valid inference
for a parameter similar to improvement with business-as-usual as
the random (see our Section 3.3), an idea we extend. Within the
literature, their work is the closest conceptually to ours. Gunter

et al. (2011b) develop a stepwise approach to variable selection
and in Gunter et al. (2011a) compare it to stepwise regression.
Rather than using a traditional sum-of-squares metric, the
authors’ method compares the estimated mean response, or
“value,” of the optimal policy for the models considered, a
concept we make use of in Section 3. Imai and Ratkovic
(2013) use a modified Support Vector Machine with LASSO
constraints to select the variables useful in an optimal regime
when the response is binary. van der Laan and Luedtke (2015)
uses a loss-based super-learning approach with cross-validation.

Also important within the area of treatment regime
estimation, but not explored in this paper, is the estimation of
dynamic treatment regimes (DTRs). DTRs constitute a set of
decision rules, estimated from many experimental and
longitudinal intervals. Each regime is intended to produce the
highest mean response over that time interval. Naturally, the
focus is on optimal DTRs—the decision rules which provide the
highest mean response. Murphy (2003) and Robins (2004)
develop two influential approaches based on regret functions
and nested mean models respectively. Moodie et al. (2007)
discuss the relationship between the two while Moodie and
Richardson (2009) and Chakraborty et al. (2010) present
approaches for mitigating biases (the latter also fixes biases in
model parameter estimation stemming from their non-regularity
in SMART trials). Robins et al. (2008) focus on using observational
data and optimizing the time for administering the stages—the
“when to start”—within the DTR. Orellana et al. (2010) develop a
different approach for estimating optimal DTRs based onmarginal
structural mean models. Henderson et al. (2010) develop optimal
DTR estimation using regret functions and also focus on
diagnostics and model checking. Barrett et al. (2014) develop a
doubly robust extension of this approach for use in observational
data. Laber et al. (2014) demonstrate the application of set-valued
DTRs that allow balancing of multiple possible outcomes, such as
relieving symptoms or minimizing patient side effects. Their
approach produces a subset of recommended treatments rather
than a single treatment. Also, McKeague and Qian (2014) estimate
treatment regimes from functional predictors in RCTs to
incorporate biosignatures such as brain scans or mass
spectrometry.

Many of the procedures developed for estimating DTRs have
roots in reinforcement learning. Two widely used methods are
Q-learning Murphy (2005a) and A-learning (see Schulte et al.,
2014 for an overview of these concepts). One well-noted difficulty
with Q-learning and A-learning are their susceptibility to model
misspecification. Consequently, researchers have begun to focus
on “robust” methods for DTR estimation. Zhang et al. (2013)
extend the doubly robust augmented inverse probability weighted
method (Zhang et al., 2012a) by considering multiple binary
treatment stages.

Many of the methods mentioned above can be extended to
censored survival data. Zhao et al. (2015) describe a
computationally efficient method for estimating a treatment
regimes that maximizes mean survival time by extending the
weighted learning inverse probability method. This method is
doubly robust; it is protected from model misspecification if
either the censoring model or the survival model is correct.

Frontiers in Big Data | www.frontiersin.org May 2021 | Volume 4 | Article 5725323

Kapelner et al. Evaluating Personalized Medicine Models

87

https://www.frontiersin.org/journals/big-data
www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Additionally, methods for DTR estimation can be extended.
Goldberg and Kosorok (2012) extend Q-learning with inverse-
probability-of-censoring weighting to find the optimal treatment
plan for individual patients, and the method allows for flexibility
in the number of treatment stages.

It has been tempting, when creating these treatment regime
models, to directly employ them to predict the differential
response of individuals among different treatments. This is
called in the literature “heterogeneous treatment effects
models” or “individualized treatment rules” and there is quite
a lot of interest in it.

Surprisingly, methods designed for accurate estimation of an
overall conditional mean of the response may not perform well
when the goal is to estimate these individualized treatment rules.
Qian and Murphy (2011) propose a two-step approach to
estimating “individualized treatment rules” based on single-stage
randomized trials using ℓ1-penalized regression while Lu et al.
(2013) use quadratic loss which facilitates variable selection.
Rolling and Yang (2014) develop a new form of cross-validation
which chooses between different heterogeneous treatment models.

One current area of research in heterogeneous effect
estimation is the development of algorithms that can be used
to create finer and more accurate partitions. Kallus (2017)
presents three methods for the case of observational data:
greedily partitioning data to find optimal trees, bootstrap
aggregating to create a “personalization forest” a la Random
Forests, and using the tree method coupled with mixed integer
programming to find the optimal tree. Lamont et al. (2018) build
on the prior methods of parametric multiple imputation and
recursive partitioning to estimate heterogeneous treatment effects
and compare the performance of both methods. This estimation
can be extended to censored data. Henderson et al. (2020) discuss
the implementation of Bayesian Additive Regression Trees for
estimating heterogeneous effects which can be used for
continuous, binary and censored data. Ma et al. (2019)
proposes a Bayesian predictive method that integrates multiple
sources of biomarkers.

One major drawback of many of the approaches in the
literature reviewed is their significant difficulty evaluating
estimator performance. Put another way, given the complexity
of the estimation procedures, statistical inference is very
challenging. Many of the approaches require that the proposed
model be correct. There are numerous applications in the
biomedical sciences for which this assumption is neither
credible nor testable in practice. For example, Evans and
Relling (2004) consider pharmacogenomics, and argue that as
our understanding of the genetic influences on individual
variation in drug response and side-effects improves, there will
be increased opportunity to incorporate genetic moderators to
enhance personalized treatment. But we will ever truly
understand the endpoint model well enough to properly
specify it? Further, other biomarkers (e.g. neuroimaging) of
treatment response have begun to emerge, and the integration
of these diverse moderators will require flexible approaches that
are robust to model misspecification (McGrath et al., 2013). How
will the models of today incorporate important relationships that
can be anticipated but have yet to be identified? Further, many

proposed methods employ non-parametric models that use the
data to decide which internal parameters to fit and then in turn
estimates these internal parameters. Thus a form of model
selection that introduces difficult inferential complications (see
Berk et al., 2013b).

At the very least, therefore, there should be an alternative
inferential framework for evaluating treatment regimes that do
not require correct model specification (and thereby obviating the
need for model checking and diagnostics) nor knowledge of
unmeasured characteristics (see discussion in Henderson et al.,
2010) accompanied by easy-to-use software. This is the modest
goal herein.

3 METHODS

This work seeks to be didactic and thus carefully explains the
extant methodology and framework (Section 3.1), data inputs
(Section 3.2), estimation (Section 3.4) and a procedure for
inference (Section 3.5). For those familiar with this literature,
these sections can be skipped. Our methodological contributions
then are to 1) employ out-of-sample validation to (Section 3.4)
specifically to 2) improvement, the metric defined as the
difference in how patients allocated via personalized model
fare in their outcome and a patients allocated via business-as-
usual model fare in their outcome (Section 3.3) and 3) to extend
this validation methodology to binary and survival endpoints
(Sections 3.4.2 and 3.4.3). Table 1 serves as a guide to the main
notation used in this work, organized by section.

3.1 Conceptual Framework
We imagine a set of random variables having a joint probability
distribution that can be also be viewed as a population from
which data could be randomly and independently realized. The
population can also be imagined as all potential observations that
could be realized from the joint probability distribution. Either
conception is consistent with our setup.

A researcher chooses one of the random variables to be the
response Y which could be continuous, binary or survival (with a
corresponding variable that records its censoring, explained later).
We assume without loss of generality that a higher-valued outcome
is better for all individuals. Then, one or more of the other random
variables are covariates X ∈ X . At the moment, we do not
distinguish between observed and unobserved covariates but we
will later. There is then a conditional distribution P(Y |X) whose
conditional expectation function E[Y |X] constitutes the
population response surface. No functional forms are imposed
on the conditional expectation function and thus it is allowed to be
nonlinear with interactions among the covariates which is the case
in artificial intelligence procedures (machine learning).

All potential observations are hypothetical study subjects.
Each can be exposed to a random treatment denoted
A ∈ {0, 1} where zero codes for the first experimental
condition also equivalently referred to as T1 (which may be
considered the “control” or “comparison” condition) and one
codes for another experimental condition equivalently referred to
as T2. We make the standard assumption of no interference
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between study subjects, which means that the outcome for any
given subject is unaffected by the interventions to which other
subjects are randomly assigned (Cox, 1958) and outcomes under
either condition can vary over subjects (Rosenbaum, 2002,
Section 2.5.1). In short, we employ the conventional Neyman-
Rubin approach (Rubin, 1974) but treat all the data as randomly
realized (Berk et al., 2013a).

A standard estimation target in RCTs is the population average
treatment effect (PATE), defined here as E[Y |A � 1] − E[Y |A � 0],
the difference between the population expectations. That is, the
PATE is defined as the difference in mean outcome were all subjects
exposed to T2 or alternatively were all exposed to T1. In a
randomized controlled trial, the PATE is synonymous with the
overall efficacy of the treatment of interest and it is almost invariably
the goal of the trial (Zhao and Zeng, 2013).

For personalization, we want to make use of any association
between Y and X. For the hypothetical study subjects, there is a
conditional population response surface E[Y |X,A � 1] and
another conditional population response surface
E[Y |X,A � 0], a key objective being to exploit the difference

in these response surfaces for better treatment allocation.
The typical approach is to create a deterministic
individualized treatment decision rule d that takes an
individual’s covariates and maps them to a treatment. We seek
d : X → {0, 1} based on knowledge of the differing conditional
population response surfaces. The rule is sometimes called an
allocation procedure because it determines which treatment to
allocate based on measurements made on the individual. To
compare different allocation procedures, our metric is the
expectation of the outcome Y using the allocation procedure d
averaged over all subjects X . Following the notation of Qian and
Murphy (2011), we denote this expectation as the value of the
decision rule

V[d]:�Ed
X,A[Y]b∫

X

⎛⎝ ∑
a∈{0,1}

(∫
R

yfY|X,A(y,x,a)dy)1a�d(x)⎞⎠fX(x)dx.

Although the integral expression appears complicated, when
unpacked it is merely an expectation of the response averaged

TABLE 1 | A compendium of the main notation in our methodology by section.

Notation Description

Framework (Section 3.1)
Y The random variable (r.v.) for the outcomes for the subjects
X , X The r. v. for the observed measurements for the subjects, its support
A The r. v. for the treatment
T1 ,T2 The two treatments, shorthand for their codes, zero and one
d or d[f] The decision function; this function maps observed measurements to treatment
V or V[d] The value of the decision function, the average outcome over all patients if this decision is used to allocate treatment
d* The unknown optimal decision function i.e. the one with highest V
d0 A naive, baseline, business-as-usual or null decision function
μI0 The unknown improvement of d over d0; it is the difference of values

The RCT data (Section 3.2.1)
n The number of subjects in the randomized comparative trial (RCT)
p The number of measurements assessed on each subject
xi The vector of p measurements for the ith subject
xi,j The jth measurement for the ith subject
X The n × p matrix of all measurements for all subjects
A The vector of treatments for all the n subjects
y The vector of outcomes for all the n subjects

The response model (Section 3.2.2)
f The function that relates the p measurements and A to the response
Ui The r. v. for the unknown covariates for subject i
ξ(xi ,Ai ,Ui) The function that computes misspecification in the response
E i The r. v. for irreducible noise for the ith subject
βj The linear coefficient for the jth measurement when A � 0
cj The additional linear coefficient for the jth measurement when A � 1

Out of sample estimation and validation (Section 3.4)
X train , ytrain The subset of the data used to create the fit of f
X test , ytest The subset of the data used to validate the fit of f
f̂ , d̂, V̂ , Î0 The finite-sample estimates of f, d, V, μI0
yset The arithmetic average of {yi : i ∈ set}
β̂j , ĉj The finite-sample estimates of βj , cj

Inference (Section 3.5)
B The number of bootstrap samples
~X, ~y A sample of the rows of X, y with replacement
~I0,b The bth estimate of μI0 in the bootstrap
α The size of the hypothesis test

Personalization of future subjects’ treatments (Section 3.6)
x
*

A future subject (not part of the RCT)
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over X , the space of all patients characteristics. When averaging
over X , different treatments will be recommended based on the
rule, i.e. a � d(x), and that in turn will modify the density of the
response, fY |X . Put another way, V[d] is the mean patient
outcome when personalizing each patient’s treatment.

We have considered all covariates to be random variables
because we envision future patients for whom an appropriate
treatment is required. Ideally, their covariate values are realized
from the same joint distribution as the covariate values for the
study subjects, an assumption that is debated and discussed in the
concluding section.

In addition, we do not intend to rely on estimates of the two
population response surfaces. As a practical matter, we will make
do with a population response surface approximation for each.
No assumptions are made about the nature of these
approximations and in particular, how well or poorly either
population approximation corresponds to the true conditional
response surfaces.

Recall that much of the recent literature has been focused on
finding the optimal rule, dpbargmaxd{V[d]}. Although this is an
admirable ideal (as in Qian and Murphy 2011), our goals here are
more modest.We envision an imperfect rule d far from d*, and we
wish to gauge its performance relative to the performance of
another rule d0, where the “naught” denotes a business-as-usual
allocation procedure, sometimes called “standard of care”. Thus,
we define the population value improvement μI0 as the value of d
minus the value of d0,

μI0bV[d] − V[d0] � Ed
X,A[Y] − Ed0

X,A[Y], (1)

which is sometimes called “benefit” in the literature. Since our
convention is that higher response values are better, we seek large,
positive improvements that translate to better average
performance (as measured by the response). Note that this is a
natural measure when Y is continuous. When Y is incidence or
survival, we redefine μI0 (see Sections 3.4.2 and 3.4.3).

