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Editorial on the Research Topic

Methods for Single-Cell and Microbiome Sequencing Data

Translational investigations of single-cell transcriptomics and microbiomics now constitute the
research hotspots in the field of omics sciences with cell-type-specific gene expression and host-
associated microbes and microbial gene products implicated in numerous complex diseases (Mallick
et al., 2017; Aldridge and Teichmann, 2020). Motivated by the structural similarities of scRNAseq
and metagenomics data (Calgaro et al., 2020; Jeganathan and Holmes, 2021), with respect to several
statistical properties such as, high-dimensionality, count and compositional nature, excess zeros due
to low sequencing depth or dropout, overdispersion, and spatial and temporal dependence, among
others, we set out to launch a combined Research Topic following the completion of the successful
first volume (Mallick et al., 2020) in 2020.

This Research Topic thus consists of eleven papers (including the editorial) on various since-cell
and microbiome omics areas and covers the latest development of statistical methods for analyzing
microbiome and single-cell sequencing data. The papers can be broadly categorized into four
subtypes (Figure 1): 1) Specialized domain-specific publications, 2) domain-agnostic publications
applicable to both microbiome and single-cell studies, 3) single-cell-specific methods with potential
applicability to microbiome studies, and 4) microbiome-specific methods with potential applicability
to scRNASeq.

One of the most common applications of omics data is the differential expression or
abundance analysis to identify omics features that are differential between two or more
biological conditions. Despite being a well-studied problem, differential analysis is still a
very active area of research. In both single-cell and microbiome studies, given the large
number of features present in a typical dataset, standard statistical testing procedures can
put false association or loss of power at odds with prior knowledge or expectations (Mallick et al.,
2017). While most of the current methods are domain- or platform-specific, domain-agnostic
methods applicable to multiple platforms or data types are becoming increasingly common
(Mallick et al., 2021a; Rahnavard et al., 2021). Taking advantage of the inherent compositionality
and hierarchical tree structure observed in both single-cell and microbiome sequencing data,
Ostner et al. proposes a domain-agnostic Bayesian tree-aggregated model (tascCODA)
applicable to any compositional rectangular data with hierarchical row or column
information. tascCODA thus constitutes a valuable addition to the growing statistical

Edited and reviewed by:
Richard D. Emes,

University of Nottingham,
United Kingdom

*Correspondence:
Himel Mallick

himel.mallick@merck.com

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 14 April 2022
Accepted: 26 April 2022
Published: 13 May 2022

Citation:
Mallick H, An L, Chen M, Wang P and
Zhao N (2022) Editorial: Methods for

Single-Cell and Microbiome
Sequencing Data.

Front. Genet. 13:920191.
doi: 10.3389/fgene.2022.920191

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 9201911

EDITORIAL
published: 13 May 2022

doi: 10.3389/fgene.2022.920191

4

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.920191&domain=pdf&date_stamp=2022-05-13
https://www.frontiersin.org/articles/10.3389/fgene.2022.920191/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.920191/full
https://www.frontiersin.org/researchtopic/13026
https://www.frontiersin.org/articles/10.3389/fgene.2021.766405/full
http://creativecommons.org/licenses/by/4.0/
mailto:himel.mallick@merck.com
https://doi.org/10.3389/fgene.2022.920191
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.920191


toolbox of domain-agnostic methods for omics research
enhancing interoperability of disparate omics datasets
(Sansone et al., 2009; Conesa and Beck, 2019).

A popular alternative to per-feature differential abundance
analysis methods is the community-level or omnibus
association methods that enable associating the entire
microbial community composition with a phenotype of
interest (Mallick et al., 2017). Due to their multivariate
setups, omnibus association methods typically fail to provide
feature-level inference to enable follow-up characterization
(Mallick et al., 2021b). To this end, Chen et al. proposes a
hybrid method (MiAF) that adaptively combines p-values from
the feature-level tests to construct a community-level test, thus
providing the best of both worlds in a unified framework. Jiang
et al. extends the popular community-level test (MiRKAT) to
multi-categorical nominal and ordinal outcomes for both
independent or clustered (e.g., family-based and longitudinal)
microbiome studies.

Keeping pace with ongoing advances in artificial
intelligence, a variety of machine learning methods have
become available to analyze microbiome and single-cell
data. Deek and Li proposes a Bayesian data generative
process for microbiome community data by developing a
zero-inflated Latent Dirichlet Allocation (zinLDA) model
that accurately identifies the latent sparse subcommunities
of a microbial community, improving upon the state-of-the-
art Latent Dirichlet Allocation (LDA) model. Zhang et al.
develops a novel, unsupervised, data-driven deep learning-
based imputation method (NISC) to impute the excess amount
of zeroes (dropouts) observed in scRNA-seq count data that
improves downstream cell type identification accuracy
compared to existing imputation methods.

Just as differential analysis provides one potential area to
transfer methods between fields, inference of feature-feature
interaction network estimation provides another. Improving
upon the existing cross-sectional ecological network inference
methods, He et al. proposes a novel autoregressive zero-inflated
Poisson mixed-effects model (ARZIMM) to detect sparse
microbial interactions in longitudinal microbiome data, thus
providing a scalable alternative to existing computationally
intensive temporal ecological network detection and stability
estimation methods.

Both microbial community and single-cell datasets possess
unique characteristics that differ in ways that necessitate the
development of domain-specific tools, with many of the single-
omics tools not susceptible to technological variability induced
by experimental platforms or library preparation protocols
(Mallick et al., 2021a). To this end, several domain- and
platform-specific methods and literature reviews have been
published to better address the biological question at hand
within a specific context.

Wu et al. proposes a non-linear normalization approach for
non-UMI single-cell data that reduces more technical
variation than competing methods without reducing
biological variation. Jones et al. asserts that in 16S rRNA
gene sequencing data (specially in the Ion Torrent
platform), assessing multiple hypervariable regions in
tandem is critical to enhance the statistical evaluation of
overall differences in community structure and relatedness
among samples. Paisley and Liu develops and deploys an R
Shiny web tool (GeneMarkeR) in order to provide a vastly
expanded, standardized marker gene database for the end
users, improving upon existing overwhelmingly incoherent
databases often with a lack of validated standards. Finally,
Arbas et al. carefully curates the literature to highlight the
current state-of-the-field in longitudinal microbiome studies
ranging from experimental design and basic bioinformatics
preprocessing steps to critical multi-omic data integration
considerations including modeling, validation, and inference.

Many of the methods described in this Research Topic also
come with accompanying open-source software implementations,
thus providing an important resource for future methodologists
and machine learners and many of them are potentially extensible
to other data types beyond their intended application domains
(Figure 1). As the field of omics research progresses, we expect to
see more research linking disparate omics data with human
genetics and digital pathology in order to gain better functional
insights into the role of omics features in disease initiation and
progression. We also expect to see more diverse data sets at the
intersection of spatial omics, long-read sequencing, and imaging
genomics, giving rise to new statistical questions and challenges,
whichmotivated us to launch a third volume of the Research Topic
on imaging and omics data science. We hope that omics and
imaging scientists from various subfields will work together in this
exciting area of research and make important scientific
contributions by providing a shared infrastructure for common
data types and fostering ideas for more sophisticated, reproducible,
interpretable data analyses.

FIGURE 1 |Overview and crosstalk of papers published in this Research
Topic. The papers can be broadly categorized into four subtypes: 1) domain-
agnostic publications generally applicable to both microbiome and single-cell
studies (2 papers), 2) single-cell-specific methods that can be potentially
applied to microbiome data with necessary modifications (2 papers), 3)
microbiome-specific methods that can be potentially applied to scRNASeq
data with necessary modifications (4 papers) and 4) domain-specific analysis
methods or literature reviews (1 single-cell-specific and 2microbiome-specific
papers). Primary domain indicates the intended application area for the related
paper, whereas secondary domain indicates the potential application area
wherein the said method can be extended with necessary modifications.
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A Zero-Inflated Latent Dirichlet
Allocation Model for Microbiome
Studies
Rebecca A. Deek and Hongzhe Li*
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The human microbiome consists of a community of microbes in varying abundances

and is shown to be associated with many diseases. An important first step in many

microbiome studies is to identify possible distinct microbial communities in a given data

set and to identify the important bacterial taxa that characterize these communities. The

data from typical microbiome studies are high dimensional count data with excessive

zeros due to both absence of species (structural zeros) and low sequencing depth

or dropout. Although methods have been developed for identifying the microbial

communities based on mixture models of counts, these methods do not account for

excessive zeros observed in the data and do not differentiate structural from sampling

zeros. In this paper, we introduce a zero-inflated Latent Dirichlet Allocationmodel (zinLDA)

for sparse count data observed in microbiome studies. zinLDA builds on the flexible

Latent Dirichlet Allocation model and allows for zero inflation in observed counts. We

develop an efficient Markov chain Monte Carlo (MCMC) sampling procedure to fit the

model. Results from our simulations show zinLDA provides better fits to the data and

is able to separate structural zeros from sampling zeros. We apply zinLDA to the data

set from the American Gut Project and identify microbial communities characterized by

different bacterial genera.

Keywords: metagenomics, gibbs sampling, zero inflated dirchlet distribution, mixture models, microbial

community

1. INTRODUCTION

The advent and proliferation of next-generation sequencing (NGS) technologies has given rise
to many large-scale high-throughput microbiome studies (Turnbaugh et al., 2007; Gilbert et al.,
2014; McDonald et al., 2018). Classical statistical techniques are not able to evaluate such data due
to its inherent high dimensional, count-based, and sparse nature. Consequently, novel statistical
methods are necessary for accurate and unbiased analysis of such data.

Much of microbiome research has focused on high-dimensional statistical methods, as a single
16S rRNA gene sequencing sample can produce tens of thousands of sequencing reads from
hundreds of different amplicon sequence variants (ASVs). Of particular interest are techniques
for dimensionality reduction. Commonly used methods include principal coordinate analysis
(PCoA) with distance measures, such as weight and unweighted UniFrac distance and Bray-
Curtis dissimilarity, or canonical correlation analysis with sparsity assumptions (Chen et al., 2013;
Hawinkel et al., 2019). More recently, studies have begun to focus on understanding microbial
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Deek and Li zinLDA for Microbiome Studies

dynamics within the humanmicrobiome. Single-species analysis,
that focus on one species at a time in a “parts-list” fashion, are
not able to capture complex and dynamic interactions. These
inter-species interactions form the basis of distinct underlying
subcommunity structures and failing to account for them
contributions to the data heterogeneity commonly seen in
microbiome studies. As such, network-based approaches have
been successfully applied in this area (Faust and Raes, 2012;
Layeghifard et al., 2017). These methods use co-occurrence or
correlation measures to identify pairwise interactions in cross-
sectional studies (Faust et al., 2012; Friedman and Alm, 2012;
Kurtz et al., 2015). Others use temporally conserved covariance to
identify interactions in longitudinal studies (Raman et al., 2019).

Generative probabilistic mixture models are able to act
as a dimensionality reduction technique while simultaneously
describing microbial dynamics via subcommunity identification.
When applied to microbiome data the latent variable(s) in
a mixture model have meaningful biological connotations.
Specifically, they represent distinct subcommunity profiles,
or structures, that give rise to the observed samples. The
simplest of these is the Dirichlet-multinomial mixture model
(Holmes et al., 2012). This model is a generalization of the
Dirichlet-multinomial hierarchical model. Rather than assuming
that all samples in a cohort are generated from a single
community profile, as the Dirichlet-multinomial model does,
the mixture model assumes the cohort contains many different
subcommunity structures and each of the samples is generated
by one of them (Holmes et al., 2012). As such, a sample can
be described by its subcommunity assignment rather than a
high-dimensional vector of ASV counts. Though, the Dirichlet-
multinomial mixture model may still be too restrictive to
accurately capture microbial community structures and all the
heterogeneity of microbiome studies (Sankaran and Holmes,
2019). It is biologically plausible that an individual’s microbiome
is comprised of numerous subcommunities, rather than just
one, mixing together to varying degrees. The Latent Dirichlet
Allocation (LDA) model describes such a generative process (Blei
et al., 2003). Samples are defined by their mixture probabilities
for each of the subcommunities rather than belonging to a
single one. Technically speaking, LDA differs from the Dirichlet-
multinomial mixture model by sampling the latent community
variable repeatedly within a sample, once per sequencing read,
rather than just once for the entire sample (Blei et al., 2003;
Griffiths and Steyvers, 2004).

Latent Dirichlet Allocation has been successful in identifying
functional subcommunities of the human gut and skin
microbiota (Higashi et al., 2018; Sankaran and Holmes, 2019;
Hosoda et al., 2020; Sommeria-Klein et al., 2020). Despite this, it
has been noted that LDA is prone to over-smoothing of microbial
counts, which are known to be sparse (Sankaran and Holmes,
2019). This can be attributed to the Dirichlet distribution being
insufficient to capture the over-dispersion and zero-inflation
of microbiome data. The distribution only has one dispersion
parameter and inherently imposes a negative correlation between
component counts, which may lead to spurious associations
(Tang and Chen, 2019). Moreover, the model assumes that each
species has a non-negative probability of belonging to every

subcommunity. This implies that all species contribute to every
subcommunity, even if only with low probability. Although, it
is more likely that the presence of one species in a community
prevents the presence of another.

As such, it would be advantageous to be able to identify
community structures that are only composed of a subset of
microbial species present in a data set. Thus, estimating some
of the taxa membership probabilities for each subcommunity to
be zero. We propose a zero-inflated Latent Dirichlet Allocation
(zinLDA) model that is flexible enough to capture sparse
subcommunities of microbiota. In the following section we
detail the generative process of the LDA model and our zero-
inflated LDA model. We also provide information on how to
estimate model parameters using Markov chain Monte Carlo
(MCMC) methods. We apply both models to simulation studies
and real data analysis using data from the American Gut Project
to directly compare the two and highlight how our proposed
method provides better fit to microbiome data.

2. MATERIALS AND METHODS

2.1. Notation and Terminology
Data in microbiome studies often comes from high-throughput
sequencing of the 16S rRNA gene. A single biological sample
can be represented by a vector of taxon counts with each
component representing the number of reads aligned to that
specific classification (e.g., ASV, species, genus). The following
definitions and notations will be of help in defining a generative
probabilistic model for microbiome studies:

• wdn is the nth observed sequencing read in the dth biological
sample. Sequencing reads are represented by V-length vectors
with a single non-zero component whose value is equal to one,
where V is the number of unique taxa in the study.

• wi
dn

represents that the nth sequencing read in the dth sample
belongs to the ith unique taxa (i = 1, . . . ,V).

• wd = (wd1, . . . ,wdN) is the dth biological sample consisting of
N sequencing reads.

• A cohort D = (w1, . . . ,wD) is a collection of all biological
samples in the study.

2.2. Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation is a probabilistic model that is flexible
enough to describe the generative process for discrete data in
a variety of fields from text analysis to bioinformatics. When
applied to microbiome studies, LDA provides the following
generative process for the taxon counts in a cohort D:

1. For each of the K subcommunities, indexed by j:

a. Choose β(j) ∼ Dir(η)

2. For each biological sample wd in the cohort:

a. Choose θ (d) ∼ Dir(α)

3. For each of the N sequencing reads, wdn:

a. Choose a subcommunity, zdn ∼Multinomial(1, θ (d))
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b. Choose a taxon wdn from P(wdn|zdn,β), a
multinomial probability distribution conditional on
the subcommunity zdn.

Figure 1 provides a graphical model representation of LDA. In
this model, β = [βij] fully describes the taxa distribution for each
subcommunity. The probability that the ith taxa belongs to the jth
subcommunity is denoted by βij. Note that the taxa distribution
is cohort-specific meaning that it is common across all samples
and is only estimated once per cohort. The mixture probabilities
for the subcommunities of the dth sample are denoted by a K-
length vector, θ (d), with θdj representing the mixture probability
of the jth subcommunity in the dth sample. Here,K is the number
of underlying subcommunities and is assumed to be known a-
priori. Additionally, zdn is the subcommunity assignment for
sequencing readwdn. Both hyperparameters η and α are assumed
to be symmetric and are defined once for the whole cohort.

Intuitively, βij = P(wi
dn
|zdn = j) determines which taxa

are important to subcommunity j and θdj = P(zdn = j)
determines which subcommunities are important in the dth
sample. Moreover, the LDA model acts as a “soft” clustering
technique by allowing samples to be composed of multiple
subcommunities. Geometrically, the parameter space of β and
θ can be thought of in terms of a simplex space. The taxa per
subcommunity distribution belongs the V-1 simplex, such that
β(j) ∈ SV−1. Meanwhile, θ (d), the subcommunity distribution
per sample can be represented by a randomly selected point
in the (K-1)-dimensional simplex, SK−1. This is different from
the Dirichlet-Multinomial mixture model in which θ (d) = θ is
assumed to be fixed across all samples and can be represented by
the vertices of SK−1.

2.3. Zero-Inflated Latent Dirichlet
Allocation (zinLDA)
We propose a modification to the Latent Dirichlet Allocation
model that allows the latent subcommunity organization to be
composed of both structural zeros, taxa that truly do not belong
to the community, and sampling zeros, taxa that belong to the
community, but are not captured due to low sequencing depth or
dropout. Understanding and identifying the structural zeros in
the data is biologically interesting as it provides insights into the
absence of certain taxa in a given community.

The zero-inflated generalized Dirichlet (ZIGD) distribution is
able to model both sources of zeros. The generalized Dirichlet
(GD) distribution is an extension of the Dirichlet that allows
for a more flexible covariance structure via the introduction
of additional parameters (Connor et al., 1969). Though, it
should be noted that the GD distribution alone does not model
structural zeros.

To do so, we must modify the unique relationship between the
GD distribution and a set of mutually independent beta random
variables. By adding a zero-inflation probability, π , to each of the
beta random variables we arrive at the zero-inflated generalized
Dirichlet distribution. Formally, a length-V vector of ZIGD
compositions, denoted by β = {β1, . . . βV}, can be formulated
from a set of mutually independent zero-inflated beta random

variables, which we denote by Q = {Q1, . . . ,QV−1}, with zero-
inflation probabilities, π = {π1, . . . πV−1} and the parameters in
the beta distributions denoted by (a, b). The relationship between
the two random variables can be described as follows: β1 =

Q1, βi =
∏i−1

l=1(1 − Ql) for l = 2, . . .V − 1, and βV =
∑V−1

i=1 βi (Tang and Chen, 2019). Furthermore, we introduce an
indicator variable, 1i = I(βi = 0) = I(Qi = 0), to identify
structural zeros.

For every subcommunity j, let there be Lj taxa with βij > 0 ⇔

1ij = 0. Then let Uj denote the set of indices of the non-zero

taxa probabilities for subcommunity j, Uj = {u1j , ..., uLj}, and Ū j

be its complement.
Replacing the Dirichlet(η) prior on β with a ZIGD(π , a, b)

gives a zero-inflated Latent Dirichlet Allocation (zinLDA) model.
The zinLDA model assumes the following generative process for
a cohortD:

1. For each of the K subcommunities, indexed by j:

a. Choose 1(j) ∼ Ber(π)
b. Choose β(j) ∼ ZIGD(π , a, b)

2. For each biological sample wd in the cohort:

a. Choose θ (d) ∼ Dir(α)

3. For each of the N sequencing reads, wdn:

a. Choose a subcommunity, zdn ∼Multinomial(1, θ (d))
b. Choose a taxon, wdn from P(wdn|zdn,β), a

multinomial probability distribution conditional on
the subcommunity zdn.

In this model we assume hyperparameters π , a, b, and α are
symmetric and are defined once for the whole cohort. Comparing
the graphical model representation of zinLDA to that of the LDA
model (Figure 1) underscores the differences between the two,
particularly with respect to modeling β .

We adopt a Bayesian framework for inference and parameter
estimation. As such, inference for the zinLDA model is centered
around the posterior distribution:

P(θ , z,β ,1|w;α,π , a, b) =
P(θ , z,β ,1,w|α,π , a, b)

P(w|α,π , a, b)
. (1)

Calculation of this distribution cannot be done directly because
the marginalization required to find the normalizing constant,
P(w|α,π , a, b), is intractable. As such, approximate methods
are necessary for parameter estimation. Variational inference
may be used to find parameter estimates by maximizing an
approximation to the true posterior. Alternatively, a Markov
chain Monte Carlo procedure, such as Gibbs sampling, may be
used to generate samples from the target posterior distribution
for inference. It is worthy to note that due to the fact that both
the Dirichlet and ZIGD distributions are conjugate prior for
the multinomial distribution using a collapsed Gibbs sampler,
marginalizing over β and θ , gives a tractable solution, even more
so than had collapsing not been performed. For this reason,
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FIGURE 1 | Plate diagrams of Latent Dirichlet Allocation (A) and zero-inflated Latent Dirichlet Allocation (B). Nodes represent parameters and random variables,

shading denotes the observed data. Boxes represent repeated sampling. The outer box is denoted with D for once per biological sample, the inner box with N for per

sequencing read and the upper box with K for per subcommunity.

we proposed a collapsed Gibbs sampler for the joint posterior
distribution of z and 1 over taxa, P(z,1|w), where:

P(z,1|w) =
P(w, z,1)

P(w)
=

P(w|z,1)P(z)P(1|π)
∑

1

∑

z P(w, z,1)
(2)

Integration over β and θ can be done separately as the former
only appears in P(w|z,β ,1) and the latter only in P(z|θ). In
Gibbs sampling, each state of the chain is taken as an assignment
of each zdn and 1ij. These states are sampled conditional
on the observed data and all the other parameters in the
model at their current state. Thus, to perform the sampling,
the full conditional distributions, P(zdn = j|w, z−n,1) and
P(1ij = 1|w, z,1−i), must be known. These distributions
have closed form solutions due to the conjugate prior property
of the Dirichlet and ZIGD distributions and can be found
probabilistically (Supplementary Material):

P(zdn = j|z−n,w,1)

∝


















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
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
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





















a+n
(i)
j,−n

a+n
(i)
j,−n+b

(z)
ij

·
m
(d)
j,−n+α

m
(d)
.,−n+Kα

if i = u1j

a+n
(i)
j,−n

a+n
(i)
j,−n+b

(z)
ij

∏

t<i,t∈Uj

b
(z)
tj,−n

a+n
(t)
j,−n+b

(z)
tj,−n

·
m
(d)
j,−n+α

m
(d)
.,−n+Kα

if u1j < i < uLj

∏

t<i,t∈Uj

b
(z)
tj,−n

a+n
(t)
j,−n+b

(z)
tj,−n

·
m
(d)
j,−n+α

m
(d)
.,−n+Kα

if i = uLj

0 if i /∈ Uj

(3)

P(1ij = 1|1−i,w, z) =











0 if n
(i)
j > 0

πij

πij+(1−πij)
B(a

(z)
ij ,b

(z)
ij )

B(a,b)

if n
(i)
j = 0 (4)

where zdn is the subcommunity assignment for sequencing read

wi
dn
. We define n

(i)
j,−n as the number of times the ith taxa is

assigned to the jth subcommunity and m
(d)
j,−n as the number

of times the jth subcommunity occurs in the dth sample,
both excluding the current subcommunity assignment of zdn.

Additionally, we define a
(z)
ij = a + n

(i)
j and b

(z)
ij = b + n

(i+1)
j

+ ... + n
(V−1)
j .

The chain is initialized with informative values for the zdn
variables by sampling from a multinomial distribution with taxa
probabilities equal to the βij estimates from a standard LDA
model. Once the chain has been run long enough to guarantee
sufficient convergence, a set of the initial runs is removed as a
“burn-in” period, and the remaining are taken as a set of samples
from the target posterior distribution. As such, for each run, we
can calculate estimates of β and θ as follows using the posterior
predictive distribution:

β̂ij = P(w(i)
new|z

(i)
new = j,w, z,1)

=


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if u1j < i < uLj

∏

t<i,t∈Uj

b
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0 if i /∈ Uj

(5)

θ̂
(d)
j = P(znew = j|z) =

m
(d)
j + α

m(d)
. + Kα

(6)

The final estimate of θ is defined as its posterior mean across
all the runs. The final estimate of β can be found in a two-
part process. First, calculate the posterior mean of 1ij across all
runs, which is equivalent to a posterior estimate of πij. Then
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dichotomize π̂ij according to I(π̂ij ≥ 0.5). Next, assign β̂ij = 0

for any dichotomized π̂ij = 1, otherwise assign β̂ij its respective
posterior mean and normalize within each subcommunity such
that

∑

i βij = 1.

3. RESULTS

3.1. Simulation Study
We conducted a simulation study to compare estimation
accuracy and model fit between the proposed zinLDA and the
standard LDA models. The data was simulated from a true
zinLDA model, following the steps specified by the generative
algorithm given section 2.3. First, we selected the total number
of taxa (V) to be 120 across 150 independent microbial samples.
Next, the total number of reads in each sample were drawn
from a discrete uniform distribution with a lower bound of 5,000
and upper bound of 25,000. These parameters were selected to
reflect real microbiome data sets aggregated to the genus-level
classification. The number of subcommunities (K) was selected
as five. The hyperparameter α of the Dirichlet distribution on
θ was set to 50/K, as suggested for the original LDA model
(Griffiths and Steyvers, 2004). Additionally, the hyperparameters
π , a, and b of the zero-inflated generalized Dirichlet distribution
on β were set to 0.4, 0.05, and 10, respectively. After running the
simulation algorithm, the taxa that had a zero count for every
sample, meaning a prevalence of 0%, were removed as such taxa
would not be observed in a real data analysis. This reduced the
total number of observed taxa (Vobs) to 87.

A zinLDA model with five subcommunities was fit to the
simulated data set. Hyperparameters α,π , a, and b were set
to their true values, as specified under simulation. Likewise, a
standard LDA model with five subcommunities was fit, with
default hyperparameter values of 50/K and 0.1 for α and η,
respectively (Griffiths and Steyvers, 2004). To deal with the
label switching problem commonly seen in Bayesian inference
with mixture models, we use a method previously proposed
to compare labels from an LDA model to their ground-
truth. The pairwise Pearson correlation was calculated for each
true-estimated subcommunity pair. The pair with the highest
correlation is matched, then the pair with the next highest
correlation among the remaining is matched, and so on until
all true-estimated pairs are uniquely matched (Sankaran and
Holmes, 2019).

To determine how well zinLDA is able to capture the latent
community structure we compare the estimated βij for the top
eight taxa per community to their true value and estimated value
from the standard LDAmodel. Figure 2 shows that both zinLDA
and LDA correctly identify all of the topmicrobial taxa for each of
the five subcommunities. Moreover, estimates from both models
show low bias. We investigated how misspecification of the
number of subcommunities influences zinLDA’s ability to recover
the representative taxa. An under-specified model, with one too
few communities, collapses the representative taxa of two of the
subcommunities together. Thus, resulting in both upwardly and
downwardly biased estimates of βij, the taxa over subcommunity
probabilities. The remaining three subcommunities have their
representative taxa recovered and their respective βij estimates

were not affected. Likewise, for an over-specified model, with
one too many communities, it is able to accurately detect the
five true subcommunity structures as specified under simulation,
but identifies an additional nonsensical subcommunity that is
composed of only one taxa (Supplementary Figure 1).

Fit of the two models was assessed through posterior
predictive checks (Gelman et al., 1996). For each model, the
posterior predictive distribution was used to simulate 100 data
sets of the same dimensions as the original. The rationale behind
using posterior predictive checks to assess model fit is as follows:
if the model provides reasonable fit then the data simulated from
the posterior predictive distribution, which is conditional on the
observed data (Xobs) and the current model, should “look similar”
to the observed data. We quantify how similar the observed data
and the posterior predictive simulated data are by the test statistic
T(X) = Xi·, the count for the ith taxa. Figure 3 plots the results
from the posterior predictive checks. Each panel corresponds to
a single biological sample. The y-axis plots T(X) on the asinh
scale. The x-axis plots each of the 87 taxa, ordered from smallest
to largest based on the observed data for that sample. For large
taxon counts we see that bothmodels do well, with median values
of both being similar to the truth, or observed, values. In contrast,
we see that for small taxon counts the zinLDAmodel outperforms
LDA. Specifically, for zero counts the zinLDA model is able to
accurately estimate these counts better than its LDA counterpart.
Across the 50 data sets simulated from the posterior predictive
distribution, the zinLDA exhibits less over-smoothing for small
taxon counts compared to the original LDA. Thus, this is an
indication that the zinLDA model provides better fit to the data
than the LDA.

To quantify how well the zinLDA model is able to distinguish
between rare and absent taxa in each subcommunity we calculate
the sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV). We define a “positive” outcome
as being a structural zero, 1ij = 1, and a “negative” outcome as
being a non-zero probability of belonging to that subcommunity,
1ij = 0. The results show that under these simulation settings
zinLDA can differentiate sampling and structural zeros with
reasonable sensitivity and specificity (Table 1). Upon further
examining the data, we noticed that the model we used to
generate the data resulted in many taxa with very small true non-
zero probabilities, making it very difficult to separate sampling
zeros from structural zeros. To further demonstrate this point,
we ran two additional simulations to see how different model
parameters affect the posterior inference of being structural zeros.
Both simulations reduce the number of taxa (V) to 50, but
one also changes hyperparameter a, of the ZIGD distribution,
to 0.5 from 0.05. Table 1 shows that reducing the number of
taxa without changing the value of a reduces the model’s ability
to differentiate between the two sources of zeros. In contrast,
reducing V and also increasing a significantly increases the
model’s ability to accurately detect structural zeros, with such a
modeling having sensitivity of 0.9 and PPV of 0.92. The sharp
difference in the values of these diagnostic metrics between
the models can be attributed to the fact that V , a, and b all
influence the βij values, which in turn influences the probability
of observing a sampling zero. For example, decreasing V without
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FIGURE 2 | Bar graphs of the top eight taxa, for each of the five sub-communities, with their corresponding βij values. The first column contains the “ground truth”

top taxa from simulation. The second and third columns are the estimated top taxa from the zinLDA and LDA models, respectively.

changing a reduces many of the βij values, thus increasing the
probability of observing a sampling zero. On the other hand,
decreasing V in conjunction with increasing a increases many of
the βij values and therefore decreases the probability of observing
a sampling zero.

3.2. Real Data Applications
The American Gut Project (AGP) is a self-selected and open
platform cohort. Citizen-scientists primarily in the United States,
United Kingdom, and Australia, opted into the study, paid a
fee to offset the cost of sample processing and sequencing, and
gave informed consent (McDonald et al., 2018). All subjects
provided a fecal microbiome sample and self-reported meta-
data. The sequencing protocol used was identical to that of the
Earth Microbiome Project (Gilbert et al., 2014; McDonald et al.,
2018). The AGP microbial 16S rRNA gene sequencing data and

meta-data are publicly available in The European Bioinformatics
Institute repository under the accession ERP012803.

This analysis used a prior subset of the AGP data consisting
of 3,679 subjects. Reads that were ambiguously assigned or
unassigned at the genera level were removed. Moreover, genera
with a prevalence of <20% across all samples were removed.
After this filtering of the microbial genera, any samples with
a total number of reads of zero were removed. This left 3,566
samples and 70 unique genera for downstream analyses.

A random subset of 1,000 subjects from the AGP data
was sampled, a zinLDA model with five subcommunities and
hyperparameter values being specified the same way as in
the simulation study was fit. When possible, the choice of
the number of latent subcommunities should be informed
by biological or clinical reasoning. In the absence of such,
data-driven approaches may be used. In particular for the
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FIGURE 3 | Observed and posterior predictive simulated asinh-transformed taxon counts plotted in order of increasing true abundance. Each panel is a different

biological sample. The solid black line represents the true counts. The pink and blue points are the counts from 50 posterior predictive simulated data sets and the

pink and blue solid line represents the median counts across all 50 data sets, from the LDA and zinLDA models, respectively.

AGP data, K was determined by comparing the log-likelihood,
AIC, and representative taxa across many models, each with a
different number of subcommunities, applied to a set of 1,000
independently selected subjects. These results were robust across
slight changes in the number of subcommunities.

The representative taxa from each subcommunity and
their membership probability (βij) is shown in Figure 4. We
observe that each subcommunity is characterized by one
single dominant taxa, including Faecalibacteruim, Prevotella,
Bacteroides, Acinetobacter, and Akkermansia.

Model fit was assessed via posterior predictive checks and
compared to that of the standard LDA model. Since current
sequencing technology, such as 16S rRNA gene sequencing,
can only provide quantification about relative abundance model
fit was assessed using both the relative abundance and the

TABLE 1 | Comparison of estimated structural zero taxa from the zinLDA model

to true structural zero taxa from simulation across different parameter settings

using sensitivity, specificity, positive predictive value, and negative predictive value.

Sensitivity Specificity PPV NPV

V = 50, a = 0.5 0.90 0.94 0.92 0.93

V = 50, a = 0.05 0.51 0.51 0.40 0.61

V = 87, a = 0.05 0.73 0.67 0.59 0.79

A “positive” results is assumed to be βij = 0.

observed counts (Supplementary Figures 2, 3). The two plots
exhibit similar patterns, indicating the difficulty in fitting the
small count data. Another explanation of observing such similar
model fits is that our analysis did not identify structural zeros
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FIGURE 4 | Bar graphs of the representative taxa for each of the five sub-communities, with their corresponding βij values, for two independent subsets of 1,000

randomly selected subjects from the American Gut Project.

with strong evidence in our data. Supplementary Figure 4 shows
the posterior estimates of the probability of zero count being
a structural zero for each of the taxa in each subcommunity,
indicating relatively weak evidence of being structural zeros.

Finally, to determine whether the model is stable, meaning
it detects true subcommunity clusters of co-occurring taxa
and is not clustering the noise in the observations, we apply
an identical zinLDA model to another set of 1,000 AGP
microbial samples that is independent from the first. The
representative taxa from this validation set is compared to that
of the first cohort (Figure 4). The subcommunities between
the two cohorts were matched using pairwise correlations
as done in simulations. The average cosine similarity of
the matched subcommunities is 0.80. The results show
that the communities identified by zinLAD are very stable
and replicable.

4. DISCUSSION

The micro-organisms that constitute the human microbiome
form subcommunity-like structures via dynamic and complex
interactions with one another. Identifying these structures is
imperative for a better understanding of how these microbes
influence human-host health. We propose a zero-inflated latent
Dirichlet allocation model, a further modification of the LDA
model that amounts to changing the prior distribution on
the taxa per subcommunity distribution to a zero-inflated
generalized Dirichlet from a Dirichlet distribution. Despite this
change our model retains the advantageous conjugate prior
property between the ZIGD and multinomial distributions. As
such, we are able to implement an efficient Gibbs sampling
algorithm, with only one additional step compared to that of
LDA, for parameter estimation.
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zinLDAmodifies the LDAmodel proposed by Blei et al. (2003)
to allow for subcommunities to be composed of a subset of
all the microbes in a cohort of samples. Mathematically, since
a subcommunity is defined as a distribution over taxa, this is
equivalent to assigning some taxa a zero-probability of belonging
to it. This is particularly advantageous in microbial analyses as
it allows for a clear distinction between sampling and structural
zeros within a subcommunity structure. Structural zeros come
from those zero-probability taxa; they are truly absent from the
community. Sampling zeros come from taxa that do belong to the
community, but with low probability, and thus were not captured
due to shallow sequencing depth. Due to this adjustment, zinLDA
model can be used to simulate more realistic sparse count data
than models such as the Dirichlet multinomial or Dirichlet
multinomial mixture models.

We used simulation studies to compare the two models
and investigate where zinLDA outperforms the standard LDA
model. First, we show that the two performed equally well in
identifying the representative taxa for each subcommunity. This
is to be expected as the LDA model already does a good job
in identifying common taxa and the zinLDA estimates of the
community assignment for each sequencing read were initialized
using the results from a standard LDA model. The performance
gain in using zinLDA is seen when examining the low probability
and absent taxa within in each subcommunity. The greatest
performance gains are made when the probability of being
a sampling zero is not too small. Furthermore, we use real
data from the citizen scientists of the American Gut Project
to show that our method can detect potentially meaningful
biological and ecological subcommunities of microbial species.
By assigning each sample a probability of belonging to each of
these subcommunities we are also able to gather information
about population level microbial structures.

As for any Bayesian models, zinLDA requires the
hyperparameters to be pre-specified. In our analysis of the
real data sets, we used the same hyperparameters as in our
simulations and explored various other choices. For the same
number of communities, we observed that the community
structures and the representative taxa were not too sensitive to
the values of these hyperparameters. Determining the number
of clusters or subcommunities is a hard problem, as for any
clustering methods. For real data analysis, we suggest that the

users try different numbers of K, evaluate the sub-community
structures, and then choose one based on both the sizes of the
communities and also possible biological interpretations.

Finally, the zinLDA model can be used to simulate more
realistic microbiome count data that allow for both structural
zeros and sampling zeros. Such simulations can be used to
evaluate various statistical tests developed for microbiome data
analysis, including evaluating power of the tests for differential
abundance and methods for modeling microbiome count data.
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Single cell RNA-seq data, like data from other sequencing technology, contain systematic

technical noise. Such noise results from a combined effect of unequal efficiencies in the

capturing and counting of mRNA molecules, such as extraction/amplification efficiency

and sequencing depth. We show that such technical effects are not only cell-specific,

but also affect genes differently, thus a simple cell-wise size factor adjustment may

not be sufficient. We present a non-linear normalization approach that provides a

cell- and gene-specific normalization factor for each gene in each cell. We show that

the proposed normalization method (implemented in “SC2P" package) reduces more

technical variation than competing methods, without reducing biological variation. When

technical effects such as sequencing depths are not balanced between cell populations,

SC2P normalization also removes the bias due to uneven technical noise. This method

is applicable to scRNA-seq experiments that do not use unique molecular identifier (UMI)

thus retain amplification biases.

Keywords: scRNA sequencing, single cell, normalization, statistical method, gene expression

1. INTRODUCTION

Single Cell RNA-sequencing (scRNA-seq) has become a widely applied tool to study the diverse
and dynamic transcriptional activities among cell populations (Tang et al., 2009). Before the
RNA-sequencing technology was applied to query the transcriptomes of individual cells, scientists
have used it widely to measure mRNA expression from bulk samples (Mortazavi et al., 2008), in
which an average level of RNA expression from a large number (often millions) of cells is obtained.
Methods for data processing, including mapping short reads to the reference transcriptome and
normalization to account for technical variability in the efficiency of RNA extraction, amplification
and counting, evolved along the progress of the sequencing technology. These include simple size
factors to adjust for global effects such as sequencing depth, such as widely used count per million
(CPM) or reads per million per kilobase (RPKM) for their simplicity (Mortazavi et al., 2008), and
more data adaptive trimmed mean of M values (TMM) (Robinson and Oshlack, 2010). Noting
that non-linear and inconsistent biases due to gene length and GC-content exist in RNA-seq data,
more flexible methods have been proposed, such as the conditional quantile normalization (CQN)
(Hansen et al., 2012) and remove unwanted variation (RUV) (Risso et al., 2014).

All normalization methods, explicitly or implicitly, make assumption about characteristics of
the data that are expected. For example, in many bulk RNA-seq data sets, assumptions on the lack
of global shifts of the distribution of expression are often reasonable. As a result, the changes of
the location, scale, or shape of the distribution are attributed to technical effects and removed in
normalization (Robinson and Oshlack, 2010; Hansen et al., 2012). scRNA-seq data share many
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similarities of bulk RNA-seq data, but have their unique
characteristics. These include, but are not limited to, the much
higher percentage of genes with zero count and generally lower
library size (Shapiro et al., 2013). In addition, there is often much
greater variability among cells compared to that among bulk
samples, because bulk samples measure the average expression
from a large population of cells (Wu et al., 2014). Thus, it may no
longer be reasonable to assume the lack of global differences, and
a direct adaptation of bulk RNA-seq normalization is not optimal,
despite its convenience.

The need for specialized normalization is well-recognized.
Since the introduction of scRNA-seq, a handful of normalization
approaches have been proposed (Lun et al., 2016; Bacher et al.,
2017). Most analyses of RNA-seq data at least attempt to address
this bias due to sequencing depth or overall mRNA capture
efficiency by turning the counts data into counts-per-million
(CPM). This practice implicitly assumes a linear relationship
between library size and the observed counts. There are several
problems with this simple practice. One is that the library size
(the total observed count in a sample) may not be a stable statistic
to represent the overall counting efficiency in a cell. In bulk RNA-
seq, each individual gene accounts for a very small fraction of a
sample, thus the library size often captures the overall efficiency
including sequencing depth and mRNA extraction efficiency. In
scRNA-seq, a few top genes can account for a large fraction of
total counts, making the library size sensitive to the variation of
these genes, which are not necessarily stable across cells. This
problem can be alleviated when one uses a more robust estimate
of the size factor, such as using TMM. Another issue with a simple
size factor adjustment is that it assumes the impact of the size
factor is the same to all genes in the same cell. Bacher et al.
(2017) showed that this is not necessarily true, and proposed to
normalize genes in several groups. Recognizing that common
assumptions on an identical distribution of genes expression
may not be reasonable across all cells, normalization based on
internal ERCC controls have also been proposed (Ding et al.,
2015). However, since the control RNAs are spiked in after RNA
extraction, the ERCC controls only capture technical biases in a
portion of the sample preparation procedures. Though 96 RNAs
are included in the ERCC panel, many of them are at levels too
low to be detected, making the number of controls that can be
used to capture the systematic bias much lower, thus the biases
less reliably estimated.

In this manuscript, we describe a simple but effective
normalization procedure that captures the potential non-
linear, systematic biases in scRNA-seq data. We consider that
a gene’s observed count is affected by both its expression
level (the biological factor) and the detection efficiency (the
technical factors). The technical factors include the quality of
cell dissociation, mRNA extraction/amplification efficiency, and
sequencing depth. These factors may have different impact across
genes. The combined effect of these factors on detection efficiency
is the technical bias we aim to estimate and remove. Our
procedure takes into account both gene-specific and cell-specific
contexts in scRNA-seq data, thus borrows information both from
the same gene across cells and from other genes within the same
cell to achieve a robust normalization factor.

2. RESULTS

2.1. Data Sets
We use four scRNA-seq data sets to illustrate the normalization
performance. The first is from a type 2 diabetes study of
pancreatic islet cells, referred to as “T2D" data hereafter. The
T2D data set includes 978 cells, of which 239 are alpha cells
(Lawlor et al., 2017). We use the alpha cells as an example
to illustrate variation within a cell type. This data set is
available at Gene Expression Omnibus (GEO) with accession
number GSE86473. The second data set (GEO accession number
GSE85917) profiles human embryonic stem cells, referred to as
“hESC" data hereafter. There are 92 H1 cells sequenced twice
with very different sequencing depth: approximately one and four
million reads per cell. This data set was originally generated to
evaluate SCnorm normalization method (Bacher et al., 2017).
The third data set (GEO accession number GSE45719) profiles
cells in different early development stages ranging from zygote to
blastocyst and is referred to as the “embryo" data using Smart-seq
(Deng et al., 2014). The fourth data set (GEO accession number
GSE75748) comes from a time course experiment that measured
hESC cells at different time points, including 758 cells, and is
referred to as the “time course" data (Chu et al., 2016).

