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Editorial on the Research Topic

Machine Learning Used in Biomedical Computing and Intelligence Healthcare, Volume I

In recent years, the development of biomedical imaging techniques, integrative sensors, and
artificial intelligence has brought many benefits to the protection of health. We can collect,
measure, and analyze vast volumes of health-related data using the technologies of computing
and networking, leading to tremendous opportunities for the health and biomedical community.
Biomedical intelligence, especially precision medicine, is considered one of the most promising
directions for healthcare development. Meanwhile, these technologies have also brought new
challenges and issues.

This Research Topic was supported by Frontiers and includes three collaborating journals:
Frontiers in Genetics, Frontiers in Public Health, and Frontiers in Computer Science. We accepted
10 papers from 21 open submissions. The summaries of these papers are outlined below.

In the article entitled “Development, Validation and Comparison of Artificial Neural Network
Models and Logistic Regression Models Predicting Survival of Unresectable Pancreatic Cancer” by
Tong et al. the authors developed Artificial Neural Network (ANN) models based on 3, 7, and 32
basic features, predicting the survival of unresectable pancreatic cancer patients over 8 months.
These models might help to optimize personalized patient management.

In the article entitled “P-Wave Area Predicts New Onset Atrial Fibrillation in Mitral Stenosis:
A Machine Learning Approach” by Tse et al. the authors studied Chinese patients diagnosed with
mitral stenosis in sinus rhythm at baseline between November 2009 and October 2016. They
concluded that atrial electrophysiological alterations in mitral stenosis could be detected using
electrocardiograms and based on age, and systolic blood pressure and the P-wave area in V3 could
predict new onset atrial fibrillation (AF). They proposed a decision tree learning model, which
significantly improves outcome prediction.

In the article entitled “Detection and Severity Assessment of Peripheral Occlusive Artery
Disease via Deep Learning Analysis of Arterial Pulse Waveforms: Proof-of-Concept and Potential
Challenges” by Kim et al. the authors demonstrated the deep learning-based arterial pulse waveform
analysis contributes to the PAD screening, and they presented challenges that must be addressed
for real-world clinical applications.

In the article entitled “Develop and Evaluate a New and Effective Approach for Predicting
Dyslipidemia in Steel Workers” by Wu et al. the authors collected the physical examination
information of thousands of steelworkers and screened out the risk factors of dyslipidemia in
steelworkers. Then, based on the data characteristics, they employed the convolutional neural
network to predict the risk of dyslipidemia in steelworkers.
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In the article entitled “Automated Detection of Acute
Lymphoblastic Leukemia From Microscopic Images Based on
Human Visual Perception” by Bodzas et al. the authors proposed
a novel approach based on conventional digital image processing
techniques and machine learning algorithms. The traditional
machine learning classifiers, the artificial neural network and
the support vector machine, were used to automatically
identify acute lymphoblastic leukemia from peripheral blood
smear images.

In the article entitled “Review on the Application of Machine
Learning Algorithms in the Sequence Data Mining of DNA”
by Yang et al. the authors introduced the development process
of sequencing technology. They analyzed the basic process
of data mining, summary several major machine learning
algorithms, and pointed out the challenges faced by machine
learning algorithms in the mining of biological sequence
data and possible solutions. They also reviewed four typical
applications of machine learning in Deoxyribonucleic acid
(DNA) sequence data.

In the article entitled “Parkinson’s Disease in Teneurin
Transmembrane Protein 4 (TENM4) Mutation Carriers” by Pu
et al. the authors investigated clinical and genetic manifestations
in four unrelated pedigrees with both essential tremor (ET)
and Parkinson’s disease (PD) in which TENM4 variants were
identified. They discussed whether TENM4 variants contributed
to the risk of developing PD. Thus, the frequency of TENM4
variants was evaluated from four PD pedigrees and other
407 subjects.

In the article entitled “Deep Learning in Head and Neck
Tumor Multiomics Diagnosis and Analysis: Review of the
Literature” by Wang and Li the authors reviewed the multiomics
image analysis of head and neck tumors using convolution
neural network (CNN) and other Deep learning (DL) neural
networks. They evaluated its application in early tumor detection,
classification, prognosis/metastasis prediction, and the signing
out of the reports.

In the article entitled “Alzheimer’s Disease Classification
with a Cascade Neural Network” by You et al. the authors

proposed a cascade neural network with two steps to
achieve a faster and more accurate Alzheimer’s Disease
(AD) classification by exploiting gait and electroencephalogram
(EEG) data simultaneously. They collected gait and EEG
data from 35 cognitively healthy controls, 35 mild cognitive
impairment (MCI), and 17 AD patients to demonstrate their
proposed method.

In the article entitled “Application of Structural and
Functional Connectome Mismatch for Classification and
Individualized Therapy in Alzheimer Disease” by Ren et al.
the authors performed a preliminary exploration into a set of
Alzheimer disease data to improve the personalized approach
in order to understand individual connectomes in an actionable
manner. They found that there were consistent patterns of white
matter fiber loss, mainly the Default Mode Network (DMN) and
Deep Subcortical Structures (DSS), which were present in nearly
all patients with clinical Alzheimer’s disease.

In conclusion, we would like to thank all the authors who
submitted their research articles to our Research Topic. We
highly appreciate the contributions of the reviewers for their
constructive comments and suggestions. We also would like to
acknowledge the guidance from the Editor-in-Chief and staff
members of Frontiers.
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Background: Prediction models for the overall survival of pancreatic cancer remain

unsatisfactory. We aimed to explore artificial neural networks (ANNs) modeling to predict

the survival of unresectable pancreatic cancer patients.

Methods: Thirty-two clinical parameters were collected from 221 unresectable

pancreatic cancer patients, and their prognostic ability was evaluated using univariate

and multivariate logistic regression. ANN and logistic regression (LR) models were

developed on a training group (168 patients), and the area under the ROC curve (AUC)

was used for comparison of the ANN and LR models. The models were further tested

on the testing group (53 patients), and k-statistics were used for accuracy comparison.

Results: We built three ANN models, based on 3, 7, and 32 basic features, to predict

8 month survival. All 3 ANN models showed better performance, with AUCs significantly

higher than those from the respective LR models (0.811 vs. 0.680, 0.844 vs. 0.722,

0.921 vs. 0.849, all p < 0.05). The ability of the ANN models to discriminate 8 month

survival with higher accuracy than the respective LR models was further confirmed in 53

consecutive patients.

Conclusion: Wedeveloped ANNmodels predicting the 8month survival of unresectable

pancreatic cancer patients. These models may help to optimize personalized

patient management.

Keywords: artificial neural network, logistic regression, unresectable pancreatic cancer, survival, prognosis
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INTRODUCTION

Pancreatic cancer is one of the leading causes of cancer-
related mortality worldwide (Ferlay et al., 2015). Most patients
present with few specific symptoms and are diagnosed at an
advanced stage. Despite the development of surgical techniques,
radiotherapy and chemotherapy, the prognosis of pancreatic
cancer is dismal (Hidalgo et al., 2015). In most cases, the disease
itself leads to the patients’ short survival time, and treatment
rarely achieves cure, although some patients achieve remissions
lasting several years (Kuhlmann et al., 2004; Cress et al., 2006;
Bradley, 2008). Given that life expectancy is relatively short,
even in the face of optimal treatment, doctors must weigh the
potential survival benefits with the potential impact of treatment
complications on patients’ quality of life.

Different predictive evaluation systems or risk scores have
been developed for decision-making, including perioperative
mortality risk (Are et al., 2009), post-surgery complications
(Braga et al., 2011) and survival prediction (Miura et al., 2014;
Dasari et al., 2016). Survival prediction models help doctors
make appropriate recommendations for the most suitable
treatment option, thus maximizing the survival benefit. In
addition, proper and uniform prediction models can facilitate
more accurate enrolment in clinical trials. Nevertheless, current
options to predict overall survival remain unsatisfying. The
TNM classification developed by the American Joint Committee
on Cancer has been used to estimate the prognosis of cancer.
However, there are different prognoses in pancreatic cancer
patients whose TNM stages are similar (Xu et al., 2017). Previous
clinical research has shown the predictive effect of clinical
pathological biomarkers such as tumor heterogeneity, main
vessel invasion, and complexity at the genomic, epigenetic, and
metabolic levels in patients with pancreatic cancer (Kleeff et al.,
2016; Neoptolemos et al., 2018; Naito et al., 2019). However, these
predictive biomarkers still have many limitations. Additional
reliable prognostic indicators are urgently needed.

Artificial neural networks (ANNs), a commonly used method
of machine learning, work in a non-linear mode and model
a biological neural system both structurally and functionally
(Cucchetti et al., 2010). In addition to its application in the field

of computer engineering, ANN modeling emerges as a potential
useful tool for projecting clinical outcomes (Penny and Frost,
1996). Many clinical studies have compared the predictive power
of ANN models with logistic regression (LR) models and have
shown ANNs to have better performance (Hanai et al., 2003;
Ghoshal and Das, 2008). A systemic review showed an increase
in the benefit of ANNs over existing statistics in healthcare
provision (Lisboa and Taktak, 2006). However, few studies have
compared the performance of ANN with LR in the field of
pancreatic cancer.

In our study, we aimed to explore possible prognostic
indicators for unresectable pancreatic cancer on the basis of
clinical and radiological variables and investigate the diagnostic
accuracy of these two methodologies (LR, ANN) in predicting
overall survival. The performance of the ANN and logistic
regression models were validated externally using a different
data set.

MATERIALS AND METHODS

Patients
We retrospectively reviewed 221 cases of unresectable pancreatic
cancer registered between May 2010 and December 2018 at
the First Affiliated Hospital of Zhejiang University. Taking
January 2018 as the dividing point, patients were classified
into two groups: 168 patients were used as a training dataset,
and 53 patients were used as an independent validation
dataset. The inclusion criteria for patients were as follows:
(i) patients were histologically confirmed adenocarcinoma
of the pancreas; (ii) resectability status were evaluated as
unresectable according to the Pancreatic Adenocarcinoma
NCCN Guidelines; (iii) patients were ≥18 years of age and
had a Eastern Cooperative Oncology Group (ECOG) score
0–2; (iv) patients had adequate hematologic, hepatic, and
renal function before treatment; (v) Complete clinical imaging
data and biochemical data 2 weeks before chemotherapy and
survival data were available. The exclusion criteria were: (i)
patients received prior chemotherapy or surgery; (ii) recurrent
pancreatic cancer. The study followed the international and
national regulations in accordance with the Declaration of
Helsinki and was approved by the ethics committee of the First
Affiliated Hospital, Zhejiang University School of Medicine. The
following clinical and biochemical data were collected before
the patient received chemotherapy: age, sex, main vascular
invasion (celiac axis, superior mesenteric artery, common
hepatic artery), clinical TNM staging, metastasis (including
retroperitoneal lymph node, liver, lung and peritoneum),
ascites, size of the largest tumor in the pancreas and
liver, tumor position in the pancreas, stomach invasion,
duodenum invasion, liver metastasis number, carcinoembryonic
antigen (CEA), carbohydrate antigen 199 (CA199), albumin-
to-globulin ratio (AGR), alanine transaminase (ALT), aspartate
transaminase (AST), creatinine, total bilirubin, direct bilirubin,
indirect bilirubin, haemoglobulin, neutrophil/lymphocyte ratio,
platelet/lymphocyte ratio, hepatitis B virus, and white blood cell
(WBC) count. Pancreatic tumor or metastatic lesions directly
invading stomach was defined as stomach invasion which was
diagnosed based on patients’ imaging, according to pancreatic
ductal adenocarcinoma radiology reporting template (Al-Hawary
et al., 2014). Progression-free survival (PFS), overall survival
(OS), and chemotherapy regimen were recorded. All patients
underwent primary palliative chemotherapy. TNM staging was
adopted according to the NCCN Guidelines (version 1. 2019)
for pancreatic cancer. The number of tumors, size of the largest
tumor (cm), tumor position, and metastasis or invasion organs
were defined for all patients on the basis of the CT scan or MRI.

Follow-Up
Patients were followed by outpatient clinics or phone calls until
September 2019. These follow-ups were conducted at 3 month
intervals. OS was defined as the number of months from the date
of diagnosis to the date of death or the date of last follow-up. PFS
was defined as the number of months from the date of diagnosis
to the date of identification of disease progression. In this study,
the median follow-up duration was 9 (range 3–36) months.
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Statistical Analysis
All patient characteristics in the training and testing groups were
compared. Continuous variables with parametric distributions
were evaluated by t-test. Categorical variables were evaluated by
χ
2-test (or Fisher’s exact test, if appropriate). OS was estimated

using the Kaplan–Meier method. The association of the baseline
parameters with 8 month survival was assessed using univariate
logistic regression analyses, and those with p < 0.05 were entered
into multivariate logistic regression analyses. Significantly
skewed continuous variables (CEA, CA199, ALT, AST, total
bilirubin, direct bilirubin, indirect bilirubin, haemoglobulin, the
neutrophil/lymphocyte ratio, the platelet/lymphocyte ratio, and
WBC count) were normalized by logarithmic transformation.
The violin plot was generated using the Python (version 3.7.5)
seaborn library.

Development of the Logistic Regression
Models
In the training set of 168 patients, variables found to be
significantly related to 8 month survival in the multivariate
analysis and univariate analysis were entered into logistic
regression models 1 and 2, respectively. All 32 variables were
entered into logistic regression model 3. A total of 168 patients
in the training group were selected to train the logistic regression
model, and the remaining 53 patients were used for testing.
Logistic regression is a predictive linear model that can be used
to predict the causality relationship between a dependent binary
variable and one or more independent variables. The formula
for logistic regression can be simply presented in linear algebra
terms as Y = ATX + b., where Y is the output of our model
and X is the input. Both A and b are parameters to be learned
from training data. The learned parameter A can be interpreted
as the relative importance of each factor in the survival of the
patient. Our logistic regression models were built using the
Python scikit-learn library.

Development of the Artificial Neural
Network Models
In the training group (n = 168), 133 (80%) patients were
randomly selected to train the network, while 35(20%) for
cross validation. Cross-validation was necessary for our neural
networks to learn general predictive characteristics rather than
memorizing the idiosyncrasies of the training data, which played
a role in helping assisting model building, including stopping
network training and to avoiding over-fitting.

In the training set of 168 patients, variables found to be
significantly related to 8 month survival in the multivariate
analysis and univariate analysis were entered into ANN models
1 and 2, respectively. All 32 variables were entered into ANN
model 3. A total of 168 patients in the training group were
selected to train the network, and the remaining 53 patients
were used for testing. Our artificial neural network was built
using the PyTorch framework. The search space of network
configuration was based empirically on the number of features
and the quantity of our available data. And then grid search was
conducted to search the best network configuration based on

the criteria of our cross-validation group (Bergstra and Bengio,
2012). We have tried three layers or five or more layers, all
resulting dissatisfied or overfitting and the best performance was
achieved with four layers based on computer experiments. So
we built a four-layer feedforward neural network with 3 input
nodes in the input layer, 5 and 3 nodes in the first and second
hidden layers, respectively, and one output neuron in model
1; 7 input nodes, 8 and 3 neurons in two hidden layers, and
one output neuron in model 2; and 32 input nodes, 10 and 8
neurons in two hidden layers, and one output neuron in model 3.
Figure 1 shows the diagrams of ANN models 1–3. The selection
strategy was stratified sampling, which guaranteed that the ratios
of positive and negative samples in both groups were equal. An
early-stop strategy, which stops the training process when the
performance of cross-validation no longer improves, was applied
in the training of our neural networks.

Assessment of the Diagnostic Accuracy of
the Models
The accuracy of the ANN and logistic regression models in
predicting 8 month OS were compared using receiver operating
characteristic (ROC) curve analysis, positive predictive values
(PPV), and positive likelihood ratios (PLR). The performance
parameters were calculated by the following formulas:
sensitivity: TP/(TP+FN), specificity: TN/(FP+TN), accuracy:
(TP+TN)/(P+N), positive predictive value: TP/(TP+FP),
negative predictive value: TN/(TN+FN), and positive likelihood
ratio = sensitivity/(1-specificity), where TP is true positive, FN
is false negative, FP is false positive, TN is true negative, P is
positive, and N is negative. The Hanley–McNeil method was
used to compare ROC curves. The predictions of both the ANN
and logistic regression models in the testing group of 53 patients
were reported using Cohen’s k coefficient using the formula:
[Pr(a)–Pr(e)]/[1–Pr(e)]; Pr(a) is the relative observed agreement,
and Pr(e) is the proportion of agreement expected to occur
by chance alone (Landis and Koch, 1977). Statistical and ROC
analyses were performed by MedCalc 7.2.1.0 (MedCalc software,
Mariakerke, Belgium).

RESULTS

Patient Demographics
Of the 211 enrolled patients, 168 were enrolled in the training
group, and 53 were enrolled in the testing group. The median
overall survival time of the training group was 8 months, which
was consistent with previous studies reporting that the median
overall survival in advanced pancreatic cancer is approximately
6–11 months (Conroy et al., 2011; Von Hoff et al., 2013). Thus,
the 8 month survival was set as the main endpoint of this work.
The characteristics of the training and testing groups are listed
in Table 1. The mean age of the training group was 61.05 ±

8.55 years, and that of the testing group was 61.17 ± 8.42 years
(p > 0.05). There were 2, 42, 53, and 71 patients with stages
T1–T4 disease, respectively, in the training group and 1, 10, 12,
and 30 patients with stages T1–T4 disease, respectively, in the
testing group (p > 0.05). A total of 155 (92.26%) patients were
defined as M1 in the training group, and 48 (90.57%) patients
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FIGURE 1 | Diagram of artificial neural network models used to predict 8 month survival of unresectable pancreatic cancer. (A) Artificial neural network model with 3

input nodes: stomach invasion, AGR and CA199. (B) Artificial neural network with 7 input nodes: liver metastasis, stomach invasion, size of the largest tumor of the

liver, CA199, AGR, white blood cell count, and gemcitabine-based chemotherapy as the first-line therapy. (C) Artificial neural network with 32 input nodes. The output

nodes of the three ANN models were 8 month survival.

were defined as M1 in the testing group (p > 0.05). There
was no statistically significant difference in 8 month survival
between these two groups (p = 0.581). All patients were treated
with at least one dose of chemotherapy. Gemcitabine-based
chemotherapy was the most common 1st-line chemotherapy
regimen. There were 85.12% and 83.02% of patients who received
less than third-line chemotherapy in the training group and
testing group, respectively. There were no significant differences
in any basic characteristics, including clinical parameters and
biological parameters, between the two groups (p > 0.05). All
continuous variables in the training and testing groups were
depicted using violin plots (Figure 2).

Prognostic Factors for 8 Month Survival
In the training group of 168 patients, liver metastasis (HR 0.51,
p = 0.041), stomach invasion (HR 0.408, p = 0.007), size of the
largest tumor of the liver (HR 0.778, p = 0.008), CA199 (HR
0.685, p = 0.002), AGR (HR 2.885, p = 0.002), WBC (HR 0.092,
p= 0.016), and gemcitabine-based chemotherapy as the first-line
therapy (HR 7.401, p= 0.009) were related to 8 month survival in
the univariate analysis (Table 2). ROC curve analysis was applied
to categorize the optimal cutoff value of the AGR for 8 month
survival, which was set as 1.48. We classified the patients into
groups of ‘high AGR (≥1.48)’ and ‘low AGR (<1.48)’. These
seven variables were selected as potential independent risk factors
in the multivariate analysis. The multivariate logistic regression
confirmed stomach invasion (HR 0.473, p = 0.04), CA199 (HR
0.754, p= 0.046), and AGR (HR 2.360, p= 0.026) as independent
predictors of 8 month survival (Table 2). In the training group of
168 patients, the Kaplan–Meier curve indicated that the OS of
patients with abnormal CA199 (median survival, 7.80 vs. 13.73
months, p < 0.05), stomach invasion (median survival, 6.83 vs.

9.10 months, p < 0.05) and low AGR (median survival, 6.10 vs.
9.10 months, p < 0.05) decreased significantly (Figures 3A–C).

Artificial Neural Network Models and
Logistic Regression Models
Three independent predictors of 8 month survival, stomach
invasion, AGR and CA199, were used to build the artificial neural
network and logistic regressionmodels labeled ANNmodel 1 and
LR model 1, respectively. The area under the ROC curve (AUC)
for ANN model 1 was 0.811 (95% C.I. = 0.743–0.867), higher
than that of LR model 1 with 0.680 (95% C.I. = 0.603–0.749,
p < 0.05) (Figure 4A). We applied a cutoff of 0.559 for ANN
prediction, and ANN model 1 had a sensitivity of 64.83% and
a specificity of 76.62%. ANN model 1 had a higher PPV for 8
month survival prediction than that of LR model 1, reflecting the
good predictive power of ANN. The PLR of the ANNmodel for 8
month survival prediction also remained higher than that of the
LR model.

Seven predictors for 8 month survival in the univariate
analysis were used to build the ANN and logistic regression
models labeled ANN model 2 and LR model 2. The performance
of ANN model 2 was high, with an area under the ROC curve
(AUC) of 0.844(95% C.I.= 0.780–0.895), compared to that of LR
model 2, with anAUCof 0.722 (95%C.I.= 0.648–0.788, p< 0.05)
(Figure 4B). A cutoff of 0.6292 was applied for ANN prediction.
ANN model 2 had a sensitivity of 69.23% and a specificity of
87.01%. The PPV and PLR for 8 month survival prediction of
ANN model 2 were higher than those from LR model 2.

All 32 clinical and biological parameters were used to build
ANN model 3 and LR model 3 to predict 8 month survival.
The area under the ROC curve (AUC) of ANN model 3 was
0.921 (95% C.I. = 0.869–0.957), which was higher than that

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 4 March 2020 | Volume 8 | Article 1969

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Tong et al. ANN Predicts Pancreatic Cancer Survival

TABLE 1 | Basic characteristics of the study population.

Variables Training (n = 168) Testing (n = 53) p

Age, years 61.05 ± 8.55 61.17 ± 8.42 0.928

Gender Male 106 (63.10%) 38 (71.70%) 0.252

Main vascular invasion 71 (42.26%) 30 (56.60%) 0.068

T T1 2 (1.19%) 1 (1.89%)

T2 42 (25%) 10 (18.87%)

T3 53 (31.55%) 12 (22.64%)

T4 71 (42.26%) 30 (56.60%) 0.297

N N0 29 (17.26%) 7 (13.21%)

N1 139 (82.74%) 46 (86.79%) 0.486

M M0 13 (7.74%) 5 (9.43%)

M1 155 (92.26%) 48 (90.57%) 0.694

Retroperitoneal lymph node metastasis 95 (56.55%) 31 (58.49%) 0.803

Liver metastasis 106 (63.10%) 36 (67.92%) 0.522

Lung metastasis 19 (11.31%) 5 (9.43%) 0.702

Peritoneal metastasis 21 (12.5%) 7 (13.21%) 0.893

Ascites 21 (12.5%) 4 (7.55%) 0.456

Size of the largest tumor of pancreas, cm 4.61 ± 1.67 4.94 ± 2.02 0.237

Tumor position of pancreas Head and/or neck 66 (39.29%) 23 (43.40%)

Body and/or tail 102 (60.71%) 30 (56.60%) 0.595

Stomach invasion 60 (35.71%) 15 (28.30%) 0.406

Duodenum invasion 22 (13.10%) 9 (16.98%) 0.478

Liver metastasis number <6 88 (52.38%) 27 (50.94%)

≥6 80 (47.62%) 26 (49.06%) 0.855

Size of the largest tumor of liver, cm 1.51 ± 1.85 1.89 ± 2.25 0.217

CEA, ng/mL (log-value) 0.96 ± 0.71 1.15 ± 0.77 0.103

CA199, U/mL (log-value) 2.96 ± 1.35 2.99 ± 1.10 0.865

Albumin/globin 1.63 ± 0.36 1.64 ± 0.37 0.855

ALT, U/L (log-value) 1.33 ± 0.32 1.32 ± 0.33 0.813

AST, U/L (log-value) 1.38 ± 0.24 1.34 ± 0.21 0.283

Creatinine, umol/L 63.81 ± 14.65 67.34 ± 16.48 0.141

Total bilirubin, umol/L (log-value) 1.12 ± 0.26 1.11 ± 0.27 0.849

Direct bilirubin, umol/L (log-value) 0.71 ± 0.34 0.73 ± 0.34 0.599

Indirect bilirubin, umol/L (log-value) 0.88 ± 0.24 0.84 ± 0.27 0.335

Hemoglobin, g/L (log-value) 2.09 ± 0.06 2.11 ± 0.06 0.066

Neutrophil/lymphocyte (log-value) 0.52 ± 0.26 0.57 ± 0.26 0.227

Platelet/lymphocyte (log-value) 2.14 ± 0.22 2.15 ± 0.19 0.622

WBC, 109/L (log-value) 0.78 ± 0.17 0.83 ± 0.16 0.079

HBV 12 (7.14%) 3 (5.67%) 0.724

Palliative 1st line protocol FOLFIRINOX 13 (7.74%) 4 (7.55%)

Gemcitabine-based chemotherapy 151 (89.88%) 49 (92.45%)

Others 4 (2.38%) 0 (0%) 0.524

Chemotherapy beyond 1st line protocol <3rd line palliative chemotherapy 143 (85.12%) 44 (83.02%)

≥3rd line palliative chemotherapy 25 (14.88%) 9 (16.98%) 0.712

Overall survival >8 months 91 (54.17%) 31 (58.49%) 0.581

CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; ALT, alanine transaminase; AST, aspartate transaminase; WBC, white blood cell; HBV, hepatitis B virus.

of LR model 3 with 0.849 (95% C.I. = 0.785–0.899, p < 0.05)
(Figure 4C). We built three ANN models, and all these models
showed that the AUC of the ANN model was higher than that of
the respective LR model, with ANN model 3 having the highest
performance (Table 3).

All ANN and LR models were evaluated on the testing group
of 53 patients. The accuracies of ANN model 1, ANN model
2 and ANN model 3 were 0.679, 0.698, and 0.774, respectively,
which were all were higher than the accuracies of the respective
LR models (0.623, 0.679, and 0.736). The k-statistics were 0.344,
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FIGURE 2 | The distribution of all continuous variables in the training and testing groups. There were no significant differences between the training and testing groups

in any continuous variables. CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; ALT, alanine transaminase; AST, aspartate transaminase; TB, total

bilirubin; DB, direct bilirubin; IDB, indirect bilirubin; HB, hemoglobin; NLR, neutrophil/lymphocyte ratio; PLR, platelet/lymphocyte ratio; WBC, white blood cell count.

0.417, and 0.527 for ANN model 1, ANN model 2, and ANN
model 3 and 0.233, 0.288, and 0.434 for LR model 1, LR model
2, and LR model 3, respectively. All LR models showed a lower
accuracy (Table 4).

DISCUSSION

Artificial neural networks have been developed as an effective
statistical technique in the last 40 years (Dayhoff and DeLeo,
2001). They have been used in many fields and established
as viable computational methodologies in computer science,
biochemical and medical fields (Baxt and Skora, 1996; Milik
et al., 1998; Gao et al., 2019; Yin et al., 2019; Deng et al., 2020;
Yu et al., 2020). The network itself consists of an input layer,
one or more hidden layers, and an output layer. Compared to
logistic regression, ANN applies non-linear statistics and consists
of a highly interconnected set of processing units (neurons) and
weighted connections; the data used to build ANN can be applied
to individual cases (Naguib et al., 1998).

For the ANN model, the usual ratio of training to testing
group is 7:3 or 6:2:2 (when there is a validation dataset), but the
radio is not strictly controlled, as previous studies have listed 5:2:3
or 6.4: 1.6: 0.2 (Cucchetti et al., 2010; Wu et al., 2017). In our
study, the data before January 2018 were used as training group,
and the data after January 2018 were used to simulate external
validation. In the training group (n = 168), 133 (80%) patients
were randomly selected to train the network, while 35 (20%) for

cross validation. Thus, the total ratio is 6: 1.6: 2.4 (133:35:53),
which was close to 6:2:2.

Many studies have demonstrated that ANN outperformed
logistic regression in predicting survival, morbidity andmortality
post-surgery and cancer diagnosis accuracy (Hanai et al., 2003;
Pergialiotis et al., 2018; Wise et al., 2019). However, in the field
of prostate cancer, the predictive accuracy of logistic regression
is better than that of ANN (Chun et al., 2007; Kawakami et al.,
2008). There are few applications of ANN in pancreatic cancer,
and, the applications to date have been mainly in diagnosis and
differential diagnosis (Ikeda et al., 1997; Norton et al., 2001;
Honda et al., 2005). Very few studies have compared the abilities
of ANN and logistic regression to predict the survival of advanced
pancreatic cancer patients. Except for the significant clinical
variables, some researchers showed non-significant variables still
play important roles in prediction (Kawakami et al., 2008; Wu
et al., 2017). So, we built three ANN models with different
numbers of input to compare the AUC, PPV, PLR, sensitivity,
and specificity, to help with patient stratification and clinical
decision making in the absence of standardized prognostic risk

scores for pancreatic cancer. ANN model 1 was built based on
the three independent predictive factors for 8 month survival
in the multivariate analysis, ANN model 2 was built based
on the seven predictive factors for 8 month survival in the
univariate analysis, and ANN model 3 was built based on all
thirty-two variables. This is the first study comparing ANN
and logistic regression in predicting unresectable pancreatic
cancer patient survival. The median OS for metastatic pancreatic
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TABLE 2 | Univariate and multivariate analyses of clinical characteristics associated with 8 month survival of the training group of 168 patients.

Univariate analysis Multivariate analysis

Variables HR 95% C.I. p HR 95% C.I. p

Age, years 0.986 0.951–1.022 0.432

Gender Female 1

Male 0.702 0.372–1.323 0.274

Main vascular invasion 1.419 0.764–2.633 0.268

T T1–T2 1

T3–T4 1.058 0.523–2.14 0.876

N N0 1

N1 0.566 0.245–1.303 0.181

M M0 1

M1 0.328 0.087–1.239 0.1

Retroperitoneal lymph node metastasis 0.713 0.385–1.319 0.281

Liver metastasis 0.51 0.268–0.972 0.041 0.854 0.35–2.08 0.727

Lung metastasis 1.186 0.451–3.116 0.729

Peritoneal metastasis 0.741 0.296–1.851 0.521

Ascites 0.921 0.369–2.302 0.861

Size of of the largest tumor of pancreas, cm 0.892 0.741–1.073 0.224

Tumor position of pancreas Head and/or neck 1

Body and/or tail 1.078 0.579–2.007 0.812

Stomach invasion 0.408 0.214–0.779 0.007 0.473 0.231–0.965 0.04

Duodenum invasion 0.669 0.272–1.646 0.381

Liver metastasis number <6 1

≥6 0.542 0.293–1.001 0.05

Size of of the largest tumor of liver, cm 0.778 0.645–0.938 0.008 0.903 0.71–1.147 0.402

CEA, ng/mL (log-value) 1.132 0.733–1.748 0.575

CA199, U/mL (log-value) 0.685 0.536–0.875 0.002 0.754 0.572–0.995 0.046

Albumin/globin <1.48 1

≥1.48 2.885 1.487–5.596 0.002 2.36 1.106–5.038 0.026

ALT, U/L (log-value) 0.76 0.293–1.968 0.572

AST, U/L (log-value) 0.62 0.171–2.248 0.467

Creatinine, umol/L 1.009 0.987–1.03 0.427

Total bilirubin, umol/L (log-value) 3.133 0.888–11.063 0.076

Direct bilirubin, umol/L (log-value) 1.624 0.643–4.104 0.305

Indirect bilirubin, umol/L (log-value) 3.81 0.996–14.578 0.051

Hemoglobin, g/L (log-value) 0.099 0.001–13.453 0.356

Neutrophil/lymphocyte (log-value) 0.409 0.121–1.378 0.149

Platelet/lymphocyte (log-value) 0.818 0.2–3.346 0.78

WBC, 109/L (log-value) 0.092 0.013–0.644 0.016 0.369 0.043–3.168 0.363

HBV 0.845 0.261–2.737 0.779

Gemcitabine-based chemotherapy in 1st line 7.401 1.636–33.487 0.009 3.768 0.753–18.865 0.107

CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; ALT, alanine transaminase; AST, aspartate transaminase; WBC, white blood cell; HBV, hepatitis B virus.

p-value < 0.05 are indicated in bold.

cancer is approximately 6 months without systemic therapy.
FOLFIRINOX offered enhanced median OS as compared to
gemcitabine monotherapy (11.1 vs. 6.8 months) (Conroy et al.,
2011). Gemcitabine plus nab-paclitaxel demonstrated superiority
than gemcitabine with OS of 8.5 vs 6.7 months (Von Hoff et al.,
2013). In our study, the median OS of the training group was 8
months, which is consistent with previous studies, so we chose 8
month survival as study’s primary endpoint. The ANN models
were found to be superior to linear discriminant analysis in

predicting 8 month survival in the training group, and these
results were further validated in the testing group. In addition,
as the feature numbers increased, the prediction accuracy
improved. Although ANN model 3 had the best performance,
it was impractical, as 32 characters needed to be collected. Of
the two rest models, ANN model 2 achieved higher accuracy
than ANN model 1, and the number of characters needed to
be collected were acceptable, so we recommend ANN model 2
for clinicians.
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FIGURE 3 | Kaplan–Meier overall survival curves for the patients with unresectable pancreatic cancer in the training sample of 168 patients. (A) Overall survival of

patients with abnormal CA199 decreased significantly compared with that of patients with normal CA199 (median survival, 7.80 vs. 13.73 months, p < 0.05). (B)

Overall survival of patients with stomach invasion decreased significantly compared with that of patients with no stomach invasion (median survival, 6.83 vs. 9.10

months, p < 0.05). (C) Overall survival of patients with low AGR decreased significantly compared with that of patients with high AGR (median survival, 6.10 vs. 9.10

months, p < 0.05).

FIGURE 4 | ROC curve of the logistic regression models and ANN models in the training sample of 168 patients. (A) The area under the ROC curve (AUC) of ANN

model 1 was 0.811 (95% C.I. = 0.743–0.867), which was higher than that of LR model 1 (AUC 0.680, 95% C.I. = 0.603–0.749, p < 0.05). (B) The area under the

ROC curve (AUC) of ANN model 2 was 0.844 (95% C.I. = 0.780–0.895), which was higher than that of LR model 2 (AUC 0.722, 95% C.I. = 0.648–0.788, p < 0.05).

(C) The area under the ROC curve (AUC) of ANN model 3 was 0.921 (95% C.I. = 0.869–0.957), which was higher than that of LR model 3 (AUC 0.849, 95% C.I. =

0.785–0.899, p < 0.05).

TABLE 3 | Accuracy of artificial neural network and logistic regression models in the training sample of 168 patients.

AUC 95% C.I. Cut-off PPV PLR Sensitivity Specificity

OS ≤ 8 months OS > 8 months OS ≤ 8 months OS > 8 months

ANN model 1 0.811 0.743–0.867 0.559 0.6483 0.7662 0.4589 2.7735 0.6483 0.7662

LR model 1 0.680 0.603–0.749 0.5274 0.6578 0.7065 0.44 2.037 0.6493 0.7142

p-value 0.0008

ANN model 2 0.844 0.780–0.895 0.6292 0.7052 0.863 0.3536 5.3307 0.6923 0.8701

LR model 2 0.722 0.648–0.788 0.5457 0.6511 0.7439 0.4532 2.4578 0.6703 0.7272

p-value 0.0006

ANN model 3 0.921 0.869–0.957 0.4122 0.8117 0.9036 0.1962 7.9326 0.8241 0.8961

LR model 3 0.849 0.785–0.899 0.5601 0.7386 0.85 0.2994 4.7948 0.7472 0.8441

p-value 0.03

ANN, artificial neural network; LR, logistic regression; PPV, positive predictive values; PLR, positive likelihood ratio. Stomach invasion, CA199, albumin/globin were used to build ANN

model 1 and logistic model 1. Liver metastasis, stomach invasion, size of the largest tumor of liver, CA199, albumin/globin, white blood cell and gemcitabine-based chemotherapy in

first line therapy were used to build ANN model 2 and LR model 2. All 32 characters were used to build ANN model 3 and LR model 3.

All patients included had unresectable pancreatic cancer.
We collected as many clinical markers related to tumor
prognosis as possible. Finally, we addressed the prognostic

significance of AGR, CA199 and stomach invasion in univariate
and multivariate analyses. Albumin and globulin are human
serum proteins. Albumin reflects nutritional status and systemic
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TABLE 4 | Prediction accuracy of ANN and logistic regression models in the

testing group of 53 patients.

Model 1 Model 2 Model 3

Accuracy k Accuracy k Accuracy k

ANN 0.679 0.344 0.698 0.417 0.774 0.527

LR 0.623 0.233 0.679 0.288 0.736 0.434

ANN, artificial neural network; LR, logistic regression.

inflammatory response in cancer patients (McMillan et al., 2001).
Poor nutrition status (hypoalbuminemia) has been proven to
be a negative factor of survival in multiple cancers, including
hepatobiliary, lung, gastrointestinal, CNS, reproductive, and
breast cancers (Onate-Ocana et al., 2007; Gupta and Lis,
2010). On the other hand, haemoglobulin plays an important
role in immunity and inflammation. Chronic inflammation is
considered a contributor to tumor proliferation, immune evasion
and metastasis. Therefore, low albumin and high haemoglobulin
may decrease the survival of cancer patients. In previous studies,
the AGR has been used as a prognostic indicator in diverse
human cancers (Azab et al., 2013; Lv et al., 2018). However, AGR
cutoff values are diverse in different studies (Lv et al., 2018), and
more accurate AGR cutoff values are expected to be found.

Tumor invasion of adjacent structures is not captured in the
TNM classification of pancreatic cancer from the 8th American
Joint Committee on Cancer. However, a multidisciplinary
consensus group recently created a standardized language for
the reporting of imaging results, and reporting the presence
of extrapancreatic tumor extension was recommended (Al-
Hawary et al., 2014). Stomach, as one of the adjacent structures
to pancreas, were recommended to be reported present or
absent of tumor involved. Stomach invasion carries the risk of
haematemesis. Although the incidence of haematemesis is low,
it can be life-threatening if it occurs. Additionally, according
to NCCN guidelines, SBRT should not be used if invasion of
the stomach is observed on imaging. These results prove that
stomach invasion is a problem worthy of clinical concern. In
our study, Kaplan–Meier analysis showed that overall survival
decreased significantly in the stomach invasion group. To the best
of our knowledge, this is the first report indicating that stomach
invasion is an independent prognostic factor for the 8 month
survival of advanced pancreatic cancer patients. These features
deserve the doctors’ attention.

Treatment option is another important factor that
impacts patients’ prognosis. In our study, gemcitabine-based
chemotherapy as the first-line therapy (HR 7.401, p = 0.009)
were related to 8 month survival in the univariate analysis
in the training group. However, it was not confirmed in the
multivariate analysis. Different from randomized clinical trial,
patients’ status varied in retrospective study. As there was a
preference among doctors and patients to select treatment based
on performance status and fitness to withstand toxicities, bias
is hard to be avoided. The relative small sample size may be
another reason that failed to meet the statistical significance in
multivariate analysis.

In addition to selecting predictive factors for 8 month
survival, we also tried to identify predictive factors for 4
month progression-free survival. Even though nine factors (liver
metastasis, stomach invasion, liver metastasis number, size of the
largest tumor of the liver, CA199, AGR, neutrophil/lymphocyte
ratio, platelet/lymphocyte ratio, and WBC count) showed
statistical significance in univariate analysis, none of them were
confirmed in the multivariate analysis based on the training
group data (Supplementary Table 1).

Our study had several strengths. Our study made full
use of clinical data that is very convenient and easy to
obtain to build models to predict the survival of patients.
Our models help make more accurate predictions of OS,
thus optimizing patient selection for appropriate treatment
and achieving more personalized management. In addition,
more accurate prediction of OS will facilitate well-balanced
arms in clinical trials (Vernerey et al., 2016) and allow
cross-study comparisons for research purposes. Moreover, the
clinical and biological parameters in the training and testing
groups were comparable (p > 0.05), and the testing group
displayed convincing performance. However, as our models were
built and tested on data that originated from one center, a
multicentre study should be performed in the future to verify
our findings.

CONCLUSIONS

AGR, CA199, and stomach invasion were independent predictive
factors for 8 month survival in unresectable pancreatic cancer
patients. We developed convenient and reliable ANN models
predicting the 8 month survival of patients with unresectable
pancreatic cancer, and the validation showed superior predictive
accuracy of ANN over logistic regression models. Our models
may help clinicians evaluate the 8 month survival time and make
appropriate recommendations for the most suitable treatment
options for their patients.
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Yingzhi Liu 3, Keith Sai Kit Leung 6, Tong Liu 1, Adrian Baranchuk 7 and Qingpeng Zhang 4*

1 Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of

Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China, 2 Xiamen Cardiovascular Hospital, Xiamen University,

Xiamen, China, 3 Laboratory of Cardiovascular Physiology, Li Ka Shing Institute of Health Sciences, Shatin, China, 4 School of

Data Science, City University of Hong Kong, Kowloon, China, 5 Faculty of Medicine, Newcastle University, Newcastle,

United Kingdom, 6 Aston Medical School, Aston University, Birmingham, United Kingdom, 7Heart Rhythm Service, Kingston

General Hospital, Queen’s University, Kingston, ON, Canada

Introduction: Mitral stenosis is associated with an atrial cardiomyopathic process,

leading to abnormal atrial electrophysiology, manifesting as prolonged P-wave duration

(PWD), larger P-wave area, increased P-wave dispersion (PWDmax—PWDmin), and/or

higher P-wave terminal force on lead V1 (PTFV1) on the electrocardiogram.

Methods: This was a single-center retrospective study of Chinese patients, diagnosed

with mitral stenosis in sinus rhythm at baseline, between November 2009 and October

2016. Automated ECG measurements from raw data were determined. The primary

outcome was incident atrial fibrillation (AF).

Results: A total 59 mitral stenosis patients were included (age 59 [54–65] years, 13

(22%) males). New onset AF was observed in 27 patients. Age (odds ratio [OR]: 1.08

[1.01–1.16], P = 0.017), systolic blood pressure (OR: 1.03 [1.00–1.07]; P = 0.046),

mean P-wave area in V3 (odds ratio: 3.97 [1.32–11.96], P = 0.014) were significant

predictors of incident AF. On multivariate analysis, age (OR: 1.08 [1.00–1.16], P = 0.037)

and P-wave area in V3 (OR: 3.64 [1.10–12.00], P = 0.034) remained significant

predictors of AF. Receiver-operating characteristic (ROC) analysis showed that the

optimum cut-off for P-wave area in V3 was 1.45 Ashman units (area under the curve:

0.65) for classification of new onset AF. A decision tree learning model with individual

and non-linear interaction variables with age achieved the best performance for outcome

prediction (accuracy = 0.84, precision = 0.84, recall = 0.83, F-measure = 0.84).