The metric μI0 is not standard in the literature but we strongly
believe it to be the natural metric for personalization following
Kallus (2017). There are many other such metrics beyond value
and improvement. For example, Ma et al. (2019) uses three 1) the
expected number of subjects misassigned to their optimal
treatment, 2) exepected gain or loss in treatment utility and 3)
the expected proportion where the model correctly predicted the
response which is useful only in the binary response case which
we address later.

3.2 Our Framework’s Required Inputs
Our method depends on two inputs 1) access to RCT data and 2)
either a prespecified parametric model f (x,A; θ) for the
population approximation of the true response surfaces or an
explicit d function. If we prespecified f, we then use the RCT data
to estimate parameters of the model θ̂, and the estimates are
embedded in the estimated model, f̂ . This model estimate permits
us, in turn, to construct an estimated decision rule d̂ and an
estimate of the improved outcomes future subjects will experience
(explained later in Section 3.4). We assume that the model f is
specified before looking at the data. “Data snooping” (running

our method, checking the p-value, changing the model f and
running again) fosters overfitting and can introduce serious
estimation bias, invalidating our confidence intervals and
statistical tests (Berk et al., 2013b).

3.2.1 The RCT Data
Our procedure strictly requires RCT data to ensure there is a
causal effect of the heterogeneous parameters. Much of the
research discussed in the background (Section 2) applies in
the case of observational data. We realize this limits the scope
of our proposal. The RCT data must come from an experiment
undertaken to estimate the PATE for treatments T1 and T2 for a
diagnosis of a disease of interest. T1 and T2 are the same
treatments one would offer to future subjects with the same
diagnosis.

There are n subjects each with p covariates which are
denoted for the ith subject as xib[xi1, xi2, . . . , xip]. Because
these covariates will be used to construct a decision rule
applied with future patients in clinical settings, the xi’s in
the RCT data must be the same covariates measured for new
subjects. Thus, such characteristics such as the site of
treatment (in a multi-center trial) or the identification of
the medical practitioner who treated each subject or
hindsight-only variables are not included.

We assume the outcome measure of interest yi is assessed once
per subject. Aggregating all covariate vectors, binary allocations
and responses rowwise, we denote the full RCT data as the
column-bound matrix [X,A, y]. In practice, missing data can
be imputed (in both the RCT data and the future data), but herein
we assume complete data.

We will be drawing inference to a patient population beyond
those who participated in the experiment. Formally, new subjects
must be sampled from that same population as were the subjects
in the RCT. In the absence of explicit probability sampling, the
case would need to be made that the model can generalize. This
requires subject-matter expertise and knowledge of how the study
subjects were recruited.

3.2.2 The Model for the Response Based on Observed
Measurements
The decision rule d is a function of x through f and is defined as

d[f (x)]bargmax
A∈{0,1}

f (x,A) � 1f (x,1)−f (x,0). (2)

As in Berk et al. (2014), we assume the model f provided by
the practitioner to be an approximation using the available
information,

Yi � f (Xi,Ai) + ξ(Xi,Ui,Ai)︸����������︷︷����������︸
E[Yi|Xi ,Ui ,Ai]

+ εi, (3)

where f differs from the true response expectation by a term
dependent on U , the unobserved information. The last term εi is
the irreducible noise around the true conditional expectations
and is taken to be independent and identically distributed, mean-
centered and uncorrelated with the covariates. Even in the
absence of εi, f will always differ from the true conditional
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expectation function by ξi(Xi,Ui,Ai), which represents model
misspecification (Box and Draper, 1987, Chapter 13).

We wish only to determine whether an estimate of f is
useful for improving treatment allocation for future
patients (that are similar to the patients in the RCT) and do
not expect to recover the optimal allocation rule d*

which requires the unseen U . Further, we do not concern
ourselves with substantive interpretations associated
with any of the p covariates, a goal of future research. Thus,
our method is robust to model misspecification by
construction.

What could f look like in practice? Assume a continuous
response (binary and survival are discussed later) and consider
the conventional linear regression model with first order
interactions. Much of the literature we reviewed in Section 2
favored this class of models. We specify a linear model containing
a subset of the covariates used as main effects and a possibly
differing subset of the covariates to be employed as first order
interactions with the treatment indicator,
{x1′ , . . . , xp′ } ⊂ {x1, . . . , xp}, selected using domain knowledge:

f (xi1,Ai) � β0 + β1x1 +/ + βpxp + Ai(c0 + c1′x1′ +/ + cp′xp′). (4)

These interactions induce heterogeneous effects between T1

and T2 for a subject x in a very interpretable way: d[f (x)] � 1
when c0 + c1′x1′ +/ + cp′xp′ > 0 and 0 otherwise. The γ’s are the
critical component of the model if there are systematic patient-
specific differences between the interventions. Thereby, d varies
over different points inX space. Note that rules derived from this
type of conventional model also have the added bonus as being
interpretable as a best linear approximation of the true
relationship.

We stress that our models are not required to be of
this form, but we introduce them here mostly for
familiarity and pedagogical simplicity. There are times
when this linear model will perform terribly even if
{x1′ , . . . , xp′ } are the correct moderating variables. For a
non-linear example, see Zhao and Zeng (2013), Figure 1,
right. Although this model is the default implementation, the
user can specify any model desired in the software. This will
be discussed in Section 5.

FIGURE 1 | A graphical illustration of (1) our proposedmethod for estimation and (2) our proposedmethod for inference on the population mean improvement of an
allocation procedure and (3) our proposed future allocation procedure (top left of the illustration). To compute the best estimate of the improvement Î0, the RCT data goes
through theK-fold cross validation procedure ofSection 3.4 (depicted in the top center). The black slices of the data frame represent the test data. To draw inference, we
employ the non-parametric bootstrap procedure of Section 3.5 by sampling the RCT data with replacement and repeating the K-fold CV to produce Î

1
0 , Î

2
0 , . . . , Î

B
0

(bottom). The gray slices of the data frame represent the duplicate rows in the original data due to sampling with replacement. The confidence interval and significance of
H0 : μI0 ≤ 0 is computed from the bootstrap distribution (middle center). Finally, the practitioner receives f̂ which is built with the complete RCT data (top left).
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We also stress that although the theory for estimating linear
models’ coefficients (as well as those for logistic regression and
Weibull regression) is well-developed, we are not interested in
inference for these coefficients in this work as our goal is only
estimation and inference for overall usefulness of the
personalization scheme, i.e. the unknown parameter μI0. This
will become clear in the next few sections.

3.3 Other Allocation Procedures
Although d0 can be any allocation rule, for the purposes of the
paper, we examine only two “business-as-usual” allocation
procedures (others are discussed as extensions in Section
6). The first we call random denoting the allocation where
the patient receives T1 or T2 with a fair coin flip, probability
50%. This serves as a baseline or “straw man” but nevertheless
an important standard—the personalization model should be
able to provide better patient outcomes than a completely
random allocation.

The second business-as-usual procedure we call best. This
procedure gives all patients the better of the two treatments as
determined by the comparison of the sample average for all
subjects who received T1 denoted yT1

and the sample average of
all subjects who received T2 denoted yT2

. This is used as the default
in many frameworks for example Kang et al. (2014). We consider
beating this procedure the gold standard in proof that the
personalization truly works as practitioners most often employ
the current best known treatment. However, some consider this
comparison conservative (Brinkley et al., 2010, Section 7) and the
next section will describe why it is statistically conservative as we
lose sample size when demanding this comparison. Due to this
conservativeness, barring conclusive evidence that either T1 orT2 is
superior, the random procedure should be the standard of
comparison. This case is not infrequent in RCTs which feature
negative comparison results, the case in our clinical trial example of
Section 4.3.

3.4 Estimating the Improvement Scores
3.4.1 For a Continuous Response
How well do unseen subjects with treatments allocated by d do on
average compared to the same unseen subjects with treatments
allocated by d0? We start by computing the estimated
improvement score, a sample statistic given by

Î0 b V̂[d̂] − V̂[d̂0], (5)

where d̂ is an estimate of the rule d derived from the population
response surface approximation, V̂ is an estimate of its
corresponding value V and Î0 is an estimate of the resulting
population improvement μI0 (Eq. 1). The d̂0 notation indicates
that sometimes the competitor d0 may have to be estimated from
the data as well. For example, the allocation procedure bestmust
be calculated by using the sample average of the responses for
both T1 and T2 in the data.

In order to properly estimate μI0, we use cross-validation
(Hastie et al., 2013, Chapter 7.10). We split the RCT data into
two disjoint subsets: training data with ntrain of the original n
observations [Xtrain, ytrain] and testing data with the

remaining ntest � n − ntrain observations [Xtest, ytest]. Then
f̂ train can be fit using the training data to construct d̂ via
Eq. 2. Performance of d̂ as calculated by Equation 5, is then
evaluated on the test data. Hastie et al. (2013) explain that a
single train-test split yields an estimate of the “performance” of
the procedure on future individuals conditional on
[Xtrain, ytrain], the “past”. Thus, the Î0 statistic defined in Eq. 5
computed using [Xtest, ytest] can provide an honest assessment of
improvement (i.e. immune to overfitting in f̂ ) who are allocated
using our proposed methodology compared to a baseline business-
as-usual allocation strategy (Faraway, 2016). This can be thought of
as employing a replicated trial, often required in drug development
programs, which separates rule construction (in-sample) from rule
validation (out-of-sample) as recommended by Rubin and van der
Laan (2012). Note that this comes at a cost of more sample
variability (as now our estimate will be based on the test subset
with a sample size much smaller than n). Our framework and
software is the first to provide user-friendly out-of-sample
validation for the overall utility of personalized medicine
models as a native feature.

Given the estimates d̂ and d̂0, the question remains of how to
explicitly compute V̂ for subjects we have not yet seen in order to
estimate Î0. That is, we are trying to estimate the expectation of an
allocation procedure over covariate space X .

Recall that in the test data, our allocation prediction d̂(xi) is the
binary recommendation of T1 or T2 for each xtest,i. If we
recommended the treatment that the subject actually was allocated
in the RCT, i.e. d̂(x+i) � Ai, we consider that subject to be “lucky”. We
define lucky in the sense that by the flip of the coin, the subject was
randomly allocated to the treatment that our model-based allocation
procedure estimates to be the better of the two treatments.

The average of the lucky subjects’ responses should estimate the
average of the response of new subjects who are allocated to their
treatments based on our procedure d and this is the estimate of V̂[d̂]
we are seeking. Because the x’s in the test data are assumed to be
sampled randomly from population covariates, this sample average
estimates the expectation over X , i.e. EdX,A[Y] conditional on the
training set. In order to make this concept more clear, it is
convenient to consider Table 2, a 2 × 2 matrix which houses the
sorted entries of the out-of-sample ytest based on the predictions,
the d̂(xi)’s.

The diagonal entries of sets P and S contain the “lucky” subjects.
The notation y· indicates the sample average among the elements of
ytest specified in the subscript located in the cells of the table.

How do we compute V̂[d̂0], the business-as-usual
procedure? For random, we simply average all of the ytest
responses; for best, we average the ytest responses for the
treatment group that has a larger sample average. Thus, the
sample statistics of Eq. 5 can be written as

TABLE 2 | The elements of ytest cross-tabulated by their administered treatment Ai

and our model’s estimate of the better treatment d̂(xi).

d̂(xi) � 0 d̂(xi) � 1

Ai � 0 P Q
Ai � 1 R S
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Îrandomb yP∪S − ytest, (6)

Îbestb yP∪S − { yP∪Q, when yP∪Q ≥ yR∪S,
yR∪S, when yP∪Q < yR∪S.

(7)

Note that the plug-in estimate of value V̂[d̂] � yP∪S is
traditional in the personalized medicine literature. For
example, in Kallus (2017), Corollary 3 it is written as

V̂[d̂] :� ∑n
i�1Yi1d̂(xi)�Ai∑n
i�11d̂(xi)�Ai

. (8)

There is one more conceptual point. Recall that the value
estimates V̂[·] are conditional on the training set. This means
they do not estimate the unconditional EdX,A[Y]. To address
this, Hastie et al. (2013), Chapter 7 recommend that the same
procedure be performed across many different mutually
exclusive and collectively exhaustive splits of the full data.
This procedure of building many models is called “K-fold
cross-validation” (CV) and its purpose is to integrate out
the effect of a single training set to result in the
unconditional estimate of generalization. This is “an
alternative approach . . . [that] for simplicity . . . [was not]
consider [ed] . . . further” in the previous investigation of
Chakraborty et al. (2014), page 5.

In practice, how large should the training and test splits be?
Depending on the size of the test set relative to the training set, CV
can trade bias for variance when estimating an out-of-samplemetric.
Small training sets and large test sets givemore biased estimates since
the training set is built with less data than the n observations given.
However, large test sets have lower variance estimates since they are
composed of many examples. There is no consensus in the literature
about the optimal training-test split size (Hastie et al., 2013, page
242) but 10-fold CV is a common choice employed in many
statistical applications and provides for a relatively fast algorithm.
In the limit, nmodels can be created by leaving each observation out,
as done in DeRubeis et al. (2014). In our software, we default to 10-
fold cross validation but allow for user customization.

This estimation procedure outlined above is graphically
illustrated in the top of Figure 1. We now extend this
methodology to binary and survival endpoints in the next
two sections.

3.4.2 For a Binary Response
In the binary case, we let V be the expected probability of the
positive outcome under d just like in Kang et al. (2014). We
consider three improvement metrics 1) the probability
difference, 2) the risk ratio and 3) the odds ratio:

(a) μI0bV[d] − V[d0],

(b) μI0b
V[d]
V[d0],

(c) μI0b
V[d]/(1 − V[d])
V[d0]/(1 − V[d0]).

and the estimate of all three (the probability difference, the risk
ratio and the odds ratio) is found by placing hats on each term in
the definitions above (all V’s, d’s and d0’s).