2.2. The Technical Bias May Not Be a
Constant Linear Effect of Library Size
The impact of overall mRNA extraction efficiency and
sequencing depth is well-known. In single cell data this is
reflected in two ways: cells with higher library size tend to
have higher gene detection rate (the proportion of genes with
non-zero count), and tend to have higher counts on the genes
that are observed. The simplest adjustment for this overall effect
is turning the counts data into counts-per-million (CPM). This
practice inexplicitly assumes a linear relationship between library
size and the observed counts, and makes the same adjustment
for all genes in a given cell. We first demonstrate that technical
bias depends on the gene as well, and is not always a simple
linear effect.

For cell i, denote the library size by Li. Consider gene g in this
cell, denote its gene expression level as θgi, and the observed read
count asYgi.Whenwe assume that E[Ygi] ∝ θgiLi, normalizing by
Ygi/Li is a reasonable practice. This type of normalization, using
a cell-wise size factor, implies log(E[Ygi]) = log(θgi)+ log(Li)+ c.
It means that the log transformed counts are proportional to log
library size with a constant slope 1 for all genes. We explore
these assumptions in real scRNA-seq data as shown in Figure 1,
where we plot the slope of log counts regressing on library size
against the correlation between a gene’s counts and library size
across cells. If we had a constantly expressed gene with θgi ≡ θg
and the gene counts are proportional to Li, we would have a
perfect correlation and slope 1. Here we focus on genes that
are reliably detected and only include those with average log
counts greater than 4. As expected, the counts for many genes
are strongly correlated with library size, confirming that the
library size indeed affects measured expression level, though the
correlation is lower than 1 since there are natural variations of
expression levels even within the same cell type. The correlation
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FIGURE 1 | The relationship between counting efficiency with library size. The log transformed counts are regressed on log library size and the slope is plotted against

the correlation between the gene counts and the library size. A slope of 1 indicates a linear effect of library size on counting efficiency. (A) Data from T2D study. (B)

Data from hESC study. Only genes with average log counts greater than 4 are included.

with Li is lower for genes with high biological variation or genes
with low expression and hence under greater influence of Poisson
counting error. The slopes from genes that are highly correlated
with library size are the most informative of the extent of the
technical bias. We observe that the assumption of a constant
slope of 1 is inaccurate in two senses: (1) the slopes between
log(Ygi) and log(Li) are not necessarily the same for all genes; and
(2) the slope on average is not necessarily 1. In the T2D data, the
slope tends to exceed 1 for genes that show high correlation with
library size, whereas in the hESC data the slope tends to be lower.

2.3. Not All Genes Reflect Technical Bias in
a Cell
Bacher et al. (2017) report similar observations that the need
for normalization differs for different genes and give specific
examples of genes with high, median and even negative slope in
this relationship in the data used in Figure 1B. As a solution, they
divide the genes into multiple bins and estimate their “count-
depth relationship" separately, and normalize accordingly.

We take a different approach here without putting genes into
bins. Instead, we obtain a cell- and gene-specific normalization
factor that depends on the mean expression level, represented
by a smooth function. This is motivated by the fact that most,
if not all, genes are not transcribed in all cells. When a gene
is expressed, we often observe a close-to-linear relationship
between the gene count and the library size, as seen in Figure 2.
This means that a higher count observed could be a result of
higher sequencing depth or higher mRNA extraction success
in certain cells, instead of higher expression level. This is the
motivation behind CPM type of normalization. However, we also
notice that even in cells with very high library size, we often

observe low but non-zero counts, shown in red in Figure 2.
We have introduced a two-phase expression model, SC2P, for
scRNA-seq data that account for these two latent phases (Wu
et al., 2018). Phase I corresponds to a background level of counts
which represent the inactive phase, and Phase II corresponds to
the phase when the gene is actively transcribed. For a cell that has
high extraction/amplification rate and is sequenced deeply, the
active genes in it tend to show higher counts. In the same cell,
genes in Phase I will only have a low, background level of counts,
regardless of the library size.

2.4. Technical Bias Depends on Expression
Level
The variation in gene counts is a combined result of biological
variation, which we desire to retain, systematic technical
variation, which we aim to remove in normalization, and lastly,
random noise, which is not identifiable from the biological
variation. In Figure 3, we illustrate an example of the systematic
bias manifested differently in the two latent phases. This figure
is similar to the “MA plot" commonly used in gene expression
microarray data. Here, each point represents a gene. The x-axis
is the mean expression within a given cell type, and the y-axis
is the log ratio of a gene’s count in this particular cell versus
the mean expression level. This plot shows the overall pattern of
bias as a function of expression level. A symmetrical scatter of
points around the y = 0 line reflects no need for normalization.
A simple linear effect of the library size leads to a constant bias
in the log scale, hence the points shift vertically, and will be
symmetrical around y = log Li − log L0 for sample i, where Li
and L0 are the library sizes for the specific cell and the reference
(typically set to be the median library size in a data set). However,
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FIGURE 2 | Gene counts are positively correlated with library size when the gene is expressed (blue) but appear to have little correlation with library size when they are

in the background phase (red). (A) Data from T2D study. (B) Data from hESC study.

FIGURE 3 | (A) Before normalization MA plot for gene counts before normalization. The log ratio of a gene’s count in one cell over its mean expression level is plotted

against the log mean expression (the alpha cells in the T2D data are used here). Genes in active expression phase are shown in blue and genes in background phase

shown in red. Only the blue genes are used in estimating the systematic bias, shown in purple. (B) After normalization: the log ratio from normalized genes in the

active phase shows no systematic bias.

sometimes the bias depends on the expression level and cannot
be captured by one constant, and a non-linear normalization is
needed. This has been used for diagnosis as well as for estimating
and removing the systematic bias in microarray data (Bolstad
et al., 2003). One key difference is that in scRNA-seq data, not
all genes in a cell are affected by the systematic bias to the same
extent. As shown in Figure 2, a gene’s count is affected only
when it is in the active phase. Thus, counts from genes who
are in the background phase do not contain information about
the sequencing efficiency, and should not be included in the
estimation of the systematic bias.

In Wu et al. (2018) we show that the distribution of
background counts and that of genes in the active phase are cell-
and gene-specific, so a universal cutoff to determine the phase
is not ideal. We describe a mixture model using a zero-inflated
Poisson distribution and a lognormal-Poisson distribution for
the two phases and estimate the conditional probability that a
gene is in the active phase, given its gene identity and the cell
context. This allows us to divide the counts in a cell to the
two phases as shown in Figure 3. The systematic bias due to
inconsistent sequencing efficiency can then be estimated as a
smooth curve using the gene counts in the active phase alone.
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2.5. Removing the Count-Depth
Dependence
The goal of normalization procedures is to remove technical
variability without removing biological variability. One
indication of unwanted technical variability is that gene counts
are positively correlated with library size, referred to as the count-
depth relationship (Supplementary Figure 2A). After adjusting
for size factors, this strong correlation is often reduced toward
zero, as seen in Figure 4 and Supplementary Figures 2B–D,
since many normalization factors directly aim to remove
the library size effect. However, we also notice that negative
correlation is often introduced to genes with lower average
expression levels in simple global normalization approaches,
indicating an over-adjustment for those genes. SCnorm and
SC2P both reach a near 0 correlation overall, with the result
from SC2P closer to zero for genes over a wider range of
mean expression level. Supplementary Figure 3 reveals the
similarity and difference between SC2P and SCnorm more
directly by plotting the raw and normalized counts in the same
cell. We see that both methods adjust the higher counts even
higher, but lower counts to a lesser extent. SCnorm partitions
genes into several groups, each forming a curve, with different
levels of adjustment. SC2P does the adjustment in a smooth
fashion without putting genes in discrete categories, thus lacking
apparent clusters in the figure.

2.6. Removing Technical Variation and
Maintaining Biological Difference
To show the success in removing technical variations, we
first compare the conditional standard deviation of gene
expression levels. Since dropout is a common phenomenon
in scRNA-seq data, even strong cell type marker genes are

not always observed in the corresponding cell type. Thus,
marginal standard deviations often obscure the actual variability
(Supplementary Figure 1). For each gene, we compute the
standard deviation of its expression level when the gene is reliably
detected, based on the posterior probability of a gene in the active
phase. Among cells of the same type, we expect that the variance
has sources of both biological and technical origins, and we
expect that the variance reduces in normalized data. To evaluate
the reduction in variance we compute the ratio of the variance in
the normalized versus raw data. In Figure 5A we compare the
ratio in genes stratified by average expression levels, in Alpha
cells from the T2D data. Several methods (SCnorm, scran, and
SC2P) can reduce the variance in highly expressed genes. Many,
however, lead to an increase of variation for genes with lower
expression levels. SC2P is the only method that can reduce the
variance throughout the entire range of mean expression. In this
particular data set, the normalization in DESeq actually increased
the variance.

We certainly want to make sure that we do not reduce signal
in the process of removing technical variation. To confirm this
we show the difference in average expression between the Alpha
and Beta cells. As shown in Figure 5B, the log fold change
computed in SC2P normalized data maintains the between
cell type differences. Similar results from the embryo data are
included in the Supplementary Figure 4.

2.7. Removing Bias Due to Unbalanced
Technical Bias
When the technical biases are randomly and evenly distributed
in two cell populations, the population mean expression suffers
from much smaller bias than the expression level in individual
cells, since the law of large numbers will make the average

FIGURE 4 | The count-depth relationship, measured as the correlation between the (normalized) gene counts and library size, is reduced after normalization. (A)

Normalized by SC2P normalization. (B) Normalized by SCnorm.
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FIGURE 5 | (A) Reduction of the technical variability among replicate cells. The ratio of gene specific standard deviation in normalized log counts over that in the raw

log counts plotted. Genes are displayed in different groups based on their average expression when they are expressed. (B) The log fold change between Alpha and

Beta cell populations before and after normalization remains at similar levels.

of technical noise converge to zero when the number of cells
increases. However, when two populations of cells in comparison
have different distributions of technical effects, we may have
biased result even in population means. For example, if one
cell population tends to have more deeply sequenced cells than
the other cell population, we will observe a bias in the mean
expression levels, and DE observed across the two groups may
simply reflect the imbalance in sequencing depth in the two
populations. Successful normalization should remove such biases
without introducing new biases.

For illustration purpose, we use the hESC data set that
profiles H1 cells with both high and low sequencing depth
so the systemic bias is obvious. When the sequencing depth
is unbalanced between the two groups, the group with more
highly sequenced cells tend to have average expression biased up,
creating positive log fold change in genes without true DE. Here
we compare the ability of various normalization methods in their
ability to remove this potential bias. Figure 6 shows the boxplots
of log fold changes of normalized gene expression for a two-
group (the same type of cells in high- vs. low-sequencing depth
groups) comparison, where the genes are stratified by average
expressions. Since there is no biological difference between the
two groups, we expect the log fold changes to be around zero.
We see that, for highly expressed genes, all methods appear to
remove the technical bias and show a median at zero. For lower
expressed genes, the normalization methods using a cell-wize
normalization factor (Total, scran, andDESeq) actually introduce
biases to the data. This is because the lower expressed genes are
affected by the library size in a lesser degree, thus they are over-
normalized. SCnorm, by normalizing genes in different groups,
can alleviate this problem to some extent and show smaller bias
after normalization. SC2P is the only normalization that works
well for genes with different average expression levels.

2.8. Impact on Downstream Analysis
The flexibility and single cell resolution of the scRNA-seq
technology lead to a wide variety of applications and a large
number of new analysis methods. To illustrate the consequences
of normalization procedures on downstream analysis, we present
two examples below. The first is differential expression analysis.
Due to the lack of biological ground truth, we do not directly
compare the accuracy of DE magnitude or the sensitivity of
DE detection. Instead, we assess the impact of normalization
on the robustness of DE detection. In scRNA-seq, the number
of cells in each population is often orders of magnitude higher
than the number of samples in most bulk RNA-seq data. A
robust and reproducible analysis should not have results that
are sensitive to the inclusion or removal of a few cells. We
illustrate with the time course data and compare expression
between time points We show that different normalization
methods lead to different reproducibility in the time course
data. When 5 cells, either the ones with the highest library
size, or randomly chosen, are removed from the data set, our
normalization shows much less disruption. In contrast, data
normalized with other alternatives could lead to drastic changes
(Supplementary Figure 5).

We also compare the impact on clustering using the embryo
data. We use log transformed pseudo counts after different
normalization in three widely used scRNA-seq clustering
methods, including SIMLR ((Wang et al., 2017), SHARP
(Wan et al., 2020), and SC3 Kiselev et al. (2017). Figure 7

compares the Adjusted Rand Index (Hubert and Arabie, 1985),
which measures the concordance of pair-wise relationship
between each pair of cells with known developmental
stages, adjusted for the agreement due to coincidence.
The proposed normalization has the highest ARI in all
three methods.
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FIGURE 6 | Box plots of log fold changes of normalized gene expression from different methods. The genes are stratified by average expressions. The log fold

changes are computed based a two-group comparison, where the two groups contains cells with high and low sequencing depths. All cells are H1 hES cells.

FIGURE 7 | The adjusted Rand index (ARI) using three different clustering methods with different normalization. Genes that are detected in at least three cells are used

in clustering.
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3. DISCUSSION

We present a normalization method that provides a cell- and
gene-specific normalization factor that borrows information
across genes and across cells. Both the cell context and gene
context are used in predicting whether a gene appears to
be in the active phase in a given cell, and only the active
ones are used in estimating the technical bias due to RNA
extraction/amplification/sequencing. It is more flexible than
simple size factor normalization, which adjusts all genes in a cell
in a universal manner, but is still robust for the normalization is
estimated from a large number of genes using only a few degrees
of freedom.

scRNA-seq opens the door to many new applications beyond
what is offered by bulk RNA-seq. It allows the query of the
heterogeneity of individual cells, instead of the average of many.
This means higher variability of the direct measurements, since
the quantity measured is no longer a population average which
is stabilized when millions of cells are pooled together. This often
means that we havemanymore cells sequenced in an experiment,
thus many more “samples" to work with. Compared to typical
bulk RNA-seq data, the number of samples in a scRNAseq data
is typically orders of magnitude higher. If differential expression
(DE) between two populations of cells is of interest, and a gene-
specific “count-depth relationship" confounds the DE, one may
argue that we no longer need normalization before analysis. One
could choose to adjust for this confounding in the regression
setting, as is done in MAST (Finak et al., 2015). In a regression
with sample size over several hundred, adding the library size as
a covariate simply means using one degree of freedom to account
for the “count-depth relationship." Since the regression is done
for each gene, this allows gene specific adjustment. The drawback
is that this assumes a linear effect of the library size, which may
not be valid in all cells, and it can be sensitive to which cells are
included in the analysis. This is also limited to the DE analysis,
whereas scRNA-seq is used for many more applications.

This paper addresses normalization for scRNA-seq data in
relatively high library size, without the use of unique molecular
identifiers (UMI). When UMIs are used, the amplification bias is
largely eliminated because multiple amplified copies of the same
transcript is only counted once. These data sets still have a need
for normalization because library size remains an obvious factor
in the observed counts. But it is a different problem and beyond
the scope of this manuscript.

4. METHODS

4.1. Probability Model
We consider each gene in any given cell is either actively
transcribed or not expressed. When it is transcribed (we refer
to this as Phase II or the active phase), its expression level is
represented as a concentration θgi for gene g in cell i. When it
is not transcribed (we referred to this as the background phase),
its count depends on a sample(cell)-specific noise distribution.
As described in Wu et al. (2018), we model a gene’s true
expected concentration as a lognormal random variable, and the
background noise as a zero-inflated Poisson (ZIP) distribution.
The sequencing technology does not directlymeasure θgi, because

the RNA molecules in the cells have to be captured, reversed
transcribed, amplified and eventually counted. To account for the
potentially unequal counting efficiency for the RNAs of different
genes in different cells, we use Sgi to represent the technical
distortion for gene g in cell i.

The observed count thus comes from a mixture distribution
with latent phase Zgi, where Zgi = 1 means the gene is in the
active phase. Thus, we have

Ygi|Zgi = 1, θgi ∼ Poisson(θgiSgi)withθgi ∼ LN(µg , σ
2
g ),

Ygi|Zgi = 0 ∼ ZIP(p0i, λi)

The parameters θgi and Sgi cannot be both uniquely identified.
For identifiability we constraint the average of Sgi for the cell with
themedian sequencing depth to be 1. In Supplementary Figure 4

we show the observed log counts for a few example genes in the
T2D data to illustrate that the normal assumption is a reasonable
one for the active phase.

4.2. Estimating the Parameters
In Wu et al. (2018) we provide the details of the estimating
procedures for obtaining the µ̂g , σ̂

2
g and p̂0, λ̂. We describe it

briefly here. The ZIP parameters are estimated based on the
properly of a linear relationship in the log frequency of Poisson
counts, with the slope dependent on λ̂. Thus, we can view
the distribution of counts as ZIP contaminated by Phase II
observations. We use a robust regression to down-weight the
influence of high counts to obtain a robust estimate of λ and
then use the amount of excessive zero to estimate p0. The initial
phase indicators Zgi are set based on the point mass from the ZIP
model for each observation. The parameters µg and σg are then
estimated using the counts in the active phase for each gene. This
is iterated using the EM algorithm, which allows us to obtain a

Ẑgi for each gene in each cell as well as µ̂g .

4.3. Estimating the Normalization Factor
With these parameters we obtain residuals ǫ̂gi = logYgi − µ̂g

for the genes deemed in the active phase (we use Ẑgi > 0.99),
which has expectation log Sgi for each gene. Figure 3A shows an
example of the distribution of the residuals against µ̂g . When
there is no need for normalization, ǫ̂gi shall be symmetrically
distributed around the y = 0 line. When there is a consistent
bias for all genes in the same cell, log Sgi ≡ log Si, ǫ̂gi may have
a non-zero expectation but will show a common trend for all
expression levels. However, in general, the bias is often related
to the mean expression level, as shown in Figure 3A. We use
a spline function to estimate a smooth relationship between Sgi

and µg , and obtain f̂i. This allows us to address the unequal need
for normalization for different genes without having to put them
in discrete categories. Then given a gene we estimate log Sgi =

f̂i(logYgi).
A critical step here is to identify the genes in the active

phase in a cell, as only these genes reflect the technical biases
in mRNA extraction and amplification. Thus, in Figure 3A the
smooth line is estimated using only the active phase genes (blue)
only. Note that what we need is a good estimate for this curve,
and thousands of genes in the active phase jointly determine
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this curve. Therefore, even if for any specific gene the phase
determination may not be accurate, its influence on the curve
is trivial.

4.4. Use of the Normalization Factor
The normalization factor has the interpretation of the potential
detection bias for gene g in cell i if gene g is in the active phase.
This value is irrelevant in the case that the gene is not active in
a cell. Directly adjusting the raw counts indiscriminately, such
as in TPM, often leads to inflation of gene counts in cells with
low total counts, which may create misleading large fold changes
across cells. Thus, we provide the normalization factor as an
offset that can be incorporated into analysis pipelines that use
the count data directly. To use the normalization factor for direct
adjustment, we recommend filtering genes to focus on the ones
that are actively expressed.
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In recent years, multi-omic studies have enabled resolving community structure and 
interrogating community function of microbial communities. Simultaneous generation of 
metagenomic, metatranscriptomic, metaproteomic, and (meta) metabolomic data is more 
feasible than ever before, thus enabling in-depth assessment of community structure, 
function, and phenotype, thus resulting in a multitude of multi-omic microbiome datasets 
and the development of innovative methods to integrate and interrogate those multi-omic 
datasets. Specifically, the application of reference-independent approaches provides 
opportunities in identifying novel organisms and functions. At present, most of these large-
scale multi-omic datasets stem from spatial sampling (e.g., water/soil microbiomes at several 
depths, microbiomes in/on different parts of the human anatomy) or case-control studies 
(e.g., cohorts of human microbiomes). We believe that longitudinal multi-omic microbiome 
datasets are the logical next step in microbiome studies due to their characteristic advantages 
in providing a better understanding of community dynamics, including: observation of trends, 
inference of causality, and ultimately, prediction of community behavior. Furthermore, the 
acquisition of complementary host-derived omics, environmental measurements, and 
suitable metadata will further enhance the aforementioned advantages of longitudinal data, 
which will serve as the basis to resolve drivers of community structure and function to 
understand the biotic and abiotic factors governing communities and specific populations. 
Carefully setup future experiments hold great potential to further unveil ecological mechanisms 
to evolution, microbe-microbe interactions, or microbe-host interactions. In this article, 
we discuss the challenges, emerging strategies, and best-practices applicable to longitudinal 
microbiome studies ranging from sampling, biomolecular extraction, systematic multi-omic 
measurements, reference-independent data integration, modeling, and validation.
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TABLE 1 | Longitudinal multi-omic microbiome datasets and studies.

System Sample type Duration∗ Frequency∗ Total of 
samples

MG MT MP MM Complementary data Studies

Human gut 
microbiome

Stool samples 
from 132 
humans; 
healthy or with 
Crohn’s disease 
or ulcerative 
colitis

1 year Bi-weekly 2,965 x x x x Host genomics, 
transcriptomics bisulfite 
sequencing, serologic 
profiles, diet surveys, 
and fecal calprotectin

Lloyd-Price et al., 2019
Ruiz-Perez et al., 2021

Stool samples 
of 77 
individuals

6 months Monthly 474 x x Host transcriptome, 
metabolome, cytokines, 
methylome, dietary 
survey, and physiology

Blasche et al., 2021

Activated 
sludge

Floating sludge 
islets from a 
single anoxic 
tank

1.5 year Weekly 53 x x x x Temperature, pH, 
oxygen concentration, 
conductivity, inflow, 
nitrate concentration, 
and extracellular 
metabolites

Herold et al., 2020
Martínez Arbas et al., 
2021

Full- and lab-
scale activated 
sludge

2.5 months Weekly 10 x x Temperature, pH, redox 
potential and dissolved 
oxygen

Law et al., 2016

Longitudinal multi-omic data must be of least six timepoints and at least two meta-omic readouts excluding 16S amplicon sequencing. Omics data derived from host(s) are 
considered separate from the microbial meta-omic spectra.  
∗Approximate values.

INTRODUCTION

Advances in the study of microbial communities have highlighted 
their important role in natural processes, including those 
considered as ecosystem services for humankind (Bodelier, 
2011). Complex dynamics in microbiomes at the level of 
composition and structure, as well as function (Heintz-Buschart 
and Wilmes, 2018) stem from constant adaptation of a given 
community toward fluctuations of abiotic and biotic factors. 
However, the fate of these microbial consortia in the face of 
perturbations is often not understood nor predictable (Muller, 
2019). Longitudinal approaches are necessary to understand 
microbial community dynamics, as they may offer valuable 
insights into temporal trends and consequences of environmental 
forcings, when used in tandem with host-derived (Heintz-
Buschart et  al., 2016; Lloyd-Price et  al., 2019; Mars et  al., 
2020) or environmental (Law et  al., 2016; Herold et  al., 2020) 
data. Longitudinal studies can be  conducted using diachronic 
or synchronic approaches (Costa Junior et  al., 2013). Herein, 
we  discuss the capacity of longitudinal diachronic approaches 
as a critical tool toward studying microbial communities. We will 
further focus on multi-omics longitudinal studies, which leverage 
the power of the entire high-throughput meta-omic spectrum, 
namely meta-genomics (MG), -transcriptomics (MT), -proteomics 
(MP), and -metabolomics (MM), as they are now more feasible 
and affordable than ever before (Narayanasamy et  al., 2015).

Overall, longitudinal multi-omics will enhance our understanding 
of microbial community dynamics, which could potentially bring 
about positive outcomes in biomedicine, biotechnology, and for 
the environment. However, various aspects must be  considered 
when conducting longitudinal multi-omic microbiome studies, 

ranging from experimental design, bioinformatic processing, 
modeling, and validation. In this article, we  explore challenges, 
considerations, and potential solutions for such studies, based on 
recent advances and reports (Law et  al., 2016; Lloyd-Price et  al., 
2019; Herold et  al., 2020; Martínez Arbas et  al., 2021), which are 
applicable to both microbe-centric (e.g., soil, water) or host-centric 
(e.g., human gut) systems. Finally, although this article focuses 
on specifically longitudinal multi-omic microbiome studies, the 
content is generally applicable to any large-scale microbiome studies.

MULTI-OMIC CONSIDERATIONS AND 
EXPERIMENTAL DESIGN FOR 
LONGITUDINAL STUDIES

Integration of multi-omic microbiome datasets has been routinely 
performed, with notable instances, including studies on type-1 
diabetes (Heintz-Buschart et al., 2016), cancer (Kaysen et al., 2017), 
healthy human gut (Tanca et  al., 2017), Crohn’s disease (Erickson 
et  al., 2012), and activated sludge (Muller et  al., 2014; Roume 
et  al., 2015; Yu et  al., 2019). These studies clearly demonstrate 
the maturity of the current microbiome multi-omics toolbox. Despite 
this, and to the best of our knowledge, equivalent multi-omic 
surveys based on extensive longitudinal microbiome sampling 
remain rather limited. Table  1 lists several relevant studies of 
longitudinal (at least six timepoints) and multi-omic (at least two 
omic levels, excluding 16S amplicon sequencing) microbiome datasets.

The famous adage “absence of evidence is not evidence of 
absence” (Altman and Bland, 1995) could likely be  a prelude 
to most microbiome studies. Hence, we  discuss these studies 
in the context of reference-independent bioinformatics 
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approaches, centered around de novo assemblies of sequencing 
data (MG and MT), subsequently complemented by additional 
omics (MP and MM, depending on their availability; Figure 1). 
Reference-independent approaches offer asymmetric advantages 
and opportunities in discovering novel microbial taxa and/or 
functionalities (Celaj et  al., 2014; Narayanasamy et  al., 2015; 
Lapidus and Korobeynikov, 2021), compared to reference-
dependent methodologies (Sunagawa et  al., 2013; Treangen 
et  al., 2013). Moreover, the integration of multi-omics has 
been shown to yield superior output compared to single omic 
studies. For instance, the co-assembly of MG and MT sequencing 
reads was shown to improve the quality of assembled contigs 
(Narayanasamy et al., 2016), which in turn improves taxonomic 
annotation, gene calling/annotation, binning, metabolic pathway 
(re) construction (Muller et  al., 2018; Zhou et  al., 2020; 

Zimmermann et  al., 2021), and quantification of features, e.g., 
taxa/genes (Narayanasamy et  al., 2016). Similarly, MP spectra 
searches are more effective when performed against gene 
databases derived from MG assemblies of the same sample/
environment, compared to generic databases, thus improving 
the recruitment of measured peptides (Tanca et al., 2016; Heyer 
et  al., 2017; Timmins-Schiffman et  al., 2017). Moreover, such 
a reference-independent approach may be necessary for microbial 
communities that are not well characterized and lack extensive 
unified genome or gene catalogues, such as those available for 
the human gut microbiome (Li et  al., 2014; Almeida et  al., 
2021). However, most microbial communities are heterogeneous, 
which further complicates downstream multi-omic data 
processing, integration, curation, transformation, and modeling 
(Jiang et  al., 2019). Therefore, the adherence toward standards 

FIGURE 1 | Systems ecology workflow for longitudinal multi-omic microbiome studies. A study conceptualized via an experimental design phase and an initial 
biological question which is then followed by sample collection, sample management, and systematic high-throughput measurements. The next-generation 
sequencing (NGS) data could either undergo aggregated processing (yellow track) involving a pooled de novo assembly of NGS reads from all longitudinal samples, 
to eventually yield a metagenome assembled genome (MAG) and/or gene catalogue via binning and gene calling, respectively. In the dereplication approach (red 
track), data from each sample are first processed in a sample-wise manner, namely the steps of de novo assembly, binning, and gene calling. The resulting MAGs 
and predicted ORFs are then merged through a process called dereplication which generates the catalogue. The availability of a catalogue allows quantification 
whereby the output could be used for descriptive analyses which could potentially lead to updated or entirely novel biological questions. Quantified values, 
combined with descriptive analyses, could then be used within dynamic or metabolic models (gray track). Validation of models could lead to further in situ 
longitudinal experimental designs. Finally, all data (raw input, output, metadata) and code (not depicted) should be archived under a data and code management 
strategy. Free icons were used from https://www.flaticon.com (creators: Freepik, Gregor Cresnar, Freepik, and Smashicons).
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and best-practices, spanning from sampling to data analyses 
is important to the outcome of a project. Accordingly, Figure 1 
illustrates the potential lifecycle of a longitudinal multi-omic 
microbiome study.

Longitudinal multi-omic studies require systematic and 
thorough study designs that consider sampling parameters 
(Gerber, 2014; Cao et  al., 2017; Liang et  al., 2020), metadata, 
and complementary measurements, such as physico-chemical 
parameters or questionnaires (Kumar et al., 2014), all of which 
affect downstream analyses. Sampling parameters, such as 
duration and frequency, are dictated by the inherent properties 
of a given microbial system. For instance, the sampling duration 
when studying gut microbiome development of neonates could 
span from birth until a “mature” gut microbiome composition 
is achieved (Stewart et al., 2018), which may vary from subject 
to subject. Naturally-occurring microbial systems that are 
exposed to the environment may exhibit annual cyclical 
behavior based on seasonality and, therefore, could be sampled 
for at least one complete season-to-season cycle (Johnston 
et  al., 2019). Sampling frequency may be  determined by the 
dynamics and/or generational-timescale of a given system. 
For instance, the human gut microbiome is known to exhibit 
daily fluctuations, and therefore could be  sampled on a daily 
basis within a given temporal study (David et  al., 2014), 
while activated sludge systems are known to exhibit 
(approximately) weekly doubling periods and thus could 
be  sampled on a weekly basis (Herold et  al., 2020; Martínez 
Arbas et  al., 2021). Based on the recommendations of Sefer 
et  al. (2016), if biological replicates are either not feasible 
(i.e., n  =  1) or limited (i.e., low n) (Herold et  al., 2020), 
one should ideally opt for higher frequency (dense) longitudinal 
sampling, and less dense sampling if biological replicates were 
available (i.e., high n), e.g., a cohort of patients (Lloyd-Price 
et  al., 2019). Equidistant sampling is required by many 
downstream mathematical frameworks, such as cross-correlation 
or local similarity analysis (Faust et al., 2015), and thus should 
be  strived for, as much as possible. However, the datasets 
listed in Table  1, albeit extensive and resource intensive, are 
not perfectly equidistant, further highlighting the practical 
challenges for longitudinal sampling in situ, including, but 
not limited to, accessibility, consistent biomass availability, 
and cost.

SAMPLE, DATA AND CODE 
MANAGEMENT

It is crucial to limit potential biases linked to longitudinal data, 
e.g., in extended time-series; samples are stored for long periods, 
while multiple personnel may be  involved in sample collection, 
handling, storage, and documentation. Hence, clear guidelines 
and standardization must be  established, as they are key factors 
that potentially affect downstream processes and overall outcome 
(Blekhman et  al., 2016; Schoenenberger et  al., 2016).

Biomolecular extraction from a single sample is ideal over 
multiple extractions from subsamples (Roume et  al., 2013a). 
Advantageously, commercial kits for concomitant extraction of 

multiple biomolecules are available, including reports proposing 
adapted methods for extracting various biomolecules, such as 
DNA, total RNA, small RNA, protein, and metabolites (Peña-
Llopis and Brugarolas, 2013; Roume et  al., 2013b; Thorn et  al., 
2019). The availability of sufficient biomass (Eisenhofer et  al., 
2019) lysis-, homogenization-(Machiels et  al., 2000; Santiago 
et  al., 2014; Fiedorová et  al., 2019) and preservation- (Borén, 
2015; Hickl et al., 2019) methods are key factors that determine 
effectiveness to comprehensively recover all intracellular and/
or extracellular biomolecules. Next, biomolecular extraction 
should be  automated, whenever possible. While evaluations 
have shown that it may not necessarily provide better quality 
results compared to a human operator (Phillips et  al., 2012), 
the output is more consistent (Fidler et  al., 2020). In the same 
vein, omic readouts should also be  generated on a single 
platform (s) as unique batches to ensure consistent output quality.

Batch effects are often overlooked in omic studies (de Goffau 
et  al., 2021), but can be  minimized during stages of sample 
processing by including randomization, sample tracking, and 
extensive documentation (Leek et  al., 2010). Sample 
randomization implemented within batches of biomolecular 
extraction and high-throughput measurements could help 
discriminate batch effects and temporal variation, i.e., different 
sets of randomly selected samples from different timepoints 
could be  treated together at each different step (Oh et  al., 
2019). Additionally, batch effects could be  mitigated using 
downstream analytical (Wang and Cao, 2019) and computational 
methods (Gibbons et  al., 2018; McLaren et  al., 2019).

A potential effective experimental measure for minimizing 
and elucidating batch effects is the inclusion of mock/control 
samples during both the extraction and high-throughput 
measurements (Bokulich et  al., 2016; Hornung et  al., 2019; 
ATCC Mock Microbial Communities, 2020). Samples with low 
biomass, e.g., from neonates, glacier-streams, or acid-mine 
drainage, should include extraction blanks as negative controls, 
which are extremely valuable to discriminate contaminants 
arising from kits and reagents (Salter et  al., 2014; Heintz-
Buschart et  al., 2018; Wampach et  al., 2018; Weyrich et  al., 
2019). Furthermore, spike-ins could be helpful for downstream 
quantification (Zinter et  al., 2019). Importantly, replicates can 
be used within downstream statistical frameworks (Sokal, 1995; 
Anderson, 2017; Kuznetsova et  al., 2017; Mallick et  al., 2021) 
to understand both within- and between-sample heterogeneity, 
thereby minimizing mischaracterisation of contaminants or 
findings driven by batch effects (de Goffau et  al., 2021).

Longitudinal and multi-omic studies yield large datasets, 
where data processing and analyses are typically time and 
resource intensive. These rich datasets may be reused to study 
multiple aspects of a given microbial system (Table 1). Therefore, 
equal emphasis should be  placed on designing bioinformatic 
workflows and code/data management strategies to improve 
reproducibility and transparency. For example, peer-review 
journals have begun mandating “data availability” sections 
and links to code repositories in adherence to project/coding 
best practices and standards (Sandve et  al., 2013; Bokulich 
et  al., 2020), further improving posterior data integration 
and analysis in the short-term, while improving scaling-up 
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and knowledge transfer in the long run (Shahin et  al., 2017; 
Wilson et  al., 2017). In addition, format-free archival 
repositories, such as Zenodo could be  used for non-standard 
data types,1 for instance simulated raw data, physico-chemical 
measurements, intermediate data, large tables, and archived 
Github repositories. Despite this, reports indicate that 26% 
of bioinformatics tools are no longer available (Mangul et  al., 
2019), while gaps in available raw data (Jurburg et  al., 2020) 
and metadata (Schriml et  al., 2020) still exist.

CONSTRUCTION OF LONGITUDINAL 
GENE AND GENOME REFERENCE 
CATALOGUES

Microbiomes may be  studied from a gene-centric perspective 
(Roume et  al., 2015), which requires read or contig-level 
taxonomic classification (Segata et al., 2012; Wood and Salzberg, 
2014), ORF prediction (Hyatt et  al., 2010; Rho et  al., 2010), 
and gene annotation (Seemann, 2014; Buchfink et  al., 2015; 
Franzosa et al., 2018; Queirós et al., 2020). Metagenome assembled 
genomes (MAGs) provide genomic context and can be obtained 
through binning (Chen et  al., 2020; Yue et  al., 2020) followed 
by taxonomic classification (Bremges et  al., 2020; Chaumeil 
et  al., 2020) and functional annotation. In that regard, several 
tools exist that improve the binning process by automating 
the selection of highest-quality MAGs (bins) and/or performing 
MAG refinement (Broeksema et  al., 2017; Sieber et  al., 2018; 
Uritskiy et  al., 2018). These tools enable ensemble binning 
approaches, balancing out the strengths and weaknesses of 
different binning methods (Chen et  al., 2020; Yue et  al., 2020).

Features (i.e., taxa or genes) appear in varying quantities, 
in different timepoints of longitudinal meta-omic studies. It is 
challenging to link and track features from one timepoint to 
another without any given point of reference. Therefore, the 
construction of what we  term as “representative longitudinal 
catalogues” (hereafter referred to as catalogues) of MAGs/genes, 
provides a non-redundant representative base to link features 
from the different longitudinal samples (Herold et  al., 2020; 
Martínez Arbas et  al., 2021). The outcome of any downstream 
analysis is highly reliant on the quality of the MAGs and genes 
within a catalogue, which further depends on the quality of 
large-scale bioinformatic processing (e.g., de novo assembly and 
binning). Figure 1 illustrates two methods of constructing such 
catalogues, which are through aggregated processing of data 
from all samples or through de-replicating the output from 
individually processed sample data (i.e., sample-wise processing). 
A third alternative to these methods could be the representation 
of non-redundant genes in pangenomes from MAGs annotated 
at the species-level (Tettelin et  al., 2005; Delmont and Eren, 
2018), collected across all timepoints. This allows for identifying 
any varying patterns especially in the context of environmental 
factors and phylogenetic constraints influencing gene acquisition 
and/or genome-streamlining (Tettelin et  al., 2005). Given that 

1 https://zenodo.org

others have highlighted the catalogue building methodologies 
(Qin et  al., 2010; Nayfach et  al., 2020; Almeida et  al., 2021); 
here, we  elaborate methods discussed above in the context of 
both gene- and MAG-centric strategies.

The general advantage of the aggregated processing approach 
is simplicity, whereby a single run is required for all the 
large-scale bioinformatic processing steps (Figure 1). Moreover, 
pooled assemblies have been shown to be  effective (Magasin 
and Gerloff, 2015), especially in the advent of highly efficient 
de novo assemblers (Li et al., 2016) and digital normalization 
(Brown et  al., 2012). However, pooling reads from a large 
number of samples increases the complexity of the de novo 
assembly process, especially for complex communities. It 
also requires substantial computational resources, while 
potentially resulting in lower quality contigs, MAGs, and 
genes (Chen et  al., 2020).

The dereplication method (Figure 1) is applied after independent 
sample-wise large-scale bioinformatic processing (Evans and 
Denef, 2020). Predicted ORFs could be  de-replicated through 
clustering (Li and Godzik, 2006; Edgar, 2010; Mirdita et  al., 
2019), producing a gene catalogue (Li et  al., 2014). On the 
contrary, the dereplication of MAGs is more complex, requiring 
several steps: binning from sample-wise de novo assemblies to 
generate MAGs, curation of high-quality MAGs (Parks et  al., 
2015), and dereplication of MAGs (Olm et  al., 2017; Wampach 
et  al., 2018) to select the most representative MAGs of the 
longitudinal data (Uritskiy et  al., 2018; Chen et  al., 2020). In 
general, dereplication methods are particularly advantageous for 
longitudinal microbiome studies with many deeply sequenced 
samples (Herold et  al., 2020; Martínez Arbas et  al., 2021).

Although not systematically evaluated, one caveat worth 
considering when constructing a catalogue based on de novo 
assemblies, binning, and dereplication is the potential loss of 
resolution in population-level diversity (Kashtan et  al., 2014; 
Evans and Denef, 2020; Quince et al., 2020), which may include 
single nucleotide variants, copy number variants, strains, and 
auxiliary gene content (Evans and Denef, 2020) potentially 
impacting important downstream steps, such as integration 
of metaproteomic data (Tanca et  al., 2016) or time-resolved 
strain tracking (Brito and Alm, 2016; Zlitni et  al., 2020). To 
the best of our knowledge, the extent of the impact has yet 
to be systematically investigated. In our opinion, several strategies 
can be  applied to overcome this issue, including the usage 
of a comparative genomics methodology, i.e., pangenomes 
(Delmont and Eren, 2018), even opt for (re) assemblies of 
read subsets associated to particular taxa or MAGs of interest 
(Albertsen et al., 2013), or the application of strain-level analysis 
tools (Anyansi et  al., 2020).

Overall, choosing the specific methods for constructing a 
longitudinal catalogue depends on various factors, including 
the biological question, complexity of the community (van der 
Walt et  al., 2017), number of samples, and sequencing depth. 
To the best of our knowledge, a comparison between an 
aggregated processing approach and a dereplication approach 
has yet to be  conducted. Such a comparison would further 
help to inform researchers on selecting the best strategy for 
longitudinal analyses.
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QUANTIFICATION AND NORMALIZATION

Longitudinal catalogues provide compositional information of 
community taxa and potential functions. However, the relative 
quantification of community members and functionalities is 
key in harnessing the power of longitudinal microbiome data, 
as it allows the observation of community taxa/functional 
dynamics and could be  used in downstream modeling. In that 
regard, quantifying MG and MT sequencing data is a standard 
process of aligning reads (Li and Durbin, 2009) to relevant 
catalogues, and then quantifying features of interest (e.g., 
population/gene relative genomic abundance, gene expression) 
based on those alignments, providing information on community 
structure, functional potential, and gene expression. 
Complementally, MP data provide functional insights, whereby 
several methods are available for the quantification of such 
data (Delogu et al., 2020; Pible et al., 2020), while identification 
and quantification of metabolites through MM data (Kapoore 
and Vaidyanathan, 2016; Mallick et  al., 2019; Røst et  al., 2020) 
provide insights on the community phenotype (s). However, 
in situ measurements of substrate uptake through labeling-
based approaches (Starr et al., 2018) are challenging. Therefore, 
specific metabolites of interest could be  indirectly linked to 
members of a microbial community by proportionally assigning 
the relative contribution of a MAG to a given (re) constructed 
metabolic pathway based on genomic abundance or gene/protein 
expression (Noecker et  al., 2016; Blasche et  al., 2021).

Normalization of quantified values is required to enable 
community structure and function comparisons between 
timepoint samples. The selection of normalization methods is 
important as it affects downstream analytical steps. There are 
several methods to normalize longitudinal MG and MT data, 
from the generation of compositional data to log-ratios and 
differential rankings (Chen et  al., 2018; Pereira et  al., 2018; 
Morton et  al., 2019). Additionally, one should also inspect the 
data for potential confounding batch effects and take it into 
consideration when performing normalization (Gibbons et  al., 
2018; McLaren et  al., 2019; Coenen et  al., 2020). In summary, 
effective relative quantification and normalization will serve 
as a strong basis for downstream modeling approaches, and 
the development of robust methods for absolute quantification 
will be  decisive in the future.

