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INTRODUCTION
Actin is an essential cytoskeletal protein that provides structural support for multiple cellular processes including cellular motility, division and contractility (Pollard and Goldman, 2018). Actin filaments exist in association with binding partners, mainly actin-binding proteins (ABPs) that together control the many functions of the actin cytoskeleton (Lehman and Maeda, 2020). ABPs can bind actin monomers, polymers or both and more than 160 ABPs have been identified to date (Winder and Ayscough, 2005). However, classification of ABPs is difficult because actin binding is a common process, but can result in a plethora of different functional outcomes. Therefore, attempts to classify ABPs has left many “orphans” that do not fit into families (dos Remedios et al., 2003). Generally, ABPs can be divided into two broad categories, depending on their effect on actin filament dynamics (Stehn et al., 2006). The first category of ABPs regulates the G-actin/F-actin turnover thus controlling cytoskeletal responses to external stimuli. This category includes Arp2/3, ADF/cofilin, profilin, gelsolin, etc (Stehn et al., 2006). The second general category of ABPs helps actin filamnets to form higher order structures, such as actin filaments meshworks or bundles. This category includes tropomyosin, caldesmon, filamin, dystrophin, among others (Stehn et al., 2006).
ABPs also link actin filaments to the plasma membrane, thus facilitating outside-in and inside-out signaling (Figure 1). For example, dystrophin anchors the actin cytoskeleton to membrane glycoproteins such as β-dystroglycans that binds to the extracellular matrix protein laminin. Dystrophin mutations resulting in truncated dystrophin proteins unable to bind to the membrane cause progressive muscle degeneration and atrophy (Xu L. et al., 2021). The unconventional myosins Myo1e and Myo1f are motor ABPs that can connect the actin cytoskeleton with the plasma membrane via transmembrane Fcγ receptors (FcR) in macrophages to control membrane tension during FcR-mediated phagocytosis (Barger et al., 2019). Absence of both myosins significantly impairs actin-dependent phagocytic cup formation and clearance of pathogens. Myo1e is also important for actin polymerization and integrin clustering in neutrophils during extravasation (Vadillo et al., 2019). These are only a few examples highlighting the important cell biological functions of ABPs in different pathophysiological contexts. With newly identified biochemical and biological properties of ABPs, they have been considered as important targets in treating diseases (Yin et al., 2018b; Vadillo et al., 2019; Yin et al., 2019). This special issue contains 31 original and review papers, that discuss the recent advances in our knowledge about ABPs and their various biological processes. These studies also highlight new avenues for future ABPs research.
[image: Figure 1]FIGURE 1 | The schematic of regulation of actin-binding proteins by post-translational modifications in signaling. Extracellular signal (represent by a cartoon boy standing in a question mark) meets two roads made by phospholipid bilayer. If actin-binding proteins are active (usually regulated by post-translational modifications, M), signal can go through and get to cytoskeleton. Therefore, the door that representing biological function of extracellular signal is open. On the contrary, if the actin-binding proteins are not active, cartoon boy stops in the other road.
Profilin and the actin-related protein 2/3 (Arp2/3) complex are key regulators of actin polymerization and branched actin networks, respectively. Pandey and Chaudhary review the evolution of the profilin gene family in plants, discussing that profilins play important roles in both cytoskeleton maintenance and plant development (Pandey and Chaudhary). Murk et al. discuss the different expression patterns and cellular functions of profilin isoforms, and their relevance in neurological diseases (Murk et al.). Ren et al. show that profilin-1 and protein tyrosine phosphatase receptor S are potential suppressors in the recurrence and metastasis of malignant peripheral nerve sheath tumors (Ren et al.). Dimchev et al. show the direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation (Dimchev et al.). Chanez-Paredes et al. show that loss of the Arp2/3 inhibitory protein arpin triggers dysfunction of the intestinal epithelial barrier during inflammation and that low arpin levels may be a novel hallmark of acute colitis (Chánez-Paredes et al.). Opposing profilin and Arp2/3, actin depolymerizing factor (ADF)/cofilin can depolymerize actin filaments. Ben Zablah et al. show that ADF/cofilin regulates synaptic structure and functions in the brain, and may therefore be an important target in Alzheimer’s Disease (Zablah et al.). Xu et al. show that changes in cofilin-1 expression appear at the same time as gait imbalance suggesting that it may affect motor cortex function (Xu et al.). Xu et al. review the structural features, phosphorylation patterns and functions of cofilin in regulating cancer metastasis and apoptosis, highlighting that cofilin may be a therapeutic target for treating cancers (Xu et al.).
Three transgelin isoforms exist that are named for their potential to induce actin gelation (Yin et al., 2019). Vakaloglou et al. show that drosophila transgelin proteins Mp20 and CG5023 modulate muscle function, whereas another transgelin isoform in drosophila, Chd64, has distinct roles in epithelial, neuronal, and endodermal tissues based on their distinct tissue expression (Vakaloglou et al.). Liu et al. highlight the potential role of transgelin-1 and transgelin-2 as biomarkers and therapeutic targets for metastasis of colorectal cancer (Liu et al.). Analysis of transgelin-3 gene structure, expression regulation and potential biological functions in neurological disorders is described by Wu et al. Transgelins have a calponin homology (CH) domain, one of the most common modules in various ABPs (Yin et al., 2018b). The structural features, interactome and related diseases of the CH domain are reviewed by Yin et al. Riviere et al. summarize the functions, genetic analyses and expression regulation of leucine-rich repeat and CH domain-containing (LRCH) proteins in leukocyte biology (Rivière et al.).
Gupta et al. review the intracellular distribution, structure and functions of actin isoforms and ABPs in trypanosomatids (Gupta et al.). Functions of filamin A and the adhesion and motility mechanisms are summarized by (Lamsoul et al.). The relationship of plastin-3 with osteogenesis imperfecta, functions of plastin-3 and its regulation of calcium signaling have been summarized by (Schwebach et al.). Gene transcription, isoform structure, expression and phosphorylation regulation of caldesmon have been reviewed by Yao et al. Rust et al. summarize the molecular, developmental and physiological functions of cyclase-associated protein, and discuss its cellular functions and role in human diseases (Rust et al.). Ji et al., 2020 review the role of cortactin in epithelial-mesenchymal transition and cancer development (Ji et al.). Park et al. show that α-actinin-4 is involved in androgen-independent prostate cancer transition (Park et al.). Mun et al. demonstrate that the mitochondrial ABP EF-hand domain-containing protein 1 contributes to mitochondrial morphology and energy synthesis (Mun et al.). Gao et al. provide evidence that CD47 contributes to lipid nephrotoxicity and that CD47-targeted therapy protects cells from epithelial-mesenchymal transition and inflammation (Gao et al.). Hou et al. show that coactosin promotes the assembly of protrusive actin filament arrays at the leading edge for growth cone motility (Hou et al.). Flightless I is a member of the gelsolin family of ABPs that is a potential target in proliferation regulation (Strudwick and Cowin). Ren et al. review the relationships between programmed cell death and the actin machinery, and discuss new therapeutic strategies for treating aging or cancers (Ren et al.). Lechuga et al. demonstrate that β-actin is an essential regulator of intestinal epithelial barrier integrity during mucosal injury and inflammation (Lechuga et al.). Dai et al. show that the compound echinacoside inhibits the phosphorylation of the double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase, and promotes F-actin accumulation leading to reduced communication of endoplasmic reticulum and plasma membrane (Dai et al.).
Regulation of ABPs by post-translational modifications such as oxidation and phosphorylation is pivotal to the rapid responsiveness of cells to their environment (Figure 1). Balta et al. focus on the redox regulation of the actin cytoskeleton and pathophysiological consequences (Balta et al.). Ezrin-mediated membrane-cytoskeleton interactions are also controlled by phosphorylation (Yin et al., 2018a; Yin and Schnoor, 2021). Song et al. review the structures, protein interactions, and oncogenic roles of ezrin; and discuss applications of new compounds targeting ezrin and ezrin posttranslational modifications in basic and clinical studies (Song et al.).
New technologies and new methods for the study of ABP biology have recently been developed. Jung et al. review the direct visualization of ABPs and actin using novel electron microscopy, super resolution microscopy and correlative light and electron microscopy techniques (Jung et al.). Shigene et al. suggest image translation via artificial intelligence, i.e. using the convolutional network to predict the localization of cytoskeletal proteins (Shigene et al.).
CONCLUSION AND FUTURE PERSPECTIVE
With the help of ABPs, actin filaments can be assembled, elongated, branched, disassembled and formed into dynamic networks as response to extracellular stimuli (Tang, 2018). As ABPs are essential for actin filament dynamics, they are closely related to various human diseases. Several drugs targeting ABPs (e.g. dystrophin, tropomyosin, troponin, etc) have been developed to treat disorders related to actin or myosin dysfunctions, many of which have been approved by the FDA. For example, the antisense oligonucleotide Vyondys 53 has been approved for the treatment of Duchenne muscular dystrophy in patients with a confirmed mutation amenable to exon 53 skipping (Frank et al., 2020). Levosimendan targets troponin C for treating low cardiac output syndrome after cardiac surgery is being tested in phase III trials (Pollesello et al., 2019). These are only two recent examples and numerous other clinical trials testing new ABP-targeting compounds have been launched. Despite their potential, there is certainly more room for testing ABPs as targets in different diseases because they are ubiquitously expressed and involved in many different crucial cellular functions. In this respect, this special issue provides timely research and scholar overviews that shed new light on ABP functions in health and disease. We hope our efforts will help researchers to acquire a better understanding of ABPs.
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The calponin homology (CH) domain is one of the most common modules in various actin-binding proteins and is characterized by an α-helical fold. The CH domain plays important regulatory roles in both cytoskeletal dynamics and signaling. The CH domain is required for stability and organization of the actin cytoskeleton, calcium mobilization and activation of downstream pathways. The CH domain has recently garnered increased attention due to its importance in the onset of different diseases, such as cancers and asthma. However, many roles of the CH domain in various protein functions and corresponding diseases are still unclear. Here, we review current knowledge about the structural features, interactome and related diseases of the CH domain.
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INTRODUCTION

Actin is an essential cytoskeletal protein that plays a critical role in multiple cellular processes (Pollard and Goldman, 2018). Actin monomers are assembled into different filamentous structures to form the actin cytoskeleton, which is a highly dynamic structure that regulates many cell processes such as adhesion, spreading and migration. Actin cytoskeletal dynamics require the coordinated action of many different actin-binding proteins (ABPs) (Garcia-Ponce et al., 2015). Since the discovery of actin-binding proteins, such as α-actinin and filamin, filamin in the 1970s (Lazarides and Burridge, 1975; Shizuta et al., 1976), more than 160 different members have been identified (Lappalainen, 2016; Kuhn and Mannherz, 2017). Calponin is an ABP that is expressed in smooth muscle and multiple types of non-muscle cells (Liu and Jin, 2016). The calponin homology (CH) domain, first identified at the N-terminus of calponin, is a common peptide module of approximately 100 residues and its precise number varies from protein to protein (Castresana and Saraste, 1995; Korenbaum and Rivero, 2002; Gimona and Winder, 2008). Sequence alignment of the CH domain shows that the residues of tryptophan (W) in helix I and aspartate (D) in helix VI are the most-conserved residues, while the consensus motif DGXXLXXL appears in helix III (Figure 1A; Gimona and Winder, 2008). The CH domain has been identified in a variety of proteins (CH-domain-containing proteins, CCPs), whose functions range from actin cross-linking to signal regulation (Gimona and Winder, 2008). Three types of CH domains have been described mainly based on their functions (Gimona et al., 2002; Korenbaum and Rivero, 2002). The type 1 CH domain (CH1) has the intrinsic ability to bind to F-actin. The type 2 CH (CH2) domain binds in tandem with CH1 and is required to facilitate high-affinity binding of F-actin. The type 3 CH domain (CH3) usually acts as a single CH domain in several ABPs and signaling proteins. Despite similarity of the secondary structure with the other types of CH domains, the CH3 domain shows functional diversity due to its ability to interact with many different proteins (Stradal et al., 1998).


[image: image]

FIGURE 1. Structural characteristics of the CH domain. (A) Sequence alignment, schematic of the secondary structure elements and the binding sites of CH domain for actin and signaling proteins. The conserved residues among the three CH domains are colored. Schematics of the secondary structure elements of CH domain and binding sites are also included. UniProt identifiers for CH1 (α-actinin), CH2 (MICAL, Molecule interacting with CasL) and CH3 (calponin-1) are P12814, Q8TDZ2, P51911. (B) The tertiary fold of the calponin CH domain (PDB: 1H67). The CH domain contains in total six α-helices. Helices III and VI are approximately parallel, while helix IV is lying oblique aside. The structural model was generated by UCSF Chimera. Abbreviations: αPIX: Cdc42/Rac1-specific guanine nucleotide exchanging factor; CaM: calmodulin; ERK: extracellular signal-regulated kinase; MT-2: metallothionein-2; TPM: tropomyosin; TSG12: a specific transgelin-2 agonist.


Recent studies have reported that CCPs, including molecule interacting with CasL (MICAL), leucine-rich repeats and calponin homology containing 4 (Lrch4), smoothelin-like 1 (SMTNL1) and transgelin-2, exhibit an unappreciated functional variety and play important roles in the onset of various diseases (Table 1; Yin et al., 2018; Min et al., 2019). However, the precise role of how the CH domain confers various protein functions to drive such diseases is still unclear. In this review, we summarize the structural features, binding partners and diseases related to the CH domain.


TABLE 1. CH-domain-containing proteins involved in the onset and progression of different diseases.
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THE STRUCTURE OF THE CH DOMAIN

Understanding common CH domain structural features can help to elucidate the functions of CCPs. The CH domain is mainly α-helical and the strictly conserved residues in α-helices constitute an invariant hydrophobic core (Korenbaum and Rivero, 2002). The tertiary structure of the CH domain is compact and maintained by a network of hydrophobic interactions (Bramham et al., 2002). The CH domain contains six α-helices in total, including a core of four α-helices (I, III, IV, and VI) and two short helical structures (II and V, Figure 1A). A 310-helical turn is also present in the loop between helices IV and V. Three helices of the CH domain of calponins (III, IV, and VI) form a triple-helix bundle, and helix I binds at a right angle across the surface provided by helices III and VI (Figure 1B). Unlike the majority of the CH domains, which are generally located at the N-terminus of proteins, the single CH2 domain of SMTNL1 is at its C-terminus. Nuclear magnetic resonance data show that the CH2 domain of SMTNL1 adopts the same α-helical fold as other CH domains and the most notable difference is the “KTKKK” cluster in the final helix (Ishida et al., 2008). The cluster “KTKKK” is unique in SMTNL1 and may be the potential site for ubiquitinylation (Ishida et al., 2008).



FUNCTIONAL REGULATION OF THE CH DOMAIN

Changes in the linker and flanking regions of the CH domain regulate the configuration of the domains, thus influencing functional regulation and affinity for their interaction partners. A hinge (GLQQTN) in the linker region between the CH1-CH2 domain of dystrophin acts like a swivel to allow these conformational transitions (Fealey et al., 2018). After the linkers of the dystrophin and utrophin tandem CH domains were swapped, the dystrophin tandem CH domain with an utrophin linker (DUL) showed a 2-fold higher binding affinity compared to that of the dystrophin tandem CH domain, while the utrophin tandem CH domain with a dystrophin linker (UDL) had a 50% lower binding affinity than the utrophin tandem CH domain (Bandi et al., 2015). A chimera containing the CH1-CH2 domain from utrophin and the linker region from filamin A had a significantly higher actin-binding affinity (KD = 0.7 μM) than wild-type utrophin (KD = 19 μM) (Harris et al., 2019). Moreover, the N-terminal flanking region of the CH domain influences the binding of F-actin. After truncation of a flanking region of utrophin (MAKYGEHEASPDNGQNEFSDIIKSRSD), the binding affinity for F-actin was significantly decreased by approximately 2-fold in HeLa and HEK293T cells (Harris et al., 2019). However, in vitro co-sedimentation assays (not in live cells) showed that the same truncated utrophin binds to F-actin 30 times weaker than the full-length protein (Singh et al., 2017).



BINDING PARTNERS OF THE CH DOMAIN

The functional diversity of different CH domains is a result of different binding partners including actin, tubulin and signaling proteins as described below (Galkin et al., 2006).


Binding With Actin and Tubulin

The exact mechanisms regulating binding between actin and the CH domain are still unclear. This process is associated with complex factors, including the CH domain number (single or a tandem pair), conformational differences, and flanking sequences (Galkin et al., 2010; Harris et al., 2019). The CH domain mainly acts in tandem pairs for F-actin binding (Sjoblom et al., 2008). Cryo-electron microscopy data revealed that the CH1 domain of human filamin A contributed to F-actin binding without direct CH2 and actin interactions (Iwamoto et al., 2018). Binding of the CH1-CH2 domain and actin is mechanically regulated via closed or open conformations (Shams et al., 2016). The CH1 domain contains the main actin-binding sites, however, one of the binding sites of CH1 is buried within the CH1-CH2 interface and only becomes accessible in the open conformation (Borrego-Diaz et al., 2006). Therefore, the CH2 domain serves as a locator domain to position the true actin-binding motifs, including the regulation of CH1 binding with actin, prevention of actin clashes and stabilization of the actin-binding domain (Galkin et al., 2006; Iwamoto et al., 2018). Co-sedimentation assays showed that the binding to F-actin by a single CH1 domain of human utrophin was about 5-fold weaker than that of the CH tandem pair, while both binding constants were 1000-fold stronger than that of the single CH2 domain (Singh et al., 2014).

Residue mutations can also affect binding between the CH domain and F-actin. For example, the CH2 domain mutation (L253P) of β-III-spectrin caused opening of the CH1-CH2 domains and promoted the N-terminal region of CH1 to become α-helical, thus enhancing approximately 1000-fold the actin-binding affinity (Avery et al., 2017a). In contrast, a single cysteine mutation (C10S before the CH1 domain or C188S in the middle of the CH2 domain) did not affect the structure or stability of the CH1-CH2 domain of dystrophin (Singh and Mallela, 2012). However, the K237E mutation in CH2 of α-actinin decreased the open conformation strength of the CH domain and increased actin-binding affinity (Shams et al., 2016).

Whether a single CH domain binds actin is still controversial. By constructing calponin without C-terminal tandem repeats, the resulting protein with the CH domain failed to bind to actin (Gimona and Mital, 1998), suggesting that a single CH domain is neither sufficient nor necessary for the binding of F-actin (Gimona and Mital, 1998). However, new findings showed opposite results within cells. Transgelin-1 interacted with actin via its CH3 domain, while the C-terminal tandem repeats were dispensable for actin-binding in smooth muscle cells (Matsui et al., 2018). While the wild-type transgelin-1 or transgelin-1 without the C-terminal tandem repeats both displayed fibrous patterns, the truncated protein with deletion of the CH3 domain showed diffuse patterns after separate transfection into A7r5 smooth muscle cells (Matsui et al., 2018).

The CH domain can also bind other cytoskeletal proteins such as tubulin. The end-binding protein 1 (EB1) is the first example of a single CH domain that can associate with tubulin (Hayashi and Ikura, 2003). A truncated version of EB1 containing only the CH domain co-sedimented with tubulin (Hayashi and Ikura, 2003). In contrast, the mutation K89E within α-helix IV, close to the hydrophobic cleft of the CH domain, abolished tubulin binding (Hayashi and Ikura, 2003). Deletion of the N-terminal 207 amino acid region of Hec1 (i.e., Hec1 without CH domain) resulted in failure of chromosomes alignment at the spindle equator during mitosis in PtK1 cells (Guimaraes et al., 2008). By contrast, deletion of only the N-terminal 80 amino acid tail of Hec1 (i.e., Hec1 with the CH domain) did not affect protein function. These findings together suggested that the CH domain of Hec1 is required for efficient binding of tubulin (Guimaraes et al., 2008). These new evidences clearly show the distinctive binding mechanisms of the CH domains with actin and tubulin, highlighting the need for further investigation into the functional mechanisms of these binding patterns.



Binding With Signaling Proteins

Besides its ability to bind to actin and tubulin, the CH domain can participate in signal transduction by binding to different protein partners such as extracellular regulated kinase (ERK) and calmodulin (Figure 1A). The CH domain of calponin was identified as the binding site for ERK by sequencing chymotryptic fragments of calponin (Leinweber et al., 1999). Calponin thus facilitates the formation of signaling complexes with ERK and other kinases, such as protein kinase C (Leinweber et al., 2000). SMTNL1 can also interact with signaling proteins, including calmodulin and tropomyosin. The sequence IQELYRSLVQK in the α-helix VI of the SMTNL1 CH2 domain is the binding site for calmodulin and the KD obtained by isothermal titration calorimetry was 2.7 × 10–6 M (Ishida et al., 2008). SMTNL1 can be phosphorylated by protein kinase A (PKA) at Ser301, which lies upstream of the CH domain, and this phosphorylation strongly enhances the ability of SMTNL1 to associate with tropomyosin (Ulke-Lemee et al., 2017). However, the exact binding region between SMTNL1 and tropomyosin that may affect the modulation of muscle contractile activity is still uncertain (Ulke-Lemee et al., 2010). Removal of the CH2 domain or expression of the CH2 domain of SMTNL1 alone did not enable binding with tropomyosin, suggesting that the CH2 domain is not sufficient to mediate binding but is involved in the regulation of the binding affinity for tropomyosin (Ulke-Lemee et al., 2010). However, the study further shows that a portion of the N-terminal intrinsically disordered region (1–341 residues) of SMTNL1 forms intramolecular contacts with its C-terminal CH domain, SMTNL1 thus interacts with tropomyosin at residues 421–436, which encompasses the entirety of α-helix V and the beginning of α-helix VI of the CH2 domain (MacDonald et al., 2012).

For other CCPs, the N-terminal 53–271 residues of affixin that cover the CH1 domain but not the CH2 domain are the binding sites of Cdc42/Rac1-specific guanine nucleotide exchanging factor (αPIX), as shown using co-immunoprecipitation assays (Mishima et al., 2004). Transgelin-2 with a CH3 domain is a receptor for extracellular ligands such as metallothionein-2 (Crunkhorn, 2018; Yin et al., 2019). The small compound TSG12, which was identified through molecular docking by targeting 46–63 residues of the CH3 domain of human transgelin-2 (QPGRENFQKWLKDGTVLC) induced dephosphorylation of myosin phosphatase-targeting subunit 1 (MYPT1) (Yin et al., 2018).



THE ROLE OF CH DOMAINS IN VARIOUS DISEASES

CCPs, including MICAL1/2, Lrch4 and SMTNL1, have been shown to play crucial roles in various diseases as discussed below. A summary of the involvement of CH domains in various diseases is shown in Table 1.


MICAL1/2

MICAL1/2 contains a CH2 domain and oxidizes methionine residues of actin to disassemble F-actin into G-actin (Grintsevich et al., 2016). The MICAL1/2 CH2 domain is connected to the monooxygenase domain, and Arg530 in the CH2 domain is the key residue mediating interaction with the monooxygenase domain (Kim et al., 2020). MICAL1/2 can also regulate actin dynamics and cell morphological changes via the CH2 domain through interacting with other signaling proteins (Hung et al., 2010).

Studies have shown that MICAL proteins are closely related to neural diseases and cancers. MICAL expression is substantially elevated in oligodendrocytes and in meningeal fibroblasts during spinal cord injury, suggesting an involvement of MICAL in neuronal regeneration (Pasterkamp et al., 2006). Targeting MICAL may provide a new therapeutic option for cancer treatment (Yoon and Terman, 2018). For example, deletion of MICAL1 substantially reduced cell proliferation in the breast cancer cell lines MCF-7 and T47D (Deng et al., 2018). Over-expression of MICAL2 in MCF-7 cells augmented the level of epidermal growth factor receptor (EGFR) in the plasma membrane, thus enhancing cell migration (Wang et al., 2018). In contrast, silencing MICAL2 in MDA-MB-231 cells degraded EGFR and inhibited cell migration (Wang et al., 2018). MICAL2 gene expression was significantly increased in aggressive primary gastric and renal cancers (Mariotti et al., 2016). MICAL2 knockdown caused a reduction in viability and loss of motility and invasion in 786-O kidney cancer cells, suggesting that MICAL2 might be a promising target for anti-metastatic therapy (Mariotti et al., 2016).



Lrch4

Lrch4 is a plasma membrane protein abundantly expressed in the spleen and thymus, containing a single-pass transmembrane domain with nine leucine-rich repeats and a CH3 domain in its ectodomain (Aloor et al., 2019). Recent data showed that Lrch4 did not interact with ezrin, radixin and moesin (ERM) in drosophila S2 cells, suggesting that the CH3 domain of Lrch4 may not bind with the FERM domain of ERM (Foussard et al., 2010). The function of the CH3 domain in Lrch4 is still unclear (Aloor et al., 2019).

Lrch4 is a novel Toll-like receptor (TLR) accessory protein as Lrch4 knockdown attenuated TNFα secretion induced by various TLR ligands (Aloor et al., 2019). Therefore, Lrch4 has been considered a broad-spanning regulator of the innate immune response and a potential molecular target in inflammatory diseases (Aloor et al., 2019). Lrch4 was identified by mass spectrometry to be differentially expressed in macrophages 24 h after infection with Mycobacterium avium subsp hominissuis (Jha et al., 2010). Microarray analysis showed that the gene expression of Lrch4 was up-regulated by 1.6-fold in lipopolysaccharide-stimulated dendritic cells in inflammation (Ceppi et al., 2009).



SMTNL1

Smoothelin-like 1, which contains a CH2 domain in the C-terminal region, is a novel member of the smoothelin protein family (Borman et al., 2004). Deletion of the CH2 domain can significantly change the intracellular localization of SMTNL1 (from distributed longitudinally on F-actin to diffuse distribution in the cytoplasm) in rat vascular smooth muscle cells suggesting that the CH2 domain is critical for F-actin binding (Ulke-Lemee et al., 2010). Experiments with truncated recombinant proteins showed that the CH2 domain was essential for SMTNL1-associated smooth muscle relaxation because the CH2 domain alone did not cause relaxation in rabbit ileum smooth muscle strips (Borman et al., 2009).

Smoothelin-like 1 can modulate muscle contractility, and its biological activity may involve interaction with the contractile actin machinery (Ulke-Lemee et al., 2010). One of the target genes of SMTNL1 is MYPT1 (high expression of MYPT1 is associated with the contraction of smooth muscle), and SMTNL1 knock-out increased MYPT1 protein expression by 30- to 40-fold in neonatal mice (Lontay et al., 2010). SMTNL1 interacts with myosin phosphatase in the cytoplasm, however, when phosphorylated at Ser301 in response to PKA/PKC, SMTNL1 translocates into the nucleus where it may activate transcription factors driving MYPT1 expression (Lontay et al., 2010). The gene expression of SMTNL1 was also significantly increased by approximately 4-fold in human cerebral arteriovenous malformations, suggesting that the elevated level of SMTNL1 may decrease MYPT1 expression to relax brain blood vessels and thus contribute to this lumen disorder (Yao et al., 2019).



CONCLUSION AND PROSPECTS

The CH domain displays high structural conservation, but shows diverse biological functions. The indispensable flanking regions and/or intrinsically unfolded protein modules may contribute to orchestrating CH domain functions. However, when comparing cell-based experiments with in vitro experiments using recombinant proteins only, it should be noted that due to the complexities of the cellular environment, other factors could be coming into play and distorting the results. With newly discovered proteins that interact with CH domains, some of the diverse functions have now been elucidated. However, many other binding proteins and functions certainly remain to be discovered, thus warranting further research into CH domain biology. Given that numerous CCPs, such as MICAL and transgelin-2, have been identified as promising therapeutic targets in diseases, it will be important to investigate in the future whether compounds can be designed to specifically target CH domains and thus improve the outcome of certain diseases.
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Actin-dependent leukocyte trafficking and activation are critical for immune surveillance under steady state conditions and during disease states. Proper immune surveillance is of utmost importance in mammalian homeostasis and it ensures the defense against pathogen intruders, but it also guarantees tissue integrity through the continuous removal of dying cells or the elimination of tumor cells. On the cellular level, these processes depend on the precise reorganization of the actin cytoskeleton orchestrating, e.g., cell polarization, migration, and vesicular dynamics in leukocytes. The fine-tuning of the actin cytoskeleton is achieved by a multiplicity of actin-binding proteins inducing, e.g., the organization of the actin cytoskeleton or linking the cytoskeleton to membranes and their receptors. More than a decade ago, the family of leucine-rich repeat (LRR) and calponin homology (CH) domain-containing (LRCH) proteins has been identified as cytoskeletal regulators. The LRR domains are important for protein-protein interactions and the CH domains mediate actin binding. LRR and CH domains are frequently found in many proteins, but strikingly the simultaneous expression of both domains in one protein only occurs in the LRCH protein family. To date, one LRCH protein has been described in drosophila and four LRCH proteins have been identified in the murine and the human system. The function of LRCH proteins is still under investigation. Recently, LRCH proteins have emerged as novel players in leukocyte function. In this review, we summarize our current understanding of LRCH proteins with a special emphasis on their function in leukocyte biology.
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INTRODUCTION

Leukocytes constantly patrol within the circulation and tissue to ensure the defense against pathogen intruders and to guarantee tissue integrity through the continuous removal of dying cells and the elimination of tumor cells (Ostrand-Rosenberg, 2008; Nourshargh and Alon, 2014). Proper immune cell function fundamentally depends on the highly dynamic regulation of the actin cytoskeleton (Moulding et al., 2013; Janssen and Geha, 2019). On the cellular level, this regulation involves actin-binding proteins as well as their effector proteins that respond to signals transduced by e.g., immunoreceptors, chemokine receptors and integrins (Mocsai et al., 2015; Begandt et al., 2017; Zehrer et al., 2018). Hence, fine-tuning of actin polymerization, branching and tethering to membranes and receptors enables, e.g., leukocyte polarization and migration and mediates vesicular dynamics important for cytokine release or phagocytosis. Within the plethora of actin-binding and regulatory proteins, a few have already been described to tremendously affect leukocyte function, such as Wiskott-Aldrich syndrome protein (WASp), mammalian actin-binding protein 1, coronin 1A (Coro1A), filamin A (FLNa), and dedicator of cytokinesis 8 (DOCK8) (Snapper et al., 2005; Schymeinsky et al., 2009; Harada et al., 2012; Pick et al., 2017; Roth et al., 2017). Thereby, the protein binding to actin is facilitated by many different domains with one of the most common being the calponin homology (CH) domain as in FLNa (Gimona et al., 2002; Yin et al., 2020). Another family is represented by the leucine-rich repeat (LRR) and CH domain-containing (LRCH) proteins which are specifically interesting for leukocyte biology as many proteins important for innate immunity contain LRR domains (Alder et al., 2005; Istomin and Godzik, 2009; Ng et al., 2011). The occurrence of both domains in the same protein is only known for the LRCH protein family (Foussard et al., 2010). To date, one LRCH protein has been described in Drosophila melanogaster and four LRCH proteins have been identified in mice, rats and humans. The function of LRCH proteins is still enigmatic but they have been suggested to act as cytoskeletal regulators (Foussard et al., 2010). In this review, we provide a comprehensive overview on the current understanding of the structure and function of LRCH proteins with a special emphasis on leukocyte biology.



STRUCTURE OF LRCH PROTEINS

The structure of the four members of the human (h)LRCH proteins characterized by an N-terminal LRR domain and a C-terminal CH domain is shown in Figure 1A (Foussard et al., 2010). In addition to the unique combination of LRR and CH domains, a putative transmembrane (TM) domain within the C-terminus has been described for LRCH1 and LRCH4 (Ng et al., 2011; Aloor et al., 2019). Sequence alignments of all four human LRCH proteins revealed modest sequence identity ranging between 33.1 and 39.4%. When comparing specifically the LRR and CH domains, the sequence identity increases up to 70.0% and the sequence similarity up to 85.0%, implying that the LRCH proteins may show some functional redundancy (Figures 1B,C).


[image: image]

FIGURE 1. Structure and sequence of the human LRCH family proteins. (A) Leucine-rich repeat (LRR), calponin homology (CH) and transmembrane (TM) domains in human (h)LRCH proteins1–4. LRR classes are color-coded (plant-specific: green, irregular: gray, bacterial: blue, SDS22: purple). Numbers label amino acid residues. (B,C) Sequence alignment of human LRR (B) and CH (C) domains using ClustalOmega (Madeira et al., 2019). Identical (*), strongly similar (:) and weakly similar (.) amino acid residues are indicated below the alignment.



LRR Domain

LRR domains consist of a chain of two to 42 LRRs with a single LRR commonly being 20–30 amino acids long (Enkhbayar et al., 2004). In general, the LRR domain of LRCH proteins in drosophila, mice, rats and humans consists of nine LRRs. Only the LRR domains of LRCH1 in rats and LRCH3 in humans, mice and rats contain 10 LRRs (Figures 1A,B). Based on their sequence, the LRRs are divided into eight classes: bacterial (S), ribonuclease inhibitor-like (RI), cysteine-containing (CC), SDS22, plant-specific (PS), typical (T), Treponema pallidum (Tp), and irregular. In humans, all LRCH proteins contain LRRs of the S, PS, and irregular class. Further, hLRCH1, hLRCH2, and hLRCH3 contain SDS22 class LRRs (Kajava et al., 1995; Kajava, 1998; Ng et al., 2011). The types of LRR in drosophila, murine, and rat LRCH proteins have not been classified yet. The LRR domain forms a horseshoe-shaped, superhelical arrangement with the LRRs as repeating structural units that enables the domain to participate in a large array of protein-protein interactions, including dimerization of LRR-containing proteins (Liu et al., 2008, 2020; Wang et al., 2010; Afzal et al., 2013). The exact function of most LRR-containing proteins, including LRCH proteins is still poorly understood. Interestingly, a remarkable number of proteins containing LRRs of the S or T class have important functions related to immunity and receptor-mediated signaling, such as Toll-like receptors (TLRs), suggesting an important role of LRCH proteins in immunity (Pålsson-McDermott and O’Neill, 2007; Ng et al., 2011).



CH Domain

CH domains are approximately 100 amino acids long and are homologous to the N-terminal region of the cytoskeletal regulator calponin (Castresana and Saraste, 1995). CH domains of different proteins vary in their sequence but share a number of highly conserved core residues, resulting in a structural conservation of their globular shape (Ishida et al., 2008). Based on their sequence, CH domains are divided into several classes with the main classes being type 1–3 (Gimona et al., 2002; Yin et al., 2020). Generally, CH domains are able to interact with F-actin, although their actin-binding properties depend on their class affiliation. Type 1 and type 2 CH domains are typically organized in tandem, known to bind F-actin and thus found in cytoskeletal binding proteins, such as β-spectrin, plectin, or dystrophin (Gimona et al., 2002). Type 3 CH domains appear as single CH domain and are found in proteins with regulatory functions, such as calponin, Vav, and IQGAP1 (Gimona et al., 2002; Korenbaum and Rivero, 2002). Here, the CH domain of IQGAP1 binds to F-actin, whereas the CH domains of calponin and Vav are not involved in actin binding, but instead bind extracellular regulated kinase (ERK) or lead to dimerization, respectively (Gimona and Mital, 1998; Leinweber et al., 1999; Mateer et al., 2004). LRCH proteins contain a single type 3 CH domain located at the C-terminus (Figures 1A,C) but functional studies on the specific involvement of the CH domain in actin binding are still missing to date.



Transmembrane Domain

LRCH proteins exist in different isoforms with two of three hLRCH1 and the longest isoforms of hLRCH4 and murine (m)LRCH4 presenting a putative TM domain at their C-terminus (Ng et al., 2011; Aloor et al., 2019). A search using the Phobius software for prediction of transmembrane topology1 further revealed the existence of a putative TM domain in the longest isoform of hLRCH3 and rat LRCH4, but experimental evidence for this observation is missing (Käll et al., 2007). So far only one study by Aloor et al. (2019) has specifically investigated mLRCH4 isoforms with and without TM domains and identified a critical role only for the TM domain-containing mLRCH4 for LPS binding and LPS-induced signal transduction. Thus, the presence of a TM domain may induce a functional change of LRCH proteins from signaling or scaffold proteins to proteins that sense external stimuli as the presence of a TM domain results in the extracellular localization of the LRR and CH domains.



GENETIC ANALYSES AND EXPRESSION OF LRCH PROTEINS


Genomic Analyses

Genomic analyses of single nucleotide polymorphisms (SNPs) point toward a link between SNPs in LRCH proteins and different diseases. SNPs in LRCH1 have been associated with a higher risk to develop osteoarthritis, although not all studies could confirm these findings (Spector et al., 2006; Snelling et al., 2007; Jiang et al., 2008; Panoutsopoulou et al., 2017). SNPs in LRCH1 are also allocated to an increased risk of delayed encephalopathy after acute carbon monoxide poisoning (Gu et al., 2019). Pigs with SNPs in LRCH3 are more susceptible to infections with Escherichia coli (E. coli) and cows with SNPs in LRCH3 have a higher susceptibility to Mycobacterium avium ssp. paratuberculosis infection (Jacobsen et al., 2010; McGovern et al., 2019). Furthermore, gene amplifications of LRCH2 and LRCH3 are associated with tumorigenesis of low grade gliomas and melanomas, respectively (Liu et al., 2019; Williams et al., 2020).



Transcriptional Analyses in Human Diseases

Strikingly, LRCH mRNA levels are regulated under inflammatory conditions. In the colonic mucosa of ulcerative colitis patients, LRCH1 expression is markedly decreased and disease severity more pronounced with lower levels of LRCH1 expression (Wang et al., 2020). In colorectal cancer, a potential complication of ulcerative colitis, expression of LRCH3 is increased compared to colorectal tissues of healthy individuals and expression of LRCH4 is increased in colorectal cancer patient samples with more advanced stages of cancer (Piepoli et al., 2012; Huo et al., 2017). In patients with acute myeloid leukemia, divided into low and high LRCH4 expression groups, higher LRCH4 expression is linked to decreased mortality (Sha et al., 2020). A significantly decreased LRCH2 expression is found in breast cancer patients that developed brain metastasis compared to patients without brain metastasis or patients with primary brain tumors (Schulten et al., 2017).



Transcriptional Analyses in Immune Responses

In leukocytes, LRCH expression is specifically regulated under inflammatory conditions. Monocyte-derived dendritic cells (DCs) stimulated with lipopolysaccharide (LPS) induce a negative feedback loop of cytokine production via microRNA-155 that affects LRCH3 and LRCH4 expression levels, which is in line with findings in HEK293 cells showing increased LRCH3 levels upon stimulation with Epstein-Barr virus latent membrane protein (LMP1) (Ceppi et al., 2009; Gewurz et al., 2011). In human platelets exposed to E. coli K12 and RAW 264.7 macrophages stimulated with LPS LRCH4 mRNA levels are downregulated (Fejes et al., 2018; Aloor et al., 2019). Microglia isolated from rat spinal cords after spinal cord injury (SCI) express lower levels of LRCH1 mRNA and protein compared to microglia from sham-operated rats (Chen et al., 2020). In human primary macrophages, infection with Staphylococcus aureus, Mycobacterium tuberculosis, Listeria monocytogenes (L. monocytogenes), and enterohemorragic E. coli induces a downregulation of LRCH4, suggesting that LRCH proteins may function as critical effector molecules under inflammatory conditions, especially during host defense (Ng et al., 2011).



FUNCTION OF LRCH PROTEINS


Cell Division

The first functional analyses of LRCH proteins focused on cell division and development in drosophila (Foussard et al., 2010). Here, dLRCH localizes at the cell cortex and cleavage furrow during mitosis of S2 cells and partly co-localizes with F-actin. Knockdown of dLRCH induces abnormal cortical protrusions and mis-positioning of the mitotic spindle but interferes only mildly with cell division. Similarly, knockdown of hLRCH3 in HeLa cells leads to cell division arrest and impairs chromosome segregation (Kittler et al., 2007). LRCH proteins seem to be regulated by phosphorylation as the phosphorylation patterns of hLRCH1, hLRCH3, and hLRCH4 in HeLa cells change between G1- and M-phase (Dephoure et al., 2008). In contrast, dLRCH-deficient flies develop normally indicating that cell division is not fatally affected in vivo. However, dLRCH knockout flies show a markedly impaired development when raised under low and high temperatures and a shortened life span, suggesting a role of dLRCH for fitness and aging (Foussard et al., 2010). A potential role of LRCH proteins during aging is further supported by transcriptome analyses of post-mortem brain and lymphocyte mRNA of humans, where LRCH4 mRNA is increased with age (Hong et al., 2008). LRCH proteins are also linked to the regulation of cell proliferation on a molecular level (Gewurz et al., 2012). Here, LRCH3 plays a role in the activation of NFκB, a transcription factor critical for cell proliferation, survival and differentiation. Knockdown of LRCH3 increases IκBα levels and decreases NFκB activation in HEK293 cells when stimulated with tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), or LMP1 (Gewurz et al., 2012).



Immune Responses

A deeper understanding of LRCH protein function has been gained through research in leukocytes (Table 1). Here, LRCH proteins play essential roles in the innate as well as the adaptive immune system, regulating leukocyte migration and host defense. LRCH1 has been deciphered as a negative regulator of natural killer (NK) cell function (Dai et al., 2020). LRCH1-deficient NK92 cells show a higher cytotoxicity toward tumor cells, a higher secretion of interferon-γ, TNFα, IL-2 and higher granzyme B levels. Activation of NK cells and cytokine production is mediated by surface receptor NKp30 and activation of Src family kinases (SFKs) Src and Lck. In LRCH1-deficient NK92 cells phosphorylation of these SFKs is increased at basal levels and further increases in presence of tumor cells compared to control cells. Furthermore, LRCH1 negatively regulates activation and function of rat microglia via a p38 mitogen-activated protein kinase (MAPK) and ERK1/2-dependent pathway (Chen et al., 2020). Upon priming with LPS and ATP, LRCH1-knockdown microglia release higher levels of TNFα, IL-6 and IL-1β and develop into a pro-inflammtory phenotype. In rats injected with LRCH1-knockdown microglia, SCI results in higher neuronal loss and locomotor function impairment compared to SCI rats that have been injected with LRCH1-expressing microglia. In CD8+ T cells, LRCH1 binds linker for activation of T cells (LAT) thereby inhibiting recruitment of growth factor receptor-bound protein 2 to LAT and promotes LAT endocytosis and degradation, resulting in the termination of T cell receptor (TCR) signaling (Liu et al., 2020). Hence, LRCH1-deficient mice show improved clearance of infection with influenza and L. monocytogenes compared to WT mice and LRCH1-deficient cytotoxic T cells clear B16-MO5 tumor cells more efficiently than WT cells. A more direct regulation of the actin cytoskeleton by LRCH proteins is reported in CD4+ T cells (Xu et al., 2017; Wang et al., 2020). Here, LRCH1 has been identified as an inhibitory binding partner of DOCK8. Activation of DOCK8 leads to dissociation of the LRCH1-DOCK8 complex and activation of cell division control protein 42 homolog (Cdc42) by DOCK8 (Xu et al., 2017). Overexpression of LRCH1 or its DOCK8-binding domain (LRR1–9) reduces infiltration of the central nervous system by LRCH1-overexpressing CD4+ T cells in a model of experimental autoimmune disease (EAE). Accordingly, LRCH1-deficient CD4+ T cells present a more severe EAE phenotype due to increased Cdc42 activity and CD4+ T cell migration. Similarly, migration of CD4+ T cells from ulcerative colitis patients is increased compared to CD4+ T cells from healthy individuals (Wang et al., 2020). Here, CD4+ T cells mediate the pathogenesis of ulcerative colitis and massively infiltrate into the colonic mucosa, potentially by a mechanism negatively regulated by LRCH1 as migration of CD4+ T cells from ulcerative colitis patients is reduced by LRCH1 overexpression. These data indicate a regulation of the actin cytoskeleton by LRCH1-DOCK8 complex-dependent signaling. This is further supported by proteomic studies that have detected interactions between LRCH1/2/3/4 and DOCK6/7/8 (Couzens et al., 2013; Huttlin et al., 2017; O’Loughlin et al., 2018). Here, LRCH proteins interact with each other, with DOCK proteins and DOCK proteins with each other. Detailed analyses reveal that LRCH3 binds to DOCK7 via its LRR domain, to myosin-6 via a region between the LRR and CH domain and to actin-stabilizing septin proteins via the CH domain, inducing septin delocalization from actin filaments (O’Loughlin et al., 2018).


TABLE 1. Murine, rat, and human LRCH genes and proteins with a role in leukocyte function.

[image: Table 1]In a sole study, Aloor et al. (2019) suggest LRCH4 to act mainly through its longest isoform harboring the TM domain. Here, LRCH4 is required for the capture of LPS at the plasma membrane and the transport into lipid rafts where LPS binds to TLR4 clusters (Aloor et al., 2019). Hence, LRCH4-deficient RAW 264.7 macrophages show reduced TNFα and granulocyte colony-stimulating factor levels upon LPS stimulation. Furthermore, stimulation of other TLRs, such as TLR7 and TLR9 also results in attenuated TNFα induction, indicating a broad spanning role for LRCH4 in TLR signaling. Moreover, LRCH4 has been identified as interacting partner of Coro1A, an actin-binding protein functionally linking β2 integrins to the actin cytoskeleton and therefore critical for β2 integrin activation controlling neutrophil adhesion, migration and phagocytosis (Yan et al., 2007; Pick et al., 2017). In summary, a large body of evidence suggests that LRCH proteins act as signaling or scaffold proteins regulating actin cytoskeleton dynamics, at least partially via an LRCH-DOCK axis.



DISCUSSION

To date, the precise function of LRCH proteins is still incompletely understood. Functional analyses have been almost absent until studies within the last decade uncovered a functional impact of LRCH proteins mainly in leukocytes. Nonetheless, several key questions have yet to be answered to improve our understanding of LRCH protein function in leukocytes. (1) Are LRCH proteins able to bind actin via the CH domain? LRCH proteins contain a single type 3 CH domain. There is an ongoing debate whether or not type 3 CH domains are able to bind actin as suggested for IQGAP1 (Mateer et al., 2004). As type 1 and type 2 CH domains act in tandem it is suggested for type 3 CH domain-containing proteins that they may form dimers, which has been reported in LRCH proteins recently, and thereby gain the ability to bind F-actin (Gimona and Mital, 1998; Pålsson-McDermott and O’Neill, 2007; Ng et al., 2011; Liu et al., 2020). However, a large body of evidence suggests that LRCH proteins regulate the cytoskeleton via interactions with cytoskeletal regulatory proteins, such as DOCK or septin proteins without direct binding to F-actin (Xu et al., 2017; O’Loughlin et al., 2018). (2) Is dimerization necessary for correct LRCH protein function or do LRCH proteins have diverse functions depending on their multimerization state? (3) Moreover, the function of TM domain-containing LRCH4 has been described in macrophages, nonetheless the question remains whether LRCH proteins that contain a TM domain mainly function at the plasma or also at inner membranes. (4) How do isoforms with and without TM domains differ in function? (5) It is also unclear how the four different LRCH proteins differ or overlap in their function. The sequence similarity within LRR and CH domains suggests that they have overlapping functions as reported for LRCH3 that can compensate for the loss of LRCH1 (Liu et al., 2020). They may also bear divergent functions due to their modest sequence similarity outside these domains. Hence, there is a need for studies comparing the effect of single and multiple knockouts to clarify this issue. (6) Currently, there is a lack of information on some leukocyte subsets, such as neutrophils and B cells. What is the function of LRCH proteins in these cell types? In T cells, LRCH1 negatively regulates TCR signaling which is similar to β2 integrins and B cell receptors, indicating a potential role of LRCH proteins in neutrophils and B cells (Mocsai et al., 2006). In conclusion, the current data on LRCH proteins indicate their importance for cell signaling and homeostasis, especially in leukocytes, and reveal that their dysregulation or absence results in inflammation and disease.
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Cyclase-associated protein (CAP) has been discovered three decades ago in budding yeast as a protein that associates with the cyclic adenosine monophosphate (cAMP)-producing adenylyl cyclase and that suppresses a hyperactive RAS2 variant. Since that time, CAP has been identified in all eukaryotic species examined and it became evident that the activity in RAS-cAMP signaling is restricted to a limited number of species. Instead, its actin binding activity is conserved among eukaryotes and actin cytoskeleton regulation emerged as its primary function. However, for many years, the molecular functions as well as the developmental and physiological relevance of CAP remained unknown. In the present article, we will compile important recent progress on its molecular functions that identified CAP as a novel key regulator of actin dynamics, i.e., the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). These studies unraveled a cooperation with ADF/Cofilin and Twinfilin in F-actin disassembly, a nucleotide exchange activity on globular actin monomers (G-actin) that is required for F-actin assembly and an inhibitory function towards the F-actin assembly factor INF2. Moreover, by focusing on selected model organisms, we will review current literature on its developmental and physiological functions, and we will present studies implicating CAP in human pathologies. Together, this review article summarizes and discusses recent achievements in understanding the molecular, developmental and physiological functions of CAP, which led this protein emerge as a novel CAPt’n of actin dynamics.

Keywords: cyclase-associated protein, CAP, SRV2, Cofilin, F-actin, G-actin


INTRODUCTION

Cyclase-associated protein (CAP) has been discovered three decades ago in the budding yeast Saccharomyces (S.) cerevisiae as a component of a complex involved in activation of RAS-family GTPase ras-like protein 2 (RAS2), which controls activity of the adenylyl cyclase (AC) and, hence, cyclic adenosine monophosphate (cAMP) signaling (Fedor-Chaiken et al., 1990; Field et al., 1990). Yeast expressing mutant CAP variants suppress a phenotype (heat shock and nitrogen starvation sensitivity) elicited by the hyperactive RAS2 variant RAS2-V19, thus explaining its alternate name suppressor of RAS2-V19 (SRV2; Fedor-Chaiken et al., 1990). However, CAP mutant yeast displayed cellular defects including impaired growth and altered morphology that could not be attributed to defective RAS2-cAMP signaling (Field et al., 1990; Zelicof et al., 1993; Hubberstey and Mottillo, 2002), thereby suggesting an implication in additional cellular processes. Indeed, subsequent studies identified CAP as a multifunctional protein that apart from regulating RAS2 activity is capable of actin binding (Lila and Drubin, 1997; Hubberstey and Mottillo, 2002; Ono, 2013; Zhou et al., 2014a). Since these initial studies, CAP has been detected in all eukaryotic species examined (Ono, 2013). Lower eukaryotic organisms and most invertebrates possess only one CAP, instead some invertebrates [e.g., Caenorhabditis (C.) elegans] as well as vertebrates have two CAP isoforms with tissue specific expression (Ono, 2013). Studies on model organisms led to the assumption that CAP’s activity in RAS-cAMP signaling is restricted to a limited number of species including some fungi and protists (Bahn and Sundstrom, 2001; Hubberstey and Mottillo, 2002; Ono, 2013). However, a recent study suggested an interaction of CAP-actin complexes with AC in human pancreatic cancer cells (Quinn et al., 2017). Instead, CAP’s actin binding activity is highly conserved and present in higher eukaryotic cells (Ono, 2013; Zhou et al., 2014a). Early studies suggested a rather passive role for CAP in actin cytoskeleton regulation, which was believed to act via sequestering globular actin monomers (G-actin; Hubberstey and Mottillo, 2002). This view has changed drastically in the last decade, because CAP has been implicated in almost all steps relevant for actin dynamics, the spatiotemporally controlled assembly and disassembly of actin filaments (F-actin). Specifically, these studies unraveled (i) a cooperation of CAP with key actin regulators such as ADF/Cofilin and Twinfilin in F-actin disassembly including dissociation of actin subunits from filaments’ barbed and pointed ends as well as F-actin severing, (ii) a nucleotide exchange activity on G-actin that is required for F-actin assembly, and (iii) an inhibitory function towards the F-actin assembly factor inverted formin 2 (INF2), and they linked each individual actin activity to specific protein domains (Chaudhry et al., 2013; Jansen et al., 2014; Johnston et al., 2015; Kotila et al., 2018, 2019; Mu et al., 2019, 2020; Shekhar et al., 2019). In this article, we will summarize and discuss important recent progress in CAP’s structure and molecular functions, focusing on those studies that have been published since Shoichiro Ono’s excellent review in 2013 (Ono, 2013). Moreover, we will review current literature on CAP’s manifold developmental and physiological functions, focusing on selected model organisms including Drosophila (D.) melanogaster, C. elegans and mouse, and we will present studies implicating CAP in the mechanisms of human diseases. Together, in this review article we will provide a comprehensive overview of CAP’s molecular, developmental and physiological functions.



RECENT ACHIEVEMENTS IN STRUCTURE AND MOLECULAR FUNCTIONS


Structure and Domain Organization

Cyclase-associated proteins are multifunctional proteins, composed of 526 amino acids (AA) in yeast and 474 (CAP1) or 476 (CAP2) AA in mouse, and they consist of several distinct motifs and domains, including an oligomerization domain (OD), a helical folded domain (HFD), two proline-rich motifs (P1, P2) separated by a Wiscott-Aldrich-Syndrome protein (WASP) homology 2 (WH2) domain and followed by a domain termed CAP and RP2 (CARP) domain that harbors a dimerization motif at the most C-terminal part of the protein (Figure 1). Crystallization of full length CAP was not possible due to its tendency to form high molecular weight aggregates, possession of autoproteolytic activity and possibly due to ‘unstable’ WH2/P2 domains (Hofmann et al., 2002; Yusof et al., 2005; Kotila et al., 2018). Consequently, only the crystal structures of HFD and β-sheets within the CARP domain have been determined to date (Ksiazek et al., 2003; Dodatko et al., 2004; Mavoungou et al., 2004; Kotila et al., 2018, 2019). In this section, we will provide an overview of the structure and function for each individual CAP domain and motif. The next section comprises a detailed description of CAP’s activities in actin dynamics regulation. Although most of the initial work has been carried out in yeast, we decided to avoid the yeast nomenclature in this section and will refer to SRV2 as yeast CAP to keep a better flow. Further, in both sections, we did not differentiate between individual CAP isoforms.
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FIGURE 1. Domain organization of CAP. A detailed description of CAP’s motifs and domains is provided in the section ‘Structure and domain organization’.



Oligomerization Domain

Oligomerization domain (OD) is composed of the N-terminal ∼40 AA residues, which were predicted to form a coiled-coil structure due to presence of heptad repeat motifs (αXXαXXX), in which α represents a hydrophobic AA (Nishida et al., 1998). This region is sufficient for binding and activation of AC in yeast (Nishida et al., 1998), a function that is absent from CAP in higher eukaryotes (Hubberstey and Mottillo, 2002; Ono, 2013). In comparison to other CAP domains, OD is least conserved among species (Matviw et al., 1992). However, a requirement of this region for oligomerization is conserved from yeast to mammals, and oligomerization enhances CAP’s actin dynamics regulatory potential (Quintero-Monzon et al., 2009; Chaudhry et al., 2013; Jansen et al., 2014). Since in unbound protein OD is either unstructured or in random coil conformation, it has been hypothesized that this region could acquire coiled-coil structure upon AC binding or self-oligomerization (Ksiazek et al., 2003; Mavoungou et al., 2004). A specific role of this domain in oligomerization will be discussed below. Notably, this domain also includes a conserved cysteine residue, which recently was implicated in covalent dimer formation, Cofilin1 interaction and regulation of actin dynamics (Liu et al., 2018; Pelucchi et al., 2020a).



Helical Folded Domain

Helical folded domain encompasses AA residues ∼40–220 in (mouse) CAP, which forms an α-helix bundle composed of six antiparallel helices (15–25 AA residues each) that are connected by irregular loops of 5–12 AA residues (Ksiazek et al., 2003; Mavoungou et al., 2004). Although, earlier structural studies proposed that HFD could form dimers (Ksiazek et al., 2003; Yusof et al., 2005, 2006), later it was suggested that HFD/HFD interaction might be rather unspecific and transient and most likely does not contribute to stable dimer formation (Mavoungou et al., 2004; Yusof et al., 2006).

From a functional perspective, HFD binds to complexes composed of G-actin together with either ADF/Cofilin or Twinfilin (Moriyama and Yahara, 2002; Quintero-Monzon et al., 2009; Johnston et al., 2015), and it promotes F-actin depolymerization by interacting with ADF/Cofilin-bound pointed ends or Twinfilin-bound barbed ends (Johnston et al., 2015; Kotila et al., 2019; Shekhar et al., 2019). In addition, HFD interacts with ADF/Cofilin-bound F-actin to promote severing (Chaudhry et al., 2013), but this mechanism seems not to be the major contributor to CAP-dependent F-actin disassembly (Kotila et al., 2019; Shekhar et al., 2019). HFD’s structure is unique, not shared by any other ABP and differs from other actin-binding domains (ABD) in the mode of G-actin binding (Ksiazek et al., 2003; Kotila et al., 2019). Thus it binds efficiently to ADP-G-actin only in complex with ADF/Cofilin or Twinfilin (Moriyama and Yahara, 2002; Quintero-Monzon et al., 2009; Johnston et al., 2015). However, HFD’s interaction interface on G-actin does not overlap with that of ADF-H (actin depolymerizing factor homology domain), the ABD of ADF/Cofilin and Twinfilin, thereby allowing simultaneous binding of CAP, G-actin and ADF/Cofilin or Twinfilin (Kotila et al., 2019). HFD binds to the pointed end of G-actin, between subdomains (SD) 2 and 4. On the contrary, ADF-H binds to the barbed end between SD1 and SD3. It was proposed that binding of ADF/Cofilin induces a slight twist in the actin molecule (Kotila et al., 2019), thereby enabling HFD binding (Moriyama and Yahara, 2002).



Proline-Rich Motifs (P1, P2) and WH2 Domain

The central region comprising AA residues ∼220–320 in (mouse) CAP consists of two proline-rich motifs (P1, P2), which are separated by a WASP homology 2 (WH2) domain. Profilin, an ABP that promotes actin polymerization, binds to P1 of yeast CAP in vitro and in vivo (Bertling et al., 2007). Instead, Profilin can interact with both P1 and P2 domains of mouse CAP (Makkonen et al., 2013). Compared to P1, P2 contains fewer proline residues. It interacts with Src homology 3 (SH3) domain-containing proteins such as actin-binding protein 1 (ABP1) and is required for CAP localization to cortical actin patches in yeast (Freeman et al., 1996; Lila and Drubin, 1997; Balcer et al., 2003). Interestingly, human CAP also interacts with SH3 domain of the tyrosine kinase abelson murine leukemia viral oncogene homolog 1 (ABL) through its P1 region (Freeman et al., 1996). The functional relevance of CAP’s interaction with Profilin or ABL remained elusive, also because P1 mutations only caused very subtle effects in yeast (Bertling et al., 2007). However, genetic studies in D. melanogaster revealed at least functional interaction of CAP with Profilin or ABL, e.g., in determining cell morphology or in growth cone function (Wills et al., 1999, 2002; Benlali et al., 2000).

The function of the WH2 domain, located between P1 and P2 and encompassing AA residues ∼250–280, was deduced from its homology to other WH2 containing proteins including type I nucleation promoting factors (e.g., WASP and WAVE), Ena/VASP or β-Thymosin that participate in actin nucleation, F-actin elongation or G-actin sequestering, respectively (Paunola et al., 2002; Dominguez, 2016). Unlike most other WH2 domains that bind ATP-G-actin with higher affinity than ADP-G-actin (Dominguez, 2016), yeast CAP’s WH2 binds both ATP- and ADP-bound G-actin with similar affinity (Kd 1.5 μM) (Chaudhry et al., 2010). In comparison to yeast counterpart, mouse CAP’s WH2 possess slightly higher affinity towards ATP-bound G-actin (Kd 0.73 μM) (Makkonen et al., 2013). Whether this underlies species specific or experimental difference needs to be clarified. Yeast and mouse CAP’s WH2, together with the adjacent CARP domain (see below), are necessary for efficient catalysis of the ATP-for-ADP exchange on ADF/Cofilin-bound G-actin (Quintero-Monzon et al., 2009; Chaudhry et al., 2010; Jansen et al., 2014). Specific mutations disrupting G-actin-binding of WH2 caused actin disorganization associated with cell growth and cell morphogenesis defects in yeast (Chaudhry et al., 2010). WH2 domain of human CAP might bind to the ABP INF2, but additional CAP domains or interactions are necessary for this function (Mu et al., 2019, 2020). The functional relevance of this interaction is discussed below.



CAP and Retinitis Pigmentosa Protein 2 (CARP) Domain

Cyclase-associated protein’s C-terminus, between AA residues ∼320 and 474 possesses a β-sheet structure composed of six coils of right-handed parallel β-strands forming the core of the β-sheet and an additional C-terminal β-hairpin, which extends away from the core and participates in homodimer formation (Dodatko et al., 2004). β-hairpin interacts with the core β-sheet of a second CAP and forms a stable strand-exchanged dimer (Dodatko et al., 2004; Hliscs et al., 2010; Kotila et al., 2018). Since CAP’s β-sheet displays structural similarity to otherwise functionally unrelated proteins including X-linked retinitis pigmentosa protein 2 (RP2) this domain is referred to as CAP and RP2 (CARP) domain (Dodatko et al., 2004). CARP binds ADP-G-actin with high affinity (Kd 0.02–0.05 μM) and in 1:1 stoichiometry (Mattila et al., 2004; Makkonen et al., 2013). This interaction is unique in several ways (Iwase and Ono, 2017; Kotila et al., 2018). First, two CARP domains form a homodimer and bind simultaneously two ADP-G-actin, whereby each G-actin interacts with both CARP domains. Second, CARP binds to the pointed end of ADP-G-actin on SD1, SD2, and SD3 and forms the largest binding interface among known ABD (Kotila et al., 2018). These two observations explain the high affinity of CARP, however, only in dimeric form, towards ADP-G-actin (Iwase and Ono, 2016; Kotila et al., 2018). Thus, mutations disrupting CARP homodimer formation abolish interaction with ADP-G-actin and its recharging to ATP-G-actin (Iwase and Ono, 2016). Interestingly, structural analysis also revealed that CARP binding of G-actin could create a sterical clash with Profilin or ADF-H (Kotila et al., 2018). These findings provide an explanation why CARP competes with Profilin and ADF-H-containing ABP such as ADF/Cofilin and Twinfilin and enhances ADF/Cofilin dissociation from ADP-G-actin, thus priming it for nucleotide exchange (Mattila et al., 2004; Chaudhry et al., 2010; Ono, 2013; Johnston et al., 2015; Kotila et al., 2018). Notably, CARP’s binding interface on ADP-G-actin does not overlap with that of HFD, which is in line with the notion that both domains, presumably in cooperation with WH2, can work sequentially in ADF/Cofilin-mediated F-actin depolymerization and G-actin recharging (Kotila et al., 2019; Shekhar et al., 2019).




Function of CAP in Actin Dynamics

In order to maintain fast F-actin dynamics a tight balance between barbed end polymerization and pointed end depolymerization of F-actin is needed (Pollard, 2016). It has been demonstrated that ADF/Cofilin, in addition to F-actin severing, promotes pointed end depolymerization (Pollard, 2016; Shekhar and Carlier, 2017; Wioland et al., 2017), albeit with a relatively slow speed that cannot explain fast F-actin disassembly in cells (Miyoshi and Watanabe, 2013). Furthermore, upon ADF/Cofilin-mediated depolymerization ADP-G-actin must be removed from ADF/Cofilin and subsequently converted (recharged) to polymerization competent ATP-G-actin, a function which has been dedicated to Profilin (Goldschmidt-Clermont et al., 1991). However, compared to ADF/Cofilin (Kd 0.1 μM), the ADP-G-actin affinity of Profilin (Kd 1.5 μM) is rather low (Carlier et al., 1997; Vinson et al., 1998), suggesting that additional factors are required to mediate G-actin transition from ADF/Cofilin to Profilin and to convert ADP-G-actin into Profilin-binding favored form, i.e., ATP-G-actin. CAPs are ideal candidates for these functions, since they possess necessary protein domains to (i) efficiently interact with ADF/Cofilin-ADP-G-actin complexes and ADF/Cofilin-decorated filaments’ pointed ends (Moriyama and Yahara, 2002; Quintero-Monzon et al., 2009; Kotila et al., 2019; Shekhar et al., 2019), (ii) displace ADF/Cofilin from ADP-G-actin (Balcer et al., 2003; Mattila et al., 2004; Chaudhry et al., 2014; Kotila et al., 2018), and (iii) exhibit nucleotide exchanging activity on G-actin (Balcer et al., 2003; Chaudhry et al., 2007; Quintero-Monzon et al., 2009; Nomura et al., 2012). Recent studies from Pekka Lappalainen’s lab and from Bruce Goode’s lab (Kotila et al., 2018, 2019; Shekhar et al., 2019), together with previously generated data by the ADF/Cofilin and CAP research community (Ono, 2013), made a significant impact on our understanding how CAP can perform the aforementioned functions in vitro, and most likely in vivo. Based on this, we will summarize a proposed model for F-actin depolymerization and G-actin recharging carried out by CAP (Figure 2).
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FIGURE 2. CAP-mediated regulation of actin dynamics. This scheme depicts the best studied CAP-dependent mechanisms relevant for actin dynamics. A detailed description of both mechanisms is provided in the section ‘Function of CAP in actin dynamics’, which also includes additional actin regulatory mechanisms that depend on CAP. Right panel presents a stepwise CAP-dependent depolymerization mechanism of ADF/Cofilin-decorated F-actin pointedends (based on Kotila et al., 2018, 2019). Although CAP forms hexamers, for the purpose of clarity we depicted them as dimers. Additionally, OD was removed. Two HFD (blue) of CAP dimer bind to ultimate and penultimate actin subunit at ADF/Cofilin-decorated pointed end (step 1). HFD thereby destabilizes intermolecular interaction of both actin subunits (step 2). HFD removes ADF/Cofilin-bound ultimate actin subunit from pointedend (step 3) and hands it over to CARPdomain (gray; step 4). Binding of CARP and WH2 (green) domains releases ADF/Cofilin and HFD from G-actin. Next, G-actin is recharged (ADP to ATP) and most likely transferred to Profilin (red) that binds CAP’s P1 motif (step 5 and 6). Question mark in step 5 indicates that the functional relationship between CAP and Profilin is still unclear. Polymerization competent, Profilin-bound ATP-G-actin can now be used for F-actin assembly. Step 7 indicates that a new round of CAP-dependent depolymerisation of ADF/Cofilin-bound actin starts. Left panel: in addition to actin depolymerisation at ADF/Cofilin-decorated pointed ends, CAP can impede F-actin assembly by inhibiting INF2 (depicted as dimer; based on Mu et al., 2019). Binding of a complex composed of lysine-acetylated (KAc-) actin and CAP to INF2’s DID (Diaphanous inhibitory domain, magenta) and DAD (Diaphanous autoregulatory domain, light green) keepINF2 in an inactive state, thereby inhibiting INF2-mediated actin polymerization.



F-Actin Depolymerizing and G-Actin Recharging

Cyclase-associated protein has two segments, N-CAP and C-CAP, which have specific biochemical activities and can function separately in controlling actin dynamics (Balcer et al., 2003; Mattila et al., 2004; Quintero-Monzon et al., 2009; Chaudhry et al., 2014). N-CAP is composed of OD and HFD (Ksiazek et al., 2003; Mavoungou et al., 2004), which have been implicated in oligomerization as well as F-actin depolymerization and severing (Quintero-Monzon et al., 2009; Chaudhry et al., 2013; Jansen et al., 2014; Kotila et al., 2019; Shekhar et al., 2019). C-CAP comprises P1, WH2 domain, P2 and CARP domain and catalyzes nucleotide exchange of G-actin (Moriyama and Yahara, 2002; Dodatko et al., 2004; Quintero-Monzon et al., 2009; Makkonen et al., 2013; Nomura and Ono, 2013; Jansen et al., 2014; Kotila et al., 2018). Structural analysis and modeling of a tripartite complex composed of a ADF-H, ADP-actin and HFD showed that ADF/Cofilin binding to ADP-actin at the filament’s pointed end changes the conformation of the actin subunits to favor simultaneous docking of two HFD to both the ultimate and the penultimate actin subunit (Tanaka et al., 2018; Kotila et al., 2019). HFD bound to the penultimate subunit destabilizes the interaction between both subunits, whereby the ADF/Cofilin-bound ultimate subunit dissociates from the pointed end while being bound to HFD (Kotila et al., 2019). As mentioned above, ADP-G-actin binding interfaces of ADF-H from ADF/Cofilin (or Twinfilin) and HFD from CAP do not overlap (Paavilainen et al., 2008). Therefore, ADF/Cofilin stays bound to HFD via ADP-G-actin, in line with previous biochemical data showing that N-CAP interacts efficiently only with ADF/Cofilin-ADP-G-actin complexes (Moriyama and Yahara, 2002; Quintero-Monzon et al., 2009). Furthermore, using dye labeled ADF/Cofilin-decorated F-actin, it was shown that both mouse and yeast N-CAP associate with pointed ends (Kotila et al., 2019; Shekhar et al., 2019), where the HFD binding interfaces of two terminal actin subunits might be exposed (Kotila et al., 2019). Importantly, treatment of either Gelsolin- or CAPZ-capped ADF/Cofilin-decorated F-actin with mouse N-CAP or yeast CAP enhanced pointed end depolymerization 30 or 100 fold, respectively (Kotila et al., 2019; Shekhar et al., 2019). Moreover, in comparison to the steady state (bare) F-actin depolymerization, presence of N-CAP or yeast CAP together with ADF/Cofilin increased the rate of pointed end depolymerization up to 100 or 330 fold, respectively (Kotila et al., 2019; Shekhar et al., 2019). Strikingly, although treatment of bare F-actin with mouse N-CAP increased pointed end depolymerization 2–3 folds (Kotila et al., 2019), the full length yeast CAP displayed 7-fold increase, twice as efficient as in ‘ADF/Cofilin only’ condition (Shekhar et al., 2019). Finally, full length mouse and yeast CAP accelerates pointed end F-actin depolymerization in conditions with high concentrations of Profilin and G-actin, thus mimicking physiological conditions (Kotila et al., 2019; Shekhar et al., 2019). Based on these observations, the depolymerization rate at ADF/Cofilin-bound pointed end by mouse N-CAP and yeast CAP was calculated as 13 and 44 subunits/second, respectively (Kotila et al., 2019; Shekhar et al., 2019). These values approach the estimated rates of actin turnover in vivo (Miyoshi and Watanabe, 2013), implying that synergistic interaction of ADF/Cofilin and CAP is the main driver of rapid F-actin depolymerization at pointed ends (Kotila et al., 2019; Shekhar et al., 2019). Twinfilin, another ADF-H-containing ABP involved in G-actin sequestering and barbed end capping, has been recently shown to enhance barbed end and pointed end F-actin depolymerization in presence of yeast CAP 3 and 17 fold, respectively (Goode et al., 1998; Paavilainen et al., 2007; Johnston et al., 2015). Despite the fact that mouse Twinfilin and CAP failed to jointly induce pointed end depolymerization, F-actin disassembly at barbed end was activated to the same extent (threefold) as with their yeast homologs (Hilton et al., 2018). Although, the pointed end disassembly mechanism might be similar to the one of ADF/Cofilin, how exactly CAP induces Twinfilin-mediated barbed end depolymerization needs further clarification.

In addition to CAP’s actin depolymerization activity inherent to N-CAP, C-CAP can promote dissociation of ADF/Cofilin from ADP-G-actin and catalyze nucleotide exchange on G-actin (Balcer et al., 2003; Mattila et al., 2004; Chaudhry et al., 2007; Quintero-Monzon et al., 2009; Nomura et al., 2012; Makkonen et al., 2013; Jansen et al., 2014). Mechanistically, this can be explained by the finding that ADP-G-actin binding interface of CARP does not overlap with that of HFD (Kotila et al., 2018, 2019). Thus, after removal of the ADF/Cofilin-bound terminal actin subunit from pointed ends by HFD, ADP-G-actin is transferred to the CARP domain, which has high affinity for ADP-G-actin (Moriyama and Yahara, 2002; Mattila et al., 2004; Kotila et al., 2018). Intriguingly, CARP binding to ADP-G-actin induces a sterical clash with ADF-H, and the WH2 binding of G-actin might further destabilize the association of ADF-H and ADP-G-actin (Balcer et al., 2003; Mattila et al., 2004; Chaudhry et al., 2010, 2014; Kotila et al., 2018). As a result, HFD as well as ADF/Cofilin dissociates from ADP-G-actin, which becomes subsequently recharged with ATP presumably by CARP in cooperation with WH2 (Chaudhry et al., 2014; Jansen et al., 2014; Kotila et al., 2018). Biochemical assays confirm the requirement of complete mouse and yeast C-CAP segment for nucleotide exchange of ADF/Cofilin-bound ADP-G-actin, implying that WH2 and CARP domains must be connected for efficient activity in G-actin recharging (Chaudhry et al., 2014; Jansen et al., 2014). In the next step, the only domain of CAP that has comparably higher affinity to ATP-G-actin, i.e., WH2 domain (Chaudhry et al., 2010), might release the polymerization competent G-actin to the surrounding or transfer it to ATP-G-actin-binding proteins such as Profilin (Bertling et al., 2007; Makkonen et al., 2013). Future studies will show which of those mechanisms occurs in vivo.



F-Actin Severing

F-actin severing by ADF/Cofilin enhances actin turnover, at least in part, by increasing the number of filaments’ pointed ends that can be depolymerized (Pollard, 2016). Based on real time assessment of immobilized F-actin sparsely labeled with biotin, it has been proposed that yeast and mouse CAP can enhance F-actin severing activity of ADF/Cofilin by direct interaction with ADF/Cofilin-decorated F-actin segments (Normoyle and Brieher, 2012; Chaudhry et al., 2013; Jansen et al., 2014). However, follow up studies using F-actin immobilized only via barbed end, thereby leaving the complete filament free in solution, showed that CAP effect on ADF/Cofilin-mediated F-actin severing is very modest when compared to F-actin depolymerization (Kotila et al., 2019; Shekhar et al., 2019). To which extent CAP accelerates ADF/Cofilin-mediated F-actin severing in vivo awaits further studies.



INF2 Inhibition

In addition to the aforementioned functions, CAP controls actin dynamics via its inhibitory function towards the F-actin assembly factor INF2 (Mu et al., 2019, 2020). Specifically, binding of lysine-acetylated actin (KAc-actin) containing CAP to INF2’s regulatory regions, i.e., DID (Diaphanous inhibitory domain) and DAD (Diaphanous autoregulatory domain), keeps INF2 in an inactive state (Mu et al., 2019, 2020). INF2 has been previously implicated in F-actin assembly at contact sites between the endoplasmic reticulum (ER) and mitochondria, which is relevant for mitochondrial recruitment of Dynamin-related protein 1 (DRP1), mitochondrial fission and calcium transfer from ER to mitochondria (Korobova et al., 2013; Chakrabarti et al., 2018). Interestingly, yeast CAP has been recently implicated in mitochondria morphology and function, too (Chen et al., 2019). This study revealed an interaction of yeast CAP with DRP1 and showed that CAP deletion caused elongated-hyperfused mitochondria associated with lower reserved respiration capacity. Hence, these data suggested a pro-fission activity for yeast CAP. CAP may control mitochondria morphology and function via regulating INF2 activity. However, apart from INF2, ADF/Cofilin has been implicated in mitochondrial DRP1-recruitment, mitochondrial dynamics and function, too (Chua et al., 2003; Klamt et al., 2009; Rehklau et al., 2012, 2017; Hoffmann et al., 2019), thereby offering an additional mode of CAP action on mitochondria.



G-Actin Sequestration

Based on earlier in vitro studies showing that CAP inhibits spontaneous actin polymerization, it was concluded that CAP acts as an actin sequestering protein (Gieselmann and Mann, 1992; Freeman et al., 1995; Mattila et al., 2004; Chaudhry et al., 2007; Peche et al., 2012; Nomura and Ono, 2013). Although CAP has high affinity to ADP-G-actin (Kd 0.02–0.05 μM; Mattila et al., 2004; Makkonen et al., 2013), it also possesses fast catalytic activity towards nucleotide exchange on G-actin (Chaudhry et al., 2010, 2013; Jansen et al., 2014). Taking into consideration that compared to Profilin (Kd 0.1 μM) or WH2 domain containing proteins CAP possesses relatively poor ATP-G-actin affinity (Kd 1.5 μM; Vinson et al., 1998; Chaudhry et al., 2010; Carlier and Shekhar, 2017), it is less likely that CAPs can efficiently sequester G-actin in a complex milieu of the cell. However, further investigations are needed to clarify CAP’s G-actin sequestering function and its implication in vivo.



Oligomerization as Necessity

Using different methods such as gel filtration or analytical ultracentrifugation, previous studies identified yeast, mouse and human CAP as part of a 600 kDa complex containing six CAP and six G-actin, thereby suggesting formation of CAP hexamers (Moriyama and Yahara, 2002; Balcer et al., 2003; Quintero-Monzon et al., 2009; Jansen et al., 2014; Mu et al., 2019). Furthermore, negative staining electron microscopy revealed that yeast and mouse N-CAP segments including OD and HFD form a wheel-like appearance with six symmetrical protrusions. Interestingly, within each of this protrusion one could dock only one HFD, thus forming again a hexameric structure. Additionally, other studies stated that human N-CAP form tetramers (Purde et al., 2019). Whether this discrepancy is due to different experimental conditions needs further clarification. The most N-terminal coiled-coil OD has been implicated in oligomerization, since yeast CAP lacking OD could only dimerize (Quintero-Monzon et al., 2009), most likely via CARP domain (see CARP domain section). Corroborating this result, human N-CAP lacking OD formed mostly monomers, albeit to a small extent also dimers (Purde et al., 2019). Importantly, deletion of OD in yeast CAP reduced ADF/Cofilin-mediated F-actin turnover in vitro and caused defects in cell growth, morphology and actin organization in vivo (Quintero-Monzon et al., 2009). Interestingly, a substitution of OD of human N-CAP with artificial ODs, capable of forming either dimers or trimers, potentiated cofilin mediated F-actin depolymerization and severing better with increasing level of oligomerization (Purde et al., 2019). Likewise, dimerizing HFD of human CAP with glutathione-S-transferase partially rescued a 20-fold reduction in pointed end depolymerization of ADF/Cofilin-decorated F-actin by OD lacking N-CAP (Kotila et al., 2019). In summary, these observations strongly suggest that higher-order oligomerization state is necessary for CAP’s function in actin dynamics.



Concluding Remarks on CAP Function in Actin Dynamics

Taken together, studies of the last decade drastically changed our view of CAP’s contribution to actin dynamics. Instead of being G-actin sequestering factor or passive player in actin turnover, these studies unraveled important functions for CAP in almost all steps of actin dynamics including F-actin depolymerization, F-actin severing, G-actin recharging and F-actin polymerization, making CAP an essential player in actin dynamics regulation (Chaudhry et al., 2013; Jansen et al., 2014; Johnston et al., 2015; Kotila et al., 2019; Mu et al., 2019; Shekhar et al., 2019).





CELLULAR, DEVELOPMENTAL AND PHYSIOLOGICAL FUNCTIONS


Cellular Functions in Lower Eukaryotic Organisms

Cyclase-associated protein functions in budding yeast have been outlined above. Briefly, studies in S. cerevisiae revealed a role for CAP in RAS2-cAMP signaling (Fedor-Chaiken et al., 1990; Field et al., 1990), which may depend on CAP’s stimulatory effect on post-translational RAS2 modification (Lila and Drubin, 1997). Furthermore, an actin regulatory activity of CAP was first described in yeast (Vojtek et al., 1991; Balcer et al., 2003; Mattila et al., 2004; Bertling et al., 2007). Apart from S. cerevisiae, cellular CAP functions have been studied in the soil-dwelling amoeba Dictyostelium (D.) discoideum. CAP inactivation in D. discoideum caused defects in cell polarization, F-actin organization and phototaxis, thereby confirming the relevance of CAP for various cellular functions. In D. discoideum, CAP is relevant for both cAMP signaling and actin cytoskeleton regulation (Noegel et al., 2004; Sultana et al., 2012), similar to the yeast CAP. Furthermore, actin-regulating activity was located in CAP’s C-terminal region in D. discoideum, and it was inhibited by phosphatidylinositol 4,5-bisphosphate (PIP2) (Gottwald et al., 1996). In migrating amoeba CAP, was located at anterior and posterior plasma membrane regions and enriched in leading fronts upon chemotactic stimulation, thereby suggesting a function in PIP2-dependent actin cytoskeleton regulation. Moreover, these observations suggested important developmental functions for CAP in multicellular organisms.



Developmental and Physiological Functions in Invertebrates

Drosophila melanogaster only possesses a single CAP homolog (Ono, 2013), which has been identified simultaneously in two independent screens of mutant fly strains and termed Capulet and Act up, respectively (Baum et al., 2000; Benlali et al., 2000). In this review we stick to the term Capulet, which has been used more frequently in literature. Both screens unraveled Capulet as an important F-actin regulator that controls developmental patterning processes via actin-dependent mechanisms (Stevenson and Theurkauf, 2000). The first study found Capulet in a screen for oocyte polarity defects (Baum et al., 2000). During oogenesis, Capulet controls spatial F-actin assembly that is relevant for microtubule organization and, hence, for the asymmetric distribution of cell polarity determinants. The second study found antagonistic F-actin functions in the eye disk for Capulet and Chickadee, the fly homolog of Profilin. Although F-actin levels were increased in Capulet and reduced in Chickadee mutants (Benlali et al., 2000), both strains displayed similar defects in cell shape changes during eye development. These changes are relevant for the establishment of the eye disk morphogenetic furrow that restricts Sonic hedgehog (SHH) signaling and prevents premature photoreceptor differentiation. Consequently, SHH signaling and photoreceptor differentiation was less confined in mutant eyes (Benlali et al., 2000), demonstrating that actin-dependent cell morphological changes controlled by Capulet and Chickadee govern intercellular signaling cascades during development.

Since these pioneering, first genetic studies in multicellular organisms, several other important developmental functions have been unraveled for Capulet. It counterbalances F-actin assembly promoted by the Ena/VASP (vasodilator-stimulated phosphoprotein) protein Enabled at apical adherens junctions of follicular epithelia cells that cover oocytes during oogenesis (Baum and Perrimon, 2001). In this process, Capulet cooperated with the tyrosine kinase ABL, which interacts via its SH3 domain with Capulet’s proline-rich motif (Freeman et al., 1996). A function for Capulet in F-actin regulation at apical adherens junctions has been described also for wing epithelial cells (Major and Irvine, 2005). In these cells, Capulet acts downstream of Notch signaling in establishing a boundary between different cell populations and, hence, in wing compartmentalization. Boundary formation and wing compartmentalization was preserved in ABL mutants, demonstrating that ABL is not relevant for adherens junctions in wing epithelial cells. Hence, Capulet does not necessarily require ABL to be functional in epithelia cells. However, similar to follicular epithelia, a cooperation of Capulet and ABL has been reported in neuronal growth cones, which are dynamic and F-actin-enriched structures that navigate axons through the developing central nervous system (Wills et al., 2002). Specifically, Capulet and ABL interact in growth cone repulsion downstream of the secreted guidance cue Slit and its receptors of the Roundabout family, a pathway that spatially controls midline crossing of axons. Interestingly, Chickadee has been identified as another interaction partner of ABL in growth cones (Wills et al., 1999). Different from Capulet mutants, Chickadee mutants displayed growth cone arrest phenotype, suggesting opposing functions for both ABP in growth cones, similar to the eye disk (Benlali et al., 2000). While this study linked Capulet to F-actin regulation during neuron differentiation, another study described abnormal F-actin aggregates upon Capulet inactivation in differentiated neurons (Medina et al., 2008). In line with a biochemical function in releasing ADF/Cofilin from actin complexes (Johnston et al., 2015; Kotila et al., 2019; Shekhar et al., 2019), neurons from Capulet mutants displayed rod-like structures consisting of actin and ADF/Cofilin. Interestingly, similar ADF/Cofilin-actin rods have been found together with amyloid deposits and neurofibrillary tangles in brains from Alzheimer’s Disease (AD) patients as well as in abnormal actin aggregates termed Hirano bodies, which have been reported for AD and Parkinson’s disease (Minamide et al., 2000; Heredia et al., 2006; Gallo, 2007). Hence, defects in CAP-dependent neuronal actin dynamics may contribute to the pathology of human neurodegenerative diseases (see below).

Different from D. melanogaster and most other invertebrates, the nematode C. elegans expresses two CAP isoforms that have been termed CAS-1 and CAS-2, because the abbreviation CAP has been used already for actin capping proteins (Ono, 2013). CAS-1 and CAS-2 are encoded by distinct genes and differ in their expression pattern (Nomura et al., 2012; Nomura and Ono, 2013). While CAS-1 is abundant in muscle tissue, CAS-2 expression is restricted to non-muscle cells. In line with a conserved function in actin cytoskeleton regulation, CAS-1 binds G-actin and enhances exchange of actin-bound nucleotides (Nomura et al., 2012). Further, it promotes F-actin turnover in the presence of UNC-60B, the muscle-specific ADF/Cofilin homolog in C. elegans, which has been identified as an essential regulator of sarcomere F-actin organization in the larval body wall muscle (Ono et al., 1999, 2003). Genetic CAS-1 inactivation caused developmental arrest at larval stages, immobility as well as a severe F-actin disorganization in larval body wall muscles, while F-actin structures appeared normal in non-muscle tissues (Nomura et al., 2012). This study revealed a specific function for CAS-1 in striated muscles, and it strongly suggested a cooperative activity of CAS-1 and UNC-60B in sarcomere F-actin organization during myofibril differentiation, similar to a model that has been proposed for the mammalian homologs Cofilin2 and CAP2 (Kepser et al., 2019).

The second CAP homolog CAS-2 has been identified in C. elegans just a few years ago (Nomura and Ono, 2013). In vitro studies unraveled a primary function for CAS-2 in nucleotide exchange on G-actin and, hence, in F-actin assembly, which depends on β-sheets located in its CARP domain and on a C-terminal dimerization motif (Nomura and Ono, 2013; Iwase and Ono, 2016, 2017). CAS-2 has been shown to antagonize F-actin depolymerization and G-actin sequestration by the ADF/Cofilin homolog UNC-60A (Nomura and Ono, 2013). UNC-60A is widely expressed in non-muscle tissues and essential for embryonic cytokinesis and assembly of contractile actin networks in the somatic gonad (Ono et al., 2003, 2008), and CAS-2 may have similar important in vivo functions. However, the precise CAS-2 expression pattern has not been resolved to date and, due to the lack of CAS-2 mutant worms, its developmental and physiological functions remained unknown.



Developmental and Physiological Functions in Vertebrates

Unlike most invertebrates, vertebrates express two CAP isoforms with different expression patterns (Ono, 2013). In most vertebrate species investigated to date, one of these isoforms (CAP1) is broadly expressed, while expression of the second (CAP2) is restricted to a limited number of tissues, including heart, skeletal muscle and brain as well as - in lower amounts - in skin, testes and lung (Bertling et al., 2004; Peche et al., 2007). This led to the suggestion that vertebrate CAPs evolved cell type-specific functions (Ono, 2013), similar to the muscle-specific function of CAS-1 in C. elegans (Nomura et al., 2012). Although abundance in striated muscles has been reported for CAP2 in several species from frog (Xenopus laevis) and zebrafish (Danio rerio) to mammals (Bertling et al., 2004; Peche et al., 2007; Wolanski et al., 2009; Effendi et al., 2012), its function in striated muscles has been studied only in mice, in which systemic inactivation caused a dilated cardiomyopathy (DCM) together with impaired cardiac conduction (Peche et al., 2012; Stockigt et al., 2016). These defects might be caused by disturbed sarcomere organization and/or by reduced cooperativity of calcium-induced force generation, which have been both shown for isolated CAP2 mutant myofibrils (Peche et al., 2012). Impaired heart physiology in CAP2 mutant mice has been confirmed in an independent study that also included a mutant strain with specific CAP2 inactivation in cardiac muscle cells (Field et al., 2015). This study further reported that cardiac conduction defects can culminate in a complete heart block, which likely caused increased lethality of systemic and cardiomyocyte-specific mutants (Peche et al., 2012; Field et al., 2015). Of note, DCM and cardiac conduction defects have been recently associated with CAP2 mutations in humans (Aspit et al., 2019).

Gene expression analyses revealed an upregulation of fetal genes in hearts from CAP2 mutant mice prior to the manifestation of clinical symptoms (Xiong et al., 2019). Interestingly, target genes of the transcription factor serum response factor (SRF) including genes encoding for α-actin isoforms were overrepresented among upregulated genes. Pharmacological inhibition of SRF activity not only normalized expression of SRF downstream targets, but also prolonged normal cardiac function and survival in CAP2 mutant mice, thereby demonstrating that SRF dysregulation contributed to heart defects in mutant mice. Myocardin-related transcription factor (MRTF) is an important co-activator of SRF, which is sequestered by G-actin and promotes expression of cytoskeleton-related genes upon release from G-actin complexes (Olson and Nordheim, 2010; Esnault et al., 2014). CAP2 may control SRF-dependent gene expression in cardiomyocytes via regulating availability of G-actin, in line with the elevated nuclear MRTF levels in CAP2 mutant hearts. These findings support an interesting model, in which actin regulators such as CAP2 are developmentally and physiologically relevant not only by controlling local F-actin dynamics in subcellular structures, but also by governing gene expression.

While these studies unequivocally demonstrated the relevance of CAP2 for heart physiology in mice and human, CAP2 seems to be dispensable for heart development in embryogenesis (Peche et al., 2012; Field et al., 2015). Conversely, a recent study identified an important function for CAP2 in myofibril differentiation during skeletal muscle development (Kepser et al., 2019). Specifically, CAP2 inactivation delayed the sequential exchange of α-actin isoforms from smooth muscle and cardiac α-actin to skeletal muscle α-actin during early postnatal development. This delay coincided with the onset of motor function deficits and histopathological changes characterized by a high frequency of displaced myofibrils termed ring fibers (Kepser et al., 2019). A very similar delay in the ‘α-actin switch’ has been reported for mutant mice lacking Cofilin2 (Gurniak et al., 2014), suggesting that CAP2 and Cofilin2 cooperate in myofibril actin cytoskeleton differentiation, similar to CAS-1 and UNC-60B in C. elegans (Nomura et al., 2012). Notably, Cofilin2 mutant mice displayed skeletal muscle phenotypes similar to myopathies described for human patients with CFL2 mutations (Agrawal et al., 2007; Ockeloen et al., 2012; Ong et al., 2014). It is therefore tempting to speculate that mutations in the human CAP2 gene may cause skeletal muscle defects, too.

Deletions of the short arm of chromosome 6 that include the human CAP2 gene, have been described in a rare developmental disorder named 6p22 syndrome (Davies et al., 1999; Bremer et al., 2009; Celestino-Soper et al., 2012; Di Benedetto et al., 2013). This syndrome is characterized by developmental delays, heart defects as well as autism spectrum disorders (ASD) symptoms, which have been associated with synaptic defects (Bourgeron, 2015). Because CAP2 mutant mice displayed a delay in motor functions during postnatal development together with heart defects (Peche et al., 2012; Field et al., 2015; Kepser et al., 2019), a contribution of CAP2 loss to 6p22 syndrome has been suggested. Notably, apart from striated muscles, CAP2 is abundant in brain and present in different brain areas including cerebral cortex and hippocampus (Bertling et al., 2004; Peche et al., 2007; Kumar et al., 2016; Pelucchi et al., 2020a). In differentiated neurons, CAP2 is present in postsynaptic compartments (dendritic spines) of excitatory synapses and located in the F-actin enriched region underneath the postsynaptic density (Pelucchi et al., 2020a). CAP2 inactivation differently affected neuron structure and dendritic spine morphology in cerebral cortex and hippocampus. While primary cortical neurons from CAP2 mutant mice showed an increase in dendrite complexity and spine density (Kumar et al., 2016), CAP2 downregulation in primary hippocampal neurons reduced dendritic arborization and enlarged spines, which was associated with decreased synaptic excitatory transmission and impaired synaptic plasticity (Pelucchi et al., 2020a). Interestingly, CAP2 function in spine morphology and synaptic plasticity required its ability to form disulfide cross-linked homodimers, which were mediated by cysteine-residues at position 32 (C32). C32-dependent covalent dimerization of CAP2 was crucial for interaction with Cofilin1 (Pelucchi et al., 2020a), a key actin regulator in dendritic spines that controls spine morphology as well as different forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD; Rust, 2015). The mutation of the C32 of CAP2 significantly decreases, but not completely eliminates, CAP2 self-association and the binding to Cofilin1, suggesting that CAP2 can still form oligomers that are able to interact with Cofilin1. Yet, the lack of C32 covalent CAP2 dimers leads to a loss of function of CAP2/Cofilin1 complex on actin depolymerization, emphasizing the importance of C32 disulfide bond formation for the CAP2 function (Pelucchi et al., 2020a). In Cofilin1 mutant mice, mature spines were strongly enlarged in hippocampal and striatal neurons and LTD, which is associated with spine shrinkage or retraction, was not inducible (Rust et al., 2010; Wolf et al., 2015; Zimmermann et al., 2015), suggesting that Cofilin1 is relevant for F-actin disassembly in mature spines. Instead, during the early phase of LTP, Cofilin1 is recruited into dendritic spines where it may promote F-actin assembly that is required for spine expansion (Bosch et al., 2014). CAP2 may have a crucial role in the LTP-induced enrichment of Cofilin1 in spines: it has been shown that the C32-dependent CAP2 covalent dimerization and association to Cofilin1 are triggered by LTP and are required for LTP-induced Cofilin1 translocation into spines, spine remodeling and the potentiation of synaptic transmission (Pelucchi et al., 2020a). Redox-regulated disulfide bond formation represents an important post-translational control mechanism employed by several proteins, such as transcription factors, signaling proteins and cytoskeletal components to adjust their functional activity when reactive oxygen species (ROS) start to accumulate (Cremers and Jakob, 2013). Indeed, it is becoming clear that ROS are not simply toxic species, but are often transiently and locally produced as part of signaling pathways (Schippers et al., 2012; Cremers and Jakob, 2013). In neuronal cells, ROS generation has been also implicated in plasticity events (Bórquez et al., 2016), since it has been shown that the production of superoxide anion radical is required for the full expression of LTP and for memory tasks (Massaad and Klann, 2011). In light of these considerations, it might be possible that LTP-triggered changes in the redox balance could trigger the disulfide bond formation of CAP2 covalent dimers.

Together, these data implicated CAP2 in cellular processes that are believed to be fundamental for learning and memory (Holtmaat and Svoboda, 2009), and they suggested that CAP2 loss may contribute to ASD symptoms in 6p22 syndrome. Interestingly, a C29-dependent mechanism in covalent dimer formation relevant for F-actin and Cofilin1 binding has been also reported for CAP1 in rat mesangial cells (Liu et al., 2018). However, the physiological relevance of CAP1 covalent dimerization and Cofilin1 interaction has not been studied in neurons to date. Unlike C32 in CAP2, C29 in CAP1 is not conserved in humans, thereby limiting the relevance of CAP1 covalent dimerization for synaptic function.

Immunoblot analysis and in situ hybridization revealed broad CAP1 expression in mice, both during development and in adulthood (Bertling et al., 2004; Peche et al., 2007). However, only very little is known about its developmental and physiological functions, also because appropriate mouse models were missing. Transcription activator-like effector nuclease (TALEN)-engineered systemic CAP1 mutant mice have been reported just recently, but these mutants died at embryonic day 16.5, and their developmental defects have not been analyzed yet (Jang et al., 2019). Instead, heterozygous mutants with substantially reduced CAP1 protein levels were viable and showed defects in lipoprotein metabolism. Specifically, CAP1 was identified as an interaction partner of proprotein convertase subtilisin/kexin type-9 (PCSK9), which induces internalization and lysosomal degradation of low-density lipoprotein (LDL) receptor (LDLR). PCSK9 thereby enhances serum levels of LDL and LDL cholesterol, and it emerged as a valuable therapeutic target for atherosclerotic cardiovascular diseases (Burke et al., 2017). Mechanistically, PCSK9-binding of CAP1 promotes Caveolin-1-dependent endocytosis and lysosomal degradation of PCSK9-LDLR complexes (Jang et al., 2019). This pathway was impaired upon CAP1 inactivation, and heterozygous mice displayed increased LDLR levels and consequently reduced serum levels of LDL and LDL cholesterol. Hence, modulation of CAP1 activity may provide a novel therapeutic avenue for atherosclerosis and other cardiovascular diseases (Dron and Hegele, 2020). Apart from its function in lipoprotein metabolism, no other in vivo function has been reported for CAP1 to date, underlying the exigency of a conditional mouse model, which would also allow to test whether or not CAP1 is relevant for cytokine signaling, inflammation, adipose biology, coronary artery disease, chronic obstructive pulmonary disease or renal disease as suggested by recent studies (Lee et al., 2014; Xie et al., 2014; Munjas et al., 2017; Munjas et al., 2020).



Potential Implication in Human Diseases

As a major cytoskeletal component in eukaryotic cells, F-actin is involved in a variety of cellular processes. Together with actin motor proteins, it constitutes the primary machinery for the generation of protrusive and contractile forces (Castellano et al., 2001; Amberg et al., 2012). F-actin dynamic is relevant for cell migration, phagocytosis and membrane trafficking. In addition, actin is the target of executioner Caspases during apoptosis, and experiences oxidative damage when cellular stress occurs (Davidson and Wood, 2016). In this framework, ABP are critical for the precise control of the actin cytoskeleton, since they are responsible for forming the F-actin structures at the right place and time within the cell. In light of these considerations, the actin cytoskeleton and, thereby, ABP play key roles in many aspects of human health, ranging from embryonic development to aging, and are implicated in several diseases and pathological processes including cancer metastasis, wound repair, inflammation or neurodegenerative disorders (Davidson and Wood, 2016; Lai and Wong, 2020; Pelucchi et al., 2020b). As far as concern CAP1 and CAP2, potential roles have been described for various human pathologies apart from the already mentioned contributions of CAP1 to atherosclerosis or other cardiovascular diseases and of CAP2 to heart diseases and 6p22 syndrome.


CAP1 at the Crossroads of Metabolism and Cancer

Several publications reported altered CAP1 expression in a growing list of human cancers that include glioma, oral squamous cell carcinoma as well as breast, pancreatic, liver, lung and epithelial ovarian cancer. CAP1 is a protein relevant for cell migration and, thereby, presumably in metastasis formation. Indeed, dynamic actin cytoskeletal rearrangement, based on repeated cycles of F-actin turnover, is the primary driving force of cell migration and cancer cell invasiveness (Hall, 2009; Fife et al., 2014). Overexpression of CAP1 may have significant clinical implications as a diagnostic/prognostic factor for lung cancer (Tan et al., 2013), esophageal squamous cell carcinoma (Li et al., 2013), epithelial ovarian cancer (Hua et al., 2015) and glioma (Bao et al., 2016; Fan et al., 2016). The loss of CAP1 expression affects the breast cancer cell cycle (Yu et al., 2014), retards the glioma cells proliferation (Bao et al., 2016; Fan et al., 2016) and inhibits cell cycle progression in epithelial ovarian cancer cells (Hua et al., 2015).

CAP1 overexpression in hepatocellular carcinoma specimens correlates with tumor metastasis. Moreover, CAP1 co-localizes with actin in the leading edge of lamellipodia in hepatocellular carcinoma cells (Liu et al., 2014). CAP1 down-regulation impairs cells migration in hepatocellular carcinoma cells (Liu et al., 2014), in esophageal squamous cell carcinoma (Li et al., 2013), in breast cancer cells (Yu et al., 2014) and in glioma cells (Bao et al., 2016; Fan et al., 2016). However, the role for CAP1 in human cancers and in cell migration is still controversial, with mounting evidence suggesting a role that is dependent on the type or even subtype of cancer. CAP1 knockdown impaired F-actin dynamics, which in most cells leads to reduced cell motility. However, depletion of CAP1 in HeLa cells, while causing reduction in dynamics, actually caused increased cell motility through activation of cell adhesion signals (Zhou et al., 2014a). In metastatic breast cancer cells, depletion of CAP1 stimulated both the invasiveness and cell proliferation, while in non-metastatic MCF-7 cancer cells it actually had opposite effects (Zhang and Zhou, 2016).

Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior. CAP1 was found upregulated in pancreatic cancer xenografts transplanted into immuno-deficient mice, and CAP1-positive tumor cells in clinical specimens correlated with the presence of lymph node metastasis and with the poor prognosis of patients (Yamazaki et al., 2009). CAP1 inactivation resulted in reduced lamellipodium formation, cell motility and invasion (Yamazaki et al., 2009). In another study, no changes in CAP1 expression in pancreatic cancer lines have been reported, but an increase in CAP1 phosphorylation at serine residues S308/S310 has been detected (Wu et al., 2019). CAP1 phosphorylation at this tandem phospho-site controls binding of Cofilin1 and actin and provide a mechanism that controls F-actin dynamics (Zhou et al., 2014b). The phosphorylation mutants showed defects in alleviating the elevated focal adhesion kinase (FAK) activity and enhanced focal adhesions in the CAP1 knockdown cells (Zhang et al., 2020). Overall, these results support the idea that transient CAP1 phosphorylation controls F-actin dynamics and cell adhesion. Interestingly, glycogen synthase kinase 3 (GSK3), which was reported to be hyper-activated in pancreatic cancer, can phosphorylate CAP1 (Zhou et al., 2014b). Disrupting CAP1 phospho-regulation via GSK3 inhibition or expressing phospho-site mutants compromised CAP1 functions in alleviating enhanced stress fibers and in rescuing invasiveness of CAP1-knockdown pancreatic cancer cells. These data suggest that transient CAP1 phosphorylation is relevant for the control of pancreatic cancer cell invasiveness (Wu et al., 2019). The involvement of this tandem phospho-site has been reported also in breast cancer cells, in which CAP1 has a role in the invasiveness and in regulating proliferative transformation of cancer cells, with ERK (extracellular signal-regulated kinase) signaling playing pivotal roles in mediating both cell functions (Zhang and Zhou, 2016).

In addition to the above-described mechanism related to cell migration and metastasis formation, CAP1 can contribute to cancer pathogenesis as Resistin receptor. Human Resistin is primarily expressed in and secreted from monocytes (Patel et al., 2003). Resistin-mediated chronic inflammation can lead to obesity, atherosclerosis, and other cardiometabolic diseases. In addition to the toll-like receptor 4 (TLR4; Tarkowski et al., 2010), CAP1 has been identified as receptor for human Resistin. Resistin binding of CAP1 via its SH3 domain upregulates cAMP concentration, protein kinase A (PKA) activity, and NF-κB-related transcription of inflammatory cytokines. Even though several biochemical binding assays have demonstrated the direct interaction between CAP1 and Resistin (Lee et al., 2014), the biological mechanism underlying CAP1/Resistin association at the plasma membrane requires further investigations considering that CAP1 lacks a transmembrane domain. Such concern should be taken into account also in relation to the binding of CAP1 to caveolin-1 and PCSK9, which is implicated in the caveolae-dependent endocytosis and lysosomal degradation of the LDLR. Further studies addressing how CAP1 is associated to the membrane are necessary to fully understand CAP1 cellular function.

CAP1 mediates the inflammatory response triggered by Resistin both in cultured human monocytes and in white adipose tissue in humanized Resistin mice in vivo (Lee et al., 2014). In addition, Resistin increases chemokine production by fibroblast-like synoviocytes via CAP1 in synovial tissue, thus contributing to the pathogenesis of rheumatoid arthritis (Sato et al., 2017).

Considering Resistin’s ability to stimulate lipid uptake and atherosclerotic plaque progression, CAP1 and Resistin levels have been assessed in patients affected by coronary artery disease. The results revealed a significant increase in plasma Resistin levels and in CAP1 expression in peripheral blood mononuclear cells of coronary artery disease patients, suggesting that Resistin is able to exert its effects stronger on cells with up-regulated CAP1 (Munjas et al., 2017).

An increase in Resistin plasma levels and CAP1 expression in peripheral blood mononuclear cells has been reported in colorectal cancer patients (Mihajlovic et al., 2019). Resistin can also contribute to pancreatic cancer pathogenesis, since its levels are increased in pancreatic cancer patients and correlate positively with tumor grades. Moreover, the Resistin receptors CAP1 and TLR4 mediate the effects of Resistin on cancer cells through activation of STAT3 (signal transducer and activator of transcription 3) and are implicated in the resistance to chemotherapy (Zhang et al., 2019).

Obesity represents a major risk for developing several types of cancer, including breast cancer (Calle and Kaaks, 2004). Resistin is among the top modulated adipokines secreted by adipocytes under obesity-associated metabolic conditions and therefore represents a plausible soluble mediator in the link between obesity, metabolic complications and breast cancer via the binding to CAP1 (Rosendahl et al., 2018). In a study, CAP1 gene and Resistin gene variants were associated with increased risk of breast cancer among Mexican women (Munoz-Palomeque et al., 2018). CAP1 is expressed across a large panel of breast cancer cell lines and primary human tumor and high CAP1 expression is associated with poor tumor characteristics and impaired prognosis among breast cancer patients (Rosendahl et al., 2018). Low CAP1 tumor expression was associated with higher body fatness and worse survival outcomes in breast cancer patients (Bergqvist et al., 2020). Moreover, Resistin increases breast cancer metastasis potential through induction epithelial to mesenchymal transition, a process in which cancer cells lose their epithelial characteristics and gain mesenchymal-like features, and that these effects may be associated with CAP1 (Avtanski et al., 2019).



CAP2 Role in AD, Wound Repair and Cancer

We have mentioned above the importance of CAP2 for synaptic plasticity that is relevant for learning and memory. F-actin alterations in dendritic spines have been described in AD, the most common form of dementia characterized by synaptic dysfunction in the early stages of the pathogenesis (Pelucchi et al., 2020b). CAP2 levels and synaptic localization are specifically reduced in the hippocampus, but not in the cortex of AD patients. Interestingly, CAP2 levels are increased in the cerebrospinal fluid of AD patients, but not in subjects affected by frontotemporal dementia, indicating the specificity of the alteration for this form of dementia. Furthermore, in AD hippocampal synapses CAP2 covalent dimer levels are decreased and Cofilin1 association to CAP2 covalent dimer/monomer is altered. These data suggested the presence of an ineffective CAP2-Cofilin1 complex in AD hippocampal synapses, which may contribute to impaired structural plasticity in AD (Pelucchi et al., 2020a).

CAP2 could be also involved in wound repair since CAP2 mutant mice showed an altered wound healing response (Kosmas et al., 2015). CAP2 in murine and human skin is present in the nucleus, in the cytosol and in the cell periphery. The keratinocytes from CAP2 mutant mice showed reduced velocity and a delay in scratch closure. Moreover, in human wounds, CAP2 is also expressed in hyper-proliferative epidermis. The fibroblasts of CAP2 mutant mice develop extended protrusions, increased focal adhesions and showed slower migration velocity, thereby suggesting a model in which a stabilization of focal adhesions as well as a disruption of cell polarity impaired motility of CAP2-deficient cells (Kosmas et al., 2015). The formation of a dense meshwork of peripheral F-actin and the disruption of the cell polarity may also contribute to reduced cell motility necessary to promote the wound healing process (Kosmas et al., 2015).

Similar to CAP1, CAP2 has been implicated in cancer pathogenesis and particularly in invasiveness. CAP2 is overexpressed in different cancer and is an unfavorable biomarker for prognostic prediction for patients affected by breast cancer (Xu et al., 2016), epithelial ovarian cancer (Adachi et al., 2020), malignante melanoma (Masugi et al., 2015), gastric cancer (Li et al., 2020), and glioma (Saker et al., 2020). Furthermore, oligonucleotides array technology revealed CAP2 as one of the genes upregulated in early hepatocellular carcinoma (Chuma et al., 2003). CAP2 overexpression is observed in a stepwise manner during the hepatocellular carcinoma progression and, in the early stages, the invading tumor cells were CAP2-positive (Shibata et al., 2006). Indeed, CAP2 overexpression is considered a poor prognostic biomarker for hepatocellular carcinoma patients (Fu et al., 2015). Interestingly, CAP2 and actin co-localized in the leading edge of lamellipodia from hepatocellular carcinoma cells. CAP2 knockdown inhibited lamellipodia extension upon serum stimulation and decreased cell motility. These data suggest a role for CAP2 in F-actin dynamics at the leading edge of lamellipodia, which is a characteristic feature of motile cells. Moreover, the overexpression of CAP2 correlates with portal vein invasion and intrahepatic metastasis, indicating CAP2 involvement in promoting the invasive behavior of hepatocellular carcinoma cells (Effendi et al., 2012).





CONCLUDING REMARKS

Actin dynamics is coordinated by multiple ABP and involved in a variety of cellular functions including muscle contraction, cell movement, intracellular transport, and transcriptional regulation within the nucleus. In this complex picture, CAP, an ABP conserved among eukaryotes, has acquired crucial roles. First described as a G-actin sequestering factor, more recently CAP has emerged as a molecular hub able to orchestrate F-actin depolymerization, G-actin recharging and F-actin severing. The existence of two CAP isoforms with relatively low homology (Yu et al., 1994) and different expression patterns in vertebrates, further increases the complexity. CAP1 is essential in most cell types, while CAP2 appears to have unique roles. Considering that most studies so far have been focused on CAP1, it will be important to investigate the function of CAP2 in specific cell types expressing high CAP2 levels.

In addition to the actin regulating activity, CAP1 has been identified as Resistin receptor and protein partner of PCSK9, thus highlighting the involvement of CAP1 in metabolic processes. Such novel biological function suggests that CAP could be not just an ABP, but it can be involved in multiple biological pathways. This hypothesis is supported by the involvement of CAP1 and CAP2 in the pathogenesis of different diseases.

How are CAP-mediated processes governed in cells? To address this issue, it will be crucial to integrate structural information and biological studies to identify post-translational modifications and signaling pathways controlling CAP activity. Such information will be relevant for a comprehensive characterization of CAP’s cellular functions and for understanding potential CAP dysregulation that may contribute to the pathogenesis of human diseases.
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Transgelins, including transgelin-1 (T-1), transgelin-2 (T-2), and transgelin-3 (T-3), are a family of actin-binding proteins (ABPs) that can alter the structure and morphology of the cytoskeleton. These proteins function by regulating migration, proliferation and apoptosis in many different cancers. Several studies have shown that in various types of tumor cells, including colorectal cancer (CRC) cells, and in the tumor microenvironment, the expression and biological effects of transgelins are diverse and may transform during tumor progression. Previous researches have demonstrated that transgelin levels are positively correlated with metastasis in CRC, and down-regulating their expression can inhibit this process. In advanced disease, T-1 is a tumor activator with increasing expression, and T-2 expression increases with the progression of CRC. Finally, T-3 is only expressed in neurons and is not associated with CRC. This evidence suggests that T-1 and T-2 are potential biomarkers and therapeutic targets for CRC metastasis.
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INTRODUCTION

Colorectal cancer (CRC) is one of the leading causes of cancer death worldwide, and because of its increasing incidence in younger populations coinciding with a decreasing incidence in older individuals, the CRC patient population as a whole is rapidly shifting toward a younger demographic (Siegel et al., 2020). CRC is generally asymptomatic until it reaches an advanced stage, and more than 25% of CRC patients have lymph node or even distant metastasis at initial diagnosis (stage IV) (Tauriello et al., 2017; Sterpetti et al., 2020). Metastasis is the main cause of death in patients with CRC (Van Cutsem et al., 2018; Hafizi et al., 2019), among which liver and lung metastasis account for approximately 60 and 30% of these deaths, respectively (Wang et al., 2018; Li et al., 2019; Kasprzak and Adamek, 2020). CRC metastasis is a multihit, multistage process, but there is a lack of effective treatments for CRC metastasis (Wei et al., 2019); therefore, the identification of molecular biomarkers associated with CRC metastasis is critical for the subsequent treatment of CRC and extending patient survival.

Transgelins are a family of proteins that were discovered decades ago (Lees-Miller et al., 1987; Shapland et al., 1993). They are involved in many diseases, including asthma, hypertension, diabetes and cancer, but the role of transgelins in cancer is not very clear (Huang et al., 2018; Sun et al., 2018; Varberg et al., 2018; Yin et al., 2018). Recently, studies have shown that transgelins are associated with CRC metastasis. Mo et al. (2020) conducted weighted gene co-expression network analysis (WGCNA) and found that transgelins may contribute to the development of early onset CRC; further experiments identified transgelin 1 (T-1) as the top-ranked biomarker of node status. T-1 was up-regulated in node-positive CRC compared with node-negative disease (Lin et al., 2009). Almeida et al. (2017) discovered that tumor tissues from CRC patients presented several up-regulated proteins that are linked to cytoskeletal stability and cell migration, such as actin-binding proteins (ABPs), transgelin, and so on. However, the role of transgelins in cancer remains unclear and controversial because some reports have shown the loss of transgelin expression during CRC progression and tumor suppressor activity (Shields et al., 2002; Yeo et al., 2010; Chunhua et al., 2013). T-2, a homolog of T-1, is highly expressed in CRC, suggesting that it is a potential biomarker to estimate the progression and prognosis of CRC (Zhang et al., 2010; Cheshomi and Matin, 2018; Yin et al., 2019). Members of the transgelin family have the potential to alter the motility, adhesion, and morphology of cells by directly interacting with the actin cytoskeleton, which leads to cell migration, proliferation, and apoptosis (Lin et al., 2009; Chen Z. et al., 2019). Based on this evidence, we considered that transgelins could be a potential target for treating CRC metastasis.



MOLECULAR BIOLOGICAL CHARACTERISTICS

Transgelin, a 22 kDa protein, was first discovered in chicken gizzard smooth muscle and named for its ability to bind actin (Lees-Miller et al., 1987; Shapland et al., 1993; Li et al., 2008). There are three isoforms in the transgelin family based on the isoelectric point: T-1 (SM22α), T-2 (SM22β), and T-3 (SM22γ) (Carboni et al., 2006; Dowd et al., 2008; Fukushima et al., 2011), and they differ in cell type expression (Table 1). As a member of the calponin protein family, transgelin contains a single C-terminal calponin-like module (CLIK23) and an N-terminal calponin-homolog (CH) domain comprising six α-helices that interact with the actin complex (Lawson et al., 1997; Fu et al., 2000; Li et al., 2008; Figure 1B). FRAP analysis shows that CLIK23 supports the stabilized interaction between actin and the type-3 CH-domain-mediated interaction of it (Matsui et al., 2018). Transgelin, with its type-3 CH domain, binds to actin upon interacting with extracellular signal-regulated kinase (ERK) (Figure 1A).


TABLE 1. Physicochemical property of human transgelins.
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FIGURE 1. Structural characteristics of transgelin. (A) Human transgelin consists of three regions: an N-terminal calponin-homolog (CH)-domain, an actin-binding motif (ABM), and a C-terminal calponin-like repeated (CLR)-region. The CH domain binds to ERK, the ABM domain binds to actin, and the C-terminal CLR domain binds to ezrin (Yin et al., 2019). Potential phosphorylation sites amino acids number 8, 11, 83, 84, 145, 163, 180, 185, 190, and 192 in T-2. (B) The tertiary fold of the CH domain (PDB: 1H67). The CH domain contains six α-helices, in which two short helical structures (II and V) and a core of four α-helices (I, III, IV, and VI) are present. Helices III and VI are approximately parallel, while helix IV is lying oblique to the other helices (Yin et al., 2020). The 3D view of the structural model was generated from the data file from the Protein Data Bank.



Characteristics of T-1

T-1 is also known as SM22α(Lees-Miller et al., 1987) and WS3-10 (Murano et al., 1991) and is a homolog of mouse p27 (Almendral et al., 1989). Its encoding gene (TAGLN1) is localized to chromosome 11q23.2, with an isoelectric point of 9.0 and a length of 5.4 kb (Camoretti-Mercado et al., 1998), containing five exons and four introns; these five exons can produce a total of eight transcripts (Kersey et al., 2018; Zerbino et al., 2018). T-1 is exclusively and abundantly expressed in the smooth muscle cells (SMCs) of normal adult vertebrates (Liu et al., 2017; Zhong et al., 2019) such that it is used as an early differentiation marker of SMCs (Lawson et al., 1997), and the differences in T-1 expression are mainly related to the regulation of SMC differentiation (Kato et al., 2019; Song et al., 2019).



Characteristics of T-2

T-2, a homolog of SM22α, is also known as SM22 beta (SM22β), with an isoelectric point of 8.41 and a molecular weight of 22.39 kDa. The gene encoding T-2 in humans (TAGLN2) is located on chromosome 1q23.2 (Kim et al., 2017). It is regulated by alternative splicing, comprising seven exons that can produce five transcripts (Jo et al., 2018). T-2 localizes to multiple intracellular sites, including the cytoplasm, cell membrane and nucleus, and this difference in localization may be due to varying pathophysiological states (Lin et al., 2009). T-2 is the most widely distributed of the transgelin proteins; in addition to exhibiting high expression in SMCs and epithelial cells, it is also expressed in stem cells, bone marrow cells, and many organs (Kuo et al., 2011; Na et al., 2015; Meng et al., 2017; Yin et al., 2018). Furthermore, it is also strongly expressed in cancer tissues such as CRC (Zhang et al., 2010; Elsafadi et al., 2020).



INVOLVEMENT OF TRANSGELINS IN CRC METASTASIS

Transgelins, including T-1 and T-2, are expressed at different levels during CRC progression, and a summary of studies on the altered expression patterns of T-1 and T-2 in CRC metastasis is shown in Table 2.


TABLE 2. Summary of studies about altered level of transgelins in CRC metastasis.
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Levels of T-1 in CRC Metastasis

T-1 has been acknowledged to be up-regulated in some solid tumors (Zhang et al., 2010, 2015; Ogut et al., 2020). The expression of T-1 was up-regulated in sera from patients with advanced disease, which could be caused by pathological hyperplasia of myofibroblasts and SMCs together with deeper tumor invasion into muscle layers (Peng et al., 2009). Down-regulating T-1 will weaken the metastatic ability of CRC, whereas restoring or increasing T-1 expression will increase the metastatic ability of CRC (Lee et al., 2010; Zhang et al., 2011). Furthermore, studies confirmed a positive correlation between T-1 level and lymph node metastasis by analyzing 24 microdissected human CRC specimens (Lin et al., 2009), and elevated expression of T-1 indicated a worse prognosis in advanced CRC (Kim et al., 2012). Zhou H. M. et al. (2016) observed that overexpressing transgelin in CRC cells led to an increase in the number and size of lung metastases in a mouse tail vein injection model, but attenuation of transgelin expression decreased both parameters in the same model. In addition, proteomic studies of T-1 frequently indicate up-regulation in aggressive late-stage disease (Elsafadi et al., 2020). Taken together, these data indicate that as the disease progresses, T-1 expression is positively associated with CRC metastasis.



Levels of T-2 in CRC Metastasis

Some studies show that T-2 expression is positively related to lymph node and distant metastasis in CRC (Zhang et al., 2010). Colorectal villous adenoma, a precancerous disease, exhibits higher expression levels of T-2 (50% over baseline), suggesting that it is associated with CRC (Zhuo et al., 2012). In addition, there was an obvious correlation between T-2 expression and postoperative survival, and the mean survival of patients with low, moderate, and high levels of T-2 expression was 49.8 ± 13.6, 31.6 ± 19, and 11.4 ± 11 months, respectively (Zhang et al., 2010). Measuring T-2 expression in the tissues of 120 patients with CRC revealed that the survival in patients with low or no expression of T-2 was 20 months longer than that in patients with elevated expression (Zhuo et al., 2012). Consequently, T-2 may serve as a potential biomarker for predicting the progression and prognosis of CRC.



THE MECHANISM OF TRANSGELINS IN CRC METASTASIS

CRC metastasis is mediated by a complicated network of signaling pathways, many of which have been reported to involve T-1 and T-2, including the TGF-β/Smad pathway (Ali et al., 2010), phosphoinositide 3-kinase (PI3K)/phosphatase and tensin homolog (PTEN)/AKT pathway (Cai et al., 2014), KRAS-ERK signaling pathway (Eser et al., 2014), and NF-κB signaling pathway (Shi et al., 2020; Figure 2).
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FIGURE 2. Signaling pathways involved in transgelin.



PI3K/AKT Signaling Pathway

Many studies have proven the important role of AKT signaling in the metastasis and prognosis of CRC (Miller et al., 2020; Varga et al., 2020). The PI3K/AKT signaling pathway is a bridge that transduces extracellular activity into intracellular responses. The AKT pathway, which acts on intracellular targets, is activated by phosphorylating the loop at Thr308 and Ser473, which up-regulates T-1 levels and promotes CRC metastasis (Chen P. J. et al., 2019). Subsequently, studies showed decreased T-1 expression in CRC cells treated with AKT pathway inhibitors, and AKT pathway may promote CRC metastasis via up-regulation of T-1 (Zhou H. et al., 2016). By contrast, Chunhua et al. (2013) demonstrated that apigenin decreases AKT phosphorylation by up-regulating T-1 expression in mitochondria, which thus down-regulates MMP-9 activity to prevent the proliferation and metastasis of CRC cells. In vitro experiments also confirmed that apigenin inhibited tumor growth and lung and liver metastasis in a CRC model (Chunhua et al., 2013). Therefore, the role of T-1 in CRC remains controversial.

On the other hand, evidence has shown that T-2 can affect the migration and invasion of tumor cells by regulating the PI3K/AKT pathway (Pei et al., 2018). Liu et al. (2019) found that T-2 was located upstream of PTEN and directly interacted with it. Overexpression of T-2 could activate the PI3K/AKT/Gsk-3β pathway by interacting with PTEN as well as up-regulating bal-2 and down-regulating bax to inhibit apoptosis, leading to the increased migration and invasion of tumors (Liu et al., 2019). Focal adhesion kinase (FAK), a non-receptor tyrosine kinase found in virtually all mammalian cells, plays a role in cytoskeletal dynamics (Mitra et al., 2005; Frame et al., 2010). T-2 could directly interact with FAK and then activate the IGF1Rβ/PI3K/AKT pathway to increase the level of Snail1 expression and induce pathological EMT, which conveys invasive and migratory characteristic to tumor cells (Kim et al., 2018). Therefore, targeting T-1 and/or T-2 could be a strategy for treating CRC metastasis.



TGF-β/Smad Signaling Pathway

TGF-β plays a multi-faceted role in regulating tumor cell growth and migration by acting as an inhibitor of cell proliferation in early stages of CRC but reversing course and exerting oncogenic activity during the later stages of CRC progression (Katz et al., 2016; Syed, 2016). Serum response factor (SRF) and transforming growth factor beta (TGF-β) work together to activate the T-1 promoter, which comprises SRF-binding CArG boxes, a Smad-binding element (SBE) and a TGF-β control element (TCE), and T-1 promoter activity is dependent on Smad signaling (Chen et al., 2003). Studies confirmed that TGF-β stimulated the binding of Smad3 to the chromatin containing the T-1 promoter and recruited and activated the transcription of specific target genes (Qiu et al., 2006). Some studies demonstrated that T-1 was positively associated with TGF-β, induced EMT, and promoted invadopodia formation; these changes resulted in significant increases in the migration capacity of tumor cells. Similarly, TGF-β-mediated metastasis disappeared when T-1 expression was inhibited (Chen Z. et al., 2019). In addition, the TGF-β/Smad pathway interacts with Wnt/β-catenin signaling, which is well-known to be associated with tumor metastasis to control T-1 expression (Shafer and Towler, 2009). Although T-1 is downstream of TGF-β, the effects of a TGF-β inhibitor on actin cytoskeleton changes were the same as those of T-1 depletion, and both approaches reduced CRC migration (Elsafadi et al., 2020), suggesting that T-1 is a novel target in CRC metastasis.

Additionally, T-2 expression was induced with TGF-β stimulation in a Smad4-dependent manner, which explained its role in CRC progression (Ali et al., 2010; Koudelkova et al., 2017).



KRAS/ERK Signaling Pathway

KRAS gene mutations are the most frequently described in the majority of cancers (Aguilera and Serna-Blasco, 2018; Luo et al., 2019; Senturk et al., 2019), especially in CRC, and up to 40% of all patients have a known KRAS mutant gene (Aguilera and Serna-Blasco, 2018). RAS proteins exhibit GTPase activity; when Grab2 activates SOS, the GDP bound to RAS is exchanged for GTP (GTP-RAS). GTP-RAS then activates Raf, which binds to and phosphorylates MAPK; activated MAPK finally activates transgelin. Moreover, JNK is one of the important downstream branches of MAPK signaling (Wang et al., 2019), and Zhou H. et al. (2016) showed that JNK induced the overexpression of T-1. In addition, the TAGLN gene itself plays a critical role in regulating T-1 transcription through epigenetic modifications such as DNA methylation. Overexpression of T-1 leads to increased activation of RAS and ERK1/2, whereas its down-regulation results in a decrease in activated RAS (GTP-RAS) and downstream ERK1/2 activation (Park et al., 2014). These results indicate that T-1 may be a regulatory element in KRAS/ERK signaling.

Studies also found that KRAS mutations could up-regulate the expression and maintain the stability of T-2. It should be noted that other downstream effectors of KRAS may also be involved in the regulation of T-2. ERK interacts with amino acids 29–31 of T-2 and phosphorylates residue 145, which plays an important role in tumor metastasis (Sun et al., 2018; Senturk et al., 2019).



NF-κB Signaling Pathway

NF-κB is a key promoter of tumorigenesis (Buhrmann et al., 2020). Tumor necrosis factor (TNF) binds to related receptors, predominantly activating I-κB kinase to allow the translocation of NF-κB into the cell nucleus and induce target gene expression (Yang et al., 2020). Braitsch et al. (2019) confirmed that the deletion of large tumor suppressor kinases 1 and 2 (LATS1/2) led to NF-κB activation and EMT, which was accompanied by up-regulated T-1 expression and ultimately promoted cell migration and invasion. Insulin-like growth factor binding protein-related protein-1 (IGFBP-rP1) was found to be up-regulated in CRC patients with lymph node metastasis CRC patients, who also exhibit up-regulated levels of T-1 (Ruan et al., 2010). Overall, IGFBP-rP1 exerted an inhibitory effect on cell motility and tumor metastasis in CRC by regulating EMT, possibly through different signaling pathways, such as the NF-κB, Wnt, and TGF-β signaling pathways, during tumor progression (Ruan et al., 2010; Rao et al., 2014; Zhu et al., 2015).

Other studies demonstrated that T-2 phosphorylates Annexin A2 (ANXA2) and activates NF-κB protein, further promoting tumor cell invasion and metastasis (Shi et al., 2020).



CONCLUSION

At present, CRC metastasis is the main cause of cancer-related death worldwide (Engstrand et al., 2018; Rahbari et al., 2019). Commonly, surgical resection (Zellweger et al., 2018), radiotherapy (Petrelli et al., 2018), chemotherapy (Muneoka et al., 2018), targeted therapy (Li et al., 2019), and immunotherapy (Overman et al., 2018) are conducted in various combinations for the treatment of CRC patients. However, most CRC patients experience from disease recurrence and metastasis within 5 years (Luo et al., 2018). Molecular-targeted therapies are a promising treatment for CRC, especially metastatic CRC.

In this review, we focused on the relationships between T-1, T-2, and CRC metastasis. Transgelins are localized to different parts of cells, resulting in inconsistent expression levels of T-1 and T-2 during the development and progression of CRC. In the early stage of CRC, T-1 expression gradually decreases with tumor progression, suggesting that T-1 gene deletion is an important early event in tumor progression and is a diagnostic marker for CRC. However, when tumor cells are capable of invasion and metastasis, T-1 expression begins to rebound and continues to rise with the further progression of metastasis, and the expression levels of T-1 are positively correlated with worse prognosis in CRC patients with lymph node metastasis. However, unlike T-1, which has highly complex expression patterns and activities, T-2 always exhibits increased levels with the development and progression of CRC, especially in metastasis occurring in advanced CRC; the expression of T-2 in CRC metastatic tissues is significantly higher than that in tissues without metastasis and is positively associated with patient survival. However, there are few research results that are varied and controversial. These differences may be due to the fact that transgelin is expressed at multiple intracellular sites.

Importantly, transgelins not only adjust their expression to varying degrees during CRC progression but also participate in CRC metastasis via different signaling pathways. Most studies have shown that transgelins, including T-1 and T-2, interact with associated proteins to activate or inhibit signaling to regulate CRC metastasis. Outside the four signaling pathways mentioned in a previous article, a new study found that transgelin could bind to poly(ADP-ribose) polymerase-1 (PARP1) and regulate downstream genes, which are mainly involved in the Rho signaling pathway, initiate cytoskeletal remodeling, and induce CRC metastasis (Lew et al., 2020). A summary of transgelins about interacted proteins initiating feedback regulations to this signaling and the effects on CRC metastasis is shown in Table 3. Otherwise, the cartilage oligomeric matrix protein (COMP) interacts with transgelin in EMT to regulate cytoskeletal remodeling and promote malignant progression in CRC (Zhong et al., 2020). Since T-2 phosphorylation is closely related to cell movement, inhibiting T-2 phosphorylation may prevent cell migration and proliferation in CRC (Leung et al., 2011; Sun et al., 2018). Above all, transgelins are closely associated with metastasis in CRC and may be used as a target for the treatment of metastatic CRC.


TABLE 3. Summary of transgelins about feedback regulations to signaling pathways in CRC metastasis
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Actin is the major protein constituent of the cytoskeleton that performs wide range of cellular functions. It exists in monomeric and filamentous forms, dynamics of which is regulated by a large repertoire of actin binding proteins. However, not much was known about existence of these proteins in trypanosomatids, till the genome sequence data of three important organisms of this class, viz. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, became available. Here, we have reviewed most of the findings reported to date on the intracellular distribution, structure and functions of these proteins and based on them, we have hypothesized some of their functions. The major findings are as follows: (1) All the three organisms encode at least a set of ten actin binding proteins (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins) and one isoform of actin, except that T. cruzi encodes for three formins and several myosins along with four actins. (2) Actin 1 and a few actin binding proteins (ADF/cofilin, profilin, twinfilin, coronin and myosin13 in L. donovani; ADF/cofilin, profilin and myosin1 in T. brucei; profilin and myosin-F in T.cruzi) have been identified and characterized. (3) In all the three organisms, actin cytoskeleton has been shown to regulate endocytosis and intracellular trafficking. (4) Leishmania actin1 has been the most characterized protein among trypanosomatid actins. (5) This protein is localized to the cytoplasm as well as in the flagellum, nucleus and kinetoplast, and in vitro, it binds to DNA and displays scDNA relaxing and kDNA nicking activities. (6) The pure protein prefers to form bundles instead of thin filaments, and does not bind DNase1 or phalloidin. (7) Myosin13, myosin1 and myosin-F regulate endocytosis and intracellular trafficking, respectively, in Leishmania, T. brucei and T. cruzi. (8) Actin-dependent myosin13 motor is involved in dynamics and assembly of Leishmania flagellum. (9) Leishmania twinfilin localizes mostly to the nucleolus and coordinates karyokinesis by effecting splindle elongation and DNA synthesis. (10) Leishmania coronin binds and promotes actin filament formation and exists in tetrameric form rather than trimeric form, like other coronins. (11) Trypanosomatid profilins are essential for survival of all the three parasites.
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INTRODUCTION

Eukaryotic cell cytoskeleton is a dynamic structure comprised of three components, viz. microfilaments, microtubules and intermediate filaments. Actin is the major protein constituent of the microfilaments, which regulates a variety of cell functions, such as motility (Theriot and Mitchison, 1991; Pollard and Borisy, 2003), cell division (Pollard, 2008), endocytosis, intracellular trafficking (Girao et al., 2008; Khaitlina, 2014), chromatin remodeling, DNA repair and regulation of transcription (Bettinger et al., 2004; Miralles and Visa, 2006; Percipalle and Visa, 2006; Chen and Shen, 2007; Hurst et al., 2019). The dynamics (assembly and disassembly) of actin microfilaments is regulated by a large array of actin binding proteins (dos Remedios et al., 2003; Pollard, 2016), activities of which in turn are controlled by specific signaling pathways (Mackay and Hall, 1998).

Trypanosomatids are protozoan parasites that infect invertebrate hosts. But some of them also infect humans and animals, where the invertebrate host serves as the vector that facilitates their transmission. As microtubules constitute most of the cytoskeleton network in trypanosomatids and there was no convincing evidence until the year 2004 on the role of actin and its network proteins in these organisms, it was believed that actin cytoskeleton perhaps has no major role in their cellular activities (Gull, 1999). Nevertheless, the genome analysis data of trypanosomatids, especially Trypanosoma brucei, Trypanosoma cruzi and Leishmania major, revealed that their genomes contained genes that putatively encode for actin and several actin binding proteins (Berriman et al., 2005; El-Sayed et al., 2005; Ivens et al., 2005), some of which have now been characterized and in few instances, their functions have been unraveled. Here, we have critically reviewed all the findings that have been reported to date on actin and actin binding proteins in trypanosomatids, and based on the available knowledge, we have hypothesized their potential roles in cellular activities of these organisms.



BRIEF OVERVIEW OF CONVENTIONAL ACTINS

Actin is an ancient and highly conserved protein present in all eukaryotic cells, which shares a high amino acid sequence identity among widely diverse groups of eukaryotes, for example Caenorhabditis elegans and Homo sapiens, sharing about 90% sequence identity in their actins. Even in bacterial cells, the presence of distant homologues of actin, such as MreB, FtsA and ParM, have been identified (Graumann, 2007; Pogliano, 2008). While MreB protein functions in regulating the bacterial cell shape and cell wall synthesis, FtsA and ParM participate, respectively, in the bacterial cell division and plasmid segregation (Graumann, 2007; Pogliano, 2008). Additionally, more than 30 genes encoding for actin-like proteins (ALPs) have been characterized in bacteria which are mainly present on plasmids and bacteriophage genomes (Derman et al., 2009). Further, lineages of archaea which are closely related to eukaryotes have been identified to encode for close homologues of eukaryotic actin (Braun et al., 2015; Spang et al., 2015; Zaremba-Niedzwiedzka et al., 2017).

The ancient actin gene during early evolution crossed over several times with genes of other species, giving rise to genes for actin-related proteins, called “Arps.” These genes further diversified into several families exhibiting differing functions, when the common progenitor of animals, fungi, and amoebas diverged from the large clade of organisms, including algae, plants, and a variety of other single-celled organisms (Muller et al., 2005). Arps share 17–52% amino acid sequence identity with actin and depending on their divergence from actin, these proteins have been numbered from Arp1 to Arp11, wherein Arp1 has the maximum and Arp 11 the minimum closeness to actin (Muller et al., 2005). These proteins have been further divided, depending on their presence in the cells, into two groups– cytoplasmic and nuclear Arps. Whereas Arp 1-3, Arp10 and Arp11 have been classified into cytoplasmic group of Arps, Arp4-Arp9 constitute the nuclear group (Muller et al., 2005), which participate in chromatin remodeling and other related nuclear functions (Oma and Harata, 2011; Maruyama et al., 2012).

Actin is a 375 amino acids long globular polypeptide that primarily exists in monomeric (G-actin) and filamentous (F-actin) forms. In cells, monomeric actin is almost exclusively found in the ATP-bound state, whereas in filamentous form, it largely exists in the ADP-bound form. Actin polymerization comprises three steps, which in the first step involves a slow association (called “lag phase”) of two actin monomers to form a dimer that has high tendency to revert back to monomers rather than to assemble further. This is followed by the formation of a stable trimer that serves as the nucleus for further polymerization, and finally the “elongation phase,” where filament assembly takes place faster due to rapid association of ATP-bound G-actin to the polar (or barbed) end of growing filament (dos Remedios et al., 2003). The polymerization process is promoted by the presence of divalent cations under physiological conditions. The ATP bound to actin in filaments is hydrolyzed into ADP and phosphate, and as filament matures, the phosphate is released with concomitant dissociation of ADP-actin from the pointed end. The ADP bound G-actin released from the filament, after undergoing exchange of ADP for ATP, can then undergo fresh round of polymerization. In a steady state, a dynamic equilibrium is reached where the length of the actin filaments remains constant, with actin monomers continually associating to and dissociating from the ends. This process is referred to as “actin treadmilling.”

The inherent tendency of actin to polymerize into filaments hindered for decades the growth of actin crystals, suitable for determining its 3-d structure. Eventually, in the 1990s high resolution 3-d structure was resolved separately for co-crystals of actin with DNase I (Kabsch et al., 1990) and profilin (Schutt et al., 1993), and also for free G (monomer)-actin (Chik et al., 1996). Afterward, several actin structures have been reported (Dominguez and Holmes, 2011) and in all, the conformation of actin monomer remained fundamentally the same. The actin polypeptide folds into one large and one small domain. These domains further have two sub-domains each. While the small domain comprises subdomain 1 and subdomain 2, the large domain comprises subdomain 3 and subdomain 4. Between these sub-domains two clefts are formed – “nucleotide binding cleft,” that binds to ATP or ADP with a divalent cation and the other one is the “target binding cleft,” which is hydrophobic and defines the region where most actin binding proteins (ABPs) and small molecules interact with actin and also where actin subunits make contacts in the filament (Figure 1). Depending on the state of bound nucleotide in the “nucleotide binding cleft,” structure of actin monomer changes, which in turn modulates the binding affinities of “target binding cleft” for ABPs and also alters the strength of actin monomer interaction in the filament. Further, the DNase I binding site is formed from amino acid residues (aa) 39–46 and 60–64 of subdomain 2 and aa 202–204 and 207 of subdomain 4 of which aa 40–50 of subdomain 2 are highly disordered, that form the DNase I binding loop.
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FIGURE 1. (A) Ribbon diagram of the actin molecule with space filling ATP (protein data bank [PDB]: 1ATN). N, amino terminus; C, carboxyl terminus. Numbers 1, 2, 3, and 4 label the four subdomains (re-printed from Pollard et al. (2016) with copyright permission from Elsevier Publishers). (B) Model of actin protofilaments derived from linear polymers along a single strand of F-actin.


Assembly of actin filaments involves association of subdomains 2 and 4 of one G-actin molecule with subdomains 1 and 3 of the other molecule. A part of amino acid sequences that are contributed by subdomain 2 in this process constitute the DNase I binding site. A loop of eleven aa residues (aa 40–50 of subdomain 2) that also include a four aa residues hydrophobic plug then stabilizes the filament. This loop inserts into the hydrophobic pocket formed by subdomains 2 and 3 of adjacent monomers on the opposing strands (Figure 1). Based on the X-ray diffraction pattern of oriented F-actin gels, Holmes et al. (1990) proposed the first structural model of actin filament, which was further modified by Oda et al. (2009). The modified model illustrated that actin monomers are arranged in a two-start filament of 7–10 nm thickness having a half pitch of 37 nm and a rise of 2.75 nm per monomer. A large number of proteins associate with and effect the functions of actin by remodeling its network in cells (dos Remedios et al., 2003; Pollard et al., 2016; Merino et al., 2020). These proteins are mostly conserved in a wide variety of eukaryotes. Some members belonging to these proteins by virtue of their actin monomer sequestering activity affect availability of the polymerizable pool of free actin monomers, while there are others that control filament formation and stability through their nucleating, elongating, depolymerizing, severing, capping, crosslinking and bundling activities (Winder and Ayscough, 2005).

The main features that define conventional (or canonical) actins are based on their following properties: (1) they form long and stable filaments having width between 7 and 10 nm in the presence of a divalent cation as Mg+2, with or without ATP; (2) they bind DNase I and inhibit its activity; (3) their filaments are stabilized by phallotoxins and destabilized by cytochalasins or latrunculins (Reisler, 1993; Wakatsuki et al., 2001); and (4) their filament dynamics is regulated by a set of about 20 core ABPs that include actin depolymerizing factor (ADF)/cofilins, twinfilin, profilin, gelsolin, CAP/Srv2, formin, Arp2/3 complex, β-thymosin, troponin, filamin, fimbrin, villin, actinin, plastin, spectrin and CapZ. However, lower eukaryotic organisms such as Plasmodium, Toxoplasma, Trypanosoma, Leishmania, Giardia, Amoebae and Ciliate group of protozoans contain actins which display highly unusual characteristics (Villalobo et al., 2001; Gupta et al., 2015). While some of these organisms express actins and ABPs that exhibit unusual biochemical and functional characteristics, there are others, such as Giardia lamblia, which express single copy of highly divergent actin (Drouin et al., 1995), and their genome lacks genes that encode the core ABPs, which are essentially required to regulate actin dynamics in higher eukaryotic organisms (Morrison et al., 2007; Pollard, 2016). Yet these organisms utilize their actin similar to other eukaryotic actins in their all vital cellular functions, such as morphogenesis, intracellular trafficking and cytokinesis (Paredez et al., 2011, 2014).



CLASSIFICATION OF PROTOZOAN ORGANISMS

Protozoans are single-celled microscopic eukaryotic organisms of a group of phyla of the kingdom Protista. In the widely used 1980 classification based on locomotion (Levine et al., 1980), the protozoan subkingdom was classified into seven phyla which included the Sarcomastigophora (combination of Mastigophora and Sarcodina), Apicomplexa, Microspora, Myxozoa and Ciliophora. The most recent classifications recognized 13 phyla, of which seven contain important parasites (Figure 2): Metamonada (intestinal flagellates, e.g., Giardia); Parabasalia (intestinal and related flagellates, e.g., Trichomonas); Percolozoa (flagellated amoebae, e.g., Naegleria); Euglenozoa (kinetoplastid flagellates, e.g., Trypanosoma, Leishmania); Amoebozoa (amoebae, e.g., Entamoeba); Sporozoa (sporozoans, e.g., Toxoplasma, Plasmodium) and Ciliophora (ciliates, e.g., Tetrahymena) (Levine et al., 1980; Cavalier-Smith, 2002; Cox, 2002). Further, kinetoplastids comprise five orders: Trypanosomatida, Eubodonida, Parabodonida, Neobodonida and Prokinetoplastida (Moreira et al., 2004). Within kinetoplastids, the most studied family is the Trypanosomatidae, which comprises mainly of monoxenous parasite species that infect invertebrates (Leptomonas) and of dixenous species that can be pathogenic to plants, animals and/or humans (Phytomonas, Trypanosoma and Leishmania) (Kaufer et al., 2017). Trypanosomatidae got much of their fame because of the two genera, Trypanosoma and Leishmania, which cause African sleeping sickness (Trypanosoma brucei), Chagas disease (Trypanosoma cruzi), visceral Leishmaniasis (Leishmania donovani, Leishmania infantum, Leishmania chagasi), cutaneous Leishmaniasis (L. major, L. panamensis, L. tropicana) and mucocutaneous Leishmaniasis (L. braziliensis). In the following sections, we will revisit all the findings reported to date on characterization, intracellular localization and functions of trypanosomatid actins and actin binding proteins, and based on the available knowledge, we will attempt to stipulate their functions in these organisms.
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FIGURE 2. Seven important phyla of subkingdom protozoa with schematic representations. Metamonada (intestinal flagellates, e.g., Giardia); Parabasalia (intestinal and related flagellates, e.g., Trichomonas); Percolozoa (flagellated amoebae, e.g., Naegleria); Euglenozoa (kinetoplastid flagellates, e.g., Trypanosoma, Leishmania); Amoebozoa (amoebae, e.g., Entamoeba); Sporozoa (sporozoans, e.g., Toxoplasma, Plasmodium) and Ciliophora (ciliates, e.g., Tetrahymena). Schematic images of the protozoan parasites.




TRYPANOSOMATID ACTINS AND ACTIN BINDING PROTEINS


Trypanosomatid Actins

Trypanosomatid actins possessed approximately 70% aa identity to human or yeast actin (Gupta et al., 2015). The major differences in the aa sequence were confined to the aa1–9, aa 40–53, aa194–200, aa 229–240, aa 266–281 and aa307–315, most of which were located on the surface of yeast or mammalian actin (Figure 3). Domain-wise analysis revealed that subdomain 2 (aa33– 69), subdomain 3 (aa145–180 and aa270–337) and subdomain 4 (aa181–269) have higher divergence (30–40%) from the corresponding subdomains of human actin, compared with subdomain 1 of Leishmania actin (aa1–32, 70–144 and aa338–375). These diverged amino acid sequences partly included the sites that are engaged in actin self-association and DNase I binding.
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FIGURE 3. An average molecular dynamics simulated homology model of LdAct showing colored stretches of diverged amino acid residues (aa 1–9 of subdomain 1, aa 40–53 of subdomain 2, aa 266–281 and aa 307–315 of subdomain 3, aa 194–200 and 229–240 of subdomain 4), brown ball and stick residues in the DNase-I binding loop are the diverged replacements in LdAct that are known to make strong interactions with DNase-I in the actin-DNase-I complex crystal structure, whereas green ball and stick residues are conserved amino acid residues that are known to make weak interactions with DNase-I (taken from Kapoor et al., 2008 with permission).


The presence of actin gene in trypanosomatid organisms was established about 30 years ago (Ben Amar et al., 1988; de Arruda and Matsudaira, 1994), but all earlier attempts to isolate and characterize actin protein, using conventional methods, met with failure, primarily due to lack of these proteins to bind DNase I (Mortara, 1989). Also, fluorescently labeled phalloidin staining failed to identify the presence of filament-like structures in trypanosomatids, especially Leishmania cells (Mortara, 1989). Further, by using electron microscopy, no filament-like structures corresponding to mammalian actin filaments (5–7 nm diameter) could be seen in these cells (Gull, 1999), suggesting that actin may not have any major role in cellular functions of trypanosomatids (Gull, 1999). However, genomic analysis of three major pathogenic organisms of trypanosomatid family, viz. T. brucei, T. cruzi and Leishmania spp., identified genes that putatively encode at least for one copy of conventional actin (Act1), similar to other eukaryotic actins, and numerous actin-like, actin-related and actin binding proteins (Tables 1 and 2), revealing the presence of a dynamic actin network in trypanosomatids. Compared with T. brucei and L. major, T. cruzi appears to have more complex actin cytoskeleton, as its genome encodes for multiple copies of actin and an expanded set of actin binding proteins (Berriman et al., 2005). T. cruzi has as many as four actin genes of which TcAct1 and TcAct2 have been characterized (De Melo et al., 2008; Vizcaíno-Castillo et al., 2019). However, actin 2 and 3 are absent in T. brucei, L. donovani, L. major and L. braziliensis. The fourth actin is encoded by T. cruzi and L. major, but not by T. brucei (Cevallos et al., 2011; Vizcaíno-Castillo et al., 2019). This actin isoform is also present in L. donovani and L. braziliensis, but its annotation has been given as actin-like protein. Besides actins, a variable number of actin-like and actin related proteins are also encoded by the trypanosamatid genomes (recently reviewed in Vizcaíno-Castillo et al., 2020).


TABLE 1. Presence of actin and actin-like proteins in five main disease causing trypanosomatids.
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TABLE 2. Presence of actin binding proteins in five main diseases causing trypanosomatids, compared to higher eukaryotes.

[image: Table 2]The presence and intracellular distribution of Act1 in all the trypanosomatids studied so far have been analyzed by employing polyclonal antibodies against recombinant version of Act1, as a probe. This technique enabled to identify differences in the subcellular distribution of Act1 not only in different species, but also in the different developmental stages. TbAct1 was equally expressed in both the blood stream and procyclic stages of T. brucei, but in blood stream stage, it was more enriched at the posterior end and colocalized with the endocytic pathway (García-Salcedo et al., 2004). However, in procyclic form, it was distributed throughout the cytoplasm (García-Salcedo et al., 2004). Unlike T. brucei, there have been numerous contradictory reports on the intracellular distribution in the various forms of T. cruzi. Presence of TcAct1 in T. cruzi epimastigotes was first reported by de Souza et al. (1983), using polyclonal anti-rabbit muscle actin antisera, wherein they claimed that this protein was sparsely distributed throughout the cell body and the paraxial structure of the flagellum. Subsequent studies using polyclonal antibodies against the conserved N-terminal region of TcAct1 showed that TcAct1 was distributed in patch-like structures throughout the cytoplasm in epimastigote, amastigote and bloodstream trypomastigote forms of T. cruzi (De Melo et al., 2008). This distribution was further confirmed using polyclonal anti-recombinant TcAct1 antibodies (Cevallos et al., 2011). Further analysis revealed that these antibodies recognized a single band in one-dimensional electrophoresis, but in two-dimensional electrophoresis, it identified five isoforms of TcAct1 in all stages of the parasite development (Cevallos et al., 2011). Immunofluorescence analysis, using anti-recombinant TcAct1 antibodies, showed that TcAct1 was faintly distributed throughout the cell with intense staining at the base of the flagellum near the flagellar pocket area and along the flagellum in epimastigotes (Cevallos et al., 2011). In trypomastigotes, TcAct1 was uniformly distributed with a low level of staining (Cevallos et al., 2011), and in the cell-derived amastigotes, a heterogeneous TcAct1 localization with sometimes no apparent expression was observed (Cevallos et al., 2011). Similar protein expression levels and intracellular TcAct1 distributions in epimastigotes, amastigotes and metacyclic trypomastigotes were also observed by using mouse polyclonal anti-recombinant TcAct1 antibodies (Souza et al., 2013). In addition to TcAct1, TcAct2 has also been characterized. This protein was expressed throughout the life cycle of T. cruzi with several variants (Vizcaíno-Castillo et al., 2019). In all stages, TcAct2 did not co-localize withTcAct1, and had a diffused distribution throughout the cell body and in the flagellum, with a fine granular pattern (Vizcaíno-Castillo et al., 2019). Further, detergent fractionation of epimastigotes revealed that TcAct2 was a cytoplasmic rather than a cytoskeletal protein (Vizcaíno-Castillo et al., 2019). Because of differences in cellular localization of TcAct1 and TcAct2, it may be envisaged that these proteins possibly have non-redundant functions in T. cruzi cells.

L. donovani Act1 (LdAct1) is the most characterized protein amongst all trypanosomatid actins (Sahasrabuddhe et al., 2004; Kapoor et al., 2008, 2010). This protein was abundantly expressed in both the promastigote and amastigote stages of L. donovani (Sahasrabuddhe et al., 2004). LdAct1 in Leishmania promastigotes was present as granules, patches, and filament-like structures throughout the cell body, including the flagellum, the nucleus and the kinetoplast (Sahasrabuddhe et al., 2004; Kapoor et al., 2008). These LdAct1 structures could not be stained with fluorescently labeled phalloidin nor could they be disrupted by treatment with cytochalasin D (Sahasrabuddhe et al., 2004). In the nucleus and the kinetoplast, LdAct1 was found to associate, respectively, with the chromatin and kDNA (Figures 4A–C). Besides this, recombinant LdAct1 (rLdAct1) polymerized in vitro to form bundles instead of thin filaments, only between pH 7.0 to pH 8.0 (Figure 4D), and its critical concentration of polymerization was 3–4 times lower than of rabbit muscle actin (Kapoor et al., 2008). In addition, it did not bind DNase I or phalloidin and during polymerization, it displayed significantly higher ATPase activity, compared with muscle actin (Kapoor et al., 2008). This apart, unlike any other eukaryotic actin, rLdAct bound to DNA primarily through electrostatic interactions involving its unique DNase-1-binding region and the DNA major groove (Figure 5) and relaxed negatively supercoiled DNA and nicked the kDNA, which converted kDNA minicircles into their open form (Figure 6), a unique property which no other eukaryotic actin has been found to have till date (Kapoor et al., 2010). The DNA nicking activity was largely confined to the DNase-1 binding loop, as treatment of LdAct1 with subtilisin, which was known to selectively cleave the DNase I binding loop without altering much the Act1 structure (Schwyter et al., 1989), significantly reduced its DNA nicking activity (Kapoor et al., 2010). Further, rLdAct1 inhibited the kDNA decatenation activity of bacterial type II topoisomerase (Kapoor et al., 2010), suggesting that LdAct1 may play an important role in remodeling of the chromatin and kDNA in trypanosomatids (Liu et al., 2005; Kapoor et al., 2010).
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FIGURE 4. (A) Immunofluorescence micrograph of Leishmania promastigotes after treating them with 0. 5% NP-40 and staining with anti-LdAct antibodies and DAPI showing the presence of LdAct in the nucleus and kinetoplast and its association with nuclear DNA and kDNA (adapted from Sahasrabuddhe et al., 2004 with permission). (B) Electron micrographs of immunogold-labeled actin showing the presence (panel a) of LdAct in the nucleus (Nu), the kinetoplast (K), the flagellum (F), and the flagellar pocket (FP). In addition, the presence of LdAct on membranes of vacuoles (V) may also be noticed in panel (b), and its associations with kDNA network, nuclear membrane and subpellicular microtubules may clearly be seen in panels (c–e), respectively. The arrowheads in panel (e) mark the microtubules. Bar, 200 nm (Adapted from Sahasrabuddhe et al., 2004 with permission). (C) Chromatin Immuno-precipitation (ChIP) analysis using anti-LdAct antibodies showing the in vivo association of LdAct with chromatin (a) and kDNA network (b). Panels (a,b) are the agarose gels of PCR products after ChIP assay. Lanes are marked on the top with their respective antibodies used in the ChIP assay and arrows indicated the genes amplified after pull down. An irrelevant, non-DNA associating antibody, GRP78, was used as a negative control, whereas antibodies against DNA polβ, and UMSBP (universal minicircle sequence-binding protein), were used as positive controls for nuclear DNA and kDNA respectively. LdPfn, Leishmania profilin; NM12/17, specific minicircle primers (this was originally published in Nucleic Acids Research, Kapoor et al., 2010© Oxford University Press). (D,a) Negatively stained transmission electron micrograph of in vitro reconstituted rabbit muscle actin (RbAct) filaments in F-buffer (100 mM KCl, 2 mM MgCl2 and 2 mMATP; pH 8.0; 25°C) and (b) LdAct at 2 μM protein concentration, unlike RbAct, formed bundles rather thin filaments, under identical conditions. (c) LdAct forms very thin filaments at 0.2 μM G-LdAct concentration in F-buffer, pH7.0 at 25°C. RbAct under these conditions failed to form filaments (taken from Kapoor et al., 2008 with permission).
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FIGURE 5. Computational docking of average simulated model of LdAct with DNA showing the interaction of the diverged DB-loop of LdAct with the major groove of DNA. (A) Sequence alignment of LdAct with other actins showing the presence of nuclear export signals (NES-1 and NES-2) in the LdAct aa sequence and the diverged DB-loop predicted to be involved in the DNA binding, by DP-Bind server. (B) Energy minimized average simulated model of LdAct showing positions of NES-1, NES-2 (red) and the diverged stretches of amino acid sequences (yellow) including the sequence that fall in DB loop (blue). (C) Docking of LdAct (orange) with DNA (green) using HADDOCK protocols. (D) Amino acid residues of the DB loop of LdAct (yellow) showing hydrogen bonding with the nucleotides (green) of DNA. DB, DNase I binding; NES, nuclear export signal (This was originally published in Nucleic Acids Research, Kapoor et al., 2010© Oxford University Press).
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FIGURE 6. Atomic force micrographs of kDNA after its incubation in the presence and absence (control) of LdAct, showing decatenation of kDNA with LdAct. Panels (a,b) control kDNA, arrows indicate catenated kDNA. Panels (c,d) kDNA with rLdAct, arrowheads indicate decatenated nicked kDNA (scale bar: 500 nm) (This figure was originally published in Nucleic Acids Research, Kapoor et al., 2010© Oxford University Press).


Trypanosomatid actins, similar to conventional actins, participate in the process of endocytosis. This process in T. brucei and Leishmania primarily occurs through the flagellar pocket (Morgan et al., 2002a), which is a well-defined structure formed from a lateral cell membrane depression that is continuous with the flagellar membrane. However, in T. cruzi, it mainly takes place through an additional entry site, called “cytostome” that represents a round opening at the plasma membrane near the flagellar pocket, which is absent in both T. brucei and Leishmania (Soares and de Souza, 1991; Porto-Carreiro et al., 2000). The endocytic activity in all these organisms depended on the stage of their life cycle. While T. brucei bloodstream form displayed high rates of endocytic activity, this activity was absent or significantly reduced in procyclic form (Morgan et al., 2002a,b). Involvement of TbAct1 during this process has been shown by down regulating TbAct1 expression in blood stream stage of T. brucei, using RNAi, and then observing significantly reduced receptor-mediated uptake of transferrin (García-Salcedo et al., 2004). Further, T. cruzi epimastigotes possessed high endocytic activity (Bogitsh et al., 1995; Corrêa et al., 2008), whereas in trypomastigotes, a stage that lacks cytostome structure, this activity was low (Soares and de Souza, 1991; Figueiredo et al., 2004). That TcAct1 is involved in this process has been demonstrated in T. cruzi epimastigotes by observing inhibition of endocytosis of peroxidase, LDL and gold particles after disrupting actin cytoskeleton by treatment with cytochalasin B and latrunculin B (Soares and de Souza, 1991; Bogitsh et al., 1995; Corrêa et al., 2008). Furthermore, endocytosis was downregulated in L. mexicana promastigotes, as compared to both metacyclic promastigotes and amastigotes (Ali et al., 2012). Role of actin during endocytosis in Leishmania has been established by observing significantly reduced uptake of the fluorescent dye FM4-64 after inhibiting the LdCof-driven LdAct1 dynamics in L. donovani promastigotes (Tammana et al., 2010).

Together with actins, trypanosomatids encode for at least five actin-like proteins (ALPs). Out of which, three proteins, viz. ALP1, ALP3 and ALP4, have been characterized in T. brucei and Leishmania. These proteins were first identified as a part of the flagellar proteome of T. brucei and L. mexicana (Broadhead et al., 2006; Beneke et al., 2019) and thereafter, their localization to the flagellum was confirmed by fluorescent tagging during the genome wide search to assign their location within the T. brucei cells (Dean et al., 2017; Halliday et al., 2019). Similar distribution has also been observed earlier by overexpressing fluorescently tagged version of ALP3 in T. brucei (Ersfeld and Gull, 2001). However, in L. donovani, ALP3 (earlier classified as Arp1) was predominantly localized to the mitochondrion, besides localizing to the cytoplasm and the flagellum (Singh et al., 2014). And depletion of its intracellular levels resulted in decreased mitochondrion membrane potential and the ATP content, and also in shortening of the flagella length. These effects were, however, reversed by episomal complementation of LdALP3 gene (Singh et al., 2014), suggesting that ALP3 regulates mitochondrion potential, ATP synthesis and flagellum length in Leishmania promastigotes. The difference observed between intracellular distributions of TbALP3 and LdALP3 may perhaps be attributed to the larger size of LdALP3 (483 amino acids), compared with TbALP3 (433 amino acids), which is perhaps caused by insertions that confer distinctive properties to this protein.