Following the example in the previous section we employ the
analogous model, a logistic linear model with first order
treatment interactions where the model f now denotes the
probability of the positive outcome y � 1,

f (xi1,Ai) � logit(β0 + β1x1 +/ + βpxp

+ Ai(c0 + c1′x1′ + . . . + cp′xp′)). (9)

This model, fit via maximum likelihood numerically (Agresti,
2018), is the default in our software implementation. Here, higher
probabilities of success imply higher logit values so that
algebraically we have the same form of the decision rule
estimate, d̂[f̂ (x)] � 1 when ĉ0 + ĉ1′x1′ +/ + ĉp′xp′ > 0.

If the risk ratio or odds ratio improvement metrics are desired,
Eqs. 6, 7 are modified accordingly but otherwise estimation is
then carried out the same as in the previous section.

3.4.3 For a Survival Response
Survival responses differ in two substantive ways from
continuous responses: 1) they are always non-negative and 2)
some values are “censored”which means it appropriates the value
of the last knownmeasurement but it is certain that the true value
is greater. The responses y are coupled with this censoring
information c, a binary vector of length n where the
convention is to let ci � 0 to indicate that yi is censored and
thus set equal to its last known value.

To obtain d̂, we require a survival model. For example
purposes here we will assume the exponential regression
model (the exponentiation enforces the positivity of the
response values) with the usual first order treatment interactions,

f (xi1,Ai) � exp(β0 + β1x1 +/ + βpxp

+ Ai(c0 + c1′x1′ +/ + cp′xp′)). (10)

Under the exponential model, the convention is that the
noise term ε is multiplicative instead of additive,
Yi � f (xi1,Ai)εi. Note that at this step, a fully parametric
model is needed; the non-parametric Kaplan-Meier or the
semi-parametric Cox proportion hazard model are
insufficient as we need a means of explicitly estimating
E[Y | X,A] for all values of X and both values of A.

Moreso than for continuous and incidence endpoints,
parameter estimation is dependent on the choice of error
distribution. Following Hosmer and Lemeshow (1999), a
flexible model is to let ln(ε1), . . . , ln(εn) ∼iid Gumbel(0, σ2),
implying the popular Weibull model for survival (and the
default in our software). As was the case previously, the user
is free to choose whatever model they wish. The βj’s, cj’s and the
nuisance scale parameter σ2 are fit using maximum likelihood
taking care to ensure the correct contributions of censored and
uncensored values. Similar to the case of logistic regression, the
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likelihood function does not have a closed form solution and
must be approximated numerically.

Some algebra demonstrates that the estimated decision rule is
the same as those above, i.e. d̂[f̂ (x)] � 1 when
ĉ0 + ĉ1′x1′ +/ + ĉp′xp′ > 0. In other words, the subject is given
the treatment that yields the longest expected survival.

Subjects are then sorted in cells like Table 2 but care is taken to
keep the corresponding ci values together with their paired yi
values following Yakovlev et al. (1994). At this point, we need to
specify analogous computations to Eqs. 6, 7 that are sensitive to
the fact that many yi values are censored (The sample averages y
obviously cannot be employed here because it ignores this
censoring).

Of course we can reemploy a new Weibull model and define
improvement as we did earlier as the difference in expectations
(Eq. 1). However, there are no more covariates needed at this step
as all subjects have been sorted based on d̂(x). Thus, there is no
reason to require a parametric model that may be
arbitrarily wrong.

For our default implementation, we have chosen to employ the
difference of the Kaplan-Meier median survival statistics here
because we intuitively feel that a non-parametric estimate makes
the most sense. Once again, the user is free to employ whatever
they feel is most appropriate in their context. Given this default,
please note that the improvement measure of Eq. 1 is no longer
defined as the difference in survival expectations, but now the
difference in survival medians. This makes our framework
slightly different in the case of survival endpoints.

3.5 Inference for the Population
Improvement Parameter
Regardless of the type of endpoint, the Î0 estimates are drawn
from an elaborate estimator whose sampling distribution is not
available in closed form. We can employ the nonparametric
bootstrap to obtain an asymptotic estimate of its sampling
variability, which can be used to construct confidence intervals
and testing procedures (Efron and Tibshirani, 1994).

In the context of our proposed methodology, the bootstrap
procedure works as follows for the target of inference μI0. We take
a sample with replacement from the RCT data of size n denoted
with tildes: [~X, ~y]. Using the 10-fold CV procedure described at
the end of Section 3.4, we create an estimate ~I0. We repeat the
resampling of the RCT data and the recomputation of ~I0 B times
where B is selected for resolution of the confidence interval and
significance level of the test. In practice we found B � 3000 to be
sufficient, so we leave this as the default in our software
implementation. Because the n’s of usual RCTs are small, and
the bootstrap is embarrassingly parallelizable, this is not an undue
computational burden.

In this application, the bootstrap approximates the sampling
of many RCT datasets. Each ~I that is computed corresponds to
one out-of-sample improvement estimate for a particular RCT
dataset drawn from the population of RCT datasets. We stress
again that the frequentist confidence intervals and tests that we
develop for the improvement measure do not constitute
inference for a new individual’s improvement, it is inference

for the average improvement for future subjects vs. random
allocation, μI0.

To create a 1 − α level confidence interval, first sort the
{~I0,1, . . . ,~I0,B} by value, and then report the values
corresponding to the empirical α/2 and 1 − α/2 percentiles.
This is called the “percentile method.” “Although this direct
equation of quantiles of the bootstrap sampling distribution
with confidence limits may seem initially appealing, its
“rationale is somewhat obscure” (Rice, 1994, page 272). There
are other ways to generate asymptotically valid confidence
intervals using bootstrap samples but there is debate about
which has the best finite sample properties. We have also
implemented the “basic method” (Davison and Hinkley, 1997,
page 194) and the bias-corrected “BCa method” of Efron (1987)
that DiCiccio and Efron (1996) claim performs an order of
magnitude better in accuracy than the percentile method.
Implementing other confidence interval methods for the
bootstrap may be useful future work.

If a higher response is better for the subject, we set H0 : μI0 ≤ 0
and Ha : μI0 > 0. Thus, we wish to reject the null hypothesis that
our allocation procedure is at most as useful as a naive business-
as-usual procedure. To obtain an asymptotic p value based on the
percentile method, we tally the number of bootstrap sample ~I
estimates below 0 and divide by B. This bootstrap procedure is
graphically illustrated in the bottom half of Figure 1 and the
bootstrap confidence interval and p value computation is
illustrated in the center. Note that for incidence outcomes
where the improvement is defined as the risk ratio or odds
ratio, we use H0 : μI0 ≤ 1 and Ha : μI0 > 1 and tally the number
of ~I estimates below 1.

We would like to stress once again that we are not testing for
qualitative interactions—the ability of a covariate to “flip” the
optimal treatment for subjects. Tests for such interactions
would be hypothesis tests on the c parameters of Eqs. 4, 9,
10, which assume model structures that are not even required
for our procedure. Qualitative interactions are controversial
due to model dependence and entire tests have been developed
to investigate their significance. In the beginning of Section 2
we commented that most RCTs are not even powered to
investigate these interactions. “Even if an optimal
personalized medicine rule [based on such interactions] can
provide substantial gains it may be difficult to estimate this
rule with few subjects” (Rubin and van der Laan, 2012). The
bootstrap test (and our approach at large) looks at the holistic
picture of the personalization scheme without focus on
individual covariate-treatment interaction effects to
determine if the personalization scheme in totality is useful,
conceptually akin to the omnibus F-test in an OLS regression.

3.5.1 Concerns With Using the Bootstrap for This
Inference
There is some concern in the personalized medicine literature
about the use of the bootstrap to provide inference. First, the
estimator for V is a non-smooth functional of the data which may
result in an inconsistent bootstrap estimator (Shao, 1994). The
non-smoothness is due to the indicator function in Eq. 8 being
non-differentiable, similar to the example found in (Horowitz,
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2001, Chapter 52, Section 4.3.1). However, “the value of a fixed
[response model] (i.e., one that is not data-driven) does not suffer
from these issues and has been addressed by numerous authors”
(Chakraborty andMurphy, 2014). Since our V̂ is constructed out-
of-sample, it is merely a difference of sample averages of the hold-
out response values that are considered pre-sorted according to a
fixed rule.2 This setup does not come without a substantial cost.
Estimation of the improvement score out-of-sample means the
effective sample size of our estimate is small and our power
commensurately suffers. One can also implement the double
bootstrap (see e.g. the comparisons in Chakraborty et al.,
2010) herein and that is forthcoming in our software (see
Section 5).

There is an additional concern. Some bootstrap samples
produce null sets for the “lucky subjects” (i.e. P ∪ S � ∅ of
Table 2 or equivalently, all values of the indicator in Eq. 8 are
zero). These are safe to ignore as we are only interested in the
distribution of estimates conditional on feasibility of estimation.
Empirically, we have noticed that as long as n> 20, there are less
than 1% of bootstrap samples that exhibit this behavior. Either
way, we print out this percentage when using the PTE package
and large percentages warn the user that inference is suspect.

3.6 Future Subjects
The implementation of this procedure for future patients is
straightforward. Using the RCT data, estimate f to arrive at f̂ .
When a new individual, whose covariates are denoted x*,
enters a clinic, our estimated decision rule is calculated by
predicting the response under both treatments, then allocating
the treatment which corresponds to the better outcome, i.e.
d̂(x*). This final step is graphically illustrated in the top left of
Figure 1.

It is important to note that d̂(x*) is built with RCT data where
treatment was allocated randomly and without regard to the
subject covariates. In the example of the first order linear model
with treatment interactions, the γ parameters have a causal
interpretation—conditional causation based on the values of
the moderating covariates. Thus d̂(x*) reflects a treatment
allocation that causes the response to be higher (or lower). We
reiterate that this would not be possible with observational data
which would suffer from elaborate confounding relationships
between the treatment and subject covariates (see discussion in
Sections 2 and 6.1).

4 DATA EXAMPLES

We present two simulations in Sections 4.1 and 4.2 that serve
only as illustrations that our methodology both works as
purported but degrades in the case of pertinent information
that goes missing. We then demonstrate a real clinical setting in
Section 4.3.

4.1 Simulation With Correct Regression
Model
Consider a simulated RCT dataset with one covariate x where the
true response function is known:

Y � β0 + β1X + A(c0 + c1X) + ε, (11)

where ε is mean-centered. We employ f (x,A) as the true
response function, E[Y |X,A]. Thus, d � d*, the “optimal”
rule in the sense that a practitioner can make optimal
allocation decisions (modulo noise) using d(x) � 1c0+c1x > 0.
Consider d0 to be the random allocation procedure (see
Section 3.3). Note that within the improvement score
definition (Eq. 1), the notation EdX[Y] is an expectation over
the noise E and the joint distribution of X,A. After taking the
expectation over noise, the improvement under the model of
Eq. 11 becomes

μI0 � EX[β0 + β1X + 1c0+c1X > 0(c0 + c1X)] − EX[β0 + β1X + 0.5(c0 + c1X)]
� EX[(1c0+c1x > 0 − 0.5)(c0 + c1X)]
� c0(P(c0 + c1X > 0) − 0.5) + c1(EX[X1c0+c1x > 0] − 0.5EX[X]).
We further assume X ∼ N (μX , σ2X) and we arrive at

μI0 � (c0 + c1μX)(0.5 −Φ( − c0
c1
)) + c1

σX���
2π

√ exp

( − 1
2σ2

X

( − c0
c1

− μX)2).
We simulate under a simple scenario to clearly highlight

features of our methodology. If μX � 0, σ2X � 1 and c0 � 0,
neither treatment T1 or T2 is on average better. However,
if x > 0, then treatment T2 is better in expectation by c1 × x
and analogously if x < 0, T1 is better by −c1 × x. We then set
c1 �

���
2π

√
to arrive at the round number μI0 � 1. We set β0 � 1

and β1 � −1 and let Ei ∼iidN (0, 1). We let the treatment
allocation vector A be a random block permutation of size
n, balanced between T1 and T2. Since there is no PATE, the
random and best d0 procedures (see Section 3.3) are the same
in value. We then vary n ∈ {100, 200, 500, 1000} to assess
convergence for both d0 procedures and display the results
in Figure 2.

Convergence to μI0 � 1 is observed clearly for both
procedures but convergence for d0 best is slower than d0
rand. This is due to the V̂ being computed with fewer samples:
ytest, which uses all of the available data, vs. yP∪Q or yR∪S, which
uses only half the available data on average (see Eqs. 6, 7).
Also note that upon visual inspection, our bootstrap
distributions seem to be normal. Our intuition is that non-
normality in this distribution when using the software
package warns the user that the inference is suspect.

In this section we assumed knowledge of f and thereby had
access to an optimal rule. In the next section we explore
convergence when we do not know f but pick an
approximate model yielding a non-optimal rule that would
still provide clinical utility.

2Note also that we do not have the additional non-smoothness created by
Q-learning during the maximization step (Chakraborty et al., 2010, Section 2.4).
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4.2 Simulation With an Approximate
Regression Model
Consider RCT data with a continuous endpoint where the true
response model is

Y � β0 + β1X + β2U + A(c0 + c1X
3 + c2U) + ε, (12)

where X denotes a covariate recorded in the RCT and U denotes a
covariate that is not included in the RCT dataset. The optimal
allocation rule d* is one when c0 + c1X

3 + c2U > 0 and 0 otherwise.
The practitioner, however, does not have access to the information
contained in U, the unobserved covariate, and has no way to
ascertain the exact relationship between X and the treatment.
Consider the default model that is an approximation of the true
population response surface,

f (X,A) � β0 + β1X + A(c0 + c1X), (13)

which is different from the true response model due to (a) the
misspecification of X (linear instead of cubic) and (b) the
absence of covariate U (see Eq. 3). This is a realistic
scenario; even with infinite data, d* cannot be located
because of both ignorance of the true model form and
unmeasured subject characteristics.