ANALYSIS OF COMMUNITY 
CHARACTERISTICS AND DYNAMICS

Generally, microbiome omic data are complex, as it is (i) 
compositional, e.g., provided as relative abundances, which 
require specific considerations when selecting statistical analyses 
(Gloor et al., 2017), (ii) highly sparse, such that the interpretation 
of zero-values generated from sampling, biological, or technical 
processes heavily affects data-derived conclusions (Silverman 
et al., 2020), and (iii) high dimensional, which increases modeling 
difficulty due to the influence of feature selection that heavily 
affect potential predictions (Bolón-Canedo et  al., 2016). 
Furthermore, multi-omic studies may contain gaps within the 

omic spectrum, such that certain samples may not be represented 
within a certain omic layer (Lloyd-Price et  al., 2019). Despite 
introducing complexity, the complementary use of different 
omics could improve analysis outcomes and add predictive 
power to models (Muller et  al., 2013; Fondi and Liò, 2015). 
Longitudinal data introduce another layer of complexity, i.e., 
time dependencies, such that one timepoint is dependent on 
the previous timepoints, rendering conventional statistical 
analyses unsuitable as they assume samples to be  independent 
(Coenen et  al., 2020). This is further compounded by the fact 
that samples from longitudinal in situ studies are often low 
in number and non-equidistant (Park et  al., 2020). Imputation 
may be  used to supplement missing values (i.e., omic 
measurements or timepoints; Jiang et  al., 2020).

Initial exploration of the microbiome dynamics can 
be assessed through ordination analyses, where high dimensional 
population structure data are visualized in a two-dimensional 
space to observe the trajectory of the samples and the behavior 
of the system, i.e., metastability, cycles, and alternative states 
(Gonze et  al., 2018). Then, community member relationships 
may be  inferred using, e.g., correlation methods (Faust et  al., 
2012; Friedman and Alm, 2012; Weiss et al., 2016). Unfortunately, 
correlations may be  insufficient to assess complex community 
interactions, whereby the application of modeling approaches 
would be  necessary to resolve those relationships (Fisher and 
Mehta, 2014; Trosvik et  al., 2015; Ridenhour et  al., 2017). 
Modeling could serve as a means of integrating several layers 
of omic data (Lloyd-Price et  al., 2019; Ruiz-Perez et  al., 2021) 
further elucidating microbial interplay beyond species abundances 
and functional potential.

Extensive literature of statistical and mathematical frameworks 
for multi-omic and/or longitudinal microbiome data is currently 
available. For instance, Noor et al. (2019) review the integration 
of multi-omics data from data-driven and knowledge-based 
perspectives. Coenen et  al. (2020) discuss approaches to 
characterize temporal dynamics and to identify periodicity of 
populations and putative interactions between them, while Faust 
et  al. (2018) propose a classification scheme for better model 
selection. Bodein et al. (2019) provide a multivariate framework 
to integrate longitudinal and multi-omics data, while Park et al. 
(2020) discuss the development of models and software tools 
for time-series metagenome and metabolome data. Overall, 
the application of these methodologies should be tailored toward 
specific hypotheses and studies, for which data exploration is 
essential to select modeling approaches that fit the type, quality, 
and quantity of the data.

More recently, the emergence of studies which track 
microbiome dynamics of cohorts over time, i.e., multiple 
individuals/sites (Carmody et al., 2019; Lloyd-Price et al., 2019; 
Mars et al., 2020), necessitates the ability to discriminate variation 
stemming from the same individual/environment compared to 
those from different individuals/environments. In such cases, 
multi-level statistical modeling (also known as mixed-effects/
hierarchical models) is able to account for repeated sampling 
or nested variation across a sample population (Sokal, 1995; 
Anderson, 2017; Kuznetsova et  al., 2017; Mallick et  al., 2021). 
Most notably Lloyd-Price et  al. (2019) extensively applied such 
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methods to associate multi-omic microbiome signatures with 
host-derived molecular profiles in a cohort of 132 individuals. 
Other instances include multi-omic longitudinal studies that 
combine murine and human datasets to unveil the adaptation 
of gut microbiomes to raw and cooked food (Carmody et  al., 
2019) and the identification of therapeutic targets for irritable 
bowel syndrome (Mars et  al., 2020). Finally, there are newer 
methodologies that apply similar/related statistical frameworks 
to modeling multi-omic data (Mallick et  al., 2021).

The validation of the models remains one of the most 
challenging issues. Mathematical models combined with culture 
of synthetic microbial communities are commonly utilized to 
study mechanisms behind host-microbiome interactions (Moejes 
et  al., 2017). It is also possible to validate interactions between 
microbes by, e.g., applying environmental perturbations in 
controlled conditions (Law et  al., 2016; Herold et  al., 2020). 
These explorations may result in a further understanding of the 
role of biotic and abiotic factors in shaping microbiomes, in 
relation to community phenotypes found in nature, biotechnological 
processes (Law et al., 2016; Herold et al., 2020), or host-associated 
microbiomes (Moejes et  al., 2017; Garza et  al., 2018).

CONCLUSION

Longitudinal microbiome studies combined with integrated 
multi-omic measurements provide unprecedented 
opportunities to study microbial community dynamics, both 
structurally and functionally. In tandem with evolving high-
throughput technologies, e.g., long-read sequencing (Moss 
et  al., 2020; Wickramarachchi et  al., 2020), these studies 
will become important tools in the exploration and potential 
exploitation of microbial consortia. We  described strategies 
to mitigate the various challenges associated with such  
studies, encompassing study design, best practices, practical 

considerations, and bioinformatics processing and modeling. 
While longitudinal multi-omics datasets are currently scarce 
(Table  1), we  are confident that it will increasingly become 
more common, similar to how we are increasingly transitioning 
from single omics to multi-omic (Noor et  al., 2019). 
Longitudinal microbiome multi-omics will serve as an 
important tool for further improving analytical methods, 
which will in turn lead to relevant biomedical, biotechnological, 
and environmental outcomes.
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GeneMarkeR: A Database and User
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Single-cell sequencing (scRNA-seq) has enabled researchers to study cellular
heterogeneity. Accurate cell type identification is crucial for scRNA-seq analysis to be
valid and robust. Marker genes, genes specific for one or a few cell types, can improve cell
type classification; however, their specificity varies across species, samples, and cell
subtypes. Current marker gene databases lack standardization, cell hierarchy
consideration, sample diversity, and/or the flexibility for updates as new data become
available. Most of these databases are derived from a single statistical analysis despite
many such analyses scattered in the literature to identify marker genes from scRNA-seq
data and pure cell populations. An R Shiny web tool called GeneMarkeRwas developed for
researchers to retrieve marker genes demonstrating cell type specificity across species,
methodology and sample types based on a novel algorithm. The web tool facilitates online
submission and interfaces with MySQL to ensure updatability. Furthermore, the tool
incorporates reactive programming to enable researchers to retrieve standardized
public data supporting the marker genes. GeneMarkeR currently hosts over 261,000
rows of standardized marker gene results from 25 studies across 21,012 unique genomic
entities and 99 unique cell types mapped to hierarchical ontologies.

Keywords: single-cell RNA-seq1, scRNA-seq2, marker gene3, cell type4, database5, web-interface6

INTRODUCTION

scRNA-seq enables study of disease heterogeneity, novel cell subtypes, cellular interactions, and
cellular tissue composition (Mancarci et al., 2017; Skelly et al., 2018; Aran et al., 2019; Saviano et al.,
2020). A major challenge in scRNA-seq analysis is to identify the cell type of individual cells.
Accurate cell type identification is crucial for any scRNA-seq analysis to be valid as incorrect cell type
assignment will reduce statistical robustness and may lead to incorrect biological conclusions.
Therefore, accurate and comprehensive cell type assignment is necessary for reliable biological
insights into scRNA-seq datasets.

Marker genes, genes more specific in expression for one or a few cell types over others, are important
descriptors in the identification of scRNA-seq cell type (Franzen et al., 2019; Zhang et al., 2019). Identifying
marker genes can be a tedious process, and sometimes requires manual extraction from appendices and/or
images of publications. Furthermore, marker genes may be specific to sample type, species, and/or
sequencing technology. For example, a gene that is specific for endothelial cells in mouse brain tissue
samplesmay not be endothelial cell specific outside of the brain or in human samples. Therefore, it is vital to
improve access to accurate, robust, and translatable scRNA-seq marker genes.
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The recent publication of CellMarker (Zhang et al., 2019) has
provided researchers with access to marker gene lists in mouse
and human. The program provides manually extracted lists of
marker genes from multiple sources for users to search. While
having a consolidated source of marker gene lists is helpful,
researchers must still sort through data to identify which
marker genes are robust and relevant to their analyses. For
example, identifying species-specific markers, markers
consistent across samples, and markers able to be detected in
3′-sequencing methods, would require the users to manually
identify marker genes fitting their data criteria. Therefore, the
primary focus of this manuscript is to provide a resource to
document the marker genes that were consistently identified
across species, samples, sequencing technologies, and sources.

To identify consistent marker genes for specific cell types, we
manually curated results from publications that performed large-
scale statistical analyses on pure cell populations via scRNA-seq
or Fluorescence-activated cell sorting (FACS) methodologies. We
focused on publications using expression data from mice and/or
human untreated, non-disease samples. Next, the extracted gene
information was standardized to known ontologies, cellular
hierarchy information was incorporated, and a marker gene
score algorithm to identify marker genes consistent across
sources, samples, and species was developed. Two MySQL
databases were generated to store: 1) the standardized,
manually curated statistical results and metadata and 2) the
robust marker genes, while an R Shiny reactive user-interface
is provided to access the data. The development of the publicly
accessible GeneMarkeR database and user-interface is described
in this manuscript.

MATERIALS AND METHODS

Data Extraction
Data curated for the database focused on publications
concentrated on performing statistical analyses to identify cell
type-specific marker genes in their samples. There were 25 unique
marker gene analyses from these publications that either: 1) used
scRNA-seq expression data, 2) used RNA-seq or microarray
expression data collected from pure cell populations, or 3)
came from collaborators sharing highly validated
(i.e., prototypical) marker genes. Additional publications were
evaluated; however, these were filtered out as the exclusive focus
was on naïve (i.e., non-treated, non-disease) mouse and human
samples. The marker genes, cell types and full statistical results
were manually extracted from figures, supplemental data, and
text of publications, or directly from the author to ensure data
integrity. In a few cases only the significant marker gene results
were available from the author, not the full statistical output.
Additional contextual data (i.e., sample type, species, gene
expression method, statistical method, relevant statistical
cutoffs) were collected from each source. For publications that
used scRNA-seq data, prototypical marker genes, marker genes
the authors used to annotate their cell types for each cell
population, were extracted. These prototypical marker genes
are generally highly validated, well-accepted genes used to

annotate cell types prior to performing novel marker gene
identification.

Ontology Standardization
To enable mouse-human comparison across the same genomic
entity (i.e., genes, miRs, lncRNAs), Mouse Genome Informatics
(MGI) and Entrez mouse-human ortholog information were used
to map genomic entity information. Genomic entities for mouse
(assembly GRCm39) and human (assembly GRCh38.p13) were
standardized using gene symbols and unique identifiers from
both Entrez and Ensembl. A unique key (GeneID) was generated
to identify each unique mouse-human ortholog pair, or when no
ortholog is described, to denote the mouse or human-specific
genomic entity. A total of 21,012 unique genomic entities were
included in the analysis. Genomic entities are referred to as genes
in the Figures and Tables for readability as genes comprise most
of the genomic entities.

The 120 distinct cell types extracted from the publications
were mapped to Cell Ontology terms using EMBL-EBI’s
Ontology Lookup Service and Ontobee. Additional cell types
were added to the network structure to ensure specific cell types
accurately mapped back to parent nodes (i.e., naïve cell and
somatic cell). Redundant terms (i.e., cell types that mapped in
multiple branches) were pruned by removing cyclic relationships
manually. Intermediate nodes that lacked branching and did not
add value to the classification were manually removed.
Intermediate nodes with branches were retained as these are
crucial to build out the tree as cell types from new datasets are
added. The cell type hierarchy of Cell Ontology was built via the
JavaScript package “visNetwork” implemented in R with an
abbreviated version shown in Figure 1A. The cell hierarchy
enables us to consider if genes were specific for higher-level
cell type terms vs. cell subtypes.

Marker Gene Score
To compare disparate marker gene statistics across publications,
each statistical endpoint from a source was normalized between 0
and 1. The midpoint (i.e., 0.5) was set as the author provided
statistical significance cut-off. For example, in Supplementary
Figure S1 the example Source 1 had two distinct statistical
endpoints: 1) log fold change enrichment score, and 2)
adjusted p-value. The log fold change enrichment score ranges
from −9 to 0 where the more negative the result, the more
significant. For log fold change enrichment score, these
authors considered results less than or equal to −2 to be
statistically significant; therefore, −2 is set at a marker gene
score of 0.5 while values between −9 and −2 are scaled
between 1 and 0.5, respectively and values between −2 and 0
are scaled between 0.5 and 0, respectively. The adjusted p-value
for Source 1 ranged from 0 to 1, with increasing significance
closer to 0. For adjusted p-value, these authors considered results
less than or equal to 0.05 to be statistically significant; therefore,
0.05 is set at a marker gene score of 0.5 while values between 0 and
0.05 are scaled between 1 and 0.5, respectively and values between
0.05 and 1 are scaled between 0.5 and 0, respectively. The
preliminary scores were averaged across the source per gene-
cell type pair to calculate a marker gene score for each unique
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gene-cell type-source combination as is shown in Supplementary
Figure S1. For example, in Supplementary Figure S1, if a unique
gene-cell type pair are reported to have a log fold change

enrichment score of −9 and an adjusted p-value of 0.05, then
the preliminary scores of 1 and 0.5, respectively, would be
averaged, resulting in a marker gene score of 0.75 for that

FIGURE 1 | GeneMarkeR user interface. (A) “Cell Type Selection” tab enables selection of cell types from a drop-down menu (not shown) and a hierarchical cell
network (abbreviated network shown here). Upon selection of cell types, the “Marker genes” tab is populated. (B) “Marker genes” tab displays marker genes and species
specificity information from GeneMarker.db filtered to the user-selected cell types. Upon selection of marker genes of interest, the “Source information” tab is populated.
(C) “Source information” tab displays source, sample and statistical data from CellSearcheR.db filtered to the user-selected marker genes. All GeneMarkeR data
can be exported to CSV.

FIGURE 2 | Marker gene classification algorithm. The algorithm classifies genes with <4 cell types as Indeterminate due to insufficient data to analyze the gene
unless the gene was examined against the same cell type in ≥4 separate analyses. Significant marker gene score (i.e., at least 0.5) for at least two-thirds of publications
considered for each gene-cell type pair. The number of significant gene-cell type pairs per a given gene is “X”. 1) If X � 0, the gene is not a marker gene for any cell type, 2)
If X � 1, the gene is a marker gene for one cell type, 3) If X ≥ 2, then the gene is a marker gene for more than one cell type. When X ≥ 2, if the gene is marker gene for
multiple cell types from the same higher-level cell type (ex: connective tissue cells), then the gene is a marker gene for the higher-level cell type. When X ≥ 2, if the gene is
marker gene for multiple cell types from at least 2 higher-level cell types (ex: connective tissue cells and T cells), then the gene is a non-marker gene due to lack of
specificity across publications.
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gene-cell type pair in Source 1. A marker gene score of 1 indicates
strong evidence that a gene is a marker gene for a given cell type
from that source, while 0 indicates little to no evidence for
supporting this relationship.

Marker Gene Score Algorithm
To classify whether a gene was specific across samples, species
and sources for a given cell type, a simple marker gene
classification algorithm was developed as shown in Figure 2.
Genes reported in fewer than 4 cell types were labelled as
Indeterminate due to insufficient data to determine specificity
across multiple cell types. As highly specific genes may not be
expressed in other cell types accounting for reporting in fewer
than 4 cell types, a subset of genes categorized as Indeterminate
had to be reclassified. Therefore, genes originally classified as
Indeterminate that were analysed in the same cell type across at
least 4 separate sources for common cell types or 2 separate
sources for rare cell types (e.g., pancreatic epsilon cell) were
reclassified and were included in the next classification steps.

Next, the number of cell types (X) with an average marker gene
score of ≥0.5 across publications were counted for each gene. If X
� 0 for an individual gene, that gene was not considered a marker
gene for any cell type (i.e., a non-marker gene). If X � 1 for an
individual gene, that gene was significant for a single cell type
across sources, so it was classified as a marker gene for that cell
type. To ensure genes were specific for a limited number of cell
types, each gene was restricted to be considered a marker gene for
a maximum of 2 cell types. To ensure this cut-off was achieved, if
X ≥ 2 for an individual gene, the number of higher-level cell types
(Y) were considered. If Y < 2 for an individual gene, then the gene
was a marker gene for the higher-level cell type. If Y ≥ 2 for an
individual gene, the gene would be considered in most cases as a
non-marker gene since it was not specific across publications. As
each gene was restricted to a maximum of 2 cell types for which it
was specific, genes exceeding this are labelled non-marker genes.

Therefore, using our algorithm cut-off X, we first check if the
gene is specific for the more granular cell subtypes. If X < 2, then
the gene is subtype specific, thus specific for that cell subtype and
for any higher-level cell types in the hierarchical tree branch.
While we count this gene as specific for 1 cell type subtype, the
specificity relationship is propagated up the branch meaning the
gene is also specific for higher level cell types in that branch. If X ≥
2, then we check if those cell subtypes fall under the same higher-
level cell type by looking at the built hierarchical ontology tree
structure. This is where the higher-level threshold of Y comes into
play. If a gene is found to be specific for multiple cell subtypes
(i.e., X ≥ 2) and those cell subtypes belong to the same higher level
cell subtype, then the gene is a marker gene for the higher-level
cell type, but NOT for the subtypes. Species specificity for a
marker gene required a 3-fold difference in median marker gene
score between species with the median exceeding 0.5 for at least
one of the species.

Database Design and Web Interface
There are two databases behind GeneMarkeR shown in Figure 3,
they are both implemented in MySQL to ensure data integrity,
standardization, and ease of data updates over time.

CellSearcheR.db consists of over 261,000 rows of data
extracted across 15 publications and 2 datasets from
collaborators comprising a total of 25 unique marker gene
analyses. CellSearcheR.db was processed through the algorithm
described in Materials and Methods Marker gene score to create
GeneMarkeR.db, which stores gene-cell type relationships for the
algorithm identified marker genes.

An R Shiny tool hosted on the IU Precision Health Initiative
server enables access and extraction of both CellSearcheR.db and
GeneMarkeR.db databases. As is shown in Figures 1A–C, the R
Shiny tool has reactive programming built-in, so when the user
selects cell types, this accesses GeneMarkeR.db to populate the
marker gene tab with algorithm-derived marker genes for their
cell types of interest. User selection of genes of interest on the
marker gene tab reactively retrieves the standardized, raw
CellSearcheR.db marker gene score and statistical data for
each of those genes.

A link (https://redcap.uits.iu.edu/surveys/?s�XEAFCX4LC7)
is provided on the web interface to a user submission form where
researchers can submit their marker gene analysis data. The
online form provides the results in a standardized CSV output
to enable easy standardization and addition to CellSearcheR.db.
In addition, marker gene analyses from new publications can also
be manually extracted and standardized to update CellSearcheR.
db with new data. The marker gene score algorithm is then used
to process all the data in CellSearcheR.db to update the results in
GeneMarkeR.db. Therefore, the process ensures updatability of
the databases and web interface over time from user submission
and manual extraction from new publications.

RESULTS

In total, 25 unique marker gene analyses of 9 distinct specimen
types (blood, bone marrow, brain, heart, kidney, lung, pancreas,
and tonsil) and additional cross-specimen sample types were
identified that met the criteria specified in the Materials and
Method section. The 261,000 rows of standardized marker gene
statistical data extracted from the 25 analyses were stored in the
CellSearcheR.db. As is shown in Figure 3, the CellSeatcheR.db
data are analyzed in the marker gene classification algorithm
detailed in Figure 2 to identify the marker genes that are then
stored in GeneMarkeR.db. The information housed in each
database is shown in Figure 3 and the data from both MySQL
databases are used to generate the GeneMarkeR Tool R Shiny
interface.

The 3,936 genomic entities that could not be automatically or
manuallymapped to a current gene annotationwere excluded, leaving
21,012 genomic entities for the analysis. There were over 120 distinct
cell types (including higher level cell types) with 221,441 unique gene-
cell type combinations considered in the marker gene analysis. The
final analysis of standardized marker gene results identified 2,464
genes as specific for one or two cell types with 2,746 total marker gene
pairs as 281 genes were specific for two cell types. 7,283 genes were
classified as non-marker genes, 10,465were classified as indeterminate
due to sparse data and the remainder were a mix of non-marker gene
and indeterminate. The number of genes identified as a marker gene
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analyzed at that cell type (dark blue) out of all genes analyzed at that
cell type (length of bar) is shown in Figure 4A. There were 68 cell
types with marker genes identified out of the 120 cell types extracted
from the 25 unique marker gene analyses. Out of the 2,746 marker
genes, 80% of those were classified as a specific cell type and 20%were
classified as a higher-level cell type. Filtering to the marker genes from
Figure 4A (dark blue) we get Figure 4B where marker genes are
categorized based on whether the gene is specific for that cell type
(light blue) or a higher-level cell type (purple). For example, therewere
5,000 genes analyzed against fibroblasts with approximately 500 being
identified as marker genes for fibroblasts and 400 being identified as
marker genes for a higher-level cell type (i.e., connective tissue cell).

In CellMarker there are an average of 2.2 sources supporting
marker genes in normal tissue samples with 55% of marker genes
supported by a single source. In the GeneMarkeR.db database
there are 4.5 sources on average supporting a gene being a marker
gene for a certain cell type in our database with only 4 (0.1%)
marker genes supported by a single source. These 4 cases were
due to the gene being a higher-level marker gene in the cell
ontology and the individual publications having at least 4 distinct
cell types to support that re-classification.

DISCUSSION

The analysis described here focused on mouse and human as these
two species comprise most marker gene data analyses. Non-treated
and non-disease samples were evaluated to study the naïve state of cell

identity. This enables future analyses to delve into the impact that
disease and treatment may have on cell identity markers. After
extracting data from public datasets meeting these criteria, data
standardization was addressed. Due to differences in genome
annotations, sources of gene symbols, and naming conventions
across publications, not all genes could be automatically mapped.
Therefore, 15% of the gene symbols weremanuallymapped to current
genome assembly GRCm39 for mouse and GRCh38.p13 for human.
Genes that existed in earlier genome annotations but have since been
discontinued in current mouse and human reference genomes were
removed from the analysis.

The ontology standardization of cell type started withmapping cell
types from the publications to Cell Ontology. Nodes of these cell types
and their higher-level cell types were connected by building the
network backwards from the most specific cell types up to the
highest-level parent nodes (i.e., naïve cell or somatic cell). As is
described in Materials and Methods Ontology standardization, the
hierarchy was manually pruned to remove redundancy and circular
relationships, whilemaintaining intermediate cell type nodes to ensure
new cell types could be connected in the future. In a handful of cases
nodes were manually adjusted to ensure biological relevance and
consistency. The higher-level cell types were then added to the
database to improve the marker gene score algorithm.

Due to differences in statistical methods, endpoints and
significance cut-offs, the marker gene score was calculated to
enable normalization and comparison across publications. Using
the median and average marker gene score we used the marker
gene score algorithm to identify marker gene, higher-level marker

FIGURE 3 | Schema for generation of GeneMarkeR. The CellSearcheR database (CellSearcheR.db) integrates standardized cell type, gene and statistical data
from publications performing marker gene identification analyses on non-treated, non-disease mouse and human samples. Data was manually extracted, cell types
mapped to the Cell Line Ontology hierarchical ontology, genes mapped to Ensembl and Entrez identifiers and statistical data normalized to a marker gene score.
CellSearcheR.db is processed by the marker gene classification algorithm detailed in Figure 2. The GeneMarkeR database (GeneMarkeR.db) integrates the
standardized cell type, gene andmarker gene results from the algorithm output. CellSearcheR.db andGeneMarkeR.db areMySQL databases that are accessed via an R
Shiny user interface called GeneMarkeR.
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gene, non-marker gene and indeterminate calls for each cell type-gene
combination across sources. While approximately 80% of gene-cell
type pairs could be automatically annotated by following the
algorithm, genes with more than 2 higher-level cell types had to
be manually checked to determine if those higher-level cell types were
from the same branch of the hierarchical cellmap or fromapreviously
pruned branch. For example, microglial cell can be connected to
multiple branches (i.e., glial cell,macrophage, andmyeloid cell, etc. . .),
so the manual mapping would reconsider these additional
connections and higher-level cell types in context of all data for
that gene-cell type pair.

While CellMarker is a great source of marker gene annotations
from normal and disease samples, the database described in this
manuscript provides an improvement in marker gene
identification for normal mouse and human samples. An
advantage of this algorithm over previously published analyses
is the greater amount of data supporting each marker gene call.
Identifying genes that are considered as marker genes across
multiple sources in CellMarker requires users to perform their
own analysis of the data, whereas GeneMarkeR provides the user
with that information. In addition, unlike CellMarker,
GeneMarkeR considers the difference and overlap between
mouse and human enabling species-specific gene markers to
be included or excluded. Finally, due to the inclusion of
hierarchical cell ontology in GeneMarkeR, 538 genes were

more accurately reclassified as being specific for a higher-level
cell type rather than the original publication cell type, which is not
considered in CellMarker.

In conclusion, data were first manually extracted from publicly
available marker gene analyses and hierarchical ontology
standardization was applied to create CellSearcheR.db. Next,
GeneMarkeR.db was developed using a novel algorithm that
considers marker gene score to identify marker genes specific
across species, samples, and methodology. Finally, an R Shiny
user interface was developed (GeneMarkeR) that pulls from
CellSearcheR.db and GeneMarkeR.db using reactive
programming. The GeneMarkeR tool provides highly
validated, consistent marker genes and species specificity
information to enable improved scRNA-seq cell type
identification over existing databases.
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FIGURE 4 |GeneMarkeR summary statistics. (A)Number of marker genes identified (dark blue) out of all genes analyzed per cell type (length of bar). (B)Number of
marker genes reclassified as a higher-level cell type marker (purple) and number of marker genes classified as cell type-specific marker (light blue) out of all marker genes
identified for that cell type (length of bar). Figure 2B is filtered to the marker genes, i.e., dark blue bars in figure 2A. Both figures are sorted from largest to smallest
number of genes.
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Supplementary Figure 1 | Marker gene score calculation for an individual source/
publication. For eachmarker gene statistic in an individual source, the statistical results
are scaled from 0 (low/no evidence marker gene) to 1 (high evidence marker gene)
using the author specified statistical significance cutoffs. All gene-cell type pairs in that
source receive a preliminary score for each endpoint. Those preliminary scores are then
averaged to calculate the marker gene score for a gene-cell type pair in an individual
source. A given gene-cell type pair will have a different marker gene score for each
publication to enable comparison of gene specificity for that cell type across sources.
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tascCODA: Bayesian Tree-Aggregated
Analysis of Compositional Amplicon
and Single-Cell Data
Johannes Ostner1,2, Salomé Carcy2,3† and Christian L. Müller1,2,4*

1Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany, 2Institute of Computational Biology,
Helmholtz Zentrum München, Munich, Germany, 3Department of Biology, École Normale Supérieure, PSL University, Paris,
France, 4Center for Computational Mathematics, Flatiron Institute, New York, NY, United States

Accurate generative statistical modeling of count data is of critical relevance for the
analysis of biological datasets from high-throughput sequencing technologies.
Important instances include the modeling of microbiome compositions from
amplicon sequencing surveys and the analysis of cell type compositions derived
from single-cell RNA sequencing. Microbial and cell type abundance data share
remarkably similar statistical features, including their inherent compositionality and a
natural hierarchical ordering of the individual components from taxonomic or cell lineage
tree information, respectively. To this end, we introduce a Bayesian model for tree-
aggregated amplicon and single-cell compositional data analysis (tascCODA) that
seamlessly integrates hierarchical information and experimental covariate data into
the generative modeling of compositional count data. By combining latent
parameters based on the tree structure with spike-and-slab Lasso penalization,
tascCODA can determine covariate effects across different levels of the population
hierarchy in a data-driven parsimonious way. In the context of differential abundance
testing, we validate tascCODA’s excellent performance on a comprehensive set of
synthetic benchmark scenarios. Our analyses on human single-cell RNA-seq data from
ulcerative colitis patients and amplicon data from patients with irritable bowel syndrome,
respectively, identified aggregated cell type and taxon compositional changes that were
more predictive and parsimonious than those proposed by other schemes. We posit that
tascCODA1 constitutes a valuable addition to the growing statistical toolbox for generative
modeling and analysis of compositional changes in microbial or cell population data.

Keywords: bayesian modeling, dirichlet multinomial, microbiome data, single-cell data, spike-and-slab lasso, tree
aggregation, differential abundance testing

1 INTRODUCTION

Next-generation sequencing (NGS) technologies have fundamentally transformed our ability to
quantitatively measure the molecular make-up of single cells (Shalek et al., 2013), tissues (Regev
et al., 2017; Karlsson et al., 2021), organs (He et al., 2020), as well as microbiome compositions
in and on the human body (Human Microbiome Project Consortium, 2012). Single-cell RNA
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sequencing (scRNA-seq) (Tang et al., 2009; Shalek et al., 2013;
Macosko et al., 2015) has become the key technology for
recording the transcriptional profiles of individual cells across
different tissue types (Regev et al., 2017) and developmental
stages (Griffiths et al., 2018), and for determining cell type
states and overall cell type compositions (Trapnell, 2015). Cell
type compositions provide informative and interpretable
representations of the noisy high-dimensional scRNA-seq
data and are typically derived from clustering characteristic
gene expression patterns in each cell (Duò et al., 2018; Traag
et al., 2019), followed by analysis of the expression levels of
marker genes (Luecken and Theis, 2019). As a by-product,
these workflows also yield a hierarchical grouping of the cell
types, either derived from the clustering procedure or
determined by known cell lineage hierarchies. Determining
changes in cell type populations across conditions can give
valuable insight into the effects of drug treatment (Tsoucas
et al., 2019) and disease status (Smillie et al., 2019), among
others.

Complementary to scRNA-seq data collection, amplicon or
marker-gene sequencing techniques provide abundance
information of microbes across human body sites (Human
Microbiome Project Consortium, 2012; Lloyd-Price et al.,
2017; McDonald et al., 2018). Current estimates suggest
that the human microbiome, i.e., the collection of microbes
in and on the human body, outnumber an individual’s somatic
and germ cells by a factor of 1.3–10 (Turnbaugh et al., 2007;
Sender et al., 2016). Starting from the raw read counts,
amplicon data are typically summarized in count abundance
tables of operational taxonomic units (OTUs) at a fixed
sequence similarity level or, alternatively, of denoised
amplicon sequence variants (ASVs). The marker genes also
allow taxonomic classification and phylogenetic tree
estimation, thus inducing a hierarchical grouping of the
taxa. To reduce the dimensionality of the data set and
guard against noisy and low count measurements, the
taxonomic grouping information is often used to aggregate
the data at a fixed taxonomic rank, e.g., the genus or family
rank. Shifts in the population structure of taxa have been
implicated in the host’s health and have been associated
with various diseases and symptoms, including immune-
mediated diseases (Round and Palm, 2018), Crohn’s disease
(Gevers et al., 2014), and Irritable Bowel Syndrome (IBS) (Ford
et al., 2017).

In the present work, we exploit the remarkable similarities
between scRNA-seq-derived cell type data and amplicon-
based microbial count data and propose a statistical
generative model that is applicable to both data modalities:
the Bayesian model for tree-aggregated amplicon and single-
cell COmpositional Data Analysis, in short, tascCODA. Our
model assumes that count data are available in the form of a
n × p-dimensional count matrix Y containing the counts of p
different cell types or microbial taxa in n samples, a covariate
matrix n × d-dimensional X carrying metadata or covariate
information for each sample, and a tree structure with p leaves
that imposes a hierarchical order on the count data Y. Since
both amplicon and scRNA-seq technologies are limited in the

amount of material that can be processed in one sample, the
total number of counts in rows of Y do not reflect total
abundance measurements of the features but rather relate to
the efficiency of the sequencing experiment itself (Gloor et al.,
2017). This implies that the counts only carry relative
abundance information, making them essentially
compositional data (Aitchison, 1982).

tascCODA is a fully Bayesian model for tree-aggregated
modeling of count data and is a natural extension of the
scCODA model, recently introduced for compositional
scRNA-seq data analysis (Büttner et al., 2020). At its core,
tascCODA models the count data Y via a Dirichlet
Multinomial distribution and associates count data and
covariate information via a log-link function. To encourage
sparsity in the underlying associations between the covariates
and the hierarchically grouped features, tascCODA exploits
recent ideas from tree-guided regularization and the spike-
and-slab LASSO (Ročková and George (2018)). This allows
tascCODA to perform tree-guided sparse regression on
compositional responses with any type or number of
covariates. In particular, in the presence of a single binary
covariate, e.g., a condition indicator, tascCODA allows to
perform Bayesian differential abundance testing. More
generally, however, tascCODA enables to determine how host
phenotype, such as disease status, host covariates such as age,
gender, or an individual’s demographics, or environmental
factors jointly influence the compositional counts. Finally,
incorporating tree information into the inference allows
tascCODA to not only identify associations between individual
features, but also entire groups of features that form a subset of
the tree.

tascCODA complements several recent statistical
approaches, in particular, from the field of microbiome data
analysis, some of which also use the concept of tree-guided
models. Chen and Li (2013) were among the first to use the
sparse Dirichlet-Multinomial model to connect compositional
count data with covariate information in a penalized
maximum-likelihood setting. Wadsworth et al. (2017) were
the first to use a similar model in a Bayesian setting. Both
adaANCOM (Zhou C. et al. (2021)) and the Logstic-tree
normal model (Wang et al. (2021)) use the Dirichlet-tree
(multinomial) model (Wang and Zhao (2017)) to determine
differential abundance of microbial taxa via a product of
Dirichlet distributions at each split. The PhILR model
(Silverman et al., 2017) uses the phylogenetic tree of a
microbial community to compute an isometric logratio
transform with interpretable balances. Furthermore, there
are recent advances in constructing optimal hierarchical
partitions of HTS data and to predict variables of interest
from them (Quinn and Erb, 2019; Gordon-Rodriguez et al.,
2021), that do not rely on pre-defined trees, but rather
structure the data in the best way to be predictive of the
outcome. These methods restrict themselves, however, to
fully binary trees. On the other hand, the trac method (Bien
et al., 2021) uses tree-guided regularization (Yan and Bien,
2021) in a maximum-likelihood-type framework to predict
continuous outcomes from compositional microbiome data.
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In its present form, the Bayesian model behind tascCODA is
ideally suited for data sets of moderate dimensionality, typically
p < 100, yet can handle extremely small sample sizes n. Since
amplicon datasets are usually high-dimensional in the number of
taxa and exhibit high overdispersion and excess number of zeros,
we focus on the analysis of genus-level microbiome data. In the
context of cell type compositional data, on the other hand, often
only very few replicate samples are available (Büttner et al., 2020).

Here, tascCODA can leverage well-calibrated prior information
to operate in low-sample regimes where frequentist methods
likely fail.

The remainder of the paper is structured as follows. In the next
section, we introduce the tascCODA model and describe the
computational implementation. In Section 3, we describe and
discuss synthetic data benchmarks and provide two real-world
applications, on human single-cell RNA-seq data from ulcerative

FIGURE 1 | Intuition behind tascCODA. (A) A multifurcating tree structure T with internal nodes N1, N2, N3, and tips T1 . . .T6. tascCODA decides whether
modeling the change of abundance of a subtree (e.g. nodes T5, T6 - gold). as a common effect at their common ancestor (e.g., N3 - red) is preferable. The blue nodes T1,
N1, and N2 are reference nodes in this example. (B) Ancestor matrix of the tree in (A). (C) Example dataset where the abundances of T5 and T6 increase in the same way
between conditions (relative to the reference T1). Here, a group-level effect on N3 would be the preferred option. (D) Plate representation of the tascCODAmodel.
Grey squares indicate fixed parameters and input variables that are either part of or directly calculated from the data. The grey circle represents the output count matrix,
white circles show latent variables.
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colitis patients and amplicon data from patients with irritable
bowel syndrome. Finally, we summarize the key points in Section
4 and present considerations about future extensions of the
method. A flexible and user-friendly implementation of
tascCODA is available in the Python package tascCODA2. All
results in this paper are fully reproducible and available on
Zenodo3.

2 MATERIALS AND METHODS

2.1 Model Description
We start with formally describing the problem at hand. Let
Y ∈ Rn×p be a count matrix describing n samples from p
features (e.g., cell types, microbial taxa, etc.), and X ∈ Rn×d be
a matrix that contains the values of d covariates of interest for
each sample. Due to the technical limitations of the sampling
procedure, the sum of counts in each sample, �Yi � ∑p

j�1Yi,j must
be seen as a scaling factor, making the data compositional (Gloor
et al. (2017)). Additionally, the features described by Y are
hierarchically ordered by a tree T with p leaves and t internal
nodes, resulting in a total number of v � p + t nodes in T
(Figure 1A). Such tree structures are usually motivated by
taxonomy (McDonald et al., 2012; Quast et al., 2013),
determined by phylogenetic similarities (Schliep, 2010), or
obtained via serial binary partitions (Quinn and Erb, 2019).
The tree can further be bifurcating or multifurcating, thus
internal nodes may have two or more descendants.

T can be fully characterized by a binary ancestor matrix A ∈
{0,1}p×v. Hereby, each row of A stands for a feature or leaf node of
T , the first p columns also denote the leaves of the tree, and the
last t columns represent the internal nodes. The entries Aj,k are 1,
if column k corresponds either to feature j (j � k) or to one of its
parents, otherwise it is 0 (Figure 1B):

Aj,k � 1 if j � k or k is ancestor of j
0 else.

{
Our goal is to determine how changes in abundance of features

(leaves of T ) are associated with the covariates in X, and select a
sparse set of the most important covariate-feature effects. To
achieve an even more parsimonious result, we further determine
whether groups of features that form subtrees of T are affected by
the conditions in the same manner (Figure 1A), and model them
with a common effect if possible. This group-wise modeling step
not only gives an accurate, yet easy to interpret description of the
changes in the feature composition, but can also reveal shared
traits among structural subgroups of features that might be
missed in analyses that do not take the tree structure into account.

2.1.1 Core Model With Tree Aggregation
tascCODA posits a Dirichlet-Multinomial model for Yi,· for each
sample i ∈ 1. . ., n, thus accounting for the compositional nature of

the count data. The covariates are associated with the features
through a log-linear relationship. We put uninformative Normal
priors on the base composition α, which describes the data in the
case Xi,· � 0:

Yi ∼ DirMult �Yi, a X( )i( ) (1)

log a X( )( )i � α +Xi,·β (2)

αj ∼ N 0, 10( ) ∀j ∈ p[ ]. (3)

The total count �Yi is directly inferred from the data for each
sample. The effect of the lth covariate on the jth feature is
therefore given by βl,j.

We now use a variant of the tree-based penalty formulation of
Yan and Bien (2021) to model common effects at each internal
node of T in addition to the effects on the leaves. We define a
node effect matrix β̂ ∈ Rd×v and associate aggregations on
internal nodes with the correct tips by multiplying with the
ancestor matrix A:

β � β̂AT (4)

To illustrate the intuition behind this step, we consider an
example based on the tree in Figure 1A. In a binary covariate
setting, the features T1-T6 are uniformly distributed in the
control population, while in the case population, the
abundance of features T5 and T6 (with respect to feature T1)
is greatly increased by the same relative amount (Figure 1C).
Instead of having two equally-sized effects on the components of
β̂ corresponding to T5 and T6, the same can be achieved in
tascCODA with only one parameter by placing an effect on the
internal node N3. Through Eq. 4, this effect is propagated to the
leaves T5 and T6 in β in order to model the population.

While this aggregation step can significantly reduce the
number of parameters needed to describe the changes in the
data, the solution is not unique. An effect on an internal node
is equivalent to effects of the same size on all its descendant
leaves. Therefore, the number of nonzero entries in β̂ must be
controlled, raising the need for a sparse selection of the most
important effects. While in the example above, the reduction of
nonzero effects by using a group aggregation on node N3
clearly outweighs the loss in accuracy by assuming that
features T5 and T6 behave in the same manner, this trade-
off might not be as clear in real datasets. We thus also need a
way to adjust the model towards selecting either more sparse
and generalizing, or more detailed and less parsimonious
solutions.

2.1.2 Spike-And-Slab Lasso Prior
To ease model interpretability, many statistical models provide a
mechanism for obtaining sparse model solutions. In high-
dimensional linear regression, this can be achieved via the
lasso (Tibshirani, 1996), which adds an L1-penalty on the
regression coefficients. In Bayesian modeling, spike-and-slab
priors are a popular choice to perform automatic model
selection. Recently, Ročková and George (2018), developed a
connection between the two approaches in the form of the
spike-and-slab lasso prior, which provides a Bayesian
equivalent to penalized likelihood estimation. The spike-and-

2https://github.com/bio-datascience/tascCODA.
3https://zenodo.org/record/5302136.
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slab lasso prior describes each component of β̂l,k as a mixture of
two double-exponential priors with different rates λ0,l,k, λ1,l,k and
a shared mixture coefficient θ:

β̂l,k � θ~β1,l,k + 1 − θ( )~β0,l,k ∀k ∈ v[ ], l ∈ d[ ] (5)

~βm,l,k � σm,l,kpbm,l,k ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (6)

σm,l,k ∼ Exp λ2m,l,k/2( ) ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (7)

bm,l,k ∼ N 0, 1( ) ∀k ∈ v[ ], m ∈ 0, 1{ }, l ∈ d[ ] (8)

θ ∼ Beta 1, 1/v( ) (9)

This prior can be reformulated as a likelihood penalty function
that represents a combination of weak penalization of larger
effects by λ1,l,k and strong penalization of effects close to zero by
λ0,l,k, respectively (See Supplementary Material Section 1.2). As
recommended by Ročková and George (2018), we use the non-
separable version of the spike-and-slab lasso prior, which
provides self-adaptivity of the sparsity level and an automatic
control for multiplicity via a Beta prior on θ (Bai et al. (2020a);
Scott and Berger (2010)). We further set λ0,l,k � 50 ∀l, k to achieve
a strong penalization in the “spike” part of the prior, leaving λ1,l,k
as our only parameter that controls the total amount of penalty
applied at larger effect values.