Actin Binding Proteins (ABPs) in Trypanosomatids

A large number of proteins (>150) bind actin to regulate its functions in higher eukaryotic cells. However, because of their limited functions, lower eukaryotic organisms, such as trypanosomatids, express only a small repertoire of ABPs that are sufficient to meet their requirement. Analysis of genomic data of trypanosomatids revealed that T. brucei, T. cruzi and Leishmania spp., encode at least one copy each of profilin, ADF/cofilin, twinfilin, CAP/Srv2 and coronin, whereas variable number of formins and myosins are encoded in these organisms (Table 2). Further, T. brucei and Leishmania spp. encode two copies each of formins and myosins, while T. cruzi encodes many myosins and three formins. Besides this, T. cruzi encodes for two copies of CAPz, which is absent in both T. brucei and Leishmania spp. This apart, all the seven subunits of the Arp2/3 complex (viz. Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4 and ARPC5) are encoded by T. cruzi and T. brucei, but only four to five subunits of this complex appeared to be encoded in Leishmania spp.. Other proteins such as thymosin β4, gelsolin, fimbrin, villin, α-actinin, plastin, spectrin and filamin are completely absent in trypanosomatids. Out of the limited set of ten core ABPs (profilin, twinfilin, ADF/cofilin, CAP/srv2, CAPz, coronin, two myosins, two formins), only a few ABPs have so far been characterized.


Actin Filament Nucleating Proteins

Actin polymerization in itself is an energetically unfavorable process till three actin monomers associate together to form a stable nucleus for further polymerization, and this stage is referred to as the “lag phase.” The lag phase is, however, removed in vivo due to participation of ABPs, viz. the Arp2/3 complex and formins, which ensure rapid nucleation of actin monomers and thus significantly accelerate actin polymerization. On one hand, the Arp2/3 complex promotes the growth of new filaments by the side of the existing filaments, which is important in dendritic branching found at the leading edge of a lamellipodium of motile cells (Pollard and Borisy, 2003). On other hand, formin proteins promote actin assembly by directing rapid nucleation and elongation of unbranched actin filaments. Besides this, these proteins also assist formation of a variety of actin-structures, including stress fibers, filopodia, and lamellipodia, and modulate the stability and organization of microtubules (Pollard, 2016). This dual activity of formins helps them to coordinate the activities of these two cytoskeleton networks, which allows them to regulate various cellular processes, such as assembly of contractile ring, centrosome assembly, centriole duplication, and centrosome positioning (Breitsprecher and Goode, 2013). The majority of trypanosomatids encode for two formins, but to date, none of these proteins has been characterized.



Actin Filament Elongating Proteins

After nucleation, actin filaments can grow rapidly upon addition of actin monomers to their barbed ends. Filament length is controlled by capping proteins. While gelsolin and tensin cap the barbed ends of growing actin filaments by blocking addition of new monomers at this end, the pointed end cappers reduce loss of actin monomers from the pointed end and thereby promote rapid extension of the filament. Besides serving as barbed end capper, gelsolin also displays filaments severing activity, which accelerates actin dynamics. The best characterized proteins that drive depolymerization are the actin depolymerizing factor (ADF) and the cofilin family members (ADF/cofilin). ADF/cofilin family of proteins are ubiquitous highly conserved, low molecular-weight ABPs that depolymerize F-actin into actin monomers and consequently increase the turnover of actin filaments (dos Remedios et al., 2003; Ono, 2007). In addition, these proteins exhibit actin filament-severing activity that generates new barbed ends, which accelerates the filament assembly (Ono, 2007). By virtue of their ability to increase the rate of actin turnover at the steady state, ADF/cofilin family of proteins have been implicated in the treadmilling process (Figure 7; Ono, 2007). Although gelsolin and tensin are completely absent in trypanosomatids, one copy of ADF/cofilin is encoded by all these organisms. Amongst these, T. brucei and L. donovani ADF/ cofilins have been structurally and functionally characterized. Leishmania ADF/cofilin (LdCof) bound to both monomeric and filamentous LdAct1 and displayed filament-depolymerizing and severing activities (Tammana et al., 2008; Kumar et al., 2012), whereas T. brucei ADF/cofilin (TbCof) bound to only monomeric actin, but similar to LdCof, it possessed filament-depolymerizing and severing activities. Further, both the proteins were co-distributed with actin throughout the cell body, including the flagellum (Tammana et al., 2008; Dai et al., 2013). In addition, both the proteins had similar structures which consisted of a conserved ADF/cofilin fold with a central mixed β-sheet formed of six β-strands, which was surrounded by five α-helices (Pathak et al., 2010; Dai et al., 2013). These proteins possessed conserved G/F-actin binding site that included the characteristic long kinked α-helix (α3).
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FIGURE 7. Picture cartoon of actin treadmilling, showing that the rate of treadmilling is regulated by ADF/cofilins and profilin, which results in an increase and decrease in the size of actin filaments, respectively. It further shows that Arp2/3 complex nucleate new filaments by its binding with actin monomers and the side of actin filaments, while formins nucleate new filaments by binding actin monomers and through cooperation of profilin.


ADF/cofilin-driven actin dynamics regulates a number of important cellular activities, such as motility, endocytosis, vesicular trafficking, cell division etc. (Pollard and Borisy, 2003). Similar to other eukayotic ADF/cofilins, trypanosomatid ADF/cofilin, especially LdCof, regulates the cell morphology, motility, endocytosis, vesicular trafficking and early phase of cell division in Leishmania promastigotes, as revealed by the reverse genetic experiments (Tammana et al., 2008, 2010). The heterozygous and homozygous LdCof mutants prepared through targeted LdCof gene replacement by the selective marker gene, lost not only their motility, but their flagella were completely devoid of the paraflagellar rod (PFR) and length of their flagellum was significantly shortened (Tammana et al., 2008). Additionally, these cells were short and stumpy that contained vesicle-like structures throughout the length of their flagellum (Figure 8). However, all these changes were restored to normal by episomal complementation of the LdCof gene (Tammana et al., 2008, 2010). Further studies are, however, required to evaluate the functions of ADF/cofilin-driven actin dynamics in Leishmania amastigotes and in other trypanosomatids.
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FIGURE 8. (A) Scanning electron micrographs, showing short and stumpy cell body with significantly shortened flagella of heterozygous (+/-) and homozygous (-/-) LdCof mutants, compared with wild type (+/+) cells. Episomal complementation of LdCof– /– cells with LdCof gene (-/- comp) restored the wild-type morphology and flagellar length. Bar, 10 μm. Arrowheads indicate the “blob-like” structures seen at the tip of the flagella of mutant cells (taken from Tammana et al., 2008 with permission). (B) Histogram, showing flagellar lengths of LdCof+/+, LdCof+/–, LdCof– /– and LdCof–/–comp cells (taken from Tammana et al., 2008 with permission). (C) Motility analysis of LdCof mutants by time lapse microscopy. Traces of paths of live, individual cells in the movies indicate that LdCof+/– and LdCof– /– cells are completely immotile. However, upon episomal complementation of LdCof– /– cells the motility is restored back to normal. Origin of the path is indicated by solid dots. Bar, 50 μm (taken from Tammana et al., 2008 with permission). (D) Immuno -flourescence micrographs, showing loss of paraflagellar rod proteins, PFR1 and PFR2, after staining the LdCof +/– and LdCof – /– mutants with mAb2E10 antibodies and their restoration after complimenting LdCof gene in the null mutants. Bar, 5 μm (taken form Tammana et al., 2008 with permission). (E) Transmission electron micrographs of thin sections of flagellum from chemically fixed whole cells showing the absence of PFR in LdCof +/– and LdCof – /– cells and its restoration upon episomal complementation. Longitudinal sections of the flagellum showing the axoneme (AX) with the central pair microtubules (CP) and PFR confined between the axoneme and the flagellar membrane in wild type cells and GFP–LdCof complemented mutants. Bar, 200 nm. Cross sections of the flagellum, showing the PFR in LdCof +/+ (marked by arrow) and GFP–LdCof-complemented mutant cells, and complete absence of this structure in the cross sections of LdCof+/– and LdCof– /– cells. Bar, 200 nm (taken from Tammana et al., 2008 with permission). (F) (a–d) Longitudinal sections of chemically fixed whole cells of LdCof– /– mutants, showing accumulation of membrane-bound vesicles at the base (a), along the length (b,c) and tip (d) of the flagellum. Arrows indicate the membrane-bound vesicles. Longitudinal section (e) and cross section (f) of chemically fixed whole cells of LdCof– /– mutant, showing IFT-like particles along the length of the flagellum. Arrowheads indicate IFT-like particles. Bar, for panels (a–e) 200 nm and for panel (f) 100 nm. IFT, intraflagellar transport (taken from Tammana et al., 2008 with permission).




Actin Monomer Binding Proteins

In motile cells, a rapid growth and reorganization of actin filaments, in response to both intracellular and extracellular stimuli, is required, which is dependent on the availability of polymerizable pool of actin monomers. Although there are a large number of actin monomer binding proteins, only six major classes of proteins are found in most eukaryotic organisms (Winder and Ayscough, 2005). The monomer-binding proteins, on one hand, are involved in binding ADP-actin soon after its release from filament ends (e.g., twinfilin, ADF/cofilin), while on the other, they facilitate the exchange of ADP for ATP (e.g., profilin and CAP) and then deliver ATP-bound actin monomer to the barbed ends to facilitate new rounds of polymerization (e.g., twinfilin, Srv2/CAP, profilin, verprolin/WIP and WASP). All trypanosomatids examined to date encode for only four actin monomer binding proteins, viz., profilin, ADF/cofilin, twinfilin and CAP/Srv2, that are involved in actin turnover. Amongst these, LdCof, profilin (LdPfn) and twinfilin (LdTwf) in L donovani, TbCof and profilin (TbPfn) in T. brucei and only profilin (TcPfn) in T. cruzi have so far been characterized.

Profilins are low molecular weight actin monomer binding proteins (Theriot and Mitchison, 1993) that regulate actin dynamics in eukaryotic cells. These proteins are involved in a variety of actin-driven cellular processes, such as motility, vesicular trafficking, chromatin remodeling, nuclear actin export, membrane signaling, etc. (Wilkes and Otto, 2003). Profilins, on one hand, display actin monomer sequestering activity, while on the other, they catalyze nucleotide exchange on actin monomers and also recycle ATP-bound actin monomers to the barbed end (+ end), thereby significantly promote the polymerization process (Witke, 2004; Carlier and Pantaloni, 2007; Krishnan and Moens, 2009). Besides the actin-binding site, profilins also contain two additional binding sites-one for polyphosphoinositides and the other for poly-L-proline (PLP) motives (Sohn and Goldschmidt-Clermont, 1994; Jockusch et al., 2007). The PLP binding domain in profilins is comprised of their N- and C-terminal helices that form PLP binding cleft (Metzler et al., 1994; Mahoney et al., 1999). It is through the PLP binding domain that profilins bind a large number of proteins. While a number of such binding proteins help profilin in regulation of actin dynamics, other proteins partner with profilin in regulating endocytosis, nuclear export, and Rac/Rho effector protein signaling (Witke, 2004; Jockusch et al., 2007). Besides this, binding of profilin to actin (Lassing and Lindberg, 1985) as well as to PLP has been shown to be regulated through its binding to PI (4,5) P2 (Lambrechts et al., 1997).

In trypanosomatid profilins, LdPfn is the most characterized protein (Ambaru et al., 2020). This protein besides localizing to the cytoplasm, it was also localized to the flagellum, the nucleus and the kinetoplast. Under in vitro and in vivo conditions, LdPfn bound to monomeric actin and in vitro it catalyzed nucleotide exchange on G-actin. At its low concentrations, LdPfn promoted actin polymerization, whereas at high concentrations, it strongly inhibited the polymerization process by sequestering actin monomers. This was in accordance with the earlier studies which have shown that in protozoan organisms, such as Acanthamoeba, Chlamydomonas and Toxoplasma, profilins mainly function as actin sequestering proteins (Reichstein and Korn, 1979; Tseng and Pollard, 1982; Kovar et al., 2001; Skillman et al., 2012). Besides actin, LdPfn also bound to PLP motifs and polyphosphoinositides in vitro. However, among phosphoinositides, it bound more efficiently to PI (3,5) P2, which is found on early or late endosomes and lysosomes (Wallroth and Haucke, 2018), as compared to PI (4,5) P2 and PI (3,4,5) P3 (Ambaru et al., 2020). Further, LdPfn heterozygous mutants, prepared through targeted replacement of LdPfn gene by selective marker gene, grew at much slower pace, compared to wild type cells, in culture, and displayed slower intracellular trafficking activity (Ambaru et al., 2020). These defects were, however, reversed upon episomal complementation of LdPfn gene, indicating that profilin plays an important role in intracellular trafficking. Furthermore, the slower growth of the heterozygous mutants could perhaps be due to aberrations in the cell division cycle of these cells, which needs to be further explored. Unlike LdPfn, TbPfn and TcPfn have been partially characterized. Expression of TcPfn in different developmental stages of T. cruzi (Osorio-Méndez et al., 2016) has been determined, and the protein ligands that might interact with this protein in T. cruzi epimastigotes were analyzed by mass spectrometry. TcPfn was expressed in all the developmental stages of the parasite and possibly interacted with a large number of potential ligands, including actin, microtubule components and elongation factor 1α (Osorio-Méndez et al., 2016). However, role of these interactions of TcPfn in cellular functions needs to be determined. Further, profilin expression in T. brucei has been demonstrated only at the mRNA level, and the gene encoding for this protein has been shown to complement a yeast mutant lacking profilin (Wilson and Seebeck, 1997). Further studies on these proteins are, however, required to evaluate their biochemical and functional properties.

Another actin monomer binding protein of ADF/cofilin family, twinfilin, has also been characterized in L. donovani, but not in other trypanosomatids. Leishmania twinfilin (LdTwf), unlike other eukayotic twinfilins (Goode et al., 1998), was mainly localized to the nucleolus and only to a small extent, it distributed in the basal body region in the promastigotes. However, in the dividing cells, it redistributed to the mitotic spindle (Figure 9) and stayed there partly associated with the spindle microtubules (Kumar et al., 2016). In addition, the growth of heterozygous LdTwf mutants, prepared by targeted LdTwf gene replacement by the selective marker gene, was considerably decreased due the delayed nuclear DNA synthesis and altered mitotic spindle length and architecture, suggesting that twinfilin harmonizes karyokinesis in Leishmania promastigotes (Kumar et al., 2016). Although all twinfilins characterized to date have been shown to interact with monomeric actin, no such interaction of LdTwf with LdAct1 could be demonstrated in vivo or in vitro in this study (Kumar et al., 2016), suggesting that LdTwf function in the nucleus could be independent of LdAct1. The other class of proteins that make a free pool of actin monomers available in motile cells is of actin sequestering proteins, such as the thymosin family of proteins. These proteins act by clamping ATP actin top to bottom, to effectively cap at both barbed and pointed ends and thus prevent its incorporation into filaments (Hertzog et al., 2004; Irobi et al., 2004). Appropriate signals at the cell cortex can then trigger activation of profilin, which results in a rapid release of thymosin binding, leading to a large increase in the polymerizable pool of free ATP-actin. However, this family of proteins are not encoded by the trypanosomatids genomes.
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FIGURE 9. Immunofluorescence micrographs (A–F) after staining the cells with anti-LdTwf antibodies, showing movement of twinfilin (Twf) from the nucleolus to origin of the mitotic spindle where it completely localized on the extending spindle microtubules and finally redistributed to the spindle poles. Arrow heads mark distribution patterns of TWF on the spindle, showing the presence of residual TWF on the spindle microtubules while the larger TWF bulk migrated to the poles in the later stages of karyokinesis. Mitotic spindle has been marked by anti α-tubulin (aTub) antibody. Bar, 5 mm (taken from Kumar et al., 2016 with permission).




Actin Filament Bundling Proteins

There are other ABPs that participate in filament bundling (e.g., fimbrin, coronin), filament crosslinking (fimbrin, α-actinin, and filamin) and filament stabilization (e.g., tropomyosin, troponin), but out of these proteins, trypanosomatids genomes encode only for coronin. Coronins are F-actin binding proteins present in most eukaryotic cells, except the plant cells (Xavier et al., 2008; Chan et al., 2011), that play important role in numerous cellular functions, such as cell motility, phagocytosis, cytokinesis, etc. (Combaluzier and Pieters, 2009; Ishikawa-Ankerhold et al., 2010; Shina et al., 2011; Xavier et al., 2012; Tchang et al., 2013). Together with other ABPs, such as Arp2/3 complex, cofilin and actin-interacting protein-1, coronins are known to participate in reorganization of actin-network (Goode et al., 1999; Humphries et al., 2002; Kueh et al., 2008; Gandhi et al., 2009; Lin et al., 2010; Xavier et al., 2012; Jansen et al., 2015). Of the trypanosomatid coronins, only Leishmania coronin (LdCor) has been characterized. This protein colocalized with LdAct1 filaments and its overexpression promoted filament formation in Leishmania promastigotes (Nayak et al., 2005).

The most characteristic structural feature of all coronins is that they contain five WD repeats, a leucine zipper motif and a coiled-coil domain at their C-terminus (de Hostos, 1999). All these structural features were fully conserved in LdCor structure, except that its leucine zipper motif contained as many as five heptads, rather than 2–3 heptads found in this structural region of other coronins (Nayak et al., 2005). As the number of heptads in the leucine zipper motif determines the degree of coronin oligomerization wherein the coiled-coil domains play a significant role (Asano et al., 2001: Oku et al., 2005), LdCor, unlike other coronins which mainly exist as dimers or trimers, formed higher order oligomers (tetramer or pentamer) through its coiled-coil domain (Srivastava et al., 2015). This was confirmed by determining the 3-d structure of the LdCor coiled coil domain by X-ray crystallography (Nayak et al., 2016). Results revealed an anti-parallel tetramer assembly of the coiled coil domain. Further analysis using small angle X-ray scattering and chemical crosslinking confirmed the existence of tetrameric form of this domain in solution, which was consistent with the observed oligomerization of full-length LdCor (Nayak et al., 2016). In addition, truncation of the coiled-coil domain ablated the ability of LdCor to assist LdAct1 filaments formation, suggesting that the coiled-coil domain was essential only for LdCor oligomerization but not for interaction of LdCor with LdAct1 filaments (Srivastava et al., 2015). Instead, LdCor unlike other coronins, interacted with actin-filaments through its unique region (Srivastava et al., 2015). Besides this, LdCor preferentially distributed to the distal tip during cytokinesis in Leishmania cells, where it interacted with the microtubules through a microtubule-based motor, kinesin K39 (Sahasrabuddhe et al., 2009). And in LdCor depleted (by about 50%) dividing cells, about 25–30% log phase cells possessed bipolar morphology, which was primarily due to an uncoordinated growth of the corset microtubules (Sahasrabuddhe et al., 2009). Detailed analysis of these cells revealed that the underlying cause of this change in cell morphology was the intrusion of the persistently growing corset microtubules into the other daughter cell corset from the opposite direction. However, the cell morphology was restored to normal by LdCor gene complementation in the LdCor depleted cells, suggesting that coronin regulates the microtubule remodeling during Leishmania cytokinesis (Sahasrabuddhe et al., 2009). Although the contribution of LdAct1 during the above process has not been defined in this study (Sahasrabuddhe et al., 2009), it is likely that coronin acts as a link between the actin network and microtubules in trypanosomatids, especially Leishmania.



Actin-Based Motor Proteins

Myosins constitute a group of proteins that display actin-dependent motor activity and regulate a wide range of functions in eukaryotic cells (Woolner and Bement, 2009). These proteins are comprised of a conserved N-terminal motor domain, a neck region including the IQ motifs for calmodulin (light chain) binding, and a C-terminal cargo-binding tail domain that confers functional specificity on different classes of myosins (Krendel and Mooseker, 2005). While the motor domain is primarily responsible for binding to filamentous actin and hydrolysis of ATP, the tail domain determines its functions in the cells, by controlling the state of oligomerization and selection of specific cargo for transport. Because of the high degree of sequence conservation in the head domain, myosins have been expected to power their movements along F-actin tracks, and divergent tail domain is responsible for binding to a variety of proteins as well as membranes (Karcher et al., 2002). Depending on the domain composition and variations in the amino-acid sequence, myosins have been classified into more than 30 classes in different organisms (Foth et al., 2006; Odronitz and Kollmar, 2007)). Trypanosomatid family of organisms encode for two myosins: myosin 1 (Myo1), and a kinetoplastid-specific class XXI myosin, which after phylogenetic analysis of trypanosomatid myosins, has now been reclassified as myosin13 (de Souza et al., 2018). In addition to these two myosins, T. cruzi contains additional seven more myosins, which were initially considered “orphans” but recently, in reclassification of trypanosomatids-specific myosins, this group of myosins has been classified into a new class, XXXVI, which included Myo A, Myo B, Myo C, Myo D, Myo E, Myo F, and Myo G (de Souza et al., 2018).

In trpanosomatids, Myo1 in T. brucei (TbMyo1), Myo F in T. cruzi (TcMyo F) and Myo13 in L. donovani (LdMyo13) have been functionally characterized. TbMyo1 was equally expressed in both blood stream and procyclic forms of T. brucei, but its distribution differed depending on the parasite life cycle (Spitznagel et al., 2010). In blood stream forms of T. brucei, TbMyo1 localized to the polarized endocytic pathway in TbAct1 dependent manner (Spitznagel et al., 2010), and its knock down by RNAi resulted in a significantly reduced endocytic activity, flagellar pocket enlargement, termination of cell division and finally cell death (Spitznagel et al., 2010). In contrast, no such changes in growth or morphology were observed even after loss of 90% of TbMyo1 in procyclic forms, suggesting a life cycle stage specific requirement for TbMyo1 in endocytosis and cell division in T. brucei (Spitznagel et al., 2010). In T. cruzi, the orphan myosin, Myo F, has recently been identified as the enzymatic component of the cytostome-cytopharynx complex that this parasite utilizes for endocytosis (Chasen et al., 2020). The dominant negative mutants prepared by overexpression of TcMyo F, although did not lose their viability, were shown to be completely deficient in endocytic activity. However, full deletion of TcMyo F gene resulted only in a decrease in the rate of endocytosis, potentially indicating toward the role of other myosins in the endocytic process (Chasen et al., 2020). Further analysis revealed involvement of three additional orphan myosins, two of which (Myo B and Myo E) were targeted to the preoral ridge region adjacent to the cytostome entrance and the other (Myo C) was targeted to the cytopharynx tubular structure similar to Myo F (Chasen et al., 2020). It was proposed that while the myosin motors targeted to the preoral ridge region (Myo B and Myo E) could function to move bound surface cargo to the cytostome, those myosins on the tubular cytopharynx (Myo F and Myo C) may then transport endocytosed vesicles to the posterior reservosomes (Chasen et al., 2020).

L. donovani encodes for two myosins, viz. Myo1B and Myo13, of which LdMyo13 is a trypanosomatid-specific myosin that contains two ubiquitin associated (UBA)-like domains toward the end of its C-terminus. LdMyo13 is expressed in both the stages of Leishmania life cycle, viz. promastigote and amastigote stages. However, its expression in the amastigote stage was about 20 times reduced, compared with the promastigote stage (Katta et al., 2009). In the promastigotes, LdMyo13 besides localizing to the cytoplasm was also prominently localized at the base of the flagellum, where it appeared to partly associate with the PFR (Katta et al., 2009). Further studies revealed that the flagellar localization was exclusively determined by the LdMyo13 tail region wherein UBA- like domains played a crucial role (Katta et al., 2009; Bajaj et al., 2020)). Besides this, expression of LdMyo13 varied during growth of Leishmania cells in culture with greater expression at the stationary phase, compared with the early or mid-log phase (Katta et al., 2010). Further, detergent treatment of the promastigotes gave rise to two fractions of LdMyo13- detergent-soluble and detergent-insoluble (Katta et al., 2009), indicating existence of two populations of LdMyo13 in the flagellum of which one population was associated with the flagellar cytoskeleton, while the other population perhaps served as an actin-dependent motor. This apart, similar to LdCof (cf Figure 8), depletion of the LdMyo13 intracellular levels by about 50% resulted in loss of PFR and cell motility, significantly reduced flagellar length, enlargement of the flagellar pocket and impairment of the intracellular trafficking (Katta et al., 2010). These defects were, however, reversed by episomal complementation of LdMyo13 gene in the LdMyo13-depleted cells.

Analysis of LdMyo13 amino acid sequence revealed the presence of an N-terminal motor domain, a neck region including IQ motives for light chain (calmodulin family of proteins) binding, and a C-terminal cargo-binding domain. The end of the motor domain contained a coiled coil region with a strong tendency to dimerize. This region partially overlapped with the PX domain, which has been shown to bind anionic phospholipids (Batters et al., 2014). It has been further reported that the tail domain contained as many as six nonspecific binding sites for lipids of which two such sites overlapped with the region (aa953 – aa1050) where two UBA domains were located in the LdMyo13 sequence (Batters et al., 2014). Depending on the presence/ binding of calmodulin, LdMyo13 adopted monomeric or dimeric states in vitro (Batters et al., 2012). While binding of LdMyo13 to single calmodulin was shown to produce a monomeric state with an ability to move actin filaments (Batters et al., 2012), without calmodulin binding, only non-motile dimers were formed that crosslinked actin filaments (Batters et al., 2014), suggesting that LdMyo13 could exist in both the monomeric and dimeric states. This was consistent with the presence of two populations of LdMyo13 in Leishmania promastigotes (Katta et al., 2009). Further, only the LdMyo13 monomers but not the dimers, could bind lipids, suggesting that calmodulin-bound LdMyo13 may transport lipid cargos during assembly and disassembly of the promastigote flagellum. In addition, in vitro studies, using pure proteins, revealed that LdMyo13 binds along the length of actin filament ends, and that calmodulin binding was essential for actin filaments translocation (Batters et al., 2012).



DISCUSSION

It is evident from the preceding sections that only a limited information is available on the structure and functions of trypanosomatid actins and ABPs. Despite their belonging to the same family, all the three organisms, viz. T. brucei, T. cruzi and Leishmania spp., encode differing number of actins, actin binding, actin-like and actin related proteins, indicating a complex regulation of actin cytoskeleton in these organisms. Amongst these, T. cruzi actin cytoskeleton seems to be the most complex, as unlike T. brucei and Leishmania spp., this organism encodes for four actins, many ABPs and several myosins, all of which belong to the novel class of myosins. This clearly calls for more concerted efforts to decipher the structural and functional features of these proteins.

Unlike conventional actins, trypanosomatid actins mainly exist in form of granules, patches and bundles rather than thin filaments having 7–10 nm thickness. As given in Section “Brief Overview of Conventional Actins,” during filament formation, subdomains 1 and 3 of one actin monomer associate with subdomains 2 and 4 of another monomer. A part of amino acid sequences that are contributed by subdomain 2 in this process constitute the DNaseI binding site, including an eleven aa residues loop which stabilizes the filament structure. As this loop in LdAct1 is highly diverged, compared to conventional actins (Sahasrabuddhe et al., 2004; Kapoor et al., 2008), it may lead to destabilization of the filament structure by affecting the monomer-monomer associations within the filament. This could perhaps be the reason for inability of trypanosomatid actins to form stable filaments. Further, most of the diverged aa residues in LdAct1 are exposed on its surface, which may result in altered surface topology and consequently in altered monomer-monomer associations that may mask the phalloidin binding sites in LdAct1oligomeric structures (Kapoor et al., 2008).

It is apparent that some of the functions of trypanosomatid actins, such as regulation of endocytic and intracellular trafficking activities, appear similar to that of canonical (or conventional) actins. However, despite having more than 90% sequence identity to TbAct1 and TcAct1, LdAct1 unlike TbAct1 and TcAct1, localized to the nucleus and kinetoplast and surprisingly displayed in vitro supercoiled DNA relaxing and kDNA nicking activities (Sahasrabuddhe et al., 2004; Kapoor et al., 2010), which might have been required during the chromatin and kDNA remodeling in Leishmania spp. This suggests that functional diversity of trypanosomatid actins and ABPs is determined by the functional requirements of the specific organism. Further, despite their structural diversity, trypanosomatid myosins, viz. TbMyo1, TcMyo F and LdMyo13, similar to canonical myosins, function as actin dependent motors in regulating endocytosis and intracellular trafficking in the respective organisms. Intriguingly, unlike T. brucei and Leishmania spp., where single isoform of myosin is sufficient to accomplish motor functions during endocytosis and intracellular trafficking, in T. cruzi as many as four myosins, viz. TcMyo B, TcMyo C, TcMyo E and TcMyo F, appear to be required to accomplish the same functions (Chasen et al., 2020). This aspect of regiospecific function of T. cruzi myosins is quite fascinating and needs to be further explored in detail.

The scDNA-relaxing and k-DNA nicking activities of LdAct1 together with its presence in the nucleus and the kinetoplast (Sahasrabuddhe et al., 2004; Kapoor et al., 2010) indicate that this protein perhaps plays some important role in these organelles. Actin in eukaryotic cells has been shown to be involved in several nuclear processes, such as chromatin remodeling, DNA repair and regulation of transcription (Bettinger et al., 2004; Miralles and Visa, 2006; Percipalle and Visa, 2006; Chen and Shen, 2007; Hurst et al., 2019). The SWI/SNF and INO80 families of chromatin remodeling complexes contain actin and Arps as their subunits that bind directly to each other (Olave et al., 2002; Kapoor and Shen, 2014). So far, only three Arps have been analyzed in Leishmania, out of which LdArp2 and LdArp3 were exclusively localized to the cytoplasm, whereas over-expressed version of LdArp6 was localized to the nucleus (Raza et al., 2007). As Arp6 is an essential component of the SRCAP/SWR1 chromatin remodeling complex, which deposits the histone variant H2A.Z into chromatin (Oma and Harata, 2011), the possible association of Arp6 with LdAct1 has been analyzed by the ChIP assay, using anti-LdArp6 antibodies (Raza et al., 2007). Analysis of the immunoprecipitated chromatin revealed the absence of actin in the precipitated material, suggesting that LdAct1 is not a component of the SRCAP complex. Further studies are required to ascertain the functions of LdAct1 in the Leishmania nucleus.

Trypanosomatids, unlike other eukaryotic cells, contain highly complex network of mitochondrial DNA which is exclusively localized to a fixed region of the mitochondrial matrix, near the basal body region, called “kinetoplast.” The kinetoplast DNA (kDNA) is a network of circular DNAs containing two types of DNA circles, viz. minicircles and maxicircles. Depending on the species, kDNA contains 5,000–10,000 minicircles (0.5–10 kb in length) and 25–50 maxicircles (20–40 kb in length), which are catenated to form a highly condensed disk-like structure (Chen et al., 1995; Klingbeil et al., 2001; Lukes et al., 2002). In the non-replicating kDNA state, each minicircle is catenated to three neighboring minicircles (three valence state), which are individually covalently closed. However, during replication, the minicircles are in the open state, and consequently the valence state increases with the progression of replication process from three to six, due to constraints imposed by the space available to the network. Nevertheless, as cell proceeds through the growth phase, the valence state again drops back to three due to increase in the space (Lukes et al., 2002). The factors that constrain the network volume in the kinetoplast matrix during replication process still remain unknown, however, a role of mitochondrial membrane or some unknown cytoskeleton structure has been contemplated (Liu et al., 2005). As kinetoplast associated LdAct1 may act as a kDNA nicking enzyme and its filamentous form could provide the required matrix during kDNA replication process, it may be envisaged that LdAct1 could be involved in this process. Nevertheless, it needs to be further confirmed in vivo or ex-vivo using isolated mitochondria.

The flagellum is a complex microtubule-based dynamic structure that performs functions related to motility, cell signaling and cell morphogenesis (Hill, 2003; Kohl et al., 2003). Unlike other flagellated organisms that contain axoneme as the sole component of their flagellum, the trypanosomatid flagellum contains an extra-axonemal rod-like structure, called paraflagellar rod (PFR). The flagellum dynamics involves a process of its assembly and disassembly, which requires two-way movements of protein cargoes within the flagellum (Rosenbaum and Witman, 2002). These functions are mainly carried out by the microtubule-based motor proteins, such as kinesin II and dynein complexes (Cole and Snell, 2009). However, a role of actin-dependent LdMyo13 motor has also been speculated in the process (Katta et al., 2010). This was primarily based on the facts that: (I) partial or complete depletion of the intracellular pool of LdCof resulted in loss of PFR and also adversely affected the cell motility, flagellar pocket structure and intracellular trafficking (Tammana et al., 2008), and that (II) similar results were observed also by depleting (∼50%) the intracellular pool of LdMyo13 (Katta et al., 2010). In continuation of these studies, it has recently been shown that the two UBA-like domains located toward the end of the C-terminus of LdMyo13 are essentially required for involvement of LdMyo13 in the flagellum assembly/disassembly process (Bajaj et al., 2020). Further, it has earlier been shown that the proteins released during the flagellum disassembly are transported back to the cytoplasm for their degradation (Maga et al., 1999; Adhiambo et al., 2005), and that during disassembly of the Chlamydomonas flagellum, at least 20 proteins get polyubiquitinated prior to their transport and degradation in the cytoplasm (Wang et al., 2019). As UBA-like domains containing proteins bind with polyubiquitinated substrates that are marked for degradation and also with subunits of the proteasome (Su and Lau, 2009), it may be concluded that during the Leishmania flagellum disassembly, LdMyo13 may shuttle the released proteins after their presumed ubiquitylation, for degradation through the ubiquitin-proteasome pathway (Heinen et al., 2011). Besides this, as LdMyo13 tail region contains six lipid binding sites that nonspecifically bind anionic phospholipids (Batters et al., 2014), it may be further speculated that LdMyo13 could serve as a lipid transporter during Leishmania flagellum assembly and disassembly (Figure 10).


[image: image]

FIGURE 10. Cartoon diagram showing involvement of the actin based LdMyo13 motor protein in assembly/disassembly of the paraflagellar road (PFR) and the flagellar membrane during remodeling of the Leishmania flagellum.


Following the reverse genetic approach, depletion of the intracellular levels of LdALP3 resulted in decreased mitochondrial membrane potential and the ATP content together with shortening of the flagellum length (Singh et al., 2014). Similar shortening of the flagellum has also been observed earlier in case of LdCof and LdMyo13 heterozygous mutants (Tammana et al., 2008; Katta et al., 2010). Although morphologies of the LdCof and LdMyo13 mutants closely resembled the nonmotile clones of LdALP3 mutants, there were two distinct features that made them different from each other – (1) the flexible and fast wriggling flagellum of the LdALP3 mutants, which in case of LdCof and LdMyo13 mutants was completely immotile (Tammana et al., 2008; Katta et al., 2010), and (2) the assembly of PFR (though poor) in LdALP3 mutants, which was absent in the LdCof and LdMyo13 mutants. Based on these facts, it has been concluded that LdALP3 perhaps operates through a mechanism, that appears to be different from the mechanisms through which actin-based LdMyo13 motor functions in assembly of the Leishmania flagellum (Singh et al., 2014). However, a cross-talk between the actin-based LdMyo13 motor and LdALP3 operated mechanisms cannot be ruled out.

Trypanosomatid coronins, such as LdCor, display unique structural features, which have not been observed earlier in any other eukaryotic coronin. Most eukaryotic coronins contain the RhXXhE trimerization motif in their coiled coil domain (CC), however, in kinetoplastid coronins the positions of R and E are interchanged within LdCoro CC. Surprisingly, this change in motif affected the oligomeric specificity, which in turn resulted in anti-parallel tetramer assembly rather than the trimer assembly, as revealed by the X-ray crystal structure of the LdCoro CC (Nayak et al., 2016). Interestingly, it also showed that LdCor CC has an inherent asymmetry (Figure 11), in that one of the helices of the bundle was axially shifted with respect to the other three (Nayak et al., 2016). Besides coronin, trypanosomatid twinfilins, especially LdTwf, exhibited novel functional feature in that unlike other eukaryotic twinfilins, it did not bind to LdAct1. Instead, it appeared to partly bind to spindle microtubules, specifically during mitosis (Kumar et al., 2016). However, nothing is known about the structural features of trypanosomatid twinfilins that impart these novel functional features to this class of actin monomer binding proteins.


[image: image]

FIGURE 11. (A) Asymmetry observed in the LdCor coiled coil domain tetramer. Cartoon represents the pairs of dimers, highlighting the asymmetry. In left panel, Cα atoms of aa residues 475–507 of chain C were superposed to corresponding atoms of chain A using Superpose (Krissinel and Henrick, 2004) and the transformation applied to the BC dimer. The B and D helices of AD/BC dimers superpose with an RMSD of 3.4 Å. (B) Interactions at the BC dimer are different from that of AD dimer due to an upward shift in B helix by a heptad. Also, the distances across the interface are longer in the BC helical interface (Taken from Nayak et al., 2016 with permission).


TbAct1 and TbMyo1 are essential for survival of the blood stream form of T. brucei, as knockdown of TbAct1 or TbMyo1 gene by RNAi eventually resulted in cell death (García-Salcedo et al., 2004; Spitznagel et al., 2010). Further, despite repeated attempts, homozygous mutants of LdPfn could not be generated (Ambaru et al., 2020), indicating that this protein is perhaps essential for survival of Leishmania. This is in accordance with the earlier observations that profilin depletion affected the survival of both procyclic and bloodstream forms of T. brucei (Alsford et al., 2011). Besides, all attempts to obtain null mutants of LdMyo13, LdCor and LdTwf resulted in changes in ploidy that enabled the parasite to keep back alleles of the wild-type locus (Sahasrabuddhe et al., 2009; Katta et al., 2010; Kumar et al., 2016), and also the drug resistance markers, which frequently occurs in case of Leishmania essential genes (Jones et al., 2018). In such cases, appropriate methods are required to generate null mutants of these proteins so as to fully reveal their functions.

LdCof null mutants although reported to have decreased endocytic and intracellular trafficking activities with immotile and paralyzed flagellum, yet these cells grew happily in culture (Tammana et al., 2008, 2010), indicating that LdCof-driven LdAct1 dynamics may not be essential for survival of Leishmania promastigotes. However, as LdAct1 and LdMyo13 appear to be essential for survival of the Leishmania cells and LdMyo13 motor function is dependent on actin dynamics (Katta et al., 2010), it may be envisaged that some other unknown ABP might have been functioning as actin dynamics regulator in these cells. The actin filament severing function through which ADF/cofilin family of proteins accelerate the actin treadmilling, may be substituted by another ABP, gelsolin (dos Remedios et al., 2003), but this protein is not encoded by the trypanosomatid organisms. Further, from the limited repertoire of ten ABPs that are encoded by these organisms, the actin monomer binding protein, twinfilin, does not behave like other twinfilins in that it failed to bind to LdAct1 and mostly localized to the nucleolus (Kumar et al., 2016). It is, therefore, most likely that there may be other unknown ABPs existing in these organisms that could substitute canonical ABPs functions. Further efforts are required to search for such proteins in trypanosomatid genomes. Besides, detailed functional studies of all the actin-related and actin-like proteins may be undertaken to analyze whether some of these proteins associate with actin to regulate its functions or can themselves function as a substitute of actin.
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Protein Tyrosine Phosphatase Receptor S Acts as a Metastatic Suppressor in Malignant Peripheral Nerve Sheath Tumor via Profilin 1-Induced Epithelial-Mesenchymal Transition
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Malignant peripheral nerve sheath tumors (MPNST) are aggressive sarcomas with over half of cases developed in the context of neurofibromatosis type 1. Surgical resection is the only effective therapy for MPNST. The prognosis is very dismal once recurrence or metastasis occurs. Epithelial-mesenchymal transition (EMT) is a key process of recurrence and metastasis involving reorganizations of the actin cytoskeleton and actin-binding proteins (ABP) play a non-negligible role. Protein tyrosine phosphatase receptor S (PTPRS), a tumor suppressor previously reported in colorectal cancer, hepatocellular carcinoma and head and neck cancer, is thought to mediate cell migration and invasion by downregulation of EMT. However, its role in MPNST remains unknown. In the present study, by using tissue microarray we demonstrated low expression of PTPRS was related to poor prognosis in MPNST. Knockdown of PTPRS in MPNST cell lines increased migration/invasion and EMT processes were induced with increased N-cadherin and decreased E-cadherin, which indicated PTPRS may serve as a tumor suppressor in MPNST. In addition, we tested all EMT related ABP and found profilin 1 was significantly elevated in PTPRS downregulated MPNST cell lines. As a member of actin-binding proteins, profilins are regulators of actin polymerization and contribute to cell motility and invasion, which have been reported to be responsible for EMT. Moreover, results showed that downregulation of profilin 1 could restore the EMT processes caused by PTPRS downregulation in vitro and in vivo. Furthermore, high expression of profilin 1 was significantly associated with dismal prognosis. These results highlighted PTPRS served as a potential tumor suppressor in the recurrence and metastasis of MPNST via profilin 1 induced EMT processes and it might provide potential targets for future clinical therapeutics.
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INTRODUCTION

Malignant peripheral nerve sheath tumors are aggressive and devastating tumors of peripheral nerve with an incidence of 0.001 percent in the general population (Mowery and Clayburgh, 2019). However, the risk of MPNST development is significantly elevated in NF1 patients, particularly in those with plexiform neurofibromas (Wei et al., 2020). NF1 associated MPNST consists of over half of total MPNST cases and is the leading cause of death in NF1 patients (Higham et al., 2018). Surgical resection with a sufficient wide margin is currently the only potential curative management for MPNST patients (Reilly et al., 2017). However, many patients lose the chance of surgical resection at the time of diagnosis due to MPNST strong metastasis potential. Moreover, the local recurrence rate remains high after surgical resection and traditional chemo/radio therapies show mild benefits (Hirbe et al., 2017; Pasquali and Gronchi, 2017). Therefore, investigating underlying mechanisms of MPNST recurrence and metastasis is of great importance to develop future target therapies and improve prognosis.

Protein tyrosine phosphatase receptor S is a member of distinct family of leukocyte common antigen-related receptor-type phosphatases (Bunin et al., 2015). The physiological role of PTPRS has been well-established in the development of nerve system (Meathrel et al., 2002; Stewart et al., 2013) and pituitary gland (Wallace et al., 1999). Recently, studies have revealed vital roles of PTPRS in immune-mediated intestinal inflammation (Murchie et al., 2014), autophagy and progression of various types of cancers (Wang et al., 2015). The role and underlying mechanisms of PTPRS in different diseases show significant heterogeneity (Du and Grandis, 2015). In hepatocellular carcinoma and head and neck cancer, PTPRS regulated EGFR in EMT processes and drug resistance (Lui et al., 2014). Whereas, in colorectal cancer PTPRS regulated RAS pathway activity by inactivating ERK and preventing its nuclear translocation (Davis et al., 2018). However, the role of PTPRS in neurogenic tumors remains unclear, especially there is previously no study investigating its role in MPNST. Our present study is the first one demonstrating the vital role of PTPRS in MPNST recurrence and metastasis.

Epithelial-mesenchymal transition is a fundamental biological process during which epithelial cells acquire mesenchymal characteristics (Mittal, 2018). EMT plays a vital role in cancer recurrence and metastasis (Mittal, 2018). The dramatic changes in phenotypes and biological behaviors involve a reorganization of actin cytoskeleton, which leads to gain of cellular plasticity and enables membrane protrusions for invasive growth (Yin et al., 2020). It is well established that the organization and dynamics of actin cytoskeleton are controlled by a large array of ABP (Lappalainen, 2016). However, the key ABP in PTPRS mediated MPNST recurrence and metastasis remains unknown.

To explore the clinical impacts of PTPRS and its downstream vital ABP in EMT processes in MPNST recurrence and metastasis, correlation studies of clinicopathological characteristics using tissue microarrays and biological functional assays in vitro and in vivo have been conducted. In addition, all EMT related ABP have been screened and profilin 1 is the potential key ABP in PTPRS mediated EMT processes, which expression significantly correlates with dismal prognosis of MPNST patients. Taken together, our study shows PTPRS acts as a metastatic suppressor in MPNST via profilin 1-induced EMT and PTPRS and profilin 1 might be potential promising biomarkers for target therapy.



MATERIALS AND METHODS


Cell Lines

One HSC line and two MPNST cell lines (sNF02.2, sNF96.2) were purchased from ATCC (American Type Culture Collection, ATCC). Five MPNST cell lines (ST88-14, STS26T, T265, S462, and S462TY) were kindly granted by Prof. Vincent Keng (Li X.X. et al., 2018) and Prof. Jilong Yang (Du et al., 2013). All MPNST cell lines were derived from NF1 patients, except STS26T. Cell lines were maintained in DMEM, 10% FBS and penicillin/streptomycin (Gibco, United States) and were tested mycoplasma negative every 3 months. Verification of cell lines was confirmed by Short Tandem Repeat DNA profiling (Applied Biological Materials Inc., Canada).



Patients and Specimens

Fresh human MPNST tissues were gained from surgical resection specimens of patients in Shanghai Ninth People’s Hospital (Shanghai, China). Human NNTs were obtained from surgical resection residuals of patients in facial nerve repair. The study was approved by Ethics Committee of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, and informed consent was achieved from patients under institutional reviewer board protocols.

Paraffin-embedded tumor tissues from 49 patients after surgical treatment of MPNST between 2005 and 2018 were used for the construction of tissue microarray and IHC. Tissue microarray scores were independently assessed by two independent researchers. In order to eliminate the error caused by different observation conditions, the researcher was asked to finish the assessment of a total microarray within a continuous time interval about 2 h. The score was determined by the proportion of positive cells so that negative, <25%, 25%∼50%, >50% were, respectively, recorded as 0, 1, 2, 3. Discussion with a third researcher if disagreements occur. Clinical information was collected through review of electronic medical records. 29 of 49 patients’ survival status were accessed and confirmed by telephone follow-up, which data were used for survival analyses. 20 in 49 patients lost follow-up currently and were not be able to be contacted with multiple methods.



In vitro Cell Function Experiments

Cell proliferation experiments were conducted by using Cell Counting Kit-8 (CCK8, Dojindo, Japan). A quantity of 103 cells per well were seeded appropriately in 96-well plates, and CCK8 solution diluted 1:10 by serum-free DMEM was added on day 1, 2, 3, 4, 5, 6, and 7 to measure the 450 nm OD value after 2 h incubation. Every assay was repeated independently for three times.

A scratch assay was used to imitate the process of migration of adherent tumor cells. Cells were seeded and grown to nearly confluence in 6-well plates. Before scratching, cells were starved for at least 12 h by maintaining in 1% serum DMEM. Each scratch was made along the centerline of wells by using 200 uL pipette tips. After softly wash away the floated cells, images of scratch at different intervals were taken by an inverted microscope. The area inside the scratch was measured using ImageJ. Percentage of wound closure = (area of scratch on 0 h − area of scratch on 18 h or 24 h)/area of scratch on 0 h.

Transwell assays were performed using hanging cell culture inserts (8 μm pore size; Millipore, United States). A total of 6 × 104 cells per well were seeded on top compartment in 200 uL serum-free DMEM and gently placed in 24-well plates which were added 600 uL 15% serum DMEM in advance. In case of invasion assays, the top compartments were coated by Matrigel (BD Biosciences, United States) diluted 1:8 in DMEM. The migrated and invasive cells were stained with 0.5% crystal violet and the upper cells were softly removed with a cotton swab after 8 h incubation for migration and 24 h for invasion. Images of four random views were captured, and the cell numbers were counted using ImageJ.



Quantitative PCR

Total tissue and cell RNA were extracted according to the procedure of the RNeasy kit (Qiagen, Canada). The cDNA was transformed using PrimeScript RT Master Mix Kit (Takara, Japan). Quantitative PCR was performed on cDNA using SYBR Green System (Applied Biosystems). GAPDH was used as an endogenous control. Relative expression was calculated using the ΔΔCT, n = 4.



Western Blottings

Tissues and cells were lysed in a RIPA buffer supplemented with protease and phosphatase inhibitors (Beyotime, China). Protein concentrations were determined with the BCA Protein Assay reagent (Beyotime, China). Antibodies used were Profilin 1 (Abcam, ab124904), PTPRS (Abnova, H00005802-M01), E-cadherin (Abcam, ab1416), N-cadherin (Abcam, ab76011), Snail (Abcam, ab53519), Slug (Abcam, ab51772), a-SMA (Abcam, ab7817), Vimentin (Abcam, ab92547), GAPDH (CST, 2118), β-actin (CST, 3700). Band signals were detected using an Amersham Imager 600 (General Electric Company, Boston, MA, United States).



Knockdown and Overexpression Experiments

For lentiviral shRNA infection, MPNST cells at 70% confluence were infected with lentiviral particles containing shRNAs targeting PTPRS (target: shA, CCTATTACGTCATCGAATATA; shB, CCAGAGCTATTTCATTGTGAT; shC, GGCTGAAGCTGGATAAGAA) and profilin 1 (target: shA, GCTCCAAGATCTCTAATGTAC; shB, GACCAGTATTGTGTTCCTTGT; shC, GAAGTTGCTGAACTGCATTAC) at a MOI of 10. A random nonsense targeted sequence was used as NC. These were purchased from Hanyin Biotechnology (Shanghai, China). Cells were infected overnight and stable cell populations were selected with puromycin (2 μg/mL) 48 h later. For overexpression plasmid transfection, cells were precultured by antibiotic-free DMEM overnight and replaced with fresh complete medium at 6 h after PTPRS plasmids (purchased from ORIGENE, cat # RC221440) infection. An empty pcDNA was used as NC. Transfected cells were validated using qPCR and western blottings.



Histological Staining

Tissue sections from patients and mice were stained with hematoxylin and eosin. For IHC, sections were dewaxed in xylene, rehydrated through decreasing concentrations of ethanol. After quick wash, antigens were unmasked and retrieval by microwave in citrate buffer. The primary antibody was applied for overnight incubation at 4°C. After incubation with appropriate biotin-conjugated secondary antibody for 2 h at routine time, the signal was detected with DAB substrate (Vector Laboratories). Sections were counterstained with hematoxylin. Antibodies used were profilin 1 (Abcam, ab124904), PTPRS (Abcam, ab222798).



Xenograft Tumor and Lung Metastatic Mice Models

16 and 32 male NOD-SCID IL-2 receptor gamma null (Payne et al., 2019) mice (purchased from Shanghai Model Organisms, China) were used, respectively, for xenograft tumor models and lung metastatic models. For the xenograft models, a total of 5 × 106 cells in 100 uL PBS containing 50% Matrigel (BD Biosciences, United States) were injected subcutaneously into the armpit of each mouse. For the lung metastatic mice models, cells were resuspended in 200 uL PBS and then injected via tail vain with 4 × 106 cells per injection. Tumors in this study were allowed to grow in a donor mouse to a maximum volume of approximately 1,000 mm3. Size of tumors and weights of mice were measured twice a week. Tumor volume was calculated as follows: L × W2/2, where L is the length and W is the width. The number of metastatic nodules were calculated by hematoxylin and eosin stained after preparing sections of lung tissues every 50 um. The xenograft models were sacrificed after 7 weeks and the lung metastatic models were sacrificed after 2 weeks. All procedures were performed in accord with the guidelines established by the Shanghai Medical Experimental Animal Care Commission.



Statistical Analysis

The count of cells and quantitation of western bands were analyzed using ImageJ software. Analyses were performed using SPSS Statistics 23 and GraphPad Prism version 8.0. Univariate Kaplan Meier analyses used a Gehan–Breslow–Wilcox log-rank test. Clinicopathological correlation were analyzed by Spearman correlation. In vivo and vitro data were shown as mean ± SD and were analyzed by paired or unpaired t-test, two-sided. Linear regression was conducted in GraphPad Prism. p-value <0.05 was considered significant.



RESULTS


PTPRS Is Significantly Downregulated in MPNST

To explore the expression of PTPRS in MPNST, IHC stainings of PTPRS in a MPNST cohort including 49 patients were performed. Representative PTPRS IHC stainings of MPNST and normal nerve were shown in Figure 1A. High expression of PTPRS in normal nerve was detected, however, 67.5% MPNST patients showed low or medium PTPRS expression. Consistent with IHC results, western blottings showed significantly high expression of PTPRS in normal nerve compared to MPNST tissue specimens (Figure 1B).
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FIGURE 1. Downregulation of PTPRS correlated with poor prognosis in MPNST patients. (A) Representative immunostaining images of PTPRS weak/medium/strong and normal nerve tissue cases and proportions (%) of different levels of tissue microarray dots. (B) Relative PTPRS mRNA and protein levels in randomly selected cases of normal nerve tissues and MPNST tissues. β-actin was used as a loading control. **p < 0.05. (C) Kaplan–Meier’s curves for cumulative survival according to PTPRS level in MPNST cohort with available follow-up data (n = 29, p = 0.0184). PTPRS high referred as medium and strong stainings with a score 2 or 3. PTPRS low referred as negative and weak stainings with a score 0 or 1. (D) Correlation between expression of PTPRS positive cells in tissues of dead patients and survival time after surgery (p = 0.0003). PTPRS, protein tyrosine phosphatase receptor S; MPNST, malignant peripheral nerve sheath tumor; NNT, normal nerve tissue.




Low Expression of PTPRS Correlates With Disease Progression and Dismal Prognosis

By classifying MPNST patients into PTPRS high (2–3 scores) and low (0–1 scores) expression group, clinicopathological correlation analyses were performed. The ratio of PTPRS low expression was significantly high in MPNST patients younger than 45 years old (Table 1). Mowery and Clayburgh (2019) demonstrated previously young age below 40 years old significantly correlated with short survival compared to patients with age over 40 years. Survival analyses showed that PTPRS high expression group has a longer overall survival than PTPRS low expression group (p = 0.0184, Figure 1C). Among all dead MPNST patients during follow-up period, the proportion of PTPRS positive cells in IHC stainings was determined using ImageJ. Positive linear regression correlation was detected between length of post-operational survival and proportion of PTPRS positive cells in MPNST (p = 0.0003, Figure 1D).


TABLE 1. Clinical parameter with PTPRS expression (high = 2–3, low = 0–1).
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PTPRS Downregulation Prompts MPNST Migration/Invasion via EMT in vitro and in vivo

Seven MPNST cell lines and one normal Schwann cell line were screened for PTPRS expression by using qPCR and western blottings (Figure 2A). S462 and S462TY were selected as high-PTPRS-expression cell lines. PTPRS down-regulated lentivirus was established as previously described (Wang et al., 2015) and effectiveness was confirmed in S462 and S462TY cell lines (Figure 2B). In vitro experiments were carried out by the stable strain constructed by shA, shB, and shC. In vivo experiments were carried out by PTPRS shC (which is the most effective lentivirus and referred to shPTPRS in the following manuscript). No difference was detected in proliferation of PTPRS downregulated MPNST cells and control cells (Figure 2C). PTPRS downregulation significantly increased migration and invasion capabilities of S462 and S462TY cells (Figure 2D). Subcutaneous MPNST tumor models revealed similar results in vivo. There were no significant differences in tumor growth and mice body weight (Supplementary Figure S1C). However, PTPRS downregulation significantly increased number and size of metastasis nodes (Figure 2F). PTPRS downregulation increased expression of N-cadherin and alpha smooth muscle action (αSMA) as well as decreased expression of E-cadherin (Figure 2E). Immunofluorescence stainings of E-cadherin and vimentin showed similar results (Supplementary Figure S1D). Downstream EMT transcriptional factors, including Snail and Slug, were also activated (Figure 2E). All these findings indicated EMT was enhanced by downregulation of PTPRS.
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FIGURE 2. Downregulation of PTPRS mediated MPNST cell migration and invasion in vitro and metastasis in vivo. (A) Relative PTPRS mRNA and protein levels in HSC and MPSNT cell lines. β-Actin was used as a loading control. **p < 0.05. (B) Relative PTPRS mRNA and protein levels in PTPRS knockdown cell lines. The shA, shB, and shC represented three hairpins. β-Actin was used as a loading control. **p < 0.05. (C) Effects of PTPRS knockdown on cell proliferation (p > 0.05). (D) Effects of PTPRS knockdown on cell migration and invasion. Representative images of wound healing assays and migrated or invasive cells were shown (left panels). Results were represented as mean ± SD in triplicate using bar graph (right panels). **p < 0.05. (E) Protein levels of key EMT markers, including E-cadherin, N-cadherin, Snail, Slug, α-SMA, and vimentin were shown in indicated cells (left panels). Relative gray scales of shPTPRS/NC were shown as grouped columns. Results were represented as mean ± SD in triplicate using bar graph (right panels). *p < 0.05. (F) Effects of PTPRS knockdown on tumor metastasis in vivo. Left panel: Representative hematoxylin and eosin images of mice lung tissue sections. Magnifications: ×40; ×100. Right panel: Number and diameter of lung metastatic foci in each group (n = 8) were presented as mean ± SD. **p < 0.05. Bottom panel: Changes of body weights of mice over time (p > 0.05). PTPRS, protein tyrosine phosphatase receptor S; MPNST, malignant peripheral nerve sheath tumor; HSC, human Schwann cell; NC, normal control; E-CAD, E-cadherin; N-CAD, N-cadherin; α-SMA, alpha smooth muscle actin.




PTPRS Overexpression Suppresses MPNST Migration/Invasion via EMT in vitro

MPNST ST88-14 and T265 were selected as PTPRS low expression cell lines for investigations (Figure 3A). As the length of PTPRS coding sequence exceeded in the capacity of lentivirus as previously described (Wang et al., 2015), PTPRS overexpression was realized using plasmid transfections in ST88-14 and T265 cells, which has relatively short effective duration. Therefore, only in vitro experiments were performed. PTPRS overexpression had no impacts on MPNST cell proliferation (Figure 3B). Overexpression of PTPRS significantly suppressed the ability of migration and invasion of MPNST cells (Figure 3C). Consistent with previous results, EMT was suppressed in PTPRS overexpressed MPNST cells. E-cadherin was elevated and N-cadherin/αSMA were downregulated (Figure 3D). Expressions of downstream EMT transcriptional factors, Snail and Slug, were significantly decreased.
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FIGURE 3. Overexpression of PTPRS mediated MPNST cell migration and invasion in vitro. (A) Relative PTPRS mRNA and protein levels in PTPRS overexpression cell lines. β-Actin was used as a loading control. **p < 0.05. (B) Effects of PTPRS overexpression on cell proliferation (p > 0.05). (C) Effects of PTPRS overexpression on cell migration and invasion. Representative images of wound healing assays and migrated or invasive cells were shown (left panels). Results were represented as mean ± SD in triplicate using bar graph (right panels). **p < 0.05. (D) Protein levels of key EMT markers, including E-cadherin, N-cadherin, Snail, Slug, α-SMA, and vimentin, were shown in indicated cells (left panels). Relative gray scales of PTPRS/NC were shown as grouped columns. Results were represented as mean ± SD in triplicate using bar graph (right panels). *p < 0.05. PTPRS, protein tyrosine phosphatase receptor S; MPNST, malignant peripheral nerve sheath tumor; NC, normal control; E-CAD, E-cadherin; N-CAD, N-cadherin; α-SMA, alpha smooth muscle actin.




Screening of EMT Related ABP in PTPRS Downregulated MPNST Cells

Epithelial-mesenchymal transition involved organization and dynamics of actin cytoskeleton controlled by a large array of ABP. Through literature review, 16 ABP were previously demonstrated to be involved in mediating EMT processes (Supplementary Table S1). All these ABP were screened using qPCR in PTPRS downregulated S462 and S462TY cells with corresponding control cells. Profilin 1 was demonstrated to be the most significantly elevated ABP in both PTPRS downregulated MPNST cells and the trend is consistent in both cell lines (Figure 4A). While profilin 2, an important member of profilin family, was upregulated in one strain by qPCR, there was no significant difference in its protein expression in both knockdown and overexpression cell lines (Supplementary Figure S1B).
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FIGURE 4. PTPRS mediated MPNST cell migration and invasion via PFN1. (A) Relative mRNA levels of EMT related ABP in two PTPRS knockdown cell lines. GAPDH was used as a loading control. *p < 0.05. (B) Relative PFN1 mRNA and protein levels in PTPRS knockdown and PTPRS + PFN1 dual knockdown cell lines. GAPDH was used as a loading control. **p < 0.05. (C) Effects of PFN1 knockdown on cell proliferation (p > 0.05). (D) Protein levels of key EMT markers, including E-cadherin, N-cadherin, Snail, Slug, α-SMA and vimentin, were shown in indicated cells (left panels). Relative gray scales of shPTPRS + shPFN1/shPTPRS were shown as grouped columns. Results were represented as mean ± SD in triplicate using bar graph (right panels). *p < 0.05. (F) Effects of PTPRS + PFN1 dual knockdown on cell migration and invasion. Representative images of wound healing assays and migrated or invasive cells were shown (left panels). Results were represented as mean ± SD in triplicate using bar graph (right panels). **p < 0.05. (E) Representative immunostaining images of PFN1 and PTPRS in mice lung tissue sections. Number and diameter of lung metastatic foci in each group (n = 8) were presented as mean ± SD. **p < 0.05. PTPRS, protein tyrosine phosphatase receptor S; EMT, epithelial-mesenchymal transition; NC, normal control; FSCN1, fascin actin-bundling protein 1; GSN, gelsolin; PFN1, profilin 1; PFN2, profilin 2; ARP2, actin related protein 2; ARP3, actin related protein 3; CFL1, cofilin 1; EPN1, epsin 1; EPN2, epsin 2; EPN3, epsin 3; ANLN, anillin actin binding protein; TAGLN1, transgelin 1; TAGLN2, transgelin 2; FLNA, filamin A; FLNB, filamin B; FLNC, filamin C; E-CAD, E-cadherin; N-CAD, N-cadherin; α-SMA, alpha smooth muscle actin.




The Role of Profilin 1 in PTPRS Mediated EMT Processes

To investigate the role of profilin 1 in PTPRS mediated EMT processes, profilin 1 downregulated lentivirus was established and MPNST S462 and S462TY cells with both PTPRS and profilin 1 downregulation were established and validated (Figure 4B, Supplementary Figure S1A). Due to the best effectiveness in PFN1 downregulation, shA (referred to shPFN1 in the following manuscript) was chosen to be applied on S462 and S462TY shPTPRS cell lines. No proliferation differences were detected in PTPRS/profilin 1 downregulated MPNST cells and PTPRS only downregulated MPNST cells (Figure 4C). In addition, by additional downregulation of profilin 1, the increased migration and invasion ability induced by PTPRS downregulation could be overcome (Figure 4D). Characteristic markers and downstream EMT transcriptional factors showed similar results. By downregulation of profilin 1, the EMT processes induced by PTPRS downregulation was restored with increased expression of E-cadherin, decreased expression of N-cadherin and αSMA as well as decreased expression of Snail and Slug (Figure 4E). The negative expression correlation was also found in lung metastasis nodes (Figure 4F).



High Expression of Profilin 1 Negatively Correlated With Prognosis of MPNST Patients

The expression of profilin 1 was evaluated in MPNST tissue array and NNT (Figure 5A). Representative figures were shown (Figure 5A). Unlike high PTPRS expression, NNTs showed negative expression of profilin 1. By classifying MPNST patients based on profilin 1 expression (high, 2–3 scores; low, 0–1 scores), clinicopathological correlation analyses revealed profilin 1 expression negatively correlated with large tumor size (p = 0.047, Table 2). The representative immunostaining images of profilin 1 and PTPRS in the same patients were shown in Figure 5B. The overall survival of high profilin 1 expression MPNST patients significantly shortened compared with low profilin 1 expression MPNST patients (p = 0.0445, Figure 5C and Table 2). When applying both PTPRS and profilin 1 as classification parameters in MPNST patients, the longest overall survival was detected in PTPRS high expression and profilin 1 low expression MPNST patients, while the shortest overall survival was observed in PTPRS low expression and profilin 1 high expression group (p = 0.0199, Figure 5D). Negative linear regression correlation was detected between length of post-operational survival and level of profilin 1 expression in MPNST patients (p = 0.025, Figure 5E).


[image: image]

FIGURE 5. Upregulation of PFN1 correlated with poor prognosis in MPNST patients. (A) Representative immunostaining images of PFN1 negative/weak/medium/strong and normal nerve tissue cases and proportions (%) of different levels of tissue microarray dots. (B) Representative immunostaining images of PFN1 and PTPRS in same patients. The number of patients fall into each group were 14 (PFN1 high and PTPRS high)/11 (PFN1 high and PTPRS low)/20 (PFN1 low and PTPRS high)/4 (PFN1 low and PTPRS low) in the tissue microarray cohort (total = 49), respectively. The “+” represents high expression (score = 2 or 3); the “–” represents low expression (score = 0 or 1). (C) Kaplan–Meier’s curves for cumulative survival according to PFN1 level in MPNST cohort with available follow-up data (n = 29, p = 0.0445). (D) Kaplan–Meier’s curves for cumulative survival according to PFN1&PTPRS level in MPNST cohort with available follow-up data (n = 29, p = 0.0199). (E) Correlation between expression of PFN1 level in tissues of dead patients and survival time after surgery (p = 0.0025). PTPRS, protein tyrosine phosphatase receptor S; PFN1, profilin 1; MPNST, malignant peripheral nerve sheath tumor.



TABLE 2. Clinical parameter with PFN1 expression (high = 2–3, low = 0–1).
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DISCUSSION

Due to local recurrence and early metastasis, the prognosis of MPNST is dismal (Widemann and Italiano, 2018). Even with aggressive surgical resection and combined therapies with chemotherapy and radiotherapy, the improvements for outcomes of MPNST patients remain limited (Kroep et al., 2011; Miao et al., 2019). Therefore, investigation of the molecular mechanisms underlying MPNST recurrence and metastasis is urgently needed. In the present study, we demonstrate that PTPRS is frequently downregulated in MPNST and downregulation of PTPRS significantly increases immigration and invasion by prompting EMT processes via increasing the expression of profilin 1. In addition, downregulation of profilin 1 could substantially restore the impacts of PTPRS on EMT processes. Clinicopathological correlation analyses reveal that low expression of PTPRS and high expression of profilin 1 significantly are associated with disease progression. Survival analyses show PTPRS and profilin 1 could be used as predictors for prognosis with high PTPRS and low profilin 1 indicating the best outcome.

Protein tyrosine phosphatase receptor S was previously demonstrated to play an important role in neural developments and immune responses as well as function as tumor suppressor gene in various types of cancers (Du and Grandis, 2015). Our research team previously identified PTPRS regulated EMT via dephosphorylation of EGFR in hepatocellular carcinoma (Wang et al., 2015). PTPRS–EGFR interactions also played a vital role in chemotherapy resistance in head and neck cancer (Geiger et al., 2016). In addition, STAT3 was another downstream target of PTPRS in cancer progression (Geiger et al., 2016). Although it was well established that ABP had significant impacts on cytoskeleton organization during EMT processes (Kristo et al., 2016; Yin et al., 2019). No potential downstream ABP has been previously screened and identified. Through comprehensively screening all EMT related ABP, profilin 1 was identified.

Profilin 1 is a member of profilin family of small ABP, which ubiquitously expressed in various types of cells (Rodriguez Del Rio et al., 2018). Profilin 1 played an important role in regulation of actin polymerization and cytoskeleton remodeling (Stritt et al., 2018). Serum profilin 1 was independently associated with endothelial dysfunction, cardiovascular events and survival in patients with chronic kidney disease (Eroglu et al., 2017; Li X. et al., 2018). Mutations in profilin 1 led to familiar amyotrophic lateral sclerosis (Daigle et al., 2013). The role of profilin 1 in cancer development and progression has been investigated while heterogeneity still exists. In colorectal cancer and breast cancer, high profilin 1 expression was associated with lower stage and longer survival (Huang et al., 2020). The underlying mechanisms of oncogenic effects of profilin 1 were downstream SMAD3 upregulation and S137 phosphorylation (Tang et al., 2015). However, overexpression of profilin 1 was observed in renal cell carcinoma and gastric cancer (Cheng et al., 2015; Karamchandani et al., 2015). The underlying mechanisms of tumor suppressor effects of profilin 1 were integrin β1/FAK (Cheng et al., 2015). Therefore, the effects and corresponding underlying mechanisms of profilin 1 demonstrated a cancer-dependent manner, which needed to be explored in MPNST.

As local recurrence and metastasis remain the most urgent and challenging obstacles in MPNST treatments and EMT is the key process, our present study elucidates the impacts and underlying mechanisms of PTPRS on EMT from the aspects of profilin 1. These findings add our knowledge about MPNST defining the interaction between PTPRS and profilin 1 in EMT processes. PTPRS and profilin 1 could serve as potential prognostic biomarkers and therapeutic targets for drug development for MPNST patients.
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Supplementary Figure 1 | (A) Relative PFN1 mRNA and protein levels in S462 PTPRS knockdown cell line. The shA, shB, shC represent three hairpins. β-actin was used as a loading control. ∗∗p < 0.05. (B) Protein levels of PFN2 in knockdown cell lines and PFN1, PFN2 in overexpression cell lines. (C) Xenograft mice models of MPNST cells. Up panels: Photos of xenograft mice models and xenografts. Bottom panel: Changes of tumor volume over time (p > 0.05). (D) Representative immunofluorescence images of E-cadherin and vimentin in S462-NC and shPTPRS. PTPRS, protein tyrosine phosphatase receptor S; NC, normal control; PFN1, profilin 1; PFN2, profilin 2; MPNST, malignant peripheral nerve sheath tumor.

Supplementary Table 1 | List of 16 ABP’ main function and references.
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a-SMA, alpha smooth muscle actin; ABP, actin-binding protein; ANLN, anillin actin binding protein; ARP2, actin related protein 2; ARP3, actin related protein 3; CFL1, cofilin 1; E-CAD, E-cadherin; EGFR, epithelial growth factor receptor; EMT, epithelial-mesenchymal transition; EPN1, epsin 1; EPN2, epsin 2; EPN3, epsin 3; FLNA, filamin A; FLNB, filamin B; FLNC, filamin C; FSCN1, fascin actin-bundling protein 1; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GSN, gelsolin; HSC, human Schwann cell; IHC, immunohistochemistry; MPNST, malignant peripheral nerve sheath tumor; N-CAD, N-cadherin; NC, normal control; NF1, neurofibromatosis type 1; NNT, normal nerve tissue; PFN1, profilin 1; PFN2, profilin 2; PTPRS, protein tyrosine phosphatase receptor S; TAGLN1, transgelin 1; TAGLN2, transgelin 2.
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Cortactin, a member of the actin-binding protein family, plays an important role in cell movement involving the cytoskeleton, as cell movement mediated by cortactin may induce the epithelial–mesenchymal transition. Cortactin participates in tumor proliferation, migration, and invasion and other related disease processes by binding to different proteins and participating in different pathways and mechanisms that induce the occurrence of these disease processes. Therefore, this article reviews the correlations between cortactin, the actin cytoskeleton, and the epithelial–mesenchymal transition and discusses its clinical importance in tumor therapy.
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INTRODUCTION

The internal cytoskeleton of eukaryotic cells is composed of actin filaments, microtubules, and intermediate filaments (Remedios et al., 2003). As the main component of microfilaments, actin forms actin filaments that interact with numerous accessory proteins to generate the actin cytoskeleton (Svitkina, 2018). Actin filaments are formed by the polymerization of spherical monomeric actin (G-actin) with a polar structure into the double helical structure of filamentous actin (F-actin) with two different ends (Feldt et al., 2019). The actin cytoskeleton is the primary cellular machinery that generates force. It produces pushing, pulling, and resistance forces. These forces are produced by the coordinated polymerization of various actin filaments, sliding of bipolar filaments of myosin II along actin filaments, and the formation of a cross-linked membrane-related filament array, respectively (Svitkina, 2018). The force produced by the actin cytoskeleton is important for many cell movements, the structure and mechanical energy of the cytoplasmic matrix (Pollard and Cooper, 1986), and facilitates embryonic development, immune defenses, and wound healing (Kirkbride et al., 2011). The movement of the actin cytoskeleton in cells is mainly promoted by the binding of actin and corresponding proteins (Feldt et al., 2019). These proteins are called actin-binding proteins (ABPs). To date, 162 ABPs have been discovered. ABPs include membrane-associated proteins, membrane receptors, and ion transporters. These proteins are involved in the cross-linking of actin filaments, mediate the interactions of microfilaments with other cytoskeletal components, and promote the polymerization and depolymerization of filaments (Qu et al., 2007).

Cortactin, a member of the ABP family, plays an important role in cell movement involving the cytoskeleton (Zhang et al., 2009). Cell movement mediated by cortactin induces the epithelial–mesenchymal transition (EMT) and then participates in relevant disease processes, such as tumor proliferation, migration, and invasion (Karamanou et al., 2020). The inhibition of cortactin blocks the EMT, thereby preventing the proliferation, migration, and invasion of cancer cells (Huang et al., 2019). From a clinical perspective, these results support the application of cortactin as a promising therapeutic target for diseases such as cancer (Yilmaz and Christofori, 2009; Yin et al., 2017). Therefore, this article reviews the correlations between cortactin, the actin cytoskeleton, and the EMT and discusses its clinical value in tumor therapy.


Cortactin

Cortactin is an F-actin-binding protein that regulates cell movement and adhesion junction assembly (Zhang et al., 2009). Cortactin is located on chromosome 11q13, is composed of 550 amino acids, and has a molecular weight of 61.582 kDa (Schuuring et al., 1993). According to the amino acid sequence of cortactin, it contains three important structural domains: an N-terminal acidic region (NTA), a 6.5 F-actin repeat structural domain, and a C-terminal SH3 structural domain. An α-helix and a proline-rich region are located in the central part of the protein between the F-actin repeat structural domain and the SH3 structural domain (Figure 1).


[image: image]

FIGURE 1. ➀ N-terminal acidic region (NTA): The NTA of cortactin binds to Arp2/3 alone or cooperates with Wiskott–Aldrich syndrome protein (WASP) to bind Arp2/3 to regulate branched actin assembly and regulate F-actin polymerization and contraction (Weed et al., 2000; Takehito et al., 2001; Weaver et al., 2002; Pant et al., 2006). ➁ Cortactin function can be regulated by posttranslational modifications of the 6.5 F-actin repeat domain, which contains a repeating 37-amino acid sequence. These modifications include phosphorylation and acetylation by PAK1, PAK3, ATAT1, and HDAC6 (Ohoka and Takai, 1998; van Rossum et al., 2003, 2005; Katsube et al., 2004; Zhang et al., 2007; Castro-Castro et al., 2012; Hayes et al., 2013; Li et al., 2017). ➂ SH3: The C-terminal domain allows actin to function as a scaffold protein because many cytoskeletal, membrane transport, and signaling proteins are bound to the C-terminal SH3 domain, such as ZO-1, CortBP, and Shank (Weed et al., 1998; Weed and Parsons, 2001; Burkhardt et al., 2008). ➃ The central part of the protein between the F-actin repeat domain and the SH3 domain contains an α-helix and a proline-rich region that includes three tyrosine phosphorylation sites, Y421, Y470, and Y486 (human), which are phosphorylated by Src, Fer, and c-Met. The two serine phosphorylation sites, S405 and S418, are phosphorylated by ERK, PAK, MLCK, and other kinases (Beaty et al., 2013; Rosse et al., 2014; Moshfegh et al., 2015).




Cortactin and the Actin Cytoskeleton

Cortactin is a primary regulator of the actin cytoskeleton. At a specific time and in discrete places within the cell, cortactin binding to F-actin regulates the structure of the actin cytoskeleton, thereby altering the morphology and function of the cell (Stossel et al., 1985). It also regulates the formation of corpuscles and lamellipodia, integrin signaling, axon guidance, and extracellular matrix degradation (Yamaguchi and Condeelis, 2007; Weaver, 2008; Marioni et al., 2018). The expression and cytoplasmic localization of cortactin are also crucial for maintaining the structure of the actin cytoskeleton (Motonishi et al., 2015). Overexpression of cortactin increases cell viability (Hill et al., 2006; Rothschild et al., 2006), mainly because of its functions in the assembly of the actin cytoskeleton and in promoting the persistence of lamellar protrusions (Bryce et al., 2005). When cortactin is located at the margin of the cell, it regulates the structure of the actin cytoskeleton and promotes the formation of an invasive pseudopod, which plays a complex role in the EMT, promotes the in situ polymerization of actin, and regulates autocrine signaling (Wang et al., 2013). Therefore, all cell activities in which cortactin is involved, including cell migration, invasion, and localization, require the actin cytoskeleton (Weed et al., 2000; Uruno et al., 2001; Katsube et al., 2004; Ayala et al., 2008).



The EMT and the Actin Cytoskeleton

The EMT was first discovered in embryonic cells (Hugo et al., 2007). According to a recent study, the EMT occurs naturally in numerous tissue types and various stages of development (Zhang and Weinberg, 2018). The EMT is crucial for normal development and tissue remodeling and contributes to disease progression, e.g., fibrosis and cancer metastasis (Kalluri and Neilson, 2003; Borok et al., 2011; Rana et al., 2018). The mechanism of the EMT is to convert epithelial cells into cells with a mesenchymal phenotype that are arranged along the epithelial and mesenchymal axes (Zhang and Weinberg, 2018). Epithelial cells exhibit interepithelial cell connections and apical bases, whereas mesenchymal cells exhibit increased motility and invasiveness and lack a spindle-like morphology and basic polarity (Nieto et al., 2016). Therefore, the occurrence of the EMT plays an important role in cell transformation. The EMT is the initial stage and necessary step of the transfer cascade reaction and is characterized by the loss of root tip polarity and intercellular adhesion, and the morphology and movement of mesenchymal cells occur through cytoskeletal reconstruction (Yilmaz and Christofori, 2009; Tsai et al., 2012; Nieto, 2013; Ye et al., 2016). Cytoskeletal reconstruction is based on the balance and control of the extent of the local assembly and disassembly of actin filaments (Yilmaz and Christofori, 2009). During the EMT, the cytoskeleton must be reshaped at the leading edge to form pseudopodia and allow the cell to move in the surrounding environment (Huang et al., 2019). Therefore, cytoskeletal reconstruction is crucial in the process of EMT-induced cell transformation.



Proteins That Interact With Cortactin

Cortactin, a key regulator of actin cytoskeletal assembly and remodeling, is mainly distributed in structures required for cell movement, such as lamellipodia and filopodia. Cortactin-induced dynamic reconstruction of the actin cytoskeleton provides the motile force that promotes the occurrence of the EMT (Huang et al., 2019). Cortactin regulated the occurrence of the EMT through various mechanisms, such as synergy with E-cadherin to induce the occurrence of the EMT (Yilmaz and Christofori, 2009), a change in cortactin expression that reshapes the actin cytoskeleton and induces the invasion of single cells and groups of cells (Yamaguchi and Condeelis, 2007), and the mutual effects of cortactin and site-specific binding partners on inducing different cellular activities, including the EMT (Helwani et al., 2004; Kirkbride et al., 2011) (Figure 2).
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FIGURE 2. The mechanism of cortactin-induced cytoskeletal remodeling during the epithelial–mesenchymal transition (EMT). Remodeling of the cytoskeleton requires the coordination of several processes, including the protrusion of a lamellipodium at the leading edge, adhesion, contraction of the actin bundle, and retraction of the trailing edge of the cell. Cortactin regulates cytoskeletal remodeling by interacting with Arp2/3, neural Wiskott–Aldrich syndrome protein (N-WASP), and other proteins. Then, it promotes the EMT.



Cortactin and Arp2/3

The Arp2/3 complex is the primary molecular regulator of actin polymerization and is essential for the nucleation and formation of branched actin filament networks in cells (Pollard et al., 2000; Luo, 2002). The branched actin network provides the cellular structure and facilitates processes involving the plasma membrane, such as the formation of the cell–cell connection formation (Johnston et al., 2008), the motility of pathogens, the transport of vesicles, and the formation of cell–cell junctions (Goley and Welch, 2006; Garcia-Ponce et al., 2015). Cellular signals activate the inactive Arp2/3 complex (Higgs and Pollard, 1999). As a scaffold protein and activator of the Arp2/3 complex, cortactin interacts with and activates the Arp2/3 complex through its NTA (Higgs et al., 1999; Machesky et al., 1999; Yin et al., 2017). The cortactin and Arp2/3 complex is colocalized on dynamic particle structures rich in actin filaments. Through this biological process, actin filaments are assembled and extend to the nucleus to form a protein filament network, where the actin filament branch is stimulated (Takehito et al., 2001; Weaver et al., 2001). Cortactin mainly promotes the formation of the shape of the branched actin network by the Arp2/3 complex through two mechanisms. First, cortactin activates Arp2/3 separately and interacts with N-Wiskott–Aldrich syndrome protein (WASP), after which cortactin inhibits the disintegration of the preformed Arp2/3-core filament network (Weaver et al., 2001). The activated Arp2/3 complex produces unbranched actin filaments and branched actin filaments to induce the EMT (Rana et al., 2018).



Cortactin and N-WASP

Members of the WASP family, such as N-WASP, participate in the mechanism regulating the reorganization of the actin cytoskeletal and induce the occurrence of the EMT (Salvi and Thanabalu, 2017). The EMT induced by N-WASP mainly results in the reconstruction of the actin cytoskeleton through the activation of the Arp2/3 complex. However, N-WASP and cortactin activate the Arp2/3 complex alone or in combination (Helgeson et al., 2014). Both cortactin and N-WASP contain an acidic structural domain, which is necessary for binding to the Arp2/3 complex (Weaver et al., 2002). Phosphorylation at specific sites regulates the activities of cortactin and N-WASP, which are two important regulators of actin nucleation (Uzair et al., 2019). When cortactin is phosphorylated and overexpressed in cells, it interacts with N-WASP to facilitate actin polymerization (Wu and Parsons, 1993; Luttrell et al., 1994; Artym et al., 2006; Tehrani et al., 2007; Oser et al., 2009). For instance, the phosphorylation of cortactin by the serine/threonine kinase extracellular regulatory kinase 1/2 and p21-activated kinase 1 enhances the interaction of N-WASP with cortactin (Martinez-Quiles et al., 2004; Grassart et al., 2010) and promotes its phosphorylation of the Arp2/3 complex and transport to the plasmalemma to induce the EMT (Uzair et al., 2019).



Cortactin and Ezrin

Ezrin is a crosslinker of the actin skeleton and cell membrane, and a member of the ezrin–radixin–moesin family (He et al., 2017). Ezrin interacts with cortactin to induce various cellular processes, such as the regulation of the assembly of branched actin filaments, cell–cell adhesion, membrane transport, and ECM degradation (Sung et al., 2011). Both ezrin and cortactin are closely related to cell migration, which is an important component of the EMT process (He et al., 2017). Moreover, phosphorylation has been shown to enhance the function of cortactin by changing the complement of cortactin-bound proteins during migration and invasion (Lapetina et al., 2009; Oser et al., 2009, 2010; Kelley et al., 2010), thereby promoting the invasion and metastasis of various tumors (Weaver, 2008; Ni et al., 2015; Li et al., 2016). The interaction of ezrin with cortactin is a new mechanism involved in the EMT during the tumor metastasis process (He et al., 2017).



Cortactin and Snail1

Snail1 and cortactin are the key factors among all EMT-related proteins (Wu et al., 2015). Cortactin plays important roles in cellular migration and endocytosis, and Snail1 is a potential EMT activator that directly inhibits E-cadherin. Snail1 regulates proteins containing an E-box motif, including E-cadherin, in various tumors as a transcriptional repressor (Cano et al., 2000). This Snail1-mediated inhibition of E-cadherin is generally considered one of the signs of the EMT. During tumor metastasis, the EMT transforms epithelial cells into active and aggressive mesenchymal cells (Villarejo et al., 2014). Snail1 and cortactin both promote the EMT; however, recent reports have identified a negative regulatory effect of Snail1 on cortactin (Lee et al., 2014). For instance, during cultivation in a 3D collagen gel, the exposure of MDA-MB-231 cells to different environmental stimuli increases Snail1 expression and reduces cortactin expression. Inhibition of the JNK signaling pathway increases the expression of Snail1, which subsequently inhibits cortactin, thereby regulating the occurrence of the EMT (Lee et al., 2014).



Participating Pathways

Cortactin is the main organizer of membranous and invasive protrusions and is a presynaptic regulator of rapid activity-dependent signaling in synaptic structures. It induces the EMT by participating in multiple pathways. The level of cortactin at the membrane of the stimulated synapse is increased, which requires neuronal activity, de novo transcription, and Wg/Wnt-dependent expression (Alicea et al., 2017). In melanoma, RNF128 interferes with the ubiquitination and degradation of CD44 and cortactin proteins, activates the Wnt pathway, and promotes the cellular EMT and stem cell development (Wei et al., 2019). Cortactin also induces the EMT by participating in the pathway regulated by the Rho GTPase Rac1. Local actin polymerization is induced by mechanical stimuli and N-cadherin, therefore ensuring the integrity of the adhesion complex. The Rho GTPase Rac1 is activated by N-cadherin, which recruits cortactin to the N-cadherin adhesion complex (El Sayegh et al., 2005). In this process, Fer, a non-receptor tyrosine kinase, binds to N-cadherin through a mechanism mediated by p120-catenin (Kim and Wong, 1995). The phosphorylation of Fer activates cortactin, which induces the reorganization of the actin cytoskeleton, increases the movement of N-cadherin, extends the adhesion area, and then promotes the formation of a stable cell adhesion to ultimately regulate the shape of the cell. In addition to the aforementioned pathways, cortactin also participates in other pathways to induce the EMT. The related pathways and upstream and downstream molecules are shown in Table 1.


TABLE 1. Correlated signaling pathways and upstream and downstream molecules related to cortactin-induced epithelial–mesenchymal transition (EMT).
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Cortactin in Cancer

Cortactin is overexpressed in many epithelial cancers (Marioni et al., 2017). In human tumors, cortactin overexpression leads to increased cell migration, invasion, and metastasis (Clark and Weaver, 2008). The transformation of breast cancer is related to the EMT. During this process, actin-rich protrusions on the serosa form invasive pseudopodia, which promote protein degradation in the extracellular matrix and tumor invasion. The formation and main function of invasive pseudopodia are controlled by cortactin (Karamanou et al., 2020). The polymerization of phosphorylated cortactin and actin at aggressive pseudopodia increases the invasiveness of human breast cancer cells and subsequently induces matrix degradation and aggressive behavior (Mader et al., 2011). In pancreatic ductal adenocarcinoma, the overexpression and phosphorylation of cortactin promotes the occurrence of the EMT, followed by the metastasis and migration of pancreatic ductal carcinoma (Stock et al., 2019). Cortactin is mainly phosphorylated at Y421 (Head et al., 2003), resulting in increased recruitment of proteins containing an SH2 domain, activation of the Arp2/3 complex, and increased stability and conversion of focal adhesions (Okamura and Resh, 1995; Tehrani et al., 2007). The tyrosine phosphorylation of cortactin is often used as an EMT marker due to its relationship with the protease activity necessarily for matrix degradation and cell invasion (Bowden et al., 2006). Cortactin induces the EMT in other types of cancer and promotes tumorigenesis (Table 2).


TABLE 2. Cortactin induces EMT in other cancer syndromes and promotes the development of cancer syndromes.
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CONCLUSION AND PROSPECTS

Based on accumulating evidence from recent studies, cortactin is an important ABP. Its binding to F-actin regulates cell movement and adhesion. Cortactin also regulates the structure of the actin cytoskeleton by binding to various protein, thereby inducing the occurrence of the EMT. The role of the EMT in the occurrence and development of diseases, particularly its important role in tumor metastasis, has gradually attracted attention. Therefore, this article discusses the role of cortactin in the induction of the EMT by binding to different proteins and participating in different pathways and mechanisms to induce the occurrence of the EMT. However, other related binding proteins and mechanisms of cortactin in the EMT remain to be discovered. Perhaps we will be able to prevent the development of diseases by regulating the activity of cortactin-related proteins and pathways to control the EMT. As researchers are increasingly focusing on the role of cortactin complexed with different proteins in diseases, additional regulatory mechanisms will be discovered. The mechanisms will provide new insights for studies of related diseases and the development of new drugs and treatment methods and will provide additional evidence for the clinical application of cortactin in the future.
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Intestinal epithelial barrier is critical for the maintenance of normal gut homeostasis and disruption of this barrier may trigger or exaggerate mucosal inflammation. The actin cytoskeleton is a key regulator of barrier structure and function, controlling the assembly and permeability of epithelial adherens and tight junctions. Epithelial cells express two actin isoforms: a β-cytoplasmic actin and γ-cytoplasmic actin. Our previous in vitro studies demonstrated that these actin isoforms play distinctive roles in establishing the intestinal epithelial barrier, by controlling the organization of different junctional complexes. It remains unknown, whether β-actin and γ-actin have unique or redundant functions in regulating the gut barrier in vivo. To address this question, we selectively knocked out β-actin expression in mouse intestinal epithelium. Mice with intestinal epithelial knockout of β-actin do not display gastrointestinal abnormalities or gross alterations of colonic mucosal architecture. This could be due to compensatory upregulation of γ-actin expression. Despite such compensation, β-actin knockout mice demonstrate increased intestinal permeability. Furthermore, these animals show more severe clinical symptoms during dextran sodium sulfate induced colitis, compared to control littermates. Such exaggerated colitis is associated with the higher expression of inflammatory cytokines, increased macrophage infiltration in the gut, and accelerated mucosal cell death. Consistently, intestinal organoids generated from β-actin knockout mice are more sensitive to tumor necrosis factor induced cell death, ex vivo. Overall, our data suggests that β-actin functions as an essential regulator of gut barrier integrity in vivo, and plays a tissue protective role during mucosal injury and inflammation.

Keywords: actin isoforms, cytoskeleton, barrier, tight junctions, adherens junctions, mucosal inflammation, colitis, cells death


INTRODUCTION

The actin cytoskeleton is a key regulator of epithelial homeostasis. Assembly of prominent actin filament bundles is required for the formation of diverse cellular structures, such as intercellular junctions and apical microvilli in differentiated epithelial cell monolayers, cell matrix adhesions in migrating cells, and the cleavage furrow that separates dividing cells (Ivanov, 2008; Crawley et al., 2014; Braga, 2016; Dekraker et al., 2018; Rothenberg and Fernandez-Gonzalez, 2019). Additionally, a dynamic network of actin filaments is associated with cytoplasmic organelles and nuclear transcriptional complexes (Plessner and Grosse, 2019; Ravichandran et al., 2020). The actin cytoskeleton participates in virtually all housekeeping and specialized epithelial functions. Importantly, it could control these functions at different levels: from setting up the nuclear transcriptional rheostat for cell stemness and differentiation, to regulating the stability and dynamics of effector structures and the cell cortex (Braga, 2016; Misu et al., 2017; Viita and Vartiainen, 2017; Dekraker et al., 2018; Rothenberg and Fernandez-Gonzalez, 2019).

The actin cytoskeleton is formed by self-association of the most abundant cellular protein, actin (Dominguez and Holmes, 2011; Pollard, 2016). Actin reversibly polymerizes into polar filaments, and this process is strictly controlled by different actin-binding proteins (Dominguez, 2009; Barr-Gillespie, 2015; Pollard, 2016; Buracco et al., 2019). Mammals have six actin genes encoding different actin isoforms (Vandekerckhove and Weber, 1978). Two of them, β-cytoplasmic actin and γ-cytoplasmic actin (referred to thereafter as β-actin and γ-actin), are expressed in epithelial cells (Perrin and Ervasti, 2010; Kashina, 2020). β-actin and γ-actin possess remarkable structural similarity, being different only in 4 amino acid residues at the N-terminal part of the molecule (Perrin and Ervasti, 2010). In spite of this similarity, β-actin and γ-actin could play unique roles in cultured fibroblasts, epithelial, and cancer cells by participating in different molecular events during cell proliferation, differentiation, and motility (Bunnell et al., 2011; Lechuga et al., 2014; Dugina et al., 2015, 2018; Patrinostro et al., 2017; Malek et al., 2020). Additionally, studies in mouse models with tissue specific depletion of either β-actin, or γ-actin have demonstrated both the unique and redundant functions of these actin isoforms in the regulation of myogenesis, auditory cell function, brain development, and synaptic transmission in vivo (Sonnemann et al., 2006; Perrin et al., 2010; Cheever et al., 2012; Wu et al., 2016; Madsen et al., 2018).

Through the control of the structure and stability of epithelial tight junctions (TJ) and adherens junctions (AJ), the actin cytoskeleton is a well-recognized regulator of epithelial barriers (Ivanov, 2008; Ivanov et al., 2010; Mege and Ishiyama, 2017; Sluysmans et al., 2017). Epithelial junctions are formed at the plasma membrane via multiple interactions between different transmembrane and cytosolic plaque proteins (Troyanovsky, 2012; Suzuki, 2013; Takeichi, 2014; Van Itallie and Anderson, 2014). Transmembrane TJ and AJ proteins, such as claudins, occludin, junctional adhesion molecule-A (JAM-A), E-cadherin, and nectins, directly engage in homotypic adhesions to their partners on the opposing epithelial plasma membrane (Troyanovsky, 2012; Suzuki, 2013; Takeichi, 2014; Van Itallie and Anderson, 2014). Cytosolic plaque constituents, including zonula occludens (ZO) proteins, α-catenin, β-catenin and p120-catenin, enhance the adhesive properties of transmembrane TJ/AJ proteins and couple them to different intracellular structures (Troyanovsky, 2012; Suzuki, 2013; Takeichi, 2014; Van Itallie and Anderson, 2014).

Both AJ and TJ directly associate with the elaborate and dynamic cortical actin cytoskeleton (Ivanov, 2008; Braga, 2016). The perijunctional actin filaments generate the mechanical forces that control all stages of junctional biogenesis, including AJ/TJ assembly, maintenance, and disassembly (Ivanov, 2008; Mege and Ishiyama, 2017; Sluysmans et al., 2017; Charras and Yap, 2018; Varadarajan et al., 2019). An essential role of the actin cytoskeleton in controlling junctional integrity and function has been demonstrated with studies that utilized actin filament depolymerizing drugs to trigger robust TJ and AJ disassembly and epithelial barrier disruption (Madara et al., 1986; Vasioukhin et al., 2000; Ivanov et al., 2005; Shen and Turner, 2005). In model epithelial cell monolayers, both β-actin and γ-actin participate in the formation of the perijunctional actin cytoskeleton, though these actin isoforms appear to be selectively associated with different junctional complexes (Baranwal et al., 2012). For example, in intestinal epithelial cell monolayers γ-actin predominantly incorporates into stable TJ-associated F-actin bundles, whereas the more mobile β-actin-based filaments primarily affiliate with AJ (Baranwal et al., 2012). Remarkably, depletion of either β-actin, or γ-actin causes selective disruption of AJ and TJ structure, respectively, and leads to an increase in paracellular permeability (Baranwal et al., 2012). A fraction of β-actin mRNA is accumulated and locally translated at AJ in renal epithelial and myoblast cells (Rodriguez et al., 2006; Gutierrez et al., 2014). Inhibition of such local perijunctional synthesis of β-actin attenuates AJ assembly (Gutierrez et al., 2014; Cruz et al., 2015). The described studies suggest that β-actin and γ-actin cooperate during the establishment of model epithelial barriers in vitro by controlling the assembly and stability of different junctional complexes. However, it remains unclear if similar functional interplay between these two actin isoforms is essential for epithelial barrier integrity in vivo. Importantly, elucidating the actin isoform-dependent regulation of epithelial barriers could lend significant insight into understanding the pathogenesis of human immune disorders, including inflammatory bowel diseases (IBD). One of the key manifestations of IBD is increased permeability of the gut barrier, which is readily recapitulated in animal models of experimental colitis (Marchiando et al., 2010; Lee et al., 2018; Fasano, 2020; Schlegel et al., 2020). Interestingly, published proteomic studies of the intestinal mucosa of IBD patients and animal models of colitis report a marked dysregulation in the expression of β-actin and γ-actin in the inflamed gut (Shkoda et al., 2007; Cooney et al., 2016; Moriggi et al., 2017). It is possible that alterations to actin isoform levels could destabilize the intestinal epithelial barrier, thereby contributing to the development of mucosal inflammation. To gain insights into the actin-dependent regulation of the gut barrier in normal and inflamed intestinal mucosa, we generated and characterized a mouse model with intestinal epithelial-specific knockout of β-actin. Our data suggests that intestinal epithelial β-actin acts as an essential regulator of mucosal barrier integrity in healthy gut, and limits mucosal injury and inflammation during experimental colitis in vivo.



MATERIALS AND METHODS


Antibodies and Other Reagents

Primary antibodies that were used to detect cytoskeletal, junctional, and leukocyte proteins by immunofluorescence labeling and immunoblotting analysis are listed in a Supplementary Table 1. Alexa Fluor-488-conjugated donkey anti-rabbit, donkey anti-mouse and donkey anti-goat, Alexa Fluor-555-conjugated donkey anti-mouse and goat anti-rat secondary antibodies, and Alexa Fluor-488-labeled phalloidin were obtained from Thermo Fisher Scientific (Waltham, MA). Horseradish peroxidase-conjugated goat anti-rabbit and anti-mouse secondary antibodies were acquired from Bio-Rad Laboratories (Hercules, CA). All other chemicals were obtained from Thermo Fisher Scientific, or Millipore-Sigma (Saint Louis, MO).



Animals

In order to establish a conditional knockout of β-actin in the intestinal epithelium, Actb flox/flox mice on a C57BL/6 background (Sonnemann et al., 2006; Perrin et al., 2010) were crossed with villin-Cre animals (Jackson Laboratory, stock # 004586). In these villin-Cre mice, a 12.4 kb fragment of mouse villin 1 promoter directs Cre recombinase expression in both the small intestine and the colon (Madison et al., 2002). The animal colony was maintained under pathogen-free conditions in the vivarium of Virginia Commonwealth University Medical Center and then Lerner Research Institute of Cleveland Clinic. The mouse room was on a 12 h light/dark cycle and standard feed and tap water were available, ad libitum. At the beginning of colitis experiments, mice weighed 18–25 g, with no significant difference between the body masses of mice of different genotypes. All procedures were conducted under animal research protocols approved by the Virginia Commonwealth University and Lerner Research Institute Animal Care and Use Committees in accordance with the National Institutes of Health Animal Care and Use Guidelines.



Induction and Characterization of Dextran Sulfate-Induced Colitis

Experimental colitis was induced in 8–10 week old β-actin cKO mice by administering a 3% (w/v) solution of dextran sulfate, sodium salt (DSS, Thermo Fisher Scientific), in drinking water, ad libitum. Either Actb flox/flox or villin-Cre only littermates were used as controls. Vehicle-treated animals received tap water. Both male and female mice were used at roughly equal numbers. Animals were weighed and monitored for symptoms of gastrointestinal disorder daily. The disease activity index was calculated as previously described, by averaging numerical scores of body weight loss, stool consistency, and intestinal bleeding (Rhee et al., 2012). With regards to body weight, no weight loss was scored as 0, loss of 1–5% was scored as 1; 5–10% and 10–15% weight loss was scored as 2 and 3, respectively, whereas more than 15% weight loss was scored as 4. For stool consistency, well-formed pellet was scored as 0, soft and semi-formed stool as 2, and liquid stool or diarrhea was scored as 4. For intestinal bleeding, no blood was scored as 0, hemoccult-positive stool as 2, and gross rectal bleeding was scored as 4. On day 7 of DSS administration, animals were euthanized, with their colonic tissue harvested and separated into several segments. The samples were either fixed in 10% formaldehyde solution, snap frozen in liquid nitrogen, or embedded into an optimal cutting temperature medium and snap frozen for subsequent histological and biochemical examination. Formalin-fixed samples were paraffin embedded, sectioned, and stained with hematoxylin and eosin (H&E). The H&E stained slides were examined, “blind,” by a gastrointestinal pathologist, and the tissue injury index was calculated as previously described (D’Haens et al., 1998; Mahler et al., 1998; Ding et al., 2012). The index represents the sum of individual scores reflecting mucosal inflammation, leukocyte infiltration, fibrosis and epithelial erosion. Briefly, inflammation was graded as follows: 0, no evidence of inflammation; 1, low level of inflammation with scattered infiltrating cells; 2, moderate inflammation with multiple sites of infiltration; 3, high level of inflammation with increased vascular density and marked wall thickening; and 4, severe inflammation with transmural leukocyte inflammation with loss of goblet cells. Fibrosis was graded as follows: 1, no evidence of fibrosis (collagen covering < 5% of area), 2, loose irregular connective tissue (6–15%); 3, increase in number and density of focal collagen (16–40%); and 4, severe presence of thick collagen layer (collagen covering more than 40% of the area). Ulceration score was graded as 0, no presence; 1, yes presence, less than 25%; 2, yes, 25–50%; 3, yes, greater than 50%; and 4, yes, into muscularis propria. Apoptosis score was graded as follows: 0, none; 1, mild superficial; 2, mild base of crypt; 3, confluent apoptosis; and 4, glandular loss from apoptosis.



Measurement of Intestinal Epithelial Barrier Permeability in vivo

In vivo intestinal permeability assay was performed in β-actin cKO and control animals receiving either 3% DSS or water for 7 days. Water and food was withdrawn for 3 h before the start of the procedure. Animals were gavaged with fluorescein isothiocyanate (FITC)-labeled dextran (4,000 Da; 60 mg/100 g body weight) and euthanized 3 h later for blood collection via cardiac puncture. Blood serum was obtained by centrifugation, and FITC fluorescence intensity was measured using a Victor3 V plate reader (Perkin Elmer, Waltham, MA) with excitation and emission wavelengths at 485 and 544 nm, respectively. The measured value of FITC-dextran-free serum was subtracted from each individual measurement. The concentration of FITC-dextran in blood serum was calculated using SigmaPlot v12.5 software, based on a plotted standard curve prepared via serial dilutions of a 60 mg/ml stock solution of FITC-dextran in phosphate buffered saline (PBS).



Immunoblotting Analysis

Mouse colonic segments were harvested, longitudinally bisected, and washed with ice-cold PBS. Epithelial cells were collected by gently scraping the exposed interior with a razor blade, and snap frozen in liquid nitrogen for further analysis. Intestinal epithelial scrapings were lysed and homogenized in a RIPA buffer containing a protease inhibitor cocktail and phosphatase inhibitor cocktails 2 and 3 (Millipore-Sigma). Samples were diluted with 2x SDS sample loading buffer and boiled. SDS-polyacrylamide gel electrophoresis was conducted using standard protocols with an equal amount of total protein loaded per lane (10 or 20 μg), followed by immunoblotting on nitrocellulose membrane. Protein expression was quantified via densitometry using Image J software (National Institutes of Health, Bethesda MD).



Quantitative Real-Time RT-PCR

Total RNA was isolated from whole colonic segments of β-actin cKO and control animals using a mirVana miRNA Isolation kit (Thermo Fisher Scientific) followed by DNase treatment to remove genomic DNA. Total RNA (1 μg) was reverse transcribed using an iScript cDNA synthesis kit (Bio-Rad Laboratories). Quantitative real-time RT-PCR was performed using iTaq Universal SYBR Green Supermix (Bio-Rad Laboratories) in a 7900HT Fast Real-time PCR System (Applied Biosystems, Foster City, CA). The primer sequences have been published in our previous study (Naydenov et al., 2016). The threshold cycle number (Ct) for specific genes of interest and a housekeeping gene were determined based on the amplification curve representing a plot of the fluorescent signal intensity vs. the cycle number. The relative expression of each gene was calculated by a comparative Ct method that is based on the inverse proportionality between Ct and the initial template concentration (2–ΔΔ Ct), as previously described (Ivanov et al., 2002). This method is based on two-step calculations of ΔCt = Cttargetgene − CtGAPDH and ΔΔCt = ΔCte−ΔCtc, where index e refers to the sample from any DSS or water-treated β-actin cKO, or control mice, and index c refers to the sample from a water-treated control animal assigned as an internal control.



Immunofluorescence Labeling, Cell Death Assay, and Confocal Microscopy

Full thickness frozen colonic sections were fixed with 4% paraformaldehyde and permeabilized with absolute methanol to label for pSTAT and leukocyte markers. Paraformaldehyde-fixed and Triton-X100-permeabilized frozen sections were utilized for F-actin labeling. Formalin fixed and paraffin embedded full thickness colonic sections were used to immunolabel junctional proteins and actin isoforms. Following standard deparaffinization and antigen retrieval, sections were blocked for 60 min in Hanks HEPES-buffered salt solution containing 1% bovine serum albumin, followed by overnight incubation at 4°C with primary antibodies. Samples were then washed and incubated with Alexa dye-conjugated secondary antibodies for 60 min, and finally rinsed with blocking buffer. F-actin was visualized after 60 min labeling with Alexa-555-labeled phalloidin. Vector TrueView reagents mix (Vector Laboratories, Burlingame, CA) was applied to quench tissue autofluorescence. Labeled samples were mounted on slides using ProLong Antifade mounting reagent with or without DAPI (Thermo Fisher Scientific). Cell death in colonic tissue sections was evaluated with a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, using an ApopTag Fluorescein in situ Apoptosis Detection Kit (Millipore-Sigma), according to the manufacturer’s instructions. Fluorescently labeled tissue sections were imaged using a Leica SP8 confocal microscope (Wentzler, Germany). The Alexa Fluor 488 and 555 signals were acquired sequentially in frame-interlace mode, to eliminate cross talk between channels. Images were processed using Adobe Photoshop.

To quantify CD4, F4/80, MPO, and pSTAT3 immunolabeling, signal intensities were measured at the colonic surface and in the crypt areas. For TUNEL assay, individual dead cells were counted. Mean values were calculated by averaging the signal intensities obtained from the tissue samples of 5–7 different animals from each experimental group. The animal numbers for each experimental group are presented in figure legends.



Culture of Intestinal Enteroids

Enteroids were generated from isolated small intestinal crypts of β-actin cKO and control mice, as previously described (Lechuga et al., 2017). Briefly, mice were euthanized and their small intestinal segments were dissected, longitudinally opened, and washed with ice-cold PBS. Crypts were released using 30 min incubation with PBS containing 2 mM of EDTA at 4°C, with constant agitation, followed by mechanical shaking. Debris and villous fragments were discarded, and the resulting crypt fraction was collected by centrifugation and resuspended in growth factor reduced Matrigel (BD Bioscience). After Matrigel polymerization, DMEM/F12 medium containing HEPES, glutamine, N2 and B27 supplements, and growth factors [50 ng/ml epidermal growth factor, 500 ng/ml R-spondin 1, and 100 ng/ml Noggin (R&D Systems)] were added. Intestinal enteroids were allowed to differentiate for 7 days and were observed using a bright field microscope (Olympus BX41, Japan). Cell death was induced by treating enteroids with 100 ng/ml of murine tumor necrosis factor (TNF)-α (PeproTech, Cranbury, NJ) for 12 h. Viable and dead enteroids were distinguished by morphology, using a bright-field microscope (Keyence, Osaka, Japan) and counted. At least 50 enteroids per experimental group were examined. The percentage of dead enteroids was calculated from 3 independent experiments.



Statistical Analysis

Data are given as a mean ± SEM. The statistical significance of the difference between 2 sets of data was evaluated using the two tailed unpaired Student’s t-test when data were distributed normally. Differences in body weight loss and diseases activity index data were examined for statistical significance using one-way ANOVA (SigmaPlot 12.5 package). Statistical significance was accepted at p < 0.05.



RESULTS


Intestinal Epithelial Specific Knockout of β-Actin Increases the Permeability of Normal Gut Barrier in vivo

β-actin is known to be essential for the early stages of development and its total knockout results in embryonic lethality (Shawlot et al., 1998; Bunnell et al., 2011). In order to study the physiological functions of this cytoskeletal protein in the gastrointestinal tract, we generated a mouse model with intestinal epithelium-specific knockout of β-actin. β-actin floxed mice were crossed with mice that express a Cre recombinase driven by a constitutively-active villin promoter. Immunoblotting analysis and immunofluorescence labeling were used to demonstrate the high efficiency and specificity of β-actin knockout in the intestinal epithelium. Expression of β-actin protein was undetectable in colonic epithelial cell scrapings collected from β-actin flox/villin Cre homozygous (referred hereafter as β-actin cKO) mice (Figure 1A). Furthermore, according to immunofluorescence labeling of whole thickness colonic sections, the targeted protein was markedly depleted in E-cadherin-positive colonic epithelial cells (Figure 1B), but was abundantly expressed in non-epithelial compartments, such as the lamina propria and muscularis propria (Supplementary Figure 1, arrows). Knockout of β-actin resulted in a more than threefold upregulation of γ-actin level (Figure 1A), but did not induce α-smooth muscle actin protein expression in colonic epithelial scrapings (data not shown). Since β-actin and γ-actin have similar cellular localization in the intestinal mucosa of control mice (Figures 1B,C, arrows), the increased accumulation of apical and junction-associated γ-actin (Figure 1C) could serve as a compensatory response to the loss of β-actin expression. Consistent with such compensatory mechanism, F-actin labeling with a fluorescent phalloidin probe did not display significant alterations of the actin cytoskeletal architecture in β-actin-deficient intestinal epithelium (Supplementary Figure 2, arrows). Upregulation of γ-actin can explain the unchanged level of total actin in β-actin-depleted epithelial cells (Figure 1A). This important observation rules out the possibility that the altered gastrointestinal responses of β-actin cKO animals, described below, reflect the non-specific consequences of decreased actin concentration in intestinal epithelial cells. β-actin cKO mice were born healthy and did not show growth retardation or symptoms of gastrointestinal inflammation, such as spontaneous diarrhea, rectal prolapses, or bleeding (data not shown). Furthermore, intestinal epithelium-specific knockout of β-actin did not cause noticeable morphological abnormalities to the colonic and ileal mucosa (Supplementary Figure 3).
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FIGURE 1. Intestinal epithelial-specific knockout of β-actin in mice results in a compensatory increase in γ-actin expression. (A) Immunoblotting analysis of the expression of cytoplasmic actin isoforms (β-actin and γ-actin) and total actin in colonic epithelial scrapings obtained from control and β-actin cKO mice. Representative immunoblots and densitometric quantification of β-actin and γ-actin expression are shown. Data is presented as a mean ± SE (n = 5); ∗∗p < 0.005, ∗∗∗p < 0.0005. (B,C) Dual immunofluorescence labeling of either β-actin (B) or γ-actin (C) (red) and E-cadherin (green) in full-thickness colonic tissue sections obtained from control and β-actin cKO mice. Arrows indicate the predominant accumulation of both cytoplasmic actin isoforms at the apical pole of colonic epithelial cells. Scale bar, 20 μm.


Given our previous findings, that down-regulation of β-actin expression disrupts the integrity of intestinal epithelial barrier in vitro (Baranwal et al., 2012), we investigated the effects of β-actin knockout on gut barrier permeability in vivo. Remarkably, healthy β-actin cKO mice demonstrated an approximately 20-fold increase in the transmucosal flux of FITC-dextran as compared to control animals (Figure 2A). The observed leakiness of the β-actin-depleted epithelial barrier was not accompanied by altered expression of key AJ and TJ proteins (Figure 2B). Furthermore, immunofluorescence labeling did not show distinct changes in junctional localization of E-cadherin, β-catenin, p120-catenin, ZO-1, and occludin in the colonic mucosa of β-actin cKO mice (Figures 1B,C, 2C, arrows). This data suggests that the increase in gut permeability caused by depletion of intestinal epithelial β-actin in vivo is not mediated by the abnormal assembly of epithelial apical junctions.
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FIGURE 2. Intestinal epithelial-specific knockout of β-actin increases intestinal permeability without causing significant alterations in the structure and composition of epithelial junctions. (A) Intestinal permeability of control and β-actin cKO mice in vivo was determined by measuring gut-to-blood passage of FITC-dextran. Data is presented as a mean ± SE (n = 5); ∗p < 0.05. (B) Immunoblotting analysis of the expression of selected AJ and TJ proteins in colonic epithelial scrapings obtained from control and β-actin cKO mice. (C) Immunofluorescence labeling and confocal microscopy of AJ (β-catenin and p120 catenin) and TJ (ZO-1, occludin) in colonic sections obtained from control and β-actin cKO mice. Arrows indicate similar localization of junctional proteins in β-actin cKO animals and their control littermates. Scale bar, 20 μm.




Intestinal Epithelial Specific Knockout of β-Actin Exaggerates the Severity of Experimental Colitis

Increased permeability of the epithelial barrier could result in an exaggerated and prolonged inflammatory response in the gut (Marchiando et al., 2010; Lee et al., 2018; Fasano, 2020). Thus, we next investigated whether destabilized gut barrier in β-actin cKO mice affects the development of mucosal injury and inflammation using a dextran sodium sulfate (DSS) model of acute colitis. DSS administration caused more severe intestinal disease in β-actin cKO mice, as compared to control littermates (Figure 3). This effect was revealed in their significantly higher body weight loss (Figure 3A), and a higher disease activity index (Figure 3B). Despite having more severe symptoms of gastrointestinal disorder, β-actin cKO mice did not show more pronounced DSS-induced abnormalities of the colonic mucosa, according to examination of hematoxylin & eosin (H&E)-stained whole thickness sections of distal colon. The cumulative tissue injury index, which was calculated based on the extent of mucosal inflammation, leukocyte infiltration, submucosal fibrosis and epithelial erosion, was not significantly different in DSS-treated β-actin cKO mice compared to their control littermates (Figures 3C,D).
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FIGURE 3. Intestinal epithelial-specific knockout of β-actin exacerbates disease severity during DSS-induced colitis. Control and β-actin cKO mice were exposed to 3% DSS in drinking water, or regular drinking water as a control, for 7 days. (A) Body weight loss and (B) the disease activity index were calculated for the duration of DSS treatment. Distal colonic sections of β-actin cKO mice and their controls were fixed, paraffin embedded, and stained with hematoxylin & eosin. Representative images (C) and a calculated tissue injury index (D) are shown. Number of animals of each group is shown in parentheses. Data is presented as a mean ± SE, ∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.0005. Scale bar, 100 μm.




Intestinal Epithelial Specific Knockout of β-Actin Exacerbates the Inflammatory Response in Colonic Mucosa

Since histochemical evaluation of H&E-stained tissue sections provides just a general snapshot of the mucosal architecture, we used more specific and sensitive assays to evaluate the different aspects of tissue inflammation and injury in DSS-treated animals. A quantitative RT-PCR analysis was utilized to examine the expression of different proinflammatory cytokines and chemokines in whole thickness colonic samples on day 7 of DSS administration. Expectedly, mRNA expression of the tested cytokines [TNFα, interferon (IFN)-γ, interleukins (IL) 6, 10, and 12], and chemokines [chemokine ligands (CCL) 3 and 5, keratinocyte-derived chemokine (KC)] was upregulated by DSS treatment of the murine colon (Figure 4). Interestingly, expression of IFN-γ, TNFα, IL-6, IL-12, CCL5, and KC was significantly higher in tissue samples of DSS-treated β-actin cKO mice, as compared to their control littermates (Figure 4). It is noteworthy that mRNA expression of the examined cytokines and chemokines was not elevated in colonic tissue of normal β-actin cKO mice lacking DSS treatment (Figure 4). This indicates that leaky gut barrier in the knockout animals does not lead to the development of spontaneous mucosal inflammation.
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FIGURE 4. Intestinal epithelial-specific knockout of β-actin increases colonic expression of proinflammatory cytokines and chemokines during DSS colitis. Control and β-actin cKO mice were exposed to 3% DSS in drinking water, or regular water as a control, for 7 days. mRNA was isolated from the collected colonic samples. Real-time quantitative RT-PCR was used to analyze the expression of different cytokines and chemokines. Data is presented as mean ± SE (n = 5), ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.005.


Next we sought to investigate if increased cytokine expression leads to the exaggerated inflammatory signaling in the colonic mucosa of DSS-exposed β-actin cKO mice. Expression of active (phosphorylated) STAT3 was used as a biochemical readout for inflammatory signaling events, since STAT3 is a common signaling molecule activated by multiple cytokine receptors (Ahmad et al., 2014; Serrano et al., 2019). Colonic tissue sections were immunofluorescently labeled for phospho-STAT3 to visualize STAT3 activation. The level of activated STAT3 was markedly increased with DSS treatment, and such increase was significantly higher in the colonic tissue of β-actin cKO mice, compared to their control littermates (Figure 5).
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FIGURE 5. Intestinal epithelial-specific knockout of β-cytoplasmic actin increases the activation of STAT3 in colonic mucosa during DSS colitis. Control and β-actin cKO mice were exposed to 3% DSS in drinking water, or regular water, for 7 days. Harvested colonic samples were immunofluorescently labeled for phospho-(p)-STAT3 (red) and counter-labeled with nuclear stain, DAPI (blue). Representative images (A) and quantification of pSTAT3 labeling (B) are shown. Data is presented as a mean ± SE (n = 4), *p < 0.05. Scale bar, 20 μm.


We also examined whether loss of β-actin expression exaggerates intestinal inflammation by enhancing the accumulation of different classes of leukocytes in the colonic mucosa. Immunofluorescence labeling of F4/80, myeloperoxidase (MPO) and CD4 antigens was utilized to detect macrophages, neutrophils, and T lymphocytes, respectively. DSS administration upregulated the amounts of all three types of leukocytes in mouse colonic tissue (Figure 6 and Supplementary Figure 4). Interestingly, the number of macrophages was significantly higher in the distal colon of DSS-treated β-actin KO mice, compared to control animals (Figure 6). Conversely, no significant differences in the colonic recruitment of neutrophils and T cells was observed between knockout and control mice (Supplementary Figure 4). Taken together, our data strongly suggests that depletion of intestinal epithelial β-actin exaggerates mucosal inflammation during acute experimental colitis in vivo.
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FIGURE 6. Loss of intestinal epithelial β-actin increases the accumulation of macrophages in inflamed colonic mucosa. Control and β-actin cKO mice were exposed to 3% DSS in drinking water, or regular water, for 7 days. Harvested colonic samples were immunofluorescently labeled for a specific macrophage marker, F4/80 (red), and counter-labeled with nuclear stain, DAPI (blue). Representative images (A) and quantification of F4/80 labeling (B) are shown. Data is presented as a mean ± SE (n = 6), ∗p < 0.05. Scale bar, 20 μm.




Intestinal Epithelial Specific Knockout of β-Actin Enhances Inflammation-Induced Cell Death

Mucosal injury during DSS colitis is known to develop due to excessive cell death caused by either direct toxic effects of DSS, or by endogenously produced inflammatory mediators (Ahmad et al., 2014; Naydenov et al., 2016). Therefore, we asked whether the more severe colitis state observed in β-actin cKO mice is associated with higher intestinal epithelial cell death. Because of its broad ability to detect both apoptotic and non-apoptotic types of cell death, a TUNEL assay was utilized (Fink and Cookson, 2005). DSS treatment caused a marked increase in TUNEL labeling of murine colonic sections, indicating increased cell death (Figure 7). The magnitude of this cell death was significantly higher in DSS-treated β-actin cKO mice, compared to their controls (Figure 7). Finally, we sought to investigate if the increased cell death in β-actin-deficient intestinal mucosa reflects increased sensitivity to the direct toxicity of DSS or is due to the exaggerated response to cell-death inducing inflammatory mediators. Enteroids derived from ileal crypts of control and β-actin cKO mice were cultured ex vivo in Matrigel and were exposed to known apoptosis-inducing cytokine TNFα. Non-stimulated β-actin-deficient enteroids did not show impaired growth and differentiation (budding), compared to enteroids derived from control animals (Figure 8). However, the loss of β-actin significantly increased the susceptibility of enteroids to TNFα-induced cell death (Figure 8). Taken together, this data indicates that β-actin plays protective roles in the intestinal mucosa by attenuating inflammation-induced epithelial cell death.
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FIGURE 7. Intestinal epithelial-specific knockout of β-actin increases cell death in intestinal mucosa during DSS colitis. Colonic sections of DSS and water-exposed control, and β-actin cKO, mice were subjected to TUNEL labeling (green) to visualize dead cells and counter-labeled with nuclear stain, DAPI (blue). Representative images (A) and quantification of TUNEL labeling (B) are shown. Data is presented as a mean ± SE (n = 5), ∗p < 0.05. Scale bar, 20 μm.
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FIGURE 8. Loss of intestinal epithelial β-actin increases TNFα-induced cell death ex vivo. Small intestinal crypts were isolated from β-actin cKO and control mice and embedded into Matrigel to generate intestinal enteroids. Differentiated enteroids were treated for 12 h with murine TNFα (100 ng/ml) and the number of dead enteroids, as distinguished by their morphology, was counted. Representative bright field images (A) and quantification of enteroid survival after TNFα treatment (B) are shown. Data is presented as a mean ± SE (n = 3), ∗p < 0.05. Scale bar, 50 μm.




DISCUSSION

Intestinal epithelial cells express two nearly identical actin isoforms, β-actin and γ-actin, which play non-redundant roles in regulating the assembly of different apical junctional complexes and the early stages of intestinal epithelial morphogenesis in vitro (Baranwal et al., 2012; Gutierrez et al., 2014; Cruz et al., 2015). The present study is the first to investigate the physiological functions of β-actin in the intestinal epithelium in vivo. We report that the specific loss of this cytoplasmic actin isoform in murine intestinal epithelium results in subtle physiological changes that include increased epithelial permeability, without causing gross abnormalities in intestinal architecture or development. Such β-actin knockout is accompanied by significant upregulation of γ-actin protein expression (Figure 1), strongly suggesting that γ-actin could functionally compensate for the loss of β-actin in normal intestinal epithelium in vivo. The notion of functional compensation among actin isoforms is in line with published studies that examined the effects of conditional knockout of β-actin in different tissues. For example, conditional knockout of β-actin in hair cells did not cause defects in stereocilia formation or auditory function in mice due to compensation from γ-actin (Perrin et al., 2010). Furthermore, mature adult mice with muscle-specific knockout of β-actin did not show major defects in glucose tolerance and insulin stimulated glucose transport into muscle (Madsen et al., 2018). Finally, deletion of β-actin in the central nervous system resulted in limited abnormalities of tissue architecture, localized to the hippocampus and cerebellum (Cheever et al., 2012).

Although intestinal epithelial specific knockout of β-actin increases the permeability of the gut barrier, this barrier defect is caused neither by altered structure or composition of tight or adherens junctions, nor by gross abnormalities in the apical F-actin cytoskeleton (Figure 2 and Supplementary Figure 2). It is likely that the observed increase in barrier permeability reflects the altered balance of β-actin and γ-actin in the junction-associated cytoskeleton. Actin isoform-specific changes in filament turnover and interactions with actin binding proteins have been previously reported in vitro (Bergeron et al., 2010; Baranwal et al., 2012; Muller et al., 2013; Lechuga et al., 2014; Chen et al., 2017). Thus, in a cell-free assay, γ-actin displays a slower polymerization rate and forms more stable filaments as compared to β-actin (Bergeron et al., 2010). Furthermore, β-actin selectively interacts with important regulators of actin filament polymerization, such as diaphanous-related formin 3 and beta-cap73 (Shuster et al., 1996; Chen et al., 2017). On the other hand, γ-actin was shown to specifically bind the Arp2/3 complex and a key actin filament depolymerizing protein, cofilin-1 (Dugina et al., 2015). One could therefore suggest that barrier leakiness in β-actin deficient intestinal epithelium is mediated by subtle changes to the spatial organization, turnover rate, or contractility of γ-actin-enriched junction-associated F-actin bundles.

The normal morphology of apical junctions in β-actin-deficient intestinal epithelium in vivo contradicts our previous in vitro finding that loss of this actin isoform disrupts AJ assembly and the apico-basal cell polarity in cultured colonic epithelial cell monolayers (Baranwal et al., 2012). However, accumulating evidence suggests that genetic perturbations of the actin cytoskeleton have much milder effects on intestinal epithelial homeostasis and gut barrier permeability in mice, as compared to their effects in model intestinal cell monolayers in vitro. For example, Arp2/3 dependent actin polymerization was implicated in the formation of epithelial junctions in cultured colonic epithelial cells (Ivanov et al., 2005) but was superfluous to the establishment of normal epithelial junctions and cell polarity in the intestinal epithelium in vivo (Zhou et al., 2015). Furthermore, mice with total knockout of the actin depolymerizing factor did not display leakiness of the gut barrier, though knockdown of this protein in cultured colonic epithelial cell monolayers increased epithelial permeability (Wang et al., 2016). These differing responses could be explained by the different levels of mechanical stress applied to epithelial junctions in vitro and in vivo. Specifically, epithelial cell monolayers cultured on either glass coverslips or plastic membrane filters are adapted to high tensile forces due to their attachment to stiff substrates. Since the mechanical forces transduced by the actomyosin cytoskeleton are key regulators of the assembly and permeability of apical junctions (Mege and Ishiyama, 2017; Sluysmans et al., 2017; Charras and Yap, 2018; Varadarajan et al., 2019), even modest perturbation of actin cytoskeletal tension and contractility could result in substantial changes in junctional architecture. Contrastingly, the intestinal epithelial barrier develops in a much softer tissue environment in vivo with weaker mechanical forces applied to epithelial junctions. As a result, epithelial junctions in vivo could be less responsive to alterations in the weaker mechanical forces caused by perturbed organization of the actin cytoskeleton.

Our study demonstrates that increased gut barrier permeability in β-actin cKO mice does not result in the development of spontaneous mucosal inflammation. This finding is in keeping with prior studies that document the absence of spontaneous colitis in other mouse models characterizing by leaky gut barrier. These models include mice with total knockout of either JAM-A (Laukoetter et al., 2007), or cortactin (Citalan-Madrid et al., 2017), as well as mice with intestinal epithelial specific loss of non-muscle myosin (NM) IIA (Naydenov et al., 2016). Some compensatory mechanisms should exist to prevent gut pathogens from taking advantage of destabilized gut barrier, thus invading the intestinal mucosa. While such mechanisms have not been investigated in β-actin cKO mice, they could be similar to mechanisms reported in other knockout animals with increased gut permeability. For example, an immune protective mechanism that prevents spontaneous gastrointestinal disease has been previously described in JAM-A knockout mice (Khounlotham et al., 2012). This mechanism involves the production of TGF-β by T cells, which in turn stimulates the production of antibacterial IgA. Since similar upregulation of this TGF-β/IgA pathway has been observed in the colonic tissue of mice with intestinal epithelial knockout of NM IIA (Naydenov et al., 2016), such adaptive immune response may represent a common mucosal protective mechanism within the context of increased gut permeability.

Our study shows for the first time that intestinal epithelial β-actin plays a protective role during mucosal inflammation in vivo. Indeed β-actin cKO mice display an exaggerated pathophysiological manifestation of experimental colitis (Figure 3) along with more pronounced inflammatory signaling and tissue injury responses (Figures 4–7). Several mechanisms can mediate the increased production of inflammatory cytokines and chemokines in the intestinal tissue of β-actin cKO mice. One such mechanism involves leaky epithelial barrier in these animals, facilitating the influx of luminal pathogens and leading to a stronger activation of the mucosal immune system. A complementary mechanism may involve the direct modulation of inflammatory mediator expression in intestinal epithelial cells caused by a dramatic shift in their β-actin/γ-actins balance. Indeed, actin is an important regulator of the transcriptional program in different cells and tissues (Miyamoto and Gurdon, 2013; Percipalle and Vartiainen, 2019), and cytoplasmic actin-specific effects on gene expression are well-documented (Bunnell et al., 2011; Tondeleir et al., 2012; Lechuga et al., 2014).

The observed exaggeration of DSS colitis in β-actin cKO mice concurs with previous studies showing that perturbation of either actin filament turnover (Wang et al., 2016; Citalan-Madrid et al., 2017) or actomyosin contractility in the intestinal epithelium (Su et al., 2009; Naydenov et al., 2016) exaggerates the severity of intestinal inflammation in vivo. These findings may also have significant clinical relevance. The increased permeability of the gut barrier is a well-recognized feature of different gastrointestinal and systemic inflammatory disorders (Marchiando et al., 2010; Lee et al., 2018; Fasano, 2020). However, whether or not such leaky gut accelerates mucosal inflammation, or inhibits it due to immune suppression remains under debate (Ahmad et al., 2017). Since β-actin cKO mice and other mouse models with selective perturbation of the intestinal epithelial cytoskeleton (Su et al., 2009; Naydenov et al., 2016) possess two key common features, a leaky gut barrier in otherwise healthy animals and exaggerated mucosal inflammation during experimental colitis, these models provide strong support for the idea that leaky gut barrier could worsen the severity of gastrointestinal diseases in human patients.

While the exact mechanisms of the exaggerated mucosal inflammation β-actin-depleted intestinal mucosa are yet to be investigated, this response could be at least partially mediated by accelerated cell death. Increased cell death is a known factor promoting mucosal injury and attenuating the repair processes in both animal models of colitis and human IBD patients (Blander, 2018; Thoo et al., 2019). Our data demonstrates a markedly accelerated cell death in the colonic mucosa of DSS-treated β-actin cKO animals (Figure 7). Furthermore, enteroids developed from these knockout mice appear to be highly sensitive to TNFα-induced cytotoxicity ex vivo (Figure 8). To the best of our knowledge, this is the first direct data identifying β-actin as a positive regulator of human epithelial cell survival. Previous studies provided only indirect evidence linking β-actin with cell death. For example, decreased β-actin expression was associated with actinomycin D-induced apoptosis in a hematopoietic cell line (Naora and Naora, 1995) and in TNFα-exposed vascular endothelial cells (Kohno et al., 1993). Furthermore, chemotherapy-induced apoptosis of leukemic cells was paralleled by the selective phosphorylation and depolymerization of β-actin filaments (Wang et al., 2008). Finally, a cell permeable β-actin-targeting peptide was shown to trigger the death of several human cancer cell lines (Arruda et al., 2012). Given the established ability of β-actin filaments to regulate crucial signaling cascades in different cellular compartments, it would be important to determine the exact molecular events that mediate the described prosurvival activity of β-actin in epithelial cells.
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Supplementary Figure 1 | Selective depletion of β-actin in the intestinal epithelium of β-actin cKO mice. Whole thickness colonic sections of control and β-actin cKO mice were dual immunofluorescently labeled for β-actin (red) and E-cadherin (green). Confocal microscopy images show selective loss of β-actin labeling in E-cadherin-positive epithelial cells and abundant expression of this protein in subepithelial colonic compartments of β-actin cKO mice (arrows). Scale bar, 20 μm.

Supplementary Figure 2 | Intestinal epithelial-specific knockout of β-actin does not affect organization of the epithelial actin cytoskeleton. Fluorescence labeling of F-actin in colonic tissue sections obtained from control and β-actin cKO mice. Arrows indicate normal architecture of epithelial F-actin at the colonic surface and in the crypts. Scale bar, 20 μm.

Supplementary Figure 3 | Intestinal epithelial-specific knockout of β-actin does not affect normal architecture of the intestinal mucosa. Normal architecture of colonic epithelium, as shown by H&E staining in the colonic and ileal sections of wild-type and β-actin cKO mice. Scale bar, 100 μm.

Supplementary Figure 4 | Loss of intestinal epithelial β-actin does not affect T lymphocyte and neutrophil infiltration in inflamed colonic mucosa. Control and β-actin cKO mice were exposed to 3% DSS in drinking water, or regular water for 7 days. Whole thickness colonic sections were immunofluorescently labeled for either a specific neutrophil marker, myeloperoxidase (MPO, A,B), or a specific T cell marker, CD4 (C,D) and counter-labeled with stained nuclei (blue). Representative images (A,C) and quantification of the immunolabeling (B,D) are shown. Data is presented as mean ± SE (n = 5). Scale bar, 20 μm.


ABBREVIATIONS

AJ, adherens junctions; CCL, chemokine ligand; cKO, conditional knockout; DSS, dextran sulfate sodium; FITC, fluorescein isothiocyanate; H&E, hematoxylin and eosin; IBD, inflammatory bowel diseases; IFNγ, interferon γ; IL, interleukin; JAM-A, junctional adhesion molecule-A; MPO, myeloperoxidase; NM II, non-muscle myosin II; TJ, tight junctions; TNFα, tumor necrosis factor alpha; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; ZO, zonula occludens.
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Ezrin, as encoded by the EZR gene, is a member of the Ezrin/Radixin/Moesin (ERM) family. The ERM family includes three highly related actin filament binding proteins, Ezrin, Radixin, and Moesin. These three members share similar structural properties containing an N-terminal domain named FERM, a central helical linker region, and a C-terminal domain that mediates the interaction with F-actin. Ezrin protein is highly regulated through the conformational change between a closed, inactivate form and an open, active form. As a membrane-cytoskeleton linker protein, Ezrin facilitates numerous signal transductions in tumorigenesis and mediates diverse essential functions through interactions with a variety of growth factor receptors and adhesion molecules. Emerging evidence has demonstrated that Ezrin is an oncogene protein, as high levels of Ezrin are associated with metastatic behavior in various types of cancer. The diverse functions attributed to Ezrin and the understanding of how Ezrin drives the deadly process of metastasis are complex and often controversial. Here by reviewing recent findings across a wide spectrum of cancer types we will highlight the structures, protein interactions and oncogenic roles of Ezrin as well as the emerging therapeutic agents targeting Ezrin. This review provides a comprehensive framework to guide future studies of Ezrin and other ERM proteins in basic and clinical studies.
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INTRODUCTION

Cancer is one of the most debilitating diseases worldwide. The molecular mechanisms of carcinogenesis provide essential implications for potential prevention and treatment of cancers. Extensive studies have been conducted on tumor invasion and metastasis, and multi-step processes have been described. Previous research has shown that cell adhesion, migration, and morphogenesis regulate tumor invasion and metastasis (Janiszewska et al., 2020). However, adhesion complexes, reorganization of the cytoskeleton, and their underlying molecular mechanisms are still poorly defined.

The Ezrin/Radixin/Moesin (ERM) family proteins regulate cell networks through linking actin cytoskeleton to the cell membranes (Kong et al., 2013). ERM family members, actin cytoskeleton and the cell membranes form highly dynamic domains including lamellipodia and filopodia (Baumgartner et al., 2006). ERM family proteins switch between a closed (inactive) and an open (active) conformation to work with their interacting partners, which is tightly regulated by phosphorylation through different kinases (Matsui et al., 1998).

Ezrin, a member of ERM family, is phosphorylated by threonine and tyrosine kinases (Srivastava et al., 2005). Ezrin is a highly conserved protein through evolution, suggesting the same regulatory mechanisms between organisms (Fouassier et al., 2000). Ezrin mediates signal transduction, coordinates dynamic cellular processes, and acts through cytoskeletal reorganization (Bretscher et al., 2002). Genetic ablation experiments have confirmed the pleiotropic effects of Ezrin including cell polarity, adhesion, and invasion (Clucas and Valderrama, 2014). Ezrin controls signaling transduction by interacting with adhesion molecules and various growth factor receptors (Khanna et al., 2004; Auvinen et al., 2013). In this review, we focus on Ezrin’s distinct roles in tumor growth, metastasis, and morphogenesis in cancer biology, because increased Ezrin expression is correlated with poor prognoses in various cancers. In addition, we address Ezrin’s signaling pathways in cancer development and prognosis.



STRUCTURE, FUNCTION, AND SIGNALING PATHWAYS


Structure and Activation

Encoded by the EZR gene that locates at chromosome 6q25.2-q26, the Ezrin protein is the most studied member of the Ezrin/Radixin/Moesin (ERM) family, containing an FERM domain (band 4.1 protein, Ezrin, Radixin, Moesin), a central helical linker region and an ERM-associated domain (Figure 1A; Yin et al., 2018).


[image: image]

FIGURE 1. Structure and activation process of Ezrin. Schematic representation of domain structure, activation states and binding partners of Ezrin protein. (A) Domain structure of Ezrin includes the N-terminal FERM domain (band 4.1 protein, Ezrin, Radixin, Moesin), the central α-helical linker region and the C-terminal ERM-associated domain (C-ERMAD, green). The FERM domain comprises three subdomains, F1, F2, and F3 (blue, red, and yellow) and C-ERMAD contains the F-actin-binding site. (B) The putative open state of Ezrin protein and its phosphorylation sites. (C) Various states and binding partners of Ezrin protein. (1) Ezrin is phosphorylated at several sites (e.g., T567 in Ezrin, T564 in Radixin and T558 in Moesin); (2) Ezrin is recruited to PIP2; (3) Activated Ezrin monomer (or head-to-tail dimer) binds with F-actin; (4) Ezrin binds with transmembrane receptors such as CD43/44, ICAM1/2 and NHE-1.


The conformational change in Ezrin determines its activity. When the NH2- and COOH-terminal bind to each other, full length Ezrin is in a closed inactive form. The abolition of the intramolecular head-to-tail interaction is required to expose the actin binding sites, since the F-actin binding site at the C-terminal domain is normally masked in the full length Ezrin (Gary and Bretscher, 1995; Roy et al., 1997). Therefore, full length Ezrin is inactive and cannot interact with actin (Fehon et al., 2010). Activated Ezrin directly binds F-actin through a C-terminal domain (Bretscher et al., 1997). Direct binding of F- and G-actin occurs at the Ezrin N-terminal domain between residues 281 and 333 (Roy et al., 1997).

Ezrin dimers and higher oligomers present as inactive, and monomers are considered active (Gautreau et al., 2000). Multiple sites in ERM family proteins can be phosphorylated by several kinases and exhibit various biological functions (Table 1). Specifically, phosphorylation of the C-terminal threonine residue (Thr567) is the key step to activate Ezrin, which allows the actin filament binding domains to interact with other proteins and break head-to-tail associations (Figure 1B; Matsui et al., 1998). The threonine phosphorylation is a Rho-dependent activation of Ezrin (Chen et al., 2011). Besides threonine phosphorylation, tyrosine phosphorylation in Ezrin (Tyr353) is linked to p85 interaction and Akt overexpression (Cui et al., 2010). Together with Thr567, Tyr353 regulates Ezrin’s transition to its active form (Jin et al., 2014). Phosphorylation contributes to a plasma membrane mediated transition from Ezrin oligomers and monomers in vivo (Gautreau et al., 2000). The regulation of Ezrin phosphorylation is complex (McClatchey, 2003). It is also reported that in vivo phosphorylation of Ezrin is required in its binding and recruiting to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) (Fievet et al., 2004; Hao et al., 2009). Ezrin interacts with other kinases, including myotonic dystrophy kinase-related Cdc42-binding kinase (Nakamura et al., 2000). Additionally, Src kinases and RhoA/Rho kinase activities are required for ERM activation, a key step in the growth of cone filopodia for axon outgrowth (Antoine-Bertrand et al., 2011). Interestingly, Ezrin mediates focal adhesion kinase activation independently from external stimuli (Poullet et al., 2001). Although phosphorylation of Ezrin is the most studied post-translational regulation, the biological effects of the phosphorylation sites are largely unexplored (Michie et al., 2019).


TABLE 1. Ezrin phosphorylation sites and kinases.
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As discussed earlier, unphosphorylated/inactive Ezrin remains in a folded conformation through head-to-tail interaction, masking binding sites for other molecules. Phosphorylation on the conserved threonine residue T567 causes conformational changes, unmasking binding sites (Matsui et al., 1998; Figure 1B). T567 keeps Ezrin open and active, and prolongs its lifetime (Prag et al., 2007). Phosphorylated Ezrin is involved in fiber formation, adhesion, and migration (Shiue et al., 2005; Viswanatha et al., 2012; Antelmi et al., 2013). To regulate cytoskeleton dynamics, the EMR family proteins directly interact with actin filaments to link the cytoskeleton to the plasma membrane (Figure 1C). The FERM domain is essential for Ezrin’s binding partners including intercellular adhesion molecules (ICAMs) 1–3, CD43/44, and NHE-1 (Denker et al., 2000; Ivetic and Ridley, 2004). Importantly, anti-metastatic small molecules NSC30587 and NSC668394 were identified that directly target Ezrin T567 phosphorylation and inhibit Ezrin’s actin binding (Bulut et al., 2012). Therefore, targeting Ezrin phosphorylation and actin binding activity provides a new therapeutic direction for clinical cancer interventions.



Ezrin’s Function


Physiological Roles

In normal cells, Ezrin protein is known to contribute to epithelial morphogenesis, adhesion, and migration (Figure 2). Under physiological conditions, Ezrin maintains the cytoskeleton and normal shapes of epithelial cells. It mediates signaling pathways to maintain an apical–basal cellular polarity, as well as normal cell morphology, and binds to actin filaments to keep consistent cell–cell contact. In cancer cells, Ezrin is significantly activated, phosphorylated, and elevated, enhancing cancer cells’ invasive abilities (Figure 2).
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FIGURE 2. Ezrin change between normal cells and cancer cells. Physiological function and pathological effect of Ezrin protein in normal cells versus cancerous cells. Under physiological conditions, Ezrin proteins arrange the cytoskeleton of epithelial cells, mediate signaling pathways to generate an apical–basal polarity, normal cell morphology and consistent cell–cell contacts. Under pathological conditions, Ezrin proteins are upregulated and activated to promote cancer progression and metastasis in various types of epithelial cancers (breast, lung, and prostate). The relative membrane localization of Ezrin protein is increased, cell–cell contacts disrupted and therefore facilitates the process of cancer invasion.




Cancer-Promoting Roles

During cancer development, the relative membrane localization of Ezrin proteins is increased and cell–cell contact is disrupted. Therefore, the activation of Ezrin proteins facilitates the process of tumor progression and invasion. The effect of enhanced Ezrin proteins in cancer metastasis takes different forms in various cancers. For example, in osteosarcoma, Ezrin allows metastatic tumor cells to overcome a number of stresses as cells from the primary lesion are able to break loose and effectively initiate the growth of secondary lesions by generating additional ATP from a variety of sources (Ren and Khanna, 2014; Zhang et al., 2014). In pancreatic cancer cells, Ezrin translocates into plasma membranes, binds to increasing amounts of cortactin, and formes a highly ordered structure called a podosomal rosette, which enables epithelial cancer cells to adhere to the underlying substrate and modify their cytoskeletal behaviors (Kocher et al., 2009). Moreover, Ezrin is responsible for cellular polarization in pancreatic cancer associated macrophages (Chang et al., 2020). Enriched Ezrin expression has been detected in salivary gland carcinomas, which was significantly correlated with the levels of other cancerous molecular markers such as Ki67, HER2, p53, male sex, high-grade histopathology, and distant tumor metastasis (Hashimoto et al., 2017). Additionally, in lung cancer cells, activated Ezrin facilitates mechanical transduction from the cytoskeleton to the membrane and regulates the malignant process in a tension-dependent manner (Zhang et al., 2019).




Ezrin’s Signaling Pathways


Ezrin Interacts With Multiple Signals Through Spatial and Temporal Regulation

Activated Ezrin regulates key events and interacts with different proteins in a variety of cancer types. The precise spatial and temporal activation of Rho GTPases establishes cell polarity and morphology (Haga and Ridley, 2016). The antagonistic relationships between different Rho GTPases regulate migration and adhesion, consistent with their opposing effects on ERM family proteins (Ivetic and Ridley, 2004). Ezrin recruits Cdc42, and the conformational active (phosphorylated) Ezrin brings Rho/Cdc42 specific guanine nucleotide exchange factor Dbl to the membrane. A precise spatial Dbl activated Cdc42 is crucial for directional cell migration in breast cancer cells (Prag et al., 2007). Dysfunction and loss of cell adhesion has been recognized as a pro-tumorigenic step, which enables the cancer cell to migrate and metastasize.



Ezrin Mediates E-Cadherin-Catenin Complex Maintenance

The E-cadherin-catenin adhesion complex maintains tissue architecture and is critical for intercellular adhesiveness. Ezrin suppression promotes the expression of E-cadherin and β-catenin. Both E-cadherin and β-catenin play a key role in epithelial cell adhesion. Co-precipitation experiments suggests Ezrin associates with E-cadherin and β-catenin (Hiscox and Jiang, 1999). The modulation between Ezrin and E-cadherin is mediated by IL-1β and TGF-β1, suggesting that cytokine regulation in tumor invasion is governed by alteration in cell-cell interactions (Karmakar and Das, 2004).



Other Signaling Molecules

Ezrin mediates cell growth and survival through Akt signaling, but not the mitogen-activated protein kinase (MAPK) pathway in certain cancers, which is essential for cancer proliferation, invasion, migration and survival (Krishnan et al., 2006; Hu et al., 2016; Quan et al., 2019). Ezrin is correlated with poor prognoses in these cancer patients (Quan et al., 2019). In addition, Ezrin is associated with the p85 subunit, activating phosphatidylinositol 3-kinase (PI3K)/Akt in regulating tumorigenesis, metastasis, cell survival, and invasion in epithelial cells (Gautreau et al., 1999; Cui et al., 2010).





EZRIN’S ROLES IN CANCERS

As an important member of the ERM family of proteins, Ezrin has been well studied in many cellular events. As summarized earlier, Ezrin plays a vital role in molecular signaling, including cell proliferation, cell polarity establishment, cell motility, and cell adhesion (Ren and Khanna, 2014; Kawaguchi et al., 2017). Since these processes are crucial in invasion, and metastasis in a variety of solid tumors, the pathophysiological roles of Ezrin protein were extensively studied and discussed (Kawaguchi et al., 2017). Although Ezrin is known associated with poor prognosis in several cancers, the predictive value of Ezrin and its relationships with clinicopathological features or prognostic parameters remain controversial (Cihan, 2018). It is interesting to note that the Ezrin expression was associated with bad prognosis in a cancer type-specific manner (Li et al., 2015). In few cases such as bladder cancer, higher Ezrin expression indicates better prognosis rather than worse. In order to draw a most recent conclusion from the up-to-date work, below we summarized the specific roles of Ezrin in various cancers, highlighting the special signaling cascades and pathophysiological roles (Figure 3 and Table 2).
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FIGURE 3. Ezrin mediated signaling pathways and its pharmacological inhibitors.



TABLE 2. Selective Ezrin interacting proteins in various cancers.
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Ezrin in Lung Cancer

Highly expressed Ezrin has been detected in lung cancer cell lines and primary lung cancer tissues. Ezrin has been found to be primarily distributed in the cytoplasm of lung cancerous tissue and metastatic foci (Wang et al., 2008; Lee et al., 2012; Zhang et al., 2012; Jin et al., 2014; Kolegova et al., 2020). Ezrin expression correlates to the degree of lymphatic metastasis, malignant phenotype, and advanced TNM staging of lung cancer patients significantly (Lee et al., 2012; Li et al., 2012). Not surprisingly, downregulation of Ezrin was observed to reverse these aggressive biological behaviors (Chen et al., 2012; Lee et al., 2012). The underling molecular mechanism of Ezrin activation in lung cancer involves Ezrin modifications (such as phosphorylation and S-nitrosylation), epidermal growth factor receptor (EGFR), and EGFR-mediated signaling pathways in non-small cell lung cancer (NSCLC) cells (Saygideger-Kont et al., 2016; Zhang et al., 2019). Downregulation of Ezrin in lung cancer cells has resulted in actin cytoskeleton rearrangements, reduced EGFR activity and phosphorylation levels of downstream signaling pathways, as well as a substantial reduction in cell migration and invasion (Chen et al., 2013; Saygideger-Kont et al., 2016). Ezrin also mediates downstream signaling pathways, including the activation of RhoA-GTPase and the signaling of ROCK1/2 and Akt in lung adenocarcinoma (Hata et al., 2016; Moodley et al., 2020). Interestingly, Ezrin serum levels were negatively correlated with serum IL-13 levels (which are believed to play an important role in lung function) (Jia et al., 2019).



Ezrin, Breast Carcinoma, and Ovarian Carcinoma

Similar to observations in other carcinomas, Ezrin is elevated in breast carcinoma and ovarian carcinoma. Ezrin plays a critical role in extracellular matrix remodeling and tumor dissemination in a 3-dimensional model (Horwitz et al., 2016). Since both breast and ovarian carcinomas exhibit a similar ability to disseminate due to malignant effusion formation, the significant increase of Ezrin serves as a future therapeutic intervention target. Ezrin mediates cell migration and invasion in lung and breast cancers that can be inhibited by the overexpression of miR-183 (Lowery et al., 2010). Ezrin promotes breast cancer progression and enhances metastasis through Akt signaling (Li et al., 2019). Elevated Ezrin expression increases the risk of relapse in node-positive and high-risk node-negative breast cancer patients. Pharmacological inhibition of Ezrin has significantly reduced cancer cell migration and invasion into the lymph nodes and lungs in vivo in real time (Ghaffari et al., 2019).



Ezrin in Cervical Cancer

Cervical cancer is the fourth most common cause of cancer-causing death in women. Cervical cancer originates from an epithelial neoplastic transformation in the uterine cervix. Cervical cancer is generally caused by an infection of the human papillomavirus (HPV) (Saavedra et al., 2012). As a migration-related protein, Ezrin is upregulated in cervical cancer (Zacapala-Gomez et al., 2018; Chetry et al., 2020) and its expression level is associated with advanced metastasis and poor prognosis. Specifically, Ezrin is increased in cervical cancer cells (SiHa and C33A) when Galectin-1 (LGALS1) is overexpressed. Ezrin expression is significantly suppressed when LGALS1 is downregulated. LGALS1 belongs to the carbohydrate-binding protein family and exhibits a high affinity for β-galactoside-containing glycol-conjugates (Chetry et al., 2020). Although multiple signaling pathways linked to LGALS1 have been reported, the underlying mechanisms of how LGALS1 affects Ezrin levels have not been fully elucidated. LGALS1 may interact with Ezrin through the MAPK, JNK/p38, and Akt/ERK1/2 pathways in the regulation of invasion and migration (Elliott et al., 2005; Chetry et al., 2020). Another lectin family member, Galectin-3, is also overexpressed along with Ezrin in cervical cancer and both are predictors of poor prognosis in cervical cancer patients (Li et al., 2017). Ezrin down-regulation induces Akt phosphorylation, and Ezrin regulates both epithelial-mesenchymal transitions and metastasis in cervical cancer (Kong et al., 2016). Ezrin promotes cell proliferation through phosphorylation on residue Y145 (Gautreau et al., 1999; Saito et al., 2013), cell mobility, and migration in cervical cancer cells (Kong et al., 2016).

Ezrin plays a key role in cervical cancer invasion and is a potential prognostic immunomarker. Interestingly, Ezrin expression is correlated with HPV associated lesions (Auvinen et al., 2013; Zacapala-Gomez et al., 2018), suggesting that Ezrin can be used to distinguish between transient and persistent HPV integration. More than 80% of cervical cancer samples exhibit high Ezrin expression and a decrease in E-cadherin levels, which can be detected using immunohistochemistry and cervical smears (Zacapala-Gomez et al., 2018). Consistent with this study, the overlapping of Ezrin and estrogen receptor expression during cervical carcinogenesis raises the possibility that Ezrin is associated with the penetration of the basement membrane (Fadiel et al., 2017). Therefore, Ezrin controls adhesion and the invasiveness of cancer cells through the interactions between cell adhesion molecules, suggesting a role in developing cervical neoplasia and cancer. Due to the high expression of Ezrin, a non-invasive testing method can serve as a milestone for cervical cancer detection, which is crucial for early treatment and a better prognosis in patients with squamous intraepithelial lesions. In addition to cervical cancer, enhanced Ezrin expression is a new, independent prognostic marker in endometrioid carcinoma and is correlated with endometrioid carcinoma stages (FIGO) (Kobel et al., 2006).



Ezrin and Gastric Cancer

Gastric cancer is the second most prevalent cause of cancer death. The Ezrin protein is up-regulated in gastric cancer lesions. Ezrin expression is correlated with tumor size, tumor location, lymph node invasion and metastasis, and shortened survival in stages I, II, and III (Li et al., 2011). Specifically, Ezrin can be used as an early diagnostic marker and to predict later metastasis in gastric cancer using meta-analysis (Jin et al., 2012; Liang et al., 2017). Decreased miR-183 and elevated Ezrin have been reported in gastric cancer cells and tissues. The 3′UTR region of Ezrin’s mRNA is a direct target of miR-183. miR-183 antagonizes Ezrin and acts as a tumor suppressor in gastric cancer (Cao et al., 2014).



Ezrin and Osteosarcoma

Dysregulation of miR-183 through Ezrin targeting promotes osteosarcoma tumor metastasis. Ezrin is required for metastasis in osteosarcoma and its high expression is associated with poor outcomes in pediatric osteosarcoma patients. Khanna et al. (2004) has reported that suppression of Ezrin deceases Akt and MAPK phosphorylation, but Ezrin induced metastatic survival is mediated partially by MAPK instead of Akt. Interestingly, Khanna et al. (2004) have reported that Ezrin-mediated growth and survival in Ewing sarcoma is dependent on Akt/mTOR, but not MAPK (Krishnan et al., 2006), suggesting that Ezrin acts through different signaling pathways in different cancers. Ezrin’s roles in Ewing sarcoma are distinct from its roles in other sarcomas. A majority of Ewing sarcoma samples express Ezrin, but the intensity and expression pattern of Ezrin is not correlated with clinical characteristics. In contrast to Ezrin’s roles in promoting carcinogenesis, Ewing sarcoma patients with high Ezrin intensity had a superior 5-year event-free survival compared to patients with low or no Ezrin expression (Cash et al., 2017). However, other factors, including diagnosis time, tumor size, therapeutic treatment, and larger sample size should be considered to validate the correlation between Ezrin and Ewing sarcoma clinical outcomes.



Ezrin and Hepatocellular Cancer

As discussed earlier, Ezrin phosphorylation regulation contributes to Ezrin’s molecular plasticity. Hyperphosphorylation at the C-terminal threonine residue (T567) is significantly correlated with an invasive clinical hepatocellular carcinoma (HCC) (Chen et al., 2011). Therefore, blocking Rho kinase-mediated Ezrin phosphorylation can inhibit liver tumor metastasis. Ezrin staining in HCC is dramatically associated with cytokeratin 19 expression. Ezrin-positive patients had increased serum α-fetoprotein, shortened recurrence-free periods, and shortened overall survival (Okamura et al., 2008). Ezrin is expressed in hepatic progenitor cells, and some cases of HCC are derived from hepatic progenitor cells. Ezrin overexpression is involved in the dedifferentiation and invasion of hepatitis B virus-associated HCC (HBV-HCC). Surprisingly, patients with positive Ezrin expression had smaller tumor sizes and a higher frequency of tumor dedifferentiation and vascular invasion. Ezrin expression is independently associated with tumor size, poor differentiation, and vascular invasion in HBV-HCC (Yeh et al., 2009).



Ezrin and Bladder Cancers

Inconsistent with most of cancers mentioned above, membranous expression of Ezrin is significantly lower in high grade bladder cancer and significantly associated disease-specific overall survival (Palou et al., 2009; Athanasopoulou et al., 2013). Ezrin is an independent predictor of muscularis propria invasion and increased progression. Unlike its role in other cancers, reduced membranous Ezrin expression is related with unfavorable clinicopathological characteristics and an impaired survival (Andersson et al., 2014). Although these reports collectively suggested the prognostic value of Ezrin in bladder cancer, its immunohistochemical expression level failed to predict therapy effect (Malmstrom et al., 2017).



Ezrin and Other Cancers

Ezrin expression negatively correlated with renal cell carcinoma (RCC) metastasis, and the inhibition of Ezrin expression suppressed the invasive abilities of RCC cells (Yu et al., 2015). Using immunohistochemical approaches, Ezrin reactivity was observed mainly in conventional, papillary, and mucinous tubular spindle cell carcinoma subtypes of RCC, suggesting that the Ezrin protein might be beneficial as an additional diagnostic marker in the differential diagnosis of RCC subtypes (Tuna et al., 2009).

In colorectal cancer (CRC), Ezrin binds with a cell-neural adhesion molecule (L1CAM) and mediates the phosphorylation of NF-κB as well as the activation of NF-κB signaling (Gavert et al., 2010). It has also been reported that increased expression of Ezrin (phosphorylated on T567) was seen in liver metastasis in an insulin-like growth factor type 1 receptor (IGF1R)-dependent CRC xenograft model as compared to primary CRC. The Ezrin protein induces CRC cell survival through the modulation of apoptosis protein inhibitor XIAP, which was dependent on T567 (Leiphrakpam et al., 2014). Several studies have confirmed that Ezrin may serve as a promising biomarker in estimating the prognosis, outcome, and differential status of CRC patients (Patara et al., 2011; Lin and Chen, 2013; Fathi et al., 2017; Slik et al., 2017; Aikawa et al., 2019).

In glioblastoma, Ezrin interacts with and delocalizes the cytoskeletal-related protein neurofibromatosis type 2 (NF2), which carries out opposite activities in tumor growth (Morales et al., 2010). Notability, Ezrin, in a complex with NF2, enhances glioblastoma growth independent of its molecular conformation or subcellular localization. Using medulloblastoma cell lines and athymic mice as models, a study reported that Ezrin is localized to filopodia in medulloblastoma cells and promotes filopodia formation as well as in vitro invasion in medulloblastoma (Osawa et al., 2009).

In primary melanomas of the skin and metastatic tumors, Ezrin expression correlates with tumor progression and suggests worsening clinical disease behaviors. The molecular mechanism involves molecules related to metastatic functions such as CD44, merlin, and Ras signaling (Ilmonen et al., 2005; Federici et al., 2009; Riecken et al., 2016). Consistent with findings in osteosarcoma, Ezrin was found to be highly expressed in pancreatic cancer tissues and to positively regulate cell proliferation and invasion through the activation of the Akt/mTOR pathway (Meng et al., 2010; Quan et al., 2019; Chang et al., 2020). Ezrin and Rho-A expressions in squamous cell carcinoma suggest a cooperative participation of these proteins in cell movement and invasion (Assao et al., 2017). A tumorigenic role of Ezrin in skin cancer has also been demonstrated using immunohistochemical staining specimens from epithelial skin tumors, together with squamous carcinoma cell lines (Abdou et al., 2011; Wu et al., 2011). A similar result was seen in nasopharyngeal carcinoma as phosphorylated Ezrin expression was dependent on increased Rho kinase and protein kinase C activity (Tang et al., 2011). The oncogenic role of Ezrin is not limited to solid tumors as it has also been seen in blood cancers, such as diffuse large B-cell lymphoma, where the knockdown of Ezrin attenuated chemotherapy resistance (Pore et al., 2015; Sun et al., 2018).




EZRIN AS A PHARMACOLOGICAL TARGET

The above sections are not meant to recap all the latest important findings in Ezrin research but rather to provide an overview of the evidence showing the oncogenic roles and prognostic value of Ezrin in a wide range of cancer types. One of the questions that remain to be answered is what the clinical implication of Ezrin is. As described above, high levels of Ezrin are observed in many cancers with lung metastasis, indicating poor survival and bad prognoses. Ezrin as an essential prognosis predictor of various cancers has been demonstrated to be a key modulator of tumor metastasis. All the existing studies, taken together, highlighted the fact that Ezrin may serve as a potential therapeutic target in cancer (Hoskin et al., 2019). This prompts the next question whether or not pharmacological regulators with a high affinity to Ezrin would exhibit encouraging results for cancer treatment. Despite various downstream pathways (Figure 3) of Ezrin been identified in cancers, it is expected that identification of small molecule inhibitors of Ezrin would lead to the discovery of anti-metastatic and anti-invasion drugs.


Small Molecular Inhibitors

Over the past decade, many studies have attempted to develop targeted cancer treatment strategies using small molecule inhibitors of Ezrin (Table 3). For the first time, Bulut et al. (2012) identified two compounds (NSC305787 and NSC668394) from small molecule libraries, which can directly bind to Ezrin, reduce phosphorylation on T567 and block its functional activity. These two inhibitors effectively reduced tumor metastasis in lung cancer and osteosarcoma (Celik et al., 2015, 2016). Following that, more and more studies attempted to extend the anti-metastatic activity of these two small molecule inhibitors in other cancers. Surprisingly, although Ezrin showed widely pro-metastatic capacity in many cancers, the anti-metastatic effect of its inhibitors was only seen in a few cancer types (Table 3). To date, NSC305787 and NSC668394 are undergoing investigation through animal models but not yet included in any clinical trials.