To simulate, we set the X’s, U’s and E’s to be standard normal
variables and then set β0 � 1, β1 � −1, β2 � 0.5, c0 � 0, c1 � 1 and
c2 � −3. The Xi’s and the Ui’s are deliberately made independent
of one another so that the observed covariates cannot compensate
for the unobserved covariates, making the comparison between
the improvement under d* and d more stark. To find the
improvement when the true model’s d* is used to allocate, we
simulate under Eq. 12 and obtain μI0* ≈ 1.65 and analogously, to
find the improvement under the approximation model’s d, we
simulate under Eq. 13 and obtain μI0 ≈ 0.79. Further simulation
shows that not observingU is responsible for 85% of this observed
drop in improvement performance and employing the linear X in
place of the non-linear X3 is responsible for the remaining 15%.
Since c0 � 0 and the seen and unseen covariates are mean-
centered, there is no PATE and thus these simulated
improvements apply to both the cases where d0 is random
and d0 is best.

Figure 3 demonstrates results for n � {100, 200, 500, 1000}
analogous to Figure 2. We observe that the bootstrap
confidence intervals contain μI0 but not μI0*. This is expected;
we are not allocating using an estimate of d*, only an estimate of d.

Convergence toward μI0 � 0.79 is observed clearly for both
procedures and once again the convergence is slower for the best

FIGURE 2 | Histograms of the bootstrap samples of the out-of-sample improvement measures for d0 random (left column) and d0 best (right column) for the
response model of Eq. 11 for different values of n. Î0 is illustrated with a thick black line. The CIμI0 ,95% computed by the percentile method is illustrated by thin black lines.
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procedure for the same reasons outlined in Section 4.1. Note that
the coverage illustrated here is far from μI0*, the improvement using
the optimal allocation rule. Kallus (2017) presents a coefficient of
personalization metric similar to R2 where a value of 100%
represents perfect personalization and 0% represents standard of
care. Here, we would fall far short of the 100%.

The point of this section is to illustrate what happens in the
real world: the response model is unknown and important
measurements are missing and thus any personalized medicine
model falls far short of optimal. However, the effort can still yield
an improvement that can be clinically significant and useful in
practice.

There are many cases where our procedure will not find
signal yielding improvement in patient outcomes either
because it does not exist or we are underpowered to detect
it. For example 1) in cases where there are many variables that
are important and a small sample size. Clinical trials are not
usually powered to find even single interaction effects, let alone
many. The small sample size diminishes power to find the
effect, similar to any statistical test. 2) If the true heterogeneity
in the functional response cannot be approximated by a linear
function. For instance, parabolic or sine functions cannot be
represented whatsoever by best fit lines.

In the next section, we use our procedure in RCT data from a
real clinical trial where both these limitations apply. The strategy
is to approximate the response function using a reasonable model
f built from domain knowledge and the variables at hand and
hope to find demonstrate a positive, clinically meaningful μI0
knowing full well it will be much smaller than μI0*.

4.3 Clinical Trial Demonstration
We consider an illustrative example in psychiatry, a field where
personalization, called “precision psychiatry, promises to be even
more transformative than in other fields of medicine” (Fernandes
et al., 2017). However, evaluation of predictive models for
precision psychiatry has been exceedingly rare, with a recent
systematic review identifying 584 studies in which prediction
models had been developed, with only 10.4% and 4.6% having
conducted proper internal and external validation, respectively
(Salazar de Pablo et al., 2020).

We will demonstrate our method (that provides this proper
validation) on the randomized comparative trial data of DeRubeis
et al. (2005). In this depression study, there were two treatments
with very different purported mechanisms of action: cognitive
behavioral therapy (T1) and paroxetine, an antidepressant
medication (T2). After omitting patients who dropped out

FIGURE 3 | Histograms of the bootstrap samples of the cross-validated improvement measures for d0 random (left column) and d0 best (right column) for the
response model of Eq. 12 for different values of n. Î0 is illustrated with a thick black line. The CIμI0 ,95% computed via the percentile method is illustrated by thin black lines.
The true population improvement μ*I0 given the optimal rule d* is illustrated with a dotted black line.
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there were n � 154 subjects with 28 baseline characteristics
measured. Although this dataset did not have explicit patient-
level identifying information, using these 28 characteristics could
potentially identify some of the patients. Note that this study was
funded and begun before clinical trials registration and thus it
does not have a clinical trial registration number.

The primary outcome measure y is the continuous
Hamilton Rating Scale for Depression (HRSD), a composite
score of depression symptoms where lower means less
depressed, assessed by a clinician after 16 weeks of
treatment. A simple t test revealed that there was no
statistically significant HRSD difference between the
cognitive behavioral therapy and paroxetine arms, a well-
supported finding in the depression literature. Despite the
seeming lack of a population mean difference among the
two treatments, practitioner intuition and a host of studies
suggest that the covariates collected can be used to build a
principled personalized model with a significant negative μI0.
The lack of a difference also suggests that the random d0 is an
appropriate baseline comparison. If there were to be a
clinically and statistically significant average difference in
treatment outcomes between T1 and T2, then the best d0
would be appropriate. In this latter case, we have found in
our experience (in analyses of other datasets) that proving a
personalization improvement is elusive as it is difficult to beat
best. Even though the best d0 is inappropriate in our context,
we still provide its results in this section for illustrative
purposes.

We now must specify a model, f. For the purpose of
illustration, we employ a linear model with first-order
interactions with the treatment (as in Eq. 4). Which of the
28 variables should be included in the model? Clinical
experience and theory should suggest both prognostic (main
effect) and moderator (treatment interaction) variables (Cohen
and DeRubeis, 2018). We should not use variables selected using
methods performed on this RCT data such as the variables
found in DeRubeis et al. (2014), Table 3. Such a procedure
would constitute data snooping and it will invalidate the
inference provided by our method. The degree of
invalidation is not currently known and is much needed to
be researched.

Of the characteristics measured in this RCT data, previous
researchers have found significant treatment moderation in age

and chronicity (Cuijpers et al., 2012), early life trauma (Nemeroff
et al., 2003) (which we approximate using a life stressor metric),
presence of personality disorder (Bagby et al., 2008), employment
status and marital status (Fournier et al., 2009) but almost
remarkably baseline severity of the depression does not
moderate (Weitz et al., 2015) and baseline severity is
frequently the most important covariate in response models
(e.g. Kapelner and Krieger, 2020, Figure 1B). We include
these p � 6 variables as moderators and as main effects3 and
statistics of their baseline characteristics are found in Table 3.

The output from 3,000 bootstrap samples are shown in
Figure 4. From these results, we anticipate that a new subject
allocated using our personalization model will be less
depressed on average by 0.84 HRSD units with a 95%
confidence interval of [0.441, 2.657] compared to that same
subject being allocated randomly to cognitive behavioral
therapy or paroxetine. We can easily reject the null
hypothesis that personalized allocation over random is no
better for the new subject (p value � 0.001).

In short, the results are statistically significant, but the estimated
improvement may not be clinically significant. According to the
criterion set out by the National Institute for Health and Care
Excellence, three points on the HRSD is considered clinically
important. Nevertheless, this personalization scheme can be
implemented in practice with new patients for a modest
improvement in patient outcome at little cost.

TABLE 3 | Baseline characteristics of the subjects in the clinical trial example for
the moderating variables employed in our personalization model. These
statistics differ slightly from those found in the table of DeRubeis et al. (2005, page
412) as here they are tabulated for subjects only after dropout (n � 154).

Variable Sample
Average or Proportion

Age 40.3 ± 11.3
Chronicity 55.1%
Life stressors 6.6 ± 4.8
Personality disorder 48.1%
Unemployed 14.9%
Married 37.6%

FIGURE 4 | Histograms of the bootstrap samples of ~IRand i.e. for the
randomd0 business-as-usual allocation procedure. The thick black line is the
best estimate of Î0, the thin black lines are the confidence interval computed
via the percentile method. More negative values are “better” as
improvement is defined as lowering the HSRD composite score
corresponding to a patient being less depressed.

3Although this is standard linear modeling practice, it is not absolutely essential in
our methodology, where our goal is neither inference for the variables nor
prediction of the endpoint.
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5 THE PTE PACKAGE

5.1 Estimation and Inference for Continuous
Outcomes
The package comes with two example datasets. The first is the
continuous data example. Below we load the library and the data
whose required form is 1) a vector of length n for the responses, y
and 2) a matrix X of dimension n × (p + 1) where one column is
named “treatment” and the other p are appropriate names of the
covariates.

The endpoint y is continuous and the RCT data has a binary
treatment vector appropriately named (this is required) and
five covariates, four of which are factors and one is continuous.
We can run the estimation for the improvement score detailed
in Section 3.4.1 and the inference of Section 3.5 by running the
following code:

Here, 1,000 bootstrap samples were run on four cores in
parallel to minimize runtime. The f model defaults to a linear
model where all variables included are interacted with the
treatment and fit with least squares. Below are the results.

Note how the three bootstrap methods are different from
another. The percentile method barely includes the actual
observed statistic for the random comparison (see discussion
in Section 3.5). The software also plots the ~I’s in a histogram
(unshown).

To demonstrate the flexibility of the software, consider the
case where the user wishes to use x1, x2, x3, x4 as main effects
and x5 as the sole treatment moderator. And further, the user
wishes to estimate the model parameters using the ridge
penalty instead of OLS. Note that this is an elaborate
model that would be difficult to justify in practice and it is
only shown here as an illustration of the customizability of

the software. Below is the code used to test this approach to
personalization.

Here, the user passes in a custom function that builds the ridge
model to theargumentpersonalized_model_build_function.
The specification for ridge employed here uses the package
glmnet (Friedman et al., 2010) that picks the optimal ridge
penalty hyperparameter automatically. Unfortunately, there is
added complexity: the glmnet package does not accept formula
objects and thus model matrices are generated both upon model
construction and during prediction. This is the reason why a
custom function is also passed in via the argument
predict_function which wraps the default glmnet
predict function by passing in the model matrix.

5.2 Estimation and Inference for Binary
Outcomes
In order to demonstrate our software for the incidence outcome,
we use the previous data but threshold its response arbitrarily at
its 75th percentile to create a mock binary response (for
illustration purposes only).

We then fit a linear logistic model using all variables as
fixed effects and interaction effects with the treatment. As
discussed in Section 3.4.2, there are three improvement
metrics for incidence outcomes. The default is the odds ratio.
The following code fits the model and performs the inference.

Note that the response type incidence has to be explicitly made
known otherwise the default would be to assume the endpoint is
continuous and perform regression. Below are the results.

The p value is automatically calculated for H0 : μI0 < 1 (i.e. the
odds of improvement is better in d0 than d). Other tests can be
specified by changing the H_0_mu_equals argument. Here, the
test failed to rejectH0. Information is lost when a continuous metric
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is coerced to be binary. If the user wished to define improvement via
the risk ratio (or straight probability difference), an argument would
be added to the above, incidence_metric � “risk_ratio”
(or “probability_difference”).

5.3 Estimation and Inference for Survival
Outcomes
Our package also comes with a mock RCT dataset with a survival
outcome. In addition to the required input data y, X described in
Section 5.1, we now also require a binary vector c also of length n
where a value ci � 1 denotes that the ith subject’s yi is a censored
value. Below, we load the data.

There are four covariates, one factor and three continuous. We
can run the estimation for the improvement score detailed in
Section 3.4.3 and inference for the true improvement by running
the following code.

The syntax is the same as the above two examples except here
we pass in the binary c vector separately and declare that the
endpoint type is survival. Again by default all covariates are
included as main effects and interactions with the treatment in a
linear Weibull model.

In the default implementation for the survival outcome,
improvement is defined as median survival difference of
personalization vs. standard of care. The median
difference can be changed via the user passing in a new
function with the difference_function argument.
The median difference results are below.

It seems that the personalized medicine model increases
median survival by 0.148 vs. d0 being the random allocation
of the two treatments. If survival was measured in years (the
typical unit), this would be about 2 months. However, it cannot
beat the d0 being the best of the two treatments. Remember, this is
a much more difficult improvement metric to estimate as we are
really comparing two cells in Table 2 to another two cells, one of
which is shared. Thus the sample size is low and power suffers.
This difficulty is further compounded in the survival case because
censored observations add little information.

6 DISCUSSION

We have provided a methodology to test the effectiveness of
personalized medicine models. Our approach combines RCT

data with a statistical model f of the response for estimating
improved outcomes under different treatment allocation
protocols. Using the non-parametric bootstrap and cross-
validation, we are able to provide confidence bounds for the
improvement and hypothesis tests for whether the
personalization performs better compared to a business-as-usual
procedure. We demonstrate the method’s performance on
simulated data and on data from a clinical trial on depression.
We also present our statistical methods in an open source software
package in R named PTEwhich is available on CRAN. Our package
can be used to evaluate personalization models generally e.g. in
heart disease, cancer, etc. and even outside of medicine e.g. in
Economics and Sociology.

6.1 Limitations and Future Directions
Ourmethod and corresponding software have been developed for a
particular kind of RCT design. The RCT must have two arms and
one endpoint (continuous, incidence or survival). An extension to
more than two treatment arms is trivial as Eq. 2 is already defined
generally. Implementing extensions to longitudinal or panel data
are simple within the scope described herein. And extending the
methodology to count endpoints would also be simple.