2.1.3 Node-Adaptive Penalization
We use a variant of the strategy proposed by Bien et al. (2021) to
make the strength of the regularization penalty dependent on the
corresponding node’s position in the tree. We introduce the
following sigmoidal scaling:

λ1,l,k � 2λ1
1

1 + e−ϕ Lk/p−0.5( ) ∀l, (10)

where λ1 � 5 is the default value for the penalty strength, Lk is
the number of leaves that are contained in the subtree of node k,
and ϕ acts as a scaling factor based on the tree structure. If ϕ � 0,
the default in tascCODA, all nodes are penalized equally with λ1,
while for ϕ < 0, effects on nodes with larger subtrees, located
closer to the root of the tree, are penalized less and are therefore
more likely to be included in the model. If ϕ > 0, a solution that
comprises more diverse effects on leaf nodes will be preferred.
Thus, the parameter ϕ provides a way to trade off model accuracy
with the level of aggregation. We discuss the behavior of the
spike-and-slab LASSO penalty and the choice of λ0,1 in more
detail in the Supplementary Material.

2.1.4 Reference Feature
Since the data at hand is compositional, model uniqueness and
interpretability are only guaranteed with respect to a reference.
Popular choices include picking one of the p features or the
(geometric) mean over multiple or all groups (Fernandes et al.,
2014). Following the scCODA model, we pick a single reference
feature prior to analysis (Büttner et al., 2020). Technically, this is
achieved by choosing one feature p̂ that is set to be unchanged by
all covariates. Let v̂ be the set of ancestors of p̂. By forcing
β̂l,k � 0 ∀k ∈ v̂, l ∈ [d], we ensure that the reference is not
influenced by the covariates through any of its ancestor nodes.
If no suitable reference feature is known a priori, tascCODA

provides an automatic way of selecting the feature with minimal
dispersion across all samples among the features that are present
in at least a share of samples t (default t � 0.95; this value can be
lowered if no suitable feature exists).

p̂ � arg min
j�1,...,p

Disp Y·,j′( ) s.t. |i: Yi,j > 0|/n≥ t

The restriction to large presence avoids choosing a rare feature
as the reference where small changes in terms of counts lead to
large relative deviations. The least-dispersion approach is aimed
at reducing the bias introduced by the choice of reference. Eqs.
1–9 together with the reference feature yields the tascCODA
model (Figure 1D):

Yi ∼ DirMult �Yi, a X( )i( )
log a X( )( )i � α +Xi,·β

αj ∼ N 0, 10( ) ∀j ∈ p[ ]
β � β̂AT

β̂l,k � 0 ∀k ∈ v̂, l ∈ d[ ]
β̂l,k � θ~β1,l,k + 1 − θ( )~β0,l,k ∀k ∈ v[ ]\v̂{ }, l ∈ d[ ]

~βm,l,k � σm,l,kpbm,l,k ∀k ∈ v[ ]\v̂{ }, m ∈ 0, 1{ }, l ∈ d[ ]
σm,l,k ∼ Exp λ2m,l,k/2( ) ∀k ∈ v[ ]\v̂{ }, l ∈ 0, 1{ }, l ∈ d[ ]
bm,l,k ∼ N 0, 1( ) ∀k ∈ v[ ]\v̂{ }, l ∈ 0, 1{ }, l ∈ d[ ]

θ ∼ Beta 1,
1

| v[ ]\v̂{ }|( )

with the default choices of λ0,l,k � 50 and λ1,l,k set according to
(10) with hyperparameters ϕ and λ1 � 5 (Supplementary
Material Section 1.2).

2.2 Computational Aspects
Before performing Bayesian inference with the tascCODAmodel,
several data preprocessing steps are applied. Singular nodes,
i.e., internal nodes that have only one child node, are removed
from the tree, since their effect only propagates to one node and is
therefore redundant. We also add a small pseudo-count of 0.5 to
all zero entries of Y to minimize the frequency of numerical
instabilities in our tests. Finally, we recommend normalizing all
covariates to a common scale before applying tascCODA to avoid
biasing the model selection process toward the covariate with the
largest range of values.

Because tascCODA is a hierarchical Bayesian model, we use
Hamiltonian Monte Carlo sampling (Betancourt and Girolami,
2015) for posterior inference, implemented through the
tensorflow (Abadi et al., 2016) and tensorflow-probability
(Dillon et al., 2017) libraries for Python, solving the gradient
in each step via automatic differentiation. By default, tascCODA
uses a leapfrog integrator with Dual-averaging step size
adaptation (Nesterov, 2009) and 10 leapfrog steps per
iteration, sampling a chain of 20,000 posterior realizations and
discarding the first 5,000 iterations as burn-in, which was also the
setting for all applications in this article, unless explicitly stated
otherwise. As an alternative, No-U-turn sampling (Homan and
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Gelman, 2014) is available for use with tascCODA. The initial
states for all αj and bm,l,k are randomly sampled from a standard
normal distribution. All σm,l,k and θ values are initialized at 1 and
0.5, respectively.

To determine the credible effects of covariates on nodes from
the chain of posterior samples, we calculate the threshold of
practical significance δk, introduced by Ročková and George
(2018), for each node:

δk � 1

λ0 − λ1,k log
1

pp
θ,k 0( ) − 1( ) (11)

pp
θ,k β( ) � θp

λ1,k
2
e−λ1,k |β|

θp
λ1,k
2
e−λ1,k |β| + 1 − θp( ) λ0

2
e−λ0 |β|

(12)

Here, θ* is the posterior median of θ. More details on δ are
available in the Supplementary Material. We compare the

posterior median effects β̂
p

l,k to the corresponding δk and select
all effects where |β̂pl,k|> δk as credible, otherwise they will be set to
0, resulting in β̂

(C)
, the matrix with only credible effects,

β̂
C( )
l,k � β̂

p

l,k if |β̂pl,k|> δk
0 else.

{ (13)

Inmost applications, the nonzero entries of β̂
(C)

are of primary
interest, which directly show how the covariates influence sets of
features defined by the tree structure. Their sign indicates

whether the effect corresponds to an increase (β̂
(C)
l,k > 0) or a

decrease (β̂
(C)
l,k < 0). Due to the compositional data properties

introduced by the Dirichlet-Multinomial, its expectation

E Yi ∼ DirMult �Yi, a x( )i( )[ ] � �Yi
a x( )i)∑p
j�1a x( )i)j (14)

can not be separated by the individual features. Because the
shifts in E[Yi] caused by effects β̂ are dependent on the total sum

∑p
j�1eαj+X(β̂AT)j through Eqs. 2, 4, 14, a credible effect on any

feature or aggregation has an impact on the posterior mean
counts of all features, i.e. a relative increase in one feature will
also induce a decrease of all other features (Gloor et al., 2017).
Therefore, a quantitative interpretation of effect sizes is only
possible in a limited sense.Within the samemodel, larger changes
will correspond to larger absolute values |β̂l,k|, but they are not
comparable across multiple runs of tascCODA.

In the context of differential abundance testing, we can
additionally obtain the set of differentially abundant features D
by multiplying β̂

(C)
with AT, and get

D � l, j( ) ∈ d[ ] × p[ ]: β̂
C( )
l,k A

T( )
j
≠ 0{ } (15)

as the set of features that are part of at least one credible effect.
A Python package for tascCODA is available at https://github.

com/bio-datascience/tascCODA. Building upon the scCODA
package, the software provides methods to seamlessly integrate
scRNA-seq data from scanpy (Wolf et al., 2018) or microbial

population data via pandas (McKinney, 2010). The package also
allows to perform differential abundance testing with tascCODA
and visualize tascCODA’s results through tree plots from the
toytree package. All results were obtained using Python 3.8 with
tensorflow � 2.5.0 (Abadi et al. (2016)), tensorflow-probability �
0.13 (Dillon et al. (2017)), arviz � 0.11 (Kumar et al. (2019)),
numpy � 1.19.5, scanpy � 1.8.1 (Wolf et al. (2018)), toytree � 2.0.
1, and sccoda � 0.1.4 (Büttner et al. (2020)).

3 RESULTS

3.1 Simulation Studies
3.1.1 Model Comparison
To test the performance of tascCODA in a differential abundance
testing scenario, we generated compositional datasets with an
underlying tree structure and compared how well several models
could detect the changes introduced by a binary covariate. For
compositional models that do not account for the tree structure,
we used the state-of-the art methods ANCOM-BC (Lin and
Peddada (2020)), ANCOM (Mandal et al. (2015)), and
ALDEx2 (Fernandes et al. (2014)) from the field of
microbiome data analysis, as well as scCODA (Büttner et al.,
2020) from scRNA-seq analysis. Based on the recommendations
by Aitchison (1982), we also analyzed the data with the additive
log-ratio (ALR) transformation in combination with t- or
Wilcoxon rank-sum tests. We also included the recent
adaANCOM (Zhou C. et al., 2021), a differential abundance
testing method that accounts for the tree structure. Furthermore,
we applied tascCODA with different values for the aggregation
parameter, ϕ � (−10, −5, −1, 0, 1, 5, 10), setting λ1 � 5.

We first defined four different data sizes p � (10, 30, 50, 100)
and randomly generated a multifurcating tree with depth five for
each value of p. We then chose three nodes (one internal on the
level directly above the leaves, two leaves) from each tree, whose
child leaves, denoted by p′, are set to be differentially abundant
under a binary (control-treatment) condition (Supplementary
Figures S2–S5). Similar toWadsworth et al. (2017), we generated
n � n0 + n1 compositional data samples from two groups of equal
size n0 � n1 � (5, 20, 30, 50). Each sample Yi is a realization of a
Dirichlet-Multinomial distribution with a total sum of �Yi �
10, 000 and a parameter vector c*. For extra dispersion in the
data, we set c*i � ci∑j

cj

1−ψ
ψ with ψ � 0.002. The parameters for the

first (control) group were generated via c0,i � exp(αi); αi
∼Unif(−2, 2). In the second (treatment) group, we added an
effect β � (0.3, 0.5, 0.7, 0.9) to the components in p′:
c1,i � exp(αi + βI(i∈p′)). For each parameter combination (p,
n0, β), we randomly generated 20 replicates, resulting in a
total of 1280 datasets.

Since the adaANCOM method assumes a bifurcating tree
structure, we transformed each tree node to a series of
bifurcating splits via the multi2di and collapse.singles methods
from the ape package for R (Paradis et al. (2004)) before applying
the method. For the methods that require a reference category
(ALR, scCODA, tascCODA, ALDEx2), we used the last
component, which was always designed to be unaffected by
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the condition, as the reference. After applying each method to a
dataset, we corrected the resulting p-values by the Benjamini-
Hochberg procedure, where applicable, except for ANCOM-BC,
where we used the recommended Holm correction of p-values,
and determined the significant results at an expected FDR level of
0.05. The Bayesian methods scCODA and tascCODA do not
produce p-values and identify credible effects as previously
described.

For an overall indicator of how well the different methods
could determine differentially abundant features, we
considered Matthews correlation coefficient (Figure 2A).
Here, adaANCOM showed poor performance especially on
small datasets, while ALDEx2 struggled when p was larger.
Only scCODA and ANCOM-BC performed well in
comparison for all data and effect sizes. For tascCODA,
varying the aggregation level ϕ had a strong influence on
the performance. With larger values of ϕ, tascCODA prefers
less generalizing effects, resulting in a more detailed solution
and larger MCC. At a high resolution level (ϕ � 5), tascCODA
was on par with or even better than scCODA and ANCOM-
BC, showing almost no sensitivity to the size of the dataset.
Because the trees in our simulation contained only effects on
leaf nodes or the level directly above, preferring generalizing
effects (ϕ � − 5) resulted in worse performance, while the

unbiased case of ϕ � 0 gave slightly worse results than
scCODA and ANCOM-BC. All methods shown in
Figure 2B except adaANCOM controlled the FDR
reasonably well, although ANCOM-BC and scCODA could
not always hold the nominal level of 0.05. Only ALDEx2,
which is known to be very conservative (Hawinkel et al., 2019;
Büttner et al., 2020), produced almost no false positives, at the
cost of larger type 2 error. tascCODA had a slightly inflated
FDR ( < 0.25) for smaller values of ϕ in some cases, which
became more apparent when analyzing the ability of each
method to exactly recover the true effects (Figure 2C).
Increasing the effect size resulted in a reduced Hamming
distance between the ground truth and tascCODA with ϕ �
5, which consistently outperformed all other models.
tascCODA in the misspecified setting ϕ � − 5 showed an
inflated Hamming distance, especially for p � 30. This is,
however, expected since tascCODA is forced to infer small-
sized effects at the top level, resulting in many falsely detected
features and thus a large deviation from the true sparse
solution. In practice, this highlights the need to perform
cross-validation over different levels of ϕ to reduce false
discoveries due to misspecification. We further found that
ANCOM detected many false positives in all of our
simulations, while the ALR-based methods were similarly

FIGURE 2 | Performance comparison of tascCODA and other methods on simulated data with one binary covariate (differential abundance testing). Plots are
grouped by the number of simulated components p and the effect size β. For tascCODA, different values of ϕwere tested (dashed blue lines). The areas around each line
represent the standard deviation. Performance measured by (A)Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between
ground truth and determined effects.
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conservative as ALDEx2 (Supplementary Figures S8–S10).
Increasing the sample size generally improved the recovery
performance of all methods except for tascCODA with
misspecified ϕ (Supplementary Figure S10).

3.1.2 Effect Detection at High Tree Levels
In the next benchmark scenario, we evaluated the effect of the
tuning parameter ϕ in tascCODA to detect effects on larger
groups of features through aggregation at higher levels of the
tree. To this end, we considered the p � 30 setting with the tree
structure from Supplementary Figure S5, and defined an effect
on a node near the root, influencing almost all features
(Supplementary Figure S6). We simulated datasets in the
same manner as for the previous benchmark, with n � 10, β �
(0.3, 0.5, 0.7, 0.9), and 20 replicates per effect size. We then
compared tascCODA with different levels of ϕ using the same
performance metrics as before.

With a correctly specified parametrization ϕ < 0, favoring
effects near the root, tascCODA recovered almost all relevant
effects, as indicated by a small Hamming distance and highMCC,
without producing false positive results (Figure 3). With
increasing ϕ, however, tascCODA favors effects on the leaves,
thus entering the misspecified regime. As predicted, tascCODA
was able to only recover a small portion of the true effects, while
producing more false positive results. This highlights tascCODA’s
ability to consistently uncover effects on larger groups of features
which would be missed when not taking into account tree
information.

3.1.3 Simulation With Multiple Covariates
In our third benchmark scenario, we simulated data with two
covariates to showcase how tascCODA is able to distinguish
effects from two different sources. Taking the tree from the
method comparison study with p � 30 (Supplementary
Figure S3), we first defined a binary covariate x0 with
effect sizes β0 � (0.3, 0.5, 0.7, 0.9) as before, and n � 10
samples per group. We also included a second covariate x1 ∼
Unif(0, 1) with effect size β1 � 3 that affects node 39 and
therefore features 13–23 in all samples. For each effect size, we
simulated 10 datasets and applied tascCODA with ϕ � (−5, 0,
5) and two different design matrices X. For the first design
matrix, we used only x0, while the second design matrix
contained both x0 and x1 as covariates. We compared how

well both configurations could recover the effects introduced
by x0 in terms of MCC, FDR, and Hamming distance to the
ground truth.

Ignoring x1 in the model design resulted in an overall worse
performance of tascCODA for all metrics, all effect sizes for x0,
and all values of ϕ (Figure 4). In every case it proved beneficial to
include the second covariate in the model, resulting in almost no
false positive detections of changes caused by the first covariate.
Further, the two-covariate model achieved an MCC and
Hamming distance that were similar to our simulations where
only one covariate acted on the data (Figure 2). This proves that
tascCODA is able to reliably identify the influence of multiple
covariates on the count data.

3.2 Experimental Data Applications
3.2.1 Single-cell Sequencing Analysis of Ulcerative
Colitis in Humans
Ulcerative colitis is one of the most common manifestations of
inflammatory bowel disease. The disease alternates between
periods of symptomatic flares and remissions. The flares are
due to the surge of an inflammatory reaction in the colon,
causing superficial to profound ulcerations, which manifests
with bloody stool, diarrhea and abdominal pain. The patients
will thus have part of their colon referred to as “inflamed”,
while colonic tissue still seemingly intact will be called “non-
inflamed”. To show how tascCODA can be applied to cell
population data from scRNA-seq experiments, we used data
collected by Smillie et al. (2019) from a study of the colonic
epithelium on ulcerative colitis (UC). In the study, a total of
133 samples from 12 healthy donors, as well as inflamed and
non-inflamed tissue from 18 patients with UC, were obtained
via single-cell RNA-sequencing, divided into epithelial
samples and samples from the Lamina Propria
(Supplementary Data 1.3.1).

We applied tascCODA to six different subsets of the data,
comparing two of the three health conditions in one type of
tissue at a time, and then compared our findings with the
results of scCODA and the Dirichlet regression model used by
Smillie et al. (2019), implemented in the DirichletReg package
for R (Maier (2014)). For tascCODA and scCODA, we used
the automatically determined reference cell types, which are
identical for both models in all cases, and applied scCODA

FIGURE 3 | Performance comparison of different bias settings for tascCODA on simulated data with the effect being located near the root of the tree, depending on
effect size. Performance measured by (A) Matthews correlation coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and
determined effects.
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with an FDR level of 0.05. In the Dirichlet regression model,
we adjusted the p-values by the Benjamini-Hochberg
procedure, and selected differentially abundant cell types at
a level of 0.05.

The cell lineage tree inferred from Smillie et al. (2019) is divided
into epithelial, stromal and immune cells at the top level (Figure 5).
While the biopsies from the Epithelium contain mostly epithelial
cells, and samples from the Lamina Propria consist of cells mostly
from the other two lineages, both groups also include considerable
amounts of cells from the other major lineages. We first compared
scCODA and Dirichlet regression, which both do not take the tree
structure into account, to tascCODA with ϕ � 5 (Figure 6), thus
preferring a detailed solution with effects mainly located on leaf
nodes, which approaches the leaf-only solutions of the other two
methods. In this setting, tascCODA, scCODA and Dirichlet
regression all determined mostly epithelial cells to shift in
abundance between pairwise comparisons of healthy, non-
inflamed, and inflamed tissue samples from the intestinal
Epithelium (Figure 6A), and most changes in the Lamina
Propria to be among stromal and immune cells (Figure 6B).
When propagating the node effects of tascCODA with ϕ � 5 to
the leafs via Eq. 15, the differentially abundant cell types determined
by tascCODA, scCODA, and Dirichlet regression were largely
identical (Figure 6).

To further investigate the predictive and sparsity-inducing
powers of tascCODA, we performed out-of-sample prediction
with the results obtained from tascCODA and scCODA on 5-
fold cross validation splits of each of the six data subsets. For
both models, we determined cell type-specific effect vectors β*

(tascCODA: βp � Aβ̂
(C)
j , as in Eq. 15; scCODA: Model output)

as well as the posterior mean of the base composition α* on the
training splits, and used them to predict cell counts for each
health status label Xl in the corresponding test split as

ŷj,l � e
α*
j
Xlβ

*
j

∑p

j�1e
α*
j
Xlβ

*
j

1
ntrain

∑ntrain
i�1 �Yi. We measured the predictive

power of tascCODA and scCODA as the mean squared
logarithmic error (MSLE) between the actual and predicted
cell counts, and sparsity as the average number of nonzero
effects over all five splits (Table 1). For small ϕ, tascCODA
determined very few or no credible effects, while the MSLE was
usually slightly higher than the MSLE from scCODA. In

unbiased setting ϕ � 0, tascCODA found credible effects in
three scenarios, which considerably reduced the MSLE. With a
small bias towards the leaves (ϕ � 1), tascCODA even
outperformed scCODA in terms of MSLE in one case, while
for ϕ � 5, tascCODA achieved a lower MSLE and similar
number of credible effects in three scenarios, and a lower
number of credible effects and similar MSLE in the other
three scenarios. We observed a curious result when
comparing non-inflamed and inflamed epithelial samples.
Here, the MSLE increased with rising ϕ, indicating that the
mean model over all samples described the data better than
trying to determine variation between the two groups. This
confirms the intuition that the aggregation bias ϕ in tascCODA
acts as a trade-off between generalization level and prediction
accuracy. For smaller ϕ, tascCODA will select fewer, more
general effects, which might miss subtle changes at a lower
level of the lineage tree, while with increasing ϕ, tascCODA’s
results will approach the ones discovered without taking tree
aggregation into account.

For a more detailed comparison between tascCODA and
scCODA, we compared healthy to non-inflamed biopsies of
control and UC patients. When choosing ϕ � 5, thus biasing
tascCODA towards the leaf nodes, tascCODA detected the
differences in cell composition in the Epithelium as changes
in abundance of the same 3 cell types as scCODA
(Figure 5A). In the Lamina Propria, tascCODA detected
credible changes on six different groups of cell types,
including T and B cells, which were previously linked to
UC (Holmén et al. (2006); Smillie et al. (2019)), as well as
eight single cell types (Figure 5B). Notably, tascCODA
amplified the decrease of Plasma B-cells induced by the
group effect on B-cells by an additional negative effect on
the cell type level. A strong decrease of Plasma cells was also
confirmed by Smillie et al. (2019) through FACS stainings.
Importantly, tascCODA described the data with only 14
nonzero effects, whereas with scCODA, 21 credible effects
were produced.

As a contrast, we also examined the unbiased setting with ϕ �
0, treating all nodes equally. Here, the cell type-specific changes in
the Epithelium were not picked up anymore by tascCODA
(Figure 5C). In the Lamina Propria, only seven effects, almost
all on groups of cell types, were detected by tascCODA

FIGURE 4 | Performance comparison for tascCODA on simulated data with two covariates. The setups including both or only one covariate in the model are shown
as x0 + x1 and x0, respectively. Simulations were evaluated for different effect sizes and aggregation levels ϕ. Performance measured by (A) Matthews correlation
coefficient (MCC). (B) False discovery rate (FDR) (C) Hamming distance between ground truth and determined effects.
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FIGURE 5 |Behavior of tascCODAonscRNA-seqdata for different valuesofϕ. All plots show the comparisonof healthy control samples to non-inflamed tissue samples ofUC
patients in thedata fromSmillie et al. (2019).White andblack circles on the cell lineage tree show the effects foundby tascCODA,which are also shownasbluebarson the right side of
eachplot. Thebarsbelow the treedepict effects on internal nodes,with lowerpositions in thediagramcorresponding tonodes closer to the root. For comparison, the redbars indicate
effects found by scCODA, which only operates on the tips of the tree. The green-shaded area shows the reference cell type that was used for both models. (A)When ϕ � 5,
tascCODA prefers placing effects near the tips of the tree and finds the exact same solution as scCODA for the Epithelium data. (B) In the Lamina Propria, tascCODA places some
effects on internal nodes, resulting in a sparser solution than the one obtained by scCODA (14 vs. 21 credible effects). (C)When ϕ � 0, tascCODA finds no credible effects in samples
from the Epithelium, and (D) only seven effects are necessary to summarize the large number of effects found by scCODA when looking at samples from the Lamina Propria.
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FIGURE 6 | Comparison of differentially abundant cell types found by tascCODA (blue, ϕ � 5), scCODA (red, FDR � 0.05), and Dirichlet regression (green, adjusted
padj < 0.05) between biopsies of healthy, non-inflamed and inflamed tissue. Colored bars for eachmethod indicate that a credible changewas found. (A) Among samples
from the intestinal epithelium, tascCODA and Dirichlet regression detect effects on lowly abundant epithelial cell types (Tuft, Goblet, Enteroendocrine) that were not
detected by scCODA. (B) In the Lamina Propria, only tascCODA detects a number of effects on some of the T and B cell types.
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(Figure 5D). Again, B and T cells were found as the cell lineages
that undergo the largest change between healthy and non-
inflamed UC biopsies. When testing healthy versus inflamed,
and non-inflamed versus inflamed biopsies, tascCODA also
detected more detailed results when ϕ � 5, and found fewer,
more generalizing effects with ϕ � 0 (Supplementary Figures
S11, S12; Supplementary Tables S1–S3).

3.2.2 Analysis of the HumanGutMicrobiome
Under Irritable Bowel Syndrome
We next considered a microbiome data example and focused on
another chronic disorder of the human gut, the Irritable Bowel
Syndrome (IBS). IBS is a functional bowel disorder characterized
by frequent abdominal pain, alteration of stool morphology and/
or frequency, with the absence of other gastrointestinal diseases
(i.e. colorectal cancer, inflammatory bowel disease). It is
estimated that about 10% of the general population experience
symptoms that can be classified as a subtype of Irritable Bowel
Syndrome, which include IBS-C (constipation), IBS-D (diarrhea),
IBS-M (mixed), or unspecified IBS (Ford et al. (2017)). While the
exact sources of the disease can be manifold, it has been
hypothesized that the gastroenterological symptoms may be
caused by a disturbed composition of the gut microbiome
(Duan et al. (2019); Ford et al. (2017)).

In particular, we analyzed 16S rRNA sequencing data of stool
samples collected from IBS patients and healthy controls, which
were obtained by Labus et al. (2017). The dataset consists of n �
52 samples, with 23 healthy controls, and 29 IBS patients
separated into 11 subjects with constipation (IBS-C), 10
subjects with diarrhea (IBS-D), 6 subjects with mixed
symptoms (IBS-M), and 2 subjects with unspecified symptoms.
Further, metadata information about age, sex and BMI of most
subjects is available. We re-processed the raw 16S rRNA
sequences with DADA2, version 1.21.0 (Callahan et al. (2016))
and did taxonomic assignment via the Silva database, version
138.1 (Quast et al. (2013); Yilmaz et al. (2014)), yielding a final
count table with 709 ASVs along with a taxonomic tree
(Supplementary Data 1.3.2). This data was then aggregated at
the genus level, resulting in a total of p � 91 known genera.

We applied tascCODA to the genus-level data, comparing
healthy and IBS subjects. To showcase the flexibility of
tascCODA, we analyzed the data with different covariate
setups, by including the other available metadata variables. As
a reference genus for scCODA and tascCODA, we chose Alistipes,
since it is a genus with relatively high presence and rather low
dispersion. For all analyses on this dataset, we decreased the mean
shrinkage in tascCODA to λ1 � 1, allowing us to find more subtle
effects.

We first used tascCODA to analyze the differences in the
gut microbial composition between healthy controls and IBS
patients (Figure 7, Supplementary Table S4). Favoring
generalization with ϕ � − 5, we found only a small decrease
of the phylum Firmicutes (Figure 7A). In the unbiased setting
(ϕ � 0), the previous effect on the phylum level was
substantiated to the Oscillospirales order. Additionally,
decreases of the Parabacteroides and Bacteroides genera are
found (Figure 7B). Setting ϕ � 5, thus favoring detailed
results, we discovered a decrease of the Ruminococcaceae
family, a subgroup of Oscillospirales, and multiple
decreasing genera with the strongest effects on
Parabacteroides and Bacteroides (Figure 7C). For
comparison, we also applied scCODA (FDR � 0.1) to the
same dataset, which also discovered a decrease of
Parabacteroides and Bacteroides, as well as three genera in
the Ruminococcaceae family. A decrease of Parabacteroides in
a subset of IBS patients was also found by Labus et al. (2017).
Also, a relative decrease of the order Bacteroidales, which
includes Parabacteroides and Bacteroides, was reported by
Nagel et al. (2016) and Jeffery et al. (2012). Decreasing shares
of Ruminococcaceae were also connected to IBS in multiple
studies (Durbán et al., 2012; Pozuelo et al., 2015).

To highlight the flexibilty of tascCODA, we next tried to
discover changes in the gut microbiome related to age, BMI,
gender, and IBS subtype. Before applying tascCODA, we
min-max normalized the two former covariates to obtain a
common scale for all covariates. We excluded three samples
with missing information on BMI. We conducted every
analysis three times with ϕ � − 5, 0, 5. When testing for
changes related to one of age, gender, or BMI alone, tascCODA

TABLE 1 | Mean squared logarithmic error (MSLE) and number of selected effects over five cross-validation splits for tascCODA with different parametrizations ϕ and
scCODA. Abbreviations for scenarios: Healthy (H), Non-inflamed (N), and Inflamed (I). With increasing ϕ, tascCODA selects more effects and on average improves its
predictive power. At ϕ � 5, tascCODA has equal or lower MSLE than scCODA and a similar number of selected effects.

Model tascCODA scCODA

Scenario ϕ −5 −1 0 1 5 -

Epithelium - H vs. N MSLE 142.22 142.16 142.18 138.56 134.36 134.96
Effects 0.0 0.0 0.0 1.2 3.2 2.4

Epithelium - H vs. I MSLE 167.46 163.60 160.68 158.06 154.64 154.44
Effects 0.0 1.6 2.6 3.2 8.2 10.8

Epithelium - N vs. I MSLE 173.94 174.10 174.10 175.86 177.26 174.78
Effects 0.0 0.0 0.0 0.2 3.6 5.2

LP - H vs. N MSLE 162.76 157.62 155.16 152.80 149.58 154.02
Effects 0.4 1.8 3.0 6.2 16.0 14.4

LP - H vs. I MSLE 188.58 182.96 178.88 176.02 173.32 173.40
Effects 0.0 1.8 4.8 7.8 17.8 17.4

LP - N vs. I MSLE 219.72 219.70 219.66 219.68 216.76 218.62
Effects 0.0 0.0 0.0 0.0 1.4 0.4
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FIGURE 7 | Credible changes found by tascCODA (λ1 � 1), comparing healthy controls and IBS patients in the genus-aggregated data of Labus et al. (2017). The
circles on nodes of the tree represent credible effects. (A) High-level aggregation with ϕ � − 5. (B) Unbiased aggregation (ϕ � 0). (C) Aggregation with bias towards the
leaves (ϕ � 5). Red genera show the credible effects found by scCODA (FDR � 0.1) on the genus level. The grey genus Alistipeswas used as the reference for tascCODA
and scCODA.
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was not able to discover any credible differences for any
aggregation bias. When testing on all four covariates
together, excluding interactions, tascCODA only reported
credible changes in the microbiome with respect to the IBS

subtype. Finally, including all possible variables, interactions
revealed that while a general negative effect was found
independent of gender, male IBS-D patients had a larger
depletion of Bacteroides than female patients.

FIGURE 8 | Credible changes found by tascCODA (λ1 � 1, ϕ � 5), simultaneously comparing healthy controls to all IBS subtypes in the genus-aggregated data of
Labus et al. (2017). The circles on nodes of the tree represent credible effects. The grey genus Alistipeswas used as the reference for tascCODA. (A) IBS-C (n � 11). (B)
IBS-D (n � 10). (C) IBS-M (n � 6). (D) IBS-unspecified (n � 2).
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Next, we restricted our analysis to testing for changes between
the four IBS subtypes and all other samples. The results shown in
Figure 8 and Supplementary Table S5 were obtained with ϕ � 5.
For patients experiencing constipation (IBS-C, Figure 8A),
decreases of Agathobacter, Bacteroides, Ruminococcus, and
Faecalibacterium, as well as an increase of Anaerostipes were
found by tascCODA. Conversely, diarrhea (IBS-D, Figure 8B)
was associated with a decrease in Parabacteroides, as well as a
large decrease in Bacteroides. Patients with mixed symptoms
(IBS-M, Figure 8C) were found to have increased numbers of
Blautia, in addition to a decrease of Parabacteroides and
Faecalibacterium, which each match with the observations
related to one of the two previous conditions. Finally, only a
small increase of Romboutsia was associated to IBS with
unspecified symptoms (IBS-unspecified, Figure 8D).

4 DISCUSSION

Associating changes in the structure of microbial communities or cell
type compositions with host or environmental covariates are
commonly investigated with amplicon or single-cell RNA
sequencing. With tascCODA, we have presented a fully Bayesian
method to determine such compositional changes that acknowledges
the hierarchical structure of the underlying microbial or cell type
abundances and simultaneously accounts for the compositional
nature of the data. By introducing tree-based penalization that
adapts to the structure of the tree, the tascCODA model is able to
accurately identify group-level changes with fewer parameters than
traditional individual feature-based approaches. Thanks to a scaled
variant of the spike-and-slab lasso prior (Ročková and George
(2018)), we were able to obtain sparse solutions that can favor
high-level aggregations or more detailed effects on a dynamic
range characterized by a single scaling parameter ϕ. The
tascCODA Python package seamlessly integrates into the scanpy
environment for scRNA-seq (Wolf et al. (2018)) and allows Bayesian
regression-like analyses with flexible covariate structures.

Through its ability to favor general trends or more detailed
solutions, tascCODA is able to provide a trade-off between model
sparsity and accuracy, which can be adjusted to reveal credible
associations on different levels of the hierarchy. We recapitulated
this behavior in synthetic benchmark scenarios, where focusing on
low aggregation levels allowed tascCODA to outperform state-of-
the-art methods in a differential abundance testing setup, while
effects that influenced the majority of features were recovered with
greater accuracy when we favored generalizing solutions. The
aggregation property further allows for more interpretable
models, detecting group-specific changes in the cell lineage or
microbial taxonomy. For instance, tascCODA determined B and
T cells as the main factors in cell composition changes of the
Lamina Propria of Ulcerative Colitis patients, while inflamed
epithelial tissue biopsies showed a depletion of Enterocytes.

Second, tascCODA can accommodate any linear combination
of normalized covariates, allowing for multi-faceted analysis of
complex relationships, while still producing highly sparse and
interpretable solutions. On synthetic data, we showed that
tascCODA was able to accurately distinguish the influence of

two covariates that perturbed the data in different ways. While we
did not detect credible relationships with the covariates age, sex
and BMI, tascCODA was also able to simultaneously identify
characteristic shifts in the gut microbiome for each subtype of
Irritable Bowel Syndrome.

The application range of tascCODA extends beyond the
taxonomic or expert-derived cell lineage tree structures used in
our real data applications. Genetically driven orderings such as
phylogenetic trees or cell type hierarchies obtained from clustering
algorithms, or approaches aimed at optimizing the predictiveness
of the hierarchical grouping (Quinn and Erb, 2019) may provide
more accurate results in differential abundance testing (see, e.g.,
Bichat et al. (2020) for further information).

While tascCODA provides a hierarchically adaptive extension
of a classical compositional modeling framework based on a fixed
aggregation level, extensions of the method could increase the
application range of tascCODA. First, tascCODA does not
account for the zero-inflation and overdispersion that is
common in microbial abundance data on the OTU/ASV level.
We avoided this challenge here by aggregating the amplicon data
to the genus level. Accounting for these properties within the
model, for example by using a zero-inflated Dirichlet-
Multinomial model (Tang and Chen (2019)), the Tweedie
family of distributions (Mallick et al. (2021)), or hard
thresholding on latent weights (Ren et al. (2020)), would allow
for even more fine-grained analyses. Second, the tascCODA
model currently places a sparsity-inducing spike-and-slab lasso
prior on all included covariates. A natural next step would be to
consider some covariates as confounding variables similar to
Zhou H. et al. (2021), reducing the number of latent
parameters, while restricting results to a few core influence
factors. Third, extending known efficient computational
methods for inference of spike-and-slab lasso priors (Bai et al.
(2020b); Ročková and George (2018)) to be used with our
compositional modeling framework could greatly reduce the
computational resources required for running tascCODA.

We believe that tascCODA, together with its implementation
in Python, represents a valuable addition to the growing toolbox
of compositional data modeling tools by providing a unifying
statistical way to model and analyze microbial and cell population
data in the presence of hierarchical side information.
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Dynamic changes of microbiome communities may play important roles in human health
and diseases. The recent rise in longitudinal microbiome studies calls for statistical
methods that can model the temporal dynamic patterns and simultaneously quantify
the microbial interactions and community stability. Here, we propose a novel
autoregressive zero-inflated mixed-effects model (ARZIMM) to capture the sparse
microbial interactions and estimate the community stability. ARZIMM employs a zero-
inflated Poisson autoregressive model to model the excessive zero abundances and the
non-zero abundances separately, a random effect to investigate the underlining dynamic
pattern shared within the group, and a Lasso-type penalty to capture and estimate the
sparse microbial interactions. Based on the estimated microbial interaction matrix, we
further derive the estimate of community stability, and identify the core dynamic patterns
through network inference. Through extensive simulation studies and real data analyses
we evaluate ARZIMM in comparison with the other methods.

Keywords: autoregressive, longitudinal microbiome data, microbial community stability, mixed-effects model, zero-
inflated, network analysis, microbial interaction, absolute abundance

INTRODUCTION

The humanmicrobiota, a diverse array of microbial organisms living in and on human bodies, form a
dynamic ecosystem that plays a critical role in human health. While temporally stable microbial
communities are observed among healthy adults (Faith et al., 2013), the fluctuation of microbiome
has been linked to increasing frailty (Jackson et al., 2016) and declining immune function of hosts
(Claesson et al., 2012), and diseases such as inflammatory bowel disease (Martinez et al., 2008; Zuo
and Ng, 2018), colorectal cancer (Scanlan et al., 2008; Uronis et al., 2009), and irritable bowel
syndrome (Maukonen et al., 2006; Carroll et al., 2012). When a microbial community changes in
response to an external perturbation, it undergoes a dynamic process and tends to evolve toward
another stable state (Figure 1). This dynamic process is stochastic and varies according to the type
and strength of perturbation, the community stability prior to the perturbation, and other subject-
level relevant features. The recent rise in longitudinal studies, in which microbial samples are
collected repeatedly over time, offers unique insights into the responses of such communities to
perturbations and the associated dynamic patterns. For example, in our ongoing microbiome study
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evaluating the effects of antibiotic exposure as a short-term
perturbation on microbial, immune, and metabolic physiology
(MIME study), we are interested in determining how differently
the microbial community responds to the antibiotic treatment.

Human microbiota studies have been accelerated by the
advent of next-generation sequencing technologies which
enabled the quantification of the composition of microbiomes,
often by two common sequencing approaches—16S rRNA
marker gene sequencing and shotgun metagenomics
sequencing (Woo et al., 2008). There are pros and cons to
each of those techniques, which are discussed in recent
reviews (Shankar, 2017; Gilbert et al., 2018). But for both
methods, because of the varying sequencing read counts
obtained across samples, it is necessary to employ various
normalization tools to convert raw counts data into relative
abundances (Knight et al., 2018). However, the dependency of
the compositional components greatly hampers the
interpretation of microbiota changes in longitudinal studies.
There is reason to believe that the absolute abundances of
bacteria are biologically meaningful measures, especially in the
study of microbial interactions. Thus, in our MIME study, we use
an independent quantitative polymerase chain reaction (qPCR)
technology (Nadkarni et al., 2002; Ott et al., 2004; Kim et al.,
2013) to quantify total bacterial load per unit sample, and then
use these data to estimate absolute bacterial abundance by
combining them with the relative abundance values obtained
from 16S rRNA or shotgun sequencing methods. This MIME
study motivated us to develop analytical methods to investigate
microbial interaction and community stability after a strong
external perturbation, and identify core active microbial taxa
by modeling the absolute abundances of bacteria.

Althoughmany well-developed statistical tools are widely used
for assessing the diversity of microbial communities and its
composition, there are only a few methods available for
inferring the ecological networks of microbial communities.

Here we briefly review the well-developed statistical methods
for studying the dynamic microbial systems and their limitations.

A Bayesian network contains a set of multivariate joint
distributions that exhibit certain conditional independences
and a directed and acyclic graph that encodes conditional
independences among random variables. If the dependence
relationships repeat and the signals at a certain time point
only depend on the signals from previous time points, then
the whole network can be formulated as a dynamic Bayesian
network (DBN) (Russell and Norvig, 2002) representation.
McGeachie et al. (McGeachie, 2016) constructed a simplified
two-stage DBN which uses a Markov assumption that the
observed values at time t + 1 are independent of those at
earlier time points (t − 1 and earlier) given the variable values
at time t. Lugo-Martinez et al. presented a computational pipeline
which first aligns the data collected from all individuals, and then
learns a dynamic Bayesian network from the aligned profiles
(Lugo-Martinez et al., 2019). However, DBN has several
limitations in analyzing the longitudinal microbial data. 1) It
can only model the microbial community subject-by-subject. 2)
DBN cannot handle the excess zeros in microbiome data. Most
methods remove the taxa whose relative abundances exhibit zero
entry (i.e., not present in a measurable amount at one or more of
the measured time points) before the downstream analysis. 3)
The assumed distributions are unrealistic. E.g. all continue
variables are assumed to be normally distributed. 4) The
computational cost is relatively high, since parent nodes are
added sequentially for each bacterial node. Additionally, the
maximum number of possible parents is imposed, which is
not realistic. 5) Due to sampling and sequencing limitations,
the compositionality bias in microbiome data may also cause
inaccurate estimation of parameters. The existing methods ignore
this compositionality bias, making parameter estimates difficult
to interpret. 6) Irregular sampling time may also result in
inaccurate parameter estimation. Therefore, it is advised to
cautiously interpret the findings from DBN (Faust and Raes,
2012; Gerber, 2014).

The classical Lotka-Volterra equation has been used to model
simple system such as two species in a predator-prey relationship,
where the interactions are strictly assumed to be competitive. The
generalized Lotka-Volterra (gLV) equations extend the classical
predator-prey (Lotka-Volterra) equations, where the interacting
species might have a wide range of relationships including
competition, cooperation, or neutralism. Assuming that the
interaction (or the effect) of one species with another can be
modeled by the corresponding coefficient in the equation, gLV
equations provide a framework to analyze and simulate microbial
populations. Mounier et al. used the gLV equations to model the
interaction between bacteria and yeast in a cheese microbiome
(Mounier et al., 2009). Other microbiome studies further
extended and implemented the gLV equations (Marino et al.,
2014; Dam et al., 2016; de Vos et al., 2017; Venturelli et al., 2018).