TABLE 3. Pharmacological inhibitors and activators targeting Ezrin.
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Activator

Because of the oncogenic role of Ezrin, studies investigating Ezrin activator are rare. Ezrin activation has been linked to CDK5 in the senescent phenotype as CDK5 is able to activate Ezrin by phosphorylating T235 of Ezrin (Yang and Hinds, 2003). Interestingly, CDK5 mediated activation of Ezrin prevents the intermolecular interactions with/within cell membranes and cooperative with phosphorylation of another site T567, allowing Ezrin to participate in cytoskeleton-related signaling.




CONCLUSION AND FUTURE DIRECTION

In the literature, the oncogenic roles of Ezrin were intensively studied but there are a limited number of studies investigating the predictive performance of Ezrin expression level. In this review, we summarized not only the oncogenic roles of Ezrin but also its pathophysiological roles and potential pharmacological regulators in a wide range of cancer types. Our understanding of Ezrin as a potential drug target is strongly influenced by the idea that Ezrin is commonly proved to promote tumor metastasis and predicts poor prognosis in different types of cancers. Therefore, direct inactivation of Ezrin by the small molecule inhibitors should provide a new strategy for metastatic treatment in many cancers. While this hypothesis is indeed supported by a few lines of evidence in a couple of cancer types such as lung cancer, this rule seems failed to expand in many other cancer types.

Many fundamental questions in the roles of Ezrin remain to be answered. From this work, some basic understanding of Ezrin protein may be challenged. For example, the expression level of Ezrin in bladder cancer is reduced while it is commonly up-regulated in many other cancer types. The predictive value of Ezrin in bladder cancer is also found opposite to the other cancer types. Given metastasis is a complicated process that involves many steps that are poorly understood at this time, some of which may include tissue type-specific mechanism involving Ezrin. This mechanism may not be shared within ERM family proteins as the other ERM protein Mosin was found enriched in bladder cancer and consistent with its oncogenic role in invasion process. Future work is needed to uncover new pharmacological inhibitors and to explore the in vivo activity of the existing small molecule inhibitors as potential tools in cancer therapeutics.
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Actin-depolymerization factor (ADF)/cofilin, a family of actin-binding proteins, are critical for the regulation of actin reorganization in response to various signals. Accumulating evidence indicates that ADF/cofilin also play important roles in neuronal structure and function, including long-term potentiation and depression. These are the most extensively studied forms of long-lasting synaptic plasticity and are widely regarded as cellular mechanisms underlying learning and memory. ADF/cofilin regulate synaptic function through their effects on dendritic spines and the trafficking of glutamate receptors, the principal mediator of excitatory synaptic transmission in vertebrates. Regulation of ADF/cofilin involves various signaling pathways converging on LIM domain kinases and slingshot phosphatases, which phosphorylate/inactivate and dephosphorylate/activate ADF/cofilin, respectively. Actin-depolymerization factor/cofilin activity is also regulated by other actin-binding proteins, activity-dependent subcellular distribution and protein translation. Abnormalities in ADF/cofilin have been associated with several neurodegenerative disorders such as Alzheimer’s disease. Therefore, investigating the roles of ADF/cofilin in the brain is not only important for understanding the fundamental processes governing neuronal structure and function, but also may provide potential therapeutic strategies to treat brain disorders.
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INTRODUCTION

Long-lasting changes in the efficacy of synaptic transmission, including long-term potentiation (LTP) and depression (LTD), are widely regarded as the key mechanisms underlying memory storage (Bliss and Collingridge, 1993; Malenka and Bear, 2004; Citri and Malenka, 2008; Neves et al., 2008; Kessels and Malinow, 2009; Kandel et al., 2014; Mateos-Aparicio and Rodríguez-Moreno, 2019). Synaptic plasticity involves changes in postsynaptic reorganization, including glutamate receptor trafficking and morphological remodeling of dendritic spines (Malinow and Malenka, 2002; Bredt and Nicoll, 2003; Collingridge et al., 2004; Lamprecht and LeDoux, 2004; Carlisle and Kennedy, 2005; Segal, 2005; Alvarez and Sabatini, 2007; Ho et al., 2011; Huganir and Nicoll, 2013; Henley and Wilkinson, 2016; Diering and Huganir, 2018), both of which are regulated by the actin cytoskeleton (Cingolani and Goda, 2008; Spence and Soderling, 2015; Nakahata and Yasuda, 2018). Evidence suggests that actin-binding proteins are involved in receptor trafficking as well as morphological changes at the synapse and consequently affect learning and memory (Lamprecht, 2011, 2016; Spence and Soderling, 2015; Borovac et al., 2018). Abnormalities in these proteins are associated with several neurological disorders (Lian and Sheen, 2015). In this review we will focus on the role of actin-depolymerization factor (ADF)/cofilin in the regulation of LTP, LTD, dendritic spines and their dysfunction in Alzheimer’s disease (AD).



ACTIN-DEPOLYMERIZING PROTEINS

Cofilin is a member of the actin-depolymerizing protein family that is important for the regulation of actin cytoskeleton dynamics (Ridley, 2011; Kanellos and Frame, 2016). This family includes cofilin-1 (n-cofilin, non-muscle), cofilin-2 (muscle cofilin) and actin-depolymerization factor (ADF, destrin) and is well conserved among eukaryotes (Maciver and Hussey, 2002). These proteins have a molecular mass of 15–19 kDa and share multiple structural similarities. Each consists of an actin depolymerizing factor homology (ADF-H) domain, which allows for binding to actin subunits, a central alpha helix, a N-terminus extension and a C-terminus helix (Lappalainen et al., 1998; Shishkin et al., 2016). Despite their similarities at the molecular level, these isoforms differ in their degree of affinity for actin (Bamburg, 1999; Vartiainen et al., 2002; Yeoh et al., 2002). Actin-depolymerization factor and cofilin-1 can bind to actin filaments with similar degrees of affinity, whereas cofilin-2 is less efficient at depolymerization (Vartiainen et al., 2002). While ADF is better at sequestering monomeric actin, cofilin-1 is more efficient at nucleation and severing actin filaments (Chin et al., 2016). These biochemical differences reflect variations in the cellular expression between isoforms, where ADF and cofilin-1 are mainly expressed in tissues with higher actin turnover. Specifically, while cofilin-1 is expressed in all cell types, ADF is mainly expressed in neuronal, epithelial, and endothelial cells (Kanellos and Frame, 2016). Cofilin-2 is also expressed in selected tissues including muscles and brain (Thirion et al., 2001; Agrawal et al., 2012; Gurniak et al., 2014). This review will discuss ADF and cofilin-1, which are expressed in neuronal cells. Many studies addressing the roles of ADF/cofilin do not specify which isoform as many of their functions overlap. Also, most antibodies do not differentiate between these isoforms and rescue experiments often use cofilin from lower level eukaryotes that express only one isoform (Moon et al., 1993; Kanellos and Frame, 2016). For these reasons and the sake of simplicity, this group of actin depolymerizing factors will be referred to collectively as ADF/cofilin, except in studies where specific isoforms have been addressed.



GENERAL CELLULAR FUNCTION OF ADF/COFILIN


Regulation of Actin Dynamics

The most characterized role of ADF/cofilin is the regulation of actin reorganization and their capacity to increase actin filament turnover (Pollard and Borisy, 2003; Brieher, 2013). Treadmilling is the most accepted model for actin turnover (Figure 1; Wegner, 1982; Blanchoin et al., 2014). In this model, steady state actin filaments preferentially grow at one end, known as the barbed end, by association of ATP-bound actin monomers, whereas actin monomers dissociate at the other end, known as the pointed end (Pollard and Borisy, 2003; Lee and Dominguez, 2010). Following the addition of the ATP-bound actin subunit, ATP undergoes hydrolysis into ADP and Pi, after which Pi is released, leaving ADP-bound subunits at the pointed end. ADP-bound subunits are more prone to dissociate and return to the actin monomers pool. Dissociated ADP-bound subunits then exchange ADP into ATP before entering the cycle again (Carlier and Pantaloni, 1986; Blanchoin and Pollard, 2002; Pollard and Borisy, 2003). The dynamic turnover of actin filaments can be enhanced by an increase in the number of filament ends due to severing of existing filaments (Ichetovkin et al., 2000; Pavlov et al., 2007). It can also be enhanced by an increase in the rate of association (polymerization or nucleation) at the barbed ends and dissociation (depolymerization) at pointed ends (Carlier et al., 1997; Kiuchi et al., 2007).
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FIGURE 1. Regulation of actin dynamics by ADF/cofilin. Binding of profilin on ADP-actin monomers induces nucleotide exchange (1). Formin (2) and Arp2/3 (3) induce nucleation of actin monomers and formation of actin filaments. While formin induces parallel actin filament (2), Arp2/3 promotes branching of the original filament (3). In addition, actin filaments can be polymerized by the addition of ATP-actin monomers at the barbed ends (4). Binding of dephosphorylated/active ADF/cofilin to ADP-actin subunits of actin filaments causes severing of these filaments (5) and depolymerization at pointed ends (8). ADF/cofilin activity is mediated by phosphorylation and dephosphorylation by LIMK1 and SSH respectively. ADF/cofilin also debranch Arp2/3 nucleated actin filaments (6). The severing activity of ADF/cofilin is enhanced by Aip1, coronin and CAP (7) and diminished by tropomyosin (5). Binding of capping proteins at barbed ends blocks the growth of newly formed actin segments. CAP also dissociates ADF/cofilin from ADP-actin monomers and promotes nucleotide exchange on these monomers (1).


Multiple studies show a significant role for ADF/cofilin in actin filament assembly and disassembly (Lappalainen and Drubin, 1997; Rosenblatt et al., 1997; Loisel et al., 1999; Pollard and Borisy, 2003; Bernstein and Bamburg, 2010; Kanellos and Frame, 2016). Two models have been proposed to explain the disassembly function of ADF/cofilin. Actin-depolymerization factor/cofilin can increase the rate of depolymerization at pointed ends or sever existing actin filaments into smaller fragments (Blanchoin and Pollard, 1999; Pavlov et al., 2007). The best evidence for increased actin subunit dissociation comes from the “bulk sample of actin” experiment that measured the exchange of fluorescent or radiolabeled ADP-bound actin subunits incubated with ADF/cofilin for ATP in the medium (Carlier et al., 1997). Exchange of ADP into ATP occurs only on free actin monomers not on actin subunits in filaments, therefore nucleotide exchange can only happen after the dissociation of ADP-bound subunits from filaments. The observed increase in the rate of nucleotide exchange in this experiment can be interpreted to arise from the dissociation of actin subunits in the presence of ADF/cofilin (Carlier et al., 1997). Though this study suggests that depolymerization at the pointed end increases in the presence of ADF/cofilin, it does not provide direct evidence to support this conclusion. As neither the number of ends nor filament lengths were known, it was not possible to measure subunit dissociation from individual filament ends (Carlier et al., 1997). The filament disassembly severing model is supported by real-time microscopy assays which analyzed single actin filaments. Binding of ADF/cofilin to actin filaments was found to induce a conformational twist in these filaments resulting in fragmentation or severing of filaments (Andrianantoandro and Pollard, 2006). After binding of ADF/cofilin, an increase in actin depolymerization at pointed ends was observed in the presence of vitamin D binding proteins, which sequester free actin monomers. However, the detected rate of depolymerization was too slow to account for the observed rates of nucleotide exchange in bulk assays (Andrianantoandro and Pollard, 2006). Therefore, it could be concluded that severing of actin filaments by ADF/cofilin can produce many filament ends which may account for the nucleotide exchange rate (Ichetovkin et al., 2000; Pavlov et al., 2007). Recently, a study using single-filament approach based on microfluidics suggests that ADF/cofilin-induced actin disassembly is mediated by both severing and depolymerization activity (Wioland et al., 2017). Consistent with Andrianantoandro and Pollard (2006), pointed end depolymerization was enhanced by ADF/cofilin, though not to the extent predicted by bulk assays (Andrianantoandro and Pollard, 2006; Wioland et al., 2017). Actin-depolymerization factor/cofilin favor barbed-end depolymerization through either directly targeting the barbed ends of bare filaments, which is avoided when ATP-actin is present, or preventing the barbed ends of ADF/cofilin-saturated filaments from elongating and promoting barbed-end depolymerization, contrary to the general consensus (Wioland et al., 2017). As there is debate on how ADF/cofilin promote filament disassembly, they also promote assembly in multiple ways. Actin-depolymerization factor/cofilin could increase the rate of polymerization as detected in bulk assays (Carlier et al., 1997). However, single filament studies show that ADF/cofilin slow barbed-end polymerization (Andrianantoandro and Pollard, 2006). Another mechanism for cofilin-induced filament assembly is through severing, which may create more filament ends (Andrianantoandro and Pollard, 2006). Moreover, cofilin could stimulate nucleation by stabilizing long-pitch actin dimers, the first intermediate in spontaneous assembly and nucleation may be the main contribution of ADF to the increased rate of actin filament assembly (Andrianantoandro and Pollard, 2006). In summary, ADF/cofilin mediate both filament assembly and disassembly through multiple mechanisms, including depolymerization, severing, polymerization and nucleation (Figure 1).

The effect of ADF/cofilin on actin filaments depends on the relative concentration of ADF/cofilin to actin and interactions with other proteins (Ono, 2003; Winder and Ayscough, 2005; Pavlov et al., 2007). At a lower ADF/cofilin concentration, severing of actin filaments by ADF/cofilin is highest (Andrianantoandro and Pollard, 2006). When few ADF/cofilin molecules are bound to actin filaments, the number of strained interfaces between twisted and non-twisted region is the highest, resulting in frequent breakage (Bobkov et al., 2006). At a higher ADF/cofilin concentration, when actin filaments are largely covered with ADF/cofilin, severing is no longer observed, though there is still dissociation from the pointed ends (Pavlov et al., 2007). When ADF/cofilin levels are higher, they can nucleate filaments (Yeoh et al., 2002; Andrianantoandro and Pollard, 2006; Kudryashov et al., 2006). However, abnormally high levels of active ADF/cofilin can drive the formation of ADF/cofilin-actin rods that sequester a large fraction of the total ADF/cofilin, rendering ADF/cofilin incapable of promoting actin disassembly (Minamide et al., 2000). Other actin-binding proteins may alter ADF/cofilin’s ability to act on the actin cytoskeleton (Winder and Ayscough, 2005). These proteins include actin-interacting protein 1 (AIP1), tropomyosins (TPM), cortactin, actin-related proteins-2/3 (Arp2/3) and coronins (Ichetovkin et al., 2002; Brieher et al., 2006; Kueh et al., 2008; Ostrowska-Podhorodecka et al., 2020).



Interaction With and Regulation of Other Actin-Binding Proteins

The reported rates of ADF/cofilin-mediated actin filament disassembly in vitro are lower than those observed in in vivo experiments, which could be due to a difference in cytosolic versus in vitro conditions (Lappalainen and Drubin, 1997). These results also suggest that additional cellular factors may be involved in regulating the activity of ADF/cofilin under physiological conditions. Many studies have demonstrated that other actin-binding proteins can potently modulate ADF/cofilin’s ability to act on the actin cytoskeleton (Winder and Ayscough, 2005). These actin-binding proteins include: (1) proteins structurally or functionally similar to ADF/Cofilin (e.g., AIP1), cyclase associated protein (CAP), and coronin; (2) proteins involved in F-actin filament assembly (e.g., Arp 2/3, profilin, and cortactin); (3) proteins generally antagonistic toward ADF/Cofilin activity (e.g., TPM) (Winder and Ayscough, 2005). Actin-interacting protein 1, coronin, and CAP are functionally similar to ADF/cofilin as they each promote F-actin disassembly. Both AIP1 and coronin facilitate the cofilin-mediated disassembly of Listeria comet tail and purified actin filaments even with a physiological concentration of actin monomers, a condition promoting actin assembly (Brieher et al., 2006; Kueh et al., 2008). This conclusion is supported further using internal reflection fluorescence microscopy to directly visualize the integrated actions of coronin and AIP in enhancing cofilin-mediated actin filaments disassembly (Jansen et al., 2015). Although AIP1 itself moderately enhances cofilin-mediated actin severing, the presence of coronin alone appears to inhibit severing by cofilin (Jansen et al., 2015). The inhibitory effect of coronin was also previously shown in bulk assay studies (Cai et al., 2007; Gandhi et al., 2009). This disparity is likely to arise due to differences in the nucleotides state of actin, as studies have shown that coronin may interfere with the binding of cofilin to ATP-actin, but not ADP-actin (Ge et al., 2014). In addition to the synergistic effect of coronin and AIP1 on cofilin-mediated actin severing, AIP1 has been shown to be able to bind to the newly generated barbed ends and block growth of the newly formed actin segments, enabling actin filament disassembly under cellular conditions which generally enables filament assembly (Jansen et al., 2015). Actin-interacting protein 1 is known to be regulated by STK16, a constitutive kinase. RNAi knockdown of STK16 in cultured cells resulted in significantly decreased F-actin levels and increased actin polymerization, demonstrating a potential link between AIP1 activity and actin dynamics (Liu et al., 2017). Interestingly, the mixture of cofilin, coronin and AIP1 failed to disassemble actin filaments with a physiological concentration of actin filaments until the addition of CAP (Normoyle and Brieher, 2012). As such, CAP was identified as a factor that promotes disassembly of cofilin-actin filaments. Cyclase associated protein was shown to associate with both actin monomers and filaments and is expressed in the hippocampus, striatum and cortex (Freeman et al., 1995; Bertling et al., 2004; Normoyle and Brieher, 2012). CAP1 knockdown in cultured cells results in abnormal cytoplasmic aggregates of cofilin and diminished actin depolymerization, suggesting a role of CAP in regulating the localization and function of cofilin-1 in mammalian cells (Bertling et al., 2004). Interestingly, CAP forms a hexameric structure that binds to actin filaments though its N-terminal segment and enhances cofilin-mediated actin severing (Jansen et al., 2014). The severing efficiency of CAP is directly proportional to the stoichiometry of their oligomerization, that is to say CAP tetramers and trimers show increased CAP-cofilin interaction compared to CAP monomers (Purde et al., 2019). Despite these studies suggesting a role of CAP in cofilin-mediated filament severing, recent studies report the inability of CAP to increase cofilin-mediated actin severing using single-filament microfluidics approach (Shekhar et al., 2019). In the same line, CAP accelerates actin depolymerization at the pointed end suggesting that CAP enhance cofilin-mediated disassembly through depolymerization not severing (Kotila et al., 2019; Shekhar et al., 2019). Cyclase associated protein can also bind to actin monomers through its C-terminal domain and catalyze nucleotide exchange on cofilin-bound ADP actin monomers (Jansen et al., 2014; Kotila et al., 2018). Proteins involved in F-actin assembly/nucleation shown to interact with ADF/cofilin include Arp2/3, profilin and formin (Weaver et al., 2001; Sagot et al., 2002; Bleicher et al., 2020). Early in vitro studies suggest a synergistic relationship between the Arp2/3 complex and cofilin in regulating filament assembly. The total number of newly polymerized filaments is increased in the presence of both the Arp2/3 complex and cofilin (Ichetovkin et al., 2002). In addition, the frequency of Arp2/3-nucleated branching, in newly formed actin filaments from cofilin-mediated severing, is higher than old pre-existing filaments. Other studies suggest cofilin promotes debranching and has an antagonistic relationship with Arp2/3 as cofilin promotes dissociation of actin filament branches induced by Arp 2/3 (Blanchoin et al., 2000). Moreover, binding of cofilin promotes structural changes in actin filaments, which decreases the affinity of Arp2/3 complex for actin resulting in dissociation of Arp2/3 complex from actin filaments and promoting dissociation of actin filament branches induced by Arp 2/3 complex (Chan et al., 2009). Therefore, the debranching activity of cofilin occurs via cofilin’s effect on actin filaments and not the Arp2/3 complex itself. However, some studies suggest that actin depolymerizing factor homology protein, known as glia maturation factor, functions more specifically as a debranching factor through direct interaction with the Arp2/3 complex (Ydenberg et al., 2013; Poukkula et al., 2014). Much like the process of disassembly, actin filament nucleation is synergistic and reliant on the concentration of both actin monomers and proteins required for polymerization. There is a certain degree of cooperativity between actin filament assembly and disassembly, as it has been shown that formin activity can preclude cofilin-mediated severing, although cofilin activity is required to produce the actin monomers needed to maintain network stability (Bleicher et al., 2020). Tropomyosin is a well characterized regulator of actin filament dynamics known to dampen ADF/cofilin activity (Gunning et al., 2015). Specifically, Tpm competes with ADF/cofilin-mediated actin disassembly by spatially restricting binding sites at the pointed ends of filaments (Kuhn and Bamburg, 2008; Gateva et al., 2017; Jansen and Goode, 2019). Notably, different Tpm isoforms have varying effects on ADF/cofilin-mediated actin dynamics; particularly, fast off-rate Tpm isoforms permit a relative increase in ADF/cofilin binding, allowing for greater F-actin turnover (Ostrowska-Podhorodecka et al., 2020). In summary, ADF/cofilin activity is intricately regulated by its interactions with diverse actin-binding proteins. Some of these proteins have been shown to play an important role in spine and synaptic plasticity and will be further discussed in later sections.



Activation of Phospholipase D1

The phosphorylated form of ADF/cofilin is considered the inactive form and is not involved in actin cytoskeleton regulation (Bernstein and Bamburg, 2010; Ridley, 2011; Kanellos and Frame, 2016). Few studies have shown a role of phosphorylated ADF/cofilin in muscarinic receptor−mediated stimulation of phospholipase D1 (PLD1), which is independent of actin regulation (Schmidt et al., 1999; Han et al., 2007). Phosphorylated ADF/cofilin can bind and activate PLD1, leading to the hydrolysis of phosphatidylcholine to phosphatidic acid by PLD1 in the cell membrane, and is considered to be involved in a large variety of early and late cellular responses. These responses include calcium mobilization, secretion, superoxide production, endocytosis, exocytosis, vesicle trafficking, glucose transport, mitogenesis and apoptosis (Exton, 2002). In HEK-293 and neuroblastoma cells, factors known to increase ADF/cofilin phosphorylation, such as LIM domain containing kinase (LIMK) 1 and inactive slingshot phosphatase (SSH) enhance the activity of PLD1, whereas expression of wild-type SSH, which abolishes ADF/cofilin phosphorylation, and constitutively active unphosphorylatable (S3A) cofilin compromise PLD stimulation (Han et al., 2007). Phospholipase D1 activity has been linked to neurite outgrowth and LTD, suggesting its involvement in synaptic plasticity but further characterization is required (Cai et al., 2006; Santa-Marinha et al., 2020). Thus, even in its phosphorylated, presumed inactive form, ADF/cofilin is likely to fulfil important biological roles.



REGULATION OF ADF/COFILIN ACTIVITY


ADF/Cofilin Phosphorylation/Dephosphorylation

Actin-depolymerization factor/cofilin phosphorylation/dephosphorylation at serine 3 (Ser 3) serves as a key convergence point for many signaling pathways to regulate ADF/cofilin activity in response to various intrinsic and external signals (Bamburg, 1999; Bamburg and Bernstein, 2008). Actin-depolymerization factor/cofilin phosphorylation at Ser 3 inhibits actin binding, whereas dephosphorylation activates actin binding (Bernstein and Bamburg, 2010; Kanellos and Frame, 2016). Actin-depolymerization factor/cofilin Ser 3 phosphorylation is mediated by LIMK and testicular protein kinase (TESK), which are serine/threonine kinases (Arber et al., 1998; Yang et al., 1998; Toshima et al., 2001). LIMKs are extensively studied and contain two family members; LIMK1 is predominantly expressed in the nervous system and LIMK2 is widespread throughout the body (Scott and Olson, 2007; Cuberos et al., 2015). LIMK1/2 have high specificity for Ser3 of ADF/cofilin, due to the interaction between the LIMK catalytic domain and the actin binding helix of ADF/cofilin. Targeted mutations at the phosphorylation site inhibit functional inactivation of cofilin-1 by LIMK1 in yeast and mammalian cells (Hamill et al., 2016). LIMK1/2 can be phosphorylated and activated by the Rho-associated protein kinases (ROCKs) and p21-activated kinases (PAKs; Scott and Olson, 2007; Arber et al., 1998; Yang et al., 1998; Cuberos et al., 2015). Phosphorylation of LIMK1 by PAK1 and LIMK2 by PAK4 occurs at Thr 508 and 505, respectively (Maekawa et al., 1999; Ohashi et al., 2000; Sumi et al., 2001). Both PAKs and ROCKs are protein kinases associated with and activated by the Rho family of small GTPases, the central mediators of actin reorganization in response to diverse signaling processes (Govek et al., 2005). The importance of LIMK1 for ADF/cofilin phosphorylation and actin regulation is shown by reduced ADF/cofilin phosphorylation and altered F-actin in LIMK1 knockout (KO) mice (Meng et al., 2002). Cofilin dephosphorylation at Ser 3 is mediated by two protein phosphatases; chronophin, which is highly specific for cofilin, and SSH, which can also dephosphorylate and inactivate LIMK1 (Niwa et al., 2002; Bernstein and Bamburg, 2010). SSH can be phosphorylated and inactivated by PAK4 and protein kinase D1 (Soosairajah et al., 2005; Eiseler et al., 2009). Both chronophin and SSH regulate ADF/cofilin in a spatially precise manner, proximal to the membrane, this can allow for the formation of membrane protrusions (Nagata-Ohashi et al., 2004; Gohla et al., 2005; Nishita et al., 2005). For example, during lamellipodium formation, dephosphorylation of SSH induces its release from scaffolding protein 14-3-3 in the cytoplasm and its translocation on growing actin filaments to induce dephosphorylation/activation of cofilin within lamellipodium (Nagata-Ohashi et al., 2004).



Other Regulatory Mechanisms

In addition to Ser 3, phosphorylation at tyrosine (Tyr 68) has been shown to be important for cofilin-1 regulation (Yoo et al., 2010). This regulation is unique to cofilin-1, since ADF does not have Tyr 68 (Yoo et al., 2010). In HEK cells, phosphorylation at Tyr 68 does not directly affect the actin-depolymerizing activity, however it increases ubiquitination and proteasome degradation of cofilin-1 sufficiently to reduce cofilin-1 levels and cellular distribution (Yoo et al., 2010). Oxidation has also been introduced as a mechanism for ADF/cofilin regulation (Bernstein and Bamburg, 2010; Kanellos and Frame, 2016). Under oxidative stress conditions in T cells, ADF/cofilin can undergo oxidative modification. Oxidation of the thiol groups of cysteine residues in ADF/cofilin molecules leads to the formation of both intra and intermolecular disulfide bonds which causes oxidized ADF/cofilin to interact weakly with LIMKs and this results in an increase in unphosphorylated/active ADF/cofilin (Klemke et al., 2008). Another mode of ADF/cofilin regulation is through binding to phosphatidylinositol 4,5-bisphosphate (PIP2; Bernstein and Bamburg, 2010; Kanellos and Frame, 2016). In vitro studies show that PIP2 directly binds to ADF/cofilin and inhibits their actin-depolymerizing activities (Yonezawa et al., 1990). This was confirmed using biochemical and spectroscopic studies showing that ADF/cofilin cluster PIP2 molecules at the membrane through their interaction with multiple PIP2 headgroups and that a small decrease in PIP2 density efficiently activated ADF/cofilin in carcinoma cells (Zhao et al., 2010). pH in vitro and in vivo is also shown to modulate mammalian ADF/cofilin activity (Bernstein et al., 2000; Pavlov et al., 2006). The in vivo mechanism is highlighted by the ability of cofilin to act as a cellular pH sensor, with increased activity at higher pH and that this ability involves the inhibition of cofilin activity by binding PIP2, as discussed earlier (Frantz et al., 2008). Studies in neurons have shown other regulatory mechanisms in addition to those introduced above and these include mRNA availability and translation (Feuge et al., 2019), and temporal and spatial regulation of subcellular distribution (e.g., Zhou et al., 2011; Pontrello et al., 2012; Bosch et al., 2014). These mechanisms are particularly important for the regulation of ADF/cofilin activity during spine and synaptic plasticity, which will be discussed further in later sections.



ROLE OF ADF/COFILIN IN SYNAPTIC FUNCTION AND MEMORY IN THE BRAIN


Bidirectional Regulation of Spine Morphology

One of the most important features of neuronal synapses is their ability to change the strength of synaptic transmission in response to external stimuli, which is referred to as synaptic plasticity. In the mammalian central nervous system, most excitatory synapses are located on small dendritic protrusions called dendritic spines (Carlisle and Kennedy, 2005; Alvarez and Sabatini, 2007; Tønnesen and Nägerl, 2016; Gipson and Olive, 2017). Synaptic plasticity, including LTP and LTD, is closely associated with changes in the number and morphology of dendritic spines and these changes are typically referred to as structural plasticity (Lamprecht and LeDoux, 2004; Carlisle and Kennedy, 2005; Alvarez and Sabatini, 2007; Bernardinelli et al., 2014; Borovac et al., 2018; Lai and Ip, 2013; Sheppard et al., 2019). For example, using glutamate uncaging, an enlargement of dendritic spines during the induction of LTP at single spines of hippocampal CA1 pyramidal neurons is observed (Matsuzaki et al., 2004). On the other hand, the induction of LTD using low frequency stimulation is accompanied by shrinkage of dendric spines in acute hippocampal slices from neonatal rats (Zhou et al., 2004). As actin is the main cytoskeletal component of the dendritic spine, it is not surprising that actin dynamics play a key role in the regulation of spine morphology (Matus et al., 1982; Hotulainen and Hoogenraad, 2010; Miermans et al., 2017; Basu and Lamprecht, 2018). Using two-photon imaging, a dynamic pool of actin filaments is seen at the tips of spines from CA1 pyramidal neuron in rat hippocampal slices (Honkura et al., 2008). These actin filaments can be quickly treadmilled to generate an expansive force to mediate changes in spines (Honkura et al., 2008). Two-photon Forster resonance energy transfer (FRET) imaging shows that activity-dependent actin polymerization and depolymerization in dendritic spines during LTP and LTD (Okamoto et al., 2004). During synaptic plasticity, the actin cytoskeleton is highly regulated and goes through phases of polymerization and depolymerization (Bosch et al., 2014; Kim et al., 2015; Borovac et al., 2018). For example, the reorganization of actin during LTP appears to have two distinct but overlapping phases (Bosch et al., 2014). Within the first 5 min after LTP induction, there is remodeling of the actin cytoskeleton through rapid periods of actin filaments disassembly followed by periods of actin filament assembly, which result in enlargement of dendritic spines and LTP. After 5 min of LTP induction, there is a net increase in actin and newly polymerized actin filaments in the spine which result in long-term stabilization and consolidation of early synaptic changes (Bosch et al., 2014).

One of the earliest indications that ADF/cofilin is important for spine and synaptic regulation comes from studies on LIMK1/2 KO mice, which show altered spine morphology and impaired synaptic function and that these alterations are associated with a dramatic reduction in cofilin phosphorylation (Meng et al., 2002, 2004). In addition, bidirectional changes in ADF/cofilin phosphorylation and dephosphorylation can be induced rapidly by activation of glutamate receptors and signaling molecules at the synapse (Meng et al., 2002). A subsequent study using immunoelectron microscopy shows that cofilin-1 is concentrated in the shell of spines rich in dynamic actin and within postsynaptic density in the stratum radiatum of the rat hippocampus (Racz and Weinberg, 2006). More direct evidence to support cofilin function at the synapse comes from molecular and genetic manipulations of ADF/cofilin and their upstream regulators. Overexpression of constitutively active unphosphorylatable cofilin (S3A) in neurons leads to reduced spine size and immature morphology (Shi et al., 2009). The expression of constitutively inactive phosphomimetic cofilin (S3D) restores mature spine morphology (Shi et al., 2009). Longer dendritic protrusions and slower actin turnover are also observed when cofilin-1 expression is reduced using siRNA in primary hippocampal neurons (Hotulainen et al., 2009). In cofilin-1 conditional KO mice where cofilin-1 is selectively deleted in the excitatory neurons of the postnatal forebrain, increased synapse density and enlargement of dendritic spines are found in the hippocampus and these structural changes are associated with impaired late phase LTP and LTD (Rust et al., 2010). Although ADF KO mice show no deficits in spine properties or synaptic function (Görlich et al., 2011), ADF and cofilin-1 double KO mice exhibit greater changes in spine enlargement than cofilin-1 conditional KO mice, suggesting that ADF also plays a role in spine regulation (Wolf et al., 2015). Other evidence supporting the role of ADF/cofilin in basal spine properties comes from manipulations of their upstream regulators in addition to LIMK1/2 (Meng et al., 2002, 2004; Todorovski et al., 2015). These include PAK1/3 (Meng et al., 2005; Asrar et al., 2009; Huang et al., 2011), ROCK2 (Zhou et al., 2009), chronophin (Kim et al., 2016) and Rho GTPases (Nakayama et al., 2000; Li et al., 2002; Martino et al., 2013), all of which affect either spine morphology or density. For example, both PAK1/3 double and ROCK2 KO mice have reduced spine density and immature morphology and these spine changes are associated with a significant reduction in cofilin phosphorylation (Zhou et al., 2009; Huang et al., 2011). Overexpression of chronophin in mice results in the shrinkage of dendritic spines and knocking out chronophin causes dendritic spine enlargement in hippocampal neurons (Kim et al., 2016).

Actin-depolymerization factor/cofilin are not only important for basal spine morphology and density but also required for spine changes during synaptic plasticity for which the temporal and spatial regulation of ADF/cofilin appears to be particularly important (Bernstein and Bamburg, 2010; Lai and Ip, 2013; Noguchi et al., 2016; Borovac et al., 2018). In general, it has been shown that ADF/cofilin inactivation is associated with and required for actin assembly and spine enlargement and stabilization during LTP, whereas ADF/cofilin activation can drive actin filament disassembly and spine shrinkage during LTD. However, single spine imaging studies have revealed that changes in ADF/cofilin during LTP are much more complex and dynamic, exhibiting multiple phases of regulation (Bosch et al., 2014). During the initial phase (<5 min) of dendritic spine enlargement induced by glutamate uncaging at single spines, the amount of ADF/cofilin in the spine increases and this is accompanied by an increase in the amount of actin and spine enlargement (Bosch et al., 2014). This is consistent with the observation that cofilin undergoes translocation in its unphosphorylated/active form following glutamate uncaging (Noguchi et al., 2016). During a later phase (>5 min), there is sustained accumulation of phosphorylated/inactive ADF/cofilin at the base of the spine head where cofilin forms a stable complex with actin filaments (Bosch et al., 2014). These results suggest that ADF/cofilin phosphorylation is needed to retain its accumulation within spines. It is shown that wild type and constitutively inactive cofilin (S3E) accumulate in the stimulated spines for 30?min after spine enlargement following glutamate uncaging, whereas constitutively active cofilin (S3A) more rapidly diffuses away from the enlarged spine (Noguchi et al., 2016). These single spine imaging results are consistent with earlier studies using protocols to induce LTP at the global level. PAK and ADF/cofilin phosphorylation in rat hippocampal slices are found to be increased 2–7 min after theta-burst stimulation, a time window consistent with the transition from the initial to later phase (Chen et al., 2007). In cultured neurons, the levels of phosphorylated cofilin declines 5 min after the onset of chemically induced LTP, but significantly increases by 30 min (Gu et al., 2010). These studies suggest that dynamic regulation of ADF/cofilin phosphorylation and spine accumulation contributes to different phases of spine plasticity during LTP. During spine shrinkage and LTD, although the precise time course of ADF/cofilin involvement has not be investigated at single spines, ADF/cofilin dephosphorylation and spine accumulation are consistently found to be associated with and required for LTD in both cultured neurons and brain slices (Zhou et al., 2011; Pontrello et al., 2012). The mechanisms by which ADF/cofilin is regulated during LTP and LTD will be discussed further in later sections.

How changes in ADF/cofilin activity, either through spine accumulation or phosphorylation, regulate spine morphology remain unclear. However, a recent study using a fluorescent reporter to monitor membrane-proximal actin filaments (MPA) may provide new insight (Bisaria et al., 2020). In this study, it is shown that amount of MPA is lower at the front compared to the back during membrane protrusion and cell migration, and that increased cofilin activity is required for this MPA gradient and the initiation of new membrane protrusions. These results are consistent with earlier studies showing SSH can regulate ADF/cofilin in a spatially precise manner proximal to the membrane (Nagata-Ohashi et al., 2004; Soosairajah et al., 2005) and suggest that cofilin activity driven by SSH at the front is essential. The major isoform of slingshot is SSH-1L, which is only active in its cofilin dephosphorylation activity when it is bound to F-actin (Nagata-Ohashi et al., 2004; Soosairajah et al., 2005). In contrast to the accumulation of SSH1L, LIMK1 diffusely distributes in the cytoplasm (Nagata-Ohashi et al., 2004; Nishita et al., 2005). These findings suggest that spatially distinct localization of LIMK1 and SSH1L during protrusions formations may also play a role in spine formation and morphological changes.



Bidirectional Regulation of Glutamate Receptors Trafficking

While the induction of LTP and LTD at many synapses requires the activation of N-Methyl-D-aspartic acid (NMDA) glutamate receptors, their expression involves modification of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors, the principal mediator of fast excitatory synaptic transmission (Bliss and Collingridge, 1993; Malinow and Malenka, 2002; Bredt and Nicoll, 2003; Collingridge et al., 2004, 2010; Segal, 2005; Derkach et al., 2007; Rebola et al., 2010; Ho et al., 2011; Huganir and Nicoll, 2013; Henley and Wilkinson, 2016; Diering and Huganir, 2018). These modifications include channel properties and receptor abundance at the synapses (Lau and Zukin, 2007; Huganir and Nicoll, 2013; Henley and Wilkinson, 2016; Diering and Huganir, 2018). In particular, receptor trafficking at the synapse attracts the most attention due to its potent effects on synaptic strength (Collingridge et al., 2004; Henley and Wilkinson, 2016; Diering and Huganir, 2018; Park, 2018). Several studies have shown that ADF/cofilin play an important role in the regulating trafficking and accumulation of AMPA receptors within synapses during LTP and this process appears to be distinct from its role in spine morphological plasticity (Gu et al., 2010; Rust et al., 2010). Elevated ADF/cofilin activity markedly enhances addition of AMPARs to the surface after chemical induction of LTP in cultured neurons, whereas the inhibition of ADF/cofilin activity suppresses the addition of AMPA receptors (Gu et al., 2010). The role of ADF/cofilin in AMPA receptor trafficking has also been demonstrated in animal models. Lateral diffusion of the AMPA receptors subunit GluA2 was shown to be compromised in the extrasynaptic compartment of hippocampal neurons from cofilin-1 mutant mice (Rust et al., 2010). The exchange of AMPA receptors between synaptic and extrasynaptic domains by lateral diffusion is thought to represent a key mechanism to control the level of synaptic AMPA receptors during synaptic plasticity (Choquet and Hosy, 2020; Groc and Choquet, 2020). The stabilization of actin filament by jasplakinolide reduces the mobility of the extrasynaptic AMPA receptor subunit GluA2, whereas destabilization of actin filament by latrunculin A results in increased movement of GluA2 subunits (Rust et al., 2010). This suggests that the effect of ADF/cofilin on AMPA receptors mobility and surface expression is mediated by actin-dependent mechanisms. These results are consistent with studies where direct manipulations of the actin cytoskeleton affects LTP and AMPA receptor trafficking (Allison et al., 1998; Kim and Lisman, 1999; Zhou et al., 2001; Cingolani and Goda, 2008; Yang et al., 2008; Hanley, 2014; Basu and Lamprecht, 2018). ADF/cofilin have also been shown to play a role in AMPA receptor internalization during LTD (Zhou et al., 2011). The induction of metabotropic glutamate receptor-dependent LTD (mGluR-LTD) induces ADF/cofilin dephosphorylation, spine shrinkage and a decrease in synaptic AMPA receptors. Actin-depolymerization factor/cofilin-dependent regulation of AMPA receptor trafficking is also seen following learning. Extinction of conditioned taste aversion leads to temporally enhanced ADF/cofilin activity in the infralimbic cortex of the rats and manipulations of ADF/cofilin activity accelerates or inhibits memory extinction by regulating the recruitment of AMPA receptors at the synaptic surface (Wang et al., 2013). These studies support that ADF/cofilin regulates synaptic transmission through AMPA receptor trafficking in addition to spine morphological changes.



Mechanisms and Signaling Pathways Regulating ADF/Cofilin Activity During Synaptic Plasticity

At many central synapses, the induction of LTP and LTD requires Ca2+-dependent signaling pathways, including protein kinases [e.g., activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) during LTP] and phosphatases (e.g., calcineurin) during LTD (Malinow and Malenka, 2002; Collingridge et al., 2004; Malenka and Bear, 2004; Derkach et al., 2007; Citri and Malenka, 2008; Lüscher and Malenka, 2012; Bliss and Collingridge, 2013; Huganir and Nicoll, 2013; Henley and Wilkinson, 2016; Sanderson et al., 2016; Diering and Huganir, 2018). Accumulating evidence indicates that multiple mechanisms exist at the synapse to link these Ca2+-dependent pathways to regulate ADF/cofilin (Meng et al., 2004; Jia et al., 2009; Rex et al., 2009; Martinez and Tejada-Simon, 2011; Yasuda, 2017; Nakahata and Yasuda, 2018) and these are summarized in Figure 2.
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FIGURE 2. Signaling pathways that regulate ADF/cofilin phosphorylation and dephosphorylation during LTP and LTD. During LTP, activation of NMDA receptors causes calcium influx into dendritic spines. The increased intracellular calcium activates CaMKII which in turn activates small Rho GTPases, including Rac, Cdc42 and RhoA. These small GTPases bind to and activate PAKs and ROCKs that can directly phosphorylate and activate LIMK1. LIMK1 can also be activated following the activation of neuroligin 1 receptors during LTP through SPAR-Rac signaling pathway. Activated LIMK1 phosphorylates and inactivates cofilin resulting in the enlargement of dendritic spines. In addition, the LTP-induced calcium influx diminishes local translation of cofilin mRNA in dendrites through a FRMP 1-dependent manner. Translocation of cofilin into spines during LTP occurs through yet to be discovered mechanisms. During LTD, the activation of NMDA receptors and influx of calcium activates CIN which activates SSH through the PI3K-dependent pathway. Activated SSH dephosphorylates and activates cofilin which results in dendritic spine shrinkage. In addition, LTD-induced calcium influx mediates translocation of cofilin into spines in a β-arrestin 2-dependent manner. During mGLuR-LTD, GluA2 interaction with cadherin/β-catenin activates Rac-PAK which then activate SSH. Additionally, SSH can also dephosphorylate and inactivate LIMK1.


Many studies have shown that ADF/cofilin is a downstream effector of Rho GTPases and their effector protein kinases such as PAKs, ROCKs and LIMKs during LTP and spine enlargement (Borovac et al., 2018; Nakahata and Yasuda, 2018; Kovaleva et al., 2019). Rho proteins, including RhoA, Rac and Cdc42, are activated during LTP (Govek et al., 2005; Rex et al., 2009; Martinez and Tejada-Simon, 2011). For example, stimulation of NMDA receptors leads to activation of Rac1 and rapid enlargement of dendritic spines (Xie et al., 2007). Overexpression of either Rac1 or Rac3 causes an increase in spine density (Wiens et al., 2005; Pennucci et al., 2019). Double knockouts of Rac1 and Rac3 inhibit the formation of dendritic spines and induce an increase in filopodia-like spines (Pennucci et al., 2019). PAK1 and PAK3 double KO mice show decreased actin filaments and phosphorylated ADF/cofilin which are associated with immature spines and LTP impairments (Huang et al., 2011). Similarly, ROCK2 KO mice are altered in spine morphology accompanied by reduced phosphorylated ADF/cofilin (Zhou et al., 2009). LIMK1 KO mice exhibit significant abnormalities in the actin cytoskeleton, reduced phosphorylated ADF/cofilin and impaired late phase LTP (Meng et al., 2004; Todorovski et al., 2015). These genetic studies are consistent with results from manipulations of the Rho GTPases and their effectors in cultured neurons and slices (Luo et al., 1996; Nakayama et al., 2000; Tashiro et al., 2000; Rex et al., 2009; Shi et al., 2009). Therefore, ADF/cofilin phosphorylation mediated by the activation of the Rho GTPase-PAK/ROCK-LIMK pathway is a key mechanism that is responsible for ADF/cofilin inactivation, actin assembly and spine enlargement during LTP. Actin-depolymerization factor/cofilin dephosphorylation through activation of chronophin might also be important spine enlargement during LTP as chronophin KO mice are impaired in late-phase LTP (Kim et al., 2016). The effect of chronophin could be mediated through regulating the coupling of GluN2A subunits with postsynaptic proteins (Kim et al., 2016).

In addition to ADF/cofilin phosphorylation, reduced protein translation of ADF/cofilin has also been reported to be associated with chemical LTP and this translational regulation is mediated by fragile X mental retardation protein 1 (FMRP1; Feuge et al., 2019). In cultured hippocampal neurons, glycine induced LTP is accompanied by reduced ADF/cofilin mRNA availability and translation, and these changes are impaired in FMRP1 KO mice. How FMRP1-mediated suppression of ADF/cofilin translation is achieved remains unknown, but it is known that this mRNA-binding protein is a potent regulator of activity-dependent local protein synthesis involving the mTOR and ERK1/2 pathways (Brown et al., 2001), and therefore it is possible these pathways are also important for downregulating ADF/cofilin protein level during this form of LTP. Interestingly, the FMR1 KO mice also show elevated activation of the Rac-PAK-LIMK pathway, resulting in increased ADF/cofilin phosphorylation, under basal conditions, and overexpression of active ADF/cofilin rescues some of the behavior defects in FMR1 KO mice (Pyronneau et al., 2017). These results indicate that in addition to translational regulation of ADF/cofilin, FMRP1 also acts as a negative regulator of ADF/cofilin phosphorylation through the Rac-PAK/LIMK signaling process.

During LTD and spine shrinkage, Ca2+-dependent phosphatases are important for ADF/cofilin dephosphorylation and activation. Inhibition of calcineurin in CA1 pyramidal neurons blocks cofilin-dependent spine reduction during LTD induced by low frequency stimulation (Zhou et al., 2004). Chemical LTD induced by application of NMDA is associated with dendritic spine shrinkage and loss of synaptic proteins, and these changes require ADF/cofilin dephosphorylation and spine accumulation (Pontrello et al., 2012). Although calcineurin dependent activation of phosphatidylinositol 3-kinase (PI3K) is important for ADF/cofilin dephosphorylation, the intermediates between PI3K and ADF/cofilin are not yet identified. In non-neuronal cells, PI3K regulates cofilin dephosphorylation through activation of SSH (Nishita et al., 2004). Furthermore, calcineurin has been shown to mediate ADF/cofilin dephosphorylation by SSH in response to calcium influx (Wang Y. et al., 2005). In neuronal cells, ephrin-induced dendritic spine retraction and ADF/cofilin dephosphorylation requires activation of calcineurin and subsequent activation of SSH (Zhou et al., 2012). These studies suggest that the calcineurin-P13K-SSH pathway may mediate ADF/cofilin dephosphorylation and activation during LTD. The spine accumulation of ADF/cofilin during chemical LTD requires β-arrestin 2 as NMDA-induced spine remodeling and cofilin translocation are impaired in β-arrestin 2 KO neurons (Pontrello et al., 2012). The NMDA-induced cofilin dephosphorylation appears to be independent of spine accumulation as blocking the PI3K pathway does not prevent cofilin translocation to the spine. These results suggest that there are two distinct pathways respectively regulating cofilin dephosphorylation and spine accumulation that are activated during NMDA-induced spine shrinkage and LTD.

During mGluR-LTD, the mechanisms governing ADF/cofilin regulation are also distinct from those involved in NMDA receptor dependent LTD (Zhou et al., 2011). mGluR-LTD induces ADF/cofilin dephosphorylation and spine accumulation and these changes are required for both mGluR-dependent spine shrinkage and synaptic depression. Interestingly, ADF/cofilin dephosphorylation is dependent on the AMPA receptor subunit GluA2 and its interaction with the cell adhesion molecule N-cadherin/β-catenin and subsequent activation of Rac1. How the activation of Rac1 leads to dephosphorylation and activation of ADF/cofilin is not known, but it could involve inactivation of the PAK-LIMK pathway or activation of the SSH pathway.

In addition to glutamate receptors, other neuronal surface proteins and receptors have also been shown to regulate ADF/cofilin activity through similar mechanisms discussed above but may involve additional processes. For example, the c-terminal domain of the cell adhesion molecule neuroligin 1 induces spine enlargement and cofilin phosphorylation that are mediated by neuroligin 1’s interaction with spine-associated Rap GTPase-activating protein (SPAR) and subsequent activation of the Rac1-LIMK pathway (Liu et al., 2016). Neurotrophic factors and their receptors regulate spine growth and LTP which are dependent on changes in ADF/cofilin phosphorylation and dephosphorylation mediated by Rac1 and RhoA (Gehler et al., 2004; Soulé et al., 2006; Wong et al., 2019). Glucocorticoid hormone promotes learning-induced spine formation mediated by activation of LIMK1 and ADF/cofilin phosphorylation (Liston and Gan, 2011; Liston et al., 2013). These studies together indicate the complexity of the regulatory mechanisms governing ADF/cofilin activity at the synapse.



Regulation of Presynaptic Function

Actin is also abundantly expressed in presynaptic terminals (Matus et al., 1982; Gotow et al., 1991). Pharmacological studies have identified a role for actin in regulating synaptic vesicle mobilization and exocytosis (Morales et al., 2000; Gorovoy et al., 2005). Like actin, ADF/cofilin are also expressed in presynaptic terminals (Rust, 2015), suggesting a presynaptic function. This is initially supported by alterations in presynaptic properties in LIMK1 KO mice where the frequency of neurotransmitter release and synaptic depression in response to sustained neuronal activity are both increased and (Meng et al., 2002). However, neurotransmitter release and presynaptic short-term plasticity are not affected in cofilin-1 KO mice (Rust et al., 2010). In addition, the recruitment and exocytosis of synaptic vesicles are unchanged in ADF KO mice (Görlich et al., 2011). The lack of presynaptic defects in ADF KO mice may be explained by the elevated cofilin-1 levels observed in these mice (Görlich et al., 2011). Indeed, ADF and cofilin-1 double KO mice have more severely impaired actin dynamics as well as altered distribution and exocytosis of synaptic vesicles (Wolf et al., 2015; Zimmermann et al., 2015). Electron microscopy and biochemical data from these double KO mice show a shift in the distribution from the active zone to the reserve pool as well increased docking of synaptic vesicles at CA1 synapse (Wolf et al., 2015). In addition, electron microscopy data from the double KO mice show an increase in the presynaptic bouton area and an increased number of docked vesicles at the active zone of striatal synapses, resulting in increased overall glutamate release at the striatal synapses (Zimmermann et al., 2015). Interestingly, a decrease in glutamate release is detected within the hippocampus and this decrease could be caused by defective vesicle recruitment as shown by reduced glutamate release during sustained synaptic stimulation (Wolf et al., 2015). Therefore, although cofilin-1 is a limiting factor in postsynaptic plasticity and cannot be substituted by ADF, the presence of either ADF or cofilin-1 appears to be sufficient to regulate actin remodeling during presynaptic vesicle release, suggesting an overlapping functions presynaptically (Rust et al., 2010; Wolf et al., 2015; Zimmermann et al., 2015). In line with the role of ADF/cofilin in presynaptic function, the disruption of upstream regulators, including RhoA, ROCK2, PAK1/3, LIMK1, and SSH, all impair some aspects of vesicle exocytosis and neurotransmitter release (Meng et al., 2002; Wang H. G. et al., 2005; Asrar et al., 2009; Yuen et al., 2010; Huang et al., 2011).



Regulation of Learning and Memory

long-term potentiation and depression are regarded as key mechanisms for learning and memory (Bliss and Collingridge, 1993; Citri and Malenka, 2008; Neves et al., 2008; Kandel et al., 2014). The demonstrated role of ADF/cofilin in these forms of synaptic plasticity, as discussed earlier, suggests that they are important in memory formation and this is supported by several studies. For example, the conditional deletion of cofilin-1 in postnatal principal neurons results in severe impairments in associative learning, but not exploratory or latent learning (Rust et al., 2010). Activation and inhibition of ADF/cofilin activities using peptides facilitated or impeded contextual fear memory extinction in rats, respectively (Wang et al., 2013). Increased phosphorylated, inactive, ADF/cofilin is observed in the hippocampal CA1 region of rats after learning in an enriched environment (Fedulov et al., 2007). Neonatal social isolation inactivates ADF/cofilin and leads to an increase in stable actin fractions at the dendritic spines in the juvenile medial prefrontal cortex (Tada et al., 2016) and barrel cortex of rats (Tada et al., 2017). Other evidence supporting the importance of ADF/cofilin in memory comes from memory abnormalities observed in the absence of ADF/cofilin upstream regulators. Impaired learning has been documented for mice lacking LIMK1, PAK1/3 and Rho GTPases (Meng et al., 2002, 2005; van Galen and Ramakers, 2005; Huang et al., 2011; Todorovski et al., 2015). For example, LIMK1 KO mice are drastically impaired in long-term but not short-term memory during fear conditioning and the Morris water maze (Meng et al., 2002; Todorovski et al., 2015). Expression of dominant-negative PAK3 alters cofilin phosphorylation and impairs social recognition memory (Leung et al., 2018). Actin-depolymerization factor/cofilin also play a role in other behaviors including reward learning (Toda et al., 2006; Rothenfluh and Cowan, 2013) and anxiety (Goodson et al., 2012). Conditional cofilin-1 KO mice show impaired novel object recognition, but normal social behavior including social recognition (Sungur et al., 2018). Moreover, ADF/cofilin conditional double KO mice also demonstrate abnormal nesting behavior, increased activity and impulsive behavior, as well as reduced non-associative learning and working memory (Zimmermann et al., 2015).



ROLE OF ADF/COFILIN IN NEURONAL APOPTOSIS AND NEUROINFLAMMATION

Translocation of ADF/cofilin to the mitochondria is important for induction of apoptosis in multiple cell types, including neurons, neutrophils, lymphoma, neuroblastomas, and prostate cancer (Chua et al., 2003; Zhu et al., 2006; Klamt et al., 2009). Actin-depolymerization factor/cofilin undergo oxidation during inflammatory stress (Klamt et al., 2009; Bernstein and Bamburg, 2010), and when oxidation is prevented, apoptosis is inhibited (Klamt et al., 2009). In mouse embryonic fibroblasts, oxidation of ADF/cofilin cause them to lose their affinity for actin and translocate to the mitochondria, where they induce swelling and cytochrome c release by mediating the opening of the permeability transition pore (Klamt et al., 2009). Knocking down endogenous ADF/cofilin using targeted small interfering (siRNA) inhibits apoptosis, which is restored by expression of wild type ADF/cofilin (Klamt et al., 2009). The apoptotic effect of ADF/cofilin is independent of ADF/cofilin’s role in actin cytoskeleton regulation (Bernstein and Bamburg, 2010).

Several studies have implicated ADF/cofilin in the regulation of neuronal apoptosis (Yang et al., 2004; Bernstein and Bamburg, 2010; Li et al., 2013). Knocking down ADF/cofilin from primary cortical neurons results in decreased excitotoxic neuronal death caused by excess glutamate (Posadas et al., 2012). During excitotoxic neuronal death, ADF/cofilin interacts with the proapoptotic protein Bax, carrying it to the mitochondria and contributing to the depolarization of the mitochondrial membrane, the release of apoptotic factors and neuronal death (Posadas et al., 2012). Actin-depolymerization factor/cofilin is also involved in ischemia-induced neuronal death (Madineni et al., 2016). The activation of ADF/cofilin occurs during ischemia in cortical neurons and knocking down ADFcofilin increases neuronal viability (Madineni et al., 2016). These results are consistent with work on LIMK1 and SSH (Yang et al., 2004; Posadas et al., 2012), showing that overexpression of LIMK1 and inhibition of SSH protects cells from apoptosis by inactivating ADF/cofilin.

In addition to direct involvement in neuronal apoptosis, recent studies suggest that ADF/cofilin contribute to neuronal apoptosis through other cell types like astrocytes (Alhadidi et al., 2016). Astrocytes express glutamate transporters which regulate the clearance of glutamate released from synapses (Anderson and Swanson, 2000). Dysfunction of astrocytic glutamate transporters trigger neuronal death by excessive glutamate and excitotoxicity (Rossi et al., 2000). In primary astrocyte cultures, the actin cytoskeleton has an important role in regulating the activity of glial glutamate transporters as inhibition of actin polymerization by cytochalasin-B reduces cell surface expression of these transporters (Adolph et al., 2007). Also, Rottlerin, a polyphenol natural product, decreases the activity of astrocyte glutamate transporters and disrupts actin filament dynamics (Sheean et al., 2013). Endocytosis of astrocyte glutamate transporters is also dependent on actin dynamics (Yan et al., 2014). These studies suggest that ADF/cofilin mediate actin changes and astrocytic glutamate transporters which in turn contribute to glutamate uptake and neuronal apoptosis.

ADF/cofilin have also been suggested to be involved in the regulation of neuroinflammation (Rasmussen et al., 2010; Gitik et al., 2014). Microglia and astrocytes are the first cells to be activated following brain injuries (Taylor and Sansing, 2013). In the Ra2 microglia cell line, ADF/cofilin knockdown inhibits nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase activity and reactive oxygen species (ROS) formation which result in decline in cells activity (Rasmussen et al., 2010). Microglial cell phagocytic activity is also highly influenced by ADF/cofilin activation (Gitik et al., 2014). Similarly, ADF/cofilin activation is required for the restoration of the myelin sheath and involve in control of phagocytosis of degenerated myelin by microglia and macrophages (Hadas et al., 2012). Actin depolymerization by ADF/cofilin has also been shown to be important for exosome formation, which plays an essential role in facilitating neuroinflammation (Gupta and Pulliam, 2014).



ROLE OF ADF/COFILIN IN ALZHEIMER’S DISEASE

Given the involvement of ADF/cofilin in the regulation of dendritic spines, synaptic plasticity and learning and memory, it is not surprising that deficits in ADF/cofilin are implicated in a wide range of brain disorders (Bamburg and Wiggan, 2002). These conditions include autism spectrum disorders (Duffney et al., 2015; Sungur et al., 2018), Williams syndrome (Hoogenraad et al., 2004), intellectual disability (Newey et al., 2005; van Galen and Ramakers, 2005; Zamboni et al., 2018), drug addiction (Rothenfluh and Cowan, 2013), sleep deprivation (Havekes et al., 2016) and neurodegenerative diseases such as AD (Liu et al., 2019), which will be discussed briefly below.

Alzheimer’s disease is a neurodegenerative condition characterized by memory loss and cognitive decline, resulting in the loss of independence and a shorter life span (Hsiao et al., 1996; Hsia et al., 1999; Li et al., 2014). Pathologically, AD is characterized by neurofibrillary tangles and senile plaques, consisting mainly of extracellular amyloid β (Aβ) peptides (Hsiao et al., 1996; Hsia et al., 1999; Hardy and Selkoe, 2002; Butterfield, 2014). In the brain, Aβ results from the proteolytic processing of the amyloid precursor protein (APP) and it has been proposed that the accumulation of toxic Aβ42 plays a major role in the development of dementia (Hardy and Selkoe, 2002; Palop and Mucke, 2010; Mucke and Selkoe, 2012). The effect of Aβ on the synapse and synaptic function, including LTP and LTD, is of great interest due to their direct relevance to learning and memory (Varadarajan et al., 2000; Selkoe, 2002; Lacor, 2007; Mucke and Selkoe, 2012; Sheng et al., 2012). Given the function of ADF/cofilin in synaptic plasticity, learning and memory, several studies have described the role of ADF/cofilin in the pathophysiology of AD. Actin-depolymerization factor/cofilin were discovered to accumulate in senile plaques in AD tissue and AD mouse models (Bamburg and Bernstein, 2016; Sun et al., 2019). Several studies show that brain tissue from AD patients and AD mouse models such as the APP/PS1 model exhibit elevated levels of inactive phosphorylated cofilin-1 (Barone et al., 2014; Gu et al., 2014; Han et al., 2017; Kang and Woo, 2019). On the other hand, multiple studies show that active dephosphorylated cofilin-1 forms aberrant cofilin-actin rods, which blocks axonal trafficking and may contribute to deficits in synaptic plasticity (Davis et al., 2011; Mendoza-Naranjo et al., 2012; Barone et al., 2014; Kang and Woo, 2019). Recently, it was shown that knocking down CAP2 in hippocampal neurons results in abnormal dendritic spines and impaired synaptic plasticity. This effect of CAP2 is relevant to ADF/cofilin because the CAP protein family is known to form a complex with ADF/cofilin and promote actin disassembly as discussed earlier. Moreover, chemical induction of LTP triggers CAP2 translocation to the spines and increases the formation of dimers, promoting the association of CAP2 with cofilin. In the hippocampal synapses of AD patients and mouse models, there is an increase in cofilin levels accompanied by a reduction in CAP2 synaptic availability, leading to a decrease in CAP2 dimer formation at the synapse (Pelucchi et al., 2020). Studies have also shown that the protein level of cofilin-2 is elevated in the brain and blood of AD patient brains and mouse models (Sun et al., 2015, 2019), but the significance of these changes will need further studies.

The disturbance in cofilin activity in AD may contribute to the loss of dendritic spines and synapses (Kang and Woo, 2019; Pelucchi et al., 2020). Decreased dendritic spine density and active synapses are seen in rat hippocampal pyramidal neurons from organotypic slices after exposure to Aβ oligomers (Shankar et al., 2007). Aβ-induced spine loss can be blocked by prevention of ADF/cofilin activation by expression of constitutively inactive cofilin (S3D) (Shankar et al., 2007). In the same line, Aβ42 oligomers promote ADF/cofilin dephosphorylation and activation in the hippocampus derived HT22 cell line and primary cortical neurons (Woo et al., 2015). Genetic reduction in ADF/cofilin activity activation rescues Aβ42-induced synaptic protein loss as well as deficits in LTP and contextual memory in APP/PS1 mice (Woo et al., 2015). These studies suggest the involvement of active cofilin in AD synaptic dysfunction. In addition, cofilin may also contribute to accumulation of Aβ aggregate and development of AD. For example, Aβ deposition in APP/PS1 mice is significantly decreased by genetically reducing cofilin using small interfering RNA (Liu et al., 2019). The effect of cofilin in Aβ accumulation may be through dual and opposing endocytic mechanisms promoting Aβ production in neurons and inhibiting Aβ clearance in microglia (Liu et al., 2019).

Despite the strong evidence for a role of ADF/cofilin dephosphorylation and activation in AD pathogenesis, several studies show that ADF/cofilin phosphorylation and inactivation may also play a role in AD pathogenesis (Kang and Woo, 2019). Acute exposure to Aβ oligomers increases the level of phosphorylated cofilin-1 at the postsynaptic compartment, leading to a subsequent stabilization of spine actin filaments, as well as impairment of chemically induced LTP (Rush et al., 2018). Also, Aβ oligomers increase cofilin phosphorylation and actin polymerization selectively in cholinergic basal forebrain neurons via increasing PAK1 phosphorylation and activity (Gu et al., 2014). There is also an increase in level of phosphorylated cofilin in synaptic fractions from APP/PS1 mice and AD patients’ brains (Rush et al., 2018). In APP/PS1 mouse brains, level of phosphorylated/inactive cofilin-1 is reduced at 4 months of age and increases at 10 months of age (Barone et al., 2014). In addition, different Aβ species and conformations seem to act differently on ADF/cofilin, depending on the locality, age and neuronal type (Kang and Woo, 2019). Despite this, the genetic reduction of ADF/cofilin rescues neurodegeneration (Woo et al., 2012), as well as LTP and contextual memory deficits in APP/PS1 mice (Woo et al., 2015). In summary, dysregulation of ADF/cofilin activity through either phosphorylation or dephosphorylation may contribute to the neurotoxic effects induced by Aβ in AD.

Several studies show that ADF/cofilin changes and synaptic dysfunction induced by Aβ are caused by both LIMK1 and SSH pathways (Kang and Woo, 2019). Treatment of hippocampal neurons with fibrillar amyloid beta increases the phosphorylation and activity of LIMK1 and these are accompanied by abnormalities in actin cytoskeleton, neuritic dystrophy and neuronal cell death (Heredia et al., 2006). Hippocampal neurons treated with Aβ42 oligomer induced LIMK1 activation which is regulated by an increase in the activity of Rac1 and Cdc42 Rho-GTPases and subsequent activation of PAK1 (Mendoza-Naranjo et al., 2012). Despite increased LIMK1 activation, Aβ42 treatments induce dephosphorylation of ADF/cofilin, suggesting the involvement of SSH. This is supported by work showing that overexpression of SSH prevents actin cytoskeleton abnormalities induced by Aβ42 treatments (Mendoza-Naranjo et al., 2012). In addition, Aβ42-induced ADF/cofilin dephosphorylation in the hippocampus-derived HT22 cell line is mediated by β1−integrin, a cell receptor important in the maintenance of synapses (Lilja and Ivaska, 2018), and the subsequent activation of SSH (Woo et al., 2015). These studies suggest that ADF/cofilin activity is regulated by bifurcating pathways that stimulate PAK1 and LIMK1 as well as SSH. In contrast, deficits in both PAK1 and PAK3 levels are detected in AD patients’ brains, which lead to activation of ADF/cofilin (Zhao et al., 2006). The application of Aβ42 can directly result in abnormally low levels of PAK in primary neurons (Zhao et al., 2006). Despite low levels of total PAK in AD brains, phosphorylated active PAK is increased around Aβ deposits (Zhao et al., 2006). Arsenault et al. (2013) confirm the loss of PAK in cortex of AD patients’ brains and cortex of AD mouse model (3xTg) and show that expression of a dominant-negative form of PAK results in deficits in social recognition.

In addition to the dysregulation of ADF/cofilin activity, formation of ADF/cofilin-actin rods may contribute to the pathology of AD (Bamburg and Bernstein, 2016; Kang and Woo, 2019). For example, an increase in ADF/cofilin-actin rods/aggregates have been reported in AD patients and AD mouse models including APP/PS1 and 3xTg (Rahman et al., 2014; Bamburg and Bernstein, 2016; Kang and Woo, 2019). Multiple studies have also shown that Aβ dimers/trimers promote the formation of ADF/cofilin-actin rods in neurons, associated with the dephosphorylation, activation of cofilin (Maloney et al., 2005; Davis et al., 2011; Mendoza-Naranjo et al., 2012; Barone et al., 2014). Bernstein et al. (2012) show that intermolecular disulfide bonds between cofilin subunits form in vitro by cofilin oxidation and is critical for cofilin-actin rod formation in stressed neurons. These less dynamic ADF/cofilin actin rods consist of ADF/cofilin and actin in 1:1 ratio and are shown to disrupt the integrity of dendritic microtubules, block intracellular transport of mitochondria and induce significant loss of dendritic spines (Bamburg and Bernstein, 2016; Walsh et al., 2014).

Targeting ADF/cofilin regulation may provide therapeutic targets to improve synaptic function and reduce memory impairment in AD patients (Shaw and Bamburg, 2017). Inhibition of cofilin-1 stabilizes the function and activity of dendritic spines in LTD mouse model (Zhou et al., 2004). Cofilin-1 inhibition is achieved using a phosphorylated peptide containing the first 16 amino acids of cofilin-1 (p-Cofilin peptide), which inhibits cofilin-1 activation through competitive binding to phosphatases. The use of this phosphorylated peptide in an AD mouse model (5 × FAD) rescues the deficits in surface expression and function of AMPA and NMDA receptors (Deng et al., 2016). Cofilin-1 inhibition by the peptide also partially improves working memory and novel object recognition in the model (Deng et al., 2016). In summary, ADF/cofilin contribute to AD pathology through multiple mechanisms including phosphorylation, dephosphorylation and formation of less dynamic ADF/cofilin-actin rods. Therefore, targeting ADF/cofilin holds promise to mitigate the physiological and behavioral abnormality in AD.



CONCLUDING REMARKS

In summary, ADF/cofilin play multifaced roles in the regulation of synaptic structure and function in the brain. The temporal and spatial regulation of ADF/cofilin appears to be particularly important for the bi-directional effect on spine and synaptic plasticity. However, there are several key questions that need to be addressed further. First, although spine accumulation of ADF/cofilin is associated with both spine enlargement/LTP and LTD/spine shrinkage, how the increased ADF/cofilin in the spine leads to opposite changes in spine morphology remains unclear. Second, the relationship between spine accumulation and phosphorylation/dephosphorylation of ADF/cofilin needs further characterization. It remains unclear whether the translocation of the endogenous ADF/cofilin to the spine during LTP/spine enlargement or LTD/spine shrinkage requires ADF/cofilin dephosphorylation, although the exogenously expressed cofilin S3D appears unable to accumulate in the spine during LTP or LTD (Pontrello et al., 2012; Noguchi et al., 2016). Therefore, it is important to further elucidate how the translocation is regulated by protein phosphorylation and what protein kinases (e.g., LIMK1)/phosphatases (e.g., SSH) are involved. Third, the cooperation between ADF/cofilin and other actin-binding proteins (e.g., CAP2 and AIP) would provide another layer of regulation for ADF/cofilin activity at the synapse as some of these proteins also exhibit redistribution in the dendritic spine (Bosch et al., 2014; Pelucchi et al., 2020), but exactly when and how these interactions affect actin dynamics within the spine will require further studies. The use of photoactivatable ADF/cofilin (Noguchi et al., 2016; Senju et al., 2017; Borovac et al., 2018) or their upstream regulators (such as Rac1) (Wu et al., 2009; Fujii et al., 2013) in specific neuronal types and/or subcellular compartments within the spine should facilitate these investigations. Another emerging area is how ADF/cofilin-mediated actin dynamics are associated with and affect behavior in living animals, including different phases of learning and memory. As many brain disorders are associated with altered regulation of ADF/cofilin, a better understanding of this protein family could also aid in the understanding and treatment of these disorders.
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Endoplasmic reticulum stress (ERS) plays a vital and pathogenic role in the onset and progression of Alzheimer’s disease (AD). Phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) induced by ERS depresses the interaction between actin-binding protein filamin-A (FLNA) and PERK, which promotes F-actin accumulation and reduces ER-plasma membrane (PM) communication. Echinacoside (ECH), a pharmacologically active component purified from Cistanche tubulosa, exhibits multiple neuroprotective activities, but the effects of ECH on ERS and F-actin remodeling remain elusive. Here, we found ECH could inhibit the phosphorylation of PERK. Firstly ECH can promote PERK-FLNA combination and modulate F-actin remodeling. Secondly, ECH dramatically decreased cerebral Aβ production and accumulation by inhibiting the translation of BACE1, and significantly ameliorated memory impairment in 2 × Tg-AD mice. Furthermore, ECH exhibited high affinity to either mouse PERK or human PERK. These findings provide novel insights into the neuroprotective actions of ECH against AD, indicating that ECH is a potential therapeutic agent for halting and preventing the progression of AD.
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INTRODUCTION

Alzheimer’s disease (AD) is the most prevalent cause of dementia in elderly people and is symptomatically characterized by progressive, age-dependent impairment in memory, cognitive function, and behavior (Reitz et al., 2011). Brains of AD patients can be pathologically identified by the progressive accumulation of insoluble amyloid plaques composed of neurotoxic amyloid β protein (Aβ), which is believed to play a central pathogenic role in this devastating illness (Masters and Selkoe, 2012). Aβ is proteolytically derived from the larger amyloid precursor protein (APP) by two proteolytic enzymes, β-secretase (beta-site APP cleaving enzyme 1, BACE1) and γ-secretase. BACE1 is the rate-limiting enzyme that catalyzes the initial cleavage of APP and gives rise to Aβ. The level of BACE1 is expected to play a fundamental role in the aetiopathogenesis of AD. Emerging evidence has shown that the level of BACE1 protein is aberrantly increased in the brains of AD patients as well as in different AD transgenic mouse models, whereas the level of BACE1 mRNA tends to be constant (Holsinger et al., 2002; Preece et al., 2003; Yang et al., 2003; Li et al., 2004; O’connor et al., 2008; Kim et al., 2018). This observation indicates that modulation of the translation of BACE1 will be a promising target for designing therapeutic agents to prevent or treat this neurodegenerative disorder (Ohno, 2006; Vassar and Kandalepas, 2011; Yan and Vassar, 2014).

The endoplasmic reticulum (ER) is an important apparatus that contributes to both protein modification and processing. Accumulated misfolded or aggregated proteins, such as Aβ, in the ER can trigger endoplasmic reticulum stress (ERS) and lead to many protein-folding diseases, including AD (Ron and Walter, 2007; Rozpedek et al., 2015; Bell et al., 2016; Hughes and Mallucci, 2018). ERS can activate a set of pro-survival signaling pathways termed the unfolded protein response (UPR). The UPR rapidly depresses global protein synthesis to deal with the accumulation of unfolded proteins, providing a protective mechanism capable of restoring proteostasis (Rozpedek et al., 2015; Hughes and Mallucci, 2018). During the UPR, eukaryotic initiation factor-2α (eIF2α), a key translational initiator, is activated via phosphorylation, leading to a halt in general translation and translational activation of a subset of mRNAs (Chang et al., 2002; Ferrer, 2002; Ma et al., 2013; Devi and Ohno, 2014). Sustained eIF2α phosphorylation and subsequent persistent repression of global protein synthesis, which result in memory impairments and neurodegeneration during chronic diseases such as AD, are observed in the brains of sporadic AD patients as well as in different AD transgenic mouse models (Chang et al., 2002; Ferrer, 2002; Kim et al., 2007; O’connor et al., 2008; Morel et al., 2009; Ohno, 2014). Interestingly, although the phosphorylation of eIF2α at Ser51 inhibits general translation initiation, it paradoxically activates translation of BACE1. Consistent with the abnormally persistent hyperphosphorylation of eIF2α, the expression of BACE1 is markedly elevated in AD brain, leading to deficits in neuronal plasticity and memory formation (Ma et al., 2013; Devi and Ohno, 2014).

The phosphorylation of eIF2α is controlled by four protein kinases, general-control non-derepressible-2 kinase (GCN2), double-stranded RNA-activated protein kinase (PKR), haeme-regulated inhibitor kinase (HRI), and PKR-like endoplasmic reticulum kinase (PERK) (Ohno, 2014). Among these four kinases, PERK is associated with the UPR and is the major kinase that activates eIF2α in the brain, which is overly activated via phosphorylation in the AD brain (O’connor et al., 2008; Ohno, 2014). PERK/eIF2α signaling dysfunction is a common mechanism leading to neurodegenerative diseases, including AD (Hetz and Mollereau, 2014; Bell et al., 2016). Since dysregulation of the PERK/eIF2α pathway is a potential pathophysiologic factor contributing to AD, PERK has emerged as a novel potential therapeutic target for AD treatment (Ma and Klann, 2014; Rozpedek et al., 2015; Ohno, 2018). Diminishing eIF2α phosphorylation via fore-brain-specific conditional deletion, genetic haploinsufficiency, or pharmacological manipulation of PERK mitigates cerebral Aβ accumulation by reducing BACE1 levels and ameliorates cognition deficits in AD transgenic mice (Ma et al., 2013; Zhu et al., 2013b; Devi and Ohno, 2014).

During the ERS, the loss of ER Ca2+ homeostasis could accelerate the formation of ER-plasma membrane (PM) communication. As a stress response to ERS, one of the important biological functions of ER-PM contact site is to restore the homeostasis of Ca2+ in cytoplasm and ER. Van Vliet et al. (2017) confirmed that dimerized PERK interacted with filamin-A (FLNA) which is a key F-actin modulation protein. Furthermore, PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin network remodeling. Notably, sustained phosphorylation of PERK would depress PERK-FLNA combination, thereby reducing the ER-PM contact sites, leading to further deterioration of ERS.

Echinacoside (ECH) (Figure 1) is one of the major phenylethanoid glycosides isolated and purified from Cistanche tubulosa, a parasitic plant native to northwestern China, which is used as a traditional Chinese herbal medicine with anti-senility and antifatigue effects (He et al., 2009). Consisting of a phenylpropanoid and a phenylethanoid glycosidically linked to a trisaccharide moiety, ECH is a hydrophilic polyphenol glycoside, which has a strong activity of scavenging superoxide anion, hydroxyl radical, and lipid radicals (Li et al., 1992) and can inhibit the autoxidation of linoleic acid (Zheng et al., 1993). Containing caffeoyl and hydroxyphenylethyl moieties, ECH exhibits a wide range of bioactivities such as free radical scavenging, antioxidant and anti-inflammatory effects (Facino et al., 1995; Heilmann et al., 2000; Sloley et al., 2001; Pellati et al., 2004; Dalby-Brown et al., 2005).
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FIGURE 1. Chemical structure of Echinacoside (ECH).


Many studies have suggested that ECH exhibits strong neuroprotective effects. ECH elicits neuroprotection against neuronal injury and apoptosis induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-hydroxydopamine, rotenone, hydrogen peroxide (H2O2), tumor necrosis factor-α (TNFα), and ultraviolet B (UVB) irradiation in vitro and in vivo (Geng et al., 2007; Kuang et al., 2009, 2010; Zhu et al., 2012, 2013a; Wang et al., 2015). Furthermore, ECH can ameliorate the memory impairment in senescence-accelerated prone inbred strains (SAMP) of mice and rats with bilateral middle carotid artery occlusion (MCAO) (He et al., 2009; Liu et al., 2013). Thus, many researchers suggest that ECH is a potential therapeutic natural compound for AD, Parkinson’s disease (PD) and vascular dementia (VD) (Chen et al., 2007; Zhao et al., 2010; Zhu et al., 2012, 2013a; Liu et al., 2013). ECH and Cistanche tubulosa extract, with ECH as the main component, ameliorate the cognition deficits and Aβ deposition and reverse the cortical cholinergic dysfunction caused by Aβ42 in a rat model of Alzheimer’s disease (Wu et al., 2014; Shiao et al., 2017). However, the possible therapeutic target of ECH in preventing AD deterioration involving ERS and F-actin network remodeling has not yet been ascertained.

Different AD mouse models and PERK gene-targeting approaches consistently suggest that overactivation of the PERK-dependent eIF2α phosphorylation pathway may cause memory deficits associated with AD (Ma et al., 2013; Devi and Ohno, 2014). The present study was designed to investigate the disease-modifying effects of ECH on cognitive impairment, Aβ accumulation, and the associated ERS, as well as the underlying mechanisms in APPswe/PS1dE9 double-transgenic mice that develop AD-like symptoms and act as a model of familial AD (Savonenko et al., 2005; Zhou et al., 2015).



MATERIALS AND METHODS


Animals

Three-month-old male APPswe/PS1dE9 (2 × Tg-AD) mice, harboring human APPswe (Swedish mutations K594N/M595L) and presenilin-1 with exon 9 deleted (PS1dE9) under the control of the constitutively active CMV promoter (Savonenko et al., 2005; Garcia-Alloza et al., 2006; Zhou et al., 2015), with a pre-existing subset of behavioral and pathological features of AD, were used to more closely mimic the clinical setting of AD. The non-transgenic (Non-Tg) littermates were used as a control. All mice were purchased from the Beijing HFK Bioscience Co., LTD (Beijing, China), and were adaptively reared for 30 days in the SPF animal laboratory in Dongfang Hospital, Beijing University of Chinese Medicine, China.

After adaptive feeding, 4-month-old 2 × Tg-AD mice and Non-Tg mice were randomly separated into 4 groups: Vehicle (normal saline, NS) + Non-Tg (n = 20), Vehicle (normal saline, NS) + 2 × Tg-AD (n = 20), ECH + Non-Tg (n = 20) and ECH + 2 × Tg-AD (n = 20). All mice were individually caged at an ambient temperature of 23 ± 1°C and relative humidity 55 ± 5% under a 12:12 h light/dark cycle and received food and water ad libitum. The animals were handled according to the NIH Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23, revised 1996). All animal studies were approved by the Animal Care & Welfare Committee of Dongfang Hospital, Beijing University of Chinese Medicine, China.



Administration of Drugs

Echinacoside (purity > 98%, Figure 1) was provided by Xi’an Haoxuan Bio-Tech (Xi’an, China) and dissolved in NS. ECH-treated mice were received 30 mg/kg b.w. ECH daily i.g. for 180 days and vehicle-treated mice received NS of the same volume as ECH daily i.g. for 180 days.



Morris Water Maze Test

As described by Lv et al. (2015), the Morris water maze test was performed to evaluate the spatial memory in response to treatment with ECH in 2 × Tg-AD mice. A maze of 120 cm in diameter and 35 cm in height was filled with water at 23 °C to a depth of 25 cm. The escape platform (8 cm diameter), which was placed at a fixed position in the center of one quadrant, was 1 cm below the water surface during the place navigation test and 1.5 cm above the water surface during the visible-platform test. The room contained several fixed visual cues on the wall. The day before testing, each mouse was individually placed into the center of the pool and allowed to swim for 60 s to familiarize themselves with the environment of the water maze. The mice were then trained to climb onto the platform from the water as a means of escape.


Place Navigation Test

The place navigation test consisted of 7 training days (Days 1–7) and two trials per day with a 1 h inter-trial interval. A quadrant was selected randomly, and the mice were placed into the water along the wall with their back against the platform. The mice were allowed 60 s to escape the water by locating the hidden platform. The escape latency was defined as the length of time that the mice required to reach the platform. If a mouse failed to find the platform within 60 s, it was placed on the platform for 15 s before the start of the next trial, and the latency was recorded as 60 s. All experiments were conducted at approximately the same time each day. The investigator was blinded to mouse genotypes until all behavioral tests were completed.



Spatial Probe Test

The spatial probe test was performed 24 h after the final day of the place navigation test (Day 8) to assess the spatial memory. The platform was removed from the maze, and mice were allowed to swim freely for 60 s. The swimming trajectory, the number of crossings of the area of the removed platform, the time spent in the target quadrant where the platform was previously located, and the time spent in the opposite quadrant were recorded to evaluate the memory capacity of mice.



Visible-Platform Test

During Days 9–12, the visible-platform test was performed to evaluate the difference in visual-motor abilities or motivation among the experimental groups. For the visible-platform test, the platform was raised above the water surface and placed in a different position from the place navigation test. Mice were given four trials per day with 30 min inter-trial intervals.




Immunohistochemistry and Aβ Plaque Load Quantification

After the Morris water maze tests, animals were anesthetized with chloral hydrate and perfused transcardially with NS, followed by ice-cold 4% paraformaldehyde in NS. Brains were removed and fixed in 4% paraformaldehyde and paraffin-enclosed for examination. Serial 4-μm coronal paraffin-embedded sections were used for immunohistochemistry, and the VECTASTAIN Elite ABC Universal PLUS kit (Vector Laboratories, Burlingame, CA, United States) was used to determine the distribution of Aβ42-positive plaques in the mouse brains. Briefly, paraffin sections were deparaffinized and rehydrated, washed in distilled water, and then subjected to heat-mediated antigen retrieval treatment. Endogenous peroxidase activity was eliminated by incubation in blocking solution for 10 m and then washing in phosphate buffer solution (PBS) for 5 m. The sections were blocked for 1 h with 2.5% normal horse serum at 37°C and incubated overnight with a monoclonal Aβ antibody (6E10) (1:200, 803015, BioLegend, San Diego, CA, United States) at 4°C in a humidified chamber. Then, the sections were washed in PBS and incubated with the biotinylated horse anti-mouse IgG secondary antibody for 1 h. After washing with PBS, the sections were incubated with the VECTASTAIN Elite ABC Reagent for 30 min and visualized by Mix ImmPACT DAB EqV solution. The sections were then counterstained by hematoxylin.

For the quantification of Aβ42-positive plaque load, digital images were captured with an Olympus IX71 microscope using a single-exposure setting as follows: Non-Tg Veh, n = 5; Non-Tg ECH, n = 6; 2 × Tg-AD Veh, n = 5; 2 × Tg-AD ECH, n = 5; and 6 sections through the hippocampus or cortex formation per mouse were calculated. Plaque load was defined as the % area, i.e., the positive area/total area × 100%, and semiquantitatively analyzed by ImageJ 1.46r (NIH, United States). The data are presented as mean ± SEM.



Aβ ELISA

The levels of cerebral total Aβ, Aβ 40, and Aβ 42 were determined by using the Aβ1-x ELISA kit (Immuno-Biological Laboratories, Gunma, Japan) and Invitrogen mouse Aβ40 and Aβ42 ELISA kits (Thermo Fisher Scientific, Camarillo, CA, United States), according to the manufacturers’ instructions. After behavioral testing, the animals were anesthetized with chloral hydrate and sacrificed via decapitation. The brains of the vehicle- and ECH-treated mice were immediately dissected and homogenized in ice-cold RIPA lysis buffer [50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate (SDS)] (Applygen Technologies, Beijing, China) supplemented with cOmplete protease inhibitor cocktail and PhosSTOP phosphatase inhibitor cocktail (Roche Diagnostics GmbH, Mannheim, Germany) with a Dounce homogenizer on ice. Brain homogenates were centrifuged at 12,000 g and 4°C for 10 min. One milliliter of the supernatant was set aside and used for Western blot. The remaining lysate was subjected to ELISA. Sample protein concentration was quantitated by the Pierce BCA protein assay kit (Thermo Fisher Scientific, Rockford, IL, United States). The final Aβ values were normalized to total protein levels (n = 6 per group).



RNA Isolation and Quantitative PCR

Total RNA was isolated using the RNeasy Mini kit (Qiagen, Valencia, CA, United States) according to the manufacturer’s instructions. RNA concentration and purity, from the absorbance at 260/280 nm, were analyzed using a BioPhotometer plus (Eppendorf, Hamburg, Germany). For quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis, 1.5 μg total RNA from each sample was used for first-strand cDNA synthesis and qPCR using the Invitrogen EXPRESS One-step SYBRTM GreenERTM Kit (Thermo Fisher Scientific, Camarillo, CA, United States). qRT-PCR was conducted using a 7300 sequence analyzer (Applied Biosystems, Foster City, CA, United States); data were analyzed using Applied Biosystems SDS 1.2. The custom probes for mouse BACE1 were forward, 5′-GATGGTGGACAACCTGAG-3′, and reverse: 5′-CTGGTAGTAGCGATGCAG-3′. BACE1 mRNA levels for each experimental group were normalized against 18s rRNA and quantified using the comparative CT method.



Antibodies and Western Blot Analysis

The following antibodies were used in Western blot analysis: polyclonal anti-BACE1 antibody (1:1000, 195111, Calbiochem, Merck Millipore, Darmstadt, Germany), monoclonal anti-sAPPβsw (6A1) antibody (1:500, 10321, Immuno-Biological Laboratories, Gunma, Japan), Chemicon monoclonal anti-full-length-APP (flAPP) (22C11) antibody (1:1000, #MAB348, Merck Millipore, Darmstadt, Germany), polyclonal anti-A-disintegrin and metalloproteinase 10 (ADAM10) antibody (1:1000, AB19026, Merck Millipore, Darmstadt, Germany), polyclonal anti-presenilin 1 (PS1) antibody (1:500, #3622, Cell Signaling Technology, Danvers, MA, United States), monoclonal anti-GRP78 antibody (1:2000, 610978, BD Biosciences, San Jose, CA, United States), polyclonal anti-eIF2α antibody (1:1000, #9722, Cell Signaling Technology, Danvers, MA, United States), monoclonal anti-phospho-eIF2α (Ser51) (D9G8) antibody (1:1000, #3398, Cell Signaling Technology, Danvers, MA, United States), monoclonal anti-PERK (C33E10) antibody (1:1000, #3192, Cell Signaling Technology, Danvers, MA, United States), polyclonal anti-phospho-PERK antibody (1:500, 649401, BioLegend, San Diego, CA, United States), monoclonal anti-β-actin antibody (C4) (1:2000, sc-47778, Santa Cruz, Dallas, TX, United States), goat anti-mouse IgG-HRP (sc-2302) and goat anti-rabbit IgG-HRP (sc-2004) secondary antibodies (1:5000, Santa Cruz, Dallas, TX, United States). The protein samples were mixed with the loading buffer containing 50 mM Tris-HCl (pH 6.8), 10% glycerol (V/V), 20% SDS (g/mL), 100 mM DTT and 0.1% bromophenol blue (g/mL) and heated at 95°C for 10 min. Then, 10% SDS-poly-acrylamide gel electrophoresis (PAGE) was performed using a Mini-PROTEAN system (Bio-Rad, Hercules, CA, United States) and SeeBlue Plus2 pre-stained protein standard (Life Technologies, Carlsbad, CA, United States). Each lane was loaded with 50 μg of protein. After electrophoresis, the proteins were transferred to Immobilon-P polyvinylidene difluoride (PVDF) membranes (Millipore, Billerica, MA, United States) at 295 mA for 1.5 h. Non-specific binding was blocked with 50 g/L DifcoTM skim milk (BD Bioscience, Franklin Lakes, NJ, United States) in TBST (50 mM Tris-HCl, pH 7.4, 200 mM NaCl, 0.5 mM Tween-20). The blots were incubated overnight at 4 °C with different primary antibodies, and β-actin served as a loading control. Then, the membranes were washed with TBST 4 times and incubated with the secondary antibodies conjugated to peroxidase for 1 h at room temperature. The bands were detected with the Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific, Rockford, IL, United States) using a GeneGnome XRQ bioimaging system (Syngene, Cambridge, United Kingdom). Bands were quantified using the software ImageJ 1.46r (NIH, United States).



BACE1 (β-Secretase) Activity Assay

Enzymatic activity of BACE1 (β-secretase) was determined using the β-secretase activity fluorometric assay kit (Biovision, Milpitas, CA, United States) according to the manufacturer’s instructions. Briefly, brain tissues were mixed with 2 volumes of ice-cold Extraction Buffer and homogenized on ice. After 10 min incubation on ice, the extracts were centrifuged at 10,000 × g for 5 m. Then, 50 μL supernatant was mixed with an equal volume of 2× reaction buffer and 2 μL substrate. The plates were kept in the dark at 37°C for 1 h, and the fluorescence was recorded at Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek, Winooski, VT, United States) with Ex. 340 nm and Em. 500 nm. BACE1 activity was expressed as relative fluorescence units per micrograms of protein sample.



α-Secretase Activity Assay

Enzymatic activity of α-secretase was measured using a commercial kit (AnaSpec, Fremont, CA, United States) according to the operation manual. Briefly, brain tissues were homogenized in ice-cold assay buffer and incubated on ice for 15 min. The extracts were centrifuged for 15 min at 10,000 × g. Then, 50 μL supernatant was mixed with an equal volume of the α-secretase substrate. The plate was incubated at 37°C in the dark for 1 h, and the fluorescence intensity at Ex/Em = 490 nm/520 nm was recorded with Synergy H1 Hybrid Multi-Mode Microplate Reader. the α-Secretase activity was expressed as relative fluorescence units per microgram of protein sample.



γ-Secretase Activity Assay

The γ-secretase activity was measured with a commercial kit (R&D Systems, Wiesbaden, Germany) according to the manufacturer’s protocol. Briefly, 50 μL brain tissue lysate was mixed with an equal volume of 2× reaction buffer and 5 μL of the substrate. The reaction mixture was incubated in the dark at 37°C for 1.5 h. The fluorescence was recorded at Synergy H1 Hybrid Multi-Mode Microplate Reader with Ex. 340 nm and Em. 500 nm. γ-Secretase activity was expressed as relative fluorescence units per microgram of protein sample.



Transmission Electron Microscopy

The mice of each group were anesthetized and perfused with cold 0.9% NS and 4% paraformaldehyde. The brains were removed and dissected on ice, then post-fixed in the same fixative at 4°C overnight. The hippocampus was hand-picked and cut into blocks of ∼1 mm3. Then, the blocks were placed into the 1% osmium tetroxide for 2 h at 4°C. After post-fixation, the blocks were rinsed in 0.01 mol/L phosphate buffer solution (PBS) (pH 7.4) three times and dehydrated in a graded series of ethanol and then in acetone. Thin sections were embedded in Poly/Bed 812 embedding kit (Polysciences, Warrington, PA, United States), cut on an Ultracut E ultramicrotome (Reichert, Buffalo, NY, United States), and stained with uranyl acetate and lead citrate. The sections were examined in a Hitachi H7650 transmission electron microscope (Hitachi High-Tech, Fukuoka, Japan), operating at an accelerating voltage of 80.0 kV. Images were captured with the AMT Camera System.



Cell Culture and Reagents

Human neuroblastoma SH-SY5Y cells were cultured in DMEM/F12 medium (Gibco, Thermo Fisher Scientific, United States) at 37°C with 5% CO2. The medium was supplemented with 10% fetal bovine serum (Gibco, Thermo Fisher Scientific, United States), 100 U/mL penicillin, 100 μg/mL streptomycin (Gibco, Thermo Fisher Scientific, United States).



Preparation of Aged Aβ1–42

Aβ1–42 peptide (Chinese Peptide Co., Hangzhou, China) was dissolved in distilled water at a concentration of 5 mM and incubated at 4°C for 7 days for aggregation. The aged Aβ1–42 was stored frozen at −20°C until use.



Aβ1–42 and Drug Treatment

SH-SY5Y cells were incubated for 24 h at 37°C, then the medium was replaced with serum-free DMEM/F12 medium supplement with Aged Aβ1–42 at 50 μM for 8 h. ECH is dissolved in PBS, filtered and sterilized by 0.2 μm filter. After Aβ1–42 treatment, ECH was added to the medium to a final concentration of 10 mM, and the cells were incubated at 37°C for 24 h for subsequent assay.



BACE1 Degradation Assay

For hippocampus primary neuron culture, day 0–1 pups of APP/PS1 mice were collected and the tails were clipped for genotype identification with PCR. Hippocampi of APP/PS1 pups were washed and dissected in cold HBBS (without Ca2+ and Mg2+), dissociated with 0.05% trypsin at 37°C for 15 min, and then triturated with a Pasteur pipette gently in Neurobasal A medium (Gibco, Thermo Fisher Scientific, United States). After non-dispersed tissue settled for 5 min, the supernatant was centrifuged for 5 min at 200 × g. The pellet was gently resuspended in neuron culture medium (Neurobasal A medium containing 2% B27 and 0.5 mM L-glutamine). Then neuron suspension was plated onto poly-D-lysine (Sigma-Aldrich)-coated 6-well-plate. After 24 h, the culture medium was replaced by a fresh medium with or without ECH/MG132 (Sigma-Aldrich, United States), the inhibitor of proteasomes, and incubated for 12 h. Then the neurons were collected and extracted cellular protein for Western blotting assay.



Immunofluorescence and Image Analysis

SH-SY5Y cells were treated to different experimental conditions on coverslips of 30000 cells in 24-well plates, fixed with 4% paraformaldehyde and 4% sucrose in PBS for 20 min. Then the cells were permeabilized with 0.2% Triton X-100 (v/v in PBS) for 5 min and blocked with 0.2% gelatin. Then the coverslips were incubated with selected primary and secondary antibodies in blocking buffer. Primary antibodies are polyclonal anti-FLNA (1:100, #4762S, Cell Signaling Technology, Danvers, MA, United States) and monoclonal anti-PERK (1:50, sc-377400, Santa Cruz, Dallas, TX, United States); Secondary antibodies included goat anti-rabbit IgG- rhodamine (1:200, ZF-0316, ZSGB-BIO Co., Beijing, China) and goat anti-mouse IgG-Alexa Fluor® 488 (1:200, ZF-0512, ZSGB-BIO Co., Beijing, China).

Serial 4-μm coronal paraffin-embedded sections of the hippocampus of mice were used for immunofluorescence assay. After deparaffinization, rehydration and antigen retrieval, paraffin sections were incubated with mouse monoclonal anti-F-actin (1:100, ab130935, Abcam, United Kingdom) and rabbit polyclonal G-actin antibodies (1:100, ab194952, Abcam, United Kingdom) overnight. Secondary antibodies included goat anti-mouse IgG- rhodamine (1:200, ZF-0313, ZSGB-BIO Co., Beijing, China) and goat anti-rabbit IgG-Alexa Fluor® 488 (1:200, ZF-0511, ZSGB-BIO Co., Beijing, China). Digital images of SH-SY5Y cells on coverslips and mouse hippocampus sections were captured with Olympus IX71 microscope and analyzed with Image J 1.46r (NIH, United States).



F-actin/G-actin Fraction Assay

F-actin/G-actin ratio in mice was determined with G-actin/F-actin In Vivo Assay Kit (#BK037, Cytoskeleton, Inc, United States) according to the manufacturer’s instructions. Briefly, mouse brain tissue was homogenized in the lysis buffer and incubated at 37°C for 10 min. The lysates were centrifuged at 350 × g for 5 min, and the supernatants were centrifuged at 100,000 × g at 37°C for 1 h. The precipitate is F-actin, and the supernatant is G-actin. Transfer the supernatant containing G-actin to a new tube. Add depolymerization buffer to the precipitate containing F-actin and incubate on ice for 1 h. The extracts containing G-actin and F-actin were assayed by Western blot respectively.



MicroScale Thermophoresis (MST) Assay

The mouse and human PERK proteins (Sino Biological Inc., Beijing, China) were labeled with the Monolith NT Protein Labeling Kit RED (NanoTemper Technologies, Munich, Germany) according manufacture’s protocol. Labeled-mouse and -human PERK were used at a concentration of 25 nM in PBS (pH 7.2) containing 0.05 (v/v) % Tween-20. ECH at 1000 μM in PBS was serially diluted in a 1:1 ratio into 16 gradient concentrations. The binding reaction systems of ECH with labeled-mouse or -human PERK were incubated for 10 min at room temperature avoiding light, then loaded into hydrophilic capillaries (NanoTemper). The measurements were performed on a NanoTemper Monolith NT.115 instrument (NanoTemper) at 40 % MST power, 30-s Laser-On time, and 5-s Laser-Off time.



Molecular Docking Analysis

The X-ray structures of human PERK (EIF2AK3, PDB ID: 4X7J) and mouse PERK (EIF2AK3, PDB ID: 3DQ2) were obtained from the RCSB protein database. The structures of ECH were optimized by HyperChem 7.0 software (Hypercube, Gainesville, FL, United States). A molecular docking study was carried out using Glide of Schrödinger molecular modeling suite (version 2015-2) (Schrödinger, Cambridge, MA, United States) running on a Linux 64-bit operating system. Glide XP visualizer was used for the analysis of protein-ligand interactions, including glide score, glide energy, hydrogen bond interactions, and other interactions. The three-dimensional and two-dimensional analyses were done in Discovery Studio 2.5 (Biovia, San Diego, CA, United States).



Statistical Analyses

Statistical analyses were performed using the SPSS program (version 20.0 for windows) (IBM, Armonk, NY, United States). Values were expressed as the means ± SEM. Eighteen mice were used for each behavioral assay, 5–6 mice were used for each histological study, and 6 mice were used for each biochemical study. The escape latencies in the Morris water maze test were analyzed using two-way repeated-measures ANOVA followed by Fisher’s protected least significant difference (LSD) test for post hoc comparisons. The Aβ-plaque load was evaluated via analysis of variance (ANOVA) to compare four groups followed Tukey’s test for post hoc multiple comparison between-group analyses. The remaining biochemical data were analyzed using one-way ANOVA followed by the LSD test for post hoc comparisons. The level of significance was set at P ≤ 0.05.




RESULTS


ECH Improves Cognitive Function in 2 × Tg-AD Mice

Spatial learning and memory deficits emerge and progressively worsen with age in 2 × Tg-AD mice (Trinchese et al., 2004; Ruan et al., 2009; Zhu et al., 2013b), and the Morris water maze test is usually performed to evaluate this process (Zhu et al., 2013b; Du et al., 2016). To evaluate the protective effects of ECH on cognitive impairment in 2 × Tg-AD mice, we measured the spatial learning and memory of 2 × Tg-AD mice with the Morris water maze test. After 6 months of intervention, the spatial learning ability was assessed by the escape latency across the 7-day acquisition training period in the place navigation test. As shown in Figure 2A, the mean escape latency declined progressive during the 7-day place navigation test, and there was a significant difference among the four groups: day, F(6,476) = 23.424, P = 0.001; treatment, F(3,476) = 8.853, P = 0.007; day by treatment interaction, F(18,476) = 4.749, P = 0.396. Moreover, vehicle-treated 2 × Tg-AD mice showed longer escape latencies during the acquisition training period (from day 2 to day 7) relative to the vehicle-treated Non-Tg mice (day 1, P = 0.146; day 2, P = 0.007; day 3, P = 0.001; day 4, P = 0.004; day 5, P = 0.008; day 6, P = 0.006; day 7, P = 0.008). This result suggested that 2 × Tg-AD exhibited significant cognitive impairment. In contrast, except for day 1 and day 6, ECH-treated 2 × Tg-AD mice showed a significant decrease in the escape latency compared with the vehicle-treated 2 × Tg-AD mice (day 1, P = 0.391; day 2, P = 0.008; day 3, P = 0.001; day 4, P = 0.006; day 5, P = 0.009; day 6, P = 0.068; day 7, P = 0.006). Furthermore, the concurrent recorded average swimming speed reflected no significant differences among the 4 groups during the place navigation test: F(3,476) = 11.071, P = 0.516. These results implied that ECH treatment did not significantly induce any physical fitness changes in 2 × Tg-AD or Non-Tg mice (Figure 2B).
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FIGURE 2. ECH treatment improves spatial learning and memory in 10-month-old 2 × Tg-AD mice in the Morris water maze test. (A) In the place navigation test, the vehicle-treated 2 × Tg-AD mice showed significantly longer escape latencies compared with vehicle-treated Non-Tg mice (##P < 0.01, ###P < 0.001, vehicle-treated 2 × Tg-AD mice vs. vehicle-treated Non-Tg mice), and ECH treatment reduced escape latency in 2 × Tg-AD mice remarkably (*P < 0.05, **P < 0.01, and ***P < 0.001, ECH-treated 2 × Tg-AD mice vs. vehicle-treated 2 × Tg-AD mice). (B) No significant differences were detected in the average swimming speed among the 4 groups during the place navigation test (P = 0.516). During the spatial probe test, (C) the number of crossings of the area of the removed platform and (D) time spent in the target vs. opposite quadrant were recorded; vehicle-treated 2 × Tg-AD mice showed significantly inferior performance than ECH-treated 2 × Tg-AD mice and vehicle- and ECH-treated Non-Tg mice. (E) Representative images of the route of travel during the spatial probe test were recorded. No significant differences were detected in (F) the escape latency (P = 0.379) or (G) the average swimming speed (P = 0.725) among the 4 experimental groups during the visible-platform test. All data are presented as the mean ± SEM (n = 18 mice per group). Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference.


Then, the spatial probe test was performed 24 h after the final day of the place navigation test (Day 8). As shown in Figures 2C,E, one-way ANOVA revealed a significant difference in the number of crossings of the area of the removed platform among the four groups of mice [F(3,68) = 8.882, P = 0.006]. Moreover, vehicle-treated 2 × Tg-AD mice crossed above the area of the removed platform less frequently compared to the vehicle-treated Non-Tg mice (P = 0.007). However, ECH-treated 2 × Tg-AD mice crossed the area of the removed platform more often than the vehicle-treated 2 × Tg-AD mice (P = 0.037).

As shown in Figure 2D, the time spent in the target and opposite quadrants showed significant differences among the four groups of mice: the target quadrant [F(3,68) = 14.835, P = 0.004]; opposite [F(3,68) = 31.729, P = 0.001]. Moreover, compared to the vehicle-treated Non-Tg mice, vehicle-treated 2 × Tg-AD mice spent less time searching for the platform in the target quadrant (P = 0.007) and more time in the opposite quadrant (P = 0.008). In contrast, ECH-treated 2 × Tg-AD mice spent more time in the target quadrant (P = 0.007) and less time in the opposite quadrant (P = 0.029) compared with the vehicle-treated 2 × Tg-AD mice. As shown in Figure 2E, the results are supported by representative images of the movement trajectory during the spatial probe test, suggesting that ECH-treated 2 × Tg-AD mice appeared more frequently in and around the platform area compared to vehicle-treated 2 × Tg-AD mice.

In addition, there were no significant differences in the escape latency [F(3,272) = 37.820, P = 0.379] (Figure 2F) or the average swimming speed [F(3,272) = 62.06, P = 0.725] (Figure 2G) among the 4 experimental groups during the visible-platform test. This result indicated that the spatial learning and memory deficits observed in the 2 × Tg-AD mice were not attributable to non-cognitive factors (i.e., motor, visual, and motivation abnormalities), and the effect of ECH on improving memory in 2 × Tg-AD mice did not affect the factors mentioned above. Interestingly, there was no significant difference in the escape latency (Figure 2A), the frequency of crossing the area of the removed platform (Figure 2C; P = 0.369) or time spent in the target (P = 0.761) or opposite quadrant (Figure 2D; P = 0.604) between the vehicle- and ECH-treated Non-Tg mice, which demonstrated that ECH itself did not directly have a significant effect on cognition in Non-Tg mice. Simultaneously, in accordance with previous research (Zhao et al., 2010; Zhang et al., 2017), the daily dose of ECH (30 mg/kg b.w) for each mouse was safe and effective. Taken together, ECH intervention strongly ameliorated the spatial learning and memory impairments in 2 × Tg-AD mice.



ECH Reduces Cerebral Aβ-Positive Plaque Load and Aβ Production in 2 × Tg-AD Mice

Given that extracellular Aβ deposition, the neuropathological hallmark of AD, plays a key role in cognitive deficits in AD (Rattanajarasroj and Unchern, 2010), and ECH can improve the cognition of 2 × Tg-AD mice, we assessed whether ECH could reduce Aβ-plaque load in the hippocampus and cortex in 2 × Tg-AD mice. Figure 3A presents images of Aβ-plaque immunoreactivity in the hippocampus and cortex of the 4 groups, showing that 2 × Tg-AD mice at 10 months of age developed obvious Aβ-plaque deposition in both hippocampus and cortex. This AD-like pathogenesis was consistent with previous reports (Capell et al., 2000; Luo et al., 2016). Compared with vehicle-treated Non-Tg mice, quantitative analysis revealed that the vehicle-treated 2 × Tg-AD mice exhibited a significantly greater Aβ-plaque load in the hippocampus (Figure 3B, P < 0.001) and cortex (Figure 3C, P < 0.001). ECH treatment markedly decreased the hippocampal (Figure 3B, P = 0.007) and cortical Aβ-plaque load (Figure 3C, P = 0.005) of 2 × Tg-AD mice compared to those of vehicle-treated 2 × Tg-AD mice, indicating that ECH could significantly reduce the extracellular accumulation of Aβ in both hippocampus and cortex of 2 × Tg-AD mice.
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FIGURE 3. ECH reduces Aβ-positive plaque load and Aβ production in the hippocampus and cortex of 2 × Tg-AD mice. Mouse brain sections were stained with anti-Aβ antibody 6E10. (A) Images of Aβ immunoreactivity in hippocampus and cortex of the indicated groups of mice were photographed with an IX71 microscope. Scale bar = 200 μm. Aβ-positive plaque load in the (B) hippocampus and (C) cortex of mice were analyzed with Image-Pro Plus 6.0 software, and the plaque load was defined as the percentage of the sum of Aβ deposit areas compared with the total section area (Non-Tg Veh, n = 5; Non-Tg ECH, n = 6; 2 × Tg-AD Veh, n = 5; 2 × Tg-AD ECH, n = 5). The levels of (D) total Aβ, (E) Aβ1–42, and (F) Aβ1–40 in brain homogenates of 2 × Tg-AD mice administered vehicle or ECH were measured by enzyme-linked immunosorbent assay (ELISA), and the values are presented as nanogram per milligram of brain tissue. All data are presented as the mean ± SEM (n = 6 mice per group). Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference.


The content of soluble Aβ, including Aβ42 and Aβ40, reflects the production of Aβ and is closely related to the formation of Aβ-plaques. To examine whether the decrease in Aβ-plaque with ECH treatment is attributable to the effects of ECH on Aβ production, we assessed the level of cerebral total Aβ, Aβ42, and Aβ40 in the vehicle- and ECH- treated 2 × Tg-AD mice by ELISA. In accord with the Aβ-plaque load shown in Figures 2A–C, the levels of total Aβ (Figure 3D, P = 0.009), Aβ42 (Figure 3E, P = 0.008), and Aβ40 (Figure 3F, P = 0.031) in brain homogenates were significantly reduced in the ECH-treated 2 × Tg-AD mice compared with the vehicle-treated mice, indicating that ECH reduced cerebral Aβ production in 2 × Tg-AD mice.



ECH Represses the Translation and Enzymatic Activity of BACE1 in 2 × Tg-AD Mice

BACE1 is a key rate-limiting enzyme for APP processing to produce Aβ that catalyzes the initial cleavage of the APP and gives rise to Aβ (Vassar and Kandalepas, 2011; Yan and Vassar, 2014). To explore whether ECH prevents Aβ generation by downregulating BACE1, we first tested the effects of ECH on the transcription, translation and enzymatic activity of BACE1. As shown in Figure 4A, the protein level of BACE1 was significantly increased in the brain of vehicle-treated 2 × Tg-AD mice relative to the control Non-Tg mice (P < 0.001), consistent with other studies (O’connor et al., 2008; Kim et al., 2018). ECH treatment significantly decreased BACE1 protein expression in 2 × Tg-AD mice (Figure 4A, P = 0.004). Consistent with this result, the BACE1 activity among the 4 groups revealed the same trend as the BACE1 protein level (Figure 4B). Notably, there was no significant difference in the BACE1 protein level or activity between vehicle- and ECH-treated Non-Tg mice (Figures 4A,B), suggesting that ECH had no significant effect on the protein level or enzyme activity of BACE1 in Non-Tg mice.
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FIGURE 4. ECH downregulates the protein level and enzymatic activity of BACE1 in 2 × Tg-AD mice. (A) The protein level of BACE1 in brain homogenates of mice was assayed by Western blot. (B) BACE1 activity was fluorimetrically monitored as described under section “Materials and Methods” in the brain homogenates of the indicated groups of mice. (C) The effects of ECH on BACE1 gene transcription were evaluated by real-time RT-PCR. Effects of ECH on (D) Protein levels of the soluble APP β fragments (sAPPβ), (E) ubiquitination degradation of BACE1 and (F) full-length APP (flAPP) level were determined by Western blot. All data are presented as the mean ± SEM (n = 6 mice per group). Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference.


ECH decreased BACE1 protein expression, possibly due to inhibition of the transcription of the BACE1 gene. Therefore, we determined the effect of ECH on BACE1 transcription by measuring the BACE1 mRNA level with real-time RT-PCR. Consistent with previous reports (Preece et al., 2003; O’connor et al., 2008; Kim et al., 2018), the results (Figure 4C) showed that there was no significant difference in BACE1 mRNA among the four indicated groups, even though the mRNA level in ECH-treated 2 × Tg-AD mice exhibited an increasing trend compared with vehicle-treated 2 × Tg-AD. These results conclusively demonstrate that ECH-induced BACE1 reduction in 2 × Tg-AD mice was due to the posttranscriptional rather than the transcriptional downregulation of BACE1.

The cleavage of APP by BACE1 produces a soluble APP fragment β (sAPPβ). To examine whether the reduced amyloidosis in the presence of ECH was caused by the reduction in APP metabolism through BACE1, we next examined the effect of ECH on the secretion of sAPPβ by Western blot. As shown in Figure 4D, ECH treatment significantly reduced sAPPβ in the brains of 2 × Tg-AD mice relative to the vehicle-treated 2 × Tg-AD mice (P = 0.008), which was consistent with the results of BACE1 protein level and activity, strongly suggesting that ECH decreases Aβ by modulating APP processing through the inhibition of the BACE1-mediated cleavage of APP for the amyloidogenic pathway.

Promoting ubiquitination degradation may be another reason for the decrease in BACE1 protein level. To further study the effect of ECH on the ubiquitination degradation of BACE1, we utilized the proteasome inhibitor MG132 to process hippocampal primary neurons of 2 × Tg-AD mice. As shown in Figure 4E, MG132 did not affect BACE1 levels, regardless of ECH intervention. It indicated that ECH reduced the protein level of BACE1 not by promoting its ubiquitination degradation.

A potential concern about our data is that ECH-decreased Aβ production may be due to the reduction in the APP level. In view of the fact that APP protein has many normal physiological functions (Dawkins and Small, 2014; Montagna et al., 2019), depressing its production will result in some adverse consequences. We sought to definitively exclude this possibility by assessing the full-length APP (flAPP) protein level in the brain of mice with or without ECH treatment. As shown in Figure 4F, there was markedly increased expression of flAPP in the brain of the 2 × Tg-AD mice relative to the control Non-Tg mice due to the overexpression of APP gene under the constitutively active CMV promoter (P < 0.001). However, as shown in Figure 4F, there are no significant differences in the flAPP level between ECH- and vehicle-treated Non-Tg mice (P = 0.486) or 2 × Tg-AD mice (P = 0.635), suggesting that ECH intervention itself had little effect on APP synthesis in the brain of 2 × Tg-AD mice. Therefore, ECH does not inhibit Aβ generation by reducing APP production.



ECH Has Little Effect on Expression or Enzymatic Activity of α- or γ-Secretase in 2 × Tg-AD Mice

ECH-induced Aβ reduction may also result from the upregulation of α-secretase or inhibition of γ-secretase. ADAM10 and PS1 are the catalytic subunits of α- and γ-secretase, respectively (Fahrenholz et al., 2000; Meckler and Checler, 2016). To determine whether ECH inhibits Aβ production by regulating the level and activity of α- and γ-secretase, we assessed the levels of catalytic subunits and enzymatic activities of α- and γ-secretase in mice with or without ECH treatment. As shown in Figures 5A,C, ECH treatment did not show a significant effect on the level of ADAM10 or the enzymatic activity of α-secretase in 2 × Tg-AD mice or Non-Tg mice. These results demonstrated that ECH did not influence the level or the activity of α-secretase in either 2 × Tg-AD mice or Non-Tg mice. PS1 was significantly elevated in 2 × Tg-AD mice compared to Non-Tg mice (P = 0.006), which was consistent with the overexpression of the PS1 mutant gene in 2 × Tg-AD mice (Kurt et al., 2001). However, there was no significant difference in the level of PS1 between ECH- and vehicle-treated 2 × Tg-AD mice (Figure 5B, P = 0.379). In accord with this result, γ-secretase activity among the 4 groups revealed the same trend as the PS1 protein level (Figure 5D). Therefore, the inhibitory effect of ECH on Aβ production in 2 × Tg-AD mice was not due to the inhibition of the γ-secretase.
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FIGURE 5. Effects of ECH on α- and γ-secretase in 2 × Tg-AD mice. The levels of (A) A-disintegrin and metalloproteinase 10 (ADAM10) and (B) presenilin 1 (PS1) from the brain of mice were determined by Western blot. The enzymatic activity of (C)α-secretase and (D)γ-secretase in the brains of the indicated groups of mice were fluorimetrically monitored as described under section “Materials and Methods.” All data are expressed as the percentage of vehicle-treated Non-Tg mice and are presented as the mean ± SEM (n = 6–8 mice per group). Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference.


In summary, the reduction in Aβ production induced by ECH treatment was most likely attributed to its inhibitory effect on the amyloidogenic cleavage of APP by reducing the BACE1 protein level exclusively through a posttranscriptional mechanism, without any effect on the regulation of BACE1 transcription, APP synthesis, ADAM10, PS1 expression, or the enzymatic activity of α- or γ-secretase.



ECH Depresses ERS via the PERK/eIF2α-Mediated Pathway in 2 × Tg-AD Mice

ERS is induced by excessive Aβ accumulation and results in the elevated translation of BACE1 via PERK/eIF2α activation in AD transgenic mice and patients with AD (O’connor et al., 2008; Hetz and Mollereau, 2014; Bell et al., 2016). Based on our finding that ECH decreased Aβ production by depressing BACE1 translation, we speculated that ECH treatment would inhibit Aβ-induced ERS and posttranscriptionally reduce the expression of BACE1 through inhibiting the activation of the PERK/eIF2α pathway in 2 × Tg-AD mice. To determine whether ECH could suppress ERS induced by overproduced Aβ in 2 × Tg-AD mice, we first performed transmission electron microscopy (TEM) analysis to observe the ultrastructure of ER in hippocampal neurons of mice with or without ECH treatment. The rough ER maintained its normal structure in Non-Tg mice (Figure 6A, left two panels), while it exhibited significant swelling and degranulation in vehicle-treated 2 × Tg-AD mice (thick arrows indicate ER structure in Figure 6A). Accordingly, the abnormal accumulation of unfolded proteins in the ER was very easy to identify. As shown in Figure 6A, ECH significantly ameliorated the morphological abnormalities of ER in the hippocampus of 2 × Tg-AD mice. To further confirm whether ERS was activated in the brain of 2 × Tg-AD mice and the effect of ECH on it, we next assessed the level of glucose-regulated protein 78 (GRP78) by Western blot because GRP78 is the earliest marker of ERS and appears to be the most sensitive in 2 × Tg-AD mice (Ron and Walter, 2007). As shown in Figure 6B, GRP78 increased dramatically in vehicle-treated 2 × Tg-AD mice compared to Non-Tg control (P = 0.002). Compared with vehicle-treated 2 × Tg-AD mice, ECH markedly reduced the levels of GRP78 in 2 × Tg-AD mice (P = 0.004). Taken together, we conclude that there was an obvious increase in ERS in the brains of 2 × Tg-AD mice and that ECH treatment effectively depressed this increased ERS.
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FIGURE 6. ECH depresses ERS via PERK/eIF2α-mediated pathway in 2 × Tg-AD mice. (A) Hippocampal tissues were observed under the transmission electron microscope (TEM), and the morphological changes in neuronal ER are indicated with thick arrows. Scale bar = 500 nm. The levels of GRP78 (B), phosphorylated, and total eIF2α (C) and PERK (D) from brain homogenates of the indicated groups of mice were detected by Western blot. The relative levels of phosphorylated proteins were normalized to the total protein content and are expressed as the percentage of Non-Tg Veh mice. All data are presented as the mean ± SEM (n = 6–8 mice per group). Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference; N, nucleus.


Given that the increase in GRP78 results in the activation of PERK/eIF2α in the AD brain during ERS and that it induces the UPR (Chang et al., 2002; O’connor et al., 2008; Ohno, 2014), we further explored the molecular mechanism by which ECH ameliorates ERS using Western blot to evaluate the phosphorylation of PERK and eIF2α in 2 × Tg-AD mice. As expected, the phosphorylation of PERK (P = 0.005) and eIF2α (P = 0.004) was increased markedly in vehicle-treated 2 × Tg-AD mice. In contrast, ECH significantly decreased the phosphorylation of PERK (P = 0.004) and eIF2α (P = 0.007) in 2 × Tg-AD mice (Figures 6C,D). These findings indicated that ECH repressed ERS through effectively inhibiting PERK/eIF2α activation in 2 × Tg-AD mice.



ECH Promotes PERK and FLNA Combination and ER-PM Contacts

Phosphorylation of PERK could depress its interaction with FLNA, thus results in F-actin accumulation at cell edges and perturbs the formation of ER-PM contacts. Based on the above findings that ECH inhibits PERK phosphorylation, we further investigate whether ECH can promote the interaction between PERK and FLNA and in turn regulate F-actin remodeling. The immunofluorescent assay revealed that the combination of PERK with FLNA decreased due to PERK phosphorylation induced by Aβ in Aβ1–42-treated SH-SY5Y cells as compared to control (Figures 7A,B). After 24 h incubation with ECH, PERK- FLNA interaction was reinforced. TEM of mouse hippocampus showed that in Non-Tg mice (treated with Veh or ECH) F-actin evenly distributed in neuron. In contrast, 2 × Tg-AD mice treated with vehicle, along with the more peripheral accumulation of F-actin, displayed reduced ER-PM contacts. 2 × Tg-AD mice treated with ECH exhibited more scattered distribution of F-actin fiber and more ER-PM contact sites (Figure 7C).
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FIGURE 7. ECH promotes the combination of PERK and FLNA and ER-PM contacts. (A) Aβ1–42-treated SH-SY5Y cells were incubated with or without ECH. Immunofluorescence assay showed the colocalization of FLNA (red) and PERK (green), scale bar = 50 μm. (B) Mander’s overlap colocalization analysis of data represented in (A) (mean ± SEM; n = 3, 30 cells were analyzed per condition). (C) Representative electron micrographs of hippocampal tissues of Non-Tg mice and 2 × Tg-AD mice treated with or without ECH. Black arrows denote F-actin, and hollow arrow denoted ER-PM contact sites, scale bar = 1.0 μm. FLNA, filamin-A; Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference.




ECH Modulates F-actin Remodeling and the Ratio of F-actin/G-actin

In hippocampus neurons of Non-Tg mice treated with or without ECH, F-actin exhibited enrichment distribution at the cell edges. However, F-actin was more peripheral in 2 × Tg-AD mice. Fluorescent images of homogeneous G-actin in Non-Tg mice treated with or without ECH showed a partially overlapping with F-actin. On the contrary, in 2 × Tg-AD mice administrated with Vehicle, the distribution area of G-actin is very different from that of F-actin which is more distributed on the edge of the cell, while G-actin is more distributed in the center area of the cell. ECH can significantly regulate the remodeling and redistribution of F-actin in 2 × Tg-AD mice (Figures 8A,B). Since the abnormal distribution of F-actin is closely related to its polymerization which was reflected by the ratio of F-actin/G-actin, we then investigated the effect of ECH on the F-actin/G-actin ratio. As shown in Figure 8C, 2 × Tg-AD mice administrated with Vehicle showed disturbance ratio of F-actin/G-actin, and ECH could modulate and ameliorate F-actin polymerization status.
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FIGURE 8. ECH modulates the ratio of F-actin and G-actin. (A) representative images of F-actin and G-actin in the hippocampus of Non-Tg mice and 2 × Tg-AD mice administrated with or without ECH. Immunofluorescence assay showed the colocalization of F-actin (red) and G-actin (green), scale bar = 50 μm (Upper three-row panel) and scale bar = 20 μm (Fourth-row panel). (B) Mander’s overlap colocalization analysis of data represented in (A). (mean ± SEM; n = 3, 35 cells were analyzed per condition). (C) Cerebral F-actin/G-actin ratio in Non-Tg mice and 2 × Tg-AD mice administrated with or without ECH. Non-Tg, non-transgenic littermates; 2 × Tg-AD, APPswe/PS1dE9 mice; Veh, vehicle (normal saline); ECH, echinacoside; NS, no significant difference.




Analysis of Binding Models of ECH and PERK

PERK is an ER transmembrane protein with a cytosolic kinase domain. During ERS, PERK is activated through dimerization and autophosphorylation (Devi and Ohno, 2014). The findings in the present study indicated that ECH could inhibit PERK phosphorylation in 2 × Tg-AD mice, so we hypothesized that ECH binds to the PERK molecule to prevent its phosphorylation. To test this hypothesis, we performed MST assay to evaluate the affinity of ECH to mouse PERK (mPERK) or human (hPERK). As shown in Figures 9A,B, ECH exhibited a high affinity to mPERK and hPERK. The Kd of ECH binding to mPERK or hPERK were 0.851 ± 0.081 μM and 0.635 ± 0.074 μM, respectively.
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FIGURE 9. MST measurement and binding mode of ECH and mPERK or hPERK. MST binding cure (n = 3) and MST curve (inset) of ECH binding to mPERK (A) or hPERK (B). (C) Two-dimensional and (D) three-dimensional binding model between mouse PERK (EIF2AK3, PDB ID: 3DQ2) and ECH. (E) Two-dimensional and (F) three-dimensional binding models between human PERK (EIF2AK3, PDB ID: 4X7J) and ECH. The black dotted lines represent the hydrogen bond. The blue sticks in the three-dimensional binding model (D,F) represent ECH.


To further analyze the way by which ECH interacts with mPERK and hPERK, we performed molecular docking analysis of ECH with mouse PERK (mPERK, mouse EIF2AK3, PDB ID: 3QD2) by using Glide of Schrödinger molecular modeling suite (version 2015-2). Given that the binding free energy reflects the stability and dynamic properties of intermolecular binding, we first assessed the free energy of ECH combined with mPERK with Glide of Schrödinger molecular modeling suite. The free energy of ECH combined with mPERK was −7.950 J/mol, which was low enough to form a stable complex, suggesting that ECH could be stably combined with mPERK.

To further investigate the molecular binding mode between ECH and mPERK, we performed protein-ligand interaction analysis in Glide XP visualizer to determine the potential conformation of ECH on mPERK docking and the interactions of ECH with mPERK. As shown in Figure 9C, ECH completely entered the binding-site pocket of the mPERK molecule, which was a hydrophobic cavity consisting of hydrophobic amino acids, such as phenylalanine (PHE942), glycine (GLY596), and valine (VAL603). This finding indicated that the hydrophobic property was one of the main forces governing the interaction between ECH and mPERK. There were also polar residues, such as asparagine (ASN-940) and cysteine (CYS889), in the cavity, which stabilized the ECH-mPERK complex by electrostatic interaction. Furthermore, aspartic acid (ASP896, ASP953), asparagine (ASN893), and glycine (GLY952) formed 4 hydrogen bonds with ECH. The hydrogen bonding and electrostatic interactions acted as “anchors” that stabilized the position of ECH in the mPERK binding pocket in three dimensions (Figures 9C,D).

The mPERK protein has high homology with human PERK (hPERK, human EIF2AK3, PDB ID: 4X7J), so we speculated that ECH may also bind to hPERK and have the potential for clinical AD treatment. As expected, the binding free energy of ECH combining with hPERK was −9.369 J/mol, indicating that ECH could be stably combined with hPERK. Interestingly, the free energy of hPERK combined with ECH was lower than that of mPERK, suggesting that ECH had a stronger bonding tendency with the former.

As shown in Figure 9E, ECH is exactly located within the hPERK binding pocket. Similar to mPERK, the binding cavity of hPERK is composed of hydrophobic amino acids, such as leucine (LEU643, LEU646, and LEU933), valine (VAL636), isoleucine (ILE886), and glycine (GLY602). This observation indicated that the hydrophobic property is one of the major forces in the interaction between ECH and hPERK protein, as in the interaction between ECH and mPERK. On the other hand, the interaction between ECH and hPERK was not exclusively hydrophobic. As shown in Figures 9E,F, there were polar residues, such as asparagine (ASN-942), and several electronegative residues, including aspartic acid (ASP-955) and glutamate (GLU-639), in the hPERK binding pocket. These residues further stabilize the ECH-hPERK complex by electrostatic interaction. The amino acids glutamate (GLU639), lysine (LYS622), aspartic acid (ASP955), arginine (ARG936), and asparagine (ASN942) also formed 6 hydrogen bonds with ECH. Thus, electrostatic interaction and hydrogen bonds played important roles in stabilizing the ECH-hPERK complex.

In summary, ECH can interact with mPERK and hPERK stably and tightly. The main forces of the interaction include hydrophobic interaction, electrostatic interaction, and hydrogen bonding. Therefore, ECH has shown great therapeutic potential and prospects for treating AD in human patients.

Taken together, these findings indicated that ECH repressed ERS through targeting PERK and inhibiting PERK/eIF2α activation, thus reducing the overproduction of Aβ and modulating F-actin remodeling in 2 × Tg-AD mice.




DISCUSSION

Almost all the approved treatments and strategies for AD are aimed at symptom management but not at targeting the underlying neuropathology (Yaffe, 2010; Kosik, 2015; Tsoi et al., 2016). As a consequence, exploring drugs to treat the pathogenesis of AD becomes imperative for AD treatment. The accumulation of Aβ triggers ERS, which plays a key role in the pathogenesis of AD (Hetz and Mollereau, 2014; Bell et al., 2016; Hughes and Mallucci, 2018). In the present study, we report for the first time that ECH ameliorated ERS via the PERK/eIF2α pathway, reversed memory impairments along with decreased Aβ accumulation and F-actin remodeling in 2 × Tg-AD mice. We demonstrated that ECH administration reduced Aβ production by inhibiting amyloidogenic APP processing and BACE1 translation without any effect on α- or γ-secretase. The inhibitory effect of ECH on BACE1 expression resulted from its inhibiting ERS-triggered PERK/eIF2α activation, which plays a pivotal role in neurodegeneration (Rozpedek et al., 2015; Hughes and Mallucci, 2018; Ohno, 2018), and eventually, ECH improved the spatial learning and memory of 2 × Tg-AD mice in the Morris water maze test. ECH promoted the interaction between PERK and FLNA and regulated F-actin remodeling. Furthermore, we confirmed that ECH bound to both mPERK and hPERK by MST assay and molecular docking analysis. This observation suggests that ECH has the great potential to be used in patients with AD. In summary, the present study provides compelling preclinical evidence that ECH can play a therapeutic role against a distinct target of AD pathogenesis and has great potential and broad prospects for the treatment of AD.

Cognitive and memory impairment is one of the most important clinical manifestations of AD, so we first tested the effect of ECH on cognitive impairment in 2 × Tg-AD mice. In this study, chronic administration of ECH (30 mg/kg b.w) daily for 6 months significantly ameliorated impairments in spatial memory performance of 2 × Tg-AD mice. This finding is consistent with other reports that ECH can ameliorate memory impairment (Shiao et al., 2017). Furthermore, as confirmed in the visible-platform test, the effect of ECH on cognitive improvement in 2 × Tg-AD mice excluded the possibility of affecting the physical and visual capacity of 2 × Tg-AD mice.

Aβ-enriched amyloid plaques are the major histopathological hallmarks of AD. Overproduction, oligomerization, and aggregation of Aβ peptides play critical and early roles in the pathogenesis of AD (Gandy, 2005; Masters and Selkoe, 2012). The oligomeric Aβ has multiple neurotoxic effects, including oxidative stress, calcium imbalance, membrane destruction, neuronal apoptosis, and ERS, etc. in the central nervous system (CNS) (Gandy, 2005; Masters and Selkoe, 2012). Therefore, the inhibition of Aβ production and accumulation is widely considered to be a potential disease-modifying approach for treating AD (Panza et al., 2019). Based on the ECH efficacy of mnemonic improvement, we hypothesized that ECH could decrease Aβ production, thereby inhibiting its neurotoxicity. To confirm this, we assessed the amyloid plaque load in both the hippocampus and cortex among the 4 groups; both of these regions are closely related to cognition. ECH reduced the plaque load in both the hippocampus and cortex in 2 × Tg-AD mice. The spatial memory ability is mainly related to the hippocampus of the brain (Yiu et al., 2011; Moodley et al., 2015). ECH can significantly reduce Aβ accumulation in the hippocampus in 2 × Tg-AD mice, which is consistent with the efficacy of ECH in improving the spatial memory of 2 × Tg-AD mice. Subsequently, we found that 6-month ECH treatment resulted in a dramatic reduction in total Aβ, Aβ42, and Aβ40 in the brains of 2 × Tg-AD mice, suggesting that ECH has a significant effect on reducing Aβ production in vivo. Although Aβ42 is more prone to form amyloid plaques, ECH has not shown any significant priority for the inhibition of Aβ40 or Aβ42 production. Considering that the generation of different lengths of Aβ (Aβ40 or Aβ42) depends on the γ-secretase cleavage of APP (Okochi et al., 2013), this result suggests that the target of ECH intervention in Aβ production may not be γ-secretase. Consistent with this, further experiments showed that ECH had no significant effect on the level of the catalytic subunit PS1 or the enzyme activity of γ-secretase.

BACE1 is a key rate-limiting enzyme for the production of Aβ in APP cleavage and processing. BACE1 is abnormally highly expressed in the brain tissue of AD patients or AD transgenic animals (Yang et al., 2003; Li et al., 2004; Kim et al., 2018). To further explore the effect of ECH on APP processing, we determined the effect of ECH on BACE1 transcription, translation, enzyme activity, and enzymatic cleavage. We found that ECH reduced the protein level and enzyme activity of BACE1 by inhibiting its translation without affecting its transcriptional process. This result suggested that ECH may regulate the expression of BACE1 in a post-transcriptional manner. Protein expression of BACE1 is increased in the brains of patients with AD and transgenic AD mice (Yang et al., 2003; Li et al., 2004; O’connor et al., 2008), and there is no corresponding increase in BACE1 gene transcription (Holsinger et al., 2002; Preece et al., 2003). As a consequence, posttranscriptionally decreasing BACE1 is considered a viable strategy for the treatment of AD (Ohno, 2006; Vassar and Kandalepas, 2011; Yan and Vassar, 2014). The present study showed that ECH could better intervene in the overexpression process of BACE1 to more effectively regulate APP processing. α-Secretase is another cleavage enzyme involved in APP processing and competes with BACE1 (Fahrenholz et al., 2000). Increasing α-secretase activity is also one of the options to inhibit Aβ production in AD treatment. We found that ECH had no significant effect on the level of the catalytic subunit ADAM10 or the enzyme activity of α-secretase. Increasing target activity is often less effective than inhibiting that of a certain target for disease treatment. APP has a variety of normal physiological functions, so inhibiting its synthesis will cause certain side effects (Dawkins and Small, 2014; Montagna et al., 2019). In the present study, no significant difference in the expression of the full-length APP was detected between ECH- and vehicle-treated 2 × Tg-AD mice, indicating that ECH did not decrease Aβ production by inhibiting the synthesis of APP. These findings exhibit one of the outstanding advantages of ECH as a treatment for AD.

Abnormal accumulation of unfolded or misfolded protein in the ER results in a disturbance in its internal environment, leading to ERS, activation of the UPR, and a series of signaling pathways associated therewith (Ron and Walter, 2007; Bell et al., 2016). The accumulation of Aβ, the main component of the important hallmark of AD, could trigger ERS and induce the UPR, which are early critical events in the course of AD (Abisambra et al., 2013; Ma et al., 2013; Devi and Ohno, 2014). Consistent with these results, we found obvious ER morphological abnormality and a marked increase in GRP78, an earlier ERS marker, in the brain of 2 × Tg-AD mice. ECH restored ER morphological abnormalities and decreased GRP78, suggesting it may rescue the ER homeostasis and thereby suppress the ERS. Dysregulated PERK/eIF2α signaling during the UPR is a common underlying mechanism of neurodegenerative diseases, including AD, PD, Huntington’s disease (HD), amyotrophic lateral sclerosis, etc. (Hetz and Mollereau, 2014; Bell et al., 2016; Ohno, 2018). PERK-dependent phosphorylation of eIF2α during the UPR is a protective mechanism that is capable of restoring protein homeostasis by rapid attenuation of further protein synthesis (Rozpedek et al., 2015; Hughes and Mallucci, 2018). However, in the case of chronic disease or severe stress conditions, such as AD, sustained phosphorylation of PERK and eIF2α can result in prolonged repression of global protein synthesis and persistent upregulation of BACE1 (Bell et al., 2016; Hughes and Mallucci, 2018). Meanwhile, the continuous upregulation of BACE1 further increases Aβ accumulation, leading to a more severe ERS, thus forming a vicious cycle that further contributes to neurodegenerative disorders and cognitive impairments (Figure 10). To elucidate the mechanisms by which ECH represses ERS and BACE1 translation, we assessed the effects of ECH on the activation of PERK and eIF2α. Consistent with many reports (Ma et al., 2013; Ma and Klann, 2014; Yang et al., 2016), our study showed that PERK and eIF2α were highly phosphorylated in the brains of 2 × Tg-AD mice, and long-term treatment of ECH dramatically decreased the phosphorylation of PERK and eIF2α, indicating that ECH inhibits ERS and the UPR by blocking PERK/eIF2α activation in vivo.
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FIGURE 10. Diagram illustrating the mechanism of ECH regulating F-actin remodeling and decreasing Aβ accumulation by depressing PERK phosphorylation. PERK phosphorylation inhibits the combination of PERK dimer and FLAN, thus accelerates F-actin accumulation, then interferes with the formation of ER-PM contacts. The perturbed ER-PM contacts further deteriorate ERS. During the ERS, PERK is activated by phosphorylation, which in turn activates eIF2α, resulting in the upregulation of BACE1 translation and increased production of Aβ, and excessive accumulation of Aβ leads to ERS. The above process forms a vicious cycle that causes cognitive impairment. ECH can prevent the phosphorylation of PERK and the subsequent F-actin accumulation and Aβ overproduction, thus blocking the vicious cycle and ameliorating the cognitive impairments in AD.


Upon ERS, PERK dimerized and combined with FLNA. Following the depletion of ER Ca2+ resulted from ERS, PERK-FLNA conjugate promotes the expansion of ER-PM juxtapositions by regulating F-actin remodeling and relocation (Van Vliet et al., 2017). ER-PM contact could refill ER-luminal Ca2+ and restore the balance of the cytosol and ER Ca2+, which is essential for restoring ER internal environment homeostasis and ameliorating ERS damages (Verfaillie et al., 2012; Van Vliet et al., 2017). Aβ induced sustained persistent ERS disturbs the interaction of PERK and FLNA. Aβ1–42 treated cells displayed obvious destruction of F-actin network and peripheral accumulation of F-actin, which in turn destroyed the formation of ER-PM contact. Given the role of ER-PM contact in ameliorating ERS injury, its reduction will further aggravate ERS, thus forming another vicious circle. Our data showed that ECH could regulate F-actin remodeling by inhibiting PERK phosphorylation, reverse the deterioration of ER-PM contact induced by Aβ, thus block the vicious circle mentioned above.

As revealed by many recent findings and the present study, the dysregulation of PERK/eIF2α is not only a detrimental downstream reaction caused by Aβ accumulation but also an important initial cause of the pathogenesis of AD (Ohno, 2014, 2018; Rozpedek et al., 2015; Bell et al., 2016; Hughes and Mallucci, 2018). As a consequence, PERK is a key hub capable of blocking the above vicious cycle (Ma and Klann, 2014; Rozpedek et al., 2015; Hughes and Mallucci, 2018; Ohno, 2018). First, dimerized PERK induced by ERS combined with FLNA. PERK-FLNA interaction promotes the formation of ER-PM contact, which in turn could recover ER inner homeostasis. Second, PERK can decrease the aberrant accumulation of Aβ and thereby suppress its neurotoxic damage. At last, PERK can repress sustained ERS and ameliorate ERS-induced neuronal impairment. In the present study, we found that ECH exerted an anti-AD effect in a “one stone/two birds” manner by targeting PERK. As shown in Figure 10, first, ECH significantly inhibited ERS by repressing the excessive and sustained activation of PERK/eIF2α, reduced the correlated ER structural abnormalities, and then ameliorated ERS-triggered neuronal degeneration. Second, ECH promoted F-actin remodeling and ER-PM contact formation by depressing the phosphorylation of PERK. Third, ECH decreased the accumulation of Aβ and the amyloid plaque load by inhibiting the translation of BACE1.

PERK is activated by autophosphorylation through dimerization (Devi and Ohno, 2014; Hughes and Mallucci, 2018). The above findings suggested that PERK may be the therapeutic target of ECH. What interested us was whether ECH could bind to mPERK. If so, we further speculated that ECH could bind hPERK and that ECH could be applied to human AD treatment. Consistent with the pharmacological efficacy of ECH shown in the present study, the MST assay and molecular docking analysis revealed that ECH stably bound both mPERK and hPERK, and the binding force included hydrophobic action, electrostatic action, and hydrogen bonding. Since the free energy of hPERK binding to ECH was lower than that of mPERK, ECH was more prone to combine with hPERK and exhibited great potential for human AD therapy.
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The dynamic organization of actin cytoskeleton meshworks relies on multiple actin-binding proteins endowed with distinct actin-remodeling activities. Filamin A is a large multi-domain scaffolding protein that cross-links actin filaments with orthogonal orientation in response to various stimuli. As such it plays key roles in the modulation of cell shape, cell motility, and differentiation throughout development and adult life. The essentiality and complexity of Filamin A is highlighted by mutations that lead to a variety of severe human disorders affecting multiple organs. One of the most conserved activity of Filamin A is to bridge the actin cytoskeleton to integrins, thereby maintaining the later in an inactive state. We here review the numerous mechanisms cells have developed to adjust Filamin A content and activity and focus on the function of Filamin A as a gatekeeper to integrin activation and associated adhesion and motility.
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INTRODUCTION

The filamin protein family is represented in nearly all Metazoa. Phylogenetically, the filamin genes diverge from a common single ancestral gene between chordate invertebrate and vertebrate lineages. Filamins comprise a N-terminal actin-binding domain (ABD) composed of two actin-binding calponin homology (CH) domains followed by immunoglobulin like repeats (IgFLN) of high sequence similarity (van der Flier and Sonnenberg, 2001). All C-terminal filamin repeats of filamins characterized so far have the property to homodimerize. The number of filamin repeats differs substantially in invertebrates but is almost constant in vertebrates (Light et al., 2012). The vertebrate genomes contain three filamins, Filamin A, B and C, with an intraspecies sequence identity of over 64% (Kesner et al., 2010). Filamins A and B are ubiquitously expressed, whereas Filamin C is expressed in smooth and striated muscles. Filamins A and B are localized to the cortex and stress fibers, whereas Filamin C is localized to the sarcomeric Z-line complex (van der Ven et al., 2000; Sheen et al., 2002). Disease-associated mutations and knockout mouse models suggest that Filamins A and B are critical for various aspects of skeletal, vasculature, cardio, and cerebral development (Fox et al., 1998; Sheen et al., 2002; Robertson et al., 2003; Krakow et al., 2004; Farrington-Rock et al., 2006, 2008; Feng et al., 2006; Hart et al., 2006; Lu et al., 2007; Zhou et al., 2007; Metais et al., 2018; Yamak et al., 2020), whereas Filamin C is essential for skeletal muscle and heart development (Goetsch et al., 2005; Vorgerd et al., 2005; Dalkilic et al., 2006; Duff et al., 2011; Zhou et al., 2020).



FILAMIN A, A HUB FOR MULTIPLE BINDING PARTNERS

Filamin A interacts with about a hundred binding-partners, many of which being involved in the regulation of signaling pathways converging toward actin cytoskeleton organization (Figure 1). Filamin A has a dual role in controlling the architecture and the mechanics of the actin cytoskeleton. Filamin A is an actin-binding and cross-linking protein whose primary function is to organize the actin cytoskeleton in orthogonal filament arrays (Nakamura et al., 2007). Importantly, the mechanic properties of this filamentous actin (F-actin) network is dependent on Filamin A concentration (Tseng et al., 2004; Gardel et al., 2006; Esue et al., 2009). At high Filamin A concentration, tighter F-actin bundles are observed and the F-actin network undergoes stress stiffening under applied forces (Schmoller et al., 2009). In contrast, at lower relative Filamin A cross-link concentrations, the F-actin cytoskeleton is more dynamic and can soften in response to stress (Tseng et al., 2004). Furthermore, the non-linear elasticity of the actin network is attributed to the flexibility of Filamin A (Kasza et al., 2009; Schmoller et al., 2009). Filamin A also localizes to points of intersection between stress fibers and cortical actin where it plays a role in the isotropic redistribution of applied forces to focal adhesions (Kumar et al., 2019). Three actin-binding sites (ABS) within the Filamin A ABD were recently identified (Figure 1; Iwamoto et al., 2018). The first one, ABS-N, located at the N-ter of the CH domain 1 contributes to F-actin binding while the two others, ABS2 and ABS2′, facilitate binding in the groove between adjacent actin subunits (Iwamoto et al., 2018). While the ABD is necessary and sufficient for F-actin binding (Razinia et al., 2011), a domain within a Filamin A fragment encompassing filamin repeats 9 to 15 is necessary for high avidity F-actin binding (Nakamura et al., 2007).
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FIGURE 1. Schematic representation of monomeric Filamin A illustrating its general structure and the binding location of partners involved in actin cytoskeleton organization and/or cell motility. Filamin A consists of an actin-binding domain (ABD) composed of two actin-binding calponin homology (CH) domains followed by Ig-like repeats (1–24). Two intervening calpain-sensitive hinge domains separate the 24 Ig-like repeats into two rod domains. The three ABS (ABS-N, ABS2, and ABS2′) are indicated. Partners involved in actin cytoskeleton organization and/or cell motility but with unknown Filamin A binding domain(s) (14-3-3, ELP1, FILIP1L, p190RhoGAP, and Lck) are not represented.


In mammals, the ABD of filamins is followed by 24 filamin repeats interrupted by two hinge regions often referred as rod 1 and 2, one between repeats 15 and 16 and another between repeats 23 and 24 (Figure 1). Filamin A domains can be divided into four subgroups (A, B, C, and D) based on amino acid similarities (Ithychanda et al., 2009b). Filamin A repeats of subgroup A (4, 9, 12, 17, 19, 21, and 23) interact with a set of biologically important ligands including platelet receptor glycoprotein Ibα (GPIbα) (Nakamura et al., 2006), migfilin (Lad et al., 2008; Ithychanda et al., 2009a, b), Cystic Fibrosis Transmembrane conductance Receptor (CFTR) (Smith et al., 2010), FilGAP (Nakamura et al., 2009), Pro-prion (Li et al., 2010), Ankyrin repeat containing protein with a SOCS box 2 alpha (ASB2α) (Lamsoul et al., 2011) and β chains of integrins (Kiema et al., 2006; Takala et al., 2008). All subgroup A Filamin A repeats and their binding partners have similar mode of interaction. Indeed, the CD face of Filamin A repeats represents a common interface for Filamin A-ligand interaction (Lad et al., 2007; Heikkinen et al., 2009). Interestingly, Filamin A repeats can also engage in intramolecular contacts (IgFLNa16-17, IgFLNa18-19, and IgFLNa20-21) that may become disrupted by binding of one of the repeats to the integrin β cytoplasmic tail or by mechanical forces (Lad et al., 2007; Heikkinen et al., 2009). Smoothelins A and B, as well as fimbacin can bind to the cryptic CD cleft of Filamin A repeat 21 exposed in mechanically activated Filamin A (Wang and Nakamura, 2019a, b). Filamin A can also interact with small GTPases of the Rho family, Rac, Rho, cdc42, and RalA (Ohta et al., 1999; Bellanger et al., 2000; Vadlamudi et al., 2002; Ueda et al., 2003) and with proteins upstream and downstream of the GTPases (Ohta et al., 2006; Nakamura et al., 2009) known to regulate cytoskeletal dynamics and cell protrusions. In addition, RhoA activity is downregulated through interactions between Filamin A and αIIbβ3 integrins and is critical to proplatelet formation (Donada et al., 2019).

Filamin A is also localized into the nucleus where it plays roles in DNA repair through interaction with BRCA1 and BRCA2 (Yue et al., 2009; Velkova et al., 2010), as well as transcription through interaction with transcription factors such as the androgen receptor (Loy et al., 2003; McGrath et al., 2013; Savoy et al., 2015), Smads (Sasaki et al., 2001) or PEBP2β/CBFβ (Yoshida et al., 2005). Filamin A also associates with the MKL1 transcriptional co-activator, stimulating the activity of the Serum Responsive Factor (SRF) transcription factor and cell migration (Kircher et al., 2015).

How Filamin A integrates the signals triggered by its multiple binding partners and whether such complex molecular interactions might be tuned differentially in different cell types remain key open questions. Nevertheless, the essentiality of Filamin A is highlighted by variants in the gene FLNA that lead to 10 distinct genetic syndromes affecting a wide diversity of organs (Wade et al., 2020). Importantly, pathogenic variants of FLNA could contribute to aberrant cytoskeletal regulation leading either to loss-of-function or gain-of function disorders. Indeed, variants are found in the two CH domains of the ABD, CHD1 and 2, in periventricular nodular heterotopia (PH) and otopalatodigital (OPD) syndromes type 1 and 2, respectively. Variants within CHD1 are likely to disrupt Filamin A interaction with actin (Iwamoto et al., 2018) whereas variants within CHD2 are likely to constitutively expose the CHD1 ABS to ligand (Clark et al., 2009). Interestingly, a mutation in FLNA in a male patient with PH and congenital intestinal pseudoobstruction potentiates αIIbβ3 integrin activation likely through less binding of mutant Filamin A to β3 integrin and facilitated recruitment of Talin by the β3 subunit (Berrou et al., 2017). The relationship between other FLNA pathogenic variants and Filamin A functions is less understood and remains to be investigated.



FILAMIN A, A NEGATIVE REGULATOR OF INTEGRINS

Because the filamin domains involved in binding actin and integrins have the highest content of ancestral residues of any domains (Kesner et al., 2010), integrins are considered among the most important interaction partners of filamins. Integrins are heterodimeric transmembrane receptors formed by α and β subunits. These are single spanning membrane proteins with a large extracellular ectodomain and a short intracellular cytoplasmic tail. Integrins mediate cell to extracellular matrix and cell to cell contacts and integrate external cues to the actin cytoskeleton and signaling pathways (Legate and Fassler, 2009; Humphries et al., 2019; Kechagia et al., 2019). Interactions between integrins and their extracellular ligands are tightly regulated thanks to integrin activators and integrin inhibitors. Importantly, switching integrins between inactive and active conformations is crucial for integrin functions (Bouvard et al., 2013). Integrin activation has largely been documented (Kim et al., 2011; Sun et al., 2019). This process is regulated via either extracellular ligands (outside-in activation) or intracellular binding partners (inside-out activation). Integrin-inactivating proteins such as integrin cytoplasmic domain-associated protein 1 (ICAP1), SHARPIN (SHANK-associated RH domain-interacting protein) and filamins are required for integrin inactivation in different settings (Calderwood et al., 2001; Bouvard et al., 2003; Rantala et al., 2011). The physiological relevance of integrin-inactivating proteins is crucial for integrin function as exemplified by the phenotypes of mice lacking integrin inactivators (Bouvard et al., 2013). Integrin inactivators either stabilize the inactive state of integrins or promote integrin deactivation during cyclical cell-adhesion processes such as migration. Indeed, a substantial proportion of cell surface integrins is in a resting state (Arjonen et al., 2012). Inactive integrins are in a closed conformation, in which the binding of both extracellular ligand and intracellular activators is repressed. In human, there are several integrin β subunits that bind filamins (Kiema et al., 2006; Ithychanda et al., 2009b).

Filamin A is a major gatekeeper to integrin activation. Since the discovery of Filamin A as a binding partner of the β2 integrin subunit 25-years ago (Sharma et al., 1995) and the first evidence that increased Filamin A-β2 integrin interactions restrict cell migration (Calderwood et al., 2001; Bouvard et al., 2003; Rantala et al., 2011), several modes of action of Filamin A as an integrin inactivator have been proposed. They depend on the identity of the integrin α and β chains or could be specific to only a subset of integrin αβ heterodimers. First, binding of Filamin A domains of subgroup A to the C terminus of the integrin β tail (β1, β2, β3, or β7) results in direct competition with talin binding by occupying an overlapping binding site (Kiema et al., 2006; Ithychanda et al., 2009b). Second, Filamin A forms a ternary complex engaging the cytoplasmic tails of both integrin αIIb and β3, thereby stabilizing the inner-membrane clasp and competing with talin recruitment to the β subunit cytoplasmic tail by binding both the C-terminal and membrane-proximal regions of the β3 tail (Liu et al., 2015). These two modes of action of Filamin A restrain the integrin in a resting state. Interestingly, domains within functionally important binding interfaces of both filamin repeats and integrin subunits have diverged in critical residues, indicating that filamin isoforms may bind and regulate integrin αβ heterodimers differentially. Indeed, Kesner et al. (2010) described the substitution in the β strand C of the filamin repeat 21, an ancestral Ser/Thr in Filamins B and C changed to an Ala at residue 2272 in Filamin A during the mammalian period. Furthermore, β1 and β7 integrins have ideally positioned hydrophobic amino acids to bind Filamin tighter than β2 and β3 integrins (Ithychanda et al., 2009b). Furthermore, some of the key residues in the αIIb subunit that are important for interaction with filamin via their side chains, are not conserved in all integrin α subunits, reinforcing the notion that filamins bind integrins differentially.

Because several Filamin A repeats can bind the cytoplasmic tails of β integrins and have the ability to clasp αIIb and β3 cytoplasmic tails, it seems plausible that they can bind simultaneously, and such interactions may promote clustering of inactive integrins (Ithychanda et al., 2009b; Liu et al., 2015). Although the biological significance of these Filamin A clutches remains to be establish, it is tempting to speculate that upon Filamin A removal, pre-clustered integrins would become engaged by multivalent ECM and thereby activated.



MULTIPLE REGULATORY MECHANISMS CONTROLING FILAMIN A ACTIVITIES AND LEVELS

Integrin activation can be achieved through the binding of proteins to Filamin A. Indeed, migfilin can bind Filamin A with a high affinity, uncoupling the Filamin A-integrin link, sequestering Filamin A away from the β integrin cytoplasmic tail and thus counteracting Filamin A-mediated integrin inactivation (Lad et al., 2008; Ithychanda et al., 2009a; Das et al., 2011). This allows the binding of integrin activators, talin and kindlins, to the β integrin cytoplasmic tail, leading to inside-out integrin activation (Tadokoro et al., 2003; Tu et al., 2003; Kiema et al., 2006; Wegener et al., 2007; Moser et al., 2008). Internally generated and externally imposed mechanical forces can also regulate Filamin A interaction with partners by triggering conformational changes that expose otherwise masked partner-binding site, thereby leading to integrin activation (Ehrlicher et al., 2011; Nakamura et al., 2014). Although evidence for the mechanosensing function of Filamin A in Drosophila oogenesis has been provided, its precise role in cell differentiation and morphogenesis in mammals is still lacking (Razinia et al., 2012; Huelsmann et al., 2016). Filamin A is also regulated by phosphorylation. Several kinases such as protein kinase C (Kawamoto and Hidaka, 1984), ribosomal S6 kinase (Ohta and Hartwig, 1996; Woo et al., 2004), p21-activated kinase 1 (PAK1) (Vadlamudi et al., 2002; Hammer et al., 2013), the cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (Jay et al., 2004), Akt (Li et al., 2015), mTOR2 (Chantaravisoot et al., 2015; Sato et al., 2016) and the serine/threonine kinase Ndr2 (Waldt et al., 2018) phosphorylate Filamin A on serine 2152. This phosphorylation event positively regulates cell migration (Woo et al., 2004; Hammer et al., 2013; Li et al., 2015; Sato et al., 2016). Activation of receptor tyrosine kinases was shown to trigger cell rounding and integrin inactivation via increased Filamin A phosphorylation (Vial and McKeown-Longo, 2012; Mai et al., 2014). In addition, G Protein-Coupled Receptors that directly bind Filamin A can also promote Filamin A phosphorylation (Tirupula et al., 2015). Filamin A phosphorylation by the cAMP-dependent protein kinase protects Filamin A against proteolysis by calpains (Chen and Stracher, 1989). Phosphorylation of β2 integrins impairs Filamin A binding, allowing the binding of the 14-3-3 protein to the β2 subunit and adhesion of Jurkat T cells to ICAM-1 (Takala et al., 2008).

Tuning the cellular concentration of Filamin A represents another level of regulation expected to impact integrin activation, although this has not been formally demonstrated yet (Figure 2). Filamins are regulated by proteolysis, which provides an irreversible regulatory mechanism for processes requiring Filamin removal. Filamin A is cleaved by calpain and caspase at the two hinge regions, producing a 170 kDa protein encompassing the ABD and Filamin A repeats 1 to 15 and a 110 kDa protein that is further cleaved to generate a 90 kDa fragment containing repeats 16 to 23 (Figure 1) (Gorlin et al., 1990; Browne et al., 2000). Filamins A and B are also regulated by proteasomal degradation which represents a fast, reversible, localized and selective regulatory mechanism that allows cells to acutely adapt or fine-tune cellular processes. Surprisingly, only few proteins linked to cytoskeleton dynamics, cell adhesion and migration have been shown to be regulated by this proteolysis pathway in non-muscle cells (Schaefer et al., 2012). Of interest, control of the cellular concentration of Filamins A through ubiquitin-mediated protein degradation represents a seminal example of proteasomal degradation of an actin-binding and -crosslinking protein. Using several molecular and cellular biology approaches, we and others demonstrated that the ASB2α E3 ubiquitin ligase (E3) triggers ubiquitylation and proteasomal degradation of Filamins A and B (Heuze et al., 2008; Burande et al., 2009; Lamsoul et al., 2013; Razinia et al., 2013; Sakane et al., 2013; Spinner et al., 2015; Metais et al., 2018). ASB2α is the specificity subunit of a multimeric E3 of the Cullin 5-RING Ligase family involved in the recruitment of proteins to be ubiquitylated (Lamsoul et al., 2016). By degrading Filamins A and B, ASB2α regulates cell spreading, adhesion and cell migration (Heuze et al., 2008; Baldassarre et al., 2009; Lamsoul et al., 2011, 2013; Spinner et al., 2015). Furthermore, our recent results support a model of cardiac cell differentiation that relies on a key role for ASB2α in remodeling the actin cytoskeleton through induced-degradation of Filamin A (Metais et al., 2018). Indeed, the timely controlled removal of Filamin A ensures critical functions in differentiating cardiac muscle cells suggesting that Filamin A degradation is necessary to modify the actin cytoskeleton organization and properties in order to build the sarcomere, and thus for heartbeats. In addition, the Filamin A interacting protein (FILIP) interacts with Filamin A and induces its degradation with impacts on the mode of neuron migration (Nagano et al., 2004; Sato and Nagano, 2005). More recently, Filamin A expression was shown to be regulated by a microRNA (miR) and a circular RNA (circRNA). Indeed, miR-486-3p can bind Filamin A 3′UTR thereby reducing Filamin A expression while circFLNA sponges miR-486-3p resulting in increased Filamin A expression (Wang et al., 2019). Important questions remain: Does Filamin A degradation directly translate into increased integrin activation? What is the biological relevance of variable Filamin A levels in different cell subtypes or at discrete stages of cell differentiation? Why cells have evolved so many different mechanisms to regulate Filamin A activity and to up-regulate or down-regulate Filamin A concentration?


[image: image]

FIGURE 2. Tuning the cellular concentration of Filamin A represents a pivotal mechanism to regulate integrin-dependent adhesion and migration. Regulation of integrins involves both integrin inhibitors (e.g., Filamin A) and integrin activators (e.g., Talin, Kindlin). Filamin A protein is regulated through cleavages by calpain and caspase, ASB2α-mediated degradation by the proteasome, and interaction with FILIP. Filamin A mRNA is down-regulated by miR-486-3p which is itself sponged by circFLNA. Created with BioRender.com.