Although we agree that a “once and for all” treatment strategy
[may be] suboptimal due to its inflexibility” (Zhao et al., 2015), this
one-stage treatment situation is still common in the literature and
the real world and this is the setting we chose to research. We
consider an extended implementation for dynamic treatment
regimes on multi-stage experiments fruitful future work. Consider
being provided with RCT data from sequential multiple assignment
randomized trials (“SMARTs,” Murphy, 2005b) and an a priori
response model f. The estimate of V̂[d̂] (Eq. 5) can be updated for a
SMART with k stages (Chakraborty and Murphy, 2014) where our
Table 2 is a summary for only a single stage. In a SMART with k
stages, the matrix becomes a hypercube of dimension k. Thus, the
average of diagonal entries in the multi-dimensional matrix is the
generalization of the estimate of V̂[d̂] found in Eq. 6. Many of the
models for dynamic treatment regimes found in Chakraborty and
Moodie (2013) can then be incorporated into our methodology as d,
and we may be able to provide many of these models with valid
statistical inference. Other statistics computed from this multi-
dimensional matrix may be generalized as well.

Our choices of d0 explored herein were limited to the random
or the best procedures (see Section 3.3). There may be other
business-as-usual allocation procedures to use here that make for
more realistic baseline comparisons. For instance, one can modify
best to only use the better treatment if a two-sample t-test rejects at
prespecified Type I error level and otherwise default to random.
One can further set d0 to be a regression model or a physician’s
decision tree model and then use our framework to pit two
personalized medicine models against each other.

It might also be useful to consider how to extend our methodology
to observational data. The literature reviewed in Section 2 generally
does not require RCT data but “only” a model that accurately captures
selection into treatments e.g. if “the [electronic medical record]
contained all the patient information used by a doctor to prescribe
treatment up to the vagaries and idiosyncrasies of individual doctors or
hospitals” (Kallus, 2017, Section 1). This may be a very demanding
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requirement in practice. In this paper, we do not even require valid
estimates of the true population response surface. In an observational
study one would need that selection model to be correct and/or a
correct model of the way in which subjects and treatments were paired
(Freedman and Berk, 2008). Although assuming one has a model that
captures selection, it would be fairly straightforward to update the
estimators of Section 3.4 to inverse weight by the probability of
treatment condition (the “IPWE”) making inference possible for
observational data (Zhang et al., 2012b; Chakraborty and Murphy,
2014; Kallus, 2017).

Another extension would be to drop the requirement of
specifying the model f whose specification is a tremendous
constraint in practice: what if the practitioner cannot construct a
suitable f using domain knowledge and past research? It is tempting
to use a machine learning model that will both specify the structure
of f and provide parameter estimates within e.g. Kallus’s
personalization forests (Kallus, 2017) or convolutional neural
networks (LeCun and Bengio, 1998) if the raw subject-level data
had images. We believe the bootstrap of Section 3.5 will withstand
such a machination but are awaiting a rigorous proof. Is there a
solution in the interim? As suggested as early as Cox (1975), we can
always pre-split the data in two where the first piece can be used to
specify f and the second piece can be injected into our procedure.
The cost is less data for estimation and thus, less power available to
prove that the personalization is effective.

If we do not split, all the data is to be used and there are three
scenarios that pose different technical problems. Under one scenario,
a researcher is able to specify a suite of possiblemodels before looking
at the data. The full suite can be viewed as comprising a single
procedure for which nonparametric bootstrap procedures may in
principle provide simultaneous confidence intervals (Buja and Rolke,
2014). Under the other two scenarios, models are developed
inductively from the data. This problem is more acute for
instance in Davies (2015) where high-dimensional genomic data
is incorporated for personalization (e.g. where there are many more
SNPs than patients in the RCT). If it is possible to specify exactly how
the model search is undertaken (e.g., using the lasso), some forms of
statistical inference may be feasible. This is currently an active
research area; for instance, Lockhart et al. (2014) and Lee et al.
(2016) develop a significance test for the lasso and there is even some
evidence to suggest that the double-peeking is not as problematic as
the community has assumed (Zhao et al., 2020).

Our method’s generalizability to future patients is also in question
as our validation was done within the patients of a RCT. The
population of future patients is likely not the same as the
population of patients in the RCT. Future patients will likely have
wider distributions of the p covariates as typical RCTs feature strict
inclusion criteria sometimes targeting high risk patients for higher
outcome event rates. A good discussion of these issues is found in
Rosenberger and Lachin (2016), Chapter 6. The practitioner will have

to draw on experience and employ their best judgment to decide if the
estimates our methodology provides will generalize.

And of course, the method herein only evaluates if a
personalization scheme works on average over an entire
population. “Personalized medicine” eponymously refers to
personalization for an individual. Ironically, that is not the
goal herein, but we do acknowledge that estimates and
inference at an individual level coupled to valid inference
for the improvement score is much-needed. This is not
without difficulty as clinical trials are typically not powered
to examine subgroup effects. A particularly alarming
observation is made by Cuijpers et al. (2012), page 7, “if we
want to have sufficient statistical power to find clinically
relevant differential effect sizes of 0.5, we would need . . ..
about 23,000 patients”.
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Predicting Cervical Cancer Outcomes:
Statistics, Images, and Machine
Learning
Wei Luo*

Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States

Cervical cancer is a very common and severe disease in women worldwide. Accurate
prediction of its clinical outcomes will help adjust or optimize the treatment of cervical
cancer and benefit the patients. Statistical models, various types of medical images, and
machine learning have been used for outcome prediction and obtained promising results.
Compared to conventional statistical models, machine learning has demonstrated
advantages in dealing with the complexity in large-scale data and discovering
prognostic factors. It has great potential in clinical application and improving cervical
cancer management. However, the limitations of prediction studies and prediction models
including simplification, insufficient data, overfitting and lack of interpretability, indicate that
more work is needed to make clinical outcome prediction more accurate, more reliable,
and more practical for clinical use.

Keywords: cervical cancer, clinical outcome prediction, statistical model, machine learning, medical image,
radiomics

INTRODUCTION

Cancer treatment is one of the most complicated and challenging tasks in medicine. Although cancer
survival rate has been significantly improved for the last decades with the introduction of new drugs,
technologies and techniques, there are still uncertainties on the effect of those advances on clinical
outcomes. The information of clinical outcomes is critical for the evaluation of treatment
effectiveness and optimization of treatment strategies. Clinical outcomes usually are not available
until enough clinical data have been accumulated following up a large number of patients for long
periods. To know clinical outcomes more quickly so that treatment can be improved or adjusted
timely, accurate prediction of clinical outcomes is expected. There are two approaches used for
clinical outcome prediction. One is to use radiobiological models including tumor control probability
(TCP) model, normal tissue complication probability (NTCP) model, and equivalent uniform dose
(EUD). The other is to build statistical models utilizing all the information that is relevant to disease
prognosis such as demographics, laboratory tests, images, and dosimetry, to find the relationship
between those factors and clinical outcomes. The more data is used, the more accurate the prediction
would be. In this regard, artificial intelligence especially machine learning (ML) has a great capacity
to process huge and complex data and thus has been used in many areas including medicine.
Recently, ML has been introduced into radiation oncology to predict clinical outcomes (Kang et al.,
2015; Luo et al., 2020).

Cervical cancer is the third most common cancer and a leading cause to death for women
worldwide (Ferlay et al., 2019; Rebecca, 2020). It is one of a few cancers that were first treated with
radiation therapy successfully (Mazeron and Gerbaulet, 1998). The treatment of cervical cancer is
also one of the most complex and challenging cancer management tasks and may involve all three
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cancer treatment modalities (surgery, chemotherapy, and
radiation therapy (RT)) and all radiation therapy techniques
(external beam radiation therapy (EBRT), intracavitary/
interstitial brachytherapy (BT), high dose rate (HDR)/low dose
rate (LDR) brachytherapy, and permanent seed implant). This
paper does not intend to provide a comprehensive review of
cervical cancer outcome predictions, but mainly focuses on the
prediction results with different methods, the efficacy and
limitations of prediction associated with radiation therapy.

Reported Clinical Outcomes
Actual clinical outcomes are directly derived from the results
obtained following up patients. Numerus studies have revealed
cervical cancer survival rates for different International Federation
of Gynecology and Obstetrics (FIGO) stages (I–IV) and different
treatment techniques. In the United States, the 5-year survival rates
of cervical cancer patients ranged from 17 to 92% with the all-stage
rate of 66% according to the American Cancer Society (American
Cancer Society, 2020). Surgery, chemotherapy, and radiation therapy
are the treatment options for cervical cancer. The clinical outcomes
are associatedwith treatmentmodalities and FIGO stages. The actual
5-year survival rates have been reported and are summarized in
Table 1 (Brunschwig, 1968; Kim et al., 1988; Landoni et al., 1997;
Joslin et al., 2001; Eifel et al., 2004). Severe complications were also
reported for 9% of patients with radiation therapy alone (Podczaski
et al., 1990) and 20% of patients with chemoradiotherapy (Small
et al., 2011). Those reported results were summaries of previous
clinical data, but not predictions of clinical outcomes. Mathematical
models can establish quantitative relationship between disease-
related factors and outcomes and thus predict clinical outcomes
based on identified prognostic factors or predictors.

Outcome Prediction Using Conventional
Statistical Models
Statistical models have been commonly used to analyze clinical
results and also for cervical cancer outcome prediction. To make
accurate and meaningful predictions, identifying predictors is
critical. The linear regression model was introduced to analyze
the correlation between the mRNA expression of Homeobox
(HOX) genes in cervical cancer and overall survival. It was found
that high HOX expression significantly reduced the overall
survival in a cohort of 308 cervical cancer patients and the
difference in 15-years survival rate between high and low
expression was up to around 25% (Eoh et al., 2017). The Cox

proportional hazards regression model (CPHR) uses hazard ratio
to distinguish different groups and evaluates the relative
importance of predictors. Tumor diameter has been identified
as an important predictor based on CPHR (Landoni et al., 1997).
A retrospective study reviewed the hospital records of 4,490
patients with stage IB, IIA, or IIB cervical cancer at a single
institution, and found that the disease-specific survival (DSS) rate
and pelvic disease control (PDC) rate had strong correlations
with tumor diameter, FIGO stage, histological subtype, and
clinical node status. Overall, the 5-year DSS for tumor
diameter ≤4, 4.1–6, and >6 cm, was 85, 69, and 52%,
respectively; for stages I, IIA, and IIB disease DSS was 80, 68,
and 59%, respectively, and the PDC rates were 90, 87, and 82%,
respectively (Eifel et al., 2009).

Outcome Prediction Using Image Analysis
Radiation therapy heavily relies on medical imaging. Various
three-dimensional (3D) imaging techniques such as
computerized tomography (CT), nuclear magnetic resonance
imaging (MRI) and positron emission tomography (PET) have
been widely used for cervical cancer diagnosis and treatment.
Those images may also contain the information about clinical
outcomes. By analyzing the F-18 fluorodeoxyglucose (FDG)
pretreatment images of 248 cervical cancer patients staged
from IA2 to IVB and using CPHR, a study reported that the
maximal standardized uptake value (SUVmax) that quantifies
cervical tumor uptake of FDG is associated with treatment
response and prognosis in cervical cancer patients and gave
better outcome prediction than lymph node status, stage, or
tumor volume (Kidd et al., 2007). The results showed that the
overall survival rate at 5 years was 95% for patients with an
SUVmax ≤5.2, 70% for patients with an SUVmax from >5.2 to
≤13.3, and 44% for patients with an SUVmax >13.3.

Recently, radiomics has been introduced as a powerful tool to
extract huge and complex image features from PET/CT and MRI
images for prediction of cervical cancer clinical outcome. It was
reported that radiomics features could contribute to prognoses in
cervical cancer (Lucia et al., 2018). Using CPHR, two textural
features, Grey Level NonUniformity gray-level run-length matrix
(GLRLM) in PET and Entropy gray-level co-occurrence matrix
GLCM in ADC maps from DWI MRI, were identified as
independent prognostic factors. They were significantly
stronger correlated with prognoses than clinical parameters,
with an accuracy of 94% for predicting recurrence and 100%
for predicting lack of loco-regional control compared with
∼50–60% accuracy with clinical parameters. It was also found
that the high gray-level run emphasis (HGRE) derived from
GLRLM and used to measure high SUV distribution can serve
as a predictor (Chen et al., 2018a). This study included 142
cervical cancer patients who had took 18F-FDG PET/CT for
pretreatment staging and treated with EBT and intracavitary
brachytherapy as well as concurrent chemotherapy. The binary
logistic regression model was used to identify the independent
prognostic factors among all the radiomic features and predict
clinical outcomes. The log-rank test and CPHR analysis were
performed to examine the effects of explanatory variables on
outcome endpoints including overall survival, progression-free

TABLE 1 | The reported actual clinical outcomes.

Modality Study 5-year survival rate

I II III IV

RT Joslin et al. (2001) 94.5 62.6 37.3
Kim et al. (1988) 83.2 68.9 30.9 27
Landoni et al. (1997) 84

Surgery Brunschwig. (1968) 77.4 51.6
Landoni et al. (1997) 88

RT + surgery Landoni et al. (1997) 78
Chemoradiotherapy Eifel et al. (2004) 81.8 62.6
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survival, distant metastasis-free survival, and pelvic relapse-free
survival. The results showed that the value of HGRE >3.68 or
<3.68 were associated with significant different progression-free
survival and pelvic relapse-free survival. Thus, HGRE was
identified as an important factor in predicting
chemoradiotherapy outcomes.