Many software are available for applying gLV modeling on
microbial time series data, such as LIMITS (Fisher and Mehta,
2014), MetaMis (Shaw et al., 2016), and MDSINE (Bucci et al.,
2016a). LIMITS and MetaMis can be implemented to construct
microbial interactions using the longitudinal microbiome data

FIGURE 1 | Schematic of the evolution of microbial community states in
response to external perturbation. External perturbation (blue arrows) can
affect microbial community composition (shown in a pie chart), defined as a
community state. For each state, the ball-in-basin diagram portrays
stability measured by the variance in the stationary distribution of the location
of the ball. White arrows indicate the reaction of microbial community to the
perturbation.
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from one subject. MDSINE can jointly analyze multiple time
series, but requires Matlab programming. Web-gLV (http://web.
rniapps.net/webglv) can be used for modeling, visualization, and
analysis of microbial populations, but can only handle limited
number of samples. In summary, there are several limitations of
gLV in analyzing the longitudinal microbial data. 1) gLV based
models capture the interactions using a single averaged effect,
thus they are not well-suited for noisy data. 2) Some methods
estimate almost all possible edges without incorporating variable
selection techniques. 3) gLV estimates the growth rate of each
taxon marginally, therefore, ignores the intrinsic dynamic
correlations of the repeated measurements. 4) gLV does not
account for random processes which form essential part of
any biological system. 5) With the increased number of
species and time span of prediction, the simulation output is
prone to numerical errors. For example, Web-gLV can only
simulate a maximum of 10 species at a time for at most
100 time points. 6) As DBN, gLV is not suitable for sparse,
compositional, and irregular sampled microbiome data.

In Ives et al. (Ives et al., 2003), the stability of a microbial
community is determined by three key interrelated components
of microbial community structure: diversity, species composition,
and interaction pattern among species. They viewed the dynamics
of a microbial community as a stochastic process and proposed to
use a first-order multivariate autoregressive process [MAR (1)]
time-series model to disentangle the effects of these three
components on community stability and to estimate the
stability properties of a community by estimating the strengths
of interactions between species. This method is widely used to
estimate the stability of ecosystems (e.g., lake, ocean) based on
culture-dependent microbial data (Carpenter et al., 2011; Shade
et al., 2013). Usually a few (four or five) key microbes are detected
with high frequency in each ecosystem in time-series
measurements over a long period, and their abundances are
rarely zero. In contrast, our MIME study will yield
microbiome data from approximately nine time points over
half a year from 80 subjects in three groups in the complete
study—a relatively smaller number of repeated microbiome
samples but from a relatively larger number of microbial
communities (subjects) than what would be the case for an
ecosystem study. Moreover, the 16S rRNA sequencing and
qPCR methods used in this study provide absolute abundances
for a staggering number of taxa, which include a large number of
zero values. Because the MAR modeling methods require the
normality assumption, they are not appropriate for analyzing
data from sequence-based longitudinal microbiome studies.
Therefore, we propose an autoregressive zero-inflated mixed
effects model (ARZIMM) to address the special features of
data instead. Its novelties are threefold. First, we propose to
use a zero-inflated Poisson autoregressive model to model the
excessive zero abundances and the non-zero abundances
separately. Second, the random effects in the proposed model
can investigate the underlining dynamic pattern shared within
the group. Third, the employment of regularization techniques
and network inference in our model enables the identification of
the core dynamic patterns. The proposed ARZIMM estimates the
strength of interactions between taxa, which is required to

estimate the stability properties of a community, and identify
key active taxa efficiently by using all of the longitudinal
sequencing data. ARZIMM has been implemented in an open-
source software package (https://github.com/Hlch1992/
ARZIMM), and provides a useful tool for formulating,
understanding, and implementing longitudinal microbiome
data analysis.

In the following Material and Method section, we introduce
the ARZIMM framework, discuss the quantification of microbial
stability based on the estimated microbial interaction matrix, and
investigate the conditions under which there exist a strict-sense
stationary distribution. Then in the Result section, we evaluate
ARZIMM using extensive simulation studies to show that it
outperforms the conventional methods, and apply ARZIMM
to the MIME study to illustrate network visualization and
inference. In the end, we conclude with Discussion section.

MATERIALS AND METHODS

ARIZMM Model
As illustrated in Figure 2, ARZIMM can be considered as a two-
part model which comprises a logistic component and an
autoregressive component. To address zero inflation, we
consider the zero-inflated mixture model because it assumes
both sampling zeros (due to the low sequencing depth) and
structural zeros (being truly absent) exist in the data.
Specifically, the logistic component models the structure zeros
of taxa in the samples, and the autoregressive component models
the non-structure-zero abundances of the taxa under the
assumption that the changes in abundances from time t − 1 to
time t depend only on the observed abundances at time t − 1 and
other time-independent covariates, and the observed abundances
before time t − 1 have no direct effect. Since the goal of ARZIMM
is to characterize microbial interactions and community stability
during a short period after a strong external perturbation like the
antibiotic usage in ourMIME study, we assume there are no other
time-dependent factors exist to affect the microbial stability.

Notation and Model Specifications
Let Yimt denote the observed absolute abundance of bacterial
taxon m (m � 1, ...,M) for subject i at time
t (i � 1, 2, ..., n, t � 1, ..., Ti), and we model Yimt with a
conditional mixture distribution as follow:

Yimt

∣∣∣∣∣∣∣∣]i(t−1) ~ { 0 pim

F(yimt

∣∣∣∣]i(t−1); θitm, ϕm) 1 − pim
(1)

where ]i(t−1) represents all information that is known at time (t − 1)
for individual i, including the observed absolute abundance Yim(t−1)
and later defined coviariates W i and Zi. The parameter pim

represents the probability of the observation Yimt being structural
zero and is assumed time independent. Furthermore,F is assumed to
be an exponential dispersion family distribution with the canonical
parameter θimt and the dispersion parameter ϕm. Both Poisson and
negative binomial (NB) distributions can be used as to model
absolute abundance. Below we illustrate the detailed modelling
using Poisson model.
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The mixture probability parameters pi � (pi1 ,. . ., piM)′ are
modeled by the logistic regression:

log it(pi) � AW i + ai (2)
where W i � (1, wi1, . . . , wil)′ consists of intercept and l time
independent covariates for individual i, the parameter A �
(A1, . . . ,AM)′ is an M × (l + 1) matrix whose elements Amj is
the effect of covariate j on the zero proportion of taxon m. ai �
(ai1, . . . , aiM)′ is anM × 1 vector of random intercepts to model
the within-subject heterogeneity of being zero for individual i and
has the joint multivariate normal distribution N (0,Σa).

The canonical parameters for Poisson distribution is θimt �
logE(Yimt). We introduce the auto-regressive model by relating
θit � (θi1t, . . . , θiMt)′ to the ith individual’s observed log-
transformed absolute abundance vector at time t − 1: ~Y i(t−1) �
(log(Yi1(t−1) + 1), . . . , log(YiM(t−1) + 1))′ (where the pseudo
count 1 is added to avoid the undefined logarithm when the
absolute abudance is zero), and Zi � (1, Zi1, . . . , Ziq)′, the
intercept and q time-independent covariates of individual i by

θit
∣∣∣∣ ~Y i(t−1) � B ~Y i(t−1) + CZi + ηi (3)

where B is an M × M matrix whose element Bmj gives the effect
of the abundance of taxon j on the growth rate of taxonm, C is an
M × (q + 1) matrix whose element Cmj gives the effect of
covariate j on taxon m, and ηi � (ηi1, ..., ηiM)′ is time-
independent random intercepts. Note that, as an
autoregressive model, ηi is correlated with the fixed effect
~Y i(t−1) and this dependency can be tracked all the way back to
the initial observation ~Y i0. Because the standard random effects
model has assumption that the random effects are independent to
the other covariates in the model, in order to derive the random
effect type maximum likelihood (ML) estimators, we use the
Chamberlain type projections (Chamberlain, 1982) to get around

this correlation. Specifically, we project ηi onto the time 0
observations ~Y i0 by:

ηi � Π ~Y i0 + bi (4)
where Π is anM × Mmatrix with diag(Π) � (π1, . . . , πM)′ and
off-diagonal components being zero. The components of Π
represent how much variation in ηi is due to the dependence
on subject i’s initial value ~Y i0. bi � (bi1, ..., biM)′ is an M × 1
vector, representing the independent subject-specific random
effect and follows a joint multivariate normal distribution
N (0,Σb).

In the model, our primary interest is to estimate matrix B ,
which measures the strengths of interactions between taxa. For a
microbial community with a given number of species, its stability
or dynamics status depends on the changes in the species’
population growth rates due to perturbation, which
immediately cause the changes in the population growth rates
of other species via species-species interactions (Ives et al., 2000).
Interaction between species can be viewed as a filter that amplifies
the variability in species’ population growth rates caused by
perturbation.

Note that we choose Poisson distribution because of its nice
stationary distribution property in the autoregressive model
which is crucial for our following stability investigation. To
deal with the over-dispersion of microbiome data, we
implemented the quasi-Poisson model (Ver Hoef and Boveng,
2007) in the simulation and real data analysis.

Penalized ML Estimation and Variable
Selection
To define the joint likelihood of the longitudinal microbial
absolute abundance data Yit , we assume that the vector of

FIGURE 2 | Graphical representation of ARZIMM model and analytic techniques.
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time independent random effects ci � (a′i , b′i)′ underlies both the
zero and autoregressive generative processes and these random
effects account for the within-subject group heterogeneity in the
multivariate logistic component and the multivariate
autoregressive component. Denote D � (B,C) � (D1, ...,DM)′
, ϕ � (ϕ1, ..., ϕM)′ , and 1[·] as the indication function that
when [·] meets, 1[·] � 1, otherwise, 1[·] � 0. Formally, we
have the joint likelihood function as:

L(D,A,Π,ϕ, σ) � ∏n
i�1

∫⎧⎨⎩⎡⎣∏ti
t�1

∏M
m�1

fy(yitm

∣∣∣∣θitm(bim),ϕm, pim(aim))⎤⎦

g(ci|Σ(σ))
⎫⎬⎭dci

(5)
where fy is the conditional probability density function and
given as

fy(yitm

∣∣∣∣θitm(bim), ϕm, pim(aim)) � [pim + (1 − pim)f(yitm

� 0
∣∣∣∣θitm, ϕm)]1[yitm�0] × [(1 − pim)f(yitm

∣∣∣∣θitm, ϕm)]1[yitm ≠ 0] (6)
The function g(ci|Σ(σ)) is the joint distribution of ci, and

Σ(σ) � [ Σa Σab

Σab Σb
] represents the corresponding 2M × 2M

covariance matrix, where σ accounts for all unique non-zero
elements of Σ. For the model and computational simplicity, we
assume Cov(ai, bi) � Σab � 0, i.e. ai and bi are independent.

Assuming that the true underlying fixed effects A and D are
sparse, we advocate a Lasso-type approach, which adds an ℓ1

-penalty for the fixed-effects to the likelihood function. Thus, we
consider the following objective function:

Q � −2 logL +∑M

m�1[μ1m
∣∣∣∣∣∣∣∣Dm

∣∣∣∣|1 + μ2m
∣∣∣∣∣∣∣∣Am

∣∣∣∣|1]. (7)
Maximization of the penalized log-likelihood function

corresponding to Eq. 7 with respect to (D,A,Π,ϕ, σ) is a
computationally challenging task. This is mainly because both
integrals with respect to the random effects and the zero-inflated
structure do not have analytical solutions. Following the
conventional methods, we propose to implement a Laplace
approximation on the integral of random effects in Eq. 7 and
use the Expectation-Maximization (EM) algorithm to calculate
the expectation and compute parameters iteratively, in which the
label of zero is treated as “missing data”. The tuning parameters
are selected using Bayesian information criterion (BIC).

Stability Properties
The existence of a stationary distribution has been investigated
for the log-linear Poisson auto-regression model based on the
perturbation technique (Fokianos and Tjøstheim, 2011). Here,
we prove the existence of a stationary distribution of a zero-
inflated Poisson mixed-effect auto-regression model in
Theorem 1 utilizing the theory of Markov chains which has
been proposed to prove the existence of a stationary distribution
of a general class of time series count models (Douc et al., 2013).
The detailed proof is provided in the Supplementary Material
Section S3.

Theorem 1. Assuming that time-independent parameters ηi and
pi are known, if all eigenvalues of matrix B lie inside the unit
circle, a strict-sense stationary ergodic process {Y it}t∈N will exist,
where N denotes the set of natural numbers.

With this Theorem, we can first show that for a microbial
community, its dynamic process {Y it}t∈N has a stationary
distribution by proving that all eigenvalues of matrix B lie
inside the unit circle. Then, following Ives et al. (Ives et al.,
2003), we consider the return rate and reactivity as two stability
measures based on the variability of the stationary distribution for
MAR (1) model. Specifically, return rate depends on the rate at
which the perturbed microbial community approaches the
stationary distribution and reactivity, and assesses how strongly
population-level microbiome abundances are pulled towards the
mean of the stationary distribution. Both are bounded by the
largest eigenvalue of B, denoted by max(λB). In general, a smaller
max(λB) indicates the perturbedmicrobial community approaches
its stationary distribution faster, or a system is less reactive, then the
microbial community is more stable. The detailed proof is deferred
in the Supplementary Material Section S3.2.

Based on the theory in Ives et al. (Ives et al., 2003), for a
community with multiple species, the covariance matrix of the
stationary distribution depends on the covariance matrix of the
process error and the interactions between species captured in the
matrix B. As illustrated in Figure 1, when the external
perturbation(blue arrow) acts on the community, the ball(microbial
community) sitting in a deep bowl in state 2 which represents a
relatively stable system, will return to its stationary state faster than the
ball sitting in a shallow bowl in state 1 which represents a less stable
system. In a stable system, the variance of stationary distribution is
only slightly greater than the variance of process error and the variance
of species interaction is small. In contrast, in a less stable system, the
species interaction will amplify the environmental variance and create
large variance in the stationary distribution, therefore the variance of
species interaction is large, assuming the process errors are similar in
the compared two states. Thus, the difference between the variances of
stationary distribution of different communities can be attributed to
species interactions. The smaller of the variance of matrix B, the more
stable of the study microbial community.

RESULTS

Simulation Study
We have conducted extensive simulation studies to evaluate the
performance of ARZIMM in both model fitting and variable
selection by comparing it with the competing methods: penalized
Poisson auto-regression (Poisson), penalized log-normal
multivariate auto-regression (MAR), and extended generalized
Lotka-Volterra (gLV) equations using Bayesian algorithm
(MDSINE) (Bucci et al., 2016b). The brief descriptions of
these methods are provided in the Supplementary Material
Section S2.

Simulation Design
We generated the longitudinal absolute abundances from zero-
inflated Poisson distribution with parameters pim and θimt for
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each taxon. Since our focus is on the estimation of the interaction
matrix B, which depends on the non-zero part, we adopted a
simple simulation design for the zero inflation proportions pi �
(pi1, ..., piM)′. We ignored the individual variations in pi by
dropping the random effect term ai in Eq. 2. With model
logit(pi) � AW i and by controlling the values of W and A
respectively, we set the zero inflation proportions pi for 20
taxa to mimic the observed sparsity in real data as

pi � (0.72, 1.00, 0.96, 0.34, 0.50, 0.56, 0.94, 0.84, 0.98, 1.00,
0.78, 0.68, 0.96, 1.00, 0.38, 0.56, 0.82, 1.00, 0.28, 1.00)′ (8)
The detailed values of W and A are provided in the

Supplementary Material Section S4. We generated the non-
zero absolute abundances from Poisson distribution with their
θit � (θi1t, ..., θiMt)’ defined as θit � B ~Y i(t−1) + b0 + bi, where the
intercept b0 was set to be the mean log-transformed non-zero
absolute abundances of taxa in MIME real data, and the random
effects bi ~ N (0, diag(Σb)) with diag(Σb) ~ 10N (−1.5,0.5). We
assumed that the interaction matrix B was sparse by randomly
selecting 5% of its elements to be non-zero. Three interaction
matrices were considered with varied informative absolute effect
strengths: high (BH

jm ~ 10N (−0.5.0.5)), medium (BM
jm � ���

0.1
√

βHjm),
and low (BL

jm � 0.1BH
jm), for the non-zero elements Bjm. In

addition, we designed four simulation scenarios: Scenario 1
with diag(Σb) � 0 and pi � 0, considered as the benchmark
situation where subjects are homogeneous and taxa are all
presented; Scenario 2 with diag(Σb) ~ 10N (−1.5.0.5) and pi � 0,
where subjects are heterogeneous and taxa are all presented;
Scenario 3 with diag(Σb) � 0 and pi as in (8), where subjects
are homogeneous and taxa have zero inflated structure; and
Scenario 4 with diag(Σb) ~ 10N (−1.5.0.5) and pi as in (8), where
subjects are heterogeneous and taxa have zero inflated structure.

In each scenario, we generated 500 independent repetitions for
n � 20 or 50 subjects, T � 10 or 20 time points, and M � 20 taxa
for each sample to evaluate the performance of ARZIMM.

Simulation Results
We first compared the model fittings of ARZIMM, Poisson, and
MAR methods using mean normalized squared error score
(MNSES), as suggested in the prior studies (Carroll and
Cressie, 1997; Liesenfeld et al., 2006; Czado et al., 2009;
Tkacz et al., 2018a). MNSES is defined as 1

n × T × M(yimt−ŷimt
σ̂yimt

)2
with ŷimt being the estimated yimt and σ̂yimt being the estimated
standard error of yimt. The closer the MNSES is to 1, the better
model fitting the method has. Since MDSINE only provides the
estimates of interactions among species without their variance
estimates, it was excluded from this comparison. Table 1 and
Supplementary Table S1 summarize the median and
interquartile range (IQR) of MNSES over 500 replications for
these three methods. Overall, the medians of MNSES for
ARZIMM are all around the expected value of 1 in various
settings across four scenarios, which indicates the good fitness
and robustness of ARZIMM in dealing with excess zeros and the
correlation among repeated measures at the same time, as well
as its satisfying estimation accuracy on the microbial interaction
parameters. However, the other two methods: Poisson and

MAR, both exhibit inferior performance. The Poisson model
is only competent in Scenario 1, when subjects are
homogeneous and no excess zeros are present. In Scenarios
2-4, when any factor, excess zero or subject heterogeneity,
presents, the predicted values based on the Poisson model
deviate greatly from the observed values. Comparing the
considered two factors, Poisson model is more sensitive to
the subject heterogeneity and presents larger deviations with
it. Due to the invalid normality assumption and lack of
consideration of the correlation among the longitudinal
measurements, the MAR model exhibits the worst
performance among three methods with enormous deviation
especially in Scenarios 3 and 4, which confirms the
inappropriateness of using conventional statistical methods
which require the normality assumption to analyze the
microbiome data.

Next, we evaluated the variable selection performance for
ARZIMM, Poisson, MAR, and MDSINE in terms of true
positive rate (TPR; mathematically equals to the power) and
false positive rate (FPR; mathematically equals to the type I error).
Specifically, TPR quantifies the probability of a significant
interaction identified by one method given that the interaction
effect is truly nonzero; and FPR quantifies the probability of a
significant interaction identified by one method given that the
interaction effect is truly zero. The simulation results for 50
subjects with 20 time points are summarized in Figure 3 and all
the other simulation results with different subject numbers and
time points are deferred to Supplementary Figure S1, because
they have a similar pattern as seen in Figure 3. Figure 3 shows
that the FPRs of ARZIMM are all at or below the nominal level
(5%) across different simulation regimes and effect sizes, and its
TPR estimates exhibit a sensible and consistent pattern as they
increase as the interaction effect gets stronger across four scenarios.
As expected, the FPR and TRP estimates of Poisson and ARZIMM
models are coincident under Scenario 1, because when subjects are
homogeneous and taxa don’t have excess zeros, ARZIMM model is
reduced to Poisson model. However, in Scenarios 2-4, because
simple Poisson model fails to take care of the excess zeros or
subject heterogeneity, it suffers from the inflated false positives,
while ARZIMM does not. For the other two methods, both MAR
and MDSINE perform poorly on controlling false positive rates for
all simulation scenarios, because MAR fails to fit the skewed and
highly sparse microbiome data, while MDSINE captures the
interactions based on the averaged effect over subjects in a group
but completely ignores the randomness at the subject level process
which is the essential characteristic of any biological system. In
summary, ARZIMMoutperforms the other competitors in handling
the excess zeros and subject heterogeneity well with controlled FPR
and satisfactory TPR.

To further investigate the performance of informative
interaction selection, we calculate Matthew correlation
coefficient (MCC), defined as TPpTN−FPpFN������������������������

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
√ ,

and F-score, defined as TP
TP+(FP+FN)/2 , where TP gives the

number of selected interactions being true positive, FP gives
the number of selected interactions being false positive, TN
gives the number of unselected interactions being true
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TABLE 1 | Simulation results for all settings under scenario 1 and 4. Poisson refers to the penalized Poisson autoregression model and MAR refers to penalized log-normal
multivariate autoregressionmodel. The reported value is median (IQR) of mean normalized squared error score (MNSES) calculated over 500 simulations for each setting.
n refers to the number of subjects, and T refers to the number of time points. Scenarios 2 and 3 are deferred to Supplementary Material.

Methods ARZIMM Poisson MAR

Effect
size

High Median Low High Median Low High Median Low

Scenario 1

n T Median (IQR)

20 10 0.98 0.98 0.98 1.00 0.99 1.00 47 50 52
(0.97–0.99) (0.97–0.99) (0.97–0.99) (0.99–1.01) (0.984–1.00) (0.99–1.00) (33–77) (35–80) (37–80)

50 20 0.99 0.99 0.99 1.00 1.00 1.00 123 115 114
(0.99–1.00) (0.99–1.00) (0.99–1.00) (1.00–1.01) (1.00–1.00) (1.00–1.00) (86–192) (78–187) (80–177)

Scenario 4

n T Median (IQR)

20 10 0.95 0.92 0.91 30.59 18.87 18.46 30071.82 29390 22435
(0.87–2.30) (0.86–1.10) (0.86–1.02) (21.90–41.51) (15.26–21.95) (14.77–21.80) (8984–133153) (13929–77371) (10251–50171)

50 20 1.09 0.92 0.85 40.31 31.08 30.30 211141 110656 93579
(1.05–1.20) (0.90–0.93) (0.85–0.86) (36.80–43.63) (30.25–31.76) (29.65–30.95) (118860–473551) (80809–202068) (66942–167227)

FIGURE 3 | Simulation results of variable selection performance. Poisson refers to the penalized Poisson auto-regression model and MAR refers to penalized log-
normal multivariate auto-regression model. MDSINE refers to the method with extended generalized Lotka-Volterra (gLV) equations using a Bayesian algorithm. Mean
(and 95% confidence interval) of false positive and true positive rates are reported for 500 simulations with 50 subjects and 20 time points in four scenario: (A) no zero-
inflated structure and no heterogeneity, (B) heterogeneity but no zero-inflated structure, (C) zero-inflated structure but no heterogeneity, and (D) both zero-inflated
structure and heterogeneity.
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negative, and FN gives the number of selected interactions being
false negative. MCC ranges from −1 to 1, where value 1 indicates
perfect agreement between truth and selection, value −1 indicates
perfect disagreement, and value 0 indicates that the selection is
random with respect to the truth. F-score ranges from 0 to 1,
where value 1 indicates that there are neither false negatives nor
false positives and value 0 only indicates no true positives are
reported. As expected, MCC and F score are comparable to each
other and increase as effect size increases (Supplementary Figure
S2). This consistent pattern is observed across four scenarios for
ARZIMM but not for Poisson nor MAR models. Similar to TPR
and FPR estimates, the MCC and F score values of Poisson and
ARZIMM models are coincident under Scenario 1. However, in
other situations, both Poisson and MAR perform poorly with low
MCC and F score values.

As for the computational cost, ARIZMM took about 2.4 h to
complete the estimation and bootstrap inference for a simulated
dataset with 50 subjects, 20 timepoints, and 20 taxa.

Real Data Application
We applied ARZIMM methods to the MIME study. The MIME
study is an ongoing randomized trial on 80 healthy volunteers
with one control group (ctrl) and two antibiotic groups
(amoxicillin, amx, and azithromycin, azm); antibiotics are
provided for a 1-week period at the start of the trial. The
main microbiome research goal of the MIME study is to
evaluate the effects of antibiotics on microbial profiles at both
the community and taxonomical levels. With ARIZMM, we
propose a different perspective to evaluate the effect of
antibiotics through the investigation of microbial interaction
and community stability across groups. Because the clinical
trial is still ongoing and only partial data are available, the
following data analysis is done on a subset of MIME data
including only 11 subjects who were randomized to two groups:
4 ctrls and 7 azms. The main purpose of this analysis is to illustrate
how to use ARIZMM, not for the scientific conclusion. For each
subject, we collected two baseline microbiome samples, three
samples during the course of antibiotics, and five post-antibiotic
samples. The gut microbiota of these individuals were profiled
using 16S rRNA gene targeted sequencing on the Illumina MiSeq
platform. To obtain the microbial absolute abundances, we
multiplied the relative abundances of OTUs by the sample
density 1.1 g/cm3 and the number of universal 16S rRNA per
gram measured using qPCR (Stein et al., 2013a). In our
analysis, samples that collected before treatment in both
antibiotic groups were excluded. The abundances of taxa
were agglomerated at the genus level and taxa were further
filtered if 1) the average relative abundances over all samples
are less than 0.1%, and 2) the taxa are presented in less than 5
samples within each group.

First, Figure 4A shows a comparison of the relative abundance
(top panel) and the absolute abundances determined by
quantitative sequencing (bottom panel) of the dominant
bacterial genera in 99 fecal samples from 11 subjects (blocks)
across seven to nine time points (shown from left to right within
each block) of this preliminary dataset. It is evident that the

relative abundance and absolute abundance data present different
information about the microbial profiles, and that the total
bacterial load changes over time for each subject (i.e., within
each block). Thus it is essential to study the microbial interactions
using the absolute abundance data.

Then, we evaluate the model fitting of the log-normal
distribution [used in MAR(1)] and zero-inflated over-
dispersed Poisson distribution (used in ARZIMM) on the
available subset of MIME data using chi-square goodness of fit
test at 5% significance level taxon by taxon. Out of 45 taxa in the
control group, 1 and 44 of their absolute abundances were fitted
well (p > 0.05) by log-normal distribution and zero-inflated over-
dispersed Poisson distribution respectively. The log-normal
distribution fails to fit the data well when microbial taxa’s
absolute abundance data are left-skewed and sparse (two
examples are illustrated in Figure 4B).

Next we demonstrate how to conduct inference for microbial
interactions and community stability with ARZIMM on MIME
data. First, we fit ARZIMM to ctrl and azm groups separately,
adjusting for age, gender, and BMI, to get their estimated
interaction matrix B̂ s. Table 2 reports the characteristics of
microbial interaction matrix estimates B̂ s. Defining the interaction
effect as informative if its B̂mj ’s 95% bootstrap confidence interval
(based on 100 bootstrap samples) does not contain zero, we identified
125 and 105 informative interactions, respectively, in azm and ctrl
groups. Their interaction effects are illustrated using networks in
Figure 5. With more informative interactions, the azm groups have
bigger and more complex networks than the ctrl group (first row of
Figure 5), while the control group has more large estimated
interaction effects than those in azm group as showed in Table 2
and the last three rows of Figure 5. This observation indicates that the
antibiotic treatment reduce the strength of the interactions among the
taxa and create more variations with more weak interactions among
taxa, thus reduce its stability. In the last row of Table 2, based on our
stability theory we report the stability properties of the studied
microbial communities. The ctrl group has the lower estimates
of maximum eigenvalue squared 0.11 comparing to the azm
group’s maximum eigenvalue squared 0.32, which indicates that
the control microbial community is more stable than the
antibiotic communities.

Figure 6 provides additional information on the network
feature comparison between ctrl and azm groups. Figure 6A
displays the distribution of the positive and negative informative
interaction estimates separately. The ratios between the numbers
of positive and negative interactions are both around 1:1 in two
groups. Figure 6B presents the frequency distribution of vertex
degree of all the taxa in each group and they are all skew to the
right. In the figure, a vertex represents a taxon in a community
and its vertex degree is the number of informative interaction
effect it has with the other taxa. By defining average neighbor
degree as the average number of a given taxon’s neighbor vertices’
degrees, Figure 6C shows that the average neighbor degree is
negatively correlated with the vertex degree in azm antibiotic
treated group, but not in the control group. This indicates that
there may be a group of taxa interacting with each other actively
in the antibiotic group. It would be interesting to identify such
sub-community with additional effort.
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DISCUSSION

In this paper, we propose ARZIMM, an analytic platform which
estimates the microbial interactions and community stability
using longitudinal microbiome data. ARZIMM tackles the
zero-inflated absolute abundance with a mixture distribution
of zero and exponential dispersion distribution family, and

enhances statistical efficiency by utilizing a random-effects
term to account for the correlations among repeated
measurements.

It is well-known that microbial correlations calculated from
relative abundances are distorted by the compositional nature of
microbiome data, and are insufficient in tracking microbial
dynamics(Gloor et al., 2017). We advocate to investigate the
microbial correlations using longitudinal absolute abundances
which can be determined by combining gene amplicon
sequencing with auxiliary total DNA quantitation data. qPCR is
one of the most commonly used strategies to quantify total DNA
(Dannemiller et al., 2014) and has been implemented in various
statistical analyses (Stein et al., 2013b). Other alternative methods to
quantify the absolute abundances include the combination of the
sequencing approach (16S rRNA gene) with robust single-cell
enumeration technologies (flow cytometry) (Props et al., 2017)
and the usage of synthetic chimericDNA spikes (Tkacz et al., 2018b).

Plenty of zero-inflated mixed effects models have been
recently proposed to handle the excess zeros in microbiome
abundance data such as zero-inflated Poisson, negative

FIGURE 4 | MIME study microbiome data. (A) Difference between relative abundances (top panel) and absolute abundances based on qPCR (bottom panel) of
dominant genera in XX fecal samples obtained from 21 subjects (block) at 7–9 time points (x-axis) each. (B) Distribution of absolute abundances of two representative
genera from the MIME study, shown in the left and right panels, respectively. For each genus, the absolute abundance is fitted with a log-normal distribution (red line) or a
two-part distribution: a zero part (dark green line shown in right panel) and a non-zero part fitted with an over-dispersion Poisson distribution (blue line).

TABLE 2 | The characteristics of networks.

Group description Azithromycin Control

Sample size 7 4
Number of time points 9 9
Number of taxa 49 45
Number of informative interactions 125 105
Number of |B̂mj |<0.1 73 45
Number of 0.1≤ |B̂mj |< 0.25 30 29
Number of 0.25≤ |B̂mj |< 0.5 17 14
Number of |B̂mj |≥ 0.5 5 17
Informative interaction percentage (%) 5.21 5.19
Maximum eigenvalue squared 0.32 0.11
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binomial and quasi-Poisson models(Xia et al., 2018; Zhang et al.,
2018). However, none of the existing methods estimates the
microbial interactions and community stability. To fill this
gap, we extended a zero-inflated Poisson model with auto-
regression and random effects modeling, which plays crucial

role in efficiently handling the individual heterogeneity and
enable the investigation of microbial interactions.

We investigated two community stability measurements
derived from ARZIMM: the return rate and reactivity, to
further understand ecological dynamics. The estimated

FIGURE 5 | Interaction network. Estimated interaction network for: (A) azithromycin (azm), and (B) control groups, displaying (1) all selected interactions, (2)
interactions with |B̂mj |≥0.1, (3) interactions with |B̂mj |≥0.25, and (4) interactions with |B̂mj |≥0.5. Each node represents a taxon at the genus level, the size of which
shows the degree of that taxa and the color of which shows the phylogenetic Order level for each taxon. Each edge with arrow represents an interaction effect, the width
of which represents the absolute effect size on a log10 scale, with the color showing a positive (orange) or negative (blue) effect.
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interaction matrix B from the ARZIMMmodel serves the basis
to calculate the largest eigenvalue of B: max(λB), which
determines the return rate of the mean of the transition
distribution from the departure to the mean of the
stationary distribution. We proposed to measure the
reactivity of a microbial community by the expected change

of the stationary distribution’s mean in distance from one time
point to the next time point. In ARZIMM, higher reactivity
coincides with larger eigenvalues of B, thus governed again by
max(λB). Other measures of community stability, such as
variance of the stationary distribution (Ives et al., 2003),
warrant further investigations.

FIGURE 6 | Characteristics of estimated interactions. (A) The effect size of estimated informative interactions, wherein the x-axis represents the log10 scaled
absolute effect size, the y-axis represents the count of informative interactions, and the colors represent the positive or negative effects. (B) Histogram of vertex degree,
wherein given a vertex, vertex degree is defined as the counts of edges upon the vertex. (C) The average neighbor degree (y-axis) versus vertex degree on a log-log scale
(x-axis). The average neighbor degree is the average number of a given taxon’s neighbor vertices’ degrees. Dotted lines represent 95% confidence limits.
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It is worth noting that by utilizing the ARZIMM model
framework, the time-dependent perturbation (for instance,
diet) can also be assessed flexibly in both the autoregressive
part and the logistic part in the model. However, the stability
based on the microbial interactions has to be interpreted with
caution, since the mean of stationary distribution changes along
with the time-dependent covariates.

We have demonstrated that ARZIMMoutperforms the competing
methods and exhibits its feasibility for examiningmicrobial interactions
and stability based on longitudinal microbial data. We applied our
method to a real humanmicrobiome study of antibiotic treatment and
elucidated themicrobial interaction network of bacteria from antibiotic
and non-antibiotic groups separately. The application of ARZIMM to
temporal microbiome data shows great promise. Still, the development
of accurate predictive models will require further developments. For
example, the method used here to infer microbial interactions may be
expanded by adding functional information as well as phylogenetic
information. Although this method is primarily developed for the gut
microbiota, it may be potentially applied to longitudinal data from any
ecological systems. Since interactions between members of microbial
communities are primary driving forces for the long-term
stability(Ratzke et al., 2020), the corresponding stability properties
will provide useful principles for community dynamics.

Note that the proposed ARIZMM assumes the probability of
observing a zero count for a taxon is constant over time. The reason is
two-fold. 1) Onemajor goal of ARIZMM is to derive the inference on
the stability of the microbial community over a certain period. With
the constant probability of observing a zero count assumption, the
stability inference will solely depend on the estimation of the taxon-
by-taxon interaction matrix B. Otherwise, a stationary distribution
will not exit. 2) Using the MIME data, we estimated the proportions
of zeros (denoted as qmt) for all taxa by group at all time points, then
calculated the mean(q̂m) and standard deviation (SDq̂m) over all the
time points and the coefficient of variation ( CVm � SDq̂m/q̂m, m �
1, . . . ,M) to evaluate their temporal variations. The median of
CVm over all taxa in the control, Amoxicillin and Azithromycin
groups are 0.16, 0.12, and 0.34 respectively. This results reveal two
observations: 1) the temporal variations of qmt in most taxa are
relative weak; and 2) the temporal variation of the proportions of zero
is heterogeneous and theremay be no one perfectmodel fitting all the
taxa well. Thus, we believe our assumption that pm is constant over
time is valid and pragmatic. To further check the robustness of our
proposed model, we conducted additional simulation by introducing
extra randomness when we generate the probability of observing a
zero count across the time points, while analyze the data using our
proposed model. Our results show that the moderate temporal
variation in probability of zero count does not affect ARIZMM’s
performance much in capturing the informative interactions by
estimating B when the absolute effect strengths of interaction
matrices is high or medium. The detailed simulation design and

results are reported in the SupplementaryMaterial Section S4.2 and
Supplementary Figure S3.

The proposed method, ARZIMM has a few limitations and
future works are needed to improve it. ARZIMM adopts a
simple correlation structure that the random effects in the
multivariate logistic component and the multivariate
autoregressive component ai and bi are assumed
independent. We took this parsimonious model based on
our experience(Hu, 2021; Wang, 2021) in modeling the
longitudinal microbiome data to ease the computational
burden. The more general random effects structure with
cross-part correlations can provide more robust modeling,
however, can suffer from model convergence as well.
Further investigation is warranted.
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Short read 16 S rRNA amplicon sequencing is a common technique used in microbiome
research. However, inaccuracies in estimated bacterial community composition can occur
due to amplification bias of the targeted hypervariable region. A potential solution is to
sequence and assess multiple hypervariable regions in tandem, yet there is currently no
consensus as to the appropriate method for analyzing this data. Additionally, there are
many sequence analysis resources for data produced from the Illumina platform, but fewer
open-source options available for data from the Ion Torrent platform. Herein, we present an
analysis pipeline using open-source analysis platforms that integrates data from multiple
hypervariable regions and is compatible with data produced from the Ion Torrent platform.
We used the ThermoFisher Ion 16 S Metagenomics Kit and a mock community of twenty
bacterial strains to assess taxonomic classification of six amplicons from separate
hypervariable regions (V2, V3, V4, V6-7, V8, V9) using our analysis pipeline. We report
that different amplicons have different specificities for taxonomic classification, which also
has implications for global level analyses such as alpha and beta diversity. Finally, we utilize
a generalized linear modeling approach to statistically integrate the results from multiple
hypervariable regions and apply this methodology to data from a representative clinical
cohort. We conclude that examining sequencing results across multiple hypervariable
regions provides more taxonomic information than sequencing across a single region. The
data across multiple hypervariable regions can be combined using generalized linear
models to enhance the statistical evaluation of overall differences in community structure
and relatedness among sample groups.
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INTRODUCTION

Next generation sequencing of microbial DNA has become an
important tool used for determining relationships between
human-associated microbial populations and various diseases.
Most studies in this realm rely on either shotgun metagenomic
sequencing or 16 S ribosomal RNA (rRNA) amplicon sequencing.
Shotgun metagenomic sequencing involves sequencing random
fragments of sample DNA which contains a mixture of bacterial
DNA, as well as host and other microbial and environmental
DNA (Quince et al., 2017). This method allows for taxonomic
profiling, metabolic function profiling, and antibiotic resistance
gene profiling; however, it is generally more expensive than
amplicon sequencing, and requires a larger amount of input
DNA and the availability of reference genome sequences.
Bacterial 16 S rRNA amplicon sequencing employs PCR
amplification of specific hypervariable regions within the gene,
followed by deep sequencing (Sanschagrin and Yergeau, 2014).
This method is generally a quicker, cheaper alternative to shotgun
metagenomics; however, it only identifies bacteria and the typical
strategy only sequences a specific fragment of the bacterial 16 S
rRNA gene (Ranjan et al., 2016). While functional information
can be inferred from taxonomic classification using tools such as
UniRef and KEGG Orthology, the genetic elements contributing
to these functions themselves are not sequenced. The 16 S rRNA
gene is comprised of 9 hypervariable regions (V1-V9), and most
primers used for next generation sequencing only target one to
two hypervariable regions at a time. Multiple studies have shown
that different regions vary in their taxonomic utility due to a
combination of primer bias, differential hypervariable region
sequence length, and hypervariable region sequence
uniqueness across bacterial taxa (Claesson et al., 2010; Pinto
and Raskin, 2012; Cai et al., 2013; Tremblay et al., 2015; Barb
et al., 2016). An ideal solution would be to sequence the entire
16 S rRNA gene, however this technique is more costly and access
to this technology is limited compared to traditional 16 S rRNA
sequencing. Therefore, a potential alternative would be to
perform 16 S rRNA amplicon sequencing on multiple regions
and incorporate information from as many hypervariable regions
as possible into downstream data analysis.

The Ion 16 S™ Metagenomics Kit (Life Technologies) utilizes
six sets of primers spanning seven different hypervariable regions:
V2, V3, V4, V6-7, V8, and V9. This is an attractive approach
because it yields more sequence information across the 16 S
rRNA gene overall. However, there is currently little consensus
as to how to properly analyze information from multiple
hypervariable regions and obtain overall results. Current
analysis pipelines for Ion Torrent data include the Ion
Reporter Software offered by ThermoFisher, and an alternative
method using open access tools developed by Barb et al. (Barb
et al., 2016). The utility of Ion Reporter Software is limited; for
example, users are unable to incorporate study-specific metadata
into analyses, and exported processed data is devoid of previous
analysis information, preventing downstream analysis with open-
source tools. Barb et al. offer methods for taxonomic
identification; however, they do not address the question of
how to appropriately integrate data from multiple

hypervariable regions in downstream analyses. Recently, Fuks
et al. (Fuks et al., 2018) and Debelius et al. (Debelius et al., 2021)
developed methods to computationally combine data from
multiple hypervariable regions to provide a joint estimate of
the microbial community composition. To date, however,
there is no generally agreed upon approach for combining
sequences from multiple hypervariable regions for downstream
analyses, especially for less commonly used 16 S rRNA gene
sequencing platforms such as Ion Torrent.

Herein, we developed an analysis pipeline that analyzes data
from each hypervariable region separately, allowing for
systematic comparison of taxonomic classification by
hypervariable region. We demonstrate our results from
analyzing a mock community of bacterial DNA where we
determine how each hypervariable region differs in its utility
to provide information on taxonomic classifications, alpha
diversity, and beta diversity. We report that certain taxa are
only identified by particular hypervariable regions, corroborating
prior studies (Claesson et al., 2010; Pinto and Raskin, 2012; Cai
et al., 2013; Tremblay et al., 2015; Barb et al., 2016) and
supporting our hypothesis that there is a benefit to
incorporating multiple primer sets into sequencing strategies.
Furthermore, we discuss different options for downstream
analysis and statistics, and demonstrate that using a
generalized linear model (GLM) to statistically combine results
from multiple hypervariable regions increases sensitivity of
taxonomic classification. Finally, we demonstrate the utility of
our approach in the analysis of clinical samples in an illustrative
clinical cohort.

MATERIALS AND METHODS

Mock Community
The 20 Strain Even Mix Genomic Material was obtained from
American Type Culture Collection (ATCC, Cat. No. MSA-1002,
Manassas, VA). The strain composition of the mock community
is given in Table 1. The mock community was sequenced a total
of five times from four library preparations and over three
sequencing runs.

Clinical Sample Collection
All specimens were studied under an Institutional Review Board
(IRB) approved protocol with written informed consent. A total
of three (3) adult males self-collected two (2) rectal swab samples
each with sterile flocked swabs (Cat. No. 552C, Copan
Diagnostics, Murrieta, CA). One rectal swab from each
individual was randomly selected for DNA extraction
immediately after sample collection (RS1). The other swab
(RS2) was frozen at –80°C for 6 days before DNA extraction.