FILAMIN A IN CELL ADHESION AND MIGRATION

The first evidence for a role of Filamin A in cell motility was provided in 1992 (Cunningham et al., 1992). Indeed, at the cellular level, Filamin A deficiency in a human melanoma cell line promotes plasma membrane blebbing and causes loss of motility. The role of Filamin A in migration was further supported by the finding that nonsense mutations in the Filamin A gene are associated with the neuronal migration disorder periventricular heterotopia (Fox et al., 1998). However, the role of Filamin A in cell motility is more complex. By providing a physical link between integrins and the actin cytoskeleton and by negatively regulating integrins, Filamin A exerts key roles in regulating positively or negatively cell adhesion and migration according to cell types and/or conditions. Furthermore, Filamin A binding partners may vary according to cell types and/or in response to microenvironment cues such as extracellular matrix components, chemokines or shear flow. This is likely to influence cell adhesion and migration. While the loss of Filamins A or B alone has no effect on cell motility, loss of both filamins following knockdown/knockout or ASB2α-mediated degradation have highlighted the role of filamins in different aspects of cell motility (Heuze et al., 2008; Baldassarre et al., 2009; Lynch et al., 2011; Lamsoul et al., 2013; Spinner et al., 2015). It is tempting to speculate that the functions of Filamin A in many cell types may have been missed in assays using Filamin A single knockout/knockdown cells because of compensation by Filamin B (Sheen et al., 2002; Baldassarre et al., 2009). Filamin-depleted cells exhibit impaired cell spreading (Heuze et al., 2008; Kim et al., 2008; Baldassarre et al., 2009; Lynch et al., 2011). In addition, increased adhesion of Filamin A-depleted neutrophils has been described (Sun et al., 2013). Furthermore, Filamin A knockdown or ASB2α-mediated Filamin A degradation enhances adhesion of myeloid leukemia cells to fibronectin (Lamsoul et al., 2011). In contrast, Roth et al. found that Filamin A was dispensable for adhesion of differentiated HL-60 cells (Roth et al., 2017). However, Filamin A depleted primary murine neutrophils display increased spreading on and higher adhesion in shear-free conditions to β2 integrin ligands, indicating that Filamin A is a negative regulator of β2 integrin adhesion in neutrophils (Uotila et al., 2017). Although Filamin A negatively regulates β2 integrin adhesion in Jurkat T cells, its absence leads to a reduction of primary T cell adhesion to integrin ligands under conditions of shear flow and to a reduced trafficking into lymph nodes and sites of inflammation (Moser et al., 2009; Savinko et al., 2018). Interestingly, Filamin A and vimentin can cooperate to regulate integrin-mediated cell spreading and cell adhesion (Kim et al., 2010a, b).

Filamins A and B depleted cells exhibit impaired initiation of migration of fibrosarcoma HT1080 cells (Baldassarre et al., 2009). Filamin A silencing increases cell adhesion and decreased migration of the bronchial carcinoid H727 cells (Vitali et al., 2017). In contrast, silencing of Filamin A inhibits Snail-induced adhesion and increases migration of colon adenocarcinoma HT29 cells (Wieczorek et al., 2017). In accordance with these results, Filamin A is required to mediate SST2 effects on adhesion and migration of the pancreatic endocrine QGP1 cells (Vitali et al., 2016). Filamin A also positively regulates directional migration of bone osteosarcoma U-2 OS cells and mouse embryonic fibroblasts by suppressing Rac 1 activity downstream of β1 integrins (Jacquemet et al., 2013). Knockdown of Filamins A and B in fibrosarcoma cells was also shown to augment matrix metalloproteinase activity increasing their invasive potential (Baldassarre et al., 2012). These results are in agreement with the fact that ASB2α regulates immature dendritic cell migration by promoting extracellular matrix proteolysis (Lamsoul et al., 2013). Conversely, Filamin A stabilizes podosomes in macrophages and is required for their mesenchymal but not for their amoeboid migration (Guiet et al., 2012). In addition, in the absence of Filamin A, macrophages display impaired migration associated with reduced atherosclerosis in mice (Bandaru et al., 2019). Several evidences indicate that Filamin A regulates the intracellular trafficking of β1 integrins (Meyer et al., 1998; Kim et al., 2010b). This is likely to affect β1 integrin-dependent processes. On the basis of these scattered observations, it is clear that we still miss today a unified view of the roles of Filamin A in cell adhesion and migration.



CONCLUDING REMARKS

As reviewed here, the timely proteolysis and/or removal of Filamin A have emerged as pivotal mechanisms to regulate its cellular concentration and integrin-dependent adhesion and migration. When integrating the knowledge gained about the function of Filamin A beyond its integrin regulation role, one is tempted to speculate that this key protein at the interface between multiple receptors, signaling pathways and the actin cytoskeleton exerts different and specific cellular functions in response to a wide-range of environmental cues. As exemplified by the wide spectrum of developmental malformations and diseases caused by mutations in its gene, Filamin A indeed stands out as a major molecular player in different biological processes. In this context, it will be particularly interesting to further investigate how the multiple mechanisms able to adjust Filamin A concentration and activity contribute to its function in different cellular and physiological settings.
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Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.
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INTRODUCTION

Flightless I (Flii) is an actin-binding protein that has been implicated in a wide range of biological processes, from those critical to ovulation and development, through to wound healing and cancer progression. Originally Flii was characterized in Drosophila, where mutations in the gelsolin domain caused disordered flight muscle myofibrils resulting in an inability to fly, as well as abnormal gastrulation during embryogenesis (Campbell et al., 1993; de Couet et al., 1995; Straub et al., 1996). Flii has since been shown to be a highly conserved protein in mammals with 95% homology observed between mouse and human and high expression in a wide range of human tissues with importance to mammalian health (Campbell et al., 1993, 1997; Nag et al., 2013). The complete loss of Flii has been shown to be embryonically lethal in mice, with failure of egg cylinder formation prior to gastrulation (Campbell et al., 2002) and human Flii maps within the critical region of chromosome 17 where contiguous-gene-deletion gives rise to the Smith-Magenis syndrome, the clinical features of which include short stature, brachydactyly, developmental delay, dysmorphic features, sleep disturbances, and behavioral problems (Chen et al., 1995). Flii has been found to have functions in many cellular processes that are importance for physiological processes including wound repair, cancer progression and inflammation. This review describes the current knowledge about this member of the gelsolin family of actin-remodeling proteins and describes its many important functions across a range of pathologies.


The Actin Binding Protein Flii

Flii is a member of the gelsolin family of actin-binding proteins and consists of the classic 6-fold gelsolin repeat (GLD) at the C-terminal, in addition to 16 tandem leucine-rich repeats (LRR) at the N-terminus (Figure 1; Liu and Yin, 1998). Flii only has two of the six Ca2+ binding sites found in gelsolin that facilitate conformational change but is predicted to still exist in transition between a compact conformation and a more open form that can interact with actin (Nag et al., 2013). Flii binds actin via the gelsolin domain (Liu and Yin, 1998), localizing to actin-rich regions during embryogenesis (Davy et al., 2000) and with beta-tubulin- and actin-based structures at the periphery of cells that are stimulated to migrate (Davy et al., 2001). In mammalian cells, Flii binds both globular (G)- and filamentous (F)-actin, and has been shown to inhibit polymerization and cap the barbed end of F-actin, but it does not possess actin severing ability (Mohammad et al., 2012). More than simply being a member of the gelsolin family of actin-binding proteins, the additional N-terminal LRR marks Flii as unique amongst the gelsolin family, endowing it with the ability to interact with other proteins or lipids for molecular recognition (Liu and Yin, 1998). A number of binding partners have been revealed that interact with various domains within Flii, implicating roles in a wide range of cellular processes (summarized in Table 1). It may be that Flii effects are both cell specific, and dependent upon the availability of specific binding partners within each cell.
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FIGURE 1. Structure of Flii. Schematic diagram of Flii protein including amino acid (aa) locations of the N-terminal Leucine Rich Repeats and C-terminal Gelsolin-like Domains, phosphorylation (star) and cleavage (lightning bolt) sites. Predicted nuclear localization (left arrow) and export (right arrow) signals and Poly-Ala (white triangle) and Glu-rich (black triangle) regions are also included.



TABLE 1. Flightless Binding Partners.

[image: Table 1]Flii is involved in the assembly of actin into filaments and is required for Diaphanous-related formins (DRF)-induced actin assembly (Figure 2; Higashi et al., 2010). Binding directly to DRFs, Disheveled associated activator of morphogenesis 1 (Daam1) and mammalian Diaphanous homolog 1 (mDia1) at the diaphanous autoinhibitory domain (DAD) Segment in the Carboxyl-terminal Region through its gelsolin 4–6 region, Flii enhances the intrinsic ability of DRF FH1-FH2 domains to assemble linear actin filaments (Higashi et al., 2010). Flii also promotes Rho-induced DRF actin assembly, by competing with the binding of the DRF amino-terminal diaphanous inhibitory domain (DID) domain to the DAD segment in the presence of active GTP-bound Rho, further disrupting intramolecular auto-inhibition that would normally restrain the actin assembly activity of DRF (Higashi et al., 2010). The transmission of HIV from dendritic cells to T-cells through cell-cell contact, relies upon Flii for sufficient formation of filopodial extensions by another DRF, Diaphanous 2 (Diaph2) (Shrivastava et al., 2015). When Flii is induced to bind with Roundabout 1 receptor (Robo-1), its ability to promote Diaph2 filopodia formation is perturbed and transmission of virus is reduced (Shrivastava et al., 2015). It is speculated that Flii may further support DRF actin assembly by holding the preformed F-actin or by recruiting globular actin (Goshima et al., 1999; Higashi et al., 2010). Thus, it appears that Flii may affect cellular migration by regulating the rearrangement of the actin skeleton. Indeed, Flii has been reported to have an inhibitory effect upon migration in skin fibroblasts, keratinocytes and bronchial epithelial cells (Cowin et al., 2007; Kopecki et al., 2009; Mohammad et al., 2012). Skin fibroblasts and keratinocytes isolated from mice with reduced Flii expression migrate faster following scratch wounding in vitro, whilst scratch wound closure is significantly delayed in cells from Flii overexpressing mice (Cowin et al., 2007; Kopecki et al., 2009). Similarly, Flii knockdown in human and mouse fibroblasts, or overexpression in mouse fibroblasts results in increased and decreased migration, respectively (Cowin et al., 2007; Mohammad et al., 2012). An inhibitory effect of Flii has also been reported in human bronchial epithelial cells, where Flii knockdown stimulates migration through transwells in vitro, whereas Flii overexpression inhibits this ability (Wang et al., 2017). In contrast, Marei et al., reported that in both NIH3T3 mouse embryonic fibroblasts and CHL1 human melanoma cells, Flii knockdown using two different siRNAs results in a decrease in the ability of cells to migrate in an Oris cell exclusion migration assay (Marei et al., 2016). In this study, loss of Flii was also associated with a decrease in accumulated distance, cell displacement and speed (but not directionality) using single cell tracking following scratch wounding (Marei et al., 2016). Likewise, siRNA knockdown of Flii in cells isolated from tendons inhibits scratch wound closure (Jackson et al., 2020b). The contradictory actions of Flii upon migration in different cell types is clearly demonstrated by Jackson et al who show that while fibroblasts isolated from mice with reduced levels of Flii show enhanced migration, tenocytes isolated from these same mice have significantly inhibited migration, and overexpression of Flii enhances their migration (Jackson et al., 2020a).
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FIGURE 2. Flii Regulation of DRF-Mediated Actin Assembly. Binding of the diaphanous autoinhibitory domain (DAD) to the diaphanous inhibitory domain (DID) elements of Diaphanous-related formins (DRF) results in autoinhibition of the functional domains. Rho binding partially disrupts the DID-DAD interaction. The dissociation of the DID-DAD interaction is enhanced by Flii GLD bound to the DAD segment, which allows for activation of the DRF and filamentous actin (F-actin) assembly and the formation of cell extensions.




Flii, Focal Adhesions and Cell Migration

Cell migration is tightly regulated by Rho GTPases, particularly Rho, Rac and Cdc42, which direct the polymerization, and depolymerisation of actin to dynamically rearrange the cytoskeleton to facilitate movement (Ridley, 2015). Of particular importance is the efficient turnover of adhesion sites to facilitate movement (Bach et al., 2009). Integrin receptor signaling initiates actin polymerisation and the formation of short lived cell-matrix adhesions termed focal complexes, localized under lamellipodia (Berrier and Yamada, 2007). A proportion of these focal complexes will develop into elongated focal adhesions, which are associated with contractile stress fibers and provide the force required to facilitate locomotion of the cell (Berrier and Yamada, 2007; Bach et al., 2009). A number of these focal adhesion can in turn transform into fibrillary adhesions that interact with the extracellular matrix to modify its structure and rigidity (Arnaout et al., 2007). Regulation of focal adhesion protein phosphorylation, such as paxillin by protein kinases including Src, dictates the regulation of focal adhesion turnover (Goetz, 2009; Huveneers and Danen, 2009).

Ras is a member of the Rho family of small GTPases which upon activation by exchange of GDP for GTP, in turn activates Phosphoinositide 3-Kinases (PI3K) to couple extracellular signals to actin polymerization via Rac1 (Olson and Marais, 2000). Cytoskeletal regulatory proteins containing LRR sequences similar to the Flii LRR, such as Rsp-1, were known to regulate Ras signal transduction and as such Flii was also predicted to regulate Ras signaling (Claudianos and Campbell, 1995). Flii was subsequently found to interact with the proline-rich sites of active R-Ras (but not K-Ras, H-Ras, or N-Ras) in mouse cells (Arora et al., 2018) as well as within focal adhesion fractions (Mohammad et al., 2012). It appears that Flii plays a central role in facilitating cell extension in the early phases of migration, by recruiting R-Ras to adhesion sites in spreading cells and acting as an adaptor protein to bring together R-Ras and GTPase-activating protein SH3 domain-binding protein (G3BP1) (Arora et al., 2018). The LRR of Flii binds R-Ras, the Ras GTPase activating protein (Ras GAP) and the C-terminus of G3BP1, which in turn can bind R-Ras via its C-terminus and via its N-terminus to Ras GAP, activating Ras to induce Rac1-mediated cell extension formation (Arora et al., 2018).

Rac1 is a primary mediator of the assembly of focal complexes at the leading edge of cells to facilitate lamellipodia formation and cellular migration (Rottner et al., 1999). Depending upon the specific guanine nucleotide exchange factor (GEF) which activates Rac1, different actin cytoskeletal arrangements are made which give rise to contrasting migratory phenotypes. Activation by GEP Tiam1 results in an anti-migratory phenotype with increased actin localization at cell–cell contacts, membrane ruffling and aggregation of NIH3T3 cells, whereas migration is dependent upon GEF P-Rex1 activation with cells exhibiting an elongated morphology and the formation of thin membrane protrusions rich in polymerized actin (Marei et al., 2016). In migrating CHL1 cells both P-Rex1 and Flii co-localize at the leading edge together with actin (Marei et al., 2016). Flii in fact binds preferentially to active Rac1 in human embryonic kidney (HEK293T) cells and also to its activator P-Rex1 (Marei et al., 2016). Migration occurs when myosin, an ATPase motor protein moves along actin filaments to translate chemical energy from ATP into mechanical force (Lodish et al., 2000). The binding of the Flii LRR to Rac1 is enhanced by P-Rex binding to Flii GLD, which in turn increases the phosphorylation of myosin light chain (pMLC) and activation of myosin II to mediate cell contractility and migration (Marei et al., 2016). Thus, Flii can act as a Rac1 effector (Figure 3) to mediate RhoA-ROCK-independent myosin II activation and stimulate migration (Marei et al., 2016).
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FIGURE 3. Flii regulates Rac-1 mediated migration. Migration relies upon the maturation of short-lived cell-extra cellular matrix (ECM) adhesions termed focal complexes (FC) into elongated focal adhesions (FA), associated with contractile stress fibers of filamentous actin (F-actin) which provide the force required align collagen and facilitate locomotion of the cell. Flii recruits R-Ras adhesion sites. The LRR of Flii binds R-Ras, the Ras GTPase activating protein (Ras GAP) and the C-terminus of G3BP1, which in turn can binds R-Ras via its C-terminus and via its N-terminus to Ras GAP, activating Ras to induce Rac1-mediated cell extension formation. Flii also activates Rac-1 via pRex to form filopodia and facilitate migration.


While Flii plays a very clear role in facilitating focal adhesion formation, it does not appear that more Flii will necessarily equate to more migration. Indeed, adhesion is impaired in both fibroblasts and keratinocytes isolated from Flii overexpressing mice grown on fibronectin, laminin and collagen I and fibroblast morphology is altered with impaired spreading and reduced filopodia-like processes (Kopecki et al., 2009; Arora et al., 2015). Instead of forming focal adhesions only at the leading edge of motile cells, Flii overexpressing fibroblasts exhibit significantly increased levels of total F-actin, with increased numbers and size of focal adhesions and more prominent ventral stress fiber formation linking the adhesion sites across the periphery (Kopecki et al., 2011b). Furthermore, these adhesion sites appear to be converted into more stable focal complexes, which do not appear to readily turn over, due to reduced paxillin phosphorylation and increased α-actinin expression (Kopecki et al., 2011b). While no difference in the levels of active RhoA is observed in Flii overexpressing fibroblasts, there is a significant reduction in the levels of activated Rac1 and Cdc42 (Kopecki et al., 2011b). Mohammad et al further found that Flii knockdown results in the reduced formation of focal adhesions containing vinculin and activated β1 integrins, but elevated incorporation of G-actin into nascent filaments at focal adhesions (Mohammad et al., 2012).

While Flii does not directly bind integrin β1, β4, or hemidesmosome component tetraspanin CD151 in scratch wounded keratinocytes, it does bind focal contact proteins talin, paxillin, and vinculin, which are important proteins which link the integrin receptors to the actin cytoskeleton (Critchley et al., 1999; Kopecki et al., 2009). It appears that Flii may impact upon focal adhesion turnover, in part through its regulation of paxillin phosphorylation (Kopecki et al., 2011b). Flii overexpressing fibroblasts also have a significantly reduced ratio of activated p130Cas, with decreased expression of Src tyrosine kinase, both known to be involved in the Src mediated activation of Rac1 and Cdc42, phosphorylation of paxillin and subsequent membrane protrusion (Huveneers and Danen, 2009; Kopecki et al., 2011b). Taken together, these studies indicate that the effect of Flii upon migration is at least in part, due to its role in regulating focal adhesion maturation.

The maturation of focal adhesions into contractile fibrillary adhesions enables cells to modify the structure and rigidity of the surrounding extracellular matrix (Arnaout et al., 2007). At collagen adhesion sites, Flii associates with non-muscle myosin IIA (NMMIIA), a regulator of adhesion, polarity, and migration of non-muscle cells which is required for maturation of adhesions and the generation of contractile forces on collagen substrates (Alexandrova et al., 2008; Choi et al., 2008; Arora et al., 2015). The leading edge of extensions in cells spreading on collagen are enriched with TRPV4 channels leading to increased localized Ca2+ fluxes, which are required for the association of Flii with NMMIIA (Arora et al., 2015). Moreover, the LRR domain of Flii binds to Ras GTPase-activating-like protein (IQGAP1) to facilitate interaction with cdc42 and R-Ras to first form short cell extension (via cdc42), and then elongate these extensions (via R-Ras) responsible for collagen fibril compaction and alignment (Arora et al., 2020). Together with NMMIIA, Flii appears to promote the formation of cell extensions and collagen compaction (Arora et al., 2017). Flii-overexpressing fibroblasts form more elongated protrusions, penetrating further into the pores of collagen-coated membranes. The cells also remodel the surrounding collagen into more strongly compacted collagen fibrils, as well as displaying an increased uptake and degradation of exogenous collagen (Arora et al., 2015). Despite this apparent role in extracellular matrix remodeling, fibroblasts isolated from mice with altered levels of Flii do not exhibit differences in their ability to contract collagen gels in vitro (Kopecki et al., 2011b).

The process of cell migration is also dependent upon efficient disassembly of hemidesmosomes followed by the rapid formation of new and stable adhesions sites (Jones et al., 1998). Hemidesmosome formation is impaired in Flii overexpressing mice (Kopecki et al., 2009). In addition to an overall reduction in the number of hemidesmosomes, those present also have fewer sub-basal dense plates and shorter adhesion sites (Kopecki et al., 2009). Additionally, the basement membrane within the skin of Flii overexpressing mice have sparse tonofilaments and a decreased network of anchoring fibrils (Kopecki et al., 2009). Reducing Flii in heterozygous knockout mice, significantly increases CD151 and the basement membrane component laminin, as well as increases the level of integrin β4 chains in response to wounding (Kopecki et al., 2009). While integrin α6 is initially decreased in day 3 wounds, it is elevated during the later stages of healing in Flii heterozygous mice (Kopecki et al., 2009). The combination of integrin α6 and β4 is required for stable hemidesmosome formation (Dogic et al., 1998; Jones et al., 1998; Hintermann and Quaranta, 2004) and suggests that decreasing Flii expression can promote the stabilization of hemidesmosomes.

Distinct from the receptor-mediated pathways involving Rho, Rac and Cdc42, Flii also regulates migration through binding to the p30 domain of Caspase-11 via both its LRR and GLD where it localizes to the F-actin rich leading edge (Li et al., 2008). Its interaction with caspase-11 has no effect on caspase-11 activity (Li et al., 2008) which can regulate actin dynamics by actin depolymerisation to facilitate immune cell migration (Li et al., 2007). Caspase-11 binds to actin interacting protein 1 (Aip1), to promote the activation of cofilin by Aip1, and stimulates cofilin-mediated actin depolymerisation (Li et al., 2007). Moreover, Flii interacts with Ca2+/calmodulin (CaM)-dependent protein kinase type II (CaMK-II), which itself co-localizes with the actin cytoskeleton and influences cytoskeletal and focal adhesion dynamics to influence cell motility through dephosphorylation of focal adhesion kinase and paxillin (O’Leary et al., 2006; Easley et al., 2008). Regardless of the precise nature of the interaction it is clear that Flii acts as a key regulator of a number of pathways that influence cytoskeletal arrangement.

These cytoskeletal interactions exhibited by Flii are of critical importance in C. elegans, where Flii regulates the cytokinesis of somatic cells and appears essential for cell division, acting together with Ras to control the development of germline cells and interacts with the phosphoinositol-signaling pathway in the regulation of ovulation (Deng et al., 2007; Lu et al., 2008). Flii may also play a role in coordination of mammalian ovulation, as Flii has been shown to interact with the imitation switch (ISWI) ATPase homolog SNF2L that is expressed in mouse ovary granulosa cells (Pepin et al., 2013). SNF2L expression is required for normal follicle maturation and differentiation in luteal cells (Lazzaro et al., 2006) and appears to regulate fibrinogen-like 2 (Fgl2) expression in differentiating granulosa cells (Pepin et al., 2013). It may be that Flii interacts with SNF2L to regulate folliculogenesis in mammals and therefore play a role in ovulation in mammals. Whilst C. elegans Flii associates directly with Ras (Goshima et al., 1999), and colocalisation of Flii with both Ras and Rho has been observed at actin arcs, membrane ruffles and at the leading edge of motile mouse fibroblasts (Davy et al., 2001), the LRR of mammalian Flii does not directly bind to Ras or other small G proteins, such as Rac2, RhoA, or CDC42 in yeast-two hybrid or pull down assays (Liu and Yin, 1998). Nevertheless, Flii appears to play an important role in linking the structure of the cytoskeletal to transcriptional regulation (Lee et al., 2004).

Binding of Flii to the coactivator-associated arginine methyltransferase 1 (CARM1) occurs via both the N-terminal LRR domain and the C-terminal GLD (Lee et al., 2004). It also binds the p160 coactivator glucocorticoid receptor-interacting protein 1 (GRIP1- also known as steroid receptor coactivator-2 SRC-2) via the LRR domain (Archer et al., 2004; Lee et al., 2004). Flii and CARM1 act synergistically as secondary coactivators in the presence of the GRIP1/SRC-2 to facilitate histone modification and enhance ER mediated transcription (Lee et al., 2004). A schematic representation of the role of Flii as a NR co-activator can be found in Figure 4. Although not necessary for the interaction of Flii and ER coactivator GRIP1/SRC-2 complex, in order to function fully as an ER co-activator, Flii must first be phosphorylated at residues Ser436 and Thr818 by cytokine-independent survival kinase (CISK), a downstream effector of the PI 3-kinase, a pathway that is essential for the survival and proliferation of mammalian cells (Xu et al., 2009; Mendoza et al., 2011). Flii LRR binding to GR not only activates GR-mediated transcription (Jin et al., 2017), but also regulates GR occupancy at the promoter or the enhancer regions of ERα target genes, resulting in the loss of ERα from these regions in response to E2 and Dex treatment, thus, contributing to GR-mediated repression of ERα transcriptional activity (Yang and Jeong, 2019).
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FIGURE 4. Flii as a Nuclear Receptor Co-Activator. Flii associates with nuclear receptors (NR) via the leucine rich repeat (LRR), the gelsolin domain (GLD) or both, in response to hormone (h) binding to NR. Flii (blue) facilitates chromatin remodeling by binding to key components of the SWI/SNF chromatin remodeling complex - actin and BAF53. It also brings together the p160 coactivator GRIP1 via the LRR domain and CARM1 via both the LRR and GLD to facilitate histone modification by acetylating CBP/p300 (bound to GRIP1) and methylating CARM1. Together these actions, allow Flii to enhance transcription by allowing for RNA Polymerase II (RNA Pol II) to bind to the exposed promotor region of the target genes.


While Flii associates with the cytoskeleton and is co-localized with actin-based structures in motile mouse fibroblasts, it can translocate to the nucleus upon hormone stimulation or during periods of cell stress and gradually accumulates in the nucleus as cells approach confluence (Davy et al., 2001; Adams et al., 2008). While it is currently unclear whether the predicted nuclear localization (1035KRKFIIHRGKRK1046) and export (150LTDLLYLDL158) signals are functional (Gettemans et al., 2005), it is clear that Flii can be found both within the nucleus, or within the cytoplasm either associated the membrane/cystosol or the cytoskeleton (Davy et al., 2001). The translocation of Flii appears to be a gradual process when stimulated by serum starvation or where CaMK-II is inhibited. Under these conditions, nuclear accumulation of Flii appears to take 8–10 h, while nuclear export is somewhat faster, requiring 3-6 hours following CaMK-II activation (Seward et al., 2008). While Flii is predominantly observed within the cytosol of unwounded fibroblasts, within 30 mins of scratch wounding, it can be found within the nucleus and in the perinuclear region (Chan et al., 2014). It is interesting to note that translocation of Flii from the cytoplasm to the nucleus upon wounding is observed in fibroblasts, but not keratinocytes (Cowin et al., 2007), pointing to the complicated nature of Flii actions and its dependence upon specific cellular conditions.



Flii and Transcriptional Regulation

More than simply facilitating cytoskeletal rearrangements, Flii has other important roles in the regulation of gene transcription within the nucleus. Flii interacts with nuclear hormone receptors including the androgen receptor (AR), estrogen receptor (ER), thyroid receptor (TR) and glucocorticoid receptor (GR) to regulate a number of cellular processes including proliferation, differentiation, apoptosis, and migration (Archer et al., 2004; Jin et al., 2017). Via its LRR, Flii associates with both ER and TR in a hormone-independent fashion (Gettemans et al., 2005). However, the expression of Flii in skin fibroblasts and keratinocytes is significantly enhanced with the addition of increasing concentrations of β-estradiol (Adams et al., 2008) and its occupancy of the promoter regions of ER target genes is increased in a hormone dependent manner (Lee et al., 2004; Jeong et al., 2009). Thus Flii binding to the ERα is enhanced in an estrogen-dependent manner, leading to enhanced transcription of estrogen responsive genes including trefoil factor family 1 (TFF1, also known as Ps2), growth regulation by estrogen in breast cancer 1 (GREB1), myelocytomatosis viral oncogene (Myc) and Cathepsin D (Jeong et al., 2009; Jeong, 2014). Flii can also bind the AR at the AR-ligand binding domain (residues 624–919) by both the LRR (residues 1–494) and residues 495–822 of the GLD, but not with residues 825–1268 (Wang et al., 2016). The recruitment of Flii to the promotor regions of target genes appears to be gene specific as, while Flii is required for TFF1/Ps2 expression, it is not required for ER-induced expression of the progesterone receptor (PgR), nor is it recruited to the promotor region of this gene (Won Jeong et al., 2012). Flii also forms a complex with AR in response to the AR ligand, competing with ligand binding to AR (Wang et al., 2016). In the presence of NCor and SMRT, known corepressors of AR, the interaction between Flii and AR is enhanced such that Flii inhibits AR transactivation which results in reduced AR nuclear localisation and repression of AR-dependent signaling (Wang et al., 2016).

Flii binds not only to actin in its globular and filamentous forms, but also to actin related proteins including Brg- or Brm-associated factor 53 (BAF53) (Goshima et al., 1999; Lee et al., 2004). Both actin and BAF53 are key components of the SWI/SNF chromatin remodeling complex, required for the initiation of transcription of nuclear receptor target genes. For transcription to occur, a SWI/SNF complex incorporating two molecules of actin, BAF53, or one of each must first be formed at the promoter site (Archer et al., 2005). Flii is required for the maintenance of optimal chromatin configuration at the enhancers of estrogen target genes, to facilitate binding of RNA polymerase II to the promotor region of the target gene (Jeong, 2014). In the case of ERα-mediated transcription, Flii binding to the ERα and BAF53 via its C-terminal GLD, recruits the SWI/SNF ATP-dependent chromatin remodeling complex to the promotor region of estrogen receptor target genes (Jeong et al., 2009). Flii in association with BAF53 is also required for the early recruitment of BRG1 to the promotor regions or estrogen responsive genes TFF1/pS2 and GREB1, ahead of ER recruitment and efficient expression of estrogen target genes (Jeong et al., 2009).

Flii regulates transcription of target genes downstream of other non-hormone dependent nuclear receptors, including those which regulate cell differentiation as well as glucose and lipid metabolism. Flii interacts with ISWI chromatin-remodeling complex through its association with SNF2L to regulate transcription of fibrinogen-like 2 (Fgl2) expression in differentiating granulosa cells (Pepin et al., 2013). Flii also acts independently of ERα-mediated gene regulation to facilitate chromatin recruitment and RNA Polymerase II residency to regulate transcription of SENP3-responsive homeobox genes, DLX3, HOXA9, HOXB3, MEIS1, and MEOX1 required for human osteogenic differentiation (Nayak et al., 2017). Here, Flii associates with both SENP3 and components of MLL1/2 methyltransferase complex including RbBP5, menin, WDR5 and the catalytic core subunits MLL1 and MLL2 (Nayak et al., 2017). The presence or absence of Flii does not affect the association of RbBP5, MLL1, or MLL2 with the DLX3 gene, rather Flii is required for the recruitment of SENP3 to the promotor region and exon 3 of DLX3 facilitating mutual association with chromatin (Nayak et al., 2017).

The dual action of Flii in facilitating the initiation of transcription through chromatin remodeling and co-activator recruitment positions Flii as a key regulator of nuclear-receptor transcription. However, it may be that the widespread impacts of Flii upon cellular processes may be due to the ability of Flii to regulate nuclear transport. Flii interacts with the nuclear envelop associating proteins Importin β and Nup88 via the LRR domain (Liao et al., 2015). Both of these proteins are involved in nucleocytoplasmic transport of mRNA, protein and the 60S ribosomal complex, Importin β as a nuclear transport receptor and Nup88 that is a component of the nuclear pore complex (Strom and Weis, 2001; Bernad et al., 2006; Hutten and Kehlenbach, 2006). Furthermore, over half of the 133 putative Flii binding partners identified by immunoprecipitation and LC-MS/MS analysis in the H1299 lung cancer cell line are associated with nucleocytoplasmic transport of both RNA and protein, post-translational modifications of RNA and the biosynthesis of protein (Wang et al., 2017). Flii knockdown and overexpression significantly affects both the nucleus/cytoplasm ratio of mRNA and the level of ribosome-nascent chain complex-associated mRNAs (Wang et al., 2017).



Transcriptional Regulation and Metabolism

Flii has been shown to act as a repressor of the transcriptional activity of the Peroxisome Proliferator-Activated Receptor γ (PPARγ) and its overexpression suppresses adipogenesis (Choi et al., 2015). Flii is expressed more highly in adult bovine adipose tissue compared to fetal bovine adipose tissue (Zhou et al., 2014), with Flii expression increasing in differentiated adipocytes compared with preadipocytes (Liu et al., 2016). In the absence of ligand, the LXXLL motif within the LRR domain of Flii binds directly to the DNA binding domain of the receptor to prevent PPARγ receptor occupancy at the promotor of target genes as well as blocking the interaction between PPARγ and retinoid X receptor α (RXRα) (Choi et al., 2015). Flii was widely expressed in human tissues, with strongest expression in skeletal muscle (Campbell et al., 1997). Genetic characterisation of a number of Chinese cattle breeds, which historically exhibit small body size and low intramuscular fat content compared to other meat production breeds, shows that three polymorphisms in Flii are associated with increased body mass, height and length, as well as chest girth. Moreover, these polymorphisms; CT (rs41910826), TT (rs444484913), and CA (rs522737248) were associated with increased PPARγ in adult adipose as well as increased Flii in fetal muscle (Liu et al., 2016).

Recently, it has been shown that Drosophila with mutations in Flii are resistant to starvation, with increased triglyceride levels in body fat and intestine due to elevated desaturase 1 (desat1), whose preferred substrate is stearoyl-CoA (Park et al., 2018b). Conversely, overexpression of Flii reduced both the amount of triglycerides and the expression of desalt1, which was replicated in mammalian preadipocytes (Park et al., 2018b). Flii is also a transcriptional coactivator of Uncoupling protein-1 (UCP1), a key regulator of brown fat adipogenesis, and acts to modulate systemic energy metabolism (Shamsi et al., 2020). A number of other enzymes related to the metabolic pathways of glycolysis, lipogenesis, lypolysis and the pentose phosphate pathway are also increased in the Drosophila Flii mutants (Park et al., 2018a). Mutations in the Flii gene have been associated with increased insulin resistance, with a higher expression of most glycolytic-enzyme genes (Park et al., 2018a). It appears that Flii acts as a component of the glucose-responsive transcription factor carbohydrate responsive element binding protein (ChREBP) transcription complex, colocalising to interact with ChREBP and down regulate ChREBP-mediated transcription in colorectal cancer and hepatocellular carcinoma cells (Wu et al., 2013). These studies suggest that Flii may be an important regulator of metabolism and may highlight Flii as a therapeutic target for the management of obesity and metabolic diseases. Interestingly, Mediterranean fruit fly larvae that are fed on a fatty acid deficient diet exhibit markedly increased Flii expression and a significantly reduced flight ability (Cho et al., 2013). This raises the question as to whether dietary changes may impact upon Flii expression in mammals and if changing dietary fatty acids may reduce Flii expression to improve health outcomes.



Flii and Its Binding Proteins LRRFIP1/2

Leucine rich repeat Flightless-interacting protein (LRRFIP)1/2 are key binding partners of Flii known to act both synergistically and competitively to regulate a wide range of signaling pathways. The LRR of Flii interacts with the double stranded RNA binding protein TAR RNA interacting protein (TRIP) (Wilson et al., 1998) which is also known as the short mouse homolog FLI LRR associated protein (FLAP-1), Leucine rich repeat in the Flightless1 interaction protein 1 (LRRFIP1) and GC-binding factor 2 (GCF2), as well as the closely related protein, Leucine rich repeat in the Flightless1 interaction protein (LRRFIP2) (Liu and Yin, 1998; Fong and de Couet, 1999). Herein, these will be referred to as LRRFIP1/2 for consistency.

Leucine rich repeat in the Flightless1 interaction protein 1 is a cytosolic nucleic-acid sensor, which mediates type I interferon (IFN) production, and acts a transcriptional repressor of EGFR, PDGF, TNFα and the glutamine transporter EAAT2 (Ohtsuka et al., 2011; Jin et al., 2013). While LRRFIP1 normally induces type I IFN expression in virally infected 3T3 cells, overexpression of LRRFIP1 can induce IFN expression regardless of infection status (Bagashev et al., 2010). LRRFIP1 rapidly colocalises with viruses and interacts transiently with viral sensing Toll-like receptor 3 (TLR3) following viral infection (Bagashev et al., 2010). As well as inducing IFN production in fibroblasts, LRRFIP1 also induces IFN expression in macrophages and hepatocytes (Yang et al., 2010; Liu et al., 2015). While viral infection with Hepatitis C (HCV) in the cells does not alter expression of LRRFIP1 itself, the induction of IFN by LRRFIP1 is also exacerbated by HCV infection, and the upregulation of IFN acts to inhibit the replication of the virus (Liu et al., 2015). Silencing LRRFIP1 can also affect inflammasome activation and IL-1β secretion (Jin et al., 2013). LRRFIP2 acts as a positive regulator of TLR4 signaling by competitively disrupting the interaction between MyD88 and Flii at a very early stage of TLR agonist stimulation (Jin et al., 2013), and interacts with downstream protein caspase-11 (Li et al., 2008).

LRRFIP1 is also required for non-canonical Wnt3A stimulated, PCP pathway activation of small GTPases, Rho, Rac and Cdc42 to direct cell migration, wherein LRRFIP1 localized within perinuclear regions binds the PDZ domain of Dvl3, that is active specifically in PCP pathway signaling (Ohtsuka et al., 2011). LRRFIP1 enhances vascular smooth muscle cells (VSMCs) proliferation and ERK phosphorylation, which, together with remodeling are important pathological events in atherosclerosis and restenosis. Reducing LRRFIP1 prevents neointimal hyperplasia in mouse carotid artery injury (Choe et al., 2013) and has also been identified as critical to platelet function, positively regulating thrombus formation and in human platelets interacts with Flii and the platelet cytoskeletal protein Drebrin 1(Goodall et al., 2010).

Moreover, both LRRFIP1 and LRRFIP2 act as important activators of the canonical β-catenin/TCF/LEF signaling pathway, binding to Wnt signal mediator Dishevelled (Dvl) as well as β-catenin, glucocorticoid receptor interacting protein 1 (GRIP1), and p300 (Lee et al., 2004; Liu et al., 2005; Yang et al., 2010; Ohtsuka et al., 2011), which leads to transcription of c-myc and cyclinD1, which stimulates proliferation and cell cycle progression as well as apoptosis (Lee and Stallcup, 2006; Liao et al., 2007). Flii disrupts the ability of LRRFIP1 and p300 to synergistically activate transcription by β-catenin and TCF/LEF and thus acts as a negative regulator of the canonical Wnt signaling pathway (Lee and Stallcup, 2006). The Wnt signaling pathway itself modulates the nuclear receptor pathways as β-catenin enhances AR-dependent transcription through direct interaction of β-catenin, Flap1, p300 and AR (Truica et al., 2000; Lee and Stallcup, 2006). Flii may act as the determining factor in maintaining the balance between NR and β-catenin/LEF1/TCF mediated transcription, dependent upon nuclear levels of Flii (Lee and Stallcup, 2006). The interaction of Flii with LRRFIP1/2 is of particular importance in the regulation of cell survival, particularly with regards to regulation of proliferative or apoptotic pathways.



Flii and Cell Survival – Proliferation vs Apoptosis

Numerous studies have shown that Flii is involved in the regulation of proliferative and apoptotic pathways. Flii is generally described as a negative regulator of proliferation with siRNA knockdown of Flii in both fibroblasts and keratinocytes resulting in increased proliferation and cells isolated from Flii overexpressing mice displaying reduced proliferative ability (Cowin et al., 2007). Flii also negatively regulates the canonical Wnt signaling pathway through disrupting the binding of LRRFIP1/2 with β-Catenin (β-Cat) (Lee and Stallcup, 2006). The canonical Wnt-signaling pathway regulates the expression of proliferative genes by tightly controlling the phosphorylation and degradation of cytosolic β-Cat by the Axin complex, and the ability of β-Cat to act as a transcriptional co-activator within the nucleus (MacDonald et al., 2009). Cytosolic Flii acts upon β-Cat dependent cyclin D1 transcription and cell cycle progression in mouse fibroblasts, where it preferentially binds active Ca2+/calmodulin (CaM)-dependent protein kinase type II (CaMK-II) but is not phosphorylated by CaMK-II (Seward et al., 2008). Flii inhibition of cyclinD1 transcription occurs without β-Cat degradation. Instead it appears that when CaMK-II becomes inactive due to contact inhibition and a reduction in Ca2+ transients, Flii gradually relocates to the nucleus where it interferes with LRRFIP1 and LRRFIP2 to prevent β-Cat-dependent transcription of cyclin D1 and reduces proliferation (Seward et al., 2008). LRRFIP1 and LRRFIP2 also binds CaMK-II within the cytosol, which may further indicate that the regulation of proliferation is dictated by subtle changes in the ratio of Flii, β-Cat, LRRFIP1/2 and Tcf/Lef factors (Seward et al., 2008).

In contrast to the negative effect on proliferation described above, a positive proliferative response to Flii is observed within the germinal matrix of the claws of mice that constitutively overexpress the protein and claw regrowth is subsequently enhanced in these mice (Strudwick et al., 2017). The germinal matrix is the organ that supplies the pool of keratinocytes that undergo proliferation and differentiation to form the nail or claw of the digit tip (De Berker et al., 2000; Strudwick et al., 2017). In this case, β-Cat expression is maintained, with continued expression of cyclin D1 within the germinal matrix of the regenerating claws in these Flii overexpressing mice after proximal amputation (Strudwick et al., 2017). Likewise, proliferation is enhanced in tenocytes isolated from Flii overexpressing mice (Jackson et al., 2020a) and siRNA knockdown reduces proliferation of these cells. It was also observed that increasing the level of Flii in an injured tendon resulted in reduced tendon adhesion formation and better healing outcomes (Jackson et al., 2020b). A similar positive role for Flii is seen in the MCF-7 breast cancer cell line (which contain the estrogen-inducible TFF1/pS2 gene), where silencing Flii results in significantly inhibited proliferation (Jeong, 2014). This may be due to the Flii co-activator function of the ER being reduced. Indeed, CISK phosphorylated Flii is required for E2-dependent cell growth (Xu et al., 2009). Moreover, CISK and Flii are seen to promote cell survival in 32D cells, protecting them from IL-3 withdrawal-induced apoptosis (Xu et al., 2009). Here, the CISK-phosphorylated Flii, enhances ER activity (Xu et al., 2009), which is also likely to be at play in other cell types in which the ER is active, such as MCF-7 cells, where estrogen is known to protect MCF-7 cells from apoptosis (Wang and Phang, 1995). Flii further inhibits apoptosis, through its interaction with caspase-1. Flii binds caspase-1 via both the LRR and GLD to inhibit its activity and limit caspase-1 induced cell death (Li et al., 2008). However, Flii does not inhibit caspase-11–induced cell death in HeLa cells (Li et al., 2008). In fact, the interaction of Flii with caspases may play a more important role in the regulation of inflammation, than in simply promoting cell survival.



Flii and the Immune Response

Flii plays an important role in the regulation of innate immunity which appears to be conserved from invertebrates through to humans, interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome (Figure 5) and the MyD88-TLR4 signaling pathway (Wang et al., 2006; Zhang et al., 2015). Upon priming with bacterial LPS and ATP stimulation, the NLRP3 inflammasome activates pro-caspase 1, stimulating pyroptosis of macrophages to enhance bacterial clearance (Miao et al., 2011). Cleavage of IL-1β also occurs for secretion and further pro-inflammatory activity (Mangan et al., 2018). Activation by ATP or nigericin also induces translocation of NLRP3 inflammasome components, NLRP3 and ASC, whereupon they interact with F-actin microfilaments that dampens activity of the inflammasome (Burger et al., 2016). In resting macrophages, Flii and LRRFIP2 are co-localized with F-actin and it is the recruitment of the NLRP3 inflammasome upon stimulation that allows for the inhibitory action of Flii to occur (Burger et al., 2016). Silencing either Flii or LRRFIP2 abrogates the colocalization of NLRP3 with F-actin (Burger et al., 2016) indicating that they are critical for stabilizing this interaction. Knockdown of Flii enhances NLRP3 inflammasome activation (Jin et al., 2013) and overexpression in vitro reduces IL-1β maturation and secretion suggesting that Flii can act as a negative regulator of the NLRP3 inflammasome (Li et al., 2008; Jin et al., 2013). Furthermore, the close interaction of Flii with the NLRP3 inflammasome enables the dampening of its activity. The binding of Flii to pro-caspase-1 to prevent the formation of the NLRP3 inflammasome is enhanced by the interaction of Flii and LRRFIP2 with B cell adaptor for phosphoinositide 3-kinase (PI3K) (BCAP) (Carpentier et al., 2019). The inhibitory effect of Flii is further enhanced by LRRFIP2 binding both NLRP3 by its N terminal and Flii by its coiled motif to enhance the interaction of Flii and Caspase-1 (Jin et al., 2013). Silencing LRRFIP2 in macrophages results in greater NLRP3 inflammasome activation, increased cleaved Caspase-1 and increased IL-1β secretion following LPS priming and ATP stimulation (Jin et al., 2013).
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FIGURE 5. Flii and NLRP3 Inflammasome Regulation. Flii works synergistically with LRRFIP2 to inhibit the NLRP3 Inflammasome through its interaction with pro-Caspase-1, sequestering it to filamentous actin (F-actin). Moreover, Binding to LRRFIP2 in the presence of BCAP, Flii strengthens the inhibitory effect of LRRFIP2 upon the inflammasome, sequestering NLRP3 and ASC also to F-actin rich sites. In order for the activation of the inflammasome to occur, Ca2+ released following NLRP3 stimuli activates Calpain to digest Flii and release Pro-Caspase-1. Actin severing into G-actin also disrupts in association of Flii and LRRFIP2 with NLRP3 and ASC, allowing the formation of the NLRP3 inflammasome and the activation of Caspase-1 which cleaves Pro-IL-1β into its active form for secretion.


Flii binds Caspase-1 acting both as a pseudo substrate of Caspase-1 and a potent inhibitor of IL-1β maturation and secretion (Li et al., 2008). Caspase-1 cleaves Flii into three C-terminal fragments, one around 90 kD and one around 60 kD as well as the 100-kD fragment (Li et al., 2008). Although only one potential cleavage site Asp526 and one recognition site 523YEADC527 localized within the GLD was for found caspase-1 and no site for any other caspases, Caspase-11 also cleaves Flii into a C-terminal cleavage fragment around 100 kD (Li et al., 2008). The cleavage of Flii is not required for it to act as an inhibitor (Li et al., 2008) and the function of the cleaved forms of Flii have yet to be elucidated. Zhang et al. have found that, in canonical NLRP inflammasome activation, calpain activity is essential for releasing caspase-1 from Flii and the cytoskeleton, allowing its function in IL-1β maturation (Zhang et al., 2015). Flii may not only prevent the inflammatory action of Caspase-1, but direct it towards its actin remodeling role, as the co-expression of Flii with caspase-1 in COS cells enriches Caspase-1 localisation at the leading edge of motile cells (Li et al., 2008). Similarly, Flii recruits Caspase-11 to the Triton X-100 insoluble actin bundle fraction to reduce inflammasome activation (Li et al., 2008). The interaction between caspase-11, LRRFIP2 and Flii is also likely to regulate the immune response through influencing the ability of caspase-11 to facilitate immune cell migration and promote bacterial clearance via phagosome fusion with lysosomes (Li et al., 2007; Akhter et al., 2012). Moreover, Flii interaction with the MyD88-TLR4 signaling pathway acts to regulate the early burst of inflammation in response to injury and pathogen recognition (Wang et al., 2005; Mogensen, 2009).

TLRs signal through MyD88 or TRIF and activate NFκB, MAP kinases, and IRF molecules (Bagashev et al., 2010). In vitro, Flii binds MyD88 and interferes with the formation of TLR4-MyD88 signaling complex to inhibit LPS induced NFκB activation in macrophages (Wang et al., 2005). LRRFIP1 also interacts with Flii and MyD88 and both LRRFIP1 and 2 positively regulate TLR signalling (Dai et al., 2009). In this setting Flii disrupts the binding of LRRFIP1/2 with MyD88 to negatively regulate TLR4 signaling (Dai et al., 2009). Decreasing Flii expression results in increased TNFα and IL-8 in response to IL-1 and LPS treatment, whilst its overexpression significantly inhibits LPS or lipid A-induced NF-κB activation and blocks IL-1- and LPS-induced IL-8 promoter activity (Wang et al., 2006). Flii overexpression does not affect TNF-α-induced IL-8 promoter activity that is MyD88-independent (Wang et al., 2006), indicating a specific role for Flii in the MyD88/TLR4 pathway.

Cells stimulated with LPS in the presence of culture media enriched with Flii also show reduced production and secretion of TNFα (Lei et al., 2012) suggesting that secreted Flii plays a role in this pathway. Flii is found within the plasma of healthy volunteers (Lei et al., 2012) and its secretion is increased in response to wounding (Cowin et al., 2007; Ruzehaji et al., 2012). Extracellular Flii is found in wound fluids collected from blisters, acute and chronic wounds (Cowin et al., 2012; Ruzehaji et al., 2012). Flii is constitutively secreted through a non-classical late endosome/lysosome-mediated pathway by both fibroblasts and macrophages, and its secretion is upregulated both in response to scratch-wounding in fibroblasts or following lipopolysaccharide (LPS) activation of macrophages (Cowin et al., 2007; Cowin et al., 2012; Lei et al., 2012). Secreted Flii can bind LPS with its N-terminal LRR (Lei et al., 2012), which has high sequence homology to TLR4, known to play a key role in detecting bacteria (Bell et al., 2003). It appears that secreted Flii may sequester LPS, preventing the activation of macrophages to reduce cytokine production (Lei et al., 2012).

Inside the cell, Flii is located in the MyD88/TLR4 complex through its interaction with nucleoredoxin (NRX) (Hayashi et al., 2010). NRX, like Flii is a negative regulator of the Wnt signaling pathway through Dishevelled (Dvl), where it interacts with the basic-PDZ domain of Dvl (which functions in non-canonical PCP pathway (Ohtsuka et al., 2011)) in a redox-dependent manner and mediates the redox-dependent activation of the Wnt/β-catenin pathway (Funato et al., 2006). NRX and its subfamily members (RdCVF and C9orf121, but not TRX) may have a common role through their interaction with Flii in TLR4/MyD88 signaling pathway (Hayashi et al., 2010). The ability of NRX and Flii to form a ternary complex with actin is disrupted by ethanol contributing to the progression of alcoholic liver disease in mice, which is also characterized by altered MyD88/TLR4 expression (Alarcon-Sanchez et al., 2020). Both RdCVF and NRX link Flii to MyD88, and synergistically prevent LPS-induced MyD88/TLR4 NFκB activation (Hayashi et al., 2010). However, as Dvl binds specifically to NRX, but not other redox-regulating family members, it seems that NRX alone plays a dual role with Flii in both the Wnt signaling pathway and the TLR4/MyD88 pathway (Hayashi et al., 2010). Flii expression is increased following macrophage stimulation with LPS for 12 hours (Jin et al., 2013). Moreover, as overexpression of Flii does not change MyD88 expression, nor is Flii expression induced upon shorter LPS stimulation it is not yet known how Flii serves as an inhibitor of TLR signaling in shorter term responses (Wang et al., 2006). It appears that release of Flii from one signaling pathway, to allow for its action in alternate processes may be triggered upon stimulation and further investigation of the kinetics and conditions required for specific Flii actions would clarify this issue.



Flii Regulation of the TGFβ/Smad-Dependent Signaling Pathway

TGF-β1 (along with TGF-β2) regulates collagen production and plays a major role in fibrosis and scar formation following tissue injury, while TGF-β3 is anti-fibrotic and stimulates epidermal and dermal cell migration (Biernacka et al., 2011; Huang et al., 2014). Signaling via Smad3 or Akt, TGF-β1 stimulates collagen I transcription and the activation of fibroblasts into contractile, pro-fibrotic myofibroblasts (Biernacka et al., 2011). Flii co-precipitates with TGF-β1, TGF-β2, TGF-β3 and Akt isolated from the nucleus of scratch wounded fibroblasts, as well as it co-localizes with Smad 2/3 and 7 in both the nucleus and cytoplasm of these same cells (Chan et al., 2014). Reducing Flii by siRNA in human foreskin fibroblasts significantly reduces TGF-β1 expression (Adams et al., 2008). Fibroblasts isolated from Flii overexpressing and Flii deficient mice, reveals that while TGF-β1 mRNA is increased in Flii overexpressing fibroblasts, and decreased in Flii deficient cells, no change in TGF-β3 mRNA is observed (Chan et al., 2014).

Flii appears to play gender specific roles in TGF-β1 regulation as male Flii overexpressing, but not female mice, display up-regulated TGF-β1 and this is most pronounced in aged male Flii overexpressing wounds (Adams et al., 2008). Nevertheless in vitro, when Flii expression is reduced by siRNA, Smad 3 gene expression is also reduced, while the inhibitory Smad 7 (which competes with Smad 3 for receptor interaction and marks them for degradation (Moustakas et al., 2001)) is upregulated (Chan et al., 2014). Thus, Flii upregulates TGF-β1 signaling and increased Flii expression is associated with dose dependent increases in type 1 collagen (COL1A2) expression in A549 cells (Lim and Jeong, 2014). While changing the levels of GRIP1, CARM1 or p300 does not result in synergistic activation of COL1A2, it appears that Flii acts by recruiting BRG1 to promotor region of COL1A2 increasing chromatin accessibility at the COL1A2 promotor carried out by SWI/SNF complex (Lim and Jeong, 2014). Collagen I expression and secretion is also reduced in fibroblasts treated with Flii siRNA (Cowin et al., 2007) and siRNA knockdown of Flii inhibits estrogen-mediated collagen I secretion by fibroblasts in vitro indicating that Flii is required for collagen I production (Adams et al., 2008). Elevated Flii in primary fibroblasts isolated from mice with the skin blistering disorder Epidermolysis Bullosa Acquisita (EBA) impairs collagen contraction, however, altering Flii levels in normal mice does not affect the contractile ability of fibroblasts in vitro (Kopecki et al., 2011a). It is interesting to note that exogenous addition of TGF-β1 is able to restore the contractile ability of fibroblasts isolated from Flii overexpressing EBA mice (Kopecki et al., 2011a). As expression of P-Rex1 with which Flii interacts, but not Tiam1 in primary human fibroblasts, enhances fibroblast-collagen matrix contraction, increases collagen content and crosslinking and significantly increased pMLC (Marei et al., 2016), it may be that the increased contractility and collagen deposition observed in pathological Flii overexpressing fibroblasts may be via selective pathway activation under differing conditions, in this case which may be through its enhancement of P-Rex1 activation of Rac1. Clearly, Flii can play both positive and negative roles in cell recruitment and migration, immune response stimulation and resolution, proliferation and apoptosis, extra cellular matrix deposition and remodeling, all of which point to the critical importance of Flii as a key regulator of many physiological processes.



Flii as a Negative Regulator of Wound Healing

Fetal wounds heal without scar formation via the purse-string closure of actin-myosin cables,(Martin, 1997; Cowin et al., 2003). However, a switch to a more adult-type, scar-forming healing response reliant upon lammellipodial crawling of epidermal cells upon a provisional wound matrix occurs around the start of the third trimester (embryonic day 18 in rats) (Martin, 1997). The expression of Flii in the developing skin increases dramatically around the time of this switch while it is noticeably absent in keratinocytes surrounding the wound of early gestation wounds (Lin et al., 2011). Moreover, while Flii does not co-localize with actin-myosin cables formed around E17 wounds, it is found highly expressed within keratinocytes at the leading edge of E19 wounded explants (Lin et al., 2011). This suggests that Flii plays an important role in the cytoskeletal mechanics required for cell migration during wound healing. Flii expression is relatively low in unwounded adult skin but rapidly increases in response to wounding (Ruzehaji et al., 2014). Despite being induced by wound healing, Flii play a generally negative role such that reducing Flii by heterozygous knockout improves healing rates with lower collagen I deposition and overexpression of Flii leads to impaired healing with evidence of scar formation and increased collagen I deposition (Cowin et al., 2007). Moreover, the negative impact of Flii upon wound healing may also be due to its inhibition of epidermal stem cell activation (Yang et al., 2020). These cells, that reside within hair follicles adjacent to the wound edge, require activation in order to produce proliferative progeny which contribute to re-epithelisation of the wound (Plikus et al., 2012). However, high levels of Flii appear to interrupt the Wnt-signaling pathway responsible and thus delayed wound closure (Yang et al., 2020).

The levels of Flii are further increased in wounds with impaired healing, such as venous leg ulcers and diabetic foot wounds (Ruzehaji et al., 2013, 2014). Indeed, investigations in mice with altered Flii expression has shown that impaired healing associated with aging and diabetes is exacerbated by increased Flii expression (Figure 6; Adams et al., 2008; Ruzehaji et al., 2013). Flii appears to impair angiogenesis in diabetic wounds with endothelial cells isolated from Flii overexpressing mice showing disrupted tight junction formation and reduced micro vessel sprouting (Ruzehaji et al., 2014). Diabetic patients, which display elevated Flii expression, also have a reduced number of pericytes, which work in tandem with endothelial cells to form stable, functional blood vessels (Thomas et al., 2020). Heterozygous knockout of Flii results in an upregulation of pro-angiogenic VEGF expression, and increased numbers of both endothelial cells and pericytes in diabetic mouse wounds (Ruzehaji et al., 2014; Thomas et al., 2020). In vitro, treatment with FnAb stimulates HUVEC cells to form capillary tubes and FnAb-containing matrigel plugs inserted under the skin of mice were found to have a fourfold increase in the length of functional vessels that contained erythrocytes (Ruzehaji et al., 2014).
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FIGURE 6. Flii impairs wound healing. (A) Incisional wound area at day 7 is increased in Flii overexpressing transgenic mice (Flii Tg) compared to wildtype (WT) in both young and aged mice. (B) Healing is also delayed in full thickness excisional wounds of both non-diabetic and diabetic mice with increased Flii with larger wound area on day 7 compared to WT mice. Histological analysis (C) confirmed that the distance between the dermal wound margins (arrows) was also larger in aged and diabetic Flii overexpressing wounds. Scale bar in B = 1 mm, C aged panels = 500 μm and C diabetic panels = 100 μm. Adapted with permission from Adams et al. (2008), Ruzehaji et al. (2013).


Flii is also increased in human burns and hypertrophic scars, with a similar increase seen in a mouse model of bleomycin-induced hypertrophic scaring (Cameron et al., 2016). The level of fibrosis caused by subcutaneous delivery of bleomycin in the skin reduces in Flii heterozygous knockout mice and have less TGF-β1 expression, but Flii overexpressing mice show increased scarring, higher numbers of myofibroblasts and an elevated collagen I/III ratio indicative of increased fibrosis (Cameron et al., 2016). TGFβ1 and β2 are both increased in the healing wounds of Flii overexpressing mice, whilst in Flii heterozygous knockout mice which heal faster, increased anti-scarring TGF-β3 isoform is observed (Chan et al., 2014). In blistered skin of EBA induced Flii heterozygous knockout mice, a reduced expression of contractile myofibroblast marker α-SMA is observed (Kopecki et al., 2011a). Reduced TGF-β1 and Smad2/3 expression is also observed within the blistered skin of the Flii heterozygous knockout mice (Kopecki et al., 2011a). Counterintuitively though, wounds of Flii heterozygous knockout mice appear more contracted and have significantly increased numbers of myofibroblasts compared to wild-type mice (Cowin et al., 2007). Whilst fibroblast-specific Flii overexpression impairs wound repair, with larger more gaping wounds at day 7 and reduced collagen I within the wounds, these same wounds have increased number of myofibroblasts (Turner et al., 2015).

It appears that the delayed wound closure observed in Flii overexpressing mice may be due in part to impairments in the process that prevents cellular migration over the provisional wound bed and through less strong adhesion at the dermal–epidermal junction (Kopecki et al., 2009). In wounds from Flii overexpressing mice decreased expression of Src, activated p130Cas and phosphorylated-paxillin is found (Kopecki et al., 2011b), indicating a direct link between this pathway and decreased wound closure observed in these mice. The expression of tetraspanin CD151, a key component of hemidesmosomes (Chometon et al., 2006) in the epidermis is also decreased in Flii overexpressing mice on day 3 and 7 post wounding (Kopecki et al., 2009). In addition to impacting the ability of cells to migrate into and repopulate the wound, Flii also affects the integrity of unwounded skin. The skin of Flii overexpressing mice is significantly thinner than WT, and has a reduced tensile strength (Kopecki et al., 2009). In fact, the formation of the epidermal barrier is delayed in embryos of mice that overexpress Flii and their adult counterparts exhibit increased intercellular space and trans epidermal water loss (Kopecki et al., 2014). Tight junction (TJ) formation appears to be impaired in these mice, with reduced expression of TJ proteins Claudin-1 and ZO-2 in Flii overexpressing embryos and altered localisation of these proteins in keratinocyte isolated from adult mice with increased Flii (Kopecki et al., 2014). Flii associates with TJ proteins, and while the exact mechanism by which Flii impairs epidermal barrier function is unknown, in vivo actin assays suggest that Flii inhibition of actin polymerization is of particular importance (Kopecki et al., 2014).

Wound healing investigations into the effect of LRRFIP1, with which Flii competes to influence the regulation of a number of pathways crucial to wound repair, may shed some light upon the specific Flii interactions that dictate the overall effect of Flii in a broader in vivo context. Kopecki et al. (2018b) report that LRRFIP1 is predominantly expressed by keratinocytes in unwounded skin, but upon wounding its expression is upregulated in both keratinocytes and fibroblasts. Addition of recombinant LRRFIP1 (rLRRFIP1) to human keratinocytes and fibroblasts in vitro, increases proliferation and metabolic activity (Kopecki et al., 2018b), similar to the effect of reducing Flii expression by siRNA knockdown and indicating that competition between Flii and LRRFIP1 upon the β-catenin-dependent proliferation may be a primary pathway affected. In vivo, the intradermal delivery of rLRRFIP1 to the margins of mouse incisional wounds exhibit similar effects to reduced Flii activity, with accelerated re-epithelialisation and smaller more contracted wounds by day 7 post-injury (Kopecki et al., 2018b). Interestingly, increased numbers of proliferating cells were only observed in the neoepidermis and not in the dermal wound fibroblasts (Kopecki et al., 2018b), whereas mice with reduced Flii exhibit increased proliferation in both (Cowin et al., 2007), suggesting that LRRFIP1 alone is not sufficient to prevent Flii inhibition of proliferation in wound fibroblasts. Similar to wounds with decreased Flii, rLRRFIP1 treated wounds contain decreased TLR4 expression, and a concomitant decrease in numbers of neutrophils and macrophages within the wound, and altered TGFβ1 and 3 expression, reminiscent of the effect of reducing Flii in wounds (Cowin et al., 2007; Adams et al., 2009; Ruzehaji et al., 2013; Kopecki et al., 2018b). No effect of increasing the levels of LRRFIP1 is observed upon angiogenesis (Kopecki et al., 2018b), suggesting that the positive effect upon angiogenesis seen by reducing Flii expression (Ruzehaji et al., 2014) is potentially independent of LRRFIP1.

As discussed earlier, Flii is a negative regulator of the immune response and in vivo, Flii expression peaks in mouse wounds around day 7 when resolution of the inflammatory stage of tissue repair is required (Cowin et al., 2007). In addition to being expressed by fibroblasts, keratinocytes and macrophages, Flii is also expressed by neutrophils within the blood and co-localizes with mature neutrophils within chronic wounds (Ruzehaji et al., 2012). Both NLRP3 KO and Caspase-1 KO mice have reduced inflammation (IL-1β, TNF-α, Neutrophils and Macrophages) at day 5 post excisional wounding, suggesting that reduced activity of the NLRP-3 inflammasome leads to an attenuated inflammatory response in wounds. Interestingly, this is also associated with delayed wound closure and reduced reepithelialisation, less granulation tissue formation and collagen deposition as well as impaired angiogenesis. Blocking caspase-1 on day 0 and 2 post wounding follows a similar trend (Weinheimer-Haus et al., 2015). Despite Flii overexpression being associated with delayed wound closure and reduced reepithelialisation, it is associated with increased granulation tissue formation and collagen deposition (Cowin et al., 2007) and indeed in vivo Flii appears to play a pro-inflammatory role. Increased MRP-14, a marker of immature macrophages and neutrophils is increased in the wounds of mice with fibroblast-specific Flii overexpression (Turner et al., 2015). In STZ-induced diabetic mice, overexpression of Flii leads to a concomitant increase in TLR4 expression and NF-B expression which is likely to further contribute to inflammation and chronicity (Ruzehaji et al., 2013). It has been suggested that the differences seen in vivo compared to cell based studies may not only be accounted for by the complexities of the wound environment, but by the timings in which responses are measured, that is in vitro measurements are taken within just a few hours, while the wound studies assess inflammation over a matter of days to a week (Ruzehaji et al., 2013). In vivo investigations using mice with altered Flii expression during the first few days of the inflammatory response may clarify the issue and articulate if initially Flii does indeed play an anti-inflammatory role.



Flii Adversely Affects Chronic Inflammatory Conditions

The pro-inflammatory impacts of long term Flii overexpression have been investigated. In a mouse model of the chronic inflammatory skin disease, atopic dermatitis (AD), overexpression of Flii is associated with increased disease severity and tissue inflammation with higher TNFα and reduced IFN-γ expression (Kopecki et al., 2018a). While Flii heterozygous knockout mice exhibit reduced levels of inflammation and scaling, erythema and trans epidermal water loss and an overall more Th1 driven immune response during ovalbumin-induced AD, Flii overexpression leads to a TH2 skewed response and increased autoantibody reactivity (Kopecki et al., 2018a). In psoriasis, which is characterized by an excessive Th1 driven immune response and dysfunctional proliferation and differentiation of the epidermis, Flii expression is elevated throughout the epidermis, with higher expression in the differentiating upper spinous layer than in the proliferative basal layers of psoriatic skin (Chong et al., 2017). In psoriasiform, imiquimod-induced mice, Flii heterozygous knockout mice exhibit reduced skin thickening and inflammation, with proliferation within the epidermis restricted to the basal epidermis unlike WT and overexpressing mice in which proliferation is observed in the spinous layer (Chong et al., 2017). The expression of TLR4, which activates NF-κB to enhance inflammation during psoriasis, is reduced in Flii deficient mice with concomitant reductions in NF-κB and pro-inflammatory cytokine expression (Chong et al., 2017). Similarly, in the inflammatory bowel disease (IBD), Ulcerative Colitis, Flii levels are elevated (Kopecki et al., 2019). In a mouse model of IBD, reduced Flii expression in the Flii heterozygous knockout mice was associated with a decrease in disease severity and less shortening of the colon, whereas overexpression resulted in worsening of the disease compared to WT mice (Kopecki et al., 2019).

The dual role of Flii in regulating cellular inflammatory responses and stabilizing epidermal-dermal adherence increases its effect upon the autoimmune skin blistering disease Epidermolysis Bullosa Aquisita (EBA) (Kopecki et al., 2016). Flii expression is increased in the blistered skin of patients suffering the genetic skin blistering disorder Epidermolysis Bullosa (EB), in which patients exhibit extremely fragile skin (Kopecki et al., 2011a). Similarly, patients suffering from Kindler syndrome, which is also characterized by congenital blistering, exhibit elevated Flii levels (Kopecki et al., 2020). While this disorder arises from a loss of function of the Kindlin-1 integrin binding protein (Has et al., 2015), as Flii binds to this protein in keratinocytes and a reduction in Flii expression is associated with increased Kindlin-1 expression, it has been suggested that Flii may exacerbate blistering in these patients (Kopecki et al., 2020). Using a mouse model of acquired EBA, in which autoantibodies against collagen VII disrupt anchoring fibrils in the skin leading to sub-epidermal blisters, it was shown that Flii overexpression leads to more severe blistering, while blistering is reduced in Flii heterozygous knockout mice (Kopecki et al., 2011a). Flii overexpressing EBA mice show impaired TJ protein Claudin-1 and -4 expression with delayed barrier function recovery following blistering (Kopecki et al., 2014).



Flii and Cancer Progression

Similar to wound healing, Flii appears to be both beneficial and detrimental in investigations of cancer progression in the skin (summarized in Table 2). Human Squamous Cell Carcinomas (SCC) display elevated levels of Flii compared to surrounding skin, particularly within invading cells at the tumor edge (Kopecki et al., 2015). The ability of the human SCC cell line (MET-1) to invade into a collagen/matrigel matrix can be reduced when Flii is reduced by treatment with a neutralising antibody (FnAb) in vitro (Kopecki et al., 2015). In an in vivo model of SCC, where cancerous lesions were induced by intradermal injection of 3-methylcholanthrene in mice with reduced, normal and elevated Flii expression, it was found that Flii overexpressing mice developed larger and more aggressive SCCs, whilst heterozygous knockout mice had significantly smaller, less invasive tumors (Kopecki et al., 2015). In particular, the tumors from mice with elevated Flii expression showed reduced caspase 1 expression and a concomitant reduction in the expression of apoptosis marker annexin V, suggesting that Flii contributes to SCC progression by decreasing apoptosis and increasing invasion by tumor cells (Kopecki et al., 2015).


TABLE 2. Flii and Cancer Prognosis.

[image: Table 2]In breast cancer, Flii expression is much higher and increases with development of the disease, with high Flii expression associated with a poorer prognosis (He et al., 2018). In a mouse model of mammary cancer, while heterozygous knockout of Flii only slightly delayed the formation of tumors, it significantly increased the median survival time, with reduced tumor numbers and size (He et al., 2018). In breast cancer cells, Flii interacts with the selective autophagy receptor p62 which itself is overexpressed in breast cancer and is associate with poor patient prognosis (He et al., 2018). Upon induction of p62 with ubiquitinated proteins, Flii is phosphorylated by Akt at Ser436 and independent of its actin binding ability, recruits p62-associated cargoes to the Triton X-100 insoluble actin bundle fraction that prevents p62 from recognizing LC3,impeding autophagic clearance of ubiquitinated proteins within p62 cargoes (He et al., 2018). It is this accumulation of insoluble proteins that leads to breast cancer development in the presence of Ser436 phosphorylated Flii (He et al., 2018). High Flii levels are also found within colorectal tumor tissue, where is appears that Flii protects against endoplasmic reticulum stress induced apoptosis and results in larger tumor formation (Choi et al., 2020).

In breast cancer patients with high levels of Ulk1, a positive regulator of autophagy, clinical prognosis is improved (He et al., 2018). Like Akt, Ulk1 phosphorylates Flii, this time at Ser64, which inhibits the phosphorylation of Flii by Akt, preventing the recruitment of p62 cargoes to actin bundles and promotes autophagy (He et al., 2018). Indeed, monitoring Flii phosphorylation may be a useful biomarker of breast cancer prognosis as higher Ulk1 activity and p-Flii Ser64 correlates well with improved clinical outcomes in patients, while higher levels of Akt activity and p-Flii Ser436 negatively correlated with a good breast cancer prognosis (He et al., 2018).

The role of Flii in cancer progression is, however, not a straightforward one. An opposing effect of Flii upon invasion is evident in human bronchial epithelial cells, where Flii expression is reduced in lung carcinoma cells lines H1299 and A529 compared to normal cells and reducing Flii by siRNA knockdown stimulates invasion, whereas Flii overexpression shows inhibition of this process (Wang et al., 2017). While Flii expression is found to be reduced within prostate cancer lesions compared to adjacent normal tissue, patients with high levels of AR expression but whose tumors were found to express high levels of Flii experienced better overall survival (Wang et al., 2016). The AR is known to promote tumor progression in prostate cancer patients, particularly in patients which are no longer responsive to androgen deprivation therapy and suffer aggressive tumors, however, the detrimental effects of AR expression may be overcome by Flii, as overexpression of Flii reduces both tumor size and weight, and reintroduction of Flii to prostate cancer cells can sensitize the cells to chemotherapy drugs bicalutamide and enzalutamide (Wang et al., 2016).

One possible mechanism by which Flii impacts upon cancer cell invasion, but also epithelial migration during wound healing, may be through the regulation of epithelial–mesenchymal transition (EMT) which is a process strongly linked to carcinoma invasion (Kim et al., 2017). LRRFIP1 is a key regulator of EMT, and its repression inhibits migration and invasion in cancer cells, mediated by increased phosphorylation of β-catenin targeting it for destruction to reduce its nuclear localisation and decreasing the transcription of downstream EMT markers (Douchi et al., 2015). Moreover, silencing LRRFIP1 leads to increased expression of β-catenin and E-cadherin in the plasma membrane, leading to more stable adherens junctions and reduced migration and invasion (Douchi et al., 2015). It may be that Flii interplay with LRRFIP1 modulates both the expression of EMT markers and invasion ability in cancer cell, with further research required to confirm this possibility. Furthermore, Flii may in fact regulate the expression of numerous proteins involved in cancer regulation through its regulation of nuclear export and subsequent translation of mRNAs (Wang et al., 2017).



Targeting Flii to Improve Healing Outcomes

A number of approaches for preventing the adverse effects of Flii on wound healing have been investigated, which have shown promise in improving healing outcomes. These primarily focus upon reducing the impact of Flii, either through the application of Flii neutralising antibodies (FnAb) that binds to extracellular Flii to reduce its local activity or alternatively delivering siRNA against Flii to reduce local levels of Flii within the wound. FnAb injected intradermally around incisional wound margins or at the edges of partial thickness scald burns in wild-type mice showed a significant improvement in the appearance of the wounds (Cowin et al., 2007; Adams et al., 2009). Levels of pro-scarring TGF-β1 protein were reduced while anti-scarring TGF-β3 was significantly elevated. Moreover, α-smooth muscle actin (α-SMA), a marker of contractile myofibroblasts in the developing scars was also reduced (Adams et al., 2009). Injecting FnAb into developing scars formed by bleomycin induction in mice also led to a significant reduction in the size of the scars and a reduction in the collagen I/III ratio (Cameron et al., 2016). Similarly, neutralizing Flii using FnAb in a large animal (porcine) model of excisional wound healing was found to improve the macroscopic appearance of early scars and increased the rate of reepithelialisation (Jackson et al., 2012). Intradermal FnAb improves diabetic healing in STZ-induced mice, increasing the expression of VEGF within the wounds (Ruzehaji et al., 2013, 2014) and the delivery of FnAb also resulted in a significant decrease in TLR4 expression but not NF-κB, suggesting alternate regulation of NFκB may be at play in these diabetic mice (Ruzehaji et al., 2013).

A number of cream formulations for the topical delivery of FnAb have been also been developed that allow for the prolonged and sustained release of FnAb into the epidermis and upper papillary dermis of porcine skin (Haidari et al., 2017). Topical application of FnAb cream to blistered skin in a mouse model of EBA reduces inflammatory cell infiltrate and when applied during the early stages of blister formation reduces blister severity (Kopecki et al., 2013). Likewise, treatment with FnAb cream reduces the severity of blisters when applied to established blisters, leading to stronger, less fragile skin (Kopecki et al., 2013). Similarly, topical application of FnAb prior to the induction of psoriasiform dermatitis in mice and continued application during the sensitisation of the skin, reduces skin inflammation and dermal cellular infiltration, leading to reduced erythema and epidermal hyperplasia (Chong et al., 2017).

In addition to neutralizing extracellular Flii with FnAb, a number of approaches to prevent the action of intracellular Flii in vivo have been investigated using small interfering RNA against Flii (Flii siRNA). In an attempt to decrease fibrotic processes associated with medical device implantation, Martens et al used a layer-by-layer polymer surface modification technique, alternating the deposition of poly-L-lysine and Flii siRNA to generate Rhodamine labeled-Flii siRNA coated implants for subcutaneous implantation in mice (Martens et al., 2015). After two days, cells that had adhered to the implants surface were found to be Rhodamine positive indicating cellular uptake of the Flii siRNA. Moreover, functionality of the siRNA was confirmed as Flii expression within the tissue surrounding the implants was decreased for up to seven days, with a concomitant reduction in TGF-β1 and increase in TGF-β3 demonstrating the potential utility of the methods to alter the fibrotic process (Martens et al., 2015).

Porous silicon nanoparticles (pSi NPs), which do not induce toxicity or inflammatory responses are broken down in the extracellular environment and upon degradation release their contents, have been used to deliver Flii into wounds where proteolytic degradation may reduce the efficacy of the antibody (Turner et al., 2017). In vitro, pSi NPs loaded with FnAb (FnAb-pSi NPs) were shown to release FnAb which retained its functionality to exert similar effects as FnAb treatment, increasing the recovery of keratinocytes wounded by electric cell-sensing impedance sensing and enhancing their proliferation (Turner et al., 2015). Mouse incisional wounds treated with a single dose of FnAb-pSi NPs at the time of injury, also had significantly smaller wound areas that those treated with unloaded pSi NPs (Turner et al., 2017). As acute wound environments do not have the same proteolytic environment as chronic wounds FnAb-pSi NPs were also administered to excisional wounds in diabetic mice (147). Following a single intradermal dose at the time of injury the diabetic wounds closed two days earlier than unloaded pSi NPs, and importantly, the FnAb-pSi NPs performed better than “naked” FnAb intradermal injections as the antibody was protected from proteolytic degradation (Turner et al., 2017).



SUMMARY AND CONCLUSION

Ever since Flii was first discovered in 1993 as a gene responsible for muscle degeneration in the drosophila, a significant body of work has been undertaken which has identified broad-reaching functions of this actin-binding protein. As a member of the gelsolin family of actin remodeling proteins it is not unexpected that Flii has significant functions in regulating cellular processes including proliferation, adhesion, migration and apoptosis leading to potential important roles in pathological conditions that rely on the successful performance of these processes including wound healing and cancer. More surprisingly are the emerging roles of Flii in modulating signaling processes that affect inflammation and inflammatory conditions leading to the identification of Flii as a potential therapeutic target that may be important in the development of new approaches to treat different disease states. While much is known about the intracellular function of Flii its extracellular activities remain to be elucidated and may well form the next body of work that helps to explain the multifunctional and important roles of Flii.
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Actin networks and actin-binding proteins (ABPs) are most abundant in the cytoskeleton of neurons. The function of ABPs in neurons is nucleation of actin polymerization, polymerization or depolymerization regulation, bundling of actin through crosslinking or stabilization, cargo movement along actin filaments, and anchoring of actin to other cellular components. In axons, ABP–actin interaction forms a dynamic, deep actin network, which regulates axon extension, guidance, axon branches, and synaptic structures. In dendrites, actin and ABPs are related to filopodia attenuation, spine formation, and synapse plasticity. ABP phosphorylation or mutation changes ABP–actin binding, which regulates axon or dendritic plasticity. In addition, hyperactive ABPs might also be expressed as aggregates of abnormal proteins in neurodegeneration. Those changes cause many neurological disorders. Here, we will review direct visualization of ABP and actin using various electron microscopy (EM) techniques, super resolution microscopy (SRM), and correlative light and electron microscopy (CLEM) with discussion of important ABPs in neuron.

Keywords: electron microscopy, super-resolution microscopy, correlative light and electron microscopy, actin binding protein, actin, neuronal cell


INTRODUCTION

Neurons are specialized cells with long processes or connections in the nervous system. Each neuron has two types of cytoplasmic protrusions from the neuronal cell body, an axon and a dendrite (Figure 1). The length of an axon is the distance between one neuron and a target neuron, which varies from tens of micrometers to 1 m. The function of axon for transmission of information to different neurons is essential for brain function, therefore axons normally form a connection with the correct target and maintain their structure. Because each neuron has a single axon, axon dysfunction is both the result and the main cause of many neurological disorders, such as loss of cognitive ability, general paralysis, paraplegia, and loss of sensory function. Another protrusion from neuron is dendrites, and the main function is receiving signals from other neurons. In dendrite, spines receiving signals can be classified into mature spines, mushroom-shaped and immature spines (filopodia), or thin spines with a hairpin-like fine head <3 μm in length (Figure 2). Actin filaments are a part of the cytoskeleton and form the specific axon and dendrite morphology (Dogterom and Koenderink, 2019). In developing neurons, dynamic regulation of actin polymerization and organization mediates axon morphogenesis and path finding to synaptic targets. Changes in the axon shape such as branching, branch retraction, axonal arbor morphology depend on actin filament dynamics. Actin filaments do not function in a naked state, and actin binding proteins (ABP) s regulate all aspects of actin, that is, actin filament dynamics and organization are regulated by various ABPs. In mature axons, stable F-actin and ABPs play a scaffolding role and maintain axon integrity through actin ring and help transport organelles. In addition, F-actin and ABPs mediate vesicular trafficking and regulate neurotransmitter release in mature axon terminals. Actin remodeling through ABPs in synaptic boutons also plays a crucial role in postsynaptic terminal plasticity. In postsynaptic terminal, the dendritic spine length, branching, spine density, shape of spine, and spine distribution (actin-rich protrusions from the dendritic shaft), and motility respond morphologically to various physiological stimuli depending on actin and ABPs. Dysfunction of synapse plasticity causes neurological and psychiatric disorder, which includes Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), schizophrenia, autism, and depression (Ma et al., 2012; Borovac et al., 2018). Therefore, researchers are trying to understand the mechanism of interaction of actin and ABPs in axon and dendrite in order to find ways to prevent neuronal disorders.
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FIGURE 1. Axon and dendrite in a neuron. The morphological characteristics are mainly related to actin, ABPs, and other cytoskeletons in dendrite (A) and axon (B). ABP, actin-binding protein. Reprinted by permission from Kevenaar and Hoogenraad (2015).
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FIGURE 2. Function of ABPs in dendrites. Dendrites contain ABPs for filopodia initiation, elongation, spine head formation, and spine plasticity. Reprinted and modified by permission from Elsevier (Soria Fregozo and Perez Vega, 2012).


As ABPs, the Arp2/3 complex binds with F-actin and nucleates a new filament from an existing actin filament. Arp2/3 complex deficiency induces excessive growth, exclusive axon branching, and loss of dendritic spine maturation and enlargement (Strasser et al., 2004; Pinyol et al., 2007). Formins are unbranched actin nucleators (Kuhn and Geyer, 2014), and involved in proper axon development (Matusek et al., 2008) through deep actin network formation. A high formin amount causes long F-actin bundles to push out filopodia and promotes long actin filament polymerization (Hotulainen et al., 2009). Filament-severing proteins, such as actin-depolymerizing factor (ADF) and cofilin-1 accelerated actin turnover (Sarmiere and Bamburg, 2004), because cofilin is a major actin depolymerization factor for regulating actin length (Cichon et al., 2012). Cofilin-1 activity is necessary for neurite growth and growth cone turning, receptor trafficking, dendritic spinogenesis, and dynamic synaptic plasticity (Noguchi et al., 2016). As a linker to form actin networks, there are reports about ABPs tropomodulin (Gray et al., 2017), filamin (Cho et al., 2015), neurofascin (Winkelman et al., 2014), spectrin (Unsain et al., 2018), adducin (Leite et al., 2016), and ERM proteins (ezrin, radixin, moesin) (Marsick et al., 2012). Among them, we will show details of main proteins such as Arp2/3, spectrin, neurofascin, and adducin through direct visualization techniques.

Electron Microscopy (EM) is one of the primary methods of choice for visualizing actin and ABP, as it is capable of achieving a nanometer resolution. However, the application of conventional EM for live or wet biological samples is limited due to the need for high-vacuum conditions (Kim et al., 2015). Moreover, the molecular specificity is limited in EM imaging as electron-dense heavy metals used for increasing the electron contrast of biological samples often stain lipids or proteins non-specifically. Although several molecular structures can be identified by their characteristic shapes from advanced EM images, such identifiable molecular structures are relatively few, and the characteristic structures of macromolecules are not known in most cases (Kim et al., 2015). Immuno-EM using antibodies conjugated with gold nanoparticles can be used to localize specific targets in EM, but it suffers from a low labeling efficiency and limited multi-target imaging (Griffiths and Hoppeler, 1986; Robinson et al., 2000). These limitations can be overcome using advanced EM techniques such as cryo-techniques, light microscopy (LM) with super resolution, and correlative light and electron microscopy (CLEM). Although LM exhibits diffraction-limited spatial resolution (∼300 nm), it enables the simultaneous visualization of multiple targets with high molecular specificity. Live and wet biological samples can also be imaged using light microscopy. The recent development of super-resolution fluorescence microscopy (SRM) has enabled substantially increased spatial resolution of light microscopy (∼10 nm) by overcoming the diffraction limit (Hell and Wichmann, 1994; Betzig et al., 2006; Rust et al., 2006; Huang et al., 2009).

In this review, we focused on the application of (1) EM such as single particle analysis, electron tomography, unroofing and, etching with cryo-techniques, (2) SRM such as STORM, PALM, and STED, (3) CLEM to the study of the molecular architecture of actin and ABP, since these are the most widely used techniques for such molecular ultrastructural studies.



VISUALIZATION TECHNIQUES IN THE NANOSCALE TO STUDY ACTIN AND ACTIN-BINDING PROTEINS


Electron Microscopy

Electron microscopy is good tool for study actin and ABPs because of its nano scale resolution. Traditionally, actin and actin ABPs were observed by conventional EM such as negative stained EM and etching techniques. However, they have some limitations as we mentioned in introduction. Recently, advanced techniques including cryo-TEM, cryo-electron tomography, and CLEM have been used for the study. We will discuss three methods including single particle analysis, electron tomography with freeze-etching and unroof, and immuno gold staining among various EM techniques with their findings. As a single particle analysis with negative stained EM or cryo-EM showed proteins’ interaction in angstrom resolution level. It can reveal of ABPs’ binding mechanism to actin and their competition. Electron tomography with unroof and etching showed intervals the protein’s interaction to actin with higher resolution. Immuno-gold labeling showed specific ABP’s detailed locations in cells.


Single Particle Analysis Using Negative-Stained EM and Cryo-EM

Simple and reliable EM technique combined by image processing and 3D reconstruction (Figure 3) can be used to visualize ABPs. EM and 3D reconstruction of purified ABPs and actin show ABP-binding sites for actin filaments in vitro (Narita and Maeda, 2007; Egelman, 2010; Behrmann et al., 2012) are used. Negative-stained EM of F-actin itself and F-actin with ABPs has been conventionally used for structural studies of actin with specific ABPs. Negative staining is a simple sample preparation method in which protein samples are embedded in a thin layer of dried heavy metal salt to increase specimen contrast. After EM imaging in low-dose mode, the straightened single filaments from the images are used for helical reconstruction or iterative helical real space reconstruction (IHRSR). Averaging the reconstructions shows the 3D structure density, and the known X-ray crystal structure of each protein can be fitted to the 3D structure. The technique shows the binding sites of cortactin (Pant et al., 2006), ADF/cofilin (Galkin et al., 2011), vinculin (Thompson et al., 2014), drebrin (Grintsevich et al., 2010) to actin.
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FIGURE 3. EM imaging and 3D reconstruction of actin with ABPs in vitro. (A) (A1) Negatively stained F-actin. (A2) F-actin model based on EM. (A3) Negatively stained actin and ABP (arrows). (A4) (Top) Comparison between negative-stained EM and cryo-EM. (Bottom) 3D reconstruction of actin and ABPs based on negative staining data. (A5) Cryo-EM of F-actin (top) and 3D reconstruction at ∼5.5 Å resolution (bottom) Reprinted by permission from Korean Society of Microscopy (Craig, 2017). Scale bars = 200 Å (A1,A3), 50 Å (A4), 500 Å ((A5), top), 20 Å ((A5), bottom). (B) (B1) Actin filaments bound with cofilin-rod. Arrowheads show the intersection of the cofilin-rod clusters. (B2) Cofilin-rod molecules are rarely bound to actin filaments and identified by a rod-shaped structure (black arrowheads). (B3) Actin filaments with bound cofilin molecules (without rod fusion). Scale bars = 25 nm. Reprinted by permission from Ngo et al. (2015). (C) 3D reconstruction workflow. Reprinted by permission from Elsevier (Fromm and Sachse, 2016). (D) 3D reconstruction of actin with ABP (tropomyosin) from cryo-EM. PDB fitted to 3D EM volume. Scale bars = 90 Å. Reprinted by permission from Springer Nature (Von Der Ecken et al., 2015).


Cryo-EM is applied to reveal further details because of its high resolution without staining and dehydration. Compared to negative-stained EM with ∼20 Å resolution, cryo-EM can reach 1–2 Å resolution (Bartesaghi et al., 2015; Merk et al., 2020). For decades, structural biologists have conventionally used X-ray crystallography involving crystallizing proteins. X-ray crystallography gives high-quality images of structures, but it is difficult to make crystals. Cryo-EM does not use crystallized proteins, and uses vitrified pure water including a protein solution in a hydrophilic carbon film, which is plunged into a cryogen, such as liquid ethane. Frozen, hydrated protein samples are embedded in a thin layer of vitreous ice, which is imaged by cryo-EM using direct electron detection with complementary metal oxide semiconductor (CMOS)-based sensors or a charge-coupled device (CCD). The first cryo-EM of actin was performed by Trinick et al. (1986) at 40 Å resolution, and recent data of phalloidin-bound F-actin was reconstructed at 3.3 Å resolution (Das et al., 2020). Using this technique, Galkin et al. (2008) investigated actin–fimbrin/plastin interaction, and Chou et al. (Chou and Pollard, 2019) investigated ADP–actin binding. Cofilin (Tanaka et al., 2018), spectrin (Avery et al., 2017), and Arp2/3-binding sites (Zimmet et al., 2020) was also investigated using cryo-EM.

3D reconstruction techniques use Interactive Helical Real Space Reconstruction (IHRSR). The 3D reconstruction software using IHRSR has a heterogeneous structure compared to traditional Fourier–Bessel approaches. However, there is still limitation, because when the protein has large heterogeneity, a large proportion of densities become smeared out in the 3D structure after averaging. Therefore, researchers often use fixation to get tight ABP–actin binding or better alignment accuracy by checking the assigned azimuthal rotation angle of segments (Yang et al., 2016).

Structural studies of actin and ABPs using negative-stained EM and cryo-EM provide new insights into the mechanism underlying ABP–actin binding to regulate actin’s function. In addition, the structures show the competition between ABPs to regulate actin filaments’ interaction. Cofilin–actin and cofilin–actin bundles were also investigated using negative-stained EM (Minamide et al., 2010; Ngo et al., 2015). Hyperactive cofilin after dephosphorylation shows conformational changes forming rod-shaped cofilin- actin bundles, which can affect binding of other ABPs (Figure 3B; Ngo et al., 2015). The changes induce vesicle transport blocking, an increase in secreted Aβ, phosphorylated tau accumulation, neurofibrillary tangle (NFT) formation, and other pathological hallmarks of AD (Bamburg et al., 2010).



Electron Tomography Using Quick Freeze and Deep Etching

Determining the organization of axonal actin filaments in neurons was challenging. Hirokawa used quick-freeze and deep-etch (QFDE) methods to prepare frog spinal nerve axons for EM (Hirokawa, 1982). While conventional transmission electron microscopy (cTEM) requires chemical fixation, dehydration, and plastic embedding and results in artifactual changes, QFDE EM provides a pseudo 3D appearance detailed structures. Freeze fracture involvers breaking a frozen sample to reveal its intercellular structures. Freeze etching is the sublimation of surface ice under vacuum to reveal originally hidden details of the fractured face (Figure 4C). With platinum replication using platinum, freeze-etched samples can be viewed with high dimensional stability and preservation quality capturing subtle structural changes, compared to cTEM (Hirokawa et al., 1988; Svitkina, 2009). QFDE EM can show a central region of microtubules, NFs, interconnected membranous organelles, and a dense actin filament and ABP network (Figure 4A). Therefore, QFDE EM has been used for decades to investigate cytoskeletal proteins (Weaver et al., 2002). Weaver et al. used deep-etch EM of cortactin, N-WASP (Neural Wiskott Aldrich Syndrome Protein), and the Arp2/3 complex and showed that cortactin and N-WASP can bind simultaneously to the Arp2/3 complex for actin assembly activation (Figure 4B). In addition, immunogold or fluorescent maker–labeled platinum-replica electron microscopy (PREM) used to study the specific ABPs. Labeling technique is a powerful tool to investigate the function of specific proteins (Hirokawa et al., 1988; Robenek and Severs, 2008; Vassilopoulos et al., 2019) in actin binding, and they will be each explained immuno EM and CLEM section.
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FIGURE 4. Freeze etching. (A) Organelle and cytoskeleton in mouse axon. A membranous organelle conveyed by transport is linked with a cytoskeleton, which could be a motor molecule (arrow). Scale bar = 50 nm. Reprinted by permission from Science (Hirokawa, 1998). (B) Deep etch micrograph of cortactin molecules (rows 1 and 2), Arp2/3 complexes with the ends of cortactin molecules (rows 3), F-actin “branchpoints” (Row 4: Left two panels), Arp2/3 molecules anone (Row 4: Right two panels). Reprinted by permission from Elsevier (Weaver et al., 2002). (C) A schematic diagram of freeze etching and freeze replica with immunolabeling.


Advanced methods (Figure 5) for visualizing cytoplasmic surface of the neuronal cell membrane (Morone et al., 2008) include mechanical shearing and adhesion unroofing. The mechanical shearing of a neuronal cell to expose the cytoplasmic surface of the neuronal cell membrane, and it enables observation of membrane cytoskeletons by cryo-EM and freeze-etch EM. In sonication unroofing, fine bubbles are generated, which adhere electrostatically to apical neuronal cell surfaces and remove the apical neuronal cell membrane (Figure 5A). In adhesion unroofing, positively charged grids that tightly adsorb neuronal cells are peeled from the cells. These techniques allowed visualization of the cytoplasmic surface and successfully shows many details of the cytoskeleton (Morone, 2010). In addition, it clearly shows the distribution of actin, ABPs, transmembrane proteins, membrane lipids, and some organelles. Advanced techniques using freeze-etch combined with electron tomography (ET) can visualize the 3D molecular architecture of membrane-associated structures (e.g., membrane skeleton, clathrin-coated pits, and caveolae) at high resolution (Morone, 2010). The nanometer resolution of the tomogram in Figure 5 shows that the spacing between adjacent proteins in the complexes is ∼36 nm. Freeze-etch electron tomography (ET) and ET using thin sectioning are good tools for high-resolution structural analysis. In ET, detailed 3D structures of subcellular macromolecular objects are obtained, because ET uses TEM images at incremental degrees of rotation around the target sample center. Images series of projections at different tilt angles (tilt series) (Figure 5B) are automatically aligned by cross-correlation or semiautomatic alignment with or without fiducial markers, such as gold particles. After the tilt-axis direction is determined by alignment, a tomogram is reconstructed using weighted back-projection (WBP), the algebraic reconstruction technique (ART), or the simultaneous iterative reconstruction technique (SIRT). Visualization of the computed tomogram is difficult because of neuronal cell complexity, so various segmentation techniques, such as artificial intelligence with manual segmentation, have been developed. A tomogram image showed actin filaments had in parallel or branching arrangements by ABPs, such as CaMKII (Figure 5C), in a neuron at a nanoscale resolution. ET showed improved resolution after sample preparation using quick freezing and cryo-EM (Figure 5C).
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FIGURE 5. Advanced etching methods and electron tomography. (A) Rip off use adhesion unroofing method and ultrasonication is for mechanical unroofing. Reprinted by permission from Elsevier (Morone et al., 2008). (B) A high-resolution tomogram was obtained from serial tilt images. Schematic representation of electron tomography and each projection image was acquired at a different tilt angles. Reprinted by permission from Springer Nature (Morone, 2010). (C) Tomogram showing the spacing between adjacent CaMKII particles in the complexes is ∼36 nm. Reprinted by permission from PNAS (Wang Q. et al., 2019). Scale bar = 100 nm. ET, electron tomography.




Immuno-Electron Microscopy

Immuno-EM is used to label proteins of interest using the antibody–antigen reaction like in indirect immunofluorescence. The first antibody of the antigen of interest and a second antibody-tagged colloidal gold particle are used to locate specific proteins for actin binding. Gold is used because of its high electron density, and the ABP location shows black dots in EM (Figure 6). Different sizes of gold particles can be used for multiple staining. Antibodies and gold particles cannot penetrate the resin used to embed samples, so before staining, thin sectioning using ultramicrotomy is necessary. For better antigenicity, cryofixation, freeze-substitution, low-temperature embedding, or cryo-sectioning is used in immuno-EM (Skepper and Powell, 2008). In addition, there are two different immunogold-labeling procedures, which can be divided depending on the embedding procedure. In pre-embedding, micrometer-thick tissue is immuno-stained prior to plastic embedding for ultrathin sections to be observed by TEM. In contrast, in post-embedding, tissue is embedded in a plastic resin and ultrathin sections are observed and then immunolabeled. Pre-embedding is better to get more immunolabeling, while post-embedding gives better ultrastructure (Webster et al., 2008). Immunogold labeling shows the detailed location of spectrin in the synapse (Figure 6C; Efimova et al., 2017) to study the function of βIII spectrin in neurons.
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FIGURE 6. Immunogold labeling. (A,B). Fluorescence staining with βIII spectrin antibody (magenta) and phalloidin (cyan) of tissue sections from mouse hippocampus. (C) Immunogold EM of βIII spectrin staining in thin sections of the mouse brain. Dendritic spines are pseudocolored in yellow. Inset: Boxed regions are enlarged to show 5 nm gold particles. Scale bars = (A,B), 1 μm; (C), 200 nm. EM, electron microscopy. Reprinted by permission from Society for Neuroscience (Efimova et al., 2017).





Super-Resolution Fluorescence Microscopy

Super resolution microscopy can be divided into two categories; single-molecule localization microscopy (SMLM) and illumination pattern engineering methods. The SMLM use photo-switchable fluorophores to locate single molecules with high precision, and include stochastic optical reconstruction microscopy (STORM) (Rust et al., 2006), photo-activated localization microscopy (PALM) (Betzig et al., 2006), and fluorescence photoactivation localization microscopy (FPALM) (Hess et al., 2006). The illumination pattern engineering methods exploit a non-linear response to excitation fluorophores to overcome the diffraction limit. Such methods include stimulated emission depletion (STED) microscopy (Hell and Wichmann, 1994), [saturated] structured-illumination microscopy ([S]SIM) (Gustafsson et al., 1995), and reversible saturable optical fluorescence transitions (RESOLFT) microscopy (Hofmann et al., 2005). These SRM methods have also been applied to the study of actin and ABP by providing molecular-specific images at high resolution.


Stochastic Optical Reconstruction Microscopy (STORM)

The diffraction limit arises from the diffraction of light passed through optical systems, ultimately resulting in a blurred image from the spatial overlapping of point spread functions (PSF) of single molecules. To distinguish these molecules individually, STORM takes advantage of photo-switchable fluorescence dyes to temporally separate them (Figure 7A; Rust et al., 2006; Huang et al., 2009). The temporally separated individual molecules are localized with high precision, and a super-resolution image can be constructed from the collections of localizations from multiple fluorophores. This method enables the visualization of the ultrastructure of actin and ABP that was previously inaccessible with conventional optical methods and EM (Xu et al., 2013; Zhong et al., 2014; Sidenstein et al., 2016; Han et al., 2017; Pan et al., 2018; Wang G. et al., 2019). For example, Xu et al. (2013) first examined the periodic ring-like structure of actin, spectrin, adducin, and sodium channels in axons with a periodicity of ∼180–190 nm using STORM, which had not been resolved by conventional light microscopy (Figures 7B–D). They also performed two-color STORM imaging for spectrin and actin (or adducing), which showed alternating periodic structures. Such a quasi-1D, periodic, actin-spectrin cytoskeleton was not observed in dendrites; thus, it allowed the authors to speculate that this structure may play an essential role in providing stable and elastic mechanical support for axons, which need to withstand mechanical strains on their long and thin structures.
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FIGURE 7. Super-resolution STORM images of actin and ABPs. (A) The principle of SMLM, such as STORM, PALM, and FPALM. Reprinted by permission from Annual Reviews (Huang et al., 2009). (B) Two-color STORM image of (i) actin (green) and βII-spectrin C terminus (magenta), (ii) actin (green) and adducin (magenta), (iii) βII-spectrin (green) and adducin (magenta), and (iv) sodium channels (Nav, green) and βIV-spectrin N terminus (magenta). (C) Spatial correlations between actin and the βII-spectrin C terminus [(i), black], between actin and adducin [(ii), blue], between adducin and the βII-spectrin C terminus [(iii), red], and between sodium channels and the βIV-spectrin N terminus [(iv), green], which are calculated for varying relative shifts between the two color channels along the axons. (D) A model for the cortical cytoskeleton in axons, forming ring-like structures wrapping around the circumference of the axon with a periodicity of ∼180 to 190 nm. Reprinted by permission from the American Association for the Advancement of Science (B∼D) (Xu et al., 2013). (E) Representative STORM images at different developmental stages, showing assembly of AIS components into the periodic lattice structure during late developmental stages. Reprinted by permission from Zhong et al. (2014). (F) MPS components form 2D polygonal lattice structures in some somatodendritic regions of neurons. (Left) 3D STORM image of a dendritic region from a DIV 28 mouse neuron stained for (i) βIII-spectrin, (ii) adducin, and (iii) βIII-spectrin. (Middle) Zoom-in image of the region indicated by the white dashed box in the Left. (Right) 2D autocorrelation function of this boxed region, which shows a 2D periodic lattice pattern. Reprinted by permission from PNAS (E,F) (Han et al., 2017).


In a later study by the same research group, Zhong et al. (2014) used STORM to elucidate the developmental mechanism of this membrane-associated periodic skeleton (MPS), such as how periodic cytoskeletons form and why they primarily form in axons (Figure 7E). The STORM images revealed that this periodic structure is formed early on in the axon development, followed by propagation from the proximal to distal ends of axons. They also demonstrated that the local concentration of spectrin regulates this structure, and overexpression of spectrin induces this periodic structure in dendrites, which contain very low concentrations of spectrin under normal conditions. The authors also found that knocking out ankyrin B triggered the periodic structure in dendrites; thus, finding that ankyrin B is critical for the polarized distribution of βII spectrin in neurites.

Spectrin organization was also examined in a variety of neuronal and glial cell types by He et al. using the same methods (Sidenstein et al., 2016). The authors showed that spectrin has a long-range and periodic distribution throughout all axons, whereas small patches of periodic spectrin structures are present in the sub-regions of dendrites and in four types of glial cells. These findings allow the authors to conclude that the periodic organization of spectrin is conserved across a wide range of invertebrate and vertebrate animal species.

The spatial organization of spectrin, actin, and adducin in the dendrites and soma at different developmental stages of cultured hippocampal neurons was also investigated by STORM (Figure 7F; Han et al., 2017). Han et al. observed that one-dimensional MPS slowly develops in the dendrites of mature neurons at a much slower rate than that in axons. Interestingly, the authors also found that they form a two-dimensional polygonal lattice structure in the somatodendritic compartment at a much slower rate than that in the 1D MPS in axons. This result suggests that actin-based membrane skeletons organized with spectrin and ABP are differentially regulated across different sub-regions of neurons. A two-dimensional polygonal lattice structure was also observed from a native ultrastructure of the cytoskeleton in erythrocytes (Pan et al., 2018). Pan et al. used STORM imaging to resolve the ultrastructure of the cytoskeleton, including β-spectrin, F-actin, protein 4.1, tropomodulin, and adducin. They revealed a junction-to-junction distance of ∼80 nm, which is in agreement with the relaxed spectrin tetramers; actin and its capping proteins occupy subsets of junctional complexes.

Recently, Wang G. et al. (2019) investigated the behavior of MPS in sensory axon degeneration using the same super-resolution microscopy. From the STORM images of βII spectrin, they found that trophic deprivation (TD) caused the rapid disassembly of MPS, which can be initiated by actin destabilization. In contrast, knockout of βII spectrin prevented TD-induced retrograde signaling to protect axons from degeneration by inhibiting MPS formation.

Collectively, substantial progress has recently been made in identifying the developmental mechanism of the periodic actin-spectrin-based membrane skeleton in different sub-compartments of neurons by taking advantage of the high molecular specificity and spatial resolution of STORM.



Photo-Activated Localization Microscopy (PALM)

Another widely used SMLM method is PALM, which shares many similarities with STORM. PALM also exploits the temporal image separation of individual fluorophores based on the on/off behavior of fluorescent proteins (Betzig et al., 2006; Huang et al., 2009). Although the only difference between these two methods is the type of fluorescent label (i.e., photo-switchable fluorescent proteins for PALM and photo-switchable organic dyes for STORM), they are essentially similar in terms of configuration and differences are blurred as they use both fluorescent organic dyes and fluorescent proteins. PALM is also used in the study of actin, and most investigations have focused on the visualization of actin dynamics using single-molecule tracking (Tatavarty et al., 2009; Frost et al., 2010; Izeddin et al., 2011).

Tatavarty et al. (2009) for instance, utilized PALM to observe the kinematic (physical motion of actin filaments) and kinetic dynamics of F-actin in the dendritic spines of hippocampal neurons, which had been hindered by the small size of the dendritic spines in diffraction-limited conventional light microscopy (Figures 8A–C). Single-molecule tracking by PALM showed highly heterogeneous kinematic dynamics of F-actin in dendritic spines at a single-filament level, in which simultaneous actin movements were observed in both retrograde and anterograde directions. In contrast, the movements of filaments integrate into a net retrograde flow at the ensemble level, suggesting short actin filaments in dendritic spines.
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FIGURE 8. Super-resolution PALM images of actin, showing heterogeneous actin dynamics within individual spines. (A) Fluorescence images of mature dendritic spines (23DIV). (B) Time-lapse image sequences of single EosFP-actin molecules showing (i) retrograde, (ii) stationary, (iii) anterograde, and (iv) random direction movement. (C) Models of actin organization in dendritic spines. (left) Highly polarized actin cytoskeleton, which is inconsistent with the experimental results. (right) Weakly polarized actin cytoskeleton, which is more consistent with the experimental results. Reprinted by permission from Tatavarty et al. (A∼C) (Tatavarty et al., 2009). (D, Left) Map of actin molecule velocity across the inner extent of a dendritic spine, showing restricted areas of high velocity. (Right) Representative spine showing inward orientation of actin flow. (Arrow length: relative velocity) (E) (Left) Actin velocity map and (Right) locally averaged molecular movement vector on the deconvolved widefield image of PSD-95-cerulean (red) with local tracked molecule density (green), showing some but not all foci of high-velocity motion are closely associated with the synapse. (D,E) Reprinted by permission from Elsevier (Frost et al., 2010). (F) Average velocity of tracked particles, showing tracked molecules originating at or near the PSD moved faster than molecules originating elsewhere in the cell. (D–F) Reprinted by permission from Elsevier (Frost et al., 2010) (G) Super-resolution PALM image of the dendritic segment. (H) Super-resolution time-lapse imaging of dendritic spines from a neuron expressing ABP-tdEosFP at DIV 27, showing spine dynamics in mature hippocampal neurons. (I) PALM images of spine dynamics during AMPAR (2 mM) activation, showing rounding-up spine after treatment (arrowhead) Reprinted by permission from Izeddin et al. (G∼I) (Izeddin et al., 2011).


Frost et al. (2010) also investigated the movement of individual actin molecules within living spines (Figures 8D–F). In a similar manner to Tatavarty et al., they used PALM-based single-molecule tracking to measure the velocity of single actin molecules along filaments as an index of the filament polymerization rate. They found that the actin velocity on filaments was substantially elevated at the synapses. In contrast, no enhanced polymerization activity was observed in the endocytic zone, implying a highly heterogeneous rate of actin molecules.

The morphological changes of the spine cytoskeleton were also investigated at super-resolution by Izeddin et al. (2011) (Figures 8G–I). By combining PALM imaging with quantum dot tracking for long-term imaging, they simultaneously observed the cytoskeleton and spine membranes, and their evolution during pharmacologically induced synaptic activity.

Although all studies discussed in this section visualize actin but not ABP in live cells, they demonstrate the possibility of future studies regarding ABP dynamics in relation to the actin in live neurons as a further application of PALM imaging.



Stimulated Emission Depletion (STED)

Another widely used SRM is STED, which was developed by Hell et al. In STED microscopy, a donut-shaped depletion light is used to suppress the fluorescence emission from the fluorophores as a pattern surrounding the focal spot of the excitation laser (Figure 9A; Hell and Wichmann, 1994; Huang et al., 2009). Such a negative pattern reduces the size of the fluorescent region and scanning of this sharpened focal spot generates a super-resolution image. Through the use of STED, actin and ABP have been thoroughly investigated (Urban et al., 2011; Lukinavičius et al., 2014; Leite et al., 2016; Sidenstein et al., 2016; Barabas et al., 2017; D’este et al., 2017; Krieg et al., 2017; Martínez et al., 2020).
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FIGURE 9. Super-resolution STED images of actin and ABPs. (A) The principle of STED microscopy. (Left) The stimulated emission process. (Middle) Schematic view of a STED microscope. (Right) A decreased size of the effective point spread function (PSF) by a donut-shaped STED laser. Reprinted by permission from Annual Reviews (Huang et al., 2009). (B) (i, iii) Three-color STED image of a dendrite decorated with spines and stained with βII spectrin, phalloidin, and Homer/Bassoon, showing the periodic spectrin organization. (ii, iv) Single-channel images of the spine indicated in (i), showing βII spectrin enters into the spine neck but does not reach the PSD. Magenta and cyan dashed lines highlight the shape of the spine/actin cage and the position of the PSD/Bassoon, respectively. Reprinted by permission from Springer Nature (Sidenstein et al., 2016) (C) Representative STED image of Glial actin, Axo-glial NrCAM, Neurofascin, Subunit 7.2 of axonal voltage-gated potassium channel (Kv7.2 or KCNQ2, N terminus antibody), axonal voltage-gated sodium channels (Pan-Nav), βIV spectrin, and Ankyrin G at nodal gaps of sciatic nerve fibers, some of which reveal a predominantly longitudinal periodicity. The red dashed line indicates the position of the node (“N”). Reprinted by permission from PNAS (D’este et al., 2017). (D,E) STED images of WT (D) and a-adducin KO (E) DIV19 RGCs, showing lack of adducin gives rise of axon actin rings of increased diameter in RGCs. Reprinted by permission from Leite et al. (2016). (F) Spectrin forms an actin-dependent, periodic cytoskeleton in vitro. Representative confocal (left), STED super-resolution images (center), and power spectral density (PSD) profiles (right) of a-spectrin SPC-1::GFP in C. elegans (i) control, (ii) control neurons treated with the actin depolymerizing agent, Latrunculin A (1 mM), (iii) in unc-70(s1502) b-spectrin null mutant axons in vitro. Reprinted by permission from Krieg et al. (2017) (G) STED images of dendritic spines observed under control conditions (i), as well as before and at subsequent times after chemical LTP stimulation (ii). Spine neck diameters are indicated in each frame by arrows. Reprinted by permission from Elsevier (Urban et al., 2011).


For instance, the subcortical cytoskeleton organization at synaptic sites was previously investigated using three-color multilevel STED nanoscopy (Figure 9B; Sidenstein et al., 2016). This technique was developed based on an intrinsically co-aligned multicolor imaging scheme to overcome the limitations of multi-color imaging by STED, such as the requirement for complicated setups and analysis algorithms. This technique was successfully demonstrated by imaging neurofascin/spectrin and actin in cultured hippocampal neurons. The multicolor STED images revealed the ∼190 nm periodic actin/βII spectrin lattices along dendrites and spines, consistent with previously reported STORM images, whereas this periodic pattern was absent at presynaptic and postsynaptic sites. Such protein periodic structures in super-resolution images can now be automatically quantified in terms of the abundance and regularity of the MPS. For example, Barabas et al. (2017) presented a method for the automated quantification of the quality and abundance of periodic protein structures in super-resolution images as an open-source image analysis tool that provides the distributions of correlation coefficients for the spectrin membrane-associated periodic skeleton as an indication of the dynamic assembly and disassembly of the MPS.

D’este et al. (2017) also used STED to map the nanoscale molecular organization of 12 proteins at the nodes of Ranvier of sciatic nerve fibers, including cytoskeletal proteins of the axon, axonal, and glial nodal adhesion molecules, sodium and potassium channels, axonal proteins, and glial proteins (Figure 9C). The STED images showed that βIV spectrin and ankyrin G revealed a known one-dimensional longitudinal order at nodal gaps, whereas neurofascin-186 and neuron glial-related cell adhesion molecule (NrCAM) revealed a two-dimensional hexagonal-like lattice with a ∼190 nm periodicity, which has not yet been explored. The authors also observed that both glial proteins (neurofascin-155 and ankyrin B) and axonal proteins (βII spectrin, Caspr) form quasi-1D periodic arrangements at paranodes. These results suggest the importance of the lateral organization of proteins at the nodes of Ranvier.

The defects in ABP have also been investigated by STED imaging to better understand their roles. For example, Leite et al. (2016) observed an increased actin ring without changing the inter-ring periodicity in neurons in mice lacking adducing (Figures 9D,E). This result suggests a model in which adducin is responsible for controlling the diameter of actin rings and axons, but it is not necessary for actin ring assembly and periodicity. Krieg et al. (2017) reported that periodic spectrin structures were absent due to the loss of UNC-70 β-spectrin and actin depolymerization from STED images (Figure 9F). These results allowed the authors to conclude that mechanical neuroprotection depends on spectrin-dependent longitudinal tension, and the defects in β-spectrin may sensitize neurons to damage.

Live cell imaging for actin was also performed using time-lapse STED imaging. To investigate synapses in brain slices or brains under realistic conditions, Urban et al. (2011) used aberration-reducing optics for STED imaging and demonstrated this for deep inside biological tissue imaging (Figure 9G). This method enabled the visualization of distinct actin distributions inside dendritic spines in living organotypic brain slices at depths of up to 120 mm with 60–80 nm spatial resolution, revealing that structurally heterogeneous and highly dynamic actin in spine necks were modulated by neuronal activity. However, long-term STED imaging of live biological samples is often limited due to its high laser power requirement for high spatial resolution. To overcome this limit, Lukinavičius et al. (2014) introduced fluorogenic probes for actin and tubulin (SiR-actin, SiR-tubulin) that exhibited minimal cytotoxicity, excellent brightness, and photostability. They successfully revealed the one-dimensional periodic actin organization in the axons and the nine-fold symmetry of the centrosome of cultured rat neurons. These advances are expected to allow further investigations into ABP dynamics in vivo in the near future.




Correlative Light and Electron Microscopy (CLEM)

As previously stated, fluorescence light microscopy (LM) and EM have been extensively used for biological studies to probe cellular structures and obtain a better understanding of biological functions. Each of these techniques has its distinct strengths and weaknesses that complement each other, as previously discussed. Fluorescence LM provides protein-specific information with high molecular specificity and sensitivity. Multicolor fluorescence LM offers a promising approach to monitor potential molecular interactions between spectrally different fluorescent labels, and live cell LM imaging can reveal the spatiotemporal dynamics of a protein. Moreover, recently developed SRM techniques allow images to be taken with a higher resolution than that with the diffraction limit, as described in the previous section.

Although such advances in SRM have made remarkable headway in improving spatial resolution by order of magnitude or moreover, the diffraction limit, EM generally achieves a higher spatial resolution in protein localization compared to that with SRM, revealing the subcellular anatomy at resolutions of nanometers. However, conventional fixation and staining methods of traditional EM do not usually provide protein-specific information because of the limited molecular specificity. Moreover, EM is limited to live cell imaging, since the electrons destroy the samples, and the sample needs to be processed and fixed for EM imaging.

As the strengths and weaknesses of LM and EM are complementary, these two methods can be effective if used together for the same sample. This combination is the so-called correlative light and EM (CLEM). It provides different and complementary information by merging the specific protein localization advantages of LM with the ultrastructural information of EM.

Correlative light and electron microscopy is often compared to immuno-EM because this has been the method of choice for protein localization at an ultrastructural level. However, the application of immuno-EM is significantly limited by several technical difficulties, including the destruction of antigens by strong fixation, inaccessibility of antigens in the plastic, poor survival of epitopes, limited preservation of morphology, incomplete labeling, non-specific binding of antibodies, and non-specific background. Therefore, only a subset of target molecules are successfully detected by immuno-EM. These drawbacks have prompted the development of various CLEMs for protein localization at an ultrastructural level. Compared with immuno-EM, CLEM significantly improves the detection efficiency and sensitivity with sufficient reliability and specificity. Moreover, when EM is combined with SRM, such correlative SRM-EM approaches provide a more meaningful correlation between two images due to their closer resolution match compared to that by CLEM (Kim et al., 2015).

Such CLEM methods have also allowed for the identification of neuronal cell structures and processes of interest in whole-cell images with high molecular specificity and high spatial resolution. This dual examination provides valuable unique and complementary information for actin and ABP. For instance, Vassilopoulos et al. (2019) utilized PREM to visualize the dynamic actin network and combined this with STORM to specifically localize ankyrin G (Figure 10A). This correlation imaging method revealed the molecular organization of the actin rings and MPS components along the axonal plasma membrane. In particular, the association of MPS with microtubules via ankyrin G was visualized along the AIS by correlative STORM and PREM.


[image: image]

FIGURE 10. Correlative Light and Electron Microscopy. (A) Correlative results of Ankyrin G tail (ankG 480, orange) proximal axon by fluorescent microscope image and PREM image. Reprinted by permission from Springer Nature (Vassilopoulos et al., 2019). CLEM with Serial block-face (SBF)-SEM technique (B) and Cryo-Electron tomography (C). Reprinted by permission from Springer Nature (Sartori-Rupp et al., 2019).


Sochacki et al. also showed the technique of CLEM with PREM to observe a clathrin lattice and actin (Sochacki et al., 2017). CLEM is also was used to obtain high-resolution images using serial sectioning. For example, tunneling nanotubes (TNTs), which are actin-rich membranous protrusions, play a role in the intercellular transport of various cargoes between neuronal cells and can be observed by CLEM, which reveals their structural identity using LM with focused ion beam (FIB)–scanning electron microscopy (SEM) in neuronal cells (Figure 10B). FIB-SEM is a serial block-face (SBF)-SEM technique using serial sectioning. Another SBF-SEM technique uses an ultramicrotome embedded inside a SEM. The advantage of these techniques is that we can easily obtain serial ultrathin sections, but the sections can be observed at one time. CLEM can be combined with cryo-ET after cryo-FIB sectioning. CLEM can also be combined with confocal or fluorescent microscopy and super-resolution microscopy, such as stochastic optical reconstruction microscopy (STORM) (Zhanghao et al., 2019) and stimulated emission depletion microscopy (STED) (Urban et al., 2011). Cryo-EM and cryo-FIB-SEM with LM show open-ended TNTs labeled with anti-N-cadherin antibodies and 3D structures of TNTs. Labeled TNTs are filled with parallel actin bundles and membrane-bound mitochondria (Figure 10C; Sartori-Rupp et al., 2019).




CONCLUSION AND FUTURE PERSPECTIVES

In conclusion, various microscopy techniques have been successfully demonstrated to visualize actin filaments and ABPs in neuronal cells. First of all, EM has been the primary tool to study actin and ABPs because of its nanometer resolution, for example, single particle analysis, electron tomography with freeze etching and unroof, and immuno-gold staining. Using these EM techniques, ABP binding sites for actin filaments and the organization of axonal actin filaments in neurons have been investigated. However, molecular specific imaging and live-cell imaging have been limited to EM techniques. To overcome these limitations, the recently developed SRM has been applied to the study of actin and ABP, including STORM, PALM, and PALM. This method enables the visualization of the ultrastructure of actin and ABP that was previously inaccessible with conventional optical methods and EM, for example, the periodic ring-like structure of actin and ABPs even in live neurons with high molecular specificity at high resolution. As the strengths and weaknesses of LM and EM are complementary, the CLEM has also been applied to the study of actin and ABP. Combining these two methods has allowed for the identification of neuronal cell structures and processes of interest in whole cells with high molecular specificity and high spatial resolution.

In the future, we foresee that in situ or wet-environment EM would be a goal in this field to study actin and ABPs. Studies have reported progress in observing proteins’ structural changes (Fitzpatrick et al., 2013) and the ultrastructure of living cells in the Four-dimension (4D), time (De Jonge and Ross, 2011; Ross, 2015). Although the resolution is poor, live cells or proteins in situ have been observed so that actin and ABPs would be the next challenge for this 4D EM-combined CLEM in the near future.
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The first-line treatment for prostate cancer (PCa) is androgen ablation therapy. However, prostate tumors generally recur and progress to androgen-independent PCa (AIPC) within 2–3 years. α-Actinin-4 (ACTN4) is an actin-binding protein that belongs to the spectrin gene superfamily and acts as an oncogene in various cancer types. Although ACTN4 is involved in tumorigenesis and the epithelial–mesenchymal transition of cervical cancer, the role of ACTN4 in PCa remains unknown. We found that the ACTN4 expression level increased during the transition from androgen-dependent PCa to AIPC. ACTN4 overexpression resulted in enhanced proliferation and motility of PCa cells. Increased β-catenin due to ACTN4 promoted the transcription of genes involved in proliferation and metastasis such as CCND1 and ZEB1. ACTN4-overexpressing androgen-sensitive PCa cells were able to grow in charcoal-stripped media. In contrast, ACTN4 knockdown using si-ACTN4 and ACTN4 nanobody suppressed the proliferation, migration, and invasion of AIPC cells. Results of the xenograft experiment revealed that the mice injected with LNCaPACTN4 cells exhibited an increase in tumor mass compared with those injected with LNCaPMock cells. These results indicate that ACTN4 is involved in AIPC transition and promotes the progression of PCa.
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INTRODUCTION

Prostate cancer (PCa) is the most commonly diagnosed cancer, which accounts for 42% of all cancer cases in the United States (Siegel et al., 2017). The androgen receptor (AR) plays an important role in the development of early stage PCa. Upon binding of an androgen, AR is translocated into the nucleus and binds to the androgen receptor elements (AREs) in the promoters of target genes involved in cell proliferation and survival (Tan et al., 2015). Therefore, androgen deprivation therapy is the first-line treatment of PCa patients with local or metastatic prostate tumors; however, tumors relapse to AIPC or castration-resistant PCa (CRPC) within 2–3 years (Widmark et al., 2009; Warde et al., 2011). The progression of CRPC is very aggressive and metastatic (Katsogiannou et al., 2015). Therefore, studies investigating the mechanism underlying the emergence of CRPC have received increasing attention. The following four hypotheses have been proposed to explain the mechanism underlying CRPC development: (1) increased sensitivity of the AR to its agonists; (2) AR mutations activated by non-androgen ligands such as estrogen, progesterone, and glucocorticoids; (3) ligand-independent AR activation through Akt, HER2, and Ack1 kinases; and (4) AR-independent mechanisms (Feldman and Feldman, 2001; Harris et al., 2009; Green et al., 2012; Sharifi, 2013; Tan et al., 2015). However, the exact mechanism underlying CRPC transition and progression has not been elucidated to date.

The PI3K/Akt pathway is a signaling pathway that promotes cell survival and growth in response to various signals. The GSK-3β/β-catenin signaling also plays a role in cell proliferation. Reportedly, the phosphorylation of Akt at Ser9 inhibits GSK-3β activity (Ge et al., 2018). The inhibition of GSK-3β induces β-catenin stabilization in the cytosol; subsequently, the accumulated β-catenin is translocated into the nucleus and participates in target gene expression (Zeng et al., 1997). Aberrant β-catenin pathway plays a pivotal role in various cancers (Kypta and Waxman, 2012; Asem et al., 2016). High β-catenin levels increase the transcription of genes involved in cell proliferation including CCND1, c-myc, and c-jun (Tetsu and McCormick, 1999). β-Catenin regulates the epithelial–mesenchymal transition (EMT)-related factors, such as E-cadherin and ZEB1, which participate in tumor growth, cell motility, maintenance of cancer stem cell properties, and drug resistance (Nauseef and Henry, 2011; Sanchez-Tillo et al., 2011; Khan et al., 2015; Hanrahan et al., 2017; Montanari et al., 2017; Brabletz et al., 2018).

α-Actinin (ACTN) is an actin-binding cytoskeletal protein. In humans, ACTN has the following four types of isoforms: ACTN1, 2, 3, and 4 (Honda et al., 1998). These are classified into two categories: muscle ACTN2 and 3 and non-muscle ACTN1 and 4 (Millake et al., 1989; Youssoufian et al., 1990). ACTN4 is abundant in various cancers such as pancreatic, cervical, and melanoma cancers, and it is a known oncogene (Honda et al., 1998, 2005; Honda, 2015). ACTN4 functions as a transcriptional co-activator of NF-κB by binding to a NF-κB subunit (Aksenova et al., 2013). The knockdown of ACTN4 inhibits Akt phosphorylation, resulting in the suppression of cell proliferation (Ding et al., 2006). We have previously reported that ACTN4 maintains β-catenin stability by Akt activation to promote EMT and tumorigenesis in cervical cancer (An et al., 2016). However, the role of ACTN4 in PCa remains obscure. In this study, we found that ACTN4 increases cell proliferation and motility in androgen-dependent PCa and AIPC. In addition, we demonstrated that ACTN4 induces tumor growth after castration in vivo.



MATERIALS AND METHODS


Materials

Roswell Park Memorial Institute (RPMI) 1640 medium was purchased from Thermo Fisher Scientific (Waltham, MA, United States), and fetal bovine serum (FBS) was obtained from HyClone Laboratories (Logan, UT, United States). Penicillin and streptomycin were purchased from Invitrogen (Carlsbad, CA, United States). G-418 was obtained from LPS solution (Daejeon, South Korea). Antibodies for ACTN4, cyclin D1, and β-actin were purchased from Santa Cruz Biotechnology (Santa Cruz, CA, United States). Anti-ZEB1 and anti-β-catenin (Ser33/37/Thr41) antibodies were obtained from Cell Signaling Technology (Boston, MA, United States). Charcoal was purchased from Millipore Sigma (Burlington, MA, United States).



Cell Culture

LNCaP, PC3, and DU145 cells were maintained in RPMI 1640 medium supplemented with 10% FBS and 1% penicillin/streptomycin at 37°C in a CO2 incubator. LNCaP-AI cells were generated from LNCaP cells by incubation for more than 3 months in RPMI 1640 medium supplemented with 10% charcoal-stripped serum media (CSS) and 1% penicillin/streptomycin at 37°C in a CO2 incubator. The two different clonal isolates of LNCaP-AI cells were generated independently and numbered #1 and #2.



Transfection and Western Blotting

For transfection, human ACTN4 was cloned from human genomic DNA and inserted into pCMV-3tag-1 vector (Agilent Technologies, Santa Clara, CA, United States) using HindIII and XhoI restriction enzymes. Cells were plated at a density of 4 × 105 cells/well. Cells were transfected with plasmids using E-fection plus (LugenSci, Seoul, South Korea) and incubated for 24 h. LNCaP cells were transfected with Flag-Mock or Flag-ACTN4 (1 μg) in RPMI 1640 medium. For si-ACTN4 transfection, cells were transfected with si-ACTN4 using interferin (Polyplus, New York, NY, United States). The sequence of si-ACTN4 was 5′-GACCAGAGAGCUUGAGUATTUACUCAAUCA-GCUCUGGUCTT-3′. For western blotting, cells were lysed using RIPA buffer and centrifuged at 12,000 × g for 20 min at 4°C. Equal amount of proteins was electrophoresed on a 10% SDS-PAGE and transferred to nitrocellulose membranes. The membranes were probed with the specific antibodies at 4°C and incubated overnight. β-Actin was used as an internal control. The blots were then incubated with the secondary antibody at 25°C for 1 h. The immune complex was detected using West Save Gold (Young In Frontier, Seoul, South Korea).



RNA Extraction and RT-PCR

Total RNA was isolated using the TaKaRa MiniBest Universal RNA Extraction Kit (Takara Bio, Kusatsu, Japan) according to the manufacturer’s protocol. cDNA was synthesized from total RNA using 5 × PrimeScript RT master mix (Takara Bio). Quantitative RT-PCR (qRT-PCR) was performed on Quantstudio3 (Thermo Fisher Scientific, Waltham, MA, United States) using EvaGreen 2 × master mix (abm, Vancouver, BC, Canada). Semi-qRT-PCR was performed as previously described (Kang et al., 2011). The primer sequences used in this study are listed in Table 1.


TABLE 1. The primer sequences used for RT-PCR.
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Wound Healing Assay

Stable LNCaP cells were grown to confluence in six-well culture plates and pretreated with mitomycin C (10 μg/ml) for 2 h. An artificial “wound” was created using culture-inserts two well (ibidi, Martinsried, Germany). Cell migration into the wounded region was visualized using an Axiovert 100 fluorescent microscope (Carl Zeiss, Jena, Germany) and images were acquired at the indicated time points.



Cell Proliferation and Colony Formation Assays

LNCaP or LNCaP-AI cells were transfected with Flag-ACTN4 or si-ACTN4 and seeded onto 96-well plates at a density of 2 × 103 cells/well. Cell proliferation assay was performed using EZ-cytox (DoGenBio, Gyeonggi, South Korea) according to the manufacturer’s protocol. For the colony formation assay, LNCaP or LNCaP-AI cells were transfected with Flag-ACTN4 or si-ACTN4, seeded onto 12-well plates at a density of 3 × 103 cells/well, and incubated for 10 days. Colonies were fixed with 4% paraformaldehyde for 30 min at 25°C and stained using 0.05% crystal violet (Millipore Sigma).



Cell Migration and Invasion Assays

LNCaP cells (1 × 105) in serum-free media were added to the top chambers of 24-well transwell plates (8 μm pore size; BD Biosciences, San Diego, CA, United States). Complete media were added to the bottom chambers for 48 h. LNCaP-AI cells were transfected with si-ACTN4 and 1 × 105 cells in serum-free media were added to the top chambers of 24-well transwell plates. For the Matrigel invasion assay, transwell inserts were coated with 200 μg/ml Matrigel (Millipore Sigma) diluted with serum-free RPMI 1640 medium and allowed to solidify for 5 h. After harvesting, the cells were suspended in serum-free RPMI 1640 medium at a density of 1.5 × 105 cells/100 μl, and the cell suspension was transferred immediately into the upper compartment of the plate. Subsequently, the lower compartment was filled with complete medium. After 72 h of incubation, the non-invading cells on the upper surface of the membrane were removed by wiping with cotton-tipped swabs. Cells on the lower surface of the membrane were stained with 0.05% crystal violet according to the manufacturer’s protocol. Cell counts of the adherent cells were obtained for five randomly selected fields per well and values were expressed as the average of the counts.



Cellular Fractionation Assay

Cells were lysed with cytosolic lysis buffer (10 mM NaCl HEPES). Cell lysates were centrifuged at 2,000 × g for 10 min at 4°C. Supernatants were used as the cytosolic fraction. Pellets were washed four times using cytosolic lysis buffer and lysed with nuclear lysis buffer (0.4 M NaCl HEPES). Lysates were centrifuged at 12,000 × g for 20 min at 4°C. Supernatants were used as the nuclear fraction. Each fraction was subjected to western blot analysis. α-Tubulin was used as an internal control for the cytosolic fraction, and Lamin A/C was used as an internal control for the nuclear fraction.



Fluorescence Microscopic Analysis

Cells were plated on confocal dishes (SPL Life Sciences, Gyeonggi, South Korea) at a density of 5 × 104 cells/well. After 24 h, the cells were fixed with 4% paraformaldehyde for 10 min and permeabilized with 0.2% Triton X-100 for 5 min. The cells were then incubated with 1% bovine serum albumin at 4°C for 1 h and incubated with specific antibodies at 25°C for 1 h. The cells were incubated with 1 μg/ml Alexa 594 and Alexa 488 (Life Technologies) at 25°C for 30 min. After washing with PBS, the cells were incubated with 200 ng/ml DAPI (Millipore Sigma) at 37°C for 5 min and washed twice with PBS. Fluorescence intensity was captured using the LSM 700 confocal laser scanning microscope (Carl Zeiss, Jena, Germany) (original magnification, × 40).



Chromatin Immunoprecipitation

Cells were treated with formaldehyde (Millipore Sigma) and rotated at 25°C for 15 min. Glycine (Duchefa Biochemie, Haarlem, Netherlands) was added before scraping with cold PBS. Pellets were lysed by sonication with FA lysis buffer. Chromatin samples were co-immunoprecipitated with protein A/G beads and 5 mg of anti-IgG and anti-β-catenin antibodies. Samples were treated with proteinase K (5 mg/ml) at 65°C for 6 h, followed by phenol/chloroform extraction. Pellets were dissolved in 30 ml of distilled deionized water. For the TCF binding site at position −578 of the human ZEB1 promoter, the primers amplifying the region between −674 and −477 were as follows: forward, 5′-TGGAAGGGAAGGGAAGGGAGTC-3′ and reverse, 5′-AGGCAGGGCTACCATCAGTC-3′. For the TCF binding site at position −161 of the human ZEB1 promoter, the primers amplifying the region between −325 and −101 were as follows: forward, 5′-TTTACCTTTCCAACTCCGACAGC-3′ and reverse, 5′-GGCTTTACGACATCACCTTCCTTAC-3′.



Animal Study

Six weeks old male BALB/c nude mice were purchased from Orient Bio Inc. (Seongnam, South Korea). Mice were maintained at 22 ± 2°C and 50 ± 10% humidity under a 12 h light:12 h dark regimen. The Institutional Animal Care and Use Committee of Korea University approved the studies, which were performed under the guidelines for the care and use of laboratory animals. LNCaPMock (4 × 106 cells/100 μl PBS) and LNCaPACTN4#2 (3 × 106 cells/100 μl PBS) cells were subcutaneously injected into mice (n = 3). Tumor volume was measured once a week using a digital caliper and calculated according to the following equation: V = (width2 × length) × 0.5. When the tumor volume reached 400 mm3, mice were surgically castrated and monitored for tumor progression.



Statistical Analysis

Data are presented as the mean ± SEM. Statistical evaluation was performed using GraphPad Prism 5 software (GraphPad Software, La Jolla, CA, United States). Two-tailed Student’s t-test was used to determine the significant difference between the means of two independent groups. Two-tailed Student’s t-test values of p < 0.05 were considered statistically significant.




RESULTS


ACTN4 Expression Increases During Androgen-Dependent PCa to AIPC Transition

ACTN4 contributes to aggressiveness and metastasis of various cancers (Honda, 2015); therefore, we investigated whether ACTN4 plays a role in the progression of PCa. We first analyzed ACTN4 expression in the PCa patient database. According to the Oncomine database for Tomlins Prostate Statistics (GSE6099), ACTN4 expression is elevated in prostate carcinoma compared to that in the prostate gland (Figure 1A). CRPC recurs through the reactivation of the AR signaling after androgen deprivation therapy (Katsogiannou et al., 2015). Interaction between ACTN4 and AR was predicted by protein–protein binding analysis (Capaia et al., 2018); therefore, we examined whether ACTN4 is involved in the regulation of androgen-dependent PCa to AIPC transition. To address this question, we generated ACTN4 overexpressing LNCaP cells (LNCaPACTN4); the cells were cultured in CSS media to examine the resistance against androgen deprivation conditions. Results of the MTT assay revealed that proliferation of LNCaPACTN4#2 cells was better than that of LNCaPMock cells in CSS media (Figure 1B). We also generated androgen-independent LNCaP cells (LNCaP-AI) from androgen-dependent LNCaP cells. LNCaP-AI cells exhibited higher AR expression and lower prostate specific antigen (PSA) expression at both mRNA and protein levels, compared with those in LNCaP cells (Figures 1C,D). The high AR and low PSA levels are well-known AIPC transition markers; therefore, we regarded LNCaP-AI cells as AIPC cells in following studies. The mRNA level of ACTN4 was threefold higher in LNCaP-AI cells compared to LNCaP cells (Figure 1E). In addition, the protein level of ACTN4 was twofold higher in LNCaP-AI cells compared to LNCaP cells (Figure 1F). We also observed the higher expression of ACTN4 in two AIPC cell lines, PC3 and DU145, compared with LNCaP cells (Figure 1F). These results indicate that ACTN4 expression increases during the transition from androgen-dependent PCa to AIPC and is involved in PCa survival under androgen deprivation.
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FIGURE 1. ACTN4 expression increases during androgen-dependent PCa to AIPC transition. (A) The dataset was accessed using the Oncomine database for Tomlins Prostate Statistics (GSE6099). Box plots depict the distribution of ACTN4 expression within each group (p = 7.52E–5). (B) LNCaPMock indicates the mock vector-expressing stable LNCaP cell line. LNCaPACTN4 indicates the ACTN4-overexpressing stable LNCaP cell line. Among the two independent clones of LNCaPACTN4 cells numbered as #1 and #2, the LNCaPACTN4#2 cell line was used in the study. Proliferation of LNCaPMock and LNCaPACTN4#2 cells in CSS media was measured using the MTT assay. Cells were treated with water-soluble tetrazolium salt solution and incubated at 37°C for 30 min, and the absorbance was measured at 450 nm. (C) LNCaP and LNCaP-AI cell lysates (4 × 105 cells/well) were analyzed by semi-qRT-PCR. (D) LNCaP and LNCaP-AI cell lysates (4 × 105 cells/well) were analyzed by western blotting. (E) ACTN4 mRNA levels were analyzed using qRT-PCR. (F) Total cell lysates were obtained from various PCa cells. The protein levels were determined by western blotting. All experiments were repeated at least thrice independently. *p < 0.05, **p < 0.01. Error bar, SEM (unpaired, two-tailed Student’s t-test).




ACTN4 Promotes the Proliferation of PCa Cells in an Androgen Deprivation State

ACTN4 is closely associated with malignancy and cell survival in many cancers (Honda, 2015; An et al., 2016). To examine whether ACTN4 affected PCa cell proliferation under androgen deprivation, we performed the MTT and colony formation assays. We first determined the level of si-ACTN4 used in this study in PC3 cells. ACTN4 knockdown decreased both the mRNA and protein levels of ACTN4 by 4- and 2.4-fold, respectively (Supplementary Figures S1A,B). ACTN4 overexpression rescued the knockdown of ACTN4 at both the mRNA and protein levels (Supplementary Figures S1A,B). Results of the MTT assay showed that ectopically expressed ACTN4 induced cell proliferation of androgen-dependent LNCaP cells under androgen deprivation conditions (Figure 2A). Moreover, ACTN4 enhanced the proliferation of LNCaP-AI cells in an androgen deprivation state, whereas ACTN4 knockdown suppressed the proliferation of LNCaP-AI cells (Figures 2A,B). In complete media, ACTN4 increased proliferation of LNCaP and LNCaP-AI cells, and ACTN4 knockdown decreased the cell proliferation (Figures 2C,D). Results of the colony formation assay showed that ACTN4 increased the proliferation of LNCaP cells by 2.1- and 6.3-fold in complete and CSS media, respectively (Figure 2E). ACTN4 knockdown decreased the proliferation of LNCaP-AI cells by twofold in both complete and CSS media (Figure 2F). These results indicate that ACTN4 promotes proliferation of PCa cells in an androgen deprivation state.
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FIGURE 2. ACTN4 promotes the proliferation of PCa cells in an androgen deprivation state. (A) LNCaP and LNCaP-AI cells were transfected with Flag-ACTN4 (1 μg), and the cells (2 × 103 cells/well) were cultured in CSS media (* is labeled as compared to LNCaP-AI cells, # is labeled as compared to LNCaP cells). (B) LNCaP and LNCaP-AI cells were transfected with si-ACTN4 (100 pmol/μl), and the cells (2 × 103 cells/well) were cultured in CSS media. (C,D) LNCaP and LNCaP-AI cells (2 × 103 cells/well) were transfected with Flag-ACTN4 (1 μg) or si-ACTN4 (100 pmol/μl) in complete media. Cell proliferation was measured using the MTT assay. Cells were treated with water-soluble tetrazolium salt solution and incubated for 30 min at 37°C and the absorbance was measured at 450 nm. (E,F) LNCaPMock, LNCaPACTN4#2, and LNCaP-AI cells (3 × 103/well) were analyzed using a colony formation assay in complete or CSS media for 10 days. Colonies were stained with 0.05% crystal violet, and the colonies in at least five fields were counted. All experiments were repeated at least thrice independently. *p < 0.05, **p < 0.01, #p < 0.05. Error bar, SEM (unpaired, two-tailed Student’s t-test).




ACTN4 Induces the Migration and Invasion of PCa Cells

ACTN4 induces the EMT and promotes cell migration and invasion in cervical cancer (An et al., 2016). To investigate whether ACTN4 was involved in the metastatic properties of PCa cells, we examined the effects of ACTN4 on migration and invasion of PCa cells. Results of the wound healing assay showed that compared with LNCaPMock cells, LNCaPACTN4#2 cells showed an increased wound closing rate in a time-dependent manner (Figure 3A). Furthermore, compared with the scrambled si-RNA (sc-RNA), si-ACTN4 reduced the wound closing rate in LNCaP-AI cells (Figure 3B). We also performed a transwell migration assay in LNCaP and LNCaP-AI cells. Compared with the LNCaPMock cells, LNCaPACTN4#2 cells showed 4.2-fold higher migration (Figure 3C). However, compared with the sc-RNA, si-ACTN4 reduced cell migration by 3.3-fold in LNCaP-AI cells (Figure 3D). In addition, LNCaPACTN4#2 cells exhibited an increased cell invasion by 10.2-fold compared with LNCaPMock cells (Figure 3E). However, compared with the control, ACTN4 knockdown decreased the invasion of LNCaP-AI cells by 1.6-fold (Figure 3F). The specificity of si-ACTN4 in cell migration was determined in PC3 cells. ACTN4 knockdown reduced cell migration by 3.6-fold, whereas the rescued ACTN4 restored cell migration, indicating ACTN4 knockdown was specific (Supplementary Figure S2A). These results indicate that ACTN4 induces the migration and invasion of PCa cells.
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FIGURE 3. ACTN4 induces the migration and invasion of PCa cells. (A) Cell culture plates with attached LNCaP cells were wounded and incubated with serum free RPMI 1640 medium. Representative wound-healing images were taken 0–48 h after wound scratch. (B) LNCaP-AI cells were transfected with sc-RNA or si-ACTN4 (100 pmol/μl) for 48 h and cultured in CSS media. Wound healing was monitored for 0–72 h. (C,D) LNCaPMock, LNCaPACTN4#2, or si-ACTN4-transfected LNCaP-AI cells (1 × 105 cells/well) were incubated for 48 h. Transwell migration was determined using 0.05% crystal violet staining. Cells from at least five fields were counted with the exception of non-specific stains. (E,F) For the transwell invasion assay, LNCaPMock and LNCaPACTN4#2, or si-ACTN4-transfected LNCaP-AI cells (1.5 × 105 cells/well) were stained with 0.05% crystal violet solution after 72 h incubation. All experiments were repeated thrice independently. *p < 0.05, **p < 0.01. Error bar, SEM (unpaired, two-tailed Student’s t-test).




ACTN4 Induces β-Catenin Accumulation in the Nucleus by Activating Akt and GSK-3β

Our previous study suggests that ACTN4 is involved in Akt-mediated β-catenin transcriptional activation in cervical cancer (An et al., 2016). Since the β-catenin signaling pathway is critical for tumor growth and metastasis, we examined whether ACTN4 influences the β-catenin activation in PCa. Ectopically expressed ACTN4 activated the Akt/GSK-3β/β-catenin signaling pathway in LNCaP cells (Figure 4A). High expression of ACTN4 in LNCaP-AI cells increased the phosphorylation of Akt and GSK-3β (Figure 4B). It also induced the stabilization of β-catenin (Figure 4B). We also examined the effect of ACTN4 overexpression on the Akt/GSK-3β/β-catenin signaling in LNCaP-AI cells. Results showed that ACTN4 overexpression activated the Akt/GSK-3β/β-catenin signaling in LNCAP-AI cells (Figure 4B). ACTN4 knockdown reduced the Akt-mediated β-catenin stabilization (Figure 4C). We examined the localization of β-catenin in LNCaP and LNCaP-AI cells. The results of immunofluorescence staining showed that β-catenin was apparently accumulated in the nucleus in LNCaP-AI cells compared to LNCaP cells (Figure 4D). These results indicate that ACTN4 induces β-catenin accumulation in the nucleus by activating Akt and GSK-3β.
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FIGURE 4. ACTN4 induces β-catenin accumulation in the nucleus by activating Akt and GSK-3β. (A) LNCaPMock and LNCaPACTN4#2 cells (4 × 105 cells/well) were harvested and the protein levels were detected by western blotting using the indicated antibodies. (B) Western blotting was performed using whole lysates of LNCaP and LNCaP-AI cells (4 × 105 cells/well). LNCaP-AI cells (4 × 105 cells/well) were transfected with Flag-ACTN4 (1 μg) for 24 h. Cell lysates were electrophoresed on an 8% SDS-PAGE and the protein levels were determined by western blotting. (C) LNCaP-AI cells (4 × 105 cells/well) were transfected with sc-RNA or si-ACTN4 (100 pmol/μl) for 48 h, and the protein levels were determined by western blotting. (D) LNCaP and LNCaP-AI cells were incubated with anti-β-catenin and anti-ACTN4 antibodies. Cells were washed and incubated with secondary antibodies conjugated to Alexa 488 (green) and Alexa 594 (red). The nucleus (blue) was stained with DAPI. Scale bar, 20 μm.




ACTN4 Induces the Expression of Cell Proliferation and EMT Markers Through the Akt/GSK-3β/β-Catenin Signaling Pathway

To investigate the regulation of PCa cell proliferation and EMT by ACTN4, we examined the effect of ACTN4 on the expression of β-catenin targets such as cyclin D1 and ZEB1. ZEB1 promoter has two β-catenin binding sites (Sanchez-Tillo et al., 2011). Therefore, we examined whether ACTN4 regulates the binding of β-catenin to ZEB1 promoter. We performed a ChIP assay in LNCaP and LNCaP-AI cells. LNCaPACTN4#2 cells showed an enhanced β-catenin binding to the ZEB1 promoter compared to LNCaPMock cells (Figure 5A). LNCaP-AI cells, which show a high expression of ACTN4, also showed an increased β-catenin binding to ZEB1 promoter compared to that in LNCaP cells (Figure 5A). When we examined the effect of ACTN4 on ZEB1 transcription, ACTN4 increased the ZEB1 mRNA expression by 200-fold in LNCaP cells (Figure 5B). These results indicate that ACTN4 increases the ZEB1 transcription by enhancing the β-catenin binding to the ZEB1 promoter. In addition, ACTN4 knockdown suppressed the mRNA and protein expression of cyclin D1 and ZEB1 (Figures 5C,D). ZEB1 functions as a key regulator in EMT (Gillett et al., 1996; Khan et al., 2015); therefore, we examined the effect of ACTN4 on the expression of EMT makers. ACTN4 decreased E-cadherin expression, whereas increased vimentin and N-cadherin mRNA and protein expressions in LNCaP cells (Figures 5E,F). LNCaP-AI cells exhibited a decrease in E-cadherin expression compared to LNCaP cells (Figures 5G,H). However, compared with LNCaP cells, LNCaP-AI cells showed higher expression of vimentin and N-cadherin at the mRNA and protein levels (Figures 5G,H). These results indicate that ACTN4 regulates cell proliferation and EMT through the Akt/GSK-3β/β-catenin signaling pathway.
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FIGURE 5. ACTN4 induces the expression of cell proliferation and EMT markers through the Akt/GSK-3β/β-catenin signaling pathway. (A) The DNA–protein complexes were precipitated using anti-β-catenin antibody. Purified DNA fragments were confirmed by semi-qRT-PCR using the TCF/LEF specific primers (1; −674 to −477 bp and 2; −325 to −101 bp) in the ZEB1 promoter. IgG was used as a negative control. (B) The ZEB1 mRNA level was analyzed by qRT-PCR. (C,D) qRT-PCR was performed to determine the mRNA expression, and the protein levels were determined by western blotting. (E,F) qRT-PCR and western blotting were performed to determine the EMT marker expression. (G) Total lysates were obtained from LNCaP and LNCaP-AI cells. The mRNA levels were determined by qRT-PCR. (H) The protein levels of LNCaP and LNCaP-AI cells were determined by western blotting using the indicated EMT marker antibodies. All experiments were repeated at least thrice independently *p < 0.05, **p < 0.01, ***p < 0.001. Error bar, SEM (unpaired, two-tailed Student’s t-test).




ACTN4 Promotes the Motility of AIPC Cells and Castration-Resistant Tumor Growth in vivo

We next investigated the effect of ACTN4 on the progression of AIPC using AIPC cell lines, PC3, and DU145. ACTN4 knockdown decreased cyclin D1 and ZEB1 expression in PC3 and DU145 cells (Figure 6A). To examine the effect of ACTN4 on cell motility and invasiveness, we performed migration and invasion assays in PC3 and DU145 cells. ACTN4 knockdown reduced cell migration by 1.9- and 3.8-fold in PC3 and DU145 cells, respectively (Figure 6B). Results of the invasion assay showed that compared to the sc-RNA, si-ACTN4 reduced invasiveness by 3.2- and 5-fold in PC3 and DU145 cells, respectively (Figure 6C). These results indicate that ACTN4 promotes the motility of AIPC cells. To verify the role of ACTN4 in PCa progression after castration, we performed xenograft experiments using nude mice. LNCaPMock and LNCaPACTN4#2 cells were subcutaneously injected into nude mice. Testicular hormone was eliminated by castration when the tumor size reached approximately 400 mm3. Tumors in the mice injected with LNCaPACTN4#2 cells continued to grow after castration (Figure 6D). However, tumors in the mice injected with LNCaPMock cells did not grow after castration (Figure 6D). These results indicate that ACTN4 is required for the acquisition of castration-resistance property in PCa.
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FIGURE 6. ACTN4 promotes the motility of AIPC cells and castration-resistant tumor growth in vivo. (A) PC3 and DU145 cells (4 × 105 cells/well) were transfected with sc-RNA or si-ACTN4 (100 pmol/μl) for 48 h, and the cell lysates were analyzed by western blotting. (B,C) PC3 and DU145 cells were transfected with sc-RNA or si-ACTN4 (100 pmol/μl) for 48 h, and the cells were incubated for 24 h. For migration and invasion assays, the cells were stained using 0.05% crystal violet, and those in at least five fields were counted. (D) Nude mice were subcutaneously injected with LNCaPMock (4 × 106 cells/well) and LNCaPACTN4#2 (3 × 106 cells/well) cells, and mice with tumor were castrated. Mice were killed 5 weeks after castration (n = 3). Tumor volume was calculated according to the following equation: V = 0.5 × (width2 × length). All experiments were repeated thrice independently. *p < 0.05, **p < 0.01, ***p < 0.001. Error bar, SEM (unpaired, two-tailed Student’s t-test).




Anti-ACTN4 Nanobody Inhibits the Proliferation and Motility of PCa Cells

Nanobodies (Nbs) were developed to successfully target and inhibit the human chemokine receptors and targeted treatment of tumors (Hu et al., 2017). Anti-ACTN4 Nb (Nb64) was developed by Gulliver Biomed BV (Ghent, Belgium) through the immunization of llamas. To investigate the effect of Nb64 on the progression of PCa, we generated the Flag-ACTN4 Nb64 construct (ACTN4 Nb) and transfected it to PCa cells. ACTN4 Nb was cloned into pCMV-3tag-1 vector using ApaI and EcoRI restriction enzymes. ACTN4 Nb inhibited the Akt/GSK3β/β-catenin signaling pathway in both PC3 and LNCaP-AI cells (Figure 7A). Results of MTT assay showed that ACTN4 Nb suppressed the growth of PCa cells in both cell lines (Figure 7B). We found that ACTN4 Nb decreased the colony formation of both PC3 and LNCaP-AI cells approximately by twofold (Figure 7C). We examined the effects of ACTN4 Nb on the migration and invasion of PC3 and LNCaP-AI cells. ACTN4 Nb reduced cell migration by 2.6- and 2.4-fold in PC3 and LNCaP-AI cells, respectively (Figure 7D). ACTN4 Nb also reduced cell invasion by 1.9- and 2.3-fold in PC3 and LNCaP-AI cells, respectively (Figure 7E). These results indicate that ACTN4 Nb is specifically targeted at ACTN4 and inhibits the proliferation and motility of PCa cells. We also examined the effects of ACTN4 Nb on the proliferation and motility of LNCaPACTN4 cells. ACTN4 Nb efficiently suppressed the Akt/GSK-3β/β-catenin signaling despite the overexpression of ACTN4 (Figure 8A). Results of colony formation assay showed that LNCaPACTN4#2 cells exhibited a twofold increase in colony formation compared to LNCaPMock cells; however, ACTN4 Nb decreased the colony formation of LNCaPACTN4#2 cells by 1.3-fold (Figure 8B). In addition, ACTN4 Nb reduced the migration and invasion of LNCaPACTN4#2 cells (Figures 8C,D). These results suggest that ACTN4 Nb inhibits the proliferation and motility of PCa cells.
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FIGURE 7. ACTN4 Nb inhibits the proliferation and motility of AIPC cells. (A) PC3 and LNCaP-AI cells (4.5 × 105 cells/well) were transfected with Flag-Mock and Flag-ACTN4 Nb (1 μg) for 24 h, and cells lysates were analyzed by western blotting. (B) PC3 (1 × 104 cells/well) and LNCaP-AI (5 × 103 cells/well) cells were transfected with Flag-Mock and Flag-ACTN4 Nb (1 μg). Cell proliferation was determined by the MTT assay. Cells were treated with water-soluble tetrazolium salt solution and incubated for 30 min at 37°C, and the absorbance was measured at 450 nm. (C) PC3 and LNCaP-AI cells (3 × 103 cells/well) were analyzed by a colony formation assay for 3 and 7 days. Colonies were stained with 0.05% crystal violet, and the colonies in at least five fields were counted. (D,E) For the transwell migration and invasion assays, PC3 cells transfected with ACTN4 Nb (5 × 104 cells/well) were incubated for 24 h, and LNCaP-AI cells transfected with ACTN4 Nb (1 × 105 cells/well) were incubated for 72 h. The cells were stained using 0.05% crystal violet, and those in at least five fields were counted. All experiments were repeated thrice independently. *p < 0.05, **p < 0.01. Error bar, SEM (unpaired, two-tailed Student’s t-test).
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FIGURE 8. ACTN4 Nb inhibits the proliferation and motility of androgen-dependent PCa cells. (A) Cell proliferation was analyzed by a colony formation assay. LNCaPMock and LNCaPACTN4#2 cells (4.5 × 105 cells/well) were transfected with Flag-Mock and Flag-ACTN4 Nb (1 μg) for 24 h. Total cell lysates were analyzed by western blotting using the indicated antibodies. (B) For colony formation assay, LNCaPMock and LNCaPACTN4#2 cells (3 × 103 cells/well) were incubated for 7 days. The cells were stained with 0.05% crystal violet and then counted. (C,D) LNCaPMock and LNCaPACTN4#2 cells (4.5 × 105 cells/well) were transfected with Flag-Mock and Flag-ACTN4 Nb (1 μg) for 24 h. The cells (1 × 105 cells/well) were analyzed by transwell migration and invasion assays. The cells were stained using 0.05% crystal violet, and those in at least five fields were counted. All experiments were repeated thrice independently. *p < 0.05, **p < 0.01. Error bar, SEM (unpaired, two-tailed Student’s t-test).





DISCUSSION

ACTN4 functions as a coactivator of oncogenic transcription factors in cervical, lung, colorectal, and breast cancers (Menez et al., 2004; Khurana et al., 2011; Fukumoto et al., 2015). ACTN4 mutation causes the suppression of tumor cell growth and migration in lung carcinoma (Menez et al., 2004). ACTN4 also increases cell motility and promotes lymph node metastasis in colorectal cancer (Fukumoto et al., 2015). In addition, ACTN4 knockdown reduces ERα target gene expression and decreases the proliferation of breast cancer cells (Khurana et al., 2011). In this study, we investigated the role of ACTN4 in the progression of PCa. Especially, we focused on the role of ACTN4 in the transition of androgen-dependent PCa to AIPC. We observed that ACTN4 expression was elevated in LNCaP-AI cells compared to that in LNCaP cells. Interestingly, LNCaPACTN4#2 cells maintained a steady cell proliferation rate in CSS media, whereas proliferation of LNCaPMock cells was decreased, indicating that ACTN4 is involved in androgen-independent proliferation of PCa cells. ACTN4 knockdown decreases the activation of Akt and GSK-3β, and it reduces cell motility in breast cancer (Desai et al., 2018). shACTN4 suppresses the Akt/GSK-3β/β-catenin signaling, and ACTN4 interacts with β-catenin in breast cancer stem cells (Wang et al., 2017). In addition, the ACTN4 and TRIP13 complex promotes EMT and tumor metastasis through the Akt signaling in hepatocellular carcinoma cells (Zhu et al., 2019). We have previously reported that ACTN4 induces the phosphorylation of Akt and GSK-3β in cervical cancer (An et al., 2016). We found that ACTN4 promotes cell motility and proliferation through the Akt/GSK3β/β-catenin pathway in PCa.

CRPC occurs due to relapse after androgen deprivation therapy (Sun et al., 2012). Castration and androgen deprivation reinforce the EMT properties, and EMT causes PCa metastasis and CRPC development (Li et al., 2014). According to reports, the expression of EMT-related factors such as N-cadherin, ZEB1, Twist1, and Slug at the transcriptional level is increased when mice are castrated (Sun et al., 2012). We found that ACTN4 induced N-cadherin, ZEB1, and vimentin in LNCaP-AI and LNCaPACTN4#2 cells. We also found that ACTN4 enhanced the binding of β-catenin to the ZEB1 promoter in AIPC cells. These results demonstrate that ACTN4 is involved in the progression of PCa by promoting cell motility and EMT in androgen-dependent PCa and AIPC cells.

The glucocorticoid receptor (GR) is closely related to AR and can functionally replace AR when AR signaling is blocked (Arora et al., 2013). GR expression is reduced in primary PCa tissues compared to benign tissues; however, restored GR expression during the CRPC transition is critical for CRPC cell proliferation (Puhr et al., 2018). Heme oxygenase 1 reduces cell proliferation by the inhibition of GR in PC3 cells (Leonardi et al., 2019). Furthermore, replacement of reduced AR signaling with GR activation increases cell survival by inducing anti-apoptotic serum/glucocorticoid-regulated kinase 1 (Isikbay et al., 2014). Since ACTN4 interacts with GR and participates in GR activation (Zhao et al., 2017), ACTN4 may be a key regulatory factor for PCa recurrence after androgen deprivation therapy.

Recent studies have reported that Na+/H+ exchanger regulatory factor 1 (NHERF1) is associated with cell proliferation through the Wnt/β-catenin signaling and negatively regulates ACTN4 expression in cervical cancer (Wang et al., 2018). In the Oncomine database (GSE6099), NHERF1 mRNA expression is reduced in prostate carcinoma compared to PCa precursor. Therefore, NHERF1 may be an upstream regulator of ACTN4. In addition, LIM domain kinase 1 (LIMK1), which is overexpressed in colorectal cancer, promotes cell motility and proliferation via Akt signaling, and ACTN4 is a downstream target gene of LIMK1 in colorectal cancer (Liao et al., 2017). However, the regulatory mechanism of ACTN4 in the progression of PCa is poorly understood. Although further studies are needed to characterize the molecular mechanism of CRPC transition and PCa progression, our findings suggest that ACTN4 is involved in advancement of the EMT potential of PCa cells and acquisition of the aggressive cancer properties. Therefore, ACTN4 can be a therapeutic target to prevent tumor survival, metastasis, and recurrence of PCa.