Conclusion: Atrial electrophysiological alterations in mitral stenosis can detected on the

electrocardiogram. Age, systolic blood pressure, and P-wave area in V3 predicted new

onset AF. A decision tree learning model significantly improved outcome prediction.

Keywords: mitral stenosis, mitral valve, P-wave area, decision tree, machine learning
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INTRODUCTION

Inter-atrial block (IAB) results from impaired conduction of
action potentials along Bachmann’s bundle that connects the
right and left atria (Tse et al., 2016). It is characterized
electrocardiographically by a prolonged P-wave duration of
>120ms. This condition results in delayed and asynchronous
activation of the left atrium (Agarwal et al., 2003; Budeus et al.,
2005; Caldwell et al., 2014). IAB has been associated with
higher incidence of stroke as well as cardiovascular and all-
cause mortality (Ariyarajah et al., 2007; Magnani et al., 2011).
However, it is unclear any benefit derived from early initiation
of anti-coagulation in IAB before the development of atrial
fibrillation (AF), and the risk may differ depending on the
severity of IAB and the presence of other cardio-metabolic
co-morbidities. Two other measures have been used to assess
atrial electrophysiological remodeling. Firstly, P-wave dispersion,
defined as the difference between maximum and minimum
P-wave duration (PWD), is a measure of heterogeneous and
discontinuous atrial activation. Secondly, P-wave terminal force
in V1 (PTFV1) is a marker of left atrial disease independently
of structural or pressure changes in the left atrium (Morris and
Thompson, 1964) and has been shown to be a predictor of
future incident AF (Martin Garcia et al., 2012). Prolonged PWDs,
measured from amplified and digitized ECG signals obtained in
sinus rhythm, predicted AF recurrence after pulmonary isolation
procedures (Jadidi et al., 2018). Moreover, the area of the
P-wave initial portion was independently associated with the
development of AF in patients with left atrial overload (Ishida
et al., 2010). AF complexity parameters derived from the ECG
also predicted long-term outcomes following catheter ablation
(Lankveld et al., 2016).

Mitral stenosis is a valvular disease frequently seen in parts
of Asia, causing significant morbidity and mortality. In this
condition, the most common arrhythmia encountered is AF,
but there are limited data on electrocardiographic changes that
reflect ongoing atrial cardiomyopathic process that precedes
the development of fibrillation. Mitral stenosis patients have
longer PWDs and higher P-wave dispersion than control
subjects without mitral stenosis (Guntekin et al., 2008). Another

study confirmed this observation and further demonstrated a
significant correlation between maximum PWDs and left atrial
size, transmitral valve gradient, and a negative correlation with
mitral valve area (Rezaian et al., 2007). PTFV1 is higher in
mitral stenosis and is a predictor of disease severity (Yuce
et al., 2011). However, there are limited published data regarding
the incidence of IAB, the relative contributions of partial and
advanced IAB, and whether these indices predict incident AF in
mitral stenosis.

METHODS

This study received approval from The Joint Chinese University
of Hong Kong—New Territories East Cluster Clinical Research
Ethics Committee. Clinical and electrocardiographic details of
a cohort of Chinese patients referred to our center, which is a
tertiary referral center and teaching hospital, between November

2009 and October 2016, for echocardiography, were analyzed
retrospectively. Inclusion criteria were mitral stenosis patients
with raw ECG data files available for analysis.

Definitions, Data Extraction,
Electrocardiographic Measurements, and
Primary Outcome
The following clinical details were obtained from the patients:
age, gender, blood pressure, smoking status, diabetes mellitus,
hypertension, hypercholesterolemia, and ischemic heart disease.
For electrocardiographic parameters, data were extracted from
patients who had ECGs that did not show atrial fibrillation
(AF). The following parameters were manually measured by
two investigators from the ECGs showing sinus rhythm. The
following P-wave variables were determined from ECGs of
patients in sinus rhythm. Automated measurements from raw
ECG data were extracted from the Philips ECGVue program
(Standard Edition). The ECG waveform data is captured at a
sample rate of 4 MHz and reduced to 500 samples per second
with 5 µV resolution. The mean, minimum, maximum, and
standard deviation of different P-wave variables were calculated
from values from all 12 leads (Figure 1). P-wave dispersion was
defined as the maximum difference in PWD. P-wave terminal
force in V1 (PTFV1) was defined as the area subtended by the
terminal negative component of a biphasic P-wave in lead V1,
with the area calculated by multiplication of the duration and
depth of the waveform (He et al., 2017). The primary endpoint
of this study was new onset persistent or permanent atrial
fibrillation (AF). Paroxysmal AF at baseline or detected follow-
up was excluded. The endpoint was met if AF was detected in at
least two ECGs on follow-up 1 year apart in an absence of sinus
rhythm detection in the intervening period.

Statistical Analysis, Non-linear Variables,
and Decision Tree Learning
Data were expressed as median [lower quartile to upper
quartile]. Categorical data were analyzed by Fisher’s exact
test. Differences between study groups were tested using
Kruskal-Wallis ANOVA. P < 0.05 was considered statistically
significant. Non-linear interactions (e.g., interactions formed
by some important individual variable) play an important role
in predicting the outcome. The consideration of non-linear
interactions overcomes linear model’s assumption that the
dependent and independent variables are linearly related. In
this study, the logarithmic form of the multiplication non-
linear items formed by age (important individual variable) and
other continuous variables were considered, i.e., log(age∗xi),
where xi denotes the ith continuous variable. The adoption of
logarithmic transformation is to obtain equivalent inference
on variable-outcome associations while avoid the bias due to
exponentiation on some squared and cubed variables. The
non-linear variables considered were log(age∗systolic blood
pressure), log(age∗diastolic blood pressure), log(age∗diabetes
mellitus), log(age∗hypercholesterolaemia, log(age∗ischaemic
heart disease), log(age∗left atrial diameter), log(age∗mitral
valve area), log(age∗mitral valve gradient), log(age∗mitral
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FIGURE 1 | Normal inter-atrial conduction, partial and advanced inter-atrial block and left atrial enlargement. P-wave terminal force in V1 (PTFV1), P-wave duration

(PWD), and P-wave area. Adapted from (He et al., 2017) with permission.

stenosis severity), log(age∗ P-wave area in v3). For instance,
for a patient whose age is 58 years old and has systolic
blood pressure 110 mmHg, we generate the value of non-
linear variable log(age∗systolic blood pressure) by calculating
log(58∗110) = 3.8048. The values for the other non-linear
variables are obtained in a similar way. Then these non-linear
variables and the individual variables are together used as input
in the risk prediction model. The reproduction of the non-linear
variables can be obtained since there exists one-one mapping
between the non-linear variables and the individual variable
pairs that form them.

Decision tree learning uses a decision tree module (as a
predictive model) to determine the outcome (or target value,
represented by leaves) of a sample based on the associated
observations (represented by branches) for model classification
and prediction. The principles of decision tree are illustrated
in Figure 2. In this study, a decision tree learning approach
(classification and regression tree, CART Rutkowski et al.,
2014 was used to predict new onset AF. Specifically, the non-
linear variables (including log(age∗systolic blood pressure),
log(age∗diastolic blood pressure), log(age∗diabetes mellitus),
log(age∗hypercholesterolaemia), log(age∗ischaemic heart
disease), log(age∗left atrial diameter), log(age∗mitral valve area),
log(age∗mitral valve gradient), log(age∗mitral stenosis severity),
log(age∗ P-wave area in v3) together with individual variables
(including sex, age, systolic blood pressure, diastolic blood
pressure, diabetes mellitus, hypercholesterolaemia, ischaemic
heart disease, left atrial diameter, mitral valve area, mitral valve
gradient, mitral stenosis severity, P-wave area in v3) were used
as input to the DTL model, in order to predict the new onset
of AF outcome in mitral stenosis. In the DTL model, leaves
represent class label of new onset AF and branches represent
feature conjunctions (both of non-linear variables and individual
variables) that lead to new onset AF. DTL uses Gini index to
construct a decision tree, which is calculated by the formula

Gini = 1−
∑C

i=1

(

pi
)2

representing the probability of a particular
patient being wrongly classified when it is randomly chosen
and c denotes the number of class (c = 2 for new onset AF
classification in this study). The Gini index is used to create split
points by considering a binary split for each variable in DTL. It
varies between 0 and 1, where 0 denotes that all elements belong
to a certain class or if there exists only one class, and 1 denotes
that the elements are randomly distributed across various classes.
A Gini Index of 0.5 denotes equally distributed elements into
some classes.

Here we present an example to show the construction process
of DTL with Gini index. Firstly, the frequency table of new onset
AF outcome (27 with “yes” and 32 with “no”) was considered:
there are 19 of 46 females with new onset AF, while eight
of 13 males with new onset AF. The Gini index for sex as a
decision node to split the tree was calculated: Gini index (new
onset AF, male) = 2∗(8/13)∗(1–8/13) =0.4734, Gini index (new
onset AF, female) = 2∗(19/46)∗(1–19/46) = 0.4849. In addition,
the frequency table of ischaemic heart disease was considered:
eight of 12 with ischaemic heart disease had new onset AF,
and 19 of 47 without ischaemic heart disease had new onset
AF. The corresponding Gini index was calculated by Gini(new
onset AF, ischaemic heart disease as “yes”) = 2∗(8/12)∗(1–
8/12)=0.4444, Gini index(new onset AF, ischaemic heart disease
as “no”)=2∗(19/47)∗(1–19/47) = 0.4817. In the same manner,
the Gini indices of all the variables (the Information Gain
of a continuous variable, such as age, was discretized first)
was calculated. DTL splits the dataset on different variables by
referring to the Gini indices, and the variable with the lowest
Gini index value was selected as the decision node. DTL divided
the dataset by its branches and repeat the same process on every
branch. A branch with zero Gini index becomes a leaf node, while
a branch with Gini index larger than zero needs further splitting.
DTL is run recursively in a similar way on the non-leaf branches,
until all data were classified.
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FIGURE 2 | An illustration of the decision tree learning approach.

RESULTS

Electrocardiograms of patients with mitral stenosis (n = 155)
were screened. In this cohort, 96 had atrial fibrillation on
admission to our hospital without prior ECGs in sinus
rhythm available for analysis. The remaining 59 patients were
in sinus rhythm and were analyzed further. A graphical
representation of the different P-wave indices is shown in
Figure 1. The baseline characteristics of this cohort are shown
in Supplementary Table 1. The median age was 59 [54–65] years
old, and 13 patients (22%) were male.

A total of 27 patients developed new onset AF over a median
follow-up of 58 [48–76] months. Patients with new onset AF
had similar mean PWD (102 [95–118] vs. 101 [89–115] ms),
minimum PWD (56 [40–68] vs. 52 [38–65]), maximum PWD
(152 [132–164] vs. 136 [123–160] ms), P-wave dispersion (84
[62–116] vs. 82 [57–110] ms), standard deviation of PWD (28
[17–33] vs. 24 [16–33] ms), mean P-wave amplitude (0.11 [0.09–
0.15] vs. 0.11 [0.09–0.13] mV), minimum P-wave amplitude
(0.05 [0.03–0.07] vs. 0.05 [0.03–0.06] mV), maximum P-wave
amplitude (0.18 [0.15–0.25] vs. 0.19 [0.16–0.23] mV), dispersion
of P-wave amplitude (0.14 [0.10–0.17] vs. 0.14 [0.11–0.19] mV),
standard deviation of P-wave amplitude (0.04 [0.03–0.06] vs.
0.04 [0.03–0.06] mV), mean P-wave area (0.12 [0.09–0.14] vs.
0.10 [0.09–0.13] Ashman units [40ms × 0.1mV]), minimum P-
wave area (0.05 [0.04–0.07] vs. 0.05 [0.03–0.06] Ashman units),
maximum P-wave area (0.22 [0.17–0.26] vs. 0.18 [0.14–0.26]
Ashman units), dispersion of P-wave area (0.16 [0.11–0.20]
vs. 0.12 [0.11–0.16] Ashman units), standard deviation of P-
wave area (0.05 [0.04–0.06] vs. 0.04 [0.03–0.04] Ashman units),
Neither P-wave initial force in V1 (PIFV1: 7.6 [3.7–11.7] vs. 3.6
[1.7–11.0] ms.mV) nor P-wave terminal force in V1 (PTFV1:
2.7 [0–6.9] vs. 3.8 [0–8.3] ms.mV) differed between the groups.
Similarly, no difference in left atrial diameter was detected (4.9
[4.3–5.0] vs. 4.4 [3.9–4.9] cm, P = 0.1179). By contrast, P-wave
area in V3 was significantly higher in the new onset AF group
(1.0 [0.7–1.9] vs. 0.8[0.5–1.1]; P = 0.045).

The results of univariate logistic regression are shown in
Supplementary Table 2. Age (odds ratio [OR]: 1.08 [1.01–
1.16], P = 0.017), systolic blood pressure (OR: 1.03 [1.00–
1.07]; P = 0.046), mean P-wave area in V3 (odds ratio:
3.97 [1.32–11.96], P = 0.014) were significant predictors of
incident AF. Variables that achieved P < 0.10 in univariate

logistic regression were included in the multivariable model
(Supplementary Table 3). On multivariate analysis, age (OR:
1.08 [1.00–1.16], P = 0.037) and P-wave area in V3 (OR: 3.64
[1.10–12.00], P = 0.034) remained significant predictors of AF.
Receiver-operating characteristic (ROC) analysis showed that the
optimum cut-off for P-wave area in V3 was 1.45 Ashman units
with an area under the curve of 0.65 for classifying new onset AF.

A decision tree learning (DTL) model was then employed to
generate the decision rules based on only individual variables
as shown in Figure 3A, while the decision rules generated by
DTL model based on both individual and non-linear interaction
items are shown in Figure 3B. In each model, 80% of the sample
(n= 47) were randomly selected and the remaining 20% (n= 12)
were used for validation. For the decision tree without interacting
variables, P-wave area in V3 is the first predictor generated with
a Gini index of 0.496 (Figure 3A). In addition, the interaction
between age and left atrial diameter is the first variable in the
generated decision rule with a Gini index of 0.495, while P-
wave area in V3 as the second most important variable with
Gini index 0.278 (Figure 3B). Both decision trees generated by
machine learning can be used as an efficient tool for accurate risk
stratification in mitral stenosis. The decision rule incorporating
interactions between variables is more accurate.

To determine the out-of-sample prediction ability of the
model, five-fold cross-validation was adopted. The evaluation
metrics evaluated are accuracy, precision, recall, and F-measure.
Comparisons of the prediction performance of logistic regression

and DTL are shown in Supplementary Table 4. DTL with
individual and non-linear variables outperforms the logistic
regression for predicting incident AF in mitral stenosis. The
non-linear variable formed by P-wave area in V3 and age was
significantly predictive for classifying new onset AF outcome
in mitral stenosis. We can also observe that several non-linear
variables are more predictive than individual variables, indicating
the importance of considering the non-linear patterns in clinical
characteristics to improve the performance of predicting new
onset AF.

DISCUSSION

The major findings of this study are that (i) a high proportion
of patients with mitral stenosis had IAB, (ii) age and P-wave
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FIGURE 3 | Continued
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FIGURE 3 | Visualization of decision tree learning with individual variables (A). Visualization of decision tree learning with both individual and non-linear interaction

variables (B).

area in V3 predicted new onset AF, and (iii) a stepwise
improvement in the predictive performance after incorporation
of interaction variables and machine learning using a decision
tree approach.

Prior studies have investigated alterations in P-wave
morphologies and indices in non-valvular atrial fibrillation.
Whilst some reports have dealt with the relationship between
mitral stenosis and P-wave indices, few studies have examined
whether these indices can predict new onset AF. Atrial

electrophysiology in mitral stenosis is abnormal due to a
complex process of electrophysiological remodeling. IAB is
the conduction delay along the Bachmann’s bundle between
left and right atria, diagnosed by its characteristic ECG pattern
(Agarwal et al., 2003; Bayes de Luna et al., 2012). Partial IAB and
advanced IAB are defined as PWD ≥ 120ms in the presence and
absence of biphasic P-waves in the inferior leads. The association
between IAB and supraventricular tachyarrhythmias, especially
AF, is known as Bayés syndrome. Mitral stenosis is a major
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risk factor for AF through atrial dilatation with progressive
structural remodeling and interstitial fibrosis, predisposing to
re-entrant activity within the atrium (Markides and Schilling,
2003; O’neal et al., 2016). In addition to IAB, abnormal atrial
electrophysiology can be detected by alterations in P-wave
morphology on the electrocardiogram (ECG), including P-
wave dispersion and abnormal P-wave terminal force in V1
(PTFV1) (Yamada et al., 1999; Dogan et al., 2004; Wong et al.,
2004; Koide et al., 2008; Tsioufis et al., 2010; Yoshizawa et al.,
2014). A previous study involving 30 mitral stenosis patients
found that maximum P-wave duration and P-wave dispersion
were significantly higher than patients without mitral stenosis
(Guntekin et al., 2008). In the same previous study, baseline
maximum and minimum PWDs and P-wave dispersion all
correlated with mitral valve area and mean mitral gradient
(Guntekin et al., 2008). Another study involving a prospective
follow-up of 116 mitral stenosis patients similarly reported these
associations, and additionally correlated these ECG parameters
with increased pulmonary artery pressure, and a poor NYHA
class (Yuce et al., 2011). Moreover, the extent to which atrial
electrical abnormalities can predict incident AF remains less
explored in these previous studies. Whilst previous studies have
demonstrated the predictive value of various P-wave indices
for incident AF or progression from paroxysmal to persistent
AF (Koide et al., 2008), to date there are no studies specifically
on their values in mitral stenosis. In our cohort, we utilized
automated ECG measurements and found that P-wave area
significantly predicted new onset AF.

In clinical practice, it is often useful to use cut-off values
to identify categorize whether a patient is at high or low risk
of adverse events. For example, a previous study identified
that PWDs longer than 150ms predicted AF recurrence after
pulmonary isolation procedures (Jadidi et al., 2018). It should be
noted that in the prior study, the ECG signals were amplified
to 0.2–0.25 mV/cm before manual measurements were made,
and the methodology therefore differs from that used here.
In a cohort of patients with left atrial overload, area of the
initial portion of the P-wave ≥ 65 µV.ms was associated with
a four-fold increased risk of developing future AF (Ishida et al.,
2010). In our study, the optimum cut-off for P-wave area in

V3 was 1.45 Ashman units, with an area under the ROC curve

of 0.65. Our novelty lies with the demonstrations that P-wave

area can be used to predict incident AF in mitral stenosis and

the use of machine learning approaches significantly improve
outcome classification.

LIMITATIONS

Some limitations should be recognized. Firstly, this was a single
center study with a small sample size and retrospective analyses.
Some inherent bias could affect the results. However, electronic
health records in Hong Kong are comprehensive with accessible
information across different hospitals within the public system
and multiple follow-ups per year in the outpatient and inpatient
settings. Secondly, the effects of drugs were not explored in

the current study. Thirdly, left atrial diameter was the only
available metric on atrial dimensions, as this was the only variable
described in the echocardiography reports. Future work could
explore (i) whether left atrial area, volume or volume index
can predict incident AF and (ii) the potential effects on atrial
reverse remodeling by drugs. Our main conclusion that P-
wave area predicts incident AF needs to be validated by larger
prospective studies.

CONCLUSION

Atrial electrophysiological alterations in mitral stenosis can
detected on the electrocardiogram. Age, systolic blood pressure,
andmean PWD predicted new onset AF. A decision tree learning
model significantly improve outcome prediction.
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Toward the ultimate goal of affordable and non-invasive screening of peripheral occlusive
artery disease (PAD), the objective of this work is to investigate the potential of deep
learning-based arterial pulse waveform analysis in detecting and assessing the severity
of PAD. Using an established transmission line model of arterial hemodynamics, a
large number of virtual patients associated with PAD of a wide range of severity and
the corresponding arterial pulse waveform data were created. A deep convolutional
neural network capable of detecting and assessing the severity of PAD based on the
analysis of brachial and ankle arterial pulse waveforms was constructed, evaluated for
efficacy, and compared with the state-of-the-art ankle-brachial index (ABI) using the
virtual patients. The results suggested that deep learning may diagnose PAD more
accurately and robustly than ABI. In sum, this work demonstrates the initial proof-of-
concept of deep learning-based arterial pulse waveform analysis for affordable and
convenient PAD screening as well as presents challenges that must be addressed for
real-world clinical applications.

Keywords: peripheral artery disease, cardiovascular disease, deep learning, machine learning, pulse wave
analysis, arterial hemodynamics, ankle-brachial index, convolutional neural network

INTRODUCTION

Peripheral artery occlusive disease (PAD) is a highly prevalent vascular disease associated with
high morbidity and mortality risks. It was estimated that >8 million and >200 million people
were suffering from PAD in the United States (in 2000) (Allison et al., 2007) and globally (in
2010) (Fowkes et al., 2013), and the number of PAD patients is projected to sharply increase
with societal aging. It makes a significant adverse impact on morbidity and quality of life, and
also carries significant mortality implications as a powerful predictor of coronary artery disease
and cerebrovascular disease (Golomb et al., 2006). Nonetheless, PAD is underdiagnosed with low
primary care awareness (Hirsch et al., 2001).
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In clinical practice today, PAD diagnosis necessitates
angiography techniques (Guthaner et al., 1983; Romano
et al., 2004; Cavallo et al., 2019). These techniques are not
ideally suited to affordable and convenient PAD detection
and severity assessment. The current gold standard is the
digital subtraction angiography, which is an invasive technique.
Other non-invasive imaging-based angiography techniques
including the computed tomography angiography and magnetic
resonance angiography require X-ray radiation and expensive
equipment not appropriate for affordable settings. The ankle-
brachial index (ABI) is a relatively low-cost technique and is
widely used for PAD screening. However, it is often criticized
for its limited accuracy and robustness in diagnosing PAD
(Nelson et al., 2012).

Machine learning (ML) is increasingly exploited in
cardiovascular disease (CVD) detection and prognosis. In
particular, ML has exhibited promising efficacy in heart disease
detection and prediction (Dogan et al., 2018; Abdar et al.,
2019; Vallée et al., 2019) as well as CVD risk and CV death
prognosis (Ambale-Venkatesh et al., 2017; Steele et al., 2018;
Alaa et al., 2019). Recent reports increasingly exploit deep
learning (DL) to capitalize on its ability to automatically
select characteristic features, especially in conjunction with
medical imaging techniques (Abdolmanafi et al., 2018;
Poplin et al., 2018; Zhang et al., 2019). In contrast to the
large body of existing work on ML-based CVD detection
and CV mortality prediction, relatively small number of
work on ML applications to PAD is available, including
detection and mortality prognosis using electronic health
record as well as genomic and imaging data (Ross et al., 2016;
Arruda-Olson et al., 2018).

The analysis of arterial pulse waveforms [called hereafter the
pulse waveform analysis (PWA)] may play a complementary
role to ML in PAD diagnosis. In fact, our prior work shows
that model-based PWA has the potential to estimate CV risk
predictors (Ghasemi et al., 2018) and diagnose CVD (Ebrahimi
Nejad et al., 2017) using diametric arterial pulses. A recent work
illustrated the theoretical feasibility of PAD diagnosis (including
detection, localization, and severity assessment) using a hybrid
model- and ML-based analysis of central aortic and peripheral
arterial pulses (Xiao et al., 2016a). A practical advantage of
PWA is that it may be relevant to affordable PAD screening
and diagnosis with convenient arterial pulse measurements at the
extremity locations (e.g., arm and ankle).

Despite the complementary value of DL and PWA in
advancing the diagnosis of PAD (and even other CVDs), the
fusion of DL and PWA for PAD diagnosis has never been pursued
to the best of our knowledge. In fact, the state-of-the-art of DL-
based PWA appears to be limited to rudimentary classification of
CV health state (e.g., hypertension, atherosclerosis, and diabetes
mellitus) (Li et al., 2019). Hence, DL-PWA fusion is a novel
conceptual idea worthy of pursuit in the context of CVD
diagnosis (including PAD).

Toward the long-term goal of affordable and non-invasive
PAD screening and diagnosis, the objective of this work is
to investigate the potential of DL-based arterial PWA in
detecting and assessing the severity of PAD. Using an established

transmission line (TL) model of arterial hemodynamics, a large
number of virtual patients associated with PAD of a wide range of
severity and the corresponding arterial pulse waveform data were
created. A deep convolutional neural network (CNN) capable of
detecting and assessing the severity of PAD based on the analysis
of brachial and ankle arterial pulse waveforms was constructed,
evaluated for efficacy, and compared with the state-of-the-art ABI
using the virtual patients.

This paper is organized as follows. Section “Materials
and Methods” presents a multi-branch TL model of arterial
hemodynamics used in this work, creation of virtual PAD patients
together with the corresponding arterial pulse waveforms to
investigate DL-based PWA for PAD diagnosis, a DL-based PWA
approach based on the CNN for PAD detection and severity
assessment, and data analysis methods to evaluate the efficacy
of the DL-based PWA approach. Section “Results” presents
results, which are discussed in section “Discussion.” Section
“Conclusion” concludes this work with future directions.

MATERIALS AND METHODS

Transmission Line Model of Arterial
Hemodynamics
We used a multi-branch TL model of arterial hemodynamics
developed in a prior work (Figure 1; He et al., 2012). In brief, the
model is composed of 55 TLs, each of which represents an arterial
segment characterized by segment-specific viscous, elastic, and
inertial properties. In each TL, the propagation of arterial blood
pressure (BP) and flow (BF) waves is dictated by the propagation
and reflection constants as well as the arterial length:

pO = pI(1+ 0)
/(

eγl
+ 0e−γl

)
qO = qI(1− 0)

/(
eγl
− 0e−γl

) (1)

where pI and pO are BP waves at the inlet and outlet of the artery,
qI and qO are BF waves at the inlet and outlet of the artery, γ

is the propagation constant, 0 is the reflection constant, and l is
the arterial length. BP and BF waves at the inlet of the artery are
related by the input impedance of the arterial segment:

pI = qIZI = qIZC

(
eγl
+ 0e−γl

)/(
eγl
− 0e−γl

)
(2)

where ZI and ZC are the input impedance and characteristic
impedance of the artery, respectively. If an arterial segment
is terminated by a bifurcation, its load impedance is given
by the parallel connection of the input impedances associated
with the two descendent arteries. If an arterial segment is
connected to a single descendent artery, its load impedance
is given simply by the input impedance associated with the
descendent artery. If an arterial segment itself is a terminal artery
connected to a peripheral load, its load impedance is given by
the impedance associated with the load. Full details of the TL
model is provided in He et al. (2012). This model was validated
with physiological data and the results of other studies, and was

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 June 2020 | Volume 8 | Article 72026

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00720 June 30, 2020 Time: 18:20 # 3

Kim et al. Deep Learning-Based PAD Severity Assessment

FIGURE 1 | Transmission line (TL) model of arterial hemodynamics consisting of 55 TLs, each of which represents an arterial segment characterized by
segment-specific viscous, elastic, and inertial properties.

used in the study of arterial stenosis and arterial viscoelasticity
(Xiao et al., 2016a,b, 2017).

Creation of Virtual PAD Patients
We created a large number of virtual patients to investigate
the potential and challenges in DL-based PWA for PAD
diagnosis using the aforementioned multi-branch TL model. To
create realistic virtual patients, we considered three layers of
variabilities: inter-individual, intra-individual, and PAD severity.
First, we considered the inter-individual variability in the
arterial hemodynamics associated with the virtual patients by
widely varying five anatomical and physiological parameters
in the multi-branch TL model: arterial length, diameter, and
thickness, arterial elasticity, and peripheral load resistance. These
parameters were varied up to ±20% around the nominal values
reported in He et al. (2012) in an increment of 10%, which
resulted in a total of 55 = 3125 virtual patients associated
with 55 distinct arterial hemodynamic properties. Second, we
considered the PAD severity variability in each virtual patent by
widely varying the degree of the artery occlusion in the multi-
branch TL model. In this exploratory work, we limited our
focus to PAD occurring in the abdominal aorta, which is one
of the most common PAD sites. In each of the 3125 virtual
patients, we included PAD by varying diameter associated with
the abdominal aorta. We considered PAD severity of 0–80% in
an increment of 10% for training and validation datasets and in

an increment of 1% for test dataset, where severity is measured
as the degree of artery area occlusion (0% implies no occlusion
while 100% implies complete occlusion). This resulted in a total of
3125× 9 = 28,125 virtual patients, associated with distinct arterial
hemodynamics and PAD, as the basis to construct training and
validation datasets and 3125 × 81 = 253,125 virtual patients,
associated with distinct arterial hemodynamics and PAD, as the
basis to construct test dataset. Third, we considered the intra-
individual variability in the arterial hemodynamics in each virtual
patient to account for the uncertainty due to model imperfection
as well as random anatomical and physiological variations. We
assumed that the five anatomical and physiological parameters
in the multi-branch TL model used to account for the inter-
individual arterial hemodynamic variability have log-normal
distributions around the individual-specific values as mean values
with coefficient of variation of 0.01 in each virtual patient. Finally,
we constructed training and validation datasets by sampling
100 and 10 times from each of the 28,125 virtual patients
equipped with random anatomical and physiological variations,
and likewise constructed test dataset by sampling 10 times from
each of the 253,125 virtual patients equipped with random
anatomical and physiological variations. Then, we created arterial
BP and BF waveforms associated with each of these samples by
inputting a representative heart blood flow waveform used in He
et al. (2012; Figure 2) to the multi-branch TL model characterized
by the sample-specific anatomical and physiological parameters
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(including PAD severity). In this way, training and validation
datasets were composed of 2,812,500 and 281,250 arterial BP
and BF waveform data samples corresponding to 28,125 virtual
patients, while test dataset was composed of 2,531,250 arterial
BP and BF waveform data samples corresponding to 253,125
virtual patients.

PAD Diagnosis via Deep Learning-Based
Pulse Waveform Analysis
We developed our DL-based PWA approach to PAD diagnosis
using the training and validation datasets constructed in section
“Creation of Virtual PAD Patients.” Specifically, we constructed
a deep CNN that can predict PAD severity by the analysis of
arterial pulse waveforms. We in particular selected brachial and
ankle BP waveforms as inputs to our deep CNN in order to make
our approach compatible to the state-of-the-art ABI technique,
so that (i) our approach and ABI can be directly compared and
(ii) the potential for real-world application of our approach is
maximized. Details follow.

Our deep CNN was built upon the AlexNet (Krizhevsky et al.,
2012; Han et al., 2017; Wang et al., 2019), which was regarded
as appropriate in dealing with 1-D arterial pulse waveforms
associated with less complexity than 2-D images relative to other
deeper CNN architectures such as ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017). To obviate extensive tuning of
hyper-parameters, we adopted the original AlexNet architecture
(five convolution layers and three fully connected layers), but
with modest modifications (Figure 3). First, we employed the
LeakyReLU as the activation function for the entire network to
promote stable convergence in the training phase (Goodfellow
et al., 2016). Second, we employed batch normalization in all
the convolution layers to promote stable back propagation of
gradient as well as regularization (Goodfellow et al., 2016). Third,
we reduced the size of the fully connected layer to 64 to match it
to the number of latent features outputted by the last convolution
layer in our CNN. Using the network architecture thus specified,
we constructed the deep CNN in such a way that brachial and
ankle arterial pulses are convoluted independently (Figure 3).
For this purpose, brachial and ankle arterial pulses undergo
channel-wise concatenation so that these arterial pulses can be
convoluted separately from each other by a shared kernel in the
convolution layer. In this way, discriminative features of PAD
severity embedded in the brachial and ankle arterial pulses can
be extracted independently while computational efficiency can
be gained with the use of shared kernels. In addition, mutual
interactions between the discriminative features associated with
the two arterial pulses can be exploited in the fully connected
layer of the network.

To train the deep CNN, we used NVIDIA Titan Xp GPU and
PyTorch libraries. We used the mean squared error loss between
the true vs. model-predicted PAD severity as the cost function.
We used the ADAM optimization (α = 0.9, β = 0.999) with initial
learning rate of 0.0002. To assess the robustness of the deep CNN,
we examined the sensitivity of the cost function with respect to
the local perturbations in the hyper-parameters including the
number (increased by 1.5 and 2 times) and size (increased by 1

and 2) of kernels in the convolution layer. Note that the deep
CNN thus trained with the above regression cost can be used to
both detect and assess the severity of PAD. In particular, it can
be used to detect PAD simply by labeling PAD in terms of PAD
severity (i.e., classifying a subject as PAD patient if the subject’s
PAD severity exceeds a pre-specified PAD severity threshold).

Evaluation
We evaluated our DL-based PWA approach to PAD diagnosis
and compared its efficacy with the state-of-the-art ABI technique,
in terms of PAD detection and severity assessment efficacy, using
the test dataset constructed in section “Creation of Virtual PAD
Patients.” Details follow.

First, we evaluated our approach for its PAD detection
performance. We considered a range of PAD severity threshold
levels in labeling healthy subjects and PAD patients (10–70%, in
an increment of 10%). For each PAD labeling threshold level,
we randomly selected 2000 virtual patients from test dataset
(consisting of 253,125 virtual patients; see section “Creation
of Virtual PAD Patients”) so that the selected patients include
equal number of healthy subjects and PAD patients (i.e., 1000
healthy subjects and 1000 PAD patients; for example, in case of
40% PAD severity threshold for labeling, 1000 virtual patients
with <40% PAD severity were randomly chosen to form healthy
subjects while 1000 virtual patients with≥40% PAD severity were
randomly chosen to form PAD patients). Then, we evaluated
our approach and ABI technique using the 20,000 arterial BP
and BF waveform data of these 2000 virtual patients (see section
“Creation of Virtual PAD Patients”) by (i) classifying each arterial
BP and BF waveform data sample into healthy or PAD category
based on the PAD severity predicted by the deep CNN when the
brachial and ankle BP waveforms in the sample were inputted
and the ABI value computed from the waveforms, (ii) aggregating
the classification results across all the 20,000 data samples
associated with all the 2000 virtual patients, and (iii) computing
the sensitivity and specificity as well as the accuracy of PAD
detection. In the context of PAD detection, sensitivity was defined
as the proportion of the 10,000 PAD patient samples which were
actually detected as such (with the PAD severity predicted to be
higher than the PAD labeling threshold), while specificity was
defined as the proportion of the 10,000 healthy subject samples
which were actually detected as such (with the PAD severity
predicted to be lower than the PAD labeling threshold). Accuracy
was defined as the proportion of the 20,000 test samples whose
labels were classified correctly.

Second, we evaluated our approach for its PAD severity
assessment performance. We randomly selected 2,000 virtual
patients from test dataset (consisting of 253,125 virtual patients;
see section “Creation of Virtual PAD Patients”) so that the
selected patients are distributed uniformly across all the PAD
severity levels (1–80% in an increment of 1%, which amounts to
25 virtual patients per PAD severity level). Then, we evaluated
our approach and ABI technique using the 20,000 arterial BP
and BF waveform data samples of these 2000 virtual patients
(see section “Creation of Virtual PAD Patients”), in terms of the
Bland-Altman statistics between the true PAD severity vs. the
PAD severity predicted by our deep CNN and ABI. To map
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FIGURE 2 | Representative heart blood flow waveform used as input to the multi-branch transmission line (TL) model of arterial hemodynamics associated with
virtual patients.

FIGURE 3 | Deep convolutional neural network (CNN) architecture for PAD diagnosis via deep learning-based arterial pulse waveform analysis. CONV-n (h, l) × k:
nth convolution layer with height h, length l and the number of kernel k. LeakyReLU (a): LeakyReLU activation with slope a on negative inputs. FC-n × m: nth fully
connected layer with the number of node m.

ABI value to PAD severity, we pre-calibrated the ABI values
to the corresponding PAD severity level based on a polynomial
regression model relating ABI to PAD severity (which was
obtained from the nominal virtual patient characterized by the
nominal anatomical and physiological parameter values). Third,
we analyzed the latent feature space associated with our deep
CNN using the t-distributed stochastic neighbor embedding (t-
SNE) algorithm. This analysis was conducted to examine the
presence of a smooth manifold relating the latent features to
PAD severity. We applied t-SNE to visualize the input space and
the space of latent features at the last convolution layer into 2-
dimensional space. Then, we investigated the distributions of
the input and latent features in the 2-dimensional space for a
connected manifold in the direction of PAD severity. Fourth,
we analyzed our deep CNN using the gradient-weighted class
activation mapping (GradCAM) algorithm (Selvaraju et al., 2017)
to interpret the discriminative input features exploited by our
deep CNN in predicting PAD severity. We applied GradCAM to

visualize the discriminative features (i.e., regions) in the brachial
and ankle arterial BP waveforms which largely contributed in
predicting PAD severity. Then, we assessed the physiological
relevance of the input features exploited by the deep CNN in
diagnosing PAD by comparing these discriminative features and
the available clinical knowledge on the relationship between PAD
severity and arterial pulse waveforms.

To derive a robust estimate of detection and diagnosis
performance, we repeated the above evaluation 10 times and
reported the average values of the sensitivity, specificity, and
accuracy as well as the Bland-Altman statistics.

RESULTS

Figure 4 presents brachial and ankle BP waveforms
corresponding to (a) nominal virtual patient, (b) nominal
virtual patient with intra-individual variability, and (c) all the
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FIGURE 4 | Brachial (upper panel) and ankle (lower panel) blood pressure (BP) waveforms corresponding to (A) nominal virtual patient (i.e., virtual patient with
nominal anatomical and physiological parameter values), (B) nominal virtual patient with intra-individual variability, and (C) all the virtual patients with inter- and
intra-individual variability in the test dataset, all associated with varying PAD severity levels.

virtual patients with inter- and intra-individual variability in
the test dataset, all associated with varying PAD severity levels.
Table 1 summarizes the PAD detection performance of our
approach and ABI (measured in terms of detection sensitivity,
specificity, and accuracy), both corresponding to varying PAD
severity threshold levels for labeling of healthy subjects and PAD
patients. Figure 5 shows the receiver operating characteristic
(ROC) curves associated with our approach and ABI, both
corresponding to varying PAD severity threshold levels for
labeling of healthy subjects and PAD patients. Figure 6 shows
the Bland-Altman plots between true PAD severity vs. PAD
severity predicted by our approach and ABI. Figure 7 presents
the 2-dimensional t-SNE visualization of the input and latent
feature spaces associated with the fully trained and validated
deep CNN, while Figure 8 presents discriminative input features
of our deep CNN localized by GradCAM associated with low and
high PAD severity levels.

DISCUSSION

PAD is a highly prevalent CVD with profound morbidity and
mortality implications, but it is frequently undiagnosed due to
the limitations associated with the cost, comfort, and accuracy
of existing angiography and ABI techniques. In this work,
we investigated an affordable, convenient, and accurate PAD
screening and diagnosis approach via DL-based PWA. Using a
large number of virtual patients created with a validated multi-
branch TL model of arterial hemodynamics, we illustrated its
potential and challenges to overcome.

Validity of Virtual Patients
The virtual patients created with the multi-branch TL model of
arterial hemodynamics could reproduce the clinically observed

TABLE 1 | PAD detection performance of the deep learning-based pulse
waveform analysis approach and ankle-brachial index, both corresponding to
varying PAD severity threshold levels for labeling of healthy subjects
and PAD patients.

Labeling threshold 10% 20% 30% 40% 50% 60% 70%

DL Sensitivity 0.97 0.96 0.94 0.95 0.93 0.92 0.85

Specificity 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Accuracy 0.99 0.98 0.97 0.97 0.96 0.95 0.91

AUC 0.99 0.99 0.99 0.99 0.99 0.99 0.99

ABI Sensitivity 0.96 0.94 0.73 0.64 0.60 0.58 0.59

Specificity 0.50 0.50 0.64 0.75 0.91 0.99 0.99

Accuracy 0.50 0.51 0.68 0.68 0.66 0.64 0.65

AUC 0.73 0.74 0.76 0.79 0.83 0.88 0.92

DL, deep learning-based pulse waveform analysis approach; ABI, ankle-brachial
index.

trends in the shape of the arterial pulse waveforms in response
to varying degree of PAD severity. In particular, the multi-branch
TL model predicted that ankle BP pulse undergoes the following
morphological changes with an increase in the PAD severity
level: (i) systolic peak flattens; (ii) secondary diastolic peak
disappears; (iii) pulse amplitude decreases; (iv) crest time (time
interval between diastolic trough and systolic peak) increases;
and (v) pulse width at half amplitude increases (Figure 4). It
also predicted that brachial pulse amplitude increases, which
contributes to a decrease in ABI with an increase in the PAD
severity level. These predictions are consistent with a number of
existing clinical observations (Carter, 1968; Davies et al., 2014;
Sumpio and Benitez, 2015; Dhanoa et al., 2016; Mao et al., 2017;
Sibley et al., 2017) at least from qualitative standpoint. In sum,
it was concluded that the virtual patients used in our work
can produce realistically plausible arterial pulse waveforms with
respect to varying degree of PAD severity, which provided a solid
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FIGURE 5 | Receiver operating characteristic curves associated with the deep learning-based pulse waveform analysis approach and ankle-brachial index (ABI),
both corresponding to varying PAD severity threshold levels for labeling of healthy subjects and PAD patients. (A) DL-based pulse waveform analysis approach. (B)
Ankle-brachial index.

FIGURE 6 | Bland-Altman plots between true PAD severity vs. PAD severity predicted by (A) deep learning-based pulse waveform analysis approach and (B)
ankle-brachial index (ABI).

basis to investigate the strengths and weaknesses of our DL-based
PWA approach to PAD screening and diagnosis especially in
comparison with the widely used ABI technique.