Outcome Prediction Using Machine
Learning
To the author’s knowledge, ML was first used to predict overall
survival for 134 cervical cancer patients in 2002, using an artificial
neural network model (ANN) including 11 prognostic factors
(age, performance status, hemoglobin, total protein in serum,
FIGO stage, histological type, histological grading at 30 Gy,
histological grading at 40 Gy, histological grading at the end of
therapy, cytological grading at 30 Gy, cytological grading at
40 Gy, cytological grading at the end of therapy) (Ochi et al.,
2002). The predicted survival result was able to achieve an area
under the receiver operating characteristic (ROC) curve (AUC) of
0.7782. A more recent study included 102 patients with cervical
cancer staged as IA2-IIB, selected 23 demographic and tumor-
related parameters, and collected perioperative data of each
patient (Obrzut et al., 2017). The study predicted the 5-year
survival rate using six machine learning methods: the
probabilistic neural network (PNN), multilayer perceptron
network (MLP), gene expression programming classifier
(GEP), support vector machines algorithm (SVM), radial basis
function neural network (RBFNN) and k-Means algorithm.
Compared with other models, PNN provided the best
prediction with an accuracy of 0.892 and sensitivity of 0.975.
PNN was further used to predict the 10-year survival for the same
cohort and also achieved high predictability (Obrzut et al., 2019).

Deep-learning (DL) has also been introduced for outcome
prediction. A neural network model was implemented to predict
survival utilizing clinicolaboratory variables among recurrent
cervical cancer patients (Matsuo et al., 2017). The study tried
to find among 13 clinicolaboratory variables the predictors for life
expectancy in 157 recurrent cervical cancer patients. Those
variables included age, body habitus change, pain score, blood
pressure, and heart rate, white blood cell, hemoglobin, platelet,
bicarbonate, blood urea nitrogen, creatinine, and albumin. The
results showed that the 3-month survival decrease was associated
with older age, decreasing albumin level, decreasing body mass
index, increasing pain score, decreasing systolic blood pressure,
decreasing white blood cell count, increasing platelet counts, and

decreasing hemoglobin levels. This study group further predicted
survival rate for 768 cervical cancer patients using the same DL
model with 40 features that included patient demographics, vital
signs, laboratory test results, tumor characteristics, and treatment
types (Matsuo et al., 2019). They showed that the results of DL
were better than that of CPHR.

In a recent study, a DL model called network in network was
developed to predict treatment failures including local relapse
and distant metastasis based on the analysis of the PET/CT
images (Shen et al., 2019). The prediction of local relapse and
distant metastasis obtained reasonable accuracy, sensitivity, and
specificity. (Table 2) Four groups of radiomic features were also
calculated, but none of the radiomic features was able to predict
distant metastasis in this study.

ML is also able to predict treatment complications. A
retrospective study applied the convolutional neural network
(CNN) algorithm to analyze rectum dose distribution and
predict rectum complications (Zhen et al., 2017). The study
included 42 cervical cancer patients treated with EBRT
combined with BT. The results showed that the texture
features derived from the rectum surface dose map can
generate better predictive performance than the volume
parameters D0.1/1/2cc that are prescribed for dose constrains, in
terms of sensitivity, specificity and AUC. The same research
group applied the SVM algorithm to predict rectal toxicity for the
same patient cohort and also achieved higher sensitivity,
specificity, and AUC when compared with D0.1/1/2cc (Table 2)
(Chen et al., 2018b).

The radiation-induced fistula is a concern for treating
advanced gynecological (GYN) malignancies using radiation
therapy. Another SVM model was developed to predict the
risk of fistula formation caused by radiation therapy (Tian
et al., 2019). The study included 35 gynecological cancer
patients treated with interstitial BT. The model used the
features of mixed data types that might be correlated to fistula
formation, and included patient demographics, patient health
status, tumor characteristics, additional invasive procedures, and
dosimetric parameters. The predicted outcomes achieved a high
prediction accuracy as shown in Table 2.

DISCUSSION

Accurate prediction of clinical outcomes would guide treatment
to focus on specific prognostic factors and optimize the treatment
scheme for each patient. The prediction of cervical cancer

TABLE 2 | The results from machine learning.

Algorithm Study Accuracy Sensitivity Specificity AUC End point

PNN Obrzut et al. (2017) 0.9 1.0 5 year-survival
Obrzut et al. (2019) 0.9 0.7 10-Survival

Network in network Shen et al. (2019) 89.0 71.0 93.0 Recurrence
87.0 77.0 90.0 Metastasis

CNN Zhen et al. (2017) 72.0 59.0 0.700 Rectal toxicity
SVM Chen et al. (2018b) 87.8 79.9 0.910 Rectal toxicity
SVM Tian et al. (2019) 97.1 88.5 0.904 Radiation-induced fistula
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outcomes is one of the most challenging tasks as the management
of cervical cancer involves the most complicated cancer treatment
strategies. The studies reviewed in this paper have utilized models
to discover many new prognostic factors such as tumor diameter,
histological subtype, FDG SUVmax, radiomic features, and
clinicolaboritory variables, and establish the relationships
between those factors and clinical outcomes. Therefore, clinical
outcomes can be accurately predicted. But the accuracy of
prediction is related to models and algorithms. Several models
performed very well in the studies. For example, CHPR predicted
the 5-year survival rates 80% (I), 68% (IIA), and 59% (IIB) (Eifel
et al., 2009), which were comparable to the reported results of
83.2% (I) and 68.9% (II) (Kim et al., 1988). Also, several DL
models gave high accuracy predictions (Table 2). Such promising
results have indicated that model-based outcome prediction has
great potential for clinical applications.

The models used for prediction can be categorized into
conventional statistical models and ML models. Conventional
statistical models include the linear regression, the logistic
regression, and CPHR. CPHR is one of most commonly used
models for outcome prediction. It models relative hazards
treating all the relevant factors proportionally. It can
determine which factor is the most influential. But the
proposed proportionality or linearity may not be valid because
many prognostic factors are not linear and interact with each
other. Thus the performance of prediction may not be ideal. In
contrast, ML is able to deal with complex and non-linear relations
in the data. Especially, it is able to learn feature representations
automatically from raw data without direct feature engineering.
Overall, ML outperformed statistical models in cervical cancer
outcome prediction (Matsuo et al., 2017; Luo et al., 2019; Matsuo
et al., 2019; Tian et al., 2019).

However, there was also evidence that the superiority of ML in
outcome prediction is not always supported (Christodoulou et al.,
2019). In addition, the ML models and algorithms have their own
limitations, notably, overfitting (Zhen et al., 2017), and lack of
interpretability (Luo et al., 2019; Luo et al., 2020). Overfitting
would undermine predictive performance. Lack of
interpretability would hinder the use of ML. ML works like a
“black box” due to the complex algorithms. It is not easy to
understand how it works and the predicted outcomes are not easy
to understand as well. For instance, some predictors such as
Albumin level were identified as significant prognostic factors by
CPHR, but not by the DL (Matsuo et al., 2017). Thus, the
prediction using ML may not be as convincing or well
accepted as that using conventional models that are explicitly
formulated. Furthermore, it is difficult to catch bugs or errors if

they occur. Development of independent validation methods may
help resolve this issue.

It should also be realized that the studies reviewed in this paper
have limitations as well. First of all, most prediction studies did not
have enough data, which would reduce the accuracy of the
predictions. Secondly, most studies did not distinguish between
treatment modalities and techniques. The treatment of cervical
cancer involves almost all available cancer treatment modalities
and techniques. Each modality and technique play specific roles
and has different contributions to clinical outcomes. For example,
LDR brachytherapy led to the 4-year disease-free survivals of 87, 66,
and 28% for FIGO stages I, II, and III, respectively, (Coia et al., 1990),
while HDR was able to achieve the 5-year survival of 94.4, 62, and
37.2%, for state I, II, III, respectively (Utley et al., 1984). Thus, the
impact of different techniques on the outcomes should be
determined separately and weighted in the prediction models.
More attention should be paid to brachytherapy as brachytherapy
is a major and complex treatment modality for cervical cancer.
Especially, brachytherapy is sensitive to radiobiological effect.
Radiobiological effect such as, dose-rate effect should be included
in prediction models. Finally, most studies were limited to a single
institution and small number of patients, and the results may have
bias and significant uncertainties. The predicted outcomes are
expected to be comparable to the actual outcomes independently
derived from clinical trials or actual patient records.

CONCLUSION

The prediction of cervical cancer outcomes utilizing statistical
models, images, and ML has produced promising results.
Particularly, ML has capacity to process complex and non-
linear relations in large-scale data, discover new prognostic
factors, and perform predictions. It has great potential in
clinical applications. However, more work is needed to make
ML practical and reliable for clinical use. Future studies may
include development of new methods and algorithms to
minimize the effect of data scarcity, differentiating treatment
modalities and techniques in prediction and evaluating individual
contributions to clinical outcomes, and independent validation of
machine learning algorithms.
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Receiver operating characteristic (ROC) curve is an informative tool in binary classification
and Area Under ROC Curve (AUC) is a popular metric for reporting performance of binary
classifiers. In this paper, first we present a comprehensive review of ROC curve and AUC
metric. Next, we propose a modified version of AUC that takes confidence of the model
into account and at the same time, incorporates AUC into Binary Cross Entropy (BCE) loss
used for training a Convolutional neural Network for classification tasks. We demonstrate
this on three datasets: MNIST, prostate MRI, and brain MRI. Furthermore, we have
published GenuineAI, a new python library, which provides the functions for conventional
AUC and the proposed modified AUC along with metrics including sensitivity, specificity,
recall, precision, and F1 for each point of the ROC curve.

Keywords: AUC, ROC, CNN, binary classification, loss function

INTRODUCTION

Classification is an important task in different fields, including Engineering, Social Science, and
Medical Science. To evaluate quality of classification, a metric is needed. Accuracy, precision,
and F1 score are three popular examples. However, there are other metrics that are more
accepted in specific fields. For example, sensitivity and specificity are widely used in Medical
Science.

For binary classification, Receiver Operating Characteristic (ROC) curve incorporates different
evaluation metrics. The Area Under ROC Curve (AUC) is a widespread metric, especially in Medical
Science (Sulam et al., 2017). In engineering, AUC has been used to evaluate the classification models
since the early 1990s (Burke et al., 1992), and AUC research has continued ever since. Kottas et al.
proposed a method to report confidence intervals for AUC (Kottas et al., 2014). Yu et al. proposed a
modified AUC which is customized for gene ranking (Yu et al., 2018). Yu also proposed another
version of AUC for penalizing regression models used for gene selection with high dimensional data
(Yu and Park, 2014). Rosenfeld et al. used AUC as a loss function and demonstrated AUC-based
training lead to better generalization (Rosenfeld et al., 2014). Their research, however, is not in the
context of Neural Networks (NN); instead, they use Support Vector Machines (SVM). Therefore,
their method does not address the challenges we address in this paper, including taking confidence of
the model into account in calculating AUC and thus, making it a better metric for training neural
networks. Zhao et al. proposed an algorithm for AUC maximization in online learning (Zhao et al.,
2011). A stochastic approach for the same task was introduced by Ying et al. (2016). Cortes and
Mohri studied correlation of AUC, as it is optimized, and error rate (Cortes and Mohri, 2004). Their
research showed that minimizing the error rate may not result in maximizing AUC. Ghanbari and
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Scheinberg directly optimized error rate and AUC of the
classifiers; however, their approach only applies to linear
classifiers (Ghanbari and Scheinberg, 2018).

This paper explains in detail the meaning of AUC, how reliable
it is, under which circumstances it should be used, and its
limitations. It also proposes a novel approach to eliminate
these limitations. Our primary focus is on deep learning and
Convolutional Neural Networks (CNNs), which differentiates
our work from the previous work in the literature. We
propose confidence-incorporated AUC (cAUC) as a modified
AUC which directly correlates to Cross-Entropy Loss function
and thus, helps to stop CNN training at a more optimum point in
terms of confidence. This is not possible with conventional AUC,
as not only the minimum of Binary Cross-Entropy loss function
may not correlate with the maximum of AUC, but also AUC does
not take the confidence of the model into account. We have also
published a new library called GeuineAI1, which contains our
modified AUC and conventional AUC with more features in
comparison to the existing standard python libraries.

REVISITING THE CONCEPT OF AUC

In supervised binary classification, each datapoint has a label.
Conformed with standards of Machine Learning, labels are either
0/1 or 01/10 or sometimes +1/-1 and the model’s (classifier’s)
outputs are usually probabilities. In the case of cancer detection,
for example, input data may be CT or MRI images. Cancerous
cases will be images labeled with 1 (positive) and normal
(healthy) images will have 0 (negative) as their labels. The
model returns a probability for each image. In the ideal
scenario, the model’s output will be 1 for cancerous images
and 0 for normal ones.

Four possible outcomes of binary classification are True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). From Table 1, it can be inferred that TX
means Truly predicted as X and FX means Falsely predicted as X.

Defined as the total number of correct predictions out of total
cases, Accuracy is calculated by Equation (1).

Accuracy � TP + TN

TP + FP + TN + FN
(1)

As it can be seen, accuracy is only concerned about correct
versus wrong predictions. In many situations, especially in
Medical Science, this is not enough. The consequences of
misclassifying a normal case as cancerous and considering a
cancerous case as normal are way different. The first one is
referred to FP, also known as Type I error, whereas the second
one is a FN or Type II error. True Positive Rate (TPR) and False
Positive Rate (FPR) are two criterions which distinguish the error
types.