Monoclonal antibodies have been used for the development of tumor-targeted therapies (Kijanka et al., 2015). These antibodies cause less damage to healthy cells around the tumor site and have been used to directly inhibit tumor growth and proliferation or to deliver effector molecules to tumor cells (Bhutani and Vaishampayan, 2013). However, the size of monoclonal antibodies is about 150 kDa, preventing their access to tumors (Hu et al., 2017). To overcome these limitations, smaller formats such as Nbs have been generated (Bertier et al., 2017; Beghein et al., 2018). Nbs are small in size, less than 15 kDa, and have the advantage of being able to easily penetrate tumors through blood vessels in the body and persist in the tumor for a long time (Roovers et al., 2011). Recent studies have shown that several tumors are treated with Nbs. Angiogenesis is an important process for the growth of solid tumors, and many Nbs have been generated to interfere with vascularization. Vascular endothelial growth factor receptor 2, a factor that induces angiogenesis, is overexpressed in many types of cancers, including lung and colon cancers (Olsson et al., 2006). The 3VGR19 Nb targeting vascular endothelial growth factor receptor 2 inhibits capillary tube formation in vitro (Behdani et al., 2012). In addition, the 5F7GGC Nb targeting HER2, which plays an important role in inducing the growth, survival, and differentiation of breast cancer cells, binds to tumor cells and effectively inhibits the growth of tumors (Pruszynski et al., 2013). We showed that ACTN4 Nb reduces the growth and motility of PCa cells. Although further studies are required to determine the effect of ACTN4 Nb on the progression of PCa in vivo, our results suggest that ACTN4 Nb can be a therapeutic molecule for the treatment of PCa.
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INTRODUCTION

The profilins (PRFs) are low-molecular weight, cytosolic proteins made up of 129–133 amino acids and tightly control cell-cytoskeleton architecture mainly through actin polymerization (Christensen et al., 1996; Pollard and Cooper, 2009). The PRFs are the actin-binding proteins having conserved profilin-actin interacting regions (PAINRs) which are indispensable to the mechanism of actin-polymerization or -depolymerization process (Giehl et al., 1994; Pandey and Chaudhary, 2017). Globally, the size and location of PAINRs vary from 10 to 11 amino acids and between 57 and 128 amino acids in PRFs, respectively. Evidently, a hypervariable region at the C-terminal of PRF is responsible for their complex binding with actin filaments and regulates diverse functions (Sohn and Goldschmidt-Clermont, 1994). Although PRF proteins are present in almost all life forms including lower and higher plants, animals, fungi, protists and viruses, little is explicit about the PRF-mediated molecular interplay and the corresponding functional networks in land plants.

The PRF genes are ancient, evolutionarily conserved and functionally divergent among life kingdoms. Apparently, these genes are responsible for the maintenance of cell-walls by actin sequestration, nucleation and cytokinesis in both prokarya and eukarya (Magdolen et al., 1988). The advent of genomics and biotechnology has emphasized the emerging roles of PRF genes during plant growth and development that reveals their “novel” functional capabilities beyond their traditional contributions to the cytoskeleton maintenance. Their functional attributes in the root elongation, leaf morphology, epidermal expansion, flowering time phenotypes and seed germination have recently been explored in various plant species (Ramachandran et al., 2000; Müssar et al., 2015; Pandey and Chaudhary, 2016). Constitutive overexpression and silencing of PRF genes show strong effects on fiber initiation and elongation in cotton as well as flowering time phenotypes, stress tolerance and regulation of in vitro organogenesis in tobacco. Previously, we have characterized the molecular interactions of PRFs with proline-rich ligands including Arp2/3 complex, ARP4, ARP6 proteins, cell signaling polyphosphoinositides, and other actin-binding proteins during plant growth and development (Supplementary Figure 1) (Pandey and Chaudhary, 2016). These findings decisively endorse the invaluable roles of PRF genes not only in the traditionally established cytoskeleton maintenance but also in the key aspects of plant development which can be further exploited for the crop improvement programs.



EVOLUTION OF PRF GENE FAMILY IN LAND PLANTS

Comparative PRF phylogenetic analyses of various life forms including lower and higher plants, animals, fungi, protists, and viruses emphasized their ancient origin. Most plant and animal species have several PRF genes on contrary to few such genes in the lower life forms. Interestingly, PRF genes are evolutionarily preserved and emerged prior to the expansion of descendant species. The non-synonymous to synonymous nucleotide substitution ratio (Ka/Ks) reveal that the purifying selection is primarily responsible for the evolutionary stability of PRF genes. In addition, the segmental and tandem duplication events are also prominent for their structural/functional divergences among lineages (Supplementary Figures 2, 3). Such structural variations in PRF genes are probably attributed to the variations in the exon-intron architecture of paralogous and orthologous sequences across species (Bao et al., 2011; Pandey and Chaudhary, 2016). Remarkably, evolutionary succession is largely achieved by the insertion and/or deletion in the exon/intron regions of PRF genes (Rogozin et al., 2003; Babenko et al., 2004). Results show that the evolution of exonic and intronic regions of PRF genes occurred essentially before the divergence of eudicot and monocot species in the Plantae kingdom (Pandey and Chaudhary, 2017) (Supplementary Figure 2). On the contrary to higher plants, lower plant species generally contain one long exon possibly due to intron/exon gain; or exon-fission and it reflects their evolutionary divergence from higher plants. Intron-exon structural organization of orthologs and paralogs provides clues to interpret the functional diversification of PRF gene family with their ancient evolutionary footprints (Pandey and Chaudhary, 2017). This illustrated a fascinating trend of greater sequence diversity among PRF genes with their evolutionary origin in the polyphyletic mode. Furthermore, viral PRFs had probably originated from their ancient relatives through horizontal gene transfer, and it suggests the prevalence of evolutionary conservation of PRF genes among living and non-living. Interestingly, the evolutionary testing of lineage-specific PRFs shows that these proteins are essential in organisms' development and evolved in Paleozoic (545 MYA), Mesozoic (252 MYA) and Cenozoic (66 MYA) life forms. Thus, PRFs are the notable outcome of the continuous evolution under natural selection (Supplementary Figure 3). The PRF genes are prevalent during the evolution of land plants e.g., bryophytes and gymnosperms (~425 and 385 MYA, respectively) (Pandey and Chaudhary, 2017). Bayesian phylogenetic algorithm shows that KYMVIQGE and VIRGKKG amino acid motifs are distinct among PRF-homologs and -orthologs, respectively, and categorized as evolutionary residues. The signatures of residual conservation show distinct and apparent classification patterns comprising three or five amino acids such as LAPTG, PGQCN, MSWQ, GDYL, YVD, AAI, and KKT (Pandey and Chaudhary, 2017).

Furthermore, PRFs play a vital function in the actin polymerization and depolymerization processes through binding to PAINRs on the protein surface (Giehl et al., 1994). The PAINRs are composed of alanines, isoleucines, glutamine, glutamic acid, lysine, glycine, threonine, proline, and arginine which allow PRFs to interact with actin residues. The Arabidopsis PRF sequence (Accession number-AAG10091) consists of 134 amino acids and 11 amino acids long PAINRs (AIQEKGTPGMR) present at 64, 78–79, 81, 89, 94, 114–116, 120, 124 amino acid positions (Pandey and Chaudhary, 2017). The evolutionary conjunction of PAINRs is identified during the functional evolution of lineage-specific PRFs (Pandey and Chaudhary, 2017). Lineage-specific PRFs consisting of at least 11 residues also show large heterogeneity in the PAINRs of plant, fungal, animal and cyanobacterial origin which confirms their ancient evolution in the primitive life forms (Pandey and Chaudhary, 2017).



EMERGING ROLES OF PRF GENES DURING PLANT DEVELOPMENT AND THE UNDERLYING MECHANISMS

In response to endogenous or external signals, the cytoskeleton modifications in plants occur in an exceedingly coordinated manner preferably by the PRF-mediated polymerization of sequestered actin monomers and/or depolymerization of actin proteins (Pantaloni and Carlier, 1993). Despite striking discoveries into the genetics of cell-wall organization of plants (Taylor-Teeples et al., 2015), little is explicit about the PRF-mediated molecular interplay and the corresponding gene expression networks in plants. Several noteworthy examples highlighting the novel functions of PRF genes in plants are summarized here:


Cotton Fiber Development

Cotton is one of the most important sources of natural fiber and remarkable result of single epidermal cell extension on the surface of ovules. Modern long and spinnable fibers are the extraordinary product of the evolutionary selection forces such as genomic polyploidy imposed on wild short-fuzz phenotypes during cotton evolution, followed by the millennium of selection under domestication. The comparative transcript profiling of the fiber cells of domesticated diploid and allopolyploid cotton species at three developmental stages with their wild counterparts reveal the expression up-regulation of cell-wall associated PRF genes (Chaudhary et al., 2008, 2009). In cotton, the PRF gene family is structured in its coding and flanking regions as a multigene family consisting of six members. These genes are up-regulated up to ~400 times in the elongating fiber cells of domesticated accessions compared to their wild forms (Bao et al., 2011).

Five PRF genes of the diploid cotton species express at high levels in the elongating fiber cells at 10 days post-anthesis (dpa) compared to the vegetative and floral tissues (Pandey and Chaudhary, 2019). GhPRF1 gene expression at the 10 dpa fiber elongation stage is 9- and 16-fold higher than 5 and 20 dpa fiber tissues, respectively. Higher PRF expression at the fiber elongation stage is primarily important for cell extension and downstream cell signaling which declines very sharply at the maturation stage. Correspondingly, the extent of F-actin is also upregulated with increased filament length in the elongating fibers suggesting that temporal PRF transcript levels and actin filament organization are in equilibrium during fiber elongation (Pandey and Chaudhary, 2019). The temporal expression evolution of PRF paralog/homolog during cotton domestication gives evolutionary impressions of the selection of highly divergent transcription abundance, especially in the fiber development (Pandey and Chaudhary, 2017).



Regulation of Flowering Phenotypes

Previously, we show that the ectopic expression of trans-profilin (trans-PRF) gene in tobacco results in the hyperactivation of apical meristem, early flowering and a relative increase in the flower number per plant (Pandey and Chaudhary, 2016). The apical meristem tissues of PRF transgenics show coordinated expression of flowering-associated FT4, SOC1, FLC1, and FT1 genes and a positive flowering regulator AP1 gene. Moreover, protein-protein interactions and expression profiling reveal that Actin-Related Protein 4 (ARP4) and ARP6 genes are upregulated in the vegetative and floral tissues of PRF transgenics. These results establish a novel and systematic functional relationship between trans-PRF gene expression and early flower primordium initiation in PRF trasngenics (Supplementary Figure 1). The PRF-overexpression lines of tobacco also exhibit increased plant height, internode length, leaf size and flower number per inflorescence without yield penalties (Figure 1) (Pandey and Chaudhary, 2016). On the contrary, PRF-downregulation significantly reduces (~40%) the initiation of healthy floral buds, normal stamen and pollen production, and flower growth. Floral organ development is severely defected in PRF silencing lines with shortened staminal tube coverage and filament duration, reduced stamen number, indehiscence of anthers, abrupt and uncoordinated increase in the style duration, and irregular seed shape (Pandey and Chaudhary, 2016). Due to the dominance of aberrant floral phenotypes of PRF-silencing lines, the average number of flowers per branch significantly decreases compared to both PRF-overexpression lines and control tobacco plants (Pandey and Chaudhary, 2016). Besides the traditionally established role of PRFs in the cytoskeleton maintenance, these observations strongly recommend their indispensable roles in novel aspects of plant development. The development of enhanced agronomic traits in the PRF overexpression lines has enhanced our understanding of the novel and vital roles of PRF genes that could be utilized in their future deployment in crop improvement programs (Pandey and Chaudhary, 2016).


[image: Figure 1]
FIGURE 1. Functional diversity of actin-binding PRFs in plants. (a) domesticated cotton showing increased fibers length having ~400-fold increased PRF gene expression as compared to its wild counterpart (b) wild cotton fibers (c) increased size of leaf lamina in PRF overexpression line of tobacco (d) leaf lamina size of control plant (e) increased number of flowers in PRF overexpression line of tobacco (f) flowers in control plant (g) NBT-stained leaf of untransformed tobacco (grown on 50 mM NaCl concentration) showing higher ROS levels (h) NBT-stained leaf of PRF overexpression line of tobacco (grown on 50 mM NaCl concentration) (i) leaf explants of untransformed tobacco grown on in vitro culture medium (j) leaf explants of gus-transformed tobacco cultured on kanamycin antibiotic selection (k) leaf explants of PRF overexpression line of tobacco cultured on antibiotic selection (images in different panels are not to scale).




Stress Tolerance

The cell-wall is the outermost protective layer of a plant cell involved in the cytoskeleton integrity and provides conditions for the cell growth, development and defense from external stress (Le Gall et al., 2015; Höfte and Voxeur, 2017). Evidently, mass-spectrometry data reveal that up-regulation of PRFs in the root tissues of Cucumis and barley species under the salt treatment conditions (Du et al., 2010; Fatehi et al., 2012). Moreover, PRF gene expression elevation in a succulent halophyte Suaeda aegyptiaca under salinity stress further confirmed the role of PRFs in stress tolerance (Askari et al., 2006). These data provide evidence that PRFs are one of the foremost cytoskeleton-associated proteins that play vital roles during abiotic stress tolerance in plants. We have also investigated the effect of salt stress (up to 50 mM NaCl concentration) on tobacco PRF-overexpression transgenic lines under greenhouse conditions. Remarkably, oxidative stress measurement of these lines shows higher salt tolerance compared with control plants. Apparently, in response to various environmental stress conditions, the increased levels of oxidative stress produce highly reactive chemical molecules known as reactive oxygen species (ROS). Increased accumulation of ROS may cause cellular damages mainly through the degradation of lipids, proteins and nucleic acids (Das and Roychoudhury, 2014). Therefore, the cellular ROS levels of PRF-overexpression lines grown under salt stress conditions are measured by nitro blue tetrazolium (NBT) staining of the target tissues (Grellet Bournonville and Díaz-Ricci, 2011). The leaf tissues of PRF-overexpression tobacco lines grown under salt stress conditions show relatively decreased levels of ROS and establish a novel role of PRF genes in stress management in plants (Figure 1).



Enhanced Magnitude of in vitro Organogenesis

A prerequisite to the successful in vitro micropropagation and genetic modification of a crop species is the availability of an efficient, robust and reproducible regeneration system. In vitro regeneration process largely involves in the transcriptional reprogramming of soma-cells to enable cellular totipotency. We observe that overexpression of trans-PRF gene under a constitutive promoter enhances the number of in vitro shoot formation (up to 14%) in tobacco. The molecular basis of such enhanced emergence of shoot-initial on the edges of explants is directly linked to the relative transcription of CLAVATA1 (CLV1) and WUSCHEL (WUS) genes/trans-factors that alter proportionally with the magnitude of organogenesis in PRF-overexpression lines. The CLV1 and WUS genes are involved in the activation of essential signal transduction pathways required for the activation and formation of shoot primordial during in vitro organogenesis (Supplementary Figure 1) (Pandey and Chaudhary, 2016). Therefore, PRF genes have a direct role in the organogenesis process in vitro which can further be exploited for the improvement of agronomic traits in many crop species.
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Ca2+ regulates several cellular functions, including signaling events, energy production, and cell survival. These cellular processes are mediated by Ca2+-binding proteins, such as EF-hand superfamily proteins. Among the EF-hand superfamily proteins, allograft inflammatory factor-1 (AIF-1) and swiprosin-1/EF-hand domain-containing protein 2 (EFhd2) are cytosolic actin-binding proteins. AIF-1 modulates the cytoskeleton and increases the migration of immune cells. EFhd2 is also a cytoskeletal protein implicated in immune cell activation and brain cell functions. EFhd1, a mitochondrial fraternal twin of EFhd2, mediates neuronal and pro-/pre-B cell differentiation and mitoflash activation. Although EFhd1 is important for maintaining mitochondrial morphology and energy synthesis, its mechanism of action remains unclear. Here, we report the crystal structure of the EFhd1 core domain comprising a C-terminus of a proline-rich region, two EF-hand domains, and a ligand mimic helix. Structural comparisons of EFhd1, EFhd2, and AIF-1 revealed similarities in their overall structures. In the structure of the EFhd1 core domain, two Zn2+ ions were observed at the interface of the crystal contact, suggesting the possibility of Zn2+-mediated multimerization. In addition, we found that EFhd1 has Ca2+-independent β-actin-binding and Ca2+-dependent β-actin-bundling activities. These findings suggest that EFhd1, an actin-binding and -bundling protein in the mitochondria, may contribute to the Ca2+-dependent regulation of mitochondrial morphology and energy synthesis.

Keywords: EFhd1, swiprosin-2, crystal structure, β-actin, actin-binding protein, actin-bundling protein


INTRODUCTION

Regulation of the cytoskeleton is essential for cell dynamics, such as the maintenance of cell shape or motility (Egelman, 2004; Wu et al., 2016). Its malfunction promotes muscle weakness, cerebral arteriopathy, cardiomyopathy, and brain abnormalities (Parker et al., 2020). As the major cytoskeletal protein is actin, its regulation is responsible for several cellular functions, including maintenance of cellular morphology and formation of lamellipodia or filopodia (Lee and Dominguez, 2010). In the cytosol, actin monomers form actin filaments, and the actin filament networks are modulated by several actin-binding proteins (ABPs), including profilin and cofilin, which regulate the polymerization of actin and actinin, fascin, allograft inflammatory factor-1 (AIF-1), and EF-hand domain-containing protein 2 (EFhd2), which facilitate actin-bundling or cross-linking (Dubernard et al., 1997; Autieri et al., 2003; Aratyn et al., 2007; Lee and Dominguez, 2010; Kwon et al., 2013; Ali et al., 2016). In the mitochondria, the maintenance of morphology and function requires the mitochondrial actin, β-actin (Xie et al., 2018). β-actin knockout (KO) in mitochondria induces a severe loss of mitochondrial membrane potential, resulting in impaired mitochondrial DNA transcription and large aggregates of nucleoids (Xie et al., 2018). The EF-hand domain-containing protein 1 (EFhd1), a homologous protein of EFhd2, is localized in the mitochondria (Tominaga et al., 2006; Dutting et al., 2011). Since the gene encoding EFhd1 is not present in the mitochondrial DNA, following its translation in cytoplasm, EFhd1 translocates from the cytoplasm to the mitochondria (Anderson et al., 1981).

EFhd2, AIF-1, and EFhd1 have Ca2+-binding EF-hand motifs, which belong to the EF-hand superfamily, but they have distinct subcellular locations (Dutting et al., 2011). For cytosolic EF-hand superfamily, EFhd2 was first identified in lymphocytes, and it regulates cell spreading and the cell migration of immune and epithelial cells by F-actin rearrangement (Vuadens et al., 2004; Aratyn et al., 2007; Ramesh et al., 2009; Kwon et al., 2013). The crystal structure of Ca2+-bound state and EF-hand mutants of EFhd2 have been reported previously (Park et al., 2016). The overall structures of EFhd2 are compact and rigid, comparable to those of Ca2+-calmodulin-peptide complexes; however, EF-hand motifs are flexible in the mutant structures. Since the rigidity of EF-hand motifs in EFhd2 is essential for the F-actin-bundling activity of EFhd2, the mutants cannot bundle F-actin in vitro (Park et al., 2016; Durvanger and Harmat, 2019). AIF-1 is another cytosolic ABP that induces F-actin-bundling to control membrane ruffling in immune cells (Sasaki et al., 2001; Kanazawa et al., 2002; Autieri et al., 2003). The crystal structure of AIF-1 has a similar overall topology to that of EFhd2 (Yamada et al., 2006; Park et al., 2016). Unlike EFhd2 and AIF-1, EFhd1 is localized in the mitochondria and may regulate mitochondrial energy metabolism (Tominaga et al., 2006). EFhd1 modulates the apoptosis and differentiation of neuronal and muscle cells (Tominaga et al., 2006; Dutting et al., 2011). In addition, EFhd1 induces not only mitoflashes but also metabolic changes during the development of pro-/pre-B cells (Hou et al., 2016; Stein et al., 2017). A recent report suggested that EFhd1 affects mitochondrial morphology and energy production in the dorsal root ganglion neurons (Ulisse et al., 2020). However, the mechanism underlying the regulation of how EFhd1 regulates several cellular functions is currently unclear.

Here, we report the crystal structure of the core domain of mouse EFhd1 (CDEFhd1, residues 79–180) in a Ca2+-bound state, comprising a proline-rich (PR) region, two EF-hand motifs, a ligand mimic helix (LM-helix), and a C-terminal linker. The overall structure of CDEFhd1 was similar to that of CDEFhd2 and AIF-1. Intriguingly, we found two Zn2+ ions in the crystal packing interface, suggesting the plausible Zn2+-mediated multimerization. In addition, we identified Ca2+-independent α- and β-actin-binding and Ca2+-dependent β-actin-bundling activities of EFhd1, indicating that EFhd1 might be involved in the Ca2+-dependent regulation of mitochondrial morphology via interactions with β-actin.



MATERIALS AND METHODS


Cloning, Expression, and Purification of EFhd1 ΔNTD (Residues 69–240)

The mouse EFhd1 ΔNTD was amplified from full-length EFhd1 using polymerase chain reaction (PCR). The amplified DNA was cloned into a modified pET-28a vector (Novagen) that carried an N-terminal 6 × His (His6)-tobacco etch virus (TEV) protease cleavage site (Glu-Asn-Leu-Tyr-Phe-Gln/Gly). The recombinant plasmid was transformed into Escherichia coli strain BL21 (DE3) cells for protein expression. The cells were cultured at 37°C in Luria-Bertani (LB) broth containing 50 μg/mL kanamycin until the absorbance at 600 nm reached 0.7. Recombinant protein expression was induced with isopropyl β-D-1-thiogalactopyranoside (IPTG) (final concentration of 0.5 mM), and the cells were cultivated for an additional 4 h at 37°C. Cells were harvested by centrifugation at 4,000 × g for 15 min at 4°C. The harvested cell pellet was suspended in a lysis buffer [50 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 20 mM imidazole, 0.4 mM phenylmethylsulfonyl fluoride (PMSF), and 14.3 mM β-mercaptoethanol]. The resuspended cells were disrupted via sonication and centrifuged at 14,000 × g for 50 min at 4°C to discard cell debris. The soluble supernatant was loaded onto a gravity-flow column (Bio-Rad, Hercules, CA, USA) packed with Ni-IDA agarose resin (Elpis), pre-equilibrated, and subsequently washed with the lysis buffer to remove any non-specific proteins. The desired protein was eluted with lysis buffer supplemented with 400 mM imidazole. After concentrating the eluate, the protein solution was incubated with TEV protease overnight at 4°C to cleave the N-terminal His6-TEV tag. To exchange the buffer for crystallization, the final purified protein was passed through a HiLoad 16/60 Superdex 75 gel-filtration column (Pharmacia Biotech) pre-equilibrated with the final buffer (20 mM HEPES-NaOH pH 7.5, 150 mM NaCl, 0.4 mM PMSF, and 14.3 mM β-mercaptoethanol).

The purified protein was concentrated using a 10 K centrifugal filter (Millipore) and stored at −80°C. During purification, the presence of EFhd1 protein was confirmed via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and protein degradation was observed following incubation with TEV protease.



Cloning, Expression, and Purification of Full-Length EFhd1 and EFhd2

To investigate the actin-binding function, we purified full-length EFhd1 and EFhd2. Full-length EFhd1 was amplified using PCR and cloned into the modified pET-28a vector (Novagen) carrying an N-terminal His6-TEV tag. The overall expression and affinity chromatography procedure of full-length EFhd1 was similar to that of EFhd1 ΔNTD, except for the step involving the incubation of TEV protease. The process for the removal of the N-terminal His6-TEV tag was omitted due to protein degradation. After affinity chromatography, the eluted protein was concentrated. The final purified protein was passed through a HiLoad 16/60 Superdex 75 gel-filtration column pre-equilibrated with the final buffer (20 mM HEPES-NaOH pH 7.5, 150 mM NaCl, 0.8 mM PMSF, and 5 mM DTT). The purified protein was concentrated using 10 K centrifugal filters (Millipore) and stored at −80°C.

Full-length EFhd2 was amplified using PCR and cloned into the modified pET-28a vector carrying an N-terminal His6 tag. The recombinant plasmid was transformed into E. coli strain BL21 (DE3) cells to express the protein. The cells were grown at 37°C in LB broth containing 50 μg/mL kanamycin until the absorbance at 600 nm reached 0.7. The recombinant protein was induced with 0.5 mM IPTG and the cells were cultured for an additional 5 h at 37°C. Cells were harvested via centrifugation at 4,000 × g for 15 min at 4°C, and the harvested cell pellet was suspended in a lysis buffer (50 mM HEPES-NaOH pH 7.5, 300 mM NaCl, 5 mM imidazole, 0.4 mM PMSF, and 14.3 mM β-mercaptoethanol). The resuspended cells were disrupted via sonication and centrifuged at 14,000 × g for 50 min at 4°C to remove cell debris. The soluble supernatant was loaded onto a gravity-flow column packed with Ni-IDA agarose resin previously equilibrated and subsequently washed with the lysis buffer to remove any non-specific proteins. The protein was eluted with lysis buffer supplemented with 400 mM imidazole. After concentrating the eluate, the final purified protein was passed through a HiLoad 16/60 Superdex 75 gel-filtration column pre-equilibrated with the final buffer (20 mM HEPES-NaOH pH 7.5, 150 mM NaCl, 0.8 mM PMSF, and 5 mM DTT). The purified protein was concentrated using 10 K centrifugal filters (Millipore) and stored at −80°C.



Crystallization of EFhd1 Core Domain (Residues 79–180)

Initially, we attempted to crystallize Ca2+-bound EFhd1 ΔNTD (residues 69–240). EFhd1 ΔNTD was incubated for at least 20 min on ice after the addition of 1 mM CaCl2 and then screened using the sitting-drop vapor-diffusion method in a 96-well INTELLI-PLATE (Art Robbins Ins.). We found that EFhd1 ΔNTD was degraded and the core domain (CDEFhd1, residues 79–180) was crystallized. CDEFhd1 formed rod-shaped crystals after 1 week in a reservoir solution containing 80 mM HEPES-NaOH (pH 7.0), 2 mM ZnSO4, and 25% (v/v) Jeffamine ED-2003 (Molecular Dimensions). Additional refinements of crystallization conditions were performed using the sitting-drop vapor-diffusion method, and drops were prepared by mixing 1 μL of protein and 1 μL of reservoir solution. Crystals were obtained using a reservoir solution containing 0.1 M HEPES-NaOH (pH 7.5), 5 mM ZnSO4, and 25% (w/v) Jeffamine ED-2001 (Hampton Research). For data collection, CDEFhd1 crystals were cryoprotected by transferring into a mother liquor containing additional 30% (v/v) glycerol and flash freezing in liquid nitrogen.



X-ray Data Collection, Structure Determination, and Refinement

X-ray diffraction data of CDEFhd1 were collected at 100 K using synchrotron X-ray sources on beamline 5C at the Pohang Accelerator Laboratory (PAL, South Korea). We collected the best resolution diffraction data for CDEFhd1 at a 2.07 Å resolution. The CDEFhd1 crystal belongs to the space group P212121 with cell dimensions of a = 31.8, b = 47.6, and c = 87.2 Å. The diffraction data were indexed, processed, and scaled using the HKL2000 suite (Otwinowski and Minor, 1997). Template for molecular replacement (MR) of the EFhd1 core domain was generated by the SWISS-MODEL homology-modeling server using the human EFhd2 core domain (PDB ID: 5I2L) as the template (Waterhouse et al., 2018). Using this homology-model, the initial model of EFhd1 was determined via MR using Phaser in CCP4 (McCoy et al., 2007; Winn et al., 2011). Using the initial model, additional model building was performed using the COOT program (Emsley and Cowtan, 2004). Iterative refinement was performed with phenix.refine (Afonine et al., 2012; Liebschner et al., 2019). The details of the data collection and refinement statistics are provided in Table 1.


Table 1. Data collection and refinement statistics.

[image: Table 1]



Structural Analysis

All structural figures were generated using PyMOL version 1.5.0.4 (Schrödinger LLC). PDBePISA was used to analyze the interface, and the PRODIGY web server was used to predict the binding energies of symmetry-mate molecules (Krissinel and Henrick, 2007; Xue et al., 2016). Multiple sequence alignment was performed using ESPript 3.0 (Robert and Gouet, 2014). The Fobs-Fcalc map was calculated using phenix.maps and converted to the ccp4 format using a phenix.mtz2map (Liebschner et al., 2019).



Zn2+-Dependent Precipitation Assay

To measure the precipitation of EFhd1 and EFhd2 in various Zn2+ concentrations, we performed an in vitro precipitation assay. First, 6 μM of His6-TEV tagged full-length EFhd1 and His6 tagged full-length EFhd2 were incubated with 20 μM to 10 mM ZnCl2 in reaction buffer (100 mM KCl, 0.2 mM Tris-HCl, pH 8.0) at 24°C for 30 min. The precipitated proteins were pelleted via centrifugation at 15,000 × g for 10 min at 24°C. Equal volumes of pellet or supernatant solutions were resolved via SDS-PAGE, and the protein bands were visualized via Coomassie Brilliant Blue staining.

To measure the [image: image]value (concentration of half maximal protein aggregation for Zn2+), we used a spectrophotometric method. First, 6 μM of His6-TEV tagged full-length EFhd1 and His6 tagged full-length EFhd2 were incubated with various concentrations of ZnCl2 (0–1 mM ZnCl2 with EFhd1, 0–20 mM ZnCl2 with EFhd2) in reaction buffer (100 mM KCl, 0.2 mM Tris-HCl, pH 8.0) at 24°C for 30 min. The turbidity of the reacted proteins was monitored by measuring the absorbance at 470 nm using a spectrophotometer (Ultrospec 2000; Pharmacia Biotech). Graphs of absorbance at 470 nm were fitted using OriginPro 9.1 software (OriginLab Corporation, Northampton, MA, USA).



In vitro Actin-Binding Assay

Actin co-sedimentation assays were performed as previously reported (Kwon et al., 2013). In brief, non-muscle actin (85% β-actin and 15% γ-actin), derived from human platelets, and muscle actin (α-actin), derived from rabbit skeletal muscle (Cytoskeleton Inc.), were mixed in G-buffer (0.2 mM CaCl2, 5 mM Tris-HCl, pH 8.0) to produce actin stock and polymerized in an actin polymerization buffer (100 mM KCl, 2 mM MgCl2, 0.5 mM ATP, 0.2 mM Tris-HCl, pH 8.0) at 24°C for 1 h. Solutions containing polymerized actin (8 μM) were incubated with bovine serum albumin (BSA, 4 μM), EFhd1 (12 μM), or EFhd2 (12 μM) for 30 min at 24°C in the presence of 1 mM ethylene glycol tetraacetic acid (EGTA) or 1 mM CaCl2. Actin filaments with each protein were pelleted via centrifugation at 100,000 × g for 2 h at 24°C (for the actin-binding assay). BSA and EFhd2 were used as negative and positive controls, respectively. Equal amounts of pellet and supernatant were resolved via SDS-PAGE, and the protein bands were visualized by Coomassie Blue staining. The percentage of each protein in the pellet was quantified via densitometry using ImageJ 1.44p, and the percentage of pellet histogram was plotted using OriginPro 9.1 software (OriginLab Corporation, Northampton, MA, USA) (Schneider et al., 2012).



Negative Staining Electron Microscopy Imaging

Non-muscle actin (Cytoskeleton Inc.) was polymerized in F-actin buffer containing 100 mM KCl, 2 mM MgCl2, 0.5 mM ATP, and 0.2 mM Tris-HCl at pH 8.0. Mixtures (50 μL) of F-actin (4 μM) and full-length EFhd1 (6 μM) in the presence of 1 mM EGTA or 0.5 mM CaCl2 were allowed to react for 1 h. For grid preparation, 2 μL of reaction mixture was loaded onto the Formvar and metal-coated grids and blotted with filter paper to remove excess samples. The sample-loaded grid was stained using a solution of 1% (w/v) uranyl acetate. The grids were immersed in the stain solution for 20 min, blotted with filter paper to remove excess stain, and air-dried. The samples were analyzed using an FEI Tecnai G2 transmission electron microscope operated at 120 kV.




RESULTS


Overall Structure of the EFhd1 Core Domain in the Ca2+-Bound State

We determined the crystal structure of the core domain of mouse EFhd1 (CDEFhd1, residues 79–180) at a resolution of 2.07 Å and refined to Rwork = 20.9 (%) and Rfree = 22.9 (%) (Table 1). We initially attempted to crystallize the EFhd1 ΔNTD (residues 69–240) construct, but only the core domain was crystallized due to proteolytic degradation (Figure 1A). The CDEFhd1 structure comprised two EF-hand motifs (residues 91–162), an LM-helix (residues 169–176), a C-terminus of the PR region (residues 79–89) at the N-terminus, and a C-terminal linker (residues 177–180) (Figure 1B). Within the structure, Ca2+ ions were coordinated in each of the two EF-hand motifs of CDEFhd1 (Figures 1C,D). Consensus residues for Ca2+ coordination in the EF-hand consist of 12 amino acids with patterns of 1(X), 3(Y), 5(Z), 7(-Y), 9(-X), and 12(-Z) comprised of the five monodentate ligands and one bidentate ligand for -Z (Lewit-Bentley and Rety, 2000). Consequently, the geometry for Ca2+ coordination of the EF-hand is generally pentagonal bipyramid with a coordination number of seven comprising six oxygen atoms from the side chains and one main-chain carbonyl oxygen of -Y (Lewit-Bentley and Rety, 2000; Grabarek, 2006). In the case of EF-hand 1 of CDEFhd1, two water molecules participated in the Ca2+ coordination instead of the residues in position Y (G106) and -X (D112) (Supplementary Figure 1). Notably, this alternative pattern of Ca2+ coordination formed a distorted pentagonal bipyramid geometry. Unlike EF-hand 1, in the case of EF-hand 2 of CDEFhd1, one water molecule participated in Ca2+ coordination instead of the residues in position -X (S148). The Ca2+ coordination geometry of EF-hand 2 was maintained in the general pentagonal bipyramid. Collectively, EF-hand 1 and EF-hand 2 of CDEFhd1 had a distorted or general geometry for Ca2+ coordination, respectively.
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FIGURE 1. Overall structure of CDEFhd1. (A) Schematic diagram of mouse EFhd1 consisting of a PR (proline-rich) region, EF1 (EF-hand 1), EF2 (EF-hand 2), LM (ligand mimic)-helix, and CC (coiled coil). The upper bars indicate purified regions of EFhd1 (residues 69–240) and crystallized regions of EFhd1 (residues 79–180), respectively. (B) The overall structure of the core domain of EFhd1 (CDEFhd1). The PR region is colored green. EF1 and EF2 are colored violet and cyan, respectively. The LM-helix was colored yellow. (C,D) A cartoon representation of EF1 (C) and EF2 (D) with Ca2+ represented by a red sphere. The residues participating in Ca2+ coordination are represented in the stick form. Ca2+ coordination is marked by dashed lines. (E) Detailed view of the interaction between PR region and EF2. The interacting residues are represented in stick form, and the hydrogen bonds are marked by dashed lines. (F) Detailed view of the interaction between the LM-helix and two EF-hand motifs. The interacting residues are represented in stick form.


The structure of the motifs in CDEFhd1 was stabilized by hydrophobic intramolecular interactions. In the PR region (helix α1), three Phe residues (F79, F85, and F88) formed hydrophobic interactions with L153 and L154 of helix α5 of EF-hand 2 (Figure 1E). The interaction of the PR region and helix α5 was further stabilized through the hydrogen bond network comprising E84 (PR region), E87 (PR region), E141 (interloop of EF-hand 2), R150 (helix α5), H157 (helix α5), and a glycerol molecule (gray). The LM-helix was stabilized by the intramolecular hydrophobic interaction network comprising the LM-helix (L170, L173, A174), helix α2 (M99), helix α3 (L116, M119, M120, L123), helix α4 (M135), and helix α5 (F152, I155, F156, A159) (Figure 1F). In the case of the C-terminal linker, I179 formed hydrophobic interactions with L92, L96 of helix α2, and F156 of helix α5. Collectively, CDEFhd1 formed a compact and rigid domain structure through these intramolecular interactions.



Structural Comparison Between the Core Domain of EFhd1, EFhd2, and AIF-1

The genes encoding EFhd1, EFhd2, and AIF-1 evolved from the common ancestral species of Bilateria (Dutting et al., 2011). The sequences of EFhd1 and EFhd2 are highly conserved, with a sequence identity of 65%, but the sequence of AIF-1 is conserved with that of EFhd1 only in the EF-hand motifs with an overall sequence identity of 15% due to the difference in evolutionary branching. Although the sequence conservation was limited to the EF-hand motifs in AIF-1, the overall structures of these proteins for Ca2+-bound states were relatively well-superimposed (RMSD of CDEFhd1 and CDEFhd2 = 0.403 Å for 85 Cα atoms, RMSD of CDEFhd1 and AIF-1 = 2.089 Å for 63 Cα atoms) (Figure 2A). EF-hand motifs of these proteins accommodate a helix (LM-helix in CDEFhd1 and CDEFhd2, and helix E in AIF-1), comparable with the binding mode of the calmodulin-ligand interaction (Durvanger and Harmat, 2019). When we compared the Ca2+-bound CDEFhd1 and CDEFhd2, the LM-helices of both proteins participated in the intramolecular hydrophobic interactions with the hydrophobic groove of the EF-hands, and the hydrophobic interaction networks of CDEFhd1 and CDEFhd2 were structurally conserved (Figures 2B,C) (Park et al., 2016). Unlike the LM-helix of CDEFhd1 and CDEFhd2, the helix E of Ca2+-bound AIF-1 formed intermolecular hydrophobic interactions with the hydrophobic groove of two EF-hands in a symmetry-mate molecule, resulting in the dimer formation of AIF-1 (Yamada et al., 2006). When we compared the intramolecular interactions in CDEFhd1 and the intermolecular interactions in AIF-1, a distinct hydrophobic interaction network between the hydrophobic groove of the EF-hands and the accommodated helix (LM-helix in CDEFhd1 and helix E′ in AIF-1) was found (Figures 2B,D). Collectively, the overall structure of CDEFhd1 was similar to that of CDEFhd2 and AIF-1, but the hydrophobic interaction network between the LM-helix and hydrophobic groove of EF-hands in CDEFhd1 was similar to that of CDEFhd2, but not AIF-1.
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FIGURE 2. Structural comparison between Ca2+-bound CDEFhd1, CDEFhd2, and AIF-1. (A) Ribbon diagrams of superimposed CDEFhd1 (PDB ID: 7CLT), CDEFhd2 (PDB ID: 5I2L), and AIF-1 (PDB ID: 1WY9). The ribbon diagrams are represented in different colors: orange (CDEFhd1), cyan (CDEFhd2), and gray (AIF-1). The LM-helices of EFhd1 (orange) and EFhd2 (cyan) are presented in a cylindrical diagram. Helix E (gray) and E′ (dark gray) of AIF-1 are presented in the cylindrical diagram. Helix E′ is derived from the symmetry mate molecule of AIF-1. (B–D) Detailed view of the hydrophobic networks of the EFhd1 (B), EFhd2 (C), and AIF-1 (D). The hydrophobic residues are represented in the stick and surface form. The LM-helices of EFhd1 and EFhd2 are colored in orange and cyan, respectively. The helix E′ in AIF-1 is colored in dark gray. The LM-helices and helix E′ are represented in the cylindrical diagram. (E,F) Detailed view of superimposed EF-hand 1 or EF-hand 2 on EFhd1 (orange) and EFhd2 (cyan) (E), or EFhd1 (orange) and AIF-1 (gray) (F). The residues for Ca2+ coordination are represented in the stick form. Ca2+ is marked by orange (EFhd1), cyan (EFhd2), or gray (AIF-1) spheres. Ca2+ coordination is marked by dashed lines.


To compare the EF-hand motifs of CDEFhd1, CDEFhd2, and AIF-1, we superimposed the structures based on EF-hand 1 or 2. In CDEFhd1 and CDEFhd2, EF-hand 1 coordinated Ca2+, and the Ca2+ coordinating residues were well-superimposed (RMSD = 0.269 Å for 36 Cα atoms) (Figure 2E). However, the EF-hand 1 of AIF-1 could not coordinate Ca2+ because there was no space for Ca2+ coordination due to the β-turn, which was stabilized by a hydrogen bond network comprised of N60, N62, and D64 (Yamada et al., 2006) (Figure 2F). In addition, the consensus residues for the EF-hand 1 of AIF-1 were not conserved with those of CDEFhd1 and CDEFhd2 (Supplementary Figure 1). Although EF-hand 2 of these proteins could coordinate Ca2+, the geometries for Ca2+ coordination were distinct. The EF-hand 2 of EFhd1 and EFhd2 formed geometries of the pentagonal bipyramid for Ca2+ coordination, but that of AIF-1 formed a trigonal bipyramidal geometry (Figures 2E,F). This originated from the differences in sequences between AIF-1 and EFhd1 or EFhd2.

The canonical EF-hand domain has two helix-loop-helix motifs comprising four helices (helix 1, helix 2, helix 3, and helix 4) and forms two hydrophobic clusters (I and II) (Denessiouk et al., 2014). Helices 1 and 4 form hydrophobic cluster I, comprising three aromatic residues, and helices 2 and 3 usually form hydrophobic cluster II, comprising a combination of aromatic, hydrophobic, and polar amino acids. Based on the conformational changes of the hydrophobic clusters I and II upon Ca2+ binding, EF-hand-containing proteins can be classified into five separate types (Denessiouk et al., 2014). A previous report suggested that CDEFhd2 belongs to type I, which maintains an open conformation, secondary structures, and cluster interactions independent of Ca2+ (Ferrer-Acosta et al., 2013; Park et al., 2016). Although we could not determine the type of CDEFhd1 due to the lack of the structure of the apo-state, we expected that CDEFhd1 also belonged to type I because of its structure and sequence similarity with CDEFhd2 (Figure 2A, Supplementary Figure 2). Indeed, the structures of the EF-hand motifs comprising hydrophobic clusters were highly conserved in CDEFhd1 and CDEFhd2 [RMSDs of EF-hand motifs, cluster I, and cluster II are 0.334 Å (for 66 Cα atoms), 0.266 Å (for 25 Cα atoms), and 0.177 Å (for 22 Cα atoms), respectively]. In addition, the sequences of the EF-hands in both proteins were highly conserved with a sequence identity of 85% (hydrophobic cluster I: F100, F149, and F152 in EFhd1; F101, F150, and F153 in EFhd2; hydrophobic cluster II: L113, L116, and I136 in EFhd1; L114, L117, and I137 in EFhd2). Therefore, CDEFhd1 was classified as type I.



Zn2+ Ions in the Crystal Packing Interfaces of the EFhd1 Core Domain

In the electron density map (Fobs-Fcalc) of CDEFhd1, we observed two strong unidentified electron density maps located at the interfaces of the symmetry-mate molecules (Figure 3A). We further analyzed the unidentified electron density based on the metal coordinating geometric analysis performed with the CheckMyMetal and MetalPDB server (Zheng et al., 2017; Putignano et al., 2018). The coordination geometry was predicted to be tetrahedron, which is the major geometry for Zn2+ coordination. In addition, with the addition of 5 mM ZnSO4 to the crystallization condition, we expected that Zn2+ ions (Zn1 and Zn2) would be present in the maps. We identified two Zn2+-mediated interactions between one CDEFhd1 (MolA) and other symmetry-mate molecules (MolB and MolC) (Figures 3B,C). Zn1 was coordinated by H129 (MolB), K133 (MolB), H157 (MolA), and E163 (MolA), and Zn2 was coordinated by D142 (MolA), D144 (MolA), a water molecule, and E166 (MolC). To further analyze the Zn2+-mediated interactions, we compared the interfaces between MolA and MolB (interface 1), and between MolA and MolC (interface 2). The interface areas of interfaces 1 and 2 were 339 and 151 Å2, respectively, and the predicted binding energy of interface 1 (−4.3 kcal mol−1) was lower than that of interface 2 (−3.3 kcal mol−1), suggesting that interface 1 is more energetically stable than interface 2. Therefore, interface 1 might contribute more to the Zn2+-mediated multimerization of the EFhd1 than interface 2.


[image: Figure 3]
FIGURE 3. Zn2+-mediated crystal packing interactions of CDEFhd1 and Zn2+-dependent precipitation assay of CDEFhd1 and CDEFhd2. (A) A cartoon representation of the symmetry mate molecules whose interactions are mediated by Zn2+. Interfaces 1 and 2 are formed by MolA and MolB or MolA and MolC, respectively. MolA is colored in orange, and MolB and MolC are colored in gray. The residues for intermolecular interactions are represented in the stick form. The Fobs-Fcalc maps for Zn2+ are marked by the magenta mesh form. (B,C) Detailed view of interface 1 (B) and interface 2 (C). The residues for Zn2+ coordination are represented in stick form. The Zn2+ coordination is marked by dashed lines. (D) Detailed view of superimposed interface 1 of EFhd1 (orange and gray) and EFhd2 (cyan) (PDB ID: 5I2L). The residues for Zn2+ coordination are represented in the stick form. (E,F) SDS-PAGE results of the Zn2+-dependent precipitation assay using EFhd1 (E) or EFhd2 (F). Zn2+ untreated samples are marked by control (C) and were centrifuged to separate the supernatant (S) and precipitant (P) fractions. The samples mixed with various concentrations of ZnCl2 (0.02, 0.2, 1, 2, and 10 mM) were centrifuged to separate supernatant (S) and precipitant (P) fractions, and the P fractions were analyzed via SDS-PAGE.


The Zn1 coordinating residues in EFhd1 (H129, K133, H157, and E163) were highly conserved with those in EFhd2 (H130, K134, R158, and E164), except H157 in EFhd1, which was replaced by R158 in EFhd2 (Figure 3D, Supplementary Figure 1). As histidine is a major ligand for Zn2+, we expected that the Zn2+-mediated multimerization of EFhd1 would be observed to a greater degree than that of EFhd2. To evaluate the difference between the Zn2+-mediated multimerization of EFhd1 and EFhd2, we performed Zn2+-dependent precipitation assays and turbidity measurements. In the precipitation assays, we found that the precipitation ratio of EFhd1 and EFhd2 increased in proportion to [Zn2+] (Figures 3E,F). Consistent with the precipitation assays, the turbidities of both proteins increased with a [Zn2+] (Supplementary Figure 3), and we obtained the [image: image] (concentration of half maximal protein aggregation for Zn2+) of 0.41 ± 0.02 mM for EFhd1 and 5.9 ± 0.4 mM for EFhd2. Therefore, we concluded that EFhd1 and EFhd2 could be multimerized by Zn2+, and EFhd1 was more sensitive to Zn2+ than EFhd2 for multimerization.



Actin-Binding and -Bundling Activities of EFhd1

EFhd2 and AIF-1, which belong to the EF-hand superfamily proteins, have F-actin-binding and -bundling activities (Sasaki et al., 2001; Schulze et al., 2008; Huh et al., 2013; Kwon et al., 2013). As EFhd1 also belongs to the EF-hand superfamily proteins and has a high sequence similarity with EFhd2, we expected that EFhd1 would also be involved in F-actin-binding and -bundling. To measure the actin-binding activity, we performed in vitro high-speed co-sedimentation assays using β-actin with full-length EFhd1 or EFhd2 (Figure 4A). The co-sedimentation ratios of EFhd1 and EFhd2 in the presence of Ca2+ were 36 ± 2% (all errors of means are at 95% confidence interval) and 24 ± 2%, respectively. In the absence of Ca2+, the co-sedimentation ratios of EFhd1 and EFhd2 were 36 ± 2% and 19 ± 2%, respectively. Both proteins were Ca2+-independently co-sedimented with β-actin, but the sedimentation ratio of EFhd1 was 1.7-fold higher than that of EFhd2. This suggested that EFhd1 has a higher binding affinity for β-actin than EFhd2, independent of Ca2+.
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FIGURE 4. In vitro β/α-actin-binding and -bundling activities of EFhd1. (A,B) SDS-PAGE results for co-sedimentation assays with EFhd1 and filamentous β-actin (A) and α-actin (B). EFhd2 and BSA were used as positive and negative controls, respectively. To control the presence or absence of the Ca2+ environment, 1 mM CaCl2 or 1 mM EGTA was added. (C) Quantification of the results of the co-sedimentation assays. The average values of the co-sedimentation ratios of each experiment are marked by black squares or red spheres. The error bars represent the 95% confidence interval for the mean, which was calculated from 10 independent experiments. Filled and open black squares represent the co-sedimentation ratios of EFhd1 and EFhd2 with β-actin, respectively. Filled and open red spheres represent the co-sedimentation ratios of EFhd1 and EFhd2 with α-actin, respectively. All co-sedimentation ratios were measured in the presence and absence of Ca2+. (D–F) Micrographs of negative staining electron microscopy for F-actin only (D), F-actin with 0.5 mM CaCl2 (E), and F-actin with EFhd1 and 1 mM EGTA (F).


While α-actin is localized in the cytosol, β-actin is localized not only in the cytosol but also in the mitochondrial matrix (Storch et al., 2007; Reyes et al., 2011; Xie et al., 2018). We hypothesized that the binding affinity of EFhd1 for β-actin may differ from that of α-actin because EFhd1 is localized in mitochondria (Tominaga et al., 2006). We performed co-sedimentation assays using α-actin with full-length EFhd1 or EFhd2 (Figure 4B). The co-sedimentation ratios of EFhd1 and EFhd2 in the presence of Ca2+ were 20 ± 2% and 19 ± 2%, respectively. In the absence of Ca2+, the co-sedimentation ratios of EFhd1 and EFhd2 were 21 ± 2% and 19 ± 2%, respectively. Both proteins were similarly co-sedimented with α-actin independent of Ca2+, and the sedimentation ratio of EFhd1 was comparable to that of EFhd2, suggesting similar α-actin-binding affinities of EFhd1 and EFhd2. When we compared the sedimentation ratio of EFhd1 for α- and β-actin, the sedimentation ratio for β-actin was 1.8-fold higher than that for α-actin, suggesting that EFhd1 has higher binding affinities for β-actin than α-actin. In the case of EFhd2, the sedimentation ratio for α- and β-actin was similar, suggesting similar binding affinities of EFhd2 for α- and β-actin. Collectively, EFhd1 had a higher actin-binding affinity for β-actin than that for α-actin regardless of Ca2+, and EFhd2 had a similar actin-binding affinity for α- and β-actin independent of Ca2+ (Figure 4C).

In addition to the co-sedimentation assays, we performed negative staining electron microscopy imaging with EFhd1 and F-actin (β-actin) to identify the actin-bundling activity of EFhd1 (Figures 4D–F). In the electron micrographs, we found the F-actin bundles only in the presence of Ca2+, suggesting the Ca2+-dependent actin-bundling activity of EFhd1. Meanwhile, the F-actin-bundling activity of EFhd1 for β-actin was lower than that of EFhd2 for α-actin (Huh et al., 2013). Collectively, EFhd1 had a Ca2+-dependent β-actin-bundling activity, which is lower than the α-actin-bundling activity of EFhd2.




DISCUSSION

This study demonstrated the crystal structure of the EFhd1 core domain, whose overall structure was similar to that of EFhd2 and AIF-1. We found two Zn2+ ions in the crystal packing interface, providing new insights into the Zn2+-mediated multimerization of EFhd1. In addition, we first identified the actin-binding and -bundling activities of EFhd1 in vitro. For β-actin, EFhd1 had Ca2+-independent β-actin-binding and Ca2+-dependent β-actin-bundling activities. EFhd1 bound not only to β-actin, but also to α-actin in vitro, which is the primary actin isoform in the cytosol, implying that EFhd1 could bind to α-actin in the cytosol.

We identified the Zn2+-mediated aggregation of EFhd1 with [image: image] = 0.41 ± 0.02 mM. Mitochondrial [Zn2+] remains controversial, but it is estimated to be in the submicromolar range in the Zn2+ overload state (Sensi et al., 2003; Park et al., 2012; Chabosseau et al., 2014). Although [Zn2+] for half aggregation of EFhd1 in vitro was much higher than that of mitochondrial [Zn2+], and the concentration of EFhd1 may differ between in vitro and physiological conditions, we cannot rule out the possibility of the multimerization of EFhd1 in the Zn2+ overload state because the local spatial and temporal mitochondrial [Zn2+] may be much higher than the reported micromolar range. It will be interesting to study the structural and functional role of Zn2+ ions in actin-binding and -bundling activities. In the cytosol, [Zn2+] is tightly regulated from the picomolar to nanomolar range, suggesting that the Zn2+-mediated multimerization of EFhd1 may not occur in the cytosol (Kambe et al., 2015). Thus, we suggest that EFhd1 binds to actin and is multimerized by Zn2+ in the mitochondria.

EFhd1 KO neurons showed alterations in mitochondrial morphology to a shortened shape, and the mitochondrial morphology could be affected by β-actin regulation (Xie et al., 2018; Ulisse et al., 2020). We found that EFhd1 had Ca2+-independent β-actin-binding and Ca2+-dependent β-actin-bundling activities (Figure 4). Therefore, we suggest that EFhd1 binds to β-actin in the resting state and induces β-actin-bundling in the Ca2+ overload state of mitochondria. The regulation of β-actin not only affects mitochondrial morphology but also the energy synthesis of mitochondria. The energy synthesis of mitochondria is reduced when the expression of efhd1 is downregulated (Stein et al., 2017; Ulisse et al., 2020). Therefore, we suggest that EFhd1 induces actin rearrangement in the mitochondria, resulting in changes in energy synthesis.

In this study, we determined the crystal structure of mouse EFhd1 without C-terminal coiled-coil, and proposed Zn2+-mediated EFhd1 multimerization. In addition, we unveiled the actin-binding and -bundling activities of EFhd1. Nevertheless, the C-terminal coiled-coil is important for understanding the actin regulation mechanism of EFhd1. The coiled-coil of EFhd1 is expected to be important for the dimerization of EFhd1 and actin-bundling activity because these regions are highly conserved in EFhd1 and EFhd2 (Kwon et al., 2013). Therefore, to understand the structural and functional role of EFhd1, structural studies on the full-length EFhd1 and EFhd1-actin filament complexes need to be performed.
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Osteogenesis imperfecta is a genetic disorder disrupting bone development and remodeling. The primary causes of osteogenesis imperfecta are pathogenic variants of collagen and collagen processing genes. However, recently variants of the actin bundling protein plastin 3 have been identified as another source of osteogenesis imperfecta. Plastin 3 is a highly conserved protein involved in several important cellular structures and processes and is controlled by intracellular Ca2+ which potently inhibits its actin-bundling activity. The precise mechanisms by which plastin 3 causes osteogenesis imperfecta remain unclear, but recent advances have contributed to our understanding of bone development and the actin cytoskeleton. Here, we review the link between plastin 3 and osteogenesis imperfecta highlighting in vitro studies and emphasizing the importance of Ca2+ regulation in the localization and functionality of plastin 3.
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INTRODUCTION

Osteogenesis imperfecta (OI) is a genetic form of skeletal dysplasia affecting 1 in 10,000–20,000 live births and resulting in a broad array of clinical manifestations (Lim et al., 2017; Marini et al., 2017; Palomo et al., 2017). OI, also known as brittle bone disease, is characterized by low bone mass and increased bone fragility with severity ranging from asymptomatic to perinatal lethality (Robinson and Rauch, 2019; Rossi et al., 2019). The primary cause of most OI forms is an impaired extracellular matrix resulting from defects in either quantity/quality or assembly of collagen type I (Nijhuis et al., 2019). Approximately 85–90% of OI cases are a result of pathogenic variants of either the COL1A1 or COL1A2 genes (Lindahl et al., 2015). The remaining OI cases stem from variants of 18 other identified genes, the majority of which are involved in collagen type I processing (Tauer et al., 2019). Interestingly, pathogenic variants of three genes (CRTAP, P3H1, and PPIB) coding for the components of the type I collagen 3-hydroxylation complex are associated with an altered expression of lamin A/C and cofilin 1, suggesting that nucleoskeletal and cytoskeletal abnormalities may be involved in the pathogenesis of the disease (Gagliardi et al., 2017). A more direct link to the cytoskeleton is observed in X-linked OI caused by pathogenic variants in the PLS3 gene located on the X chromosome and coding for the cytoskeletal actin-bundling protein plastin 3 (PLS3; aka T-plastin). To date, PLS3 is the only OI-linked gene not known to affect collagen processing.



PLS3 STRUCTURE AND FUNCTION

Plastins (aka fimbrins) are a highly conserved family of actin-bundling proteins, which are expressed in a tissue-specific manner (Lin et al., 1993; Shinomiya, 2012). Of the three plastin isoforms expressed in vertebrates, PLS3 is the most ubiquitous isoform expressed in all solid tissues (Lin et al., 1988, 1993, 1999), while PLS1 (aka I-plastin) and PLS2 (aka LCP1, LPL, or L-plastin) are primarily found in intestinal epithelium and hematopoietic tissues, respectively. Plastins contain two actin-binding domains (ABD1 and ABD2), each comprising two calponin-homology (CH) domains (Figure 1A). Binding of both ABDs to actin filaments (F-actin) brings the filaments together into a tight bundle (Figure 1B). F-actin bundling is critical to cellular structures (such as stress fibers, filopodia, focal adhesions, and microvilli) and processes (such as cell migration, cytokinesis, endo-, and exocytosis) and appears to be the primary function of plastins (Skau et al., 2011; Schwebach et al., 2020). F-actin bundling by plastins is tightly regulated by Ca2+ binding to plastins' N-terminal regulatory domain (RD), which contains two Ca2+-binding EF-hand motifs (Figure 1A). Upon binding of Ca2+, the RD potently inhibits the bundling activity of plastins by disabling ABD2 (Figure 1B) (Schwebach et al., 2017, 2020).


[image: Figure 1]
FIGURE 1. PLS3 in osteogenesis imperfecta. (A) A homology model of human PLS3 built using Phyre2.0 (Kelley et al., 2015) is colored according to the domain organization. Calponin-homology domains 1-2 (CH1 and CH2) and 3-4 (CH3 and CH4) form actin-binding domains 1 and 2 (ABD1 and ABD2), respectively. The N-terminal regulatory domain (RD; PDB:5JOJ; Ishida et al., 2017) is comprised of two Ca2+-binding EF-hand domains and positioned arbitrarily as its precise orientation relative to the actin-binding core is not known. OI-linked mutations resulting in the full-length protein are indicated as spheres: Ca2+-hypersensitive mutations are in magenta, Ca2+-hyposensitive mutations are in cyan, the bundling-disabling mutation is in yellow. A tentative RD docking site outlined by a blue oval at the ABD1-ABD2 interface has been determined by the location of the OI mutations disrupting Ca2+-sensitivity and reduced accessibility for labeling in the presence of the RD (Schwebach et al., 2020). (B) Actin bundle formation by the wild-type PLS3 is regulated by calcium. At low Ca2+ concentrations (nanomolar range), PLS3 forms actin bundles by binding simultaneously to two actin filaments (F-actin) via ABD1 and ABD2; saturation of the EF-hands in the RD with Ca2+ inhibits the ability of ABD2 to bind to F-actin and disassembles the bundle (Schwebach et al., 2017). (C) Finely tuned Ca2+ regulation of F-actin bundling by PLS3 is essential for proper bone formation (Schwebach et al., 2020). OI-causative pathogenic variants of PLS3 disrupting its normal functioning can be classified in three groups: (1) F-actin bundling-incompetent (deletions/truncations of PLS3 or p.L478P directly disrupting the actin-binding site of ABD2); (2) inhibiting ABD2 by sub-physiological Ca2+ concentrations (p.N446S and p.A253_L254insN); (3) disabling the ABD2 inhibition by physiological Ca2+ concentrations (p.A368D and p.E249_A250insIMGHSHSGSCLL). (D) Bone remodeling (reviewed in Niedzwiedzki and Filipowska, 2015): osteocytes (OCY) orchestrate bone lysis by osteoclasts (OCL) and bone formation by osteoblasts (OBL) via coordinated secretion of RANKL (receptor-activator of NFκβ ligand), M-CSF (macrophage colony stimulating factor), OPG (osteoprotegerin), NO (nitric oxide), TGFβ (transforming growth factor beta), PGE2 (prostaglandin E2), ATP, sclerostin, and DKK1 (Dickkopf-1). pOCL and pOBL – osteoclast and osteoblast precursors, respectively. PLS3 has been proposed to be involved in: (1) insufficient mineralization by OBL; (2) increased bone resorption by OCL; (3) dysregulation of mechanosensing by OCY leading to misbalance between bone resorption and formation.


PLS3 contributes to a variety of cellular activities and appears to be particularly important for shaping the actin cytoskeleton near membranes. Thus, PLS3 is found associated with the lamellipodium (Garbett et al., 2020; Schwebach et al., 2020) and focal adhesions in fibroblasts and osteoblasts (Schwebach et al., 2020). PLS3 has recently been shown to contribute to cell migration by strengthening and stabilizing membrane protrusions (Garbett et al., 2020). S-nitrosylation of PLS3 in endothelial cells in response to angiotensin II has been implicated in weakening adherence junctions but promoting migration and tube formation (Pan et al., 2020). Similarly, PLS2 is well-recognized to contribute to the migratory capabilities of immune and cancerous cells (Schaffner-Reckinger and Machado, 2020).

Both PLS3 and PLS2 interact with activated Rab5 and their expression is accompanied by increased fluid-phase endocytosis (Hagiwara et al., 2011). Plastin's ortholog in yeast (fimbrin) is localized almost exclusively to endocytic actin patches and is essential for endocytosis (Skau et al., 2011). Improved endocytosis has also been proposed to account for the PLS3's role as a protective modifier of spinal muscular atrophy (Ackermann et al., 2013; Lyon et al., 2014; Kaifer et al., 2017; Alrafiah et al., 2018). PLS3 also mediates membrane trafficking in hypoxia (Wottawa et al., 2017) and in the ectoplasmic specialization- testis-specific hybrid cell-cell junctions between Sertoli cells and spermatids. Localization of PLS3 with these contacts correlates with a highly dynamic reorganization of the membrane-associated actin cytoskeleton in spermatogenesis (Li et al., 2016).

A role of plastins in cytokinesis has also been revealed but appears to be less universal. In Caenorhabditis elegans zygotes, plastin increases cortical contractility and helps to stabilize myosin at the equatorial cortex (Ding et al., 2017; Leite et al., 2020), whereas the role of the fission yeast ortholog fimbrin in cytokinesis is controversial (Laporte et al., 2012; Christensen et al., 2019). Interestingly, plastin and myosin cooperate in cytokinesis (Leite et al., 2020) and epidermal morphogenesis/basement membrane assembly (Dor-On et al., 2017), while demonstrating mutually exclusive subcellular localization (Garbett et al., 2020), which can result from direct competition between myosin and plastin for binding sites on actin (Behrmann et al., 2012; Schwebach et al., 2020). Additional explanation for this antagonism is competition with tropomyosin, which has been demonstrated for yeast fimbrin (Christensen et al., 2019), but not yet for mammalian plastin and tropomyosin isoforms.

Surprisingly, PLS3 expression has also been shown to correlate with robust DNA repair (Hisano et al., 1996; Higuchi et al., 1998; Sasaki et al., 2002; Ikeda et al., 2005). Accordingly, PLS3 has been found to be an important marker in predicting the effectiveness of chemotherapeutics in the treatment of cancers (Hisano et al., 1996; Higuchi et al., 1998; Xin et al., 2020).

Despite significant advancements over the years, a comprehensive understanding of the PLS3 structure and biomechanics remains elusive. Of particular interest is obtaining a complete high-resolution structure of plastins including both the RD and actin-binding core, as this discovery would aid in deciphering a detailed molecular mechanism of PLS3 regulation by Ca2+. Furthering our understanding of the molecular and structural aspects of PLS3 bundling and regulation will be critical to uncover the role(s) of PLS3 in cells and tissues and shed light on how pathogenic variants of PLS3 lead to OI. It remains intriguing and obscure how mutations in the ubiquitously expressed cytoskeletal protein PLS3 result in pathogenic phenotype exclusively in bone tissue. A possible explanation is partial functional redundancy with other plastin isoforms (or other actin-bundling proteins). In this regard, it will be important to analyze the expression patterns of the less ubiquitous PLS1 and PLS2 isoforms in different tissues in response to the impact from the pathogenic PLS3 variants.



PLS3 PATHOGENIC VARIANTS IDENTIFIED IN X-LINKED OSTEOGENESIS IMPERFECTA AND THEIR CLINICAL MANIFESTATIONS

To date, 27 OI-associated pathogenic variants (including coding mutations and gene deletions/truncations) have been identified in the PLS3 gene located on the X chromosome (Table 1). The majority of these are expected to result in the absence of functional protein: four full or partial PLS3 gene deletions (Kämpe et al., 2017a; Kannu et al., 2017; Lv et al., 2017), seven frame-shift mutations resulting in truncated mRNA constructs (Fahiminiya et al., 2014; Nishi et al., 2016; Kämpe et al., 2017a,b; Lv et al., 2017), six nonsense mutations (Fahiminiya et al., 2014; Kämpe et al., 2017b; Balasubramanian et al., 2018; Chen et al., 2018; Wang et al., 2020), and one aberrant splicing variant (Cao et al., 2019). All but two of the resulting truncated mRNA molecules appear to be the canonical substrates for degradation by nonsense-mediated mRNA decay (NMD) (Miller and Pearce, 2014; Kishor et al., 2019). Indeed, in several tested cases, the pathogenic variants of PLS3 have not been detected at the protein level in tissues from OI patients (Van Dijk et al., 2013; Wang et al., 2020). The two variants, which do not meet the criteria for degradation by the NMD pathway may generate truncated proteins, which, however, are highly unstable upon expression in Escherichia coli and are unlikely to be functional when expressed in vivo (Schwebach et al., 2020).


Table 1. List of identified OI-linked PLS3 variants.
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Of particular interest in further understanding of PLS3's role in OI are variants that generate full-length mutated proteins. In two cases, the nucleotide insertions do not result in a frame shift and give rise to full-length PLS3 protein variants containing one (p.A253_L254insN) or twelve (p.E249_A250insIMGHSHSGSCLL) extra amino acids (Van Dijk et al., 2013). In three other cases, full-length OI-linked proteins result from missense mutations p.A368D, p.N446S, and p.L478P (Fahiminiya et al., 2014; Nishi et al., 2016; Kämpe et al., 2017b). Structural and functional consequences of these variants are discussed below.

The severity of OI clinical manifestations does not appear to directly correlate with a specific pathogenic PLS3 variant and varies greatly from the absence of physical symptoms to severe osteoporosis and dysmorphia (Makitie et al., 2019). While all patients have classical signs of osteoporosis with thin trabeculae and scarce osteoid seams, in general, hemizygous males are more affected than heterozygous females (Makitie et al., 2019). Phenotypes vary in females from mild to severe with variations existing within families (Kämpe et al., 2017b), which may be explained by variability in inactivation of the mutated X chromosome. Low bone mineral density (BMD) is common for all PLS3 OI variants, however its extent varies. Bone fractures are a functional consequence of decreased BMD and constitute another universal trait in PLS3-related OI. Vertebrae compression fractures, as well as long bone fractures resulting from minor trauma are common. In more severe cases, phenotypes can include facial dismorphism, clumsy gait, joint hyperlaxity, kyphosis, deafness, and blue sclerae (Fahiminiya et al., 2014; Nishi et al., 2016; Kämpe et al., 2017a,b; Lv et al., 2017; Chen et al., 2018; Costantini et al., 2018; Cao et al., 2019; Hu et al., 2020).



IMPORTANCE OF PLS3 FOR PROPER BONE FORMATION

Animal model studies have emphasized an importance of PLS3 in bone tissue development and support of healthy bone architecture. A Pls3 knock down in zebrafish manifests in significant skeletal and muscular abnormalities (Van Dijk et al., 2013), while Pls3 knock out mice show significant osteoporosis and decreased bone strength mirroring human OI symptoms (Neugebauer et al., 2018; Yorgan et al., 2019). Concordantly, PLS3 over expression in mice has resulted in increased bone strength and a thickened cortical bone (Neugebauer et al., 2018). However, the molecular mechanisms underlying the PLS3 function in bone tissue and whether PLS3 actin-bundling ability is important for bone homeostasis remain elusive.

To date, few studies have addressed the mechanisms by which PLS3 variants cause OI. Strong hypomineralization of the bone matrix is a common finding but is not thought to be due to increased bone turnover, albeit evidence of increased bone resorption has been reported (Laine et al., 2015). Bone shows reduced mineralizing surface and adjusted mineral apposition rate, while mineralization lag time is significantly increased (Laine et al., 2015; Kämpe et al., 2017a). A link between PLS3 and mineralization has been supported by increased expression of PLS3 in osteoblastic MC3T3-E1 cells upon mineralization (Fahiminiya et al., 2014) as well as the presence of PLS3 in matrix vesicles (Thouverey et al., 2011; Kim et al., 2013) generated from the apical microvilli of osteoblasts during mineralization (Thouverey et al., 2011). The presence of PLS3 in matrix vesicles correlates with its function as a regulator of apical microvilli (Fath and Burgess, 1995; Volkmann et al., 2001; Delanote et al., 2005) and membrane trafficking (Hagiwara et al., 2011; Wottawa et al., 2017). However, it remains unknown whether PLS3 contributes to the role of matrix vesicles in bone mineralization.



CALCIUM REGULATION IS KEY TO PLS3 ACTIVITY AND DRIVES ITS LOCALIZATION IN CELLS

A recent study has revealed the molecular consequences of OI-linked full-length PLS3 variants (p.E249_A250insIMGHSHSGSCLL, p.A253_L254insN, p.A368D, p.N446S, and p.L478P) at the protein and cellular levels (Schwebach et al., 2020). These variants segregate into three groups (Figure 1C) with distinct biochemical properties and intracellular localization. The p.L478P variant has been found to bind actin through intact ABD1 while being unable to bundle actin filaments in vitro. High-resolution cryo-EM reconstruction of ABD2 bound to F-actin has provided structural insights for this deficiency: the L478P mutation disrupts the structure of a conserved loop involved in F-actin binding. In cells, wild-type PLS3 has been shown to localize to actin-rich structures in lamellipodia and focal adhesions. This localization is severely affected for the bundling-deficient p.L478P, which, despite actin binding via ABD1, failed to associate with the actin cytoskeleton. This finding implies that F-actin bundling, rather than binding, is the primary function of PLS3 required for its proper intracellular localization including its association with the branched actin network at the leading edge. Therefore, similar to other loss-of-function variants (frame-shift, non-sense, and PLS3 gene deletions), the L478P missense mutation results in non-functional (i.e., non-bundling) PLS3 as a likely cause of OI.

More intriguingly, not only is PLS3 actin-bundling activity important, but its finely tuned Ca2+ regulation is essential for proper bone formation (Schwebach et al., 2020). Indeed, it has been demonstrated that the remaining full-length OI-causative PLS3 variants are capable to bundle actin, but their response to Ca2+ is perturbed toward either hypersensitivity (p.A253_L254insN and p.N446S) or hyposensitivity (p.E249_A250insIMGHSHSGSCLL and p.A368D). The altered sensitivity to Ca2+ affects the localization of PLS3 within cells: variants hypersensitive to Ca2+ associate more strongly with the branched actin network in the lamellipodia and are largely excluded from focal adhesions, while Ca2+-insensitive variants are depleted from the lamellipodia and localize primarily at significantly enlarged focal adhesions and in stress fibers. Moreover, such differential localization of PLS3 is Ca2+-dependent, as Ca2+ depletion from the cell culture medium has resulted in redistribution of PLS3 from the lamellipodia to focal adhesion sites, implying that Ca2+ aids in cycling of PLS3 between aligned actin bundles in focal adhesions and the branched actin network at the leading edge. This suggests that fine regulation of PLS3 by Ca2+ is critical to bone formation as its imbalance in either direction results in OI, comparable to that resulting from the loss of PLS3 (Figure 1C).

It should be restated that to date, no complete structure of any plastin/fimbrin has been described and the location of the RD relative to the core remained unknown until recently. While the structures of the actin-binding core (Klein et al., 2004) and the regulatory domain (Ishida et al., 2017) have been solved, a molecular model of how they are associated with each other has not been produced. Analysis of four distinct OI-linked PLS3 variants resulting in opposing Ca2+ sensitivities has suggested that the RD is positioned at the interface between ABD1 and ABD2. Homology modeling suggests that flexible loops between CH1-CH2 (containing residues E249-A250) and CH2-CH3 reside in proximity and together likely represent the RD docking site (Figure 1A). This hypothesis has been confirmed by differential labeling of two designed cysteine residues in the absence and presence of the RD (Schwebach et al., 2020).

Molecular dynamics simulations of one PLS3 variant, p.E249_A250insIMGHSHSGSCLL, has predicted the conformational changes in a loop between CH1 and CH2 in ABD1 (Chen et al., 2018). Chen and coauthors suggest that, despite the addition of 12 amino acids, the mutant showed less conformational change than the wild-type protein and a more compact structure via a tighter association of the loop with CH3 of ABD2 (Chen et al., 2018). The simulation, however, used a homologous model of the protein and, therefore, must be revised after the high-resolution structure becomes available.



POTENTIAL MECHANISMS BY WHICH PLS3 PATHOGENIC VARIANTS PERTURB OSTEOGENESIS

The mechanisms by which PLS3 affects osteogenesis/bone remodeling remain largely unknown. Three main hypotheses of PLS3-related osteogenesis imperfecta mechanisms have emerged (Figure 1D): (1) insufficient mineralization by osteoblasts (Fahiminiya et al., 2014), (2) increased bone resorption by osteoclasts (Neugebauer et al., 2018), and (3) dysregulation of osteocyte mechanosensing leading to misbalance between bone resorption and formation (Van Dijk et al., 2013).

(1) The effect of PLS3 on bone mineralization by osteoblasts has been inferred in multiple studies focusing on the level of bone mineralization in patients. Fahiminiya and colleagues found that in vitro differentiation of cultured mouse cranial MC3T3-E1 osteoblasts correlated with the increased expression of PLS3 (Fahiminiya et al., 2014), indirectly implying that PLS3 may be involved in bone mineralization. PLS3 deletions have been shown to cause significant hypomineralization of the bone matrix (Kämpe et al., 2017a). This is in contrast to OI caused by COL1A1 or COL1A2 variants, which result in hypermineralized bone matrix (Roschger et al., 2008). Regulation of intracellular vesicles in late osteoblasts transitioning to early osteocytes is thought to drive bone mineralization (Hearn and Russell, 1981; Barragan-Adjemian et al., 2006). PLS3 is recognized as a regulator of vesicle trafficking (Hagiwara et al., 2011; Wottawa et al., 2017) and is upregulated in matrix vesicles and microvilli of osteoblasts upon mineralization (Thouverey et al., 2011; Kim et al., 2013) further suggesting a link between PLS3 variants and altered bone matrix mineralization.

(2) Contribution of PLS3 to bone resorption would be surprising given that osteoclasts as all cells of hematopoietic origin express PLS2 as the primary plastin isoform (Ma et al., 2010; Si et al., 2018; Li et al., 2020). Thus far, endogenous expression of PLS3 has not been clearly demonstrated in osteoclasts in vivo. Accordingly, PLS3 has been shown to have no effect on osteoclast activity including bone resorption (Fahiminiya et al., 2014; Kämpe et al., 2017a). Yet, more recent work has proposed a role for PLS3 in osteoclast activity through the regulation of podosomes by NFκB signaling (Neugebauer et al., 2018). Since these findings are based on either overexpression or knockout of PLS3 in mouse models, evaluation of the effects of endogenously expressed pathogenic variants of PLS3 would be required to verify the validity of this hypothesis.

(3) Involvement of PLS3 in mechanosensing by osteocytes has also been hypothesized (Van Dijk et al., 2013; Laine et al., 2015). Recent studies demonstrating the importance of Ca2+ regulation in the PLS3 actin-bundling activity (Schwebach et al., 2017, 2020) have added further credence to this hypothesis. Embedded in bone matrix, osteocytes orchestrate bone remodeling by coordinated secretion of factors regulating both bone lysis by osteoclasts and bone construction by osteoblasts (reviewed in Niedzwiedzki and Filipowska, 2015) (Figure 1D). Therefore, being the major plastin isoform in osteocytes, PLS3 could contribute to both osteogenesis and osteolysis. Intriguingly, PLS3 is enriched in dendrites, and specifically at their branching points (Kamioka et al., 2004), which are recognized as the structures by which osteocytes sense their environment (Kamioka et al., 2004; Galli et al., 2010). Furthermore, the activity of integrin/adhesion-dependent voltage-gated calcium channels is a strong candidate for the driving force of bone formation and remodeling (O'Neill and Galasko, 2000; Li et al., 2002; Cao et al., 2019; Sun et al., 2019). The findings that Ca2+ is involved in the redistribution of PLS3 from focal adhesions to the leading edge (Schwebach et al., 2020) represents a strong link between the activities of PLS3 and the machinery thought to drive bone mechanosensing and reorganization. Future work in osteocytes is required to determine the specific role of PLS3 and its regulation by Ca2+ in these activities.



CONCLUSION

PLS3-mediated osteogenesis imperfecta is an exciting new field of study with implications in the clinic as well as the fields of bone development and actin biochemistry. Uncovering the mechanisms by which PLS3 causes OI has already contributed to our understanding of PLS3's roles and regulation in cells as well as guiding ongoing structural work. Future discoveries testing the hypotheses described above should reveal not only the mechanisms of X-linked osteoporosis but more broadly answer lingering questions about bone mineralization and mechanosensing. Integration of future PLS3 biochemistry and bone development studies could lead to targeted therapeutics for X-linked OI.
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The actin cytoskeleton of eukaryotic cells is a dynamic, fibrous network that is regulated by the concerted action of actin-binding proteins (ABPs). In particular, rapid polarization of cells in response to internal and external stimuli is fundamental to cell migration and invasion. Various isoforms of ABPs in different tissues equip cells with variable degrees of migratory and adhesive capacities. In addition, regulation of ABPs by posttranslational modifications (PTM) is pivotal to the rapid responsiveness of cells. In this context, phosphorylation of ABPs and its functional consequences have been studied extensively. However, the study of reduction/oxidation (redox) modifications of oxidation-sensitive cysteine and methionine residues of actin, ABPs, adhesion molecules, and signaling proteins regulating actin cytoskeletal dynamics has only recently emerged as a field. The relevance of such protein oxidations to cellular physiology and pathophysiology has remained largely elusive. Importantly, studying protein oxidation spatiotemporally can provide novel insights into localized redox regulation of cellular functions. In this review, we focus on the redox regulation of the actin cytoskeleton, its challenges, and recently developed tools to study its physiological and pathophysiological consequences.
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INTRODUCTION


Actin Cytoskeleton and ABPs

The actin cytoskeleton is important for maintaining the shape and structure of eukaryotic cells, as well as for such essential processes as cell migration, cell polarity, intracellular or extracellular trafficking, cell-cell interactions, and cell division. These processes are regulated by ABPs through the supply of globular actin (G-actin) for polymerization, nucleation of new filaments, depolymerization and severing, capping, branching, and formation of actin bundles [reviewed in Samstag et al. (2003)].

Actin is a 42-kDa globular protein that can be reversibly polymerized into filaments (F-actin). The length of the filaments is controlled by capping proteins and by actin-depolymerizing and -severing proteins like ADF-1 and cofilin (Samstag et al., 2013). The organization of higher-order structures, such as filopodia, invadopodia, lamellipodia, stress fibers, and microvilli requires actin bundles. Actin-bundling proteins such as plastins form F-actin into parallel or antiparallel arrays. These bundles provide the actin structures with structural stability and elasticity (Morley, 2012; Stevenson et al., 2012). Overall, spatiotemporal regulation of ABPs enables rapid rearrangement of the actin cytoskeleton in response to stimuli, and leads to formation of the right structures in the right place and at the right time (Winder and Ayscough, 2005; Davidson and Wood, 2016). Studies in recent years have shown that PTMs on ABPs dictate the responses of the cytoskeleton. In this review, we highlight the importance of redox regulation of ABPs and exemplify emerging tools to study this regulation in the future.



ROS Sources and Protein Thiol Oxidation

Reactive oxygen species (ROS) are produced in mitochondria, the endoplasmic reticulum (ER), and peroxisomes, or by specialized enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXes). There are seven NOX isoforms: NOX1–5 and DUOX1–2 (Hampton et al., 1998). These multi-subunit enzymes catalyze the generation of [image: image] from NADPH and O2 and are primarily localized at the plasma membrane and at the membrane of organelles (Brandes et al., 2014).

Cell types differ in their capacity to produce and detoxify ROS. Elevated ROS levels, termed a pro-oxidative micromilieu, have been implicated in various pathophysiological conditions, including aging and cancer (Jones, 2006; Harris and DeNicola, 2020). Cells use various antioxidant systems to maintain the balance of ROS. These include thioredoxins, important oxidoreductases that are e.g., highly upregulated in several tumor types to compensate for pro-oxidative settings (Raffel et al., 2003; Samaranayake et al., 2017). When the intracellular redox balance is disturbed and shifts toward a pro-oxidative micromilieu, toxic levels of oxidation on protein thiols, DNA, and lipids can result in cellular senescence and death (Sies and Cadenas, 1985; Jones, 2006). In small quantities, ROS, particularly H2O2, are important signal carriers acting through reversible cysteine oxidation on several proteins (Yang et al., 2007).

Cysteine thiol oxidation can change a protein's functions, stability, interaction partners, and localization, as well as affect the presence and degree of other PTMs. Thus, redox-sensitive cysteines serve as switches that ultimately interconnect biological functions, allowing the control of cellular signaling and functions (Jones, 2010; Go and Jones, 2013). In this context, several protein tyrosine phosphatases (Cho et al., 2004; Yang et al., 2007; Behring et al., 2020), cell cycle regulatory proteins (Wu and Momand, 1998; Burch and Heintz, 2005), growth factors, and actin cytoskeleton-regulating proteins (Tang et al., 1999; Lassing et al., 2007; Klemke et al., 2008; Hung et al., 2011; Parri and Chiarugi, 2013; Fremont et al., 2017) are known to be regulated by thiol switches (see below).



Redox Regulation of Cell Migration and Adhesion

Cells migrate in two- and three-dimensional environments by mesenchymal and amoeboid migration modalities, and a mixture of both, depending on the physical barriers, the topology and composition of the extracellular matrix (ECM), the type and degree of chemotaxis, and other cellular constituents of the environment (Yamada and Sixt, 2019). A highly dynamic and elastic actin cytoskeleton and rapid formation of cellular extrusions are fundamental to all types of cell migration.

The direction of moving cells is guided by growth factors and chemokines. Their binding to corresponding receptors initiates an array of signaling events leading to the recruitment and activation of ABPs (Blanchoin et al., 2000; DeMali et al., 2002; Yilmaz and Christofori, 2010). Mesenchymal cell migration comprises several coordinated steps that primarily depend on actin dynamics: actin polymerization and depolymerization; cell adhesion; and actomyosin contraction cycles. Actin polymerization at the leading edge of cells initiates formation of invadopodial and filopodial structures in which the interaction of integrins with the ECM results in further recruitment of ABPs such as actin-bundling proteins (Blanchoin et al., 2000; Huttenlocher and Horwitz, 2011). This contributes to the maturation of actin-based cellular protrusions. Formation of focal adhesions at the leading edge and resolving at the rear is critical for the establishment of polarity and forward movement of the cells (Yamada and Sixt, 2019). Focal adhesions represent molecular assemblies that anchor cells to the ECM via integrins and are hubs for signaling events. Degradation of the ECM by matrix metalloproteinases in invadopodial or podosomal structures paves the way at the cell front and contractile structures made up of actomyosin fibers deliver forces in order to push forward the rest of the cell body and rear (uropod) (Yamada and Sixt, 2019). The forward movement of the cell requires detaching at the cell rear which is primarily mediated by actin-severing proteins like cofilin. Cofilin also mediates the actin flow which is crucial for amoeboid cell migration. Particularly, lymphocytes in tissues make use of this mode of migration. It is characterized by a rounded cell morphology with cellular protrusions called blebs (Gaylo et al., 2016; Yamada and Sixt, 2019).

During cell migration, ROS can be generated by intracellular sources or exogenously in the surrounding micromilieu (Weinberg et al., 2019). The type, concentration, and location of ROS can differently influence cell migration and adhesion through the oxidation of signaling proteins, through oxidation of actin itself, or through the oxidation of ABPs, such as cofilin and L-plastin (LPL).

Accumulating evidence suggests that, physiologically, low levels of ROS are produced by NOXes in response to growth factor and chemokine stimulation in various cell types. For example, fibroblast growth factor was shown to induce NOX1 activity which promoted the migration of fibroblasts (Schröder et al., 2007). Similarly, hepatocyte stimulation by epidermal growth factor (EGF) induced NOX activity which was shown to be important for cell spreading and migration (Flinder et al., 2011). Pathophysiologically, in solid tumors ROS produced by NOXes were reported to be critical for epithelial-to-mesenchymal transition, tumor cell migration, and invasion (Tobar et al., 2010; Kim and Cho, 2014). In particular, overexpression of NOX4 induced through TGF-β has been implicated in migration of epithelial (Tobar et al., 2010), breast cancer (Boudreau et al., 2012), and melanoma cell lines (Ribeiro-Pereira et al., 2014). Similarly, other NOXes are reported to be critical for progression of various cancer types (Konate et al., 2020). Blockade of endogenous ROS production in migrating cells has provided strong evidence that NOX-induced ROS are central to cell migration (Heo et al., 2008; Tobar et al., 2010; Tamborindeguy et al., 2018). However, how NOXes are induced by these stimulations remains largely elusive, as does how ROS produced by NOXes are involved in thiol switches on specific proteins. Downstream of growth factor or chemokine stimulation during migration or adhesion, integrins cluster at focal adhesions, signaling molecules, such as protein kinases, and protein tyrosine phosphatases (PTPs) are recruited, and actin polymerization and rearrangement take place; these processes are also regulated by ROS (Figure 1A).


[image: Figure 1]
FIGURE 1. Redox regulation of proteins involved in cell activation and migration. (A) Cdc42 and Rac1 activation after stimulation by growth factors or chemokines leads to recruitment of the ARP2/3 complex, thereby inducing actin branching and polymerization at the leading edge. Bidirectional interactions of integrins with the ECM and intracellular interactions with adaptor molecules, such as talin and LPL lead to recruitment of Src and FAK kinases. This results in directional actin polymerization and formation of cellular extrusions. ROS are generated by NOXes either intracellularly or extracellularly in response to growth factor or chemokine stimulation. Different NOXes have different activation complexes and Rac1 activity is necessary for activation of NOX1-3. Extracellular ROS radicals ([image: image]) are converted to H2O2, which enters the cell through the plasma membrane or via aquaporins (not shown). ROS are also produced by mitochondria. Note that NOX2 is depicted as an example in the figure. (B) Influence of ROS on the signaling molecules and ABPs involved in cell migration and adhesion. Solid green arrow, activation of protein; dashed green arrow, “potential” activation of protein; solid red lines, inhibition of protein activity; dashed red lines, “potential” inhibition of protein activity.




Redox Regulation of the Actin Cytoskeleton

During cell adhesion and migration, ECM-integrin complexes are formed, bringing the cytoskeleton and other signaling proteins to the sites of new cytoskeletal assembly (Figure 1A). ROS regulate the actin cytoskeleton at several stages. Transcription factors including NF-κB, AP1, NRF2, HIF1-α (Staal et al., 1995; Kim et al., 2010) and signaling enzymes [PI3K/Akt and mitogen-activated protein kinase (MAPK)] can be indirectly regulated by ROS (Koundouros and Poulogiannis, 2018; He et al., 2019). Thus, ROS can influence the expression of various genes, including those encoding ABPs (Clarkson et al., 2002). The second regulation level is the direct oxidation of kinases and phosphatases, leading to their activation or deactivation, and thereby controlling the phosphorylation state and activity of ABPs (Figure 1B). In recent years, it has become clear that direct oxidation of actin and ABPs also has an important role in regulating actin cytoskeletal rearrangements (Figures 2A,B).


[image: Figure 2]
FIGURE 2. Redox regulation of cell migration. (A) Migrating cells establish polarity in response to chemokine and growth factor stimuli. At the leading edge, branched networks called lamellipodial protrusions and focal adhesions are formed. Filopodial extensions are formed by actin bundles. The cells contain an intracellular ROS gradient owing to localized ROS production resulting from NOX activity at the leading edges of migrating cells. At the rear, the sources and role of ROS are not known (indicated by a question mark). The intracellular ROS gradient is depicted in blue and white; dark blue and white indicate high and low ROS concentrations, respectively. The ROS gradient in the surrounding micromilieu is depicted in green and white; these colors indicate high and low extracellular ROS concentrations, respectively. (B) List of redox-regulated ABPs and actin, showing oxidized residues, the influence of oxidation on protein function and the consequent cellular functions, and data on spatiotemporal oxidation. “*” indicates the most sensitive cysteine on actin among other oxidized cysteine residues. Solid red lines indicate inhibition of protein activity; dashed red lines indicate “potential” inhibition of protein activity. Solid red arrows indicate downregulation of protein and cellular functions.




Redox Regulation of Signaling Molecules Orchestrates Actin Cytoskeletal Dynamics
 
Integrins

Integrins are transmembrane proteins that link the cell cytoskeleton to the ECM and bidirectionally transmit signals between cells and their environment, termed inside-out or outside-in signaling (Hynes, 2002). Integrins are heterodimers composed of α-subunits (18 types) and β-subunits (8 types). They bind to components of the ECM as well as to other receptors on neighboring cells. Intracellularly, integrins are connected to the actin cytoskeleton by adaptor proteins including talin and tensin (Calderwood and Ginsberg, 2003; Kechagia et al., 2019). Rezende et al. showed that two cysteines of integrin α7β1 formed a disulfide bridge after H2O2 treatment in vascular smooth muscle cells, and that this oxidation increased integrin binding to laminin (de Rezende et al., 2012). A follow-up study revealed thiol switches on two cysteines in the hinge region of the α7 chain, resulting in a high-ligand-binding conformation and thus regulating integrin binding to laminin, cell morphology, and migration (Bergerhausen et al., 2020).



Kinases

Focal adhesion kinase (FAK), a non-receptor tyrosine kinase orchestrates signaling cascades in the focal adhesions of migrating cells. It carries an integrin-binding domain and two proline-rich sequences that bind to SH2 domain-containing proteins (Mitra et al., 2005). FAK is activated by autophosphorylation at Tyr397 upon integrin binding to promote cell motility and adhesion. In protrusions of migrating cells, FAK signaling to downstream GTPases regulates changes in actin and microtubule structures. In this context, FAK phosphorylates Rho-family GTPase-activating proteins and their guanine nucleotide-exchange factors, as well as ABPs (Mitra et al., 2005). ROS-induced phosphorylation at various tyrosine residues enhances the kinase activity of FAK (Ben Mahdi et al., 2000; Basuroy et al., 2010); this was recently shown to be associated with increased cell survival (Ribeiro-Pereira et al., 2014). However, it is not yet known whether the increased phosphorylation of FAK is due to inhibition of a phosphatase or activation of a kinase. Importantly, a study demonstrated that focal adhesion turnover can be regulated by ROS (Datla et al., 2014). The authors showed elevated ROS in focal adhesions of migrating vascular smooth muscle cells. An siRNA-mediated knockdown of NOX4 or of its regulator Poldip2 prevented focal adhesion stability. In light of their findings, authors implicated the importance of ROS at focal adhesions and its regulatory influence on proteins, such as RhoA GTPases and FAK (Datla et al., 2014).

Similar to FAK, various protein kinase C (PKC) family proteins are critical to the phosphorylation of ABPs. Redox-dependent activation of PKCs can occur via direct regulation of redox-sensitive cysteines, or via ROS-dependent production of lipid intermediates or ROS-induced calcium regulation [reviewed in Steinberg (2015)].

Src kinases are another family of kinases with critical roles in actin cytoskeletal rearrangements. Src kinases contain SH3 and SH2 domains and a catalytic domain that autophosphorylates Tyr residues. Src is primarily found in its inactive conformation; dephosphorylation of the autophosphorylated Tyr sites is required for its activation. Importantly, Src kinases have been reported to be oxidized at certain cysteine residues at the catalytic site; this disrupts autophosphorylation, thereby activating the Src kinases (Knock and Ward, 2011). A study of Cys245Ala and Cys487Ala mutants indicated that oxidation at these cysteines was critical for Src activity, and thus for regulation of cell invasion capacity and anchorage-dependent growth (Giannoni et al., 2005). However, in many other cellular systems direct or indirect effects of ROS on Src kinase activity could not be differentiated since both activation (Heppner et al., 2018) and inactivation (Tang et al., 2005; Kemble and Sun, 2009) of Src kinases have been reported.



Rho GTPases

Binding of chemokines to RTKs activates Rho family of GTPases, such as Rac1, Cdc42, and RhoA. The cycling between GDP-(inactive) and GTP-bound (active) states modulates the interaction of Rho GTPases with cellular targets during physiological processes, such as migration and adhesion.

In particular, Rho GTPases regulate recruitment and activation of the ARP2/3 complex, leading to F-actin polymerization and branching (Figure 1). Rac1, Cdc42, and Rho GTPases were reported to be regulated by ROS. Interestingly, Rac1 can regulate ROS production and is itself regulated by ROS [reviewed in Hobbs et al. (2014)]. It is evidenced that NOX1, NOX2, and NOX3 activation requires a complex comprising active Rac1 for electron transport from NADPH to O2 (Hordijk, 2006). Rac1 also interacts with redox-modulating enzymes such as SOD1. The latter was proposed to activate Rac1/NOX in a redox-dependent manner (Harraz et al., 2008). ROS can induce the exchange of GDP from Rac1 leading to its activation. This seems to be mediated by direct Rac1 oxidation on Cys18 at the catalytic site as a Cys-Ser mutant did not show any activation in response to H2O2 treatment (Heo and Campbell, 2005). While the specific redox modification of Rac1 was previously only associated with the formation of lamellipodia (Hobbs et al., 2014), Rac1-mediated ROS production by NOXes has been attributed to several functions including cell migration (Myant et al., 2013; Tolbert et al., 2019).



Protein Tyrosine Phosphatases

PTPs regulate intracellular signaling by RTKs, integrins, and cytokine receptors. They dephosphorylate several proteins of cytoskeletal signal transduction pathways (Wu et al., 2005; Li et al., 2014). PTPs contain a motif with a highly acidic catalytic cysteine residue, whose nucleophilic attack on a targeted phosphotyrosyl residue results in its dephosphorylation (Zhang and Dixon, 1994). The catalytic cysteine, which has a low pKa value, is also highly susceptible to oxidation. As a consequence, PTPs are transiently oxidized and inactivated. Well-known redox-regulated PTPs include PTEN and PTP1B (Salmeen et al., 2003; Tonks, 2005; Chen et al., 2009; Schwertassek et al., 2014).

Binding of growth factors to RTKs activates the PI3K/AKT signaling pathway which is pivotal to cell growth and survival. Activated PI3K mediates conversion of PIP2 to PIP3 which further activates downstream kinases such as AKT. As opponent of PI3K, PTEN, a plasma membrane lipid phosphatase, converts PIP3 into PIP2. Thereby, it inhibits cell growth, survival, and cell migration and acts as a tumor suppressor. In this context, lack of PTEN in glioblastoma (Davidson et al., 2010), in gastric cancer (Ma et al., 2017), and in other cancers (Coronel-Hernandez et al., 2019; Hu et al., 2019; Zhang et al., 2020) was correlated with enhanced migration and invasion. Several studies revealed inhibition of the catalytic activity of PTEN by ROS thereby allowing prolonged signaling for cell survival, proliferation, and migration. PTEN oxidation generally enhances PI3K/AKT signaling resulting in cell type- and context-dependent functional consequences (Wu et al., 2013; Kim et al., 2018). Importantly, in tumor cells PTEN oxidation promotes tumor progression (Shen et al., 2015). Another well-known oxidized PTP is PTP1B, a regulator of insulin signaling and cellular metabolism. However, PTP1B oxidation was associated with both tumor promoting and inhibiting functions (Lessard et al., 2010; Xu et al., 2019) and requires further elaboration.




Redox Regulation of Actin and ABPs
 
Actin Oxidation

Actin has three isoforms, and all six cysteines of β/γ-actin and five cysteines of α-actin have been reported to be oxidized [reviewed in Wilson et al. (2016); Xu et al. (2017)]. Cys374 is the most critical of these redox-sensitive cysteines which can form an intramolecular disulfide bridge with Cys285 or an intermolecular disulfide bridge with Cys374 of another actin molecule (Lassing et al., 2007; Farah et al., 2011). Oxidation at Cys374 slows down the polymerization and stability of F-actin (DalleDonne et al., 1999). Another study showed that Cys374 oxidation induces actomyosin disassembly, and thus contributes to a contraction of the cytoskeleton during cell spreading and stress fiber formation (Fiaschi et al., 2006). In addition, S-glutathionylation of actin at Cys374 seems to be important for stress fiber formation, and for the spreading capacity of cells (Dalle-Donne et al., 2003; Fiaschi et al., 2006).

Further findings on thiol modifications at different cysteine residues of actin suggest different consequences depending on the cell type, and concentration and type of ROS (DalleDonne et al., 1995; Shartava et al., 1995; Moldovan et al., 2000; Wang et al., 2001; Fiaschi et al., 2006; Lassing et al., 2007; Thom et al., 2008; Farah et al., 2011). In several studies, non-physiological concentrations of exogenous ROS (mM range) were utilized which mostly diminished actin assembly. Contrarily, low concentrations of ROS were reported to positively influence actin polymerization. In this regard, an early study showed that blockade of NOXes in endothelial cell lines prevented G-actin incorporation into growing F-actin suggesting that ROS production by NOXes is critical for F-actin assembly (Moldovan et al., 2000). Similarly, blockade of NOXes downmodulated actin stress fiber formation and migration of tumor cell lines providing evidence for a positive role of ROS for localized actin polymerization and dynamics (Auer et al., 2017; Tamborindeguy et al., 2018). However, to the best of our knowledge, even though localized ROS production by NOXes during cell migration was elucidated (Kaplan et al., 2011; Tamborindeguy et al., 2018), there is no literature showing localized oxidation of actin on cysteine residues during physiological processes such as cell migration.

Actin is also regulated by oxidation at Met44 and Met47 through molecules interacting with CasL (MICAL) proteins (Hung et al., 2011; Grintsevich et al., 2016). Oxidation by MICALs diminishes inter-actin contacts, resulting in enhanced F-actin disassembly, diminished actin polymerization, and increased monomeric actin concentrations in cells (Grintsevich et al., 2017). MICAL1 specifically mediates oxidation of F-actin, which enhances the binding of cofilin to filaments. This, in turn, increases actin filament severing by cofilin and subsequent actin depolymerization (Grintsevich et al., 2016). Physiologically, localized MICAL1 functions were shown to be critical for cell division (Fremont et al., 2017). Pathophysiologically, its expression was directly linked to cell migration and invasion in breast cancer cells (Deng et al., 2018) and in melanoma cells (Loria et al., 2015).



Myosin II Oxidation

Myosin II motor protein is expressed in almost all cells and is divided into two categories: non-muscle and muscle myosin. Myosin II is critical for cell adhesion, migration, and division. The force that is generated by myosin II ATP hydrolysis facilitates actomyosin contractions in migrating cells. There is limited evidence regarding the redox regulation of myosin II. Initially, rat myocardial myosin II was shown to be S-glutathionylated (Passarelli et al., 2008). The myosin II homolog in protists was found to be oxidized at Met394 after H2O2 treatment, which reduced its actin-activated ATPase activity (Moen et al., 2014). A study by Fiaschi et al. showed that integrin-engagement during adhesion of fibroblasts led to ROS production. A following mass spectrometric analysis revealed that myosin II was more oxidized in adherent cells than in round cells. Further investigation showed a diminished interaction between non-muscle myosin II and actin in spreading cells suggesting a role of myosin II redox regulation for actin cytoskeletal rearrangements (Fiaschi et al., 2012). However, this phenomenon needs to be further elaborated. Moreover, none of these studies focused on specific oxidation of cysteine residues of human myosin II. A direct correlation between involvement of myosin II oxidation and its cellular functions requires identification and characterization of its redox-sensitive cysteines.



Gelsolin Oxidation

Gelsolin participates in actin-remodeling by sequestering actin monomers and by severing, capping, and nucleating F-actin. It is expressed abundantly in all cell types and exists as two isoforms located intracellularly and as a secreted form (Feldt et al., 2019). Human cytoplasmic gelsolin contains five cysteine residues. In the secreted protein, two of these five cysteine residues are forming disulfide bridges (Wen et al., 1996). An early study showed that gelsolin can prevent cytochrome c release from mitochondria and inhibit apoptosis (Koya et al., 2000). Moreover, elevated gelsolin expression is linked to increased intracellular superoxide levels, promoting the invasive capacity of colon cancer cells (Tochhawng et al., 2016). A recent study further revealed an increase in translocation of cytosolic gelsolin to mitochondria and a decrease in extracellular/plasma gelsolin when oxidative phosphorylation in mitochondria is dysfunctional (Garcia-Bartolome et al., 2020). Taken together, while gelsolin is regulated by ROS at the expression level, its direct redox regulation and particular functional consequences need to be elaborated.



Cofilin-1 Oxidation

Cell migration requires dynamic rearrangements of the actin cytoskeleton. Cofilin is a key molecule mediating actin dynamics and cell migration. Cofilin severs actin filaments, providing free barbed ends that can be used for the formation of new actin filaments or for depolymerization (Samstag et al., 2003). Cofilin-1 is expressed in non-muscle cells and is activated by dephosphorylation on Ser3 (Moriyama et al., 1996; Nagaoka et al., 1996; Nebl et al., 1996). Its activity is also controlled by thiol modifications on its cysteines (Cys39, Cys80, Cys139, and Cys147) (Klemke et al., 2008; Samstag et al., 2013). Under pro-oxidative conditions, Cys139 is modified to sulfonic acid (Cys-SO3H), and Cys39 and Cys80, which are buried inside the molecule, are likely to form an intramolecular disulfide bridge. Thereby, cofilin-1 loses its ability to dismantle F-actin, with consequent increases in F-actin stability and net actin polymerization. In T cells, this results in stiffening of the actin cytoskeleton, which can diminish T cell migration and cell-cell interaction, namely immune synapse formation between T cells and antigen-presenting cells (Klemke et al., 2008; Samstag et al., 2013). Excessive H2O2 exposure leads to mitochondrial translocation of cofilin-1, followed by necrotic-like programmed cell death (Wabnitz et al., 2010a). Conversely, a reducing microenvironment, such as that provided by antigen-presenting dendritic cells, prevents cofilin-1 oxidation and renders cofilin-1 insensitive to inactivation by phosphatidylinositol 4,5-bisphosphate thereby promoting T cell activation (Schulte et al., 2013).



LPL Oxidation

L-plastin (LPL) is an actin-bundling protein which is physiologically expressed in hematopoietic cells and ectopically expressed in malignantly transformed tumors of non-hematopoietic origin (Pacaud and Derancourt, 1993; Park et al., 1994; Klemke et al., 2007). LPL is specifically localized to sites of actin polymerization including invadopodia (Van Audenhove et al., 2016), podosomes (Zhou et al., 2016), filopodia (Delanote et al., 2010; Schenk et al., 2017), lamellipodia, stress fibers, the cell cortex, focal adhesions, and cell-cell interaction zones (Wabnitz et al., 2010b, 2016). In addition to the known enhanced activity of LPL resulting from phosphorylation on Ser5 (Shinomiya et al., 2007; Wabnitz et al., 2007, 2010b), Balta et al. showed that LPL is regulated by thiol oxidation at Cys101 and Cys42 residues, which could be reverted by thioredoxin 1 (Balta et al., 2019). In line with these data, a global analysis of cysteine thiols modified by allicin, an organosulfur compound obtained from garlic, showed that LPL was one of the top five most abundant allicin-bound proteins in Jurkat leukemia cells (Gruhlke et al., 2019). LPL oxidation diminished its actin-bundling capacity and dependent cellular functions, including cell migration and invasion. Generation of a new sensor (LPL-roGFP-Orp1) allowed spatiotemporal analysis of LPL oxidation in tumor cells. This unraveled that LPL oxidation occurred primarily at the cell periphery. It attenuated peripheral actin dynamics and particular cellular functions, such as cell spreading and filopodia formation (Balta et al., 2019).





DISCUSSION

As described above, ROS induce oxidation of actin, LPL, and cofilin, with additive diminishing effects on cell migration and invasion, as oxidation changes the F-actin structure, inhibits actin-bundling by LPL, and prevents dynamic actin reorganization by cofilin. Signaling molecules are also regulated by thiol modifications, thereby influencing actin cytoskeletal reorganization. Moreover, global application of ROS undoubtedly leads to oxidation of many different proteins. However, the effects of the oxidation of individual proteins on individual cellular functions remained largely unknown.

The first steps toward understanding redox regulation of cysteine thiols and the consequent changes in cellular functions involved mutation of individual cysteines in cellular proteins and studying the respective functional effects in transfected cells under control and pro-oxidative conditions. These initial studies highlighted the principal role of a given protein oxidation in cellular functions, usually under non-physiological ROS conditions.

Protein oxidation was linked to particular cellular subcompartments, such as mitochondria, peroxisomes, or the ER, where it is involved in important processes including protein and lipid biosynthesis (Ushio-Fukai, 2006; Kaplan et al., 2011; Bechtel et al., 2020). However, spatiotemporal protein oxidation can also take place throughout the cytoplasm or at certain parts of the cell membrane through localized ROS production or a localized absence of antioxidant systems, respectively. Yet, only in a handful of studies the spatiotemporal regulation of cysteine oxidation under physiological conditions was investigated (Grintsevich et al., 2017; Tsutsumi et al., 2017; Balta et al., 2019). Recently, the development of new tools has facilitated study of this phenomenon, providing insights into the redox regulation of cellular functions. In this context, a recent study found that localized oxidation of actin by MICAL1 led to localized depolymerization of actin filaments, which is critical for cytokinetic abscission (Fremont et al., 2017). NOX2 activity at the leading edge of migrating endothelial cells was also shown to be required for directional cell migration (Ushio-Fukai, 2006; Kaplan et al., 2011). Along the same lines, using a dimedone-based proximity ligation assay (PLA), specific protein oxidation was clearly detectable in the vicinity of NOXes (Tsutsumi et al., 2017). However, apart from these findings, there is limited evidence for localized ROS production or the absence of antioxidant systems during physiological processes in cells.

Studying spatiotemporal oxidation of individual ABPs is a novel and promising strategy to understand the physiological and pathophysiological redox regulation of cell migration and other cell functions. Using a dimedone-based PLA and an LPL-linked ROS sensor, Balta et al. demonstrated that spatial LPL oxidation within actin-based cellular extensions was likely to result both from low levels of antioxidants and an elevated accumulation of pro-oxidative molecules at cellular extensions. Importantly, finding spatiotemporally occurring oxidation sites of LPL also enabled a specific focus on cellular actin-based functions, e.g., actin bundling, in which LPL oxidation is critically involved (Balta et al., 2019).

These findings further suggest that spatiotemporal oxidation of ABPs or actin may have a major role in the regulation of actin-based cellular processes at the cell periphery during physiological processes such as cell migration. The methods applied could also be used to investigate spatial oxidation of many other proteins functioning in cellular extensions. Thus, fusion of the ROS sensor roGFP-Orp1 or dimedone-based PLA with other potentially oxidized ABPs or signaling molecules could be used to decipher whether they are locally oxidized, either due to their proximity to NOXes or due to the local absence of antioxidant systems.

Finally, a dysfunctional cytoskeleton resulting from oxidation of ABPs may have an important role in cancer immunology. As tumor-specific T cells require a highly dynamic actin cytoskeleton in order to infiltrate solid tumors, a pro-oxidative tumor environment and the resulting oxidations on LPL, cofilin, or actin, and potentially other ABPs in T cells might inhibit their tumor infiltration capacity.
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The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.

Keywords: F-actin branching, lamellipodium, filopodium, migration, chemotaxis, F-actin turnover, cell division, nuclear envelope breakdown


INTRODUCTION

Actin filament (F-actin) assembly and turnover in cells is tightly regulated by various actin monomer and filament binding proteins, with diverse functions. The generation of actin filaments de novo is referred to as nucleation, a complex process that received increasing attention over the past two decades (Campellone and Welch, 2010; Dominguez, 2010; Rottner et al., 2017). In living cells, spontaneous nucleation is likely prohibited by kinetic barriers, imposed for instance by actin monomer binding proteins, to avoid de-regulated, ectopic filament assembly. Cells overcome these barriers by different classes of filament assembly factors each operating at specific subcellular locations and time, allowing respective physiologic processes to occur. These F-actin assembly factors include the Arp2/3 complex plus various different activators, formins as well as the Spire/Cobl/Leiomodin type of actin binding proteins thought to enhance nucleation through simple actin monomer clustering (Chesarone and Goode, 2009; Qualmann and Kessels, 2009). Some members of these classes were also found to function cooperatively, as exemplified by Spire- or APC-formin couples combining Spire/APC-mediated nucleation with formin-mediated elongation of generated actin filaments (Kerkhoff, 2011; Breitsprecher et al., 2012), although the precise modes of action of such cooperative complexes are still to be unraveled (Montaville et al., 2014). Other studies have implied antagonistic functions between actin assembly classes, e.g., between Arp2/3 complex and formins (Suarez et al., 2015; Kadzik et al., 2020), with the actin monomer-binding profilin operating as gatekeeper for Arp2/3-dependent vs. independent actin assembly (Rotty et al., 2015). This complexity thus requires development of individual and combined loss of function approaches and systematic and careful side-by-side analysis.

The first and best characterized complex considered today as bona fide generator of rapidly-growing, barbed ends of actin filaments is the Arp2/3 complex (Goley and Welch, 2006), which amplifies actin filament assembly by branching daughter filaments off mother filaments that both continue to grow. In recent years, the Arp2/3 complex turned out to be of fundamental importance for numerous cellular processes, including actin-based cell edge protrusion during migration and various additional actin assembly processes at both plasma and intracellular membranes (Rotty et al., 2013; Molinie and Gautreau, 2018), as well as specific interactions of viral or bacterial pathogens with their host cells (Welch and Way, 2013). Interestingly, many of these processes, in particular those occurring at the plasma membrane, involve adaptive responses orchestrated by Arp2/3 complex to mechanical forces (Mueller et al., 2017; Akamatsu et al., 2020), as recently emphasized (Papalazarou and Machesky, 2020). Although the canonical complex is comprised of seven subunits throughout eukaryotic cell evolution, expression of functionally diverse or incomplete complexes—even within the same cell type—have also been described (Chorev et al., 2014; Abella et al., 2016). However, our understanding of their physiological relevance is still scarce (Pizarro-Cerda et al., 2017).

Canonical Arp2/3 complexes are activated to form actin filament branches by a family of so called nucleation promoting factors (NPFs), the name giving member of which, WASp, causes the rare, X-linked Wiskott-Aldrich-Syndrome, and contains the WCA-module (WH2 plus Connector plus Acidic) at its C-terminal end operating in actin binding (W) and Arp2/3 complex activation (CA). Although it comes in various forms, such as multiple copies of W-domains, this module constitutes the minimal sequence necessary for Arp2/3 activation (Campellone and Welch, 2010), and is thus common to all class I NPFs. We generally agree today that the specificity of Arp2/3 complex functions in cells is largely mediated by temporal and spatial control through NPFs, potentially explaining how Arp2/3 complex activity can be precisely coordinated throughout cells and tissues. Activation of Arp2/3 complex in specialized protrusive structures termed lamellipodia, for instance, is generally thought to be mostly accomplished through the Rac GTPase-effector WAVE Regulatory Complex (WRC) (Krause and Gautreau, 2014; Alekhina et al., 2017; Schaks et al., 2018, 2019).

Various distinct experimental approaches have previously been utilized to interfere with Arp2/3 complex function directly, including classical approaches like RNA interference (Rogers et al., 2003; Di Nardo et al., 2005; Steffen et al., 2006; Nicholson-Dykstra and Higgs, 2008), inhibition by small molecules (Nolen et al., 2009) or even cytosolic Arp2/3 complex sequestration (Machesky and Insall, 1998; Hufner et al., 2001; Koestler et al., 2013). Yet, we are still falling short on tools for complete and reproducible elimination of Arp2/3 complex function in living cells, likely due to its vital role in cells (see below).

Aside from stable, simultaneous RNAi-mediated suppression of Arp2 and Arp-C2 (p34) in fibroblasts (Wu et al., 2012), genetic elimination of the Arp-C3 (p21) subunit allowed studying its consequences on ES cell-derived fibroblasts, albeit only for a limited number of cell divisions (Suraneni et al., 2012). These studies uncovered both, commonly shared and divergent views concerning Arp2/3 function in lamellipodia formation vs. migration efficiency or chemotaxis, which could not be resolved in respective follow-up studies (Wu et al., 2013; Suraneni et al., 2015). Here, we introduce the tamoxifen-inducible elimination of Arp2/3 function in several, independently-generated fibroblast cell lines, derived from a mouse mutant harboring a conditional Arp3 allele that can be removed by Cre-recombinase (Papalazarou et al., 2020). As opposed to previous studies employing Rac- or WRC-deficient cell lines (Steffen et al., 2013; Schaks et al., 2018) and in line with recent data analyzing dendritic cell migration in environments of varying complexity (Leithner et al., 2016), our results suggest that efficient, mesenchymal migration does not always involve lamellipodia, but that these structures become particularly relevant during processes requiring plasticity and establishment and/or maintenance of the direction of migration. Moreover, and distinct from previously published work on knockdown or knockout of the Arp2/3 complex (Suraneni et al., 2012; Wu et al., 2012), we confirm here, as already suggested by previous, independent studies (Steffen et al., 2013), that lamellipodia are dispensable for cell spreading. Finally, our analyses uncover that acute elimination of Arp2/3 complex function leads to upregulation of FMNL formin expression, which is largely responsible for the induced burst of filopodia formation.



MATERIALS AND METHODS


Mice and Cell Lines

Mice homozygous for the loxP-site flanked Act3r allele were generated as described previously (Papalazarou et al., 2020). For generation of fibroblast cell lines used in this study, E13.5-embryos lacking head and intestines were cut into pieces, digested with trypsin and single cells separated by thorough squeezing through a pipet tip before seeding into fibroblast growth medium. Cells were spontaneously immortalized through continuous passaging. Subsequently, cells were transfected with Cre-ERT2-plasmid, kindly provided by Pierre Chambon (Feil et al., 1997), leading to stable expression of the inducible Cre-recombinase variant in the cytoplasm of clonal cell lines selected by puromycin treatment (2 μg/ml). Tamoxifen treatment causes nuclear translocation of Cre-recombinase (Metzger and Chambon, 2001), and subsequent disruption of floxed Act3r alleles. Three clones with comparable growth rates were selected for further analyses, termed clones 5, 7, and 19 (Lahmann, 2011). Following selection, cell lines were maintained in DMEM, 4.5 g/l glucose (Gibco) supplemented with 10% FCS (Sigma), 2 mM L-glutamine (Gibco), 2 mM penicillin/streptomycin (Gibco), 0.1 mM non-essential amino acids (Gibco), 1 mM sodium pyruvate (Gibco) and 5 μg/ml of puromycin (Sigma), unless indicated otherwise, and gene disruption routinely induced by treatment with (Z)-4-Hydroxytamoxifen for 96 h (stock solution in DMSO/EtOH and used in a final concentration of 2 μg/ml).



Plasmids and Transfections

Spontaneously immortalized fibroblast cell lines were transfected with Cre-ERT2 using Lipofectamine 2000 (ThermoFisher Scientific) following manufacturer's instructions. All other transfections were done with jetPRIME transfection reagent (Polyplus) according to manufacturer's protocol. For shRNA-mediated knockdown of FMNL2 and FMNL3, corresponding psiRNA-h7SK-GFPzeo vectors (InvivoGen) harboring knockdown sequences 5′-GGAAGTCTGCGGATGAGATAT-3′ (FMNL2) and 5′-GGTGCAGATTCAAGCGTACCT-3′ (FMNL3) were co-transfected in a 1:1 ratio, and subjected to FACS-sorting prior to tamoxifen/vehicle treatment. For FRAP (see below), EGFP-tagged human β-actin (Clontech, Mountain View, CA, USA) was used, as described previously (Steffen et al., 2013), and pRK5-myc-Rac1-L61 obtained from Laura Machesky (Cancer Research UK, Beatson Institute, UK). EGFP-tagged Arp3 was as described (Stradal et al., 2001), and for generation of EGFP-C2-Arp3B plasmid, the mRNA transcript variant 1 encoding murine actin-related protein 3B (Actr3b) (Jay et al., 2000) was synthesized (GenScript Biotech) and cloned into pEGFP-C2 vector (Clontech).



Western Blotting and Intensity Quantifications

Detergent-soluble cell extracts were routinely used for all Western blots, and prepared as described (Kage et al., 2017). Soluble protein concentrations were measured using PierceTM BCA Protein Assay Kit (Thermo Scientific) and determined using a MRX microplate reader (Dynatech Laboratories). Western Blotting was performed according to standard procedures. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) levels were used as loading control. Primary antibodies were: GAPDH (clone 6C5, #CB1001, Calbiochem, 1:10000 dilution), p16A (Arp-C5A, clone 323H3; homemade, undiluted hybridoma supernatant) (Olazabal et al., 2002), Arp2 (clone FMS69, Sigma; at a concentration of 1 μg/ml), Arp3 (clone FMS338, Sigma, at a concentration of 1 μg/ml), Arp3B (polyclonal rabbit Anti-ACTR3B, #ARP57420_P050, Aviva Systems Biology, at a concentration of 1 μg/ml), p34 (Arp-C2, #ab205718, Abcam, 1:1,000 dilution), FMNL2/3 (#ab57963, Abcam, 1:1,000 dilution), Rac1/3 (clone 23A8, Upstate, 1:2,000 dilution), ß-actin (AC-15, #A1978, Sigma, 1:10,000 dilution), Sra-1 (rabbit polyclonal 4955B, 1:2,000 dilution) and Nap1 (rabbit polyclonal 4953B, 1:5,000 dilution) (Steffen et al., 2004). Polyclonal rabbit antisera to Abi-1 (1:2,000 dilution) and Arp-C1 (p40, 1:500 dilution) were raised (by Eurogentec Deutschland GmbH, Köln, Germany) against the synthetic peptides PPVDYEDEEAAVVQYNDPYADGDPAWAPKNYI derived from the human Abi-1 sequence and TARERFQNLDKKASSEGGTAAG derived from the human Arp-C1B sequence, respectively, and affinity-purified using corresponding peptides immobilized on CNBr-sepharose 4B (Amersham Biosciences, Sweden). Specificity of the antisera was confirmed by Western blot detection of the endogenous and ectopically expressed EGFP-tagged proteins. As secondary antibodies, we used peroxidase-coupled anti-mouse IgG (#111-035-062, 1:10,000 dilution) and anti-rabbit IgG (#111-035-045, 1: 10,000 dilution), which were purchased from Dianova. Protein bands were visualized using chemiluminescent, peroxidase substrate (Lumi-Light Western Blotting Substrate #12015200001, Roche) and an ECL Chemocam Imager (Intas). Quantifications of protein levels from exposed Western blot membranes were done as described (Kage et al., 2017).



Immunolabelings

For immunolabellings, MEFs were seeded subconfluently o/n (unless indicated otherwise) onto coverslips acid-washed and coated with human fibronectin (25 μg/ml, #11051407001, Roche), as described (Dimchev and Rottner, 2018). For spreading assays, fibroblasts were fixed after different times as indicated in Figure 4, Supplementary Figures 7, 8. For timepoint 0, coverslips were coated with poly-L-lysin (PLL, Sigma, 0.1 mg/ml) followed by three PBS-washes, and fibroblasts centrifuged onto coverslips for 2 min at 1,200 rpm prior to fixation.

After brief washing with PBS, cells were routinely fixed with 4% paraformaldehyde (PFA) in PBS for 20 min, and permeabilized with 0.1% Triton X-100 (Sigma) in PBS for 60 s, unless indicated otherwise. For phalloidin stainings, glutaraldehyde (EM Grade) was added to fixative (0.25%). For vinculin stainings, fibroblasts were permeabilized with 0.3% Triton X-100/PBS for 1 min prior to fixation with 4% PFA/PBS for 20 min. All solutions were pre-warmed to 37°C.

Focal adhesions were stained with monoclonal anti-vinculin antibody (#V9131, Sigma, 1:250 dilution), centrosomes with polyclonal anti-gamma tubulin antibody (PA1-28042, ThermoFisher, 1:1,500 dilution), and WRC at the cell periphery (Supplementary Figure 3) using monoclonal anti-Abi-1 (supernatant of clone 8.3, 1:50 dilution, kindly provided by Giorgio Scita, IFOM Milano). Secondary reagents were Alexa Fluor 594-coupled anti-mouse IgG (#A11032, Invitrogen, 1:200 dilution) and Alexa Fluor 488-coupled anti-rabbit IgG (#A11034, Invitrogen, 1:400 dilution). Phalloidins were either ATTO488-coupled (#AD488-81, ATTO-TEC, 1:200 dilution), ATTO594-coupled (#AD594-81, ATTO-TEC, 1:200 dilution) or ATTO390-coupled (#AD390-81, ATTO-TEC, 1:200 dilution), dependent on experiment and the combinations with antibodies. Nuclei were routinely stained with DAPI, already present in the mounting medium (ProLong Gold, #P36941, Invitrogen) or, for SIM-experiments, with TO-PRO-3 (#T3605, ThermoFisher, 1:1,000 dilution).



Conventional Fluorescence and Superresolution Microscopy and FRAP

Images of immunolabelings were acquired on an inverted Axiovert 100TV epifluorescence microscope (Zeiss) using a 40x/1.3 NA Plan-Neofluar oil immersion objective. The microscope was equipped with an HXP 120 light source for widefield fluorescence illumination, and a Coolsnap-HQ2 camera (Photometrics) as well as electronic shutters (Uniblitz Corporate) driven by VisiView software (Visitron Systems GmbH, Puchheim, Germany).

Structured illumination microscopy (SIM) data were captured using a CFI Apochromat TIRF 100x/1.49 NA oil immersion objective (Nikon) on a Nikon SIM-E superresolution microscope equipped with a LU-N3-SIM 488/561/640 laser unit mounted on a Nikon Ti eclipse. Image acquisition was enabled using a NIS-Elements software (Nikon)-driven N-SIM motorized quad band filter combined with N-SIM 488 and 561 bandpass emission filters and a Hamamatsu Orca flash 4.0 LT camera.

Fluorescence recovery after photobleaching (FRAP) experiments were performed as described (Dimchev and Rottner, 2018). Specifically here, vehicle control or tamoxifen-treated MEFs were transfected with EGFP-ß-actin followed by o/n seeding onto fibronectin-coated coverslips, and subjected to FRAP experiments the following day.



Random Migration, Chemotaxis, and Wound Healing Assays

For random migration assays, DMSO/EtOH- and respective tamoxifen-treated fibroblast clones were seeded subconfluently into μ-Slide 4 Well Ph+ Glass Bottom chambers (Ibidi) coated with human fibronectin (25 μg/ml) 6 h prior to time-lapse, phase-contrast microscopy.

Prior to chemotaxis assays, respective cell populations were starved overnight in DMEM and seeded subconfluently in non-coated μ-slide chemotaxis2D chambers (Ibidi) 3 h prior to chemotaxis assays. Chemotaxis experiments were performed according to manufacturer's instructions. In brief, both chemoattractant chambers were filled with DMEM before adding ¼ of total chamber volume of a 4x chemoattractant stock solution to the upper chamber (C100) in order to obtain a final gradient concentration of 2.5% FCS and 100 ng/ml HGF (#H9661, Sigma) in DMEM.

Wound healing assays were performed on cell monolayers grown on fibronectin-coated glass bottom dishes upon removal of standardized, wound-creating silicone culture-inserts (Ibidi) or wounding with a disposable pipet tip.

Time-lapse microscopy data were generated on an inverted Axio Observer (Zeiss) utilizing a 10x/0.3NA Plan-Neofluar air objective for random migration and chemotaxis or a 20x/0.4NA LD Achroplan objective for wound-healing assays. Cells were kept at 37°C and a CO2 concentration of 7.5 using an incubation chamber (Incubator XL multi S1, Zeiss) connected to a heating and CO2 control unit (PeCon), and maintained in full medium (except for chemotaxis assays). Random migration and chemotaxis were acquired over a time-period of 20 h and at a frame rate of 4/h, whereas wound-healing data were also recorded for up to 20 h with a frame rate of 12/h.



Data Analysis and Processing

Numbers of cells with lamellipodia and numbers of filopodia or concave edges per cell were counted manually from phalloidin images. DAPI and gamma tubulin stainings were employed to manually quantify the number of nuclei and centrosomes, respectively. The length of concave edges was also assessed manually but aided by ImageJ Software. Analysis of spreading behavior and quantification of adhesion numbers and sizes were performed as described in Steffen et al. (2013) and Kage et al. (2017), respectively.

ImageJ plugins “manual tracking” and “chemotaxis tool” were used to analyze random migration and chemotaxis. DiPer software (Gorelik and Gautreau, 2014) was utilized to display the individual cell tracks in Supplementary Figure 9 and to perform mean square displacement (Figure 6B) as well as direction autocorrelation analysis (Figure 6C) from random migration data.

Collective migration speed of control and tamoxifen-treated fibroblast populations in wound healing assays was assessed as follows: In order to obtain the distance migrated by the cell monolayer, the area engaged was measured at the beginning and after 720 min (12 h) of the wound closure process, as described previously (Steffen et al., 2013), and divided by the width of the camera chip to normalize for employment of distinct setups in the course of time. Migration distances from individual experiments were then divided by time to obtain migration velocities, averaged and displayed as bar charts.

Data obtained from FRAP experiments were analyzed as follows: Half-times of recovery were derived from fluorescence recovery curves as previously described (Koestler et al., 2013; Steffen et al., 2013; Dimchev and Rottner, 2018). Due to the comparably narrow lamellipodia formed by these fibroblasts and in control conditions, fluorescence intensities within a region of 1 μm at the lamellipodium front of control or the corresponding cell periphery of tamoxifen-treated cells were measured using MetaMorph Software (Molecular Devices). Fitted curves were generated in Sigma plot 12.0 (Systat Software) by applying dynamic curve fits for exponential rise to maximum using [image: image].

For calculation of the treadmilling factors (TMF) (Lai et al., 2008), the 1 μm region of intensity measurements described above was subdivided into two regions of identical depths (0.5 μm each), referred to as front and back (see Figure 3 and Supplementary Figure 6). Two separate recovery curves for front and back regions were generated and, in case of control cells, fitted employing a dynamic curve fit for exponential rise to maximum: [image: image] for data derived from the front part, and following a sigmoidal curve: [image: image] for data derived from the rear part. In contrast, recovery curves from tamoxifen-treated cells were best fitted using equation [image: image] for both front and back region. The treadmilling factor was derived from these curves as described (Lai et al., 2008).

MetaMorph Software was used to adjust brightness and contrast levels of all images assembled into final figure panels employing Adobe Photoshop CS5 software. Raw data were analyzed and processed in ImageJ, MetaMorph, Excel 2016 (Microsoft) and Sigma plot 12.0.



Statistics

Statistical significance was assessed using t-test or non-parametric Mann-Whitney rank sum test (Sigma plot 12.0) if datasets were not normally distributed (according to Anderson-Darling normality test), as indicated in individual figure legends. Statistical significance is expressed by the number of asterisks, with * corresponding to a p value smaller than 0.05, and ** and *** corresponding to p < 0.01 and p < 0.001, respectively.




RESULTS AND DISCUSSION


Acute Removal of Arp3 Suppresses the Arp2/3 Complex and Lamellipodia Formation

In our initial efforts to generate fibroblast cell lines completely devoid of the Arp2/3 complex subunit Arp3, MEFs homozygous for the conditional Actr3 allele described previously (Lahmann, 2011; Papalazarou et al., 2020) were both SV40-LT-antigen- or spontaneously immortalized, and subjected to clone isolation and analysis following expression of Cre-recombinase. However, in spite of numerous attempts to isolate homozygously-deleted Actr3 clones, as successfully achieved for instance in case of the Rho-GTPase Rac1 (Steffen et al., 2013), we were unable to obtain viable Actr3 null MEFs (data not shown and see below). This indicated that Actr3 is essential for cell viability and growth, as suggested previously for Arp-C2 and Arp2 in fibroblasts, at least in the presence of tumor suppressors (Ink4a/Arf) (Wu et al., 2012), and unlike the recent description of Arp2 null HL-60 promyeloblasts (Graziano et al., 2019). We thus turned to exploring the effects of acute Actr3 disruption, which was achieved in spontaneously-immortalized cell lines stably expressing tamoxifen-inducible Cre recombinase. Three independent cell clones were isolated (termed Arp3.5, 7, and 19) and analyzed separately for Arp3 expression after 3, 4, and 5 full days of treatment with tamoxifen or DMSO/EtOH as vehicle control (Figure 1A). This allowed determining 4 days (96 h) of tamoxifen treatment as optimal compromise between Arp3 elimination and cell viability (condition boxed red in Figure 1A). The severe reduction of Arp3 expression after 96 h correlated well with reduced expression of other Arp2/3 complex subunits tested, i.e., Arp2, Arp-C1, Arp-C2, and Arp-C5 in all three clones (Figure 1B). This confirmed the view that Arp2/3 complex subunits are largely dependent on each other in cells, as observed previously at least for functional interference with Arp3 (Di Nardo et al., 2005; Steffen et al., 2006) and Arp-C3 (Suraneni et al., 2012), and due perhaps to instability or active degradation of most versions of partial complexes.


[image: Figure 1]
FIGURE 1. Tamoxifen treatment suppresses expression of Arp2/3 complex subunits. (A,B) Western blot analysis of Arp2/3 complex subunit levels in individual Actr3fl/fl clones after tamoxifen treatment (72, 96, or 120 h) or DMSO/EtOH used as vehicle control. GAPDH and vinculin served as loading controls, dependent on the molecular weight of explored Arp2/3 complex subunit. (A) Although the extent of Arp3 protein decrease correlated with prolonged tamoxifen treatment, a treatment of 96 h (red box) was determined as best compromise between efficient protein run down and cell viability, which was significantly compromised upon 120 h (not shown). The 96 h-time point was thus used for all future experiments. (B) Tamoxifen-induced removal of Arp3 (96 h) concomitantly reduced all additional Arp2/3 complex subunits tested, as indicated.


To start examining the consequences of acute Arp3 suppression, we quantified the frequency of lamellipodium formation, one of the most prominent structures considered to require functional Arp2/3 complexes (Suraneni et al., 2012, 2015; Wu et al., 2012; King et al., 2016). Not unexpectedly, although at variance to the conclusions drawn from one previous Arp3 RNAi study (Di Nardo et al., 2005), lamellipodia formation was strongly suppressed upon Arp3 deletion in all three clonal fibroblast cell lines growing on fibronectin (Figures 2A,B for quantification). Notably, aside from the elimination of lamellipodia, cells were also significantly increased in size under these conditions (note size bars in Figure 2A), suggesting that loss of lamellipodia does not necessarily interfere with the expansion of cell area on 2D-surfaces (see also below). Canonical lamellipodia formation is well established today to require Rac GTPase signaling to WRC-mediated Arp2/3 complex activation (Steffen et al., 2013; Schaks et al., 2018; Rottner and Schaks, 2019). So to confirm that loss of lamellipodia in these conditions was due to lack of Arp2/3 complex expression, and not due to loss of upstream components of the signaling pathway, several control experiments were performed. Ninety six hours of tamoxifen treatment did not reduce Rac expression in any of the cell lines employed, as shown using an antibody cross-reactive with Rac1 and−3 (Steffen et al., 2013); instead, a trend toward increased Rac1/3 expression was observed, statistically significant at least in two out of three cell lines (Supplementary Figure 1). Interestingly, the Sra-1/PIR121 and Nap1 subunits of the Rac downstream effector WRC were virtually unchanged in expression, whereas the Abl interactor Abi-1 was reduced to about half of controls, for unknown reasons (Supplementary Figure 2). However, immunolabelling experiments confirmed the presence of Abi-1 at the cell edges of both vehicle control and tamoxifen-treated cells (Supplementary Figure 3), strongly suggesting that the loss of lamellipodia in tamoxifen-treated cells was not caused by the elimination of Abi-1 or other WRC subunits. Finally, the loss of actin filament-rich lamellipodia also did not correlate with a reduction in actin expression, at least as assessed for the prominent, cytoplasmic β-actin isoform (Supplementary Figure 4). All this suggested that the loss of lamellipodia upon 96 h tamoxifen treatment was caused by suppression of Arp3 and consequently Arp2/3 complex. As final confirmation of this, we found transfection with EGFP-tagged Arp3 to rescue lamellipodia formation in tamoxifen-treated cells in a fashion that was similar in extent to transfection with the related Arp3B (Supplementary Figure 5). Notably, using antibodies that could clearly distinguish Arp3 from Arp3B encoded in murine cells by the Actr3b gene, we found that Arp3B was undetectable at the protein level with and without Actr3 deletion (Supplementary Figure 5A). This confirmed that as opposed to an exciting study posted recently (Galloni et al., 2020), Arp3B is not relevant for the cell type and experiments used here, and was consistent with the nearly complete loss of lamellipodia formation upon induced, sole Actr3 deletion (Figure 1 and Supplementary Figure 5B).


[image: Figure 2]
FIGURE 2. Arp3-depleted MEFs are devoid of lamellipodia. (A) Phalloidin-stained examples of distinct Actr3fl/fl clones (Arp3.5, Arp3.7, and Arp3.19) stably expressing tamoxifen-inducible Cre recombinase, with (tamoxifen) or without (DMSO/EtOH) tamoxifen induction (96 h) causing disruption of the Actr3 gene. Tamoxifen treatment causes near to complete elimination of lamellipodia in representative cells shown. Scale bars as indicated in individual panels. Note the strong increase of spread cell area upon Arp3 disruption. (B) Quantification of lamellipodia formation efficiency upon treatments as shown in A. Data are arithmetic means and standard errors of means from three independent experiments; n = total number of cells analyzed; data were statistically compared using two-sided, two-sample t-test (***p < 0.001).




Arp3 Depletion Abrogates Both Peripheral Actin Network Treadmilling and F-actin Turnover

Lamellipodia are driven by continuous activation and incorporation of Arp2/3 complex into the actin filament network polymerizing at the edge (Lai et al., 2008). This actin network treadmilling behavior in the lamellipodium was previously disrupted in our lab by the alternative approach of acute inhibition of Arp2/3 complex via its sequestration by microinjection of Scar/WAVE1-WCA (Koestler et al., 2013). In those WCA injection experiments, the network treadmilling behavior was abolished, but the rate of actin turnover was largely maintained (Koestler et al., 2013), quite distinct from genetic removal of Rac, which strongly reduced F-actin turnover at the cell periphery as well (Steffen et al., 2013). Here we demonstrate a nearly complete elimination of actin network treadmilling at the periphery of cells upon suppression of Arp3 expression (Figures 3A,B), but also a severe reduction of actin network turnover (Figure 3C for representative clone 19) to more than double of the fluorescence half time of recovery rate in the KO as compared to control. Essentially the same pattern was observed when cells were transfected with myc-tagged, constitutively active Rac1 (Supplementary Figure 6), which entirely failed to stimulate lamellipodia formation in Arp3-deficient cells. Highly comparable results were obtained with clones 5 and 7 both with and without stimulation by constitutively active Rac1 (data not shown). Although the differential response of actin turnover at the cell periphery upon Rac1-KO and Arp2/3 complex sequestration was noted and discussed previously, it remained unclear whether it derived from choice of target protein or experimental approach employed (Steffen et al., 2014). The data shown here establish aforementioned differential response not to derive from choice of protein. Although we cannot exclude that the differences in effects observed upon Arp2/3 complex sequestration (Koestler et al., 2013) vs. depletion may at least in part reflect the differential timing in development of the phenotype (seconds and minutes in case of sequestration vs. hours and days in case of induced depletion), the data provided here confirm that sustained interference with Rac signaling and downstream lamellipodial Arp2/3 complex activation abrogates both actin network treadmilling and F-actin turnover.


[image: Figure 3]
FIGURE 3. Loss of the Arp2/3 complex interferes with treadmilling and F-actin turnover at the cell periphery. (A) Time-lapse images of representative FRAP experiments in Actr3fl/fl cells with or without tamoxifen treatment (clone Arp3.19) expressing EGFP-actin. Regions of interest (ROI) are marked with white rectangles in overview images on the left. Different time points of enlarged ROI on right-hand panels display fluorescence signals of EGFP-actin immediately pre and after bleach as well as at different time points of fluorescence recovery. White polygons highlight photobleached regions at the cell periphery. Changes in signal intensities over time for calculations of treadmilling factors (TMF) were quantified within a region of 0.5 μm at the front part (blue rectangle) as well as back part (red rectangle) of the lamellipodium in the Actr3fl/fl cell or the corresponding periphery of the cell following Arp3 depletion. (B) Average fitted recovery curves of front (blue) and back (red) regions of Arp3-expressing (left) and Arp3-depleted cells (right) used to calculate the TMF utilizing the illustrated equation. Data were collected from 9 control and 11 tamoxifen-treated cells acquired in three independent experimental days. The treadmilling factor is defined as average difference in fluorescence recovery in the distal vs. proximal half of the lamellipodium. Note that this difference is absent in tamoxifen-treated cells, demonstrating that presence of a functional Arp2/3 complex is essential for bona fide treadmilling at the cell periphery. (C) EGFP-actin FRAP recovery curves within a 1 μm deep peripheral region of DMSO/EtOH (blue) vs. tamoxifen-treated (red) Arp3.19 cells. Analysis was performed on the same time-lapse movies as used for the analysis in (B); data are arithmetic means and SEMs from movies the pre-bleach intensities of which were normalized to 1. Right panel shows fitted curves derived from raw data depicted on the left. Bar chart displays half times of fluorescent recovery as calculated from fitted curves. Note the marked decrease of F-actin turnover (increase of half-time of EGFP-actin fluorescence recovery) upon Arp3 depletion.




Arp2/3 Complex Is Not Required for Fibroblast Cell Spreading

Previous studies unanimously concluded that Arp2/3 complex and Arp2/3 complex-dependent lamellipodia are relevant for cell spreading (Suraneni et al., 2012; Wu et al., 2012). However, this view was challenged by our data on Rac-deficient fibroblasts that are also completely devoid of lamellipodia (Steffen et al., 2013), indicating that previous observations derived from specific, Arp2/3 abrogation-dependent roles in spreading rather than a general, lamellipodia-dependent effect. Interestingly, acute suppression of Arp3 expression dramatically increased cell size, but did not reduce spreading efficiency, as assessed from comparing the cell area covering the substratum surface at various time points after seeding (Figures 4A,B). Even if we normalized to the dramatic increase in cell size after 96 h of tamoxifen treatment, no substantial relative difference in spreading was recorded at any time point after seeding, neither for clone 19 (Figure 4C) nor clone 7 (Supplementary Figure 7). Only clone 5 slightly lagged behind at early spreading times if considering differences in cell size (Supplementary Figure 8C), but this difference was eliminated when data from all three clones were pooled (Supplementary Figure 8D). This strongly suggests that clonal variation in this case might explain the observation rather than a genotype-specific effect. We conclude that by and large, the loss of Arp3 and thus Arp2/3 function in actin remodeling and lamellipodia formation can be compensated for by cells in order to explore new space during spreading. As deduced from earlier research, this process likely involved filopodia formation (Wu et al., 2012; Steffen et al., 2013; Suraneni et al., 2015). To confirm this, we performed phase contrast video microscopy of cells immediately after seeding on fibronectin (Supplementary Video 1). Whereas wildtype cells spread using both, short filopodia and lamellipodia, Arp3-deficient cells initially protruded numerous, prominent and long filopodia, which then served as tracks for the advancement of cytoplasm in between them (Supplementary Video 1). Together, these data clearly suggest that at least in fibroblasts, cell spreading can be entirely uncoupled from both lamellipodia formation and Arp2/3 complex function.


[image: Figure 4]
FIGURE 4. The Arp2/3 complex is not required for cell spreading. (A) Phalloidin stainings of Actr3fl/fl cells (clone Arp3.19) with or without tamoxifen treatment (96 h) and subjected to cell spreading for different time points (0, 15, 60 min, and 24 h). Except for the 0-min time point, for which poly-L-lysine was used (see Methods), cells were allowed to spread on 25 μg/ml fibronectin. (B) Box and whiskers plots displaying quantification of spreading area using images as shown in (A). Boxes include 50% (25–75%) and whiskers 80% (10–90%) of all measurements. Outliers are shown as dots. Median values are given in red. n = total number of cells analyzed from three independent experiments. Differences in average cell area of control and tamoxifen-treated cells at different time points of spreading were confirmed to be statistically significant using non-parametric Mann-Whitney rank sum test (***p < 0.001). (C) Spreading kinetics of Actr3fl/fl (EtOH/DMSO, blue) and tamoxifen-treated cells (red) reported as fold change after normalization to cell size at time point 0. Data taken from (B). Data are arithmetic means and error bars represent SEMs. Note that Arp3 knockout cells spread with kinetics highly similar to corresponding control cells, but adopt a much larger area 24 h after seeding, due perhaps to continuous increase in cell size effected by Arp3 removal.




Arp2/3 Complex Promotes Directional Migration, but Is Not Essential for Chemotaxis

Arp2/3 complex is commonly agreed to be crucial for haptotaxis in which cells follow gradients of ECM components or surface-attached chemoattractants (King et al., 2016; Swaney and Li, 2016), but whether or not Arp2/3-depleted cells display a cell-autonomous defect in chemotaxis has remained controversial (Suraneni et al., 2012, 2015; Wu et al., 2012, 2013). In classical wound healing experiments, our three cell lines displayed a significant defect in collective wound closure velocity upon acute Arp3 depletion as compared to EtOH-treated controls (Figure 5 and Supplementary Video 2). These data were highly reminiscent of previous data obtained with Arp-C3-KO, ES cell-derived fibroblastoid cells (Suraneni et al., 2012). However, this could not simply be explained by a general reduction of migration efficiency, as cell speed was not or only moderately reduced in random migration assays performed with clones 5 and 7/19, respectively (Figure 6A). Nevertheless, a more detailed analysis of random migration tracks from the same experiments (Supplementary Figure 9) and of mean square displacement revealed that in spite of comparable migration rates (Figure 6A), Arp3-depleted cells had major difficulties to conquer space around them (Figure 6B). As frequent and extended pausing should have equally affected the results on migration speeds, unproductive directional changes most likely caused these observations. And indeed, assessment of directional migration, which can be done in a fashion unbiased by cell speed (Dang and Gautreau, 2018), was also consistently and dramatically impaired upon Arp3 depletion in all three cell lines (Figure 6C). So Arp2/3 complex activity in our fibroblasts appears more important for maintaining directionality of migration than the sole rate of motility, consistent with the finding that the Arp2/3 inhibitor Arpin promotes cell turning (Dang et al., 2013; Dang and Gautreau, 2018). This also fits the observation of compromised wound healing efficiency observed above (Figure 5 and Supplementary Video 2). However, to what extent does the observed inability to maintain directionality of migration in random migration assays affect chemotactic performance in our cell lines both with and without Arp2/3 complex? For this, we probed for chemotactic migration toward HGF (100 ng/ml) and 2.5% serum, as used previously for Rac1-deficient fibroblasts (Steffen et al., 2013). In this previous study, we concluded that cells lacking this prominent upstream GTPase, which is considered essential for WRC- and Arp2/3 complex-driven, lamellipodial actin assembly, are incapable of chemotactic migration (Steffen et al., 2013). Thus, it was reasonable to assume that similar results would be obtained with its prominent, direct downstream effector of actin nucleation, the Arp2/3 complex, in spite of clearly conflicting data in this respect with alternative, Arp2/3 complex-depleted fibroblast cell models (Wu et al., 2012, 2013). Importantly, however, the findings described here largely confirm aforementioned data published by the Bear-lab, as the principal capability to chemotax was still observed upon Arp3 depletion (Figure 7, clone 19). In fact, the forward migration index (FMI) was only moderately reduced and the defect more severe if considering overall chemotactic migration rate (Figure 7D), perhaps again caused by the difficulty to maintain directionality of migration. In any case, our data shed more light on this long-standing controversy on the precise function of Arp2/3 complex in chemotaxis, as we do find a partial contribution of the presence of Arp2/3 complex in such assays, even though it does not appear to be obligatory, as concluded from other previous data (Suraneni et al., 2012, 2015). Virtually identical results were obtained in independent experiments using clones 5 (Supplementary Figure 10) and 7 (Supplementary Figure 11).
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FIGURE 5. Acute Arp2/3 complex removal reduces wound closure capacity. (A) Selected frames from wound healing, time-lapse microscopy (24 h) of control- and tamoxifen-treated Actr3fl/fl clones. Wounds closed on average after roughly 18 h in controls, but failed to do so in Arp3 null cells. (B) Quantification of collective migration velocity during wound closure utilizing movies as displayed in (A). Bar charts show arithmetic means and SEMs. n = number of movies analyzed, generated from three independent experiments. Differences in wound closure speed between individual control- and tamoxifen-treated clones were confirmed to be statistically significant using two-sided two-sample t-test (***p < 0.001).



[image: Figure 6]
FIGURE 6. Arp2/3 complex depletion has little effect on the speed of random cell migration, but diminishes efficiency by compromising migration directionality. (A) Random migration speed of Actr3fl/fl clones (Arp3.5, Arp3.7, and Arp3.19, as indicated) with or without treatment with tamoxifen causing acute gene disruption. Data obtained from time-lapse microscopy (20 h) followed by manual tracking of individual cells (for individual cell tracks see Supplementary Figure 9). Box and whiskers plots were as described for Figure 4B, and data derived from three independent experiments. n = total number of cells analyzed. Non-parametric Mann-Whitney rank sum test was used for statistical comparison of respective groups (***p < 0.001). (B) Mean square displacement analysis of the same data as shown in (A), revealing the strong decrease in migration efficiency upon Arp3 depletion in spite of the limited impact on speed. (C) Analysis of directional migration utilizing trajectories from (A) and shown in Supplementary Figure 9. An autocorrelation of 1 corresponds to strictly directed movement whereas an autocorrelation of 0 corresponds to pure random walk. Note the rapid and consistent loss of directional migration upon Arp2/3 complex removal (tamoxifen) in these experimental conditions in all three cell clones. Data are displayed as direction autocorrelation curves with error bars representing standard errors of means.
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FIGURE 7. Arp2/3 complex contributes to, but is not essential for chemotaxis. (A) Trajectory plots of control (DMSO/EtOH)- and tamoxifen-treated MEFs (Actr3fl/fl clone Arp3.19) migrating toward a gradient of 2.5% serum and 100 ng/ml HGF. Data obtained from time-lapse microscopy (20 h) followed by manual tracking of cells in three independent experiments. (B) Rose plots with each 10° segment showing the frequency of migratory tracks in that particular direction. Note that both DMSO/EtOH- and tamoxifen-treated fibroblasts migrate toward the given gradient with increased frequencies. (C) Forward migration index (FMI) obtained from the two experimental conditions. The FMI is defined as displacement of the cell in the direction of the gradient divided by the total distance migrated. Again, Arp3-depleted fibroblasts display a slightly impaired directional persistence. (D) Quantification of rates of chemotactic migration. Velocity of chemotactic migration of Arp3-depleted cells is reduced to an extent similar to that observed in directed, wound healing migration assays. Box and whiskers plots in (C,D) were as described for Figure 4B. Statistics: Non-parametric Mann-Whitney rank sum test (***p < 0.001).




Defective Directional Migration Coincides With Altered Focal Adhesion Patterns

Previous studies have suggested effects of Arp2/3 complex-depletion on certain focal adhesion features, in particular concerning their alignment with each other, which is promoted by functional Arp2/3 complex and the presence of lamellipodia (Wu et al., 2012). Apart from this apparent phenotype (Figure 8A), we saw a significant increase in overall adhesion numbers per cell (Figure 8B), but this was reverted to the opposite if the large increase in cell area effected by acute Arp2/3 complex removal was considered (Figure 8C). Finally, we also found a significant increase in average sizes of individual focal adhesions (Figure 8D). It is commonly agreed upon that proper focal adhesion turnover is crucial for effective migration. Thus, we hypothesize that the unproductive directional changes and resulting defects in the efficiency of directional migration observed above may well be due to a combination of increased cell size and reduced numbers but increased sizes of individual focal adhesions. These features may well-interfere with the flexibility of focal adhesion dynamics and turnover normally required to promote the maintenance of directionality. Although hitherto restricted to analyses in 2D assays here, we speculate that such defects will even be potentiated in more complex, 3D environments, likely increasing the need for rapidly adapting to environmental variability. Such a scenario is already consistent with the crucial function of Arp3 in populating the mouse skin with melanocytes, as established recently (Papalazarou et al., 2020).
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FIGURE 8. Arp2/3 complex removal alters focal adhesion patterns. (A) Representative images of fibroblasts (clone Arp3.19) with or without tamoxifen treatment and stained with anti-vinculin antibodies. A binarized threshold was applied to these stainings in order to facilitate automated analysis of adhesion numbers and sizes within distinct regions of interest (yellow outlines, defined manually). Note the exclusion of the cell center and perinuclear area due to the lack of staining resolution in these areas. (B) Calculation of adhesion number/cell, (C) adhesion number/cell area and (D) adhesion size were all based on data obtained from three independent experiments as described in (A). Box and whiskers plots were as described for Figure 4B. n = total number of cells analyzed. Statistics were performed utilizing the non-parametric Mann-Whitney rank sum test (***p < 0.001). Note that Arp3-deficient cells display more adhesions that are also bigger in size than Arp3-expressing controls. However, the adhesion number per cell area is reduced upon acute Arp2/3 complex removal as compared to control cells.




Acute Arp3 Loss of Function Increases Expression of FMNL Subfamily Formins That Operate in Filopodia Formation

Our previous studies have established both Arp2/3 complex and FMNL subfamily formins to co-operate in the efficiency of lamellipodia formation (Block et al., 2012; Kage et al., 2017). However, in the absence of lamellipodia, such as upon Rac1 deletion, FMNL formins can only trigger filopodia but not rescue lamellipodia formation (Kage et al., 2017). In these experiments, active FMNL3, which can promote actin filament nucleation independent of Arp2/3 complex in vitro, prominently induced the formation of filopodia with club-shaped appearance (Kage et al., 2017), a feature that had previously also been attributed to active actin filament nucleation in cells (Yang et al., 2007; Block et al., 2008). Interestingly, FMNL3 knockdown was recently also found to suppress filopodia formation in U2OS osteocarcoma cells (Young et al., 2018). In a screen for potentially compensatory upregulation of prominent actin binding proteins, both FMNL2 and FMNL3 appeared significantly enhanced in expression upon induced Arp3 suppression (Figures 9A,B). Since tamoxifen-induced Arp3 depletion clearly increased cell edge complexity, with numerous, small, concave-shaped regions at the cell periphery (Figure 2A and Supplementary Figure 12A), and strongly-increased filopodia numbers (Supplementary Figure 12B), we asked whether RNAi-mediated depletion of induced FMNL formins would revert these effects. First, we confirmed the efficiency of combined FMNL2 and−3 knockdown with and without tamoxifen treatment (Figure 9C). Knockdown efficiencies appeared admittedly moderate in these conditions. However, quantifications revealed a relative suppression of expression by 56.5 and 22.7% for FMNL2 and−3, respectively, in control cells, and by 45.3 and 36.6% upon Arp3-KO. For filopodia quantification, we chose conditions in which filopodia numbers were maximal, which was the case during spreading (Figures 9D,E). Interestingly, filopodia numbers seen in the presence of Arp2/3 complex in these conditions, were not affected by FMNL2/3 knockdown (for quantification see Figure 9E), but the increase in filopodia numbers effected by Arp3 removal appeared abolished (Figure 9E). Significantly, FMNL2/3 RNAi also strongly interfered with the spreading increase induced by Arp3 removal in these experiments (Figure 9F), confirming the conclusion that filopodia can indeed promote this process (see above and Supplementary Video 1). We should emphasize that additional actin polymerases have previously been implicated in filopodia formation, foremost of all Ena/VASP family members (Dent et al., 2007), although they are certainly not obligatory for these structures (Damiano-Guercio et al., 2020). It is tempting to speculate that during spreading in the presence of Arp2/3 complex, Ena/VASP proteins are more relevant for the formation of the filopodia formed under these conditions than FMNL2/3 proteins. Interestingly, the Ena/VASP members VASP and Mena were also found to be upregulated in expression in a previous Arp2/3-KO model (Rotty et al., 2015), and we were able to confirm this for VASP upon induced Arp3 removal here (data not shown). Thus, the precise relative contributions of both FMNL formin and Ena/VASP families to filopodia formation in the presence or absence of Arp2/3 complex remains to be established in the future. Notwithstanding this, we show here that FMNL formin upregulation has clear effects on the changes of features of protrusion and cell morphology seen upon acute Arp3 removal (Figure 9). In spread cells of regular cultures, filopodia formation was virtually absent in the presence of Arp2/3-complex, but the increase effected by Arp3 removal was again almost entirely eliminated through additional FMNL2/3 knockdown (Supplementary Figure 12B). Alongside with this, cell edge complexity was also severely reduced upon FMNL2/3 knockdown in Arp3-depleted cells, as evidenced by a strong reduction of the numbers of concave edges (Supplementary Figure 12C), which of course correlated with an increased size of remaining concave edges upon additional FMNL2/3 knockdown (Supplementary Figure 12D). Furthermore, the impact of FMNL2/3 knockdown on the Arp3-KO-induced increase of cell area was much less pronounced in these spread cells (Supplementary Figure 12E) than during early spreading (compare with Figure 9F), which can well be explained by this parameter in already spread cells being mostly derived from the Arp3-KO-triggered increase in cell size.
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FIGURE 9. Acute Arp3 removal up-regulates FMNL formin expression enhancing filopodia formation and cell spreading. (A) Representative Western blot of Arp3 as well as FMNL2 and FMNL3 protein levels in Actr3fl/fl clones with and without tamoxifen treatment, as indicated. GAPDH served as loading control. (B) Quantification of FMNL2 and FMNL3 protein levels from Western blots as shown in (A). Bar charts display arithmetic means of FMNL2 and−3 protein levels normalized to GAPDH, with each FMNL variant (shades of red) being presented as fold-change relative to its respective control (blue). Error bars represent SEMs; data obtained from at least five independently generated cell extracts. Statistics were performed utilizing non-parametric Mann-Whitney rank sum test (***p < 0.001; ** < 0.01). Note the significant elevation of FMNL2 and−3 protein levels upon Arp3 suppression in all three clones. (C) Representative Western blot analysis of FMNL2 and FMNL3 protein amounts in detergent-soluble extracts from DMSO/EtOH- and tamoxifen-treated Actr3fl/fl cells (clone Arp3.19) after co-transfection with RNAi plasmids individually downregulating FMNL2 and FMNL3 expression or mock-plasmid as control, as indicated. Note the moderate but consistent reduction of FMNL2 and−3 protein levels with and without tamoxifen-induced Arp3 depletion, as indicated (for quantification results see main text). (D) Representative phalloidin stainings of Actr3fl/fl cells (clone Arp3.19) control or tamoxifen-treated, and combined with mock- or FMNL2/3-RNAi after 15 min of spreading on fibronectin-coated coverslips. (E,F) Quantification of filopodia formation (E) and spreading area (F) of cells as presented in (D); box and whiskers plots as described for Figure 4B. n = total number of cells analyzed from three independent experiments. Statistics were performed utilizing non-parametric, Mann-Whitney rank sum test (***p < 0.001; ** < 0.01; n.s. not significant). Note that Arp3 knockout is accompanied by a pronounced increase in filopodia numbers that are reduced even below Arp3-treatment control levels upon FMNL2/3 RNAi. In addition, the increase in tamoxifen-induced cell area upon 15 min of spreading is also suppressed significantly by FMNL2/3 knockdown.


Finally, spreading cells (15 min) suppressed in expression of both, Arp2/3 complex and FMNL2/3 displayed severe defects in overall cell shape and actin filament distribution at the cell periphery (Figure 9D bottom right), nicely illustrated by SIM superresolution imaging (Supplementary Figure 13 bottom right panel). Aside from the apparent, massive induction of small, bleb-like structures, both epifluorescence (Supplementary Figure 14A) and SIM imaging (Supplementary Figure 14B) of Arp3-KO/FMNL2/3 knockdown cells revealed the frequent formation of distinct, oval-shaped regions of very low F-actin content. These regions, likely mediating cell-substratum adhesion, did not coincide with the shape of the nucleus (Supplementary Figure 15). Most strikingly, however, 3D-projections of SIM imaging data of control (Supplementary Video 3) vs. Arp3/FMNL2/3-depleted cells (for representative examples without and with nuclear staining see Supplementary Videos 4–6, respectively) clearly revealed a drastic change of overall cell shape upon interference with expression of both Arp3 and FMNL2/3 formins. Representatives of the latter treatment frequently adopted the shape of thick disks during spreading instead of the flat, cone-shaped cells observed in the control situation. The physics behind this phenomenon requires further, thorough investigation, including potential effects on stability and nature of the actin cortex in these conditions (Bovellan et al., 2014). Notwithstanding this, our data unequivocally show that the drastic changes in cell morphology effected by acute Arp3 removal, e.g., the observed increase of the numbers of filopodia or of concave regions formed along the cell edge, are to large extent mediated by the induced upregulation of FMNL2/3 formin expression.



Acute Arp3 Removal Increases Centrosome and Nucleus Numbers and Causes Nuclear Deformation

As described above, we have been unable to generate clones of immortalized fibroblast cell lines lacking Arp3. This suggested that expression of Arp3 was essential for cell division or perhaps cytokinesis. Indeed, Arp2/3 complex function has previously been linked to proper cell division and mitotic spindle formation (Plessner et al., 2019), perhaps through actin-dependent tuning of centrosomal microtubule nucleation (Farina et al., 2019), although it is already clear that Arp2/3 complex cannot be obligatory for cell division in all cell types and conditions (Graziano et al., 2019). Here we found that induced, acute Arp3 removal in fibroblasts causes dramatic increase in average centrosome numbers from roughly 2 to >5 on average in interphase cells (Figures 10A–C, Supplementary Figures 15, 16). Severe problems with cytokinesis were also suggested by the increase of average nuclei numbers observed in all three cell clones after acute Arp3 reduction (Figure 10D). Finally, many nuclei appeared swollen, fragmented or deformed, with frequent “budshape-like” protrusions, which were very rarely seen in control DMSO/EtOH-treated cells. In contrast, the percentage of cells displaying at least one deformed nucleus was increased to roughly 70–80% upon tamoxifen treatment, dependent on the clone treated (Figures 10B,E). To what extent Arp2/3-dependent actin assembly might contribute to nuclear envelope rupture as previously established in starfish oocytes (Wesolowska et al., 2020) and as pre-requisite for cells to enter metaphase of mitosis, remains to be established in future studies. Clearly, a potential, specific function in nuclear envelope rupture and breakdown would at least be consistent with the deformed nucleus phenotype observed here (Figure 10B and Supplementary Figures 15B, 16B). However, future research is needed to dissect whether the obligatory function in cell division and growth observed for the Actr3 gene studied here reflects a cell type- or condition-dependent function in these processes for Arp2/3 complex-dependent actin remodeling or a more general, Arp2/3 complex-independent function of the Actr3 gene in all cells and tissues (Vauti et al., 2007).