PAD Detection and Severity Assessment
Efficacy
Our approach boasted robust PAD detection performance
superior to the ABI technique against a wide range of PAD
severity threshold levels for labeling of healthy subjects and PAD
patients (Table 1 and Figure 5). The sensitivity, specificity, and
accuracy values computed at the PAD classification threshold
levels identical to the labeling threshold values [note that (i)
the deep CNN was calibrated to the true PAD severity as part
of training, and (ii) a PAD severity level can be mapped to its
corresponding ABI by using the polynomial regression model
relating ABI to PAD severity in section “Evaluation”] were
consistently higher in our approach than the ABI technique
(Table 1). Our approach also boasted PAD severity assessment
performance largely superior to the ABI technique, as indicated

by its much smaller limits of agreement between the true
vs. predicted PAD severity levels in comparison to its ABI
counterparts (Figure 6). Overall, it appears that ABI is susceptible
to the inter-individual variability in anatomical and physiological
parameters which affect the systolic peak values associated with
brachial and ankle arterial pulses, whereas our approach can cope
with those confounding factors via highly sophisticated analysis
of the two arterial pulse waveforms to exploit morphological
characteristics beyond systolic peak values. The PAD detection
and severity assessment performance remained consistent against
repeated tests: the sensitivity, specificity, and accuracy values
exhibited small coefficients of variation of the order of 10−3

across the 10 repeated tests outlined in section “Evaluation.”
Lastly, the deep CNN appeared to be robust against modest
perturbations in its hyper-parameters in that the alteration in the
cost function with respect to the hyper-parameter perturbations
considered in this work was small (<2.3%). This suggests that the
AlexNet architecture used in this work was adequate, if not ideal.

Our approach exhibited a tendency for slight underestimation
of PAD severity, especially at high PAD severity levels
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(Figure 6A). This may explain its imperfect sensitivity relative
to specificity at high PAD labeling threshold (Table 1), because
underestimation of PAD severity in general makes the deep CNN
conservative in detecting PAD. In contrast, the ABI technique
suffered from a tendency for severe overestimation of PAD
severity in low-severity PAD and also severe underestimation of
PAD severity in high-severity PAD (Figure 6B). This may explain
its deteriorating sensitivity and improving specificity (and the
suboptimal accuracy as a whole) with respect to the increase in
the PAD labeling threshold (Table 1). In our virtual patients,
ABI tended to remain at a normal constant level up to ∼50%
PAD severity level, beyond which it started to sharply decrease
(not shown). Hence, the sensitivity of ABI is high in low PAD
labeling thresholds (since it overestimates the severity in low
PAD severity regime) but is low in high PAD labeling thresholds
(since it underestimates the severity in high PAD severity regime).
For the same reason, the specificity of ABI is low in low PAD
labeling thresholds but is high in high PAD labeling thresholds.
It is worth noting that this trend is in accordance with prior
clinical observations on the low sensitivity and high specificity
of ABI in detecting symptomatic PAD patients (Stein et al., 2006;
Wikström et al., 2008).

Latent Feature and Interpretability
Analysis
Two inherent challenges associated with DL is its susceptibility
to overfitting and lack of transparency. We employed (i) t-SNE
to examine if our deep CNN was properly trained and (ii)
GradCAM to examine if our deep CNN exploits appropriate
input features in diagnosing PAD.

The t-SNE visualization of the input and latent feature spaces
clearly illustrates that the deep CNN was properly trained to
capture the relationship between the latent features extracted
from the brachial and ankle pulse waveforms and PAD severity
(Figure 7). In particular, the input feature space contains a
number of small and scattered clusters associated with varying
PAD severity levels (Figure 7A), which presumably represent the
inter-individual variability associated with the virtual patients.
In contrast, the latent feature space clearly shows a manifold
smoothly connecting low (upper left) to high (lower right) PAD
severity levels (Figure 7B). Hence, it may be claimed that the
notable performance of the DL-based PWA approach originates
from its appropriate learning of the latent features indicative of
PAD severity rather than from overfitting to the data.

The discriminative input features localized by GradCAM
provide support for the transparency of the deep CNN
constructed in this work. Indeed, main discriminative input
features included (i) the systolic up-stroke and (ii) diastolic
down-stroke (including secondary peaks when exists) (Figure 8),
which are the regions in the brachial and ankle arterial pulses
in which salient morphological changes occur as PAD develops
according to the existing clinical literature (Carter, 1968; Davies
et al., 2014; Sumpio and Benitez, 2015; Dhanoa et al., 2016; Mao
et al., 2017; Sibley et al., 2017). Hence, it can be claimed that the
DL-based PWA approach may detect and assess the severity of
PAD by analyzing brachial and ankle arterial pulse waveforms

in a way similar to how experienced clinicians analyze them,
although the exact mechanisms underlying how the deep CNN
compiles and interprets the observed morphological changes into
PAD severity are unknown.

Limitations and Opportunities
All in all, this work demonstrated the proof-of-concept of
integrating DL and PWA for affordable and non-invasive PAD
screening and diagnosis. However, this work has a number of
limitations to be addressed. In addition, this work also sheds light
on outstanding opportunities toward its real clinical application.

First and foremost, this work was conducted using data
collected from virtual rather than real patients. We employed
a validated multi-branch TL model to create virtual patients.
We also showed that arterial pulse waveforms produced by
the virtual patients exhibit the morphological characteristics
observed in real PAD patients. Yet, discrepancy between virtual
vs. real patients may be inevitable at least to some extent, and
there are a few potential sources that can obscure the initial
success of this work when applied to real clinical data. In
particular, the inter- and intra-individual variability considered
in this work is somewhat ad-hoc. Furthermore, we accounted
for variability associated only with arterial anatomical and
physiological parameters but not cardiac parameters (such as
stroke volume and ejection duration). In the near term, the
efficacy of our approach against variabilities not considered
in this work may be investigated using the same virtual
patients. But ultimately, future work must confirm the proof-
of-concept obtained in this work using clinical data collected
from real patients. Regardless of this limitation, this work
may still have unique value as an exploratory study of DL-
based arterial pulse waveform analysis for PAD diagnosis
in a reasonably realistic yet resource-effective and controlled
setting. Indeed, our work may provide a strong justification
for conducting a (potentially large-scale and resource-intensive)
clinical data collection study for experimental investigation of
DL-based PWA approaches to PAD diagnosis (and perhaps
other CVDs as well).

Second, this work was limited to the detection and severity
assessment of PAD in a single arterial site. In contrast, an ideal
PAD screening and diagnosis tool is required to also localize PAD.
Hence, our approach must be extended to a technique capable of
simultaneously detecting, localizing, and assessing the severity of
PAD. This requirement may present additional challenge when
PAD at multiple sites with different levels of severity must be
diagnosed. Future work must investigate how to extend our
approach to also include PAD localization capability. A possible
initial strategy may be to leverage the deep CNN trained in this
work in conjunction with the multi-task learning, pre-training,
and continuation methods established in the DL domain so
as to extend the current deep CNN to also embed the ability
to localize PAD.

Third, this work assumed the availability of a large amount
of data associated with a wide range of variability in anatomical
and physiological characteristics as well as PAD severity levels,
which may not be practically realistic. For example, the majority
of PAD data may be associated with aged patients, and our
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FIGURE 7 | 2-dimensional t-distributed stochastic neighbor embedding (t-NSE) visualization of (A) input and (B) latent feature spaces associated with the fully
trained and validated deep convolutional neural network.

FIGURE 8 | Representative brachial and ankle pulse waveforms (solid lines) and discriminative features (dotted lines) of deep convolutional neural network (CNN)
localized by the gradient-weighted class activation mapping (GradCAM) associated with low (10%), medium (40%), and high (70%) PAD severity levels. (A) Brachial
arterial pulse. (B) Ankle arterial pulse.

approach when trained with such data may not generalize
well to young patients (who are associated with low PAD
incidence but screening/diagnosing whom is still crucial for CV
risk management). Likewise, our approach when trained with
data associated with one ethnic population may not generalize
well to another subject to a large inter-ethnic anatomical
and physiological discrepancies. Future work on coping with
limited data and enormous inter-individual variability must be
conducted. A possible initial strategy may be to exploit the
domain adaptation and transfer techniques as well as adversarial
training to guide the deep CNN work with latent features
invariant to ethnic, anatomical, and physiological characteristics.

Lastly, this work used arterial BP waveforms, which may not
be easy to measure non-invasively. Practically affordable non-
invasive arterial pulse waveforms (e.g., pulse volume recording
waveforms; Davies et al., 2014; Sumpio and Benitez, 2015;
Ghasemi et al., 2018) are typically measured at the skin level and
thus exhibit subtle morphological differences relative to arterial
BP waveforms (Lee et al., 2018). Hence, future work must be
conducted to investigate adverse effect of using non-invasive

arterial pulse waveform measurements on our approach as well
as innovative strategies to realize our approach using affordable
and non-invasive arterial pulse measurements.

CONCLUSION

This work demonstrated the proof-of-concept of a novel DL-
based PWA approach to PAD diagnosis. The results suggest
that PAD detection and severity assessment may be feasible
with data-driven analysis of arterial pulse waveforms. This work
also outlined outstanding opportunities and challenges toward
real-world deployment of our approach, including (i) validation
with data collected from real patients, (ii) PAD localization, (iii)
generalizable implementation with limited data and robustness
against confounding factors, and (iv) practical embodiment with
affordable and non-invasive arterial pulse waveforms. Future
work to explore and address these opportunities and challenges,
including the development of innovative DL-based PWA
algorithms capable of addressing the outstanding obstacles, may
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serve as key cornerstones to realize affordable and convenient
PAD screening and diagnosis.
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Microscopic image analysis plays a significant role in initial leukemia screening and
its efficient diagnostics. Since the present conventional methodologies partly rely on
manual examination, which is time consuming and depends greatly on the experience of
domain experts, automated leukemia detection opens up new possibilities to minimize
human intervention and provide more accurate clinical information. This paper proposes
a novel approach based on conventional digital image processing techniques and
machine learning algorithms to automatically identify acute lymphoblastic leukemia
from peripheral blood smear images. To overcome the greatest challenges in the
segmentation phase, we implemented extensive pre-processing and introduced a three-
phase filtration algorithm to achieve the best segmentation results. Moreover, sixteen
robust features were extracted from the images in the way that hematological experts
do, which significantly increased the capability of the classifiers to recognize leukemic
cells in microscopic images. To perform the classification, we applied two traditional
machine learning classifiers, the artificial neural network and the support vector machine.
Both methods reached a specificity of 95.31%, and the sensitivity of the support vector
machine and artificial neural network reached 98.25 and 100%, respectively.

Keywords: automated leukemia detection, blood smear image analysis, cell segmentation, leukemic cell
identification, acute leukemia, image processing, machine learning

INTRODUCTION

Leukemia is a term describing a group of hematological malignancies that are manifested by the
tumourous proliferation or increased life span of immature white blood cells (WBCs) in the bone
marrow (American Dental Association [ADA], 2012). Leukocytes are highly differentiated for their
specialized functions, and they play an essential role in the immune system (Rogers, 2011). The
malignancy of this disease varies from non-malignant to highly aggressive forms, and the immature
cells are not able to fulfill their normal function (Serfontein, 2011). The excessive production
of these type of cells, denoted as blasts or leukemic cells crowds out healthy leukocytes in the
bone marrow and suppresses normal hematopoiesis, causing difficulties in fighting infections,
transporting oxygen and controlling bleeding (Daniels and Nicoll, 2012). Clinically, leukemia is
categorized on the basis of the rapidity of the disease progression to acute and chronic forms.
Whereas the acute form of leukemia develops quickly and the number of leukemic cells increases
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rapidly, chronic leukemia progresses slowly over time, and
the more mature leukocytes can carry out some of their
normal functions (Serfontein, 2011). According to the type of
affected cell from which the malignancy develops, leukemia
is further divided into myelogenous and lymphoid forms
(Manisha, 2012). Acute lymphoblastic leukemia (ALL), which
is the only form we consider in this paper, is the second most
common type of leukemia in adults and the most common
type of childhood malignancy, accounting for approximately
one-third of all pediatric cancers (Rose, 2013). Heterogeneous
malignancy is caused by genetic alterations and chromosomal
mutations of lymphocyte progenitor cells at an early phase
of cell differentiation (Rose, 2013). The excessive production
of these cells, called lymphoblasts, which do not develop into
mature B and T lymphocytes, gradually displaces normal cells
in the bone marrow and may spread to essential organs such
as the liver, lymph nodes, spleen, and central nervous system
(Katz et al., 2015).

The diagnosis of ALL requires a broad spectrum of
information derived from several modalities, including
morphology, cell phenotyping, cytochemistry, cytogenetics,
and molecular genetics (Inaba et al., 2013). Despite technological
advances in medicine, morphology remains the frontline
hematological diagnostic technique. The observation of excessive
leukemic cell buildup and morphological anomalies in cellular
structures during the visual examination of peripheral blood
smears arouses the first suspicion of leukemia. Because
manual microscopic examination is a time-consuming
process that requires a considerable amount of experience
and is prone to humane error (Inaba et al., 2013), such an
automated inspection is needed, which would standardize the
examination process and circumvent the drawbacks of this
diagnostic technique.

To minimize human intervention and overcome the
abovementioned limitations, several computerized methods
have been explored. Most of these methods utilize conventional
image processing and machine learning techniques, which
involve mainly segmentation, feature extraction, and
classification methods. Especially the segmentation and
feature extraction phases are considered the most significant
and challenging tasks (Neoh et al., 2015). The main reason
lies in the large variety of blood smear images, taken
under different conditions, and the potential morphological
differences between blast cells. Although some of these
proposed methods were found to be faster and more cost
effective than manual examination, their impact and accuracy
remain insufficient (Shafique and Thesin, 2018). Whereas,
Wang et al. (2019) achieved a detection speed of 14 to
100 milliseconds by utilizing convolution neural networks
and GPU, most proposed methods produce false-negative
errors and achieve overall accuracy in the range of 93–98%
(Bagasjvara et al., 2016).

In this study, we propose a novel combination of techniques
to overcome the most challenging parts of the detection process
and present detailed insights into the greatest shortcomings of
the existing classification methodologies, such as the overfitting
and the reliability of particular classifications. To improve our

segmentation phase, we introduce extensive pre-processing based
on the proposed color transformation and design a three-
phase filtration that ensures the elimination of surrounding
blood components and artifacts without disrupting particular
regions of leukocytes. After the whole segmentation process,
involving seven stages, a robust set of features is extracted
from all segmented regions. Extracting morphological and
texture features from specific cell regions in a similar way
to the visual interpretation of a domain expert heightens the
performance of the selected classifiers. The final recognition
of ALL from peripheral blood smear images is accomplished
by an artificial neural network (ANN) and optimized support
vector machine (SVM).

LITERATURE REVIEW OF THE
PREVIOUSLY PROPOSED
METHODOLOGIES

Extensive research has recently been conducted to explore
the possibilities for the automated detection of leukemia
from microscopic blood smear images (Alsalem et al., 2018).
Most previously proposed methods employ sequential image
pre-processing, cell segmentation, feature extraction, and cell
classification (Bodzas, 2019). The main aim of the pre-processing
phase is to enhance the image quality for subsequent processing.
Many authors have enhanced blood smear images by converting
them to another color domain, which highlights the particular
features of the objects and therefore increases the efficiency of
region detection (Aljaboriy et al., 2019). For example, Putzu
et al. (2014) and Hariprasath et al. (2019) stated that the
identification of WBCs is possible with conversion to the CMYK
color model. The reason is that leukocytes have a higher contrast
in the Y component since the yellow color is present in all
elements except WBCs.

On the other hand, Moradiamin et al. (2015) converted
images from the RGB color space to HSV, which reduced the
correlation between the color channels in comparison to RGB
and enabled the three H, S, and V channels to be dealt with
separately. They additionally complemented this with a pre-
processing phase with histogram equalization, which reduced
the effect of different lightening conditions. After nucleus
segmentation by the fuzzy C-means clustering algorithm, the
authors extracted five geometrical and 72 statistical features.
The dimensionality of the feature set was reduced by principal
component analysis to eight features, which were subsequently
applied to the SVM classifier.

A different approach was introduced by Kazemi et al. (2016)
by implementing selective median filtering in combination
with conversion to the CIEL∗a∗b model, in which the
perceptual difference between colors is proportional to the
Cartesian distance. In simple terms, the formula CIEL∗a∗b
takes the XYZ tristimulus values and the white reference to
produce correlates to the luminence, chroma, and hue elements
(Fairchild, 2005). To extract the nucleus of WBCs, color-
based clustering segmentation with additional morphological
filtering was implemented. The set of features, including
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irregularity, the Hausdorff dimension, shape, color, and texture,
was extracted from a whole image containing multiple nuclei. By
applying a two-class SVM, they were able to achieve an overall
accuracy of 96%.

In addition to the clustering segmentation method, many
authors have used thresholding-based techniques to segment
WBCs. In particular, Joshi et al. (2013) reported the usage of
Otsu’s global thresholding on an enhanced greyscale image. To
differentiate blasts in a microscopic blood smear image, they
extracted the area, perimeter, and circularity from the equivalent
binary image and employed the K-nearest neighbor decision
algorithm for classification.

Due to the absence of spatial information, threshold
techniques cannot always produce relevant and precise results.
Hence, they are often combined with mathematical morphology
or other image processing techniques. For instance, Wang
et al. (2008) proposed a segmentation algorithm that combined
adaptive thresholding with an edge-based technique and seeded
watershed to recognize cell nuclei in different cycle phases.
Moreover, unlike other studies using off-line learning algorithms,
the authors in this study deployed an online SVM classifier, which
removed the support vectors from the older model and assigned
weights to the new samples according to their importance to
accommodate changing conditions.

Concerning feature extraction and classification, recent
research has shown that the most preferred methodologies
use a combination of morphological and texture features
with supervised learning algorithms. In particular, SVM and
multilayer perceptron have provided higher accuracy than
methods using other classifiers (Aljaboriy et al., 2019). For
instance, research by Neoh et al. (2015) extracted a total of
80 feature descriptors containing color, shape, and texture
information to compare the classification performance of the
SVM and multilayer perceptron. Both classifier results reached
a similar accuracy, over 95%, with slightly higher accuracy for the
multilayer perceptron classifier.

MATERIALS AND METHODS

The main goal of this work is to develop a fully automated system
for ALL detection that can be applied to complete blood smear
images containing multiple WBCs. The solution presented in
this paper is based on conventional image processing techniques
and comprises four main stages, which are described in the
following subchapters.

Blood Smear Image Dataset
The proposed system was trained as well as tested on a local
dataset, which was provided by the Department of Haemato-
oncology at the University Hospital Ostrava. The anonymized
dataset consists of 18 microscopic blood smear images obtained
from patients without pathological findings and 13 blood smear
images from patients with diagnosed ALL. On average, six
blood smear images with a resolution of 4,080 × 3,072 were
captured per patient. Since WBCs are distributed unevenly, with
a predominance of large cells on the border and smaller cells

in the center of the blood smear, systematic data acquisition
was required (Bodzas, 2019, p. 45). This was carried out by
the meander inspection pattern, which allowed microscopic
images to be captured from different consecutive locations,
particularly from both edges and the center of the blood smear.
All slides in the dataset were stained with Giemsa stain and were
captured under the same lighting conditions by an Olympus
CX43 microscope under a magnification of 50 times with an oil
immersion objective lens and an effective magnification of 500
(Bodzas, 2019, p. 45).

The manual examination of blood smear images was
conducted by local domain experts. During this visual
examination, the hematology specialists used several
morphological criteria to distinguish between lymphoblasts and
normal cells. The most significant criteria included the nucleus
position and shape, chromatin structure, presence of nucleoli,
nucleocytoplasmic ratio, size of the cell, and color or structure
of the cytoplasm. Following the WHO classification system,
ALL is divided into B-lymphoblastic leukemia/lymphoma,
T-lymphoblastic leukemia/lymphoma, and acute leukemias of
ambiguous lineage. Because, from a morphological point of view,
there are no reproducible criteria to distinguish between B and T
lineage lymphoblastic leukemia, ALL subtype classification is not
considered in this study (Chiaretti et al., 2014).

Pre-processing
During the acquisition process, numerous variable factors, such
as different illumination conditions, staining time, blood film
thickness and film defects, may introduce undesirable visual
artifacts or cause different color distributions among the images
(Díaz and Manzanera, 2009). To deal with potential microscopic
image artifacts and enhance the contrast of the individual blood
elements, we introduced a pre-processing method based on the
standard arithmetic operations followed by gamma correction
and contrast enhancement algorithms. The proposed color
transformation is described by the following formula

g
(
x,y
)
= [(L− 1)− B]− { [(L− 1)− G] 0.5} (1)

where g(x, y) is the transformed image, L is the number of
distinct gray levels in the image and B and G are the blue and
green color spaces. Using arithmetic operations on the individual
color spaces enhanced the blood smear images and allowed
finer differentiation of the leukocytes, even for cells with scanty
cytoplasm (Bodzas, 2019, p. 46).

Leukocyte Segmentation
After applying the pre-processing step, the segmentation phase
was performed. The segmentation phase, which is concerned
with extracting individual object components carrying pivotal
information, is considered the most essential and challenging
task. The aim of this task is to reduce the computational
complexity of the subsequent steps, and to reduce the size of
the high-resolution images, which heavily burden the storage
capacity of the hospital’s server (Chen et al., 2020). From a
morphological point of view, leukemic cells can be distinguished
from mature leukocytes by having a large nucleus with finely
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dispersed chromatin, moderate and non-granular cytoplasm,
and one or more prominent nucleoli (Wiernik, 2001). The
challenging process in this work comprises two main steps:
leukocyte localization and region extraction, which separates the
specific cell components (nucleus and cytoplasm). The entire
segmentation process, divided into these two main parts, is
shown in Figure 1.

The most precise segmentation results of the leukocyte
localization phase were achieved by an algorithm involving four
fundamental stages, which can be seen in the diagram above.
The main aim of this phase was to remove the background and
the surrounding blood components and to separate any touching
cells. The first step of this challenge is the conversion of the image
into a binary format, which was performed by the histogram-
based thresholding segmentation method. Due to the sensitive
pre-processing phase, thresholding reduced the background and
part of the erythrocytes, while the full size of the WBCs was
retained. Considering that erythrocytes usually have the shape
of a biconcave disk with an inclination to overlap each other
and that platelets lie in a different color spectrum, the process
of thresholding often results in an image with additional noise.
To eliminate the residual parts of the cell components and blood
film defects from the image, we present a three-phase filtration
(Bodzas, 2019, pp. 47–48).

The first phase of the three-phase filtration is focused on the
removal of small objects, which is performed by the modified
morphological opening operation using a disk-shaped small
structuring element (Bodzas, 2019, p. 48). The modification of
this operation lied in the uneven ratio between the number
of iterations of the dilatation and the erosion parts of the
closing operation (in particular, using the ratio 8:1). Using
different iteration ratios allows the regions containing the WBCs
to be preserved without a considerable reduction of the cell,

FIGURE 1 | The proposed segmentation algorithm.

and effectively removes smaller objects, such as the remaining
parts of the erythrocytes and the platelets resistant to the
thresholding operation. The first phase of the proposed algorithm
is complemented with the second filtration step, which is
based on connected component labeling followed by histogram-
based filtration.

This second phase of filtration is described by the following
equations, where x and y are image coordinates that belong to
the set of natural numbers, Ci denotes the cumulative sum of the
same valued pixels in the image array and I ∈ < 0, n > , where n
is the number of distinct gray levels in the image.

fx,yi=
{

1 fx,y=i
0 else

(2)

Ci =
∑

x

∑
y

fx,y (i) (3)

To remove all small objects in the image, we calculate the set S
(see Eq. 4), where each value of i that satisfies the condition of
“being small” is included. Based on the histogram evaluation, we
select a threshold value Ts of 4,000. Values of i that do not satisfy
the condition are excluded.

Si =

{
i Ci > Ts
0 else

(4)

The output image g(x,y) is constructed from the input image
f (x,y) in such a way that only the pixels with a nominal intensity
belonging to a subpart of the set S are distributed to the output
image, while the rest are set to 0. Thus, we ensure that the
least commonly occurring intensity numbers are removed from
the image.

gx,y =

{
fx,y fx,y /∈ S
0 else

(5)

Applying the second filtration step helps to smooth the image and
remove all objects of small and medium size that are resistant
to our opening operation. The last phase of the proposed three-
phase filtration process is focused on the elimination of large
blood film artifacts, which usually arise during the staining
process. Since large artifacts such as precipitated stains and
crushed cells have a very distinct texture and color spectrum,
the mean particle color derived from the histogram is applied
in combination with the particle area (Bodzas, 2019, p. 48).
Using the histogram of a green color space, where the WBCs are
more contrasted, prevents filtering of normal cells and cells with
size abnormalities. The process of the localization of leukocytes,
including the fundamental steps, is shown in Figure 2.

The blast cells tend to aggregate in clumps. The presence of
such adjacent cells in an image often introduces high inaccuracy
in the subsequent image processing stages. In particular, shape-
based features such as the perimeter and area are highly
dependent on the segmentation results. In clinical practice, to
minimize the risk of miscounting, domain experts usually avoid
adjacent cells or, in specific cases, solely examine clumps where
the cytoplasm and nucleus are clearly identifiable. Each clearly
detectable clump or adjacent cell in the image should therefore
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FIGURE 2 | Localization of white blood cells. (A) Original blood smear image. (B) Pre-processing results. (C) Thresholding segmentation results. (D) Application of
the three-phase filtration with image labeling.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 August 2020 | Volume 8 | Article 100540

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-01005 August 26, 2020 Time: 16:37 # 6

Bodzas et al. Automated Identification of Leukemic Cells

FIGURE 3 | The particular segmentation results of the blast cell (top) and normal leukocyte (bottom). (A) Segmented cell. (B) Segmented nucleus. (C) Segmented
cytoplasm.

be identified and then separated into individual cells. For the
identification of adjacent cells and cell clumps, the total particle
area computation and morphological erosion, in combination
with particle counting, are implemented. Morphological erosion
is, in this case, used to separate touching objects that can be
subsequently counted. Since the blast cells are nearly round and
the touching edge length is smaller than the radius of either
object, the touching cells can be separated well without concern
that the objects will be eroded into nothing. After detecting the
adjacent cells, the cells are separated by applying the Sobel edge
detection technique, which specifies the approximate region of
the splitting boundary (Bodzas, 2019, p. 49).

Single-cell sub-image extraction was performed in this work
by an automatic image crop using the bounding rectangle
size, which is the smallest rectangle containing a particular
component. Once the single leukocytes had been identified and
cropped into single-cell sub-images, we finally proceeded to the
second segmentation stage (region extraction), which focuses on
the extraction of the nucleus and the cytoplasm into individual
parts. Thus involves the following steps: nucleus localization,
nucleus extraction, and extraction of the cytoplasm. To localize
the nucleus, we employed equalization in the luma plane and
performed color thresholding to extract the saturation channel
from the HSL space, where the border of the nucleus seemed
to be the most prominent. The process of nucleus extraction
was accomplished by multiplying the original sub-image with the
obtained binary image. Finally, the separated nucleus was used to

obtain the cytoplasm by subtracting the nucleus from the original
image. The results of the region extraction algorithm are shown
in Figure 3.

Features Extraction
In general, the extracted features describe the texture or shape
information obtained from the segmented pattern and thereby
help to reduce the dimensionality of the image to produce a
result that is more informative and less redundant than the
original image (Wan and Mak, 2015). In this phase, we aimed
to extract the descriptive information from an image in the way
that domain experts do. The proper selection of the features
is considered the second most challenging step in the field
of automated identification of leukemic cells. To construct an
effective feature set, several published articles and their feature
selection methods were studied. In this work, we implemented
sixteen widely used features, of which nine had morphological
characteristics and seven had statistical characteristics (Bodzas,
2019, p. 51). Another approach to extract features is the use of a
convolution neural network model, which extracts a collection of
feature vectors (Gao et al., 2019). In contrast to our approach, this
feature space does not carry fully comprehensible information,
and therefore cannot be interpreted in deep detail.

Morphological Features
According to hematology experts, the shape of the nucleus has
proven to be a good measure for immature cell recognition. Apart
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from rudimentary measures such as the nucleus and cytoplasm
area and nucleus perimeter, the following shape descriptors
were considered.

Nuclear-cytoplasmic ratio
The ratio of the area of the cell nucleus to the cytoplasm area. This
measure is a pivotal feature for the assessment of the maturity
of the cell and, in turn, the prediction of cell malignancy. In
general, the size of the nucleus decreases with increasing degree
of leukocyte maturity.

Nucleus compactness
The extent to which the shape is compact. Depending on the
maturity and the type of the WBC, the shape of the nucleus varies
greatly. Mature cells usually have multi-lobed nuclei with lobes
connected by thin strands or bands. Furthermore, in specific
cases, the nucleus can have kidney bean or horseshoe-shaped
contours. By contrast, leukemic cell nuclei are generally ovoid or
round in shape and exhibit higher overall compactness than the
nuclei of to mature cells. The compactness measure is given by
the following formula (Chan et al., 2010).

Compactness =
Perimeter2

Area
(6)

Nucleus form factor
A measure of shape irregularities independent on the object’s
size. In general, a circular nucleus has the greatest area to
perimeter ratio, and this measure is equal to 1 for a perfect
circle. Consequently, for the nuclei of leukemic cells, this ratio
converges to a value of 1, while the nuclei of normal cells which
depart from roundness have a lower value. The form factor is
defined as

Form factor =
4∗π∗Area
Perimeter2 (7)

Nucleus eccentricity
Nucleus eccentricity indicates the deviation from a circular shape.
This measure is calculated as the ratio of the length and width of
the minimal bounding rectangle of the region of interest. Unlike
the form factor, this measure takes into account the elliptic shapes
or circular lobes of the nucleus.

Nucleus elongation
Nucleus elongation indicates abnormal bulging. This measure is
calculated as the ratio of the maximum and minimum distance
from the center of gravity to the boundary. This feature highlights
WBCs with a multi-lobed elongated nucleus.

Nucleus solidity
Nucleus solidity defines the degree to which the shape is convex
or concave and is computed as the ratio of the area and the convex
hull area (Ahmed et al., 2016).

Statistical Features
Other indispensable descriptors used for the identification of
blast cells are based on changes in the nuclear chromatin pattern
reflecting DNA formation and on cytoplasmic changes. To
capture the crucial information of the structural arrangement of
the nucleus and the entire cell, two types of statistical measures

were used. The first-order statistical measures are based on the
histogram of the greyscale image, e.g., the cytoplasm and the
nucleus mean color, and the second-order statistical measures
are derived from the gray level co-occurrence matrix (GLCM),
which carries information about the spatial relationships of the
image pixels. The second-order statistical features selected in
this study are defined by the equations below, where P(i, j)
is the element of the normalized GLCM at the coordinates i
and j, Ng denotes the number of distinct gray levels and µx,µy
and σx,σy represent the means and standard deviations of the
normalized gray level co-occurrence matrix, respectively (Bodzas,
2019, pp. 52–53).

Nucleus energy
A measure of the local textural uniformity of gray levels,
defined as

Energy =
Ng−1∑
i, j=0

(
Pi,j
)2 (8)

Cell contrast
Cell contrast measures the number of local variations in the
GLCM. This measure is given by the relation.

Contrast =
Ng−1∑
n=0

n2


Ng−1∑
i=1

Ng−1∑
j=1

P(i, j)

 ,
∣∣i− j

∣∣ = n (9)

Nucleus correlation
Nucleus correlation represents the linear dependency of gray tone
values in the GLCM. The correlation measure is given by the
following formula.

Correlation =

∑
i
∑

j(i, j)P(i, j)− µxµy

σxσy
(10)

Cell dissimilarity
Cell dissimilarity calculates the mean of the gray level difference
distribution of a region and is given by the relation.

Dissimilarity =
Ng−1∑
i=0

Ng−1∑
j=0

∣∣i− j
∣∣ P(i, j) (11)

Cell entropy
Cell entropy measures the randomness or complexity of texture.
The entropy can be calculated using the following formula
(Batchelor and Waltz, 2001; Nailon, 2010; Ahmed et al., 2016).

Entropy = −
∑
i=0

∑
j=0

P(i, j) log P(i, j) (12)

All selected features were validated by using the statistical
hypothesis testing method, which determined whether the
samples representing the normal and blast cells came from the
same population, or in other words, whether the distribution was
the same for both classes. Since the analyzed data did not have a
normal distribution, the median and median absolute deviation
(MAD) were the proper measures to describe the observations in
the dataset. In general, the analyzed features can be considered
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to be separable in the case of sufficiently different median values
and low values of MAD that describe how spread out the data
are. In this work, we used the Mann–Whitney U test to evaluate
the statistically significant differences between the two observed
groups. Table 1 shows the resulting probabilities (p-values) that
the distributions, or in simple terms, the changes in the median
values of the two classes, are not significantly different (Bodzas,
2019, p. 54).

According to Table 1, 15 features seem to be highly unique,
with great differences between the normal and leukemic cells.
Even though nucleus eccentricity results with a much lower
probability, this feature is statistically significant and plays an
essential role in the subsequent classification phase. Owing
to the high variability of the features, which encompass a
wide range of cell attributes from morphological to textural,
there should not be a concern of misclassification in case
of blasts with variable sizes or normal cells with size-
related anomalies.

Classification
Depending on the selected classifier, the efficiency and
performance of the features may vary slightly. The classification
step that classifies the input data into one of the predefined
classes was carried out in this work by the two most popular
supervised learning algorithms, an SVM and an ANN. To

TABLE 1 | To show that the medians of the two datasets are different by the
two-tailed Mann–Whitney hypothesis test, we employed the methodology of proof
by contradiction, where the truth of a statement is determined by assuming that
the null hypothesis is false.

Features Normal cell Leukemic cell U test

Median MAD Median MAD p-value

Morphological

Cytoplasm area 11985.00 4894.53 4022.00 1799.24 <<0.001

Cell area 20011.00 6031.12 16255.00 2830.51 <<0.001

N/C ratio 0.75 0.21 3.15 1.15 <<0.001

Nucleus perimeter 521.00 112.64 412.00 58.51 <<0.001

Nucleus compactness 30.71 14.14 13.13 2.47 <<0.001

Nucleus form factor 0.41 0.19 0.96 0.18 <<0.001

Nucleus elongation 6.97 7.12 1.62 0.31 <<0.001

Nucleus eccentricity 0.49 0.23 0.42 0.18 0.007

Nucleus solidity 0.84 0.09 0.96 0.02 <<0.001

Statistical

Nucleus energy 0.74 0.05 0.61 0.04 <<0.001

Cell contrast 1.85 0.16 1.53 0.13 <<0.001

Cell entropy 7.37 1.42 5.15 1.20 <<0.001

Nucleus correlation 0.82 0.08 0.89 0.05 <<0.001

Cell dissimilarity 0.56 0.08 0.40 0.07 <<0.001

Cytoplasm mean color 2.34 0.92 0.73 0.34 <<0.001

Nucleus mean color 0.37 0.20 0.57 0.22 <<0.001

In our case, the defined null hypothesis states that there is no significant difference
between the observed groups. The selection of a confidence level of 95% therefore
signifies that the resulting p-values less than 0.05 are considered statistically
significant. This indicates that there is strong evidence against the null hypothesis,
as there is less than a 5% likelihood that the null hypothesis is correct.

achieve the best classification results, we utilized the whole
range of dataset samples to determine the optimal parameters
of both classifiers. The SVM as well as ANN classifiers are
designed to work with the same input vector of features
that we computed.

SVM Model Selection
SVM is a non-linear, non-parametric discriminative classifier
based on the Vapnik–Chervonenkis theory. In simple terms,
SVM tries to separate the data of unknown samples by finding
an optimal line or hyperplane, which represents the largest
margin between the classes. In the simplest two-dimensional
space, this hyperplane is a line dividing a plane into two
parts. Since most of the data cannot be linearly separable
in a two-dimensional space, SVM projects these non-linear
samples into a higher dimensional feature space by using
different kernel functions (Kazemi et al., 2016). Due to this
relative flexibility, SVM distinctively affords balanced predictive
performance, even in studies with a limited sample size
(Pisner and Schnyer, 2020).

To select an appropriate SVM classification model, we tested
various kernel functions, including the most frequent linear
kernel and a set of non-linear kernels, namely, Gaussian,
polynomial, and radial basis function kernels. For each kernel
function, we found the maximum value of the accuracy by
tuning the SVM parameters using optimization techniques.
To evaluate the model’s performance, we employed the
10-fold cross-validation methodology, which produced the
best out-of-sample estimates with a low bias and modest
variance (Bodzas, 2019, p. 59). This approach involved the
random division of the dataset into 10 groups called folds
of approximately equal size. During the cross-validation
process, the first fold is treated as a validation set while the
method is fit on the remaining ninefold. The whole cross-
validation process is then repeated 10 times, and each fold
is used as the validation set once (James et al., 2013). As
shown by the experimental results in Table 2, the highest
classification accuracy was achieved by using the polynomial
kernel function.

Neural Network Selection
ANN is a classification technique, that uses several computing
units to imitate neurons in the human brain. All units are
connected with each other via a weighted link, which
determines the prominence of the respective input to the
output. Each neuron in a structure performs a weighted
sum of all inputs and finds the output using an activation
function. This activation function decides whether the

TABLE 2 | Cross validation accuracy of different classification models.

Kernel function Accuracy [%]

Linear 88.38

Polynomial 98.34

Gaussian 95.02

RBS 97.51
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information is relevant or should not pass to the subsequent
unit. The whole process of learning is based on altering the
values of weights and biases depending on the calculated
loss function between the actual and desired output
(Zayegh and Bassam, 2018).

Due to the fact that there are no specific guidelines on
how to determine the optimal neural network architecture
parameters, in particular the number of hidden layers and
neurons, we decided to select these parameters through a trial-
and-error process. During this process, several architectures
with different numbers of neurons and hidden layers were
tried experimentally. The number of neural units in the
first and last layers depends on the number of given inputs
and desired outputs. In this paper, we consider 16 input
neurons, where each neuron represents one of the extracted
features, and two output neurons, for the leukemic and
normal classes. In this phase, we additionally split the dataset
into a training and validation set in the conventional ratio
of 80:20. To prevent overfitting and concentration of the
neural network into one domain, we trained the neural
network on randomly chosen samples. Furthermore, we used
identical learning rates for each learning cycle and repeated
the learning process for 50 and 500 learning iterations for
each training image. The overall performance of the particular
neural network models is summarized in Table 3 (Bodzas,
2019, p. 66).

The process of neural network topology verification revealed
an increasing accuracy with the number of hidden layers in the
case of using 50 learning iterations. We also noticed an increase
of the neural network accuracy in architectures with a higher
number of neurons in particular layers. On the other hand,

TABLE 3 | Experimental evaluation of the accuracy of different artificial neural
network architectures.

Number of neurons in hidden layers Accuracy
[%] 50 LI*

Accuracy
[%] 500 LI*

1st layer 2nd layer 3rd layer 4th layer

50 – – – 92.38 99.58

90 – – – 92.14 99.53

100 – – – 92.67 99.53

500 – – – 90.43 99.32

50 30 – – 93.14 99.90

70 50 – – 93.89 99.69

100 100 – – 91.28 99.69

400 200 – – 93.56 99.91

200 400 – – 91.46 98.77

100 100 100 – 91.87 98.52

200 100 200 – 90.91 99.80

500 300 100 – 94.44 99.91

500 400 300 – 92.34 99.49

100 100 100 100 91.17 99.44

700 500 300 100 95.49 99.91

*Learning iterations. Experimental evaluation of the accuracy of different artificial
neural network architectures, with highlighted best performing setups.

training the neural network with a higher number of hidden
layers and neurons, and 500 learning iterations, achieved greater
precision and ability to classify the data correctly. In particular,
the ANN models with a large difference in the number of neurons
between consecutive hidden layers reached the highest accuracy,
99.91% (Bodzas, 2019, p. 68).

Classification Model Implementation
To perform the classification phase, we selected the best-
performing models for both classifiers. Before the classification,
all computed features were normalized by the min–max
algorithm, which mapped the entire range of values to the
range <0, 1>. For the binary SVM classification, we selected
the C-SVM model, which utilizes a regularization parameter to
penalize misclassifications during the separation of the classes.
The best results of this classification model were achieved by
applying the polynomial kernel function with a gamma value and
regularization parameter of 1 and a degree parameter of 5. The
tolerance of the maximum gradient of the quadratic function that
was used to compute the support vectors was tuned to 0.001. In
addition, to improve the functionality of this classification model,
we implemented shrinking heuristics, which helped to reduce
the number of variables used in the classification computation
and therefore accelerated the optimization. The selected ANN
model comprised two hidden layers with a descending number
of neurons in particular layers (400, 200). The hidden layers of
the neural network were fully connected layers without any inner
modifications and utilized the sigmoid neuronal function for
triggering. The initial weights for the proposed neural network
were selected by the Xavier initialization process, which decreases
the chance that the gradients will explode or vanish too quickly.
The final process of training the architecture was performed
by mean-squared error–based back-propagation and a stochastic
gradient descent optimizer. Our neural network was trained
with 8,333 epochs with a constant learning rate and randomly
chosen samples. Moreover, during the learning process, when
the measured error rate became saturated, the neural network
was iteratively fine-tuned by changing the learning rate from
0.002 to 0.0001.

EXPERIMENTAL VERIFICATION AND
RESULTS

In the final analysis, 241 extracted sub-images of 128 normal
WBCs and 113 leukemic cells were used to evaluate the
proposed system. Since we have to deal with a lack of medical
data, we assigned 50 percent of the dataset to the training
subset, which was used to build the prediction model, and
the remaining fifty percent of the data to test the proposed
model. To verify the proportional distribution of specific
classes between the training and testing sets, we evaluated the
fundamental statistical parameters for the chosen features (see
Table 4).

Each output of the selected classifier in this work, presents
a particular probability, with which the cell belongs to the
leukemic and normal class. Since the output probabilities given
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TABLE 4 | The separation of the dataset into a training and testing set was
performed in a way that ensured the even distribution of the whole range of blood
cell types.

Feature Statistical parameter Training set Testing set

Form factor Number of samples 120 121

Maximum value 1,21 1,21

Minimum value 0,19 0,14

Mean 0,70 0,73

Standard deviation 0,30 0,32

Contrast Number of samples 119 120

Maximum value 3,37 3,35

Minimum value 2,17 2,13

Mean 2,67 2,64

Standard deviation 0,24 0,25

To verify that the split did not affect the statistical distribution, the maximum,
minimum, mean, and standard deviation were compared between the two sets.
Since all the statistical parameters of the two selected features seem to be well
balanced, the final classification should not be burdened with significant errors.

TABLE 5 | Summarization of all correct and incorrect classifications.