DNA Extraction
The DNA extraction protocol was adapted from our previously
published protocol (Shrestha et al., 2018). Briefly, rectal swab
fecal material was resuspended in 500 µl of 1X phosphate buffered
saline (PBS) (Cat. No. 21-031-CV, Corning, Manassas, VA).
Samples were then digested in a cocktail of lysozyme (10 mg/
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ml, Cat. No. L7773, Sigma-Aldrich, St. Louis, MO) and
mutanolysin (25 KU/ml, Cat. No. M4782, Sigma-Aldrich, St.
Louis, MO) for 1 h at 37°C. The contents of the tubes were then
transferred into FastPrep Lysing Matrix B tubes (Cat. No.
6911050, MP Biomedicals, Santa Ana, CA). Next, 20% SDS
(Cat. No. 05030, Sigma-Aldrich, St. Louis, MO) and phenol:
chloroform:isoamyl alcohol (25:24:1, Cat. No. 108-95-2,
ThermoFisher Scientific, Waltham, MA) were added and
samples were homogenized by bead beating in an MP
FastPrep-24 at 6 m/s for a total of 60 s. DNA was precipitated
and resuspended in a final volume of 50 μl of DNA-free water
(Cat. No. P-020-0003, Molzym, Bremen, Germany).

Library Preparation
Concentration of DNA from the mock microbial community
(Table 1) and rectal swabs was measured using a Qubit dsDNA
HS (high sensitivity) kit (Cat. No. Q32851, Life Technologies,
Carlsbad, CA). Libraries were prepared using the Ion 16 S™
Metagenomics Kit (Cat. No. A26216, ThermoFisher Scientific,
Waltham, MA). Briefly, 10 ng of DNA was mixed with 15 µl of
Environmental Master Mix. 3 µl of each 16 S Primer Set (10X)
was added to each tube, one sample set with primers for V2-4-8
(Pool 1) and the other with primers for V3-6,7-9 (Pool 2).
Samples were placed in a thermocycler with the following
thermal conditions: 95°C for 10 min; then 25 cycles of 95°C for
30 s, 58°C for 30s, 72°C for 30 s; and finally 72°C for 7 min.
Amplification products were purified using AMPure XP beads
(Cat. No. A63881, Beckman Coulter, Pasadena, CA) and eluted
in nuclease free water. Concentrations of amplification
products from Pool 1 and Pool 2 were measured using a
Bioanalyzer High Sensitivity DNA Kit (Cat. No. 5067-4626,
Agilent Technologies, Santa Clara, CA), and the two pools
were combined for a total of 100 ng of DNA (50 ng from each
pool).

Next, 20 µl of 5X End Repair Buffer and 1 µl of End Repair
Enzyme were added to each sample, and then incubated for
20 min at room temperature. Pooled amplicons were then
purified again using AMPure XP beads and eluted in Low TE
buffer. Ligation and nick repair were performed using ×10 Ligase
Buffer, Ion P1 Adaptor, Ion Xpress Barcodes, dNTP Mix, DNA
Ligase, Nick Repair Polymerase, nuclease-free water, and sample
DNA with the following thermal conditions: 25°C for 15 min,
72°C for 5 min. Adapter-ligated and nick-repaired DNA was then
purified using AMPure XP beads and eluted in Low TE buffer.

The library was then amplified using the Ion Plus Fragment
Library Kit (Cat. No. 4471252, ThermoFisher Scientific) with the
following thermal conditions: 95°C for 5 min; then 7 cycles of
95°C for 15 s, 58°C for 15 s, 70°C for 1 min; and then finally 70°C
for 1 min. The amplified library was then purified using AMPure
XP beads and eluted in Low TE buffer. Library concentrations
were measured using a Bioanalyzer and the High Sensitivity DNA
Kit. Libraries were then diluted down to 26 pM and pooled,
yielding a 26 pM solution.

Sequencing
Libraries were prepared for sequencing using oil amplification to
template the libraries onto beads and loaded onto chips using the
Ion Chef Instrument and the Ion 520™ & Ion 530™ Kit–Chef
(ThermoFisher Scientific). Chips were then loaded onto the Ion
GeneStudio S5 System along with Ion S5 Sequencing Kit reagents
(Cat. No. A35850, ThermoFisher Scientific, Waltham, MA) and
sequenced at the Sidney Kimmel Comprehensive Cancer Center
Experimental and Computational Genomics Core facility.
Samples in this study were sequenced across three separate
sequencing runs on Ion 520 and Ion 530 chips using 400bp
sequencing kits. Sequences were demultiplexed by sample using
the S5 device software, and then separated per hypervariable
region by ThermoFisher prior to downstream analysis.

TABLE 1 | Contents of mock community.

Species 16S copiesa Genus Family

Acinetobacter baumannii 6 Acinetobacter Moraxellaceae
Actinomyces odontolyticus 2 Actinomyces Actinomycetaceae
Bacillus cereus 12 Bacillus Bacillaceae
Bacteroides vulgatus 7 Bacteroides Bacteroidaceae
Bifidobacterium adolescentis 5 Bifidobacterium Bifidobacteriaceae
Clostridium beijerinckii 14 Clostridium Clostridiaceae
Cutibacterium acnes 4 Cutibacterium Propionibacteriaceae
Deinococcus radiodurans 7 Deinococcus Deinococcaceae
Enterococcus faecalis 4 Enterococcus Enterococcaceae
Escherichia coli 7 Escherichia Enterobacteriaceae
Helicobacter pylori 2 Helicobacter Helicobacteraceae
Lactobacillus gasseri 6 Lactobacillus Lactobacillaceae
Neisseria meningitidis 4 Neisseria Neisseriaceae
Porphyromonas gingivalis 4 Porphorymonas Porphyromonadaceae
Pseudomonas aeruginosa 4 Pseudomonas Pseudomonadaceae
Rhodobacter sphaeroides 3 Rhodobacter Rhodobacteraceae
Staphylococcus aureus 6 Staphylococcus Staphylococcaceae
Staphylococcus epidermidis 5 Staphylococcus Staphylococcaceae
Streptococcus agalactiae 7 Streptococcus Streptococcaceae
Streptococcus mutans 5 Streptococcus Streptococcaceae

aNumber of copies of 16S rRNA genes contained in the bacterial genome of the indicated species.
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Data Processing
Primer sequences are not made available to Ion 16 S™
Metagenomics Kit users. Therefore, FASTQ files had to be
separated by primer set by the ThermoFisher Bioinformatics
team, resulting in six separate FASTQ files per sample (V2,
V3, V4, V6-7, V8, and V9), with primer sequences removed
and all reads oriented in the forward direction.

Manifest files were then created for each hypervariable region and
each sequencing run. FASTQ files were imported into QIIME2
format via qiime tools import in SingleEndFastqManifestPhred33V2
format (Bolyen et al., 2019). QIIME2 v 2020.6 was used to perform
denoising, Operational Taxonomic Unit (OTU) clustering,
taxonomic classification, phylogenetic tree construction, and
alpha and beta diversity.

DADA2 was used to denoise data, using the denoise-pyro plugin
and parameters of 0 bp for trimming and truncation (Callahan et al.,
2016). A separate DADA2 run was performed for each hypervariable
region and each sequencing run. Denoising statistics were then
summarized and exported to P03-summarize-qc and P13-
summarize-qc directories in the analysis folder of the it-workflow
repository for the ATCC mock community samples and the clinical
samples, respectively. From these summaries, we determined that all
samples in all hypervariable regions had a minimum of 10,000 reads
which passed the filter in the DADA2 step. Good’s coverage was
performed at a depth of 10,000 reads for each hypervariable region
and at least 99% coverage was achieved for all regions (Good, 1953).
Thus, we decided that 10,000 readswas an acceptable sampling depth.
DADA2 feature tables and representative sequence files were then
merged across sequencing runs so that there was only one feature
table and representative sequence file per hypervariable region.

Open-reference OTU clustering was then performed using
QIIME2 plugin vsearch cluster-features-open-reference
(Bokulich et al., 2018). A threshold of 99% identity was used,
and sequences were clustered against reference sequences from
the curated sfanos_db_v4.0 database as described below.

Alpha and Beta Diversity Analysis
Aphylogenetic treewas constructed for each hypervariable region using
the “representative sequences” file generated from open-referenceOTU

clustering via the QIIME phylogeny align-to-tree-mafft-fasttree plugin
(Faith et al., 1987; Price et al., 2010; Katoh and Standley, 2013).
Community diversity was analyzed using the core-metrics-
phylogenetic plugin. Briefly, the feature table produced by open-
reference OTU clustering and the phylogenetic trees constructed in
the previous step were input into the core-metrics-phylogenetic plugin,
which performed alpha and beta diversity analyses at a sampling depth
of 10,000 reads. Alpha diversity summaries were obtained and exported
for Faith’s phylogenetic diversity, Shannon diversity (Shannon, 2001),
evenness, and observed OTUs. Distance matrices were exported for
Jaccard (Jaccard, 1908), Bray-Curtis (Sorensen, 1948), weighted
UniFrac (Lozupone et al., 2007), and unweighted UniFrac
(Lozupone and Knight, 2005) distances. Data was imported into
Rstudio for visualization of alpha diversity metrics and principal
coordinates analysis (PCoA). Taxonomic classification results from
each hypervariable region were aggregated into summary tables at
higher taxonomic levels (phylum through species) for downstream
comparative analysis. Beta-diversity distance matrices (using the
measures bray-curtis, jaccard, unweighted-unifrac, and weighted-
unifrac) were based on OTU profiles and were generated for each
hypervariable region separately to account for region-specific OTUs.
Additionally, amulti-region beta-diversity analysis incorporated species
level assignments across all hypervariable regions, followed by distance
matrix calculation (Canberra, Bray-Curtis, Jaccard, Euclidean, Gower,
and Kulczynski) using the vegdist command in the vegan R package.

Database Curation
It is well known that curating existing taxonomic databases can lead to
improved performance (Ritari et al., 2015; Clemmons et al., 2019;Myer
et al., 2020). Therefore, uncultured and unclassified sequences were
removed from the SILVA (v.123) database to eliminate sequences that
have no practical value in taxonomic assignment. This refined database
(sfanos-db-4.0) contains approximately 15,000 named species.

In Silico Taxonomic Validation of Curated
Database
Prior to using sfanos-db-4.0 for taxonomic classification, we
verified its utility by performing in silico taxonomic

FIGURE 1 | Schematic diagram of workflow. The four major steps in our workflow include 1) sample handling, from sample collection to sequencing 2) pre-
processing of sequencing data and taxonomic reference database 3) performing microbiome bioinformatics using QIIME2 and 4) statistical analysis of results using R.
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classification using sequences from a published human gut
microbiome culture collection (Forster et al., 2019). First, we
separated the sequences in the culture collection by hypervariable
region to mimic our own data. To do this, we ran the sequences
from the culture collection through NCBI BLAST against the
ATCCmock community sequences that had already been split by
hypervariable region. This method allowed us to break down the
culture collection sequences into their different hypervariable
regions and simulate more complex clinical data. A 1% noise rate
was included in the simulated sequences to mimic typical
evolutionary variation in species as well as sequencing error.
We then ran taxonomic classification of the sequences from the
culture collection using our curated database, with a threshold of
97% sequence identity. A confidence score was assigned to each
classification by VSEARCH. Results were categorized into true
positives (TP), false positives (FP), and false negatives (FN) based
on whether they were found in the culture collection or not
(Supplementary File S1). Sequence assignment counts were
converted to percent by adding up the total number of
sequences that were assigned as TP, FP, or FN for each V
region, dividing by the total number of sequences for that
region, and multiplying by 100.

Taxonomic Classification
Taxonomic classification was performed using classify-
consensus-vsearch using the curated sfanos_db_v4.0 reference
reads and reference taxonomy with 99% identity. The output. qza
file was then exported in order to obtain the taxonomy. tsv file.

This file and the feature-table. biom file were used in a Perl script
designed to summarize the taxonomic information into feature-
table-with-taxonomy.txt. Heatmaps were created in R using the
pheatmap package and taxa-normalize-pct-per-region.txt file.

Contaminant Filtering
Contaminant sequences were filtered out from the ATCC sample
data. Any taxa that were detected in only one of the five technical
replicates, detected at less than 0.1% abundance, or both, was
considered a contaminant. Filtering was performed on the feature
table that was created after open reference OTU clustering using
QIIME taxa filter-table. Contaminants are listed in
Supplementary Table S1.

Generalized Linear Modeling
We used the generalized linear model function in Base R to
evaluate statistical differences in alpha diversity and individual
taxonomic abundance between fresh versus frozen samples in the
clinical cohort. The GLM per feature took the following structure:
log10(feature) ~ fresh/frozen status + specimen ID + hypervariable
region. Regions V8 and V9 were excluded from GLM analysis,
and Region V2 was used as the null factor level. The fresh/frozen
status of samples was compared, with fresh as baseline factor level
set as zero and frozen set as one. The input of “feature” was either
an alpha diversity value (Shannon, evenness, observed OTUs or
Faith’s phylogenetic diversity), or taxonomic abundance of a
feature at a specific taxonomic level. Input feature values were
log transformed in order to increase stability of values from

FIGURE 2 | Alpha diversity analyses of mock community technical replicates by hypervariable region. Evenness (A), Faith’s phylogenetic diversity (B), Observed
Operational Taxonomic Units (OTUs) (C), Shannon diversity (D). Statistical analysis and p values can be found in Supplementary File S2.
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person to person when performing statistics. The GLM p-value
was obtained by comparing the GLM factor level coefficient to the
null hypothesis of zero, which was done via a Wald Test.

Data and Code Availability
All sequence files are available in the NCBI Sequence Read
Archive (SRA) under Bioproject ID PRJNA738491 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA738491). All codes are
available on the public GitHub repository it-workflow (http://
github.com/Sfanos-Lab-Microbiome-Projects/it-workflow/).

RESULTS

Mock Community
In order to test our analysis pipeline (Figure 1) we prepared
libraries and sequenced DNA from a mock microbial community
(Table 1). A total of five independent replicates from four library

preparations of the mock community were sequenced over three
sequencing runs. We filtered out low-level contaminants
(Supplementary Table S1) prior to performing community
alpha and beta diversity and taxonomic abundance analyses
(see Methods).

We analyzed four different alpha diversity metrics: two
measures of evenness (evenness and Shannon diversity), and
two measures of richness (Faith’s phylogenetic diversity and
observed-OTUs) (Figure 2). V9 had significantly decreased
alpha diversity compared to all regions across all metrics
(Supplementary File S2). V8 also had significantly decreased
Shannon diversity, evenness, and Faith’s phylogenetic diversity
compared to other regions excluding V9, with two exceptions
being that Evenness was not significantly decreased in V8
compared to that of V6-7 and Faith’s PD is not significantly
decreased in V8 compared to V4 (Supplementary File S2).

To compare beta diversity between hypervariable regions and
circumvent the issue that OTUs would be region-specific, we used

FIGURE 3 | Principal coordinates analysis of mock community samples. PCoA plots are based on distance matrices for (A) Bray-Curtis, (B) Euclidean, (C)Gower,
(D) Jaccard, (E) Kulczynski, and (F) Canberra.
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FIGURE 4 | Species-level taxonomic barplots of ATCC 20 Strain Mix sequencing results by 16S rRNA hypervariable region. Bolded taxa are those present in the 20
strain mix. Enterobacteriaceae unassigned1, Bifidobacterium unassigned2, Staphylococcus unassigned3, Enterococcus unassigned4, Clostridium sensu stricto 1
unassigned5, Enterobacter unassigned6.

TABLE 2 | Observed species rRNA gene abundance denoted as percent of total.

Species Expected V2 V3 V4 V6-7 V8 V9

Acinetobacter baumannii 5.26 6.23 6.06 6.82 0.11 10.90 46.15
Actinomyces odontolyticus 1.75 1.75 0.27 1.51 0.97 1.54 0.00
Bacillus cereus 10.52 5.20 10.29 6.97 6.99 1.21 0.00
Bacteroides vulgatus 6.14 13.11 8.19 12.48 18.57 0.00 0.00
Bifidobacterium adolescentis 4.39 5.37 0.00 4.22 0.00 5.85 0.00
Clostridium beijerinckii 12.28 0.00 0.00 0.00 19.94 0.12 0.00
Deinococcus radiodurans 6.14 9.88 0.00 1.47 3.29 6.31 0.00
Enterococcus faecalis 3.51 1.97 3.41 0.00 1.53 3.88 0.00
Escherichia coli 6.14 5.64 6.52 4.77 8.29 0.00 53.73
Helicobacter pylori 1.75 5.70 2.24 2.90 2.68 0.51 0.00
Lactobacillus gasseri 5.26 4.45 7.21 0.00 0.00 0.00 0.00
Neisseria meningitidis 3.51 5.14 4.13 6.05 0.00 9.07 0.00
Porphyromonas gingivalis 3.51 2.85 5.83 7.77 8.83 0.00 0.00
Propionibacterium acnes 3.51 1.35 0.27 0.17 1.97 6.04 0.00
Pseudomonas aeruginosa 3.51 5.20 5.58 2.79 2.00 7.62 0.00
Rhodobacter sphaeroides 2.63 3.75 4.10 3.83 2.87 12.88 0.00
Staphylococcus aureus 5.26 3.19 5.44 5.71 3.00 2.08 0.00
Staphylococcus epidermidis 4.39 3.44 5.40 0.00 2.49 0.23 0.00
Streptococcus agalactiae 6.14 1.89 6.31 5.46 3.06 0.00 0.00
Streptococcus mutans 4.39 0.87 5.47 4.81 2.09 8.03 0.00
Total Species Identified 20 19 17 16 17 15 2
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taxonomic results from each hypervariable region to create
aggregated distance matrices. We assessed six different beta
diversity metrics: Canberra, Bray-Curtis, Jaccard, Euclidean,
Gower, and Kulczynski. Figure 3 shows PCoA plots based on
six different beta diversity metrics: Bray-Curtis (Figure 3A),
Euclidean (Figure 3B), Gower (Figure 3C), Jaccard
(Figure 3D), Kulczynski (Figure 3E), and Canberra
(Figure 3F). In the plot based on the Canberra distance
matrix (Figure 3F), the V2, V3, V4, and V6-7 hypervariable
regions clustered together, whereas V8 and V9 were distantly
separated. This pattern was also observed by the other beta
diversity metrics, with V6-7 sometimes also segregating
slightly from V2, V3, and V4 which were largely clustered
together.

In addition to biodiversity measurements and beta diversity
metrics, the percent abundance of the identified organisms after
taxonomic classification was evaluated and is given in
Supplementary File S3. The majority of species were
identified by taxonomic classification of the sequences
covering each hypervariable region, with the exception of V9

that only positively identified Escherichia coli and Acinetobacter
baumannii. Clostridium beijerinckii was the most difficult
organism to speciate and was only correctly classified in V6-7
amplicons. The results with hypervariable regions V2, V3, and V4
only identified Clostridium beijerinckii at the genus level, V8 mis-
classified it as Clostridium butyricum, and V9 did not identify any
Clostridial organisms (Supplementary File S3). Aside from C.
beijerinckii, species misclassification varied by hypervariable
region.

We next compared observed versus expected percent
abundance by hypervariable region. There are 114 copies of
the 16 S rRNA gene in the bacterial genomes comprising the
mock community. Therefore, the expected abundance of a
given species’ rRNA gene is the number of copies in its
genome (Table 1), divided by 114. Taxonomic bar plots
demonstrate the percent abundance of each taxon by
hypervariable region compared to expected (Figure 4). V2
most closely approximated the overall distribution of species
compared to expected and correctly assigned the most species
from the mock community (19/20). V3 (17/20), V6-7 (17/20),

FIGURE 5 | Species-level clustered heatmap of ATCC 20 Strain Even Mix. Bolded taxa are those present in the 20 strain mix. Bifidobacterium unassigned1,
Enterobacteriaceae unassigned2, Staphylococcus unassigned3, Enterococcus unassigned4, Lactobacillus unassigned5, Enterobacter unassigned6, Clostridium sensu
stricto 1 unassigned7, Unassigned at every taxonomic level8.
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FIGURE 6 | Alpha diversity analyses of six clinical samples by type (fresh or frozen) and hypervariable region. Each patient provided two swabs, one of which was
frozen prior to DNA extraction. (A) Evenness (p = 0.015), (B) Faith’s phylogenetic diversity (p = 0.072), (C)Observed Operational Taxonomic Units (OTUs) (p = 0.067), (D)
Shannon diversity (p = 0.096).
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and V4 (16/20) followed closely behind, whereas V8 assigned
15/20, and V9 was only able to identify two species (2/20)
(Table 2).

Lastly, we performed a clustered heatmap analysis at the
species level. The resulting heatmap demonstrated that
technical replicates of the mock community sequences cluster
by hypervariable region (Figure 5). The heatmap visually
emphasizes the difference in taxonomic identification in V8
and particularly V9 compared to the other regions. It also
highlights misclassifications and which regions were only able
to classify taxa to the genus level. Interestingly, the heatmap
highlights a few misclassifications or false negatives that occurred
in only a subset of the replicates. For example, Staphylococcus
aureus was classified as Staphyloccoccus unassigned in replicates
four and five. The OTU tables for these samples indicate that the
sequence was truncated prematurely in replicates four and five,
indicating the differences in classification here arise from library
preparation or sequencing errors rather than downstream data
analysis.

Taxonomic Classification of Human Gut
Microbiome Culture Collection
Since there appeared to be differing abilities of classification of
bacterial species by hypervariable region in our ATCC data set,
we next determined if this was the case for a larger pool of
bacteria. We plotted out the taxonomic classification results from
our in silico database validation to visualize whether sensitivity
and specificity was region specific (Supplementary Figure S1).
The sensitivity and mis-classification rates varied with respect to
particular species and hypervariable regions. For example,
Bifidobacterium longum is 100% misassigned when using
sequences from V4, but no other region. This region likewise
has 0% sensitivity for B. longum. Alternatively, Bifidobacterium
bifidum has high specificity across all hypervariable regions,

implying that sensitivity and specificity of taxonomic
classification may be increased by using data from multiple
hypervariable regions.

Clinical Samples
We next sequenced and analyzed a set of six patient samples in
order to demonstrate the use of a generalized linear model (GLM)
in an illustrative clinical sample set, incorporating information
from multiple hypervariable regions. Hypervariable regions V2,
V3, V4, and V6-7 were included in the GLM, while data from the
V8 and V9 regions were excluded due to their demonstrated poor
performance in identifying species in the mock community
(Figures 2–5). Samples consisted of duplicate rectal swabs
from three participants. DNA was extracted immediately after
collection from one rectal swab sample chosen at random from
each patient (fresh) and the other sample was frozen at -80°C
prior to DNA isolation (frozen). Libraries were prepared in
tandem, and all samples were sequenced on the same
sequencing run. Sequencing results were processed as outlined
above (Figure 1).

We performed the same four alpha diversity metrics for the
clinical cohort as for the mock community samples (evenness,
Shannon diversity, observed OTUs, and Faith’s phylogenetic
diversity). There were no significant differences in alpha
diversity between fresh and frozen samples by Shannon
diversity, Faith’s phylogenetic diversity or observed OTUs
when using a GLM (Figure 6). Evenness was slightly increased
in frozen samples across all hypervariable regions (adjusted GLM
p = 0.015).

We aggregated taxonomic results and used them to create
Bray-Curtis, Jaccard, Canberra, Euclidean, Gower, and

FIGURE 7 | Principal coordinates analysis of clinical cohort using
Canberra distance matrix. Samples and regions from the same person are
circled, excluding V9. Results cluster by individual and by V9 region (not
circled), but not by fresh versus frozen status.

FIGURE 8 | Using a GLM shows enrichment of taxonomic classification
sensitivity. GLM p-values for specific taxa are plotted on the y-axis, and the
mean p-value across all hypervariable regions for the same taxa are plotted on
the x-axis. p-values are log-transformed and multiplied by -1 so that
more significant p-values are higher in value. The dashed line indicates where
the p-values resulting from the GLM and from individual regions are equal.
Enrichment above the dashed line indicates the GLM approach is more
sensitive compared to analyzing individual regions.
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Kulczynski distance matrices in order to perform combined beta
diversity analysis across all hypervariable regions. As
demonstrated by the Canberra PCoA plot in Figure 7, most
variation in beta diversity was due to different individuals and V9
sequences. PERMANOVA analysis of results from each
individual hypervariable region demonstrated that total
composition does not differ by fresh versus frozen status after
adjusting for individual person and region-to-region variation
(Supplementary File S4).

We next show that using a GLM that incorporates information
from multiple variable regions increases the ability to detect
significant differences between groups. This is demonstrated in
Figure 8, where we plot the average p-value for each specific taxon

across all hypervariable regions against the p-value obtained for the
same taxon when using a GLM. Due to small sample size, we opted
to use unadjusted p-values. There is an enrichment of significant
p-values when using the GLM as seen by the shift upwards above
the dashed line, indicating an increase in sensitivity compared to
analyzing individual hypervariable regions.

Using our GLM, we systematically compared abundance of
taxa between fresh and frozen samples at multiple levels (phylum,
class, order, family, genus, species). As an example, we chose to
examine levels of Firmicutes, Bacteroidetes, and Faecalibacterium
due to previous reports of differential abundance in fresh verses
frozen samples (Bahl et al., 2012; Fouhy et al., 2015). Our results
showed no significant differences between these taxa (Figure 9)

FIGURE 9 | Percent abundance of Bacteroidetes, Firmicutes, and Faecalibacterium by sample type (fresh vs frozen) and hypervariable region. p-value was
calculated with a log-transformed GLM and is false discovery rate-adjusted. (A) Bacteriodetes, p = 0.65, (B) Firmicutes, p = 0.93, (C) Faecalibacterium, p = 0.99.
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or Firmicutes to Bacteroidetes ratios (Figure 10). While no
concrete conclusions can be made from this data due to small
sample size, we demonstrate the utility of the GLM using clinical
samples.

DISCUSSION

16 S rRNA sequencing is cost effective, requires relatively low
DNA input, and has a number of highly curated reference
databases and open-source analysis platforms, making it a
common tool for microbiome researchers. PCR amplification
using primers that target conserved regions of the 16 S rRNA gene
and amplify across hypervariable regions allows amplification of
DNA across a widespread taxonomic spectrum and provides
unique sequences that can be used for taxonomic classification at
higher levels (e.g., family, genus, and species level). Next
generation sequencing strategies are often limited to
sequencing across only one or at most two of the nine
hypervariable regions. The Ion 16 S™ Metagenomics Kit
provides the opportunity to prepare libraries containing
sequences from seven of the nine hypervariable regions (V2,
V3, V4, V6-7, V8, and V9). However, the Ion Reporter analysis
pipeline available to Ion 16 S™Metagenomics Kit users does not
allow users to incorporate their own study metadata into analyses
and does not allow users to export usable data for downstream
analyses, necessitating the development of open-resource analysis
tools for data produced from the Ion 16 S™ Metagenomics Kit.

Herein, we report results from sequencing a mock microbial
community using the Ion 16 S™ Metagenomics Kit and
comparing results from different hypervariable regions. Using
a cohort of clinical samples, we demonstrate that taxonomic
classification is enhanced by using a generalized linear
multivariate model (GLM) that incorporates sequencing data
from multiple hypervariable regions.

We first prepared and sequenced five technical replicates of
DNA from a twenty strain mock microbial community, and
then assessed alpha diversity (evenness, Shannon diversity,

observed OTUs, and Faith’s phylogenetic diversity) among
different hypervariable regions. Even with our limited mock
community dataset, we observed hypervariable region-based
differences in alpha diversity. Most notably, taxa identified
with V9 primers had significantly decreased alpha diversity
compared to all other regions across all metrics. V8 results
likewise had significantly decreased Shannon Diversity and
Faith’s PD, suggesting that V8 and V9 are falsely
underrepresenting the diversity of the samples.

We performed six different beta diversity metrics (Bray-
Curtis, Jaccard, Canberra, Euclidean, Gower, and Kulczynski)
to evaluate differences between hypervariable regions.
Distance matrices used in beta diversity analyses are
generated from OTU tables, however the OTUs identified
were not consistent among hypervariable regions. Therefore,
in order to compare results between hypervariable regions, we
assembled distance matrices using taxonomic results. PCoA
analyses demonstrated clustering primarily by hypervariable
regions V2, V3, V4, and V6-7. Hypervariable regions V8 and
V9 clustered separately from the other regions, again
demonstrating the poor performance of amplicon
sequencing of these regions in assessing the constituents of
the mock community sample.

Consistent with previous reports (Claesson et al., 2010; Cai
et al., 2013; Tremblay et al., 2015; Barb et al., 2016), we found that
the taxonomic classification results from the mock community
samples varied by hypervariable region. Primers targeting the V2,
V3, and V6-7 regions identified nearly all the species present in
the mock community (19/20, 17/20, and 17/20 respectively), V4
identified 16/20 species, V8 identified 15/20 species, and V9
identified only two (2/20) (Figure 3; Table 2). Generally,
those regions which identified more species present in the
mock community also had more evenly distributed observed
taxa (i.e., there were no extreme over- or underestimated taxa
which skewed the remaining percent abundances, such as in the
case of V9).

Errors and biases that contribute to artifacts in PCR-based
microbiome studies include sequence artifacts (formation of
chimeras or heteroduplexes, or polymerase errors), PCR bias
(differing amplification efficiencies of different templates), or
biases in the analysis pipeline (poorly discriminatory
sequences) (Acinas et al., 2005). Of all OTUs assigned to the
V9 region, only two OTUs made up 99.78% of total V9 reads.
Therefore, we deduce that the lack of diversity in the region is
likely most related to PCR bias. Since V9 lacks sensitivity for
many species, we opted to leave this region out of the
generalized linear model we used on the clinical samples. V8
also tended to be less sensitive compared to V2, V3, V4, and
V6-7, and contributed to variation in the data according to
PCoA plots. Therefore, V8 was excluded from further analyses
as well. Notably, primer sequences for this kit are not available,
and having access to primer sequences in this instance would
aid in delving further into why V8 and V9 provided so little
information. For others attempting to incorporate a GLM into
their analysis, we would recommend against using data from
V8 and V9. One must also take into account whether specific
regions have increased or decreased sensitivity for specific taxa

FIGURE 10 | Comparison of Firmicutes to Bacteroidetes (F/B) ratio in
fresh versus frozen samples by hypervariable region. No significant difference
was observed between fresh and frozen samples for the hypervariable regions
(V2 p-value = 0.87, V3 p-value = 0.87, V4 p-value = 0.51, V6-7 p-value
= 0.97).
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of interest when considering which regions to include in
your GLM.

Researchers can circumvent the issue of choosing only one
hypervariable region to analyze by sequencing multiple
hypervariable regions in tandem. Since the sensitivity of each
hypervariable region for identifying bacterial taxa varies,
combining the results from multiple hypervariable regions for
analyses may be misleading. Fuks et al. developed Short MUltiple
Regions Framework (SMURF), which combines sequences from
multiple PCR amplicons in order to provide one overall set of
taxonomic profiling results (Fuks et al., 2018). However, this
method is computationally intensive and requires proprietary
software. Therefore, to utilize information from multiple
hypervariable regions at once and to strengthen confidence in
the taxonomic abundance results, we incorporated a generalized
linear model (GLM) into alpha diversity and taxonomic
abundance analyses.

We demonstrated use of the GLM via analysis of a clinical
cohort, where each participant donated two rectal swab samples,
one of which was processed fresh and the other one frozen prior
to DNA extraction. Alpha diversity analysis revealed increased
evenness in frozen samples compared to fresh samples. This trend
was visualized in results from each individual hypervariable
region and was strengthened in the GLM. There was no
difference in Shannon’s diversity, observed OTUs, and Faith’s
phylogenetic diversity between fresh and frozen samples which
suggests that freezing samples may not affect the ability to detect
taxa, but it might alter the detectable abundance of certain taxa.
Beta diversity analysis demonstrated clustering of samples by
person irrespective of fresh versus frozen status or hypervariable
region, with the exception of V9. PERMANOVA analysis
confirmed that most of the variation in composition was due
to individuals as opposed to storage type. An important limitation
of our beta diversity analysis is that in order to compare results
from all hypervariable regions in the same analysis, we had to use
taxonomic classification as opposed to OTUs. This limits our beta
diversity analysis to using only those reads that were assigned
taxonomy.

By utilizing a GLM with sequences from our clinical samples,
sensitivity to changes between groups was enriched compared to
using only one hypervariable region. p-values for specific
differences in taxa between fresh and frozen samples became
significant when utilizing sequences from multiple hypervariable
regions, while one region was not powerful enough to detect these
differences as observed in Figure 8.

Finally, based on the findings above, we compared taxonomic
abundance at multiple levels between fresh and frozen samples
using a GLM. We found no taxa at any level had significantly
different abundance. This is unsurprising based on our small
sample size, the fact that alpha and beta diversity were
minimally different between sample type, and the fact that
other studies show limited differences between fresh verses
frozen samples (Bahl et al., 2012; Fouhy et al., 2015).
However, Faecalibacterium results highlight the important
point that not all regions are able to identify a taxon of
interest: V6-7 fails to map any reads to this taxon despite its
presence in the sample. Thus, even though the true composition

of a clinical sample may be unknown, examining redundant data
from multiple hypervariable regions may help elucidate the true
microbial makeup of the sample, with the caveat that none of the
hypervariable regions included vary too significantly from the
others to prevent skewing the data.

In conclusion, we propose a method to overcome the issues
of analyzing multiple amplicons covering multiple
hypervariable regions at once. While this protocol is tailored
towards analyzing data generated from the Ion Torrent
platform, the approach of sequencing multiple hypervariable
regions and analyzing data in parallel could be applied towards
Illumina sequencing data, as well. As more tools to analyze more
of the 16 S rRNA gene at once become available, it is critical for
the microbiome bioinformatics community to come to a
consensus as to the proper way to analyze this type of data
in order to maintain data quality, and to be able to compare
results across different publications.
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Increasing evidence has elucidated that the microbiome plays a critical role in many human
diseases. Apart from continuous and binary traits that measure the extent or presence of a
disease, multi-categorical outcomes including variations/subtypes of a disease or ordinal
levels of disease severity are commonly seen in clinical studies. On top of that, studies with
clustered design (i.e., family-based and longitudinal studies) are popular alternatives to
population-based ones as they are able to identify characteristics on both individual and
population levels and to investigate the trajectory of traits of interest over time. However,
existing methods for microbiome association analysis are inadequate to handle multi-
categorical outcomes, neither independent nor clustered data. We propose a microbiome
kernel association test with multi-categorical outcomes (MiRKAT-MC). Our method is
versatile to deal with both nominal and ordinal outcomes for independent and clustered
data. In addition, it incorporates multiple ecological distances to allow for different
association patterns between outcomes and microbiome compositions to be
incorporated. A computationally efficient pseudo-permutation strategy is used to
evaluate the statistical significance. Comprehensive simulations show that MiRKAT-MC
preserves the nominal type I error and increases statistical powers under various scenarios
and data types. We also apply MiRKAT-MC to real data sets with nominal and ordinal
outcomes to gain biological insights. MiRKAT-MC is easy to implement, and freely available
via an R package at https://github.com/Zhiwen-Owen-Jiang/MiRKATMC with a Graphical
User Interface through R Shinny also available.

Keywords: beta-diversity, longitudinal studies, microbiome association analysis, multi-categorical outcomes,
kernel association test

1 INTRODUCTION

The diverse microbial cells including bacteria, archaea, and fungi that colonize the mucosal and skin
environment constitute the humanmicrobiome (Gilbert et al., 2018). It is broadly acknowledged that
the human microbiome and its interaction with the immune, endocrine, and nervous systems are
associated with a variety of illnesses, ranging from inflammatory bowel disease (Ni et al., 2017), to
cancer (Kostic et al., 2013a), and to major depressive disorder (Jiang et al., 2015). A key step in
investigating the relationship between microbiome and human disorders lies in quantifying the
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taxonomic composition. Currently, the most commonly used
method is through the sequencing of the 16S ribosomal RNA
gene, which, as a biomarker, is present in all prokaryotic cells and
reflects the evolutionary distance between distinct genomes.
Computationally, the 16S rRNA sequencing tags can be
assigned into Operational Taxonomic Units (OTU) or
Amplicon Sequence Variants (ASV) as computational
surrogate of microbial taxa (Schloss, 2010; Callahan et al.,
2016). Through sequencing, the microbial community can be
directly quantified, without the need of labor-intensive bacterial
culturing. For instance, the disparity between microbiome
communities from two samples can be assessed via an
ecological distance/dissimilarity metric, such as the UniFrac
distance (Lozupone and Knight, 2005) and the Bray-Curtis
dissimilarity (Bray and Curtis, 1957).

Identifying links between microbiome and diseases is often
achieved by microbiome-wide association studies (MWAS)
(Kostic et al., 2013b), which in turn provide insight into the
biological mechanisms of human health and disease
conditions. The data type of the investigated outcomes
varies from study to study. Typically, samples can be
dichotomized as cases and controls when exploring human
diseases. For example, (Naseribafrouei et al., 2014) discovered
potential correlation between depression and fecal microbiota,
where study participants were classified as depression vs. non-
depression. On the other hand, multi-categorical (nominal or
ordinal) outcomes are also frequently encountered and
investigated in many microbiome studies. For instance,
Scher et al. (Scher et al., 2013) explored the association
between rheumatoid arthritis (RA) and gut microbiota by
recruiting patients with three different categories of
arthritis: new-onset RA, treated RA, and psoriatic arthritis
(PsA). Parikh et al. (Parikh et al., 2020) investigated the
association between Apolipoprotein E (APOE) alleles and
gut microbiome in murine models, where the APOE gene
encodes a major cholesterol carrier protein that supports
lipid transport and injury repair in the brain.
Polymorphism in APOE gene is a major risk for developing
Alzheimer disease. In this study, the APOE gene was coded as a
nominal variable of different genotypes (APOE2 APOE3, and
APOE4). Furthermore, Schirmer et al. Schirmer et al.
(Schirmer et al., 2018) investigated the association between
severity of ulcerative colitis and gut microbiome, where disease
severity was treated as an ordinal variable with four levels:
inactive, mild, moderate and severe.

Association analysis between a host trait and microbiome
compositions can be generally addressed by PERMANOVA
(Anderson, 2001), which partitions the total variation across
the microbiome data cloud in the space of a chosen
dissimilarity measure into multiple directions. PERMANOVA
is able to accommodate both binary and multi-categorical
outcomes, but fails to incorporate multiple distance metrics,
where distinct distances capture distinct underlying association
patterns and therefore are more powerful under different
circumstances. Hence, Tang et al. (Tang et al., 2016) proposed
PERMANOVA-S to incorporate multiple distance metrics into a
single test. However, it is not adequate to multi-categorical

outcomes unless we combine multiple categories into a binary
variable, which potentially leads to significant power loss. An
alternative to PERMANOVA is the family of microbiome
regression-based kernel association tests (MiRKAT) (Zhao
et al., 2015; Wilson et al., 2021). Utilizing the classic mixed
effect models, the MiRKAT approaches summarize the
microbiome structure as a kernel similarity matrix
(constructed through the sample-sample distance metric) and
model it as a random effect. Adjusting for covariates is
straightforward in this framework. The association test is
conducted via a variance component score test with p-value
calculated in multiple ways, including analytical (Chen et al.,
2016; Zhan et al., 2017a), permutation (Koh et al., 2019) and fast
pseudo-permutation approaches (Zhan et al., 2017b). However,
existing MiRKAT tests are not able to accommodate multi-
categorical outcomes.

Beyond population-based studies in which all samples are
independent, nowadays, researchers frequently collect
microbiome data that are clustered or longitudinal in nature.
For instance, Goodrich et al. (Goodrich et al., 2014) collected
stool samples from female twins in the United Kingdom to
investigate the relationship between obesity and gut
microbiome. Flores et al. (Flores et al., 2014) explored the
effect of antibiotic use on temporal variability of the
microbiome diversity and community structure in gut, palm
and tongue. Methods available to address correlated outcomes
in microbiome studies burgeoned in the recent years (Chen and
Li, 2016; Zhan et al., 2018; Zhang et al., 2018; Koh et al., 2019). For
instance, GLMM-MiRKAT (Koh et al., 2019) extends MiRKAT
for continuous, binary and count outcomes in longitudinal
studies. It adopts kernel regression-based generalized linear
mixed models to construct variance component tests and uses
permutations to calculate the p-value. Unfortunately, only
exchangeable clusters which contain identical number of
observations and the same time points can be permuted in
this approach. Thus, the permutation procedure will be very
complicated and inefficient for unbalanced study designs. On top
of that, permutation tends to be computationally intensive when
the sample size increases (especially for studies with multi-
categorical outcomes) or when small p-values are needed for
multiple comparison adjustment. These drawbacks also exist for
PERMANOVA.

In this paper, we propose a new distance-based microbiome
kernel association test for multi-categorical outcomes (MiRKAT-
MC), when samples are independent or clustered. MiRKAT-MC
works for both nominal and ordinal outcomes, through the use of
the generalized logit model (GLM) and the proportional odds
model (POM), respectively. We utilize a fast pseudo-permutation
technique (Zhan et al., 2017b) to calculate p-values. This
approach features several advantages over its potential
competitors: 1) it avoids the complication in designing a
suitable permutation scheme for inference; 2) it is
computationally efficient and much faster than direct
permutations; 3) it controls the type I error and maintains
high statistical power compared to the analytical approach.
For the last point, due to the small sample size and the over-
dispersion in microbiome data, it is quite difficult to approximate
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the MiRKAT test statistics, especially for clustered/longitudinal
data and for outcomes that are not normally distributed.

Another common challenge in distance-based methods lies in
how to select an appropriate ecological distance to construct the
kernel, because the statistical power highly depends on a proper
kernel to capture the underlying association pattern. Attempting
multiple kernels and cherry-picking the smallest p-value yields
inflated type I errors. On the other hand, naively adjusting the
results by Bonferroni correction will reduce the statistical power
substantially, mainly because the individual tests are highly
correlated. We propose an omnibus test that combines the
individual p-values from tests with different kernels through
the harmonic mean procedure (HMP) (Wilson, 2019). The
omnibus test is not necessarily the most powerful one: which
test is the most powerful depends on the true nature of
association, which is unknown prior to analysis. Nevertheless,
our omnibus test is robust regardless of the real association
pattern in that it loses little power compared to the most
powerful one, and is much more powerful than choosing an
inappropriate kernel.

In summary, the goal of this paper is to introduce novel
statistical methods to examine the association between a multi-
categorical outcome (both nominal and ordinal) and
microbiome composition under different study designs (e.g.,
independent design, clustered design). Our major contributions
are two-fold. First, we have cast the association analysis between
a multi-categorical outcome and microbiome composition into
frameworks of generalized logit models and proportional odds
models (with additional random effects accounting for within-
cluster correlations for clustered design). Our second
contribution is proposing a robust p-value calculation
procedure via a novel fast pseudo-permutation technique
(Zhan et al., 2017b), avoiding the complicated and time-
consuming permutation approach yet providing valid
statistical inference. Finally, we provide a free R software to
implement our proposed methods. It is a useful tool for
microbiome researchers to investigate the relationship
between the microbiome community and a multi-categorical
outcome under a wide range of study designs, which was not
readily available before.