[image: Figure 10]
FIGURE 10. Arp3 depletion causes an increase of centrosome and nucleus numbers as well as nuclear deformation. (A,B) Representative fluorescence microscopy images of Actr3fl/fl cells (clone Arp3.19) stained for the F-actin cytoskeleton with phalloidin (a), nuclei using DAPI (b) and γ-tubulin for centrosomes (c). Merged images (d) display actin filaments in red, nuclei in blue and centrosomes in green. White rectangles in (d) mark regions of interest enlarged in (e) displaying centrosomes, the quantification of which is illustrated in (f). (C,D) Box and whiskers plots (as described for Figure 4B) displaying numbers of centrosomes (C) or of nuclei (D). For statistics, non-parametric, Mann-Whitney rank sum tests were used (***p < 0.001). (E) Analysis of nuclear morphologies. Cells were categorized according to the morphological integrity of their nuclei (intact nuclei in gray; deformed nuclei in green), represented as a fraction of all cells analyzed in individual cell populations. Results are depicted as stacked columns representing arithmetic means and SEMs from three independent experiments; non-parametric, Mann-Whitney rank sum test for statistics (***p < 0.001), n = total number of cells analyzed in (C–E).
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Cofilin: A Promising Protein Implicated in Cancer Metastasis and Apoptosis
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Cofilin is an actin-binding protein that regulates filament dynamics and depolymerization. The over-expression of cofilin is observed in various cancers, cofilin promotes cancer metastasis by regulating cytoskeletal reorganization, lamellipodium formation and epithelial-to-mesenchymal transition. Clinical treatment of cancer regarding cofilin has been explored in aspects of tumor cells apoptosis and cofilin related miRNAs. This review addresses the structure and phosphorylation of cofilin and describes recent findings regarding the function of cofilin in regulating cancer metastasis and apoptosis in tumor cells.
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INTRODUCTION

Actin-binding proteins are abundant cellular proteins that regulate cell function by mediating actin polymerization and remodeling (Dos Remedios et al., 2003; Virtanen and Vartiainen, 2017). Cofilin is an actin-binding protein and is function as a severing protein that severs actin filaments (Wang et al., 2007; Huang et al., 2014; Chang et al., 2015). Cofilin is known as a regulator of actin filament dynamics, it is a small protein of ~21 kDA that is ubiquitously expressed in all vertebrates and freely diffuses in eukaryotic cells (Shishkin et al., 2016). Cofilin promotes the conversion of actin filaments by enhancing the F-actin depolymerization and inhibiting the G-actin polymerization, which are essential in the actin filament dynamics of eukaryotes (Berger and Moeller, 2011). The phosphorylation and dephosphorylation of cofilin at the Ser3 site are crucial mechanisms for actin depolymerization and assembly. Once cofilin is activated by dephosphorylation, it servers actin by translocating into the nucleus with binding to actin (Ishikawa-Ankerhold et al., 2017). In recent decades, studies have reported that overexpression of cofilin is universal for cancer cells, regardless of the type of tumor, increased levels of cofilin is positively correlated with malignant phenotypes, as well as the cancer metastasis (Yang et al., 2020). Cancer metastasis involves tumor cell migration, which is a process requires cell motility to translocate tumor cells from the primary organ. Cofilin promotes the cell motility by regulating the cytoskeletal reorganization, promoting the lamellipodium formation, cell–cell adhesion dissolution, epithelial-to-mesenchymal transition (EMT) process and “migration-by-tethering” mechanism, thus participate in the cancer metastasis. As an important regulator of cancer metastasis, more and more studies explored the potential of cofilin being a therapeutic target in tumors. Activated cofilin translocates to the outer mitochondrial membrane and interacts with dynamin-related protein 1 (Drp1), induces mitochondrial fission and promotes cytochrome C release, finally leading to apoptosis in tumor cells (Hoffmann et al., 2019; Hu et al., 2020). This review discusses the functional role of cofilin in cancer metastasis and provides evidence for clinical perspective of cofilin in cancer treatment.



STRUCTURE OF COFILIN

The amino acid sequences of cofilin consists two actin-binding sites, the F-site and the G/F-site. The F-site locates in the N-terminus, which is responsible for binding to F-actin and severing actin filaments. The G/F-site, locates in the C-terminus, binds to both G-actin and F-actin in the same ratio (Nishida et al., 1984; Lappalainen et al., 1998; Shukla et al., 2015). The sequence schematic and ribbon diagrams are shown in Figure 1. Activated cofilin dissociates subunits of actin filaments by translocating into the nucleus with binding to actin (Ishikawa-Ankerhold et al., 2017). Actin hydrolyzes ATP into ADP, cofilin binds to ADP-actin in the actin filaments, leads to the severing and dissociation of actin filaments (Carlier et al., 1997). During this process, free barbed ends are produced and turnover rate is increased, which promote the cyclic use of F-actin (Carlier et al., 1997; Bravo-Cordero et al., 2013; Hsiao et al., 2015). Several binding sites of cofilin exert essential effects on the regulation of cellular functions. The Asp98 and His133 sites of the cofilin protein build a salt bridge, and the construction of this bridge is especially correlated with the pH sensitivity and stabilization of the molecule structure (Pope et al., 2004). Amino acids 15–30 and amino acids 106–166 locates in N-terminus and C-terminus respectively, they are required for mitochondrial targeting, thus play a crucial role in pro-apoptotic function (Chua et al., 2003). Cys39, Cys80, Cys139and Cys147 are four important sites of the cofilin for oxidation-mediated regulation of mitochondrial translocation (Klamt et al., 2009). Phosphorylation/dephosphorylation of cofilin can be achieved through Ser3 site in combination with LIM domain kinase (LIMK) and slingshot phosphatases (SSH). Phosphorylation on Ser3 deactivate cofilin, while dephosphorylation works in the opposite way. In addition, the phosphorylation status of Ser3 also affects the ability of cofilin to translocate to the mitochondria (Chua et al., 2003; Kalendová et al., 2014). Dephosphorylated cofilin can translocate to the mitochondria and participate in the regulation of mitochondria-mediated apoptosis (Kalendová et al., 2014).


[image: Figure 1]
FIGURE 1. Structure of cofilin. (A) Sequence schematic of the secondary structural elements and binding sites of cofilin according to PDB (1Q8G). The red and blue boxes below the sequence correspond to α-helices and β-strands, respectively. Ser3 is labeled in magenta, Asp98 and His133 are labeled in yellow, and Cys39, Cys80, Cys139 and Cys147 are labeled in green. The yellow line indicates the salt bridge. (B) Ribbon diagrams of cofilin generated by PyMol. The α-helices and β-strands are shown in red and blue, respectively. The binding sites are shown in the same color as in (A).




COFILIN PHOSPHORYLATION/DEPHOSPHORYLATION

The phosphorylation/dephosphorylation status determine the activity of cofilin, which is a key regulating mechanism of actin filament dynamics and cell motility, including actin cytoskeletal reorganization and cell-cell adhesion (Mizuno, 2013). Actin filament dynamics mainly refer to the coordinated assembly and disassembly of F-actin, which are responsible for the alteration of cytoskeletal structure (Etienne-Manneville and Hall, 2002). Phosphorylation on ser3 deactivate cofilin and release it from actin, thereby inhibit its ability to severing and depolymerizing F-actin, decreasing the cellular concentration of G-actin and consequently decreasing the turnover rate of actin filaments (Hotulainen et al., 2005; Kiuchi et al., 2007, 2011). The phosphorylation of cofilin is regulated by activated LIM kinases (LIMK1 and LIMK2), LIMK is a kinase that includes two main isoforms. LIMK1 is expressed mostly in the parathyroid gland, cerebral cortex, bronchus and stomach, while LIMK2 is highly expressed in the thyroid gland, smooth muscle, pancreas, testis, and ovaries (Po'uha et al., 2010; Mardilovich et al., 2015). LIMKs can be activated by phosphorylation, ROCK, PAK1, PAK2, PAK4 and MRCKα are regulators that reduce LIMK phosphorylation by binding to Thr508 (LIMK1) and Thr505 (LIMK2) threonine residue, whereas upstream effectors are Rho GTPases, including RhoA, Rac1, and Cdc42 (Mizuno, 2013). Therefore, Rho GTPase pathway is essential for cofilin phosphorylation. The dephosphorylation of cofilin is regulated by SSH phosphatase, SSH1, SSH2, and SSH3 are three isoforms of SSH, all SSHs efficiently dephosphorylate cofilin and counteract aberrant F-actin assembly (Niwa et al., 2002; Ohta et al., 2003), although the effect of SSH3 dephosphorylating cofilin is weaker than SSH1 and SSH2. SSH1, SSH2, and SSH3 have different subcellular distributions, and their expression patterns in different tissues are different, indicating that these three isoforms may have unique mechanisms by which they participate in cellular and biological functions (Niwa et al., 2002; Ohta et al., 2003). SSH increases the level of dephosphorylated cofilin on Ser3, activates the cofilin ability of binding to actin and severing F-actin, resulting in the depolymerization of F-actin and increasing of actin turnover rate. This is an important mechanism for the formation and extension of F-actin-rich lamellipodium at the leading edge of the cell, which is responsible for polarized cell mobility. In addition, SSH1 can inhibit the LIMKs phosphorylation activity toward cofilin by dephosphorylating them (Soosairajah et al., 2005), indicated that SSH1 activates cofilin not only by dephosphorylating cofilin, but also by suppressing the LIMK/cofilin activity. Overall, LIMK and SSH are two important regulators of cofilin, can bind to cofilin at Ser3 and regulate the activity of cofilin and the invasion ability of cells (Ivanovska et al., 2013). Protein-protein interaction (PPI) enrichment shows that cofilin, LIMK and SSH are strongly correlated with each other, the interactome map constructed by the 10 most significant correlated proteins around cofilin, LIMK and SSH is shown in Figure 2. ROHA, RHOC, ROCK1, ROCK2, and PAK4 are upstream effectors of LIMKs in Rho GTPase signaling pathway, which can indirectly promote the phosphorylation of cofilin and inhibit the activated cofilin activity of depolymerizing F-actin, thus can stabilize the actin cytoskeleton. On the contrast, decreasing of phosphorylated cofilin related to increasing of actin turnover. Mutations of SSH loss the function of dephosphorylating cofilin, resulting in a large increase of P-cofilin level and F-actin in cells, which is a similar phenomenon induced by LIMK. In this case, LIMK and SSH are considered to act in two opposite directions and are essential for the balance of the phosphorylation and dephosphorylation of cofilin, dephosphorylated cofilin is considered as activated cofilin and is necessary for severing F-actin, but phosphorylation is equally important as a prerequisite of binding and severing F-actin for this process can release the cofilin from filaments. Therefore, LIMK and SSH work together mediating the phosphorylation/dephosphorylation status of cofilin, this is essential for cofilin to function properly as it maintains the dynamic balance between actin polymerization and actin turnover rate, thus affects the pool of G-actin and F-actin (Jovceva et al., 2007; Scott et al., 2010). However, the activity of SSH and LIMK is not always opposite. SSH1 can also stabilize F-actin from cofilin-induced depolymerization and severing (Kurita et al., 2007), suggested that activation of SSH1 may alter its function dramatically, activated SSH1 depolymerizes F-actin by phosphatase cofilin, while inactivated SSH1 stabilizes F-actin-bundling. LIMK also participates in assembly of new actin filaments by severing F-actin in collaboration with actomyosin contraction via RhoA/ROCK pathway (Wang and Townes-Anderson, 2015).
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FIGURE 2. The protein-protein interactions (PPI) of cofilin, LIMKs and SSHs. Colored nodes represent query proteins and first shell of interactors, white nodes represent second shell of interactors, lines represent the interactions between two proteins.




COFILIN IN CANCERS


Cofilin as a Potential Biomarker of Cancers

The mRNA levels and expression of cofilin were significantly increased in tumor tissues than in benign prostatic hyperplasia tissues or normal tissues, this was a common phenomenon that observed in various types of cancer, such as hepatoblastoma (Liu et al., 2018), breast cancer (Maimaiti et al., 2017), non-small cell lung cancer (Wei et al., 2012), prostate cancer (Collazo et al., 2014; Lu et al., 2015), colorectal cancer (Sousa-Squiavinato et al., 2019), vulvar squamous cell carcinoma (Wu et al., 2016), ovarian cancer (Chen et al., 2014), and bladder cancer (Wang et al., 2017). The overexpression of cofilin may be closely related to the proliferation, invasion, and migration of cancers (Wang et al., 2007; Bernstein and Bamburg, 2010; Bravo-Cordero et al., 2013; Chang et al., 2015). High expression of cofilin was found to be positively correlated with dedifferentiation, lymphatic metastasis (Lu et al., 2015; Wu et al., 2016), haematogenous dissemination of tumors (Satoh et al., 2017) and shorter overall survival (Maimaiti et al., 2017). However, tumor size, pathological stage and patient age were not found to be associated with the expression of cofilin (Lu et al., 2015; Maimaiti et al., 2017). In in vitro experiments, when cofilin was knocked down, the growth and chemotaxis of tumor cells were significantly decreased; in addition, the cells were arrested in the G1 phase of the cell cycle, lamellipodium formation was disrupted, and invasion and metastasis were reduced (Wu et al., 2016). In addition to the overexpression of cofilin in many kinds of cancers, one study found that dephosphorylated cofilin expression in breast cancer tissues predicted lower overall survival, suggested that the dephosphorylated cofilin expression, other than the overall cofilin expression, can affect breast cancer prognosis (Maimaiti et al., 2016). Another study found that the cofilin immune complexes levels were significantly higher in pancreatic ductal adenocarcinoma patients than in healthy controls (Satoh et al., 2017). These results suggested that cofilin, including cofilin immune complexes, is a potential diagnostic tumor biomarker, it can be a therapeutic target and prognosis indicator of cancers.



Cofilin Regulates the Cancer Metastasis

Multiple studies have verified that inhibition or enhancement of cofilin expression can make significant differences in tumor cell dynamics, thus influence the cancer metastasis. Cancer metastasis is a progress involving tumor cell migration into lymph nodes or blood vessels (Nieto et al., 2016). Tumor cell migration can be promoted by the formation of lamellipodium, constantly and repeatedly pulling the posterior cell forward under the action of cell contractility (Aung et al., 2014; Dalaka et al., 2020). Dephosphorylation of cofilin by SSH can induce the lamellipodium formation and extension, thus affecting the morphology, polarity and movement direction of cells (Chan et al., 2009). Cofilin is an indispensable controller of lamellipodium formation (Shishkin et al., 2016). Dephosphorylated cofilin promotes actin cytoskeleton reorganization by depolymerizing F-actin, stimulates actin turnover and, which augments the lamellipodium formation and extension, promote the cancer metastasis (Ghosh et al., 2004; Chan et al., 2009; Bravo-Cordero et al., 2013). Cofilin mediated lamellipodium formation and lamellipodium related cellular mobilization can be inhibited by the activation of JNK/Bnip3/SERCA/CaMKII pathways, therefore suppress the hepatocellular carcinoma metastasis. Phosphorylated JNK contributed to Bnip3 expression. Higher Bnip3 contributed to ATP undersupply (Fuhrmann and Brune, 2017). The energy disorder blunted the ability of SERC, leading to the activation of CaMKII (Hu et al., 2017). CaMKII can inhibit the F-actin assembly and lamellipodium formation by phosphorylating cofilin, eventually limiting the cancer migration (Zhang et al., 2016). SSH can be recruited to the lamellipodium and activated by F-actin, leads to the dephosphorylation of cofilin in the lamellipodium (Kurita et al., 2008). Inactivation of SSH1 inhibits the dephosphorylation of cofilin, limit actin cytoskeleton reorganization and lamellipodium formation, suppress the metastasis of cancer (Peterburs et al., 2009; Zhuang et al., 2018). Upregulation of SSH1 increases tumor cell migration in pancreatic cancer (Wang et al., 2015). Phosphorylation of cofilin regulated by LIMK can abrogate actin depolymerization activities and enhances stabilization of actin filament, inhibits the lamellipodium formation and tumor cell mobilization (Wioland et al., 2017). The overexpression of LIMK1 phosphorylated cofilin and supressed the cancer metastasis by suppressing of lamellipodium formation, while mutated LIMK1 increases the motility of tumor cells (Meyer et al., 2005; Li Z. et al., 2014), similar results were observed in studies of LIMK2 (Collazo et al., 2014; Xu et al., 2019). Nonetheless, conflicting results have been observed regarding the role of LIMK. LIMK1 overexpression promoted the cancer progression (Tania et al., 2013), while knockdown of LIMK1 inhibits the lamellipodium formation and reduced tumor cell migration (Nakashima et al., 2005; Chen et al., 2014). These contrary results indicated that although LIMK and SSH phosphorylate and dephosphorylate cofilin respectively, they don't necessarily work in an opposite way. Mathematical simulations suggested that LIMK-dependent cofilin phosphorylation also participates in assembly of new actin filaments, phosphorylated cofilin releases from filaments, which allows cofilin ready to bind and sever other filaments (Bravo-Cordero et al., 2013). Activation of RhoA-ROCK-MLC/MLCP pathway promote severing of actin filaments in collaboration with actomyosin contraction through cofilin activity (Wang and Townes-Anderson, 2015). LIMK promote polymerization of actin, which contributes to the formation of new actin branches and extension of actin meshwork, this process drives membrane forward at the leading edge. Overall, the dynamic balance between phosphorylation and dephosphorylation of cofilin is the key to F-actin homeostasis, LIMK and SSH are two important effectors of cofilin activity, dysfunction of LIMK or SSH would break this balance and lead to pathological changes, such as lamellipodium formation and cancer metastasis.

Moreover, cofilin can promote the cancer metastasis by regulating epithelial-to-mesenchymal transition (EMT). EMT can dissolve cell–cell adhesion and alter the cell morphology to fibroblast-like forms as a consequence of actin reorganization, which collectively translate into metastasis properties (Chaffer et al., 2016; Derynck and Weinberg, 2019; Yang et al., 2020). Cofilin is a terminal effector of Rho GTPase signaling, which is a major pathway of the actin cytoskeleton dynamics. Moreover, Rho GTPases are responsible for the formation of cell-cell adhesion and stabilization of adhesion (Anastasiadis and Reynolds, 2001). One study found a prominent accumulation of F-actin in EMT tumor cells, knockdown of cofilin abolished the morphologic pattern in EMT tumor cells. This result indicated that the EMT process in tumor cells may be regulated by phosphorylation of cofilin via Rho GTPase signaling (Haga and Ridley, 2016; Sousa-Squiavinato et al., 2019). Rho/ROCK/LIMK/cofilin is one of the Rho GTPase pathways, the inhibition of Rho/ROCK/LIMK/cofilin pathway resulted in the destroy of F-actin stabilization and redistribution of cytoplasmic actin via inhibition of cofilin phosphorylation, which promoted EMT process as well as gastric cancer metastasis. RICS and PRP4 are two GTPase-activating proteins that directly interacts with Rho, they function as upstream effectors and inhibit phosphorylation of cofilin by inactivate LIMK (Islam et al., 2018; Xu et al., 2020). However, another cofilin related pathway showed opposite relationship between phosphorylation of cofilin and EMT process. The inhibition of the Src/Akt/mTOR/cofilin pathway impaired the organization of actin cytoskeleton and suppress the EMT in melanoma cells via phosphorylation of cofilin. These results suggested that apart from phosphorylation/phosphorylation of cofilin, the breaking balance of phosphorylated and non-phosphorylated cofilin may be the key to changes in the dynamics of the actin cytoskeleton and EMT process of tumor cells (Wang et al., 2006). In addition, PRP4 can mediate the EMT by increasing the expression of PP1A other than cofilin. PP1A induces dephosphorylation of MIIP, resulting in the down-regulation of E-cadherin protein levels, which further promote the process of EMT (Islam et al., 2018). This might be another reason of the opposite results.

In addition to promoting EMT and lamellipodium formation, there are other potential mechanisms of cofilin participate in cancer metastasis. The mechanically rigid tissue surrounding a tumor is denser compared to normal tissue, and increased rigidity of substrates can enhance tumor cell migration (Tlsty and Coussens, 2006). Mechanical stimuli (tension) can trigger a mechanical response pathway in normal fibroblasts, resulting in increasing amount of fibronectin in the substrates (Kostic and Sheetz, 2006; Friedland et al., 2009). Mechanical stimuli (tension) can induce the decreasing of actin twist angle and change the filaments structural, increase the ratio of filament stiffness (Matsushita et al., 2011). Tension triggers a mechanical response pathway in normal fibroblasts, resulting in increasing amount of fibronectin in the substrates (Kostic and Sheetz, 2006; Friedland et al., 2009). During this process, cofilin plays a crucial role (Hayakawa et al., 2011). Mechanical stimuli (tension) can be directly sensed by actin filaments and induce changes in the filament dynamics, which decreases the binding rate of cofilin to F-actin, leading to an inhibition of the severing activity of cofilin. Cofilin preferentially binds to flexible twisted F-actin, when tension in the filament is increased by stretch, the magnitude of torsional fluctuations of the filament will be reduced, resulting in an inhibition of cofilin interaction with F-actin (Hayakawa et al., 2011; Matsushita et al., 2011). In in vitro experiment, the invasion of stimulated tumor cells are higher than non-stimulated cells, but the invasion between stimulated or non-stimulated tumor cells was not significant different when cofilin was silenced, indicated that cofilin is needed in the tension induced tumor cell migration (Menon and Beningo, 2011). Migration-by-tethering is a mechanism proposed recently. This mechanism was observed and explored in breast cancer, dendritic spine-like structure (DSLS) narrows the distance between tumor cells and osteogenic cells, thus increases the mobility of the otherwise inert tumor cells. DSLS is the key to migration-by-tethering, it is abundant with cofilin, thereby it has high flexibility and cell adhesion, this ability allows DSLS to combine with osteogenic cells through cell-cell adhesion, such as adherheterotypic adherens junctions and gap junctions. This process can drive cancer cells that do not possess intrinsic migratory properties to acquire the ability of migration (Muscarella et al., 2020).




CLINICAL PERSPECTIVE OF COFILIN IN CANCER TREATMENT


Cofilin Is Involved in Regulating Apoptosis in Tumor Cells

Apoptosis is an active, controlled and complicated process, it is the degradation of a highly conserved protein or organelle in eukaryotes (Shi et al., 2020). Allyl isothiocyanate (AITC) (Tang et al., 2014), urisolic acid (UA) (Li R. et al., 2014), etoposide (Chua et al., 2003), arnidiol (Hu et al., 2020), and 4-methylthiobutyl isothiocyanate (Grzanka et al., 2011) can induce apoptosis in several tumor cell lines, such as SH-SY5Y, HL60, COS-7, and HeLa cells (Chua et al., 2003), through the cofilin pathway by regulating mitochondrial translocation and fission (Hoffmann et al., 2019; Hu et al., 2020). The fusion and division of mitochondria are two continuous dynamic antagonistic processes, which maintain the morphology of mitochondria and apoptotic fission plays essential role in cellular physiology (Sheridan and Martin, 2010). Cofilin involves in the process of mitochondrial fission (Hatch et al., 2014; Li et al., 2015). ROCK1/PTEN/PI3K signaling pathway is the first step in mitochondrial division (Wang et al., 2012; Li et al., 2013). Activated ROCK1 is the upstream protein that directly regulates PTEN (Di Cristofano and Pandolfi, 2000; Yan and Backer, 2007; Li R. et al., 2014). The activation of ROCK1 leads to the activation of PTEN, resulting in the inhibition of PI3K activity (Vasudevan et al., 2011). PI3K is the upstream molecule that directly regulates PP1/PP2A (Bamburg and Bernstein, 2016). Inhibition of PI3K activity will inhibit the dephosphorylation of Akt in PI3K pathway, increase PP1/PP2A activity, and lead to the increase of Cofilin phosphorylation (Song et al., 2015). PP1/PP2A is a direct upstream regulator of Cofilin dephosphorylation activation (Ambach et al., 2000; Eichhorn et al., 2009). Increased expression of PP1/PP2A phosphatase can promote cofilin dephosphorylation activation (Delorme-Walker et al., 2015). Then the dephosphorylated cofilin translocates to the outer membrane of the mitochondria to bind directly to F-actin, and depolymerize the F-actin into G-actin, causing the mitosis of the mitochondria. The transient mitochondrial assembly of F-actin is vital for mitochondrial fission, it ensures the smooth progress of the dynamic cycle of F-actin/G-actin in the process of mitochondrial division, and thus participates in the regulation of mitochondrial division (Chen et al., 2000; Li et al., 2015). Subsequently, mitochondrial damage and cytochrome C release lead to the degradation and activation of Capase-9 and Capase-3, and finally lead to apoptosis (Morley et al., 2003). One study showed that inhibition of the Src/Akt/mTOR signaling pathway resulted in decreased levels of dephosphorylation of cofilin (Li et al., 2019), this indicates that Src/Akt/mTOR signaling pathway may be another upstream signaling pathway activated by cofilin.

The mitochondrial regulation dominated by cofilin dephosphorylation activation is closely related to Drp1 and PINK1/Park2 pathways (Serasinghe and Chipuk, 2017). The direct interaction between cofilin and Drp1 in the outer membrane of mitochondria contributes to mitochondrial division (Estaquier and Arnoult, 2007; Hu et al., 2020). Knocking down the expression of cofilin or Drp1 will affect their interaction, resulting in the blocking of mitochondria division and the release of cytochrome C and apoptosis (Li et al., 2015; Rehklau et al., 2017). The dephosphorylation status of cofilin Ser3 site and the dephosphorylation of Drp1 Ser637 site are key sites of cofilin-Drp1-mediated mitochondrial damage (Chua et al., 2003; Archer, 2013; Bamburg and Bernstein, 2016). The dephosphorylated activated plasmid cofilin (S3A) could induce the increase of cofilin mitochondrial translocation, leads to the increase of mitochondrial division and induce cell apoptosis, while its phosphorylated inhibitory plasmid cofilin (S3E) could induce the decrease of mitochondrial translocation and block mitochondrial division, resulting in the decrease of apoptosis (Hu et al., 2020). The dephosphorylated activated plasmid Drp1 (S637A) can induce the increase of Drp1 mitochondrial translocation, which leads to the increase of mitochondrial division and apoptosis; while the phosphorylated inhibitory plasmid Drp1 (S637D) reduces the mitochondrial translocation of Drp1 and inhibits mitochondrial division resulting in the decrease of apoptosis (Hu et al., 2020). Drp1, which is a hydrolytic GTP enzyme, is a key molecule in regulating mitochondrial division in mammalian cells (Rehklau et al., 2017). In the early stage of apoptosis, Drp1 protein can be dephosphorylated and activated and translocated to the mitochondrial outer membrane together with dephosphorylated cofilin (De Vos et al., 2005; Ji et al., 2015). Cofilin binds directly to the potential mitotic site of mitochondria and wraps the mitochondria to form a circular complex that can regulate mitochondrial division (Satoh et al., 2017). The distance or angle between molecules is changed by GTP hydrolysis of Drp1, then contracting the Drp1 ring gradually and constricting the mitochondria, and then cause mitochondrial damage by regulating the division of the mitochondria (Frank et al., 2001; Wang et al., 2009). At the same time, mitochondrial division is accompanied by PINK1/Park2 pathway mitochondrial autophagy (Greene et al., 2012; Ashrafi and Schwarz, 2013; de Vries and Przedborski, 2013). PINK1/Park2 pathway is the key pathway to regulate mitochondrial autophagy (Jin et al., 2010; Springer and Kahle, 2011). Cofilin can regulate mitochondrial autophagy mediated by PINK1/Park2 pathway by affecting mitochondrial membrane potential (Narendra et al., 2010; Fedorowicz et al., 2014). The expression of cofilin can induce mitochondrial division, down-regulate the mitochondrial membrane potential, further aggravate the down-regulation of the expression of MPP β, PARL and AFG3L2, lead to the activation of PINK1, increase the mitochondrial translocation of Park2 and the occurrence of mitochondrial autophagy (Li et al., 2018). A schematic of cofilin-mediated apoptosis is shown in Figure 3.
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FIGURE 3. Key figure showing a schematic of cofilin-mediated apoptosis (Li et al., 2013). UA, AITC, etoposide and arnidiol induce apoptosis through the cofilin pathway. Activated cofilin translocates to the outer mitochondrial membrane and interacts with Drp1, induces mitochondrial fission and promotes cytochrome C release, finally leading to apoptosis.




MicroRNAs as Inhibitors of Cofilin Activity

MicroRNAs (miRNAs), such as miR-342, miR-429, miR-182-5p, act as inhibitors of cofilin activity and upstream effectors of proliferation and migration in cancer cells (Lowe and Lin, 2000; Lin et al., 2010; Tian et al., 2015; Liu et al., 2020). Other miRNAs, such as miR-138 and miR-384, modulate the activity and expression of cofilin through the LIMK/cofilin pathway (Chen et al., 2014; Yu et al., 2019). MiRNAs are non-coding RNAs that can suppress mRNA translation and inhibit protein activity by binding to the 3′UTR of their target mRNAs (Bartel, 2004; Ozols, 2005). MiRNAs are known to be tumor suppressors and are considered as therapeutic targets, they play crucial roles in various cellular processes that are closely related to tumor progression, overexpression of miRNAs significantly inhibit the proliferation (Hatfield et al., 2005; Garzon et al., 2010; Hayes et al., 2014; Su et al., 2015), dedifferentiation and migration of cancer cells (Lowe and Lin, 2000; Tian et al., 2015; Liu et al., 2020). Downregulation of miRNAs and overexpression of cofilin have been observed in different types of cancers, which may be closely related to the overexpression of oncogenes (Zhou et al., 2013; Chen et al., 2014; Tian et al., 2015; Yu et al., 2019; Liu et al., 2020). MiR-342 acts as an upstream effector of cofilin in human breast cancer cells, miR-429 targets cofilin in colon cancer cells; miR-182-5p binds to the 3′UTR of cofilin mRNA at position 135–142 in human bladder cancer cells (Lowe and Lin, 2000; Tian et al., 2015; Liu et al., 2020). Cofilin expression can be downregulated or upregulated due to the transfection-mediated overexpression or inhibition of these miRNAs, respectively (Lowe and Lin, 2000; Tian et al., 2015; Liu et al., 2020). Cancer cells transfected with anti-miRNAs can be rendered more invasive by promoting cofilin activity. These results indicated that miRNAs mediate the cancer metastasis by regulating the activity of cofilin (Tian et al., 2015). Some other miRNAs can indirectly affect the activity of cofilin by regulating the LIMK1/cofilin signaling pathway, and upregulation of certain miRNAs inhibits the levels of LIMK and vice versa. MiR-138 supressed the cancer metastasis by targeting LIMK1. Further experiment founds that cofilin participated in the inhibitory effect of miR-138 regulating tumor cells. Although LIMK1 was upregulated within knockdown miR-138 in cofilin knockout stable cell lines, the migration and invasion ability of tumor cells were not sufficiently promoted (Chen et al., 2014). MiR-384 affects cofilin activity by targeting LIMK1, thus modulating the progression of esophageal squamous cell carcinoma (Yu et al., 2019). These findings suggest that miRNAs act as promising inhibitors of cancer metastasis by inhibiting LIMK1/cofilin signaling activity.




CONCLUSION

Cofilin is an actin-binding protein that is expressed in all kinds of mammals. Great progress has been made in understanding the structural function and biological effects of cofilin, and its effects on tumor development have been well-studied. Cofilin was found to be the major protein in different human cancer cells that can modulate cellular morphology, mitosis and mitochondrial fission. Cofilin plays an essential role in the cancer metastasis and apoptosis of tumor cells and is considered a promising biomarker of different cancers. The balance of kinases (LIMK1) and phosphatases (SSH1) can change the activation of cofilin, and LIMK1 and SSH1 have been extensively studied as regulators in cofilin-mediated pathways in cell motility and cancer metastasis. However, there are contradictory results and data regarding the expression of cofilin in tumor cells, effects of dephosphorylation of cofilin and the expression level of LIMK1 on cell migration and invasion. Further studies are needed to explore the potential mechanisms behind these contradictory results. The effect of cofilin on apoptosis is a new focus of studies on tumor development, and a growing body of research has found that cofilin is involved in apoptosis under the regulation of AITC, UA, etoposide and arnidiol in various leukemia cells and breast cancer cells. Active (dephosphorylated) cofilin induces apoptosis by translocating to the outer membrane of mitochondria and promoting the release of cytochrome C. Therefore, cofilin can be developed as a new anti-tumor target. The regulation of apoptosis by cofilin in cancer cells can be a very promising research direction. With further study of the pathway linking cofilin and apoptosis, cofilin may be not only a biomarker and prognostic indicator of cancers but also a therapeutic target for various cancers.
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Programmed cell death (PCD) depicts a genetically encoded and an orderly mode of cellular mortality. When triggered by internal or external stimuli, cells initiate PCDs through evolutionary conserved regulatory mechanisms. Actin, as a multifunctional cytoskeleton protein that forms microfilament, its integrity and dynamics are essential for a variety of cellular processes (e.g., morphogenesis, membrane blebbing and intracellular transport). Decades of work have broadened our knowledge about different types of PCDs and their distinguished signaling pathways. However, an ever-increasing pool of evidences indicate that the delicate relationship between PCDs and the actin cytoskeleton is beginning to be elucidated. The purpose of this article is to review the current understanding of the relationships between different PCDs and the actin machinery (actin, actin-binding proteins and proteins involved in different actin signaling pathways), in the hope that this attempt can shed light on ensuing studies and the development of new therapeutic strategies.
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INTRODUCTION

Cell death, according to the recommendations of the Nomenclature Committee on Cell Death, can be classified into two big categories: accidental cell death (ACD) and programmed cell death (PCD) (Galluzzi et al., 2018). ACD is triggered by unexpected injury without controllable molecular machinery. PCD, on the contrary, defines genetically fine-regulated preset cell death processes. PCD is being intensively studied conferred by its anti-cancer pharmacological potential and physiological functions during development. To date, a handful of conceptually distinct PCDs have been discovered (Tang et al., 2019). According to the timeline of naming, PCDs include: Apoptosis, Lysosomal cell death, Pyroptosis, NETosis, Necroptosis, Entosis, Parthanatos, Ferroptosis, Autosis, Alkaliptosis, Oxeiptosis, etc. These subprograms can exterminate cells in different ways, causing featured morphological alterations, signaling cascade changes and different immunological consequences.

Actin, being one of the most abundant proteins in cells, is evolutionarily conserved across kingdoms. Similar to other cytoskeleton proteins, actin exists as free monomer called G-actin (spherical) or as part of linear double helical polymeric microfilaments called F-actin (filamentous) (Holmes et al., 1990). Both G-actin and F-actin are found in the cytoplasm and the nucleus. The cellular actin cytoskeleton is accounted for virtually most activities of cellular functions, such as gene transcription, protein translation, cell morphogenesis, membrane dynamics and cell mechanics. To cope with different physiological or pathological stimulations, the spatial and temporal dynamics of the actin cytoskeleton change rapidly. Disruption of the localization, balance or dynamics of the actin pool correlates with diverse diseases, ranging from aging to cancer. Actin, actin-binding proteins and actin-modulating proteins constitute a broader concept which we define as “actin machinery” in this review. A significant fraction of actin function lies within the activities of a category of proteins called actin-binding proteins. Actin-binding proteins refer to an array of proteins which directly binds to G-actin or F-actin, include, but are not limited to Gelsolin, Cofilin, the Arp2/3 complex, etc. Actin-modulating proteins depict proteins interfering actin cytoskeleton functions in different actin signaling pathways, albeit do not directly bind to actin (RhoA, ROCK, Cdc42, etc.). The faithful execution of actin cytoskeleton function is a consequence of the interplays between proteins within the actin machinery.

Lines of evidences, some of which are compelling, have indicated that PCDs may be closely correlated with the actin machinery (Gourlay and Ayscough, 2005; Franklin-Tong and Gourlay, 2008; Smertenko and Franklin-Tong, 2011). However, how exactly actin machinery functions in different PCDs and whether these mechanisms exhibit similarities are still enigmatic. Currently, the relationship between PCDs and the actin machinery has not been extensively reviewed.

Here, in this review, we attempt to address the relationship between PCDs and the actin machinery by summarizing existing literatures. For clarity, the following content will be separated into 11 parts, according to the time of discovery of each PCD.



APOPTOSIS

It is widely appreciated that apoptosis is the most well-studied cell death programme. Among the 11 PCDs we will focus on in this review, apoptosis was discovered the earliest. In the process of apoptosis, various independent signaling pathways triggered by extrinsic or intrinsic stimuli lead to the activation of cysteine-aspartic proteases (caspases) (Strasser et al., 2000). Caspases cleave many intracellular substrates, thereby gradually causing cell shrinkage, chromatin condensation, nuclear fragmentation, plasma membrane blebbing/blistering, apoptotic bodies formation and other apoptosis-specific features (Earnshaw et al., 1999; Nicholson, 1999; Fuentes-Prior and Salvesen, 2004). A myriad of evidences has tightly connected apoptosis and the actin machinery (Figure 1) (Gourlay and Ayscough, 2005; Moss and Lane, 2006; Desouza et al., 2012). For example, at the tissue level, in epithelial monolayers, dying cells destined for apoptosis are extruded from the monolayer by assembly of contractile F-actin and myosin structures in neighboring healthy cells (Rosenblatt et al., 2001). At the cellular level, the actin cytoskeleton is reorganized into a peripheral actomyosin cortical ring during apoptosis (Ndozangue-Touriguine et al., 2008). Moreover, disruption of the actin-binding protein α-Actinin at the focal adhesion renders cells vulnerable to apoptosis (Triplett and Pavalko, 2006). Similarly, actin-binding proteins, such as Gelsolin, β-Thymosins, E-tropomodulin, Filamin and Coronin-1, are found to play essential roles in apoptosis (reviewed in detail elsewhere) (Franklin-Tong and Gourlay, 2008; Desouza et al., 2012). Intriguingly, certain actin machinery proteins are found to be important substrates for caspases and actin plays vital roles in the initiation and execution steps of apoptosis (Moss and Lane, 2006). To further illustrate the connection between apoptosis and the actin machinery, we will elaborate on different stages of apoptosis such as the induction period and the execution period in the subsequent paragraphs.


[image: Figure 1]
FIGURE 1. Schematic illustrating apoptosis and the actin machinery. Actin-binding proteins, such as Gelsolin, Villin, β-Thymosins, E-tropomodulin, Filamin and Coronin-1, play active roles in apoptosis. The actin cytoskeleton integrity is essential for CD95/Fas-mediated apoptosis. During another TNF-induced apoptosis, plasma membrane translocation of the TNFR1 requires myosin II motor and actin. E-cadherin and catenins engagement can augment apoptosis activation by linking DR4/DR5 to the F-actin cytoskeleton. Bmf translocation from the filamentous actin to the mitochondria is important for apoptosis. Cofilin protein amount and its posttranslational modification status are important for apoptosis. Cytochalasin D, latrunculin A and Simvastatin can induce apoptosis through disrupting the actin cytoskeleton network. Cofilin and actin affects p53-mediated control of apoptosis. Par-4 can recruit Dlk to the filamentous actin, thereby enhancing the phosphorylation of MLC and induction of apoptosis. WASP family protein WAVE1 can regulate apoptosis through affecting mitochondria. Actin is cleaved by caspase during apoptosis, resulting in the production of tActin and Fractin. tActin, rather than Fractin, can specifically induce morphological changes resembling apoptosis. Actin is also involved in the regulation of DNA degradation during apoptosis. Membrane blebbing is supervised by actomyosin contractility, which in turn is regulated by Caspase-3-ROCK1 cleavage-pMLC axis. Please see the main text for more detailed information. Abbreviations: Caspase, cysteine aspartic protease; βTs, β-Thymosins; E-Tmod, E-tropomodulin; TNFR1, TNF receptor-1; VDAC, voltage-dependent anion channel; Bmf, Bcl2-modifying factor; Dlc2, dynein light chain 2; pMLC, phosphorylated myosin light chain; Dlk, DAP like kinase; Par-4, prostate apoptosis response-4; DR4/DR5, death receptor 4/5; ROCK1, Rho-associated coiled-coil kinase; Myo V, myosin V; WASP, Wiskott-Aldrich Syndrome protein; tActin, mitochondria-targeted N-myristoylated 15 kDa fragment of actin; Fractin, N-terminal 32 kDa fragment of actin; Dnase I, deoxyribonuclease I.



Induction Period

During apoptosis induction period, various death commands are introduced into cells, mainly through the extrinsic pathway and the intrinsic pathway. Actin is an important regulator or target in both pathways.

In the extrinsic apoptotic pathway, it has been demonstrated that the aggregation of CD95/Fas (belongs to the tumor necrosis factor (TNF) receptor superfamily) and CD44 death receptors requires actin, which is instrumental for stimulating these death receptors to elicit the downstream apoptotic responses in Jurkat cells (Franklin-Tong and Gourlay, 2008). It is found that an actin-binding protein Ezrin interfaces between CD95/Fas and F-actin, thereby activating apoptosis signaling (Parlato et al., 2000). Consistently, down regulation of ezrin and overexpressing Heat Shock Protein 70 together promote apoptosis (Yao et al., 2015). Moreover, during another TNF-induced apoptosis, plasma membrane translocation of the TNF receptor-1 is regulated by the actin-binding protein myosin II motor activity (Jin et al., 2001). Another study showed that E-cadherin and catenins engagement can augment apoptosis activation by linking DR4/DR5 to the F-actin cytoskeleton (Lu et al., 2014).

In the intrinsic apoptotic pathway, under physiological conditions, the pro-apoptotic factor bcl-2 family protein Bmf associates with the cytoplasmic F-actin networks through dynein light chain 2 (Dlc2) and myosin V protein complex (Puthalakath et al., 2001). When the adhesion to the F-actin cytoskeleton is disturbed under certain cellular stress such as UV radiation, Bmf will dissociate and translocate to the mitochondria, which then instigates pore formation in the outer mitochondrial membrane, ultimately initiating apoptosis (Grespi et al., 2010). In line with the function of Bmf translocation during apoptosis, Simvastatin, a cholesterol-lowering medication, can induce apoptosis through the disruption of F-actin integrity via the impairment of the actin regulatory protein small GTPase RhoA and Rac-1 (Kang et al., 2016). In another study, WAVE1, another WASP-family protein, can also regulate apoptosis through modulating Bcl-2 family protein Bcl-xL (Cheng et al., 2007). After induction of apoptosis by conditions such as oxidative stress or expressing a dephosphorylated Cofilin (active conformation that severs F-actin), the oxidized or dephosphorylated Cofilin translocates to the mitochondria before the subsequent release of cytochrome c (Chua et al., 2003; Klamt et al., 2009). Oppositely, down regulation of Cofilin abrogates cytochrome c release and apoptosis. Importantly, the apoptosis-inducing ability of Cofilin relies on its functional actin-binding domain. Moreover, the application of the actin depolymerization agents cytochalasin D or latrunculin A can induce mitochondrial-dependent apoptosis, probably also through releasing Bmf from the filamentous actin and the myosin V motor (Martin and Leder, 2001; Puthalakath et al., 2001; Paul et al., 2002). During apoptosis, actin is also directly involved in the regulation of voltage-dependent anion channels (VDACs) (Gourlay and Ayscough, 2005). The opening and closing of VDACs change the permeability of the outer mitochondrial membrane and regulate the release of pro-apoptotic factors. In line with this, the F-actin stabilization agent jasplakinolide can elicit apoptosis in various cell lines (Odaka et al., 2000; Aida et al., 2016). Confusingly, another actin stabilization agent phalloidin which shares the same actin-binding site as jasplakinolide, is found to reduce cisplatin-mediated apoptotic cell death in primary cultures of porcine proximal tubular kidney cells (Kruidering et al., 1998).

When DNA is damaged, p53 (TP53) enters and accumulates within the nucleus, thereby eliciting apoptosis. Interestingly, p53 nuclear translocation can be attenuated by the increase of actin polymerization in the cytosol, thereby mitigating p53-triggered apoptosis (Wang et al., 2013). Consistently, it is found that activated Cofilin coopts p53 and promotes p53 mitochondrial and nuclear localization, resulting in promotion of apoptosis (Liu et al., 2017).



Execution Period

Apoptosis execution period is the convergence point of extrinsic, intrinsic and other apoptosis-inducing pathways, culminate with a series of morphological and biochemical changes that define apoptosis, such as membrane blistering, chromatin condensation and DNA fragmentation, cell shrinkage, formation of apoptotic bodies (Mills et al., 1999).

Two homologous actin-binding proteins, Gelsolin and Villin, render cells insensitive to apoptosis by preserving actin dynamics (Wang et al., 2012). At this stage, Caspase-3 cleaves Gelsolin and the cleaved Gelsolin fragment then subsequently cleaves the filamentous actin (Kothakota et al., 1997), resulting in the production of an N-terminal 32 kDa fragment (Fractin) and a mitochondria-targeted N-myristoylated 15 kDa fragment (tActin) (Utsumi et al., 2003). Expression of tActin, rather than Fractin, can specifically induce morphological changes resembling apoptosis (Mashima et al., 1999). Strikingly, the above-mentioned tActin-mediated apoptosis kills cells without obviously activating caspases, supporting the idea that actin functions as a downstream mediator in apoptosis.

Actin is also involved in the regulation of DNA degradation during apoptosis. G-actin monomer interacts with deoxyribonuclease I (DNase I) with high affinity and inhibits its activity (Weber et al., 1994). Correspondingly, DNase I is responsible for the degradation of nuclear DNA strands upon apoptosis (Peitsch et al., 1993; Eulitz and Mannherz, 2007).

The actomyosin system is key to the structural and morphological changes during the execution period of apoptosis. Membrane blebbing, as an important morphological feature of apoptosis, is supervised by actomyosin contractility, which in turn is regulated by Caspase-3-ROCK1 cleavage-pMLC axis (Coleman et al., 2001). Myosin light chain (MLC) can also be phosphorylated through Par-4/Dlk (Vetterkind et al., 2005). Coexpression of prostate apoptosis response-4 (Par-4) and DAP like kinase (Dlk) initiates apoptosis. In the cytoplasm, Par-4 binds to the actin cytoskeleton, thereby interacting with Dlk, which can then phosphorylate its substrate, MLC, therefore leading to intense contraction of the actomyosin system and apoptosis (Vetterkind et al., 2005).

Collectively, the above overwhelming data highlight the essentiality of the actin machinery in apoptosis.




LYSOSOMAL CELL DEATH

Lysosomes are acidic organelles and intracellular recycling machines filled with numerous hydrolytic enzymes that can degrade a wide variety of structurally diverse materials, such as macromolecules, organelles and pathogens (Tang et al., 2019). Lysosomal membrane permeabilization (LMP) will result in the release of cathepsins (a large family of cysteine peptidases) and other hydrolytic enzymes from the collapsed lysosomal compartment into the cytoplasm, leading to lysosomal cell death (Figure 2). Lysosomal cell death can be induced by a number of stimuli, including but not limited to reactive oxygen species (ROS), lysosomotropic compounds and certain endogenous cell death effectors (Boya and Kroemer, 2008).


[image: Figure 2]
FIGURE 2. Schematic illustrating lysosomal cell death and the actin machinery. Permeabilization of lysosomal membrane and the subsequent release of hydrolytic enzymes including cathepsins are key features of lysosomal cell death. Direct evidence connecting lysosomal cell death and the actin machinery is limited. Nevertheless, certain proteins of the actin machinery, such as actin, myosin and Cofilin, can be degraded or modulated by cathepsins. Lysosome movement also closely correlates with F-actin and myosin. GA101, a type II CD20-targeted monoclonal antibody, can induce lysosomal cell death. This GA101-induced cell death can be abrogated by inhibitors of actin polymerization. Please see the main text for more detailed information. Abbreviations: LMP, lysosomal membrane permeabilization; MHC, myosin heavy chain.


Direct involvement of the actin machinery in lysosomal cell death is limited. A study from Alduaij et al. showed that GA101 (also named obinutuzumab), a novel type II anti-CD20 monoclonal antibody, can induce lysosomal cell death in lymphoma cell lines (Alduaij et al., 2011). Importantly, this type of GA101-induced lysosomal cell death can be abrogated by cytochalasin D and latrunculin B, inhibitors of actin polymerization. However, the detailed mechanism is unclear and further work is required to establish the missing link between lysosomal cell death and the actin cytoskeleton. Nevertheless, mounting evidences have indicated that lysosome activity correlates closely with the actin cytoskeleton. For example, early studies have shown that, depending on actin, overexpression of truncated myosin obstructs membrane transport from endosomes to preexisting lysosomes (van Deurs et al., 1995; Barois et al., 1998). Another report suggested that Myosin I Alpha (MMIα), a myosin associated with endosomes and lysosomes, acts in concert with actin filaments to mediate the delivery of internalized molecules to lysosomes and the movement of lysosomes can be disturbed by actin depolymerization agents (Cordonnier et al., 2001). One profound feature of lysosomal cell death is the release of Cathepsins. In other studies not directly related to lysosomal cell death, the actin machinery can be degraded by Cathepsins. Cathepsin B has a broad degradation effect on actin, with most of the peptides released from the N- and C- termini of the actin protein (Hughes et al., 1999). It has also been suggested that Cathepsin D can catalyze the hydrolysis of actin and myosin (Hughes et al., 2000). A recent study demonstrates that, during microglia migration, Cathepsin D can juxtapose actin filaments at the leading edge of lamellipodia through modulating the phosphorylation status of Cofilin (Liu et al., 2020). Moreover, Cathepsin L can degrade actin, actin regulatory proteins such as myosin heavy chain, Troponin T and Troponin I from rabbit skeletal muscle (Matsukura et al., 1981).

In conclusion, the actin machinery may play a role in lysosomal cell death but how exactly they impact the death signal transduction remains to be further investigated.



PYROPTOSIS

Pyroptosis, a form of distinguished PCD initiated in response to infections, is characterized by the presence of phagosome formation, inflammasome assembly, GSDMD pore formation, cell swelling and release of inflammatory cytokines (Figure 3). Existing studies have shown that actin cytoskeleton is required for pyroptosis. At the early stage of pyroptosis, failure in forming the F-actin networks surrounding phagosomes in host cells causes prominent defects in pathogenic bacteria clearing (Fink and Cookson, 2006; Akhter et al., 2012). Treatment with the actin depolymerization agent cytochalasin D prevents rapid pyroptosis through inhibiting pathogen internalization (Fink and Cookson, 2007). Upon the progression of pyroptosis, the cortical F-actin network, together with microtubule and intermediate filaments, is gradually disrupted or cleaved (Davis et al., 2019). Meanwhile, Caspase-11, expressed broadly in immune and non-immune cells, modulates the fusion of phagosomes with lysosomes by regulating actin polymerization through the F-actin severing protein Cofilin (Abu Khweek and Amer, 2020). The phosphorylation status of Cofilin, which is modulated via the small GTP-binding protein RhoA or the phosphatase protein Slingshot (interact with Caspase-1), is directly linked to its F-actin severing activity during pyroptosis (Caution et al., 2015). This study also showed that Caspase-1 and Caspase-11, the two key regulators in pyroptosis, converge on the actin cytoskeleton in contrasting ways by dephosphorylating or phosphorylating Cofilin (Caution et al., 2015). Nevertheless, perturbation of actin dynamics with the actin depolymerization agent latrunculin A or the actin stabilization agent jasplakinolide does not impact the cell swelling feature of nigericin-induced pyroptosis (Davis et al., 2019). NLRP3 inflammasome is essential for pyroptosis. NLRP3 functions as an intrinsic inhibitory factor for virus entry by repressing F-actin remodeling (Paoletti et al., 2019). Intriguingly, it is noteworthy that the ESCRT-III complex, which cooperates with the actin cytoskeleton during cytokinetic abscission and wound healing (Meng et al., 2020; Vietri et al., 2020), functions in pyroptosis membrane repair (Rühl et al., 2018).


[image: Figure 3]
FIGURE 3. Schematic illustrating pyroptosis and the actin machinery. Actin machinery is required for pyroptosis. F-actin forms around phagosomes at the early stage of pyroptosis. Cortical actin networks are disrupted during the progression of pyroptosis. Caspase-11 and RhoA maintain the actin-severing protein Cofilin in the phosphorylated inactive form, which sustains actin polymerization and mediates phagosome-lysosome fusion. Cofilin activity is also regulated by Caspase-1 and Slingshot. NLRP3 inflammasome also represses F-actin remodeling. The ESCRT-III complex repairs damaged plasma membrane. ESCRT-III cooperates with the actin cytoskeleton during other processes such as cytokinesis and wound healing. Please see the main text for more detailed information. Abbreviations: GSDMD, gasdermin D; ESCRT, endosomal sorting complexes required for transport; NLRP3, NLR family pyrin domain containing 3; RhoA, Ras homolog family member A; Caspase, cysteine–aspartate protease.


Together, these findings reveal a tight connection between pyroptosis and the actin machinery. However, it is still unclear whether more proteins in the actin machinery function in pyroptosis.



NETOSIS

NETosis, exclusively found in neutrophils, describes a highly specific cell death process involving a web-like DNA network (NET, neutrophil extracellular traps) decorated with chromatin fibers, histones and anti-microbial proteins (Figure 4). Cortical F-actin disassembly is a prerequisite for NET release and occurs at the early stage of NETosis (Gong et al., 2020; Thiam et al., 2020). Prior to the execution of NETosis, neutrophil elastase, before its translocation from the cytosol to the nucleus, binds and degrades actin network (Metzler et al., 2014). Additionally, it was reported that promoting the disassembly of the F-actin cytoskeleton by cytochalasin D dampens histone deimination and blocks NET release (Neeli et al., 2009). In these cells with impaired F-actin, neutrophil extracellular trap release is inefficient, despite the nuclear envelope has been broken down and the nucleoplasm contents are already mixed with its cytoplasmic counterparts. Similar results were also obtained with the F-actin stabilization agent jasplakinolide (Thiam et al., 2020). Stabilizing the F-actin cytoskeleton significantly reduced the percentage of cells that expelled extracellular traps. Moreover, PKCα-mediated phosphorylation of lamin B and subsequent nuclear envelope disassembly are important for the nuclear envelope rupture and NET formation during NETosis, wherein PKCα nuclear translocation in NIH 3T3 fibroblast requires intact actin cytoskeleton (Schmalz et al., 1996; Li et al., 2020). In addition, cyclin-dependent kinases CDK6, a key regulator of the cell cycle, is required for NETosis signaling (Albrengues et al., 2017). Coincidently, CDK6 associates with the actin cytoskeleton and is involved in the transcriptional regulation of a panel of actin regulatory genes (Uras et al., 2017).


[image: Figure 4]
FIGURE 4. Schematic illustrating NETosis and the actin machinery. NETosis is exclusively found in neutrophils. Cortical F-actin disassembly is a prerequisite for NET release and occurs at the early stage of NETosis. Neutrophil elastase can bind and degrade F-actin network. Both F-actin stabilization by jasplakinolide and F-actin depolymerization by cytochalasin D lead to the attenuation of NET release. Execution of PKCα function in the nucleus is important for nuclear envelope rupture and NET formation. PKCα nuclear translocation requires intact actin cytoskeleton in NIH 3T3 fibroblasts. Please see the main text for more detailed information. Abbreviations: NET, neutrophil extracellular traps; PKCα, protein kinase C alpha.


Thus, emerging evidence supports the idea that the actin cytoskeleton is crucial for NETosis. However, it is currently unknown whether other components in the actin machinery engage actively in NETosis regulation. Further studies should be conducted to decipher the deeper relationship between NETosis and actin.



NECROPTOSIS

Necroptosis is a type of regulated necrosis that has similar morphological characteristics to canonical necrosis (Figure 5) (Vandenabeele et al., 2010). RIPK3, a key regulatory protein in necroptosis, can promote the oligomerization of the terminal protein MLKL and its translocation to the cell periphery, where MLKL ultimately leads to cell rupture. Although still under debate, the “point of no return” of necroptosis has often been attributed to MLKL activation (Gong et al., 2019). Strikingly, a recent study utilizing the actin depolymerization agent cytochalasin B showed that, during MLKL translocation to the plasma membrane, it co-traffics with tight junction proteins through Golgi-microtubule-actin-dependent mechanisms (Samson et al., 2020). During macrophage necroptosis, cell-to-cell transfer of the fungi, Aspergillus fumigatus, is based on F-actin-dependent exocytosis (Shah et al., 2016). In addition, continued downregulation of Villin-1 and Gelsolin, two actin-binding proteins, can downregulate cytoplasmic G-actin level and inhibit PP1 phosphatase activity, thereby leading to constitutive phosphorylation of EIF2A and subsequently upregulation of IRGM1, which induces necroptosis probably through affecting mitochondria and autophagy (Roy et al., 2018). Similar to what is mentioned in pyroptosis, the ESCRT-III complex functions downstream of MLKL, thereby facilitating the shedding of MLKL-induced damaged plasma membrane and antagonize necroptotic cell death (Gong et al., 2017). F-actin depolymerizes extensively and quickly in tumor cells upon immunological synapse formation between natural killer cells and MCF7 cells that are destined for necroptosis. Interestingly, during the process of cell clearance by macrophages, necroptosis cells present high levels of CD47 on the cell surface, which can induce RhoA-pMLC signaling in macrophages that hinders the whole-cell engulfment of necroptosis cells (Gerlach et al., 2020).


[image: Figure 5]
FIGURE 5. Schematic illustrating necroptosis and the actin machinery. MLKL is the terminal protein in necroptosis. During MLKL translocation to the plasma membrane, it co-traffics with tight junction proteins through Golgi-microtubule-actin-dependent mechanisms. The ESCRT-III complex, which coordinates with the actin cytoskeleton in other contexts, repairs damaged plasma membrane. Please see the main text for more detailed information. Abbreviations: MLKL, mixed lineage kinase domain-like pseudokinase; ESCRT, endosomal sorting complexes required for transport.


Together, these findings have revealed a growing connection between necroptosis and the actin machinery.



ENTOSIS

Entotic cell death (entosis), a programmed cell cannibalism, dictates a cell engulfment process that a loser cell (invading cell/internalizing cell) invades and is generally killed by its neighboring cell (winner cell/host cell/engulfing cell) through a mechanism involving autophagy proteins and lysosomal enzymes, however, without caspase activation (Figure 6) (Overholtzer et al., 2007). Matrix detachment, glucose starvation and mitosis can induce entosis, which may kill matrix-detached tumor cells or promote cancer cell polyploidy formation (Krajcovic et al., 2011). A flurry of studies have demonstrated that the actin machinery is utmost important for the winner or loser identity of cells (Sun et al., 2014b). For example, sustained plasma membrane blebbing is vital for the entotic invasion process in the loser cells, which functions through the MRTF-SRF-Ezrin axis (Grosse et al., 2017). In line with this, plasma membrane blebbing is found to be inseparable with F-actin and myosin functions (Chikina et al., 2019). A recent study showed the invading cell produces projections at its rear end which contain the actin-binding protein mDia1 (Purvanov et al., 2014). Moreover, IL-8 was identified as a positive regulator of homotypic entotic cell-in-cell (CIC) formation (Ruan et al., 2018). Coincidentally, IL-8 can promote F-actin polymerization in U87 cells (Zhang et al., 2015). Consistently, the AMP-activated protein kinase (AMPK), which is important for stiffness regulation and autophagy regulation in loser cells, can also induce actin cytoskeleton reorganization (Hamann et al., 2017; Schubert et al., 2017). Another study showed that the cell division control protein Cdc42 can regulate RhoA, thereby regulating the actin cytoskeleton-dependent mitotic entosis (Durgan et al., 2017). Similarly, Rac1 can regulate myosin light chain 2 (MLC2) phosphorylation to modulate entosis (Sun et al., 2014b). Consequently, actomyosin, the downstream effector of RhoA signaling, is highly enriched and activated at the rear cortex of the invading cell, therefore driving cell internalization (Wang et al., 2020b).


[image: Figure 6]
FIGURE 6. Schematic illustrating entosis and the actin machinery. Actin machinery is essential for entosis. In the loser cell, signaling pathway proteins including Cdc42, RhoA, ROCK I/II, Rac1, mDia1, AMPK, PCDH7, PP1α, MRTF, SRF, and Ezrin converge on the actomyosin network to regulate entosis. In the winner cell, PCDH7 and PP1α also exist. Three actin-correlated structures, the contractile actomyosin, the adherens junction and the mechanical ring, are sandwiched between the winner cell and the loser cell. Please see the main text for more detailed information. Abbreviations: Cdc42, cell division control protein 42; RhoA, Ras homolog family member A; ROCK, Rho-associated coiled-coil kinase; Rac1, Ras-related C3 botulinum toxin substrate 1; pMLC2, phosphorylated myosin light chain 2; AMPK, AMP-activated protein kinase; mDia1, diaphanous-related formin 1; PCDH7, protocadherin-7; PP1α, protein phosphatase 1α; MRTF, myocardin-related transcription factor; SRF, serum response factor; CA, the contractile actomyosin; MR, the mechanical ring; AJ, the adherens junction.


Recently, it has been recognized that three core compartmentalized ring-like structures are assembled and sandwiched between the winner and loser cells: the contractile actomyosin, the adherens junction and the mechanical ring (Wang et al., 2020b). Multiple actin machinery proteins such as E- or P-cadherin, multiple essential catenins, junction localized-p190A RhoGAP, RhoA, ROCK I/II, pMLC2, MHC IIA and IIB and actin, constitute these ring-like complexes and are proved to accumulate at high levels (Sun et al., 2014a). At the cell-cell contact site, the transmembrane protein PCDH7 can positively regulate the actin machinery protein pMLC2 by inactivating protein phosphatase 1α (PP1α), thereby increasing actomyosin contraction (Wang et al., 2020a). Additionally, the contractile actomyosin ring was further connected with a dome-like structure formed by cortex F-actin and MLC at the rear region of the invading cell (Wang et al., 2020b). The mechanical sensor vinculin in the mechanical ring detects mechanical forces imposed on cells and serves as a compartmentalizing factor to promote entosis. Perturbation of vinculin compromises entosis (Wang et al., 2020b). Interestingly, it was shown in other physiological contexts that vinculin can change F-actin localization or dynamics by recruiting F-actin filaments to the growing focal adhesions or capping actin filament barbed ends (Golji and Mofrad, 2013).

In general, these data underline the fundamental roles of the actin machinery in entosis.



PARTHANATOS

Parthanatos, which depends on PARP-1 activation, PAR signaling and mitochondrial AIF translocation, refers to a form of cell death pivotal in multiple neural diseases (Figure 7) (Berger et al., 1983; Andrabi et al., 2008; David et al., 2009; Kam et al., 2018). Four crucial steps are involved in the commitment of parthanatos: PARP-1 activation, PAR polymer assembly, mitochondrial apoptosis-inducing factor AIF release, AIF-mediated chromatin condensation and DNA fragmentation (Wang et al., 2009; Robinson et al., 2019). The connection between parthanatos and the actin machinery is poorly explored. But interestingly, cytoplasmic PARP family proteins are found to regulate the actin cytoskeleton in other studies (De Lisa et al., 2012; Vyas et al., 2013). Moreover, the migration inhibitory factor (MIF), a cytoplasmic endonuclease that co-translocates with AIF to the nucleoplasm and induces DNA fragmentation, may affect F-actin dynamics through regulating the phosphorylation status of Cofilin (Hu et al., 2015; Wang et al., 2016).


[image: Figure 7]
FIGURE 7. Schematic illustrating parthanatos and the actin machinery. It is unclear whether the actin machinery is directly involved in parthanatos. MIF and PARP family proteins are found to affect the actin cytoskeleton in other contexts. Please see the main text for more detailed information. Abbreviations: PAR, poly(ADP-ribose); PARP-1, poly(ADP-ribose) polymerase 1; MIF, migration inhibitory factor; AIF, apoptosis-inducing factor; NAD+, nicotinamide adenine dinucleotide; PARG, poly(ADP-ribose) glycohydrolase.


Thus, there is limited knowledge about whether the actin machinery is directly involved in the regulation of parthanatos.



FERROPTOSIS

Ferroptosis is a form of programmed necrotic cell death with high lipid peroxidation as its leading feature (Figure 8). The death mechanism of ferroptosis is still obscure. It is proposed that high lipid peroxidation causes postulated membrane distortion, thereby leads to cell permeabilization, possibly without pore-forming effector proteins. It is largely unclear whether the actin machinery is actively engaged in ferroptosis. A handful of studies may hint this possible connection. For example, knocking down the heat shock protein beta-1 (HSPB1, also named HSP27) or suppression of HSPB1 phosphorylation by protein kinase C (PKC) inhibitors can enhance erastin-induced ferroptosis (Sun et al., 2015). In other contexts, HSPB1 can downregulate TFR1-mediated iron uptake by stabilizing the F-actin cytoskeleton (Lavoie et al., 1993; Rousseau et al., 1997; Chen et al., 2006). Moreover, disruption of the actin cytoskeleton by the F-actin depolymerization agent cytochalasin D increases intracellular iron level, membrane lipid peroxidation and decreases cell viability (Sun et al., 2015). Furthermore, suppression of WAVE2, the upstream key member of Wiskott–Aldrich syndrome protein regulating the branched F-actin network assembly, increased intracellular iron and exhibited growth retardation following erastin treatment (Sun et al., 2015). The transcription factor Nrf2 plays key roles in antagonizing ferroptosis (Fan et al., 2017). In other studies not directly connected with ferroptosis, the nuclear translocation of Nrf2 was shown to be regulated by the F-actin-Keap1 axis (van Der Kammen et al., 2017). Additionally, the mitogen-activated protein kinase (MAPK) pathway contributes to ferroptosis (Poursaitidis et al., 2017). Coincidently, activation of the MAPK pathway is closely linked to the actin cytoskeleton (Tsakiridis et al., 1998; Tomas et al., 2006). p53, the guardian of the genome, is well-known to interact with actin. Interestingly, p53 plays dual roles in ferroptosis through inhibiting the transcription of the key system Xc− gene SLC7A11 (Kang et al., 2019). Through FOXM1 and Nedd4, protein levels of VDAC2 and VDAC3 decrease after erastin-induced ferroptosis (Yang et al., 2020). As mentioned in apoptosis, VDAC is known to be regulated by cytoplasmic actin dynamics (Gourlay and Ayscough, 2005). Last but not the least, as with pyroptosis and necroptosis, the ESCRT-III complex repairs membrane in ferroptosis (Dai et al., 2020).


[image: Figure 8]
FIGURE 8. Schematic illustrating ferroptosis and the actin machinery. PKC-HSPB1 attenuates ferroptosis. HSPB1 regulates F-actin cytoskeleton and TFR1 in other contexts. Cytochalasin D, which depolymerize F-actin, promotes ferroptosis. Suppression of WAVE2, which regulates the branched F-actin network assembly in other studies, favors ferroptosis. Nrf2, p53, and VDAC may be modulated by actin. The ESCRT-III complex, which coordinates with the actin cytoskeleton in other contexts, repairs damaged plasma membrane. Please see the main text for more detailed information. Abbreviations: HSPB1, heat shock protein beta-1; PKC, protein kinase C; WAVE2, Wiskott-Aldrich Syndrome protein family member 2; Keap1, Kelch-like ECH-associated protein 1; VDAC, voltage-dependent anion channel; ESCRT, endosomal sorting complexes required for transport.


Nevertheless, it remains unknown whether the actin cytoskeleton and its regulatory proteins are highly involved in the ferroptosis process.



AUTOSIS

Autosis is a specific form of autophagy-dependent cell death induced by starvation or an autophagy-inducing cell-permeable peptide, Tat-Beclin 1 (Figure 9) (Liu et al., 2013; Zhang et al., 2015; Fernandez et al., 2020). Autosis is also found in rat hippocampal neurons subjected to hypoxic–ischemic injury, patients with anorexia nervosa and animal models of renal ischemia (Liu et al., 2013; Fernandez et al., 2020). Autophagy plays fundamental roles in this type of PCD. A comprehensive review about autophagy and the actin cytoskeleton has been described elsewhere (Kast and Dominguez, 2017). A milestone for autosis is the discovery of the integral membrane Na+,K+-ATPase pump by chemical screening of autosis inhibitors (Liu et al., 2013). Suppression of Na+,K+-ATPase by cardiac glycosides efficiently rescue autotic cell death. Intriguingly, it was recently found that the physical interaction between Na+,K+-ATPase and the autophagy protein Beclin 1 is essential for autosis (Fernandez et al., 2020). To the best of our knowledge, there is no evidence showing direct involvement of the actin machinery in autosis. However, an earlier study suggested that actin can bind and stimulate the Na+,K+-ATPase pump (Cantiello, 1995). In addition, Na+,K+-ATPase alpha 1 subunit may interact with the F-actin severing protein Cofilin (Lee et al., 2001). Moreover, actin may indirectly impact Na+,K+-ATPase plasma membrane retention through a protein called α-Adducin, which affects endocytosis and actin polymerization (Torielli et al., 2008). Recently, multiple myosin motors (myh9, myh10, myh14, and myoVI) are also found to interact with the Na+,K+-ATPase alpha 1 subunit (Dash et al., 2018). Interestingly, Na+,K+-ATPase presents both on the plasma membrane and on the inner nuclear membrane (Garner, 2002; Galva et al., 2012).


[image: Figure 9]
FIGURE 9. Schematic illustrating autosis and the actin machinery. It is unclear whether the actin machinery is directly involved in autosis. In other contexts, Na+,K+-ATPase is found to interact with actin, Cofilin and multiple myosin motors. Na+,K+-ATPase may also be affected by the actin cytoskeleton through α-adducin. Please see the main text for more detailed information. Symbols: K+, potassium ion; Na+, sodium ion.


In all, the participation of the actin machinery in autosis remains inconclusive, but it is worth more efforts to dig deeper into their relationship.



ALKALIPTOSIS

Most recently, a promising PCD called “Alkaliptosis” was discovered, which is caused by intracellular alkalinisation (Song et al., 2018). Due to its very recent discovery, it is yet unclear whether the actin machinery is enrolled in alkaliptosis, hence is not covered in this review. In view of the connections between other PCDs and actin, it is reasonable to speculate if the actin machinery also plays a role in alkaliptosis.



OXEIPTOSIS

Oxeiptosis, initially found from an in vivo ozone-exposure mice model, is considered an anti-inflammatory form of regulated cell death in response to toxic levels of ROS (Figure 10) (Holze et al., 2018; Scaturro and Pichlmair, 2018). During oxeiptosis, detrimental accumulation of ROS was shown to oxidize Keap1, which then uncouples with the mitochondrial membrane protein PGAM5 (Lo and Hannink, 2008; Scaturro and Pichlmair, 2018). PGAM5 in turn binds and dephosphorylates AIFM1 (also known as AIF1) and eventually leads to the progression of a caspase-independent oxeiptosis cell death. Although not directly related, it is found in other studies that, under resting conditions, the intracellular ROS sensor Keap1 interacts and colocalizes with the cytosolic F-actin cytoskeleton via its DGR/Kelch region (Kopacz et al., 2020). Moreover, overexpression of Keap1 can stabilize and reorganize cytosolic F-actin through evident Myo9b downregulation (Wu et al., 2018). Additionally, Keap1 can affect actin machinery proteins such as myosin VIIa, cortactin and RhoGAP1 (Kopacz et al., 2020). Intriguingly, H2O2-induced oxeiptosis cells also showed membrane blebbing (Holze et al., 2018), whose relationship with the actin machinery has been described in apoptosis and entosis above.


[image: Figure 10]
FIGURE 10. Schematic illustrating oxeiptosis and the actin machinery. It is unclear whether the actin machinery is directly involved in oxeiptosis. Keap1, an essential protein in oxeiptosis, highly correlates with the actin machinery in other contexts. Please see the main text for more detailed information. Abbreviations: Keap1, Kelch-like ECH-associated protein 1; PGAM5, PGAM family member 5; AIFM1, apoptosis-inducing factor mitochondria associated 1.


Together, these limited studies indicate that oxeiptosis could be well-associated with the actin machinery. However, due to the short discovery time from 2018, the direct relationship between oxeiptosis and the actin cytoskeleton remains underexplored.



CONCLUSION

Programmed cell death plays instrumental and indispensable roles in embryonic development and disease progression in living organisms. To date, more than eleven kinds of PCDs are identified. However, the detailed mechanisms of most PCDs remain largely unclear. Different forms of PCD possess distinct signaling pathways, but interestingly, some of them may converge at a few common regulators. The actin cytoskeleton, a highly conserved and dynamic core cellular machinery, plays pivotal roles in a plethora of cellular processes, including morphogenesis, differentiation, cell motility, cell division, cytokinesis, membrane trafficking, etc. In the present review, we focus on the links between PCDs and the actin machinery proteins (Table 1). Clear and strong facts linking the actin machinery and apoptosis, pyroptosis, NETosis, necroptosis, and entosis are summarized. A handful of evidence indicates that the actin machinery could be connected with lysosomal cell death and ferroptosis. The direct relationships between the actin machinery and parthanatos, autosis, oxeiptosis, and alkaliptosis require further investigation. Under different contexts of PCD, the actin machinery may affect mitochondria, intracellular vesicle transport, vesicle fusion, cytoplasmic protein retention, receptor internalization, membrane deformability, ion channel, membrane repair, endocytosis, protein phosphorylation, etc. It should be emphasized that the actin cytoskeleton may play opposing roles in different PCDs, either by promoting or inhibiting cell death (e.g., apoptosis and necroptosis). Furthermore, it would be beneficial to distinguish whether the actin machinery really plays critical decision-making roles in each PCD or it is merely an outcome of the PCD process. In general, the relationship between PCDs and actin cytoskeleton is still in its infancy.


Table 1. Actin machinery and PCDs.

[image: Table 1]

It is noteworthy that actin and a number of proteins involved in the actin machinery exist both in the cytoplasm and the nucleoplasm. While the cytoplasmic actin machinery claims its emerging role in PCDs, it remains mostly unclear whether the nuclear actin machinery is involved. Therefore, research surrounding the connections between PCDs and the nuclear actin machinery should be a high priority for exploration in the future.

Most of the current observations have so far employed techniques dissecting the actin machinery and PCDs in fixed cells. However, life is not static. Future research should utilize time-lapse imaging to unravel the dynamic spatial-temporal relationship between the actin machinery and different PCDs in live cells.

Readers should also notice that the discoveries about PCDs and the actin machinery mentioned in this review may be specific in some cell types or under specific conditions. Even the same actin depolymerization agent treatment may result in contrasting cell fates in different types of cells (Paul et al., 2002; Kim et al., 2003). Meanwhile, some actin machinery proteins may be indirectly linked to PCDs, hence their actual roles in PCDs remain to be explored. In view of this, further studies should be conducted to investigate whether the actin machinery plays a universal role in these PCDs and how exactly they function in the PCD apparatuses. Currently, it is largely unclear how different PCDs interplay and communicate under complex cell death-inducing conditions. Deciphering the mechanism of the actin machinery may help answer this question.

Taken together, based on the studies mentioned above and given the profound roles the actin machinery plays in different PCDs, we hope that this review will stimulate further studies, and that bold guesses and hypotheses can be inspired and more secrets about PCDs and the actin machinery will be explored.
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Caldesmon, an actin-binding protein, can inhibit myosin binding to actin and regulate smooth muscle contraction and relaxation. However, caldesmon has recently attracted attention due to its importance in cancer. The upregulation of caldesmon in several solid cancer tissues has been reported. Caldesmon, as well as its two isoforms, is considered as a biomarker for cancer and a potent suppressor of cancer cell invasion by regulating podosome/invadopodium formation. Therefore, caldesmon may be a promising therapeutic target for diseases such as cancer. Here, we review new studies on the gene transcription, isoform structure, expression, and phosphorylation regulation of caldesmon and discuss its clinical implications in cancer.
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INTRODUCTION

Caldesmon, an actin-binding protein of 150 kDa, was first isolated and purified from chicken gizzard muscle in 1981 (Sobue et al., 1981). Caldesmon was named from a combination (desmos is a Greek word that means binding) of calmodulin due to its ability to bind with calmodulin at different Ca2+ concentrations (Sobue et al., 1981). Caldesmon has two different molecular weight isoforms: high-molecular-weight caldesmon (H-caldesmon, 120–150 kDa) found in smooth muscle and low-molecular-weight caldesmon (L-caldesmon, 70–80 kDa) found in non-muscle cells (Hayashi et al., 1991; Mayanagi and Sobue, 2011). By cloning and sequencing the cDNA, H-caldesmon and L-caldesmon were determined to be derived by alternative splicing from a single gene (Hayashi et al., 1991). H-caldesmon and L-caldesmon conserve completely identical sequences in the N- and C-terminal domains, and the central repeating sequence of H-caldesmon is deleted in L-caldesmon (Hayashi et al., 1991). Although H-caldesmon and L-caldesmon have similar functional domains, their tissue and cell distributions are distinct (Ball and Kovala, 1988; Sobue et al., 1988).

Caldesmon has recently attracted attention due to its roles in cancer (Mayanagi and Sobue, 2011). Caldesmon can be a biomarker for the pathological diagnosis of tumors and prediction of the chemoradiotherapy response. H-caldesmon is considered a specific marker for tumor with smooth muscle differentiation (Watanabe et al., 1999; Nucci et al., 2001). L-caldesmon-positive human colon cancer cell lines are more resistant to chemoradiotherapy than L-caldesmon-negative cell lines (Kim et al., 2012). Second, caldesmon can also suppress cancer metastasis by regulating the podosome/invadopodium formation in transformed cancer cells, and the suppressive effect has been verified in a variety of cancers (Yoshio et al., 2007). In prostate cancer cells, a twofold increase in migratory capability and a threefold increase in invasion capability were found by scratch and invasion assays after the knockdown of L-caldesmon expression (Dierks et al., 2015). In addition, caldesmon can reversibly and cooperatively inhibit myosin binding actin to regulate smooth muscle contraction (Sobue et al., 1982; Ngai and Walsh, 1984). The phosphorylation of caldesmon plays an important role in the regulation of smooth muscle contraction (Huang et al., 2003). Therefore, this review analyzes the gene transcription, isoform structure, expression, and phosphorylation regulation of caldesmon and its clinical implications in cancer and gastrointestinal motility disorders.



CALDESMON GENE, STRUCTURE, AND EXPRESSION

The caldesmon gene is located on human chromosome 7q33 (Ensembl ID of the human caldesmon gene is ENSG00000122786) (Yates et al., 2020; Figure 1A). The caldesmon gene has 17 exons, and its isoforms (H-caldesmon and L-caldesmon) are mainly generated by the selective splicing of exons 7 and 8 (Lin et al., 2009). Exon 7 of selective translation encodes the central repeating sequence, and this central repeating sequence is specific to H-caldesmon (Transcripts 201,793 aa) (Mayanagi and Sobue, 2011). The caldesmon gene has 24 transcripts (201–224). Transcript 201 can generate H-caldesmon, while transcripts 202–206 and 222 can generate L-caldesmon. According to the different promoters, L-caldesmon can be further classified as a Fibro-type (WI-38) or HeLa-type (Hayashi et al., 1991). Two different distinct promoters are used in different cell types or tissues to generate L-caldesmon isoforms with distinct N-terminal domains (Yano et al., 1994). Alternative splicing of the caldesmon gene determines the different structures and expression of isoforms (Hayashi et al., 1991).
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FIGURE 1. (A) Human Caldesmon Gene and Transcripts. Caldesmon (CALD1) structure showing exon (numbered boxes) and intron (line) regions and sizes. The caldesmon gene has 24 transcripts (201–224). Transcripts 201–206 and 222 are shown with the translated regions, and the blue regions are the coding sequences of the transcripts. The other transcripts cannot generate caldesmon due to the incomplete 3′/5′ coding sequence, retained introns, processed transcripts, or nonsense-mediated decay. Caldesmon isoforms are mainly generated by the selective spliced exons (exons 7 and 8) and distinct promoters (starting with exon 4 or 5). Exon 4 encodes the N-terminal domains of Fibro L-caldesmon and exon 5 encodes HeLa L-caldesmon. Exon 8 encodes 26 amino acids, including an extension of the α-helical motif. Transcripts 202–206 and 222 can generate Fibro-type and HeLa-type L-caldesmon, transcript 205 (Fibro L-caldesmonI, 563aa), transcript 202 and transcript 204 (Fibro L-caldesmonII, 538aa), transcript 222 and transcript 203 (HeLa L-caldesmonI (557–558aa), and transcript 206 (HeLa L-caldesmonII 532aa). Of these, transcript 222 has not been reported previously and was identified by a database search of Ensembl. (B) The domain structures of H-caldesmon and L-caldesmon. Human caldesmon contains an N-terminal domain, a C-terminal domain, and a middle part (repeating domain). The difference between L-caldesmon and H-caldesmon is the deletion of the repeating domain due to alternative splicing. The N-terminal domain contains a myosin-binding site and interacts weakly with actin and calmodulin. The C-terminal part contains an actin-binding site, calmodulin-binding site, tropomyosin-binding site, and phosphorylation sites. Human H-caldesmon (793 aa) is regulated by phosphorylation at Tyr-27, Ser-73, Thr-83, Ser-456, Thr-638, Ser-643, Tyr-682, Ser-714, Ser-724, Thr-730, Ser-744, Thr-753, Ser-759, Ser-766, Ser-783, and Ser-789 through multiple kinases (Cdc2,PAK,PKC, CamKII, CKII, and v-erbB tyrosine kinase). (C) The role of caldesmon in smooth-muscle contraction. The mechanism of reversing the putative inhibition by caldesmon of smooth muscle contraction by caldesmon depends on Ca2+/calmodulin and phosphorylation. Caldesmon can bind to actin filaments at less than 1 μM free Ca2+, whereas at a higher concentration of Ca2+ (>1 μM), calmodulin activated by Ca2+ forms a complex with caldesmon, and this complex is freed from actin filaments. Phosphorylation of caldesmon can attenuate its inhibitory activity, allowing actomyosin interaction and thereby resulting in muscle contraction.


From a structural perspective, caldesmon contains amino (N)- and carboxy (C)-terminal domains and a middle region (Wang, 2001). The N-terminal part can bind myosin and calmodulin (Lin et al., 2009); the C-terminal part contains actin-binding sites, calmodulin sites, and tropomyosin-binding sites (Wang, 2001; Mayanagi and Sobue, 2011), and the middle region in H-caldesmon (208–462 aa in humans) contains a long α-helix region and separates the N-terminal domain from the C-terminal domain (Wang, 2008; Lin et al., 2009; Figure 1B). The middle region is only present in H-caldesmon and is missing in L-caldesmon due to alternative splicing (Hayashi et al., 1991; Mayanagi and Sobue, 2011). However, the function of the middle region remains unknown. The middle region in H-caldesmon is presumed to fit the specific spatial arrangement of myosin molecules in the smooth muscle thick filament by evolutionary optimization (Wang, 2008).

The tissue and cell distributions of H-caldesmon and L-caldesmon are different. H-caldesmon is expressed in vascular and visceral smooth muscle and not in myofibroblasts, rhabdomyosarcoma, or tumors derived from myofibroblasts (Rush et al., 2001; Fisher et al., 2003). Therefore, H-caldesmon, as a smooth muscle-specific biomarker, can distinguish tumors originating from smooth muscle. In contrast, L-caldesmon is widely distributed in non-muscle tissues, such as the brain, spleen, and lymph nodes (Köhler, 2010, 2011). However, the expression changes of the two isoforms are closely correlated with the phenotypic modulation of smooth muscle cells (Ueki et al., 1987; Yokouchi et al., 2006). The expression of caldesmon can switch from L-caldesmon to H-caldesmon during smooth muscle cell differentiation and the expression turns from H-caldesmon to L-caldesmon during the dedifferentiation of smooth muscle cells (Ueki et al., 1987). Therefore, the different expressional distributions determine the different functions of H-caldesmon and L-caldesmon.



POST-TRANSLATIONAL REGULATION OF CALDESMON

Caldesmon is an actin, myosin, tropomyosin, and Ca2+/calmodulin binding protein capable of regulating actomyosin contraction, actin filament dynamics, and cytoskeleton remodeling in smooth muscle and non-muscle cells (Lin et al., 2009). Posttranslational modification of caldesmon can modify its function and has been studied extensively in vitro (Foster et al., 2004; Ng et al., 2018). The association of caldesmon with tropomyosin-containing actin filaments effectively inhibits actomyosin ATPase activity and in vitro actin filament motility (Lin et al., 2009).

The mechanism of reversing the putative inhibition by caldesmon of smooth muscle contraction by caldesmon depends on Ca2+/calmodulin and phosphorylation (Foster et al., 2004; Mayanagi and Sobue, 2011; Figure 1C). Depending on the concentration of Ca2+, caldesmon shows an alternative binding ability to either calmodulin or actin filaments in vitro (Sobue et al., 1981). Caldesmon can bind to actin filaments at less than 1 μM free Ca2+, whereas at a higher concentration of Ca2+ (>1 μM), calmodulin activated by Ca2+ forms a complex with caldesmon, and this complex is freed from actin filaments (Sobue et al., 1981).

An alternative mechanism calls for phosphorylation of caldesmon in view of the fact that smooth muscles can contract at low Ca2+ concentrations (Foster et al., 2004). The phosphorylation of caldesmon is closely related to smooth muscle contraction (Hai and Gu, 2006). In an in vitro motility assay, unphosphorylated myosin exerted a mechanical load to shorten filaments, suggesting that tethering thick and thin filaments by caldesmon might help maintain some basal force (Horiuchi and Chacko, 1995). Phosphorylation (such as Thr-627, Ser-631, Ser-635, and Ser-642) can attenuate the inhibitory activity of caldesmon and indirectly increase inhibitory activity by weakening binding to Ca2+-calmodulin (Hamden et al., 2010). The interplay between phosphorylation-dependent and Ca2+/calmodulin-dependent mechanisms may be complex. The effect of Ca2+/calmodulin on the activity of caldesmon is dependent on the combination of phosphorylated residues (Hamden et al., 2010).

As a downstream effector of multiple signaling pathways, the inhibition of caldesmon can be reversed by phosphorylation during smooth muscle contraction through multiple kinases, such as ERK and PAK (Hai and Gu, 2006; Lin et al., 2009). Extracellular regulated kinase (ERK)-mediated phosphorylation of caldesmon has been shown to reverse the ability of the actin-binding fragment of caldesmon to stabilize actin filaments (Hai and Gu, 2006). Phosphorylation of caldesmon at ERK sites (Ser-759 and S789) is accompanied by a conformational change that partially dissociates caldesmon from actin (Kordowska et al., 2006). Such a structural change in H-caldesmon exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles (Kordowska et al., 2006). In the case of non-muscle cells, the change in L-caldesmon weakens the stability of the actin filament and facilitates its disassembly (Kordowska et al., 2006). ERK-mediated phosphorylation of caldesmon has been shown to reverse the inhibitory effect of caldesmon on Arp2/3-mediated actin polymerization (Hai and Gu, 2006). The Arp2/3 complex is essential for podosome assembly, which are cytoskeletal adhesion structures that are important for cell invasion and extracellular matrix remodeling (Eves et al., 2006; Morita et al., 2007). Caldesmon is thought to be phosphorylated by ERK during the formation of podosomes (Hai and Gu, 2006). P21-activated kinase (PAK) is emerging as a major regulator of caldesmon-mediated actin dynamics in vivo (Foster et al., 2000; Lin et al., 2009). Reversible caldesmon phosphorylation at PAK-responsive sites is required for normal cell migration and cytokinesis (Lin et al., 2009). PAK phosphorylation sites (Ser-657 and Ser-687) are located close to calmodulin-binding sites (Mayanagi and Sobue, 2011). When caldesmon is phosphorylated by PAK, the ability to bind calmodulin is reduced by approximately 10-fold, and the affinity for actin-tropomyosin and the inhibition of actin-activated myosin ATPase activity are significantly reduced (Mayanagi and Sobue, 2011).

In addition, as one type of novel discovered posttranslational modification, lysine succinylation has been proven to be essential for regulating molecular functions, such as cellular metabolism, in physiological and pathophysiological states (Hirschey and Zhao, 2015). Caldesmon (lysine succinylation position 569) was downregulated in gastric cancer by LC-MS/MS analysis and validated by Western blotting (Song et al., 2017). Lysine succinylation position 569 of caldesmon may function as a potential biomarker in gastric cancer (Song et al., 2017).



CLINICAL APPLICATIONS OF CALDESMON IN CANCER

Alterations of caldesmon expression level in different types of cancers in the clinic have been investigated (summarized in the Table 1). The upregulated expression of caldesmon is generally observed in different cancers. However, downregulated expression of caldesmon is found in the blood vessels of malignant melanomas compared with both benign melanocytic tumors and normal tissues.


TABLE 1. Different expression trends of caldesmon isoforms in cancer.
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Caldesmon as a Biomarker for Cancer

Caldesmon is important for the diagnosis of myoma (Rizzello et al., 2017). H-caldesmon is a highly sensitive and specific marker that shows smooth muscle differentiation and helps identify uterine mesenchymal tumors (Nucci et al., 2001; Saraydaroglu et al., 2008). It is reported that H-caldesmon is negative in normal endometrial stroma (0%, 0 case/25 cases) and endometrial stromal neoplasms (0%, 0 case/24 cases) (Nucci et al., 2001). In contrast, desmin is expressed in endometria (32%, 8 cases/25 cases) and endometrial stromal neoplasms (50%, 12 cases/24 cases) (Nucci et al., 2001). SMA (smooth muscle actin), the other markers of smooth muscle cells, is positive in endometrial stromal sarcoma (44%, 7 cases/16 cases) (Chu et al., 2001). Therefore, H-caldesmon can effectively distinguish endometrial stromal tumors from uterine smooth tumors. However, H-caldesmon is found expressed in some non-myogenic tumors, such as gastrointestinal stromal tumors, malignant pleural mesothelioma, and ovarian adult granulosa cell tumors (Comin et al., 2006; Yu and Qu, 2018; Yu et al., 2019). Therefore, H-caldesmon expression may not be conclusive evidence of myogenic differentiation, and the diagnosis should be referred together with other markers (Yu et al., 2019). In addition, L-caldesmon is also considered a potential serum marker for glioma (Zheng et al., 2005). Taken together, the different isoforms of caldesmon can be promising biomarkers for diagnosis and prognosis prediction.



Mechanism of Caldesmon in Cancer Metastasis


Caldesmon Suppresses Podosome Formation

L-caldesmon is an integral part of the actin-rich core of the podosome (Eves et al., 2006). Caldesmon can suppress cell invasion by regulating the podosome/invadopodium formation of transformed and cancer cells (Yoshio et al., 2007). The overexpression of L-caldesmon suppresses podosome formation, whereas siRNA knockdown of L-caldesmon facilitates its formation (Eves et al., 2006; Gu et al., 2007). By analyzing the relationship between the expression levels of caldesmon and podosome/invadopodium formation in rat fibroblast (3Y1), RSV-transformed 3Y1 (BY1), human colon carcinoma (HCA7), murine melanoma (B16F10), human breast cancer (MB435s), and rat breast cancer (MTC) cell lines, podosome/invadopodium formation increases in transformed and cancer cells when caldesmon is expressed at low levels, and higher levels of caldesmon inhibit their formation (Yoshio et al., 2007). Caldesmon’s decreased expression has been identified in gastric cancer lymph node metastatic cells using a proteomics approach and loss of caldesmon expression could be associated with gastric cancer metastasis progression (Hou et al., 2013). In prostate cancer cells, a twofold increase in migratory capability and a threefold increase in invasion capability were found by scratch and Matrigel invasion assays after the knockdown of L-caldesmon expression (Dierks et al., 2015).



Caldesmon and Vessel Invasion

The presence of vessel invasion is considered indicative of a poor prognosis in many malignant tumors (Ekinci et al., 2018). Vascular smooth muscles contain both H-caldesmon (>75%) and L-caldesmon (<25%) (Glukhova et al., 1988). H-caldesmon appears to be the most specific and sensitive marker for vessel wall detection (Ekinci et al., 2018). The structural integrity and functional maturity of blood vessels are determined by the presence of normally functioning endothelial cells as well as the involvement of interendothelial junctions and mural cells (smooth muscle cells or pericytes) (Zheng et al., 2009). The knockdown of caldesmon caused serious defects in vasculogenesis and angiogenesis in zebrafish morphants, and the vascular integrity and blood circulation were concomitantly impaired (Zheng et al., 2009). The level of H-caldesmon expression in the melanoma blood vessels was inversely correlated with the frequency of metastasis (Koganehira et al., 2003). The endothelial cells of blood vessels in melanoma lesions appeared to be fragile compared to the normal tissues under electron microscopy (Koganehira et al., 2003). The fragility of blood vessels may increase metastasis.



Caldesmon Decreases Chemoradiotherapy Susceptibility

L-caldesmon can decrease the chemoradiotherapy susceptibility of cancer cells. L-caldesmon-positive human colon cancer cell lines were more resistant to 5-fluorouracil (5-FU) and radiation treatment than L-caldesmon-negative cell lines (Kim et al., 2012). The expression level of L-caldesmon is therefore helpful in predicting the response of upper gastrointestinal carcinomas to neoadjuvant chemotherapy (Kim et al., 2012).



CALDESMON AND THE CONTRACTION OF INTESTINAL SMOOTH MUSCLE

In addition, caldesmon can reversibly and cooperatively inhibit myosin binding actin to regulate smooth muscle contraction (Sobue et al., 1982; Ngai and Walsh, 1984). Smooth muscle dysmotility is the main pathogenic driver of gastrointestinal motility disorders. H-caldesmon can affect the contraction and relaxation of intestinal smooth muscle by binding to Ca2+/calmodulin and via phosphorylation (Wang, 2001). Structurally, H-caldesmon tethers myosin filaments to actin filaments to maintain the orderly arrangement of the thick and thin filaments. Functionally, H-caldesmon, as a “molecular brake,” sterically blocks actomyosin interactions in the resting state to modulate the development of contractile force (Guo et al., 2013). The expression of caldesmon was to be downregulated in rat models of chronic gastrointestinal motility hypofunction (Wang et al., 2001). Disruption of the normal inhibitory function of H-caldesmon could enhance intestinal peristalsis in both wild-type zebrafish larvae and mutant larvae that lack enteric nerves (Abrams et al., 2012). The detection of H-caldesmon phosphorylation sites by phosphorylation site-specific antibodies in colonic smooth muscle showed that H-caldesmon phosphorylation occurred on Ser-789 (Hedges et al., 2000). Ser-789 is phosphorylated by activated ERK, resulting in the C-terminal portion of H-caldesmon dissociating from actin and releasing the inhibition of ATPase activity, resulting in muscle contraction (Somara and Bitar, 2008). Expression levels of caldesmon in the gastric antrum were negatively correlated to gastric motility in rats treated by electroacupuncture (Yang et al., 2014). Expression of caldesmon was upregulated when gastrointestinal motility was inhibited. On the contrary, expression of caldesmon was downregulated when gastrointestinal motility was promoted (Yang et al., 2014). At present, the evidence correlating caldesmon and gastrointestinal motility disorders is not sufficient. However, whether caldesmon can regulate the contraction and relaxation of intestinal smooth muscle to treat gastrointestinal motility disorders needs further study.



CONCLUSION

The biochemical features of caldesmon and its clinical implications in cancer have been reviewed in this article. The following main points are noted: (1) Alternative splicing of the caldesmon gene determines its different structures and the expression of its isoforms. (2) H-caldesmon and L-caldesmon conserve the completely identical sequences in the N- and C-terminal domains, and the central repeating sequence of H-caldesmon is deleted in L-caldesmon. (3) Although H-caldesmon and L-caldesmon have similar functional domains, their tissue and cell distributions are different. (4) Caldesmon can be a biomarker for the pathological diagnosis of tumors and the prediction of chemoradiotherapy response. (5) Caldesmon can suppress tumor metastasis by regulating podosome/invadopodium formation and vasculogenesis. Future research aspects may include (1) clinical data about the relationship between expression of the two isoforms in cancers (primary and metastasis) and patient survival; (2) the effects of the expression of upregulated or downregulated isoform in cancers (primary and metastasis) on cell motility and invasive characteristics; and (3) evidence-based clinical studies or animal models on the role of caldesmon in gastrointestinal motility disorders are critically required.
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Hyperlipidemia, an important risk factor for cardiovascular and end-stage renal diseases, often aggravates renal injury and compromises kidney function. Here, histological analysis of human kidney samples revealed that high lipid levels induced the development of renal fibrosis. To elucidate the mechanism underlying lipid nephrotoxicity, we used two types of mouse models (Apoe−/− and C57BL/6 mice fed a 45 and 60% high-fat diet, respectively). Histological analysis of kidney tissues revealed high-lipid-induced renal fibrosis and inflammation; this was confirmed by examining fibrotic and inflammatory marker expression using Western blotting and real-time polymerase chain reaction. Oxidized low-density lipoprotein (OX-LDL) significantly induced the fibrotic response in HK-2 tubular epithelial cells. RNA-sequencing and Gene Ontology analysis of differentially expressed mRNAs in OX-LDL-treated HK-2 tubular epithelial cells and real-time PCR validation in Apoe−/− mice showed that the expression of thrombospondin-1 (THBS1) in the high-fat group was significantly higher than that of the other top known genes, along with significant overexpression of its receptor CD47. THBS1 knockdown cells verified its relation to OX-LDL-induced fibrosis and inflammation. Liquid chromatography tandem mass spectrometry and STRING functional protein association network analyses predicted that THBS1/CD47 modulated the interaction between γ-catenin and E-cadherin and was involved in epithelial–mesenchymal transition, which was supported by immunoprecipitation and immunohistochemistry. CD47 downregulation following transfection with small-hairpin RNA in OX-LDL-treated tubular epithelial cells and treatment with anti-CD47 antibody restored the expression of E-cadherin and attenuated renal injury, fibrosis, and inflammatory response in OX-LDL-treated cells and in type 2 diabetes mellitus. These findings indicate that CD47 may serve as a potential therapeutic target in long-term lipid-induced kidney injury.

Keywords: cd47, E-cadherin, γ-catenin, fibrosis, inflammation, lipid nephrotoxicity


INTRODUCTION

Hyperlipidemia has emerged as a major health concern worldwide. In China alone, the prevalence of hyperlipidemia was as high as 41.9% in 2014 (Huang et al., 2014). Karr et al. reported a cholesterol imbalance in more than 100 million individuals (~53% adults) in the United States. Evidence suggests that excessive lipid intake contributes to conditions, such as fatty liver, coronary atherosclerosis, and lipid nephrotoxicity. In the United States, fewer than 50% of the individuals with elevated low-density lipoprotein (LDL-C) levels receive treatment, and among those receiving treatment, <35% achieve control (Karr, 2017). Therefore, further research is warranted to understand the pathogenesis of hyperlipidemia.

The “Lipid Nephrotoxicity Hypothesis” was established in 1982. It suggested that hyperlipidemia, resulting from compensatory hepatic synthesis of lipoproteins in response to urinary loss of albumin, contributes to the progression of glomerulosclerosis and tubulo-interstitial fibrosis. Successive studies have investigated nephrotoxicity. Dyslipidemia is not only a consequence of chronic kidney disease (CKD) but also a cause of renal damage. Experiments have confirmed that cholesterol supplementation in the diet can result in the development of various glomerular diseases (Du and Ruan, 2019). Kuwahara et al. recently suggested the involvement of lipotoxic compounds filtered by the glomeruli in injuries associated with high-fat diet (HFD)-induced kidney disease (Vergès, 2015; Kuwahara et al., 2016). There are two sources of lipotoxic compounds. First, abnormal innate renal or renal immune cells, which can induce the development of lipid metabolism disorders and ectopic lipid accumulation (ELA), e.g., phospholipid accumulation in enlarged lysosomes and impaired autophagic flux in kidney epithelial cells in obese patients (Yamamoto et al., 2017). Chen et al. have suggested that the expression of an enzyme catalyzing the conversion of citrate to acetyl CoA was induced in overweight or obese patients with CKD and was responsible for increasing ELA and promoting CKD progression (Chen et al., 2019). Adipose differentiation-related protein and sterol regulatory element binding protein-1 (SREBP-1) have been reported to be upregulated in the kidney during diabetic kidney disease and are thought to mediate lipid accumulation and tubular damage in the kidneys of individuals with diabetes (Guebre-Egziabher et al., 2013). Second, lipids present in circulation, i.e., serum free fatty acids (FAs) and oxidized low-density lipoproteins (OX-LDLs) (Du and Ruan, 2019). In diabetic nephropathy, FAs bound to plasma albumin are filtered through the glomeruli into the urine, thus inducing the development of tubulointerstitial injury (Tanaka et al., 2016). Other studies have also indicated that excessive lipids in circulation undergo oxidative modification, resulting in the binding of oxidized lipids to glycosaminoglycans in the glomerular basement membrane, thereby increasing its permeability and promoting the development of tubulointerstitial disease (Guebre-Egziabher et al., 2013). These processes are detrimental to renal function. Accumulated lipids may be involved in the development of nephrotoxicity, i.e., increased permeability of the glomeruli and initiation or aggravation of tubulointerstitial fibrosis (TIF) (Moorhead et al., 1982). Several mechanisms, such as epithelial–mesenchymal transition (EMT) observed in CKD, are known to underlie TIF (Tanaka et al., 2016; Gao et al., 2020). The epithelium is characterized by the presence of tight junctions, which maintain its integrity and stability. Cells undergoing EMT lose the expression of key epithelial markers such as E-cadherin and acquire mesenchymal markers, such as fibronectin, collagen I (Col-1), and α-smooth muscle actin (α-SMA) (Gao et al., 2018; Seccia et al., 2019). A critical step during EMT is the “cadherin switch,” which involves a decrease in the expression of E-cadherin, a protein that is essential for maintaining the epithelial cell phenotype (Gumbiner, 2005; Mezi et al., 2017). Other proteins involved in the “cadherin switch” are α-, β-, and γ-catenins that bind to the cytoplasmic domain of E-cadherin and link the catenin/cadherin complex to intracellular cytoskeleton actin fibers. β-catenin activates the Wnt signaling pathway following dissociation from E-cadherin in the cytoplasm and translocates into the nucleus as a cofactor. Thus, it is associated with cell survival, proliferation, metastasis, and EMT (Reya and Clevers, 2005; Wang W. et al., 2019). In addition, γ-catenin, known as junction plakoglobin (JUP), interacts with the cytoplasmic domain of cadherins (McEwen et al., 2014). In colorectal cancer cells, the C457 modification of γ-catenin results in impaired migration and proliferation of cells by affecting the “cadherin switch” (Conacci-Sorrell et al., 2002; Kim et al., 2017). However, it is unclear whether the catenin/cadherin complex influences the progression of EMT in lipid nephrotoxicity and therefore warrants confirmation.

CD47 is a member of the immunoglobulin superfamily that is expressed by several cell types. This transmembrane receptor mediates self-recognition (releasing a “don't eat me” signal) and prevents clearance by phagocytic cells, which recognize CD47 via the counter-receptor signal regulatory protein alpha (SIRPα) (Kojima et al., 2016; Alvey and Discher, 2017). In addition, CD47 and its proteoglycan isoform serves as a receptor for binding to the matricellular protein thrombospondin-1 (THBS1) (Kaur et al., 2011). Studies have shown that blockade of THBS1/CD47 signaling reduces oxidative injury, decreases inflammatory response (Wang et al., 2018), restores autophagy (El-Rashid et al., 2019), and renews epithelial cells in several models of acute kidney injury (Navarathna et al., 2015; Rogers et al., 2016; Xu et al., 2018). Furthermore, CD47−/− mice treated with a CD47 blocking antibody have been reported to exhibit amelioration of fibrotic histological changes. Furthermore, plasma THBS1 levels are associated with CKD (Julovi et al., 2020). Therefore, in this study, we investigated the role of THBS1/CD47 signaling in lipid nephrotoxicity and determined whether CD47 can serve as an effective therapeutic target.



MATERIALS AND METHODS


Model of Lipid Nephrotoxicity
 
Human Samples

All evaluated human tissues were obtained from The Fourth Affiliated Hospital of Anhui Medical University and Anhui Yizhiben Center for Judicial Expertise in China in 2020. In this study, tissues from six patients with hyperlipidemia were used. Three of these patients had coronary atherosclerosis and fatty liver disease. The other three patients had dyslipidemia; for these patients, tissue samples were derived from distant portions of renal cell carcinomas and served as controls. Tissue sections were fixed with 4% paraformaldehyde (PFA). The Ethics Committee of the Fourth Affiliated Hospital of Anhui Medical University approved the study.



Mouse Models

All animal experiments were performed at the China Pharmaceutical University in Jiangsu Province, China, and the experimental procedures were approved by the China Pharmaceutical University Ethical Committee on Animal Experiments.

Apoe−/− mice with a C57BL/6 background were obtained from the Jackson Laboratory and housed at a constant temperature (22.5 ± 0.5°C; 50 ± 5% humidity) under a 12-h dark/light cycle. Male Apoe−/− mice (8 weeks old) were fed a normal diet (ND; 12.8% kilocalories: fat, 5%; protein, 23%; carbohydrate, 55%) or HFD (fat, 35%; carbohydrate, 45%; protein, 20%) (Trophic Animal Feed High-tech Co. Ltd., Nanjing, China) for 12 weeks and subsequently euthanized under anesthesia. We also established a second model of lipid nephrotoxicity using male C57BL/6 mice (8 weeks old) fed ND (12.8% kilocalories: fat, 5%; protein, 23%; carbohydrate, 55%) or HFD (fat, 60%; carbohydrate, 20%; protein, 20%) for 12 weeks. Another model of lipid nephrotoxicity, i.e., type 2 diabetes mellitus (DM), was established. Male C57BL/6 mice (6 weeks old) were fed ND (12.8% kilocalories: fat, 5%; protein, 23%; carbohydrate, 55%) or HFD (fat, 60%; carbohydrate, 20%; protein, 20%) for 6 weeks. HFD and control groups were administered a high dose of streptozocin (STZ; 100 mg/kg, intraperitoneal injection, once) and vehicle (citrate buffer), respectively. The mice were considered diabetic when the blood glucose level exceeded 250 mg/dl. After 4 weeks, the diabetic and control mice were divided into four groups (n = 6–8 per group) in the following manner: IgG-treated control mice (CT-IgG), anti-CD47 antibody-treated control mice (CT-CD47-Ab), IgG-treated diabetic mice (DM-IgG), and anti-CD47 antibody-treated diabetic mice (DM-CD47-Ab). Subsequently, 200 μg of anti-CD47 antibody (Invitrogen, USA) or IgG (Invitrogen, USA) was administered to diabetic or control mice, respectively, by tail vein injection once every 2 days for another 4 weeks (Kojima et al., 2016). Mice were anesthetized with sodium pentobarbital (50 mg/kg intraperitoneally), and kidney tissue and blood samples were collected for further experiments.




Reagents and Materials

Antibodies against CD47 and γ-catenin were obtained from Abcam (Cambridge, UK), while those against Col-1, α-SMA, THBS1, and β-actin were procured from Santa Cruz Biotechnology (Dallas, TX, USA). Rabbit anti-E-cadherin was purchased from Bioss Biotechnology (Beijing, China) and antibodies against vimentin and CD68 were supplied by MXB Biotechnologies (Fuzhou, China). Lipofectamine 2000 was purchased from Science Biotechnology (Invitrogen, Beijing, China) and the Protein Assay Kit was purchased from Beyotime Institute of Biotechnology (Jiangsu, China). Masson's trichrome (Masson) and Van Gieson (VG) staining kits were procured from Zhuhai Besso Biotechnology Institute (Wuhan, China). Leucine-serine-lysine-leucine (LSKL), a competitive TGF-β1 antagonist and an inhibitor of thrombospondin, was procured from MedChemExpress (MCE, Shanghai, China). Kits for the triglyceride (TG) assay, total cholesterol (TC) assay, LDL cholesterol assay, high-density lipoprotein cholesterol assay, and blood urea nitrogen (BUN) assay were purchased from Nanjing Jiancheng Bioengineering Institute.



Cell Culture

The human kidney tubular epithelial cell line HK-2 was cultured in 5% fetal bovine serum (FBS)-supplemented Gibco Dulbecco's modified Eagle's medium (DMEM)/F12 at 37°C in a humidified 5% CO2 atmosphere. After 12 h of starvation using DMEM/F12 medium containing 0.5% FBS, HK-2 cells were treated with 25 μg/ml OX-LDL (Yiyuan Biotechnology, Guangzhou, China) for 48 h (Sastre et al., 2013). Following treatment with 10 μg/ml anti-CD47 antibody or anti-IgG antibody or a combination of these antibodies with 50 μM LSKL for 12 h (Willet et al., 2013), HK-2 cells were stimulated with OX-LDL. The treated cells were harvested for further analyses, including Western blotting, real-time PCR, and immunofluorescence (IF). Three or four in vitro experiments were independently performed.



Western Blotting

Tissues or cells were lysed in ice-cold radioimmunoprecipitation assay buffer. The bicinchoninic acid assay (BCA) protein kit (Yesen, Shanghai, China) was used to quantify protein concentration. After loading samples on 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels, the resolved proteins were transferred onto nitrocellulose membranes (Millipore, Massachusetts, USA). The membranes were probed for 12 h at 4°C using antibodies against Col-1, α-SMA, CD47, E-cadherin, and β-actin, and then probed with secondary antibodies (Zsbio, Beijing, China) for 1.5 h at 37°C. After washing with Tween, the blots were developed using a chemiluminescence method (Thermo Scientific, Waltham, MA, USA). The results were quantified using ImageJ 1.45s software (NIH, Bethesda, MD, USA).



RNA Extraction and Real-Time PCR

Total RNA was extracted from kidney homogenates or HK-2 cells using TRIzol reagent (Takara, Kusatsu, Japan) in accordance with the manufacturer's instructions. RNA concentration was evaluated using a NanoDrop 2000 Spectrophotometer (Thermo Scientific). RNA, nuclease-free water, and RealMasterMix (Yesen, Shanghai, China) were used for cDNA synthesis. RT-PCR was performed using the Hieff UNICON® qPCR SYBR Mix (Yesen, Shanghai, China). The detection system was used as previously described (Gao et al., 2018; Liu et al., 2020). The following primer sequences were used:

Human fibronectin, forward 5′-TACCAAGGTCAATCCACACCCC-3′

reverse 5′-CAGATGGCAAAAGAAAGCAGAGG-3′

Human α-SMA, forward 5′-ATCAAGGAGAAACTGTGTTATGTAG-3′

reverse 5′-GATGAAGGATGGCTGGAACAGGGTC-3′

Human Col-l, forward 5′-TCTAGACATGTTCAGCTTTGTGGAC-3′

reverse 5′-TCTGTACGCAGGTGATTGGTG-3′

Human CD47, forward 5′-AGAAGGTGAAACGATCATCGAGC-3′

reverse 5′-CTCATCCATACCACCGGATCT-3′

Human β-actin, forward 5′-CGCCGCCAGCTCACCATG-3′

reverse 5′-CACGATGGAGGGGAAGACGG-3′

Mouse fibronectin, forward 5′-CCGCCGAATGTAGGACAAGA-3′

reverse 5′-GCCAACAGGATGACATGAAATG-3′

Mouse α-SMA, forward 5′-CGGGCTTTGCTGGTGATG-3′

reverse 5′-CCCTCGATGGATGGGAAA-3′

Mouse Col-l, forward 5′-TGTAAACTCCCTCCACCCCA-3′

reverse 5′-TCGTCTGTTTCCAGGGTTGG-3′

Mouse β-actin, forward 5′-CATTGCTGACAGGATGCAGAA-3′

reverse 5′-ATGGTGCTAGGAGCCAGAGC-3′

Real-time PCR data were analyzed using the 2−ΔΔCt method.



RNA-Sequencing

RNA-seq was conducted as previously described (Wang D. et al., 2019). Total RNA was isolated using TRIzol reagent according to the manufacturer's protocol. Total RNA with RNA integrity number > 7.0 was processed following evaluation using the RNA 6000 Nano LabChip Kit (Agilent, California, USA). Poly (A) RNA was purified from 1 μg of total RNA using Dynabeads Oligo (Salajegheh et al.) 25–61005 (Thermo Fisher, CA, USA) by two rounds of purification and then fragmented under the following conditions: 94°C for 5–7 min. The cleaved RNA fragments were reverse transcribed to create a final cDNA library according to the manufacturer's protocol (mRNA Sequencing Sample Preparation Kit, Illumina). The average insert size for the cDNA library was 300 ± 50 bp. We performed 2 × 150 bp end sequencing (PE150) on an Illumina Novaseq 6000 (LC-Bio Technology Co., Ltd., Hangzhou, China) according to the manufacturer's instructions. Differential expression analysis was performed based on adjusted p-values; volcano plots were prepared to depict fold-change differences in gene expression. Gene Ontology (GO) enrichment and Kyoto Encyclopedia for Genes and Genome (KEGG) analyses of the differentially expressed mRNAs were also conducted. RNA-sequencing data were submitted to Gene Expression Omnibus (GEO) [https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE161737].



Immunoprecipitation

HK-2 cells were harvested and washed thrice with ice-cold PBS as previously described (Wang et al., 2020). The cells were lysed with IP buffer (Beyotime Biotechnology, Shanghai, China) supplemented with a complete protease inhibitor cocktail (Yesen, Shanghai, China) on ice for 30 min. Cell lysates were collected and prepared for IP. Protein G Sepharose beads (MedChemExpress, Shanghai, China) were incubated with 10 μl of anti-CD47 (1 mg/ml) or anti-γ-catenin (1 mg/ml) for 4 h at 4°C with constant shaking. After washing, the beads were incubated with the prepared proteins at 4°C for 12 h. Immunoprecipitated proteins were subjected to gel electrophoresis or liquid chromatography tandem mass spectrometry (LC-MS/MS).



LC-MS/MS

Immunoprecipitated proteins were excised from SDS-PAGE gels and digested as previously described (Chou et al., 2018). Briefly, the excised gel pieces were washed twice in 50% acetonitrile (ACN) for 30 min and 100% ACN for 30 min. Following reduction and recovery, the samples were digested by enzymes for 12 h at 37°C. The supernatant was collected and extracted. Dried peptides were dissolved in high-performance liquid chromatography (HPLC) buffer for desalination. The samples were then subjected to LC-MS/MS analysis using a Thermo High Performance Liquid Chromatograph (Easy-nLC1200, Thermo Scientific) and a high-resolution mass spectrometer (Q Exactive plus, Thermo Scientific). The data were submitted to a database that searched against the sequence library in the Uniport-reviewed Homo sapiens (Human) database using Proteome Discover 2.4.



Immunofluorescence

The harvested cells were fixed with 4% PFA for 5 min, washed with PBS, and incubated with 10% donkey serum for 60 min at 37°C. Next, the cells were incubated overnight at 4°C with Col-1/α-SMA antibody (1:200) and treated with fluorescein isothiocyanate-labeled secondary antibody (Bioss, Beijing, China). Nuclei were stained with 4,6-diamidino-2-phenylindole (DAPI). After a final washing step with PBS, the sections were imaged using a fluorescence microscope (Leica, Germany).



Lentivirus Package and Transfection

The plasmids, Control, THBS1-SH1 (CCGAAAGGGACGATGACTATG), THBS1-SH2 (CTATGCTATCACAACGGAGTT), THBS1-SH3 (TGACATCAGTGAGACCGATTT), psPAX2, and pMD2.G were extracted using the E.Z.N.A. Endo-free Plasmid Maxi Kit, and their concentrations were measured using the NanoDrop 2000. HEK-293T cells were seeded at a density of 5 × 106 cells/ml in a six-well culture plate (NUNC, Thermo scientific, USA) and incubated at 37°C with 5% CO2. After overnight incubation, the medium was changed to serum-free DMEM, and then the transfection was performed with the following cocktail for each transfection in sterilized 1.5-ml tubes: 2 μg OF pLKOG/pLKOshRNA plasmid, 1.4 μg of psPAX2 packaging plasmid, and 0.6 μg of pMD2.G envelope plasmid to 200 μl of serum-free DMEM medium. Next, 5 μl of Turbofect transfection reagent (Thermo Scientific, USA) was added to each tube. After incubating for 20 min, the mixture was added dropwise to each well and incubated at 37°C in a 5% CO2 incubator. After 4–6 h, the medium was gently changed to DMEM + 10% FBS without antibiotics medium. After overnight culture, 0.5 ml of DMEM + 10% FBS medium without antibiotics was added to each well. After 24 h, the medium was harvested from the cells and filtered through a 0.45-μm filter to remove the cells.

HK-2 cells were seeded at a density of 1.0 × 105 cells/ml in 48-well plates for lentivirus infection. The original medium containing the lentivirus was added to the HK-2 cells. After 6 h, the medium was replaced with growth medium. The cells were cultured for 48 h. Then, the cells were cultured with medium containing 10 μg/ml puromycin (sc-108071, Santa, USA) for 2 days. Finally, the positive cells were collected for further study.



Short-Hairpin RNA Interference

CD47 was silenced by transfecting cells with specific shRNA or negative control shRNA (GeneChem, Shanghai, China) using Lipofectamine 2000 according to the manufacturer's instructions. Cells were screened for CD47 knockdown using puromycin and cultured in DMEM/F12 supplemented with 5% FBS. shRNA transfection efficiency was determined by checking CD47 expression using Western blotting and real-time PCR.



Kidney Histology

Human and mouse kidney tissues were fixed (4% PFA), dehydrated, and embedded in paraffin. Tissue sections (5 μm thick) were stained with hematoxylin and eosin (H&E) to determine the degree of tissue damage and subjected to Masson and VG staining to evaluate the degree of fibrosis in accordance with the manufacturer's instructions (Zhuhai Besso Biotechnology Institute, Wuhan, China).

Immunohistochemistry (IHC) was performed for paraffin-embedded sections using a microwave-based antigen retrieval technique. IHC sections were incubated with rabbit anti-Col-1, anti-α-SMA, anti-E-cadherin, anti-CD47, and rabbit anti-CD68 antibody for 24 h at 4°C and then with secondary antibodies for 30 min at 37°C, followed by labeling with liquid chromogen 3,3-diaminobenzidine tetrahydrochloride (DAB). Then, sections were subjected to automatic digital slide scanning (KFBIO, Yuyao, China).



Oil Red O Staining

Frozen tissue sections/HK-2 cells were fixed with 4% PFA for 15 min and washed thrice with PBS. After treatment with 60% isopropanol for 1–3 s, the sections were stained with Oil red O (Sigma, St. Louis, MO, USA) for 8–10 min. The sections were washed twice with 60% isopropanol and then thrice with PBS. The sections were subjected to automatic digital slide scanning (KFBIO).



Statistical Analysis

Data are expressed as the mean ± standard error of mean (SEM). Significance was analyzed using one-way analysis of variance (ANOVA), followed by Tukey's post-hoc test using GraphPad Prism 5.0 software (GraphPad, La Jolla, CA, USA).




RESULTS


Renal Fibrosis Was Observed in Tissues From Patients With Hyperlipidemia

To assess lipid nephrotoxicity, human renal tissues were obtained from six patients with hyperlipidemia and control patients (Table 1; Supplementary Figure 1A). VG and Masson staining and IHC for α-SMA revealed significant fibrosis in the kidney tissue following exposure to high concentrations of lipids (Figures 1A,B).


Table 1. Characteristics of Human Samples.
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FIGURE 1. High-lipid-induced fibrotic response in human kidneys. (A) Van Gieson and Masson's trichrome staining of kidney sections. (B) Immunohistochemistry for α-SMA revealed high-lipid-induced renal fibrosis. CT, control (n = 3). Hy, human hyperlipidemia (n = 6). **p < 0.01 compared with the control.




Establishment of Mouse Models With High-Lipid-Induced Renal Fibrosis

To further confirm lipid-mediated nephrotoxicity, renal tissues were obtained from Apoe−/− mice fed a 45% HFD and C57BL/6 mice fed a 60% HFD. The workflow for the establishment of the two models is shown in Figure 2A. We found that the color of the serum changed and that the serum TC, TG, and LDL levels were significantly higher in mice with high-lipid-induced fibrosis than those in the control mice (Figures 2B–E). Oil red O staining demonstrated excessive lipid deposition in the kidneys of both mouse models (Figures 2F,G). BUN and urinary albumin levels were significantly higher in the model group than those in the control group (Figures 2H–K).
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FIGURE 2. Establishment of two mouse models fed a high-fat diet. (A) Work flow for generation of two mouse models that were fed with a high-fat diet. (B,C) Image of the serum samples from HFD-fed mice. (D,E) Values of TC, TG, HDL, and LDL. (F,G) Oil red O staining of tissues from two mouse models. (H,J) Values of serum BUN. (I,K) Values of urinary albumin. *p < 0.05, **p < 0.01, ***p < 0.001 as compared with the control. ND-Apoe−/−, Apoe−/− mice fed a normal diet. HFD-Apoe−/−-45%, Apoe−/− mice fed a 45% high-fat diet. ND, C57BL/6 mice fed a normal diet. HFD-60%, C57BL/6 mice fed a 60% high-fat diet. Data are shown as mean ± SEM for 6–12 mice.




High Lipid Levels Induced a Fibrotic Response in Mice and HK-2 Cells

Western blotting revealed that the expression of Col-1 and α-SMA increased in the high-lipid models (Figures 3A,B). Real-time PCR was conducted to detect the expression of fibronectin, Col-1, and α-SMA mRNA (Figures 3C,D). Accumulated lipids promoted kidney fibrosis, as confirmed by VG and Masson staining and IHC for α-SMA in the two mouse models (Figures 3E,F). We also established a cellular fibrosis model by treating HK-2 cells with 25 μg/ml OX-LDL for 48 h (Figure 3G). Oil red O staining revealed lipid deposition in HK-2 cells following treatment with OX-LDL (Figure 3H). Western blotting and real-time PCR revealed that the expression of fibrogenic genes (fibronectin, Col-1, and α-SMA) significantly increased following OX-LDL stimulation (Figures 3I,J). These observations were further supported by IF (Figure 3K).
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FIGURE 3. High-lipid-induced fibrotic response in mice and HK-2 cells. (A,B) Western blot analysis and quantitative data of Col-1 and α-SMA expression in two types of mouse models. (C,D) Real-time PCR of fibronectin, Col-1, and α-SMA in mice. (E,F) Van Gieson staining and Masson's trichrome staining of the kidney tissue revealed the presence of high-lipid-induced renal fibrosis, which was further confirmed by immunohistochemistry for α-SMA in vivo. (G) Cellular fibrosis model established using HK-2 cells treated with OX-LDL. (H) Oil red O staining of HK-2 cells following treatment with OX-LDL. (I,J) Western blotting and real-time PCR for checking the expression of fibrogenic genes. (K) Immunofluorescence to check the expression of Col-1 and α-SMA in vitro. *p < 0.05, **p < 0.01, ***p < 0.001 as compared with the control. ND-Apoe−/−, Apoe−/− mice fed a normal diet. HFD-Apoe−/−-45%, Apoe−/− mice fed a 45% high-fat diet. ND, C57BL/6 mice fed a normal diet. HFD-60%, C57BL/6 mice fed a 60% high-fat diet. Data are shown as mean ± SEM for six mice or three to four independent cell experiments.




High Lipid Levels Induced Inflammatory Response in Mice and HK-2 Cells

Western blotting and real-time PCR revealed that the accumulated lipids activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the mRNA levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β (Figures 4A,B). As shown in Figures 4C,D, IHC for CD68 revealed the infiltration of many macrophages into the renal tissues of the two mouse models. These results indicate that accumulated lipids induced an inflammatory response in the two mouse models. The inflammatory response was aggravated in HK-2 cells after OX-LDL stimulation, consistent with the increase in the phosphorylation of p65 and expression of inflammatory cytokines, including TNF-α and IL-1β (Figures 4E–G).
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FIGURE 4. High-lipid-induced inflammation in mice and HK-2 cells. (A,E) Western blotting and quantification of p-P65 expression in vivo and in vitro. High lipid levels activated NF-κB-induced renal inflammation. (B,F) Real-time PCR for checking the expression of TNF-α and IL-1β in mice and HK-2 cells. (C,D) Immunohistochemistry for CD68 in two mouse models revealed the presence of a high lipid-induced inflammatory response. (G) ELISA for inflammatory cytokines, including TNF-α and IL-1 β. *p < 0.05, **p < 0.01, ***p < 0.001 compared with the control group. ND-Apoe−/−, Apoe−/− mice fed a normal diet. HFD-Apoe−/−-45%, Apoe−/− mice fed a 45% high-fat diet. ND, C57BL/6 mice fed a normal diet. HFD-60%, C57BL/6 mice fed a 60% high-fat diet. Data represent mean ± SEM for six mice or three to four independent cell experiments.




THBS1/CD47 Signaling Induced EMT in HK-2 Cells and Mice Fed HFD

To determine the mechanisms underlying high-lipid-induced fibrosis and inflammation, RNA-seq was performed in HK-2 cells under OX-LDL stimulation (Figures 5A,B). In total, 1054 genes were identified as differentially expressed genes (DEGs) with a fold change > 2 or fold < 0.5 and p-value < 0.05 using R package edgeR or DESeq2. Among the DEGs, 477 were upregulated and 577 were downregulated. RNA-seq confirmed that the expression of many inflammatory genes (including IL1R1, CXCL16, and CSF1R) substantially increased after OX-LDL treatment. Meanwhile, functional clustering was conducted using GO analysis; the results revealed that the genes associated with the integral components of the plasma membrane displayed a unique expression profile. Several DEGs mapped to the plasma membrane were enriched for the biological function term, cell–cell adhesion (CLDN15, CLDN16, CLDN1, CDH4, PCDH17, PCDH1, and PCDHGA7), and TJP3 was enriched for the function term, bicellular tight junction. These results indicate that epithelial cells undergo EMT, thereby losing epithelial markers, gaining mesenchymal markers (Vim), and activating fibroblast growth factor receptors (FGFR2, FGFR3, and FGFBP1). Further, some DEGs, i.e., COL5A1, COL8A1, MMP7, and THBS1, were mapped to extracellular matrix components. To validate the RNA-seq data, we conducted quantitative real-time PCR in Apoe−/− mice (Figure 5C) and found that the expression of THBS1 in the high-fat group was significantly higher than that in the other top known genes, along with significant overexpression of its receptor CD47 and proteoglycan isoform (GI) of CD47. The high expression of THBS1 and CD47 was confirmed by Western blot and IF (Figures 5D,E). Therefore, we investigated whether THBS1 is involved in the progression of EMT and inflammation. We silenced THBS1 expression following transfection of HK-2 cells with the packaged virus (Figure 5F). Although Western blotting revealed that the expression of E-cadherin was not recovered in THBS1 knockdown cells (Figure 5G), the high expression of fibrogenic proteins (α-SMA) and inflammatory genes (TNF-α and IL-1β) significantly decreased in the PLKO-SH group following OX-LDL treatment (Figures 5H,I). These results indicated that THBS1 by itself was not involved in the progression of EMT in OX-LDL-induced injury. To further determine the downstream mechanisms, the CD47-interacting proteins that were immunoprecipitated were subjected to gel electrophoresis and analyzed using LC-MS/MS. We detected 139 proteins in HK-2 cells under OX-LDL stimulation that appeared to interact with CD47; these included γ-catenin and THBS1 (Figure 5J). The IP and IF results supported the co-localization of CD47 and THBS1 and confirmed the colocalization of CD47 with γ-catenin (Figures 5K,L). STRING functional protein association networks (https://string-db.org/) predicted that γ-catenin bound to E-cadherin, which was supported by IP and IF results, and that the expression of E-cadherin decreased following an increase in γ-catenin levels in OX-LDL-treated HK-2 cells (Figures 5M–O). These results suggest that THBS1/CD47 may modulate the interaction between γ-catenin and E-cadherin, and that it may be involved in EMT. This may be the major mechanism by which OX-LDL induces injury. Western blot analysis of renal tissues and HK-2 cells further confirmed this result (Figures 5P,Q). IHC revealed that the expression of CD47, E-cadherin and vimentin increased in high-lipid-challenged mouse models (Figure 5R).
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FIGURE 5. CD47 promoted EMT in high-lipid-treated HK-2 cells and mice. (A) RNA-seq of high-lipid-treated HK-2 cells. (B) Statistical analysis of GO enrichment. (C) Real-time PCR to check the expression of DHRS2, CCDC80, CYP24A1, KRT19, NES, TSPAN13, KIF20A, and THBS1 and CD47 in Apoe−/− mice. (D) Western blotting and quantification of THBS1, CD47, and GI of CD47. (E) IF for THBS1 and CD47. (F) Verification of THBS1 knockdown in HK-2 cells. The results demonstrated that THBS1 expression was downregulated after transfection of HK-2 cells with the packaged virus. (G) Western blotting and quantification of E-cadherin in THBS1 knockdown cells. (H) IF for α-SMA expression in THBS1 knockdown cells. (I) Real-time PCR to check the expression of TNF-α and IL-1β in THBS1 knockdown cells. (J) Mass fragmentation of amino acids following digestion of proteins immunoprecipitated (IP) using CD47 antibody. (K) IP assay results showed the interaction between CD47 and γ-catenin. (L) IF for CD47 and γ-catenin in vitro. (M) STRING functional association networks of γ-catenin. (N) IP assay further confirmed the interaction of E-cadherin with γ-catenin. (O) IF for E-cadherin and γ-catenin in vitro. (P) Western blotting and quantification of E-cadherin in vitro. (Q) Western blotting and quantification of CD47 and E-cadherin in vivo. (R) Immunohistochemistry for CD47, E-cadherin, and vimentin in vivo. *p < 0.05, **p < 0.01, ***p < 0.001 as compared with the control group. ###p < 0.001 compared with the THBS1-EV-OX-LDL group. GI of CD47, proteoglycan isoform of CD47. ND-Apoe−/−, Apoe−/− mice fed a normal diet. HFD-Apoe−/−-45%, Apoe−/− mice fed a 45% high-fat diet. ND, C57BL/6 mice fed a normal diet. HFD-60%, C57BL/6 mice fed a 60% high-fat diet. JUP, junction plakoglobin, also known as γ-catenin. CDH1, E-cadherin. EV, empty vector; KD, knockdown. Data are shown as mean ± SEM for six mice or three to four independent cell experiments.




OX-LDL Promoted EMT and Inflammation via a CD47-Dependent Mechanism in HK-2 Cells

To determine the function of CD47 in OX-LDL-treated tubular epithelial cells, we silenced CD47 expression. As shown in Figures 6A,B, the expression of CD47 at mRNA and protein levels was significantly reduced in HK-2 cells. Western blotting showed that the expression of E-cadherin was not significantly affected by OX-LDL in CD47-knockdown HK-2 cells (Figure 6C). Western blotting and real-time PCR revealed that the upregulation of fibrogenic genes was prevented in CD47 plasmid-transfected cells stimulated by OX-LDL (Figures 6D,E). These results were similar to those obtained for the inflammatory markers (Figure 6F), indicating the important role of CD47 in E-cadherin-mediated EMT and inflammation.
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FIGURE 6. OX-LDL promoted EMT and inflammation via a CD47-dependent mechanism in HK-2 cells. (A,B) Verification of CD47 knockdown in HK-2 cells. The results revealed that CD47 expression was downregulated after transfection with CD47 shRNA. (C) Western blotting and quantitative data for E-cadherin expression in CD47-silenced HK-2 cells. (D) Western blotting and quantitative data for Col-1 and α-SMA expression in CD47-silenced HK-2 cells. (E) Real-time PCR for the genes encoding fibronectin, Col-1, and α-SMA in CD47-silenced HK-2 cells. The results demonstrated that CD47 knockdown significantly reduced the mRNA levels of fibrogenic genes. (F) Real-time PCR of TNF-α and IL-1β in CD47-silenced HK-2 cells. *p < 0.05, **p < 0.01 as compared with the CD47-EV-control. ##p < 0.01, ###p < 0.001 compared with the CD47-EV-OX-LDL group. EV, empty vector; KD, knockdown. Data are shown as the mean ± SEM for three to four independent experiments.




CD47-Targeted Therapy Using Anti-CD47 Antibody Recovered E-Cadherin Expression and Attenuated OX-LDL-Induced EMT and Inflammation in HK-2 Cells

Western blotting confirmed that treatment with anti-CD47 antibody failed to upregulate CD47 and disrupt total E-cadherin expression following exposure to OX-LDL (Figures 7A,B). As shown in Figure 7C, the anti-CD47 antibody attenuated OX-LDL-induced expression of Col-1 and α-SMA. These results were supported by the expression of fibronectin, Col-1, and α-SMA mRNA (Figure 7D). Real-time PCR revealed that the anti-CD47 antibody decreased OX-LDL-induced inflammatory marker expression, including TNF-α and IL-1β (Figure 7E). Western blotting revealed that E-cadherin was recovered in the anti-CD47 antibody treatment group and in combination with the LSKL group, but not in the LSKL alone treatment group. The results exclude the role of TGF-β in EMT and indicated that the anti-CD47 antibody attenuated OX-LDL-induced EMT via a CD47-dependent mechanism in HK-2 cells (Figure 7F).
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FIGURE 7. Anti-CD47 antibody attenuated OX-LDL-induced EMT and inflammation in HK-2 cells. (A) Western blotting to check CD47 expression. CD47 expression was alleviated in the anti-CD47 antibody treatment group. (B) Western blotting and quantitative data for E-cadherin expression. (C,D) Western blotting and real-time PCR to check the expression of fibrogenic genes. (E) Real-time PCR of inflammatory indices. (F) Western blotting to check the expression of E-cadherin. E-cadherin was recovered in the anti-CD47 antibody treatment group and in combination with the LSKL group, but not in the LSKL-independent treatment group. The results indicated that anti-CD47 antibody attenuated OX-LDL-induced EMT and inflammation via a CD47-dependent mechanism in HK-2 cells. *p < 0.05, **p < 0.01, ***p < 0.001 as compared with the IgG control. #p < 0.05, ##p < 0.01, ###p < 0.001 as compared with the IgG-OX-LDL group. Data are shown as mean ± SEM for three to four independent experiments.




CD47-Targeted Therapy Using Anti-CD47 Antibody Recovered E-Cadherin Expression and Attenuated EMT and Inflammation in a Type 2 DM Model

To further confirm the effect of anti-CD47 antibody, another model of hyperlipidemia, i.e., type 2 DM, was established and treated with the anti-CD47 antibody. BUN, blood glucose, and urinary albumin levels significantly increased in the type 2 DM model (Figures 8A–C). H&E staining showed early glomerular lesions in type 2 DM, consisting of focal and segmental areas of mesangial proliferation and expansion (Supplementary Figure 1B). IHC and Western blotting revealed that the upregulated THBS1/CD47 signaling pathway activated the progression of EMT and macrophage infiltration in the type 2 DM model (Figures 8D–F). The treatment of type 2 DM model with anti-CD47 antibody resulted in the blockade of the THBS1/CD47 signaling pathway and consequently attenuated urinary albumin, EMT progression, and inflammatory response (Figures 8G,H). Moreover, the increased inflammatory response observed in type 2 DM was reduced in the DN-CD47 Ab group (Supplementary Figure 1C). These results confirmed that THBS1/CD47 contributed to OX-LDL-mediated EMT.
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FIGURE 8. CD47-targeted therapy using anti-CD47 antibody recovered E-cadherin expression and attenuated EMT in type 2 DM. (A) Serum BUN; (B) blood glucose; (C) urinary albumin. (E) IHC of α-SMA, CD68, CD47, and E-cadherin. (F) Western blotting for Col-1, α-SMA, CD47, and THBS1. Results show that upregulated THBS1/CD47 signaling pathway activated the progression of EMT and infiltration of macrophages in type 2 DM. (D) An outline of the protocol used to establish type 2 DM and anti-CD47 antibody treatment. (G) Values of urinary albumin. (H) IHC of α-SMA, CD68, CD47, and E-cadherin. Results reveal that anti-CD47 antibody mediated blocking of the THBS1/CD47 signaling pathway in type 2 DM decreased the level of urine albumin and attenuated EMT and inflammatory response as compared to type 2 DM. *p < 0.05, **p < 0.01, ***p < 0.001 as compared with CT. #p < 0.05, ##p < 0.01, ###p < 0.001 as compared with the IgG-DM group. CT, control; DM, type 2 diabetes mellitus. Data are shown as mean ± SEM for six to seven independent experiments.




CD47-Targeted Therapy Using Anti-CD47 Antibody Attenuated Mitochondrial Oxidative Stress and Apoptosis in a Type 2 DM Model

Real-time PCR showed that treatment of type 2 DM model with anti-CD47 antibody resulted in the decrease of BNIP3 mRNA level and consequently attenuated the level of mitochondrial oxidative stress (PARP and VDAC-1), and recovered mitochondrial apoptotic marker (including Bax and Bc12) expression, as compared to the control treatment (Figures 9A–C).
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FIGURE 9. CD47-targeted therapy using anti-CD47 antibody attenuated mitochondrial oxidative stress and apoptosis in type 2 DM model. (A) Real-time PCR for checking the expression of BNIP3. (B) Real-time PCR for checking the expression of PARP and VDAC-1. (C) Western blotting for checking the expression of Bcl2 and Bax. *p < 0.05, **p < 0.01 as compared with CT. ##p < 0.01 as compared with the IgG-DM group. CT, control; DM, type 2 diabetes mellitus; PARP, poly (ADP-ribose) polymerase-1; VDAC-1, voltage-dependent anion-selective channel protein 1; Bcl2, B-cell lymphoma 2; Bax, Bcl2 associated X; BNIP3, Bcl2/adenovirus E1B 19-kDa protein-interacting protein 3. Data are shown as mean ± SEM for six to seven independent experiments.





DISCUSSION

In the current study, we provide new evidence that THBS1 and CD47 expression increases in the cells or kidney tissues following lipid accumulation. Activation of THBS1/CD47 disrupted the stability of E-cadherin in the plasma membrane of HK-2 cells, thereby accelerating the progression of EMT and triggering an inflammatory response (Figure 10). Silencing of CD47 expression in HK-2 cells or administration of anti-CD47 antibody protected against OX-LDL-induced fibrosis and inflammation in vitro and in vivo by restoring E-cadherin expression.
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FIGURE 10. Mechanism of high-lipid-induced kidney EMT and inflammation. High lipid levels induced THBS1/CD47 activation, which modulated the interaction of γ-catenin with E-cadherin and promoted the progression of EMT. This, in turn, resulted in renal fibrosis and inflammation. TGF-β is a secreted cytokine that interacts with THBS1, which may be related to the anti-fibrosis mechanism in OX-LDL-induced kidney injury. BNIP3, a downstream protein of CD47/THBS1, mediates mitochondrial damage and apoptosis.


Hyperlipidemia is associated with a high incidence of chronic renal disease. Human samples of hyperlipidemia were obtained via rapid autopsy. Experimental evidence showed that high lipid levels induced renal fibrosis in human tissue samples; this result was further confirmed in two HFD-fed mouse models. RNA-seq was conducted to determine the mechanism underlying fibrosis in OX-LDL-induced epithelial injury. The mRNA expression of top known genes was verified in HFD-fed Apoe−/− mice, and the expression of THBS1 was found to be significantly upregulated in the high-fat group, along with an upregulation in its receptor CD47. Among the DEGs mapped to the plasma membrane, several genes were found to be enriched in the biological functions of cell–cell adhesion and bicellular tight junctions. E-cadherin/catenin complexes are important adherence molecules in epithelial tissue. Catenins, including α-catenin, β-catenin, and γ-catenin, are involved in E-cadherin-induced intercellular signal transduction, cell adhesion, and EMT. A recent study showed that CD47 colocalized with E-cadherin at the cell–cell adhesion sites of epithelial cells in HFD-induced kidney disease (Kuwahara et al., 2016). However, the results of LC-MS/MS revealed that CD47 directly interacted with γ-catenin, but not E-cadherin in this study. IP and IF results supported the colocalization of CD47 with γ-catenin (Figures 5K,L). Furthermore, STRING functional protein association networks (https://string-db.org/) predicted that γ-catenin bound to E-cadherin, which was supported by IP and IF, and that the expression of E-cadherin decreased following an increase in γ-catenin in OX-LDL-induced HK-2 cells (Figures 5M–O). These results suggested that THBS1/CD47 modulated the interaction between γ-catenin and E-cadherin and was involved in EMT. It may be the major mechanism by which OX-LDL induces injury. This was further confirmed by CD47 downregulation following transfection with small-hairpin RNA in OX-LDL-treated tubular epithelial cells, and treatment with anti-CD47 antibody in OX-LDL-treated cells and in type 2 DM.

In addition, other genes (BNIP3, TGF, and CD36) associated with CD47 expression were detected using RNA-seq. Lamy et al. showed that CD47 induced apoptosis through direct interaction with BNIP3 in T cells exposed to phosphatidylserine (Lamy et al., 2003; Ishihara et al., 2013). In this study, although BNIP3 was not included in the results of the LC-MS/MS assay, its expression decreased in type 2 DM mice after anti-CD47 antibody treatment. BNIP3 may be a downstream protein in type 2 DM. BNIP3 has been reported to mediate mitochondrial oxidative stress, apoptosis, and autophagy in acute kidney injury (Ishihara et al., 2013; Tang et al., 2019). Following anti-CD47 antibody treatment, the levels of PARP, VDAC-1, Bax, and Bcl2 recovered, but those of Atg5, Atg7, MDA, and GSH were not restored as compared to those in the untreated control (Figures 9A–C; Supplementary Figures 2D–F). These results show that the anti-CD47 antibody in type 2 DM may decrease BNIP3-mediated mitochondrial oxidative stress and apoptosis. A recent study showed that the transforming growth factor (TGF)-β/mothers against the decapentaplegic homolog 2 (SMAD2) signaling pathway was downregulated in a CD47−/− and anti-CD47 antibody-treated ischemia–reperfusion–nephrectomy (IR-N) mouse model (Julovi et al., 2020). In this study, we performed LC-MS/MS to analyze CD47-interacting proteins and found that TGF-β was included in THBS1/CD47-interacting protein, probably related to the anti-fibrosis mechanism. It was supported by anti-CD47 antibody-mediated blockage of the THBS1/CD47 signaling pathway in type 2 DM (Supplementary Figure 2D). However, E-cadherin was not recovered in the LSKL alone treatment group compared to the anti-CD47 antibody treatment group and in the combination with the LSKL group, which excluded the role of TGF-β in EMT in OX-LDL-induced kidney injury (Figure 7F). OX-LDL exposure results in CD36-mediated cGMP signaling and proliferation in several cell types (Isenberg et al., 2006; Allen et al., 2009; Miller et al., 2010). In 2007, Salajegheh et al. revealed the involvement of the THBS1/CD36/CD47 complex in T cell expansion and inflammatory response to β-amyloid (Salajegheh et al., 2007). In 2010, Miller et al. demonstrated that the interaction of β-amyloid with CD36 results in the induction of CD47-dependent signaling (Miller et al., 2010). A novel study indicated that there is cross-talk between the cell-surface proteins CD36 and CD47–THBS1 in osteoclasts (Koduru et al., 2018). In the present study, although the increase in CD36 expression was detected using RNA-seq, treatment with anti-CD47 antibody failed to decrease the expression of CD36 in type 2 DM. These results suggest that THBS1/CD47 signaling does not contribute to the increase of CD36 in OX-LDL-induced kidney injury. Furthermore, other mechanisms such as cell self-renewal and proliferation (Rogers et al., 2016) and protective innate and adaptive immunity (Navarathna et al., 2015) have been reported to be regulated by CD47. As shown in Supplementary Figure 3, IHC revealed no significant difference in the expression of cMyc, Sox2, and Ki67 between the control and model groups. Hence, self-renewal and proliferation are not the main pathological forms of lipid nephrotoxicity. Treatment with anti-CD47 antibody did not decrease the mRNA levels of IL4, IL7, and IL2 as compared to those in the untreated type 2 DM controls (Supplementary Figure 2A). The mechanism of innate and adaptive immunity also was excluded in OX-LDL-induced kidney injury.

Taken together, we designed two strategies for CD47-targeted therapy to investigate the therapeutic potential of CD47 for lipid nephrotoxicity. ShRNA-mediated CD47 knockdown prevented OX-LDL-induced EMT and inflammation in HK-2 cells. Further, we confirmed the targeted inhibition of CD47 by the anti-CD47 antibody in type 2 DM.

In conclusion, we found that CD47 contributed to lipid nephrotoxicity and that the CD47-targeted therapy protected HK-2 cells from OX-LDL-induced EMT and inflammation. Therefore, CD47 could potentially serve as a novel therapeutic target against lipid-mediated nephrotoxicity.
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hNP22, a novel neuron-specific protein that interacts with both actin filaments and microtubules, was found to be highly homologous to the smooth muscle cell cytoskeleton-associated proteins human SM22α and rat acidic calponin. In recent years, functions of hNP22 such as the promotion of neural differentiation and enhancement of neural plasticity, have been described, as well as potential roles of hNP22 in schizophrenia and alcohol-related brain damage (ARBD). Because of the potential roles of hNP22 in neuronal processes and its potential implications in diseases, hNP22 has emerged as a research target. In this paper, we review the gene structure, possible modifications, and functions of the hNP22 protein, as well as its potential clinical significance. Based on its physical structure and previous studies, we speculate that hNP22 has potential biological functions in neurological disorders, such as schizophrenia and ARBD.
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INTRODUCTION

In the developing nervous system, the generation of neuronal circuits is involves the differentiation of neuronal subtypes, which is vital for the subsequent formation of synapses. The migration of neuronal precursors stimulates the growth and differentiation of axons and dendrites of spinal neurons, the key parts of this event. In cell migration and neurite extension, signals from the environment control the actin dynamics and motility of cellular processes (Pape et al., 2008). The calponin family of actin-binding proteins functions in direct interactions with the actin and performs regulatory functions through Rho signaling in different cell types (Gimona et al., 2002).

Human neuronal protein 22 (hNP22), a member of the calponin family of proteins is also known as transgelin3 (tgln3). hNP22 was originally identified in a differential display experiment and was differentially expressed in the superior frontal gyrus (SPG) and primary motor cortex (PMC) in the brains of alcoholic patients (Fan et al., 2001). Sequence analysis revealed an ORF containing 597 nucleotides. Comparison between the sequences of hNP22 and rNP25 showed a 96.9% homology in the 199 amino acid overlap. NP22 was also found to be highly homologous to the human protein SM22α and to rat acidic calponin with 67.7 and 44.9% amino acid overlap, respectively (Fan et al., 2001). In smooth muscle, calponin binds to actin, tropomyosin and calmodulin and interacts with brain microtubules in a Ca2+-dependent manner through its interaction with tubulin (Fujii and Koizumi, 1999). As a globular protein, SM22α is exclusively expressed in smooth muscle-containing tissues of adult animals (Camoretti-Mercado et al., 1998). SM22α, also termed transgelin, is a transformation and shape change-sensitive actin-gelling protein (Lawson et al., 1997). The sequences of SM22α and calponin were assembled sharing consensus sequences with hNP22. Thus, it is rational to assume that hNP22 has similar biological characteristics to SM22α and calponin. For example, an interaction with actin was confirmed in calponin and SM22α (Takahashi et al., 1986; Fujii et al., 1997; Fu et al., 2000), and was also found in hNP22 (De las Heras et al., 2007).

In recent years, the roles of hNP22 in the promotion of neural differentiation and the enhancement of neural plasticity, as well as the aberrant expression of hNP22 in diseases such as schizophrenia and ARBD have been described (Fan et al., 2001; Ito et al., 2005). Given its important roles in nervous system development and its potential implications in diseases, hNP22 has emerged as a hotspot, and further studies to obtain better knowledge are very important. In this paper, we review the structural functions and clinical implications of the hNP22 protein, as well as the utility and directions for future studies.



STRUCTURE OF TAGLN3 GENE

The human NP22 protein is encoded by the TAGLN3 gene located on chromosome 3q13.2, whereas the other two transgelin isoforms, transgelin-1 and transgelin-2, are encoded by the TAGLN1 gene on chromosome 11q23.3 and the TAGLN2 gene on chromosome 11q23.2, respectively (Jo et al., 2018).

The TAGLN3 gene contains five exons that give rise to seven different transcripts by alternative splicing. Of these seven transcripts, transcripts 202, 201, 203, and 205 produce a functional protein with 199 amino acids, while transcripts 206, 204, and 207 produce a shorter non-functional protein (as shown in Figure 1).


[image: image]

FIGURE 1. Human Transgelin-3 Gene. Transgelin-3 gene (TAGLN3) structure showing exons (numbered boxes) and introns (line) with their respective sizes. Transcripts 201, 202, 203, and 205 are shown with the gray regions indicating the coding sequence of the transcript.


Orthologs of the TAGLN3 gene have been identified in 258 species, including primates (such as the Bolivian squirrel monkey Saimiri boliviensis), rodents (such as the Chinese hamster Cricetulus griseus) and fishes (such as the Amazon Molley Poecilia formosa). This suggests that the TAGLN3 gene is highly conserved among species. Thus, TAGLN3 might play the same roles in humans as in animal studies.

TAGLN3 was first discovered in the rat brain (Ren et al., 1994). Further functional research in recent years revealed that TAGLN3 could facilitate the neurite outgrowth of chicken dorsal root ganglia (Pape et al., 2008). In this study, TAGLN3 was found to be expressed in the chicken spinal cord, dorsal root, and sympathetic ganglia (Pape et al., 2008). Buchtova et al. (2010) found that TAGLN3 was mainly expressed in the neural crest-derived proximal portion of each cranial ganglion but not in the distal placodal-derived region and the hindbrain. This result revealed that the expression of TAGLN3 might be associated with the onset of neuronal differentiation (Buchtova et al., 2010). In this study, the mediolateral position of TAGLN3-expressing cells in the spinal cord suggests that TAGLN3 is transiently expressed as cells exit the cell cycle. The same roles were also discovered in NP25 in another study (Pape et al., 2008).



STRUCTURE OF hNP22 PROTEIN

The 199-amino acid peptide of hNP22 contains an N-terminal calponin homolog (CH)-domain, an actin binding region (ARB) and a C-terminal calponin-like repeat (CLR)-region[citation from ensemble, PROSITE database] (Figure 2).
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FIGURE 2. Structural characteristics of human NP22. The hNP22 protein contains an N-terminal calponin-homolog (CH)-domain, an actin binding region (ABR), and a C-terminal calponin-like repeated (CLR)-region. The CH-domain contains two EF-hand motifs. Possible sites for phosphorylation and methylation are labeled in green and pink, respectively.


The C-terminal CLR region is also present in calponin and SM22α. The isolated CLR region failed to associate with F-actin in living cells and did not cosediment with F-actin (Gimona et al., 2002). However, this region might play an important role by manipulating some signaling pathways. Calponin was shown to be involved in the mitogen-activated protein kinase (MAPK) signaling pathway (Menice et al., 1997). In addition, calponin, as a substrate of Rho-kinase, has also been suggested to affect the Rho signaling pathway (Kaneko et al., 2000). Given that hNP22 shares high homology with calponin, especially in the C-terminal CLR region, hNP22 is likely to be involved in these signaling pathways.

Although the C-terminal CLR region identified in the hNP22 gene failed to interact with F-actin, a putative actin binding site (153-R-K-A-Q-Q-N-R-R-160) upstream of the CLR region was identified (Fan et al., 2001). This finding shows the possibility of interactions between hNP22 and actin, which indicates that hNP22 might be a mediator in regulatory signal transduction pathways in neurons.

Two EF-hand Ca2+ binding domains (E27-N-K-L-V-D-W-W-I-L-Q-C38 and T107-T-D-I-F-Q-T-V-D-L-W-E118) have been identified within the CH domain, which suggests that the activity of hNP22 might be altered by Ca2+ binding. No ATP binding sites or glycosylation sites were identified from the sequence analysis of hNP22 (Fan et al., 2001), indicating that hNP22 is unlikely to be linked to ATP binding or glycosylation. However, a few phosphorylation sites have been identified, suggesting that hNP22 may function through phosphorylation (as shown in Figure 2). PKC phosphorylation sites are also highly conserved in the transgelin/calponin family and it appears that if the serine residue is phosphorylated in vitro, actin-binding activity is significantly decreased (Dammeier et al., 2000; Fujii et al., 2000).



FUNCTIONS OF hNP22


Interaction Between hNP22 and Actin

The putative actin-binding site of hNP22, suggests that it may regulate the actin cytoskeleton through interaction with actin which might subsequently lead to alterations of various cellular processes, such as the promotion of cell movement and cell differentiation.

Studies on the interactions between hNP22 and actin were carried out in the human neuroblastoma cell line SK-N-SH. Colocalization of rNP25 and F-actin was shown by immunostaining, and a cosedimentation assay further confirmed the association between rNP25 and F-actin. In addition, significant energy transfer between rNP25 and F-actin was measured in the experiment using the fluorescence resonance energy transfer (FRET) technique, indicating close association between NP25 and F-actin (Mori et al., 2004). However, as indirect immunofluorescence was used in the experiment, the result might underestimate the distance between the two molecules. Nevertheless, evidence still favors the interaction between hNP22 and F-actin. The binding of hNP22 and filamentous actin was observed via cosedimentation assays and immunohistology analysis in cultured human neuroblastoma cells (Mori et al., 2004) and Chinese hamster ovary (CHO) cells (De las Heras et al., 2007). Overexpression of NP25 in CHO cells elicited the generation of short cellular processes. Additionally, immunohistochemistry revealed the colocalization of rNP22 and F-actin in neuronal processes in rat brains (Depaz et al., 2005), which further supports the interaction between hNP22 and F-actin.

Immunohistochemistry assays revealed the colocalization of rNP22 and three microtubule markers (tau protein, microtubule-associated protein 2 (MAP2) and alpha-tubulin) in rat brains (Depaz et al., 2005), which shows a possible interaction between rNP22 and microtubules. The immunoprecipitation experiment provides stronger evidence for the binding of hNP22 to tubulin, as they were found to be coprecipitated in both human brain lysate and CHO cells transfected with hNP22 (De las Heras et al., 2007). Indeed, data on the interaction of hNP22 with microtubules are sparse and more studies are needed in the future.



CLINICAL IMPLICATIONS OF hNP22

As several experiments have shown that hNP22 is a brain-specific cytoskeleton-binding protein, it is assumed that hNP22 might regulate important events in the central nervous system, such as differentiation (especially during process formation and neurite extension) and neural plasticity, via its interaction with actin or its involvement in signal transduction. Dysregulation of hNP22 might be linked to diseases such as ARBD and schizophrenia.


hNP22 in Neural Differentiation

The initiation of the neural differentiation pathway is regulated by proneural proteins, which accumulate at high levels during early stages of development (Bertrand et al., 2002). However, the expression of proneural genes is downregulated before the cell exits the cell cycle to undergo terminal differentiation. Thus, proneural genes may not initiate neural differentiation directly. Instead, proneural genes might promote neural differentiation by activating some downstream regulatory genes. NeuroM as a downstream gene of proneural genes, is transiently expressed in the spinal cord in cells that have ceased proliferating but have not yet begun to migrate into outer layers. hNP22 and NeuroM showed similar expression patterns, as they were both expressed at early stages during neural development in chick embryos (Pape et al., 2008). Thus, proneural genes function as neural differentiation activators, and hNP22 might act as a downstream effector. These results were consistent with the expression pattern of the TAGLN3 gene.

In a separate study, increased expression of NP25 was discovered both at the mRNA level and at the protein level in rat PC12 cells, a classical model of sympathetic precursor cells, during differentiation induced by nerve growth factor (NGF) (Mori et al., 2004). Increased NP25 expression was also found in mouse neural stem cells during differentiation induced by either 1% fetal bovine serum (FBS) with hepatocyte growth factor (HGF) or 10% FBS. Although the two treatments led to differentiation into different cell types, increased NP25 expression occurred in both cases, which suggests the possible involvement of hNP22 in neural differentiation.

In addition dysregulation of hNP22 expression might be associated with neurodevelopmental diseases, such as schizophrenia. Abormal neuron activation (Carter et al., 1997) and a reduced number of interneurons (Benes et al., 1991) in the anterior cingulate cortex were found to be involved in the pathology of schizophrenia The ratio of hNP22-immunopositive cells/total cells was significantly reduced in layer V and layer VI of the anterior cingulate cortex of the schizophrenic brain compared with age- and sex-matched controls (Ito et al., 2005). A possible interpretation is that the neurological damage observed in schizophrenia might be attributable to the reduced expression of hNP22. However, hNP22 expression in the hippocampus and prefrontal cortex was not significantly different in schizophrenic brains compared with healthy controls (Ito et al., 2005), despite the neuropathological changes observed in the hippocampus and prefrontal cortex in schizophrenic brains (Deicken et al., 2000). Further exploration is needed based on the results from different studies indicating the roles of hNP22 in specific brain regions in schizophrenia.



hNP22 Promotes Process Formation

hNP22 might be particularly important during process formation. The transfection experiment using CHO cells provides direct evidence. CHO cells transfected with c-myc-hNP22 showed increased hNP22 expression compared with non-transfected cells, and process formation was observed in all transfected cells (De las Heras et al., 2007). The deletion of the putative actin-binding site limited the increase in process formation in transfected CHO cells, which revealed that the binding of actin is involved in the promotion of process formation by hNP22. At the same time, the phosphorylation of hNP22 also alters its ability to promote process formation as the S180A mutation that inhibited the phosphorylation of hNP22 reduced its capacity to enhance process formation and neurite extension (De las Heras et al., 2007).