SVM ANN

Disease
positive

Disease
negative

Disease
positive

Disease
negative

Test positive 56 3 57 3

Test negative 1 61 0 61

Overall accuracy: 96.72% Overall accuracy: 97.52%

by the SVM model take into account only the probability of
the corresponding class, we computed the absolute complement
of the outputs to obtain an inversely proportional set. To
assess the outputs of both classifiers, the winner-take-all
principle was implemented in the last phase. This means
that only the classification outputs with the highest score
were considered to be the final results. The performance of
both algorithms was subsequently estimated by constructing
the confusion matrices for both implemented classifiers (see
Table 5).

Namely, the specificity, sensitivity, accuracy, F1 score and
error rate metrics of the proposed strategy were assessed using
the following formulas, where TP stands for the number of true
positives, TN stands for the number of true negatives and FP
and FN denote the numbers of first and second error types (false
positives and false negatives, respectively) (Chen et al., 2019).

Accuracy =
TN+ TP

TP+ FN+ FN+ FP
(13)

Sensitivity =
TP

TP+ FN
(14)

Specificity =
TN

TN+ FP
(15)

F1 =
Sensitivity ∗ Specificity
Sensitivity+ Specificity

=
2TP

2TP+ FP+ FN
(16)

ERR =
FP+ FN

TP+ FP+TN+ FN
(17)

The sensitivity and specificity represent warnings from two
different standpoints. Whereas sensitivity indicates how
often positive predictions are correct, specificity denotes
the percentage of successful negative predictions. In the
medical field, reaching 100% specificity is not reasonable.
This value of this type of measure is reached in medical
practice by the assumption that no patients have a positive
diagnosis and that therefore, the test will never make an
FN error. However, high values of specificity are required
in cases where the main goal is to limit the number of
false negatives. To achieve a better overview of diagnostic
efficiency, we took into account the F1 score metric,
which combines both sensitivity and specificity (Tharwat,
2018). Table 6 shows the comparison of the implemented
classifiers in terms of their prediction performance (Bodzas,
2019, p. 70).

Examples of specific classification results highlighting
all incorrectly classified cells are presented in Table 7. Two
cases of incorrect classifications were caused by a flawed
segmentation phase (incorrectly classified cells D and E).
Nevertheless, the ANN, due to its ability to accept relatively
small errors, identified one of those cells correctly with
an accuracy of 98.19%. Even though the ANN proved to
have a better performance, in the case of the incorrectly
classified cell C, we notice overfitting, which is the major
drawback of this methodology. On the contrary, overfitting
is not seen in the results obtained by the SVM algorithm,
which achieved better identification results in this sample.
The main reason lies in the evenly distributed portions of
similar cells among the learning and training sets and the
small degree parameter, which decreased the flexibility of
the decision boundary and therefore prevented overfitting.
Other practical problems are often caused by missing
image samples in the datasets. Such missing samples in
the training set are sometimes indispensable for making
correct predictions. This can be seen in case B among the
incorrect classifications, where the lack of banded neutrophils
resulted in an accuracy of 0% for both classifiers. Whereas
all incorrect ANN classifications were related to the first kind
of error, of predicting a positive diagnosis when the actual
condition was negative, the SVM in one sample (A) resulted
in the worst-case scenario (a type II error) by predicting
disease absence.

It should also be noted that even though the remaining
cells were classified correctly, some results do not achieve a
classification probability higher than 95%, and therefore, there

TABLE 6 | Performance measures for selected supervised classifiers.

Accuracy Sensitivity Specificity F1 Error rate

SVM 96.72 98.25 95.31 96.55 3.28

ANN 97.52 100.00 95.31 97.44 2.48
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TABLE 7 | The classification probabilities of selected samples.

A B C D E

Incorrectly classified cells

Type Blast cell Normal WBC Normal WBC Normal WBC Normal WBC

SVM accuracy 24.15 0.00 95.90 0.00 21.61

ANN accuracy 96.87 0.01 24.13 0.19 98.19

Blast cells

SVM accuracy 93.74 98.80 94.29 100.00 91.47

ANN accuracy 99.90 99.88 78.09 100.00 99.94

Normal cells

SVM accuracy 85.63 87.13 90.30 83.09 97.98

ANN accuracy 98.03 98.57 58.48 85.45 100.00

The first four rows (A–E) show examples of all incorrectly classified samples with the false positive and false negative classifications highlighted, and the rest of the rows
(A–E) show the probability results of the selected examples of correct classifications.

is a high probability of the presence of overfitted areas in the
vicinity of these cells.

CONCLUSION AND FUTURE
PROSPECTS

In this work, we propose a method for the automated
identification and classification of blast cells from microscopic
peripheral blood smear images. This study introduces a novel
combination of image processing methodologies and proposes
extensive pre-processing to achieve high classification accuracy.
In particular, the selected combination of 16 features carrying
morphological and statistical information demonstrated an
excellent ability to distinguish between cancerous and non-
cancerous blood cells. We selected most of the features on the
basis of their similarity with the visual information, on which
the domain experts focus during manual examination. These
features were extracted from 241 WBCs segmented from 31
peripheral blood smear images from a local dataset. To perform
the classification, we selected the two most popular classifiers
in the literature, the ANN and the SVM algorithm. The neural
network model yielded better results, reaching a sensitivity
of 100% and an overall accuracy of 97.52%. Unlike previous
studies, we also presented some of the specific classification
probabilities of the correctly identified cells and conducted a

reverse analysis to identify the pivotal classification failures.
These observations indicated that even when the published
accuracies reach the highest values, a classification method may
not provide clarity or sufficiently high reliability, and therefore,
further examination is required.

One of the greatest problems we encountered was a lack of
medical data and extensive datasets. In particular, expanding
the learning set of the data would reduce overfitting and
increase the probability of particular classifications. Moreover,
the classification errors caused by incomplete datasets with
missing cell samples would be suppressed. It should be noted that
many authors have verified their proposed systems by employing
small local and publicly unavailable datasets. Due to this fact,
it was impossible to compare our findings with the results
obtained by the previously proposed algorithms. Furthermore,
this has a negative impact on the possibility of reproducing
recent trends and converging toward better technical solutions.
The results obtained in this work indicate that future research
should be mainly devoted to the development of a more
robust segmentation algorithm with the possibility of adaptive
parameter adjustment, which would unify the functionality of the
system under diverse conditions. Moreover, researchers should
focus on improving particular classification probabilities and
minimizing false negative classifications. Such a system could
be then used as a medical support tool that would facilitate
manual examination and save tremendous time. Using the
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results of particular classifications with a defined high decision
limit will allow us to achieve higher identification reliability.
Nevertheless, cells with lower probability should be still verified
by hematological specialists.
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Deoxyribonucleic acid (DNA) is a biological macromolecule. Its main function is
information storage. At present, the advancement of sequencing technology had
caused DNA sequence data to grow at an explosive rate, which has also pushed
the study of DNA sequences in the wave of big data. Moreover, machine learning is
a powerful technique for analyzing largescale data and learns spontaneously to gain
knowledge. It has been widely used in DNA sequence data analysis and obtained a
lot of research achievements. Firstly, the review introduces the development process
of sequencing technology, expounds on the concept of DNA sequence data structure
and sequence similarity. Then we analyze the basic process of data mining, summary
several major machine learning algorithms, and put forward the challenges faced by
machine learning algorithms in the mining of biological sequence data and possible
solutions in the future. Then we review four typical applications of machine learning
in DNA sequence data: DNA sequence alignment, DNA sequence classification,
DNA sequence clustering, and DNA pattern mining. We analyze their corresponding
biological application background and significance, and systematically summarized the
development and potential problems in the field of DNA sequence data mining in recent
years. Finally, we summarize the content of the review and look into the future of some
research directions for the next step.

Keywords: DNA sequence, machine learning, data mining, DNA sequence alignment, DNA sequence
classification, DNA sequence clustering, DNA pattern mining

INTRODUCTION

We live in the era of the genome, advances in science have allowed humans to spy on the
mysteries of life. In recent decades, the rapid expansion of biological data is a significant feature
of the development of molecular biology, and a massive biological information database has
rapidly formed. We must obtain useful knowledge from these huge data, and simultaneously
bioinformatics was born. Bioinformatics is an interdisciplinary subject. It comprehensively
uses mathematics, life sciences, and computer science to mine biological information in
biological data (Chu, 2014), and further guides the relevant researches of biological researchers.
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Specifically, the first step is to obtain information on the protein-
coding region by analyzing the genomic DNA sequence. Then
simulating and predicting the spatial structure of the protein.
Finally, according to the function of the protein, the researchers
make the necessary drug design.

According to statistics, the amount of biological data
approximately doubles every 18 months. In 1982, GenBank’s
first nucleic acid sequence database had only 606 sequences,
containing 680,000 nucleotide bases (Bilofsky et al., 1986). As
of February 2013, its database already contains 162 million
biological sequence data, containing 150 billion nucleotide
bases. How to mine knowledge from these huge data and
guide biological research s an important research content
of bioinformatics.

For complex biological data, on the one hand, it is necessary
to solve the problem of storage and management of massive
data, and on the one hand, it is necessary to extract effective
information from the data on the premise of ensuring that the
data reflects the true meaning of biology. Machine learning is
an important method to achieve artificial intelligence. It can
handle the automatic learning of machines without explicit
programming and has been widely used in the field of
bioinformatics (Li et al., 2005; Larranaga et al., 2006).

DNA is a kind of biomacromolecule in organisms. It carries
the genetic information of life and guides the development of
biological development and the functioning of life functions.
At present, machine learning has been widely used in sequence
data analysis and has very broad application prospects in
improving data processing capabilities and generating valuable
biological information. The review focuses on DNA sequence
data mining and machine learning. The review briefly introduces
the development process of sequencing technology, DNA
sequence data structure, and several sequence encoding methods
in machine learning. And we clarify that sequence similarity is the
basis of DNA sequence data mining. We have comprehensively
analyzed the basic process of data mining and summarized
the algorithms commonly used in machine learning. Then, we
summarized four typical applications of machine learning in
DNA sequence data: DNA sequence alignment, classification,
clustering, and pattern mining. In summary, we have the
following conclusions: distributed sequence alignment and
parallel computing may be the research focus of DNA sequence
alignment. How to effectively express sequence features and
analyze DNA sequence classification is a difficult point in
research. The two key points of DNA sequence clustering are
how to extract characteristic subsequences in the DNA sequence.
DNA sequence pattern mining will generate an explosion of
candidate sequence patterns, which will consume a lot of time
and space. How to design a suitable search strategy and eliminate
redundant sequence patterns will be an important direction for
future research.

BASIC KNOWLEDGE OF DNA

Gene sequencing is one of the most popular technologies
in life sciences. At present, HiSeq X Ten is the sequencing

platform with the highest sequencing throughput and the lowest
cost. The introduction of equipment and its commercialization
has greatly promoted the development of the sequencing
industry. The rapid progress of sequencing technology and the
continuous decline of sequencing costs have made sequencing
more and more common.

Sequence similarity is the basis of sequence data mining, and
it is a research direction where sequence similarity bioinformatics
is very meaningful. Sequence similarity refers to the degree
of similarity between sequences. If the similarity between
two sequences exceeds 30%, it is considered that they may
have homology. The homologous sequences have a common
evolutionary ancestor, and their structures and functions may
have similarities.

Development of Sequencing Technology
With the development of biological information technology,
sequencing technology has experienced three stages of
development. The chain termination method proposed by
Sanger and the chain degradation method proposed by Gibert is
collectively called the first generation sequencing technology. At
present, Sanger sequencing is still widely used in conventional
sequencing applications and verification, but the sequencing cost
is extremely high and the throughput is low, which seriously
affects its truly large-scale application. After more than 40 years
of technological development, sequencing technology has
achieved considerable progress. The progress of sequencing
technology is shown in Figure 1.

After the continuous efforts of researchers, the second
generation sequencing technology marked by 454 technology was
born in 2005. These sequencing systems can analyze billions of
sequencing reactions at the same time. The second-generation
sequencing technology is a kind of connected sequencing, which
greatly improves the speed of sequencing and greatly reduces the
cost of sequencing. At present, the second-generation sequencing
technology (Watson, 2014) is the main force in the scientific
research market. Due to its low cost, it has been widely used.

In 2011, the third generation sequencing technology
represented by Oxford single molecule sequencing technology
and PacBio’s SMRT technology was born. Single molecule
sequencing is the biggest feature of the third-generation
sequencing technology. This technology needs to be continuously
adjusted and upgraded for large-scale applications. Sequencing
technology is revolutionizing personalized medicine by
providing high throughput options with sequence capabilities
for clinical diagnosis.

Genomic big data analysis is becoming the next frontier in
the field of biomedicine (Roukos, 2010), which integrates data
storage, data sharing, data analysis, and data quality control. The
sequencing error rate profiles of different sequencing platforms
are different, so we need to know which sequencing platform
is used to generate the original data, what is their error rate
distribution, and whether there are certain biases and limitations.
At present, the three major international biological data centers
(NCBI, EBI, and DDBJ) have established a series of biological
information databases and various data services, which provide
strong support for biological data analysis. Biomedical data
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FIGURE 1 | History of sequencing technology.

presents the characteristics of a wide variety, high-dimensional
complex internal structure, rich content, relatively scattered data,
and difficulty in high-dimensional multi-level cross-sharing.

Data Structure of DNA Sequence
Biological studies have shown that biological sequences are
not random and unordered strings. They consist of a linear
arrangement of smaller elements. The DNA sequence is
connected by four kinds of deoxyribonucleotides (bases). Base
order contributes to the diversity of DNA molecules.

The structure of the DNA double helix is shown in Figure 2.
The nitrogen-containing bases of one strand of the DNA double
helix structure will only bond with specific bases of the other
strand. It is generally called complementary base pairing, and a
base pair is the basic unit of DNA sequence.

DNA sequence data have different characteristics from other
data, mainly including:

1. DNA sequence data consists of non-numeric (A, T, C, G)
characters;

2. The length of different sequences varies greatly. Some
sequences have only a few dozen characters, while others
are very long, up to hundreds of megabytes;

3. DNA sequence data contains its specific biological
significance;

4. Due to certain errors in the sequencing process and noise in
the sequence data, it is necessary to perform corresponding
data preprocessing before analyzing the data.

DNA Sequence Coding
When processing the DNA sequence, it is necessary to convert
the string sequence into a numerical value, so as to form
a matrix input model training. Generally speaking, there are
three methods for sequence encoding: sequential encoding, one-
hot encoding, and k-mer encoding (Choong and Lee, 2017).
The characteristics of the three DNA encoding methods are

shown in Table 1. The performance of sequential encoding
is comparable to one-hot encoding, but the training time is
significantly reduced. One-hot encoding is widely used in deep
learning methods and is very suitable for algorithms such as CNN
(convolutional neural networks). In addition, the performance
of one-hot encoding is quite consistent in different data sets,
but a suitable CNN is required to get good performance.
Ordinal codes represented by matrices perform best in some
evaluation data sets. The performance of CNN in discovering
DNA motifs depends on the proper design of sequence encoding
and representation. The good performance of the ordinal coding
method shows that there is still room for improvement in the
single-point coding method.

DNA Sequence Similarity
The main mining modes of machine learning include data
characterization and differentiation, data frequent patterns,
association and correlation, classification and regression of
data predictive analysis, cluster analysis, and outlier analysis.
Data mining for DNA sequences is generally carried out from
these aspects, and research in these areas is inseparable from
similarity analysis between sequences (Pearson, 2013). It can
be seen that sequence similarity is the basis of DNA sequence
data mining.

Sequence similarity means that there are similar or identical
sites between sequences. The sequence similarity can be a
quantitative value or a qualitative description. If the degree of
similarity between two sequences exceeds 30%, It is considered
that the two sequences have a homologous relationship.
Therefore, if the two sequences are highly similar, the two
sequences are likely to have a common evolutionary ancestor. At
the same time, if a sequence similar to the unknown sequence
can be found from the sequences with known functions, we
can further predict the function (Rogozin et al., 1996) of the
unknown sequence.
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FIGURE 2 | Double helix of DNA.

One of the main problems of DNA sequence similarity
research is to search for sequences whose similarity to a specified
sequence exceeds a certain threshold. The most commonly
used method is to establish a similarity matrix (Henikoff and
Henikoff, 1992) and find the best match between sequences in
consideration of possible insertions, deletions, and mutations.
The study of sequence similarity is divided into global similarity
research and local similarity research. The global similarity
is the similarity matching of the entire sequence, which is
suitable for sequences with a high degree of similarity at the
global level. The Needleman-Wunsch algorithm is a typical
sequence alignment algorithm (Pearson and Lipman, 1988).
However, genes only account for about 2% of the DNA sequence,
that is, only a few sequence fragments have a functional
role. Although there is no similarity between sequences as a
whole, there are similarities in some local areas. Therefore,
it is more meaningful to study local similarity than global
similarity. Typical local alignment algorithms include the Smith-
Waterman algorithm based on dynamic programming algorithm
and heuristic database similarity search algorithms FASTA and
BLAST (basic local alignment search tool). In a recent study,
Delibas and Arslan (2020) proposed a non-aligned sequence
similarity analysis method, a new method of DNA sequence

TABLE 1 | Common ways of encoding DNA sequences.

Encoding method Features

Sequential encoding This method encodes each base as a number. For example,
change [A,T,G,C] to [0.25, 0.5, 0.75, 1.0], and any other
character can be recorded as zero.

One-hot encoding This method is widely used in deep learning methods. For
example, [A,T,G,C] will become [0,0,0,1], [0,0,1,0], [0,1,0,0],
[1,0,0,0]. These coded vectors can be connected or turned
into a two-dimensional array.

K-mer encoding First take a longer biological sequence and decompose it
into k-length overlapping fragments. For example, if we use
a segment of length 6, “ATGCATGCA” will become:
“ATGCAT,” “TGCATG,” “GCATGC,” “CATGCA.”

similarity analysis using the similarity calculation of texture
images, which is a digital image processing method.

Sequence similarity is one of the key processes of DNA
sequence analysis in computational biology and bioinformatics.
In the study of gene function analysis, protein structure
prediction and sequence retrieval, similarity calculations are
required. We select the appropriate sequence similarity analysis
method and improve it according to actual application
requirements and biological background. This is the basis and key
of DNA sequence data mining.

MACHINE LEARNING ALGORITHM

In the past few decades, we have witnessed the revolutionary
development of biomedical research and biotechnology and
the explosive growth of biomedical data. The problem has
changed from the accumulation of biomedical data to how
to mine useful knowledge from the data. On the one hand,
the rapid development of biotechnology and biological data
analysis methods has led to the emergence of a challenging
new field: bioinformatics. On the other hand, the continuous
development of biological data mining technology has produced
a large number of effective and well-scalable algorithms. How to
build a bridge between the two fields of machine learning and
bioinformatics to successfully analyze biomedical data is worthy
of attention and research. In particular, we should analyze how
to use data mining for effective biomedical data analysis, and
outline some research questions that may stimulate the further
development of powerful biological machine learning algorithms.

Basic Process of Data Mining
Data mining is a discipline that combines classic statistical
tools with computer science algorithms. This discipline aims
to mine knowledge from large amounts of data for scientific,
computational, or industrial use. As shown in Figure 3,
we comprehensively describe the process of data mining
from six aspects.
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FIGURE 3 | The steps for data mining process.

1. Data cleaning. Because of the increasing amount of
heterogeneous data, data sets often have missing data and
inconsistent data. Low data quality will have a serious
negative impact on the information extraction process.
Therefore, deleting incomplete, or inconsistent data is the
first step in data mining;

2. Data integration. If the source of the data to be studied is
different, it must be aggregated consistently;

3. Data selection. Accurately select relevant data based on the
research content;

4. Data conversion. Transform or merge data into a form
suitable for mining, and integrate new attributes or
functions useful for the data mining process;

5. Data mining. Select the appropriate model according to the
problem and make subsequent improvements;

6. Mode evaluation. After acquiring knowledge from the data,
select appropriate indicators to evaluate the model.

The main task of the data mining step is to correctly select one
or a combination of these steps and find an effective and reliable
method to solve the given problem. In recent years, machine
learning has been widely used in bioinformatics analysis. Each
step of data mining is developed independently of other steps,
and each step has a large number of machine learning algorithms.

Association Rule Mining Algorithm
As one of the most important branches of data mining,
association rule mining can identify the associations and frequent
patterns of a set of items in a given database. It consists of
two sub-problems: (1) Set the minimum support threshold and
use the minimum support Find frequent itemsets from the
database; (2) Use minimum confidence to find association rules
that satisfy specified constraints on frequent itemsets. Association
rule mining not only plays an important role in business data
analysis but has also been successful in many other fields, such
as virtual shopping basket analysis and medical data analysis.

The Apriori algorithm is a typical association rule-based
mining algorithm, which has applications in sequence pattern
mining and protein structure prediction. Many machine learning
algorithms in data mining are derived based on Apriori
(Zhang et al., 2014). The basic method of association rule mining

is through the use of Some metrics are used to analyze the
strong associations in the database. The most commonly used
measurement methods are minimum support and minimum
confidence. The Apriori algorithm uses a guided method to mine
association rules between data items in the database.

Classification Algorithm
Classification is one of the most studied tasks in machine
learning. The principle of classification is based on the predicted
attribute to predict the class of the target attribute specified by
the user. In genomics, the key issues are genome classification
and sequence annotation. In the mining of biological sequences,
widely used algorithms include fuzzy sets, neural networks,
genetic algorithms, and rough sets. There are also many
general classification models, such as naive Bayesian networks,
decision trees, neural networks, and rule learning using
evolutionary algorithms.

Clustering Algorithm
The clustering algorithm in machine learning can cluster
together sequences with some same characteristics, and
explore the effective information of unknown sequences from
known functions and structures. Therefore, the clustering of
biological sequences is of great significance to the research of
bioinformatics. The difference from the classification is that
clustering does not implement a set category. Each cluster has its
own common characteristics. The purpose of cluster analysis is
to divide the data with common characteristics into one category,
then use other methods to analyze the data.

In recent years, with the development of artificial intelligence,
the clustering algorithm has become a popular research direction
in the field of machine learning. To improve the processing
capacity of large scale data, domestic and foreign scholars have
conducted more in-depth research on clustering algorithms.
Several excellent clustering algorithms have emerged: there are
mainly clustering algorithms based on granularity, clustering
algorithms based on uncertainty, clustering algorithms based on
entropy, clustering integration algorithms, etc.

Besides the above-mentioned ones, there are a large number of
algorithms. Each algorithm has its characteristics, an algorithm
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cannot be applied in all situations. Understand the advantages
and disadvantages of each algorithm could help us better
use and research.

Challenges and Future Solutions
Machine learning is the core of data mining and the most
widely used data processing method. A key advantage of machine
learning algorithms is that they can be used to filter large amounts
of data to explore patterns that may be overlooked. In the era
of big data in biomedical research, machine learning plays a key
role in discovering predictable patterns in biological systems.
The current application of machine learning in biomedical data
mainly has the following problems:

1. Large data sets are the key to machine learning. At present,
the magnitude of most biological data sets is still too small
to meet the requirements of machine learning algorithms.
Although the total amount of biological data is huge and
increasing day by day, the collection of data comes from
different platforms. Due to the differences in technology
and biology itself, it is very difficult to integrate different
data sets;

2. Due to the differences in biological data itself, machine
learning models trained on one data set may not be well
generalized to other data sets. If the new data is significantly
different from the training data, the analysis results of the
machine learning model are likely to be false;

3. The black-box nature of machine learning models brings
new challenges to biological applications. It is usually very
difficult to interpret the output of a given model from a
biological point of view, which limits the application of the
model.

Machine learning presents new opportunities and challenges
to the development of life sciences. In response to the above
issues, we believe that future research directions should include
the following:

1. The first is to collect large and well-annotated data sets;
2. A certain machine learning model cannot apply to all data

sets, so any new data set should match the general attributes
of the data used to train the model;

3. We urgently need to develop a means to transform
the “black box” of machine learning into a biologically
meaningful and interpretable “white box.”

There are many opportunities at the intersection of machine
learning and biomedical data integration, but there are also
huge challenges to overcome. Machine learning itself is far from
realizing its potential in the field of biological research, and we
still have a long way to go.

APPLICATION OF MACHINE LEARNING
IN DNA SEQUENCE DATA MINING

Machine learning is an important branch of computer science.
On the one hand, machine learning makes it possible to mine

useful knowledge from large data sets. On the other hand,
many areas are also eager to obtain knowledge from data to
guide practice. Machine learning also provides new opportunities
and challenges for the development of these areas. The benign
interaction brought about by this interdisciplinary integration
has undoubtedly promoted the development and prosperity of
machine learning.

DNA is a biological macromolecule and the basic unit of
biological genetic material. Its main function is the storage
of genetic information. The calculation and analysis of DNA
sequences had undergone fundamental changes in the 1980s.
As the genome sequencing system continues to develop, the
study of DNA sequences has gradually shifted from the
accumulation of original data onto the interpretation of data.
This section summarizes the four applications of machine
learning in DNA sequence data: DNA sequence alignment,
classification, clustering, and pattern mining, and analyzes and
discusses the corresponding biological application background
and significance. Finally, we systematically summarize the
research in the field of machine learning in recent years.

DNA Sequence Alignment
Sequence alignment is the comparison of two or more sequences
in the order of base arrangement, mainly to compare sequences
with unknown functions to sequences with known sequences.
And the results of the alignment reflect the similarity between
sequences and their biology Features. Sequence alignment
analysis is one of the most basic and important issues
in bioinformatics. Through sequence alignment analysis, the
structure and function of biological sequences can be further
predicted. According to the study of biology, the evolution of
DNA has the possibility of gene recombination and mutation,
and the evolutionary process of DNA has been unable to recover
and reproduce. However, evolution can be studied to explore the
homology between DNA through sequence alignment analysis.

Sequence alignment can be divided into double sequence
alignment and multi-sequence alignment. Multi-sequence
alignment is an extension of double sequence alignment. As
the number of sequence alignments increases, the difficulty of
alignment is also greater. At present, the research of biological
sequence alignment is very mature, and a large number of
sequence alignment tools have appeared, such as CLUSTAL,
TCOFFEE, and MUSCLE. We selected three DNA sequences
of equal length and used CLUSTAL software for sequence
comparison. The local visualization of the comparison results
is shown in Figure 4. The red area indicates the part of the
three sequences that are completely matched. The number of
completely matched bases in the figure is 25. The number of
bases in the sequence fragment is 46. The sequence similarity
reaches 54.35%, and it can be considered that the three sequences
have local similarities. Figure 4 is just the simplest comparison
situation. In the actual sequence comparison, the situation is
much more complicated.

At the early stages, research on biological sequence alignment
started with dual sequence alignment. Needleman and Wunsch
used dynamic programming algorithms for dual sequence
alignment based on the similarity of the entire sequence,
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FIGURE 4 | DNA sequence fragment alignment diagram.

FIGURE 5 | Non-isometric DNA sequence alignment diagram.

this is the Needleman-Wunsch algorithm commonly used
in sequence alignment, which is also known as global
sequence comparison method and optimization matching
algorithm. Smith and Waterman (1981) improved the dynamic
programming algorithm to make it into a local optimal algorithm,
which can search for sequence fragments with the high local
similarity between two sequences. The disadvantage of the
Smith-Waterman algorithm is that the comparison speed is
slow. If you want to search for the maximum matching base
number of two DNA sequences, you need to find the longest
common substring of the two sequences. First, calculate the
score matrix of the double sequence alignment, and then use
the dynamic programming algorithm to obtain the matched
string. We selected two DNA sequences of non-equal length
and used CLUSTAL software for sequence comparison. The
local visualization of the comparison results is shown in
Figure 5. Because the number of bases in the two DNA
sequences is not equal, it is necessary to insert blanks to search
for the maximum number of matched bases. The number
of bases for a perfect match is 25, and the local similarity
is also very high.

Later, BLAST and FASTA have important applications in
the query and search of biological sequence databases. With
the deepening of research, the swarm intelligence algorithm
and its improved algorithm gradually began to be applied to
biological sequences alignment, such as the genetic algorithm, ant
colony algorithm, etc. Jangam and Chakraborti (2007) proposed
a double sequence alignment hybrid algorithm based on a genetic
algorithm and ant colony algorithm. The algorithm combines the
local feature search capability of the ant colony algorithm and
the global feature search capability of the genetic algorithm. The
algorithm greatly optimizes the sequence alignment results. For
short and medium sequences, the algorithm has high accuracy
and better performance than the basic genetic algorithm, but
the search efficiency for long sequences is low. To solve the
problems of slow convergence and easy local optimization of the
ant colony algorithm, Zhao et al. (2008) proposed a sequence
comparison method based on an improved ant colony algorithm.
By adjusting the initial and final positions of the ants and
modifying the pheromone at different times, the algorithm
solves the problem that the result falls into a locally optimal

solution, but the amount of calculation is large, and it takes a
long time to solve.

Multi sequence alignment (MSA) is an extension of double
sequence alignment, but when the amount of sequences is
large, it will face the problem of excessive data storage space
occupation and high calculation complexity. MSA has a key
characteristic: Since MSA is an NP-complete problem, MSA
relies on approximate alignment heuristic algorithms. These
heuristic algorithms depend to a certain extent on specific data
attributes. This algorithm was proposed by Hogeweg, and later
researchers developed sequence alignment packages based on
it, such as CLUSTAL, T-Coffee, CLUSTALW. In recent years,
the research and application of iterative algorithms in MSA
have become common. Huo and Xiao (2007) proposed a graph-
based DNA multi-sequence alignment algorithm: MWPAlign.
This algorithm expresses sequence information as a structure
graph and converts the sequence alignment problem into the
maximum weight path of the graph. The algorithm has a linear
time complexity, which significantly reduces the problem of
excessive time complexity caused by MSA. However, when the
mutation rate between sequences is different, the comparison
result is poor, and the algorithm itself loses sequence similarity
information in the process of looping. Lee et al. (2008) proposed
a multi-sequence alignment genetic algorithm (GA-ACO) with
ant colony optimization. GA-ACO algorithm combined with
local search. GA-ACO uses ant colony optimization (ACO) to
enhance the performance of GA. In the GA-ACO algorithm, GA
guarantees the diversity of comparisons, and ACO avoids the
result falling into a locally optimal solution. The hybrid genetic
algorithm solves the problem of large-scale calculations, but the
search speed of the algorithm is relatively slow, and more accurate
solutions require more training time.

Naznin et al. (2011) proposed a method of multi-sequence
alignment using genetic algorithm vertical decomposition
(VDGA). The algorithm uses two mechanisms to generate the
initial population: (1) generate a guide with randomly selected
sequences Trees; (2) Combine sequences in such trees. VDGA
divides the sequence vertically into two or more subsequences,
then uses the guide tree method to solve them separately, and
finally combines all the subsequences to generate a new multiple
sequence alignment. After statistical and experimental analysis,
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VDGA is an effective method to solve the problem of multiple
sequence alignment. The tree model is the most widely used in
the field of machine learning, and it is also a model with many
variants. The tree model is easy to understand and not easy to
overfit, and it consumes fewer resources during training. So tree
models are also often used in the biological sequence alignment.

Many studies have focused on heuristic techniques to solve
MSA problems, among which stochastic methods are very
effective methods. GA is a stochastic method, which can solve
this type of optimization problem well. Chowdhury and Garai
(2017) summarized the DNA multiple sequence alignment from
the perspective of a genetic algorithm. Genetic algorithm has the
following advantages in MSA:

1. You can find the optimal solution or the suboptimal
solution of the sequence alignment problem in computing
time;

2. Regardless of the length of the sequence and the number of
sequences, this method is applicable;

3. There is much room for improvement in the optimization
of the objective function, and the description of the
objective function is crucial for the optimal solution of
sequence alignment.

The scale of biological sequence data continues to grow,
and sequence alignment is a necessary step for sequence data
analysis. Since the research of sequence alignment is very
mature, a large number of excellent and open-source sequence
alignment tools have appeared. At present, the research of
sequence alignment focuses on improving the speed of the
alignment. Faced with such a large amount of sequence data,
traditional sequence comparison tools can no longer handle it,
so highly distributed computers will be required. In recent years,
a distributed computing framework called Hadoop can be used
for big data processing and storage. It has two main components,
MapReduce for programming model and Hadoop Distributed
File System (HDFS) for storing data. Using the distributed
platform of the MapReduce model, massive sequencing data
can be effectively stored and analyzed. Mondal and Khatua
(2019) proposed a distributed sequence alignment algorithm:
MRaligner. The algorithm is implemented in the Apache Spark
framework using MapReduce. Compared with the traditional
Smith-Waterman algorithm, the sequence comparison efficiency
has been significantly improved. Besides, because the framework
is flexible and extensible, increasing the number of processors and
good distributed HDFS management will speed up processing.

Evaluation of biological sequence alignment algorithms
mainly considers the efficiency of the algorithm and the
sensitivity to obtain the best alignment results. The Smith-
Waterman algorithm for double-sequence alignment is highly
sensitive, but its complexity is high. FASTA and BLAST are a
decrease in predicted sensitivity in exchange for an increase in
speed. The CLUSTALW algorithm is the most common and
effective among multiple sequence alignment algorithms. The
main problem in sequence alignment is whether the sensitivity
of the alignment and the efficiency of the algorithm have been
improved for sequences with large differences.

Next-generation sequencing technology (NGS) has brought
us a lot of biological data. Sequence alignment is always an
indispensable step in finding the relationship between sequences.
For fairly large input sequences, sequence alignment is a
difficult task Currently, traditional sequence alignment tools are
inefficient in terms of computing time. In the future, in the
face of high throughput, biological sequence data, distributed
sequence alignment, and parallel computing may be the focus of
research in this field.

DNA Sequence Classification
Classification is an important mining task in machine learning.
Its purpose is to learn a classification model from the training
sample set to predict the category of unknown new samples. The
classification of biological sequences as a special data type is a
popular problem in data mining. It is a difficult problem, due to
the non-numerical attributes of the biological sequence elements,
the sequence relationship between the sequence elements, and
the different sequence lengths of different events, etc. Sequence
classification is to predict the type of DNA sequence based on
the similarity of its structure or function, and then predict the
sequence function and the relationship between other sequences,
and assist in the identification of genes in DNA molecules.

Levy and Stormo (1997) proposed to use circular graphs
(DAWGs) to classify DNA sequences. Müller and Koonin
(2003) proposed to use vector space to classify DNA sequences.
Ranawana and Palade (2005) proposed a multi-classifier system
for identifying E. coli promoter sequences in DNA sequences.
He Uses four different coding methods to encode the sequence
and then uses the coding sequence to train four different neural
networks. The classification results of the four individual neural
networks were then combined through an aggregation function,
which used a variation of the logarithmic opinion pool method.
Experiments show that when the same data is provided to the
neural network with different encoding methods, it can provide
slightly different results that can be provided. At the same time,
when the results of more classifiers with the same input data
are integrated into a multi-classifier, the results we can obtain
are better than the single performance of the neural network.
However, the main disadvantage of the neural network design is
that it is difficult to obtain the optimal parameters of the neural
network. This will involve the deployment of the neural network
and the optimization of the encoding method used.

Ma et al. (2001) proposed a DNA sequence classification based
on the combination of the expectation-maximization algorithm
and a neural network, and applied the algorithm to identify the
DNA sequence classification of E. coli promoters. Ma Q uses an
improved expectation-maximization algorithm to locate the −35
and −10 binding sites in the E. coli promoter sequence. It is
no longer assumed that the lengths of the spacers between the
binding sites and between the binding sites and the transcription
start site are evenly distributed. Instead, he derives the probability
distribution of these lengths. According to the information
contained in each E. coli promoter sequence, he selects features
and uses orthogonal coding methods to represent these features.
Finally, these features are input into the neural network for
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promoter recognition. This method obtained good performance
on different data sets.

Zaki et al. (2010) proposed a variable-order hidden Markov
model with the continuous state: VOGUE. VOGUE uses a
variable sequence mining method to extract frequent patterns
with different lengths and spacings between elements, and then
he constructs a variable sequence hidden Markov model.
Compared with traditional HMM, VOGUE has higher
classification accuracy. However, the frequency statistical
characteristics of the sub-sequences in the sequence are not
considered, which affects the generalization ability of the model.

In recent years, the convolutional neural network is a widely
used deep learning model. Convolutional neural networks can
extract abstract features from data. Nguyen et al. (2016) used
DNA sequences as text data and proposed a new method for
classifying DNA sequences with convolutional neural networks.
This method uses a one-stop vector to represent the sequence
as the input of the model. So, it retains the information of
each nucleotide in the basic position sequence. The model was
evaluated in 12 DNA sequence data sets. The results show that
the model has improved significantly on all these data sets. The
continuous development of deep learning has also opened up new
ideas for DNA sequence mining.

The machine learning method used for supervised learning
classification tasks depends on feature extraction. Bosco and Di
Gangi (2016) proposed two different deep learning models. He
used the model for classification tasks on five datasets. It turns
out that neural deep learning framework or deep learning models
can automatically extract useful features from input patterns.

A key problem in genomics is the classification and
annotation of sequences. In recent years, a variety of machine
learning techniques have been used to complete this task.
In any case, the main difficulty behind the problem is
still the feature selection process. The sequence has no
clear features And the general representation method easily
introduces high-dimensional problems. How to effectively
represent sequence features and analyze high dimensional data
is the difficulty of research.

DNA Sequence Clustering
Cluster analysis is one of the most commonly used methods
of machine learning. It is different from the classification that
we don’t know specific categories in advance. Cluster analysis is
unsupervised learning of data patterns. DNA sequence clustering
is based on sequence similarity analysis. Cluster analysis clusters
DNA sequences with similar characteristics into a cluster and
then analyzes biological sequence functions. How to determine
whether there is a similarity between sequences is the key to
DNA sequence clustering. At present, a lot of research in DNA
sequence clustering is based on the local characteristics of DNA
for clustering, and the clustering results of DNA sequences are
affected by many factors Impact. If a clustering algorithm that
considers the global characteristics of DNA sequences can be
designed, the accuracy of clustering will be greatly improved,
and it is of great significance for the further analysis of DNA
sequence clusters.

Early foreign scholars Krause et al. (2000) proposed the
SYSTERS algorithm, Enright et al. (2002) proposed the
GENERAGE algorithm, the basic idea of the two is to calculate
the similarity between sequences, and then use a hierarchical
clustering algorithm to complete sequence clustering. Gerhardt
et al. (2006) proposed a DNA sequence clustering tool based
on the concept of graph theory. This method studies the path
topology of the biological genome through a triplet network.
In this network, the triplets in the DNA sequence are vertices.
If two vertices appear side by side on the genome, they are
connected. Then the cluster topology is measured to characterize
this network topology. Finally, he aims at two main deviations:
guanine-cytosine (GC) content and periodicity of DNA sequence
base pairs, he constructed some test data of DNA sequences and
studied the clustering method based on the constructed random
network. The conclusion proves that the clustering coefficient
has its research value. Based on the new distance measure DMk,
Wei D proposed a new unaligned DNA sequence clustering
algorithm mBKM. This method converts the DNA sequence into
a feature vector. This method transforms DNA sequences into
the feature vectors which contain the occurrence, location, and
order relation of k-tuples in the DNA sequence. The mBKM
algorithm can effectively classify DNA sequences with similar
biological characteristics and discover the relationships between
DNA sequences (Wei et al., 2012). However, the method did not
consider edge length, and it has not addressed problems with long
repeated sequences or long insertions.

Some recent studies have proposed methods for converting
DNA data into genomic digital signals. These studies will provide
opportunities for existing digital signal processing methods to be
used in genomic data. Mendizabal-Ruiz G proposed a method for
clustering analysis of DNA sequences based on GSP and K-means
clustering. He chose Euclidean distance as the similarity measure
to be adopted by the K-means algorithm. This method can be
used to evaluate the ability of markers or genes to distinguish
organisms at different levels, identify subgroups in a group of
organisms, and classify fragments of DNA sequences based on
known sequences (Mendizabal-Ruiz et al., 2018). Mendizabal-
Ruiz G has demonstrated that it is possible to group DNA
sequences based on their frequency components. The future
research direction is to determine whether different pyramids
occupy the weight of size in sequence clustering.

At present, the two key points of DNA sequence clustering
are how to extract the characteristic subsequences in the DNA
sequence, and how to design an effective similarity measure from
the biological meaning. Based on the above two key points, the
design of the DNA sequence clustering algorithm will get a more
practical application of clustering results.

DNA Sequence Pattern Mining
During DNA evolution, its sequence patterns are well conserved,
which is of great significance for biological research. The DNA
sequence pattern is usually a sequence fragment in the DNA
sequence that has a specific function. In the process of DNA
evolution, the more conserved regions in most sequences will
form specific sequence patterns, and the structure and function
of these sequences play an important role. Therefore, identifying
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these patterns is an important research content of DNA sequence
data analysis. This helps to predict DNA sequence function
and explain the evolutionary relationship between sequences.
The purpose of DNA sequence pattern mining is to find such
sequence patterns from DNA sequences and to identify genes and
their functions.

Since, Srikant and Agrawal (1996) defined rearranged
sequence pattern mining in 1995, related research has become an
important field of machine learning. It has attracted the attention
of researchers. There are many types of replacement patterns,
including interchange item sets, repetitive subsequences, and
replacement substructures. DNA sequence pattern mining is to
search for replacement subsequences in a sequence.

As shown in Figure 6, it is a schematic diagram of the
sequence mode. The eight green lines in Figure 6 represent eight
sequences, and the three different colored squares represent the
three patterns of the sequence. Sequences 3, 5, 6, and 7 all contain
the pattern one, sequences 1, 2, 4, 5, 6, and 8 all contain pattern
2, and sequence 3 contains the only pattern three. We can find
that both sequences 4 and sequence 8 contain two patterns,
which can be used to further analyze the common nature of
the two sequences.

The Apriori algorithm is commonly used to mine data
association rules. It is used to find data sets that frequently
appear in data values. Finding out the patterns of these sets helps
us make some decisions. Srikant proposed a GSP (generalized
sequential patterns mining) algorithm based on the Apriori
algorithm. The GSP algorithm introduces time and conceptual
level constraints and uses a bottom-up breadth-first strategy to
mine all frequent patterns (Srikant and Agrawal, 1996). However,
when the scale of the sequence database is large, a large number
of candidate patterns are generated, and the sequence database
needs to be scanned frequently, which leads to the overall
efficiency of the algorithm. Therefore, the Apriori algorithm
is rarely studied alone, but the Apriori idea is often used in
combination with other algorithms, which will also produce good
research results.

