Research Topic

Artificial Intelligence Applications to Energy Systems

About this Research Topic

Transforming our energy systems to make them free of carbon emissions poses technological and scientific challenges. These hinge on aspects of production of electricity and its delivery to end users, consumption patterns and future scenarios, and electrification of transportation and heating. As well as socio-economic and environmental issues that need to be addressed for a rapid and sustainable transition. Many important problems in these areas are currently being studied across technical, social and environmental sciences. The application of machine learning (ML) and artificial intelligence (AI) spans these disciplines, offering powerful tools and methods.

This Article Collection is focused on the "AI & Energy" track in the context of the Applied Machine Learning Days 2020 (AMLD2020) conference, held in Lausanne from 25-29 January 2020. Examples of topics of interest relevant to this Article Collection could include, but are not limited to:
- Demonstration of smart grid technologies by means of application cases and experiments that illustrate current consumption patterns and their spatial distribution;
- Modelling of production and consumption with future energy pricing concepts;
- Themes related to the power plant and electric grid operators, such as the modelling of energy production at different time scales, and the optimization of system operation and life cycle.

All of these topics are currently experiencing a large flow of data from smart meters, environmental monitoring systems, renewal energy power plants, electricity market, electrical grid monitoring systems, as well as physics-based models. Thus, novel applications of state-of-the-art methods for supervised and unsupervised classification, time series modelling and forecasting, computer vision, optimization with feedback from data are expected. For the sake of strengthening analyses and results from new methods, comparisons are encouraged. Similarly, aspects of data and model selection, and hyperparameter tuning.

Transforming the way we produce and consume energy to reduce our environmental footprint, requires also social and economic aspects to be taken into account. Such aspects of the energy transition also benefit from a large influx of data. Thus, themes such as environmental benefits of electrification, management of energy needs at the city, cantonal, national or even inter-country level, and analyses and modelling of environmental data are welcome in this Article Collection, as they can yield new valuable feedback to policymakers. Contributions may also include a diversity of heterogeneous data, including time series, images, and unstructured data.

The contributions presented at the "AI & Energy" track are particularly welcome in this Research Topic. Additionally, other contributions fitting in the scope of the Topic as outlined above are also encouraged. Prior Abstract submission is welcome but not mandatory for manuscript submission.


Keywords: artificial intelligence, smart grid, electrical grid monitoring, power plant operators, supervised classification, unsupervised classification, energy simulation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

Transforming our energy systems to make them free of carbon emissions poses technological and scientific challenges. These hinge on aspects of production of electricity and its delivery to end users, consumption patterns and future scenarios, and electrification of transportation and heating. As well as socio-economic and environmental issues that need to be addressed for a rapid and sustainable transition. Many important problems in these areas are currently being studied across technical, social and environmental sciences. The application of machine learning (ML) and artificial intelligence (AI) spans these disciplines, offering powerful tools and methods.

This Article Collection is focused on the "AI & Energy" track in the context of the Applied Machine Learning Days 2020 (AMLD2020) conference, held in Lausanne from 25-29 January 2020. Examples of topics of interest relevant to this Article Collection could include, but are not limited to:
- Demonstration of smart grid technologies by means of application cases and experiments that illustrate current consumption patterns and their spatial distribution;
- Modelling of production and consumption with future energy pricing concepts;
- Themes related to the power plant and electric grid operators, such as the modelling of energy production at different time scales, and the optimization of system operation and life cycle.

All of these topics are currently experiencing a large flow of data from smart meters, environmental monitoring systems, renewal energy power plants, electricity market, electrical grid monitoring systems, as well as physics-based models. Thus, novel applications of state-of-the-art methods for supervised and unsupervised classification, time series modelling and forecasting, computer vision, optimization with feedback from data are expected. For the sake of strengthening analyses and results from new methods, comparisons are encouraged. Similarly, aspects of data and model selection, and hyperparameter tuning.

Transforming the way we produce and consume energy to reduce our environmental footprint, requires also social and economic aspects to be taken into account. Such aspects of the energy transition also benefit from a large influx of data. Thus, themes such as environmental benefits of electrification, management of energy needs at the city, cantonal, national or even inter-country level, and analyses and modelling of environmental data are welcome in this Article Collection, as they can yield new valuable feedback to policymakers. Contributions may also include a diversity of heterogeneous data, including time series, images, and unstructured data.

The contributions presented at the "AI & Energy" track are particularly welcome in this Research Topic. Additionally, other contributions fitting in the scope of the Topic as outlined above are also encouraged. Prior Abstract submission is welcome but not mandatory for manuscript submission.


Keywords: artificial intelligence, smart grid, electrical grid monitoring, power plant operators, supervised classification, unsupervised classification, energy simulation


Important Note: All contributions to this Research Topic must be within the scope of the section and journal to which they are submitted, as defined in their mission statements. Frontiers reserves the right to guide an out-of-scope manuscript to a more suitable section or journal at any stage of peer review.

About Frontiers Research Topics

With their unique mixes of varied contributions from Original Research to Review Articles, Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author.

Topic Editors

Loading..

Submission Deadlines

14 September 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..

Topic Editors

Loading..

Submission Deadlines

14 September 2020 Manuscript

Participating Journals

Manuscripts can be submitted to this Research Topic via the following journals:

Loading..
Loading..

total views article views article downloads topic views

}
 
Top countries
Top referring sites
Loading..