This reduction in the ability to promote process formation might explain the increased expression of hNP22 found in specific brain regions in ARBD, such as the superior frontal gyrus (SFG) (Kril and Harper, 1989; Fan et al., 2001), prefrontal cortex (PFC) (Depaz et al., 2003) and CA3 and CA4 areas of the hippocampus (Bengochea and Gonzalo, 1990). Long-term ethanol exposure has been shown to cause overactivation of PKC (Stubbs and Slater, 1999), which leads to the phosphorylation of hNP22. And thereby reduces the ability of hNP22 to promote process formation. The upregulation of hNP22 might serve as a compensatory mechanism to compensate for the reduction in the promotion of process formation. However, it is also possible that the increased expression of hNP22 is the cause of the alcohol-induced damage in the SFG and hippocampus. Additional studies could be carried out to examine the link between hNP22 and ARBD.



hNP22 Regulates Neurite Extension

Neurite extension involves the dynamic reorganization of actin filaments. Neurite elongation and retraction is depend on the balance between the tensile force generated by myosin and actin filaments and the compressive force generated by dynein and microtubules (Ferhat et al., 2001). The neurite length was found to be altered with different levels of NP25 in several cells, which indicated that hNP22 may play a role in the regulation of neurite extension via its interaction with NP25 (Pape et al., 2008). In this study, the overexpression of NP25 led to increased neurite length in PC12 cells and sensory DRG cells (with low endogenous NP25 levels) and to reduced neurite length in chick sympathetic cells (with high endogenous NP25 levels), while the inhibition of NP25 expression by small interfering RNA (siRNA) gave the opposite results. These results show that there exists an optimum NP25 level. Any deviations from the NP25 expression level would inhibit neurite extension. However, the regulation of neurite extension seems to be independent of actin binding as colocalization of NP25 and F-actin was not observed in this experiment. It is possible that hNP22 regulates neurite extension via its interaction with microtubules. On the other hand, the regulation could also occur via the Rho-kinase signaling pathway. Rho GTPases, such as Rnd1 and RhoG, were shown to promote neurite extension (Aoki et al., 2000; Katoh et al., 2000), and they are proposed to work by promoting the hydrolysis of GTP from Rho-associated kinase, thus inhibiting the kinase. Two Rho GTPase-activating proteins (RhoGAPs) that could interact with NP25 have been identified. Thus, it is reasonable to assume that NP25 might activate RhoGAPs and promote neurite extension through the activation of Rho GTPases.



hNP22 in Neural Plasticity

hNP22 might play a role in synapse rearrangement as an increased level of rNP22 expression was measured in the rat brain by proteomic analysis after a brief period of voluntary exercise, when a high level of synapse rearrangement was expected (Ding et al., 2006). Again, this result provides indirect evidence for the function of hNP22. However, hNP22 does not seem to be involved in the NMDA signaling pathway, which is important in neural plasticity (Gulersen, 2011). Further studies are needed to confirm the possible involvement and understand the underlying mechanism of hNP22 in neural plasticity.



CONCLUSION AND PROSPECTS

hNP22 is a neural protein that has been shown to interact with both actin filaments and microtubules. It has a CH domain, an actin binding region and a C-terminal CLR region. Two EF-hand Ca2+ binding motifs and several phosphorylation sites have been identified on hNP22, suggesting possible regulatory roles of hNP22 via Ca2+ binding and phosphorylation. Several pieces of evidence have suggested that hNP22 may play important roles in neural differentiation (especially during process formation and neurite extension) as well as neural plasticity either via its interaction with actin or via its involvement in related signaling pathways. Given its possible physiological roles in the central nervous system, the involvement of hNP22 in neurological disorders, such as schizophrenia and ARBD, has been presumed.

Previous studies have shown increased expression of hNP22 in synaptogenesis, but its functional properties have not been well characterized. In addition, the results of these studies are contradictory. Thus, further studies on the mechanism of hNP22 are required. To gain insight into the biological functions of hNP22, a knockout mouse model would help to provide stronger evidence regarding the functions of hNP22 in vivo. Previous studies found the alterations in hNP22 expression in the brain regions where neuropathological changes were observed. Thus, further studies are required to understand whether the alteration of hNP22 expression is a cause or a consequence of neuropathological changes, or both. With a better understanding of the clinical implications of hNP22, it might be used as a new potential therapeutic target for neurological disorders.

In conclusion, several functions and clinical implications of hNP22 have been proposed and studied. As a novel protein, hNP22 was found to be associated with actin, which might play roles in neural differentiation and neural plasticity. Based on all the studies so far, hNP22 has emerged as a protein that shows great potential for exploitation, and further studies to better understand its physiological roles in the central nervous system are required. A greater understanding of the roles and the underlying mechanisms of hNP22 could be beneficial to the development of new treatments for certain neurological disorders.



AUTHOR CONTRIBUTIONS

JW and Y-YW conceptualized, wrote, and edited the manuscript. X-TZ collected the literature and prepared the figures. X-TZ, X-WY, and J-YT edited and revised the manuscript. All authors contributed to manuscript revision and read and approved the submitted version.



REFERENCES

Aoki, J., Katoh, H., Mori, K., and Negishi, M. (2000). Rnd1, a novel Rho family GTPase, induces the formation of neuritic processes in PC12 cells. Biochem. Biophys. Res. Commun. 2000:3842. doi: 10.1006/bbrc.2000.3842

Benes, F. M., Mcsparren, J., Bird, E. D., Sangiovanni, J. P., and Vincent, S. L. (1991). Deficits in Small Interneurons in Prefrontal and Cingulate Cortices of Schizophrenic and Schizoaffective Patients. Archiv. Gen. Psychiatr. 1991:01810350036005. doi: 10.1001/archpsyc.1991.01810350036005

Bengochea, O., and Gonzalo, L. M. (1990). Effect of chronic alcoholism on the human hippocampus. Histol. Histopathol. 5:1990.

Bertrand, N., Castro, D. S., and Guillemot, F. (2002). Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530. doi: 10.1038/nrn874

Buchtova, M., Kuo, W. P., Nimmagadda, S., Benson, S. L., Geetha-Loganathan, P., Logan, C., et al. (2010). Whole genome microarray analysis of chicken embryo facial prominences. Dev. Dyn. 239, 574–591. doi: 10.1002/dvdy.22135

Camoretti-Mercado, B., Forsythe, S. M., LeBeau, M. M., Espinosa, R. III, Vieira, J. E., Halayko, A. J., et al. (1998). Expression and cytogenetic localization of the human SM22 gene (TAGLN). Genomics 49, 452–457. doi: 10.1006/geno.1998.5267

Carter, C. S., Mintun, M., Nichols, T., and Cohen, J. D. (1997). Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O]H2O PET study during single-trial stroop task performance. Am. J. Psychiatr. 1997:1670. doi: 10.1176/ajp.154.12.1670

Dammeier, S., Lovric, J., Eulitz, M., Kolch, W., Mushinski, J. F., and Mischak, H. (2000). Identification of the smooth muscle-specific protein, sm22, as a novel protein kinase C substrate using two-dimensional gel electrophoresis and mass spectrometry. Electrophoresis 21, 2443–2453. doi: 10.1002/1522-2683(20000701)21:12<2443::AID-ELPS2443<3.0.CO;2-6

De las Heras, R., Depaz, I., Jaquet, V., Kroon, P., and Wilce, P. A. (2007). Neuronal protein 22 colocalises with both the microtubule and microfilament cytoskeleton in neurite-like processes. Brain Res. 2007:017. doi: 10.1016/j.brainres.2006.10.017

Deicken, R. F., Johnson, C., and Pegues, M. (2000). Proton magnetic resonance spectroscopy of the human brain in schizophrenia. Rev. Neurosci. 2000:147. doi: 10.1515/REVNEURO.2000.11.2-3.147

Depaz, I. M., De Las Heras, R., Kroon, P. A., and Wilce, P. A. (2005). Changes in neuronal protein 22 expression and cytoskeletal association in the alcohol-dependent and withdrawn rat brain. J. Neurosci. Res. 2005:20563. doi: 10.1002/jnr.20563

Depaz, I., Ito, M., Matsumoto, I., Niwa, S. I., Kroon, P., and Wilce, P. A. (2003). Expression of hNP22 is altered in the frontal cortex and hippocampus of the alcoholic human brain. Alcoholism Clin. Exp. Res. 2003:59. doi: 10.1097/01.ALC.0000086060.18032.59

Ding, Q., Vaynman, S., Souda, P., Whitelegge, J. P., and Gomez-Pinilla, F. (2006). Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis. Eur. J. Neurosci. 2006, 05026.x. doi: 10.1111/j.1460-9568.2006.05026.x

Fan, L., Jaquet, V., Dodd, P. R., Chen, W., and Wilce, P. A. (2001). Molecular cloning and characterization of hNP22: A gene up-regulated in human alcoholic brain. J. Neurochem. 2001, 00176.x. doi: 10.1046/j.1471-4159.2001.00176.x

Ferhat, L., Rami, G., Medina, I., Ben-Ari, Y., and Represa, A. (2001). Process formation results from the imbalance between motor-mediated forces. J. Cell Sci. 114, 3899–3904.

Fu, Y., Liu, H. W., Forsythe, S. M., Kogut, P., McConvllle, J. F., Halayko, A. J., et al. (2000). Mutagenesis analysis of human SM22: Characterization of actin binding. J. Appl. Physiol. 2000:1985. doi: 10.1152/jappl.2000.89.5.1985

Fujii, T., and Koizumi, Y. (1999). Identification of the binding region of basic calponin on alpha and beta tubulins. J. Biochem. 125, 869–875. doi: 10.1093/oxfordjournals.jbchem.a022362

Fujii, T., Hiromori, T., Hamamoto, M., and Suzuki, T. (1997). Interaction of chicken gizzard smooth muscle calponin with brain microtubules. J. Biochem. 1997:a021759. doi: 10.1093/oxfordjournals.jbchem.a021759

Fujii, T., Takagi, H., Arimoto, M., Ootani, H., and Ueeda, T. (2000). Bundle formation of smooth muscle desmin intermediate filaments by calponin and its binding site on the desmin molecule. J. Biochem. 127, 457–465. doi: 10.1093/oxfordjournals.jbchem.a022628

Gimona, M., Djinovic-Carugo, K., Kranewitter, W. J., and Winder, S. J. (2002). Functional plasticity of CH domains. FEBS Lett. 2002, 3240–3249. doi: 10.1016/S0014-5793(01)03240-9

Gulersen, M. (2011). Characterization of NP22 and its Potential Role in NMDA Receptor-Mediated Transmission, Thesis. Canada: University of Toront

Ito, M., Depaz, I., Wilce, P., Suzuki, T., Niwa, S. I., and Matsumoto, I. (2005). Expression of human neuronal protein 22, a novel cytoskeleton-associated protein, was decreased in the anterior cingulate cortex of schizophrenia. Neurosci. Lett. 378, 125–130. doi: 10.1016/j.neulet.2004.12.079

Jo, S., Kim, H. R., Mun, Y. V., and Jun, C. D. (2018). Transgelin-2 in immunity: Its implication in cell therapy. J. Leukocyte Biol. 2018:470R. doi: 10.1002/JLB.MR1117-470R

Kaneko, T., Amano, M., Maeda, A., Goto, H., Takahashi, K., Ito, M., et al. (2000). Identification of calponin as a novel substrate of Rho-kinase. Biochem. Biophys. Res. Commun. 2000:2901. doi: 10.1006/bbrc.2000.2901

Katoh, H., Yasui, H., Yamaguchi, Y., Aoki, J., Fujita, H., Mori, K., et al. (2000). Small GTPase RhoG Is a Key Regulator for Neurite Outgrowth in PC12 Cells. Mole. Cell. Biol. 2000:7378. doi: 10.1128/mcb.20.19.7378-7387.2000

Kril, J. J., and Harper, C. G. (1989). Neuronal counts from four cortical regions of alcoholic brains. Acta Neuropathol. 1989:BF00294379. doi: 10.1007/BF00294379

Lawson, D., Harrison, M., and Shapland, C. (1997). Fibroblast transgelin and smooth muscle SM22alpha are the same protein, the expression of which is down-regulated in many cell lines. Cell Motil. Cytoskeleton 38, 250–257. doi: 10.1002/(SICI)1097-0169199738:3<250::AID-CM3<3.0.CO;2-9

Menice, C. B., Hulvershorn, J., Adam, L. P., Wang, C. L. A., and Morgan, K. G. (1997). Calponin and mitogen-activated protein kinase signaling in differentiated vascular smooth muscle. J. Biol. Chem. 1997:25157. doi: 10.1074/jbc.272.40.25157

Mori, K., Muto, Y., Kokuzawa, J., Yoshioka, T., Yoshimura, S., Iwama, T., et al. (2004). Neuronal protein NP25 interacts with F-actin. Neurosci. Res. 2004:012. doi: 10.1016/j.neures.2003.12.012

Pape, M., Doxakis, E., Reiff, T., Duong, C. V., Davies, A., Geissen, M., et al. (2008). A function for the calponin family member NP25 in neurite outgrowth. Dev. Biol. 2008:001. doi: 10.1016/j.ydbio.2008.07.001

Ren, W. Z., Ng, G. Y., Wang, R. X., Wu, P. H., O’Dowd, B. F., Osmond, D. H., et al. (1994). The identification of NP25: a novel protein that is differentially expressed by neuronal subpopulations. Brain Res. Mol. Brain Res. 22, 173–185. doi: 10.1016/0169-328x(94)90045-0

Stubbs, C. D., and Slater, S. J. (1999). Ethanol and protein kinase C. In Alcoholism. Clin. Exp. Res. 1999:tb04680.x. doi: 10.1111/j.1530-0277.1999.tb04680.x

Takahashi, K., Hiwada, K., and Kokubu, T. (1986). Isolation and characterization of a 34000-dalton calmodulin- and F-actin-binding protein from chicken gizzard smooth muscle. Biochem. Biophys. Res. Commun. 1986, 80328–X.


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Wu, Wang, Yang, Zhang and Tang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 11 March 2021
doi: 10.3389/fcell.2021.634347





[image: image]

Cerebral Ischemia-Reperfusion Is Associated With Upregulation of Cofilin-1 in the Motor Cortex

Ming-Shu Xu1, Lei-Miao Yin1, Ai-Fang Cheng1, Ying-Jie Zhang1, Di Zhang1, Miao-Miao Tao1, Yun-Yi Deng1, Lin-Bao Ge2* and Chun-Lei Shan1*

1Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China

2Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China

Edited by:
Chang-Duk Jun, School of Life Sciences, Gwangju Institute of Science and Technology, South Korea

Reviewed by:
Lize Xiong, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
Hisham F. Bahmad, Mount Sinai Medical Center, United States
Zahoor A. Shah, University of Toledo, United States

*Correspondence: Lin-Bao Ge, 13301727622@189.cn; Chun-Lei Shan, shanclhappy@163.com

Specialty section: This article was submitted to Cell Adhesion and Migration, a section of the journal Frontiers in Cell and Developmental Biology

Received: 27 November 2020
Accepted: 18 February 2021
Published: 11 March 2021

Citation: Xu M-S, Yin L-M, Cheng A-F, Zhang Y-J, Zhang D, Tao M-M, Deng Y-Y, Ge L-B and Shan C-L (2021) Cerebral Ischemia-Reperfusion Is Associated With Upregulation of Cofilin-1 in the Motor Cortex. Front. Cell Dev. Biol. 9:634347. doi: 10.3389/fcell.2021.634347

Cerebral ischemia is one of the leading causes of death. Reperfusion is a critical stage after thrombolysis or thrombectomy, accompanied by oxidative stress, excitotoxicity, neuroinflammation, and defects in synapse structure. The process is closely related to the dephosphorylation of actin-binding proteins (e.g., cofilin-1) by specific phosphatases. Although studies of the molecular mechanisms of the actin cytoskeleton have been ongoing for decades, limited studies have directly investigated reperfusion-induced reorganization of actin-binding protein, and little is known about the gene expression of actin-binding proteins. The exact mechanism is still uncertain. The motor cortex is very important to save nerve function; therefore, we chose the penumbra to study the relationship between cerebral ischemia-reperfusion and actin-binding protein. After transient middle cerebral artery occlusion (MCAO) and reperfusion, we confirmed reperfusion and motor function deficit by cerebral blood flow and gait analysis. PCR was used to screen the high expression mRNAs in penumbra of the motor cortex. The high expression of cofilin in this region was confirmed by immunohistochemistry (IHC) and Western blot (WB). The change in cofilin-1 expression appears at the same time as gait imbalance, especially maximum variation and left front swing. It is suggested that cofilin-1 may partially affect motor cortex function. This result provides a potential mechanism for understanding cerebral ischemia-reperfusion.

Keywords: cerebral ischemia-reperfusion, gait analysis, cofilin-1, motor cortex, penumbra


INTRODUCTION

Cerebral ischemia (ischemic stroke) is one of the leading causes of death and disability worldwide (Wang et al., 2018; Virani et al., 2020). Mainly because of the expanding and aging population, the absolute number of related deaths is increasing (Feigin et al., 2014; Vivanco-Hidalgo et al., 2019). According to China stroke statistics, more than 3,010,000 inpatients with stroke were admitted to hospitals during 2018; among them, 81.9% had ischemic stroke (Wang et al., 2020). Unfortunately, therapeutic options for ischemic stroke are limited (Wang et al., 2019). In the last 5 years, reperfusion therapies, either intravenous thrombolysis or mechanical thrombectomy, have been the first line of care in a growing number of eligible acute ischemic stroke patients (Powers et al., 2018; Chamorro et al., 2020). There are potential risks in the application of reperfusion (Huang et al., 2019; Thorén et al., 2020). Reperfusion plays a biphasic role: it is beneficial in the acute stage but is potentially deleterious during recovery. Ischemia-reperfusion may result in reperfusion injury, which manifests as hemorrhagic transformation, brain edema, infarct progression, and neurologic worsening (Choi and Pile-Spellman, 2018). Most of these changes are caused by the energy exhaustion of neurons, followed by Ca2+ entry (Stegner et al., 2019), cell edema (Liebeskind et al., 2019) and excitotoxicity (Lai et al., 2014), neuroinflammation (Jayaraj et al., 2019), apoptosis (Chen et al., 2020), and autophagy (Yan et al., 2013; He et al., 2020). While irretrievable neuronal loss occurs after a series of spatiotemporal pathological changes, especially in the infarct core area where blood flow drops quickly, the surrounding hypoperfused penumbra region (peri-infarct area) is at risk of delayed cell death. Neuroprotection aims to preserve the penumbra (Chamorro et al., 2020), especially the penumbra region in the motor cortex. Neuroprotection includes not only reducing injury (such as anti-inflammation and anti-apoptotic), but also promoting restoration (such as neurogenesis and regeneration). Neurogenesis under physiological and pathological conditions was found in hippocampal and motor cortex (Chamaa et al., 2018; Lv et al., 2019; Wu et al., 2020), but different results were reported (Sorrells et al., 2018). MCAO model leads to the injury of cortex, basal ganglia (Longa et al., 1989; Ma et al., 2020), and motor deficit induced by MCAO is partially related to motor cortex. Rodent motor cortex plays an important role in motor control (Peters et al., 2017; Bundy et al., 2019; Veuthey et al., 2020). If the motor cortex injury could be treated in time, motor function may be recovery gradually (Wang et al., 2021). These injuries are related to oxidative stress (Chamorro et al., 2016), excitotoxicity (Lai et al., 2014), and neuroinflammation (Jayaraj et al., 2019) induced by reperfusion. All of these factors will cause changes in actin-binding proteins.

Actin-binding proteins (such as cofilin-1) play an important role in the regulation of skeletal proteins in neurons (Bernstein and Bamburg, 2010; Shirao et al., 2017), in the injury and repair of neurons (Bamburg et al., 2010; Alhadidi et al., 2016; Shah and Rossie, 2018), apoptosis and autophagy (Head et al., 2009; Sanchez-Varo et al., 2012; Madineni et al., 2016; Wang et al., 2016), and in changes in mitochondrial function and structure (Hoffmann et al., 2019). Actin-binding proteins also play an important role in the regeneration and development of dendritic spines in a pathological state (Sekino et al., 2007; Koganezawa et al., 2017; Kreis et al., 2019). Existing studies have shown that these actin-binding proteins are changed in degenerative neuropathy (Shaw and Bamburg, 2017; Schaffer et al., 2018; Inoue et al., 2019). Cofilin-1 is abnormal after ischemia and affects the morphological integrity, receptor transport and signal transduction of spines in synapses (Shaw and Bamburg, 2017; Won et al., 2018; Shu et al., 2019). Arp2/3 is also commonly involved in actin cycling/turnover (Korobova and Svitkina, 2008; Spence et al., 2016; Konietzny et al., 2017). Additionally, it was found that drebrin plays an important role in developing cerebral cortex and neurodegenerative diseases (Chimura et al., 2015; Sinclair et al., 2015; Inoue et al., 2019). The abnormal changes in actin-binding proteins, which are major regulators of actin dynamics, may result in dendritic injury of neurons during ischemic stroke (Shu et al., 2019). The changes in nerve function induced by actin-binding proteins are not the same in different brain regions during cerebral ischemia-reperfusion. Limited studies have focused on actin-binding proteins in the motor cortex, and little is known about the gene expression of these proteins.

At present, it is not clear whether there are changes in these actin-binding proteins during cerebral ischemia-reperfusion in the motor cortex penumbra. In this study, we aimed to identify the regulatory factors (cofilin-1, Arp2/3, and drebrin-like) of actin cycling/turnover related to cerebral ischemia-reperfusion. And the changes in these proteins and mRNAs in the motor cortex penumbra need to be observed. So that we could investigate the pathological processes and understand the effects of actin-binding proteins during cerebral ischemia-reperfusion.



MATERIALS AND METHODS


Grouping and Experimental Process

Experiments were performed in adult male Sprague–Dawley rats (257 ± 19 g, Shanghai SLAC Laboratory Animal Co., Ltd.). Animals were housed in institutional animal facilities on a 12 h day/night cycle with ad libitum access to food and water. All experimental procedures were performed in accordance with animal welfare and ethical principles and were approved by the Animal Use and Management Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine.

All rats were randomly divided into two groups: the control group (control) and the middle cerebral artery occlusion (MCAO) group. Control group (n = 8): no MCAO. MCAO group (n = 8): MCAO and reperfusion.

The brief procedure is as follows (also shown in Figure 1A): At the T0 time point, cerebral blood flow (CBF) measurements were prepared (after anesthesia, a small piece of scalp was removed, and detection points were exposed), and the rats then recovered for 3 days, and gait training was conducted for 7 days until the T1 time point with CatWalkTM system XT (Noldus, Wageningen, Netherlands). After that, all rats were analyzed for gait and rested for 7 days. At the T2 time point, gait analysis and neurological deficit scores were measured. CBF was measured after anesthesia in both groups, and surgery was performed in the MCAO group. At the T3 time point, MCAO was performed to block blood flow in the MCAO groups, and the CBF of both groups was measured. At the T4 time point (1.5 h after MCAO), the nylon filament suture was removed, cerebral blood flow was reperfused, CBF was measured again, and the neurological deficit score was measured after the rats regained consciousness. At the T5 time point (3 h after reperfusion), the neurological deficit score was measured. At the T6 time point (24 h after reperfusion), gait and scores were measured.


[image: image]

FIGURE 1. CBF of the motor cortex decreased, and obvious infarction appeared. (A) Schematic of experimental design. The experimental rats rested and adapted to the laboratory for 3 days. Gait training was conducted for 7 days starting from T0. Rest occurred for 7 days starting from T1. Middle cerebral artery occlusion was performed at T2. Middle cerebral artery occlusion (MCAO) was successful, and blood flow decreased rapidly at T3. Reperfusion was performed at T4 (1.5 h after middle cerebral artery occlusion). T5 was 3 h after reperfusion. T6 was 24 h after reperfusion, and before anesthesia sacrifice, samples were collected for TTC and molecular biology detection. The time points of gait analysis were T1 (after gait training), T2 (before anesthesia), and T6 (before anesthesia sacrifice). Changes in neurological deficit scores were detected at T2, T4 (after reperfusion recovery), T5 (3 h of reperfusion), and T6 (24 h of reperfusion). CBF was measured at T2, T3 (after middle cerebral artery occlusion), and T4. (B) The sketch of the sampling area. The value of CBF was measured with LDF in the area (3 mm posterior to the bregma and 5 mm lateral to the midline). Ischemia core and penumbra were shown with dotted lines (middle and right). A coronal sections through optic chiasm were stained with TTC, and the penumbra was selected for PCR, WB (right). (C) Value of CBF. The value of CBF was not significantly different between MCAO rats and control rats at T2, and the value of the MCAO group decreased significantly at T3. Immediately after middle cerebral artery occlusion reperfusion (T4), the CBF value was still significantly lower than that of the control group. Data are presented as the mean ± SD (n = 8); *P < 0.05 and **P < 0.01. (D) The percentage of infarct area shown by TTC staining. The infarct area (%) represents the percentage of the infarction area (white area) and the whole slice area of coronal section at the optic chiasm. The results of TTC staining showed that the infarct area (%) in the MCAO group was significantly higher than that in the control group. Data are presented as the mean ± SD (n = 4); ****P < 0.0001. Scale bar, 0.2 cm. (E) Picture showing brain tissue stained with TTC. The above picture shows control brain tissue stained red by TTC, the lower picture shows brain tissue of MCAO rats, and the ischemic area is not dyed red (white area in the picture).




Middle Cerebral Artery Occlusion and Reperfusion

The rat model of middle cerebral artery (MCA) ischemia-reperfusion was established according to the literature (Longa et al., 1989; Noh et al., 2020). Rats underwent anesthesia by 4% isoflurane (RWD Life Science, 217180501) with anesthesia machine (R500 RWD Life Science Co., LTD., Shenzhen, China). The right common carotid artery (CCA) and internal carotid artery (ICA) were exposed via a midline incision in the neck. In the right external carotid artery (ECA), a suture was used to tie an encased knot at the distal end and a slipknot at the proximal end. The right CCA and ICA were temporarily clamped by a microvascular clip and cut approximately 5 mm from the bifurcation of the right ECA. A nylon filament suture (poly-L-lysine-coated nylon monofilament 0.36 mm, Beijing Cinontech Co., Ltd., Beijing, China) was inserted into the incision of the right ECA. The nylon filament suture was advanced from the right ECA through the CCA and up to the ICA for a distance of 18 ± 0.5 mm to block the origin of the MCA. The right MCA was occluded for 90 min. After that, cerebral blood flow was restored by withdrawal of the nylon thread. The temperature of the animals was maintained at 37 ± 0.5°C through a feedback-adjusted heating blanket (Xu et al., 2013).



Detection of Cerebral Blood Flow and Pathological Confirmation After Operation


Cerebral Blood Flow Measurements

CBF was measured in the right hemisphere of the experimental rats. A moor VMS-LDFTM laser Doppler blood flow monitor (Moor Instruments, Devon, United Kingdom) was used to detect the CBF of rats under inhalation anesthesia. Anesthesia was achieved by face mask-delivered isoflurane (2% induction and 1.5% maintenance in 80% N2 and 20% O2). After placing the animal in the stereotaxic frame, the dorsal surface of the skull was exposed through a midline cut. A laser Doppler flowmetry (LDF) probe was situated on the skull, 3 mm posterior to the bregma and 5 mm lateral to the midline (Nishimura et al., 2000). The reperfusion was confirmed by CBF measurement after pulling out the suture from ECA.



TTC Staining

We determined the infarct volume after 24 h of reperfusion with the 2,3,5-triphenyltetrazolium chloride (TTC) method (Longa et al., 1989). Following neurological function evaluation, four rats in each group were deeply anesthetized by an intraperitoneal dose of 400 mg/kg chloral hydrate and then sacrificed. Each brain was removed and sliced into 2 mm sections using a rodent brain matrix slicer (RBM-4000C; ASI Instruments, Warren, MI, United States) (Xu et al., 2013).

Brain tissue sections were immersed in 10 ml of 2% TTC (Beijing Solarbio Life Science and Technology Co., Ltd., Beijing, China) phosphate buffer solution (pH 8.7) and incubated at 37°C in the dark for approximately 30 min. The brain tissue was turned upside down every 10 min. At this time, the normal brain tissue was dyed dark red, and the cerebral infarction area was not stained (gray white). Then, the brain tissue was immersed in 4% paraformaldehyde phosphate buffer (pH 7.4) and fixed at 4°C for 24 h.

A coronal section through optic chiasm was selected. Areas of red and white staining were measured using an image processing program (ImageJ 1.52P, NIH, United States). The percent of infarction is given by the equation: infarct area (%) = infarct area/total area of slice × 100 (Xu et al., 2013).

The coronal sections through optic chiasm were used for cortex penumbra samples (Nash et al., 2018; Sanchez-Bezanilla et al., 2019). The area was shown in Figure 1B. These samples were used for PCR, immunohistochemistry (IHC), and Western blot (WB).



Assessment of Behavioral Change and Assessment of Gait Change


Neurological Deficit Score

The method that we used in this study for behavioral assessment of focal cerebral ischemia in rats has been described previously. All rats were evaluated by the same trained person. The neurological examination results were scored according to the five point system: zero point, no obvious defect; one point, forelimb flexion; two points, forelimb flexion and lateral push resistance reduction; three points, forelimb flexion, lateral push resistance decreased, unilateral rotation occurred in three consecutive tests; four points, three points symptoms plus decreased consciousness (Yang et al., 2000).



Gait Training and Gait Analysis

Before the first recording of the gait, rats were habituated to the laboratory and walkway conditions and trained. Rats were trained for 7 days to cross the runway of the CatWalkTM system, a video-based analysis system, to assess static and dynamic gait parameters. Briefly, the equipment was located in a dark and silent room. Rats were made to travel through a 1.5 m long enclosed glass plate. Animal movement was captured with a camera placed under the walkway and connected to the data acquisition station. A burrow-like house was placed with food at the end of the CatWalkTM runway, which the animals recognized as a safe shelter.

On the last day of training, crossing the CatWalkTM system (three runs per animal) was recorded; these measurements were used as baseline values. Three crossings of the CatWalkTM runway without interruption/hesitation were required for a valid kinematic gait analysis in each animal. Functional studies were performed three times in both groups of rats. A series of behavioral tests was performed before MCAO (T2) and 24 h after reperfusion (T6) (Domin et al., 2016). Gait parameters were labeled right forepaw (RF), right hind paw (RH), left forepaw (LF), and left hind paw (LH). Data were analyzed using CatWalkTM XT 10 software (Fluri et al., 2017).



Gene and Protein Expression of Actin-Binding Proteins in the Motor Cortex


Real-Time PCR and Measurement of mRNA

Real-time PCR was carried out using a real-time PCR system (Light Cycler 480 Instrument II, Roche). The real-time cycler was programmed according to the kit protocol. The threshold cycle number was determined using SDS v1.4 Software, and the reactions were performed in triplicate. Total RNA (5 μg) was reverse transcribed into cDNA by using the RevertAid First Strand cDNA synthesis kit (Invitrogen K1622). For RT-PCR of the cDNA, primer pairs were designed to generate intron-spanning products of 101–150 bp (primer sequences are listed in Table 1). The generation of specific PCR products was confirmed by the melting curve. The expression ratio was calculated according to the formula 2(Rt–Et)/2(Rn–En) as described previously (Livak and Schmittgen, 2001). Transcripts with a twofold increase in expression were considered to be upregulated, and those with a 0.5-fold decrease in expression were considered to be downregulated (Yin et al., 2009).


TABLE 1. Primers for real-time PCR (RT-PCR).

[image: Table 1]


Immunohistochemistry and Measurement of Proteins

The target area was embedded in paraffin for standby. The tissue was continuously sliced at a thickness of 3 μM. The tissue was pasted on the slide and baked at 60°C for 1 h to make the tissue adhere tightly to the slide. The slices were dehydrated with 100, 90, 80, and 70% gradient alcohol for 30 min and then washed with tap water for 30 min. The slices were placed into a container containing citric acid hydrochloric acid buffer solution, placed in a high-pressure cooker at 100°C for 6 min, cooled to room temperature, and then removed. H2O2 solution (3%) was added dropwise, incubated in the dark for 5 min, washed with distilled water for 5 min, and washed with buffer solution three times for 5 min each time. After being sealed with 5% normal goat serum and placed at room temperature for 30 min, the excess liquid was removed. The primary antibody (anti-cofilin-1 primary antibody, ab42824, Abcam Inc., 1:100; anti drebrin primary antibody, ab11068, Abcam Inc., 1:50; Anti-ARPC2 antibody, HPA008352, Sigma Inc., 1:400) was added dropwise, placed overnight in a 4°C incubator, and placed in a 37°C incubator for 30 min. The buffer solution was washed three times for 5 min each time. Fifty microliters of biotin-labeled secondary antibody was added dropwise and incubated at 37°C for 30 min, and the buffer solution was washed three times for 5 min each. Horseradish peroxidase labeled streptase ovalbumin working solution was added and incubated at 37°C for 30 min, and the buffer solution was washed three times for 5 min each. One drop each of reagents A, B, and C was added to the kit in turn to avoid light, mixed well and added to the slices. The color reaction was terminated after 5 min at room temperature. Hematoxylin staining was performed for 3 min. The slices were dehydrated by 70, 80, 90, and 100% gradient alcohol successively, xylene was added to clear the slides for 5–8 min, and then the slices were dried naturally. Neutral gum was added to the slides, and they were covered with a clean coverslip (Han et al., 2009).



Western Blot and Measurement of Cofilin

Western blot analysis was used to investigate the cofilin protein expression in rat brain. After being separated by SDS-PAGE, the proteins were electrotransferred onto a PVDF membrane. Then, the membrane was blocked with 5% bovine serum albumin (BSA) for 1 h and analyzed using specific primary antibodies, including anti-cofilin (ab42824, Abcam) and anti-β-actin (4,967, Cell Signaling Technology). Horseradish peroxidase (HRP)-conjugated secondary antibodies were applied, and the membrane was visualized using an electrogenerated chemiluminescence (ECL) detection system.



Statistical Analysis

The data are presented as the mean ± SD. One-way ANOVA (analysis of variance) followed by the least significant difference (LSD) test or the Games-Howell test (depending on the data and on the hypothesis tested). Post hoc analysis was used to analyze the significance of the neurological deficit score, CBF and gait measurement among the two groups. P < 0.05 was considered indicative of significance.



RESULTS

According to the schematic (Figure 1A), modeling, CBF detection, behavioral evaluation, infarct area analysis, and molecular biology of actin-binding proteins in the penumbra were performed in rats at specific time points (T0–T6).


CBF of the Motor Cortex Decreased, Obvious Infarction Appeared

At T2 before the operation, there was no significant difference in the cerebral blood flow of rats between the groups. At T3, MCAO significantly reduced cerebral blood flow compared to that before ischemia compared with the control group. At T4 (1.5 h after MCAO and the beginning of reperfusion), cerebral blood flow in the MCAO group was still significantly lower than that in the control group. After reperfusion, the cerebral blood flow in the MCAO group recovered significantly, but it was still lower than that before the operation (Figure 1C). TTC staining may reflect the infarct region in the rat brain (Figure 1E). There were significant differences in the infarct area (%) between rats in the control and model groups (P < 0.05, Figure 1D).



Obvious Behavioral Changes During Cerebral Ischemia-Reperfusion

To evaluate the change in behavior comprehensively, we used a relatively rough neurologic defect score and relatively reliable gait analysis. Rat gait prints were collected by using the CatWalkTM System. The process of limbs contacting the runway in a temporal series is shown in Figure 2A (upper figure), and the process of the spatial series is shown in Figure 2A (lower figure).


[image: image]

FIGURE 2. Behavioral changes during cerebral ischemia-reperfusion. (A) Acquisition of rat gait parameters by the CatwalkTM system. The rats walked through the runway from left to right. The figure above shows the process of limbs contacting the runway in a time series. The color area is the time of limb contact, and the blank area is the time of limb swing. The figure below shows the limbs in contact with the runway. Right forepaw (RF): blue; right hind paw (RH): fuchsia; left forepaw (LF): yellow; left hind paw (LH): green. (B) Neurological deficit score significantly increased. Before middle cerebral artery occlusion (T2), the scores of all groups were 0; immediately after reperfusion (T4), the score of the MCAO group was significantly higher than that of the control group. Compared with the control group, the score in the MCAO group was still significantly higher at 3 h (T5) and 24 h (T6) after reperfusion. (C,F) Changes in rat gait during cerebellar ischemia-reperfusion. (C,D) The average speed declined, and the maximum variation in the average speed increased. After gait training (T1) and before the middle cerebral artery occlusion operation (T2), there was no significant differences in gait indexes between the control group and the MCAO group. At 24 h after reperfusion (T6), the average speed of the MCAO group was significantly lower than that of the control group. (E,F) Number of steps increased and the limb swing expanded. The number of steps was significantly greater than that of the control group. LF swing, RF swing, LH swing, and RH swing were significantly higher than those in the control group. Data are presented as the mean ± SD (n = 8); **P < 0.01, ***P < 0.001, and ****P < 0.0001.



Neurological Deficit Score Significantly Increased

The score was determined in conscious rats. At T2, the scores of all rats in the control and MCAO groups were 0. At T4 (beginning reperfusion), the scores of the MCAO group were significantly increased (P < 0.05). At T5 (3 h after reperfusion), the score of MCAO rats recovered. At T6 (24 h after reperfusion), the score of MCAO rats was still increased compared with that of control rats, and there was a significant difference (P < 0.05) (Figure 2B).



Average Speed Decreased, Variation in Average Speed Increased

There was no significant difference in average speed between T1 and T2 and no significant difference in rats between the control group and MCAO group at T1 and T2 (Figure 2C). At T6 (24 h after reperfusion), MCAO decreased the average speed significantly compared with the control group and compared with itself at T1 and T2 (Figure 2C).

The maximum variation is the maximum variation in the average speed of the selected steps in the trial. It can reflect the speed of speed change. After training, control rats are usually able to cross the runway at an approach uniform velocity. Maximum variation is generally 10–20% (Figure 2D). There was no significant difference in maximum variation between T1 and T2. There was no significant difference between groups. At T6 (24 h after reperfusion), the maximum variation increased to some extent, and MCAO led to walking speed that was sometimes fast and sometimes slow. MCAO increased the maximum variation significantly compared with T2. There was a significant difference in maximum variation compared with the control group at T6 (Figure 2D).



Number of Steps Increased, Limb Swing Expanded

The number of steps is the total number of selected steps in the run. Limb swing is the duration in seconds of no contact of the paw with the glass plate. After cerebral ischemia-reperfusion, the balance of rats was poor, walking speed was decreased, number of steps increased, and limb swing expanded. There was no significant difference in the number of steps between T1 and T2, and there was no significant difference in the number of steps between the control group and MCAO group at T1 and T2 (Figure 2E). At T6 (24 h after reperfusion), MCAO increased the number of steps significantly compared with the control group and compared with T1 and T2 (P < 0.05) (Figure 2E).

The left forelimb was the affected side of the MCAO model. There was no significant difference in LF swing between T1 and T2. There was no significant difference between the groups (Figure 2F). At T6 (24 h after reperfusion), MCAO significantly increased LF swing compared with the control group and compared with T1 and T2 (Figure 2F). The results for RF swing (Figure 2F), LH swing (Figure 2F), and RH swing (Figure 2F) were the same as those for RF swing, and MCAO significantly increased swing compared with the control group.



Overexpression of COF1 mRNA and COF1 in the Motor Cortex After Cerebral Ischemia-Reperfusion

Compared with the control group, the mRNA levels of COF1 were significantly increased by MCAO and reperfusion (Figure 3A). In addition, the mRNA expression levels of ARPC2, ARPC3, ARPC4, ARPC5L, and DBNL were upregulated less than twofold compared with the control group. The mRNA expression levels of ENAH, WASL, and BRK1 were downregulated less than 0.5-fold compared with the control group.
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FIGURE 3. Expression of COF1 mRNA and COF1 after cerebral ischemia-reperfusion (A) Relative mRNA expression of actin-binding proteins. The relative mRNA expression of COF1 in the MCAO group was significantly higher than that in the control group. The relative mRNA expression levels of ARPC2, ARPC3, ARPC4, ARPC5L, and DBNL were upregulated less than twofold compared with the control group. The mRNA expression levels of ENAH, WASL, and BRK1 were downregulated less than 0.5-fold compared with the control group. Data are presented as the mean ± SD (n = 3); *indicates that the expression levels were upregulated more than twofold compared with the control group. (B,E) Area of positive expression COF1, ARPC2, and DBNL. Tissue sections obtained from control and MCAO rats. Sections of MCAO and control tissues were fixed, paraffin embedded, and stained with immunohistochemistry. The nuclei were stained blue with hematoxylin. Immunohistochemistry results: positive neurons exhibited brown cytoplasmic staining (white arrow). The positive expression area of COF1 was significantly increased compared with the control group (COF1). Data are presented as the mean ± SD (n = 4); **P < 0.01. Scale bar, 20 μm. (C,D) Expression of COF1 protein concentration. After sample preconditioning, the proteins were separated by SDS-PAGE, the COF1 was electrotransferred onto a PVDF membrane. After primary antibody of COF1 and HRP were applied, the COF1 visualized using an electrogenerated chemiluminescence (ECL). The densitometry of COF1 (normalized by β-actin) increased significantly after MCAO and reperfusion. Data are presented as the mean ± SD (n = 6); *P < 0.05.


To further verify the mRNA results, three mRNAs (COF1, ARPC2, and DBNL) demonstrating closest to twofold change were selected to verify the protein expression in IHC. For cofilin-1, which is closely related to the polymerization and depolymerization of actin and has obvious changes in this study (Figure 3A), we conducted a semiquantitative analysis of the protein expression using IHC (Figures 3B,E).

The results showed that the positive expression area of COF1 increased significantly after cerebral ischemia-reperfusion (P < 0.05) (Figures 3B,E). The positive expression areas of ARPC2 and DBNL did not significantly increase after cerebral ischemia-reperfusion (Figures 3B,E).

To further verify the IHC results, COF1 were selected to verify the protein expression in WB. The results showed that the optical density ratio (normalized by β-actin) of COF1 increased significantly after cerebral ischemia-reperfusion (P < 0.05) (Figures 3C,D).



DISCUSSION

Research on chemical drugs for cerebral ischemia has been conducted for decades. However, currently, the most effective drugs are anticoagulants and thrombolytics, which require a tightly controlled time window (Kepplinger et al., 2016). If used beyond the time window, these drugs will increase the risk of intracranial hemorrhage (Choi and Pile-Spellman, 2018). Vascular recanalization often results in reperfusion injury. Although other drugs (anti-injury or promoting neuron regeneration) have achieved good results in animal experiments, they have not been clinically verified (Kaur et al., 2013; Zhou et al., 2018). These biological processes are closely related to actin-binding proteins (e.g., cofilin-1) through dephosphorylation by specific phosphatases (Alhadidi et al., 2016). Although studies of the molecular mechanisms of the actin cytoskeleton have been ongoing for decades, limited literature has directly investigated cerebral ischemia-reperfusion-induced reorganization of actin-binding proteins in the cortex penumbra, and little is known about the gene expression of actin-binding proteins. Our research explored whether there are changes in actin-binding proteins induced by cerebral ischemic reperfusion.

Some studies have shown that cerebral blood flow decreased nearly 80% after MCAO, and obvious infarct size was found with TTC staining (Beard et al., 2020). Using spontaneously hypertensive rats (Cipolla et al., 2018) and aged hypertensive rats (Chan et al., 2018), similar results were found. Cerebral blood flow and TTC staining results were stronger predictors of brain damage in MCAO rats. Our results are consistent with previous publications.

Sports injuries caused by cerebral ischemia are still the main cause of disability. Upper motor impairment is the most common source of disability after cerebral ischemia (Langhorne et al., 2009; Lin et al., 2019). Similar to human, cerebral ischemia also changed gait in rats. At present, there are limited studies on MCAO using gait analysis. In the past, most studies have focused on static parameters of gait (print area, maximal contact area, and stride length) (Domin et al., 2016; Fan et al., 2018; Hu et al., 2019). Few studies have focused on dynamic parameters (Gao et al., 2020). Our research highlights whole-body dynamic parameters (average speed, maximum variation, number of steps, swing) in gait analysis.

With the help of gait analysis, we can quickly and sensitively evaluate sports injuries and supplement the neurological deficit score. After MCAO on the right brain of the rat, the left limb (especially the left forelimb) has dyskinesia. The left forelimb flexion and extension movement is unfavorable. The movement continuity is poor, and the movement speed is sometimes fast and sometimes slow. Our results partly verified previous study (Parkkinen et al., 2013).

The sports injury (i.e., gait changes) caused by cerebral ischemia is closely related to necrosis of the ischemic area, and the necrotic area will not be repaired (Boned et al., 2017; Baron, 2018). However, the ischemic penumbra belongs to the boundary area. Penumbra may recover after proper treatment or may be aggravated and necrotic (Lo, 2008; Candelario-Jalil and Paul, 2020). Therefore, it is of great value to study the penumbra.

The cytoskeleton has attracted our attention in studying penumbra. It has unique function in forming the major neuron structure. It is essential for protein localization and the transport of molecules between dendrites and axons (Madineni et al., 2016). A large number of studies have confirmed that neural structural reorganization is the basis of functional plasticity (Yamada and Kuba, 2016; Gipson and Olive, 2017). Structural reorganization (e.g., spine) is closely related to skeletal proteins (especially actins). Crosstalk between actin and actin-binding proteins during neural pathology has recently attracted much attention (Carlisle and Kennedy, 2005; Alvarez and Sabatini, 2007; Mar et al., 2014; Tonnesen and Nagerl, 2016; Blanquie and Bradke, 2018). In addition, cerebral ischemia-reperfusion can lead to neural injury. Changes in actin-binding proteins would be shown (Lai et al., 2014; Chamorro et al., 2016; Jayaraj et al., 2019). The function of specific brain regions (such as the motor cortex) would be affected. The study of actin-binding proteins in the penumbra of the motor cortex is helpful to reveal the pathological processes of cerebral ischemia-reperfusion.

Recent studies have emphasized that cofilin-1 is involved in the harmful neuronal processes of ischemic stroke, especially in the penumbra (Won et al., 2018; Shu et al., 2019). Interestingly, cofilin-actin rods were not visible after 1 h, but were widely formed within 4–24 h after reperfusion (Hoffmann et al., 2019).

The cofilin-actin rods form macromolecular aggregates, and affected neurites interrupt the cytoskeleton. The rods also affect organelle transport and lead to loss of dendritic spines (Bamburg et al., 2010). Simple overexpression of cofilin-1 is sufficient to induce actin rod formation and associated neurite degeneration (Minamide et al., 2000). Ischemia also leads to loss of dendrites and spines in neurons, even with survival of the parent cell body (Tanay et al., 2006). Cofilin-actin rod suppression during the acute phase of ischemic stroke might provide neuroprotection with histological results (Kurisu et al., 2019). It has also been reported that cofilin-1 increases in oxygen glucose deprivation model of ischemia with in vitro fetal mouse neurons (Madineni et al., 2016). Our study confirmed that MCAO leads to an increase in COF1 mRNA and COF1 protein in the penumbra of the motor cortex with adult rats. These changes may be partially associated with gait imbalance and may be related to structural reorganization and functional impairment of neurons.

Cofilin-1 is an actin-binding protein normally involved in the dynamic turnover of actin filaments (actin treadmilling) and other cell functions (new functions). Phosphoregulation of cofilin is a downstream target of many transmembrane signaling processes, and it has been linked in rodent models to many different neurodegenerative and neurological disorders (Alhadidi et al., 2017; Shaw and Bamburg, 2017). Phosphorylation by LIM kinase (LIMK) causes the deactivation of cofilin, while dephosphorylation by slingshot protein phosphatase-1L (SSH-1L) or chronophin (CIN). Cofilin with active form promotes the turnover of actin filaments (Shu et al., 2019). Cerebral ischemia-reperfusion induces decline in ATP, shifts the balance of kinase/phosphatase activity toward dephosphocofilin, increases active cofilin, increases ADP-actin, and promotes cofilin oxidation and actin rod formation (Bamburg and Bernstein, 2016). Cerebral ischemia-reperfusion activates SSH-1L and CIN, causing active cofilin-1 to emerge and affecting the functions of cofilin-1 (Kanellos and Frame, 2016).

The regulatory mechanism for cofilin mRNA translation during cerebral ischemia-reperfusion is still not well studied. We first reported that the increase in cofilin-1 was associated with cerebral ischemia-reperfusion in the motor cortex. It is suggested that the increase in cofilin-1 is due to dephosphorylation of p-cofilin-1 and a large number of transcriptional mRNAs. In the nucleus, cofilin-1 is required for RNA polymerase II transcription elongation (Obrdlik and Percipalle, 2011), and the presence of cofilin-1 in the nucleus is consistent with enhanced/faster RNA polymerase II-dependent transcription (Domingues et al., 2020). After cerebral ischemia-reperfusion, a large amount of cofilin-1 accumulates in the cytoplasm, which may enter the nucleus and accelerate the transcription of mRNA (including cofilin-1 mRNA). This may be a potential mechanism for the continuous increase in cofilin-1 and damage to the cytoskeleton.

Although previous studies found that ARP2/3 and DBNL exhibit significant changes after cerebral ischemia, we determined that the mRNA and protein levels of ARP2/3 and DBNL exhibit changes, but they are not significant. It has been suggested that ARP2/3 and DBNL may not be direct or key influencing factors in MCAO- and reperfusion-induced sports injury.

Due to the limitation of such tMCAO in this research, the affected areas include cortex and basic ganglia. Whether the above results are applicable to cortex stroke remains to be further verified.



CONCLUSION

Cerebral ischemia-reperfusion leads to the motor cortex injury with the cofilin-1 increase in the penumbra and is partially related to dyskinesia, suggesting that cofilin-1 plays an important role during cerebral ischemia-reperfusion.
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The Arp2/3 Inhibitory Protein Arpin Is Required for Intestinal Epithelial Barrier Integrity
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The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.

Keywords: actin cytoskeleton, colitis, intestinal barrier, ZO-1, ulcerative colitis, inflammatory bowel diseases, tight junction, mesalazine (5-aminosalicylic acid)


SIGNIFICANCE TO THE FIELD

Intestinal epithelial barrier dysfunction is a hallmark of inflammatory bowel diseases, but the underlying mechanisms remain poorly understood. Interepithelial junctions that are connected to the actin cytoskeleton stabilize cell contacts. While the role of junctional transmembrane and scaffolding proteins for barrier integrity has been extensively studied, the role of actin-binding proteins in this context is still poorly understood. Thus, it is critical to improve our understanding of how actin-binding proteins regulate both TJ and cytoskeleton architecture during inflammatory disorders. Here, we provide in vivo, in vitro, and in situ evidence that the actin-branching nucleator Arp2/3 and its regulatory protein arpin are critical for maintaining proper barrier functions in the colon under basal and inflammatory conditions. Our data suggest that loss of arpin is a new hallmark of acute inflammation in ulcerative colitis and that the Arp2/3 complex may serve as a therapeutic target to treat inflammatory bowel diseases.



INTRODUCTION

The intestinal epithelium is a single layer of cells lining the gut lumen that not only provides a physical barrier against luminal bacteria and antigens but also regulates absorption and diffusion of water, nutrients, and ions. Epithelial cells are joined together by tight junctions (TJ), adherens junctions (AJ), and desmosomes (Turner, 2009). Under inflammatory conditions as occurring for example in ulcerative colitis (UC), the intestinal epithelium gets compromised by junction protein internalization and actin cytoskeletal remodeling (Utech et al., 2010; Luissint et al., 2016; Lechuga and Ivanov, 2017). An important actin regulator responsible for the formation of branched actin filaments is the highly conserved heptameric actin-related protein 2/3 (Arp2/3) complex (Rotty et al., 2013). The subunits Arp2, Arp3, ArpC1, ArpC2, ArpC3, ArpC4, and ArpC5 assemble the Arp2/3 complex. Of note, the presence of one subunit means the presence of the whole functional complex, as subunits are unstable in their uncomplexed form (Mullins et al., 1997; Molinie and Gautreau, 2018). The Arp2/3 complex has a low basal activity and requires interaction with nucleation-promoting factors (NPFs) to become fully activated. A strict regulation of Arp2/3 activity is guaranteed by proteins inhibiting Arp2/3 (PIAs) that antagonize NPF in certain cellular substructures (Molinie and Gautreau, 2018). For example, Wiskott–Aldrich syndrome protein (WASP)-family verprolin-homologous protein (WAVE) activates Arp2/3 at lamellipodia, where it is antagonized by arpin (Dang et al., 2013). At clathrin-coated pits, Arp2/3 activity is triggered by neural Wiskott–Aldrich syndrome protein (N-WASP) and negatively modulated by protein interacting with protein C-kinase α-subunit 1 (PICK1) (Rocca et al., 2008). At endosomes, Arp2/3 is activated by Wiskott–Aldrich syndrome protein and SCAR homolog (WASH) and inhibited by gadkin (γ-1 and kinesin interactor) (Maritzen et al., 2012). The importance of the Arp2/3 complex and its activator WAVE in epithelial barrier formation has been well studied (Verma et al., 2004, 2012; Zhou et al., 2013, 2015). Moreover, in endothelial cells, Arp2/3 and WAVE mediate junction stability through temporal formation of junction-associated intermittent lamellipodia (JAIL) (Abu Taha et al., 2014). During inflammation, Arp2/3-dependent lamellipodia participate in healing endothelial micro-wounds induced by transmigrating leukocytes (Martinelli et al., 2013). In the epithelium, lamellipodia drive the restoration of barrier integrity in vitro and in vivo (Begnaud et al., 2016). Arp2/3 is also involved in epithelial junction regulation in the Drosophila notum, where it contributes to junction protein internalization (Georgiou et al., 2008). Thus, fine-tuning Arp2/3 activity at junctions seems to be critical for proper epithelial barrier functions, but it is currently unknown how this is achieved. A possibility is that PIAs control Arp2/3 activity at epithelial junctions in competition with NPF (Chanez-Paredes et al., 2019). The most recently identified PIA is arpin that competes with the WAVE complex in lamellipodia to regulate random cell migration (Dang et al., 2013), but not chemotaxis (Dang et al., 2017). While the importance of arpin has been shown in different cancer types (Liu et al., 2016; Lomakina et al., 2016; Li T. et al., 2017; Li Y. et al., 2017; Zhang et al., 2019), nothing is known about arpin functions in intestinal epithelium and in epithelial barrier regulation during inflammatory disorders including UC.

We hypothesized that Arp2/3 is locally inhibited by arpin to regulate barrier integrity by controlling actin cytoskeleton and TJ architecture. To test this hypothesis, we employed two different strategies: (1) depleting the endogenous PIA arpin and (2) using the well-established specific pharmacological Arp2/3 inhibitor CK666.



MATERIALS AND METHODS


Cell Culture

The colorectal adenocarcinoma epithelial Caco-2 (clone C2BBE1) cell line was obtained from ATCC (Manassas, VA, United States) and cultured according to their instructions. Confluent Caco-2 monolayers were treated with 50 ng/ml tumor necrosis factor (TNF)α (Peprotech, Mexico) and 10 ng/ml interferon (IFN)γ (Peprotech, Mexico) and incubated for 48 h in a humidified atmosphere with 5% CO2 at 37°C to mimic inflammation.



End-Point PCR and Quantitative RT-PCR

Total RNA was isolated using TRIzol reagent, quantified using a NanoDrop ND-1000 spectrophotometer, and treated with RNase-free DNase I. RNA was reverse-transcribed using oligo-dT primers and SuperScript II reverse transcriptase according to the manufacturer’s instructions. End-point PCR was performed using Platinum®, PCR SuperMix, 0.15 μM forward primers, 0.15 μM reverse primers (Supplementary Table 1), and 100 ng cDNA. PCR conditions were as follows: 95°C for 3 min, followed by 35 cycles of 95°C for 30 s, 55°C for 30 s, 72°C for 30 s, and a final extension at 72°C for 10 min and 4°C ∞. The PCR products were separated by electrophoresis on 2% agarose gels. All reagents were from Thermo Fisher Scientific (Waltham, MA, United States).

qRT-PCR was carried out in a total volume of 10 μl, containing 5.0 μl Power SYBR Green PCR Master Mix 2 × (Applied Biosystems, Foster City, CA, United States), 0.15 μM forward primer, 0.15 μM reverse primer, and 100 ng cDNA using a StepOneTM Real-Time PCR System (Applied Biosystems). Conditions were as follows: activation at 95°C for 10 min, 40 cycles including denaturation phase at 95°C for 15 s, and data acquisition during the annealing/extension step at 60°C for 60 s. Following the last cycle, the melting curve was generated by heating from 60°C to 95°C in increments of 0.6°C/s. Relative expression was quantified using the 2–ΔΔCT method (Rao et al., 2013).

Human 7SL (Galiveti et al., 2010) and mouse Actb were used as housekeeping genes.



Western Blot

Radioimmunoprecipitation assay (RIPA) buffer cell and tissue lysates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), transferred to 0.45-μm-pore nitrocellulose membranes (Bio-Rad, Hercules, CA, United States), blocked with Tris-buffered saline (TBS) containing 0.05% Tween (TBS-T) and 5% skim milk, or 5% bovine serum albumin (BSA) for myosin-II light chain (MLC) and phosphorylated-MLC (p-MLC), for 1 h at room temperature (RT), and incubated overnight in primary antibodies at 4°C with gentle agitation. Membranes were washed with TBS-T three times for 10 min each and incubated with species-specific secondary antibodies conjugated to horseradish peroxidase for 1 h at RT with gentle agitation. After another three washes for 10 min each, bands were visualized using SuperSignal West Pico substrate (Thermo Fisher Scientific) and a ChemiDoc device (Bio-Rad, Hercules, CA, United States). Pixel intensity was quantified using ImageJ software (NIH, Bethesda, MD, United States). Primary and secondary antibodies are listed in Supplementary Table 2. Full blots including the molecular weight markers are shown in Supplementary Figure 1.



Co-immunoprecipitation

10 μl of Protein G-sepharose beads (Sigma-Aldrich) were equilibrated in 500 μl of lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40, and 2 × cOmpleteTM protease cocktail and 2 × PhosSTOPTM) and shaken gently for 4 h at 4°C. Cell extracts (1 mg protein) were pre-cleared with equilibrated beads for 2 h at 4°C. Then, beads were pelleted at 3,500 rpm for 5 min at 4°C, and pre-cleared extracts were incubated overnight at 4°C under gentle rotation with primary antibodies. Unrelated serum was used as a negative control. The next day, 10 μl of equilibrated G-agarose beads blocked with lysis buffer containing 4% BSA were added to the antibody–antigen complex and incubated overnight at 4°C with gentle rotation. The antibody–antigen–beads conjugates were separated by centrifugation at 3,500 rpm for 5 min at 4°C, washed three times with 1 × phosphate-buffered saline (PBS) and eluted with Laemmli buffer. Samples were denatured by boiling for 5 min at 95°C and analyzed by Western blot.



Immunofluorescence Microscopy

Cells on glass coverslips were fixed either in 4% paraformaldehyde (PFA) for 10 min at RT and permeabilized with 0.2% Triton X-100 in PBS for 5 min at RT or in absolute ethanol for 30 min at −20°C. Coverslips were then blocked for 20 min in PBS containing 3% BSA. Primary antibodies were incubated overnight at 4°C. Then, coverslips were washed and incubated with species-specific fluorescently labeled secondary antibodies for 1 h at RT. Coverslips were mounted in Prolong medium containing 4’,6-diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific) and analyzed using a confocal laser microscope (Leica TCS, SPE).



Transmission Electron Microscopy

Cells were processed as previously reported (Muniz-Hernandez et al., 2011). Briefly, cells were grown in Petri dishes to a confluency of about 90% and fixed with 2.5% glutaraldehyde for 1 h. After thorough washings with PBS, cells were carefully scraped off, rinsed with PBS, and postfixed for 1 h in 1% OsO4 at 4°C. Subsequently, cells were dehydrated with increasing concentrations of ethanol, embedded in Spurr’s resin (Electron Microscopy Sciences, Washington, DC, United States), and polymerized at 60°C for 48 h. Ultrathin sections were cut using an Ultracut E ultramicrotome (Reichert-Jung, Wien, Austria), stained with uranyl acetate and lead citrate, and analyzed using a JEOL 1400 electron microscope (JEOL LTD, Japan). Quantification of microvilli and vesicle numbers and TJ length was done in at least six cells of each tested condition from two independent experiments. To this end, frames were drawn at intercellular junctions (5 × 2 μm) and along the entire apical membrane of single cells in order to delimit zones for counting of junction-related vesicles and microvilli, respectively.



Transepithelial Electrical Resistance Measurement

Here, 6 × 105 Caco-2 cells were seeded on 0.4-μm pore size Transwell filters (Corning-Costar, Acton, MA, United States). Transepithelial electrical resistance (TER) was measured using a Milicell-Electrical Resistance System (Milicell-ERS) MERS00001. TER is presented as Ω × cm2 or as relative TER normalized to control cells. In the experiments using CK666 during the formation of monolayers, culture medium containing CK666 or dimethylsulfoxide (DMSO) alone was exchanged every 2 days.



Paracellular Flux Assay

At the end of each TER assay, monolayers were rinsed three times with pre-warmed Hanks’ balanced salt solution (HBSS) supplemented with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), glucose, and Ca2+/Mg2+. Then, 100 μg of fluorescein isothiocyanate (FITC)-dextran (4 kDa, Sigma-Aldrich, St. Louis, MO, United States) were added to the apical side and incubated for 2 h at 37°C. Medium from the bottom chamber was collected, and the amount of diffused dextran was measured using a fluorometer. Emission values were normalized to control cells (set to 100%).



Generation of Arpin-Depleted Cells

A stable arpin-depleted Caco-2 cell line was generated by lentiviral transduction using the trans-lentiviral packaging kit (Thermo Fisher Scientific) and the pLKO.1 plasmid (Addgene, Cambridge, MA, United States) according to the manufacturer’s instructions. The following shRNA sequences were used: shRNA scrambled: 5′-CGGAGAAGTGGAGAAGCATAC-3′ and shRNA arpin: 5′-GGAGAACTGATCGATGTATCT-3′ (Dang et al., 2013). shRNA insertion after cloning was verified by sequencing.



Actin Density Quantification

Actin density was quantified using ImageJ (NIH, Bethesda, Maryland). Briefly, maximum projections of confocal stacks were converted to 8-bit format. Then, five cells from each of four independent experiments were delineated with the “free selection tool.” Area, mean gray value, and integrated density were measured for each cell and for three random background fields. Corrected density was calculated using the following formula: Corrected density = integrated density – (Area ∗ mean gray of background). Resulting data were normalized to the average of shCtrl cells.



Animal Studies

All experiments have been approved by the Institutional Animal Care and Use Committee of CINVESTAV-IPN. Animals were handled according to Mexico’s official norm NOM-062-ZOO-1999 established for the production, care, and use of laboratory animals in agreement with international standards. Adult male C57BL/6 mice (20–25 g) were used in colitis experiments. All animals were given ad libitum access to standard pellet diet and water over the entire experimental period of 7 days. The colitis group received 2.5% dextran sulphate sodium (DSS; molecular mass 40 kDa; Carbosynth, CA, United States) in drinking water. To assess the severity of colitis, the disease activity index (DAI) was scored daily from 0 to 4 based on body weight loss, diarrhea, and intestinal bleeding (Mennigen et al., 2009; Park et al., 2013). For CK666 administration, groups of mice were intraperitoneally (i.p.) injected with 5 mg/kg CK666 (Park et al., 2013; Li et al., 2018) at days 3, 4, 5, and 6 of colitis induction or 10% DMSO in PBS as control. The control groups received normal drinking water and the same daily dose of DMSO or CK666. After 7 days, animals were euthanized, and the colon and ileum were removed, measured, and then used in further experiments.



Histology

Cross sections of colon Swiss rolls (Bialkowska et al., 2016) embedded in paraffin and mounted on glass slides were stained with hematoxylin and eosin according to standard protocols. A general histology score was determined by a pathologist in a blinded fashion, taking into account the degree of inflammation, extent of inflammation, and crypt damage in relation to the percentage of epithelium involved (Mennigen et al., 2009). Also, a more detailed score including loss of goblet cells, cryptitis, hyperemia, lamina propria inflammation, epithelial erosion, mucosal edema, crypt dropout, and architectural distortion was determined as published previously (Shukla et al., 2018).



In vivo Intestinal Epithelial Permeability

Animals were anesthetized by i.p. injection of ketamine/xylazine (100 mg/kg and 13 mg/kg of body weight, respectively) in 0.9% saline solution. After laparotomy, colons were exposed, and a G22-polyethylene tube was inserted into the colon ascendens. The colon was flushed with PBS followed by instillation of 1.5% Evans blue solution. The dye was incubated for 15 min, then mice were euthanized, and colons were removed, rinsed with abundant PBS, and washed with 1 ml of 6 mM N-acetylcysteine in PBS to eliminate excess dye. Colon weight was recorded, the dye was extracted overnight at RT in 2 ml of N, N dimethylformamide and measured spectrophotometrically at 610 nm (Vargas Robles et al., 2017).



Human Tissue Samples

Human tissue samples were obtained from UC patients who underwent surgical resection. The study was approved by the ethics committee of the University of Würzburg (protocol numbers 113/13, 46/11, 42/16) (Meir et al., 2019), and written informed consent was obtained from all patients. Control tissue samples were from surgical colon resections from patients with colon carcinoma, as these resections routinely involve removal of a large part of healthy, uninflamed colon surrounding the tumor. For our experiments, we only used resected tissue far away from the tumor that has no spatial relation with the tumor and can thus be considered healthy (Meir et al., 2019). Control tissue was used only from patients who did not suffer from UC or Crohn’s disease. Patient characteristics are summarized in Table 1. For Western blot, tissue samples were taken immediately after resection and lysed in SDS lysis buffer containing 25 mM HEPES, 2 mM ethylenediaminetetraacetic acid (EDTA), 25 mM sodium fluoride (NaF), and 1% SDS. Another part of the tissue was fixed in 4% PFA, embedded in paraffin, sectioned, and stained as described above.


TABLE 1. Clinical data from control and ulcerative colitis (UC) patients.
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Statistics

Data are presented as mean ± standard deviation (SD) and are representative of at least three independent experiments. Significance between groups was assessed by two-tailed Student’s t-test, two-tailed t-test followed by a Mann–Whitney test, or ANOVA with Bonferroni’s correction or Tukey’s post hoc test, as indicated in the figure legends. Statistical analyses were performed using GraphPad Prism software v5.0. Values of probability p < 0.05 were considered statistically significant. ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001.




RESULTS


Arpin Is Expressed in Epithelium and Associates With Junction Proteins

Arpin is a recently discovered PIA, and little is known regarding its expression profile in organs and tissues. We performed RT-PCR analysis and observed arpin mRNA expression in mouse lung, heart, kidney, liver, spleen, brain, and colon (Figure 1A). To explore the potential role of arpin in colon epithelium, we confirmed arpin expression in monolayers of the well-established human colon epithelial cell line Caco-2 by RT-PCR (Figure 1A). Arpin expression was also observed in monolayers of the epithelial cell line HEK293 (Figure 1A). The integrity and function of the intestinal epithelial barrier (IEB) significantly rely on the stability of epithelial junctions. We analyzed a publicly available dataset of E-cadherin’s interactome in epithelial cells and found arpin as a potential binding partner of E-cadherin (Guo et al., 2014). Thus, we performed immunoprecipitation assays and found that arpin co-precipitated not only with the AJ protein E-cadherin (Figure 1B) but also with the TJ proteins claudin-1 and occludin (Figure 1C), suggesting that arpin is located at junctions and involved in IEB regulation. It remains to be proven whether these interactions with transmembrane proteins are direct or mediated by the scaffold proteins β-catenin and zonula occludens 1 (ZO-1) that are known interaction partners of E-cadherin and claudin-1/occludin, respectively. Tubulin was used as a negative control and absent in all precipitates (Figures 1B,C). In an effort to search for potential functional domains, we performed an in silico analysis of the arpin protein sequence using “The Eukaryotic Linear Motif” and “PhosphoSitePlus” resources (Hornbeck et al., 2012; Kumar et al., 2020). Several putative interaction motifs and three putative phosphorylation residues were found that remain to be experimentally confirmed (Supplementary Figure 2).
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FIGURE 1. Arpin is downregulated under inflammatory conditions. (A) RT-PCR for Arpin and Actb using cDNA derived from the indicated mouse tissues (left) and ARPIN and 7SL as housekeeping gene using cDNA derived from the indicated human cell lines (right); n = 3. (B) Western blot of E-cadherin immunoprecipitates. β-catenin was probed as a positive control of interaction and γ-tubulin as a negative control; n = 3. Input = whole cell lysate; IgG0 = IP using IgG as control, IP = IP using specific antibodies. (C) Western blots of claudin-1 and occludin immunoprecipitates. ZO-1 was probed as a positive control and γ-tubulin as a negative control, n = 3. (D) Quantitative real-time RT-PCR for the Arp2/3 inhibitors ARPIN, PICK1, and AP1AR using cDNA from Caco-2 colon epithelial cells treated or not with tumor necrosis factor (TNF)α/interferon (IFN)γ (n = 3; two-tailed t-test). Data are shown as relative expression normalized to the housekeeping gene 7SL. (E) Western blot for arpin and the Arp2/3 subunit ArpC5 in Caco-2 cells treated or not with TNFα/IFNγ. Guanylate-binding protein-1 (GBP-1) was used as an inflammation positive control. (F) Densitometric analysis of panel (E) (n = 4; two-tailed t-test). (G) Western blot for arpin and ArpC5 in colons from control and dextran sulphate sodium (DSS)-treated mice. (H) Densitometric analysis of panel G (nCtrl = 4, nDSS = 7; two-tailed t-test followed by Mann–Whitney test). ns, non-significant; *p < 0.05; **p < 0.01.




Arpin Is Downregulated During Inflammation Both in vitro and in vivo

The pro-inflammatory cytokines TNFα and IFNγ synergize to induce IEB dysfunction (Wang et al., 2005; Capaldo et al., 2014). In order to unravel the expression of PIA during inflammation, we analyzed the expression of ARPIN, PICK1, and AP1AR (human homolog of gadkin) in control and TNFα/IFNγ-treated Caco-2 cells by qRT-PCR and found that only arpin was significantly downregulated during inflammation (Figure 1D). Western blots and subsequent densitometric analysis confirmed this decrease at the protein level (Figures 1E,F). Importantly, the ArpC5 subunit (representative of Arp2/3) showed no significant changes, and guanylate-binding protein-1 (GBP-1), a marker for IFN responses used here as a positive control for inflammation, was upregulated (Figure 1E). Of note, arpin protein was also significantly downregulated in colons from mice with DSS-induced colitis, whereas ArpC5 levels were again unaltered (Figures 1G,H). Disease parameters proving the severity of colitis in these experiments are shown in Supplementary Figure 3. We also analyzed arpin expression in the ileum (the most proximal part of the small intestine to the colon), in which also inflammation in response to DSS has been described (Rehal et al., 2018). However, we did not observe significant differences in arpin levels in DSS-treated ileun in comparison to controls (Supplementary Figure 4). It remains to be determined whether the reduction in arpin levels is indeed specific to colon inflammation. In future studies, we will investigate arpin functions in other inflammation models.



Arpin Depletion Increases Epithelial Permeability and Actin Filament Formation and Causes Junction Disruption

To analyze the role of arpin in IEB regulation, we generated stable arpin-depleted Caco-2 cells with 96% reduction in arpin protein levels (Figures 2A,B). These cells did not show alterations in total levels of ArpC5 (Figures 2A,B). Interestingly, although monolayer formation was achieved, loss of arpin caused a significant decrease in TER (Figure 2C), along with increased macromolecular permeability for 4 kDa FITC-dextran (Figure 2D). We then tested whether such a decrease in TER was associated with an alteration of junctional proteins. Protein levels of ZO-1, occludin, claudin-1, E-cadherin, and β-catenin showed no changes in arpin-depleted cells when compared to control cells (Figures 2E,F). By contrast, we did observe changes in the distribution pattern of β-catenin, claudin-1, and ZO-1. Control cells showed the expected mostly junctional localization of β-catenin, whereas arpin-depleted Caco-2 cells showed predominantly cytosolic staining of β-catenin (Figure 2G), suggesting that the absence of arpin favors internalization of β-catenin. Given the importance of AJ for intercellular epithelial adhesion, it seems likely that disturbed AJ composition affects TJ architecture. In control cells, claudin-1 was detected at the periphery and apical regions of cells in the monolayer (Figure 2H), whereas in arpin-depleted cells, the claudin-1 signal showed a more diffuse pattern at the cell periphery and partial loss of apical localization, suggesting that claudin-1 gets more internalized without arpin (Figure 2H). On the other hand, the apical localization of ZO-1 was preserved at cell contacts. However, we observed morphological differences in ZO-1 patterns, changing from strictly linear in control cells to wavy in arpin-depleted cells (Figure 2I). Such wavy ZO-1 patterns have previously been reported to be correlated with increased epithelial permeability (Zhou et al., 2013) and are thus in agreement with our permeability data described above. On the other hand, the apical junctional actin belt is critical for epithelial barrier integrity, and it is intuitive to think that arpin as Arp2/3 inhibitor would affect actin dynamics. Indeed, F-actin labeling using phalloidin showed an overall increased actin filament content in arpin-depleted Caco-2 cells (Figure 2J). Quantification of the pixel intensity of the phalloidin signal revealed a statistically significant increase in F-actin content in the absence of arpin (Figure 2K). This result is in agreement with the fact that arpin is an Arp2/3 inhibitor, and its absence would lead to more active Arp2/3 and thus increased formation of Arp2/3-dependent branched actin filaments (Verma et al., 2004; Dang et al., 2013). However, in addition to increased cortical F-actin, we also observed increased fibers crossing the cell body resembling contractile stress fibers that are known to exert pulling forces on junctions and thus contribute to junction destabilization (Bogatcheva and Verin, 2008, 2009; Citalan-Madrid et al., 2017; He et al., 2020). Increased contractility of the perijunctional actomyosin ring leading to reorganization of tight junction and increased epithelial permeability is a consequence of myosin-II light chain kinase (MLCK) and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) activation and myosin-II light chain (MLC) phosphorylation. Indeed, we detected a significant increase in MLC phosphorylation (Figures 2L,M), suggesting that this is the mechanism driving junction destabilization in the absence of arpin. During intestinal inflammation, this mechanism is triggered by pro-inflammatory cytokines including TNFα and IFNγ (Bruewer et al., 2003; Lechuga and Ivanov, 2021). Given that arpin is clearly downregulated by TNFα and IFNγ (Figures 1D–H), arpin can be considered part of the molecular machinery driving inflammation-induced actin remodeling and junction disruption.
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FIGURE 2. Arpin depletion causes hyperpermeability and altered architecture of junctions and the actin cytoskeleton. (A) Western blot for arpin and ArpC5 of lysates from control (shCtrl) and arpin-depleted (shArpin) Caco-2 cells. (B) Densitometric analysis of panel (A) (n = 3; two-tailed t-test). (C) Transepithelial electrical resistance (TER) development in control and arpin-depleted Caco-2 monolayers (n = 6; two-way ANOVA with Bonferroni‘s correction). (D) Paracellular flux using confluent control and arpin-depleted Caco-2 monolayers (n = 3; two-tailed t-test). (E) Western blot for claudin-1, zonula occludens 1 (ZO-1), occludin, E-cadherin, and β-catenin in control and arpin-depleted cells. (F) Densitometric analysis of panel E (n = 3; two-tailed t-test). (G) Immunostaining for β-catenin (green) in control and arpin-depleted Caco-2 monolayers (n = 3). Bar = 20 μm. (H) Immunostaining for claudin-1 in control and arpin-depleted Caco-2 monolayers. xz-planes are shown below for claudin-1 (green) and the nuclei as reference (blue). Images are representative of n = 3. Bar = 20 μm. (I) Immunostaining for ZO-1 (green) in control and arpin-depleted Caco-2 monolayers. xz-planes are shown below with nuclei as reference (blue); n = 3. 3 × digital zoom of junctions is shown on the right. Bar = 20 μm. (J) Location of apical, medial, and basal actin filaments in control and arpin-depleted Caco-2 cells stained with phalloidin; n = 4. Bar = 20 μm. (K) Actin density quantification normalized to the average of shCtrl cells (n = 20 cells per condition randomly selected from four independent experiments, two-tailed t-test). (L) Western blot for myosin-II light chain (MLC) and pMLC in control and arpin-depleted cells. (M) Densitometric analysis of panel (L) (n = 3; two-tailed t-test). **p < 0.01; ***p < 0.01. ns = not significant.




Arpin Depletion Alters Epithelial Morphology

To further support the concept that arpin regulates junction architecture and epithelial morphology, we performed ultrastructural analysis by transmission electron microscopy of control and arpin-depleted cells in the absence and presence of TNFα/IFNγ. Control cells showed normal morphology including homogeneously distributed microvilli along the apical surface (Figure 3A). As expected, control cells had discrete dense TJ with very few electron-dense structures corresponding to endocytic vesicles near them (Figure 3A). When control cells were exposed to TNFα/IFNγ, microvilli were mostly conserved, but several electron-dense vesicles were observed close to TJ likely corresponding to inflammation-induced internalization processes (Figure 3B). Surprisingly, in arpin-depleted cells, microvilli were mostly lost, and TJ appeared as elongated wavy electron-dense structures with several electron-dense vesicles in the TJ vicinity (Figure 3C). Arpin-depleted cells treated with TNFα/IFNγ showed many more electron-dense vesicles of different sizes near the TJ (Figure 3D). Quantification of microvilli, vesicles, and TJ lengths was performed according to the scheme in Figure 3E. The number of microvilli per cell was similar in control cells with and without TNFα/IFNγ. Absence of arpin strongly reduced the numbers of microvilli, and this was not further reduced by TNFα/IFNγ treatment (Figure 3F). Strikingly, the number of electron-dense vesicles close to TJ was significantly increased to the same extent by both arpin depletion or TNFα/IFNγ treatment (Figure 3G). Of note, TNFα/IFNγ-treated arpin-depleted cells showed even a higher number of vesicles surrounding junctions, suggesting that inflammatory stimuli can induce even more internalization in the absence of arpin. Arpin depletion, in contrast to TNFα/IFNγ, also caused significant elongation of TJ (Figure 3H), which is in agreement with the observed wavy ZO-1 pattern (Figure 2H). Taken together, these data show that arpin is a critical regulator of epithelial morphology, including microvilli integrity and TJ architecture. Loss of arpin alone induces an increase in junction-associated vesicles similar to pro-inflammatory stimuli, which is most likely the reason for the observed barrier dysfunction. Thus, we conclude that arpin localizes at junctions to maintain Arp2/3 activity low, thus preventing spontaneous internalization.
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FIGURE 3. Arpin depletion alters the ultrastructure of intestinal epithelial cells. Morphology of resting (A) and tumor necrosis factor (TNF)α/interferon (IFN)γ-treated (B) control cells (shCtrl). Morphology of resting (C) and TNFα/IFNγ-treated (D) arpin-depleted cells (shArpin). In the low-magnification micrographs on the left, overall morphology of entire epithelial cells can be observed (V, vacuoles; bar = 2 μm). Frames indicate areas from which the high-magnification images (on the right) were taken. Arrows indicate tight junctions at the apical-most cell contacts. Red asterisks indicate accumulation of electron-dense endocytic vesicle (right images, bar = 1 μm). (E) Scheme of the method for quantification of the number of microvilli, vesicles, and tight junction (TJ) length. Panels (F–H) correspond to the quantification of number of microvilli, number of vesicles, and TJ length, respectively (n = 6–11; one-way ANOVA with post hoc Tukey test). ***p < 0.001.




Arpin Is Downregulated in Colon Tissue From Patients With Ulcerative Colitis

To provide insights about the relevance of arpin expression in human disease, we analyzed arpin protein levels in the human inflammatory bowel disease UC, in which IEB functions are compromised (Martini et al., 2017). Patient characteristics are presented in Table 1. Western blot analyses of tissue samples from UC patients and patients undergoing colon surgery who did not suffer from inflammatory bowel diseases revealed that arpin was differently expressed in colon tissue samples of UC patients with a tendency toward lower levels compared to controls that did not reach statistical significance due to the high variation (Figures 4A,B). In agreement with our observations in cells and mice, ArpC5 levels were similar in control and UC tissues. While there was no clear correlation of arpin levels with patient characteristics (Table 1), it is interesting to note that arpin levels were significantly lower in those patients who did not take any medication compared to controls and that arpin levels were restored to normal levels in UC patients taking mesalazine in their medication regimen, suggesting that mesalazine can contribute to arpin restoration as a mechanism of alleviating inflammation (Figure 4C). Also, in these groups, ArpC5 levels were not significantly changed.
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FIGURE 4. Arpin is downregulated in inflamed areas of colon tissue from ulcerative colitis (UC) patients. (A) Western blot for arpin and ArpC5 from resection specimens of patients with UC and non-inflamed controls. β-actin was probed as the loading control. (B) Quantification of pixel intensities including all bands (compare Table 1 for single values; nCtrl = 8, nUC = 10; two-tailed t-test followed by Mann–Whitney test; ns, non-significant. We only excluded sample UC 5 as a technical outlier because of the absence of both arpin and ArpC5 and a much weaker β-actin band. (C) Comparison of pixel intensities from bands of control samples, samples from patients receiving no treatment, and patients receiving mesalazine in their medication regimen. **p < 0.01. (D) Representative immunostaining for occludin and arpin from resection specimens of patients with histologically active UC and non-inflamed controls; n = 3. Bar = 20 μm. (E) Arpin mRNA analysis in biopsies from UC patients compared to controls (n: Control = 11, UC = 10; one-way ANOVA with Kruskal–Wallis correction. (F) mRNA analysis of arpin from publicly available datasets (n: non-inflamed mucosa = 5, inflamed mucosa = 8; two-tailed t-test with Welch’s correction). ***p < 0.001. ns = not significant.


Arpin downregulation in tissue areas that showed histological signs of acute inflammation (crypt dysplasia, occludin downregulation) was confirmed by confocal microscopy (Figure 4D). Moreover, clear changes in arpin localization could be observed. In control tissue, arpin was clearly enriched in the cell periphery close to cell contacts along the basolateral border together with a sharp occludin signal. In UC tissue, the arpin signal along the basolateral border was lost and the signal was more diffusely distributed (Figure 4D). Next, we analyzed RNA sequencing (RNAseq) data from control and UC tissue biopsies available in the Gene Expression Omnibus (GEO) database. An overall comparison between control and UC tissues showed a trend toward lower arpin levels in UC tissue that was non-significant (Figure 4E). By contrast, comparing arpin expression in inflamed and non-inflamed areas of UC patients, a significant downregulation of arpin in the inflamed areas was revealed (Figure 4F). Thus, the RNAseq data clearly confirm our protein data that arpin is differently expressed and only reduced if the tissue is acutely inflamed. Together, these data show that loss of arpin could be a novel hallmark of acute inflammation in UC.



CK666 Strengthens the Intestinal Epithelial Barrier and Ameliorates Tumor Necrosis Factor-α/Interferon-γ-Induced Epithelial Dysfunction in vitro

To date, arpin’s functions have been attributed exclusively to its role as an Arp2/3 inhibitor. Given that the depletion of arpin (i.e., decrease in Arp2/3 inhibition) leads to alteration of the IEB, as shown by permeability assays (Figures 2C,D), we tested whether pharmacological Arp2/3 inhibition would also regulate IEB integrity. We analyzed the effect of the Arp2/3-specific small-molecule inhibitor CK666 on IEB functions under basal and inflammatory conditions. Caco-2 epithelial monolayers were treated with CK666 or vehicle (DMSO) in the presence or absence of TNFα/IFNγ. As expected, a significant reduction in TER (Figure 5A) and an increase in paracellular flux of 4 kDa FITC-dextran (Figure 5B) were observed after treatment with TNFα/IFNγ compared to control cells. Interestingly, co-treatment with CK666 significantly ameliorated cytokine-induced permeability (Figures 5A,B). Surprisingly, CK666 alone increased epithelial barrier integrity, as indicated by an increase in TER of control monolayers (Figure 5A), whereas it did not affect paracellular flux under basal conditions (Figure 5B). These results demonstrate for the first time that Arp2/3 inhibition protects established epithelial monolayers and attenuates IEB dysfunction under inflammatory conditions in vitro. We emphasize that this protective effect of CK666 was only observed in well-established cell monolayers because treatment of sparse Caco-2 cells with CK666 significantly delayed formation of monolayers (Figure 5C), confirming published data that Arp2/3 is needed for the formation of monolayers likely because it also regulates proliferation and lamellipodia formation required for cell migration and establishing cell contacts (Henson et al., 2015; Molinie et al., 2019). Next, we asked whether the observed effects on TER development in the absence of arpin and with CK666 treatment are related. To this end, we performed experiments in which we treated arpin-depleted Caco-2 cells with the specific Arp2/3 inhibitor CK666 and monitored TER development. Interestingly, Arp2/3 inhibition with CK666 did not show additional effects on top of the effects of arpin depletion (Figure 5D), suggesting that potential Arp2/3 effects on junction formation are fully reflected by the arpin knockdown. It will be interesting to analyze in more detail the relation of arpin and Arp2/3 in epithelial cells, as it was recently demonstrated for Arp2/3 and formin-like proteins (FMNL2/3) using Arp2/3-depleted cells (Dimchev et al., 2021).
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FIGURE 5. CK666 reinforces the epithelial barrier. (A) Transepithelial electrical resistance (TER) measurements of confluent Caco-2 cells treated or not for 48 h with tumor necrosis factor (TNF)α/interferon (IFN)γ and CK666. The vehicle dimethylsulfoxide (DMSO) was used as control (n = 3; one-way ANOVA). (B) Paracellular flux of confluent Caco-2 cells treated or not for 48 h with TNFα/IFNγ and CK666 was measured 2 h after adding 4 kDa fluorescein isothiocyanate (FITC)-dextran; color code as in panel (A); n = 4; one-way ANOVA. (C) Time-course TER measurements of sparse Caco-2 cells in the presence or absence of CK666 (n = 5; two-way ANOVA). (D) Time-course TER measurements of sparse control and arpin-depleted Caco-2 cells in the presence or absence of CK666 (n = 6; two-way ANOVA). Data are compared with shCtrl DMSO-treated cells (*p vs. shCtrl + CK666, $p vs. shArpin + DMSO, and &p vs. shArpin + CK666). (E) Western blot for claudin-1, zonula occludens 1 (ZO-1), and occludin of Caco-2 monolayers treated or not with TNFα/IFNγ in the presence or absence of CK666. (F) Densitometry analysis of panel (D) (n = 3; one-way ANOVA with Bonferroni’s correction). (G) Confocal microscopy analysis of apical actin, claudin-1, occludin, and ZO-1 in Caco-2 cells treated or not with TNFα/IFNγ and CK666; n = 3. Bar = 10 μm. **p < 0.01; ***p < 0.001.




Tumor Necrosis Factor-α/Interferon-γ-Induced Internalization of Junction Proteins Is Prevented by CK666

While total junction protein levels are usually unchanged in epithelial monolayers challenged with TNFα/IFNγ, they are redistributed from junctions to the cytosol by endocytotic processes, causing barrier disruption and hyperpermeability (Li et al., 2008; Cao et al., 2013). In agreement with this, overall protein levels of the TJ proteins claudin-1, ZO-1, and occludin were not altered after cytokine exposure (Figures 5E,F). Neither CK666 alone nor in combination with TNFα and IFNγ changed these protein levels (Figures 5E,F), indicating that Arp2/3 inhibition does not induce changes in overall junction protein expression. Analysis of the distribution of these proteins by confocal microscopy revealed the expected internalization of claudin-1, ZO-1, and occludin after TNFα/IFNγ exposure. Interestingly, such internalization was ameliorated by co-treatment with CK666 (Figure 5G). In agreement with the TER increase (Figure 5A), CK666 alone led to accumulation of claudin-1 at cell contacts, especially at tricellular junctions (Figure 5G). TNFα/IFNγ-induced actin remodeling, as indicated by reduced apical actin rings, was also attenuated by CK666 (Figure 5G). These data show that inhibition of Arp2/3 strengthens IEB integrity of intestinal epithelial monolayers by maintaining junction and actin cytoskeletal architecture under basal and inflammatory conditions. These Arp2/3 inhibition data also agree with our arpin depletion data (theoretically more active Arp2/3) showing barrier dysfunction due to increased junction protein internalization.



CK666 Protects Against Dextran Sulphate Sodium-Induced Colon Tissue Damage

We assessed whether the protective effect of Arp2/3 inhibition during inflammation in vitro also occurs in vivo. To this end, we administered CK666 in mice with DSS-induced colitis. The DAI consisting of body weight loss, diarrhea, and intestinal bleeding was evaluated daily during an experimental period of 7 days. Either 5 mg/kg of CK666 or DMSO alone (vehicle control) were i.p. injected daily starting on day 3 of DSS treatment when colitis symptoms started to manifest. The dose of 5 mg/kg of CK666 showed beneficial effects in previous studies in vivo (Park et al., 2013; Li et al., 2018). We also tested daily i.p. administration of CK666 at 5 mg/kg and 10 mg/kg from day 0 (Supplementary Figure 5A), without observing superior effects. No alterations in DAI were observed in the control groups that received water and were injected with DMSO or CK666 (Figure 6A). The group treated with DSS and injected with DMSO showed a progressive increase of DAI, reaching a maximum of 10.75 ± 0.53 on day 7. Importantly, colitic mice that were treated with CK666 reached a maximum DAI of only 8.25 ± 1.41 (Figure 6A), with the strongest protective effects being observed on intestinal bleeding followed by weight loss and stool consistency (Supplementary Figures 5B–D). No changes were detected in colon lengths between CK666-treated and control groups (Figure 6B). Histological analyses showed normal mucosal tissue morphology in DMSO- and CK666-treated animals (Figure 6C, micrographs at 20× and 40×). As expected, DSS-treated mice showed typical signs of colitis such as apical erosion, edema formation, crypt shortening, and immune cell recruitment. Importantly, all these colitis signs were reduced in DSS-treated mice that received CK666 injections (Figure 6C). Histological score showed a significant protective effect of CK666 on DSS-induced tissue damage (Figure 6D). Detailed evaluation of histological parameters as previously published (Shukla et al., 2018) revealed a significant protective effect of CK666 on loss of goblet cells, cryptitis, lamina propria inflammation, epithelial erosion, crypt dropout, and architectural distortion, whereas there was only a tendency toward improved hyperemia and mucosal edema (Supplementary Figure 6). Evans blue-based intestinal epithelial permeability assays in vivo showed similar low permeability in control and CK666-treated mice (Figure 6E). DSS treatment induced the expected strong increase in permeability, which was significantly reduced in colitic mice treated with CK666 (Figure 6E). This protective effect could be attributed to better conserved junction and cytoskeletal architecture, as CK666 prevented DSS-induced ZO-1 gaps at TJ and loss of the cortical apical actin ring (Figure 6F).
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FIGURE 6. CK666 ameliorates tissue damage in a dextran sulphate sodium (DSS)-induced colitis mouse model. (A) Disease activity index of mice with DSS-induced colitis and treated with either the vehicle dimethylsulfoxide (DMSO) or 5 mg/kg CK666 intraperitoneally (i.p.) starting on day 3 (n = 8–9 per group; two-way ANOVA with Bonferroni’s correction). (B) Colon lengths after DSS-induced colitis (n = 6 per group; one-way ANOVA with Bonferroni’s correction). (C) Hematoxylin/eosin-stained colon tissue sections in 20 × magnification (left) and 40 × (right). Bars = 50 μm (left), 25 μm (right). Crypt dysplasia and ulceration (*), immune cell infiltration (arrow), and edema formation (e) are highlighted; n = 3 per group. (D) Histological inflammation score of colitic mice (n = 3 per group; two-tailed test). (E) Colon permeability to Evans blue in control and colitic mice treated with either DMSO or CK666 (n = 4 per group; one way-ANOVA with Bonferroni’s correction). (F) Immunostaining of zonula occludens 1 (ZO-1) (red) and actin (green) in colon tissue from control and colitic mice treated with DMSO or CK666; n = 3. Bar = 35 μm. *p < 0.05; **p < 0.01; and ***p < 0.001. ns = not significant.


Together, our data demonstrate that arpin expression and Arp2/3 inhibition protect against IEB dysfunction during inflammation both in vitro and in vivo.




DISCUSSION

Here, we analyzed for the first time the role of the endogenous Arp2/3 inhibitory protein arpin in the regulation of IEB functions. Arpin, PICK1, and gadkin are endogenous PIAs that bind to Arp2/3 through their C-terminal acidic domain, and it has been suggested that they inhibit Arp2/3 in a compartmentalized manner within the cell (Molinie and Gautreau, 2018). Arpin is the most recently identified PIA that colocalizes with Arp2/3 and the Arp2/3 activator WAVE at lamellipodia (Dang et al., 2013). Because arpin is enriched at lamellipodia and these structures are involved in intercellular junction formation, we wondered whether arpin participates in tissue barrier regulation. The importance of both Arp2/3 and WAVE in cell–cell contact formation and permeability regulation in epithelial cells has been demonstrated (Verma et al., 2012; Zhou et al., 2013), but virtually nothing was known about the role of the endogenous negative regulation of Arp2/3 in this context. Here, we show that arpin is indeed ubiquitously expressed in mouse organs and epithelial cells and that arpin associates with the AJ proteins β-catenin and E-cadherin and the TJ proteins ZO-1, occludin, and claudin-1. Further experiments are needed to assess whether such interactions occur directly or through additional proteins. Of note, we now also show for the first time that after challenging colon epithelial cells with pro-inflammatory cytokines, only the mRNA levels of arpin were reduced, while mRNA expression of PICK1 and AP1AR (human gadkin homolog) remained unaltered, thus evidencing a relevant role of arpin during inflammation. Inflammation also caused downregulation of arpin protein in vivo in a DSS-induced colitis mouse model. Downregulation of arpin in this context likely means that less inhibitory protein is available at junctions to balance Arp2/3 activity, thus enabling Arp2/3 hyperactivation and Arp2/3-induced junction protein internalization and IEB disruption (Figure 7). This idea is supported by our findings that arpin-depleted cells had more internalized claudin-1 and β-catenin, lost linearity of ZO-1, had many vesicles close to elongated TJ, and showed increased epithelial permeability. These data agree with findings in ArpC3-deficient primary keratinocytes that also showed wavy ZO-1 patterns and hyperpermeability (Zhou et al., 2013). ZO-1 binds to the TJ proteins occludin and claudins and connects them to the actin cytoskeleton (Itoh et al., 1999; Fanning et al., 2007; Van Itallie et al., 2009, 2017), whereas β-catenin is involved in the connection of E-cadherin to the actin cytoskeleton (Buckley et al., 2014). Thus, it is also possible that arpin contributes to junction–actin anchorage and that its absence reduces junction stability, leading to epithelial barrier dysfunction. This is in line with the observed increased F-actin content and MLC phosphorylation, suggesting increased actomyosin contractility causing the observed junction destabilization. Whether these effects are a causal consequence of these altered actin dynamics or lack of direct arpin interaction with junction proteins or both needs to be unraveled in future studies.
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FIGURE 7. Current working model for arpin functions and Arp2/3 inhibition in intestinal epithelial cells. Under basal conditions, arpin localizes at cell junctions to maintain Arp2/3 activity low and prevent junction protein internalization. During inflammation, arpin is downregulated, allowing for Arp2/3 activation, junction protein internalization, stress fiber formation, and thus barrier dysfunction. On the other hand, CK666 strengthens the epithelial barrier and protects from inflammation-induced barrier dysfunction by preventing Arp2/3-dependent junction protein internalization. Question marks indicate that the exact mechanism of internalization is still unclear.


The observation that arpin is reduced in many patients with UC suggests an important clinical relevance of arpin in the colon. Of note, arpin levels were closest to control levels in UC patients taking mesalazine within their medication regimen, indicating that loss of arpin is related to intestinal inflammation and that restoration of arpin expression by mesalazine may contribute to inflammation resolution. In this respect, it will be interesting to analyze possible functional relations of arpin with resolvins that participate in epithelial repair in UC. For example, resolvin E1 has recently been shown to trigger epithelial migration and proliferation and thus wound healing (Quiros et al., 2020). Arpin also controls proliferation because the Rac1/WAVE/arpin axis modulates G1/S cell cycle progression (Molinie et al., 2019). Arpin fine-tunes speed and persistence of cell migration (Dang et al., 2013) and induces pauses during migration that allow cells to turn (Gorelik and Gautreau, 2015), so that it may play a critical role during intestinal epithelial wound healing. Moreover, it is well known that chronic inflammation can lead to cancer development (Greten and Grivennikov, 2019). In particular, UC increases the risk to develop colorectal cancer (Rabbenou and Ullman, 2020). Arpin downregulation has been associated with the development of different cancer types, including colon cancer (Lomakina et al., 2016; Li T. et al., 2017; Li Y. et al., 2017; Zhang et al., 2018). Thus, a treatment that restores arpin expression, as shown here for mesalazine, is critical not only for UC treatment but also for colon cancer prevention. Our data that arpin is reconstituted in patients treated with mesalazine provide a possible mechanism of mesalazine action that is related to junction and actin functions mediated by arpin.

Very recently, arpin has also been shown to be essential for phagocytosis in macrophages (Jubrail et al., 2020). Thus, arpin seems to be a critical protein in different cell types for different cellular functions. We are only at the beginning of understanding the true physiological relevance of arpin, and certainly, more discoveries regarding arpin functions will emerge. An important question to address in the future is if and how arpin can also act independently of Arp2/3.

In our study, arpin functions correlated well with Arp2/3 inhibition, as arpin depletion (potential Arp2/3 activation) induced IEB dysfunction, whereas Arp2/3 inhibition improved it. Pharmacological inhibition of the Arp2/3 complex has been used as a tool to dissect biological functions of this complex. CK666 is a small molecule that binds to the Arp2/3 complex, stabilizes its inactive conformation, and blocks its activation without promoting disassembly of preformed actin branches (Nolen et al., 2009; Hetrick et al., 2013). Arp2 and ArpC2-depleted fibroblast treated with CK666 did not show additional phenotypic effects, highlighting the specificity of this compound (Wu et al., 2012).

We found that pharmacological blocking of Arp2/3 activity via CK666 during inflammation prevented barrier dysfunction triggered by pro-inflammatory cytokines. Considering that arpin depletion would contribute to Arp2/3 activation, all our data coincide well and point to arpin-mediated Arp2/3 inhibition to prevent junction protein internalization. However, the fact that inhibition of Arp2/3 by CK666 reinforced the epithelial barrier was surprising because other studies demonstrated that inhibition of Arp2/3 had detrimental effects on several functions such as migration, lamellipodia formation, and cytokinesis in vitro (Sun et al., 2011; Ilatovskaya et al., 2013; Henson et al., 2015). Moreover, under basal conditions in Madin-Darby canine kidney (MDCK) epithelial cell monolayers, CK666-mediated Arp2/3 inhibition resulted in increased paracellular flux to 3 kDa FITC-dextran (Van Itallie et al., 2015). On the other hand, in epithelial cells from Drosophila notum, Arp2/3 is required for E-cadherin internalization and regulation of junction stability (Georgiou et al., 2008). More research is needed to resolve these discrepancies, but they could be a result of different cell types, duration of treatment, and different cell confluency. At mature epithelial cell contacts, Arp2/3 activity is low (Sumida and Yamada, 2015) to only regulate the low basal physiological intercellular junction turnover. Arpin expression at epithelial cell contacts may thus be required to maintain this low Arp2/3 activity. In turn, loss of arpin in response to inflammation may then be required to allow for Arp2/3 activation to trigger the well-known inflammation-induced junction protein internalization. This interpretation is also in line with our data that Arp2/3 inhibition prevents junction protein internalization and reinforces the epithelial barrier.

The situation is different in a developing monolayer where there are no or few stable junctions. Here, inhibition of Arp2/3 rather affects proliferation and lamellipodia formation (Henson et al., 2015; Molinie et al., 2019) to delay monolayer formation, as confirmed here. This seems logical considering the fact that Arp2/3-dependent lamellipodia contribute to AJ assembly via clustering and assembly of E-cadherin plaques between neighboring cells (Baum and Georgiou, 2011).

The physiological relevance of our findings was proven in vivo, where CK666 attenuated the DAI, histological damage, and intestinal epithelial hyperpermeability in mice with DSS-induced colitis. Although it is important to consider that other cell types (e.g., immune cells) might be contributing to the observed effect on the intestinal epithelium due to the systemic delivery of CK666, our in vitro data support that indeed Arp2/3 inhibition in the epithelial cells is at least partly responsible for the IEB protection under inflammatory conditions. The extent of contribution of Arp2/3 inhibition in other cell types remains to be determined.

Arp2/3 is critical for proper organ functionality and development. For example, mice with specific deletion of Arp2/3 in the intestinal epithelium and the epidermis presented impaired transcytosis and dehydration (increased permeability), respectively, both resulting in lethality (Zhou et al., 2013, 2015). Thus, Arp2/3 is important in different contexts, but the same as with so many other proteins, its activity has to be controlled strictly for proper cell functions, and arpin might be the endogenous regulator providing this spatiotemporal control of activation levels in the intestinal epithelium.
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During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility.

Keywords: actin cytoskeleton, axon outgrowth, COTL1, growth cone, structured illumination microscopy


INTRODUCTION

During embryonic brain development, neuronal growth cones are identified by the presence of large lamellipodia with sharp filopodia projecting from the growing edge of axons. The structural features are largely derived from the regulation of actin arrays (Welnhofer et al., 1997; Dent et al., 2011; Gomez and Letourneau, 2014), which indicates that actin dynamics can operate the motility of growth cones. Many actin-binding proteins are found in the growth cone (Ishikawa and Kohama, 2007; Nozumi et al., 2009), which suggests that these molecules are involved in axon formation and development.

Actin-depolymerizing factor homology (ADF-H) domain-containing proteins are essential for actin treadmilling and polymerization/depolymerization processes in which actin monomers are removed from the pointed end and added to the barbed end of actin filaments (Lappalainen et al., 1998; Yang et al., 1998; Poukkula et al., 2011). For instance, ADF/cofilin, an extensively characterized F-actin severing protein, more strongly binds to ADP-actin than do ATP- and ADP-Pi actin filaments and accelerates depolymerization by removing actin monomers from the pointed ends of actin filaments (Yang et al., 1998; Bamburg, 1999, Kiuchi et al., 2007). Consequently, the F-actin severing activity of ADF/cofilin allows for a spatially targeted disassembly that can decrease F-actin length and promote actin turnover at the lamellipodia (Bamburg and Bray, 1987; Bamburg, 1999; Schaefer et al., 2008; Flynn et al., 2012). In contrast, drebrin and coactosin bind only to F-actin, and not to actin monomers (Lappalainen et al., 1998; Provost et al., 2001; Esser et al., 2009). Importantly, coactosin prevents cofilin-mediated depolymerization, thereby promoting lamellipodia formation (de Hostos et al., 1993; Röhrig et al., 1995; Provost et al., 2001; Hou et al., 2013; Kim et al., 2014). Despite the increasing number of biochemical and structural studies relating to ADF-H family proteins, their roles in regulating actin dynamics in cellular structures are not yet incompletely understood.

Coactosin is colocalized with actin stress fibers in mammalian cells (Provost et al., 2001; Tojkander et al., 2012) and the migration of cultured neural crest cells (Hou et al., 2009, 2013). Knock-down of coactosin disrupts actin polymerization in actin stress fibers, whereas its overexpression increases the formation of cellular protrusions (Hou et al., 2013). Moreover, coactosin is recruited to protrusions of lamellipodia and filopodia in response to Rac signaling, as evidenced by the fact that a mutant form of coactosin that cannot bind to F-actin does not respond to Rac signaling and does not support cell migration (Hou et al., 2013).

Considering that coactosin is localized to the tips of cellular protrusions (Hou et al., 2013), this ADF-H domain-containing protein may be associated with actin filament arrays at the leading edge of growth cones and regulate their motility. In the present study, we found that coactosin was involved in growth cone through binding to actin filaments both in vitro and in vivo. A superresolution microscopic device, structured illumination microscopy (SIM) revealed that coactosin was localized to a distal part of actin bundles at the leading edge of growth cones. Moreover, coactosin knockdown inhibited axonal growth, concomitant with an increase in the levels of the inactive, phosphorylated form of cofilin. Finally, coactosin knockdown could restore the disoriented axon growth induced by LIMK1 inhibition through optimizing cofilin activity. Taken together, our results demonstrated that coactosin was associated with actin bundles and, through optimizing cofilin activity, promoted axon outgrowth via actin remodeling.



MATERIALS AND METHODS


Chick Embryos

Fertile chicken eggs were obtained from a local supplier (Yamagishi, Japan) and incubated at 38°C in a humid atmosphere until the desired stages (Hamburger and Hamilton, 1951).



Expression Vectors

Hemagglutinin (HA)-tagged coactosin cDNA was cloned into the pMiw expression vector (containing the Rous sarcoma virus enhancer and the beta-actin promoter) (Suemori et al., 1990; Wakamatsu and Weston, 1997; Sugiyama et al., 2000) and the pCAGGS expression vector [containing the cytomegalovirus (CMV) enhancer and the chicken beta-actin promoter] (Niwa et al., 1991). To generate EGFP fusion protein, coactosin (GenBank accession number AB519794) was separately inserted into pEGFP-C1 (Clontech/Takara Bio, Japan). To generate mutant coactosin, lysine75 (actin-binding site) was changed to alanine using a mutagenesis kit from (Stratagene/Agilent Technologies, United States) and inserted into pMiw and phrGFP (Clontech). Dominant–negative forms of RhoA (GenBank accession number M27278) and LIMK1 (GenBank accession number AB073752) were inserted into the pEF-BOS-HA × 3 vector (a kind gift from Dr. Kazumasa Ohashi). For visualizing LacZ or GFP in axons, tau-LacZ or tau-GFP cDNA was cloned into the pMiw expression vector.



Short Hairpin RNA Construction

Short hairpin RNA (ShRNAs) targeting four distinct regions within the coactosin coding sequence were tested (Katahira and Nakamura, 2003; Hou et al., 2011). ShRNA-Coactosin350 (5′-ACAAAGAGCTGGATGAGGACTA-3′) was the most effective and was inserted into the shRNA expression vector pRFPRNAiA (a kind gift from Dr. Stuart Wilson) containing the chick U6 promotor and a miRNA-like hairpin insertion site (TAGTGAAGCCACAGATGTA), which allows for the simultaneous expression of the shRNA and RFP. To co-express the shRNA and GFP, shRNA-Coactosin350 was inserted into pSuper-GFP (Dr. Matsumoto. K., license obtained from Clontech), which contains the H1 promoter and a nine-base hairpin loop sequence (5′-TTCAAGAGA-3′) (Hou et al., 2013). A construct containing scrambled shRNA was used as a control. We confirmed that these shRNAs do not cross-react with chick destrin or cofilin using BLAST search.



In Ovo Electroporation

In ovo electroporation was performed as previously described (Funahashi et al., 1999). Briefly, a solution containing 1 μg/μL plasmid was injected into the lumen of the chick neural tube and the central canal at stages 10–12 and at stage 14, respectively. The electrodes were placed on the vitelline membrane next to the brain vesicles, and 4 × 25 V, 50 ms rectangular pulses were applied by an electroporator (CUY21 edit, BEX). Only the anode side was transfected, with the untransfected side serving as the control.



Primary Culture of Oculomotor Neurons

After washing in nitric acid and sterilizing, glass coverslips were coated with 10 mg/mL poly-L-lysine (Sigma-Aldrich, United States). The ventral mesencephalon was dissected from stage 13–14 chick embryos, quickly washed in Ca2+/Mg2+-free (CMF) Hanks balanced salt solution (HBSS, Gibco/Thermo Fisher Scientific, United States), treated with 0.25% trypsin in CMF HBSS for 30 min at 37°C, and then with DNase for a further 2–3 min. The tissue fragments were then washed in warm CMF HBSS and triturated in CMF HBSS to yield a single-cell suspension. Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)/F-12 supplemented with 2% B27, 10 mM 4-(2-hydroxyethyl)-1piperazine ethane sulfonic acid (HEPES, DojinDo, Japan), and 1–10 ng/mL nerve growth factor (NGF, Invitrogen/Thermo Fisher Scientific, United States) for 24 h.

For live-cell imaging and immunostaining, expression vectors or shRNAs were introduced into cells by electroporation (CUY21 edit, BEX). After electroporation, the cells were replated on a glass coverslip or glass-bottom dish precoated with 0.05% polyethylenimine (PEI).

For the cell death assay, the In Situ Cell Death Detection Kit, TMR red (Roche Applied Science, Switzerland) was employed according to the manufacturer’s protocol. The electroporation of vectors for gain- and loss-of-function analysis did not result in cell death as determined by a TUNEL assay.



Cell Lines

NG108-15 was cultured in DMEM (WAKO, Japan) supplemented with 10% fetal bovine serum (Nozumi et al., 2009). Following electroporation of the expression vectors (CUY21 edit, BEX), the cells were replated, and the medium was replaced with Leibovitz’s L-15 medium (Gibco) to induce the differentiation of NG108-15 cells. Growth cones were induced from 3 h after serum starvation.



Live-Cell SIM Imaging

Structured illumination microscopy images were acquired using an open heating chamber attached to an inverted microscope (Zeiss ELYRA S.1) equipped with a Plan Apochromat oil immersion lens (63×, 1.4 NA) (Nozumi et al., 2017; Igarashi et al., 2018). Image acquisition, SIM processing, and channel alignment were performed using the Zeiss software ZEN 2011 with reference to TetraSpeck fluorescent bead standards (0.1 μm, Invitrogen).

To analyze the rate of growth cone extension, the geometric center of growth cones was defined from the leading edge in the movies (70 frames/700 s), and the distance traveled of growth cones was quantitatively analyzed by tracking the geometric center using MTrackJ, which is an ImageJ plugin (Fiji software) to facilitate tracking. The area of lamellipodia was measured as the region of interest using an enhanced phalloidin staining image, and the area changes were calculated from the movies (70 frames/700 s).



In situ Hybridization and Immunochemistry

Whole-mount and section in situ hybridization were performed as previously described (Hou et al., 2013). Chick Cotl1 subclones (Hou et al., 2009) were linearized and digoxigenin (DIG)-labeled antisense RNA was generated (Stratagene).

The following primary antibodies were used for immunohistochemistry: anti-Coactosin (Sawady Technology, Tokyo, Japan), which was raised in rabbits using the bacterially expressed peptide NH2-DHKELDEDYIKNELK-COOH as previously described (Hou et al., 2009); anti-HuC/D (Molecular Probe); anti-neurofilament (3A10; Developmental Studies Hybridoma Bank [DSHB]), anti-Islet1/2 (2D6; DSHB); anti-cofilin (Sigma); anti-p-cofilin (Ser3) (sc-21867-R; Santa Cruz Biotechnology); anti-HA (3F10; Roche Applied Science); and anti-GFP (Invitrogen). Alexa-conjugated anti-mouse, anti-rat, and anti-rabbit antibodies were used as secondary antibodies (Invitrogen).

After SIM imaging, immunostaining was carried out as previously described (Nozumi et al., 2009). Cells were fixed in 1% glutaraldehyde in PBS (137 mM NaCl, 2.7 mM Na2HPO4, 8.1 mM KCl, and 1.5 mM KH2PO4), permeabilized with 0.1% Triton X-100 in PBS, and reacted with primary and secondary antibodies. Rhodamine-phalloidin was diluted in the secondary antibody solution. For glutaraldehyde fixation, background staining was reduced by treatment with 1% sodium tetrahydroborate.



Imaging Analysis

For analysis of SIM imaging, fluorescent intensities of anti-coactosin, anti-cofilin, anti-p-cofilin Abs, and rhodamine-phalloidin were acquired as the gray value per pixel to a selected staining area of a given growth cone (Nozumi et al., 2017; Igarashi et al., 2018). The value of intensity (per pixel) was normalized as a ratio to the maximum value of intensity, and values greater than 0 a.u. was used as positive signals. The intensity in the region of interest was measured using the Zen software (Zeiss), and the number of fluorescent puncta was counted using the Analyze Particles mode of the ImageJ software (user guide 30.21). The distances from the leading edge were calculated using the outline of a growth cone that was distinguished from the background fluorescence signals. The fluorescence signals in the “between bundles” groups were defined as the appearance of the signal of coactosin or cofilin between non-crossing actin bundles. We also defined the fluorescence signals in the “on bundle” when the signal overlapped with a single actin bundle. All statistical values obtained from experiments are presented as means ± standard error of the mean (SEM).



RESULTS


Coactosin Localized to the Growth Cones of Tectobulbar Axons in the Midbrain

We previously found that coactosin is an ADF-H domain-containing protein that promotes actin remodeling in migrating neural crest cells in the chick embryo (Hou et al., 2013). In that study, we further showed that coactosin mRNA was expressed in the mesencephalon during neural development. Here, we found that coactosin was strongly expressed in a spot-like pattern near the dorsal midline of the mesencephalon from stage 17 (Figures 1A,B). In the dorsal midline, Coactosin-expressing cells were early differentiated among mesencephalic cells and expressed the neural marker HuC/D (Figures 1C–E). These early-differentiated neurons extended neurites, which were recognized as tectobulbar axons. Coactosin was evidently incorporated in the tectobulbar axons. A higher magnification revealed the distribution of coactosin in the lamellipodium of the growth cone (Figures 1D,E).


[image: image]

FIGURE 1. Coactosin localized to growth cones of tectobulbar axons of the midbrain. (A) Schematic representation of axonal tracts in the chick mesencephalon (ms). Tectobulbar neurons project their axons ventrally, turn caudally before reaching the tegmentum, and elongate alongside medial longitudinal fascicule (mlf). (B) Expression of coactosin mRNA in the dorsal midbrain (tectum) in chick embryos at stage 17. Dorsal view (inset) showing the strong spot-like expression around the dorsal midline (arrow, tectobulbar neuron). (C–E) Coactosin (red) and HuC/D (green) proteins within tectobulbar axons in the mid-hindbrain region. Tectobulber axons project ventrally from stage 16 (arrows). Higher magnification showing coactosin and HuC/D distribution in the growth cones (D,E; indicated in C). (F–H) The overexpression of hemagglutinin (HA)-tagged coactosin leads to the premature elongation of tectobulbar axons at the electroporation side (arrow; G,H) when compared with the control side (arrow; F). Double staining with the HA-tag (magenta) and neurofilament (green) antibodies again shows the axonal distribution of HA-tagged coactosin (H). (I) Tectobulbar tracts showing axonal elongation with coactosin overexpression, compared with the control (13 and 16 embryos, ***p = 0.0001, Mann–Whitney U test). The length of the axons was measured from the mid-hindbrain boundary (dot-line). Abbreviations: mt, metencephalon; di, diencephalon; III, oculomotor nucleus; IV, trochlear nucleus; V, trigeminal ganglion. Scale bar, 200 μm in panel (B,F,G); 50 μm in panel (C,D).


To investigate the role of coactosin in axons, we overexpressed HA-tagged coactosin in cells extending tectobulbar axons using in ovo electroporation. Coactosin was overexpressed in only one side of each embryo, with the unelectroporated side serving as a control. At stage 20 of embryonic development, the tectobulbar axons on the control side stayed in the mesencephalon (Figure 1F). In contrast, coactosin-overexpressing neurons prematurely extended tectobulbar axons to the metencephalon and the axons entered the tectobulbar tract by coursing caudally within the metencephalon (Figures 1G–H, arrow). The length of coactosin-overexpressing tracts was significantly elongated from the midbrain-hindbrain boundary into the metencephalon compared with the control side, which was detected by neurofilament immunostaining at the unelectroporated side in the same embryo and/or GFP expression after electroporation (Figure 1I; control, 109.4 ± 11.7 μm vs. coactosin, 211.7 ± 17.7 μm; 13 and 16 embryos, p = 0.002, Mann–Whitney U test). This suggested that coactosin in the growth cone was involved in axonal extension.



Coactosin Knockdown Impaired Axonal Elongation in the Embryonic Oculomotor Nerve

To investigate the function of coactosin in axonal extension, coactosin was knocked down in stage 14 embryos by electroporation of the pRFPRNAiA expression vector, which allowed the simultaneous expression of the shRNA targeting coactosin and RFP. We confirmed that, compared with the control side, the expressions levels of endogenous coactosin mRNA and protein were both markedly reduced in the oculomotor nucleus at the coactosin shRNA-expressing side (Figures 2A,B). After the electroporation of the scrambled shRNA (control) vector, RFP-positive axons were assembled into a long and broad neurofilament-positive nerve bundle (oculomotor nerve) and extended from the ventral mesencephalon toward the eyeball at stage 20 (Figures 2C–E; Chilton and Guthrie, 2004). In contrast, RFP-positive oculomotor axons were shorter with coactosin knockdown, and these axons were paused midway along their migration route, unlike RFP-negative axons (Figures 2F–H) or RFP-positive axons expressing the control shRNA (Figures 2C–E). Oculomotor axons that extended from the nucleus had a significantly shorter length with coactosin shRNA than with control shRNA (Figure 2J; control shRNA, 358.5 ± 37.6 μm vs. coactosin shRNA, 210.4 ± 22.3 μm, eight embryos for each, p = 0.0047, Mann–Whitney U test). Similar results were obtained when shRNA was co-expressed with the tau-LacZ protein in which tau could transport LacZ protein to the axon tips (Figure 2I). These results indicate that coactosin knockdown impaired oculomotor nerve elongation.
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FIGURE 2. Effects of coactosin knockdown on elongation of the oculomotor nerve. (A) Reduction in coactosin mRNA levels following transfection with coactosin short hairpin RNA (shRNA). Ventral view of the midbrain showing the weak expression on the experimental side (exp) compared with that in the control side (cont). (B) Coactosin (green) expression is reduced in the coactosin shRNA-/RFP-expressing oculomotor nucleus (OMN) on the experimental side (asterisks). (C–H) Effects of scrambled (control) shRNA (C–E) or coactosin shRNA (F–H) transfection on the oculomotor nerve. Double staining of RFP and neurofilament (green) shows the control shRNA-transfected axons extending toward an eye (C′–E′: higher magnification of C–E). In contrast, coactosin shRNA transfection disrupted the elongation of the oculomotor nerve (F′–H′: higher magnification of F–H). (I) Effects of control shRNA (left) or coactosin shRNA (right) transfection on the tau-LacZ-expressing oculomotor nerve. The tau-lacZ-labeled axons paused at the midway of their migration route following coactosin knockdown. (J) The length of oculomotor axons from its nucleus shows a shrinkage with coactosin shRNA than control shRNA (eight embryos for each, **p = 0.0047, Mann–Whitney U test). Scale bar: 100 μm.




The Precise Association Between Coactosin and F-Actin Bundles at the Leading Edge of the Growth Cone

The growth cone of a NG108-15 cell is morphologically characterized by large, flattened lamellipodia with sharp filopodia, and thus is an ideal system for observing actin arrays (Nozumi et al., 2017). To visualize the association between coactosin and actin bundles in detail, we obtained time-lapse images of NG108-15 cells using SIM (Movies), which is the most suitable superresolution microscopic device with which analyze the dynamics of cellular components (Hirano et al., 2015; Heintzmann and Huser, 2017; Igarashi et al., 2018; Schermelleh et al., 2019).

We previously reported that coactosin is located at the tip of filopodia of neural crest cells and induces filopodial extension (Hou et al., 2013). As expected, we observed that intrinsic coactosin was localized to filopodia that contained the bundled F-actin, and was partially distributed to lamellipodia between the bundles at the peripheral (P)-domain of growth cones (Figures 3A–C). In contrast, cofilin was discontinuously distributed along the actin bundles and sparsely expressed at the distal part of the growth cone (Figures 3D–F). Quantitative analysis of the fluorescence intensities in the filopodia showed that coactosin, and not cofilin, continuously accumulated near the tips of filopodia (Figure 3G). Coactosin distribution was quantified by measuring coactosin-positive pixels relative to phalloidin-positive pixels at the P-domain of growth cones. Approximately 68% of coactosin-positive puncta were distributed on phalloidin-positive actin bundles within the filopodia while the remaining puncta were located between the bundles (lamellipodia) (Figure 3H). In addition, compared with the sparce distribution of cofilin, coactosin was abundantly detected even within 3 μm from the tip of filopodia (Figure 3I). SIM imaging results revealed the precise association between intrinsic coactosin and actin filaments.
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FIGURE 3. Distribution of coactosin and cofilin in the growth cones of NG108-15 cells. (A–C) SIM images showing the co-localization of endogenous coactosin (green) and F-actin (rhodamine-phalloidin, red) in a growth cone. (D–F) Co-localization of cofilin (green) and F-actin (red) in a growth cone. Note that cofilin accumulation on F-actin is weak at the tip of filopodia (inset). (G) Quantitative distribution of the fluorescence intensities of coactosin (green) and cofilin (red). Measurements were performed 14 μm from a filopodial tip (n = 18 for each, means ± SEM). (H) Quantitative analysis of the association of coactosin or cofilin with F-actin. Approximately 68% of the coactosin-positive pixels were located on actin bundles (“on bundle”), while the rest were located between actin bundles (“btw bundle”). The data are shown as means ± SEM (19–26 bundles, **p < 0.01, Mann–Whitney U-test). (I) Quantification of the percent association with F-actin within 3 μm of the filopodial tip. The data are shown as means ± SEM (21–24 bundles, ***p = 0.0005, Mann–Whitney U-test). Scale bars, 1 μm.




The Effect of Coactosin Association With F-Actin Bundles in the Highly Motile Growth Cone

Next, we observed the localization of introduced coactosin-GFP at the P-domain of growth cones of NG108-15 cells (Figures 4A–C; also see Supplementary Movie 1). Coactosin-GFP was localized at the actin bundles within the filopodia (Figure 4J) and further accumulated on the actin bundles than intrinsic coactosin (for “between bundles”, coactosin-GFP, 16.31 ± 2.41% vs. coactosin, 29.81 ± 4.36%, 23–26 bundles, p = 0.037, Mann–Whitney U test; for “on bundles”, coactosin-GFP, 81.77 ± 3.78% vs. intrinsic coactosin, 67.77 ± 5.14%, 19 bundles for each, p = 0.01, Mann–Whitney U test). Conversely, coactosin association with actin filaments was abolished when mutated coactosin (K75A) that cannot bind to actin was expressed (Provost et al., 2001; Hou et al., 2013) (Figures 4D–F). Moreover, coactosin overexpression did not influence the distribution of intrinsic cofilin, in which cofilin remained on the filopodial actin bundles except for at the tip of filopodia (Figures 4G–I,J).
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FIGURE 4. Association of coactosin with F-actin extends the growth cones of NG108-15 cells. (A–C) Co-localization of GFP-coactosin (green) and F-actin (rhodamine-phalloidin, red) in SIM images of a growth cone. (D–F) Distribution of mutated coactosin (K75A) in a growth cone. Coactosin K75A (green) that cannot bind F-actin did not accumulate on F-actin (red). (G–I) Distribution of cofilin with coactosin overexpression in a growth cone. Note that cofilin accumulation is weak at the tip of filopodia. (J) Quantitative distribution of the fluorescence intensities of GFP-coactosin (green) and cofilin (red) (n = 22 for each, means ± SEM). (K) The area change of lamellipodia shows rapid expansion with coactosin overexpression than control (also see Movies, 13–18 lamellipodium, **p = 0.0025, Mann–Whitney U test). (L) Increased rate of growth cone extension with coactosin overexpression compared with the control (5–6 cells, **p = 0.0031, Mann–Whitney U test). Scale bars, 1 μm.


To elucidate the effect of coactosin on actin polymerization, we examined the rate of lamellipodial expansion at the P-domain of growth cones. Quantitative analysis of the timelapse images showed that the area of lamellipodia was rapidly expanded with coactosin overexpression than with control GFP (Supplementary Movies 2, 3) and Figure 4K; 13 lamellipodia for control GFP and 18 lamellipodia for coactosin-GFP, p = 0.0025, Mann–Whitney U test). Moreover, the rate of growth cone extension was significantly higher with coactosin overexpression than with control GFP (Supplementary Movies 2, 3) and Figure 4L; 5 cells for control GFP and 6 cells for coactosin-GFP, p = 0.0031, Mann–Whitney U test). These results suggest that coactosin enhances actin polymerization at the leading edge of growth cones and consequently promotes the extension of growth cones.



Endogenous Coactosin Colocalized With F-Actin Bundles in Axonal Growth Cones

We then examined the precise localization of endogenous coactosin in the cultured oculomotor neurons using SIM. In the early phase of maturation, the neuronal growth cone, which is relatively smaller than the growth cone of NG108-15 cells, is characterized by the initial formation of a highly organized array of actin bundles. SIM imaging showed that coactosin protein was again localized to prominent F-actin foci in the growth cones of oculomotor neurons (Figures 5A–C). Notably, coactosin protein was preferentially localized to actin bundles within filopodia, as well as to radially-oriented actin filaments within the lamellipodia (between bundles) (Figures 5J,K).
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FIGURE 5. Concentration of coactosin signals needs at F-actin bundles. (A–C) Structured illumination microscopy (SIM) images showing endogenous coactosin and F-actin in the growth cone of an oculomotor neuron. Double staining of coactosin (green) and rhodamine-phalloidin (red) showing coactosin accumulation on F-actin bundles. (D–I) Representative SIM images of control (D–F) and coactosin-knockdown (G–I) neurons with double staining of phosphorylated cofilin (p-cofilin: green) and rhodamine-phalloidin (red). With coactosin knockdown, the actin array and bundle structures were disorganized and showed strong p-cofilin expression around the filopodia. (J) Quantitative distribution of the fluorescence intensities of coactosin (green) and F-actin (rhodamine-phalloidin, red). Measurements were performed 9 μm from a filopodial tip (n = 16 for coactosin and n = 24 for F-actin, means ± SEM). (K) Quantitative analysis of the association of coactosin or cofilin with F-actin. Approximately 75% of the coactosin-positive pixels were located on actin bundles (“on bundle”), while the rest of them were located between actin bundles (“btw bundle”). The data are shown as means ± SEM (25 bundles for each, ***p = 0.0001, Mann–Whitney U-test). (L) Quantitative fluorescence intensities of F-actin (rhodamine-phalloidin, red) and p-cofilin (green) in filopodia. Coactosin knockdown caused reduction of F-actin but accumulation of p-cofilin within filopodia (29 filopodia in 5 cells for each, ***p = 0.0002 for F-actin, p = 0.0005 for p-cofilin, Mann–Whitney U-test). Scale bars, 1 μm.


To analyze whether coactosin influences cofilin activity in the growth cone, we knocked down coactosin expression by electroporation of a shRNA construct. Endogenous phosphorylated cofilin (the inactive form of cofilin) was sparsely and diffusely detected in the growth cones with control (scrambled) shRNA (Figures 5D–F). Conversely, phosphorylated cofilin was abundantly observed around the filopodia with coactosin shRNA (Figures 5G–I). Quantification analysis revealed that phosphorylated cofilin was significantly accumulated in the filopodia with coactosin knockdown compared with control (Figure 5L). Our previous study reported that the actin bundles are disrupted with coactosin knockdown in cultured neural crest cells (Hou et al., 2013). Similar to this observation, we found that coactosin knockdown resulted in the disruption of actin bundles in growth cones, particularly in the filopodia, whereas administration of control shRNA did not affect the array of actin bundles (Figures 5D,G,L). Our results suggest that coactosin is required for arrays of actin filaments in the growth cone via optimizing cofilin activity.



Coactosin Was Involved in Rho GTPase-Mediated Axon Dynamics

Our results indicated that coactosin was involved in preserving cofilin activity and F-actin arrays in the growth cones of the cultured cells. This suggests that coactosin might influence axonal growth through its effects on the molecular machinery of actin filament assembly in the growth cone. To verify this possibility, we examined whether coactosin functions in the signaling pathway that regulates actin dynamics in cultured oculomotor axons. During oculomotor nerve formation, oculomotor neurons start to extend their axons from stage 15 both in vivo and in primary cell culture (Figure 6A; Landmesser and Pilar, 1972; Hou et al., 2009). As expected, shRNA-mediated knockdown of coactosin decreased the length of cultured oculomotor axons when compared with that of control axons (Figures 6A,B,F). Similarly, axon extension was significantly inhibited with the expression of coactosin K75A (Figures 6C,F). These results indicate that actin-coactosin association is essential for axonal growth.


[image: image]

FIGURE 6. Coactosin function during axon growth under Rho signals. (A–D) Effects of coactosin on the elongation of cultured oculomotor neuron axons. Oculomotor neurons were transfected with control shRNA (A), coactosin shRNA (B), coactosin K75A (C), a dominant-negative form of RhoA (RhoA-DN) (D), or coactosin shRNA plus RhoA-DN (E). (F) Quantification of axon length in oculomotor neurons. The data are shown as means ± SEM of three independent experiments (19–30 neurons, *p < 0.05; ***p < 0.0001, one-way ANOVA).


We further assessed whether coactosin is involved in Rho GTPase signaling which has an epistatic effect on the molecular machinery of actin filament assembly (Sit and Manser, 2011). Expressing a dominant-negative form of RhoA (RhoA-DN) is known to activate actin dynamics and result in axons that are highly motile in both directions (extension and retraction) (Van Aelst and Cline, 2004). Consistent with these findings, we found both long-extended and short-retracted axons on oculomotor neurons with a dominant-negative form of RhoA (Figures 6D,F). The co-transfection of a dominant-negative form of RhoA with coactosin shRNA resulted in axons with a length similar to that of the controls (Figures 6E,F). Given that inhibition of RhoA signaling enhances cofilin activity and actin dynamics, these findings suggest that inhibition of RhoA might compensate for the effects of coactosin knockdown on inactivation of cofilin and actin dynamics.



Coactosin Was Linked to LIMK1-Mediated Axon Dynamics via Cofilin

As well as the regulation of actin dynamics, Rho GTPases also perform numerous other functions in both living cells and developing embryos. Thus, we examined the effect of expressing a dominant-negative LIMK1 mutant in the presence or absence of coactosin in chick embryos (Figure 7). LIMK1, which is a major downstream effector of Rho GTPases in the nervous system, directly regulates cofilin activity via its phosphorylation (Maekawa et al., 1999; Kuhn et al., 2000; Endo et al., 2003), and LIMK1 inhibition upregulates cofilin activity and facilitates actin dynamics, as well as Rho GTPase inhibition (Aizawa et al., 2001; Hsieh et al., 2006). In control embryos, the oculomotor nerve exited the brain and elongated toward the eyeball at stage 17 (Figures 7A,B). In contrast, the axonal nerve was widely defasciculated near the exit point, but its length was not affected when the dominant-negative form of LIMK1 (LIMK-DN) was expressed (Figures 7C,D,G,H). The defasciculation effect of LIMK1 inhibition was abolished by coactosin knockdown (Figures 7E–G). Strikingly, LIMK1 inhibition also rescued the effect of coactosin knockdown, whereby the oculomotor nerve was shorter than the control (see Figure 2), as evidenced by the fact that oculomotor nerve elongation with co-transfection (LIMK-DN + coactosin-KD) was similar to that of the control (Figure 7H; LIMK-DN + coactosin-KD vs. coactosin-KD, eight embryos for each, p = 0.0485, one-way ANOVA). This suggests that coactosin knockdown impaired actin dynamics via LIMK1-mediated cofilin phosphorylation (inactivation), and thereby restoring cofilin activity under LIMK1 inhibition was sufficient to recover actin dynamics and axonal growth, even with coactosin knockdown. An actin-coactosin association might preserve actin filaments by optimizing cofilin activity in the growth cone.


[image: image]

FIGURE 7. Coactosin function during axon growth under LIMK signals. (A–F) Effects of coactosin on the oculomotor nerve of chick embryos. Oculomotor nuclei were transfected with GFP (green) (A,B), a dominant-negative form of LIMK1 (LIMK-DN, green) (C,D), or LIMK-DN plus coactosin shRNA (coactosin-KD, green) (E,F). Double staining of neurofilament (magenta) showed an elongation of transfected or untransfected oculomotor nerve. In the control condition, oculomotor axons fasciculate, exit the midbrain, and elongate ventrally. Oculomotor axons defasciculated with LIMK-DN treatment (arrows); however, co-electroporation of LIMK-DN and coactosin shRNA reversed this effect. (G) Width of the oculomotor nerve at the exit point from the midbrain. In the LIMK1 inhibition, the defasciculation expanded the width of the nerve (eight embryos for each, **p = 0.0024, ***p = 0.0001, one-way ANOVA) (H) Length of oculomotor axons from its nucleus. Note that the effect of coactosin knockdown was rescued by LIMK1 inhibition (eight embryos for each, p > 0.05, one-way ANOVA). nIII, oculomotor nucleus, Scale bar: 100 μm.




DISCUSSION

In this study, we found that coactosin was required for axonal outgrowth both in vivo and in vitro. SIM analysis showed that coactosin protein accumulated along actin bundles in the growth cone via its ADF-H motif and localized closer to the leading edge compared with cofilin. Coactosin knockdown disrupted actin filament arrays and, conversely, overexpression promoted the expansion of lamellipodia and extension of growth cones. In addition, we found that the actin-coactosin association was linked to cofilin activity for the motility of growth cones. Taken together, our findings indicate that coactosin plays an essential role in actin polymerization during axonal outgrowth.

Although the precise molecular mechanisms involved in generating motive force in the growth cone remain unclear, many actin-binding proteins, such as all of the ADF-H family members, including coactosin and cofilin, have been proposed as putative functional molecules in the P-domain of growth cones (Nozumi et al., 2009; Igarashi, 2014, 2019). Indeed, coactosin, an ADF-H-containing protein, is strongly expressed in the nervous system, and primarily localized to highly motile structures as well as other ADF-H family members (Hou et al., 2009, 2013). The action of coactosin in the growth cone in this study resembled its previously reported effects on cellular protrusions in N1E-115 cells and neural crest cells (Hou et al., 2013). Exogenously applied coactosin associated with actin bundles in filopodia and promoted axon and neurite growth, while coactosin knockdown suppressed axon and neurite extension by disrupting actin filaments. Considering its functions shown in Dictyostelium discoideum (de Hostos et al., 1993), human myeloid (Provost et al., 2001; Esser et al., 2009), and chick neural crest (Hou et al., 2009, 2013), coactosin is thought to serve as a common factor in actin dynamics (Hellman et al., 2004).

In this study, neither gain nor loss of coactosin functions induced misrouting of the oculomotor nerve; in contrast, LIMK1 inhibition led to defasciculation of this nerve. Many studies have indicated that Rho/LIMK1 inhibition increases growth cone motility by enhancing cofilin activity, thereby disorienting axon growth through repeated retraction and extension events (Aizawa et al., 2001; Hsieh et al., 2006). Coactosin knockdown could cancel the effect of Rho/LIMK1 inhibition on disorienting axons, perhaps by the inactivation of excess cofilin activity. Further investigation of the local function of ADF-H proteins may help to reveal the molecular mechanisms underlying growth cone responses to guidance cues.

Previously, because only confocal microscopy (and not superresolution microscopy) was available, it was difficult to observe the precise and quantified localization of actin-binding proteins, such as coactosin, at the leading edge of growth cones. Around there, F-actin bundles are too densely distributed to recognize using conventional optical microscopy. Application of superresolution microscopy not only allows for the observation of the absolute small-sized samples such as synaptic vesicles (Kittel et al., 2006) but also that of densely distributed ones such as F-actin (Nozumi et al., 2017) and three-dimensionally distributed samples (Zhou et al., 2019).

Here, we visualized the distribution of coactosin in the growth cone using SIM, and its dynamics correlated with that of F-actin (Supplementary Movies 1–3). We first found the precise localization of coactosin, its mutant, cofilin, and p-cofilin, and then quantified relationships among them. Coacosin and cofilin had a distinct localization from each other as members of the ADF-H family, even though they biochemically resemble to each other, which suggests that they play different roles for F-actin regulation in axon growth.

The ADF-H domain of coactosin exhibits 25–28% sequence homology to other ADF-H family members, such as cofilin, Abp1, and drebrin (Hou et al., 2009). Importantly, the actin binding site within the ADF-H domain is conserved between coactosin (lys75 in SKYSK) and cofilin (lys95 in SKKED). Thereby, binding to F-actin, and not to G-actin, is considered to be competitive between coactosin and cofilin. In a 3D solution structure, cofilin binds not only monomeric actin but also F-actin on a one-to-one basis. Cofilin has F-actin severing activity by preferentially binding to ADP-actin near the pointed ends of filaments (Yang et al., 1998; Bamburg, 1999), and also limits filament length by binding the barded end via cooperation with capping protein, which depolymerizes the actin filaments (Pollard and Borisy, 2003). In contrast, coactosin is bound to F-actin rather than to monomeric actin (Provost et al., 2001); namely, it is bound to the barbed ends immediately after incorporation of ATP-actin into the filament of F-actin and directly antagonizes the capping protein (Röhrig et al., 1995; Hou et al., 2013). Given the different binding mode of cofilin and coactosin to F-actin, their distinct localization in growth cones might be due to their preference for actin subunits such as ADP-, ADP-Pi- and ATP-actin in filaments rather than competition.

In this study, coactosin association with actin was observed at the leading edge of growth cones, particularly at the tip of filopodia, and hence, gain and loss of function showed coactosin participation in actin polymerization. The tip of filopodia is recognized as the barbed ends rather than the pointed ends of filaments during growth cone extension, and this is where coactosin, but not cofilin, is enriched. The fact that coactosin knockdown led to increased levels of phosphorylated cofilin, accompanied by a disruption in actin filaments, indicated that coactosin acts to preserve the barbed ends as actin polymerization sites. In the absence of coactosin, cofilin may depolymerize filaments around the barbed ends, perhaps cooperating with the capping protein, which is directly antagonized by coactosin (Hou et al., 2013). Alternatively, the absence of coactosin might result in the overproduction of phosphorylated cofilin in homeostatic regulation; phosphorylated cofilin can stop actin polymerization immediately by trapping ADP-actin monomers (Pollard and Borisy, 2003). Regardless, we found that the increased level of LIMK1-phosphorylated cofilin was a major reason for impairment of actin dynamics and axon elongations in coactosin knockdown. Importantly, coactosin is linked to cofilin activity (and hence actin polymerization) through its association with F-actin, but is not likely to be a direct downstream factor of Rho/LIMK signaling because no phosphorylation site of eukaryotic coactosin has been reported (Hasan et al., 2020).

Given that both overexpression and knockdown of cofilin reduce growth cone motility, optimizing cofilin activity is important for the regulation of actin dynamics at the leading edge (Ghosh, 2004; Vitriol and Zheng, 2012). Rho/LIMK1 signaling and/or other accessory proteins involved in actin network organization may form a feedback control loop to restore actin filament stability and, consequently, also cellular integrity (Pollard et al., 2000; Pollard and Borisy, 2003; Chhabra and Higgs, 2007). The homeostatic activity of coactosin and cofilin, the distinct binding to actin filament, and the diverse roles of ADF-H proteins in actin polymerization/depolymerization together contribute to the optimal assembly and disassembly of actin filaments to generate cellular motility.
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Supplementary Movie 1 | Time-lapse SIM image demonstrating that coactosin is localized to the actin bundles. EGFP-coactosin (green) and mCherry-actin (red) were co-expressed in NG108-15 cells. Coactosin accumulated around the barbed ends of filaments shortly after incorporation of ATP-actin. Corresponding to Figure 4.

Supplementary Movie 2 | Time-lapse SIM image when EGFP and mCherry-actin (white) were co-expressed in NG108-15 cells. A point at the leading edge of the growth cone was tracked using MTrackJ. Corresponding to Figure 4.

Supplementary Movie 3 | Time-lapse SIM image demonstrating a rapid expansion of lamellipodia and an accelerated extension of the growth cone when EGFP-coactosin and mCherry-actin (white) were co-expressed in NG108-15 cells. A point at the leading edge of the growth cone was tracked using MTrackJ. Corresponding to Figure 4.


FOOTNOTES

1https://imagej.nih.gov/ij/docs/guide/146-30.html
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Transgelins are a conserved family of actin-binding proteins involved in cytoskeletal remodeling, cell contractility, and cell shape. In both mammals and Drosophila, three genes encode transgelin proteins. Transgelins exhibit a broad and overlapping expression pattern, which has obscured the precise identification of their role in development. Here, we report the first systematic developmental analysis of all Drosophila transgelin proteins, namely, Mp20, CG5023, and Chd64 in the living organism. Drosophila transgelins display overall higher sequence identity with mammalian TAGLN-3 and TAGLN-2 than with TAGLN. Detailed examination in different developmental stages revealed that Mp20 and CG5023 are predominantly expressed in mesodermal tissues with the onset of myogenesis and accumulate in the cytoplasm of all somatic muscles and heart in the late embryo. Notably, at postembryonic developmental stages, Mp20 and CG5023 are detected in the gut’s circumferential muscles with distinct subcellular localization: Z-lines for Mp20 and sarcomere and nucleus for CG5023. Only CG5023 is strongly detected in the adult fly in the abdominal, leg, and synchronous thoracic muscles. Chd64 protein is primarily expressed in endodermal and ectodermal tissues and has a dual subcellular localization in the cytoplasm and the nucleus. During the larval–pupae transition, Chd64 is expressed in the brain, eye, legs, halteres, and wings. In contrast, in the adult fly, Chd64 is expressed in epithelia, including the alimentary tract and genitalia. Based on the non-overlapping tissue expression, we predict that Mp20 and CG5023 mostly cooperate to modulate muscle function, whereas Chd64 has distinct roles in epithelial, neuronal, and endodermal tissues.
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INTRODUCTION

Actin networks are fundamental cellular scaffolds that provide structural integrity in most cell types and modulate cellular contractility. A large fraction of intracellular actin is in the unpolymerized state, and the precise regulation of formation or dissociation of actin filaments is determined by the diverse function and subcellular localization of actin-binding proteins (Winder and Ayscough, 2005; Dominguez and Holmes, 2011; Pollard, 2016).

Transgelins encompass an actin-binding protein family, well-conserved from yeast to human, implicated in cytoskeleton remodeling (Shapland et al., 1988; Assinder et al., 2009; Liu et al., 2020). Transgelin’s name was coined by its ability to induce actin gelation in vitro (Shapland et al., 1993), while subsequent studies revealed actin filament bundling activity and its role in cellular contractility (Han et al., 2009). Transgelins are characterized by the presence of an N-terminal single calponin homology domain (CH) and a single C-terminal calponin-like repeat (CLR or CLICK repeat) (Assinder et al., 2009). In mammals, transgelin proteins are encoded by three genes that display differential tissue expression: (a) TAGLN (or SM22a) which is abundantly expressed in visceral and vascular smooth muscle cells (Lees-Miller et al., 1987; Lawson et al., 1997; Camoretti-Mercado et al., 1998; Assinder et al., 2009); (b) TAGLN2 (or SM22β) which is expressed in a wide variety of tissues and organs including smooth muscle cells, lung epithelium, gut, ovary, nephrons, pancreas, and T cells of the immune system (Zhang et al., 2002; Na et al., 2015; Meng et al., 2017; Yin et al., 2019). Interestingly, TAGLN2 elevated expression has been associated with progression of colorectal cancer (Zhang et al., 2010; Elsafadi et al., 2020); (c) TAGLN3 (also known as NP22 or NP25) is predominantly expressed in the nervous system (Ren et al., 1994; Depaz and Wilce, 2006).

There is a growing list of functional interplay between TAGLN and TGF-b signaling involved in human skeletal stem cells differentiation (Elsafadi et al., 2016), in polarized migration of mouse myofibroblasts at the leading edge of the ventral body wall (Aldeiri et al., 2017) and in reduced migration of human pulmonary arterial smooth muscle cells during hypoxia (Zhang et al., 2014). Additional studies have linked the elevated levels of TAGLN with the invasiveness of human hepatocellular tumorigenic cells (Lee et al., 2010) and with the inhibition of vascular smooth muscle cell proliferation via suppression of the Raf-1-MEK1/2-extracellular signal-regulated kinase 1/2 signaling pathway (Dong et al., 2010). Several studies indicate the colocalization of all three transgelin members with F-actin in certain cell types, namely, TAGLN in fibroblasts (Shapland et al., 1993), TAGLN2 in T-cell immunological synapse (Na et al., 2015), and TAGLN3 in neuroblastoma cells (Mori et al., 2004). Additional studies have also shown TAGLN presence in the nucleus (Bregant et al., 2009; Lin et al., 2009; Lew et al., 2020). Given the emerging importance of actin’s role inside the nucleus, the mystifying nuclear localization of transgelins could be related with actin-mediated effects on transcriptional regulation or nuclear integrity preservation (Ulferts et al., 2020). Due to the overlapping expression of TAGLN and TAGLN2 in mammals, genetic analysis has provided compelling evidence for the functional requirement of transgelins only in two examples: first, the requirement of TAGLN2 in T-cell immunological synapse for the stabilization of actin cytoskeleton (Na et al., 2015); second, the requirement of TAGLN in atherosclerosis by shifting the balance of smooth muscle cell contractility to proliferation during vascular remodeling (Zhang et al., 2001; Feil et al., 2004). Subsequent studies have shown that deletion of TAGLN was associated with a negative regulation of calcium-independent vascular contractility (Je and Sohn, 2007). Therefore, additional genetic studies are required to unravel specific transgelin requirement in several tissues in which they are expressed. Drosophila poses an excellent genetic model organism to evaluate the functional requirement of transgelins in vivo. In addition, the ability to perform high-resolution live imaging in the unfixed intact fly at various developmental stages allows the precise spatiotemporal characterization of fluorescently tagged proteins expressed from their endogenous regulatory elements (Kanca et al., 2017).

In Drosophila, there are also three genes encoding transgelin proteins: Chd64 (CG14996), mp20 (CG4696), and CG5023. The three fly transgelin proteins share an overall identity with their mammalian counterparts ranging from 44 to 53%. Chd64 displays higher identity for human TAGLN-3 and TAGLN-2 (42 and 41%, respectively), Mp20 for TAGLN-3 and TAGLN (42 and 41%, respectively), while CG5023 appears closer to Calponin 1 (42%), rather to the other three transgelins (36–39% for the transgelins). However, the overall CG5023 protein sequence falls in the transgelin protein family rather than to the calponins, which are not present in the fly genome. Mp20 was the first Drosophila transgelin which was identified to be expressed in a subset of adult muscles (Ayme-Southgate et al., 1989). Currently, the only available data regarding the expression of fly transgelins are derived from large-scale efforts to characterize Drosophila gene expression patterns (Tomancak et al., 2002; Weiszmann et al., 2009; Frise et al., 2010; Graveley et al., 2011; Brown et al., 2014). Of particular importance is the identification of both Mp20 and CG5023 in the list of genes whose expression in the females is modulated by male accessory gland proteins (Baker et al., 2007). To identify each transgelin protein’s functional requirement in Drosophila development, we have initially generated and characterized a variety of molecular and genetic tools and utilized them to thoroughly investigate the differential expression pattern of all three proteins during fly development. Such information will uncover potential functional redundancy between different transgelin members due to their overlapping expression and allow us to design a rationale genetic scheme to analyze specifically their function in distinct developmental stages and tissues in Drosophila.

Here, we report the expression pattern of all three transgelins in the developing fly and identify the subcellular localization of each protein in vivo. We have uncovered that Mp20 and CG5023 are expressed almost exclusively in the somatic and visceral musculature as well as the heart of the fly, while Chd64 is expressed specifically in epithelia and certain neuronal tissues. Based on our work, we predict that a double mutant of Mp20 and CG5023 is likely the optimum experimental genetic approach to identify transgelin-mediated functions in muscle cells and a single Chd64 mutant to assess the involvement of transgelin in non-muscle tissues.



RESULTS


Conservation of Actin-Binding Motifs in Drosophila Transgelins

Transgelins are considered actin-binding domain proteins containing two regions that confer actin-binding and/or actin bundling activity: the CLR region at the C-terminus (Fu et al., 2000) and the recently identified motif located between the CH-domain and the CLR (Na et al., 2015). We compared the protein sequence of all three Drosophila transgelins with their mouse and human homologs and confirmed the strong conservation of both CH-domain and CLR (Supplementary Figure 1A). We then analyzed the actin-binding motif (ABM) identified recently in mouse TAGLN2 (Na et al., 2015). The protein sequence alignment in this specific region indicated major differences between mammalian and fly transgelins (Supplementary Figure 1B). The mouse TAGLN2 motif K153KSKENPR160 retained only the first and the last positively charged residues in CG5023 (K128 and R131) and in Chd64 (K148 and R151). This is consistent with the lower identity in this motif displayed by the mouse TAGLN (50%) and TAGLN3 (75%). Finally, we utilized the online available tool cNLS Mapper1 (Kosugi et al., 2009) to identify a prediction value for bipartite nuclear localization signal. We identified a score above 4 for human and mouse TAGLN and TAGLN2 and all three fly transgelins, indicating that the protein can be localized both in the cytoplasm and nucleus (Supplementary Figure 1A).



Expression Pattern of Drosophila Transgelins in Embryo

To investigate the expression pattern of all three transgelin proteins in Drosophila, we initially examined live embryos containing fluorescent translational reporters: GFP for Chd64 and Mp20 and YFP for CG5023. All engineered genomic fragments include the entire genomic region spanning each gene (see section “Materials and Methods” and Figures 1A,D,G). To further verify whether the engineered genomic regions include all necessary regulatory elements to drive transgelin expression, we additionally examined the available tagged flyfos TransgeneOme (fTRG) containing insertions for Mp20 and CG5023 tagged with sfGFP (Sarov et al., 2016). Both the engineered genomic translational reporters and the fosmid strains uncovered identical expression patterns (Figures 1B,C,E,F). These findings narrowed down the necessary genomic region that is sufficient to drive gene expression at the endogenous level for both genes: 8.8 kb for Mp20 and 14.2 kb for CG5023 (Figures 1A,D). Furthermore, we developed specific polyclonal antibodies for the full-length Chd64 protein. We verified the specificity of these polyclonal antibodies by three experimental approaches. First, we performed immunofluorescence stainings in egg chambers (Figure 1H). Preimmune serum from the same animal resulted in complete absence of immunoreactivity (Figure 1I). Second, we performed Western blot analysis in both embryonic and adult lysates from a strain expressing the engineered transgene Chd64-GFP. As a control, we utilized a genetic strain lacking the genomic region spanning the entire promoter region of Chd64 and resulted in total absence of the detected Chd64 endogenous protein band (Figure 1J). Third, Chd64-GFP expression from the 9.9-kb genomic fragment was compared with endogenous Chd64 detected with Chd64 antiserum in late-stage embryo (Figures 1K–K″). Endogenous Chd64 protein was largely colocalizing with Chd64-GFP in identical tissues (Figures 1K–K″). Thus, we are confident that we have truly uncovered the endogenous developmental expression profile for each Drosophila transgelin protein as we demonstrate below.
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FIGURE 1. Embryo orientation: anterior-left, dorsal-up. Construction and characterization of genetic tools to study transgelin expression in Drosophila. (A,D,G) Engineered genomic fragments including GFP or YFP as translational fused reporters for (A) Mp20, (D) CG5023, and (G) Chd64. (B,C,E,F) Engineered genomic fragments drive expression comparably to the available fosmid library strains both for (B,C) Mp20 and (E,F) CG5023 proteins. (H–K,H′,I′,J,K–K″) Specificity of the Chd64 polyclonal antibodies is verified by (H,I,H′,I′) immunofluorescence of egg chambers and (J) Western blot analysis. (H,I) Egg chambers probed with antibodies against Chd64 and Disks Large (Dlg) to visualize the follicle epithelium. (H,H′) Chd64 was detected in polar cells (pc), follicle cells (fc), and stalk cell (sc), while (I,I′) egg chambers probed with a preimmune serum from the same animal did not show immunoreactivity. (J) Western blotting of protein lysates prepared from embryos (lanes 1 and 3) and adult expressing also the Chd64-GFP transgene (lane 2) probed with antibodies against Chd64 (top) and Parvin (bottom) to verify equal loading. The anti-Chd64 serum detected two close bands (indicated with the asterisks) just below the 25-kDa protein marker in lanes 1 and 2, one additional band corresponding presumably to the Chd64-GFP band at approximately 50 kDa in lane 2, but not in lane 3, because this protein lysate was prepared from embryos homozygous for the deficiency that removes the entire promoter region of the Chd64 locus. (K–K″) Late-stage embryo expressing Chd64-GFP (green) probed with an antibody against Chd64 (magenta). Both detected Chd64 and Chd64-GFP proteins coexpressed and colocalized in epidermal tendon cells (tc) and the tracheal branches (trb). Each image is representative of at least three different imaged embryos or egg chambers of the same genotype and markers used. Embryo orientation: anterior-left. Scale bar in panels (B,C,E,F) is 50 μm.



Mp20 and CG5023 Expression

Both Mp20-GFP and CG5023-YFP were initially detected in myoblasts during germ band retraction (Figures 2A,D). From our live-imaging observations, we could clearly identify the expression of CG5023-sfGFP in all myoblasts—with variable levels of expression—prior to myoblast fusion (Supplementary Figure 2). As embryogenesis proceeds, both Mp20-GFP and CG5023-YFP were detected in the migrating myotubes (Figures 2B,E). At stage 15 of embryogenesis, Mp20-GFP was significantly elevated in abdominal muscles VA2 (fluorescent mean intensity, FMI = 194.8), VA1 (FMI = 106), VA3 (FMI = 102.3), DT1 (FMI = 96.8), and SBM (FMI = 102.8) vs. the other somatic muscles (FMI = 35) (FMI was measured in seven embryos) (Figures 2G,H–J). CG5023-YFP was accumulated at significantly higher levels in the thoracic muscles (DO1/DA1 and in muscles DO2/DA2 within the T2–3 segments (FMI = 163.5) vs. the other somatic muscles (FMI = 42.6) (FMI was measured in eight embryos) (Figures 2K–M). Additionally, at the end of embryogenesis, both Mp20-GFP and CG5023-YFP were accumulated in all somatic muscles (Figures 2C,F) and in the dorsal vessel (Figures 2M,M′). CG5023-YFP was additionally expressed in the alary muscles of the heart (Figures 2M,M′).
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FIGURE 2. Mp20 and CG5023 accumulation in the developing embryo. Confocal micrographs of embryos expressing fluorescently tagged transgelin proteins that reveal their endogenous tissue distribution at various developmental stages. (A–F) Living embryos expressing (A–C) Mp20-GFP and (D–F) CG5023-YFP. (A,D) Mp20 and CG5023 are expressed in all myoblasts at stage 12, (B,E) in all segmented organized myotubes at stage 14, and (C,F) in the entire somatic musculature at stage 17. (G) Schematic representation of the somatic muscle pattern (lateral view) in an abdominal segment of a late-stage embryo. (H–J) Stage 15 fixed embryos expressing Mp20-GFP protein, probed against Chd64 to verify their distinct patterns of expression in mesodermally and ectodermaly derived cells, respectively. Mp20-GFP specifically accumulates in DT1, VA1, VA2, VA3, and SBM abdominal muscles. (I,J) High magnification of embryonic muscles to visualize the muscle distribution and enrichment of Mp20 in muscles DT1, VA1–3, SBM, and DT1 and tracheal branches intense accumulation of Chd64 (red); F-actin was labeled with Alexa 647-phalloidin (blue). (K–M) Late-stage fixed embryos expressing CG5023-YFP, probed with antibodies against Chd64 (red) and muscle myosin (blue). (K,L) In stage 15 embryo, CG5023-YFP was significantly elevated in DO1/DA1 somatic muscles within T1/T2 thoracic segments and clearly apparent in the dorsal vessel. (M,M′) In stage 16 embryo, high levels of CG5023-YFP were detected in DO1/DA1 muscles within thoracic segments and also in the alary heart muscles along with elevated accumulation in the dorsal vessel. Each image is representative of at least five different imaged embryos of the same genotype and markers used. mbl, myoblast; myot, myotube; sm, somatic muscles; T1–T3, thoracic segments 1, 2, 3; ep, epidermis; trb, tracheal branch; DT, dorsal transverse; SBM, segment border; DA, dorsal acute; VA, ventral acute; VO, ventral oblique; dv, dorsal vessel; am, alary muscles. Scale bars: 50 μm in all panels.




Chd64 Expression

We examined living embryos expressing the genomic translational fusion Chd64-GFP construct. The zygotically expressed Chd64-GFP protein appears concentrated in the presumptive region of the gut (Figure 3A) and strongly accumulates in the endodermal cells of the entire gut as embryogenesis proceeds (Figures 3B,C). We then directly compared Mp20-GFP/Chd64 (Figures 2H–J) and CG5023-YFP/Chd64 (Figures 2K–M) expression patterns. We detected Chd64 in epidermal cells only in the vicinity of the segment borders including tendon cells (Figures 3C–G). The latter were verified by the ectopic expression of UAS:GFP under the stripeGal4, which marks specifically tendon cells (Lee et al., 1995; Subramanian et al., 2003; Figures 3D–G). Furthermore, we utilized the trachea-specific markers btlGal4 (Ghabrial et al., 2011) and pointedLacZ and verified that Chd64 was present mainly in the secondary and final tracheal branches but hardly detectable in the dorsal trunk (Figures 3H–K). Lastly, we found that during embryogenesis, Chd64 was expressed at relatively low levels in motor neurons and peripheral neurons (FMI = 60.5) (FMI was measured in six embryos) (Figures 4A–C).
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FIGURE 3. Chd64 protein accumulation in the developing embryo. (A–C) Living embryos expressing Chd64-GFP. (A) In stage 12 embryo, Chd64-GFP is detected in gut primordial cells and epidermally associated structures localized at the segment borders. (B) In stage 14 embryo, Chd64-GFP further accumulates in the alimentary track and epidermally associated structures localized at the segment borders. (C) In late stage 17 embryo, Chd64-GFP protein is heavily enriched in the gut, tracheal branches, and epidermal cells in a similar identified pattern. (D–F) Different embryos viewed dorsolaterally (D) and ventrolaterally (E,F), expressing UAS:GFP under the stripeGal4 which marks the tendon cells and probed with an antibody against Chd64. (D) A higher number of tendon cells located in the dorsal side of the embryo express Chd64 and colocalize with GFP. (E) In the ventral side of the embryo, the number of tendon cells expressing Chd64 is significantly lower. (F) The reduced number of tendon cells expressing Chd64 is clearly illustrated in the high-magnification image. Tracheal branches are evident in all views of the embryo and clearly depicted in the high-magnification image in panel (F). (G) Horizontal single optical section of an embryo, to clearly demonstrate the expression of Chd64 in tendon cells. (H–H′″) Dorsal and (I–I′″) ventral view of stage 15 fixed embryo expressing the trachea-specific marker pointedlacZ (green) and probed against Chd64 (red) and Fasciclin III (blue) proteins. (H′,I′) pointedlacZ expression marks the nuclei of tracheal branches and colocalizing with Chd64 detected protein (H″,I″); FasIII labels the (H′″) epidermis and (I′″) CNS. (J,K) Fixed embryos probed against Chd64 along with ectopic expression of btl-Gal4; UAS-GFP to highlight tracheal branches. (J–J″) In stage 15 embryo, the newly formed secondary branches of trachea marked by GFP expression are characterized by significant accumulation of Chd64 protein. (K–K″) In stage 16 embryo, Chd64-GFP is clearly accumulated in the long extensions of tracheal branches. Each image is representative of at least three different imaged embryos of the same genotype and markers used. end, endoderm; ep, epidermis; g, gut; trb, tracheal branch; tc, tendon cell; Dtr, dorsal trunk; CNS, central nervous system. Embryo orientation: anterior-left, dorsal-up. Scale bars: 50 μm.
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FIGURE 4. Chd64-GFP protein accumulation in certain neuronal cells in the embryo. (A–C,A′–C′,A″–C″) Confocal micrographs of fixed late-stage 16 embryos expressing Chd64-GFP and (A–A″) probed with antibodies against Elav or (B–B″,C–C″) expressing UAS:moesin-RFP in the CNS (under the elavGal4). (C–C″) High magnification of the boxed region in panel (B) demonstrates the low Chd64 expression levels in motor neurons and peripheral neurons during embryogenesis. Each image is representative of at least four different imaged embryos of the same genotype and markers used. trb, tracheal branch; tc, tendon cell; CNS, central nervous system; g, gut; ISN, intersegmental nerve; SN, segmental nerve. Scale bars: 50 μm.