At present, there are two main types of calculation methods
found in the study of biological sequence patterns: (1) One type
uses a heuristic search strategy. This type of algorithm is usually
an iterative process. The optimal solution is obtained through
repeated iterations. The advantage of the solution is that the
calculation complexity is reduced. This kind of method is suitable
for the study of subdivided DNA sequences. The disadvantage
is that its solution may fall into the local optimum; (2) Another
type of algorithm uses an exhaustive search strategy to enumerate
all possible solutions and evaluate them one by one to find
the best solution.

Existing sequential pattern mining algorithms can be roughly
divided into two categories: (1) One type of sequential pattern
mining algorithm is to search for patterns in the sequence that
exceed a certain threshold: mining alternative patterns. They can
only mine alternating patterns in a single sequence. (2) However,
in the study of biological sequence analysis, we often require
simultaneous analysis of sequence patterns in sequence sets,
which cannot be achieved by this method. Therefore, another
type of sequence pattern mining algorithm is needed. This type
of sequence pattern mining algorithm mines repeated sequence
patterns in data sets. When we face massive amounts of biological
data, such algorithms usually search very slowly.

Zhou et al. (2010) proposed a pattern mining algorithm:
mMBioPM. The algorithm solves the problem of redundancy
in the mining results by optimizing the hash table structure
with pattern division features, and reduces the calculation
time and improves the mining efficiency. To overcome the
time complexity and memory overhead caused by a large
number of projection databases and short patterns generated
by the frequent pattern mining algorithm, Chen and Liu
(2011) proposed a fast and efficient biological sequence frequent
pattern mining algorithm: FBPM. He defined the concept of
the main mode and then used the prefix tree algorithm to
mine frequent main modes. At the same time, he used a
pattern growth method to mine all common frequent patterns
in the sequence.

FIGURE 6 | Sequence pattern diagram.
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In the biological sequence database composed of DNA
sequences, the existing search algorithm is time-consuming and
requires multiple scans of the database. To overcome these
disadvantages, Junyan and Chenhui (2015) proposed an SPMM
algorithm based on the Markov chain. The algorithm calculates
the transition probability matrix of DNA sequences in the
sequence database and gives the minimum support threshold
as a constraint condition for mining sequence patterns. The
calculated degree of support of the subsequence is compared
with the threshold to finally determine the sequence pattern.
The experiment proves that the SPMM algorithm not only
obtains a higher mining speed, but also the mining quality of the
sequence mode is higher.

Mao (2019) designed a compact data structure called an
association matrix. Based on the association matrix structure,
he designed an algorithm for effectively mining key fragments
in DNA sequences. The correlation matrix is a novel in-
memory data structure. Its structure is very compact and can
handle ultra-long DNA sequences in limited storage space. By
designing a compact memory data structure and a processing
mechanism based on short sequences, it provides a novel idea
for analyzing DNA sequences. The effective structure of the
correlation matrix can help to efficiently mine key fragments
from ultra-long DNA sequences.

DNA sequence pattern mining is a necessary means to study
the structure and function of DNA sequences. Traditional DNA
sequence pattern mining algorithms will result in a large number
of redundant sequence patterns. These sequence patterns are
usually short, and they have little biological significance, which
makes the results of sequence pattern mining inefficient. At the
same time, the long sequence always contains a considerable
number of sub-sequences, so an explosive number of candidate
sequence patterns will be generated, which will generate a lot
of time and space consumption. How to design an appropriate
search strategy and eliminate redundant sequence patterns will
be an important direction for future research.

Open Issues
DNA sequence analysis provides an opportunity to explore
the genetic variation of organisms. The rapid growth of DNA
sequence data has continuously expanded the demand for DNA
sequence analysis. At present, there are still the following
problems in DNA sequence data mining:

1. There are still efficiency challenges when processing large-
scale DNA sequence data;

2. For different biological needs, suitable DNA sequence
data mining algorithms should be designed according to
the corresponding background knowledge and sequence
characteristics;

3. How to extract the sequence characteristics of DNA
sequences and how to design an effective similarity
measure to measure sequence similarity is very important;

4. Due to the “black box” nature of machine learning, the
output of machine learning is difficult to give a reasonable
explanation from a biological perspective, which limits the
application of the model to a certain extent.

CONCLUSION

In the past few decades, the rapid development of hardware
technology has opened up new possibilities for life scientists
to collect data in various application fields, such as omics,
biological imaging, medical imaging, etc. At the same time,
the advancement of life science technology has brought
Huge challenge. Today, how to apply numerous data mining
technologies to bioinformatics analysis is a current research
hotspot, including data mining architecture, machine learning
algorithm development, and new data mining analysis function
research suitable for biological information processing. At
the same time, the interdisciplinary approach has promoted
the development of machine learning. And artificial neural
networks, deep learning, and reinforcement learning have
made breakthroughs in machine intelligence. Besides, due to
the growth of computing power, the acceleration of data
storage speed and the reduction of computing costs,scientists
in various fields have been able to apply these technologies
to biological data. The close integration of machine learning
and bioinformatics will result in more and more meaningful
mining results, which will play a positive role in the progress
of human society.

Based on the above research, we believe that the research of
machine learning in DNA sequence analysis has two aspects that
deserve attention:

On the one hand, it describes the biological significance
of DNA sequences. At present, a large number of
algorithms can achieve efficient performance when
analyzing DNA sequences, but their mining results
are highly sensitive and specific, which will make a
large deviation during use. Therefore, how to integrate
the biological significance of DNA sequences into the
data mining process is a problem worthy of everyone’s
attention and research.

On the other hand, with the continuous expansion of
data volume, traditional analysis tools are inefficient in terms
of computing time, and how to design efficient calculation
methods is an important research aspect. The integration
of distributed computing and parallel computing will greatly
improve mining efficiency.

At the same time, it is very necessary to choose a suitable
DNA sequence coding method for a specific task. This
can improve the performance of the algorithm and reduce
the training time.

In summary, from the aspects of sequencing technology, DNA
sequence data structure, and sequence similarity, this review
comprehensively introduces the source and characteristics
of DNA sequence data; we briefly summarize the machine
learning algorithms and propose biological sequence data
Challenges faced by machine learning algorithms in mining
and possible solutions in the future. Then, we reviewed
four typical applications of machine learning in DNA
sequence data: DNA sequence alignment, classification,
clustering, and pattern mining, analyzed and discussed
their corresponding biological application background and
significance, and systematically summarized recent years
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Research on the field of DNA sequence data mining by domestic
and foreign scholars. We put forward several key issues in the
future research field of DNA sequence data mining and some
future research directions and trends. In future research, I believe
that the biological field and machine learning will be more closely
integrated, and more effective mining results will be obtained.
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The convolutional neural network (CNN) has made certain progress in image processing,
language processing, medical information processing and other aspects, and there
are few relevant researches on its application in disease risk prediction. Dyslipidemia
is a major and modifiable risk factor for cardiovascular disease, early detection
of dyslipidemia and early intervention can effectively reduce the occurrence of
cardiovascular diseases. Risk prediction model can effectively identify high-risk groups
and is widely used in public health and clinical medicine. Steel workers are a special
occupational group. Their particular occupational hazards, such as high temperatures,
noise and shift work, make them more susceptible to disease than the general
population, which makes the risk prediction model for the general population no
longer applicable to steel workers. Therefore, it is necessary to establish a new model
dedicated to the prediction of dyslipidemia of steel workers. In this study, the physical
examination information of thousands of steel workers was collected, and the risk
factors of dyslipidemia in steel workers were screened out. Then, based on the data
characteristics, the corresponding parameters were set for the convolutional neural
network model, and the risk of dyslipidemia in steel workers was predicted by using
convolutional neural network. Finally, the predictive performance of the convolutional
neural network model is compared with the existing predictive models of dyslipidemia,
logistics regression model and BP neural network model. The results show that the
convolutional neural network has a good predictive performance in the risk prediction of
dyslipidemia of steel workers, and is superior to the Logistic regression model and BP
neural network model.

Keywords: deep learning, convolutional neural network, dyslipidemia, steel worker, disease model prediction,
model performance comparison

INTRODUCTION

Dyslipidemia is a chronic noncommunicable disease of lipid metabolism disorder, characterized
by increased and/or decreased lipid levels in the blood. With the rapid development of China’s
economy and the change of life style, cardiovascular disease has become the main death
disease of residents (Roth et al., 2017). In recent years, the blood lipid level of Chinese
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population has gradually increased, and the prevalence of
dyslipidemia has increased significantly. Evidence demonstrates
that dyslipidemia is an independent and modifiable major risk
factor for cardiovascular disease, and its level can significantly
increase the incidence and mortality of cardiovascular disease
(Pikula et al., 2015; Lee et al., 2017). Studies have shown (Miller,
2009; Hendrani et al., 2016; Stevens et al., 2016) that the early
detection and management of high-risk groups with dyslipidemia
can effectively reduce the incidence of cardiovascular disease,
which can reduce the burden of cardiovascular disease and brings
great social value.

China has a huge number of steel workers. Steel workers are
a special occupational group, whose occupational environment is
special, such as high temperature, noise, shift system and other
special occupational exposure can cause or affect the occurrence
of chronic diseases (Chauhan et al., 2014; Hedén Stahl et al., 2014;
Tong et al., 2017; Wu et al., 2019b). Therefore, the prediction
model of dyslipidemia in the general population is not suitable
for steel workers. In order to improve the quality of life and
health status of steel workers, it is urgent to establish a new risk
prediction model of dyslipidemia in steel workers.

Logistics regression is a traditional prediction model, which
is widely used in the field of disease prediction due to its
clear parameter significance and easy to understand outcome
indicators (Liu et al., 2018). However, its applicable conditions are
relatively strict, which often limits the accuracy of its predictions.
BP neural network is a widely used artificial neural network for
disease prediction (Yao et al., 2019). Its good nonlinear processing
ability and flexible grid structure make it have a good self-
learning ability. However, it has a slow learning speed and is liable
to fall into local minima, which makes its network promotion
ability limited. Convolutional neural network is a kind of
feedforward neural network with deep structure and convolution
computation. The convolution structure can reduce the memory
occupied by the neural network and has strong adaptability. It
is good at mining local features of data and extracting global
training features and classification, which has some advantages
that traditional technologies do not have. In addition, the three
key operations of convolution kernel, “local receptive field,”
weight sharing and pooling, can effectively reduce the number
of network parameters, significantly reduce the computational
complexity, and alleviate the problem of model overfitting.

Based on thousands of physical examination data of
steel workers, we established a convolutional neural network
model to predict the risk of dyslipidemia of steel workers,
and compared the prediction performance with the existing
dyslipidemia prediction model. Overall, our study consists of
three contributions:

1. Based on thousands of physical examination data of
steel workers, we screened out the risk factors of
dyslipidemia of steel workers, which can provide a basis
for formulating early prevention strategies for dyslipidemia
of steel workers.

2. Combine the characteristics of the data to set the
corresponding parameters of the model, and use the
convolutional neural network to predict the risk of

dyslipidemia in steel workers. We found that the
convolutional neural network has a good fit with the
physical examination data of steel workers, and has a good
prediction performance.

3. Compare the prediction performance of the convolutional
neural network model with some of the existing
dyslipidemia prediction models and find that the
prediction performance of the convolutional neural
network model is better. In this way, we can use
convolutional neural networks to predict the risk of
dyslipidemia of steel workers, so as to achieve the early
prevention of dyslipidemia of steel workers and improve
the health and quality of life of steel workers.

RELATED WORK

Disease risk prediction model is a very effective way for
early detection of high-risk groups. In recent years, more and
more studies on model prediction of dyslipidemia have been
conducted, such as Xinghua Yang et al. (2018) established a
logistics model of dyslipidemia using a longitudinal database
based on Taiwanese MJ health checkups. Chongjian Wang et al.
(2012) established an artificial neural network model to identify
those at high risk of dyslipidemia in rural adult residents.
Xiaoshuai Zhang et al. (2019) used a random forest survival
model to predict the risk of dyslipidemia in Chinese Han adults.
However, these studies are aimed at the general population, and
there are few studies on the risk prediction of dyslipidemia in
special occupational populations.

Convolutional neural network has been widely used
in medical research and has shown good accuracy and
generalization ability (Lee et al., 2018; Lin et al., 2018; Horiuchi
et al., 2019; Wu et al., 2019a). However, no one has tried to
establish and evaluate the effect of convolutional neural network
model on predicting the risk of dyslipidemia in steel workers.

MATERIALS AND METHODS

Study Population
This study was a cross-sectional survey. Based on the baseline
data of the health effects cohort study of the occupational
population in the Beijing-Tianjin-Hebei region, steel workers
who had undergone occupational health examinations in a
steel group company hospital from March 2017 to June 2017
were selected as the research objects. To be eligible, steel
workers must on-the-job for at least 1 year, aged ≤60 years
and free from incomplete health examination data. Ultimately,
a total of 4655 steel workers were included in the study.
All steel workers included in the study received written
informed consent. According to the 2016 Chinese guidelines
for the management of dyslipidemia in adults (Joint committee
for guideline revision, 2018), the steel workers were divided
into the dyslipidemia group and the non-dyslipidemia group.
Dyslipidemia refers to the total cholesterol (TC) ≥ 6.2 mmol/L,
and/or triglyceride (TG) ≥ 2.3 mmol/L, and/or low-density
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lipoprotein cholesterol (LDL-c) ≥ 4.1 mmol/L, and/or high-
density lipoprotein cholesterol (HDL-c) < 1.0 mmol/L.

Data Collection

The basic personal information of the steel workers was collected
in a one-to-one questionnaire by trained investigators, which

mainly included ethnicity, age, gender, education leve, marital
status, income, family history of hyperlipidemia, drinking status,
smoking status, physical activity, diet, etc. Anthropometric
data are measured and collected by doctors and professional
trainers in the physical examination center according to the
unified standards, which mainly include weight, height, hip
circumference, waist circumference, blood pressure, etc. Then
the body mass index (BMI) is calculated by dividing the weight

FIGURE 1 | Sample data structure.

FIGURE 2 | CNN algorithm structure.
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(kg) by the square of height (m), and the waist to hip ratio
(WHR) is calculated by dividing the waist circumference (cm) by
the hip circumference (cm). Laboratory test data were obtained
by analyzing fasting blood samples of steel workers collected
by doctors or nurses in the hospital, which mainly included
total cholesterol (TC), triglycerides (TG), low-density lipoprotein
cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-
C), fasting blood glucose, etc. Occupational factors are provided
by steel companies, which mainly include high temperature
exposure, noise exposure, shift exposure, etc. Hypertension is
defined as blood pressure ≥ 140/90 mmHg or diagnosed as
hypertension by doctors. Diabetes is defined as FPG ≥ 7.0 mmol
/ L or diagnosed as diabetes by doctors.

Model Independent Variable Filtering
Method
We established an Excel database based on questionnaires
and physical examination data, and screened out independent
variables of risk factors for dyslipidemia of steel workers for
model prediction. Measurement data was presented as X̄ ±
S for normal distribution or M(P25, P75) for non-normal
distribution, and we used t-test or the rank sum test for
comparison between groups, respectively. The classification data
was expressed by numbers and percentages, and the comparison
between groups was performed by Chi-square test. The rank data
was presented by numbers and composition ratio, and the rank
sum test was used for inter group comparison. Unconditional
Logistic regression analysis was used for multivariate analysis of
influencing factors. Differences were deemed significant when
p < 0.05. Factors influencing dyslipidemia of steel workers
were screened out by univariate analysis and multi-factor
logistics regression analysis. In order to avoid the influence
of data multicollinearity, the screened influencing factors
were diagnosed by multicollinearity. Combined with expert
consultation and literature inquiry to determine the appropriate
model independent variables. The statistical analysis was
performed by SPSS 25.0. ROC curves were drawn using MedCalc.

The Construction of Sample Set
After screening (the screening results will be introduced later), a
total of 4655 steel workers’ physical examination data constitute

the sample set, as shown in Figure 1. There are seven independent
variables, and the output target value is the presence or absence
of dyslipidemia (Dyslipidemia is represented by 1 and non-
dyslipidemia is represented by 0). Meanwhile, 4655 sample data
were randomly assigned into 70% training set (n = 3258), 20%
verification set (n = 931), and 10% test set (n = 466).

Convolutional Neural Network
Configuration
Convolutional neural network is an important algorithm in
the field of deep learning, including five parts of input
layer, convolution layer, activation function, pooling layer and
fully connected layer. It continuously adjusts the bias and
connection weights between various neurons by combining
forward propagation of information and backward propagation
of error (Arun et al., 2018; Keshari et al., 2018). Its algorithm
structure is shown in Figure 2.

To predict whether steel workers are dyslipidemia by
convolutional neural network, setting reasonable complex
structure is an important premise to ensure the accuracy of the
prediction model. According to the characteristics of the collected
data, the network structure of convolutional neural network
model designed is shown in Figure 3. We set up 1 input layer,
3 convolution layers, 3 pooling layers, 1 fully connected layer and
1 output layer in convolutional neural network. The size of the
convolution kernel set by the convolution layer 1∼3 is 2× 2, and
the number of convolution nuclei is 20. All the three poolings are
maximized sampling (Xu et al., 2015; Iqbal et al., 2018), the core
size is 2 × 2. The activation functions are all Relu functions. The
number of neurons in the whole connective layer is 25.

Convolutional Neural Network Algorithm
Solution
In this paper, we use the data of thousands of physical
examination questionnaires of steel workers and convolution
neural network algorithm to analyze and predict whether
individuals have dyslipidemia.

A convolutional neural network for data processing rules that
input data will pass through one or more hidden layers. In the
hidden layer, each data is assigned a weight and bias, so the
input data is assigned a new output value. If these new output

FIGURE 3 | Structure of CNN prediction model for dyslipidemia in steel workers.
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FIGURE 4 | Learning rate and accuracy.

values do not meet expectations, they are also assigned new
weights and bias, and the process is repeated to produce the final
output. The process mainly includes forward propagation and
backward propagation.

The forward propagation calculation formula of convolutional
neural network is:

a(l)j = f
(
ul
)

(1)

ul =W la(l−1) + bl (2)

Where a(l)j represents the output of layer l, W l represents
weights, bl represents biases, f is the activation function.

Since the feature map input in the forward propagation of the
convolutional layer is convolved with the convolution kernel, the
forward propagation formula of the j-th convolution kernel in the
l-th layer of the convolutional neural network is as follows:

a(l)j = f

∑
i∈Nj

a(l−1)
j · k(l)ij + b(l)j

 (3)

Where k is the convolution kernel, a(l−1)
j is the output of the

j-th convolution kernel of the l-1 layer, Nj is a choice of input

features. b(l)j is the bias Shared by each convolution layer, f is the
activation function of the convolution layer.

The forward propagation of the pooling layer requires
the pooling calculation of the input features and then other
calculations. The calculation formula of the pooling layer is as
follows:

a(l)j = f
(
β
(l)
j pooling

(
a(l−1)
j

)
+ b(l)j

)
(4)

Where a(l)j is the result of pooling the j-th characteristic map

of the l-th convolution. Pooling is the pooling operation, β
(l)
j is

TABLE 1 | Comparison of baseline characteristics of dyslipidemia and
non-dyslipidemia patients in steel workers.

Variable Dyslipidemia N (%)/M (P25,P75) χ2/Z p

No (N = 2860) Yes (N = 1795)

Age 46 (38,50) 46 (39,50) 0.739 0.46
Gender 54.494 <0.001
Male 2549 (89.1) 1711 (95.3)
Female 311 (10.9) 84 (4.7)
Nation 1.834 0.176
Han 2801 (97.9) 1747 (97.3)
Other 59 (2.1) 48 (2.7)
Marital status 2.0046 <0.001
Unmarried 119 (4.2) 34 (1.9)
Married 2670 (93.4) 1702 (94.8)
Other 71 (2.5) 59 (3.3)
Education 18.67 <0.001
Elementary and
below

37 (1.3) 18 (1.0)

Middle and high
school

2142 (74.9) 1408 (79.4)

Junior college and
undergraduate

639 (22.3) 363 (20.2)

Graduate and
above

42 (1.5) 6 (0.3)

Monthly income 6000 (4000,7000) 5000 (4000,7000) 0.259 0.796
Family history of
hyperlipidemia

0.976 0.323

No 2724 (95.2) 1698 (94.6)
Yes 136 (4.8) 97 (5.4)
Smoking status 93.918 <0.001
No smoking 1374 (48.0) 605 (33.7)
Quit smoking 149 (5.2) 105 (5.8)
smoking 1337 (46.7) 1085 (60.4)
Drinking situation 11.509 0.003
No drinking 1762 (61.6) 1016 (56.6)
Quit drinking 58 (2.0) 40 (2.2)
Drinking 1040 (36.4) 739 (41.2)
Physical activity 0.247 0.884
Mild 616 (21.5) 378 (21.1)
Moderate 1233 (43.1) 786 (43.8)
Severe 1011 (35.3) 631 (35.2)
High fat diet score 12 (11,13) 12 (11,13) 0.916 0.36
Vegetable Fruit
Score

6 (6,7) 6 (5,7) 1.748 0.08

BMI 24.9 (22.7,27.2) 26.7 (24.5,29.1) 17.277 <0.001
WHR 0.875 (0.831,0.917) 0.901 (0.862,0.939) 13.4 <0.001
Diabetes 10.448 0.001
No 2751 (96.2) 1690 (94.2)
Yes 109 (3.8) 105 (5.8)
Hypertension 34.381 <0.001
No 2480 (86.7) 1441 (80.3)
Yes 380 (13.3) 354 (197)
Shift work 6.276 0.043
Never shift 500 (17.5) 269 (15.0)
Once shifts 509 (17.8) 306 (17.0)
Now shifts 1851 (64.7) 1220 (68.0)
Occupation noise 3.02 0.082
No 2279 (79.7) 1392 (77.5)
Yes 581 (20.3) 403 (22.5)
Occupation high
temperature

7.288 0.007

No 2373 (83.0) 1433 (79.8)
Yes 487 (17.0) 362 (20.2)
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TABLE 2 | Multicollinearity diagnostic table.

Collinearity statistics

Tolerance VIF

(Constant)
Age 0.711 1.407
Marital status 0.91 1.099
Gender 0.873 1.146
BMI 0.936 1.069
WHR 0.979 1.021
Education 0.758 1.319
Smoking status 0.849 1.178
Drinking situation 0.88 1.136
Diabetes 0.966 1.035
Hypertension 0.91 1.098
Shift work 0.966 1.035
Occupation high temperature 0.991 1.009

the multiplicative bias of the pooling layer, and b(l)j is the additive
bias of the pooling layer.

The back propagation of convolutional neural network.
Suppose that the loss function Jmse defined as the convolution
neural network is the mean square error, and the formula is as
follows:

Jmse =
1
2

∑
i=1

(
Yi − yi

)2 (5)

Where Yi is the actual value and yi is the output value.
Backpropagation of the fully connected layer in convolutional

neural network is obtained by BP algorithm. For the convolution
layer of the convolution neural network, if the next layer of the
convolution layer l is the fully connected layer, then the sensitivity

δ
(l)
j of the j-th convolution kernel can be obtained by the BP

algorithm. If it is the pooling layer, then the calculation formula
of the error sensitivity is:

δ
(l)
j = β

(l+1)
j

(
f
′
(
u(l)j

)
◦ up

(
δ
(l+1)
j

))
(6)

Where β
(l+1)
j represents the multiplier bias of the

corresponding pooling layer, and up represents the anti-pooling

operation. After the error sensitivity of the convolution layer is
obtained, the convolution kernel and bias of the convolution
layer are updated, and the formula is as follows:

∂Jmse

∂k(l)ij

=

∑
m,n

δ
(l)
j p(l−1)

j (7)

∂Jmse

∂bj
=

∑
m,n

(
δ
(l)
j

)
m,n

(8)

Where p(l−1)
j is the value of a(l−1)

j multiplied by each

element of the convolution kernel k(l)ij , m and n are the location
information of the element in the input feature.

Similarly, the pooling layer is similar to the convolution layer.
When the pooling layer is followed by the fully connected layer,
the error sensitivity can be obtained by BP algorithm. When the
pooling layer is the convolution layer, the error sensitivity is:

δ
(l)
j = f ′

(
u(l)j

)
◦ conv2

(
δ
(l+1)
j , rot180

(
kl+1
j

)
,′ full′

)
(9)

Where conv2 represents the convolution calculation, rot180
represents the rotation of the matrix by 180 degrees, and full
represents the missing data in the matrix replaced by 0. After
the error sensitivity of the pooling layer is obtained, the gradient

calculation formula of b(l)j and β
(l)
j is as follows:

∂Jmse

∂bj
=

∑
m,n

(
δ
(l)
j

)
m,n

(10)

∂Jmse

∂βj
=

∑
m,n

(
δ
(l)
j ◦ pooling

(
a(l−1)
j

))
m,n

(11)

Platform and Parameter Settings
In this paper, TensorFlow modules in Python are used to
construct the convolutional neural network model. TensorFlow
is fully open source and available to anyone with minimal device
configuration requirements. It can run models automatically
on all platforms, from mobile phones, a single CPU/GPU, to
distributed systems consisting of hundreds of GPU CARDS.

TABLE 3 | Multivariate logistics regression analysis of risk factors of dyslipidemia in steel workers.

Variable B S.E. Wald df Sig. Exp (B) 95% C.I. for Exp (B)

Lower Upper

Marital status (others)
Unmarried −0.963 0.287 11.285 1 0.001 0.382 0.218 0.67
Gender (female) −0.479 0.137 12.193 1 0 0.619 0.473 0.81
BMI 0.13 0.009 198.068 1 0 1.139 1.118 1.159

Education (graduate and above)
Middle and high school 1.072 0.452 5.612 1 0.018 2.921 1.203 7.091
Junior college and undergraduate 1.035 0.452 5.253 1 0.022 2.815 1.162 6.821

Smoking status (smoking) 44.924 2 0
No smoking −0.473 0.071 44.821 1 0 0.623 0.542 0.716
Hypertension 0.187 0.088 4.521 1 0.033 1.206 1.015 1.434
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FIGURE 5 | Effect error graph of CNN learning.

We use the random initialization function to set the weight
and bias. The smaller the learning rate, the longer the model
takes to converge, but it can improve the accuracy of the model.

In order to find the best learning rate of convolutional neural
network, we first use random function in Python to initialize the
learning rate at random, and then use Python to traverse different
learning rates in steps of 0.01. Finally, use Matplotlib module to
make some corresponding images as shown in Figure 4. It can be
seen that when the learning rate is about 0.1, the accuracy is the
highest. Therefore, choosing 0.1 as the learning rate can make the
convolutional neural network achieve better prediction effect.

Performance Metrics
In this paper, five performance metrics including accuracy,
sensitivity, specificity, F1-score and ROC curve were selected to
evaluate the performance of the convolutional neural network
model. Meanwhile, the prediction performance of training set
and test set of convolutional neural network model, Logistics
regression model and BP neural network model was compared.
The calculation method of the above metrics are as follows:

Sensitivity =
TP

TP+ FN
(12)

Specificity =
TN

TN+ FP
(13)

FIGURE 6 | CNN model goodness of fit test chart.
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TABLE 4 | Comparison of performance metrics of each model.

Model Training set Test set

Sensitivity (%) Specificity (%) Accuracy (%) F1 score Sensitivity (%) Specificity (%) Accuracy (%) F1 score

Logistics 72.45 76.47 74.92 0.69 71.11 70.30 70.6 0.65

BP neural network 86.7 88.96 88.09 0.85 81.11 83.57 82.62 0.78

CNN 93.23 95.65 94.72 0.93 90.00 91.26 90.77 0.88

TABLE 5 | Performance metrics of convolutional neural network.

Performance
metrics

Training set Test set Validation set

Sensitivity (%) 93.23 90.00 89.97

Specificity (%) 95.65 91.26 93.01

Accuracy (%) 94.72 90.77 91.84

F1 score 0.93 0.91 0.89

AUC (95% CI) 0.944 (0.936–0.952) 0.906 (0.876–0.931) 0.915 (0.895–0.932)

Accuracy =
TP+ TN

TP+ FP+ TN+ FN
(14)

F1 = 2 ·
precision · recall
precision+ recall

(15)

precision =
TP

TP+ FP

recall =
TP

TP+ FN

TP represents true positions, TN represents true negatives,
FP represents false positions, FN represents false negatives.
Sensitivity reflects the model’s ability to find patients, specificity
reflects the model’s ability to find non-patients, and accuracy
represents the model’s overall predictive ability. The F1 score is
a harmonic average of the accuracy and recall rates and is used as
a final measurement. In addition, ROC curves and AUC are often
used to test the balance between true and false positive rates.

RESULTS

Baseline Characteristics
A total of 4655 subjects were included in this study, including
1795 cases of dyslipidemia (38.56%) and 2860 cases of non-
dyslipidemia (61.43%). The characteristics of baseline data
and the results of univariate analysis are shown in Table 1.
Univariate analysis showed that there were statistically significant
differences (p < 0.05) between the dyslipidemia group and
the non-dyslipidemia group in gender, educational level,
marital status, smoking status, drinking situation, hypertension,
diabetes, BMI, waist-to-hip ratio, shift work, and occupational
high temperature. Unexpectedly, no significant differences
(p > 0.05) were observed in ethnicity, age, income, diet, physical
activity, family history of hyperlipidemia and occupation noise
between the two groups.

Independent Variable Selection
The significant variables of univariate analysis were used for
multicollinearity diagnosis, and age as an influential factor of
disease was also included in the analysis. The results show
(Table 2) Tolerance > 0.1 and VIF < 10, so there is no
multicollinearity among the variables. Then, these variables were
analyzed by multivariate unconditional logistic regression. The
results showed (Table 3) that marital status and educational
level were the influencing factors of dyslipidemia. Meanwhile,
hypertension is a risk factor for dyslipidemia, male workers
have lower risk than female workers, the steel workers who
don’t smoke have a lower risk. The higher the BMI, the higher
the risk of dyslipidemia. Literature supports (Ni et al., 2015;
Pereira et al., 2015; Qi et al., 2015) that age is an influential
factor of dyslipidemia, so age was included in the model as
an independent variable. Finally, according to factor analysis,
literature inquiry and expert consultation, seven independent
variables were selected to enter the model. The seven independent
variables are age, gender, marital status, educational, BMI,
smoking status and hypertension.

Convolutional Neural Network Model
Results
The effect error chart (Figure 5) of the dyslipidemia
convolutional neural network prediction model shows that
the minimum verification error is 0.013 when training in
step 8. The goodness of fit test results of the convolutional
neural network prediction model for dyslipidemia (Figure 6)
show that the training set is 0.974, the verification set is
0.918, and the test set is 0.908. The performance metrics of
the convolutional neural network model of dyslipidemia in
steel workers are shown in Table 4. The sensitivity is 93.23,
90.00, and 89.97% in training set, test set and verification
set, respectively. The specificity is 95.65, 91.26, and 93.01%
in training set, test set and verification set, respectively. The
accuracy is 94.72, 90.77, and 91.84% in training set, test set
and verification set, respectively. The F1 score is 0.93, 0.91, and
0.89 in training set, test set and verification set, respectively.
The AUC (95% CI) is 0.944 (0.936–0.952), 0.906 (0.876–
0.931) and 0.915 (0.895–0.932) in training set, test set and
verification set, respectively. The above results show that the
convolutional neural network model is very suitable for the
physical examination data of steel workers with dyslipidemia.
In addition, the convolutional neural network model has a good
ability to find patients with dyslipidemia and non-dyslipidemia,
and has high prediction accuracy.
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FIGURE 7 | ROC curve comparison of three model training sets.

FIGURE 8 | ROC curve comparison of three model test sets.

Model Effect Comparison
We compared the prediction performance of the convolutional
neural network model for dyslipidemia in steel workers with that
of the Logistics regression model and BP neural network model.
The comparison results of performance metrics are shown in
Table 5.

Predictive performance results of three model training sets
samples. The sensitivity of the logistic regression model, BP

neural network model and convolutional neural network model
is 72.45%, 86.7% and 92.23%, respectively. The specificity is 76.47,
88.96, and 95.65%, respectively. The accuracy is 74.92, 88.09,
and 94.72%, respectively. The F1 score is 0.69, 0.85, and 0.93,
respectively. The area under the ROC curve is shown in Figure 7,
and the AUC (95%CI) is 0.745 (0.729–0.760), 0.878 (0.867–
0.889), and 0.944 (0.936–0.952), respectively, with statistically
significant differences (P < 0.001).

Predictive performance results of three model test sets
samples. The sensitivity of the logistic regression model, BP
neural network model and convolutional neural network model
is 71.11, 81.11, and 90.00%, respectively. The specificity is 70.30,
83.57, and 91.26%, respectively. The accuracy is 70.60, 82.62,
and 90.77%, respectively. The F1 score is 0.65,0.78 and 0.88,
respectively. The area under the ROC curve is shown in Figure 8,
and the AUC (95%CI) is 0.707 (0.663–0.748), 0.823 (0.786–
0.857), and 0.906 (0.876–0.931), respectively, with statistically
significant differences (P < 0.001).

In combination with the above performance metrics, in the
prediction of dyslipidemia of steel workers, the convolutional
neural network is optimal in terms of sensitivity, specificity,
accuracy, F1 score and AUC. Therefore, in the prediction of
dyslipidemia in steel workers, the convolutional neural network
has better prediction performance.

CONCLUSION

In this work, we constructed a convolutional neural network
model to predict dyslipidemia in steel workers, a special
occupational group. At the beginning, we screened the data and
found out the risk factors for dyslipidemia in steel workers to
construct a prediction model. Subsequently, we tested the fitting
degree of the model and data, and the goodness of fit in the
training set, test set and verification set were 94.72, 90.77, and
91.84%, respectively. In addition, we evaluate the prediction
performance of the convolution neural network model. In
the training set, test set and verification set, the sensitivity
is 93.23, 90.00, and 89.97%, respectively. The specificity is
95.65, 91.26, and 93.01%, respectively. The accuracy is 94.72%,
90.77% and 91.84%, respectively. The F1 score is 0.93, 0.91,
and 0.89, respectively. The AUC (95% CI) is 0.944 (0.936–
0.952), 0.906 (0.876–0.931) and 0.915 (0.895–0.932), respectively.
The results prove that the convolutional neural network is very
suitable for the prediction of dyslipidemia of steel workers and
has high accuracy.

Finally, we compared the predictive performance of the
convolutional neural network with the logistics model and BP
neural network model of common models of dyslipidemia. We
found that the predictive performance of the convolutional
neural network model was better than that of the Logistics
regression model and BP neural network model in the risk
prediction of dyslipidemia of steel workers.

In the current study, the convolutional neural network
model can accurately predict the risk of dyslipidemia in steel
workers, and is superior to some existing predictive models of
dyslipidemia. Therefore, the convolutional neural network model
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can be used to predict the risk of dyslipidemia in steel workers,
and provide a basis for the formulation of early prevention
strategies for dyslipidemia in steel workers, so as to improve the
health status and quality of life of steel workers. In this paper, we
only use the traditional convolutional neural network algorithm.
So in the future, we will further study new algorithms to improve
the predictive performance of the model.
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Classification of Alzheimer’s Disease (AD) has been becoming a hot issue along with the

rapidly increasing number of patients. This task remains tremendously challenging due to

the limited data and the difficulties in detecting mild cognitive impairment (MCI). Existing

methods use gait [or EEG (electroencephalogram)] data only to tackle this task. Although

the gait data acquisition procedure is cheap and simple, the methods relying on gait data

often fail to detect the slight difference between MCI and AD. The methods that use EEG

data can detect the difference more precisely, but collecting EEG data from both HC

(health controls) and patients is very time-consuming. More critically, thesemethods often

convert EEG records into the frequency domain and thus inevitably lose the spatial and

temporal information, which is essential to capture the connectivity and synchronization

among different brain regions. This paper proposes a cascade neural network with two

steps to achieve a faster and more accurate AD classification by exploiting gait and EEG

data simultaneously. In the first step, we propose attention-based spatial temporal graph

convolutional networks to extract the features from the skeleton sequences (i.e., gait)

captured by Kinect (a commonly used sensor) to distinguish between HC and patients.

In the second step, we propose spatial temporal convolutional networks to fully exploit

the spatial and temporal information of EEG data and classify the patients into MCI or

AD eventually. We collect gait and EEG data from 35 cognitively health controls, 35 MCI,

and 17 AD patients to evaluate our proposed method. Experimental results show that our

method significantly outperforms other AD diagnosis methods (91.07 vs. 68.18%) in the

three-way AD classification task (HC, MCI, and AD). Moreover, we empirically found that

the lower body and right upper limb are more important for the early diagnosis of AD than

other body parts. We believe this interesting finding can be helpful for clinical researches.

Keywords: Alzheimer’s disease, deep learning, automatic diagnosis, gait, EEG

1. INTRODUCTION

Alzheimer’s disease (AD) is the most common cause of cognitive impairment and is one of the
diseases with the highest incidence among the elderly. In 2006, 26.6 million people on the earth
suffered from AD, and the number is still rapidly increasing every year (1). More critically, AD has
become the seventh leading cause of death (2). Conventional AD diagnosis methods often use scale
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screening and brain imaging equipment such as functional
Magnetic Resonance Imaging (fMRI), Computer Tomography
(CT), and Positron Emission Tomography (PET). Thesemethods
require experienced clinicians as well as exhaustive examinations.

Recently, many studies (3–9) have been conducted to reduce
the diagnosis cost and shorten the diagnosis time by designing
an AD classification system that is able to detect and classify AD
automatically. However, it is challenging to classify AD precisely
for the following reasons: on the one hand, the prodromal stage
of AD, namely mild cognitive impairment (MCI), has a light
symptom, making it hard to detect; On the other hand, extracting
robust features for AD detection is very challenging due to the
limited volume of medical data.

Previous studies on AD classification exploit gait data (3,
10–17) due to the strong relationship between gait features
and cognitive function (18–25). They often extract hand-crafted
features from the input gait data (e.g., skeleton) and classify
AD relying on these features. However, designing hand-crafted
features for AD classification requires expert knowledge, and it
is difficult to generalize the hand-crafted features to other tasks.
Recently, some researchers (12, 13, 15, 16, 26, 27) attempt to
conduct AD classification using EEG data. However, existing
EEG-based methods often (6, 7) need to convert EEG data into
frequency domain information and calculate the Power Spectral
Density (PSD) features for classification. In this sense, these
methods will inevitably lose the information in the spatial and
time domains of EEG data, which, however, is very important for
capturing the coherence and synchronizations among different
brain regions. It is worth noting that existing methods use one
modal only (gait or EEG data) and suffer from the following
limitations: (1) as discussed in (28, 29), using gait data can
accurately distinguish HC and patients but often fails to classify
MCI and AD, and (2) using EEG data can classify MCI and AD
more accurately, but it is time-consuming to collect EEG data
from both HC and patients.

We contend that considering the two modalities (i.e., gait
and EEG data) simultaneously helps achieving faster and more
accurate classification. To this end, we propose a cascade
neural network with two steps for the early diagnosis of
AD using both gait data and EEG data simultaneously. In

the first step, we use gait data to classify HC and patients.
For the purpose of reducing the psychological disturbance to
the subject, we follow (10) to use the Kinect devices as the
acquisition equipment to capture skeleton sequences. Regrading
the non-Euclidean skeleton data, we propose to use attention-
based spatial temporal graph convolutional networks (AST-
GCN) to model the relationships among body key points
and automatically extract powerful features for distinguishing
between HC and patients. In the second step, we use the
original EEG data to distinguish MCI and AD patients further.
Unlike other methods that convert EEG data to the frequency
domain, we propose spatial temporal convolutional networks
(ST-CNN) to directly extract the spatial and temporal features
from original EEG data and use them to classify MCI and
AD. In this manner, the EEG data from HC are no longer
required, saving a lot of data collection time. We collect a data
set consisting of gait and EEG data from 35 cognitively health

controls, 35 MCI patients, and 17 AD patients to evaluate our
proposed method.

Our main contributions are summarized as follows:

• We propose a cascade neural network that uses both gait and
EEG data to classify AD, which achieves a high accuracy rate
with less manual participation. This is the first attempt to
consider two modalities for AD classification to the best of
our knowledge.

• We propose attention-based spatial temporal graph
convolutional networks to automatically extract the features
from gait data and leverage them to classify AD.

• Moreover, we also propose spatial temporal convolutional
networks to fully extract the spatial and temporal features from
the original EEG data in both space and time domains.

• The accuracy rate of our proposed cascade neural network
in the three-way classification of HC, MCI, and AD reaches
91.07%, which is much higher than the method using one
modal (68.18%). The accuracy of HC vs. MCI/AD is up
to 93.09%.

The rest of the paper is arranged as follows: Related work
is concentrated on section 2; Section 3 details the proposed
framework and the modules in it; Experimental results are
exhibited in section 4; Section 5 concludes this paper.

2. RELATED WORK

Gait data has been used extensively to classify AD. Wang et al.
(3) developed a device to collect the inertial signals of subjects.
They designed an algorithm to leverage the inertial signals to
detect and calculated the features of the stride. Then they selected
the salient features to classify HC and AD. The classification
accuracy rates in the female and the male groups are 70.00
and 63.33%, respectively. Choi et al. (29) compared the gait
and cognitive function between the HC group and MCI/AD
groups. They found that gait features can distinguish MCI and
HC, while cognitive tests are suitable for distinguishing AD
and HC. The average detection rate of AD and MCI from HC
using gait variables is 75%. Seifallahi et al. (10) used Kinect to
collect gait data, extracted, and screened the features. Then they
used Support Vector Machines (SVM) to classify AD and HC.
The classification accuracy rate is 92.31%. Varatharajan et al.
(4) used IoT devices to collect gait data and then extracted the
features using the dynamic time warping (DTW) algorithm. The
accuracy rate of classification is about 70%. Although the above
works achieve good performance, they all rely on handcrafted
feature extraction, which cannot guarantee the full use of the
implicit information in gait data, and the features designed for
specific tasks cannot be applied to other general tasks. The
attention-based spatial temporal graph convolutional networks
we proposed can automatically extract gait data features and
exploit the relationships among body joints.