2 MATERIALS AND METHODS

To associate microbiome compositions with a multi-categorical
outcome, we build upon generalized logit models (GLM) for
nominal outcomes and proportional odds models (POM) for
ordinal outcomes, and relate the microbiome profile with the
outcome through the flexible semi-parametric kernel machine
regression framework (Zhao et al., 2015). Our proposed
MiRKAT-MC includes MiRKAT-MCN (for nominal
outcomes) and MiRKAT-MCO (for ordinal outcomes). For
both tests, we propose two versions, one for independent
samples and another for clustered/longitudinal samples
through the use of additional random effects in the
generalized logit mixed model (GLMM) or the proportional
odds mixed model (POMM).

2.1 GLM and POM for Independent Data
We first describe the GLM and POM model without considering
the high dimensional microbiome data. Let Yi denote the multi-
categorical outcome with total J categories for the i-th subject.
Here, bmYi is a vector with the j-th element being yji, a binary
variable denoting whether the i-th sample belongs to the j-th
category, i = 1, . . . ,N, j = 1, . . . , J. That is, yji = 1means subject i is
of category j and otherwise, yji = 0. In practice, yji can represent
any mutually-exclusive categorical traits (nominal and ordinal),
such as subtypes of cancers and increasing levels of disease
severity that ∑J

j�1yji � 1. From a probability perspective, Yi

can be considered as from a multinomial distribution with J
categories. Let πj (xi) = Pr (yji = 1|xi) be the conditional
probability that subject i is of category j with ∑jπj (xi) = 1,
where xi denotes the set of covariates that we want to associate Yi

with (such as race, gender and age). If bmYi is nominal, we can set
the last category J as a reference without loss of generalization,
and form the following GLM:

log
πj xi( )
πJ xi( ) � αj + βj′xi, (1)

where j = 1, . . . , J − 1. The left-hand side of Eq. 1 is the logit of a
conditional probability, and each coordinate of βj represents the
increase in log-odds of falling into category j vs. the reference
category J resulting from a one-unit increase in the corresponding
covariate while holding the other covariates constant. This model
simultaneously describes the effects of xi on all outcome
categories in contrast to the reference. In this model,
parameters βj, j = 1, . . . , J − 1 can be different among
categories. If the categories are ordinal, we can utilize the
order information and form the following POM:

logit ]j xi( )( ) � log
]j xi( )

1 − ]j xi( ) � αj + β′xi, (2)

where j = 1, . . . , J − 1, and

]j xi( ) � ∑j
h�1

Pr yhi � 1|xi( ) � π1 xi( ) +/ + πj xi( ).

Here, ]j (xi) is the conditional cumulative probability, and the
corresponding response, defined by ~yji � ∑j

h�1yhi, is called the
cumulative response. The ordinal information is thus utilized in
the way that the original categories enter the groups in a sequence.
In contrast to GLM, β here keeps constant across J − 1 logits and
the intercepts have to satisfy α1 < . . . < αJ−1 in the proportional
odds model.

Finally, we notice that there are other recent attempts to
develop association analysis for multi-categorical outcomes
using multinomial logistic regression (i.e., GLM model (1)),
usually in the context of genome wide association studies (He
et al., 2021; Liu et al., 2021). Despite the shared motivations,
MiRKAT-MC is distinct from existing methods in multiple
aspects. First, none of the existing approaches specifically
models ordinal outcomes and thus MiKAT-MC under POM is
statistically novel. Second, MiRKAT-MC includes options that
utilize GLMM and POMM (described Section 2.2) to
accommodate non-independent data from more complicated
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study designs. Last, our pseudo-permutation approach for
obtaining p-values is novel and tends to outperform the
asymptotic results as in existing methods when sample sizes
are small, which is usually the case in microbiome data.

2.2 GLMM and POMM for Clustered/
Longitudinal Data
Similarly, we first describe the GLMM and POMM models
without considering the complex microbiome data. Suppose
cluster i has mi observations. Let Y ik � (y1ik, . . . , yJik)′
represent the multi-categorical outcome of the k-th
observation in cluster i, i = 1, . . . , n, k = 1, . . . , mi and N �∑n

i�1mi be the total number of observations in the study.
Following notations in the previous section, let πj (xik|bji) = Pr
(yjik = 1|xik, bji) and setting the J-th category as reference, the
GLMM for clustered/longitudinal data can be written as:

log
πj xik|bji( )
πJ xik|bji( ) � αj + xik′ βj + uik′ bji, (3)

where xik � (xik1, . . . , xikq)′ denote covariates and βj �
(βj1, . . . , βjq)′ are corresponding regression coefficients, uik is
the design matrix for the random effect term bji. We introduce
bji to model correlations among observations within cluster i of
category j. The model definition is completed by specifying the
distribution of the random effect bji ~ N (0,Gj), where the
variance-covariance matrix Gj for the j-th category is
unstructured. We also allow bji to be correlated across
categories.

The corresponding POMM for ordinal outcomes is as follows:

logit ]j xik|bi( )( ) � αj + xik′ β + uik′ bi. (4)
Onemain difference betweenmodels (Eqs. 3, 4) lies in model (Eq.
4) restricts bi to be identical across category comparisions, and
thus bi ~ N (0,G) with a fixed variance-covariance matrix G.
Here, we essentially assume that the random effects across the
ordered categories are the same, which guarantees in proportional
odds. Specifically, for a fixed cluster i, the random effect bi has
identical value across different categories j. But for different
clusters i and i′, bi and bi′ may be different and both have
normal distribution N (0,G). The variance-covariance matrix
G is unstructured as well. The same constraints for αj and β as in
model (Eq. 2) also apply in the POMM model (Eq. 4).

2.3 Microbiome Association Analysis Under
Models for Multi-Categorical Variables
We extend the previous described models to incorporate the
complex microbiome data. For independent data, let z i �
(zi1, . . . , zip)′ be the composition of p OTUs for sample i
(subject to appropriate normalization and transformation). We
relate the multivariate outcome to the microbiome community
and the covariates with the following model

ηji � αj + xi′βj + hj z i( ), (5)

for i = 1, . . . , N, j = 1, . . . , J, where η = g (·) and g (·) is a link
function. For GLM, g (πji) = log (πji/πJi), πji = E (yji|hji), and hji = hj
(zi); for POM, g (]ji) = log{]ji/(1 − ]ji)}, ]ji � E(~yji|hji) is the
conditional mean of the cumulative response ~yji. hj (·) are
unknown real functions corresponding to the effects of
microbiome on the j-th category. For POM, hj (·) are identical
across categories, and αj and βj are subject to the constraints
described in model (Eq. 2).

For clustered studies, let yjik be a binary variable denoting
whether the k-th observation of the i-th cluster belongs to the j-th
category, where k = 1, . . . ,mi, i = 1, . . . , n and j = 1, . . . , J. We let
N � ∑n

i�1mi be the total number of observations. z ik �
(zik1, . . . , zikp)′ represent p OTUs for the k-th observation in
the i-th cluster. The mixed effect model proceeds as

ηjik � αj + xik′ βj + uik′ bji + hj z ik( ), (6)
where ηjik = g [E (yjik|bji, hjik)], hjik = hj (zik), and g (·) is the same
link function as model (Eq. 5). To illustrate our methodology, we
here give some specific examples of the random effects uik. When
uik = 1, bji is the random intercept which can be assumed
normally distributed ~ N (0, gjj). When uik � (1, tik)′, where
tik is the time for the k-th observation in the i-th cluster (for
longitudinal studies), bji � (bji1, bji2)′ denote the random
intercept and random slope with a bivariate normal

distribution N (0,Gjj), where Gjj � gjj11 gjj12

gjj21 gjj22
( ). Usually,

Gjj is specified as “unstructured” in generalized linear mixed
effect models, providing much flexibility to capture cluster
specific correlations. Again, for POMM, αj, βjm, and bji are
subject to the constraints described in model (Eq. 4), and hjik
(·) should be identical across categories.

Our primary goal is to test the null hypothesisH0: h1 (·) = . . . =
hJ−1 (·) = 0 in Eq. 5, 6. One feasible approach is to develop such a
test leveraging the kernel machine regression-based association
analysis framework (Zhao et al., 2015). Through the critical
connection between kernel machine regression and mixed
models (Liu et al., 2007), h � (h1, . . . , hJ−1)′ can be considered
as random effect with mean 0 and variance K*. We assume that
each hj � (hj1, . . . , hjN)′ for independent data (or hj �
(hj11, . . . , hj1m1, hj21, . . . , hjnmn)′ for clustered data) is
independent and is of the same (multivariate) distribution. In
such a case, K* = IJ−1 ⊗ τK, where IJ−1 denote (J − 1)-th order
identity matrix, τ is an unspecified constant, K is an N × N kernel
matrix, and ⊗ denotes Kronecker product. Following (Zhao et al.,
2015), the kernel matrix can be easily constructed by a specific
ecological distance matrix D

K � −1
2

IN − 1N1N′
N

( )D2 IN − 1N1N′
N

( ), (7)

where 1N is a vector of 1’s and IN is the identity matrix.
Typical distance measures for microbiome data include the

Bray-Curtis dissimilarity, the weighted, unweighted or
generalized UniFrac distances (Lozupone and Knight, 2005).
The kernel matrix defined by Eq. 7 measures sample-pairwise
similarities. Using this transformation, ecological information
(e.g., taxonomic or the phylogenetic relationship between taxa)
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encoded in the distance D is preserved in K, and thus in the
functions of microbiome effect hj (·)’s (which are assumed to be in
the space spanned byK). As demonstrated in previous studies, the
embedding of such ecological information may boost statistical
power for detecting an underlying association under many
scenarios (Zhao et al., 2015). Here, we first focus the simpler
case in which a single distance (e.g., Bray-Curtis dissimilarity) is
considered. Omnibus test utilizing multiple kernels will be
described later in this session.

To develop the distance-based kernel association test, we
further translate association analysis working model (Eqs. 5,
6) into matrix language. For independent data,

η � Xβ + h, (8)
where η � (η11, η12, . . . , η1N, . . . , ηJ−1,1, . . . , ηJ−1,N)′,

X � IJ−1 ⊗
1 x1′
..
. ..

.

1 xN′

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, β � (α1, β1′, . . . , αJ−1, βJ−1′ )′, h �

(h11, h12, . . . , h1N, . . . , hJ−1,1, . . . , hJ−1,N)′ is distributed as
multivariate normal with mean zero and covariance matrix K*
= IJ−1 ⊗ τK. Hence, testingH0: h = 0 is equivalent to testingH0: τ =
0, which can be accomplished by a variance component score test.
The mathematical derivation of the variance component score
test can be found in Supplementary Section 1.1 of the online
Supplementary Material. In brief, the test statistic for h = 0 in
(Eq. 8) is

Q1 � y* − Xβ̂( )′WK*W y* − Xβ̂( ), (9)
where y* is a working response vector, W is a working weight
matrix, and β̂ is the estimated coefficients under the null. For
GLM, y* � Dπ(y − π̂) + Xβ̂, where Dπ = zη/zπ, π̂ is a vector of
fitted values returned by the null model η = Xβ. W �
(DπVπDπ)−1 and Vπ is the variance-covariance matrix of the
multinomial distribution evaluated at π. For POM,
y* � D](~y − ν̂) + Xβ̂, where D] = zη/zν. W � (D]V]D])−1,
where V] is the variance-covariance matrix of the cumulative
probability ν.

For clustered study design, we write model (Eq. 6) in matrix
notations

η � Xβ + Ub + h, (10)
where each component has three levels - category, cluster, and
observation, except for β and b. Please refer to Supplementary
Section 1.2 of the online Supplementary Material for details of
the model structure. Similarly, by applying pseudo-likelihood
approach (Wolfinger and O’connell, 1993), the test statistic is

Q2 � y* − Xβ̂( )′Σ−1K*Σ−1 y* − Xβ̂( ), (11)
For GLMM, y* � Dπ(y − π̂) + Xβ̂ + Ub̂, π̂ is a vector of fitted
values returned by the null model η =Xβ +Ub, and β̂ is a vector of
estimated coefficients of the fix effect, b̂ is a vector of predicted
values of b. Σ =W−1 + UG*U′, whereW−1 = DπVπDπ, and G* is a
(J − 1) × (J − 1) block matrix with entries In ⊗Gjh, j, h = 1, . . . , J −
1. For POMM, y* � D](~y − ν̂) + Xβ̂ + Ub̂,W−1 =D]V]D] andG*
is a (J − 1) block diagonal matrix with entries In ⊗Gjj.

2.4 p-Value Calculation
While deriving the test statistics for Q1 and Q2 is relatively
straightforward in the pseudo-likelihood framework (as
detailed in Supplementary Section 1 of the online
Supplementary Material), obtaining their null distributions
to calculate p-values is never an easy task. A major challenge
lies in that classic asymptotic results in the likelihood
framework tend to be inaccurate due to the relatively small
sample size in microbiome studies (e.g., less than few hundred)
and the over-dispersion in microbiome data (Chen et al., 2016).
Small-sample correction procedures are available within
relatively easier models such as the linear regression models
or linear mixed model in literature (Chen et al., 2016; Zhan
et al., 2017a; Zhan et al., 2018; Zhan et al., 2021). Yet, such an
attempt in the more-complicated models (e.g., GLM, POM,
GLMM, and POMM) considered in the current paper does not
work out due to mathematical complexities of these models
(e.g., canonical links are often unavailable or very complicated
in such models). To this end, we resort to a pseudo-
permutation strategy (Zhan et al., 2017b) to obtain accurate
p-values in finite samples.

Briefly, the null distribution of all permutations of the test
statistic can be approximated by the Pearson type III density,
which is achieved by matching the first three moments. This
strategy leads to a fast p-value calculation since we only need to
use the matched Pearson type III density for p-value calculation
without the need to draw real permutations (Zhan et al., 2017b).
Essentially, we observe that the test statistics Q1 and Q2 can be
reformulated as the trace of the product of two kernels matrix: a
kernel matrix for outcomes (KY) and a kernel matrix for
microbiome data (K in Eq. 7). Here we still assume that the
kernel matrix for microbiome data is identical across multiple
categories. Therefore, we use K instead of the original K* = IJ−1
⊗K in test statistics Q1 (Eq. 9) and Q2 (Eq. 11). In the proposed
framework, let the weighted residual  = W (y* − Xβ) for
independent data or  = Σ−1 (y* − Xβ) for longitudinal data.
The outcome kernel will be KY � ~~′, where ~ � (1, . . . , J−1) is
an N × (J − 1) matrix, where j is the weighted residuals for the j-
th category. Originally,  � Vec(~) is a vector of length N (J − 1),
where Vec (·) denotes the operator that transforms a matrix into a
column vector by vertically stacking the columns of the matrix.
We refer the readers to previous publications for further details of
p-values using the Pearson type III distribution (Zhan et al.,
2017b).

Finally, recall that p-values of tests using different microbiome
kernels could vary greatly depending on whether the kernel of
choice captures the true underlying association pattern. To this
end, we propose an omnibus test that first conducts individual
tests using one of the kernels (Bray-Curtis, UniFrac, weighted
UniFrac etc). And then combines these individual p-values
(corresponding to different microbiome kernels) using the
harmonic mean p-value (HMP) procedure (Wilson, 2019) for
an omnibus p-value, based on which to conclude our inference of
statistical association. This approach tends to be robust: it loses
little power compared to when the best kernel (which is unknown
in practice) is used and gains substantial power compared to
when a poor choice of kernel is used.
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3 RESULTS

3.1 Simulation Studies
3.1.1 Design of Simulations
We conducted comprehensive simulations to evaluate empirical
type I error of MiRKAT-MC when there is no true associations,
and statistical powers under different association patterns. For
both independent and clustered study designs, microbiome
compositions were simulated similarly as in previous studies
(Zhao et al., 2015). Briefly, we first fitted a Dirchlet-
multinomial distribution to a real upper-respiratory-tract
microbiome dataset (Charlson et al., 2010), which contains
856 OTUs for 60 samples, and estimated the mean and
dispersion parameters. We then used these estimated
parameters to generate microbiome read counts via the
Dirchlet-multinomial distribution. We intended to investigate
what the most powerful kernel is when the causal OTUs are with
or without phylogenetic relationships, and whether the
abundance matters.

3.1.1.1 Independent Data
We considered simulations when there are three categories (J = 3)
and when there are five categories (J = 5). Data from each sample
was simulated independently, according to following model

ηji � αj + 0.5 × xi1 + 0.5 × xi2 + β × scale ∑
a∈A

z ia⎛⎝ ⎞⎠, (12)

where i = 1, . . . ,N and j = 1, . . . , J − 1. We set the sample size N =
80 or 200 for when J = 3, and N = 150 or 300 when J = 5. We
simulated both nominal and ordinal outcomes, using appropriate
link functions of η. For nominal data (GLM), αj = −2, and for
ordinal data (POM), αj = j − 4. xi1 is a Bernoulli variable with
probability of 0.5, whereas xi2 is a standard normal variable with
mean 0 and variance 1. A is a set of outcome-associated OTUs
among the p OTUs in the community. β = 0 for type I error
simulations, for which the choice ofA doesn’t matter. scale is the
operation that standardize the data to be mean 0 and variance 1
across all the samples.

For statistical power evaluation, we considered three scenarios.
Under the first two scenarios, causal OTUs (in A) were selected
from clusters of related taxa on a phylogenetic tree. In specific, we
first partitioned the simulated OTUs into 20 clusters through the
partitioning-around-medoids (PAM) algorithm based on the
corresponding phylogenetic tree. For scenario 1, we randomly
chose a common cluster of the OTUs as the causal OTUs. For
scenario 2, we chose the rarest cluster as the causal OTUs. For
scenario 3, we picked the 10 most abundant OTUs without
consideration of phylogenetic information. These three
scenarios correspond to situations in which the weighted
UniFrac, unweighted UniFrac and the Bray-Curtis distances
are expected to be the most powerful, respectively. For
scenarios 1 and 3, β = 0.6, 0.8, 1.2, 1.6, 2.0, and β = 2, 4, 6, 8,
10 for scenario 2.

For each scenario, we employed the weighted UniFrac (Kw),
the unweighted UniFrac (Ku), the Bray-Curtis (KBC) and a
generalized UniFrac kernel with the parameter of 0.5 (K5) for

association testing. We also conducted the omnibus test by
combining the p-values from all individual tests. To obtain
convincing results, we generated 10,000 replicates to estimate
the empirical type I errors and 2,000 replicates for statistical
powers. Statistical significance was established under the nominal
level of α = 0.05 for all the simulation studies.

3.1.1.2 Clustered Data
We simulated two scenarios to assess MiRKAT-MC when data is
clustered. We simulated a family based study and a longitudinal
study. For family-based data, we included only a random
intercept in the model to capture the correlation between
samples, while for longitudinal data, both a random intercept
and a random slope of time were involved in the model. We set
the number of clusters n = 30 or 60 for three categories (J = 3), and
n = 50 or 100 for five categories (J = 5). We simulated data under
an unbalanced design: i.e., clusters may have a different number
of observations. To achieve this, n/2 of the clusters have three
observations and the other n/2 of the clusters have four
observations. In this way, the total numbers of observations
are N = 105 (n = 30) and N = 210 (n = 60) when J = 3 and
N = 175 (n = 50) and N = 350 (n = 100) when J = 5. Within each
cluster, the outcome category may vary over observations; e.g., in
longitudinal studies, a person may be of one disease category at
one time point and of a different disease category at a different
time point.

The following model was utilized to simulate the data

ηjik � αj + 0.5 × xik1 + 0.5 × xik2 + uik′ bji + β × scale ∑
a∈A

z ika⎛⎝ ⎞⎠,

(13)
where i = 1, . . . , n, j = 1, . . . , J − 1, and k = 1, . . . , mi. The
definition of the parameters η, αj, β xik1, xik2,A and scale function
are identical to the counterparts in model (Eq. 12). The same
three scenarios of choices of A were considered for power
assessment. When the model included only a random
intercept, uik = 1 and bji was generated from ~ N (0, gjj),
where gjj � 1

4, 1, 4 being the variance, respectively. When
considering both a random intercept and a random slope of
time, uik � (1, tik)′ and bji was simulated from N (0,Gjj), where
Gjj � gjj11 gjj12

gjj21 gjj22
( ). We set gjj11 � gjj22 � 1

4, 1, 4, respectively,

and gjj12 = ggg21 were determined by 1
2gjj11. Thus, the correlation

between the random intercept and the random slope was fixed at
1
2. The generation of random effect bji was different for GLMM
and POMM. Specifically, for a fixed cluster i, for GLMM, we
generated a new random vector of bji for each category j from the
above distribution. For the ease of data generation, we keptGjj the
same across categories and did not consider correlation of bji
between categories for nominal data. However, as we discussed in
model (Eq. 3), GLMM enjoys the freedom of different Gjj and
correlated bji across different categories. In contrast, for POMM,
we generated a new random vector of bi only once for each cluster
i and then plugged the same bi in model (Eq. 13) for different
categories.
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3.1.2 Simulation Results
Empirical type I error rates of MiRKAT-MCN (for nominal
outcomes) and MiRKAT-MCO (for ordinal outcomes) for
independent data are reported in Table 1. As seen in the
table, the empirical type I errors (at α = 0.05) of MiRKAT-
MC are all very close to the expected level. Empirical type I error
rates under different mixed models for clustered data are reported
in Supplementary Tables S1–S4 (Supplementary Section 2.1,
online Supplementary Material), which also show well-
controlled type I errors for both nominal and ordinal outcomes.

Figure 1 shows the statistical powers of MiRKAT-MC using
independent data with three categories. The results with five
categories using independent data are in Supplementary Figure
S1 (Supplementary Section 2.2, online Supplementary
Material). We observe that the tests with weighted UniFrac,
unweighted UniFrac, and Bray-Curtis kernels are most powerful
for scenarios 1, 2, and 3, respectively, regardless of whether the
outcome is nominal or ordinal. However, the tests with Bray-
Curtis kernel produced very little power in scenario 2, and the
tests with unweighted UniFrac showed little power in scenario 3:
the statistical power are close to their expected type I error. This is
due to the differences in the true association signals that each of
the kernels is designed to capture. The weighted UniFrac kernel is
most powerful to capture signals that are dominated by common
taxa in a cluster on a phylogenetic tree, while the unweighted
UniFrac kernel shows its strengths when rare OTUs in a
phylogenetic cluster determine the association (Chen et al.,
2012). In contrast, the Bray-Curtis kernel is more appropriate
when the outcome is associated with a set of OTUs with high
abundance without referring to a phylogenetic tree. The Omnibus
test considering all four kernels is robust. For example, among the
tests using single kernels, only Bray-Curtis kernel shows
significant powers under scenario 3. Yet, the omnibus test is
still able to detect the association.

Table 2 shows the empirical type I error for our proposed
methods when the data are clustered. Again, type I errors are well
controlled to their nominal level. The statistical powers for
simulations when data is clustered are presented in
Supplementary Figures S2–S5 (Supplementary Section 2.2,
online Supplementary Material). Under three categories,
Supplementary Figure S2 corresponds to models with
random intercepts, while Supplementary Figure S3 presents

models with both random intercepts and random slopes.
Similarly, Supplementary Figure S4 corresponds to models
with random intercepts with five categories; Supplementary
Figure S5 is about models with both random intercepts and
random slopes with five categories. The conclusions are similar to
those of independent data. In addition, we observe that given a
simulation scenario, a choice of kernel and an effect size, when the
variance of the random effect (elements inGjj in Eq. 13) increases,
the statistical power decreases. It is because with the increase of
the random effects, the within-cluster correlation increases,
leading to a lower effective sample size.

3.2 Real Data Analysis
3.2.1 Associations Between Antibiotic Exposure and
Gut Microbiome in Non-Obese Diabetic Mice in a
Longitudinal Study
In the original study (Livanos et al., 2016), 555 non-obese diabetic
mice were randomly assigned to three groups with each group
exposed to distinct patterns and doses of antibiotics. The mice that
were born to the same female and that were of the same sex
constituted a cluster and each cluster received the same
treatment. The first group (51 clusters, 203 mice) received sub-
therapeutic continuous (STAT) antibiotic exposure, the second
group (42 clusters, 167 mice) received therapeutic-dose pulsed
(PAT) antibiotic exposure, and the last group (47 clusters, 135
mice) was not exposed to antibiotics and served as the control group
(Hu et al., 2020). Microbiome data from fecal, cecal or ileal samples
were collected longitudinally for each cluster by sacrificing a mouse,
at 3, 6, 10, and 13 weeks from the start of the experiment (week 0).
The number of observations per cluster varied from 2 (i.e., at week 3
and 6) to 4 (i.e., at week 3, 6, 10, and 13).

The goal of this application is to test the association between
treatment groups (STAT, PAT or control) and gut microbiome.
Here, we exclusively analyzed the fecal samples, leaving 499
samples from 140 clusters over time. The gut microbiome was

TABLE 1 | Empirical type I error rates of MiRKAT-MC for independent data with
three-categories.

MiRKAT-MCN MiRKAT-MCO

N = 80 N = 200 N = 80 N = 200

Kw 0.0463 0.0465 0.0440 0.0470
Ku 0.0436 0.0491 0.0487 0.0492
KBC 0.0488 0.0468 0.0469 0.0449
K5 0.0479 0.0518 0.0476 0.0466
HMP 0.0502 0.0475 0.0461 0.0455

N denotes the sample size. Kw, the weighted UniFrac kernel; Ku, the unweighted UniFrac
kernel; KBC, the Bray-Curtis kernel; K5, the generalizedUniFrac kernel with parameter 0.5;
HMP, the omnibus test using harmonic mean p-value test.

TABLE 2 | Empirical type I errors of MiRKAT-MC for clustered data with a random
intercept and a random slope model with three-category outcomes.

n = 30 (N = 105) n = 60 (N = 210)

g 0.25 1 4 0.25 1 4

MiRKAT-MCN

Kw 0.0498 0.0492 0.0467 0.0478 0.0496 0.0484
Ku 0.0521 0.0533 0.0486 0.0449 0.0508 0.0478
KBC 0.0519 0.0542 0.0494 0.0522 0.0478 0.0497
K5 0.0527 0.0516 0.0521 0.0521 0.0468 0.0505
HMP 0.0514 0.0533 0.0472 0.0465 0.0478 0.0488

MiRKAT-MCO

Kw 0.0500 0.0473 0.0474 0.0449 0.0498 0.0457
Ku 0.0486 0.0506 0.0487 0.0483 0.0483 0.0538
KBC 0.0535 0.0507 0.0487 0.0453 0.0493 0.0485
K5 0.0519 0.0471 0.0489 0.0476 0.0501 0.0486
HMP 0.0495 0.0467 0.0481 0.0452 0.0483 0.0475

n indicates the number of clusters while N is the number of total observations. g denotes
the variance of random effects. The definition of Kw, Ku, KBC, K5, and HMP is the same as
Table 1.
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profiled from each sample and the raw sequence data is available
on the Qiita database (study ID 10508). Specifically, the V4 region
of the bacterial 16S rRNA gene was PCR amplified, followed by
performing paired-end sequencing of the amplicon library. We
reprocessed the pre-joined and trimmed sequencing data through
DADA2 pipeline in R (Callahan et al., 2016). As a result, the
amplicon sequence variant (ASV) table was constructed. After
removing chimeras identified by consensus across samples, the
table contained 3031 ASVs. The ASV table was rarefied to an
equal depth of 5,000 for each sample. We then assigned taxonomy
based on Ribosomal Database Project’s (RDP) training set 16, and
constructed a phylogenetic tree using R package “phangorn”
(Schliep, 2010). The tree was rooted by specifying the middle
tip (i.e., 1515) as the outgroup. We calculated the UniFrac
distance based on the rooted tree and the rarefied ASV table
with the “GUniFrac” R package (Chen et al., 2012).

Here we first visually checked the relationship between gut
microbiome composition and antibiotic treatment groups under
different dissimilarity measures with PCoA plots (Figure 2). All
499 fecal samples are included in the plot, although they might be
collected at different time points. Microbiome composition of the
PAT group is clearly separated from that of the STAT group and
that of the control group, under weighted UniFrac distance,
generalized UniFrac distance and Bray-Curtis dissimilarity.
However, under unweighted UniFrac distance, it is hard to
distinguish the microbiome compositions of three treatment
groups since they are clustered at two areas.

To show the performance of MiRKAT-MCN on independent
nominal data, we selected samples at week 3 only. All 140 clusters
hadmicrobiome data available. By setting treatment groups as the

dependent variable and adjusting for gender of mice, we observed
very significant association between gut microbiome and the
antibiotic treatment groups using weighted, unweighted, and
generalized UniFrac kernels, Bray-Curtis kernel, and the
omnibus test (all p-values < 0.0001). To better show the
performance of the proposed model, and since the sample
sizes of microbiome studies are usually smaller, we randomly
subsampled 90 samples from the 140 samples at week 3. The
down-sampled data consisted of 41 male and 49 female mice, and
there were 36, 22, and 32 mice in the STAT, PAT and control
groups, respectively. With the reduced sample size, all tests,
including the tests using each of the kernels and the omnibus
test, identified significant association between microbiome and
antibiotic treament, with all p-values less than 0.0001, except for
when using the unweighted kernel (p-value = 0.01).

We also applied MiRKAT-MCN for clustered data to this
study. Similarly, we randomly selected 30 clusters with 105
samples (17 male and 13 female mice clusters) from the
original dataset for analysis, where there were 15, 6, and 9
clusters in STAT, PAT, and control group, respectively. We
applied MiRKAT-MCN for clustered data to evaluate the
association between antibiotic treatment and microbiome,
adjusting for sex and time (in weeks), and accounting for the
cluster-specific correlation through a random intercept and a
random slope of time. Again, we employed the same kernels as
above and the omnibus test for analysis. Apart from the test using
the unweighted UniFrac kernel with p-value only 0.03, all other
tests were highly significant with p-values less than 0.001.

These two analyses indicate that antibiotic exposure during
early life did alter the microbiome composition in non-obese

FIGURE 1 | Statistical powers of MiRKAT-MC for independent data with three categories. Scenario 1:A = A randomly selected common cluster among 20 clusters
by PAM; Scenario 2:A = The rarest cluster among 20 clusters by PAM; Scenario 3:A = 10 most abundant OTUs. Kw, the weighted UniFrac kernel; Ku, the unweighted
UniFrac kernel; KBC, the Bray-Curtis kernel; K5, the generalized UniFrac kernel with parameter 0.5; HMP, the omnibus test using harmonic mean p-value test. (A)
MiRKAT-MCN with 80 total samples; (B) MiRKAT-MCO with 80 total samples; (C) MiRKAT-MCN with 200 total samples; (D) MiRKAT-MCO with 200 total
samples.

Frontiers in Genetics | www.frontiersin.org April 2022 | Volume 13 | Article 8417648

Jiang et al. MiRKAT-MC for Microbiome Studies with Multi-Categorical Outcomes

97

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


diabetic mice, no matter we stared at the week 3 or inspected over
time. Moreover, the disparities of p-values by using different
kernels, although all significant, suggest that the antibiotic use
may have affected the relative abundance of OTUs, because the
unweighted UniFrac kernel, which only accounts presence/
absence of taxa and gives higher weight to rare taxa, provides
the least significant result.

3.2.2 Associations Between Obesity and Gut
Microbiome in a Family-Based Study
A study was conducted by Goodrich et al. (Goodrich et al., 2014)
to investigate the role of host genetics on gut microbiome, and
their impact on host phenotype, such as the body mass index
(BMI). Fecal samples were collected from families in the
United Kingdom. The V4 region of 16S rRNA gene was
sequenced to identify the microbiome composition. The raw
data was downloaded from the European Bioinformatics

Institute (EBI) with accession numbers ERP006339 and
ERP006342. We used QIIME (version 1.9.0-dev) (Caporaso
et al., 2010) to assign the sequencing tags to 7,365 non-
singleton OTUs at 97% similarity using the reference-based
OTU-picking approach, and to generate a rooted phylogenetic
tree. All samples were rarefied to 10,000 counts per sample before
calculating the distance measures.

For this analysis, we focused on 311 samples from 145
monozygotic twin pairs. All the twins were female, aged from
27 to 83 with an median age of 63. In order to compare the
performance of different methods, we treated the BMI as
continuous, binary, three-category ordinal and three-
category nominal data, and applied CSKAT (Zhan et al.,
2018), GLMM-MiRKAT (Koh et al., 2019), MiRKAT-MCO
and MiRKAT-MCN for each outcome type, respectively.
CSKAT was developed for microbiome association analysis
of clustered/longitudinal study for continuous outcomes while

FIGURE 2 | The two-dimensional PCoA plots depicting microbiome composition for different antibiotic treatment groups under various dissimilarity measures. All
499 fecal samples are included in the plots. PAT, therapeutic-dose pulsed antibiotic exposure; STAT, sub-therapeutic continuous antibiotic exposure. The crosses
denote the centroid of points of each treatment group. (A) W.UniFrac: weighted UniFrac distance; (B) U.UniFrac: unweighted UniFrac distance; (C) G.UniFrac(0.5):
generalized UniFrac distance with tuning parameter a = 0.5; (D) Bray-Curtis: Bray-Curtis dissimilarity.
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GLMM-MiRKAT was for the similar association analysis for
binary and count outcomes, respectively. For binary outcome,
we classified the study participants into a non-obese (248
samples) and an obese group (63 samples) based on BMI <
30 or BMI ≥30. For the three-category outcome, we classify
study participants into normal (BMI < 25), overweight (25 ≤
BMI < 30), and obese (BMI ≥30) groups, where there were
147, 101, and 63 samples in each group, respectively. We can
treat the three categories as nominal or ordinal when applying
MiRKAT-MC. For all the analyses, we assessed the
microbiome-BMI (or BMI category) association, adjusting
for age and including a twin-level random intercept to
capture the within-twin-pair correlations due to common
genetic, biological and other environmental factors. The
weighted, unweighted, generalized UniFrac distance and the
Bray-Curtis distance were used to construct kernel functions
based on Eq. 7. The test statistics of CSKAT and GLMM-
MiRKAT followed the original papers, but we used the same
technique as MiRKAT-MC to calculate p-values, in order to
ensure comparability.

Figure 3 compares the microbiome Shannon index across the
three BMI categories. The decreasing trend of Shannon index
from the normal category to the obese category implies that
higher BMI may reduce the microbiome diversity. The results of
association analyses are shown in Table 3, where the smallest
significant p-value of each kernel across four methods is bolded.
At the first glance, all the individual tests provided significant
association at type I error of 0.05 except when the weighted
UniFrac kernel was used. The omnibus test also provided
significant association. However, MiRKAT-MCO gave the
smallest p-values when using the unweighted UniFrac, the
generalized UniFrac and the omnibus test. MiRKAT-MCO
was always more powerful than MiRKAT-MCN in this
analysis, which is reasonable because MiRKAT-MCO utilized
the order information in data. Both MiRKAT-MCO and
MiRKAT-MCN were more powerful than GLMM-MiRKAT
except when the weighted UniFrac kernel was used, for which
none of the methods was significant. Our results are also
consistent with the conclusion of the previous study (Zhan
et al., 2018) that the unweighted UniFrac kernel and the Bray-
Curtis kernel were most suitable for this dataset.

4 DISCUSSION

Multi-categorical outcomes, both nominal and ordinal, are
increasingly common in biological and biomedical research
over recent years. Investigating the subtle microbiome
composition differences among multiple subtypes of a disease
provides a broad view of microbiome variation. It is typically a
first step to a further study of microbiome functionality and other
related topics. Additionally, clustered designs, as a supplement to
population-based studies, have become very popular recently
when researchers are interested in dynamic variations or the
variations among related individuals. While the toolbox for
analyzing data collected from population-based studies is
plentiful, methods for analyzing these clustered data are

FIGURE 3 | The boxplot of Shannon index across BMI categories in
United Kingdom twins study. Normal: BMI < 25; Overweight: 25 ≤ BMI < 30;
Obese: BMI ≥30. The circle on each box denotes the mean of Shannon Index
in that category.

TABLE 3 | p-values of testing for the BMI-microbiome association in
United Kingdom twins dataset using different methods and kernels.

CSKAT GLMM-MiRKAT-Binary MiRKAT-MCO MiRKAT-MCN

Kw 0.1455 0.1750 0.2223 0.3268
Ku 0.0036 0.0182 0.0014 0.0033
KBC 0.0012 0.0021 0.0016 0.0015
K5 0.0278 0.0370 0.0194 0.0264
HMP 0.0036 0.0075 0.0030 0.0040

The bold value is the smallest significant p-value across four methods given the kernel/
method. The definition of Kw, Ku, KBC, K5, and HMP is the same as Table 1.

TABLE 4 | Computation efficiency of MiRKAT-MC. Each result is the average time
of one association test averaged from running 100 replicate association tests.

MiRKAT-MCN (s) MiRKAT-MCO (s)

Independent data

J = 3 N = 80 0.0150 0.0139
N = 200 0.0914 0.0796

J = 5 N = 150 0.0978 0.0426
N = 300 0.7627 0.2568

Longitudinal data

J = 3 n = 30 (N = 105) 6.438 2.844
n = 60 (N = 210) 6.672 2.994

J = 5 n = 50 (N = 175) 11.964 4.758
n = 100 (N = 350) 26.328 15.252

For longitudinal data, both random intercepts and random slopes of time are included in
the null models. TheweightedUniFrac kernel was applied without loss of generalization. n
denotes the number of clusters, whereas N is the total sample size. All the computation
was conducted on aMacbook Pro (15-inch, 2019) laptopwith 2.3 GHz 8-Core Intel Core
i9 processor and 16 GB memory, without using parallel or other speed-up strategies.
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underdeveloped. To fill these research gaps, we proposed
MiRKAT-MC for testing for association between multi-
categorical outcomes and microbial community compositions
for both population-based and clustered/longitudinal studies.

Our major contributions in this paper are two-fold. First, we
have successfully used the generalized logit model and the
proportional odds model to enable direct association analysis
between multi-categorical outcomes and microbiome
compositions, without the need of combining categories or
conducting pairwise comparisons. Existing approaches either
compare two categories at a time and then conduct multiple
testing correction, or combine multiple groups into a single
category and compare it to the baseline. The pair-wise
comparison approach tends to lose power due to the burden
of multiple comparison. In addition, combining multiple groups
into a single category can lead to substantial power loss when the
microbiome effects on the categories are in opposite directions.
However, when we have more than two categories, MiRKAT-MC
can incorporate the heterogeneity in microbiome data and
compare all non-reference categories to the reference category.
Comparing to the potential alternative approach that first
compares each pair of categories followed by multiple
comparison adjustment, MiRKAT-MC would be much more
powerful. Moreover, the new association analysis framework in
the proportional odds model is extremely appealing for ordinal
outcome data, as none of the existing approaches takes advantage
of the order information in this particular type of data. Second, we
have adapted a fast pseudo-permutation strategy previously
developed under linear models to more complicated GLM(M)
and POM(M) to achieve efficient and accurate p-values
calculation. Unlike the ascendants which calculate p-values
through either asymptotic distribution or direct permutation
among exchangeable clusters, MiRKAT-MC controls type I
error perfectly, even when the sample size is small, yet avoids
the time-consuming and complex permutation.

As a non-parametric distance-based method, MiRKAT-MC
comes with some limitations. First of all, the choice of distance
metrics is subjective and could impact its performance. To this
point, we propose to conduct analysis using multiple kernels/
distances, generate multiple p-values and combine them via the
harmonic mean approach (Wilson, 2019). Secondly, like other
community level analysis of microbiome (Anderson, 2001; Zhao
et al., 2015; Tang et al., 2016; Koh et al., 2019), MiRKAT-MC
aggregates information across all taxa to form a community
level test. This usually serves as the first step in understanding
microbiome-phenotype relationship. However, these
approaches do not provide insight on which taxa are driving
the overall association. Thirdly, we used microbiome beta-
diversity to define our distance/kernel matrix, which is
convenient and proven useful. Many beta-diversities have
been proposed and widely used in microbiome studies, which
capture distinct characteristics of the underlying association
pattern (see (Plantinga et al., 2017)). However, recent literature
indicated that the structure of microbiome community may
vary even when their diversities and compositions are
comparable. In that context, if we are able to develop a
sample-to-sample distance matrix that captures the

important structure variations, such distance can be easily
incorporated into our framework. Developing a kernel/
distance for subtle structural differences in microbiome
communities can be an interesting scientific endeavor,
however, it is beyond the scope of this paper.

Computational efficiency of MiRKAT-MC is investigated and
reported in Table 4. MiRKAT-MC is extremely fast when dealing
with independent data. When data is clustered, the
computational time increases substantially, mainly because of
the increased time in fitting the null GLMM/POMM in the
presence of random effects. Nevertheless, the computational
time for MiRKAT-MC is very manageable even with clustered
data. Given that most microbiome studies are relatively small in
sample size, for three-category data, MiRKAT-MC can usually be
accomplished in 0.1 s for population-based studies with sample
size less than 200, and in 7 s for clustered studies with total sample
size less than 210.

In summary, we propose MiRKAT-MC, a microbiome
regression association test for multi-categorical outcomes with
independent and clustered study designs. The proposed methods
show well controlled type I errors and high power over multiple
scenarios through extensive simulations and better performance
than competitors in real data analyses. It is easy to use and fast to
compute. We believe that MiRKAT-MCwill enrich the toolbox of
researchers to conduct microbiome research with multi-
categorical outcomes.
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Single-cell RNA sequencing (scRNA-seq) reveals the transcriptome diversity in heterogeneous
cell populations as it allows researchers to study gene expression at single-cell resolution. The
latest advances in scRNA-seq technology havemade it possible to profile tens of thousands of
individual cells simultaneously. However, the technology also increases the number of missing
values, i. e, dropouts, from technical constraints, such as amplification failure during the reverse
transcription step. The resulting sparsity of scRNA-seq count data can be very high, with
greater than 90% of data entries being zeros, which becomes an obstacle for clustering cell
types. Current imputation methods are not robust in the case of high sparsity. In this study, we
develop a Neural Network-based Imputation for scRNA-seq count data, NISC. It uses
autoencoder, coupled with a weighted loss function and regularization, to correct the
dropouts in scRNA-seq count data. A systematic evaluation shows that NISC is an
effective imputation approach for handling sparse scRNA-seq count data, and its
performance surpasses existing imputation methods in cell type identification.