Expression Pattern of Drosophila Transgelins in Larvae and Imaginal Disks

Both Mp20-GFP and CG5023-YFP or CG5023-sfGFP maintain their strong expression in all body wall muscles (FMI = 200.5), dorsal vessel (FMI = 120.3), and alary muscles in the larvae (FMI was measured in seven larvae first–third instar) (Figures 5A–E). Moreover, we detected both Mp20-GFP and CG5023-YFP in the gut’s circumferential muscles (Figures 5F,G,H). Mp20-GFP is expressed in both longitudinal visceral muscles (vmlo) and circular visceral muscles (vmci) (Figures 5G–G″), while CG5023-sfGFP is expressed only in the vmci (Figures 5H–H″). Interestingly, CG5023-sfGFP localized both in a striated cytoplasmic pattern and also in the nucleus (Figure 5H). Chd64-GFP expression in larvae is maintained in secondary tracheal branches (Figures 6A,B), tendon cells (Figures 6C,C′), and circulating hemocytes (Figure 6A). The latter cell population was marked by hmlGal4 (Charroux and Royet, 2009)-driven expression of UAS:moesin-RFP (Figures 6D–D″). Chd64-GFP was heavily accumulated in all endodermal cells of the gut (Figures 6E,E′) localizing both in the cytoplasm and the nucleus and further colocalizing with F-actin in the apical side of the epithelium. We found enriched concentration of Chd64-GFP in the proventriculus (Figures 6F,F′), and the entire gut epithelium was marked by 48YGal4-driven expression of UAS:moesin-RFP (Figures 6F,F′) and the proventricular nerve (Figures 6F,F′). Finally, we identified elevated levels of Chd64-GFP in several neuronal cell types, including peripheral neurons (Figures 6G–G″), glia cells in the ventral nerve cord (vnc) (Figures 6H–H″), and motor neurons innervating somatic muscles (Figures 6I–I″).
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FIGURE 5. Mp20 and CG5023 protein expression in somatic and visceral muscles in larvae. (A,B) Mp20-GFP is strongly expressed in the full range of somatic musculature along with elevated levels in the dorsal vessel. Likewise (C–E) CG5023-YFP expression pattern demonstrates an endogenous distribution identical to Mp20-GFP in all somatic muscles and dorsal vessel. (F–H) CG5023-YFP, (F) Mp20-sfGFP, (G–G″) and CG5023-sfGFP (H–H″) proteins are preferentially expressed in the circumferential muscles of the gut. (G–G″) Mp20-sfGFP in both circular (vmci) and longitudinal (vmlo) visceral muscles. (F,H–H″) CG5023-YFP and CG5023-sfGFP solely in circular visceral muscles labeling them in a striated pattern along with a rather intense accumulation in their nuclei. Each image is representative of at least three different imaged larvae of the same genotype and markers used. sm, somatic muscle; dv, dorsal vessel; am, alary muscles; vm, visceral muscles; pm, pharyngeal muscles; vmlo, longitudinal visceral muscles; vmci, circular visceral muscles; n, nucleus. Scale bars: 100 μm in panels (A–F) and 25 μm in panels (G,H).
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FIGURE 6. Chd64-GFP protein expression in several cell types in larvae. (A,B) First-instar larvae expressing Chd64-GFP. (A) Confocal projection of optical sections derived from the external dorsolateral side of the larvae to show endogenous expression in hemocytes and tracheal branches. (B) Confocal projection of optical sections derived from the interior part of the same larvae to show the intense expression of Chd64-GFP in the gut. (C–I) Chd64-GFP endogenous expression in several cell types including (C,C′) tracheal branches and tendon cells at the tips of the LT muscles labeled with the expression of UAS:moesin-RFP under the mef2Gal4; (D–D″) hemocytes labeled with UAS:Moesin-RFP driven by hmlGal4; (E,E′) enterocytes in the midgut area labeled also with F-actin, which is enriched apically together with Chd64-GFP; (F,F′) endodermally originating cells along the gastrointestinal tract in the proventriculus area, labeled with UAS:Moesin-RFP driven by 48YGal4; (G–G″) motor neurons labeled with UAS:Moesin-RFP driven by elavGal4; (H–H″) glia cells residing in the CNS labeled with UAS:Moesin-RFP driven by repoGal4; and (I–I″) peripheral neurons innervating somatic muscles labeled with FasII. Each image is representative of at least four different imaged larvae of the same genotype and markers used. hc, hemocytes; LT, longitudinal; trb, tracheal branch; tc, tendon cells; pv, proventriculus; pvn, proventricular nerve; CNS, central nervous system; ISN, intersegmental nerve; SN, segmental nerve, gl, glia. Scale bars: 100 μm in all panels, except (D): 5 μm.


To study further the expression of all three transgelins in the transition from larvae to pupae, we examined imaginal disks derived from late third-instar larvae expressing fluorescent translational reporters for each Drosophila transgelin (Figure 7). Both Mp20-sfGFP and CG5023-sfGFP were expressed in relatively low levels in the imaginal disks. Mp20-sfGFP was not detected in the larval brain (Figure 7A), but it was detected in the notum region of the wing disk (Figure 7B). Based on Dachshund expression pattern (Mardon et al., 1994), we detected Mp20-sfGFP in the leg disk primordium of trochanter, femur, and tarsal segments (Figures 7C–C″). CG5023-sfGFP was detected in subsets of neuronal cells in the brain lobes and the vnc as illustrated with the Elav marker (Figures 7D,F,G); in the leg disk primordium of trochanter, femur, and tarsal segments (Figures 7E–E″); in the notum of the wing disk (Figures 7H,H′); and in the distal region of the haltere disk (Figure 7I). On the contrary, Chd64-GFP was heavily expressed in optic lobes and several other neuronal cells at the brain lobes (Figures 7J–L). Chd64-GFP was also found at the nerve terminals of the photoreceptors that end up in the visual lobe of the larval brain (Figures 7M,M′). Furthermore, Chd64-GFP was expressed in the entire epithelium of the wing imaginal disks (Figure 7N), in the leg disk primordium of tibia and tarsal segments (Figures 7O,O′), and a group of scattered cells in the haltere disk (Figure 7P).
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FIGURE 7. GFP-tagged transgelin protein expression in imaginal disks derived from third-instar larvae. Confocal micrographs of dissected disks expressing fluorescently tagged transgelin proteins and probed with various antibodies to label specific disk markers. (A–C) Mp20-sfGFP expression pattern. (A) Mp20-sfGFP is not expressed in the larval brain or ventral nerve cord, which both are labeled with Elav. (B,C) Single optical sections of the imaged disks. (B) Mp20-sfGFP is expressed in the wing disk notum region. (C) Mp20-sfGFP is expressed in specific regions of leg disks. Mp20-sfGFP is partially colocalized with Dachshund (Dac) in the progenitor’s area of trochanter and femur, but is additionally expressed in the distal tarsal segments, where Dac is not expressed. (D–G) CG5023-sfGFP protein expression pattern. (D,D′,F,F′,G–G″′) CG5023-sfGFP is expressed in certain neuronal cells both in the brain lobes and the ventral nerve cord (vnc), which both are labeled with Elav. (F,F′) High-magnification image of the boxed region in panels (D,D′), where it clearly shows the coexpression of CG5023-sfGFP and Elav in the neuronal bodies residing laterally of the ventral midline. CG5023-sfGFP also accumulates in the axons. (G–G″′) The boxed region in panels (F,F′) was cropped and magnified to clearly demonstrate the colocalization of CG5023-sfGFP with the Elav-labeled neuronal cell within the nucleus marked by DAPI. (E–E″) Single optical section of leg disk expressing CG5023-sfGFP in a pattern reminiscent of what was above described for Mp20-sfGFP. CG5023-sfGFP is partially colocalized with Dac in the progenitor’s area of trochanter and femur, but is additionally expressed in the distal tarsal segments, where Dac is not expressed. (H,H′) CG5023-sfGFP is expressed in the notum region of the wing disk and additionally (I) in the haltere notum area. (J–P) Chd-GFP expression pattern. (J–L) Chd64-GFP is strongly expressed in the optic brain lobe pair, which was labeled with Elav. (J,J′) The prominent expression of Chd64-GFP was identified in the vnc area, but it was not colocalized with Elav which ruled out the neuronal identity of these particular cells. (K–K″) High magnification image of the boxed region in panels (J,J′) depicting one almost entire brain lobe. The image is one optical section derived from the middle part of the brain lobe to visualize the intense expression of Chd64-GFP in certain areas of the brain. (L–L″) The boxed region of (K–K″) was cropped and magnified to clearly demonstrate the coexpression of Chd64-GFP with the Elav in certain neuronal cells within the brain lobes. (M,M′) Chd64-GFP expressing eye-antenna disk probed for F-actin. Nuclei are marked by DAPI staining. Chd64 protein preferentially labels both the photoreceptor cells as well as the photoreceptor nerve terminals that end up in the optic lobe within the larval brain. (N) Chd64-GFP is expressed throughout the epithelium of the wing imaginal disk. (O,O′) Chd64-GFP is strongly accumulated in certain leg disk regions, where it is colocalized with Dac only in the progenitor’s area of tibia and first tarsal segments. Chd64-GFP is additionally expressed in the distal parts of the other tarsal segments. (P) Chd64-GFP is expressed in scattered cluster of cells all over the haltere pouch. Each image is representative of at least 10 different imaged larval imaginal disks of the same genotype and markers used. nc, neural cell; bl, brain lobe; vnc, ventral nerve cord; nt, notum; prpts, proximal primordium of tarsal segments; dpts, distal primordium of tarsal segments; tpr, tibia primordium; ptr/f, primordium of trochanter/femur; ol, optic lobe; ph, photoreceptor; ph. pr, photoreceptor projection. Scale bars: 25 μm, except panels (G–G′″): 10 μm.




Expression Pattern of Drosophila Transgelins in the Adult Fly

Both CG5023-YFP and CG5023-sfGFP were expressed in all abdominal muscles of the adult fly (Figures 8A,D). In the thorax, CG5023-YFP and CG5023-sfGFP were expressed only in a subset of muscles. Based on topology, we concluded that they were likely direct flight muscles (Figure 8A′). Moreover, CG5023-sfGFP was identified in the coxa, trochanter, femur, and tibia leg muscles (Figures 8D,H,M); in the pharyngeal muscles (Figure 8A″); and in the labial pulp (Figure 8A′″). In contrast, Mp20-sfGFP was not detected in the adult body muscles, including the thorax, abdomen, and leg. To verify this conclusion, we examined the fluorescence intensity of adult flies of a strain without endogenous expression of GFP and found low levels of autofluorescence comparable to the fluorescence intensity obtained in the Mp20-sfGFP flies (Figures 8B,C,F,G,K,L). The detection of Chd64-GFP in the whole adult fly was not really informative by confocal microscopy, but we certainly detected high levels of fluorescence intensity presumably derived from internal organs (Figures 8E,I,N). Consistent with a previous study (Ayme-Southgate et al., 1989), Mp20-GFP was also identified both in longitudinal (vmlo) and circumferential (vmci) visceral muscles of the entire adult gut (Figures 9A,A′). CG5023-YFP was expressed only in the vmci (Figures 9B,B′). The comparison of the subcellular localization for each transgelin protein in the gut circumferential muscles revealed a clear difference: Mp20-sfGFP was colocalized with F-actin only in the Z-lines of the visceral muscles, while CG5023-YFP was colocalized with F-actin along the entire sarcomere unit (Figures 9A,B), like in the larval stage (Figures 5G,H). CG5023-YFP was also detected within the muscle nuclei (Figures 9B,B′). The underlining enterocytes of the gut accommodated high levels of Chd64-GFP not only in the cytoplasm but also in the nucleus (Figures 9C,C′).
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FIGURE 8. Transgelin protein expression in Drosophila adults. (A–N) Confocal micrographs of isolated adult tissues expressing fluorescently tagged transgelin proteins that reveal their endogenous pattern of distribution. (A–A′″) Adult fly expressing CG5023-YFP in panel (A) all the abdominal muscles, (A′) in a subset of thoracic muscles (asterisks), and (A″,A′″) both the pharyngeal and labial pulp muscles in the head. (B–E) Confocal micrographs of living adult flies imaged under identical settings to demonstrate, (B) tissue autofluorescence, (C) absence of Mp20-GFP in adult tissues, (D) expression of CG5023-sfGFP in abdominal muscles, and (E) Chd-GFP expression in various internal organs. (F–I,K–N) Confocal micrographs of isolated adult (F–I) T2 and (K–N) T3 legs. CG5023-sfGFP displays robust fluorescence signal in specific indicated parts of the adult legs. The strain used in panels (B,F,K) was w,f and did not express a GFP-tagged gene. Each image is representative of at least six different imaged adult flies and isolated adult legs of the same genotype. r.tg, retractors of tergites; c, compressors of abdomen; ph.m, pharyngeal muscles; lab p, labial pulp. Scale bars: 500 μm.
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FIGURE 9. Transgelins expression in adult gut and genitalia. (A,A′,B,B′,C,C′) Tangential confocal sections of adult midgut regions expressing Mp20-sfGFP, CG5023-YFP, and Chd64-GFP. (A,A′) Mp20-sfGFP expression is observed in the Z-lines of both visceral circular and longitudinal muscle layers (vmci and vmlo respectively), whereas (B,B′) CG5023-YFP accumulates solely in the vmci showing nuclear localization along with colocalization to filamentous actin. (C,C′) Chd-GFP intestinal subcellular localization appears prominent in both the nucleus and cytoplasm of enterocytes. (D–F) Mp20-GFP, CG5023-YFP, and Chd64-GFP expression pattern in egg chambers of adult female genitalia. (D) Mp20-GFP and (E) CG5023-YFP are both expressed in muscle sheath surrounding the egg chambers, whereas (F) Chd64-GFP localizes in polar and follicle cells. (G–I,G′–I′) High magnification egg chambers expressing (G,G′) Mp20-GFP and (H,H′) CG5023-YFP both showing considerable nuclear localization and circular visceral muscle accumulation, while (I,I′) Chd64-GFP accumulation is specific to polar and follicle cells. (J–L) Mp20-sfGFP, CG5023-YFP, and Chd64-GFP expression pattern in multiple regions of adult male genitalia. (M–R) High magnification of male genitalia compartments expressing (M,N,M′,N′) Mp20-sfGFP and (O,O′,P) CG5023-YFP both apparent in (M,M′) the ejaculatory duct muscle sheath, (N,N′) the accessory gland muscle sheath, (O,O′) the smooth muscles surrounding testes and (P) the ejaculatory bulb muscle fibers. (Q,R and Q′-R′) Chd64-GFP expression in distinct cell types of male genitalia, particularly in (Q,Q′) the testis, as well as in (R,R′) the binucleated accessory gland epithelium. (R,R′) Chd64-GFP subcellular localization appears both nuclear (R′) and cytoplasmic (R′) in either type of these cells. Each image is representative of at least 4 different imaged adults or adult tissues of the same genotype and markers used. vmlo, longitudinal visceral muscles; vmci, circular visceral muscles; pc, polar cell; fc, follicle cell; ej. duct, ejaculatory duct; acc. gland, accessory gland; ej. bulb, ejaculatory bulb; acc. gland, accessory gland; cb, cystic buldge; gr, granule; n, nucleus Scale bars: 100 μm.


Lastly, we examined the expression pattern of fly transgelins in both female and male genitalia. Both Mp20-sfGFP and CG5023-YFP were similarly expressed in the muscle sheath surrounding the developing egg chambers in the female ovarioles (Figures 9D,E), the muscle sheath surrounding the ejaculatory duct (Figures 9K,L,N,N′), the accessory gland (Figures 9K,L,O,O′), the smooth muscles surrounding the testes (Figures 9K,L,P,P′), and the muscle fibers of the ejaculatory bulb (Figures 9K,L,Q; Susic-Jung et al., 2012). Interestingly, in the muscles surrounding the egg chambers, both Mp20-GFP and CG5023-YFP had an identical subcellular distribution in sarcomeres and the nuclei (Figures 9D,E,G,G′,H,H′). Chd64-GFP was expressed in follicular epithelial cells (Figures 9F,I,I′) and displayed a specific higher expression in the polar cells (Figures 9F,I,I′). In males, Chd64-GFP was expressed in all anatomical parts that form the genitalia, including the somatic cells encapsulating the germline in the testes (Figures 9M,R,R′), the ejaculatory bulb (Figure 9M), and the binucleated accessory gland epithelium (Figures 9S,S′,P,P′). In the latter epithelium, Chd64 was localized in both cytoplasmic granules and the nuclei (Figures 9S,S′).



DISCUSSION


The Small Actin-Binding Motif Is Not Conserved in Drosophila Transgelins

In this study, we have generated and characterized appropriate genetic and molecular tools to thoroughly investigate the protein expression and tissue distribution of the three Drosophila transgelins, namely, Mp20 (CG4696), CG5023, and Chd64 (CG14996) in a living organism. Mammalian transgelins comprise a conserved family of actin-binding proteins (Shapland et al., 1993; Fu et al., 2000; Mori et al., 2004; Na et al., 2015), and their general domain organization is that of a single N-terminal CH-domain and a single C-terminal CLR. The latter region has been shown to mediate the interaction of human TAGLN with actin (Fu et al., 2000). Recently, a second ABM was identified in mouse TAGLN2 to be essential in stabilizing F-actin (Na et al., 2015), supporting previous elegant biochemical studies in the yeast homolog of transgelin SCP1 that had predicted the existence of a second actin-binding site between the CH-domain and the CLR (Goodman et al., 2003). Here, we report that this small ABM is not conserved in all three Drosophila transgelins. Taking into account previous biochemical fractionation of larval body wall muscle lysate that showed weak association of Mp20 with the myofibrils (Ayme-Southgate et al., 1989), it remains unclear how Drosophila transgelins associate directly with intracellular actin filaments.



Mp20 and CG5023 Display Both Common and Unique Expression in Muscle Tissues During Development

Our data provide direct evidence that most of the muscle tissues in Drosophila contain two transgelin proteins: Mp20 and CG5023 (Figures 10A,B). However, there are certain deviations from this situation that indicate unique muscle type-specific functional requirement. First, we confirmed the high expression levels of Mp20-GFP protein in a subset of embryonic muscles, including VA2, VA3, SBM, and DT1. The enrichment of Mp20 in these muscles has been linked with its modulatory role in the fusion process. RNAi-mediated knockdown of Mp20 in embryonic somatic muscles resulted in unfused myoblasts (Bataillé et al., 2010). A similar regulatory function for the fusion process could also be attributed to CG5023 because it is highly accumulated within the DO1–2/DA1–2 embryonic muscles of the thoracic segments. Second, CG5023 can be detected earlier in the developing dorsal vessel in the embryo. Third, CG5023 is uniquely expressed in the alary muscles, which are multinucleated sarcomeric muscles that maintain the position of the internal larval organs (Bataillé et al., 2020). Fourth, Mp20 and CG5023 have a complementary expression in the larval and adult gut’s circumferential muscles. Mp20 is accumulated mainly in the larval vmlo, while in the adult, it is expressed at both vmlo and vmci. On the contrary, CG5023 is expressed only in the vmci. Fifth, the subcellular localization of Mp20 and CG5023 is quite distinct in the gut circumferential muscles. Mp20 labels only the myotubes’ Z-lines (Ayme-Southgate et al., 1989). CG5023 is localized in a striated pattern and is also strongly detected in the nucleus (Figure 10A). It remains unclear whether the tight colocalization of CG5023 with F-actin in the vmci is related to the presence of the two positive charged residues (K128 and R131) in the small ABM, which otherwise is poorly conserved overall as previously mentioned. Sixth, CG5023 is the only transgelin protein detected in the adult body wall somatic musculature, including abdominal muscles, synchronous muscles in the thorax, pharyngeal muscles, and leg muscles. This was a very surprising finding given the previous report of detecting Mp20 in the adult thoracic synchronous muscles by Western blotting (Ayme-Southgate et al., 1989). However, the adult expression of CG5023 in the thoracic muscles is consistent with the RNAi-mediated knockdown studies, which resulted in flightless adult flies (Schnorrer et al., 2010). Finally, we discovered that only CG5023 is expressed in few neuronal cells in the larval brain lobes and vnc, exemplifying the only non-muscle tissue of its expression.
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FIGURE 10. (A,B) Collective schematic representation of (A) subcellular transgelins localization in specific cell types (visceral muscle for Mp20 and CG5023; enterocyte and neuronal cell for Chd64) and (B) tissue expression pattern throughout fly development.




Endodermal and Ectodermal Chd64 Expression

Chd64 developmental expression pattern mostly resembles the expression pattern of mammalian TAGLN2 and TAGLN3, while the expression pattern of Mp20 and CG5023 resembles more the expression pattern of TAGLN (Figure 10B). High accumulation of Chd64 in embryos and larvae is observed in a variety of cell types that need to coordinate in an actin-dependent manner (a) their integrity (e.g., gut epithelium and tendon cell of epidermis), (b) migratory properties (e.g., final branches of trachea and hemocytes), and (c) axonal transport (e.g., larval nerves). For example, Chd64 was detected at significantly high levels in the secondary and final tracheal branches. These are structures that undergo dynamic cell shape changes during their formation in embryo and their remodeling in larva to meet the needs of tissues in oxygen supply. On the other hand, Chd64 protein levels were low in neuronal cell types in the embryo and sharply were increased later in larvae. Previous studies have shown that mammalian TAGLN3 optimal level is required for maximal neurite growth (Pape et al., 2008). Perhaps, this temporal regulation of Chd64 expression may be related to its functional requirement in the precise adjustment of actin filament dynamics that modulate axonal transport and synaptic transmission (Konietzny et al., 2017). The expression of Chd64 in the epithelium encapsulating the developing gametes in both female and male genitalia implies a potential role for Chd64 in the adult fly fertility, in agreement with the proposed role of TAGLN2 in the mouse blastocyst and embryo implantation (Liang et al., 2019).

Chd64 protein displays a dual subcellular distribution in the cytoplasm and the nucleus (Figure 10A). While the cytoplasmic localization of Chd64 could be linked with its putative role in the modulation of actin cytoskeleton, its nuclear presence fits with previous studies reporting binding of Chd64 on Juvenile hormone receptor element 1 (JHRE1) and ecdysone response element (EcRE) (Li et al., 2007), suggesting a putative role of Chd64 in transcription modulation. Interestingly, structural analysis indicated that Chd64 is a pliable protein-containing terminal intrinsically disordered regions (IDRs) that facilitate multiple molecular interactions (Kozłowska et al., 2014; Tarczewska et al., 2015). Our data clearly demonstrate a complete absence of Chd64 expression in muscles during fly development. However, the available UAS:RNAi lines (GD1212 and KK102197) for Chd64 upon expression with mef2Gal4 generated larval lethality, likely due to off-target effect of other essential gene(s) for muscle function (Schnorrer et al., 2010). Thus, currently, we lack specific tools to address the functional requirement of Chd64 in Drosophila, but specific null mutants will undoubtedly provide this information.

In conclusion, here we report for the first time a detailed expression profile of all transgelins throughout Drosophila development. From our analysis, we predict that Mp20 and CG5023 most likely functionally synergize within muscles, while Chd64 mediates unique functions in endodermal and ectodermal tissues.



MATERIALS AND METHODS


Drosophila Genetics

GFP-tagged flyfos TransgeneOme (fTRG) lines for CG5023 (318216) and Mp20 (318119) were obtained from VDRC (Sarov et al., 2016). Other stocks used in this study include UAS:ABD-Moesin-RFP (T. Millard), btl-Gal4, and UAS:GFP/CyO (Ghabrial et al., 2011). Embryos bearing the third chromosome lesion Df(3L)ensΔ 3277, Chd64Δ 3277ensΔ 3277P[neoFRT]80B/TM3, Sb (BL-51319) were used for the characterization of the Chd64 antibody. All other stocks were obtained from Bloomington Stock Center. All crosses were performed at 25°C.



Generation of Mp20-GFP, CG5023-YFP, and Chd64-GFP Transgenes

Mp20-GFP: BAC clone R05M17 was initially digested with StuI/BspEI. The 8.8-kb genomic fragment bearing −5.6/+0.6 kb flanking Mp20 gene sequence was subcloned into pBluescript. A BclI/BglII 2-kb Mp20 3′-fragment region was fused with a four Ser-linker in frame with eGFP. The full-length EcoRV/BglII Mp20-GFP-engineered sequence was finally cloned in the P-element transformation vector pCaspR3. CG5023-YFP: BAC clone R09G02 was digested with XbaI/BamHI, and the 14.2-kb genomic fragment bearing −5.3/+3.8 kb flanking CG5023 gene sequence was subcloned into pSL1180. The SapI-flanking 2.2-kb CG5023 3′-fragment was fused with a four Ser-linker in frame with vYFP. The full-length XbaI/BamHI CG5023-YFP-engineered sequence was finally cloned in the P-element transformation vector pCaspR3. Chd64-GFP: BAC clone R48M07 was digested with AvrII and the 9.9-kb genomic fragment bearing −0.4/+1.4 kb flanking Chd64 gene sequence was subcloned into pBluescript. An SpeI/XhoI 2.4-kb Chd64 3′-fragment was fused with a four Ser-linker in frame with eGFP. The full-length Chd64-GFP-engineered sequence was finally cloned in P-element transformation vector pCaspR3. At least three transgenic lines were obtained and analyzed for each of the three genes.



Generation of Anti-Chd64 Antibody and Western Blotting

A polyclonal antibody was generated using the His-tagged fusion protein corresponding to full-length Chd64 amino acids 1–188. BamHI/HindIII fragment of Chd64 cDNA clone GH28730 was fused into pET28b(+) (Novagen, Madison, WI, United States). The expression and purification of the recombinant protein was performed according to the manufacturer’s recommendations. Antibody specificity was tested by Western blotting and immunohistochemistry on either wild-type embryos or embryos deficient for Chd64 protein expression. Protein lysates were prepared from late-stage embryo or adult flies and analyzed by Western blotting with antibodies against Chd and Parvin as a loading control and developed as previously described (Vakaloglou et al., 2012).



Embryonic Sample Preparation

Embryos were collected from timed egg-lays and appropriately staged at 25°C (Campos-Ortega and Hartenstein, 1985) prior to whole sample preparation. Whole embryo preparation fixations were mostly performed in 4% formaldehyde in PBS; alternative fixation treatment included 90% methanol. PBT (0.5% BSA and 0.2% Triton X-100 in PBS) was used for blocking, washes, and primary and secondary antibody incubation either at room temperature or at 4°C.



Larval and Adult Tissue Sample Preparation

Late third-instar larvae were dissected in PBS to isolate imaginal disks and the gastrointestinal tracts that were subsequently fixed with 4% formaldehyde in PBS according to standard protocols. Dissection, immunostaining, and mounting samples of the adult gastrointestinal tract were performed as described by Micchelli (2014). Adult ovarian and testicular tissue samples were isolated, fixed, and processed according to Thompson et al. (2015).



Immunofluorescence Experiments and Microscopy

Primary antibodies used in this study were against the following: Chd64 (rabbit polyclonal anti-serum; 1:1,000), MHC (myosin heavy chain, mouse monoclonal; 1:60) (Kiehart et al., 1990), FasII (mouse monoclonal clone 1D4 from DSHB) to visualize motor neurons (Lin et al., 1994), FasIII (mouse monoclonal clone 7G10 from DSHB), Dac (mouse monoclonal clone mAbdac1-1 from DSHB, a kind gift from Tasos Pavlopoulos at IMBB-FoRTH), and Elav (rat monoclonal clone 7E8A10 from DSHB, a kind gift from Christos Delidakis at IMBB-FoRTH). Species-specific secondary antibodies used were conjugated with Alexa Fluor 568 or 633 (Molecular Probes, Eugene, OR, United States; Life Technologies, Carlsbad, CA, United States) diluted at 1:1,000. Nuclei were labeled with DAPI. F-actin was visualized using either rhodamine-phalloidin or Alexa Fluor 647-phalloidin at 1:500 dilution (Molecular Probes; Life Technologies, Carlsbad, CA, United States). All samples were mounted in Vectashield medium (Vector Laboratories, Burlingame, CA, United States).

Single confocal sections and z stacks were acquired on a Leica TCS SP5 laser scanning inverted confocal microscope with an HC Plan Apochromat × 20/0.7 or HC Plan Apochromat × 63/1.4 oil objective. Whole adult fly imaging was performed with an HC Plan Apochromat × 5/0.15 objective at a maximum zoom of 1.5. Confocal settings were adjusted to avoid pixel intensity saturation of 1,024 × 1,024 pixel images captured at 400 Hz. Postacquisition assembly was performed with LAS AF software (v.2.3.6). For live monitoring, z stacks imaged over time consist of 12 single focal sections of 2 μm and 1,024 × 512 pixels, captured at 400 Hz and recorded at 5 min intervals for 2–3 h. GFP was excited with the 488-nm argon laser line and emission was recorded in the 495–525-nm range. Individual focal planes for each time point were selected using LAS AS software (v 2.3.6) and then processed and converted into movies (12 frames/s) using ImageJ. For the quantification of fluorescent amount of transgelins among tissues, maximal projections of confocal stacks were produced. Mean value of fluorescence intensity of manually selected areas of the same size was quantified using ImageJ software. All images were processed using Photoshop 7 and labeled in CorelDRAW 12.
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Supplementary Figure 1 | (A,B) Protein sequence alignment among the three Drosophila transgelins and their mouse homologs to confirm: (A) conservation between Calponin Homology (CH) domain, C-terminal calponin-like repeat (CLR) regions and the predicted bipartite nuclear localization signal (NLS) based on an algorithm described in Kosugi et al. (2009) available in the cNLS Mapper website (http://nls-mapper.iab.keio.ac.jp). The putative NLS highlighted with a dotted black box in each protein sequence. (B) Drosophila transgelins lack of conservation within the small Actin Binding Motif located in between CH-domain and CLR.

Supplementary Figure 2 | Live-imaging of embryo expressing CG5023-sfGFP (lateral view) showing accumulation in migrating myoblasts.
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Protein localization in cells has been analyzed by fluorescent labeling using indirect immunofluorescence and fluorescent protein tagging. However, the relationships between the localization of different proteins had not been analyzed using artificial intelligence. Here, we applied convolutional networks for the prediction of localization of the cytoskeletal proteins from the localization of the other proteins. Lamellipodia are one of the actin-dependent subcellular structures involved in cell migration and are mainly generated by the Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 2 (WAVE2) and the membrane remodeling I-BAR domain protein IRSp53. Focal adhesion is another actin-based structure that contains vinculin protein and promotes lamellipodia formation and cell migration. In contrast, microtubules are not directly related to actin filaments. The convolutional network was trained using images of actin filaments paired with WAVE2, IRSp53, vinculin, and microtubules. The generated images of WAVE2, IRSp53, and vinculin were highly similar to their real images. In contrast, the microtubule images generated from actin filament images were inferior without the generation of filamentous structures, suggesting that microscopic images of actin filaments provide more information about actin-related protein localization. Collectively, this study suggests that image translation by the convolutional network can predict the localization of functionally related proteins, and the convolutional network might be used to describe the relationships between the proteins by their localization.

Keywords: machine learning, Pix2pix, image conversion, WAVE2, lamellipodia


INTRODUCTION

Machine learning has achieved significant success in various fields, including the biomedical fields (Moen et al., 2019). Machine learning has been used to classify cellular images (Brent and Boucheron, 2018; Camacho et al., 2018; Moen et al., 2019). Among machine learning, convolutional networks, including U-net, have been shown to segment biomedical images, including cellular images (Ronneberger et al., 2015). After U-net, several applications of convolutional networks for the analysis of cellular images have been reported. Using bright-field cell images, radiation-resistant cells were distinguished from parental cells by machine learning (Toratani et al., 2018). Breast cancer cells treated with the anti-cancer agent paclitaxel were also distinguished from non-treated cells by machine learning (Kobayashi et al., 2017). Furthermore, the direction of cell migration was predicted using the sequences of cell images (Nishimoto et al., 2019). These results demonstrated that machine learning could extract information associated with cellular properties from images.

Machine learning has been applied not only in the classifications mentioned above but also in protein localization. For example, a method that is known as in silico labeling reportedly generated a putative stained image of a specific marker protein from bright-field cell images to identify the nuclei, neural cells, and live cells (Christiansen et al., 2018). Automatic segmentation of intracellular organelles such as the Golgi apparatus and endoplasmic reticulum from bright-field cell images was also achieved (Pärnamaa and Parts, 2017). However, the translation of protein localization to the localization of another protein has not been reported.

The generative adversarial network (GAN) is the method derived from the U-net, where the probability distribution model obtained through training with a number of paired images generates hypothetical images (Goodfellow et al., 2014). The GAN comprises two components: a generator and a discriminator; thus, it can generate high-quality images by competing between the generator and discriminator. Therefore, GAN generates a more similar image of A from an image of B than the U-net alone, after learning many paired images of A and B. For example, the GAN can reportedly generate an image of a “smiling” face from an image with a “non-smiling” face by learning many paired images of non-smiling and smiling faces (Sagawa and Hagiwara, 2018). Pix2pix is one of the major implementations of GAN in image-to-image translation problems (Isola et al., 2017). Pix2pix successfully generated many kinds of paired images, including a map from an aerial image, a color image from a black-and-white image, a label to a street scene, a biomedical image like that from MRI to the labels of the organs, and so on. In cell biology, pix2pix has been used to label cellular membranes and nuclei using images of their markers (Tsuda and Hotta, 2019), where label generation was performed by training with the image pairs of the labels indicating the membrane and nucleus (label images) and their actual images.

However, as far as we know, no report has demonstrated the application of convolutional networks including U-net and pix2pix to the generation of an image showing the cellular molecule localization at subcellular resolutions, i.e., the generation of images showing the localization of a protein from those of other proteins. We hypothesized that convolutional networks of U-net and pix2pix could be used to generate, i.e., to predict protein localization, depending on the relationships between the proteins.

Cells change their shapes based on the mitotic cycle, surrounding environment, and various other situations by altering the cytoskeleton, including actin filaments (Pollard and Borisy, 2003; Gunning et al., 2015). In cells, actin filaments further assemble into higher-order configurations, which are primarily determined by Rho-family small GTPases, including Cdc42, RhoA, and Rac1 (Hall, 1998; Takai et al., 2001). Among them, Rac1 induces actin filament branching through WASP-family verprolin homologous protein 2 (WAVE2) and the Arp2/3 complex (Bear et al., 1998; Machesky and Insall, 1998; Miki et al., 1998; Suetsugu et al., 1999b, 2003). The activation of Rac1 induces conformational changes in WAVE2 in the regulatory complex, consisting of Sra1/PIR121, WAVE2, Nap1, Abi1/2, and HSPC300/BRICK, leading to the activation of the Arp2/3 complex within the branched actin filaments (Innocenti et al., 2004; Suetsugu et al., 2006; Ismail et al., 2009; Chen et al., 2010; Figure 1A). IRSp53 is also involved in lamellipodia formation through WAVE2 (Miki et al., 2000; Suetsugu et al., 2006). Vinculin is a protein at focal adhesions, which are connected to actin filaments and promote lamellipodia formation (Ziegler et al., 2006). Lamellipodia are regarded as essential structures for cell migration, including cancer cell invasion and metastasis (Takenawa and Suetsugu, 2007; Ridley, 2011). Another cytoskeleton, the microtubule, is not directly related to the actin cytoskeleton. In this study, we translated the images of actin filaments of cells to those of WAVE2, IRSp53, vinculin, and microtubules using convolutional networks; then, we examined the quality of the translated images. The generated images of WAVE2, IRSp53, and vinculin from actin filament images were similar to the truth images, indicating that the convolutional networks were able to predict the actin-related protein localization from actin filament images. However, the accuracy of translation was not at pixel resolution, which is thought to be the target of future studies. In contrast, the large filamentous structures of microtubules were not accurately predicted, which might imply indirect connections between actin filaments and microtubules. Collectively, this study suggests that image translation by convolutional networks can predict the localization of functionally related proteins, and the convolutional networks might be used to describe the relationships between the proteins by their localization.
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FIGURE 1. Lamellipodia and WAVE2 localization in Swiss 3T3 cells. (A) Schematic illustration of the configuration of actin filaments and WAVE2 localization at lamellipodia. Upon Rac1 activation, the WAVE2 in the protein complex is activated, leading to the activation of the Arp2/3 complex for branched actin filament formation. IRSp53 cooperates with WAVE2 for its activation by Rac1 at the plasma membrane. (B) Input image of actin filaments in Swiss 3T3 cells expressing the active form of Rac1. Actin filaments were stained by Rhodamine–phalloidin. Lamellipodia are fan-shaped structures formed at cell edges. (C) Actual WAVE2 image co-immunostained with panel (B), showing accumulation at the edges of lamellipodia. (D) Progress of the WAVE2 image generation. Images are shown at every 2,500 iterations (1 epoch). The iteration number is shown in the images. Image generation starts with a gray image without any features. Scale bars, 10 μm.




RESULTS


Prediction of WAVE2 Localization From Images of Actin Filaments

We used Swiss 3T3 cells because they form lamellipodia upon the activation of Rac1 (Ridley et al., 1992). We introduced a constitutively active Rac1 mutant into Swiss 3T3 cells to induce lamellipodia. After chemical fixation, the cells were stained with phalloidin and an anti-WAVE2 antibody to visualize actin filaments and WAVE2, respectively. The fan-shaped actin filament substructures at the cell periphery, which were assumed to be lamellipodia, had WAVE2 (Figures 1B,C). However, not all actin filaments have WAVE2.

For an initial test for the image translations from actin filament images to WAVE2 images, the pairs of images of actin filaments and WAVE2 were taken and used for the training of the pix2pix conditional GAN model. The detailed methodology is described in the Conditional GAN subsection of the “Materials and Methods” section (Hiasa et al., 2019). The translation performance was estimated by four-fold cross-validation, with 772 paired images of actin filaments and WAVE2. In each subset, the training set comprised 579 images, of which 15% were used as the validation set. No augmentation of the images of the Swiss 3T3 cells was performed. The remaining 193 images were used as the test set. The number of iterations, which corresponded to the epoch number for the training, was 200,000. This process was repeated four times for four-fold cross-validation. As the number of iterations increased, the similarity between the generated and actual WAVE2 images increased (Figure 1D). The generated WAVE2 final images were similar to those obtained using antibody staining.

Figure 2 presents examples of the generated WAVE2 images, which also show the true actin filaments and true WAVE2 at lamellipodia, microspikes, cellular protrusions, and cell-cell adhesions. WAVE2 showed prominent localization at lamellipodia, and WAVE2 localization was clearly generated at the edge of the cells by the trained pix2pix model (Figures 2A–C). Regardless of the size of the lamellipodia, the pix2pix model predicted the localization of WAVE2 (Figures 2A–C). WAVE2 was not only localized in lamellipodia but also in other subcellular structures of actin filaments, including the tips of microspikes or filopodia within the lamellipodia (Figure 2A; Nakagawa et al., 2003; Nozumi et al., 2003). The dashed square in Figure 2A indicates that the pix2pix model could predict WAVE2 localization at the microspike structures in lamellipodia. Interestingly, the solid square in Figure 2A indicates that the protrusions outside of the lamellipodia were also predicted to have WAVE2 and indeed had real WAVE2. WAVE2 also reportedly functions at the cell-cell junctions (Yamazaki et al., 2007; Nishimura et al., 2016). The two cells were in contact with each other, with WAVE2 localization at the contact sites (Figure 2D). WAVE2 localization was clearly generated between the cell-cell contacts (Figure 2D). In each image, the overall predicted WAVE2 localization by pix2pix appeared to be quite similar to the real WAVE2 localization detected by antibody staining. Together, these facts suggested that pix2pix could predict the localization of WAVE2 not only in the lamellipodia but also in other cellular structures from actin filament images.
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FIGURE 2. Generation of WAVE2 images from actin filaments in Swiss 3T3 cells. (A) Generation of a WAVE2 image by pix2pix from an actin filament image. The cells were stained with phalloidin for actin filaments and with an anti-WAVE2 antibody after fixation and permeabilization. An input image (actin filament image), an output image (generated WAVE2 image), a ground truth image (WAVE2 immunostained image), an absolute error image, and an uncertainty image are shown. The microspikes in the lamellipodia are marked with dashed squares, and the protrusions outside of the lamellipodia are marked with solid squares. Absolute error represents the difference in WAVE2 values in each pixel. Uncertainty in image generation represents the fluctuation of WAVE2 values based on various “dropouts” in convolutional neural networks, i.e., the robustness of the generation in each pixel. With higher values of absolute errors and uncertainty, the color of the heat map becomes closer to red. The merged image of actin filament, WAVE2 (generated), and WAVE2 (truth) was also shown to visualize the co-localization. Scale bar, 10 μm. (B,C) Generation of WAVE2 images of cells with various sizes of lamellipodia, as shown in panel (A). Scale bars, 10 μm. (D) Generation of a WAVE2 image of cells that formed a cell-cell adhesion marked by a rectangle. Scale bar, 10 μm. (E) Box plot of the mean absolute error (MAE) between the generated and actual WAVE2 images, as well as between images of actin filaments (input) and actual WAVE2 as a reference. Quantification was performed for all images with four-fold cross-validation (n = 772). The mean values are shown at the bottom. (F) Box plot of the multi-scale structural similarity index measure (MS-SSIM) value between the generated and actual WAVE2 images, as well as between images of actin filaments and actual WAVE2 as a reference. Quantification was performed for all images with four-fold cross-validation (n = 772). The data points represent the MS-SSIM values for the generated images in panels (A–D). The mean values are shown at the bottom. In panels (E,F), the yellow, red, blue, and green circles indicate the values for images in panels (A–D), respectively. (G) Representative SSIM map corresponding to the image in panel (C), showing the structural similarity at each 11 × 11 pixel window. Regions of lamellipodia are marked with polygons. (H) Box plot of the SSIM values from 1,926 pairs of lamellipodia, cell-cell adhesions, and other cellular regions. Statistical significance is shown by p < 0.05 by two-sample equal variance two-tailed Student’s t-test.




Performance of the Prediction of WAVE2 Localization

We evaluated the prediction accuracy of each pixel. The absolute error in Figures 2A–D is the difference between the generated and true WAVE2 in each pixel, which at lamellipodia was higher than that of the background (Figures 2A–D). Another estimation of accuracy was based on the robustness of the prediction. The uncertainty of such translation was successfully estimated using Bayesian convolutional neural networks (Bayesian CNNs), based on the U-net architecture combined with the Monte Carlo dropout of the network layers (Hiasa et al., 2019). The dropout (removal) of the network layers results in different outputs; however, the high probability output contains less dependency on the alterations of the network layers, resulting in less uncertainty in the output. The uncertainty in the predictions of WAVE2 localization was also high in the lamellipodia (Figures 2A–D).

Despite the recognizable similarity, the errors were higher for the pixels of WAVE2 localization. These higher absolute errors and uncertainty at the pixels of WAVE2 localization compared to those at the background appeared to suggest that the intensity of WAVE2 localization was not predicted in the absolute values at a pixel resolution; instead, the prediction was more qualitative, reflecting the context of actin filaments for WAVE2 localization. Therefore, the absolute error would be caused by the aleatoric uncertainty from the randomness of the measurements rather than the epistemic uncertainty of the prediction.

Then, the overall image prediction was summarized by the mean absolute error (MAE) between the generated and truth WAVE2 images. MAE is the mean absolute difference in pixel values, which is related to the absolute errors in each image. Therefore, a smaller MAE indicates a higher similarity between the two images. We also employed another estimation, the structural similarity index measurement (SSIM). SSIM is based on the variance in the pixel values, and the multi-scale SSIM (MS-SSIM) uses SSIM of various scales, i.e., image resolution, to synthesize the similarity at various scales (Wang et al., 2003). A higher MS-SSIM indicates greater similarity in perceived quality. The MAE between the generated and truth images was statistically lower, and the MS-SSIM between the generated and truth images was statistically higher than those between the true actin filament (input) and true WAVE2 images, indicating that the pix2pix generated more similar images to the truth images than to the input images (Figures 2E,F). The MAE and MS-SSIM between WAVE2 images and random noise were significantly inferior to those between the generated and true WAVE2 images, indicating the validity of these estimations (Supplementary Figure 1).

During training, the MAE and MS-SSIM values were progressively improved by increasing the number of iterations (Supplementary Figure 2). At 0–25,000 iterations, the actin filamentous structures of the input images were still strongly reflected in the generated WAVE2 images (Figure 1D). These filamentous structures disappeared after 100,000 iterations (Figure 1D). Evaluations with MAE and MS-SSIM showed that they gradually improved as the iteration numbers increased, although no significant difference was observed between the MS-SSIM at 100,000 and 200,000 iterations (Supplementary Figure 2), suggesting that these values were not suitable for the evaluation of the recognizable image quality. Overall, these results suggested that pix2pix successfully produced WAVE2 images that were similar to true WAVE2 images compared to the input actin filament images, although the accuracy was not at pixel resolution.

Subsequently, we analyzed the performance of WAVE2 localization prediction at the subcellular level, which was the intermediate between the pixel and the whole image levels, as described above. The SSIM was calculated for each 11 × 11-pixel window to generate the SSIM map, and the representative analysis corresponding to Figure 2C is shown in Figure 2G. Then, the images of the ground truth were manually annotated using Labelme (Russell et al., 2008), which is a software used to assist in the extraction of the coordinates of the manually determined region of interest as polygons, saving the lamellipodia region information by the human eye (Figure 2G). The SSIM of these manually annotated lamellipodia and cell-cell adhesions was compared with the SSIM in the other cellular regions (Figure 2H). The average SSIMs of lamellipodia and cell-cell adhesion sites were higher than the average SSIMs in the non-lamellipodia regions (Figure 2H), suggesting that the GAN generated images based on meaningful localizations.



Comparison With U-Net

Pix2pix has two components: a generator and a discriminator. The generator is similar to an original U-net (Ronneberger et al., 2015). To examine the contribution of the discriminator in GAN for image generation by pix2pix, we trained the model with a generator alone, i.e., only a U-net structure. The condition is the same as described above, except that the contribution of the discriminator to be none. The U-net-only model generated a blurry image compared to those by pix2pix (Supplementary Figure 3A). However, WAVE2 at the leading edge was predicted using the U-net-only model. Therefore, the U-net-only model was able to predict WAVE2 localization in lamellipodia. The difference between the U-net-only model and pix2pix appeared to be the dot-like localization of WAVE2 inside the cell, which was the blurred localization of WAVE2 in the U-net-only model. Importantly, the prediction of dot-like localization of WAVE2 was not accurate at pixel resolution, as described for Figure 2. In addition, the generated WAVE2 localization by the U-net-only model inside the cells was partially filamentous, reflecting the localization of actin filaments in the input images.

The images obtained using the U-net-only model and pix2pix were evaluated using MAE and MS-SSIM (Supplementary Figures 3B,C). The U-net only model showed higher performance than the pix2pix model in MS-SSIM values, which would be the result of the inaccurate prediction of the dot-like localization of WAVE2 by pix2pix. Therefore, to estimate the complexity of the generated image, we compared the entropy of the label image, the image generated by pix2pix, and the image generated by the U-net-only model (Supplementary Figure 3D). The entropy showed that the generated image of the pix2pix model was closer to the label image than the generated image of the U-net-only model. Therefore, we thought that the U-net-only model did not express the complexity of the original WAVE2 stained image, but pix2pox did not generate accurate WAVE2 localization at pixel resolution.



Application to the Localization of Actin Filaments by Lifeact and to That of IRSp53

To examine the generalization of this method, we trained the pix2pix model using the images of glioma U251 cells for another regulator of WAVE2, IRSp53 (Miki et al., 2000; Suetsugu et al., 2006). IRSp53-knockout U251 cells were prepared, and IRSp53 expression was restored by stable expression of GFP-IRSp53. The cells were then further stably labeled with a lifeact tagged with mCherry (lifeact-mCherry) to visualize actin filaments (Riedl et al., 2008). These U251 cells were cultured in serum and fixed for the observation of lamellipodia without forced activation of Rac1. WAVE2 localization was identified using antibody staining. The images of the actin filaments by lifeact, IRSp53 by GFP, and WAVE2 by antibody staining were similar in lamellipodia but not identical in the other regions of the cells. These images were subjected to the machine learning for image translation using pix2pix. We attempted to translate the images of actin filaments (lifeact) to WAVE2, actin filaments to IRSp53, and IRSp53 to WAVE2. Translation performance was estimated using four-fold cross-validation. In total, 100 images were obtained, and 75 were subjected to training. The 75 images were augmented seven-fold by rotations at 90° steps and vertical and horizontal flipping, resulting in a training dataset composed of 525 images, of which 15% were used as the validation set. The remaining 25 images were used as the test set. The results showed that a lifeact image could produce images of WAVE2 and IRSp53 (Figures 3A,B). Furthermore, pix2pix translated the IRSp53 images into WAVE2 images (Figure 3C). WAVE2 and IRSp53 were well co-localized at lamellipodia but were not well co-localized in the other regions of the cells. The prediction of lamellipodia localization of these proteins, as well as the localization at the cytosol, was regarded as having good quality, because the MAE values between the truth and generated images were lower than the MAE values between the input and truth images (Figure 3D), and because the MS-SSIM values between the generated and truth images were higher than those between the input and truth images (Figure 3E). However, the staining around the nucleus appeared to be predicted with less accuracy than that at the cell periphery (Figures 3A,B), which might indicate the lesser relationships of these proteins in the nucleus.
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FIGURE 3. Generation of WAVE2 and IRSp53 images from actin filaments and WAVE2 images in IRSp53-expressing U251 cells. (A) Generation of a WAVE2 image from an actin filament image that was visualized by lifeact-mCherry. The IRSp53-knocked-out U251 cells re-expressing GFP-tagged IRSp53 and lifeact-mCherry were stained with an anti-WAVE2 antibody after fixation and permeabilization. The results are depicted as in Figure 2A. Scale bar, 10 μm. (B) Generation of an IRSp53 image from an actin filament-stained image. Scale bar, 10 μm. (C) Image generation into a WAVE2 image from an IRSp53-stained image. Scale bar, 10 μm. (D) Box plot of the MAE of the entire images in four-fold cross-validation (n = 100). (E) Box plot of the MS-SSIM of the entire images in four-fold cross-validation (n = 100). The data points represent the MS-SSIM values for the generated images in panels (A–C). In panels (D,E), the yellow circles indicate the values for images in panels (A–C). Statistical significance is shown by p < 0.05 (*) by two-sample equal variance two-tailed Student’s t-test. (F) Lamellipodia structures (arrows) observed in the live imaging of lifeact-mCherry. Scale bar, 10 μm. (G) Generation of a WAVE2 image from a lifeact-mCherry image. The cells observed in panel (F) were fixed, permeabilized, and immunostained for WAVE2 (truth). The arrows indicate lamellipodia. Scale bar, 10 μm.


We observed the lifeact-mCherry in live cells to identify lamellipodia at the leading edge (Figure 3F). The cells were then fixed, permeabilized, and stained for WAVE2 localization. Permeabilization slightly altered the lifeact images because the free lifeact in the cytosol was probably removed by permeabilization. The active lamellipodia region was stained with WAVE2, and the actin filament images for these lamellipodia were able to generate the WAVE2 image by using the trained model as described above (Figure 3G). From these results, we concluded that pix2pix could specifically predict WAVE2 localization at the leading edge of lamellipodia under different conditions.



Application to Vinculin and Tubulin Localizations

Focal adhesions, which contain vinculin protein, are known to promote lamellipodia formation. To examine whether GAN could be applied to other molecules that are related to lamellipodia, we trained the model between actin filaments and vinculin staining. The translation performance of the model, trained by 100-paired actin filament and vinculin images of U251 cells, was estimated by four-fold cross-validation as for the IRSp53 and WAVE2 analysis. Pix2pix succeeded in generating vinculin images from the actin filament images (Figure 4A). The prediction of vinculin was regarded as having good quality, as judged by the MAE and MS-SSIM values (Figures 4B,C), as well as by human eye recognition.
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FIGURE 4. Generation of vinculin and tubulin images in U251 cells. (A) Generation of a vinculin image from an actin filament-stained image. U251 cells were stained with phalloidin for actin filaments and with an anti-vinculin antibody after fixation and permeabilization. The results are depicted as in Figure 2A. Scale bar, 10 μm. (B) Box plot of the MAE of entire images in four-fold cross-validation for panel (A) (n = 100). (C) Box plot of the SSIM of entire images in four-fold cross-validation for panel (A) (n = 100). The data point represents the MS-SSIM values for the generated images in panel (A). (D) Generation of a tubulin image from an actin filament-stained image. U251 cells were stained with phalloidin for actin filaments and with an anti-α-tubulin antibody after fixation and permeabilization. The results are depicted as in Figure 2A. Scale bar, 10 μm. (E) Box plot of the MAE of entire images in four-fold cross-validation for panel (D) (n = 100). (F) Box plot of the SSIM of entire images in four-fold cross-validation for panel (D) (n = 100). The data point represents the MS-SSIM values for the generated images in panel (D). (G) Box plot of the salience score of entire images in four-fold cross-validation for panel (D) (n = 100). In panels (B,C,E–G), the yellow circles indicate the values for images in panels (A,D). Statistical significance is shown by p < 0.05 by two-sample equal variance two-tailed Student’s t-test.


To examine whether GAN could be applied to other molecules that are not strongly related to actin filaments, we trained the model between actin filaments and tubulin staining of U251 cells as was performed for the IRSp53, WAVE2, and vinculin analyses. The trained pix2pix model generated a tubulin-like image from the actin filament images (Figures 4D–F). However, the generated images did not reflect the features of filamentous and radial tubulin distribution (Figures 4D–F). On the other hand, the MAE and MS-SSIM values indicated a good quality of image translation, and the generated tubulin images were apparently closer to the tubulin images than the actin images. Therefore, the MAE and MS-SSIM might not reflect cell-wide features, such as filamentous radial localization. Then, we tested the salience score, showing the local symmetry of the images (Rezanejad et al., 2019; Wilder et al., 2019). The generated tubulin images had a smaller score than the truth tubulin images (Figure 4G). However, further development of the index for evaluating the similarity between images would be required in the future.



DISCUSSION

In this study, we predicted the subcellular localization of WAVE2, IRSp53, and vinculin, which were established regulators of lamellipodia, using convolutional networks. The generated images had striking similarities to the truth images, although, at this moment, the generated images did not have accuracy at pixel resolution, which would be in future development. Therefore, the prediction of these localizations by image translation was suggested to be used for global estimation of protein localization, which would include an annotation of lamellipodia by protein localization among actin cytoskeletal structures. Experts in the field will easily distinguish lamellipodial actin filaments from non-lamellipodial ones, but sometimes lamellipodia are not obvious to the untrained eyes. Furthermore, this method can be used to label lamellipodia in live cells to quantify the degree of lamellipodia formation if the computation speed is sufficient.

The prediction of WAVE2 localization was independent of lamellipodia size (Figure 2). This independence could be related to the kernel size required for the computation. The kernel size of the algorithm, which used the four-pixel window, was equivalent to ∼1.9 μm2. The features of actin filaments in lamellipodia, i.e., branched filaments, were thought to be within this window. Thus, various sizes of lamellipodia could be predicted for WAVE2 localization. Vinculin and IRSp53 localizations were also thought to be predictable with such features of actin filaments in a four-pixel window.

Thus, the continuous features above this size are supposed to be difficult to be predicted. We attempted to predict microtubule localization from actin filament localization; however, the predicted localization of microtubules was not filamentous. These non-continuous filaments might arise from the kernel size. Alternatively, microtubules were not directly linked to actin filaments, in contrast to the regulators of actin filaments such as WAVE2, IRSp53, and vinculin, resulting in inaccurate prediction because of the potential shortage of information related to microtubules. Nevertheless, it should be noted that the image comparison statistics, MAE and MS-SSIM, suggested that the generated tubulin images were more similar to the truth tubulin images than to the actin filament images.

If the difference between the experimental and predicted images resulted from the mutually independent localization and function, then the convolutional network might be used as a tool to discover a localization and a function that could be independent of each other. The possible failure of the prediction of the nuclear staining of WAVE2 in U251 cells might indeed suggest the actin filament-independent function of WAVE2 (Figure 3), as the nuclear localization of WAVE1 has been reported (Miyamoto and Gurdon, 2013). However, the nuclear staining of WAVE2 might represent non-specific staining, which was also thought to be independent of actin filaments. Such nuclear staining of WAVE2 was not observed in Swiss 3T3 cells (Figure 2), which might imply both that nuclear WAVE2 in U251 cells could be a result of non-specific staining and that the nuclear function of WAVE2 might differ between U251 and Swiss 3T3 cells. In both cases, the prediction was thought to require training depending on the cell types and might reflect the specific observation of the cells. In addition, these inconsistencies in WAVE2 localization between the generated and truth images might be due to insufficient learning and randomness in experimental errors. Therefore, further investigations, especially the development of statistics that could evaluate such image features, would be required to explore further the idea that the difference between the predicted and truth images results from the functional independence of the observed pair of molecules.

With the development of statistics for image comparison, as well as the refinement of the prediction into pixel resolutions as well as into cell-wide features that were seen in tubulin images, the prediction of protein localization could have great potential for understanding the relationships between proteins and molecules. Furthermore, the prediction of molecule localization was also considered as artificial staining of cells. Labeling with antibodies was normally limited to several proteins. In contrast, artificial staining could predict an unlimited number of protein localizations from single staining, which would be useful for detecting the relationships between many molecules after future development.



MATERIALS AND METHODS


Cell Culture

Plat-E, Swiss 3T3, and U251 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Nacalai Tesque, 08459-64), supplemented with 10% fetal calf serum (FCS) and penicillin-streptomycin (PS) (DMEM-10% FCS/PS) at 37°C in a 5% CO2 incubator. Plat-E, Swiss 3T3, and A549 cells were passaged every 4, 3, and 2 days, respectively.



Retrovirus-Mediated Gene Transfer

Swiss 3T3 cells were transfected with the pMX-Myc-Rac1-CA vector (Suetsugu et al., 1999a). First, Plat-E cells were cultured overnight in a 12-well plate in DMEM containing 10% FCS/PS. For transfection, 100 μL of Opti-MEM with 1.6 μg of vector and 100 μL of Opti-MEM with 1 μL of 293 fectin transfection reagents (Thermo Fisher) were mixed, allowed to form a complex at room temperature for 20 min, and then added to the Plat-E cells in 0.8 ml medium (Kitamura et al., 2003). After 48 h, the culture supernatant was filtered using a 0.22 μm filter and added to the cells in 1.2 ml medium with polybrene at a concentration of 8 μg/mL. After 24 h, the medium was replaced with fresh DMEM containing 10% FCS/PS. After an additional 24 h, the cells were replated on a 24-well plate containing a coverslip (Matsunami) and cultured for another 48 h.

The IRSp53-knockout U251 cell line expressing GFP-IRSp53 was established using CRISPR/Cas9-mediated genome editing. The guide RNA targeting the second exon (29th amino-acid residue) of IRSp53 (CCATGGCGATGAAGTTCCGG) was designed using the server http://crispr.mit.edu (Hsu et al., 2013) and inserted into the pX330 vector, which was transfected into the cells and then cloned (Mashiko et al., 2013). The expression of GFP-IRSp53 and lifeact-mCherry was performed using the retrovirus as described above, and then clones were isolated using a fluorescence-activated cell sorter.



Immunofluorescent Staining of Swiss 3T3 and U251 Cells

The cells were fixed with 4% paraformaldehyde in PBS for 20 min at room temperature. Subsequently, the cells were permeabilized with 0.5% Triton X-100 in PBS for 20 min at room temperature with gentle shaking. Then, the cells were washed with 0.1% Triton X-100 in PBS (PBS-T). Next, PBS containing 3% bovine serum albumin and 10% goat serum was added to block the cells for 1 h with gentle shaking. The cells were then washed with PBS-T. The primary antibody, rabbit anti-WAVE2 antibody (Cell Signaling, # 3659S), mouse anti-vinculin (SIGMA, V 9131), and mouse anti-alpha-tubulin (SIGMA, clone DM1A) was diluted 100-, 200-, and 500-fold, respectively, in the blocking solution, incubated for 1 h with gentle shaking, and then washed three times with PBS-T. The secondary antibody, Alexa Fluor 488-goat anti-rabbit or mouse IgG antibody (highly cross-absorbed, Thermo Fisher) diluted 400-fold, and rhodamine-phalloidin (Thermo Fisher) for actin filament detection, diluted 1,000-fold in the blocking solution, were added and then incubated for 1 h with gentle shaking in the dark. The cells were then washed with PBS-T and mounted on a glass slide, using Prolong Diamond Antifade Mountant with DAPI (Thermo Fisher), allowed to solidify at room temperature overnight, and then stored at 4°C. Swiss 3T3 cells were observed using an IX81 fluorescence microscope (OLYMPUS) with W-View Gemini (Hamamatsu Photonics). U251 cells were observed using an FV1000 confocal microscope (Olympus).



Conditional GANs

The purpose of this study was to determine the conditional distribution of WAVE2 based on actin filaments. The pix2pix conditional GAN (Isola et al., 2017) allows the patch discriminator to capture the Markov property of the image as an adversarial loss, allowing the transformed image to maintain high spatial frequencies. The formula for this adversarial learning is as follows:
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where a generator G translates images of actin filaments x to WAVE2 images y, which are trained to translate images of actin filaments that a discriminator D cannot distinguish from the “real” WAVE2 images by antibody staining, as follows:
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In addition to the adversarial loss, the conditional loss, which is the similarity between the “fake” and “real” WAVE2 images, is introduced as follows:
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where z denotes the random noise.

We primarily followed this framework and extended the generator and discriminator networks. Here, the generator was replaced with a Bayesian U-Net (Hiasa et al., 2019) for the uncertainty estimation. Spectral normalization (Miyato et al., 2018) was applied to the patch discriminator to stabilize the optimization. In the inference phase, the predictive distribution is expressed as
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where μ and var denote the mean and variance, respectively.

WAVE2 and actin filament images were downscaled to 256 × 256 pixels and normalized such that the intensities of the 1st and 99th percentiles were mapped to [−1, 1]. Data augmentation was applied based on spatial transforms, including the translation of [−10, +10]% of the image size, rotation of [−10, +10]°, scale of [−10, +10]%, shear transformation with a shear angle of [−π/16, +π/16] rad, and flipping in the horizontal and vertical directions. The kernel size was 4 pixels, that is, ∼1.9 μm2. The codes that were used, including the details of each network and training manner, are available at https://github.com/yuta-hi/bayesian_unet.



Estimation of Errors

The results were evaluated based on the MAE and SSIM. The MAE shows the absolute error in the brightness value of each pixel and is expressed as
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where fi and yi denote the true and predicted values, respectively.

The SSIM indicates the similarity of the average, variance, and covariance of the surrounding pixels in terms of brightness, contrast, and structure. Thus, it is an index that incorporates the correlation not only with individual pixels but also with the surrounding pixels. The SSIM is expressed as
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where x and y are the ground truth (WAVE2) and predicted images, respectively, μ is the average pixel value, σ is the standard deviation of the pixel value, σxy is the covariance between x and y, C1 = (0.01 × L2), C2 = (0.03 × L2), and L is the dynamic range of the images (Wang et al., 2004). We used 8-bit images; hence, L = 255.

Multi-scale SSIM was calculated by the SSIM at five scales, which were down sampling of images by a factor of two with each scaling.

[image: image]

where M is the number of down sampling, α, β, and γ are equal values in each scale, and β1 = γ1 = 0.0448, β2 = γ2 = 0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, α5 = β5 = γ5 = 01333, which is derived from the Gaussian distribution with the assumption that the medium resolution is suitable for recognition (Wang et al., 2003).

Random noise images were obtained from the label image by random shuffling of each pixel.

The lamellipodia regions were manually annotated for SSIM calculations using Labelme (Russell et al., 2008)1 to extract the SSIM values at the lamellipodia.

Entropy represents the complexity of images. The entropy is expressed as

[image: image]

where pi is the probability of appearance of a particular pixel value, which is introduced as follows:

[image: image]

where N is the number of total pixels, and Ni is the number of particular pixel values.

The salience score was calculated using the local symmetry of the images (Rezanejad et al., 2019; Wilder et al., 2019). The contour for the salience score was generated by the banalization of the images, with a threshold level of 0.25, because the average threshold for binarization by the Otsu method was approximately 0.25.

Statistical significance is shown by p < 0.05 by two-sample equal variance two-tailed Student’s t-test.
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Supplementary Figure 1 | The MAE and MS-SSIM to random noise. (A) True and the generated WAVE2 images as in Figure 2 and the random noise image that was generated by shuffling the true WAVE2 image. (B) Box plot of the MAE of entire images for panel (A) (n = 772). (C) Box plot of the MS-SSIM of entire images for panel (A) (n = 772).

Supplementary Figure 2 | The progress of image generation per iterations. (A) Box plot of the MAE of entire images in four-fold cross-validation for Figure 1D (n = 772). (B) Box plot of the MS-SSIM of entire images in four-fold cross-validation for Figure 1D (n = 772). Statistical significance is shown by p < 0.05 (*) by two-sample equal variance two-tailed Student’s t-test.

Supplementary Figure 3 | The comparison between pix2pix and U-net. (A) Generation of a WAVE2 image by pix2pix model and U-net only model from an actin filament image. An input image (actin filament image), a ground truth image (WAVE2 immunostained image), a pix2pix output image, and a U-net only model output image. Scale bar, 10 μm. (B) Box plot of the MAE of entire images in four-fold cross-validation for panel (A) (n = 772). (C) Box plot of the MS-SSIM of entire images in four-fold cross-validation for panel (A) (n = 772). (D) Box plot of the entropy of entire images in four-fold cross-validation for panel (A) (n = 772). Statistical significance is shown by p < 0.05 by two-sample equal variance two-tailed Student’s t-test.
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Profilins are small actin binding proteins, which are structurally conserved throughout evolution. They are probably best known to promote and direct actin polymerization. However, they also participate in numerous cell biological processes beyond the roles typically ascribed to the actin cytoskeleton. Moreover, most complex organisms express several profilin isoforms. Their cellular functions are far from being understood, whereas a growing number of publications indicate that profilin isoforms are involved in the pathogenesis of various diseases. In this review, we will provide an overview of the profilin family and “typical” profilin properties including the control of actin dynamics. We will then discuss the profilin isoforms of higher animals in detail. In terms of cellular functions, we will focus on the role of Profilin 1 (PFN1) and Profilin 2a (PFN2a), which are co-expressed in the central nervous system. Finally, we will discuss recent findings that link PFN1 and PFN2a to neurological diseases, such as amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington’s disease and spinal muscular atrophy (SMA).
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INTRODUCTION

Over forty years ago, the first profilin was identified as a small actin monomer binding protein with the ability to inhibit actin polymerization in vitro (Carlsson et al., 1977). From there, the profilin field has expanded enormously: Originally described as actin sequestering protein, a wealth of literature established profilin as driving and directing force for actin polymerization and network homeostasis. Besides canonical actin dynamics, miscellaneous profilin ligands and numerous functional studies have linked profilin to diverse fields of cell biology including membrane trafficking, signaling, synaptic scaffolding, nuclear export, mRNA splicing, and transcription (see Supplementary Table 1). The (co-)expression of different profilin isoforms generates another level of complexity and raises the question as to whether these proteins are functionally unique or if they are redundant. Moreover, recent studies show the association of profilin isoforms with the onset and/or progression of several diseases through either mutation in their ligands or in the profilin isoforms themselves. In this review article, we begin by summarizing main aspects of profilin properties and functions. We introduce profilins with their typical structural and biochemical features including their function as actin regulators. Furthermore, we will discuss the functional diversity of profilin isoforms of higher animals in cellular processes. We will then focus on overlapping and unique roles of PFN1 and PFN2a in the central nervous system (CNS). Finally, we will give insight into the biomedical relevance of these profilin isoforms through their emerging roles in neurological diseases.



PROFILIN GENES, STRUCTURE AND BIOCHEMICAL PROPERTIES

The identification of 172 paralogous and orthologous profilin genes in lower eukaryotes, fungi, plants and animals supports the conservation of profilins throughout evolution (Pandey and Chaudhary, 2017). Even cyanobacterial and viral profilin genes exist, which likely were hijacked from eukaryotic cells by horizontal gene transfer (Blasco et al., 1991; Guljamow et al., 2007). Most lower eukaryotes usually have one profilin gene (Pandey and Chaudhary, 2017). Exceptions to the rule are the free-living amoeba Dictyostelium discoideum and the slime mold Physarum polycephalum, which express, either constitutively or temporally, additional profilin isoforms (Binette et al., 1990; Arasada et al., 2007). Most studied multicellular organisms express several profilin isoforms some of which are generated by alternative splicing and/or are expressed in a tissue-specific manner. In silico analyses of profilin amino acid sequences from various origins show degrees of homologies down to less than 25% between profilins from lower eukaryotes and animals (Figure 1A). But also profilin isoforms in the same organism may substantially differ in their amino acid composition (Figure 1B; Polet et al., 2007). In contrast to this variability in amino acid sequences, the secondary and tertiary structures of profilins are conserved. Seven beta-strands form a compact core surrounded by four alpha-helices. N- and C-termini of profilins are part of alpha-helices and are positioned adjacent to each other (Cedergren-Zeppezauer et al., 1994; Mahoney et al., 1997; Haikarainen et al., 2009). A typical profilin protein contains functional binding sites for G-actin, poly-proline-motifs, and phosphoinositides: the G-actin binding site of profilin occupies a relatively large surface area involving residues of the beta-strands 4,5 and 6, the alpha-helices 3 and 4 as well as interspacing loop regions (Schutt et al., 1993). The interaction with profilin induces a conformational change in G-actin toward a wider nucleotide binding pocket and thereby largely accelerates the nucleotide exchange from ADP to ATP (Perelroizen et al., 1996; Selden et al., 1999). In addition, profilin uses the actin binding site to interact with two other ligands: the actin related protein 2 (Arp2), a subunit of the Arp2/3 complex (Mullins et al., 1998), and gephyrin, which is involved in cellular metabolism through its role in molybdenum cofactor synthesis, but also serves as a postsynaptic scaffolding protein at inhibitory synapses in neurons (Stallmeyer et al., 1999; Giesemann et al., 2003). On the opposite side of the profilin molecule, aromatic amino acids in N- and C-terminal areas form the binding groove for poly-proline stretches (Björkegren et al., 1993; Haarer et al., 1993; Kaiser and Pollard, 1996). Typical poly-proline motifs for profilin binding are continuous sequences of five to ten prolines interspaced by single glycines (Mahoney et al., 1997). Numerous proteins contain such poly-proline motifs and were described as profilin ligands. Many profilin interacting proteins clearly belong in the category of actin regulators like Ena/VASP proteins, formins, and WASP/WAVE. Other PLP-ligands link profilin to diverse cellular processes such as membrane trafficking, signaling, synaptic scaffolding, nuclear export, mRNA splicing, and transcription (see Supplementary Table 1). In addition, profilin also interacts with phospholipids, while it has the highest affinity to phosphoinositide-4,5-bisphosphate (PIP2) (Lassing and Lindberg, 1985, 1988). The major phosphoinositide-binding pocket with its conserved basic residues overlaps with the actin binding site (Sohn et al., 1995; Behnen et al., 2009). Thus, PIP2-bound profilin is unable to interact with actin monomers (Lassing and Lindberg, 1988). Biochemical analyses also show the presence of an additional PIP2 binding site at the profilin C-terminus (Lambrechts et al., 2002; Skare and Karlsson, 2002). The competition of PIP2 with other profilin ligands serves as a regulative mechanism of profilin activity downstream of phospholipid-based signal transduction (see for review Davey and Moens, 2020).


[image: image]

FIGURE 1. Comparison of profilin isoform amino acid sequences between and within organisms. Upper panel (A) shows homologies (%) of all profilins between different species including human, mouse, chicken and zebrafish. Lower panel (B) shows homology (%) of different profilins within the same species (lower panel). Blank squares were left blank to avoid redundant information. Information on profilin homologies are based on Polet et al. (2007).




PROFILIN AS PROMOTER AND DIRECTOR OF ACTIN DYNAMICS

The roles of profilin in actin dynamics have been intensively investigated in vitro and in cells, mostly by studying either yeast profilin or mammalian profilin 1 (PFN1): in line with its first description as a protein that can keep actin in a “pro-filamentous state,” profilin was initially considered to maintain the pool of free actin monomers (Carlsson et al., 1977). However, numerous studies identified profilin instead as an actin polymerization-driving force by the following mechanisms: (1) profilin accelerates the nucleotide exchange of G-actin (Perelroizen et al., 1996; Selden et al., 1999), (2) ATP-G-actin-bound profilin can transiently bind to growing barbed ends of actin filaments (Jégou et al., 2011; Courtemanche and Pollard, 2013; Pernier et al., 2016) and (3) profilin delivers G-actin to actin-nucleating and/or polymerizing proteins through the interaction with poly-proline motifs (Ferron et al., 2007; Paul et al., 2008; Funk et al., 2019). Prominent classes of such actin regulators are formins and Ena/VASP proteins, which act as processive actin polymerases by continuously associating with profilin-actin complexes, thereby creating linear actin filaments (Romero et al., 2004; Breitsprecher et al., 2008; Hansen and Mullins, 2010; Winkelman et al., 2014; Brühmann et al., 2017). On the other hand, profilin also interacts with Arp2/3 complex-specific nucleation promoting factors (NPFs) like (N-)WASP and WAVE proteins (Miki et al., 1998; Suetsugu et al., 1998). These proteins activate the Arp2/3 complex, which then binds already existing filaments and initiates there the growth of actin branches (see for review Pollard and Cooper, 2009). In view of this promiscuous binding nature, one could interpret profilins as housekeeping proteins that equally provide polymerization-competent actin monomers to the different actin networks. However, recent studies demonstrate that profilin directs as master switch the competition of branched and linear actin networks for free actin monomers. In yeast, high profilin concentrations blocked Arp2/3-dependent actin networks, while formin-dependent actin polymerization is greatly enhanced. Profilin yeast mutants show increased Arp2/3-dependent actin patches and cytokinesis defects through formin dysfunctions (Figure 2; Suarez et al., 2015). In line with these findings are results obtained in fibroblasts, where acute profilin depletion in wildtype cells cause increased F-actin levels and formation of Arp2/3-rich lamellipodia (Rotty et al., 2015). In contrast, actin dynamics of ArpC2-deficient cells mostly rely on profilin and Ena/VASP proteins (Figure 2). These studies indicate an obvious supportive role of profilin for formin and Ena/VASP-based over Arp2/3-dependent actin networks. From a mechanistic point of view, profilin can inhibit branched actin networks indirectly by re-routing G-actin away from Arp2/3-specific NPFs toward formins and Ena/VASP. On the other hand, a direct inhibition of actin branching is conceivable, as profilin can principally interact with Arp2 and, thus, sterically hinder the Arp2/3 complex itself (Mullins et al., 1998) and/or associated NPFs like WASP (Suarez et al., 2015). However, it is important to note that other studies also showed stimulatory effects of profilin on N-WASP and WAVE1 as well as Arp2/3-dependent actin networks (Bieling et al., 2018; Skruber et al., 2020). Profilin 1-deficient CAD cells, which are of neural origin, show Arp2/3 network-deprived leading edges, while Ena/VASP proteins are non-functional at the same time. Rescue experiments with tightly titrated profilin levels reveal discrete stages of either competition or collaboration between the different actin networks: Low profilin levels in CAD cells favor exclusively linear filaments and filopodia formation at leading edges through Ena/VASP proteins. In contrast, high profilin levels evoke the Arp2/3-dependent branched actin arrays in conjunction with actin bundles resembling filopodia-precursor structures. However, no filopodia are generated in high profilin settings (Figure 2; Skruber et al., 2020). Therefore, the regulative function of profilin on different actin networks in CAD neuroblastoma cells is dosage-dependent. In fibroblasts, Rotty et al. show a clear preference of profilin in driving the formin and Ena/VASP dependent actin machinery. The discrepancies between both studies can be explained by differences in the used substrates and cell types: Primary fibroblasts on fibronectin show prominent stress fibers and several lamellipodia at the leading edge (Rotty et al., 2015). CAD cells on laminin form one continuous and large lamellipodium, where F-actin appears veil-like or in linear arrays of short actin bundles. In contrast to fibroblasts, CAD cells do not form stress fibers (Lee et al., 2013; Skruber et al., 2020). A major source of variations may be the used extracellular matrix proteins: cultivating the same cell type on either fibronectin or laminin can already cause profound differences in its cellular morphology and behavior (Junker and Heine, 1987; Siddiqui et al., 2021). Moreover, several studies demonstrate that neurons can use entirely different modes of migration than fibroblasts (Strasser et al., 2004; Yang et al., 2012; San Miguel-Ruiz and Letourneau, 2014; Santos et al., 2020): For instance, neuronal axons move in an amoeboid manner independent of adhesions and actomyosin mediated forces, while fibroblasts use contractility-based mesenchymal migration when cultivated in 3D matrices (Santos et al., 2020). Thus, the profilin-dependent mechanisms to control actin network architectures could vary between fibroblasts and neuron-derived CAD cells as well. In summary, profilin is a major driving force of actin polymerization and director of the different actin networks. However, the precise mechanisms in how profilin coordinates the different actin networks, appear to vary in a context- and cell type-dependent manner.
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FIGURE 2. Profilin-dependent mechanisms in coordinating different actin networks vary in a cell type-specific manner. Fission yeast (left panel): Profilin balances ARP2/3 and Formin-dependent actin networks by directing G-Actin toward formins enabling normal contractile ring development and, thus, normal cytokinesis. Under semi-permissive temperatures, PFN mutants show large actin patches by increased ARP2/3 activity and impaired contractile ring formation and cytokinesis defects according to formin dysfunctions (Suarez et al., 2015). Mouse Fibroblasts (center panel): Wildtype fibroblasts form normal lamellipodia and filopodia. An acute depletion of PFN leads to increased F-Actin levels and formation of prominent ARP2/3-rich lamellipodia. Filopodia formation is impaired in PFN1-depleted fibroblasts. ARP2-deficient fibroblasts exhibit prominent filopodia but no lamellipodia. Actin dynamics in ArpC2-deficient cells rely on PFN1 and Ena/VASP-proteins (Rotty et al., 2015). CAD cells (right panel): PFN deficiency disrupts the actin networks in leading edges of CAD cells by rendering Mena/VASP proteins inactive and displacing the Arp2/3 complex. Rescue experiments with low to medium levels of PFN1 mediate exclusively linear actin filaments and filopodia formation by high Mena/VASP-activity. High levels of profilin in these settings evoke both high Arp2/3 and Mena/VASP activity. Thus, dense branched actin arrays are formed along with linear actin bundles. The latter resembled filopodia precursors while actual filopodia were not formed (Skruber et al., 2020).




PROFILIN ISOFORMS IN HIGHER ANIMALS

In the previous chapters, we referred to “typical profilin properties” of which particularly the ability to bind actin and poly-proline motifs is widely used to classify proteins with corresponding structure as profilins. When we reviewed the regulation of actin dynamics by “profiling,” we discussed studies using either yeast profilin or mammalian profilin 1. In the following we shine some light on profilins in higher animals: So far, 4 profilin genes have been identified in vertebrates, where the alternative splicing of pfn2 transcript produces two isoforms, PFN2a and PFN2b. PFN1 is ubiquitously expressed and essential for normal development, as early embryos die during the first cell divisions in PFN1-deficient settings or subsequent to injecting anti-PFN1 antibodies into zygotes (Witke et al., 2001; Rawe et al., 2006). In the CNS, PFN1 constitutes only 25% of total profilin protein levels. The majority is represented by the co-expressed PFN2a, which is, according to its expression pattern in mice, categorized as the CNS-specific profilin isoform (Witke et al., 1998). However, PFN2a is more broadly expressed in other organisms. For instance, PFN2a is the ubiquitous isoform in chicken (Murk et al., 2009). In addition, PFN2a is also present in non-neuronal cells and tissues of humans (Mouneimne et al., 2012). The other PFN2 splice form PFN2b is only expressed in kidney (Di Nardo et al., 2000). PFN3 and PFN4 are testis-specific isoforms, while PFN4 shows the lowest level of homology to the other isoforms (Figures 1, 3; Hu et al., 2001; Obermann et al., 2005).
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FIGURE 3. Structural features reflect the different biochemical properties of the mammalian profilin isoforms. (A) Sequence alignment between human profilins. Fully conserved residues are on dark background. Key residues of PLP binding are indicated by asterisks, those involved in binding actin with triangles. Secondary structures are derived from bovine PFN1 crystal structure. For compatibility with most publications, the first methionine is not considered in sequence numbering. (B) Superposition of bovine PFN1 (yellow), mouse PFN2a (magenta), human PFN3 (green), and human PFN4 (cyan). PFN1 structure is from the profilactin complex (PDB core 1HLU) and PFN2a from the complex with a VASP peptide (PDB code 2V8C). Loops variable in length in PFN3 and/or PFN4 are marked. (C) Comparison of the PLP-binding sites of PFN2a, PFN3, and PFN4. Shown is also the PFN2a-VASP complex, coloring as in 3B. Only half of the binding site is conserved in PFN3, no conservation is seen in PFN4. Key residues for peptide binding are indicated. (D) Actin-binding sites of PFN1, PFN3, and PFN4, coloring as in 3B. For clarity, actin is not shown; view is from the direction of actin onto the actin-binding surface on profilin, side chains of key profilin residues are shown. (E) Comparison of PtdIns(4,5)P2 binding surfaces of PFN1, 2a, 3, and 4 (left to right, respectively). Profilins are colored as in 3A, and all arginine residues, crucial for PtdIns(4,5)P2 binding, are highlighted in blue; lysine residues are shown in gray. This figure is used in this review with permission from Behnen et al. (2009).


Structural comparisons show that generally all isoforms possess the typical profilin folding. PFN4, however, is ten amino acids shorter than PFN1 and PFN2a, which reduces the lengths of three interspacing loops (β1β2, β4β5, and β5β6, Figures 3A,B). PFN4 interacts neither with G-actin nor poly-proline stretches, as it lacks all the necessary key residues to bind these typical profilin ligands (Figures 3A–C). Another difference is a shifted phospholipid binding site in PFN4, which enables it to bind PtdIns(4)P and phosphatidic acid in vitro (Figure 3E; Behnen et al., 2009). Analogous to PFN4, PFN2b does not have a significant affinity to G-actin and poly-proline motifs either (Di Nardo et al., 2000). Although the cellular functions of these profilin isoforms are currently unknown, it is conceivable that they fulfill different tasks than controlling actin dynamics. The other profilin isoforms vary more subtly in the typical profilin properties: The testis-specific PFN3 isoform interacts both with G-actin and poly-proline motifs but with significantly lower affinity than “the” PFN1. This different binding behavior is structurally reflected by conservative amino acid sequence differences in the actin binding sites of PFN1 and PFN3 (Figure 3D). In addition, the two key residues His133 and Phe139, which mediate high-affinity binding of PFN1 to poly-proline, are not present in PFN3 (Figures 3A,C). The putative phospholipid binding site of PFN3 is structurally comparable to PFN1 and PFN2a (Figure 3E; Behnen et al., 2009).

PFN2a, the predominant splice form of pfn2, has actin-binding properties comparable to PFN1 (Lambrechts et al., 1995, 2000), while it binds in vitro with higher affinity to synthetic poly-proline peptides (Lambrechts et al., 1995). These experimental findings are supported by structural data showing all residues central to actin binding are conserved between PFN1 and PFN2a (Figures 3A,D). The poly-proline binding domain of PFN2a is highly similar to PFN1, while the aromatic residues Tyr29 and Tyr133 in PFN2a further enhance its affinity to poly-proline (Figures 3A,C; Nodelman et al., 1999; Haikarainen et al., 2009; Walter et al., 2020). The phospholipid binding sites are well conserved between PFN1 and PFN2a (Figure 3E). However, the greater binding strength of PFN2a to poly-prolines prevents, in contrast to PFN1, a competitive binding between synthetic poly-proline peptides and PIP2 (Lambrechts et al., 1997). Both similarities and differences between PFN1 and PFN2a in vitro raise the question as to whether the isoforms are functionally exchangeable or fulfill different tasks in cellular settings.



PROFILIN 1 VS. PROFILIN 2a – FROM PROTEINS, MICE AND CHICKEN

To discuss the functional diversity of PFN1 and PFN2a, we here elaborate their binding properties to different ligands as well as the phenotypes, caused by manipulating PFN1 and/or PFN2a in cells and animals. For the latter, we mainly focus on neuronal cells, where both isoforms are co-expressed.

PFN1 and PFN2a share a large number of mutual ligands but also bind some ligands exclusively (Supplementary Table 1). For instance, affinity chromatography based screens identified tubulin among the exclusively PFN1-bound proteins (Witke et al., 1998). This finding was confirmed and extended by recent studies showing a tubulin binding site in PFN1 close to its actin binding domain. The proximity of both binding sites prevents PFN1 to interact with tubulin monomers in in vitro settings, when G-actin is present (Henty-Ridilla et al., 2017). However, PFN1 associates in different cell lines with tubulin, cytoplasmic microtubules, mitotic spindles and centromers (Grenklo et al., 2004; Nejedla et al., 2016; Henty-Ridilla et al., 2017; Nejedlá et al., 2021.) Moreover, the manipulation of cellular PFN1 levels also affects microtubule dynamics: Depletion of PFN1 evokes increased microtubule growth in B16f-melanoma cells (Nejedla et al., 2016). In neuronal cells, PFN1 mediates the opposite effect: The velocity of growing microtubules is three-fold increased in PFN1-overexpressing N2A neuroblastoma cells (Henty-Ridilla et al., 2017). Increased PFN1 levels promote axon growth and regeneration of neurons in cell culture and in vivo by accelerating microtubule growth, while depletion of PFN1 curbs these processes (Pinto-Costa et al., 2020). These findings are in line with in vitro assays showing the direct enhancement of microtubule growth by PFN1 (Henty-Ridilla et al., 2017). In addition, PFN1 coordinates microtubules with actin filaments in axons via formins (Pinto-Costa et al., 2020), which serve as a link between both filament systems (see for review Breitsprecher and Goode, 2013). In summary, PFN1 specifically balances microtubule dynamics in yet to be determined cellular settings and via so far unknown molecular mechanisms.

Loss of function studies show PFN1 to control distinct aspects in CNS physiology, which apparently are not compensated by the co-expressed PFN2a: The CNS-specific deletion of the pfn1 gene causes specific anatomical changes in the mouse brain. PFN1-deficient mice exhibit smaller brains, where in particular the cortex with 25% and the cerebellum with up to 50% of size reduction are affected (Figure 4). The hypoplasia of the cerebellum develops postnatally, when the neuron subtypes of cerebellar granular neurons (CGNs) and Purkinje cells move toward their final positions. Firstly, CGNs and Purkinje cells migrate tangentially in the external granular layer. Then they switch to radial migration and move along the processes of Bergmann Glia to cross the molecular layer and reach their destinations, the Purkinje or internal granule layer inside the cerebellum (Chédotal, 2010). Pfn1-/- CGNs, however, fail to adhere and migrate along Bergmann glia fibers, which cause their ectopic accumulation in the intermediate molecular layer (Kullmann et al., 2011, 2015). Also, the co-migrating Purkinje cells show analogous migration defects. However, this phenotype turned out not to be cell autonomous, as the Purkinje cell-specific pfn1 deletion does not reproduce the migration defect observed in mice with the CNS-wide ablation of pfn1 (Kullmann et al., 2012). Thus, defective migration of PFN1-deprived cerebellar granule cells is somehow translated to migrating Purkinje cells. PFN1 deletion in the rodent CNS evokes impaired motor coordination, which is typical for disturbed cerebellum functions (Kullmann et al., 2012).
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FIGURE 4. PFN1 loss perturbs brain development and causes malformations of cortex and cerebellum through altered cellular compositions. Pfn1–/– mice exhibit smaller brains, with size reductions, particularly of the cortex (–25%) and cerebellum (–50%). Defects in cortical development are caused prenatally by a distinct subset of neural progenitor cells, known as basal radial glia. PFN1 loss affects the orientation of basal radial glia cell divisions during development, causing transiently ectopic neurogenesis. Adult mice show abnormal invaginations of the neocortex while cortical layering is principally preserved (Kullmann et al., 2020). Cerebellar hypoplasia develops postnatally by migration defects of cerebellar granule cells and Purkinje cells (Kullmann et al., 2011, 2012, 2015). Impaired adhesion and migration of cerebellar granule cells along the processes of Bergmann glia are causative for this phenotype. bRG, basal radial glia; aRG, apical radial Glia; CP, cortical plate; IZ/SP, intermediate zone/subplate; SVZ, subventiruclar zone; VZ, ventricular zone; BG- Bergmann Glia; CG- cerebellar granule cells; PC- purkinje cells; EGL, external granular layer; ML, Molecular layer; PCL, Purkinje cell layer; ICL, Internal granular layer; P60, postnatal day 60.


Defects in the cortex development of pfn1-/- mice occur prenatally (Figure 4; Kullmann et al., 2020). This finding is in line with a wealth of developmental studies showing that the cerebral cortex with its typical six horizontal layers and specialized neuron subtypes forms between embryonic day 10 and birth. The different neuronal cells in the cortex originate from radial glia cells in the ventricular and subventricular zone (Götz et al., 2002; Noctor et al., 2004). From there, radial glia cells and already differentiated neurons migrate and create the cortical layers in a stepwise manner (Gilmore and Herrup, 1997; López-Bendito and Molnár, 2003). In contrast to the developing cerebellum, the migration of radial glia cells and thus, cortical layering in PFN1 deficient brains is unaffected. Pfn1-/- brains display smaller and abnormal invagination-bearing cerebral cortices, a phenotype that can be attributed to cell division defects in basal radial glia cells, a rare subset of neural progenitor cells. Basal radial glia cells are highly neurogenic and can be found in the developing cortex of gyrencephalic species, where they are associated with the development of the cortical folds, known as gyri and sulci (Penisson et al., 2019).

In pfn1-/- brains, alterations in basal radial glia cell division result in locally increased and ectopic neurogenesis at embryonic day 14.5. Later in development, the atypical invaginations form in the cortex periphery after the ectopic basal radial glia cell-derived neuronal cells reached their final positions and differentiate in cortical layer I (Kullmann et al., 2020). In contrast to the distinct CNS deformities in this pfn1 knockout mouse model, excitatory synapses were structurally and functionally intact (Görlich et al., 2012). However, it is noteworthy that the acute depletion of PFN1 in cultured hippocampal neurons and organotypic slices by RNAi affects dendritic spines, which harbor the majority of excitatory postsynapses (see for review Borovac et al., 2018). The PFN1 knockdown reduces the overall densities as well as the content of mature subtypes of dendritic spines (Figure 5B; Michaelsen-Preusse et al., 2016). Thus, PFN1 controls distinct aspects of brain development, while further research is required to clarify its role in synapses.
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FIGURE 5. Distinct effects of PFN1- or PFN2- “loss-of-function” in neuronal cells. (A) Genetic ablation of Profilin2 and impact on synapses: Presynapses in pfn2-deficient mice show an increased number of primed synaptic vesicles. Increased exocytosis of synaptic vesicles cause hyperactivity and changed complex behaviors in pfn2-/- mice, such as increased novelty-seeking (Pilo Boyl et al., 2007). Further studies also indicate increased endocytosis in pfn2-/-mice (Gareus et al., 2006; Luscieti et al., 2017). Pfn2 –/– animals display no gross changes in brain anatomy. (B) shRNA-mediated acute depletion of PFN2a in organotypic slice cultures reduces dendritic complexity and spine densities of hippocampal CA1 neurons (Michaelsen et al., 2010). shPFN1 treatment of neurons reduces the overall densities of mature dendritic spines (Michaelsen-Preusse et al., 2016). It was not described, if PFN1 knockdown also affects the dendritic arborization of CA1 neurons (labeled with “?”). Rescue experiments indicate that PFN1 is unable to compensate PFN2a-specific defects in dendritic complexity. Depletion of PFN2a but not PFN1 affects the overall volume of astrocytes in organotypic slice cultures (Schweinhuber et al., 2015).


In contrast to PFN1, PFN2a binds membrane- and synaptic vesicle-associated proteins like synapsins and dynamin I in ligand screenings (Witke et al., 1998). Cell biological and in vivo studies with pfn2-deficient mice reveal accordingly functions of PFN2a in synaptic membrane trafficking: PFN2a is able to inhibit endocytosis through its interaction with dynamin I (Gareus et al., 2006). Moreover, PFN2a-deficient mice show increased synaptic exocytosis upon depolarization, which correlates with altered synaptic F-actin levels and larger number of primed synaptic vesicles in pfn2-/- synapses when compared to wildtype synapses (Figure 5A; Pilo Boyl et al., 2007). Interestingly, pfn2-/- mice do not show gross changes in brain anatomy. Instead they exhibit behavioral abnormalities such as hyperactivity and increased novel object seeking. This phenotype correlates with electrophysiological analyses showing increased synaptic excitability of glutamatergic neurons in the striatum of pfn2-/- mice. The findings support the hypothesis that PFN2a tunes the presynaptic neurotransmitter release of neurons via actin dynamics. In turn, PFN2 loss creates the over-activation of neural circuits like the cortico−striatal glutamatergic pathway, which relays its increased synaptic input to basal ganglia and thereby causes hyperactivity and altered complex behaviors. Thus, studies in pfn2-/- mice reveal a prominent role of PFN2a in presynapses. However, these findings do not rule out postsynaptic functions of PFN2a. NMDA receptor stimulation of cultured hippocampal neurons expressing PFN2a-GFP evokes the translocation of PFN2a into dendritic spines, where actin-dependent changes in spine shape are subsequently blocked (Ackermann and Matus, 2003). Fear conditioning of rats induces the translocation of endogenous profilin into dendritic spines of the amygdala (Lamprecht et al., 2006). Also, localization studies with a PFN2-specific antiserum confirm the presence of PFN2a in dendritic spines of cultured neurons depending on synaptic activity and Rho signaling (Schubert et al., 2006). Finally, acute PFN2a depletion in organotypic slice cultures reduces the dendritic complexity and spine densities of hippocampal CA1 neurons (Figure 5B). The concomitant expression of exogenous PFN1 rescues defects in dendritic spine density but not in dendrite arborization of PFN2a-depleted CA1 neurons (Michaelsen et al., 2010). These results demonstrate functions of PFN2a in postsynaptic and dendritic compartments, which partially can be compensated for by upregulated PFN1.

In addition, PFN1 and PFN2a are also involved in extra-synaptic functions in the CNS. Both isoforms are expressed in astrocytes, the most prevalent and highly arborized glia cells in the CNS, which actively support and protect neurons (see for review Schiweck et al., 2018). Depletion of PFN2a, but not PFN1, reduces the total volume that astrocytes occupy in organotypic brain slices (Figure 5B; Schweinhuber et al., 2015). PFN1 knockdown in cultured astrocytes instead affects the number and motility of filopodia-like protrusions, which resemble dynamic perisynaptic processes of astrocytes in vivo (Molotkov et al., 2013). Another recent study shows that PFN2a is involved in iron homeostasis. The pfn2 transcripts contain an iron response element in their 3′-UTR, which positively regulates pfn2 mRNA stability upon binding by iron response proteins. PFN2 deficiency leads to excessive iron accumulation specifically in the brain, possibly through increased transferrin uptake by deregulated endocytosis (Luscieti et al., 2017). Thus, PFN1 and PFN2a possess mutual as well as isoform-specific functions in the CNS, which regulate multiple processes including membrane trafficking and shaping of the plastic morphology of neuronal cells.

However, the question remains whether PFN2a can also fulfill tasks of PFN1 in non-neuronal cells. To our knowledge, no direct gene replacement of endogenous PFN1 with PFN2a in such settings has been published. However, chicken ubiquitously express PFN2a (chPFN2a), which, surprisingly, differs from murine PFN2a by a single amino acid substitution at position 38 (Murk et al., 2009). In chicken fibroblasts, PFN2a is responsible to control actin dynamics in general. Chicken PFN2a is co-expressed with a PFN1-like isoform (chPFN1). Sequence alignments with mouse PFN1 showed, however, that chPFN1 differs largely in residues, which are otherwise conserved between mammalian PFN1 isoforms and are crucial for actin binding (Schlüter et al., 1998). Functional assays with chicken fibroblasts after single and double knockdown of chPFN1 and/or chPFN2a demonstrate that chPFN1 loss has no significant impact on actin-dependent processes like cell adhesion, spreading, and migration (Murk et al., 2009). Thus, PFN2a can principally exert functions in non-neuronal cells so far ascribed to PFN1. Still, it is currently unknown if PFN2a has additional functions in chicken fibroblasts, such as the regulation of membrane trafficking events.



PROFILIN 1 AND PROFILIN 2a IN NEUROLOGICAL PATHOLOGIES

Growing numbers of publications, studying patients and/or using cell or animal disease models, link profilins to various diseases: in cancers, PFN1 as well as PFN2 are reported to either act as tumor suppressors or possess oncogenic potential, depending on the studied cancer cell type (for review Pimm et al., 2020). In addition, some studies link PFN1 to a degenerative bone pathology known as Paget Disease (Merlotti et al., 2020; Scotto di Carlo et al., 2020), while others implicate this profilin isoform in vascular inflammation and atherosclerosis (see for review Pae and Romeo, 2014). Particularly, studies on neurological diseases emphasize both the biomedical relevance and the functional diversity of PFN1 and PFN2a isoforms. Therefore, in the following we will focus on the roles of PFN1 and/or PFN2a in a subset of prominent neurological pathologies comprising Amyotrophic lateral sclerosis (ALS), Fragile X syndrome (FXS), Huntington’s disease (HD), and spinal muscular atrophy (SMA).



AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is a major neurodegenerative disease, which is caused by mutated Pfn1 alleles (Wu et al., 2012; Smith et al., 2015). This disease is characterized by late-onset progressive degeneration of motor neurons in the brain and spinal cord, leading to impaired motor coordination, paralysis and, ultimately, to death by respiratory failure usually within 3 or 5 years from diagnosis. ALS cases are divided into two major groups - sporadic (sALS) and familial (fALS), while familial cases of ALS represent roughly 10% of total ALS cases (see for review (Hulisz, 2018). Exome sequencing studies reveal 8 mutations in the PFN1 gene in both familial and sporadic ALS cases (C71G, G118V, M114T, E117G, T109M, R136W, A20T, Q139L) (Figure 6.1; Wu et al., 2012; Chen et al., 2013; Ingre et al., 2013; Smith et al., 2015; Alkam et al., 2017). The PFN1-associated ALS pathology is reproducible in several mouse and rat models (Yang et al., 2016; Fil et al., 2017; Barham et al., 2018; Brettle et al., 2019; Yuan et al., 2020). The expression of ALS-PFN1 mutants evokes cytoskeletal and morphological defects in primary neurons, such as abnormally low ratios of F-/G-actin, shorter dendrites and integrity-impaired axons, which undergo Wallerian degeneration over time (Figure 6.2; Wu et al., 2012; Yang et al., 2016; Fil et al., 2017). Different scenarios are currently discussed in the field on how PFN1 mutations could evoke ALS: in view of PFN1’s central role in actin dynamics, one hypothesis is the perturbation of G-actin binding of PFN1 by ALS-associated mutations. The initially discovered mutations C71G, G118V, M114T, and E117G are in close proximity to the PFN1 G-actin binding site. Co-immunoprecipitation assays first indicated an impaired G-actin binding of the PFN1 C71G, PFN1 G118V, and PFN1 M114T mutants (Wu et al., 2012). However, subsequent analyses using recombinant proteins in pyrene-based actin polymerization assays demonstrate that none of those four PFN1 mutants is significantly affected in its binding to G-actin (Boopathy et al., 2015). In addition, the later discovered PFN1 T109M mutant also exhibits a normal affinity to G-actin (Freischmidt et al., 2015). Thus, the direct interaction of ALS-PFN1 mutants with G-actin is unlikely to cause the ALS pathology. Several analyses show that ALS-associated PFN1 mutants are prone to aggregate like the other ALS-causing proteins, such as SOD1, TDP43, and FUS (see for review Saberi et al., 2015). Some ALS-linked PFN1 mutations (C71G, M114T, G118V) form insoluble and ubiquitinated protein aggregates and inclusions in primary motor neurons and N2A cells, while control wildtype PFN1 is diffusely distributed across the cytoplasm (Figure 6.3; Wu et al., 2012). Also, the more recently identified PFN1 A20T variant causes the formation of insoluble aggregates in HEK293T cells and ALS patients-derived fibroblasts (Smith et al., 2015). Comprehensive biochemical analyses demonstrate the mutation-induced destabilization of protein folding in PFN1 C71G, PFN1 M114T, and PFN1 G118V variants (Boopathy et al., 2015; Del Poggetto et al., 2015a, b, 2016, 2018). These studies support the hypothesis that ALS-PFN1 mutants acquire different, partially or alternatively folded conformations, which promote the formation of PFN1 inclusions in the cytosol. X-ray crystallography reveals corresponding structural perturbations in aggregation-prone ALS-PFN1 mutants: the M114T mutation turns a surface pocket of wildtype PFN1 into a cleft, which extends into the protein core. Accordingly, this structural change exposes in wildtype PFN1 buried hydrophobic residues to solvent and, thereby, destabilizes the overall protein stability. Computer modeling suggests also a cavity deep within the PFN1 C71G mutant (Boopathy et al., 2015). Such internal voids are structurally more disruptive than peripheral, solvent-exposed cavities, which explains the particularly high instability and aggregation propensity of PFN1 C71G among the biochemically characterized ALS-PFN1 mutants (Eriksson et al., 1992b, a; Del Poggetto et al., 2015a; Xue et al., 2019). In line with the structural and biochemical findings is the particularly high susceptibility of PFN1 C71G to proteasomal degradation in cells (Schmidt et al., 2021). Interestingly, the PFN1 E117G and PFN1 Q139L mutants are less prone to aggregate (Smith et al., 2015). Structural comparisons also reveal a folding of PFN1 E117G highly similar to wildtype PFN1 (Boopathy et al., 2015). Both PFN1 E117G and PFN1 Q139L have in common to cause only mild phenotypes in cell models (Wu et al., 2012; Figley et al., 2014). PFN1 E117G is also under debate of rather being a benign polymorphism or a potential ALS risk factor, as it is also present in control patients (Fratta et al., 2014; Smith et al., 2015). Therefore, the mutation-dependent destabilization of PFN1 toward aggregation-prone conformations is required to drive the full-scale ALS pathology.
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FIGURE 6. Profilins in CNS pathologies. 1. Exome sequencing studies revealed 8 mutations in the Pfn1 gene in familial and sporadic ALS patients (Ingre et al., 2013; Wu et al., 2012; Chen et al., 2013; Smith et al., 2015; Alkam et al., 2017). 2. Motoneurons expressing ALS mutant PFN1 G188V exhibit abnormally low ratios of F-/G-actin. Motor neurons of ALS-PFN1-mutant expressing mouse model exhibited cytoskeletal disruptions and impaired axon integrity followed by Wallerian degeneration (Yang et al., 2016). 3. In cell culture and mice, wildtype PFN1 is diffusely distributed across the cytoplasm of motor neurons and N2A cells, while PFN1 C71G, PFN1 M114T and PFN1 G118V PFN mutations form protein aggregates and inclusions. PFN1 co-aggregates with TDP43 (Wu et al., 2012; Yang et al., 2016). 4. FRMP directly binds the mRNA of Drosophila profilin (encoded by chickadee), which is required for correct neuronal development in Drosophila (Reeve et al., 2005). 5. FRMP knockdown in mice causes depletion of radial glia cells (RGC) and defects in cortical development, while overexpression of PFN1 in these settings restores the radial glial dependent developmental defects (Saffary and Xie, 2011). 6. Levels of PFN1, but not PFN2a, are reduced in FRM1 mutant mice. Depletion of PFN1 causes defective dendritic spine formation and maturation during development analogous to defects in Fmr1-KO mice. Overexpressed PFN1, but not PFN2a, can rescue dendritic spine defects in Fmr1-KO neurons (Michaelsen et al., 2010; Scharkowski et al., 2018). 7. Binding of PFN to the proline-rich domain of huntingtin reduces huntingtin aggregation and toxicity (Shao et al., 2008; Ceccon et al., 2020). 8. Rho kinase-dependent phosphorylation of PFN1 at serine 137/8 enhances huntingtin aggregation. Pharmacological inhibition of ROCK inhibits huntingtin aggregation and toxicity (Bauer et al., 2009; Li et al., 2013). 9. In humans, reduced profilin protein levels correlate with disease progression of Huntington disease in patients (Burnett et al., 2008). 10. smn-deficient fission yeast displays splicing defects in the profilin gene, resulting in altered actin network homeostasis, perturbed cytokinesis and endocytosis (Antoine et al., 2020). 11. Loss of SMN in SMA settings is associated with the upregulation of PFN2a protein levels (Bowerman et al., 2007). 12. Levels of phosphorylated PFN2a are increased in SMA settings while ROCK-dependent phosphorylation of myosin light chain protein phosphatase (Myosin LCPPase) and the cofilin-regulating LIM-kinase, are reduced, causing disturbed actin dynamics (Nölle et al., 2011).


Moreover, ALS-PFN1 mutants frequently co-aggregate with TDP43, which on its own can cause ALS and Fronto-temporal dementia when aggregated (see for review Suk and Rousseaux, 2020). Co-aggregated mutated PFN1 and TDP43 possess prion-like properties and act as seeds that trigger the conversion of endogenous TDP43 into toxic conformational states when taken up by wildtype cells (Tanaka et al., 2016). In Drosophila melanogaster, ectopic PFN1 C71G and PFN1 M114T provoke increased neurodegeneration of retinal photoreceptor neurons via co-expressed TDP43 (Matsukawa et al., 2016). Thus, PFN1 aggregations exacerbate the course of ALS by increasing the toxicity of TDP43.

While the findings showing the toxic PFN1 aggregates are compelling, is it still unclear if also monomeric mutant PFN1 proteins contribute to the ALS pathology. In fact, one study reports accelerated motor neuron degeneration in PFN1 C71G expressing mice prior to the occurrence of PFN1 inclusions (Yang et al., 2016). One potential mechanism via monomeric PFN1 mutants could be the regulation of microtubule dynamics: unlike wildtype PFN1, four ALS PFN1 mutants (C71G, M114T, E117G, G118V) are unable to accelerate the growth of microtubules in vitro and in N2A cells (Henty-Ridilla et al., 2017). These findings correlate with the impaired axon integrity and subsequent Wallerian degeneration in mutant PFN1-expressing motor neurons (Yang et al., 2016; Fil et al., 2017). Another possibility could be changes in the activity of specific-PFN1 binding partners involved in actin dynamics: PFN1 M144T and PFN1 G118V mutants bind, with higher affinity than wildtype PFN1, the formin proteins DIAPH1 and 2 and FMNL1. Moreover, PFN1 M144T and PFN1 G118V significantly enhance the actin assembly rate of those formins. The augmenting function of both mutations relies on a heightened flexibility in the PFN1 α4 helix, which contacts the actin as well as the poly-proline binding site (Schmidt et al., 2021). In addition, disturbances in nuclear pore complexes and nuclear-cytoplasmic transport occur in ALS PFN1 mutants expressing neurons (Giampetruzzi et al., 2019). Whether this phenomenon is a primary effect of mutant PFN1 or caused indirectly, is currently unknown. In summary, ALS-associated PFN1 mutants possess toxic gain-of-function of which particularly the formation of amyloid-like protein aggregates with TDP43, but potentially, also additional properties of monomeric PFN1 mutants, cause the ALS pathology. Nevertheless, many open questions remain regarding the molecular pathomechanisms and the reason why specifically motor neurons degenerate through mutations in a ubiquitous actin binding protein.



FRAGILE X SYNDROME

Animal models show the association of profilin with the Fragile-X syndrome (FXS), one of the most prevalent neurodevelopmental disorders. Cardinal symptoms in the spectrum of FXS are considerable intellectual disabilities, hyperactivity and repetitive behaviors. Frequently, clinical signs of autism may occur in FXS patients, such as reduced social interactions, and impairments of speech. Causative for this X-chromosome-linked disease are mutations in the FMR1 gene affecting the expression and/or function of the Fragile X mental retardation protein (FMRP). As a RNA-binding protein, FMRP binds and regulates the localization, stability and translation of multiple transcripts including those of key regulators controlling neuronal development, morphology, and synaptic plasticity (see for review Bagni and Zukin, 2019). The initial findings connecting FXS to profilin were obtained in Drosophila: FRMP directly binds the mRNA of Drosophila profilin (encoded by chickadee), while FMRP mutant flies expressed significantly increased levels of profilin (Figure 6.4; Reeve et al., 2005). The FMRP-dependent regulation of profilin expression occurs in flies at a late developmental stage, when sensory-input leads to a refinement of neural circuits through limiting of axonal growth and pruning of axonal branches (Tessier and Broadie, 2008). While findings in Drosophila indicate a negative role of FMRP in regulating profilin expression, studies in mice came to opposite conclusions: overexpression of PFN1 in radial glial cells largely rescues developmental defects during corticogenesis in FMRP-depleted mice (Figure 6.5; Saffary and Xie, 2011). In view of profilin isoform specificity, protein levels of PFN1, but not PFN2a, are reduced in FMR1-mutant mice. Depletion of PFN1 also leads to defective dendritic spine formation in hippocampal neurons, which correlate with corresponding structural alterations in FMRP-deficient mice (Figure 6.6; Michaelsen-Preusse et al., 2016; Scharkowski et al., 2018). While PFN1 protein expression is apparently affected in FMR1-mutant mice, it is not clear, whether these effects are caused by a direct regulation of mouse PFN1 transcripts by FMRP or are indirect: one study reports the direct interaction between FMRP and the PFN1 transcript (Michaelsen-Preusse et al., 2016), while large screens did not detect PFN1 transcript as FMRP target (Brown et al., 2001; Miyashiro et al., 2003; Darnell et al., 2011). Whereas the discussed studies demonstrate the implication of PFN1 in animal models, it is to our knowledge unknown, if PFN1 is also affected in FXS patients.



HUNTINGTON’S DISEASE

Huntington’s disease (HD) is an autosomal dominant, progressive neurodegenerative disease caused by an expanded CAG repeat/polyglutamine (polyQ) tract beyond 35 repeats within the first exon of the huntingtin (HTT) gene. The physiological functions of the wildtype huntingtin protein are not yet fully understood, as it participates in various processes during development and adulthood, like cell survival, membrane trafficking, ciliogenesis, autophagy and transcription (see for review Saudou and Humbert, 2016). However, mutated huntingtin proteins with N-terminal elongated polyglutamine sites are prone to form toxic aggregates of oligomers and fibers. By these means, mutant huntingtin also impairs the correct function of co-expressed wildtype huntingtin protein to maintain survival and normal activity of neurons. The consequence of carrying toxic huntingtin mutations is comprehensive neurodegeneration particularly in the striatum, which affects neuronal circuits innervating basal ganglia and the cortex. Typical HD symptoms therefore comprise adult-onset progressive motor dysfunctions, personality changes with progressive emotional and psychiatric disturbances as well as cognitive decline (Zuccato et al., 2010). Huntingtin contains two prolin-rich domains (PRDs), which are binding sites for PFN1 and PFN2 (Figure 6.7; Shao et al., 2008). The interaction with profilins significantly reduces huntingtin aggregation and toxicity (Posey et al., 2018; Ceccon et al., 2020): profilins maintain huntingtin in soluble states and, thus, delay its clustering into first nucleation seeds. On one hand, binding of PFN1 to the PRD region of huntingtin abrogates its capability to form aggregation-prone tetramers. On the other hand, PFN1 also stabilizes huntingtin monomers and dimers, which don’t oligomerize further (Ceccon et al., 2020). However, profilins lose their attenuating effect on huntingtin toxicity, once larger aggregates are formed. The interaction with huntingtin is negatively regulated by the Rho kinase-dependent phosphorylation of PFN1 at serine 138 within its poly-proline binding area (Figure 6.8; Shao et al., 2008; Shao and Diamond, 2012). Pharmacological inhibition of ROCK accordingly inhibits huntingtin aggregation and toxicity in cell culture and animal models (Bauer et al., 2009; Li et al., 2013), which alters profilin activity along with other ROCK target proteins (Narayanan et al., 2016). These biochemical and cell biological findings are in line with a comparative study showing the correlation of reduced profilin levels with the progression of Huntington disease in patients (Figure 6.9; Burnett et al., 2008).



SPINAL MUSCULAR ATROPHY

The survival of motoneuron 1 protein (SMN1) is another ligand that links profilin to a major neurological disorder known as spinal muscular atrophy (SMA). SMN is probably best known for its roles in RNA splicing by assembling and guiding small nuclear riboproteins (snRNPs). However, they broadly participate in various processes, such as RNA metabolism, mRNA trafficking and localization, cell signaling, and also cytoskeletal dynamics (see for review Singh et al., 2017). Deletions or mutations in the human SMN1 gene cause SMA, leading to progressive loss of lower motoneurons followed by muscle atrophy. SMA varies in its onset and progression, while severe forms develop prenatally and are frequently fatal for infants. Patients with less severe SMA vary in their symptoms ranging from cases, who experience muscle weakness to never being able to walk. The pathogenesis and severity of SMA relies on the type of mutations in the SMN1 gene and the homologous SMN2. The SMN2 isoform is rather unstable through the exclusion of exon7 and cannot fully compensate SMN1. However, increased SMN2 protein levels can render SMA to its milder courses (see for review Kolb and Kissel, 2015). SMN protein interacts with cytoskeletal proteins (Fallini et al., 2012), suggesting that cytoskeleton dynamics might be perturbed in SMA. In particular, SMN1 interact with both PFN1 and PFN2a, while it binds stronger to PFN2a (Giesemann et al., 1999). Pathogenic missense mutations or deletions of exon 5 or 7 in SMN1 disrupt the interaction with PFN2a (Sharma et al., 2005). Mapping the SMN protein shows C-terminal poly-proline motifs being critical for the interaction with profilins. Moreover, endogenous PFN1 and PFN2a co-localize with SMN in neurite-like processes of PC12 cells and nuclei of motoneurons (Giesemann et al., 1999; Sharma et al., 2005). In vitro, SMN attenuates PFN2a’s ability to inhibit actin polymerization assays using pyrene-labeled G-actin (Sharma et al., 2005). These findings implicate a direct regulative role of SMN on profilin functions in actin dynamics. Moreover, other studies indicate a direct regulative role of SMN on profilin protein levels and function: Analyses of SMN-deficient fission yeast show splicing defects in the profilin gene. The SMN-dependent splice defect decreases profilin protein levels resulting in tilted actin network homeostasis, which translate into perturbed cytokinesis and endocytosis in fisson yeast (Figure 6.10; Antoine et al., 2020). However, it is noteworthy that fission yeast expresses only one profilin isoform, which may differ in its regulation by SMN from the mammalian isoforms. Accordingly, depletion of SMN in rat PC12 cells causes an increase in PFN2a protein (Figure 6.11; Bowerman et al., 2007). Furthermore, reduced SMN levels affect post-translational modifications of PFN2a: This profilin isoform is hyper-phosphorylated at multiple sites within its PLP-binding site, when SMN is depleted in cell lines and in spinal cords of a SMA mouse model (Nölle et al., 2011). These findings implicate that the lack of SMN-PFN2a complexes increases the accessibility of PFN2a to its upstream Rho kinase (ROCK). While levels of phosphorylated PFN2a are increased in SMA settings, the phosphorylation of other ROCK targets, such as the myosin light chain protein phosphatase (Myosin LCPPase) and the cofilin-regulating LIM-kinase, are reduced (Figure 6.12). Such changes in ROCK-dependent phosphorylation implicate misbalanced activities of PFN2a, myosins, and cofilin in SMN-deficient cells. The consequences are likely perturbed cytoskeletal dynamics in line with observed changes in F/G-actin ratio, formation of stress-related actin rods and impaired neurite outgrowth in SMN-depleted PC12-cells and SMA motoneurons (Nölle et al., 2011; Walter et al., 2021). Thus, erratic PFN2a levels and activity correlate with the pathogenesis of SMA but further investigations are necessary to clarify the molecular mechanism involved.



CONCLUDING REMARKS

In this article, we provided an overview of general profilin features and reviewed the substantial progress made in studying the structural, biochemical, and functional properties of the different profilin isoforms in mammals. We focused on the functional diversity of PFN1 and PFN2a in the central nervous system under healthy and pathological conditions. However, our review also shows that we are still at the beginning of understanding the diverse roles that profilin and its isoforms play in cellular contexts. For many described profilin ligands we still do not know the impact that the interaction with profilins has on the corresponding cellular processes. Moreover, the functions of three out of five mammalian profilin isoforms are unknown, while discrepancies regarding the isoform-specific roles of PFN1 and PFN2a wait to be resolved. In view of profilin-associated diseases, more research is required to understand the involved molecular mechanisms behind the pathologies. Future research that tackles these open questions will immensely profit from newly developed methods and tools. The increasingly improving CRISPR/Cas-based methods will open new avenues to study profilins by loss of function, gene-tagging, and gain of function experiments in a great variety of cell types and organisms (see for review (Pickar-Oliver and Gersbach, 2019). Particularly tagging of endogenous PFN1 will be feasible by new profilin constructs internally fused to fluorescent proteins (Nejedla et al., 2017), as they circumvent the impaired ligand binding of traditional GFP-fused PFN1 variants (Geese et al., 2000; Wittenmayer et al., 2000). A better insight into the functions of profilin and its isoforms will help us to understand fundamental cell biological mechanisms in health and disease.
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Flii inhibits endoplasmic reticulum stress-induced apoptosis Larger tumor formation
Increased invasion

Poorer patient prognosis

Poor patient prognosis Increased invasiveness Larger and more aggressive SCCs

High levels of Ulk (and phospho-Ser64 Flii) is associated with improved clinical prognosis
Prevents Akt-phospho-Ser436 Flii and accumulation of insoluble proteins

Patients with high AR expression but with high Flii tumor expression experienced better
overall survival Reintroduction of Flii sensitizes prostate cancer cells to chemotherapy
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Actin Dynamics
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G-Actin GLD

F-Actin GLD

Ca2* GLD (Glu1083)
(Asp1194)

Caspase-11 LLR and GLD

Daam1 GLD (Modules 4-6)
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IQGAP1 LRR

Kindlin-1 Not Defined

NMMIIA GLD

Paxilin Not Defined

P-Rext GLD

active Rac1 LRR

active R-Ras LRR

Ras Gap LRR

Robo-1 Not Defined

Talin Not Defined

TGF-p1,2,3 Not Defined

Vinculin Not Defined

Transcription and Translation

AKT Phosphorylation of
Serd36

Androgen LRR (aa1-494) and

Receptor GLD (aad95-822)

BAF53 GLD (aa495-827)

BRG1 Not Defined

CaMK-II Not Defined

CARM1 LRR and GLD

ChREBP LRRand GLD

CIsK Phosphorylation of

phosphorylation ~ Ser436 and Thr818

EEF2 Not Defined

Estrogen LRRGLD (G3

Receptor a Module)

Glucocorticoid LRR

Receptor

GRIP1 LRR

Importin B LRR

LRRFIP1 LRR (aa1-427)

Menin Not Defined

MLL1/2 Not Defined

Nup88 LRR

p62 GLD
Phospho-Ser436

PPARy LRR (LXXLL Motif)

RbBPS GLD (G1-3 Module)

SENP3 GLD (G1-3 Module)

SMAD3 Not Defined

SNF2L Not Defined

Syncrip Not Defined

Thyroid LRR

Receptor

UcP1 N/A

Ulkt Phosphorylation of
Ser64

WDR5 Not Defined

Inflammation

BCAP Not Defined

Caspase-1 LRR and GLD

Caspase-11 LRR and GLD

LPS LRR

LRRFIP1 LRR (aat-427)

LRRFIP2 LRR (aa1-427)

MyD88 GLD

NRX Not Defined

RdCVF Not Defined

Function

Actin filament assembly and stabilization
Inhibit polymerisation

Caps barbed end

Type-2 Ca2+ binding sites control actinomyosin dynamics

Localizes Caspase-11 to F-actin rich leading edge

Disrupts Autoinhibition to enhance DRF-induced inear actin assembly

Disrupts Autoinhibition to enhance DRF-induced linear actin assembly

Adaptor protein to faciltate Rac1-mediated cell extension formation

Faciltate interaction with cdc42 and R-Ras for cell extension and elongation

Binds this focal adhesion protein which links integrins to the F-actin cytoskeleton and regulates
their activity

Regulate formation of cell extensions and collagen compaction

Binds this focal contact protein which links integrin receptors to the actin cytoskeleton

Ract effector to mediate RhoA-ROCK-independent myosin Il activation and enhances collagen
contraction

Ract effector to mediate RhoA-ROCK-independent myosin Il activation

Adaptor protein to faciltate Rac1-mediated cell extension formation

Adaptor protein to faciltate Rac1-mediated cell extension formation

Association required for fiopodial extensions on denditc cells

Binds this focal contact protein which links integrin receptors to the actin cytoskeleton
Interacts with members of the TGFB pathway in scratch wounded fioroblasts

Binds this focal contact protein which links integrin receptors to the actin cytoskeleton

Recruits p62-associated cargoes to insoluble actin bundle portion, preventing p62 from
recognizing LC3 and impeding autophagic clearance of ubiquitinated proteins within p62
cargoes

Nuclear receptor coactivator to enhance transcription

Recruits the SWI/SNF ATP-dependent chromatin remodeling complex to the promotor region of
ER target genes (transcriptional reguiation)

Interaction of this subunit of the SWI/SNF complex and recruitment to the COL1A2 promoter
region

Preferentially binds active CaMK-Il to inhibit p-catenin dependent transcription

Nuclear receptor coactivator to enhance transcription

Negative regulatory component of the ChREBP transcriptional complex

Required for full function as ER co-activator

Interacts with this essential factor for the translational process

Hormone-independent transcriptional regulation Recruits SWI/SNF chromatin remodeling
complex to the promotor region ER target genes to enhance transcription

Activates GR-mediated transcription

Nuclear receptor coactivator to enhance transcription

Interacts with this nuclear envelop associating protein involved in nuclear-cytoplasmic transport
Interferes with LRRFIP1 to prevent p-catenin-dependent transcription

Associates with this component of the MLL1/2 methyltransferase complex to faciitate
chromatin recruitment and RNA Pol Il residency for transcriptional regulation of
SENP3-responsive homeobox genes

Associates with this component of the MLL1/2 methyltransferase complex to faciitate
chromatin recruitment and RNA Pol Il residency for transcriptional regulation of
SENP3-responsive homeobox genes

Interacts with this nuclear pore complex protein involved in nuclear-cytoplasmic transport

Interferes with LC3-mediated p62-cargo engulfment by autophagosome

Prevents PPARy receptor repression of the transcriptional activity

Associates with this component of the MLL1/2 methyltransferase complex to faciitate
chromatin recruitment and RNA Pol Il residency for transcriptional regulation of
SENP3-responsive homeobox genes

Transcriptional regulation of SENP3-responsive homeobox genes. Recrits SENPS to the
promotor regions, facilitating mutual association with chromatin

TGFp-dependent interaction of this subunit of the SWI/SNF complex

Transcriptional regulation via ISWI chromatin-remodeling complex

Interacts with this RNA-binding protein involved in RNA metabolism, such as RNA stabiliy,
splicing, and translational control

Hormone-independent transcriptional regulation

Cooperates with LRRFIP1 as transcriptional activator of UCP1 in brown adipose tissue
thermogenisis

Inhibits the phosphorylation by Akt, allowing autophagic clearance of ubiquitinated proteins
within p62 cargoes

Associates with this component of the MLL1/2 methyltransferase complex to facilitate
chromatin recruitment and RNA Pol Il residency for transcriptional regulation of
SENP3-responsive homeobox genes

Binding promotes Flii inhibition of NLRP3 Inflammasome activity

Inhibits inflammatory activity and limit caspase-1 induced cell death

Directs localisation of Caspase-11 to F-actin rich leading edge and reduce TLR4 inflammatory
signaling pathway

Binds LPS to inhibit activation of macrophages

Disrupts LRRFIP1-MyD88 binding to reduce TLR4 signaling

Disrupts LRRFIP2-MyD88 binding to reduce TLR4 signaling Fiii-LRRFIP2 binding enhances the
interaction of Fiii and Caspase-1 to inhibit NLRP3 Inflammasome

Interferes with formation of TLR4-MyD88 inflammatory signaling complex

Binding links Fiii to MyD88 and synergistically prevent TLR4 inflammatory signaling pathway
Binding links Fiii to MyD88 and synergistically prevent TLR4 inflammatory signaling pathway
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Name

Inhibitor
NSC668394 and NSC305787

Compounds 21k and 21m, as
analogs of NSC668394

NSC668394 and NSC305787

NSC668394, drug-like compounds
MMV020549 and MMV666069

NSC668394

NSC668394

NSC305787

NSC668394

Activator

Cyclin-dependent kinase 5, CDK5

Target site and modification

Inhibition of T567 phosphorylation

Inhibition of T567 phosphorylation

Inhibition of T667 phosphorylation
Inhibition of T567 phosphorylation

Inhibition of T567 phosphorylation
Inhibition of T567 phosphorylation

Inhibition of T567 phosphorylation
Inhibition of T567 phosphorylation

Activation of T235 phosphorylation

Experiment models

Zebrafish, osteosarcoma cell culture, Xenopus
embryonic development, mouse lung organ culture
and in vivo lung metastasis models

In vitro binding assays

Mouse lung metastasis cell culture model

Zebrafish, osteosarcoma cell culture, and Xenopus
embryonic development models

Diffuse large B-cell ymphoma cell line and tumor
Xenografts mice models

Tumor-bearing lymphatic reporter mice model
Lung cancer cell model
Japanese encephalitis virus mouse infection model

RB-transfected osteosarcoma cell model
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cDNA® Protein Mutation type Expression References
C.78-24T>A p.D25AISX17 Frameshift Not investigated Laine et al., 2015
(splice variant)
¢.235delT PY79ISX6 Frameshift No expression Van Dijk et al., 2013
c.244C>T p.a82X Non-sense No expression Wang et al,, 2020
c.321T>A p.G107= Synonymous Normal expression Van Dij et al., 2013
C.745G>T p.E249X Non-sense Not investigated Chen etal., 2018
C.748+1G>A P.E249_A250ins-IMGHSHSGSCLL Insertion Decreased expression® Van Dij et ., 2013
(splice variant)
¢.759_T60inSAAT .A253_L254insN Insertion Normal expression® Van Dijk et al., 2013
c.766C>T P.R256X Non-sense Not investigated Kémpe et al., 2017b
©.892-1G>A splice variant Not investigated Caoetal., 2019
c.925A>G P30SV Missense Not investigated Kémpe et al., 2017b
©.994_094delGA p.0332X Non-sense Not investigated Fahiminiya et al., 2014
c.1103C>A P.AEED Missense Not investigated® Nishi et al., 2016
¢.1096_1100delAACTT P.N3BBSISXS Frameshift Not investigated Costantini et al., 2018
c.1106_1107insGAAA PF36OLISXS Frameshift Not investigated Hu etal, 2020
c.1242T>C pPata= Synonymous Not investigated Kémpe et al., 2017b
c.1204T>C plLas2= Synonymous Not investigated Kémpe et al., 2017b
c.1205T>A p.La32X Non-sense Not investigated Balasubramanian et al,, 2018
c.1424A>G p.N446S Missense Not investigated® Kémpe et al., 2017b
¢.1433T>C pLaT8P Missense Not investigated® Fahiminiya et al., 2014
c1471C>T P.Q491X Non-sense Not investigated Van Dijk et al., 2013
c.1647delC P.S550AIX9 Frameshift Not investigated Van Dij et al., 2013
¢.1730dupT P.T578NIsXd Frameshift Not investigated® Kannu etal., 2017
c.1765del p.AS89QISX21 Frameshift Not investigated® Balasubramanian et al., 2018

Gene deletion

Gene deletion

Exon 4-186 deletion
Exon 10-16 deletion

None

Kannu et al., 2017
Kémpe et al., 2017a
Kémpe et al., 2017a
Lvetal, 2017

3Numbering based on reference sequence NM_005032.7.

in vitro, the mutated proteins were soluble, but had slightly reduced stabillty (Schwebach et al., 2020)
€I vitro, the truncated proteins were largely insoluble, prone to degradation, and had significantly reduced stability (Schwebach et al., 2020).
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Data collection coEFhd1 (PDB ID: 7CLT)

Space group P212:2;
X-ray source® and detector PAL-5C Pilatus 6M
Wavelength (A) 0.9794

Unit cell: a, b, ¢ (A) 31.8,47.6,87.2
«py () 900,900, 90.0
Resolution range (A)° 50-2.07 (2.11-2.07)
Réiss 4.6(59.0)
ocs, 0998 (0.873)
<llo()> 11.125)
Completeness (%) 99.2(97.1)

49(43)

Resolution range (A) 436-2.07
No. reflections 789
209/22.9

827 (102)
6(1)

2

2

28

Protein 31.8
Glycerol 224
Ca?+ 208
zn2+ 240
Water 272
RMSD bond length (A) 0.007
RMSD bond angles (/) 087
Ramachandran plot (%) 98.0/2.0/00
favored/allowed/disallowed

@ Beamiine 5C at Pohang Acceleratory Laboratory (PAL) in the Republic of Korea.

b Values in parentheses are for the highest resolution shell.

© Rmargo = X = 1 b= < I10) > V [ /it where I s the intensity of reflection of h,
S s the sum over all reflections and -; s the sum over i measurements of reflection h.
9 CC12 was calculated from HKL2000.

® Ruok = S |Fol-Fell(ZmalFoll: 5% of the reflections were excluded for the
Bieo calculation.
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Promote metastasis
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References

Shafer and Towler, 2009

Park et al., 2014

Lew et al., 2020

Kim et al., 2018; Liu et al., 2019
Shi et al., 2020
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Isoforms Chromosome Exons  Transcripts Length Identity to Isoelectric  Tissue expression References
location (*aa) T1 (%)
T1 11023.3 5 8 201 100 9.0 Visceral and vascular Camoretti-Mercado et al.,
smooth muscle cells 1998; Kersey et al., 2018;
Zerbino et al., 2018
T-2 1923.2 7 5 199/220 64.7 8.4 Smooth muscle cells and Kimet al., 2017; Jo et al.,

*aa, Amino acid.

the immune system

2018; Yinet al., 2019
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T
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Tissue for analysis
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*Methodology Altered level

RPill Up in submucosal
invasive CRC

PT Up in poor prognosis

RiTs 1 Up in node-positive
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BT Up in node-positive
CRC

PTI Down in early COAD

PTI Up in late COAD

Bl Up in carcinoma

Effects on CRC

Worse prognosis

Worse prognosis

Worse prognosis

Worse prognosis

Worse prognosis
Worse prognosis
Worse prognosis

References

Zhang et al., 2011

Kim et al., 2012

Lin et al., 2009

Zhou H. M. et al., 2016

Elsafadi et al., 2020
Elsafadi et al., 2020
Zhang et al., 2010

*Methods used for analysis. P, Proteomics; T, transcriptomics; |, Immunohistochemistry. *COAD, Colon adenocarcinoma.
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Leucine-rich repeat (LRR) domain
LRCH1 - —————————————— RGLERALEEAANSGGLNLSARKLKEFPRTAAPGHDLS 97
LRCH2 LFGQPFPNGPPWNPGSLQPQHTVRSLDRALEEAGSSGILSLSGRKLRDFP---GSGYDLT 111
LRCH3 - —_————————————— RSLDRALEEAAVTGVLSLSGRKLREFPRGAAN-HDLT 82
LRCH4 - —————————————— RSAERALEEAVATGTLNLSNRRLKHFPRGAARSYDLS 68
*, skkkkk*x ek Kk kk keke Kk . skk e
LRCH1 DTVQADLSKNRLVEVPMELCHFVSLEILNLYHNCIRVIPEATVNLOMLTYLNLSRNQLSA 157
LRCH2 DTTQADLSRNRFTEIPSDVWLFAPLETLNLYHNCIKTIPEATIKNLOMLTYLNISRNLLST 171
LRCH3 DTTRADLSRNRLSEIPIEACHFVSLENLNLYQONCIRYIPEATILNLQALTFLNISRNQLST 142
LRCH4 DITQADLSRNRFPEVPEAACQLVSLEGLSLYHNCLRCLNPALGNLTALTYLNLSRNQLSL 128
* L ekkkkekke kok ek kx k _Kkeoekkooe H *e *% kkeokhkoghkk %%
LRCH1 LPACLCGLPLKVLIASNNKLGSLPEEIGQLKQLMELDVSCNEITALPQOIGQLKSLRELN 217
LRCH2 LPKYLFDLPLKVLVVSNNKLVSIPEEIGKLKDLMELDISCNEIQVLPQOMGKLHSLRELN 231
LRCH3 LPVHLCNLPLKVLIASNNKLVSLPEEIGHLRHLMELDVSCNEIQTIPSQIGNLEALRDLN 202
LRCH4 LPPYICQLPLRVLIVSNNKLGALPPDIGTLGSLRQLDVSSNELQSLPSELCGLSSLRDLN 188
** H khkkokkho hhkkdkk ok oxk X * ekkek Kk sk e * eskk k%
LRCH1 VRRNYLKVLPQELVDLSLVKFDFSCNKVLVIPICFREMKOQLOVLLLENNPLQSPPAQICT 277
LRCH2 TIRRNNLHVLPDELGDLPLVKLDFSCNKVTEIPVCYRKLHHLQVIILDNNPLQVPPAQICL 291
LRCH3 VRRNHLVHLPEELAELPLIRLDFSCNKITTIPVCYRNLRHLOQTITLDNNPLQSPPAQICIT 262
LRCH4 VRRNQLSTLPEELGDLPLVRLDFSCNRVSRIPVSFCRLRHLQVILLDSNPLQSPPAQVCL 248
skkx % hkokk ok Koo okkhkko ke 2 cssskk o ke Khkkhkk khkkk ok
LRCH1 KGKVHIFKYLSIQACQIKT--ADSLYLHTMERP 308
LRCH2 KGKVHIFKYLNIQACCRMDKKPDSLDLPSLSKR 324
LRCH3 KGKVHIFKYLNIQACKIA----PDLPDYD-RRP 290
LRCH4 KGKLHIFKYLSTEAGQRG————SALGDLAPSRP 277
*kkkoekkhkkkk sk H
= Calponin homology (CH) domain
LRCH1 MREEKELVEQLRESIEMRLKVSLHEDLGAALMDGVVLCHLVNHIRPRSVASIHVPSPAVP 670
LRCH2 LREEREQIRQLRNNLESRLKVILPDDIGAALMDGVVLCHLANHIRPRSVASTHVPSPAVP 701
LRCH3 REEELELIDQLRKHIEYRLKVSLPCDLGAALTDGVVLCHLANHVRPRSVPSIHVPSPAVP 711
LRCH4 VPDEKDLMTQLRQVLESRLORPLPEDLAEALASGVILCQLANQLRPRSVPFIHVPSPAVP 593
ek s H *xk ke ek kg * e, *% JKhKeshk ok Kheooskhhkkhkk  Khkhkkhkhkkhkx
LRCH1 KLSMAKCRRNVENFLEACRKLGVPEADLCSPCDILQLDFRHIRKTVDTLLALGEKAP 727
LRCH2 KLSMAKCRRNVENFLDACKKLGVSQERLCLPHHILEE—RGLVKVGVTVQALLELPT 756
LRCH3 KLTMAKCRRNVENFLEACRKIGVPQDNLCSPSDILQLNLSVKRTVETLLSLGAHSEE 768
LRCH4 KLSALKARKNVESFLEACRKMGVPEADLCSPSDLLQGTARGLRTALEAVKR-VGGKA 649

kky Kk Kkekkk _ Kkkgkkskekk s kk Kk sk :
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Cancer types Patient Isoforms Tissue analyzed Expression in Methods Validations Referencess

numbers cancer
Glioma 87 L-caldesmon  Serum 4 ELISA P, WB Zheng et al., 2005
Colorectal cancer 38 L-caldesmon  Primary colon cancer and 4 2-DE, MS WB Kim et al., 2012
liver metastasis tissues
Gastrointestinal stromal tumor 105 H-caldesmon  Whole tissue 4 IHC / Yuetal, 2019
Ovarian adult granulosa cell tumor 63 H-caldesmon  Whole tissue 4 IHC / Yu and Qu, 2018
Epithelioid pleural mesothelioma 140 H-caldesmon  Whole tissue ) IHC 7/ Comin et al., 2006
Oral cavity squamous cell 155 L-caldesmon  Primary and metastatic ) RT-PCR, WB IHC Chang et al., 2013
carcinoma tumor cells
Oral cavity squamous cell 292 L-caldesmon  Serum 4 ELISA / Chang et al., 2013
carcinoma
Bladder cancer 18 L-caldesmon  Whole tissue 4 AbM IHC Leeetal., 2015
Melanoma 79 H-caldesmon  The blood vessels within ! IHC / Koganehira et al.,
melanoma lesions 2003
Leiomyosarcoma 29 H-caldesmon  Whole tissue 1 IHC / Watanabe et al.,
2000
Fibroxanthoma 13 H-caldesmon  Whole tissue 4 IHC / Martinez-Ciarpaglini
etal., 2018

ELISA, Enzyme-linked immunosorbent assay; IR Immunoprecipitation; WB, Western blot; 2-DE, Two-dimensional electrophoresis; MS, Mass spectrometry; IHC,
Immunohistochemistry; RT-PCR, Real-time quantitative polymerase chain reaction; AbM, Antibody microarray profiling. 1, upregulated expression; |, downregulated
expression; /, no validation.
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Pathways

Rac1/PAK1/cortactin

Wg/Wnt signaling pathway

Rho GTPase Rac1 signaling Pathway

T3avp3 FAK/paxillin/cortactin/NWASP Arp2/3 signaling pathway
FAK/Src signaling pathway

EGFR/Src/Arg/cortactin signaling pathway

Upstream

P27, PAK1
RNF128
PODXL, CD44
T3, FAK, Paxillin
Scr, P53

Src, Arg, EGF

Downstream

ECM

CD44, c-Myc
FAK, Paxillin
NWASP, Arp2/3
FAK, F-actin
ECM

References

Jeannot et al., 2017

Alicea et al., 2017; Wei et al., 2019

Kim and Wong, 1995; El Sayegh et al., 2005
Uzair et al., 2019

Wang et al., 2013; Ungewiss et al., 2016
Mader et al., 2011; Ni et al., 2015
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Disease

The expression of
cortactin

Related mechanism

References

Oral squamous cell carcinoma

Melanoma

Gastric carcinoma

Increased
phosphorylation of
cortactin

Cortactin
ubiquitination and
degradation
Cortactin
overexpression

In SCC-15_TB4 and SCC-25_Tp4 cells, EMT-induced transcription
factors were significantly enhanced. Overexpression of T4 increased
the in vitro invasion and MMP-2 activity and enhanced the
phosphorylation of paxillin and cortactin and the expression of LIMK1.
The downregulation of RNF128 promotes the progression of melanoma
by ubiquitination and degradation of CD44/cortactin to activate Wnt
signaling, thereby inducing cellular EMT and obtaining stem cells.
Cortactin can promote the proliferation of gastric cancer cells and EMT,
while microRNA-545 (miR-545) can inhibit the expression levels of
cortactin mRNA and protein in GC cells and has a negative regulatory
effect on the carcinogenic activity of cortactin.

Hong et al., 2016

Wei et al., 2019

Ma et al., 2018
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Score Actin machinery Directforce Membrane Transport Exocytosis  Blebbing Chemicals

production  repair endocytosis
Apoptosis W/ Actin, Myosin, Caspase, a-Actinin,  Actin, Myosin ~ N.A. Actin, NA. Actin, myosin,  Oytochalasin D,
Gelsolin, B-Thymosins, Filamin, Myosin ROCKT, Latrunculin A,
E-tropomodulin, Coronin-1, RhoA, Gelsoliin, Jasplakinolide,
Rac-1, Cofilin, WAVE, Vilin, DNase I, Caspase Simvastatin,
ROCKI1, Par-4, Dik, DR4/DRS, TNF Phalloidin
receptor-1, CD95/Fas, CD44, Ezin,
VDAC, p53, E-cadherin, Catenins,
Dic2
Lysosomal Actin, Myosin, Cathepsin B, NA. NA. NA. NA. NA. GA101, Gytochalasin
cell death Cathepsin D, Cathepsin L, Cofiin, D, Latrunculin B
Troponin
Pyroptosis  /4/y/  Actin, Myosin, Cofiiin, RhoA, NA. ESCRTIl  NA. NA. NA. Oytochalasin D
Slingshot, ESCRT-IIl complex,
Caspase, NLRP3
NETosis VY Actin, neutrophil efastase, PKCa, NA. NA. NA. NA. NA. Cytochalasin D,
CDK6 Jasplakinolide
Necroptosis  +//y/  Actin, Myosin, Villn-1, Gelsolin, NA. ESCRTIl  Actin Actin NA. Oytochalasin B
ESCRT-lll complex
Entosis VYV Actin, Myosin, MRTF, SRF, Ezrin, Actin, Myosin,  N.A. NA. NA. Actin, Myosin, ~ N.A.
Gde42, RhoA, mDiat, ROCK U, Cdo42, MRTF, SRF,
Rac1, AMPK, Cadherin, Catenins, RhoA, Rac, Ezrin, Cdc42,
P190A RhoGAP, Vineulin, PCDH7,  ROCK, RhoA, mDia,
PPla Vineulin ROCK /i,
Ract, AMPK
Parthanatos  * Actin, MIF, Cofiin, PAR NA. NA. NA. NA. NA. NA.
Ferroptosis ~ / Actin, HSPB1, PKC, WAVE2, Nif2,  NA. ESCRTIl  NA. Actin NA. Oytochalasin D
Keap1, MAPK, p53, VDAC, ESCRT-lI
complex
Autosis * Nat* K*-ATPase, Cofilin, a-Adducin, ~ N.A. NA. NA. Na* K- N.A. NA.
Myosin ATPase,
a-Adducin
Alkaliptosis ~ * NA. NA. NA. NA. NA. NA. NA.
Oxeiptosis ~ * Actin, Keapi, Myosin NA. NA. NA. NA. Actin, myosin  NA.

VW Strong connection; / Weak connection; *To be investigated. Some actin machinery proteins may not directly participate in PCDs. Please refer to the main text for
detailed information.





OPS/images/fcell-08-634849/fcell-08-634849-g010.gif





OPS/images/fcell-08-634849/fcell-08-634849-g009.gif





OPS/images/fcell-08-634849/fcell-08-634849-g008.gif





OPS/images/fcell-08-634849/fcell-08-634849-g007.gif





OPS/images/fcell-08-634849/fcell-08-634849-g006.gif





OPS/images/fcell-08-634849/fcell-08-634849-g005.gif





OPS/images/fcell-08-634849/fcell-08-634849-g004.gif
/%/\.

w
P ;J :
ﬂ )

e

L





OPS/images/back-cover.jpg
Advantages
of publishing
in Frontiers






OPS/images/fcell-08-588801/fcell-08-588801-g003.jpg
Inhibitors
NSC305787 ——]
NSC668394

EGFR pathway| RhoA activity
Akt/MAPK E-cadherin 1
phosphorylation|

NF-kB signaling| B-cadherin 1
Ras signaling] miR-183 level 1

Cancer Progression|, Metastasis/Invasion|
Cell survivall, Better prognosis





OPS/images/fcell-08-588801/fcell-08-588801-t001.jpg
Phosphorylation
sites

Kinases

Functions

References

Y145

T235

Y353/354

YATT

T567 in Ezrin (T564 in
Radixin and T558 in
Moesin)

Hepatocyte growth factor (HGF) receptor, Lck

Cyclin-dependent kinase 5

Hepatocyte growth factor receptor

Src

Rho-associated kinase, protein kinase B2/Akt2, atypical

protein kinase C-iota (aPKCt), mammalian Sterile 20
(Ste20)-like kinase-4 (Mst4), lymphocyte-oriented
kinase (LOK) and Ste20-like kinase (SLK)

Activate Ezrin, enhances migration and
tubulogenesis; T cell activation

Induce the release of Rho GDP dissociation
inhibitor, increase interaction with Rac1

Activate Ezrin, enhances migration and
tubulogenesis; Responsible for the interaction with
p85, required for PI3-kinase and Akt activation
mediated cell survival; Nuclear localization

Not related to head-to-tail conformational opening,
is associated with kelch-repeat superfamily
protein; Regulates invasion and metastasis
Interferes with the intermolecular head-to-tail
association, activates Ezrin and is positively
associated with invasive growth

Crepaldi et al., 1997;
Autero et al., 2003

Yang and Hinds, 2006

Crepaldi et al., 1997,
Gautreau et al., 1999; Di
Cristofano et al., 2010

Heiska and Carpen, 2005;
Mak et al., 2012

Matsui et al., 1998; Shiue
et al., 2005; Wald et al.,
2008; Gloerich et al., 2012;
Viswanatha et al., 2012;
Antelmi et al., 2013
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Cancers

Lung cancer

Breast cancer and
ovarian cancer

Cervical cancer

Gastric cancer

Osteosarcoma

Hepatocellular
cancer

Interacting proteins

EGFR, ROCK1/2, RhoA, Akt
signaling

miR-183, Akt signaling

LGALS1, Galectin-3,
E-cadherin, MAPK JNK/p38
and Akt/ERK1/2 signaling

miR-183

miR-183, Akt and MAPK,
Akt/mTOR

Rho kinase, cytokeratin 19

Roles

Promotes cell migration and invasion

Promotes cancer progression and enhances metastasis

Controls cell adhesion and enhances invasion. Serves
as the cervical cancer marker for non-invasive detection

Antagonizes mi-183 actions, and is correlated with
tumor size, invasion lymph node and metastasis
Promotes tumor metastasis. High expression is
correlated with poor prognosis

Positive expression is correlated with a smaller tumor
size and higher frequency of tumor dedifferentiation

References

Lee et al., 2012; Li et al., 2012; Chen et al., 2013;
Hata et al., 2016; Saygideger-Kont et al., 2016;
Moodley et al., 2020

Lowery et al., 2010; Horwitz et al., 2016; Ghaffari
etal., 2019; Liet al., 2019

Elliott et al., 2005; Saito et al., 2013; Kong et al.,
2016; Fadiel et al., 2017; Liet al., 2017,
Zacapala-Gomez et al., 2018; Chetry et al., 2020

Lietal, 2011; Cao et al., 2014

Khanna et al., 2004; Krishnan et al., 2006

Okamura et al., 2008; Yeh et al., 2009
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Sample

Ctrl 1

Ctrl 2

Ctrl 3
Ctrl 4

Ctrl 5

Ctrl 6
Ctrl 7

Ctrl 8

uC 1

uc2

ucs

uc 4

uc s
uc e

ucr

ucs
uco9

uc 10

uc 11

Sex

< T

Age

60

82

49
72

76

72
61

91

62

54

53

53

41
59

55

20
60

38

60

Medication

None

None

None
None

None

None
None

None

None

Budenoside,
mesalazine

Adalimumab,
prednisolone,
mesalazine

Infliximab,
prednisolone

Vedolizumab

Adalimumab,
prednisolone

Mesalazine

None

Prednisolone,
mesalazine

None

Infliximab

Histology

Colon ascendens
carcinoma
Colon ascendens
carcinoma

High-grade IEN cecum

Colon ascendens
carcinoma

Colon ascendens
carcinoma

Rectal cancer
Carcinoma of

rectosigmoidal transition

Colon ascendens
carcinoma

Colitis-associated

carcinoma, active UC
Active UC, neuroendocrine

tumor
Active UC

Active UC

Active UC
Chronic UC

Chronic UC
Colitis-associated
carcinoma
Indeterminate colitis
Chronic UC

Chronic UC
Colitis-associated
carcinoma Colon

Vezolizumab

Location

Colon ascendens

Colon ascendens

Colon ascendens
Colon ascendens

Colon ascendens

Colon descendens
Colon descendens

Colon ascendens

Colon ascendens

Rectum

Colon descendens

Colon descendens

Colon sigmoideum
Colon descendens

Colon descendens

Colon descendens

Colon descendens

Descendens

Chronic UC Colon
descendens

Arpin

0.9613

1.3864

1.0732
1.0737

1.0084

1.1629
1.1048

1.2847

0.6556

1.0147

0.8057

0.5482

0.1410
2.1653

1.2074

0.7710
1.0324

0.8791

0.4683

ArpC5

1.0094

0.9304

0.8729
1.0338

1.1396

1.2536
1.0917

0.8669

1.0374

1.0622

1.1679

0.9525

0.0740
1.0626

1.2264

0.7946
0.9578

0.9460

1.0890

IEN, intraepithelial neoplasia. Pixel intensities of arpin and ArpC5 bands (normalized to their respective actin bands) from blots in Figure 4B are shown.
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PFN1 expression p-Value
High Low
Gender
Male 15 g 0.156
Female 10 15
Age
<45 13 11 0.778
>45 12 13
Tumor size
T 3 2 0.047*
T2 7 7
T3 B 0
T4 0 3
Tumor site
Head and neck 6 8 0.851
Trunk 8 8
Limbs 9 8
NF1
With 7 12 0.372
Without 18 12
Survival
Survive 6 9 0.035*
Death 11 3

*p < 0.05.
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Blood Pressure (mmHg)
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BUN (mmol/L)

Cr (umolL)

Coronary artery stenosis
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TC (mmolL)

TG (mmolL)

Fat Liver

204268

30
Male
138/89
5.32
27
30
5.40
59.7

1.05
3.19
487
1.56

203208

53

Male
109/72

4.89

13

1"
4.67
63.5

1.64
1.89
3.81
0.82

NO. 204268, NO. 203208, and NO. 200799 is control, NO.

200799

55

Male
108/69

4.92

18

16
356
63.9

1.74
1.74
4.50
0.85

192917, NO. 201149, NO. 201284, FQ036, FRO14, and FR018 is hyperlipidemia group.

192917

50
Female
139/88

4.66

12

428
7258
0.86
220
3.86
223
+

201149

53
Female
141/84
6.04
15
17
522
49.9
152
485
6.49
205
+

201284

a7
Male
111/69
507
15
9
3.87
744
0.97
221
372
1.94
+

FQo36

64
Female
122/72

69

16

21

3.88

42

Y

30% Fat

FRO14

59
Female
122/80

3.56
277
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56
Male

50% Fat
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Gene

COF1
ARPC1A
ARPC2
ARPC3
ARPC4
ARPCS5L
DBNL
ENAH
WASL
BRK1
GAPDH

Primer sequence (5 — 3') forward/reverse

GACTGCCGCTATGCTCTCTA/CTTGATGGCATCCTTGGAGC
CGGCTCATCTCTGTCTGCTA/AAAACGTTGTTGGGATGCCA
GTGAACAACCGCATCATCGA/AGGACGCCATCAAAATCTGC
GCGGACAGGACCTTGATCTA/TGGAGTTGCACTTTTGGAGC
ACTTCTCTTCCCAGGTCGTG/ACCCGGACAGAATTGATGGA
TCACTGGACAGGAATGGCAT/AAGCCTTTTCATGCCACTGG
TACCAGAAGACCAATGCCGT/TCTCCTCCTCCTTCTCAGCT
ATTCAGAGTGGTGGGCAGAA/TTGCTGCCAAAGTTGAGACC
GGTGACCATCAAGTTCCAGC/GGCCATCAGACACGGATTTC
GCGAGAGATTCACCAGGACT/TCTCACCCTTTGTCACCCTC
TGCCACTCAGAAGACTGTGG/TTCAGCTCTGGGATGACCTT

COF1, cofilin-1; ARPC1A, actin-related protein 2/3 complex, subunit 1A; ARPC2,
actin-related protein 2/3 complex, subunit 2; ARPCS3, actin-related protein 2/3
complex, subunit 3; ARPC4, actin-related protein 2/3 complex, subunit 4;
ARPCS5L, actin-related protein 2/3 complex, subunit 5L; DBNL, developmentally
regulated brain like protein; ENAH, enabled homolog; WASL, neural Wiskott-Aldrich
syndrome protein; BRK1, Brick1 subunit of SCAR/WAVE actin nucleating complex
(Brick1 is also known as hematopoietic stem cell protein 300, HSPC300); GAPDH,
glyceraldehyde-3-phosphate dehydrogenase.
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PTPRS expression p-Value
High Low
Gender
Male 17 7 1.000
Female 17 8
Age
<45 13 11 0.032*
>45 21 4
Tumor size
T 8 2 0.629
T2 9 8
T3 3 2
T4 3 0
Tumor site
Head and neck 11 3 0.320
Trunk 9 74
Limbs 13 4
NF1
With 14 4 0.208
Without 15 11
Survival
Survive 1 4 0.066
Death 8 g

*p < 0.05.
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Higher eukaryotes Trypanosoma cruzi Trypanosoma brucei Leishmania donovani  Leishmania Leishmania
major braziliensis
Disease caused NA Chagas disease Sleeping sickness Visceral Leishmaniasis Cutaneous Mucocutaneous
Leishmaniasis Leishmaniasis
Actin monomer Profilin TcCLB.510911.10 Tb927.11.13780 LdBPK_320550.1 LmjF32.0520 LbrM.32.0570
binding
Thymosin B4 Absent Absent Absent Absent Absent
ADF/Cofilin TcCLB.510145.20 Tb927.3.5180 LdBPK_290520.1 LmjF29.0510 LbrM.29.0450
Gelsolin Absent Absent Absent Absent Absent
Twinfilin TcCLB.506559.300 Tb927.4.2350 LdBPK_342060.1 LmjF.34.2290 LbrM.20.1790
CAP/Srv2 TcCLB.504137.80 Tb927.10.9250 LdBPK_365830.1 LmjF36.5590 LbrM.35.5860
Filament binding Myosin TcCLB.5115627.70 (myosin  Tb927.11.16310 LdBPK_324020.1 LmjF.32.3870 LbrM.32.4110
13) (Unconventional myosin)  (myosin XXI) (myosin XXI) (myosin XXI)
TcCLB.507739.110 (1B Tb927.4.3380 LdBPK_341070.1 LmjF.34.1000 LbrM.20.0970
heavy chain) (1B heavy chain) (1B heavy chain) (1B heavy chain) (1B heavy chain)
TcCLB.504867.120 Tb927.9.1340
MyoA (myosin like protein 2)
TcCLB.506779.190 Tb927.11.330
MyoB (myosin like protein 1)
TcCLB.504103.30
MyoC
TcCLB.503905.10
MyoD
TcCLB.503905.10
MyoE
TcCLB.507445.50
MyoF
TcCLB.507093.210
MyoG
Coronin TcCLB.510515.100 Tb927.8.3100 LdBPK_231400.1 LmjF.23.1165 LbrM.23.1260
CAPz TcCLB.506181.90 Absent Absent Absent Absent
TcCLB.506363.60
Nucleating Arp2/3 complex
(7 subunits) TcCLB.511361.40 Tb927.10.15800 LdBPK_191190.1 LmjF19.1200 LbrM.19.1370
Arp2
Arp3 TcCLB.508277.260 Tb927.9.5350 LdBPK_151410.1 LmjF.15.1360 LbrM.15.1360
ARPCH TcCLB.504215.40 Tb927.10.13190 LdBPK_180920.1 LmjF.18.0920 LbrM.18.0980
ARPC2 TcCLB.506865.10 Tb927.8.4410 Absent Absent Absent
ARPC3 TcCLB.5109683.70 Tb927.10.4540 Absent Absent Absent
ARPC4 TcCLB.509127.104 Tb927.2.2900 LdBPK_020570.1 LmjF.02.0600 LbrM.02.0580
ARPC5 TcCLB.442297.10 Tb927.10.10600 LdBPK_050290.1 LmjF.05.0285 LbrM.05.0280
ARPC-like Absent Absent LdBPK_101080.1 LmjF.10.1000 LbrM.10.1100
Formin TcCLB.511313.30 Tb927.5.2300 LdBPK_171040.1 LmjF24.1110 LbrM.17.0950
TecCLB.506203.80 Tb927.11.5740 LdBPK_241130.1 LmjF17.0930 LbrM.24.1120
TcCLB.511393.30
Crosslinking proteins Fimbrin, villin, a- actinin,  Absent Absent Absent Absent Absent

plastin, spectrin, filamin

The data was downloaded from the TriTrypDB version 48 database (www.tritrypdb.org). IDs of strains used: T. cruzi CL Brener Esmeraldo-like; T. brucei brucei TREU927;
L. donovani BPK282A1; L. major strain Friedlin; L. braziliensis MHOM/BR/75/M2904.
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Actin TcAct1* ActinA* LdAct (LDBPK_041250) LmjF.04.1230 LbrM.04.1250
(TcCLB.510571.30) (Tb927.9.8850)
(TcCLB.510127.79) ActinB (Tb927.9.8880)
Actin 2 TcAct2 (TcCLB.507129.10) Absent Absent Absent Absent
Actin, putative (actin 3rd) TcCLB.510945.30 Absent Absent Absent Absent
Actin, putative (actin 4th) TcCLB.503841.40 Absent LdBPK_350810.1 (actin-like LmjF.35.0790 LbrM.34.0780
protein) (actin-like protein)  (actin-like protein)
Actin -like protein 1 TcCLB.508277.330 Tb927.9.5440 LdBPK_151350.1 LmjF.15.1330 LbrM.15.1280
Actin -like protein 2 TcCLB.506405.30 Tb927.4.980 LdBPK_343560.1 LmjF.34.3760 LbrM.20.3360
Actin -like protein 3 TcCLB.506733.50 Tb927.11.3880 LdBPK_130840.1 LmjF.13.0950* LbrM.13.0760
Actin -like protein 4 TcCLB.510719.110 Tb927.11.10110 LdBPK_363470.1 LmjF.36.3310 LbrM.35.3540
Actin -like protein 5 TcCLB.506695.10 Tb927.3.3020 LdBPK_292850.1 LmjF.29.2740 LbrM.29.2800
Member of ARP6 family ~ TcCLB.508951.29 Tb927.10.2000 LdBPK_210290.1 LmjF.21.0230 LbrM.21.0300

(Actin like protein)

The data was downloaded from the TriTrypDB version 48 database (www.tritrypdb.org). IDs of strains used: T. cruzi CL Brener Esmeraldo-like; T. brucei brucei TREU927;
L. donovani BPK282A1; L. major strain Friedlin; L. braziliensis MHOM/BR/75/M2904.

*This actin locus contains two copies of the gene on one allele and one copy on the second allele (Ben Amar et al., 1988; 3).

#This has been referred as actin-like protein 3 in Cevallos et al. (2011) and as ARP1 in Singh et al. (2014).