EEG data is another important information that can be
used to diagnose AD. Existing methods for the early diagnosis
of AD using EEG data can be categorized into handcrafted

feature based-methods and deep learning methods. Anderer
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et al. (12) and Pritchard et al. (13) input EEG markers into
an ANN to perform a binary classification between AD and
HC with an accuracy rate of 90%. Trambaiolli et al. (15)
extracted features based on coherence and used Support Vector
Machines(SVM) to classify AD and HC, with 79.9% accuracy.
Rossini et al. (16) tested the IFAST procedure to classify HC
and MCI, achieving 93.46% accuracy. These methods all require
handcrafted feature extraction. In recent years, more and more
deep learning methods have been applied to the classification
of AD. Ieracitano et al. (6) calculated the PSD features of the
subject’s EEG data. They converted the PSD features into images,
and then used the convolutional neural networks for the early
diagnosis of AD, achieving an accuracy of 89.8% in the binary
classification and 83.3% in three-way classification. Bi and Wang
(7) calculated the PSD features of EEG data, then used the
feature representation method proposed by (30) to convert the
PSD features into images. They designed a DCssCDBM with a
multi-task learning framework, achieving an accuracy of up to
95.05%. These deep learning methods all need to convert EEG
data into frequency domain information. This way will lose the
information in the spatial and temporal domains of EEG data,
which is essential for capturing coherence and synchronization
among different brain regions. We directly use the original
EEG data containing both spatial and temporal information. We
propose spatial temporal convolutional networks to extract the
temporal and spatial implicit features of EEG data.

The methods mentioned above leveraged either gait data or
EEG data only for the early diagnosis of AD. The gait data
collection procedure is simple, short in time, and easy to operate,
but there is no significant difference in gait features between
MCI and AD (29), and thus method relying on gait data cannot
classify AD andMCI precisely. Conversely, EEG data can provide
promising cues to classify AD and MCI, but the acquisition
process is complicated and takes a long time. We consider gait
and EEG data simultaneously to achieve a fast and accurate
classification of AD.

3. PROPOSED METHOD

Notation. Let S = {si}
Ns
i=1 be the subject set that includes Ns

subjects, where si represents the ith subject. Let Gi = {g
j
i}
Ng

j=1

denote clip set where Ng clips are sampled from the gait data of

the ith subject si, where g
j
i represents the j

th clip. Let Ei = {εei }
Ne
e=1

denote the epoch set containingNe epochs sampled from the EEG
data of the ith subject si, where εei represents the e

th epoch.
Problem Definition. Given gait clip set Gi and EEG epoch set

Ei of subject si, the classification of AD aims to map physiological
signals, Gi and Ei, into HC, MCI, and AD groups corresponding
to the state of subject si. This task is very challenging due to the
limited volume of data and the subtle differences among the three
groups, especially for HC and MCI.

3.1. Pipeline Overview
Existing methods used either gait data or EEG data only for the
classification of AD. However, as discussed in (28, 29), using gait
data can accurately distinguish HC and patients, but the methods

using gait data only often fail to classify MCI and AD. For the
EEG data that are more sensitive to the differences between MCI
and AD, some studies used EEG data to classify AD. However,
collecting EEG data from both HC and patients takes a lone time.
We believe that combining the two is able to make the early
diagnosis of AD faster and more accurately. This drives us to
propose a cascade neural network for the early diagnosis of AD
with both gait and EEG data.

Given gait clip g
j
i and EEG epoch εei of subject si, we conduct

the classification in two steps. Firstly, we use gait data to
distinguish HC and MCI/AD patients. In this step, we select key

points from g
j
i to form key-point skeleton sequences first. Then

we input the key-point skeleton sequences into attention-based
spatial temporal graph convolutional networks (AST-GCN) to
extract features. Finally, we use these features to classify HC and
MCI/AD by a standard SoftMax classifier. We further distinguish
AD from MCI with EEG epoch εei in the second step. We input
εei into the spatial temporal convolutional networks (ST-CNN)
to extract the implicit features in spatial and temporal domain.
We then used the features extracted by ST-CNN for the binary
classification of MCI vs. AD. In our method, the EEG data
from HC are not required. The architecture of our proposed
framework is shown in Figure 1.

3.2. Attention-Based Spatial Temporal
Graph Convolutional Networks
Existing methods that use gait data for the early diagnosis
of AD rely on handcrafted features, which are inefficient and
cannot fully use implicit information in gait data. We need to
automatically extract the implicit features in gait data for the
early diagnosis of AD, which is the strength of deep learning.
Our gait data is composed of skeleton sequences recognized by
the Kinect devices. Traditional deep learning methods such as
convolutional networks cannot handle such non-Euclidean data.
The ST-GCN proposed by (31) shows an excellent performance
in extracting the features from skeleton sequences. We apply
it as our basic model to the classification of AD and propose
attention-based spatial temporal graph convolutional networks
(AST-GCN) according to our task and data characteristics. Based
on clinical experience and experimental comparison results,
we found that different body parts have different importance
in the classification of AD. For this reason, given skeleton
sequences, we first perform key point filtering to form our key-
point skeleton sequences and then input it into the proposed
attention-based spatial temporal graph convolution networks.
The extracted spatial and temporal features are finally used for
classification. In the next few subsections, we will first briefly
introduce ST-GCN, then we will introduce how we do key point
filtering and the proposed attention-based spatial temporal graph
convolutional networks.

3.2.1. Spatial Temporal Graph Convolutional

Networks
Firstly, a spatial temporal graph is constructed from skeleton
sequences, as shown in Figure 2A. The edges of the spatial
temporal graph consist of two parts. One part is the natural
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FIGURE 1 | Cascade neural network for the early diagnosis of AD. We perform key point screening on gait data to form key-point skeleton sequences. Then we use

attention-based spatial temporal graph convolutional networks (AST-GCN) to extract features and classify the subject into HC or MCI/AD with features. If the subject is

classified into MCI/AD, we will input the EEG data into spatial temporal convolutional networks (ST-CNN) to extract features and perform MCI vs. AD

binary classification.

FIGURE 2 | (A) Spatial temporal graph of skeleton sequences. (B) The “Spatial Configuration” strategy. (C) The architecture of ST-GCN.

connections between joint points of the human skeleton in
a single frame called spatial edges, and the other part is the
time edges formed by connecting the same joint points between
adjacent frames. Then, the input features composed of the
coordinate vectors of the nodes in the graph are inputted into
multiple layers of spatial-temporal graph convolution. Defining
the weight function of the graph convolution operation can be
realized by a variety of strategies for partitioning each node’s
neighborhood point set. Experiments show that the “Spatial
Configuration” strategy, as shown in Figure 2B, works best.
According to this strategy, the neighborhood point set of the root
node (red node) is divided into three subsets, namely: (1) The
root node itself (red node); (2) The centripetal group (orange
node): the nodes closer to the gravity center of the skeleton than
the root node; (3) centrifugal group (green node): the nodes that
are farther from the gravity center of the skeleton than the root
node. The formula of space graph convolution can be written as:

fout = 3−
1
2 (A+ I)3−

1
2 finW, (1)

where fin denotes the feature map of the clip composed of the
coordinates of input skeleton sequences, which is a D × T × V
matrix, where D = 3 corresponds to Three coordinates (x, y, z),
T represents the time points i.e., the number of frames of the
skeleton sequences, V is the number of nodes that constitute the
spatial graph in each frame. W is the weight function; 3 is the
degree matrix of the spatial graph; A is the adjacency matrix of
the spatial graph; I is the self-connection matrix. Moreover,M is
proposed as a learnable edge weight, which has the same size as
the adjacency matrix. It is used in every layer of spatial temporal
graph convolution. Then the Equation (1) can be written as:

fout = 3−
1
2

(

(A+ I)
⊙

M
)

3−
1
2 finW, (2)

where
⊙

notes the element-wise multiply. Spatial temporal
convolutionmodule consists of a convolution in the spatial graph
and a convolution in the temporal graph. The structure of spatial
temporal convolution module is shown in Figure 2C.
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3.2.2. Key Points Filtering
Several studies (18, 20–24, 32) found that the AD group has
significant differences with the HC group in gait speed, gait
cadence, stride et al. This means that the joints of the lower
body, such as the ankles, are more critical for the early diagnosis
of AD. Besides, Most subjects are right-handed. It is clinically
believed that the left hemisphere of right-handed patients is more
sensitive to AD and more likely to be affected. When we observe
the learnable parameter M of the basic model after it converges,
we find that the connections among the joint points of the lower
body and the right upper limb are given higher weights, which
means that these joint points are more important than other
parts. Through experimental comparison, we also verified that
performance classification with the skeleton sequences composed
of the joint points of the lower body and the right upper limb are
better than that with the skeleton sequences composed of other
parts. Therefore, we select the joint points of the lower body and
the right upper limb to form key-point skeleton sequences.

3.2.3. Hourglass Attention Module
From the description above, we can see that different parts are
of different importance for the early diagnosis of AD. We argue
that even in the key-point skeleton sequences we construct, joints
in some parts are more important than other parts, such as
ankles and wrists. Therefore, to drive the model further focus on
important joints, we introduced an hourglass attention module
with a structure similar to the attention module in (33). However,
we replaced the pooling layer with a convolutional layer in the
time domain with a stride of 4. The structure of the hourglass
attention module is shown in Figure 3.

3.3. Spatial Temporal Convolutional
Networks
Existing deep learning methods that use EEG data for the
classification of AD convert EEG data into frequency domain
information, then calculate PSD features and convert them into
images. This way will lose the information in the time domain or
even the spatial domain, which is essential to capture coherence
and synchronization among different brain regions. The EEGnet
proposed by (34) extracts the temporal and spatial features
of original EEG data to recognize task-state EEG and shows

good performance. However, its feature extraction in the spatial
domain of EEG data simply uses a convolution layer to map
the data to a single value. We believe that this is not able to
fully extract the spatial features of EEG data. We propose the
spatial temporal convolutional networks to extract features from
original EEG data. Each ST-CNN module consists of a spatial
convolution layer with a kernel size of Ks × 1 and a temporal
convolution layer with a kernel size of 1 × Kt similar to (31).
In this way, the EEG data is alternately convoluted in the space
domain and the time domain through multiple ST-CNN layers to
fully extract the implicit features in space and time. The structure
of spatial temporal convolutional networks is shown in Table 1.

TABLE 1 | The structure of spatial temporal convolutional networks, where Ks and

Kt are the size of the kernel used in the spatial convolution layer and the temporal

convolution layer in a ST-CNN module, respectively.

Layer Input

channels

Operation Kernel size Stride Output

channels

0 3 Batch normalization – – 3

1 3 ST-CNN Ks = 1,Kt = 33 1 4

2 4 ST-CNN Ks = 15,Kt = 33 4 4

3 4 ST-CNN Ks = C,Kt = 33 1 16

4 16 ST-CNN Ks = 1,Kt = 33 4 8

6 8 Flatten – – T/2

Classifier
T/2 Full connection – – N

N SoftMax – – N

C is the number of EEG channels. T is the number of time points. N is the number of

classes. In the second layer, we use depthwise separable convolutions. In the 2nd and

4th ST-CNN module, we set stride to 4 as the pooling layer. The residual mechanism is

used in each ST-CNN module.

TABLE 2 | The grouping criteria for HC, MCI, AD.

HC MCI AD

MoCA > 30 18 ∼ 30 0 ∼ 17

MMSE ≥ 24 ≥ 24 < 24

FIGURE 3 | The structure of hourglass attention module.
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FIGURE 4 | The deployment diagram of Kinect V2.0 devices: (A) The deployment diagram of devices in the Neurology Department. (B) The deployment diagram of

devices in the Geriatrics Department. (C) The diagram of the actual data acquisition scene.

4. EXPERIMENTS

4.1. Data Acquisition and Preprocessing
We collect gait data in cooperation with the Shenzhen Institute
of Advanced Technology, Chinese Academy of Sciences and
the Shenzhen People’s Hospital, and the EEG data are collected
by the Shenzhen People’s Hospital. All MCI and AD patients
are diagnosed by experienced neurologists based on the
Montreal Cognitive Assessment(MoCA) and Mini-Mental State
Examination (MMSE). We divide the subjects into three groups:
HC, MCI, and AD. These groups include 35 cognitively healthy
controls, 35 MCI patients, and 17 AD patients with mild-
to-severe AD, respectively. The grouping criteria are shown
in Table 2. We collect both gait and EEG data for MCI
and AD patients, and only collect gait data for cognitively
healthy controls.

4.1.1. Gait Data

4.1.1.1. Data Acquisition
Gait data of 52 MCI and AD patients and 35 control subjects
are collected in the Neurology and the Geriatrics Departments
of Shenzhen People’s Hospital, respectively. Our data collection
settings are similar to (35). We use Microsoft Kinect V2.0
cameras as our data acquisition devices. The subjects are asked
to walk at their natural and comfortable speed and posture under
the devices. They walk a round trip on a straight path about 10
m. We deploy 8 and 6 devices in the Neurology and Geriatrics
Department, respectively. The deployment diagram is shown in
Figure 4. The tilt angle of all devices was set 27◦.

4.1.1.2. Data Preprocessing
Our gait data consists of the skeleton sequences recognized by
the devices. Each skeleton is composed of three-dimensional
coordinates of 25 joints. Their indexes are shown in Figure 5A.

In each recording, the devices estimate the skeleton joint
coordinates from both the front and back views. However, the
skeletons estimated from the back view are less accurate than
those from the front view. Therefore, we only select the skeletons
from the front view as gait data.

Due to the venue restrictions, the data acquisition devices
for patients and the devices for heath controls are deployed in
different environments, which may cause differences in absolute
coordinates of key points. To eliminate these differences, we
follow (36) to perform the following coordinate transformation
on the collected gait data in the data preprocessing stage. Since
our devices are mounted on the ceiling, and there is an angle of
27◦ with the horizontal, we first rotate the coordinates

[

x, y, z
]

around the x-axis by−27◦ by calculating
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, θ = −27◦. (3)

In this way, the skeleton sequences are in a horizontal position
relative to the cameras. We then move the origin of the
coordinates to the base of the human spine, namely point 0,
by computing

v′τp = vτp − vτ0, (4)

where vτp is a coordinate vector of pth joint point of the skeleton
in τ th frame. Moreover, the time lengths of gait records are
different. Similar to (37), we intercept several clips of data from
each gait record through a sliding window to make the number
of clip frames consistent. We set the sliding window with a size of
60 frames and a stride of three frames. In this way, we have a total

of 5,519 clips, and each gait clip g
j
i is a matrix with a dimension

of D× T × V , where D = 3, T = 60, V = 25.
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FIGURE 5 | (A) The 25 markers on human skeleton recognized by Kinect. (B) 64 EEG electrode locations in the International 10-20 System.

4.1.2. EEG Data

4.1.2.1. Data acquisition
The EEG data are collected by the Neurology Department,
Shenzhen People’s Hospital. Due to a large mount of artifacts
(e.g., myoelectricity) during human walking, the collected EEG
data are in low quality. We follow (6, 38) to collect higher-
quality resting EEG data. We collect the EEG data of the
patients with eyes closed and with eyes open for 8 min each.
We place 64-channel EEG electrodes on the patient’s scalp at
the standard locations during data acquisition as shown in
Figure 5B. The EEG signals are recorded at a sampling frequency
of 5,000 Hz.

4.1.2.2. Data preprocessing
After EEG records are collected, we first remove artifacts from
EEG records, such as electrooculograms and myoelectricity.
Then we re-reference the data. The EEG signals of the Ref
and Gnd electrodes are removed, and the average value of the
remaining 62 channels is used as a reference value to recalculate
the value of the EEG data. Using the original EEG data with a
sampling rate of 5,000 Hz in our ST-CNN will inevitably incur
large computation cost. Specifically, the input size is 5,000 × 62
when the epoch duration is set to one second. In this paper, we
follow Toll et al. (38) to downsample the EEG data to 250 Hz,
aiming to reduce the computation cost and improve the inference
speed. Similar to (7), we then intercept 120 epochs from each
subject’s EEG data by a sliding window without overlapping. We
set the sliding window with a size of 256, which is about 1 s. The
epochs sampled from the data collected with the eyes open and
the eyes closed are concatenated in the time dimension. Finally,
we copy it for three times in depth dimension. In this way, we
have a total of 5,519 epochs, and each epoch εei is a 3 × C × 2T
matrix, where C = 62 is the number of channels of EEG data,
T = 256 denotes the number of time points.

4.2. Implementation Details
We randomly select 75% of the subjects. We use their
corresponding data clips as our training set, including 3,277 data
clips. The remaining data clips serve as our test set, including
2,242 data clips. We train the model for 50 epochs, using
a stochastic gradient descent (SGD) optimizer with an initial
learning rate of 0.05 and a batch size of 64. All experiments are
conducted on a single GTX 1060 GPU.

As for EEG data, we randomly select 75% of the EEG epochs
as our training set, containing 4,680 epochs, and the remaining
EEG epochs serve as our test set, including 1,560 epochs. We
train the model for 70 epochs, using a stochastic gradient descent
optimizer with an initial learning rate of 0.005, and with a batch
size of 64. All experiments are conducted on a single GTX
1060 GPU.

4.3. Comparisons With Other AD Diagnosis
Methods
We compare our proposed method with other existing methods.
The results is listed in Table 3. Firstly, we compare our proposed
attention-based spatial temporal graph convolutional networks
with the methods using handcrafted features. We extract the
same features as (10) from gait data and feed them into a
SVM classifier with the Gaussian (RBF) kernel and a random
forest classifier, respectively. The accuracy of the two classifiers
are much lower than our proposed attention-based spatial
temporal graph convolutional networks (93.09%). These results
demonstrate that our proposed attention-based spatial Temporal
graph convolutional networks is able to extract more powerful
features for the diagnosis of AD.

Then we compare the proposed spatial temporal
convolutional networks with several baselines on the collected
EEG dataset. The baselines include EEGnet (34), ResNet-18 (39),
VGG-13 (40), and the standard convolution networks. standard
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TABLE 3 | Comparison with other methods.

Methods
Data Accuracy

Gait EEG HC vs. MCI/AD (%) MCI vs. AD (%) Three-way classification (%)

Handcrafted features + SVM X 63.64 57.73 55.45

Handcrafted feature + RF X 81.82 57.14 68.18

AST-GCN(ours) X 93.09 58.41 68.51

standard CNN X – 69.66 –

EEGnet X – 97.85 –

ResNet 18 X – 97.59 –

VGG 13 X – 96.48 –

ST-CNN(ours) X – 98.63 –

cascade neural network(ours) X X 93.09 98.63 91.07

Standard CNN represents the model we substitute 2D convolution layers with a kernel size of Ks ×Kt for ST-CNN modules. “Handcrafted features + SVM” and “Handcrafted features +

RF” indicate the methods using different classifiers with the handcrafted features same as (10). The bold values indicates the best performance that method obtain in that experiment.

TABLE 4 | Ablation study of key point filtering and hourglass attention module on

gait data.

Components
Accuracy (%)

Key point filtering Hourglass attention module

× × 88.18

X × 91.97

× X 90.14

X X 93.09

convolutional networks share the same architecture as the spatial
temporal convolutional networks but all ST-CNN modules are
replaced with 2D convolution layers with a kernel size of Ks×Kt .
It is observed that our model achieves the best performance on
our data set. We believe that the reason is that ST-CNN can
extract the spatial and temporal features from EEG data better.
Finally, we test our proposed neural network on our test set. The
accuracy of binary classification is 93.09%, and the accuracy of
the three-way classification is 91.07%. In addition, we introduce
a voting mechanism to improve the fault tolerance of the entire
framework. We randomly select a subject si from the test set
and input his gait clip set Gi into AST-GCN for classification. If
more than 50% of the clips are classified into MCI and AD, all
the EEG epochs in Ei will be inputted into ST-CNN to perform
binary classification of MCI vs. AD. Otherwise, si is finally
classified into HC. If more than half of the epochs are classified
into MCI(AD), then si is finally classified into MCI(AD). With
the voting mechanism, the framework can achieve an accuracy
of 100% on the binary classification of HC vs. MCI/AD, and
accuracy of 99.14% on the three-way classification of HC, MCI,
and AD.

4.4. Ablation Studies
4.4.1. The Effectiveness of the Proposed Component
We conduct experiments on gait data to study the effectiveness
of key point filtering and the hourglass attention module. In
Table 4, we observe that these two components increase the
accuracy from 88.18 to 91.97% and 90.14%, respectively. With
both components, we achieve the best performance with an

accuracy rate of 93.09%. We believe the reason is that both
components can guide the model to focus more on the points
more critical to the diagnostic task. Key point filtering removes
insignificant points and noise points, and the attention module
drives the model to further focus on the important points in
key points.

4.4.2. Which Key Points Are Essential for AD

Diagnosis?
In Figure 6A, we compare the performance of the skeleton
sequences of the lower body, the upper body, and the whole body.
We find that the whole body joint performs best. We consider
that this is because all joints can provide more information for
diagnosis. In addition, we observe that the lower body joints
perform better than upper body joints. We believe the reason
is that the behavior of lower body is more relative to early
AD diagnosis.

Clinically, it is believed that the left hemisphere of right-
handed patients is more sensitive and easier to be affected by
AD. As the left hemisphere controls the movement of the right
body part, for the right-handed patients, their behaviors of the
right body part may provide more information for AD diagnosis.
To study this empirically, we further divide the body joints into
two more fine-grained groups, namely “lower body + right upper
limb” and “lower body + left upper limb.” All subjects in the
collected dataset are right-handed. In Figure 6B, “lower body +
right upper limb” performs best. these results are consistent with
the clinical perspective. Based on such observation, we select the
skeleton sequence of “lower body + right upper limb” as a default
setting in all experiments.

4.4.3. Where Should We Use the Hourglass Attention

Module?
We explore the performance of our model with different
placements of the attention module. We try to add the hourglass
attention module after the third, sixth, and ninth layer of the
basic model, respectively, and add three hourglass attention
modules after the 3rd, 6th, and 9th layers. The experimental
results are shown in Table 5. We see that using three attention
modules additionally includes 67.78% parameters more than
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FIGURE 6 | The performance comparison of the basic model on the skeleton sequences composed of different parts: (A) The performance of the basic model on the

skeleton sequences composed of the lower body, the upper body, and the whole body. (B) The performance of the basic model on the datasets of skeleton

sequences composed of the whole body, the lower body + the right upper limb, and the lower body + the left upper limb.

TABLE 5 | Performance comparison of the models with different hourglass attention module locations.

Basic model (%) After 3rd layer (%) After 6th layer (%) After 9th layer After 3rd,6th,9th layers (%)

Accuracy 88.18 88.76 88.22 90.14 87.97

The bold values indicates the best performance that method obtain in that experiment.

TABLE 6 | Comparison of the performance and inference speed with different models.

Cascade stage
Accuracy(%) No. of parameters Inference speed (ms)

Stage 1 Stage 2

AST-GCN (gait) AST-GCN (gait) 74.46 9.42M 7.06

AST-GCN (gait) ST-CNN (EEG) 91.07 4.72M(4.71M+0.01M) 3.99

The bold values indicates the best performance that method obtain in that experiment.

using one attention module while decreasing the performance.
It is worth nothing that the model with three attention modules
outperforms that with one attention module (99.75 vs. 98.04%)
in the training phase, but it leads to a worse accuracy (87.97 vs.
90.14%) in the testing phase. We conjecture that adding three
attention modules may incur the overfitting issue since a larger
network is more likely to lead to overfitting in the case of a
limited amount of data (41). We see that adding one attention
module after the ninth layer of the basic model achieves the
best performance. Therefore, we use the model with an attention
module after 9th as the default setting.

4.4.4. The Efficiency of Our Method
We conduct an ablation study to validate the effectiveness and
efficiency of our method. We replace ST-CNN (classification
model with EEG data) in our cascade network with AST-GCN
(classification model with gait data). The experimental results
are shown in Table 6. Our proposed method with two models
significantly outperforms the baseline with one modal (i.e., gait
data) while enjoying a faster inference speed (3.99 vs. 7.06 ms)
and less parameters (4.72 vs. 9.42M). Since we do not have the
EEG data collected from HC regarding the difficulty of collecting

them in our experimental environments, we did not compare
our method with the EEG-based method, and we leave it for our
future work.

5. CONCLUSION

In this paper, we have exploited both the gait and EEG data
to achieve a faster and more accurate classification of AD. To
this end, we have proposed a cascade neural network. Our
proposed neural network consists of two parts. In the first part,
we used gait data to distinguish HC from patients. For the
purpose of modeling the natural connection among the human
joints, we have proposed attention-based spatial temporal graph
convolutional networks to extract features to classify the HC and
patients. In the second part, we further classify MCI and AD
patients with EEG data. Compared with themethods that convert
EEG data into the frequency domain, we extract the spatial and
temporal features from the original EEG data to distinguish the
AD patients from MCI patients. The proposed cascade network
has the following advantages: (1) The EEG data from HC are not
required in our method, which saves a lot of data collection time.
(2) The accuracy of our proposed framework in the three-way
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classification of HC, MCI, and AD is 91.07%, which is much
higher than the method using one modal only (68.18%), and the
accuracy in the binary classification of HC vs. MCI/AD reaches
93.09%. It would be interesting to extend this framework to the
diagnosis task of other neurological diseases, and we leave it for
future work.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

ETHICS STATEMENT

The studies involving human participants were reviewed
and approved by Shenzhen People’s Hospital Medical Ethics

Committee. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

This research was funded by the Science and
Technology Planning Project of Shenzhen Municipality
(JCYJ20170818111012390), Sanming Project of Medicine in
Shenzhen (SYJY201905 and SYJY201906), and the Shenzhen
Health Committee Project (SZXJ2017034).

REFERENCES

1. Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the

global burden of Alzheimer’s disease. Alzheimer’s Dement. (2007) 3:186–91.

doi: 10.1016/j.jalz.2007.04.381

2. Patterson CA. World Alzheimer Report 2018. London: Alzheimer’s Disease

International (2018).

3. WangWH, Hsu YL, Pai MC, Wang CH, Wang CY, Lin CW, et al. Alzheimer’s

disease classification based on gait information. In: 2014 International

Joint Conference on Neural Networks (IJCNN). Beijing (2014) p. 3251–7.

doi: 10.1109/IJCNN.2014.6889762

4. Varatharajan R, Manogaran G, Kumar PM, Sundarasekar R. Wearable

sensor devices for early detection of Alzheimer disease using

dynamic time warping algorithm. Cluster Comput. (2017) 21:681–90.

doi: 10.1007/s10586-017-0977-2

5. Gao H, Liu C, Li Y, Yang X. V2VR: reliable hybrid-network-oriented V2V

data transmission and routing considering RSUs and connectivity probability.

IEEE Trans Intell Transport Syst. (2020). doi: 10.1109/TITS.2020.2983835.

[Epub ahead of print].

6. Ieracitano C, Mammone N, Bramanti A, Hussain A, Morabito FC. A

Convolutional Neural Network approach for classification of dementia stages

based on 2D-spectral representation of EEG recordings. Neurocomputing.

(2019) 323:96–107. doi: 10.1016/j.neucom.2018.09.071

7. Bi X, Wang H. Early Alzheimer’s disease diagnosis based on EEG

spectral images using deep learning. Neural Netw. (2019) 114:119–35.

doi: 10.1016/j.neunet.2019.02.005

8. Bennasar M, Setchi R, Hicks Y, Bayer A. Cascade classification for

diagnosing dementia. In: 2014 IEEE International Conference on

Systems, Man, and Cybernetics (SMC). San Diego, CA (2014) p. 2535–40.

doi: 10.1109/SMC.2014.6974308

9. Ning Z, Zhang K, Wang X, Guo L, Hu X, Huang J, et al. Intelligent

edge computing in internet of vehicles: a joint computation offloading

and caching solution. IEEE Trans Intell Transport Syst. (2020).

doi: 10.1109/TITS.2020.2997832. [Epub ahead of print].

10. Seifallahi M, Soltanizadeh H, Mehraban AH, Khamseh F. Alzheimer’s disease

detection using skeleton data recorded with Kinect camera. Cluster Comput.

(2019) 23:1469–81. doi: 10.1007/s10586-019-03014-z

11. Yu Y, Liu S, Guo L, Yeoh PL, Vucetic B, Li Y. CrowdR-FBC: a distributed fog-

blockchains for mobile crowdsourcing reputation management. IEEE Intern

Things J. (2020) 7:8722–35. doi: 10.1109/JIOT.2020.2996229

12. Anderer P, Saletu B, Klöppel B, Semlitsch HV, Werner H. Discrimination

between demented patients and normals based on topographic EEG slow

wave activity: comparison between z statistics, discriminant analysis and

artificial neural network classifiers. Electroencephalogr Clin Neurophysiol.

(1994) 91:108–17. doi: 10.1016/0013-4694(94)90032-9

13. Pritchard WS, Duke DW, Coburn KL, Moore NC, Tucker KA, Jann

MW, et al. EEG-based, neural-net predictive classification of Alzheimer’s

disease versus control subjects is augmented by non-linear EEG

measures. Electroencephalogr Clin Neurophysiol. (1994) 91:118–30.

doi: 10.1016/0013-4694(94)90033-7

14. Ning Z, Dong P, Wang X, Hu X, Guo L, Hu B, et al. Mobile edge computing

enabled 5G health monitoring for internet of medical things: a decentralized

game theoretic approach. IEEE J Select Areas Commun. (2020). [Epub ahead

of print].

15. Trambaiolli LR, Lorena AC, Fraga FJ, Kanda PAM, Anghinah R, Nitrini R.

Improving Alzheimer’s disease diagnosis with machine learning techniques.

Clin EEG Neurosci. (2011) 42:160–5. doi: 10.1177/155005941104200304

16. Rossini PM, Buscema M, Capriotti M, Grossi E, Babiloni C. Is it

possible to automatically distinguish resting EEG data of normal elderly

vs. mild cognitive impairment subjects with high degree of accuracy? Clin

Neurophysiol. (2008) 119:1534–45. doi: 10.1016/j.clinph.2008.03.026

17. Gao H, Xu Y, Yin Y, Zhang W, Li R, Wang X. Context-aware QoS prediction

with neural collaborative filtering for internet-of-things services. IEEE Intern

Things J. (2020) 7:4532–42. doi: 10.1109/JIOT.2019.2956827

18. Callisaya ML, Launay CP, Srikanth V, Verghese J, Allali G, Beauchet O.

Cognitive status, fast walking speed and walking speed reserve-the Gait and

Alzheimer Interactions Tracking (GAIT) study.GeroScience. (2017) 39:231–9.

doi: 10.1007/s11357-017-9973-y

19. Ning Z, Zhang K, Wang X, Obaidat MS, Guo L, Hu X, et al. Joint computing

and caching in 5G-envisioned internet of vehicles: a deep reinforcement

learning-based traffic control system. IEEE Trans Intell Transport Syst. (2020).

doi: 10.1109/TITS.2020.2970276. [Epub ahead of print].

20. Beauchet O, Launay CP, Sekhon H, Montembeault M, Allali G. Association

of hippocampal volume with gait variability in pre-dementia and dementia

stages of Alzheimer disease: results from a cross-sectional study. Exp Gerontol.

(2019) 115:55–61. doi: 10.1016/j.exger.2018.11.010

21. Elbaz A, Artaud F, Singh-Manoux A, Dumurgier J. Gait speed and decline

in gait speed as predictors of incident dementia. Innov Aging. (2017) 1:75.

doi: 10.1093/geroni/igx004.310

22. Ardle RM,Morris R, Wilson JB, Galna B, Thomas AJ, Rochester LR.What can

quantitative gait analysis tell us about dementia and its subtypes? A structured

review. J Alzheimer’s Dis. (2017) 60:1295–312. doi: 10.3233/JAD-170541

23. Morris R, Lord S, Lawson RA, Coleman S, Galna B, Duncan GW,

et al. Gait rather than cognition predicts decline in specific cognitive

domains in early Parkinson’s disease. J Gerontol Ser A. (2017) 72:1656–62.

doi: 10.1093/gerona/glx071

24. Hsu YL, Chung PC, Wang WH, Pai MC, Wang CY, Lin CW, et al. Gait

and balance analysis for patients with Alzheimer’s disease using an inertial-

sensor-based wearable instrument. IEEE J Biomed Health Informatics. (2014)

18:1822–30. doi: 10.1109/JBHI.2014.2325413

Frontiers in Public Health | www.frontiersin.org 10 November 2020 | Volume 8 | Article 58438782

https://doi.org/10.1016/j.jalz.2007.04.381
https://doi.org/10.1109/IJCNN.2014.6889762
https://doi.org/10.1007/s10586-017-0977-2
https://doi.org/10.1109/TITS.2020.2983835
https://doi.org/10.1016/j.neucom.2018.09.071
https://doi.org/10.1016/j.neunet.2019.02.005
https://doi.org/10.1109/SMC.2014.6974308
https://doi.org/10.1109/TITS.2020.2997832
https://doi.org/10.1007/s10586-019-03014-z
https://doi.org/10.1109/JIOT.2020.2996229
https://doi.org/10.1016/0013-4694(94)90032-9
https://doi.org/10.1016/0013-4694(94)90033-7
https://doi.org/10.1177/155005941104200304
https://doi.org/10.1016/j.clinph.2008.03.026
https://doi.org/10.1109/JIOT.2019.2956827
https://doi.org/10.1007/s11357-017-9973-y
https://doi.org/10.1109/TITS.2020.2970276
https://doi.org/10.1016/j.exger.2018.11.010
https://doi.org/10.1093/geroni/igx004.310
https://doi.org/10.3233/JAD-170541
https://doi.org/10.1093/gerona/glx071
https://doi.org/10.1109/JBHI.2014.2325413
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


You et al. Cascade Neural Network Classifies AD

25. Gao H, Kuang L, Yin Y, Guo B, Dou K. Mining consuming behaviors with

temporal evolution for personalized recommendation in mobile marketing

apps.Mobile Netw Appl. (2020) 25:1233–48. doi: 10.1007/s11036-020-01535-1

26. Wang X, Ning Z, Guo S. Multi-agent imitation learning for pervasive edge

computing: a decentralized computation offloading algorithm. IEEE Trans

Parallel Distrib Syst. (2020) 32:411–25. doi: 10.1109/TPDS.2020.3023936

27. Yu Y, Liu S, Yeoh P, Vucetic B, Li Y. LayerChain: a hierarchical edge-cloud

blockchain for large-scale low-delay IIoT applications. IEEE Trans Indus

Informatics. (2020) doi: 10.1109/TII.2020.3016025. [Epub ahead of print].

28. Yan JH, Rountree SD, Massman PJ, Doody R, Li H. Alzheimer’s disease and

mild cognitive impairment deteriorate fine movement control. J Psychiatr Res.

(2008) 42:1203–12. doi: 10.1016/j.jpsychires.2008.01.006

29. Choi JS, Oh HS, Kang DW, Mun KR, Choi MH, Lee SJ, et al. Comparison

of gait and cognitive function among the elderly with Alzheimer’s disease,

mild cognitive impairment and healthy. Int J Precis Eng Manufact. (2011)

12:169–73. doi: 10.1007/s12541-011-0024-9

30. Bashivan P, Rish I, Yeasin M, Codella N. Learning representations from

EEG with deep recurrent-convolutional neural networks. CoRR. (2016)

abs/1511.06448.

31. Yan S, Xiong Y, Lin D. Spatial temporal graph convolutional networks for

skeleton-based action recognition. In: AAAI. New Orleans, LA (2018).

32. Wang X, Ning Z, Guo S, Wang L. Imitation learning enabled task scheduling

for online vehicular edge computing. IEEE Trans Mobile Comput. (2020).

doi: 10.1109/TMC.2020.3012509. [Epub ahead of print].

33. Yang Z, Li Y, Yang J, Luo J. Action recognition with spatio-temporal visual

attention on skeleton image sequences. IEEE Trans Circuits Syst Video

Technol. (2019) 29:2405–15. doi: 10.1109/TCSVT.2018.2864148

34. Lawhern V, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance B.

EEGNet: a compact convolutional network for EEG-based brain-computer

interfaces. J Neural Eng. (2018) 15:056013. doi: 10.1088/1741-2552/aace8c

35. Chattopadhyay P, Sural S,Mukherjee J. Frontal gait recognition from occluded

scenes. Pattern Recogn Lett. (2015) 63:9–15. doi: 10.1016/j.patrec.2015.06.004

36. Fang J, Wang T, Li C, Hu X, Ngai ECH, Seet BC, et al. Depression

prevalence in postgraduate students and its association with gait abnormality.

IEEE Access. (2019) 7:174425–37. doi: 10.1109/ACCESS.2019.295

7179

37. Beyrami SMG, Ghaderyan P. A robust, cost-effective and non-invasive

computer-aided method for diagnosis three types of neurodegenerative

diseases with gait signal analysis. Measurement. (2020) 156:107579.

doi: 10.1016/j.measurement.2020.107579

38. Toll RT, Wu W, Naparstek S, Zhang Y, Narayan M, Patenaude B, et al.

An electroencephalography connectomic profile of posttraumatic stress

disorder. Am J Psychiatry. (2020) 177:233–43. doi: 10.1176/appi.ajp.2019.180

80911

39. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:

2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Las Vegas, NV (2016) p. 770–8. doi: 10.1109/CVPR.2016.90

40. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale

image recognition. CoRR. (2015) abs/1409.1556.

41. Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdinov R.

Dropout: a simple way to prevent neural networks from overfitting. J Mach

Learn Res. (2014) 15:1929–58.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 You, Zeng, Lan, Ren, You, Shi, Zhao, Guo, Jiang andHu. This is an

open-access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Public Health | www.frontiersin.org 11 November 2020 | Volume 8 | Article 58438783

https://doi.org/10.1007/s11036-020-01535-1
https://doi.org/10.1109/TPDS.2020.3023936
https://doi.org/10.1109/TII.2020.3016025
https://doi.org/10.1016/j.jpsychires.2008.01.006
https://doi.org/10.1007/s12541-011-0024-9
https://doi.org/10.1109/TMC.2020.3012509
https://doi.org/10.1109/TCSVT.2018.2864148
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.1016/j.patrec.2015.06.004
https://doi.org/10.1109/ACCESS.2019.2957179
https://doi.org/10.1016/j.measurement.2020.107579
https://doi.org/10.1176/appi.ajp.2019.18080911
https://doi.org/10.1109/CVPR.2016.90
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles


ORIGINAL RESEARCH
published: 23 November 2020

doi: 10.3389/fpubh.2020.584430

Frontiers in Public Health | www.frontiersin.org 1 November 2020 | Volume 8 | Article 584430

Edited by:

Wenbing Zhao,

Cleveland State University,

United States

Reviewed by:

Ying Han,

Capital Medical University, China

Junhong Zhou,

Harvard Medical School,

United States

Wenda Wang,

Guangzhou Medical University, China

*Correspondence:

Michael E. Sughrue

Sughruevs@gmail.com

Yi Guo

xuanyi_guo@163.com

Specialty section:

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

Received: 17 July 2020

Accepted: 09 October 2020

Published: 23 November 2020

Citation:

Ren H, Zhu J, Su X, Chen S, Zeng S,

Lan X, Zou L-Y, Sughrue ME and

Guo Y (2020) Application of Structural

and Functional Connectome

Mismatch for Classification and

Individualized Therapy in Alzheimer

Disease.

Front. Public Health 8:584430.

doi: 10.3389/fpubh.2020.584430

Application of Structural and
Functional Connectome Mismatch
for Classification and Individualized
Therapy in Alzheimer Disease
Huixia Ren 1,2, Jin Zhu 3, Xiaolin Su 4, Siyan Chen 4, Silin Zeng 4, Xiaoyong Lan 4,

Liang-Yu Zou 4, Michael E. Sughrue 5* and Yi Guo 4*

1Department of Neurology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen,

China, 2 The First Affiliated Hospital, Jinan University, Guangzhou, China, 3Department of Medical Imaging, Shenzhen

People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of

Science and Technology), Shenzhen, China, 4Department of Neurology, Shenzhen People’s Hospital (The Second Clinical

Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen,
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While machine learning approaches to analyzing Alzheimer disease connectome

neuroimaging data have been studied, many have limited ability to provide insight in

individual patterns of disease and lack the ability to provide actionable information

about where in the brain a specific patient’s disease is located. We studied a cohort

of patients with Alzheimer disease who underwent resting state functional magnetic

resonance imaging and diffusion tractography imaging. These images were processed,

and a structural and functional connectivity matrix was generated using the HCP cortical

and subcortical atlas. By generating a machine learning model, individual-level structural

and functional anomalies detection and characterization were explored in this study. Our

study found that structural disease burden in Alzheimer’s patients is mainly focused in

the subcortical structures and the Default mode network (DMN). Interestingly, functional

anomalies were less consistent between individuals and less common in general in these

patients. More intriguing was that some structural anomalies were noted in all patients

in the study, namely a reduction in fibers involving parcellations in the right anterior

cingulate. Alternately, the functional consequences of connectivity loss were cortical

and variable. Integrated structural/functional connectomics might provide a useful tool

for assessing AD progression, while few concerns have been made for analyzing the

mismatch between these two. We performed a preliminary exploration into a set of

Alzheimer disease data, intending to improve a personalized approach to understanding

individual connectomes in an actionable manner. Specifically, we found that there were

consistent patterns of white matter fiber loss, mainly focused around the DMN and

deep subcortical structures, which were present in nearly all patients with clinical AD.

Functional magnetic resonance imaging shows abnormal functional connectivity different

within the patients, which may be used as the individual target for further therapeutic

strategies making, like non-invasive stimulation technology.

Keywords: brain connectivity, diffusion tractography imaging, Alzheimer’s disease, brain parcellation, functional

MRI, machine learning
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INTRODUCTION

Alzheimer disease (AD) is characterized as the most common
cause of dementia with non-stop developing progression
and effective strategies, even to date. It is well-known that
conventional magnetic resonance imaging (MRI) imaging
provides very limited insight into dementia patients (1). While
patterns of atrophy can provide some indirect diagnostic
evidence for one type of degenerative disease vs. another, this
is relatively limited and often can be non-specific. Furthermore,
individuals can have substantial age-related atrophy and not
exhibit clinical signs of dementia, again suggesting that structural
brain MRI has only limited ability to diagnose, stage, or
guide treatment in any meaningful way for these patients (1).
Growing evidence supports the idea that AD is associated with
disruptions in brain activity and networks that may target
specific functionally connected neuronal networks (2, 3). These
facts drive interest in more sophisticated neuroimaging, such
as positron emission tomography–based studies, which are able
to image the amyloid and tau proteins (4), and connectomic-
based approaches, leveraging imaging studies such as functional
magnetic resonance imaging (fMRI) and diffusion tractography
imaging (DTI) (5). A growing number of researchers work on the
development of personalized, reproducible, non-invasive, and
neuroscientifically interpretable biomarkers for early diagnosis
or prediction of AD even on the subjective cognition decline
(SCD) stage (6–8), yet most of which is focused on the consistent
abnormal connection within the multimodal imaging as the
combination with DTI and fMRI (9, 10). Given the subtle and
often diffuse nature of dementing disorders, machine learning–
based approaches provide the most realistic method for complex
imaging datasets (11, 12).