TPR � TP

TP + FN
(2)

FPR � FP

FP + TN
(3)

TPR is also known as sensitivity and refers to the ratio of
correct predictions to total within actual positives. FPR is the
ratio of wrong predictions within actual negatives. FPR is
related to specificity by Eq. 4, which is used frequently in
Medical Science.

FPR � 1 − specificity (4)

As mentioned before, predicted value should be binary, but
output of the model is probability. Thresholding is how
probabilities are converted to predicted values. As an
example, if the output is 0.6 and the threshold is 0.5,
predicted value is 1.

y � { 0 if p≤ t
1, otherwise

(5)

y in Eq. 5 is the predicted value, p is the output of the model,
which is a probability, and t is the threshold. Depending on t, TPR
and FPR will be different. ROC is the curve formed by plotting
TPR versus FPR for all possible thresholds and AUC is the area
under that curve.

In the following, we take an example-based approach to
highlight the fundamentals of AUC.

Example 1: Table 2 contains the simplest possible example. It
should be followed from left to right. yd refers to the desired value
which is the same as the label (ground truth).

It can be seen from Table 2 that actual positives and actual
negatives are necessary to draw an ROC curve. Although it may
seem trivial, lack of one category in one batch leads to NaN in
training of Machine Learning (ML) models. Furthermore, if the
batch size is equal to one, the batch AUC is always NaN.
Consequently, for any NN to be directly trained with a
modified AUC, or for any code where AUC is calculated
within each batch, batch size of one cannot be used.
Furthermore, the sampler should be customized in a way to
return samples from both classes in each batch.
Example 2: Table 3 contains an example of classifying one
positive and one negative cases and Figure 1 shows the

TABLE 1 | Possible outcomes of binary classification.

Actual value Predicted value

TN 0 0

FP 0 1

FN 1 0

TP 1 1

TABLE 2 | Example 1.

yd � 1 t < 0.5 y � 1 TP � 1 TPR � TP
TP+FN � 1

1+0 � 1
TN � 0

p � 0.5 FP � 0 FPR � FP
FP+TN � 0

0+0 � NaN
FN � 01https://pypi.org/project/GenuineAI/
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corresponding ROC curve. There are important points in this
example. ROC curves always start from (0,0) and always end at
(1,1). The reason is that if threshold is 0, all predicted values are 1.
They will be either TP or FP. Therefore, both TPR and FPR are 1.
On the other hand, if threshold is 1, everything is predicted as
negative. In this case, predictions are all TN or FN. Consequently,
TPR and FPR will be both zero. Two things must be taken into
account when writing aML code: t � 0, and t � 1 should be treated
separately and t should be iterated backward if going from (0, 0)
to (1, 1) is desired. Backward iteration necessity comes from the
fact that the highest t corresponds to the lowest TPR and FPR.
Exceptions of t � 0 and t � 1 are needed for rare cases when the
output of the model is exactly 0 or 1.

Example 3: Our third example is complement of Example 2. As
it is indicated in Table 4, output probability for the positive case
(yd

1 ) is higher. Under these conditions, AUC is equal to 1, as
depicted in Figure 2. In other words, ideal situation for

classification of one positive and one negative example in
terms of AUC is when output probability of the positive case
is higher.

It should be noted that if the two probabilities were slightly
different, e.g., p1 � 0.501 and p2 � 0.499, AUC would be 1. The
separation of probabilities does not have to be at 0.5. p1 � 0.0002
and p2 � 0.0001 would still result in AUC � 1. This leads to an
important issue which is confidence. It turns out AUC does not
take into account the confidence of the model.
Example 4: In the fourth example (Table 5), the output
probabilities are the same for the two samples. This leads to
AUC of 0.50. This example shows that whenever all output
probabilities are equal, AUC is 0.50 and ROC is a straight line
from (0, 0) to (1, 1) (Figure 3). This is true for all different values
of N where N is batch size or number of samples.
Example 5: In example 5, N is equal to 3 and there are 4 points in
the ROC curve (Figures 4, 5). The reason for this phenomenon is

TABLE 3 | Example 2.

yd1 � 1 t <0.4 y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0
FP � 1 FPR � 1

1+0 � 1
FN � 0

p1 � 0.4 0.4≤ t < 0.6 y1 � 0 TP � 0 TPR � 0
0+1 � 0

p2 � 0.6 y2 � 1 TN � 0

FP � 1 FPR � 1
1+0 � 1

FN � 1

0.6≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

TN � 1
y2 � 0 FP � 0 TPR � 0

0+1 � 0
FN � 1

FIGURE 1 | ROC of Example 2.

TABLE 4 | Example 3.

yd1 � 1 t <0.4 y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0
FP � 1 FPR � 1

1+0 � 1
FN � 0

p1 � 0.4 0.4≤ t < 0.6 y1 � 0 TP � 1 TPR � 1
1+0 � 1

p2 � 0.6 y2 � 1 TN � 1

FP � 0 FPR � 0
0+1 � 0

FN � 0

0.6≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

TN � 1
y2 � 0 FP � 0 FPR � 0

0+1 � 0
FN � 1

FIGURE 2 | ROC of Example 3.
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effective threshold boundaries. As it can be seen inTable 6, up to t
� 0.4, no value of t changes the model’s predictions. It turns out
that those effective boundaries are defined by predicted

probabilities. It should now be highlighted, in Examples 2 and
3, N was 2 and there were 3 points on the ROC curve. In the
general form, for N predictions, there will be N+1 points on the
ROC curve. For each pair of predictions with equal probabilities,
one point is omitted. The extreme case is when all output
probabilities are equal. In this case, there will be two points on
the ROC curve and AUC is 0.5 (Example 4).

METHODS

Inspired by the previous examples, we will now investigate some
characteristics of ROC and AUC. We will demonstrate how
misclassification of a single data point can decrease AUC, and
what extreme scenarios of misclassification look like.We will then
provide an example to show a higher AUC does not necessarily
correspond to better classification. The section is concluded with
introducing cAUC, our proposed modified AUC, and
mathematical support for its correlation to Binary Cross
Entropy (BCE).

A result of having N+1 points on the ROC curve is that N+1
different effective values can be assigned to threshold t. In
other words, while infinite values for t can be selected, selecting
more than N+1 values for t would not help to achieve more
accurate AUC or “smoother” ROC curve. Even if calculations
are precise, the efficiency will be degraded because if t values
are not selected from different effective intervals, they will
result in the same point on ROC. In Example 3, t � 0, 0.1, 0.2,
0.3, or any other value below 0.4 will result in (1, 1) on ROC.
Furthermore, because continuous variables have to be
discretized, selecting fixed step size to increase t may result
in inaccuracy. It happens almost certainly if two probabilities
are highly close to each other and the fixed step is not small
enough to land between them. Usually high values of N create

TABLE 5 | Example 4.

yd1 � 1 t < p y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0
FP � 1 FPR � 1

1+0 � 1
FN � 0

p1 � p2 � p p≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

y2 � 0 TN � 1

FP � 0 FPR � 1
1+0 � 1

FN � 1

FIGURE 3 | ROC of Example 4.

TABLE 6 | Example 5.

yd1 � 1 t <0.4 y1 � 1 TP � 1 TPR � 1
1+0 � 1

yd2 � 0 y2 � 1 TN � 0

yd3 � 1 y3 � 1 FP � 2 FPR � 2
2+0 � 1

FN � 0
0.4≤ t <0.45 y1 � 0 TP � 0 TPR � 1

1+0 � 1

y2 � 1 TN � 0

y3 � 1 FP � 1 FPR � 1
1+1 � 0.5

FN � 1

p1 � 0.4 0.45≤ t <0.55 y1 � 0 TP � 0 TPR � 0
0+1 � 0

p2 � 0.55 y2 � 1 TN � 1
p2 � 0.55 y3 � 0 FP � 1 FPR � 1

1+1 � 0.5
FN � 1

0.55≤ t y1 � 0 TP � 0 TPR � 0
0+1 � 0

y2 � 0 TN � 2

y3 � 0 FP � 0 FPR � 0
0+2 � 0

FN � 1

FIGURE 4 | ROC of Example 5.
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such circumstances. Therefore, having a method for selecting
optimal threshold is crucial. Changing value of t is effective if
and only if it affects predictions. Assuming probabilities are
sorted, any value of t between pi and pi+1 does not change
predictions. Supported by the same rational, the optimal values
of t we suggest is given by (6). An optimum set, based on the
rule of having N+1 points in ROC, has to have N+1 members.
However, our proposed set has N+2 elements. If Eq. 5 is
conformed, 1 can be removed from the set. Nevertheless,
adding 0 and 1 to the set is a safe approach for avoiding
programming errors.

t ∈ {0, pi , 1} , i � 1, 2, . . . , N (6)

Figure 5 depicts all possible outcomes (except special cases of
equal probabilities). It seems ROC is always staircase looking,
except for the situations where a pair of predicted probabilities are
equal. Thus, using trapezoid integration is the best and most
accurate technique to calculate AUC. Furthermore, Figure 5
demonstrates order of predicted probabilities plays a key role
in amount of AUC. If there is at least one threshold t where the
probabilities of all actual positives and negatives are above and

below it, respectively, then the AUC is equal to 1. Although the
mathematical proof needs more fundamentals, there is one key
support: selecting t at the boundary of positive and negative data
points results in a perfect classification corresponding to (0, 1) on ROC.

AUC � 1 if ∃ t
∣∣∣∣∣ {∀pi, y

d
i ∈ AP t<pi and ∀pj, y

d
i ∈ AN pj ≤ t}

(7)

Where AP and AN are actual positives and actual negatives,
respectively.

To be able to separate positive and negative datapoints in a
way that probabilities of positive cases are higher, we
introduce ε. In Table 7, ε is a positive real number which

FIGURE 5 | ROC curves for N � 3, two actual negative and an actual positive.

TABLE 7 | A group of realizations with N � 3, AN � 2, and AP � 1.

— t

Sorted Actual Values 0 0 1

Predicted Probabilities p-ε p-ε p

— TN TN TP
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is less than or equal to p. This ensures p-ε is zero or positive
and implies that p-ε is less than p. For example, if p is 0.8, ε can
be in the range of 0–0.8. It also explains why (7) is true. For
any t ∈[p − ε, p), conditions of (7) are met and the AUC is
equal to 1. In this case, (0,0), (0,1), and (1,1) are points
of ROC.

In Table 7, probabilities of all actual negatives are equal
(p-ε). To be able to sort probabilities within each class of
datapoints, δ is introduced. Table 8 extends Table 7 scenario
to more general cases where probabilities are not necessarily
equal. In this case, δ can be considered as a random noise
which is a non-negative real number. It helps to simulate
predicted probabilities better. With δ, the predicted
probabilities do not follow a distinct pattern of having a
fixed distance.

Table 9 shows the other extreme. When there is threshold t
such that probabilities of all actual positives and negatives are
below and above it, respectively, then the AUC is zero.

AUC � 0 if ∃ t
∣∣∣∣∣ {∀pi, y

d
i ∈ AP pi ≤ t and ∀pj, y

d
j ∈ AN t<pj}

(8)

Table 10 depicts all remaining possible scenarios where AUC
is greater than zero (0 <AUC). Table 10 gives the big picture. For
t ∈[p − ε, p), there will be one FP in predicted values
(Table 10), which means TPR is 1 and FPR is positive. For
t ∈[p, p + δ), there will be one FN in predicted values
(Table 10), which means FPR � 0 and TPR less than one. In
other words, in the ROC curve, (Tables 10(b),(c)) correspond to
points (d1,1) and (0, d2), respectively, where d1 and d2 are
positive real numbers (Figure 6). Obviously, this causes a
reduction in AUC as much as the area of a triangle. (0, d2),
(d1,1), and (0, 1) are vertices of the triangle. FN contributes to
TPR whereas FP is part of FPR. Therefore, d1 is influenced by FP
and d2, is a function of FN. Because they both play a role in the
triangle’s area, it can be concluded that the AUC does not
discriminate between FP and FN. All it does is scaling the

TABLE 8 | A group of realizations with N � 8, AN � 4, AP � 4, and AUC � 1.

— — — t — — —

Sorted Actual Values 0 0 0 0 1 1 1 1

Sorted Probabilities p-ε-3δ p-ε-2δ p-ε-δ p-ε p p+δ p+2δ p+3δ

— TN TN TN TN TP TP TP TP

TABLE 9 | A group of realizations with N � 8, AN � 4, AP � 4, and AUC � 0.

— — — t — — —

Sorted actual values 0 0 0 0 1 1 1 1

Sorted probabilities p-3δ p-2δ p-δ p p-ε p-ε+δ p-ε+2δ p-ε+3δ

— FP FP FP FP FN FN FN FN

TABLE 10 | A group of realizations with N � 8, AN � 4, AP � 4, and 0 < AUC<1.

(a) — — — — t — — —

sorted Actual values 0 0 0 0 1 1 1 1

sorted Probabilities p-ε-2δ p-ε-δ p-ε p p p+δ p+2δ p+3δ

— TN TN TN TP TP TP

(b) — — — t — — — —

sorted Actual values 0 0 0 0 1 1 1 1

sorted Probabilities p-ε-2δ p-ε-δ p-ε p p p+δ p+2δ p+3δ

— TN TN TN FP TP TP TP TP

(c) — — — — — t — —

sorted Actual values 0 0 0 0 1 1 1 1

sorted Probabilities p-ε-2δ p-ε-δ p-ε p p p+δ p+2δ p+3δ

— TN TN TN TN FN TP TP TP
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importance with respect to degree of imbalance. In other words,
AUC equalizes importance of positive and negative cases as if
the number of APs and ANs were the same. In this perspective,
ROC has a built-in normalizer mechanism. However, in real
world, that may not be desired. In most cancer detection
situations, for example, importance of a positive case
massively outweighs that of a negative case.