Machine learning is an application of artificial intelligence

that allows computers to learn automatically and improve

from experience. It is one of today’s most rapidly growing
technical fields (13), which performs throughout science
including health care (14) such as identification and classification
for diseases like AD (15–17), traffic programming (18), and
marketing apps designing (19), which allows us to process large-
scale, multidimensional, complex datasets in this information
explosion of an era. Machine learning–based analysis of
connectomic data created from neuroimaging studies in patients
AD has been extensively studied in the literature (5, 9, 12, 20,
21). Most such efforts utilize a method for modeling features
of either DTI and/or fMRI studies, which allow a model to
differentiate between some combination of healthy controls,
patients with mild cognitive impairment, and those with AD.
While early identification of patients who will progress to clinical
AD would provide a clinically critical patient cohort who are the
best candidates for disease-modifying therapies (8), models that
provide a yes vs. no answer ignore the possibility of heterogeneity
of phenotypes, have limited ability to provide insight into
stages of the disease, and lack the ability to provide actionable
information about where in the brain a specific patient’s disease
is located and what specifically is happening. Treatments such
as repetitive transcranial magnetic stimulation (rTMS) provide
a safe and potentially useful tool that may palliate symptoms in

TABLE 1 | Demographic and clinical characteristics of participants.

Healthy control

(n = 41)

AD (n = 21) P

Age (years) 70.25 (0.77) 67.43 (2.35) 0.14

Gender (% female) 22 (50%) 17 (76%) 0.001**

Education (years) 16.56 (0.40) 10.71 (1.02) <0.0001****

Handedness (% right handed) 40 (100) 21 (100) 0.99

MMSE 29.00 (0.18) 24.29 (1.05) 0.002**

**means a significant difference with P = 0.001; **** means a significant difference with

p < 0.0001.

patients even if not disease-modifying, but for which it is unclear
what the appropriate target is (22).

In this pilot study, we presented a different approach using
machine learning to study AD which focused on characterizing
the site of a structural and functional anomaly at the single-
subject level. Not only did this approach provide potentially
actionable information, for therapies such as rTMS, but
our data suggested that specific anomalies were remarkably
consistent between individuals regardless of disease staging,
which suggested that they might represent fundamental steps
in early symptomatology of AD, and others became increasing
less consistent which indicated the possibility of heterogeneous
subgroups or stages of the disease.

MATERIALS AND METHODS

Participants
The study included 21 patients with clinically diagnosed AD
between the ages of 50 and 90 years who presented to
Shenzhen’s People’s Hospital for evaluation and 41 healthy
controls with similar age and intact cognition. All research
testing was performed with the approval of the local institutional

review board (Shenzhen People’s Hospital Medical Ethics
Committee) and with informed consent from the patient and/or
designated surrogate. The research has registered in the Chinese
Clinical Trial Registry (ChiCTR1800019199). The demographic
characteristics of the participants are listed in Table 1.

Clinical and Neurocognitive Assessments
We administered the same standardized neurocognitive test
to participants in both the AD and HC groups. All patients
underwent standard neurologic testing in addition to the Mini-
Mental Status Examination (MMSE) (23) and the Montreal
Cognitive Assessment (24) to confirm the diagnosis. MMSE was
used for the comparison between the AD and HC groups, based
on the correction of educational level; patients were classified as
cognitive decline where ≤18 MMSE. In the AD group, 17 of 21
patients were female, which had a significant difference with HC
(P = 0.001), despite we included equal proportions of gender
in HC, in clinical setting; two-thirds of persons diagnosed with
AD are women. There was also a notable difference in education
between two groups (P < 0.0001), which was consistent with
the research that older adults with at least 16 years of education
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had less of the progressive neurodegeneration associated with
AD. The MMSE in the AD group was decreased significantly
compared with HC (P = 0.002). The participants had suffered
approximately 3.2 years from AD or a noticeable cognition
decline with a variation from 2 up to 10 years.

Inclusion and Exclusion Criteria for AD
For inclusion criteria, (1) a diagnosis of probable AD according
to the National Institute of Neurological and Communicative
Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and
Related Disorders Association (ADRDA) (NINCDS-ADRDA)
(25), (2) at age 50 to 90 years, (3) with ≤18 MMSE score, and
(4) current symptomatic treatment of AD.

And for the exclusion criteria, any other causes for cognitive
decline (1) prior or current neurological or central nervous
system disorders, (2) psychiatric disorder such as schizophrenia,
major depression, or any other psychiatric condition, (3)
abnormalities on MRI like lacunar infarcts, cerebral lesions, etc.,
and (4) the presence of associated disorders, immune, metabolic,
or endocrine disorders and a history of cancer, etc., (5) use of
prohibited medication or alcohol abuse, and (6) a diagnosis of
AD and concomitant cerebrovascular disease.

MRI Data Acquisition
For the HC group, we obtained 36 normal subject images from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) from
the ADNI2 study collected on the Philips Achieva and GE
Discovery MR 750 3.0-TMRI scanner. DTI was acquired on with
5 b = 0 baseline image and a b = 1,000 shell with 41-direction
acquisition, field of view (FOV) = 350 ∗ 350mm, slice thickness
2.7mm, 0-mm gap between slices with no overlap, full brain
coverage, isotropic voxels, square 256 ∗ 256 matrix.

Resting-state fMRI (rsfMRI) images were acquired on a
3.0-T MRI scanner, 3.312 × 3.312 × 3.312-mm voxels, 140
volumes/run, TR = 2,020ms, TE = 30ms, field of view = 224
× 224mm, flip angle= 80◦, 7-min run time.

For AD patients, Siemens Skyra 3.0-T MRI scanner was
used for data acquisition; all patients underwent a pretreatment
standard structural T1- and T2-weighted images, as well as
diffusion-weighted image, and MR angiography to rule out
secondary explanations for their clinical dementia.

DTI with the following parameters: with 10 b = 0 baseline
image and a b = 1,000 shell with 64 direction acquisition, FOV
= 224 ∗ 224mm, slice thickness 2mm, 0-mm gap between slices
with no overlap, full brain coverage, isotropic voxels, square 112
∗ 112 matrix.

rsfMRI was performed with the following parameters: T2-star
EPI sequence, 3.5×3.5×3.5-mm voxels, 240 volumes/run, TR =

2,020ms, TE = 30ms, field of view = 224 × 224mm, flip angle
= 90◦, 8-min run time.

To eliminate the difference made by MRI scanners in this
study, a preprocessing step using tangent space normalization
and whitening method was applied to correct the influence of
the bias field to reduce misdiagnosis and improve the accuracy
of diagnosis before segmentation or classification.

rsfMRI Preprocessing
The rsfMRI images were processed using standard processing
steps: (1) motion correction was performed on the T1 and
BOLD images using a rigid body alignment; (2) slices with excess
movement [defined as DVARS> 2 sigma (26) from the mean
slice] were eliminated; (3) the T1 image was skull stripped using
a convolutional neural net (CNN); this was inverted and aligned
to the resting state bold image using a rigid alignment, which was
then used as a mask to skull strip the rsfMRI image, (4) slice time
correction and global intensity normalization was performed,
(5) gradient distortion correction were performed using a
diffeomorphic warping method which aimed to locally similarize
the rsfMRI and T1 images, (6) High variance confounds were
calculated using the CompCor method (27) as well as motion
confounds were regressed out of the rsfMRI image, and the linear
and quadratic signals were detrended, (7) spatial smoothing was
performed using a 4-mm full width at half maximum Gaussian
kernel. The personalized atlas created in previous steps was
registered to the T1 image and localized to the gray matter
regions. Thus, it was ideally positioned for extracting an average
BOLD time series from all 379 areas (180 parcellations × 2
hemispheres, additionally with 19 subcortical structures), which
yielded 143,641 correlations.

Diffusion Tractography Preprocessing
The diffusion tractography (DT) images were processed using
the Omniscient software, which employs a standard processing
steps in the Python language (28): (1) the diffusion image
was resliced to ensure isotropic voxels; (2) motion correction
was performed using a rigid body alignment; (3) slices with
excess movement (defined as DVARS >2 sigma from the mean
slice) were eliminated; (4) the T1 image was skull stripped
using a convolutional neural net (CNN); this was inverted and
aligned to the DT image using a rigid alignment and then
used as a mask to skull strip the DT; (5) gradient distortion
correctionwas performed using a diffeomorphic warpingmethod
which aimed to locally similarize the DT and T1 images;
(6) eddy current correction was performed; (7) fiber response
function was estimated and the diffusion tensors were calculated
using constrained spherical deconvolution; and (8) deterministic
tractography was performed with random seeding, usually
creating about 300,000 streamlines per brain.

Machine Learning–Based Parcellation
Not only the ML has been largely used in the prediction
for internet-of-Things services (29) and traffic control system
(30), which also been applied to the neurological science. To
create a personalized brain atlas, the structural adjacency matrix
was extracted as a set of fibers running between each pair
of parcellations. To minimize the effects of brain atrophy, we
created a machine learning–based, subject-specific version of the
HCP-MMP1 (31) atlas based on DTI structural connectivity.
This was created by training a machine learning model on 200
normal adult subjects by first processing T1 and DT images as
above. A HCP-MMP1 atlas in NIFTIMNI space was then warped
onto each brain and the structural connectivity was calculated
between every pair of this atlas and a set of ROI’s containing 8
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subcortical structures per hemisphere as well as the brainstem
based on the streamlines, which terminated within an ROI.
This step both allowed the generation of feature vectors that
basically a 379 × 379 structural connectivity based adjacency
matrix, and generated a centroid of the parcellation, which was
utilized to constrain the voxels studied for assignment to a given
parcellation to a plausible area near its typical position. These
feature vectors for each region were then used as a training set
and the data were modeled using the eXtreme Gradient Boosting
(XGBoost) method.

This model was then applied to the new subject by first
warping the HCP-MMP1 atlas to the new brain and collecting a
set of feature vectors of the connectivity of each voxel (32–35).
The feature vectors were then used to determine if each voxel
belongs to a parcellation or region. This created a version of the
HCP-MMP1 atlas with subcortical components, which was not
dependent on brain shape or pathologic distortion but specific
for this subject while comparable between subjects.

Personalized Anomaly Detection
Instead of trying to fit a machine learning model to the raw
data, we studied these patients on an individual level by utilizing
machine learning to direct us to areas that were abnormal in
AD patients compared to age-similar controls. To do this, we
utilized the ADNI2 dataset to generate a training set, which

was processed using the same technique. We then performed
a tangent space connectivity transformation, whitening, and
normalization (36) to determine the range of normal correlations
for each functional connectivity and structural connectivity pair
in the matrix. We then excluded the one-third of pairs in
both structural and functional with the highest between subject
variance in the normal cohort (37), under the hypothesis that
these areas might be prone to false discovery, possible due
to inter-individual variability in normal subjects. Abnormal
connectivity for each connection was determined as a 3-sigma
outlier for that structural or functional entry. Assignment of
parcellations to various large-scale brain networks was based on
several previous coordinates based meta-analyses, which have
been previously published research (38–41).

The illustration of the data processing and model forming is
shown in Figure 1.

Statistical Analyses
All statistical analyses were conducted in SPSS software
(IBM Corporation), for the comparison of demographic and
clinical characteristics of participants, independent sample T-test
analyses using two-sided tests in continuous data and a Chi-
square was assessed for the discreet data.

FIGURE 1 | Workflow for the research. From the upper left to the right of this flowchart: the research starts with a standard atlas warped onto the brain, the

boundaries are smooth because it is not machine learning–based. Then using the constrained spherical deconvolution–based tractography to adjust the atlas to

personalize it. Process the rsfMRI to a functional matrix and structural MRI to a structural matrix by taking parcellation of atlas. The final step will be utilizing a training

set in machine learning to make an anomaly matrix of structural and functional connectivity for further analysis.
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FIGURE 2 | Fiber tracts and fMRI-based brain network. (A) Parcellations and fiber tracts–based brain network pulled out from the machine learning algorithms.

Three-dimensional rendering of parcellations and tractography-based MRI images for identified set of seven canonical brain connectivity networks that Only shows

tracts within areas of the network. (B) Example submatrices of structural anomalies for the same patient based on affiliation in the same brain-network with (A).

Normal or high variances (excluded areas) were indicated in white. Dots represent areas with less diffusion tractography fibers traces between them and normal,

age-similar subjects. These maps provided a network-by-network fingerprint. CEN, central executive network; DAN, dorsal attention network; DMN, default mode

network; VAN, ventral attention network.

RESULTS

Anomaly Detection–Based Fingerprinting
of AD-Based Anomalies
Parcellations and fiber tracts–based brain network pulled out
from the machine learning algorithms and an example of this
matrix subset based on the affiliation of a parcellation with one
of the known large-scale brain networks. This example showed
the form of data these algorithms provide about specific brain
networks (Figure 2). Note when we visually inspected all 21
brains, we did not note any consistent patterns between patients
except that the default mode network was always abnormal in
some way. It was important to note that white entries include
both connections that were within normal limits compared to
age-similar controls, and those connections are highly variable in
the control group, suggesting that they were too interindividual
variable to be meaningfully called an anomaly.

Structural Disease Burden in AD Is Mainly
in the Subcortical Structures and in DMN
To understand the behavior of data produced by our approach,
we first analyzed the overall frequency of anomalies in all
areas we studied to get an estimate of which areas were most

frequently part of pair with a decreased number of white matter
fibers on the diffusion tractography study of these patients
compared to the age-similar controls. Note that two aspects of
the methodology were worth reiterating. First, we parcellated
the brains of both groups using a machine learning model that
assigns voxels to a parcellation of subcortical structure based on
which other voxels they connect to on the DTI. This means that
the basic patterns of connections are held relatively consistent,

and should not greatly vary due to alignment of the atlas or
other similar problems. Second, while white matter connections

decrease with age dependent ways, which do not necessarily cause

dementia, the comparison with age-similar controls implies that

this comparison should select out AD-specific connection loss.
Table 2 demonstrates the areas with the highest fraction of

their possible anomalies in all 21 patients who had an anomaly.
We noted that that the top 23 areas had decreased numbers of
fibers between the area and 7.6 and 13.85% of all possible target
areas in all 21 patients studied (at least among the low variance
options). Figure 3 shows this structural anomaly burden as a
series of bar graphs. This demonstrates two natural inflection
points where the burden drops, suggesting somewhat significant
changes in behavior. As Table 1, shows, the majority of the high
anomaly burden areas are subcortical and include basal ganglia
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TABLE 2 | Structural anomaly burden.

Parcellation No. of anomalies No. of subjects with

at least one anomaly

No. of low variance

connections

Total potential

anomalies

Percentage of total %

R_8BL 634 21 218 4,578 13.85

L_pallidum 592 21 204 4,284 13.82

R_pallidum 694 21 249 5,229 13.27

R_ventralDC 294 21 112 2,352 12.50

R_9m 543 21 211 4,431 12.25

R_caudate 362 21 148 3,108 11.65

R_10v 714 21 302 6,342 11.26

L_ventralDC 203 21 87 1,827 11.11

Brain stem 36 21 16 336 10.71

L_putamen 225 21 104 2,184 10.30

L_thalamus 240 21 114 2,394 10.03

L_8BM 288 21 143 3,003 9.59

R_thalamus 207 21 103 2,163 9.57

R_8BM 338 21 175 3,675 9.20

L_10v 416 21 230 4,830 8.61

R_p24 560 21 333 6,993 8.01

R_OFC 462 21 276 5,796 7.97

R_cerebellum 108 21 65 1,365 7.91

R_10pp 301 21 184 3,864 7.79

R_a24 498 21 307 6,447 7.72

L_caudate 229 21 142 2,982 7.68

L_TGd 170 21 106 2,226 7.64

R_accumbens 417 21 261 5,481 7.61

structures, the dorsal diencephalon, and areas 8BL, and 8BM.
Also notable are several parts of the anterior portion of the default
mode network. Note that patients had at least one structural
anomaly in every parcellation and subcortical area compared to
healthy age-similar controls; these areas have the most frequent
anomalies. Of note, neither hippocampus was among the most
frequent sites of structural anomalies.

Structural–Functional Mismatch
Characterizes the Anomalies in AD
Table 2 shows a similar analysis of Functional anomalies in AD.
Note that the highest-burden areas are generally not subcortical
regions. The default mode areas, such as p24 and 10v are on
both lists as are frontal areas 8BM and 8BL. Also note that
with the exception of the right hippocampus, all of the highest
functional anomaly burden areas are cortical. In other words,
even though the deep structures frequently show decreased
numbers of white matter fibers on with different brain regions,
the less commonly show observable functional connectivity
disturbances with those areas.

Disease Defining Anomalies in AD Were
Structural Changes in the Right Anterior
Cingulate
To see how consistent the anomalies seen in AD occurred, and
specifically if there were any connection, which was usually

abnormal. Table 4 demonstrates the results of this frequency
analysis on the structural connectomes of these patients.
Interestingly, two anomalies were seen in all 21 patients, and
3 anomalies were seen in 20/21 patients. These involved the
anterior and middle cingulate gyrus on the right as one or both
pairs of abnormal structural connections. As we looked through
the connections of decreasing frequency, the most consistent
connections were overrepresented by right-sided and DMN
anomalies, consistent with many other studies.

The Functional Consequences of
Connectivity Loss Were Cortical and
Variable
Table 5 demonstrates a similar analysis of the most common
functional anomalies in AD patients. Two obvious differences
were notable. First, functional anomalies were far less consistent
with the most common anomaly in functional connectivity
only occurring in 8 patients. Second, these anomalies are
corticocortical or corticohippocampal, and none appear to
be corticobasal or corticothalamic. Interestingly, the abnormal
functional connectivity, which was common between subjects
spread into numerous networks, as opposed to mainly the DMN,
and it was mostly areas that were interhemispheric or not
immediately adjacent to each other. The Dorsolateral prefrontal
cortex (DLPFC) and dorsomedial prefrontal cortex (DMPFC)
were particularly affected, with 8BM and 8BL notable inclusions.
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FIGURE 3 | A visual depiction of structural anomaly burden in these 21 subjects. This is a set of 377 bar graphs representing the total fractions of anomalies noted in

each of the cortical parcellations and subcortical regions of interest expressed as a total % of possible anomalies. This gives a sense of which connections are most

consistently abnormal compared to normal age-similar but healthy controls in non-variable areas. Note there are two inflection points in this graph that demonstrate

steep transitions in the data. Areas to the left of the first inflection point are mostly subcortical structures, including the putamen, caudate, and thalamus, among

others, and areas 10v, right 9M, bilateral 8BM, and right area 8BL. Areas between the two inflection points mainly include regions within the anterior cluster of the

Default mode network. Most other areas have a lower anomaly burden and are to the right of the second inflection point.

DISCUSSION

The development of personalized, reproducible, non-invasive,
and neuroscientifically interpretable biomarkers are urgently
needed for AD precision medicine (16, 42), yet despite
remarkable advances, few such biomarkers are available.
Neuroimaging using DTI and fMRI in conjunction provides
objective information on the structure and function that for
assessing network connectivity of the brain. In this study, we
performed a preliminary exploration into a set of AD data with
a goal of revising a heuristic for analyzing these patients with
the goal of improving a personalized approach to understanding
individual connectomes in an actionable manner. Specifically,
we found that there were consistent patterns of white matter
fiber loss, mainly focused around the DMN and deep subcortical
structures, which were present in nearly all patients with clinical
AD (Tables 2, 4). Additionally, these structural anomalies were
frequent, but not universal. We also found an obvious mismatch
between the structural and functional anomalies in these patients,
with the latter being most cortical, and mostly areas separated at
long distances from each other.

The fact that DTI found white matter fiber anomalies, which
were consistent between individuals, even being present in all
patients, was a surprising finding, but aligns with other machine
learning approaches (5) aimed at making the diagnosis of AD
vs. normal, suggesting that these changes are early and disease

defining. In other words, it is difficult to have clinical AD with a
DMN with normal structural connectivity.

As important as this is, it implies that these problems are
not useful for personalizing treatment approaches, or for staging.
To that effect, the parcellations in the less common, but not
rare groups e.g., being present in 50–65% of patients, seem
like better candidates, as these might track the course of the
disease better. Previews studies showed that the combination
fMRI or/with DTI can be used for identification of the early
stage of AD (9, 43) and classification from various manifestations
dementia (15), while revealed only the abnormalities in large-
scale network connectivity in several brain regions such as
right hippocampal, left middle frontal gyrus, posterior cingulate,
and middle cingulate gyrus on the right, which is consistent
with the structural abnormal assessed with DTI in our study.
The mismatch between structural and functional anomalies
in our research was striking (Tables 2–5). It is interesting to
speculate why this would be the case, but given the physical
distance between areas common on this list, we suggest that
loss of corticobasal and corticothalamic fibers, common in
these patients, reduce the ability of these structures to facilitate
communication with distant areas. It highlights the need to look
at areas beyond the large-scale brain networks when we try to
understand functional-phenotypic relationships.

It was well-known that DMN was considered as the most
affected network in neurological and neuropsychiatric disorders,
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TABLE 3 | Functional anomaly burden.

Parcellation No. of anomalies No. of subjects with

at least one anomaly

No. of low variance

connections

Total potential

anomalies

Percentage of total %

L_8BM 577 19 377 7,163 8.06

R_PFt 533 19 360 6,840 7.79

R_V1 540 19 374 7,106 7.60

L_9-46d 535 19 379 7,201 7.43

L_10v 500 19 378 7,182 6.96

R_hippocampus 453 19 370 7,030 6.44

L_AAIC 437 19 378 7,182 6.08

R_8BL 389 19 378 7,182 5.42

R_13l 384 19 374 7,106 5.40

L_IFJa 318 19 360 6,840 4.65

R_VMV3 327 19 373 7,087 4.61

L_PIT 306 19 360 6,840 4.47

R_MIP 314 19 371 7,049 4.45

R_PHT 290 19 345 6,555 4.42

L_IFJp 316 19 376 7,144 4.42

L_9p 310 19 371 7,049 4.40

R_PIT 303 19 367 6,973 4.35

L_s32 289 19 351 6,669 4.33

R_p24 304 19 374 7,106 4.28

L_PHA1 289 19 357 6,783 4.26

L_V4t 290 19 362 6,878 4.22

R_PoI2 264 19 334 6,346 4.16

R_2 282 19 359 6,821 4.13

TABLE 4 | Frequency of structural anomalies.

Patients Affiliation 1 Parcellation 1 Parcellation 2 Affiliation 2 Hemisphere Relationship

21 Salience R_a24pr L_STSdp Language Bilateral Intrahemispheric

DMN R_p24 R_24dd Sensorimotor Right Intralobar

20 DMN R_p24 R_p24pr Salience Right Intralobar

DMN R_p24 R_33pr DMN Right Intralobar

DMN R_33pr R_24dd Sensorimotor Right Intralobar

19 Basal ganglia R_caudate R_OFC Orbitofrontal Right Corticobasal

Basal ganglia R_caudate R_10v DMN Right Corticobasal

Orbitofrontal R_OFC R_putamen Basal ganglia Right Corticobasal

17 Salience R_a24pr R_a24 DMN Right Intralobar

DMN R_7m R_23d DMN Right Intralobar

Basal ganglia R_pallidum R_6a Dorsal Premotor Right Corticobasal

SPL R_7Pm R_23d DMN Right Intralobar

16 Salience R_p24pr R_a24 DMN Right Intralobar

Salience R_p24pr R_d32 DMN Right Intralobar

DMN R_23d R_a24pr Salience Right Intralobar

Basal ganglia R_pallidum R_7PL SPL Right Corticobasal

DMN R_10v L_11l Orbitofrontal Bilateral Intrahemispheric

Basal ganglia L_pallidum R_8BL DLPFC Bilateral Intrahemispheric

Insula L_52 L_PoI2 Insula Left Intralobar
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TABLE 5 | Frequency of functional anomalies.

Patients Affiliation 1 Parcellation 1 Parcellation 2 Affilliation 2 Hemisphere Relationship

8 Sensorimotor R_2 L_IFJa DLPFC Bilateral Interhemispheric

DMN L_10v L_ProS Visual Left Long range

Insula L_Pir L_AAIC Insula Left Intralobal

7 DMN L_10v R_PFt Parietal Bilateral Interhemispheric

DMN L_10v R_9-46d DLPFC Bilateral Interhemispheric

DMN L_10v L_AAIC Insula Left Long range

Lateral parietal R_PFt R_8BL DLPFC Right Long range

Lateral parietal R_PFt L_s32 DMPFC Bilateral Interhemispheric

DLPFC L_IFJa R_SFL Sensorimotor Bilateral Interhemispheric

DLPFC L_IFJa R_s32 DMPFC Bilateral Interhemispheric

Limbic R_hippocampus L_3b Sensorimotor Bilateral Interhemispheric

Limbic R_hippocampus R_13l Orbitofrontal Right Long range

DMN L_d32 L_A1 Auditory Left Long range

DMN L_d32 L_OFC Orbitofrontal Left

Visual L_ProS L_8BM DMPFC Left Long range

Visual R_V7 R_VMV1 Visual Right

DLPFC R_IFJa L_OP2-3 Lateral parietal Bilateral Interhemispheric

Orbitofrontal L_pOFC L_9p DLPFC Left Long range

DLPFC L_9-46d L_V4t Visual Left Long range

6 DMPFC L_8BM R_hippocampus Bilateral Interhemispheric

DMPFC L_8BM R_2 Sensorimotor Bilateral Interhemispheric

DMPFC L_8BM R_PFcm Lateral parietal Bilateral Interhemispheric

DMPFC L_8BM R_V7 Visual Bilateral Interhemispheric

DMPFC L_8BM R_V1 Visual Bilateral Interhemispheric

DMPFC L_8BM L_s32 DMPFC Left

DMPFC L_8BM R_10v DMN Bilateral Interhemispheric

DMPFC L_8BM L_9-46d DLPFC Left

Lateral parietal R_PFt R_V3A Visual Right Long range

Lateral parietal R_PFt R_V7 Visual Right Long range

Lateral parietal R_PFt L_ProS Visual Bilateral Interhemispheric

Lateral parietal R_PFt L_31pd DMN Bilateral Interhemispheric

including AD, which shows a high level of activity during
rest while deactivates its performance during cognitive tasks
(44). These areas include the precuneus/posterior cingulate
cortex, medial prefrontal cortex (MPFC), and medial, lateral,
and inferior parietal cortex, and its activity holds potential as
a non-invasive biomarker of incipient AD (45). Researchers
have demonstrated the disconnection or decreased functional
connectivity within/between DMN and other networks, which
contribute to a cognition decline (46).

Regardless of the mechanism, functional data seems less
consistent than structural data most in the DMN. There are
good and bad points to using these data. This suggests that
using machine learning–based on the variability of functional
connectivity to classify or identify patients in early-stage disease,
or to stage the extent of the disease, seems less promising than
structural data as the anomalies seem to be more individual

specific. However, the inherent variability of functional anomaly
data in our patients suggests that it is highly promising at
personalizing approaches to therapy, such as TMS (22). In this
paradigm, an integrated understanding of the structural defects
unique to that patient, as well as the functional consequences, can
provide a unique approach to why certain symptoms occur in a
specific patient. In other words, things that do not vary seldom
provide variable outcomes.

The following are a few notes about our data modeling
approach. First, parcellating the brain of structurally abnormal
patients has long been a source of variability in the data, especially
in the presence of brain atrophy. By using a machine learning
approach based on structural connectivity patterns, we hold at
least one variable (voxel identity in a parcellation) relatively
constant, as the connectivity pattern should remain similar
for a parcellation across brains (41, 47–49). Further, while the
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connectome has seemingly infinite interindividual variability, we
hypothesize that clinically relevant phenotypes we are interested
in at this early stage are less likely to result from the loss of rare
individual variants in connectivity, and instead result from more
constant interindividual connections. Thus, we eliminated many
of the higher variance connectivity edges on the graphs to focus
on similarities across individuals, and reduce the false discovery
rate when scaling the results of machine learning models to
individuals. In other words, we focused on brain connectivity,
which we can more convincingly expect to be in a specific range.

As the potential treatment that non-invasively applying on
cognitive decline, TMS may also begin to address etiological
or syndrome’s heterogeneity by targeting specific circuits to
treat specific symptom clusters. However, it remains unknown
whether the stimulation of different circuits is associated
with improvement in different cognitive symptoms. In clinical
practice, TMS targeting is usually based on scalp measurements
and mostly without a flexible tracking device to fix the coil,
resulting in different patients, or even the same patient during
their series of sessions receiving stimulation of different sites in
the prefrontal cortex.

Although there are important discoveries revealed by our
study, there are also limitations. First, we included only 21 AD
patients, which may lead to some potential bias for machine
learning calculation-based results. Second, the way we eliminated
one-third of parcellation pairs with the highest variance in
the cohort of normal subjects, may have lost some original
information, While, these areas were the smaller parcellations
and is mainly aimed to reduce the problem of multiple
comparisons (50). This should not be expected to introduce
any subjective bias as it was based on the data. Finally, even
after excluding one-third of the connectivity differences, the
abnormities results we made have not been applied to selecting
the individual target for rTMS treatment, although there may be
a long way from being employed to the clinic, the outcome that
we made may provide evidence for individualized and precise
treatment for AD.

In conclusion, we demonstrated a machine learning–based
approach to studying individual connectomes in a non-group
averaged way. This critical exploratory work lays the groundwork
for future larger-scale work in these patients. Our findings
highlight the potential for a reproducible and generalizable
functional brain imaging biomarker to aid the early diagnosis
of AD and track its progression. This data-driven approach
for identifying connectivity-specific targets may prove useful

for other disorders and facilitate personalized neuromodulation
therapy like rTMS. Collectively, our findings highlight the
potential for mismatching between structural and functional
brain imaging to provide a generalizable, and neuroscientifically
interpretable imaging biomarker that may support clinicians
in the non-invasive personalized treatment of AD. Further,
our study may shed light on exploring new mechanisms and
individualized stratagem based on the functional connectivity
of brain networks in patients with dementia or even other
neurodegenerative diseases.
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Introduction: Mutations in the teneurin transmembrane protein 4 (TENM4) gene,
known to be involved in neuropsychiatric disorders, have been identified in three
pedigree of essential tremor (ET) from Spain. ET has overlapping clinical manifestations
and epidemiological symptoms with Parkinson’s disease (PD), suggesting these two
disorders may reflect common genetic risk factors. In this study, we investigated clinical
and genetic manifestations in four unrelated pedigrees with both ET and PD in which
TENM4 variants were identified.

Methods: We subsequently explored whether TENM4 variants contributed to the risk of
developing PD. The frequency of TENM4 variants was evaluated from four PD pedigrees
and other 407 subjects.

Results: The results revealed 12 different novel heterozygous variants, all at low
frequency. A clear general enrichment of TENM4 variants was detected in early onset
PD patients (p < 0.001, OR = 5.264, 95% CI = 1.957–14.158).

Conclusion: The results indicate that rare TENM4 variants may be associated with an
increased risk of PD.

Keywords: variant, genetic testing, Parkinson’s disease, pedigree, TENM4

INTRODUCTION

Parkinson’s disease (PD), one of the most frequent neurodegenerative disorders, is mainly
characterized by bradykinesia, resting tremor and rigidity (Lees et al., 2009). Interactions between
environmental and genetic factors underlie the degeneration of nigral dopaminergic (DA) neurons
and ensuing PD. Genetic factors account for ∼5−10% of PD cases (Deng et al., 2018). To date, 27
Mendelian genes have been reported to be linked with PD, and genome-wide association studies
have succeeded in identifying many low-risk variants (Deng et al., 2018; Lunati et al., 2018).

Essential tremor (ET) is a common hyperkinetic movement disorder with an estimated
prevalence of 5% among people over 65 years old (Deuschl et al., 2015). ET is characterized mainly
by rhythmic, involuntary shaking of parts of the body, and occurs exclusively during voluntary
movements or in positions against gravity. While the majority of PD cases are sporadic, ET has a
strong genetic component, and more than half of affected individuals have a positive family history
(Louis and Ottman, 2006). Although ET and PD are generally considered distinct entities, Spanaki
and Plaitakis (2009) found ET occurred more frequently in relatives of PD patients, compared with
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that in controls. Furthermore, the risk of developing PD is up
to fourfold greater in ET sufferers (Algarni and Fasano, 2018).
The overlapping clinical manifestations and epidemiological
symptoms suggest that PD and ET may underlie common
genetic risk factors.

Mutations in the Teneurin Transmembrane Protein 4
(TENM4; MIM 610084) gene, known to be involved in
neuropsychiatric disorders (Xue et al., 2018). have been identified
recently in three pedigrees of ET from Spain (Hor et al., 2015).
Additionally, in vitro and model organism analyses showed
that mutations in TENM4 gene result in protein mislocalization
and axon guidance defects (Hor et al., 2015). However, further
screening in a cohort of 269 Canadian ET cases and 288 matched
controls revealed a negative association between TENM4 and
the Canadian population (Houle et al., 2017). In our previous
study, Yan et al. (2020) found no evidence support that TENM4
associated with ET. In addition, Chao et al. (2016) found that
the c.4324 G > A mutation in TENM4 originally identified
by Hor and colleagues (Hor et al., 2015) was also present in
the control group (379 ET cases and 398 healthy controls)
in a Chinese population. Thus, similar studies have yielded
inconsistent results.

Increasing evidence suggests that ET and PD may share
genetic mutations, and a subset of patients may have a
combination of long-standing ET with subsequent PD (ET-PD).
Furthermore, one family with five affected individuals presented
with either ET or PD, consistent with mutation of the of PRKN
(PARK2) gene (Pellecchia et al., 2007). Unal Gulsuner et al.
(2014) reported that High Temperature Requirement Protein A2
(HTRA2) is responsible for hereditary essential tremor and that
homozygotes for this allele develop Parkinson disease. And Fused
in sarcoma (FUS) mutations have been found in individuals with
ALS/PD (Yan et al., 2010).

The aim of the present study was to further explore the
associations between TENM4 mutations and PD, and investigate
whether TENM4 variant carriers are at increased risk of
developing PD. We first explored the clinical features and genetic
features of four ET-PD pedigrees, then investigated whether
TENM4 variants might be associated with PD by comparing
mutations in a cohort of sporadic PD cases and controls.

MATERIALS AND METHODS

Family Study
Pedigrees
Four pedigrees of ET-PD with TENM4 mutations were included
in this study. Four probands and their family members
were examined by two neurologists and genetically tested for
neurodegenerative disorders (PD, ET, Alzheimer’s disease, etc.).
Clinical and demographic features of the probands in four family
pedigrees are described in “Results” section (Table 1). The study
was approved by the Medical Ethics Committee of the Second
Affiliated Hospital of Zhejiang University School of Medicine
in accordance with the Declaration of Helsinki. All subjects
participated in this study completed informed consent before the
evaluation and original sample collection.

Genetic Analysis
Blood samples (2 ml) were collected from all cases, and
genomic DNA was extracted from peripheral blood leucocytes
using standard procedures. Probands and family members
were screened for TENM4 (NCBI transcript NM_001098816.2),
HTRA2 (NCBI transcript NM_013247), and FUS (NCBI
transcript NM_004960.3) mutations by standard bi-directional
Sanger sequencing of all coding exons and exon-intron
boundaries (primer sequences available on request). Dosage
analysis for TENM4 exonic deletions and duplications was
performed by multiplex ligation-dependent probe amplification
(MLPA, MRC) (Mencacci et al., 2014). The other known PD
pathogenic genes (SNCA, GBA, LRRK2, UCHL1, VPS35, PRKN,
PINK1, DJ-1, ATP13A2, GIGYF2, PLA2G6, HtrA2, FBXO7,
SYNJ1, DNAJC6, DNAJC13, CHCHD2, Rab39B) were also
analyzed in all participants.

Target Sequencing, Variant Filtering,
Identification, and Analysis
Participants
The study included 207 unrelated patients with PD and 200
healthy control subjects from East China. Healthy controls
were recruited from local communities. All patients were
enrolled from outpatient neurology clinics of the Second
Affiliated Hospital of Zhejiang University School of Medicine
and local communities, and evaluated by two movement disorder
specialists for diagnosis of PD according to criteria provided
by the Movement Disorder Society (Postuma et al., 2015).
The exclusion criteria were described in our previous study
(Gao et al., 2019). To summarize, participants with secondary
causes of parkinsonism such as vascular, drug-induced, and
toxin-induced, and other neurodegenerative diseases such as
progressive supranuclear palsy, multiple system atrophy, essential
tremor, Wilson’s disease and ET convert to PD were excluded.
Additionally, other internal diseases which might also present
tremor symptom such as hyperthyroidism were also excluded.
The protocol was approved by the Medical Ethics Committee of
the Second Affiliated Hospital of Zhejiang University School of
Medicine in accordance with the Declaration of Helsinki. Written
informed consent was completed for every participant before the
evaluation and sample collection.

DNA Preparation, Target Resequencing, Variant
Filtering, Validation, and Analysis
TENM4 and two additional ET-related genes (HTRA2 and FUS)
were selected as targeted genes for capturing and sequence
analyses. Molecular inversion probes (MIPs) were designed to
capture all exons and intron-exon boundaries (5 bp flanking
sequences) of target genes (Yang et al., 2019). Briefly, fragmented
genomic DNA was captured by a customized array designed to
target all exons, splicing sites, and flanking intronic sequences of
the three genes (NimbleGen, Roche). Captured DNA fragments
were sequenced on an Illumina HiSeq2000 Analyzer (Ahmed
et al., 2003). Variants were filtered based on a read depth ≥ 4×,
a genotype quality ≥ 20, and the proportions of reads with
alternative alleles ≥ 0.3. Two publicly available resources were
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TABLE 1 | Clinical manifestation of the probands in four family pedigrees.

Variants Sex AAO IS B R T PI Levodopa responsive DK DM

c.974G > A p.R325Q M 72 T + + + − Responsive − −

c.2287C > T p.R763C F 52 B + + − − Slightly good − −

c.6209G > A p.R2070H M 50 T + + + − Not treated − −

c.5545A > G p.T1849A M 47 B + + − − Responsive − −

AAO, age at onset; IS, initial symptoms; B, bradykinesia; R, rigidity; T, resting tremor; PI, postural instability; DK, dyskinesia; DM, dementia; +, positive; −, negative.

used to obtain variant frequency data; the 1000 Genomes Project
and the Exome Aggregation Consortium (Dec 2019).

Criteria for Pathogenicity of Rare Variants
All non-synonymous variants were analyzed by a database of
human non-synonymous SNVs and their functional predictions
and annotations (dbNSFP, versions 3.3–3.5) (Liu et al., 2016).
For interpretation of the validated variants, multiple prediction
indices were adopted to clarify their pathogenicity, and variants
were considered as likely pathogenic based on Sorting Intolerant
From Tolerant (SIFT) score < 0.05 (Ng and Henikoff, 2003),
Polyphen-2 score > 0.86 (Adzhubei et al., 2013) and Combined
Annotation-Dependent Depletion (CADD) score > 12.35
(Kircher et al., 2014).

Statistical Analysis
Variants with a minor allele frequency < 0.1% (gnome AD or
1,000 G) were defined as rare variants and included in the gene-
based burden test. The association between rare variants and PD
was analyzed using Fisher’s exact tests, odds ratio (OR) and 95%
confidence intervals (CI). All statistical analyses were performed
using IBM SPSS Statistics 23.01, and two-tailed p < 0.05 was
considered statistically significant.

RESULTS

Family Study
Family A
The proband (Case II-3, Figure 1A) was a 75 year-old right-
handed male of East Chinese origin with PD, with disease onset
at age 72, and tremor of the left foot and arm. He now presents
with anosmia, constipation, progressive loss of dexterity and
slowness in the left foot. Examination showed an asymmetric
rigid-akinetic parkinsonian syndrome with rest tremor and
bradykinesia in the left foot and arm. Postural instability,
dyskinesia and dementia were not observed. The efficacy of
levodopa therapy was responsive and symptoms slightly relieved.
His mother (Case I-2) passed away but was described with tremor
in both hands. Whereas, further clinical information couldn’t
be acquired. Examination of the proband’s brother and sister
revealed kinetic tremor in both hands, without dyskinesia or
hypertonia. They were clinically diagnosed of essential tremor
and on no medications regards of mild symptoms.

1https://www.ibm.com/support/knowledgecenter/SSLVMB_23.0.0/spss/product_
landing

Gene screening in this family revealed one variant, TENM4
c.974G > A; p.R325Q (carried by Case II-3, II-1, and II-
2), in the proband and his sister and brother. The R325Q
(rs373911172) mutation has not been reported previously in ET
or PD. Children of the proband and that of his sister were
unaffected and non-carriers, as well as father of the proband.
No rare variants of HTRA2 or FUS were detected in any of the
tested family members. PRKN and LRRK2 gene mutations were
found in the proband, while the pathogenicity analysis assigned
the mutations as benign.

Family B
The proband (Case II-4, Figure 1B) was a 55 year-old female with
bradykinesia, rest tremor in lower limbs and being first diagnosed
with PD 6 years ago. She complained of bradykinesia and poor
dexterity, and suffered tremor in both hands 1 year ago. The
symptoms slightly ameliorated after taking levodopa. Her father
(Case I-1) was diagnosed with PD in his sixties and died 5 years
ago. Her sister (Case II-3) presented with head tremors when
nervous or excited, while bradykinesia and rest tremor were not
observed. Genetic tests revealed that the proband and her sister
carried TENM4 c.2287C > T; p.R763C. One of her brothers (Case
II-5) was not a carrier. Rare variants of HTRA2 and FUS were
not identified. Genetic analysis data were not available for other
family members. No other PD pathogenic gene mutations were
found in the proband.

Family C
The proband (Case II-1, Figure 1C) was a 72 year-old male
who presented with bilateral hand tremors at the age of 50. He
recently attended the outpatient clinic for 2 years for stiffness
of facial expression and slowness of the left hand and foot. No
dopaminergic drugs had been prescribed. His mother (Case I-1)
had a history of tremor in both hands, but did not experience
dexterity or walking problems. No tremor or bradykinesia were
observed in his brothers or sister.

The proband was heterozygous for TENM4 c.6209G > A;
p.R2070H. LRRK2 mutation was found in the proband and
allocated as benign by rare variant pathogenicity analysis. No
rare variants were detected for HTRA2 or FUS. His father and
brother (Case II-3) are non-carriers for TENM4 c.6209G > A.
Unfortunately, genetic information for other members of the
family was unavailable.

Family D
The proband (Case III-3, Figure 1D) was a 51 year-old right-
handed male with bradykinesia been diagnosed as Parkinson’s
disease for 4 years. Physical examination showed a mask face and
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FIGURE 1 | Pedigrees of the four families with TENM4 mutations involved in this study. (A–D) Pedigress of four different families with TENM4 mutations. Notes:
black symbols, individuals with ET and PD; blank symbols, unaffected; gray symbols, individuals who are reported to have ET by history but some are not examined;
arrow, probands; diagonal lines, deceased individuals; circle, female; square, male. ∗: c.974 G > A/wild type; ∗∗: c.2287 C > T/wild type; ∗∗∗: c.6209 G > A/wild
type; ∗∗∗∗: c.5545 A > G/wild type; #: wild type/wild type.

rigid-akinetic parkinsonian syndrome without tremor of the right
lower extremities. Dopaminergic therapy resulted in tangible
improvement in parkinsonian symptoms. 11C-labeled 2β-
carbomethoxy-3β-(4-fluorophenyl) tropane positron emission
tomography/computed tomography (11C-CFT PET/CT) analysis
revealed an asymmetric bilateral reduced tracer uptake, more
marked in the left putamen. His sister (Case III-1), brother (Case
III-2), and father (Case II-1) presented with tremor of both
hands but without bradykinesia and rigidity. By contrast, his aunt
had difficulty walking and poor dexterity and was diagnosed as
Parkinson’s disease in her sixties.

Gene sequencing of all available family members revealed
that the proband and his father were heterozygous for the rare
TENM4 c.5545A > G; p.T1849A mutation, while his sister (Case
III-1) was a non-carrier. PRKN and LRRK2mutations were found
in the proband, however, rare variant pathogenicity analysis
determined them as benign mutations.

Targeted Gene Panel Sequencing
We hypothesized that pathogenic variants in TENM4 may also
be found in subjects with PD without a family history. To
investigate this, we examined targeted gene panel sequencing
data for a large cohort of patients predominantly affected by
PD, alongside controls. In total, 207 patients with sporadic
PD (male/female = 112/95, age = 52.83 ± 10.56 years)
and 200 healthy control participants (male/female = 85/115,
age = 46.29 ± 11.05 years) were included and analyzed (Table 2).
The percentage read depth of target genes was 98, 96, and 92% of
bases covered by at least 4×, 10×, and 20×, respectively.

Overall, 12 rare non-synonymous-coding variants with a
minor allele frequency < 0.1% were identified in the exon

TABLE 2 | Summary of sporadic PD-control demographics.

Series Number Age Male/Female

Total PD 207 52.83 ± 10.56 112/95

EOPD (AAO ≤ 50) 100 44.74 ± 7.34 53/47

LOPD (AAO > 50) 107 60.34 ± 6.86 59/48

Controls 200 46.29 ± 11.05 85/115

PD, Parkinson’s disease; EOPD, early onset Parkinson’s disease; LOPD, late onset
Parkinson’s disease; AAO, age at onset.

regions of the TENM4 gene after applying quality filter (Table 3).
None of these rare variants have been reported previously,
and all were categorized as disease-causing based on SIFT,
Polyphen-2 and CADD values, and remained conserved based on
GERP + + prediction (Ioannidis et al., 2016). The structures and
functions were predicted as altered structures and/or functions
(Supplementary Materials). Unfortunately, due to technical
issues, one of the variants (p.R763C) could not be sequenced in
healthy controls. In addition, six of these variants (p.R1952H,
p.T1849A, p.Y1760F, p.D632N, p.G222R, and p.Q2735E) were
absent in our gender-matched healthy control cohort (Table 3),
and their locations are depicted in Figure 2. However, no rare
variants of HTRA2 or FUS were detected in PD or healthy
controls. None of the previously reported PD risk genes had been
identified in all participants.

Gene-Based Burden Analysis
To determine whether these rare variants of TENM4 contribute
collectively to sporadic PD risk in our cohort, we performed
a gene-based burden analysis using Fisher’s exact test (Nicolae,
2016), and a clear general enrichment was detected for early
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onset Parkinson’s disease (EOPD, age at onset ≤ 50) patients
(p < 0.001, OR = 5.264, 95% CI = 1.957–14.158). No significant
differences were found for late onset Parkinson’s disease (LOPD,
age at onset > 50) or total PD (Supplementary Table 1).

DISCUSSION

Advances in next-generation sequencing have revealed a growing
number of causal genes in Mendelian form PD patients (Deng
et al., 2018). However, a large number of early onset cases still
remain to be explained, which indicates that there are many
genetic factors yet to be clarified. The connection between PD and
ET has received much attention (Jankovic, 1989). Accumulating
evidence supports an association between PD and ET, including
overlapping clinical features, obviously increased prevalence of
PD in patients with a family history of ET, and increased
prevalence of ET in family members of PD patients (Tarakad and
Jankovic, 2018).

Recent discoveries confirmed links between ET and LINGO1,
FUS, and TENM4 (Hor et al., 2015; Clark and Louis, 2018).
In our current family study, we assessed four unrelated ET
and PD pedigrees (family coexistence of ET and PD) in which
TENM4 variants were identified in individuals without evidence
of mutations in LINGO1 or FUS genes. Most cases presenting PD
phenotypes were TENM4 variant carriers. Thus, we speculated
that TENM4 may be linked to the risk of developing PD.

We subsequently identified 12 novel rare variants of TENM4
in a Chinese cohort of sporadic PD patients that may be
associated with PD developing, including five that were also
present in controls. With other PD related genes tested in our
sporadic PD patients, no significant risk genes were found, which
therefore strengthen our hypothesis that mutations in TNEM4
gene may associated with PD. Burden analysis indicated no
overrepresentation of variant alleles in sporadic PD cases, but did
reveal an association between TENM4 rare variants and disease
in EOPD case-controls. It should be noted that the results of
burden analysis can be impacted by the detection methods, read
depth, and data from the GnomAD database (compared to using
ethnically-, age-, and gender-matched controls). Thus, data from
burden analysis should be interpreted cautiously. However, the
results implied de novo variants or incomplete penetrance.

Despite dramatic advances in our understanding of the genetic
basis of PD, a large number of early onset and sporadic cases
still remain to be clarified. There is a possible functional link
between Mendelian genes and sporadic PD, and previous studies
suggest that rare and low-frequency variants of PD Mendelian
genes may play a role in sporadic forms of the disease (Kun-
Rodrigues et al., 2015; Spataro et al., 2015). In addition, previous
research confirmed the positive contribution of rare coding GTP
cyclohydrolase1 (GCH1), the causative gene in dopamine related
dystonia (DRD) for which gene variants have been identified in
a large cohort of sporadic PD cases (Mencacci et al., 2014). Our
present study is the first to link ET with the TENM4 gene in PD
cases. Those PD patients with TENM4 mutations mildly response
to levodopa treatment in four pedigrees indicated an undefined
mechanism of gene-related on dopaminergic therapy of PD.
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FIGURE 2 | Schematic representations of the TENM4 protein with blue boxes indicating different domains. (A) Variants found in present study are indicated by
arrows. (B) Electropherograms of the sequence of the variants. (C) The position and surroundings of those variants are highly conserved across different species.

The pathogenetic mechanism linking TENM4 mutations with
ET is uncertain. Biochemical evidence from TENM4-deficient
mice revealed loss of embryonic mesoderm and differentiation in
a cell-autonomous manner (Nakamura et al., 2013). Furthermore,
functional studies are needed to elucidate the importance
mutations in this gene.

The limited contribution of the TENM4 gene to PD revealed
by our study could be due to a lack of functional studies
confirm pathogenic variants. Furthermore, we evaluated a cohort

of sporadic PD cases in which TENM4 variants may not
reflect the frequency in familial cases. The relatively small
sample size and absence of family co-segregation may be
limitations of our study.

In conclusion, we provide evidence that rare TENM4-coding
variants may be considered a risk factor for PD. However,
determining how TENM4 mutations known to cause ET may be
related to risk alleles in PD requires further investigation. Due
to racial heterogeneity and the limited sample size of our cohort,
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more robust independent studies are needed to further illuminate
the relationship between PD and TENM4 gene variants.
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Head and neck tumors are the sixth most common neoplasms. Multiomics integrates
multiple dimensions of clinical, pathologic, radiological, and biological data and has
the potential for tumor diagnosis and analysis. Deep learning (DL), a type of artificial
intelligence (AI), is applied in medical image analysis. Among the DL techniques, the
convolution neural network (CNN) is used for image segmentation, detection, and
classification and in computer-aided diagnosis. Here, we reviewed multiomics image
analysis of head and neck tumors using CNN and other DL neural networks. We also
evaluated its application in early tumor detection, classification, prognosis/metastasis
prediction, and the signing out of the reports. Finally, we highlighted the challenges and
potential of these techniques.

Keywords: artificial intelligence, deep learning, head and neck tumors, diagnosis, multi-omics

INTRODUCTION

Head and neck tumors are the sixth most common neoplasms (529,000 new cases annually) and
cause 350,000 cancer-related deaths each year (Ferlay et al., 2015; Fidler et al., 2017). Accurate
diagnosis and analysis, especially histologic, radiologic, and biological findings, are crucial for
therapeutic efficacy and prognosis prediction in precision medicine. A histologic section typically
contains 106–107 cells and provides information on cell numbers and the tumor microenvironment
(Koelzer et al., 2017). Radiological images contain 50–5,000 quantitative features (Limkin et al.,
2017). Therefore, pathologists and radiologists must spend considerable time and effort on the
qualitative and quantitative analyses of cell subsets and biomarker expression in a series of
images. Also, inter- and intraobserver variations caused by subjective evaluation are inevitable in
clinical practice.

Artificial intelligence (AI) was developed in the 1950s (Bini, 2018). The term big data was
first proposed by the National Aeronautics and Space Administration in 1997 because a dataset
is too large to be easily manipulated and managed. Big data refers to extra huge amounts of
data integration, storage, analysis, and reuse of various forms of data, such as audio, video, and
images. Big data is aimed at generating a large amount of information to assist decision-making and
estimate outcomes, at a lower cost in time and labor (Conway et al., 2018). Computer algorithms
and well-integrated data are critical for decoding medical big data. Because radiologic images are
digitalized, no additional processing is required. Hung et al. (2020) used clinical big data from the
SEER database to predict the survival time of patients of oral tumor by machine learning algorithms
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in 2020. For pathologic diagnosis, the first major step in adopting
deep learning (DL) is to use digital whole-slide imaging (WSI)
in routine practice (Jeyaraj and Samuel Nadar, 2019). WSI
is non-inferior to traditional microscopy for clinical diagnosis
(Halicek et al., 2019).

Machine learning (ML), a type of AI, refers to a computer
software performing a task by being exposed to the manually
crafted features of representative data (Niel and Bastard,
2019). Head and neck tumors are diverse in histology, in
the pattern of underlying genetic alterations, and in metabolic
signatures, which need a new method to reveal the sophisticated
features. An evolution of ML—DL (Helm et al., 2020)—
was first applied to the analysis of pathologic images of
the head and neck in 2017 (Lu et al., 2017). Several new
theories and methods have arisen to facilitate the application
of DL in precision medicine, such as backpropagation and
multiple layers in the convolution network. The main beauty
of DL is to get rid of the handcrafted features and the
end-to-end learning procedure. In the same year, DL was
applied to radiomics image segmentation of head and neck
tumors (Ibragimov and Xing, 2017). As a result of the
improvements of computer algorithms and computational
pathology, DL now facilitates the identification of benign
and malignant tumors, grading of malignant tumors, and
prognosis prediction.

Here, we outlined the application of DL algorithms in
multiomics to diagnose and analyze head and neck tumors.
Because pathological diagnosis of tumors is the gold standard,
the application of DL in pathomics is emphasized in the
diagnosis section and radiomics in the prognosis section. Finally,
we review the challenges and prospects of DL in multiomics
diagnosis and analysis.

APPLICATION OF DL IN TUMOR
DIAGNOSIS AND MULTIOMICS
ANALYSIS

The term “multiomics” in medicine refers to the combination
of multiple sources of information (genomics, transcriptomics,
proteomics, metabolomics, radiomics, and pathomics) to provide
a deeper understanding of the tumor pathogenesis and lesion
nature (Mars et al., 2020; Ye Y. et al., 2020; Figure 1). A schematic
representation of a synergetic integration of multiomics data is
shown in Figure 1. DL techniques have already been applied
for multiomics analysis in various tumors. The identification
of tumor origin and essential gene is critical for molecular
targeted therapies and accurate treatment and lays the foundation
to reveal changes in oncogenic mutation by liquid biopsy.
Actually, multiomics is heterogeneous data which is difficult to be
comprehensively analyzed. However, the DL network takes this
challenge into an opportunity. DL-based multiomics analysis has
allowed to classify groups of patients based on a more individual
scale in the era of precision medicine. A timeline demonstrating
the researches of DL in tumor diagnosis and multiomics
analysis is shown in Supplementary Figure 1. Identifying robust
survival subgroups of head and neck squamous cell carcinoma

(HNSCC) will significantly improve patient outcome. Zhao
et al. (2020) established a DL-based disease progression model
on 86 HNSCC patients’ data using methylation data, RNA
sequencing (RNA-Seq), and miRNA sequencing (miRNA-Seq)
from The Cancer Genome Atlas (TCGA). The results of the
autoencoder DL model demonstrated that patients were classified
into two subgroups with a significant difference in progression-
free survival (PFS). The predictability of this model was validated
using three independent cohorts. The different biological origin
of the tumor tissue has distinct clinical behavior. In practical
clinical situations, it is difficult to distinguish between poorly
differentiated carcinoma and metastatic carcinomas. Jiao et al.
(2020) constructed a multiclass deep learning/neural network
(DNN) model to integrate the whole genome sequence and
pathomics data to shed light on a comprehensive view of the
histological origin of the tumor cells. They evaluated three
features, namely mutation distribution, mutation type, and driver
gene/pathway. The classifier achieved predictive accuracies of
91% in 24 types of tumors.

Artificial neural network models have been used to investigate
the relationship between the symptoms of oral cancer and
its prognosis (Tseng et al., 2015). Phillips et al. (2019) used
DL models to detect pigmented dermoscopic images, thus
improving the accuracy of early melanoma diagnosis. Clinically,
it is difficult to differentiate ameloblastomas from keratocystic
odontogenic tumors depending only on X-ray. CNN can assist
in the diagnosis of ameloblastoma and keratocystic odontogenic
tumors based on transfer learning. The sensitivity, specificity, and
accuracy were 81.8, 83.3, and 83.0%, respectively. Interestingly,
the model performed consistently well, just like skilled experts
(Poedjiastoeti and Suebnukarn, 2018). In addition to X-ray
research, Fu et al. (2020) used clinical photographic images
to predict the early occurrence of oral tumor through a
cascaded CNN model. After training by 1,469 samples, the
sensitivity and specificity reached 94.9 and 88.7%, separately.
This study also provided a non-invasive and highly efficient
perspective on oral tumor detection. It was also possible to
start providing early treatment immediately. In IDH1 wild-type
glioblastomas, methylation modification had a great influence on
chemotherapy response and prognosis. Le et al. (2020) used a
radiomics-based eXtreme Gradient Boosting (XGBoost) model
to predict the IDH1 wild-type patients with O6-methylguanine-
DNA methyltransferase (MGMT) promoter methylation status.
Nine robust radiomics features were selected based on the
F score to improve the diagnosis of MGMT methylation
status in IDH1 wild-type glioblastomas and predict patient
prognosis. Sulfation of the protein S site is an important
posttranscriptional modification, which plays a vital role in
signal transduction, transcriptional regulation, and cell apoptosis.
However, traditional experiments for its biological functions were
not timely due to its rapid degradation. Do et al. (2020) used a
DL network to predict protein phosphorylation S site based on
the proteomics data. The DL network was also used to predict
the function of fertility-related proteins in infertility patients and
paved the way for a better understanding of the function of
fertility proteins (Le, 2019). Therefore, the integration of DL,
image analysis, and big data enables the evaluation of tumor

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 12 | Article 624820105

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-624820 February 4, 2021 Time: 21:32 # 3

Wang and Li DL in Head and Neck Tumor Multiomics

FIGURE 1 | Schematic representation of a synergetic integration of multiomics data. (a) Biopsy specimens from head and neck tumor tissue. (b) Pathological data.
(c) Tumor protein data. (d) Chromosomal data. (e) Gene microarray data. (f) Tissue microarray data. (g) Gene mutation data. (h) mRNA expression data.
(i) Methylation data.
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biological behavior and, hence, facilitates diagnosis, personalized
treatment, and survival prediction.

HEAD AND NECK TUMOR MULTIOMICS
ANALYSIS

Multiomics Analysis in Early Detection of
Tumors
The global incidence of head and neck cancer is 1.3 million
annually. The risk factors for head and neck tumors are
chewing tobacco, local irritation, smoking, alcohol abuse, human
papillomavirus infection, etc. It is necessary to monitor the
occurrence of oral cancer in high-risk groups. Early diagnosis
could reduce the mortality rate to 70% at present (Erickson
et al., 2018). Also, DL could enable regular follow-up of high-
risk groups. Moreover, DL methods can be applied not only to
low-level tasks (e.g., recognition, detection, and segmentation)
but also to more advanced tasks (e.g., selection of the optimal
treatment and prediction of prognosis).

As we know, routine tissue biopsies are invasive. Although
it is safe, some risks may be brought in rare cases and non-
invasive biopsy comes into being. In non-invasive modalities,
a large number of images appeared combined with training
of DL networks based on oral clinical examinations and
histological findings, which would assist in the evaluation of
precancerous and cancerous lesions. The human eyes and
cameras capture three color channels—red, green, and blue.
Hyperspectral imaging involves multiple wavelengths, enabling
the identification of cancerous and normal tissue by optical
biopsy. Halicek et al. (2017) trained a CNN to identify
hyperspectral images of squamous cell carcinoma (SCC). The
reported accuracy, sensitivity, and specificity of the training set
were 81, 81, and 80%, respectively. The hypercube contained 91
spectral bands, ranging from 450 to 900 nm with a 5-nm spectral
sampling interval. Similarly, confocal laser endomicroscopy
(CLE) allows real-time visualization of epithelium in vivo and
enables early diagnosis of oral cancer and prediction of the
prognosis. In 2007, Soo et al. reported the application of CLE
for the diagnosis of oral SCC (OSCC) (Thong et al., 2007).
Subsequently, Nathan et al. applied CLE to detect head and
neck precancerous lesions; the sensitivity and specificity for
the diagnosis of oral epithelial dysplasia were 85.7 and 80.0%,
respectively (Moore et al., 2016). Aubreville et al. (2017) proposed
an automatic framework for the application of CLE to detect
cancerous lesions by CNN. In the proteomics research of head
and neck tumors, Ni et al. (2015) used artificial neural networks to
screen out proteins which were related to lymph node metastasis
using the proteins extracted from the saliva of OSCC patients.

Radiomics is also used as one of the non-invasive clinical
examinations. Ren et al. (2018) used the least absolute
shrinkage and selection operator (LASSO) logistic regression
to extract features from magnetic resonance images (MRI)
of head and neck SCC to predict the histological grade
before surgery. Subsequently, the same method was applied
in floor-of-the-mouth and tongue SCC by Ren et al. (2020).

Computed tomography (CT) can also be used to predict the
histological classification before surgery by kernel principal
component analysis (KPCA) and the random forest classifier
(Wu et al., 2019). Mukherjee et al. (2020) performed principal
component analysis and regularized regression to predict tumor
grade, extracapsular spread, perineural invasion, lymphovascular
invasion, and human papillomavirus infection status. The
accuracy, sensitivity, and specificity of the model were 0.72, 0.83,
and 0.48, respectively. DL is also applied in radiomics. Ye J. et al.
(2020) used a CNN model for histological classification of head
and neck tumors; the accuracy, sensitivity, and specificity were
0.79, 0.71, and 0.85, respectively. The utility of AI for the analysis
of head and neck pathologic sections and radiologic images is
summarized in Tables 1, 2.

Multiomics Analysis in Tumor Detection,
Segmentation, and Classification
Deep learning is suitable for digital pathology (DP)-related image
analysis tasks, such as detection (e.g., lymphocyte), segmentation
(e.g., nuclei and epithelium), and classification (e.g., the tumor
subclass). Figures 2, 3 demonstrate an example of epithelial
segmentations on WSI images and an example of segmentation
of nuclei in a cell layer on WSI images. Different from ML,
which classifies handcrafted features (Das et al., 2018), DL takes
an agnostic approach by combining feature extraction and the
interest region analysis.

In head and neck tumor diagnosis, the morphology of
heterogeneous cell types needs to be evaluated. This can be
formulated as a pixel-wise detection task. The detection tasks
frequently align with the classification tasks, and the algorithms
learn the weighted parameters of the feature map. The algorithms
map clusters of similar features to the output labels. The workflow
for DL approaches in digital pathology is shown in Figure 4. In
traditional ML, the workflow is comprised of two steps: detection
and classification. For instance, Lewis et al. (2014) developed
an approach to quantify automatically the morphologic features
used for the classification of aggressive or indolent p16-positive
oropharyngeal SCC. A cluster cell graph was generated to
evaluate the spatial distribution of mitotic cells, and a random
forest (RF) decision tree and SVM were used to classify features.
The accuracy of the model was 87.5% (140 patients). However,
it may not be applicable to other situations because of the
small training dataset and the overfitting problem. Moreover, the
accuracy of DL is unsatisfactory. Several proposed DL models for
detecting head and neck tumors overcome the abovementioned
shortcomings. Aubreville et al. (2017) trained a DL model to
detect an image patch from doubtful OSCC cases. Overall image
recognition had an area under the curve (AUC) of 0.96 and a
mean accuracy of 88.3% (sensitivity 86.6% and specificity 90%).

Halicek et al. trained a deep CNN to identify surgical margins
accurately in hyperspectral images. Additionally, an end-to-
end DL network can simultaneously detect and enumerate
mitotic cells (Jimenez and Racoceanu, 2019). In the above
reports, DL was only used for dimension reduction or feature
extraction. It also may be a classifier to perform classification
(Boldrini et al., 2019). Usually, the end-to-end DL approach
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TABLE 1 | Summary of deep learning models for H&N tumor Pathomics analysis.

Topic H&N tumor subtype Task Model References

H&N tumor
detection and
classification

H&N squamous cell
carcinoma (HNSCC)&
thyroid carcinoma

Malignant vs. non-malignant classification CNN Witjes et al., 2018

OSCC According to the keratin pearl to classify the high-grade or low-grade
OSCC

CNN Das et al., 2018

OSCC Malignant vs. non-malignant classification in CLE image CNN Aubreville et al., 2017

Oral tumor Malignant vs. benign vs. precancerous classification CNN Jeyaraj and Samuel Nadar, 2019

H&N tumor
segmentation

OSCC Tumor margin detection and segmentation CNN Halicek et al., 2018

OSCC Segmentation the boundary of tumor and normal tissue CNN Halicek et al., 2017

TSCC Tumor margin detection and segmentation CNN Yu et al., 2019

OSCC Quantity nuclear morphology to stratify patients of high or low risk CNN Lu et al., 2017

OSCC Based on clinic-hiotopathology features to predict patient’s outcome DL Kim et al., 2019

OSCC Quantity tumor infiltrating lymphocytes to predict the patients’ outcome
and treatment response

CNN Shaban et al., 2019

H&N, head and neck; OSCC, oral squamous cell carcinoma; CNN, convolution neural network; CLE, confocal laser endomicroscopy; DL, deep learning.

TABLE 2 | Summary of machine learning and deep learning models for H&N tumor Radiomics analysis.

Topic H&N tumor subtype Task Model References

H&N tumor
prognosis

H&N squamous cell
carcinoma (HNSCC)

Loco-regional control
(LRC)

PCA Bogowicz et al., 2019b

head and neck cancer
(HNC)

Z-Rad radiomics software Bogowicz et al., 2019a

Locally advanced head
and neck cancer

Free LifeX software package Cozzi et al., 2019

HNSCC Overall survival (OS) RadiomiX Discovery Toolbox. Keek et al., 2020

In-house built Accurate tool Martens et al., 2020

LASSO Yuan et al., 2019

PCA Mes et al., 2020

H&N tumor Random survival forests (RSF) and random forest (RF) Leger et al., 2019

Velocity AI v3.0.1 software and Imaging Biomarker
Explorer and k-medians

Tosado et al., 2020

Matlab R2018b Lv et al., 2020

Z-Rad software and Hierarchical Clustering Bogowicz et al., 2020

IBEX, an open-source radiomics tool Ger et al., 2019

Aryngeal squamous cell
carcinoma

LASSO Chen L. et al., 2020

Biologic markers
prediction

Oropharyngeal
squamous cell
carcinoma

HPV status prediction In-house developed software, using Matlab 2014a Leijenaar et al., 2018

Oropharyngeal cancers HPV status prediction PCA Bagher-Ebadian et al., 2020

HNSCC HPV status and T-cell
infiltration prediction

Unsupervised consensus clustering and PCA Katsoulakis et al., 2020

H&N tumor
recurrence and
metastasis

HPV-related
Oropharyngeal
Carcinoma

Distant metastasis Unpublished MATLAB code Kwan et al., 2018

H&N tumor Metastatic lymph nodes Naive Bayes, and k-nearest neighbor classifiers Tran et al., 2019

Locally advanced head
and neck cancer

Recurrence Random forest Beaumont et al., 2019

H&N tumor Lymph node metastasis 3-dimensional CNN Zhou et al., 2018; Chen et al.,
2019

Papillary thyroid
carcinoma

SVM Liu et al., 2019

H&N tumor Matlab Zhai et al., 2020

H&N, head and neck; PCA, principal component analysis; LASSO, the least absolute shrinkage and selection operator; SVM, support vector machine.
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FIGURE 2 | Example of segmentation of nuclei in a cell layer on WSI images. (A,B) Illustrations of nucleus segmentation based on the DL model. (C) The original
image of immunohistochemical staining. (D) Nucleus segmentation for immunohistochemistry-positive cells. (E) Nucleus segmentation for
immunohistochemistry-negative cells.

FIGURE 3 | Example of epithelial segmentations on WSI images. (A) The original image. (B) Black curves indicate the segmented boundary of the epithelium.
(C) Input patches for training the DL network. (D) Schematic of a deep learning framework.

Frontiers in Genetics | www.frontiersin.org 6 February 2021 | Volume 12 | Article 624820109

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-624820 February 4, 2021 Time: 21:32 # 7

Wang and Li DL in Head and Neck Tumor Multiomics

FIGURE 4 | Workflow and general framework for DL approaches in digital pathology. (A) The original WSI image. (B) Different resolution of WSI images before input
the DL network. (C) The Schematic of a deep learning framework. (D) The output of different resolution of WSI images. (E) The integration of multi-omics data.

performed better than none end-to-end learning. However, as for
pathomics, one end-to-end DL model cannot perform multiple
tasks simultaneously. Lei et al. (2019) trained a convolutional
neural network by DL to extract mitosis features automatically
and proposed a network to determine the location of all mitotic
cells. This approach showed an unexpectedly high accuracy in
the International Conference on Pattern Recognition (ICPR2012)
mitosis detection test dataset. The remaining challenges include
accurate identification and enumeration of mitotic cells in two-
dimensional (2D) digital histology images. The imaging of
three-dimensional (3D) tissues in 2D results in loss of spatial
information. Radiomics enables enhanced 3D assessment of
tumor growth by quantifying changes in tumor cellularity and
angiogenesis. Radiomics analysis also shows potential for the
accurate quantification of heterogeneity and outcome prediction.

Microscopic cell structure recognition is emphasized in
pathomics. A common strategy for detecting cells or nuclei is
to train a CNN classifier as a pixel classifier, in which a patch
centered on the object of interest is used to train the network
under supervised conditions. Trained CNN models typically
comprise two classifiers (yes or no) and can be applied to WSI in
a sliding window to detect all histological components of interest
and output a probability map, where each pixel is transferred to
a probable value. Therefore, in principle, the target objects can be
located by finding a local maximum in the generated probability
map. Fully convolutional networks can share calculations on
sliding windows. After completing nuclear or mitotic detection
tasks, it begins counting or extracting quantitative indicators in
WSI. The algorithm is built on mapping an input image patch to
a density map, which is used to estimate the number of cells in
the original image.

Deep learning also plays an important role in the analysis
of tumor microenvironment characteristics (TMC). The crucial
step in TMC analysis is segmenting different types of tissue
and cell structures in pathology images. Tumor cells can be
classified into parenchymal and stromal cells. Niranjan and
Sarathy (2018) reported the ratio of tumor to stroma (TSR) as
a reliable histologic predictor of overall survival and outcome

in OSCC. In a cohort of 60 OSCC patients, the 3-year overall
survival (OS) and disease-free survival (DFS) rates of patients
with >50% intratumor stroma had been shown to be better than
the patients with <50% intratumor stroma.

The segmentation task is more difficult than mitosis detection
because parenchyma segmentation can be labeled by experts
at lower magnifications. However, stroma (e.g., lymphocytes,
macrophages, fibroblasts, etc.) must be analyzed at high
magnification. Indeed, × 40 magnification performed better
than × 20 magnification for nucleus segmentation. By contrast,
epithelium segmentation is typically more precise by experts
at × 20 than at 40 × magnification, as indicated by a higher
accuracy and F score (Janowczyk and Madabhushi, 2016). To
remedy this drawback, the fully convolutional network (FCN)
and UNet were designed to accept discretional size as an input
and product proportionate-sized outputs by removing all fully
connected layers and introducing unsampled layers to offset the
shortcomings of downsampling in CNN (Zhou et al., 2019).
Considering that head and neck tumors are heterogeneous
and complex, segmentation may involve varied anonymous
anaplastic cells and then can be achieved by data augmentation.
Halicek et al. (2018) trained a CNN to segment the tumor and
normal tissue of OSCC with 81% accuracy, 84% sensitivity, and
77% specificity. The sensitivity and specificity of FCN for cervical
tumor segmentation on 3D FDG-PET images were 88 and 98%,
which were markedly superior to CNN. Unfortunately, FCN has
not been used for segmentation of pathologic images of head
and neck tumors. Moreover, tumor segmentation accuracy is
associated with loss function. Now, the well-known loss function
is cross-entropy loss. A new loss function, class-wise DSC loss,
for training the segmentation network of colonoscopy pathology
images was presented by Feng et al. (2020).

Multiomics Analysis in Tumor Prognosis
and Metastasis
The high heterogeneity and complexity of head and neck tumor
pathology images hamper the prediction of outcomes only by
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TNM stage. In recent years, more and more scholars have
been interested in the potential of DL networks for predicting
postoperative outcomes. The applications of radiomics to predict
overall survival, biomarker status, recurrence, distant or local
metastasis, and lymph node metastasis are summarized in
Table 2. Tixier et al. used the Genomica software to analyze PET
and transcriptomics data of 45 patients with locally advanced
head and neck cancer. They applied a fuzzy locally adaptive
Bayesian (FLAB) algorithm to assess the associations between
radiomics features (a total of 28 image biomarker standardization
initiative-compliant radiomic features) (Zwanenburg et al., 2020)
and alterations of biological pathways (e.g., extracellular matrix
organization, cell cycle, signal transduction, cell cycle, etc.).
The results demonstrated that FDG-PET radiomic features
were associated with cell cycle, DNA repair, extracellular
matrix organization, immune system, metabolism, and signal
transduction pathways, providing a thorough understanding of
genetic mutations and minimizing the costs (Tixier et al., 2020).
Zhu et al. (2019) integrated the genome-wide multiomics data of
126 patients with head and neck SCC with CT imaging data and
found the significant association between genomic characteristics
and CT features. The use of DL together with sophisticated
biomarkers can significantly improve prognostic and predictive
accuracy. Subsequently, the DL-extracted imaging features of
morphology structure on digitized H&E-stained tissue sections
have been used for risk stratification of head and neck tumor
patients. Patients with p16-positive human papillomavirus-
related oropharyngeal SCC have a more favorable prognosis than
those negative for P16 (Ali et al., 2013). Lewis et al. (2014) used a
typical ML approach (the random forest decision tree) to extract
nuclear morphologic features and predict progression. Before
the advent of DL, improvement of prognosis was evaluated by
multifactor analysis, conventional logistic regression, and Cox
analysis in traditional ML models. However, the absence of a
decision rule and linear combinations of covariates hampered
the prediction of outcomes. DL-based survival prediction has
improved predictive accuracy and, together with nonlinear
algorithms, will facilitate precision medicine. Therefore, it is
suitable for predicting the survival of inpatients (Tan et al., 2016).
Tseng et al. constructed a DNN to predict the survival of patients
with oral tumors using clinical variables and histopathological
features. It was suggested that the DNN model established by
data mining was superior to logistic regression in terms of
both training accuracy and cross-validation accuracy. Brennan
et al. (2017) used an unsupervised cluster analysis method to
interpret the genomics and epigenetics data of morphologically
atypical head and neck SCC and found CpG island methyl
groups in atypical SCC. Therefore, novel prognostic factors, such
as genetic mutations and molecular markers, combined with
clinicopathologic and radiologic features and a multi-nonlinear
DL network would yield optimal results.

Proteomics and transcriptome have also been used to study
lymph node and distant metastasis and recurrence of SCC
patients. Onken et al. (2014) used an unsupervised clustering
algorithm to extract transcriptome signature predicting distant
metastasis in oral tumor over four SCC datasets. Xu et al.
(2014) applied a ML approach called maximum relevance

minimum redundancy algorithm to a set of transcriptome data
generated from papillary carcinoma and anaplastic carcinoma
for differential diagnoses. The lung is the most common site
of distant metastasis of OSCC. Primary SCC can also occur in
the lung. Through supervised learning and analysis of proteomic
data, Bohnenberger et al. (2018) found the vital difference of
protein characteristics between lung metastatic head and neck
SCC and primary lung SCC. Their data provided reference
information for the origin of lung SCC. Carnielli et al. (2018)
used histological morphology-oriented proteomics analysis of
the protein expression in tumor islands and stroma to forecast
the possibility of tumor recurrence and lymph node metastasis.
Six ML approaches were used by Kaddi and Wang (2017) to
analyze proteomics and transcriptome data, including KNN,
SVM, naive Bayes, DT, AdaBoost, and RF. It was shown that the
prognostic model based on both transcriptome and proteomics
data had better predictive performance than transcriptomics or
proteomics alone.

Diagnostic Reports: Automatic
Extraction of Tumor Information
Zhang et al. (2017) developed MDNet, which generated
pathological reports by directly mapping pathology images
with simultaneous retrieval of pathology images according to
symptom descriptions. MDNet added a language network to
the original image model. Integration of a language model with
the multiscale features proposed by the image model allowed
the identification of critical image features and enabled the
direct mapping from words to pixels. Changes in the size or
density of nuclei and epithelial thickness may indicate neoplastic
invasion. However, these discriminant imaging features were
not directly supported to generate a diagnostic report. MDNet
allowed direct multimodal mapping from medical images and
diagnostic reports. Mimicking diagnosis by pathologists, long
short-term memory (LSTM) networks were used to generate
semantic information as a language model. The LSTM was a
representative gated RNN that controlled the forget gate and
input gate to emphasize or forget some weights. It could reduce
the problem of multiple layers and vanished gradient multilayers
from input to output.

Radiogenomics Analysis for
Radiotherapy Patients
Radiogenomics is a computational nomenclature which
identifies correlations between radiomics imaging features
and genomics or proteomics data. These imaging feature
correlations can be used to predict a tumor’s molecular
profile in clinical radiomics data (West and Rosenstein, 2010).
Radiogenomics has two goals: i) discover the patients who are
more likely to develop radiotherapy complications based on
molecular data and (ii) analyze the targeted molecular pathway
responsible for radiotoxicity in radiation-induced normal
tissue (Kerns et al., 2014). Postoperative radiotherapy is an
effective treatment for head and neck tumors. The existence of
radiosensitivity and radioresistance may be related to genetic
factors partially. The remaining differences between individuals
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were caused by differences in treatment (radiation dose),
physical habits, and random factors (Rattay and Talbot, 2014).
Werbrouck et al. (2009) reported that the DNA repair genes
XRCC3 and Ku70 were connected to the intensity of dysphagia
after radiotherapy in H&N tumor in 2009. For the study of
postradiotherapy mucositis, Yang et al. (2020) sequenced and
located the gene expression in 1,497 patients with postoperative
radiotherapy. They found that 64 target genes were enriched
in the process of telomerase regulation, which confirmed
the importance of telomere function in the development of
radiation-induced adverse reactions. The combination of PET-
based spatial radiation features and sequencing data provided a
new perspective for further revealing the spatial heterogeneity of
tumors (Clasen et al., 2020). Furthermore, the predictive analysis
of gene expression and cellular and molecular expression can
be provided from a non-invasive point of view, based on the
radiological characteristics and gene differential expression data
of head and neck tumors obtained from the TCGA and TCIA
databases (Katsoulakis et al., 2020).

DIFFICULTIES AND EXPECTATION

AI is highly dependent on a robust and large database, but
the database of pathological slides of head and neck tumors
has not been established yet. Apart from the hardware needed
to set up the database, setting up an autoprocessed image
database is also needed. When there were images captured from
clinical cases, the database could have the images with their
properties at the same time, which would help in further analysis.
As time goes on, the database could grow by itself (Ibrahim
et al., 2020). The low-quality images are also a problem for DL
analysis. According to a jointed framework proposed by Chen
J. et al. (2020), a novel transfer learning strategy called channel
fusion transfer learning and a deep super-resolution framework
called SRFBN+ were dedicated to generating higher-resolution
slice images with lower-resolution ones as input. The most
successful application of DL in medical image analysis has been in
supervised learning. On the other hand, the rarity of pathologists
added the extra difficulties in data cleaning and labeling, while
the high heterogeneity of head and neck tumors means that many
rare tumors need to be accurately labeled.

A crucial step is to avoid subjective and sample biases in
the training sets as the quality of the output depends on the
quality of the input data (Oakden-Rayner, 2020). So, establishing
a unified standard to normalize the image input in the network
by multi-institution datasets can not only reduce the bias from
the samples and the bias caused by inconsistent diagnostic from
the physicians but also fully fit and train the model to reduce
overfitting and reduce to a maximum the highly opaque nature
of medical image (Martorell-Marugán et al., 2019). However,
current DL algorithms are mainly trained on a small dataset from
a single center (Jiang et al., 2020). The limited availability of
well-characterized and adequately stored clinical tumor and non-
tumor samples is a major challenge in proteomics and genomics
researches (Matta et al., 2010).

For the algorithms themselves, the tendency has been to
propose new algorithms rather than optimize those already

used, leading to the conclusion that there is no improvement
of some subdomain algorithms. In addition, due to the
limitations of, for instance, data and computational power, the
improvement of algorithms must take into account various trade-
offs. Additionally, some studies used a non-open-source code or
a non-open-source model, such as an in-house developed model,
hampering model verification in other types of tumors (Parmar
et al., 2015; Leijenaar et al., 2018). A flowchart demonstrating
the relationship for the subsection of difficulties and expectation
of DL in tumor diagnosis and multiomics analysis is shown in
Supplementary Figure 2.

Difficulties Related to Unified Evaluation
Standards
The lack of unified innovation evaluation standards in AI has led
to some exaggeration of the improvements achieved. This can be
overcome by a variety of methods, e.g., an open-source or source
model. Unifying evaluation standards is difficult but is possible
for some mature domains. The relevant data management
domains are as follows: (i) administrative standards, (ii) patient
privacy protection standards, and (iii) intellectual property
protection standards. The establishment of data management
standards would allow access to diverse anonymized imaging
datasets. Technical standardization cannot resolve all of the issues
described in this review. The use of different image normalization
or style conversion methods (e.g., rotating, cropping, zooming,
and image histogram-based modifications) for preprocessing
could overcome the technical obstacles.

Difficulties in Image Analysis
The architectures of CNNs have been especially powerful
for computer vision, particularly in image interpretation and
procession. WSI combined with DL algorithms for tumor
detection, classification, and prognosis prediction has played
an ever-increasing part in supporting pathologists in clinical
assessments. The main components of CNN are convolutional
layers and pooling layers. Although CNN has advantages in
the processing of object detection, it has notable drawbacks:
(1) both the training and the detection process is considerably
time-consuming and (2) the normalization method would lead
to lose some discriminative details. FCN is suitable for image
segmentation at the pixel level. It consists of convolution and
deconvolution layers, which can accept input images of any
size and retain the spatial information of the original input
lines. The major disadvantages of FCN may be that it is
noisy and contains redundant information, requiring a huge
number of reliable samples. To overcome the issues mentioned
above, more novel architectures (e.g., UNet++, SegNet, and
ENet) based on FCN or CNN have been proposed for image
segmentation. Pan et al. (2020) proposed a DL model based on
the architectures of FCN to automatically recognize lymph node
metastasis of esophageal SCC. Compared with previous studies
focused on the isolated tasks in the analysis of pathology and
radiology images, the integration of independent DL models
into a general model would be beneficial (Wang et al., 2019).
It was also anticipated that biological pathways and gene
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regulation networks would be incorporated into prediction
models, improving their performance and interpretability. For
multimodal learning, collecting data from the required modalities
simultaneously could be problematic. A slight disturbance to the
inputs of multimodal can influence the stability of CNN. Lin et al.
(2020) trained a multiscale activity transition network to provide
an activity state pyramid consisting of multiscale recurrent neural
networks to capture the accurate feature of input. Transfer
learning is frequently used and is an effective pretraining
strategy. The fusion of different modal representations is the
key point of a multimodal task. Specific fusion operations
are based on an attention mechanism or bilinear pooling. In
practice, fusion operations are often diverse and complicated
(Mormont et al., 2020).

Integration of Multiomics Data and
Precision Medicine
Now, DL algorithms still have several difficulties of integrating
multiomics data or various sources of information such as
pathology images and electronic medical records. The use of DL
to accomplish simple tasks can yield useful results. Furthermore,
complex datasets, abundant neural network architecture, and
adequate DL methods are anticipated to provide useful
information for precision medicine. Pathomics and radiomics are
crucial components of multiomics, which also include genomics,
transcriptomics, proteomics, and metabolomics information.
Although there are still some limitations that restricted the
direct clinical usage of multiomics analysis, there is still an
increasing effort in solving the drawbacks to provide promising

applications. The increasing number of omics datasets is fuelling
the quantitative analysis of biological specimens at the gene,
cell, and tissue levels. It will generate novel hypotheses on the
molecular mechanisms of tumor development and progression
for guiding precise diagnosis and treatment.
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