The fact that the AUC does not discriminate between FP and
FN implies that what should be used as a criterion when training a
model is ROC curve itself and not the AUC. Hence, in order to
translate probabilities to predictions, one specific t ∈ [0, 1] is
needed.

In medical science (e.g., cancer detection), instead of AUC value,
the clinical value of a classificationmethod is usually studied in terms
of TPR or FPR. For example, for a desired TPR, using the ROC
curve, the point with lowest FPR is selected. From there, the desired
threshold is derived, and the classification is performed. Thus, to
evaluate the performance, confusion matrix is the most informative
way of reporting where a model with a lower AUCmay be preferred
when the specific TPR/FPR are considered. One possible example is
illustrated in Figure 7.

In Figure 7, AUC of the orange line and the blue line are 0.75
and 0.58, respectively. Although the orange line has a higher
AUC, if the acceptable sensitivity is set at 1, the blue line
corresponds to the best model. In other words, to be able to
identify every single positive example, with the orange line we will
misclassify 75% of our negative examples compared with 50% of
misclassification by the blue one.

Proposed AUC With Confidence
We call a model confident if it returns probabilities near 1 for all
positive cases and probabilities near 0 for all negative examples.
In previous section, it was demonstrated that AUC does not
provide the confidence of the classification model under study.

In other words, whether the predicted probabilities are close to
each other or not does not affect the AUC value. As a result, a
classification model that is able to separate the positive and
negative cases by a small margin (e.g., 5%), has the same AUC as
the one that separates the positive and negative cases by a large
margin (e.g., 25%). Risk assessment in Medical Science and
regression in Statistics are cases where having large margins
may not be the target. However, in the context of classification,
the margin is a key point. The whole idea of Support Vector
Machines (SVM) is formed around large margin classification
(Parikh and Shah, 2016). The ultimate effect of Cross Entropy
(CE) loss function on NNs is imposing separation between
predicted probability of positive and negative examples (Zhang
and Sabuncu, 2018).

To address this issue, we propose a modified AUC (cAUC),
which provides a confidence measure for the classification model.
To do so, we introduce two coefficients, α and β.

α � max(pi) −min(pj) ∣∣∣∣∣ {pi ∈ AP, pj ∈ AN} (9)

β � min(pi) −max(pj) ∣∣∣∣∣ {pi ∈ AP, pj ∈ AN} (10)

cAUC � e(α−1)e(β−1)AUC (11)

The idea behind Eq. 11 is the smaller the range between the
probabilities of the two classes, the lower the AUCwill be and vice
versa. If the range is the maximum possible value (which is 1), the
AUC remains unchanged. Otherwise, it is decreased.

In the following, we show that our cAUC local maximums
correspond to BCE local minimums. Intuitively, BCE is
minimized when the probabilities created by the model are
close to 1 for APs and near 0 for ANs. This translates to the
concept of confidence we discussed above. Mathematically, BCE
is explained through Eq. 12. Using the same separation approach,
we have used so far, BCE can be rewritten for APs and ANs as

FIGURE 6 | ROC of Example of Table 10. FIGURE 7 | ROC curves for two different models with N � 7.
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Eq. 13. From Eq. 13, it can be concluded ideal BCE loss is resulted
under conditions of Eq. 14.

BCE � −1
N

∑N
i�1

yd
i log(pi) + (1 − yd

i )log(1 − pi) (12)

BCE � −1
N

⎡⎢⎢⎣∑N
i�1
{ log(pi)∣∣∣∣ yd

i ∈ AP
0, otherwise

+ ∑N
j�1
{ log(1 − pj)∣∣∣∣∣ yd

j ∈ AN
0, otherwise

⎤⎥⎥⎦ (13)

BCE � 0 if ∀yd
i ∈ AP, pi � 1 and ∀yd

i ∈ AN, pi � 0 (14)

If conditions of Eq. 14 are met, from Eq. 7 it can be inferred
AUC is equal to 1 because for any threshold between 0 and 1, all
datapoints are correctly classified. In this case Eq. 9, 10 result in
α � β � 1. Ultimately, our definition of cAUC, Eq. 11, returns
cAUC � 1. Therefore, the ideal cases of cAUC and BCE
correspond to each other. Through a similar procedure, it can
be proved their worst cases (cAUC � 0 and BCE →∞)
correspond too. In the transition between the two extremes,
BCE and confidence-related part of cAUC (the exponential
coefficients) have a monotonic behavior.

We proved that if AUC is equal to 1, the probability of positive
and negative examples can be close to each other and thus,
leading to high BCE. Therefore, a high AUC does not
necessarily mean low BCE. Thus, instead of AUC, we propose
monitoring cAUC, which in global optimums is guaranteed to
result in ideal BCE and AUC, and in local optimums has higher
potential for stopping the training when the model is confident,
not overfit, and achieves a high AUC.

RESULTS

We will evaluate our confidence-incorporated AUC (cAUC)
on 4 different scenarios: random predictions, a customized
dataset based on MNIST (LeCun and Cortes, 2010), our
proprietary Prostate Cancer (PCa) dataset, and a dataset

based on BraTS19 (Menze et al., 2015; Bakas et al., 2017;
Bakas, 2018). Our PCa dataset of Diffusion-weighted MRI is
described in our previous research (Yoo et al., 2019). The
CNN architectures and the utilized settings are similar to our
shallow models used in other research projects (Hao et al.,
2020). Nonetheless, the details are provided in
Supplementary Appendix A. Given the fact that AUC is
not differentiable, to train the network we used BCE. The
only essential point which should be covered is input
channels of our CNN for MNIST classification. Because
MNIST is a single channel dataset, we revised the network
to be compatible with it.

cAUC vs AUC on Random Data
To test the proposed AUC, in an N � 10 simulation, real values
and predicted probabilities were generated randomly using U
[0, 1] as Table 11. In case of arbitrary classification, expected
value of AUC is 0.5. The goal here is to calculate expected values
of cAUC for such conditions. Another point for the presented
values in Table 11 is to highlight importance of sample size.
With the widespread use of AI in Medical Science, researchers
must care about sample sizes. Our experiment shows AUC �
0.66 is not hard to achieve through chance when N is not high
enough.

Simulations with N � 100 and 10,000 trials show expected
value of AUC is 0.50 and expected value of the revised AUC is
0.07. Intuitively, AUC � 0.5 happens when everything is by
chance. We showed one example is when output of the model
is constant. In other words, when variance of the output vector is
zero. In this case, coefficients α and β also are zero in limit
[according to (9) and (10)]. Therefore, cAUC will be
0.5*e(−1)e(−1) which is 0.07.

cAUC vs. AUC on an MNIST-Based Dataset
MNIST is a well-known dataset of handwritten digits,
including 60,000 train and 10,000 test images (LeCun and
Cortes, 2010). It includes single channel, 28 × 28 pixel,
normalized images. The 10 different digits form classes of
data in MNIST, by default. Because our ultimate goal was

TABLE 11 | Comparison of AUC and the proposed AUC for a random case.

Real values Sorted probabilities Parameters

1 0.803258838 α � 0.80325884 − 0.27759354 � 0.5256653

0 0.517853202 β � 0.30374599 − 0.69960646 � −0.39586047
AUC � 0.66666666666666661 0.639592674
cAUC � 0.1027290563696407

1 0.303745995
—

0 0.699606458

0 0.318090495

0 0.277593543

1 0.421482502

1 0.556011119

1 0.548716153
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Medical applications, we marked examples of 7 as positive and
all other digits as negative to create our imbalanced binary
MNIST-based dataset. Our train set included the first 5,000
examples of training cohort of MNIST and our validation set
was 1,500 examples (indices: 45,000–46,500) of it. Our test set
was built from the first 1,000 examples of MNIST test. This was
done to ensure our dataset size is reasonable in comparison to
Medical ones. To make our data noisy, as it is always seen in
Medical datasets, we added uniform random noise to each
pixel. For that end, we first scaled MNIST examples in order to
have each pixel values in the range of [0, 1]. Then we added
5 times of a random image to it and scaled the result back to [0,
1] as stated in Eq. 15

image �
MNIST image

255 + 5 p numpy.random.random((28, 28))
6

(15)

Figure 8 shows results of the classification over 50 epochs of
training. In each epoch, average BCE loss, AUC, and cAUC for
training, validation, and test cohorts are calculated. This
procedure is maintained until the last epoch and then the
monitored values are plotted.

cAUC vs. AUC on a Proprietary PCa Dataset
Figure 9 depicts the results of classification over our
institutional review board approved PCa dataset, which

FIGURE 8 | Classification results on the MINIST-based dataset.

FIGURE 9 | Classification results on the PCa dataset.
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included Diffusion-weighted MRI images of 414 prostate
cancer patients (5,706 2D slices). The dataset was divided
into training (217 patients, 2,955 slices), validation (102
patients, 1,417 slices), and test sets (95 patients, 1,334
slices). Label for each slice was generated based on the
targeted biopsy results where a clinically significant prostate
cancer (Gleason score>6) was considered a positive label. The
golden vertical line is where cAUC guides us to stop and the
grey vertical line is where we would stop if AUC was used.

cAUC vs. AUC on a BraTS-Based Dataset
We used the BraTS19 dataset, with the same setting as our
previous research (Hao et al., 2021). The dataset contains 335
patients of which 259 patients were diagnosed with high-grade
glioma (HGG) and 76 patients had low-grade glioma (LGG). For
each patient, we stacked three MRI sequences, which are T1-
weighted, post–contrast-enhanced T1-weighted (T1C), and T2-
weighted (T2) volumes. With the help of BraTS segmentations,
we randomly extracted 20 slices per patient with the tumor region
in axial plane. Our training dataset contained 203 patients, which
corresponds to 2,927 slices (1,377 LGG and 1,550 HGG
examples). 66 patients were included in the validation set (970
slices, 450 LGG and 520 HGG examples). Another 66 patients
formed our test set (970 slices, 450 LGG and 520 HGG examples).
LGG slices were labeled as 0 and HGGs were assigned to be 1. The
images were resized to 224 × 224 pixels. Figure 10 illustrates the
results of classification over the dataset. cAUC directs the model
to stop at epoch number 4 whereas both AUC and BCE would
lead to the seventh epoch.

DISCUSSION

In this research, we first highlighted several important ROC and
AUCcharacteristics.We demonstrated that to drawROCcurve, both

actual positives and actual negatives are needed. Threshold equal to 1
corresponds to (0,0) in the ROC curve and t � 0 appears as (1,1). If a
function is to calculate TPR, FPR or other metrics, it should iterate
backward on the t values. The AUC is not concerned about
confidence of the model. Regardless of N, if all the predictions
are the same (p1 � p2 � . . . � pN), AUC will be 0.5 and the ROC
curve will be a straight line from (0,0) to (1,1). Selecting more
thresholds does not result in a smoother ROC or more accurate
AUC. Thresholds must be selected from the set of the predicted
probabilities plus 0 and 1. The order of predicted probabilities is
correlated to the ROC shape and has a major impact on AUC. If
there is at least a threshold where the probabilities of all actual
positives and all actual negatives are above and below it,
respectively, then the AUC is equal to 1. Conversely, the
AUC will be 0 for the opposite case. The AUC does not
differentiate FP from FN. All it does is scaling actual positive
and actual negatives in a way that they have equal contributions
to AUC. Therefore, the ROC curve should be used as the
criterion and not AUC, if FP and FN have different weights.
Because the final goal is classification, what is important is the
performance of the model at a specific threshold. Therefore,
there may be cases where a model with a lower AUC performs
better at one threshold. The right approach is finding the
optimum threshold from ROC and reporting the confusion
matrix at that threshold.

The core of our research was the amendment of AUC in terms
of margins. To add confidence to the optimized model, AUC
needs to be refined. Using two coefficients, a revised AUC was
proposed. Through simulations and mathematics, we showed the
revised AUC reflects confidence of the model.

Unlike AUC, through experiments on MNIST, our PCa,
and BraTS dataset, we demonstrated that local maximums in
the proposed modified AUC correspond to local minimums
of cross-entropy loss function. It was shown that selecting the
best model based on cAUC is computationally efficient,

FIGURE 10 | Classification results on our BraTS-based dataset.
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mathematically reasonable, and it results in avoiding
overfitting.

The conventional approach for when to stop training a CNN to
achieve the highest AUC is to monitor the AUC while the model is
being trained with a loss function such as BCE, and save the model
whenever AUC breaks the previous highest score. However, when
BCE is set to be used as the loss function, the hypothesis is that the
best model has the lowest loss and therefore, the minimum loss is
what the model is trained for. Hence, choosing the best model based
on the highest AUC is not well rationalized and may not lead to the
optimum point.

Our proposed metric inherits several limitations of the standard
AUC and ROC but does not add any additional restrictions. Similar
to AUC, cAUC is not differentiable and cannot be directly used as a
loss function for training any NN. Additionally, calculating cAUC
for a batch of data, especially if the batch size is small, will not help
because it will be a measure of ranking in a small sample of the
dataset. Similar to the standard AUC, cAUC does not give more
importance to the positive examples.

CONCLUSION

Our results demonstrate the proposed cAUC is a better metric to
choose the best performing model. On our MNIST-based dataset,
when training a CNN, it results in stopping earlier which is
computationally desirable. Moreover, it has landed in a less
overfitting-prone area. Our results on the prostate MRI dataset
are particularly interesting. With standard AUC we would stop
training the CNN model at a suboptimal point with regards to
BCE. With our proposed cAUC, we are able to stop at an optimal
point where the training model gives the highest AUC. Our BraTS

dataset experiments demonstrate cAUC can indicate optimum
points that neither AUC nor BCE would direct the model
towards them.
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