Keywords: imputation, deep learning, single cell RNA-seq, dropout, autoencoder

1 INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) is designed to profile gene expression at the single-cell level,
making it possible to study the heterogeneity among individual cells (Pierson and Yau, 2015). However,
one important characteristic of scRNA-seq data is a phenomenon called “dropout”, which causes
challenges in data analysis. These dropout events occur because of the low amounts of genetic
material in individual cells and inefficient mRNA capture, as well as the stochasticity of mRNA
expression (Lin et al., 2017). Specifically, a large number of dropouts is due to transcripts lost in the
RNA reverse transcription procedure during library preparation (Gordon et al., 2015). In other words,
many zero counts in the gene expression data are not “true” values. Consequently, the scRNA-seq datamay
be incredibly sparse due to the high dropout rate, e.g., more than 90% of the expression counts have values
of zero. Imputation has become an essential preprocessing step for downstream analysis of scRNA-seq data
(Tracy et al., 2019). Recent studies have shown that some imputation methods improve downstream
analysis and have already been implemented in scRNA-seq analysis pipelines (Zhang and Zhang, 2018).
Meanwhile, with the increasing size of scRNA-seq data sets, appropriate imputation methods
are necessary to compensate for these dropouts to reduce the impacts of missing values (Angerer
et al., 2017).
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Many methods have recently been developed for modeling and
processing scRNA-seq count data, including scVI (Lopez et al., 2018),
VASC (Wang and Gu, 2018), scSVA (Sun et al., 2019), scVAE
(Gronbech et al., 2020), and scAEspy (Tangherloni et al., 2021),
which used neural networks to reduce the noisy dimension to
increase the accuracy of downstream analysis. There also exists
quite a number of methods to impute the missing values in
scRNA-seq data, including scImpute, MAGIC (Van Dijk et al.,
2018), SAVER (Huang et al., 2018), DrImpute (Gong et al., 2018),
VIPER (Chen and Zhou, 2018), ALRA (Linderman et al., 2018),
EnImpute (Zhang et al., 2019) and scDoc (Ran et al., 2020). In
ScImpute, separated Gamma-Normal mixture models are
constructed for different cell subgroups to calculate the
probabilities of drop-out. It leverages information of cell similarity
in terms of genes with a lower dropout probability and then imputes
the values of genes with higher dropout probability. MAGIC is a
method that shares information across similar cells via data diffusion
to predict the true gene expression level. SAVER is a Bayesian-based
imputation method that imputes dropout values and generates a
substitution for each gene. DrImpute is a clustering-based method
that generates estimations using cluster priors and distance matrices.
ALRA is an adaptively-thresholded low-rank approximation method
that rescales the scRNA-seq expression matrix using randomized
singular value decomposition. VIPER is a statistical method that fits a
linear model for each cell by cell-cell interaction.

Basically, these methods impute dropouts by leveraging
information on similarities between cells/genes using the
correlation structure of the scRNA-seq data. For example,
current imputation approaches, including scImpute and
DrImpute, identify similar cells/genes based on clustering and
then impute the missing data by averaging the gene expression
values for each detected cluster. The accuracy of these imputation
methods highly relies on clustering analysis. EnImpute combines
the imputation results obtained from eight different imputation
methods and calculates the expected values. scDoc imputes
dropout events by leveraging information for the same gene
from highly similar cells. However, current methods may fail
to capture the nonlinearity and the count structure of the scRNA-
seq data. Moreover, it becomes more challenging for the
traditional imputation methods to handle datasets with
increasing size (Eraslan et al., 2019).

Recently, some deep learning-based imputation methods have
been developed for efficiently handling the higher dimensional
scRNA-seq data, such as DCA (Eraslan et al., 2019), DeepImpute
(Arisdakessian et al., 2019), AutoImpute (Talwar et al., 2018),
LATE (Badsha et al., 2020), scIGAN (Xu et al., 2020), and scGNN
(Wang et al., 2021). DCA is a neural network-based denoising
method for scRNA-seq count data. This method assumes that the
scRNA-seq count data follow a negative binomial distribution
and then are denoised by maximizing a likelihood function.
DeepImpute is a deep learning-based method that splits the
genes into several subsets of neural networks. However, these
imputation methods lack accuracy and power in handling highly
sparse data. AutoImpute uses autoencoder with one hidden layer
to impute missing values in scRNA-seq data by minimizing the
Euclidean cost function. LATE uses autoencoder to train on
nonzero data by minimizing the loss function, therefore

imputing the missing values based on information of
dependence between genes and cells. scIGAN uses generative
adversarial networks for scRNA-seq imputation. scGNN uses a
graph neural network for scRNA-seq analysis.

In this study, we develop a novel imputation method, Neural
Network-based Imputation for scRNA-seq data (NISC) to
improve cell type clustering. It is based on neural networks
with a novel weighted loss function, coupled with
regularizations. Through a series of simulation studies and real
data analysis, NISC is compared with the other imputation
methods, including AutoImpute, DCA, DeepImpute, LATE,
SAVER, MAGIC, ScImpute, DrImpute, EnImpute, ALRA,
VIPER, scDoc, scIGAN, and scGNN. The results show that
NISC outperforms the existing imputation methods as it can
recover the gene expression more correctly and distinguish the
cell types more precisely, particularly for scRNA-seq data with
high sparsity/noise.

2 METHODS

2.1 Neural Network Architecture
It is evident that the process of imputing the dropouts for
scRNA-seq data is similar to the process of outlining a noisy
image, so autoencoder is utilized to impute the sparse scRNA-
seq data (Shao et al., 2013). Autoencoder is an unsupervised
learning technique that has been used in image denoising
(Vincent et al., 2010). The autoencoder technique allows
nonlinear data vectors to be stacked, making the technique
more powerful and able to learn complicated relations
between layers (Mao et al., 2016). An autoencoder model
consists of an encoder and a decoder. An encoder stage
compresses the input data into a low-dimensional code,
and then a similar decoder stage reconstructs the output
data from the code (Hinton and Salakhutdinov, 2006).
Figure 1 shows the neural network architecture of NISC.
The number of neurons for the hidden layer in the middle
is usually much smaller than the number of neurons for the
input/output layers to reduce the redundant information in
data. In our method NISC, the number of neurons in the
neural network architecture is set to be proportional to the
number of genes.

2.2 Loss Function and Regularizations
It has been found that the main reason for dropouts in scRNA-seq
data is due to failure of the reverse transcription of mRNA
(Bengtsson et al., 2005; Reiter et al., 2011). Reverse
transcription is an enzyme reaction; therefore, the Michaelis-
Menten function can be used to model the relationship between
dropout probability and gene expression for full-transcripts
scRNA-seq data (Andrews and Hemberg, 2019). The
following equation shows the dropout probability Pij for the
gene i in cell j using Michaelis-Menten kinetics (MMK)
(Brennecke et al., 2013),

Pij � 1 − Sij
KM + Sij

(1)
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where Sij is the observed gene expression level of gene i in cell j,
and KM is theMichaelis constant (Johnson and Goody, 2011). We
use this probability to describe the dropout event, which will then
be involved in the calculating the network’s denoised output.

We propose a novel loss function with the mean square error
weighted by the dropout probability estimated through
Michaelis-Menten kinetics.

Loss � ∑m
i�1
∑n
j�1
(1 − Pij) · (log(ŷij) − log(yij))2 + α · ����β����2 (2)

The loss function will be minimized through the autoencoder
learning process. Note: the function “log” is the natural logarithm.
The intuition behind this is that the estimated dropout
probability Pij affects the loss function adversely. In this
manner, the imputed gene expression ŷij will be close to the
observed gene expression yij when the estimated dropout
probability Pij is low. When we train an autoencoder network,
a challenging problem is how to avoid overfitting. Overfitting
refers to a neural networkmodel that fits the training data too well
to predict the pattern of new data. Overfitting is caused by noise
in the training data, and the neural network includes this noise
during the learning process. To avoid overfitting, we need to
reduce the complexity of the network; therefore, we applied L2
regularization (ridge regression) and dropout regularization to
reduce the complexity of the autoencoder network (note: this is
different from the term “dropout” event in scRNA-seq data). It is
the first time that these two regularization techniques have been
combined with an autoencoder network for imputation of
scRNA-seq data. We define the regularization term ‖β‖2 as the
L2 norm of the weight matrix, that is, the sum of all squared
weight values of the matrix (i.e., the first term in the above loss
function). α is defined as the value of the regularization rate,
which determines how powerful the effect of the regularization
term will be. The regularization term ‖β‖2 is weighted by the
scalar α and the regularization term will be excluded if α is zero. If
α is too large, the neural network model will be less sensitive

therefore increase the risk of underfitting. Conversely, if α is too
small, the complexity of the model will be increased, so the risk of
overfitting will be high. An appropriate value of α can be
determined through cross-validation suggested by Ng
et al.(2004).

In addition to L2 regularization, dropout regularization is also
used in NISC as it is a strategy to turn off neurons of the neural
network with certain probability during training, which then
further reduces the model’s complexity (Srivastava et al., 2014).
Furthermore, to mitigate the effect of reaching the local
optimization peak by the neural network, the Adaptive
Moment estimation algorithm is used to perform stochastic
optimization (Eweda and Macchi, 1984).

2.3 Performance Evaluation
The proposed method is compared with the existing imputation
methods through a series of simulated datasets and three real
datasets. First, we visualize cell type sub-populations using 2-
dimensional PCA (principal component analysis) plots or t-SNE
(t-distributed stochastic neighbor embedding) plots (Kin et al.,
2002; Kobak and Berens, 2019) depending on the data property
(Anowar et al., 2021). UMAP (uniform manifold approximation)
plots are also drawn (Becht et al., 2019). The commonly used
unsupervised clustering algorithms, k-means (Na et al., 2010) and
hierarchical clustering algorithms (Murtagh and Contreras,
2017), and Leiden algorithm(Traag et al., 2019), are used to
group the cells on the reduced dimension of visualization
results, which can then be used for calculating the
performance measurements of each imputation method.

Four evaluation metrics are calculated to evaluate the accuracy
of the cell type clusters in the visualization plots, including
Adjusted Mutual Information (AMI) (Romano et al., 2014),
Adjusted Rand Index (ARI) (Steinley, 2004), Fowlkes-Mallows
Index (FMI) (Nemec and Brinkhurst, 1988), and Silhouette Score
(SS) (Rousseeuw, 1987). Since we know the truth for the
simulated data, the RMSE (Root Mean Square Error) is also

FIGURE 1 | Neural network architecture of NISC. This network is mainly composed of three hidden layers (i.e., dots with three different colors, purple, red, and
green). The first hidden layer has neurons equal to twice the number of genes of the input data. It is followed by the second hidden layer in the middle with neurons equal
to around half the number of genes of the input data. The third layer has neurons equal to the number of neurons of the first layer. This neural network is trained using an
optimization process with a loss function to calculate the model error.
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calculated between the imputed values and the truth to assess the
performance of imputation methods (Blondel et al., 2008;
Skinnider et al., 2019). Additionally, the heatmap of gene
expression in the simulated studies is also drawn to
demonstrate the direct comparison of the methods in detail.

3 RESULTS

3.1 NISC Enhances Cell Type Visualization
in Simulated scRNA-Seq Data
To evaluate the performance of our imputation method, we
compare it with existing methods on simulated scRNA-seq
count data, which are generated by the widely used simulator,

Splatter (Zappia et al., 2017). Both raw count data with dropouts/
noise and its corresponding true data are available through
simulations. The raw count data is the input data of the
learning framework, and the ground truth data can be used to
assess the performance of imputation. The count data are
represented as an expression matrix, where each row is a gene,
and each column is a cell. We consider three scenarios:

(1) Two cell types for 800 genes and 1,000 cells.
(2) Four cell types for 800 genes and 1,000 cells
(3) Four cell types for 2,000 genes and 10,000 cells

For each scenario, two sparsity levels are examined,
i.e., approximately 80 vs 90%. In the Splatter simulation

FIGURE 2 | NISC significantly improves the performance of t-SNE in visualizing simulated scRNA-seq count data. Plots of the first two components are calculated
from the simulated ground truth data, raw data, and imputed data using various imputationmethods. The dataset contains 800 genes and 1,000 cells in 4 cell types, with
90% sparsity. Cells are colored by cell types as indicated.
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setting, the differential rate of 0.2 is used, indicating that 20% of
the total genes are marker genes. As substantial noise is added to
input data to mask cell type identities through simulation, our
purpose is to predict the imputed values for the dropouts
accurately and therefore identify cell types.

Our deep learning framework in NISC consists of three hidden
layers with 1600, 400, and 1600 neurons, respectively, for the
simulation data of 800 genes. For the case of 2,000 genes, the
number of neurons for three hidden layers are 4,000, 1,000, and
4,000, respectively. A widely used active function, rectified linear
unit (Xing et al., 2016), is employed to train each cell to capture
the nonlinearity of the data. The number of neurons for the
encoder/decoder layers is twice the number of genes, while the
number of neurons for the hidden layer in the middle of the
architecture is half of the number of genes. We compare NISC to
other existing imputation methods in simulation data for various
scenarios. The figures below are for the scenario (2). Some
representative results for scenario 1) and 3) are included in
the Supplementary File.

Figure 2 shows the t-SNE plots derived from the ground truth
of cells, the raw input data, and the imputed data by NISC and
other existing methods. The ground truth contains 4 cell types
while the types are mixed in the raw data. This is due to the high
sparsity (i.e., high noise, 90% data are zeros) in the raw input,
which distorts the topology of the ground truth. NISC can
accurately recover the dropouts, and the cells are clearly
located in four groups/clusters, followed by scDoc and
DeepImpute. However, it is challenging for other imputation
approaches to distinguish the 4 cell types.

Four evaluation metrics, including AMI, ARI, FMI, and SS are
calculated on the visualization result for the simulated data in
Figure 2. To consider the data uncertainty (even with the same

FIGURE 3 | Boxplots of four evaluation measures, including Adjusted Mutual Information (AMI), Adjusted Rand Index (ARI), Fowlkes-Mallows Index (FMI), and
Silhouette Score (SS), are calculated for comparing NISC and other imputation methods. Each dataset contains 800 genes and 1,000 cells in 4 cell types, with 90%
sparsity, and is replicated 10 times. Detailed information about these measurements can be found in the supplementary materials.

FIGURE 4 | RMSE (root mean square error) boxplots for the raw input
and imputed data by each method. The RMSE is calculated between the
ground truth and either the raw or imputed values. The raw dataset contains
800 genes and 1,000 cells in 4 cell types, with 90% sparsity, and is
replicated 10 times. Detailed information about the RMSE can be found in the
supplementary materials.
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parameter settings) in the simulation, we generated ten replicates
of datasets under each setting. Figure 3 shows boxplots for four
evaluation measures based on K-means clustering result of the
t-SNE visualization. The boxplots of Leiden method are shown in
Supplementary Figure S2. Higher values in measures indicate
higher accuracy in cluster results. It is obvious that the
performance of NISC surpasses all the existing imputation
methods in clustering accuracy in this simulation study.

High accuracy in cell type visualization does not necessarily
mean the imputed values are close to the true values. We
calculated RMSE (root mean square error, the detailed
definition can be found in the supplementary materials)
between the ground truth value and the corresponding
imputed value by each method. Figure 4 shows boxplots of
RMSE for 10 replicates of simulations. Compared with other
imputation methods, the accuracy of NISC is highest, followed by
DeepImpute, which is a neural network-based imputation
method as well. Note: three imputation methods, DCA,
AutoImpute and scGNN, are excluded from the RMSE plot as

only highly variable genes are selected in these methods to
perform imputation.

A direct comparison in gene expression values among the
ground truth, raw data, and imputed data can be found in the
heatmap plot (Figure 5). It shows that NISC imputed values are
closest to the ground truth and therefore this method shows great
capability in correcting the dropout values, which confirms the
promising result in data visualization in Figure 2. Again, three
imputation methods DCA, AutoImpute, and scGNN, are
excluded from the heatmap plot as only highly variable genes
are selected in these methods to perform imputation.

A consistent conclusion can be obtained from UMAP plot
(Supplementary Figure S3) for this dataset. We also examine the
impact of a different sparsity level (80%) on the imputation for
the simulated data with 4 cell types and 2 cell types, respectively.
When the sparsity of the simulated data with 4 cell types is about
80%, the cell populations can be revealed clearly in several
imputation methods (Supplementary Figure S4), and NISC is
one of them. Then, we observe that the performance of all

FIGURE 5 | Heatmaps of ground truth, raw simulated data, and imputed data by various methods. The simulated raw dataset contains 800 genes and 1,000 cells
in 4 cell types, with 90% sparsity. Each row in the heatmap represents a gene, while each column represents a cell. The color bar shows themagnitude of the logarithm of
gene expression values.
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methods significantly decreases when dropout noise increases
(Supplementary Figure S4 vs Figure 2). A consistent conclusion
can be obtained for the 2 cell types. Supplementary Figure S5
shows an example of the t-SNE plot of 1,000 cells (in 2 cell types)
and 800 genes with 80% sparsity. The cells are clearly separated
into two groups/clusters by NISC, DeepImpute, DrImpute,
EnImpute and scDoc, followed by scImpute, SAVER, and
scIGAN.

For the case of 4 cell types with 10,000 cells, we only compared
the deep-learning-based methods (Supplementary Figure S6).
We noticed that the performances of three methods, NISC, DCA,
and DeepImpute, are improved when the number of cells
increases from 1,000 (Figure 2) to 10,000 (Supplementary
Figure S6). The t-SNE plot in Supplementary Figure S6 still
shows that NISC surpasses other deep-learning-based methods,
followed by DCA and DeepImpute.

Computational time: Among the deep-learning-based
methods, LATE is the fastest, and scIGAN is the slowest.
Specifically, the order of the computational time for seven
deep learning-based methods is: LATE < DeepImpute < DCA
< NISC < AutoImpute < scGNN < scIGAN. We used High
Performance Computer systems with 2894 MHz CPU, 5 cores,

and 36 GB memory on each core. For a simulation dataset with
2,000 genes and 10,000 cells, it took about 10 min for LATE, 12 h
scIGAN, and 50 min for NISC.

3.2 NISC Improves Visualization Clarity and
Clustering Accuracy in Real scRNA-Seq
Data
3.2.1 Mouse Lung scRNA-Seq Data
We apply NISC and the compared methods on mouse lung
scRNA-seq data (GSE52583) with 201 cells (Treutlein et al.,
2014). Figure 6 shows PCA plots for NISC and other
imputation methods. The denoised data by imputation of
scGNN, AutoImpute, ALRA, SAVER, scImpute, DrImpute,
scDoc and EnImpute show E14.5 and E16.5 are not separated
well, although cell type AT2 and E18.5 can be identified. In
addition, with imputation of MAGIC, E16.5 is successfully
identified, but E18.5, E14.5, and AT2 are mixed. By DCA, the
4 cell types (E14.5, E16.5, E18.5, and AT2) are grouped into two
clusters, with two types in each. For DeepImpute, scIGAN and
VIPER, the 4 cell types are mixed together. It seems that NISC can
assign the 4 cell types into four clusters more accurately.

FIGURE 6 | NISC recovers the cell types (E14.5, E16.5, E18.5, and AT2) in mouse lung data. PCA plots of the raw data and imputed data by various imputation
methods. The sparsity of the data is 72.6%. Cells are colored by cell types, which are reported in the original publication.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8471127

Zhang et al. NISC Imputation

108

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


The evaluation matrices on the clustering for this dataset are
also calculated (Figure 7). Though NISC result does not provide
the tightest clusters (from Silhouette score), among all the
imputation methods, it scores the highest consistently across
three measures of clustering accuracy, which confirms the
separation pattern in the visualization in Figure 6.

3.2.2 Mouse Embryonic Data
We also apply NISC and the compared methods on scRNA-seq
data of 92 mouse embryonic cells and 22,936 genes (GSE29087).
The sparsity of the data is 83.04%. The cell types of this data set
are reported in the original publication (Islam et al., 2011). We
visualize the clustering result with t-SNE plots (Supplementary
Figure S7), illustrating that, through NISC imputation, the 2 cell
types, 48 mouse embryonic stem cells (ES) and 44 mouse
embryonic fibroblasts (MEF), are separated, followed by
DrImpute, DCA and scGNN. Through imputation of scIGAN,
AutoImpute, LATE, ALRA, SAVER, MAGIC, EnImpute,
SAVER, VIPER, and scDoc, the 2 cell types in this data are
not separated well. With imputation of scGNN, DCA, and
DrImpute, the 2 cell types are only somewhat separated. With
scImpute, the cells are isolated into many tighter subclusters. In
other words, some cells which should belong to the same cell type
are scattered. The accuracy of clustering is assessed by four
evaluation measures. Though NISC result does not provide the
tightest clusters (from Silhouette score), among all the methods
compared here, NISC is superior to others in terms of cluster
accuracy ARI, AMI, and FMI. It improves the cluster results on
original raw data.

3.2.3 Human Lung Adenocarcinoma Data
The above real scRNA-seq datasets do not have ground truth,
since usually it is challenging to obtain the ground truth for

real scRNA-seq data. Alternatively, it will be convincing to
evaluate the performance of the imputation approaches if we
use a real scRNA-seq dataset with low sparsity and distinct cell
types and set it to be the ground truth data for evaluations. For
this purpose, we apply the imputation methods on lung
adenocarcinoma data (GSE69405) that profiles the gene
expression of single cancer cells with TPM (normalization
by transcripts per million) measurements (Soneson and
Robinson, 2018). These cancer cells are originally from
lung adenocarcinoma patient-derived xenograft (PDX)
tumors, including four types, H358 human lung cancer
cells (H358), cancer cells in PDX from primary tumors
(LC-PT-45), an additional batch of PDX cells (LC-Pt-45-
Re), and PDX cells for another lung cancer case (LC-MBT-
15). This data set contains 176 cells, and the sparsity of the
data is relatively low (46%). The cell types in this data can be
clearly identified in the original data without imputation
(Figure 8A). Therefore, we set the original data to be the
ground truth. Following the method in (Arisdakessian et al.,
2019) to generate noisy data, similarly, we mask the low-noise
data by randomly changing some non-zeros to zeros so that
the sparsity of the data is increased to 80% and the synthesized
dataset here is termed as raw data.

T-SNE plots (Figure 8A) of the synthesized data show that
NISC successfully recovers the cell types of the original data
through imputing the sparse raw data. However, other
imputation methods result in either one big cluster (i.e., all
cells are mixed together) or several tight clusters, but each
with two or more different cell types. A consistent conclusion
can be obtained in evaluation plots (Figure 8B). Though the cells
are not separately into tight clusters in NISC data, this method
results in the highest cluster accuracy, considering the actual cell
type status.

FIGURE 7 | Evaluation of clustering accuracy on the mouse lung data. Four measurements, AMI, ARI, FMI, and SS, are calculated for the imputed and raw data.
The definitions of the measurements can be found in the supplementary materials.
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FIGURE 8 | NISC recovers the cell types in lung adenocarcinoma data (GSE69405) (A) plots of t-SNE components 1 and 2 derived from raw data, imputed data
using NISC and other imputation methods. With additional zeros the sparsity of the data is 80%. Cells are colored by cell types, which are reported in the original
publication (B) Bar plots of evaluation of cluster accuracy on the raw and imputed data. Four measurements, AMI, ARI, FMI, and SS, are calculated for the imputed and
raw data. The definitions of the measurements can be found in the supplementary.
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4 DISCUSSION

NISC is a data-driven method and does not require any prior
knowledge. Real data and simulated data show that NISC can
impute the dropouts in the scRNA-seq data, improving the
accuracy of cell type clustering. Four performance measures
were calculated to evaluate the clustering accuracy for the
imputed data by various imputation methods. RMSE, which
measures the distance between true (if available) and imputed
values, was also calculated. Generally, compared with other
existing estimation methods, NISC has a lower RMSE and a
higher score in the evaluation measures of clustering accuracy.

NISC is an unsupervised neural network-based imputation
method with autoencoder techniques implemented. Compared
with other neural network-based methods, we investigated how
different loss functions affect the imputation results. We
developed a novel loss function weighted by Michaelis-Menten
kinetics (MMK) and investigated its difference and standard
mean square error (MSE) loss. Fig. S1 shows that the MMK
loss can achieve more effective imputation under the sparse
simulation setting, while by regular MSE the loss function is
less effective. In addition, we add L2 regularization and dropout
regularization to the model (Cortes et al., 2012) to avoid
overfitting when denoising the input data. This is the first
time the two regularizations are implemented simultaneously
in the autoencoder model to impute scRNA-seq data.

An effective neural network for imputation requires sufficient
neurons in the network. Due to many genes in scRNA-seq
studies, GPUs are recommended for NISC to speed up the
training process of the autoencoder network. NISC imputation
is not suitable for some types of data which lose Michaelis-
Menten kinetics, such as 10x Genomics data (Andrews and
Hemberg, 2019), and some normalized data, for example,
RPKM (Reads per kilo base per million mapped reads) or
FPKM (Fragments Per Kilobase Million) (Lytal et al., 2020).

However, TPM normalization is applicable as it maintains the
data structure of the original gene expressions (Li and Li, 2018).
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An Adaptive and Robust Test for
Microbial Community Analysis
Qingyu Chen1, Shili Lin2* and Chi Song1*
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In microbiome studies, researchers measure the abundance of each operational taxon unit
(OTU) and are often interested in testing the association between the microbiota and the
clinical outcome while conditional on certain covariates. Two types of approaches exists
for this testing purpose: the OTU-level tests that assess the association between each
OTU and the outcome, and the community-level tests that examine the microbial
community all together. It is of considerable interest to develop methods that enjoy
both the flexibility of OTU-level tests and the biological relevance of community-level
tests. We proposedMiAF, a method that adaptively combines p-values from the OTU-level
tests to construct a community-level test. By borrowing the flexibility of OTU-level tests, the
proposed method has great potential to generate a series of community-level tests that
suit a range of different microbiome profiles, while achieving the desirable high statistical
power of community-level testing methods. Using simulation study and real data
applications in a smoker throat microbiome study and a HIV patient stool microbiome
study, we demonstrated that MiAF has comparable or better power than methods that are
specifically designed for community-level tests. The proposed method also provides a
natural heuristic taxa selection.

Keywords: human microbiome, association test, community-level test, OTU-level test, adaptive combination of
p-values

1 INTRODUCTION

Investigating the function of the microbiome in human health has become a burgeoning study field
in recent years, which is attributed to the advent of new technologies for profiling complex microbial
communities by 16 S rRNA gene sequencing (Lasken, 2012) or shotgun metagenomic sequencing
(Hasan et al., 2014). Various microbial communities live throughout the human body and are
associated with several diseases, such as colorectal cancer (Ahn et al., 2013), inflammatory bowel
disease (Kostic et al., 2014) and obesity (Ley, 2010). Understanding the association between the
microbiome and human disease may push back the frontiers of medical treatment.

Although the shotgun metagenomic sequencing enjoys higher resolution of taxonomic
identification (Hasan et al., 2014), the reduced cost of 16 S rRNA gene sequencing makes it a
more commonly used technology for microbiome studies to date. Using standard pipelines, 16 S
sequences are clustered based on a prespecified similarity threshold (typically 97%) into operational
taxonomic units (OTUs), each of which represents a taxonomic unit at a certain taxonomic rank,
such as order, family, or genus (Nguyen et al., 2016). We note that some pipelines such as DADA2
(Callahan et al., 2016) and Deblur (Amir et al., 2017) generate amplicon sequence variants (ASVs)
instead of traditional OTUs. ASVs can be viewed as OTUs with the exact same sequences, and are
sometimes referred as 100% OTUs. Because the analysis methods discussed here can be applied to
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both OTUs and ASVs, we will not differentiate them and refer to
both as OTUs in the rest of this paper. Since the initiation of
Human Microbiome Project (Turnbaugh et al., 2007) in 2007,
researchers have developed a variety of statistical methods to
detect the possible association between microbiome diversity and
an outcome of interest, such as a disease status.

There are two general categories of approaches for detecting
associations—OTU-level methods and community-level
methods. OTU-level methods test whether each individual
OTU is associated with the outcome, while community-level
methods test whether the microbial community in its entirety
is associated with the outcome. Typically, the OTU-level methods
test the association between a clinical outcome and the abundance
of each OTU as a univariate covariate one-by-one. This univariate
approach allows the development of many sophisticated OTU-
level methods that can carefully accommodate the discrete and
sparse nature of OTU-level abundance data. For example, QIIME
(Caporaso et al., 2010), as a comprehensive pipeline, have the
capability of performing OTU differential abundance tests using
metagenomeSeq zero-inflated Gaussian (Paulson et al., 2013) and
DESeq2 negative binomial Wald test (Love et al., 2014). The
former developed a zero-inflated Gaussian distribution mixture
model to avoid biases due to undersampling of the microbial
community, while implementing a normalization method to deal
with uneven sequencing depth. The later adapted the negative
binomial model that has been popular in gene differential
expression study to analyze microbiome data. In addition,
QIIME also contains several classic statistical tests, such as
ANOVA, Kruskal-Wallis, G-test, Mann-Whitney test, as well
as the parametric and nonparametric t-test.

In practice, it is frequently more biologically relevant to
perform community-level analysis, which jointly tests the
association between a clinical outcome and a microbial
community as a whole. These methods are often based on
alpha diversity or beta diversity. Alpha diversity characterizes
the complexity of the microbial community within each sample.
Among them, the Inverse Simpson Diversity (Simpson, 1949),
Shannon Indexes (Shannon, 1948) and Faith’s phylogenetic
diversity that incorporates phylogenetic relationships (Faith,
1992) are some of the most popular choices. After
summarizing the complexity of the microbial community into
a single alpha diversity metric, univariate methods such as
regression models can be applied to detect the possible
association between the alpha diversity and the clinical
outcome. Adaptive microbiome α-diversity-based association
analysis (aMiAD) (Koh, 2018) used the minimum p-value
from association analyses based on different alpha diversity
metrics as its test statistic, and assessed the p-value of the
proposed test via a residual-based permutation method. Beta
diversity, on the other hand, measures the distance or
dissimilarity between each pair of biological samples. For
example, Bray-Curtis dissimilarity measures the differences
between two microbial communities by quantifying the non-
overlapping OTU abundances (Bray and Curtis, 1957). Jaccard
distance can be viewed as an “unweighted” version of Bray-Curtis
dissimilarity, since it only relies on the presence or absence of
OTUs without taking abundance information into account

(Jaccard, 1901, Jaccard, 1912). Among many available distance
metrics, the UniFrac distance incorporating phylogenetic
information is one of the most popular metrics (Lozupone
et al., 2007). It calculates the fraction of sums of branch
lengths with their corresponding taxa only in one sample to
both samples. Both weighted and unweighted versions of UniFrac
are commonly used in microbial ecology, where the former
accounts for abundance information of the taxa, while the
latter only considers their presence or absence. Moreover,
generalized UniFrac distances were proposed as a series of
distance metrics—from unweighted to weighted UniFrac by
assigning different weights on the branches (Chen et al.,
2012). Based on the beta diversity or a distance metric, various
community-level association testing methods have been
proposed. Permutational Multivariate Analysis of Variance
(PERMANOVA) (McArdle and Anderson, 2001), one of the
pioneer community-level tests, is a non-parametric method
that fits multivariate models for microbial community data to
test whether the samples significantly differ across a categorical
factor. It bears some resemblance to ANOVA but operates on a
dissimilarity matrix and assesses p-values based on permutation.
However, PERMANOVA usually adopts only one of the many
available distance metrics with no confounder adjustment and
cannot easily accommodate continuous traits (unless categorized
arbitrarily). Microbiome Regression-based Kernel Association
Test (MiRKAT) (Zhao et al., 2015), a more comprehensive
method, was proposed to extend the outcome of interest to
the continuous case. The phylogenetic dissimilarity matrix is
transformed into a kernel matrix which measures the similarity of
microbial communities between samples. MiRKAT regresses the
clinical outcome on this semiparametric kernel machine while
adjusting for potential confounders. It should be noted that
MiRKAT is equivalent to PERMANOVA when no covariates
are included. Besides, MiRKAT can combine multiple distance
metrics by selecting the one that generates the smallest p-value.

Although OTU-level methods and community-level methods
tackle the association testing problem from different angels, they
are in fact related to each other. The statement that the microbial
community is associated with the clinical outcome is equivalent
to that at least one of the OTUs differs across the outcome status.
Therefore, theoretically, the results of all the OTU-level tests can
be summarized across the observed taxon units to draw a
community-level conclusion about whether the microbial
community is associated with the clinical outcome.
Considering the vast availability of univariate models for
different study designs that can be directly applied to OTU-
level analysis, as well as the sophisticated OTU-level methods that
accommodate unique aspects of microbiome data, it would be
beneficial to combine them into community-level tests.

However, simply putting all OTU-level tests together without
proper weighting or OTU selection will suffer from power loss,
because not all OTUs may be associated with the outcome, and as
thus, a naive combination may accumulate noises that eventually
surpass association signals. Moreover, the number or proportion
of OTUs that are not associated with the outcome is often
unknown in practice. In contrast, adaptively and wisely
assigning weights to the taxon units according to their
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importance is a key to achieving greater statistical power. Some
efforts have already been put into this area. For example, adaptive
Microbiome-based Sum of Powered Score (aMiSPU) test (Wu
et al., 2016) extended the aSPU test (Pan et al., 2014) to
accommodate unique features of microbial data. This method
adaptively combines the score statistics for two versions of
generalized taxon proportions and resembles MiRKAT with
weighted and unweighted UniFrac kernel. OMiAT (Koh et al.,
2017) combines aSPU and MiRKAT by taking the minimum
p-value from all the score tests of the two methods. aSPU used in
OMiAT implements on standard compositional microbial data
without incorporating phylogenetic information. However, the
requirement of score statistic for taxon units in aMiSPU and
aSPU may limit their applicability to different study designs
where the score statistics may not be readily available. This
requirement also makes aMiSPU and OMiAT inflexible to
combine more sophisticated OTU-level testing methods that
are specifically designed for microbiome data. Compared to
score statistic, p-value is a more universally available statistic
in OTU-level association tests, thus making it a more suitable
target to combine, for the sake of flexibility. MiHC (Koh and
Zhao, 2020), adapted from higher criticism test which aims to
detect highly sparse signals, was tailored to accommodate
different sparsity levels and incorporate phylogenetic
information. It was more powerful for sparse microbial
association signals than abundant ones. In this paper, inspired
by Adaptive Fisher (AF) method (Song et al., 2016), we propose a
p-value combination approach, Microbiome Adaptive Fisher
method (MiAF), to aggregate p-values of OTU-level tests into

a novel community-level association test. It should be noted that
the focus of MiAF is to test whether the OTU community is
associated with the outcome, instead of estimating the parameters
of the association model. We compare the performance of MiAF
to methods specifically designed for detecting community-level
associations, and demonstrates comparable or better power for
MiAF. We also discuss the potential of MiAF as a general p-value
combination framework for microbial community-level tests
under various study designs.

2 MATERIALS AND METHODS

2.1 Statistical Model and OTU-Level Tests
Suppose n subjects are observed and their microbial communities
are profiled. For the ith subject, Yi denotes the outcome of interest
which can be binary or continuous, and Zi = (Zi1, . . ., Zic) denotes
c covariates such as age and gender that are potentially associated
with both the clinical outcome and microbial community, which
we need to adjust for as potential confounders. We construct an
“extended” OTU table containing all nodes (terminal and
internal) in the phylogenetic tree. Let Xi = (Xi1, . . ., Xim) be
the counts of “extended” OTUs which consist of both leaf nodes
and internal nodes (except for root node) for subject i, wherem is
the total number of “extended” OTUs. The count of an internal
node is derived by summing up all the counts of the leaf node
OTUs belonging to this taxon (see Figure 1 for an illustration).
Note that our method is not limited to bifurcating phylogenetic
trees, it is applicable to multifurcating trees. The relative
abundance of extended OTU k, k = 1, . . ., m, in subject i, i =
1, . . ., n, is Aik � Xik/∑q

j�1Xij, where q is the number of leaf
nodes, and the Xij’s are arranged such that the first q entries in Xi

are the leaf nodes in the same order for all individuals.
OTU abundance varies greatly in a microbial community.

Some microbes are dominant, but most are rare. In practice, the
underlying association patterns are unknown a priori. We do not
have the knowledge of the characteristics of the truly associated
OTUs nor their phylogenetic relationships that are captured by
phylogenetic trees. Therefore, we incline to integrate the
abundance information and phylogenic relationships
adaptively to achieve a robust test under diverse underlying
situations. When the associated OTUs are indeed
phylogenetically related, incorporating phylogenetic
information may boost the performance of an association
analysis to a great extent. To accommodate such a situation,
we define unweighted and weighted taxon proportions as Mu

ik �
I(Aik > 0) and Mw

ik � Aik respectively for “extended” OTU k, k =
1, . . ., m. The unweighted taxon proportion only considers the
presence or absence of an OTU, whereas the weighted one takes
the magnitude of the abundance information into account.
Inspired by the generalized UniFrac distance metric (Chen
et al., 2012), we also define a square-root transformed taxon
proportion to attenuate the contribution by highly abundant
OTUs as M.5

ik � Aik
0.5.

We also consider a taxon proportion restricted to leaf nodes
only for situations where the associated OTUs are not
phylogenetically related, since incorporating phylogenetic

FIGURE 1 | An example of a rooted phylogenetic tree. This is a simple
rooted phylogenetic tree containing 5 leaf nodes and 4 internal nodes. The
counts for leaf nodes—OTU1–5 — can be obtained via standard pipelines.
We assign the counts to internal nodes by summing up the counts of
their children and refer to them also as “OTUs”: For three of the four
abundance representations used in this paper, OTU7 = OTU1 + OTU2, OTU6
= OTU7 + OTU3, and OTU8 = OTU4 + OTU5. We construct the extended
OTU matrix containing all nodes (except the root) in this phylogenetic tree.
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information in this scenario may adversely affect testing
performance. That is, we only include the weighted taxon
proportion of leaf nodes in original OTU table defined as
Ma

ik � Aik, k = 1, . . ., q.
We use the following generalized linear model to depict the

association between the compositions of microbes in a
community and the health outcome taking confounding
covariates into consideration:

h E Yi[ ]( ) � α0 + Ziα +∑d
k�1

Mikβk, (1)

where α � (α1, . . . αc)⊤ represents the effects of the c covariates,
β � (β1, . . . βd)⊤ are the effects of the OTUs, and Mik can be any
of the four abundance representations defined above (Mu

ik, M
w
ik,

M.5
ik or Ma

ik); thus d = q for Ma
ik and d = m for the other three

measures. Finally, h (·) is the link function, which is the logit
function for binary outcomes or the identity function for
continuous outcomes.

We are interested in determining whether there is an
association between the outcome of interest and any OTU,
which is equivalent to testing the following hypotheses:

H0: β � 0 vs. H1: β ≠ 0.

The score statistics U = (U1, . . . , Ud) for β can be calculated as
U � ∑n

i�1(Yi − μ̂i)(Mi − M̂i), where μ̂i is the expectation of Yi

under H0, and M̂i � (M̂i1, . . . M̂id) are the fitted values of Mi by
regressing M·k = (M1k, M2k, . . . , Mnk), for each k = 1, . . . , d,
separately on the covariates Z. UnderH0,U ~N (0, V), where V is
the corresponding Fisher information matrix. Then the marginal
OTU-level p-values p = (p1, . . . , pd) for β can be obtained based
on ~U � ( ~U1, . . . , ~Ud), where ~Uk � Uk/Vkk and Vkk is the kth
diagonal element of V. We noted that in this paper, we choose to
combine the one-sided p-values (i.e., pl

k � Φ( ~Uk) for the lower-
tail and pu

k � 1 −Φ( ~Uk) for the upper-tail), because they account
for the directionality of effects and can help boost statistical
power when many OTUs have effects of the same direction. We
also note that in rare situations whereVkk = 0 for some OTU k, we
remove these OTUs from any subsequent analysis.

2.2 Combining P-Values from OTU-Level
Tests
After getting p-values for all the OTUs (either the “extended” set
or the original set), we combine them as follows. Let

Rk � −logpk, (2)
where pk is the p-value for testing OTU k, which can be pl

k or p
u
k

as defined above, for a particular abundance representation
M(Mu, Mw, M.5 or Ma). Since the taxa in the phylogenetic tree
represent different classification levels and the abundance
dispersion of different OTUs varies drastically, not all
OTUs in a microbial community contribute, let alone
contribute equally, to the clinical outcome of interest.
Therefore, assigning different weights to OTUs according to
their potential importance may enhance the statistical power
of the association test. In our method, when including internal

nodes, i.e., using Mu
ik, M

w
ik, or M.5

ik, we use a UniFrac-like
weight

ωk � SD M·k( ) × bk, k � 1, . . . , m, (3)
where bk is the length of the branch that leads to the kth OTU in
the phylogenetic tree, and SD (·) stands for standard deviation.
Our choice of weights takes into account both the dispersion of
OTUs and their positions in the phylogenetic tree, and it is the
same as that used inMiSPU andMiRKAT with UniFrac kernels if
these methods are viewed as combining standardized score
statistics. For Ma

ik, since only leaf nodes are considered, the
branch length is no longer relevant; thus, we use

ωk � SD M·k( ), k � 1, . . . , q. (4)
Given the weights ω = (ω1, . . ., ωd) for all d OTUs, we can
calculate

Wk � ωkRk. (5)
Then we sortW1, . . .,Wd in descending order, such thatW(1) ≥/
≥W(d). Let S = (S1, . . ., Sd) be the partial sum ofW(1), . . .,W(d), i.e.

Sk � ∑k
l�1

W l( ). (6)

For each Sk, its p-value can be defined as Psk � Pr(Sk ≥ sk), where
sk is the observed value of Sk, for k = 1, . . . , d. This leads to our
proposed AF statistic

TAF � min
1≤k≤d

Psk, (7)

The minimizer in Equation 7 casts some light on the
associated taxa, thus, we provide a heuristic taxon selection
procedure. Suppose h � argmin1≤k≤dPsk, we select h taxa
corresponding to the h largest Wks as associated with the
outcome. However, we caution against over-interpreting the
taxon selection results, which we will further explore in
Section 3.1.2 and Section 3.2.

2.3 Assessing Statistical Significance by
Permutation
Since the asymptotic distributions of Sk and TAF are intractable
when the OTU abundances are correlated, we propose to carry
out the following permutation algorithm to access the null
distribution of TAF and estimate its corresponding p-value.

Step 1. Regress each OTU column ofM,M·k, iteratively on the
covariates Z to obtain the fitted OTU matrix M̂ and the
corresponding residual matrix ~M � M − M̂ � {M̃ij}. Calculate
marginal p-values p for the OTUs according to model Eq. 1
using ~M as M. Set p(0) = p.

Step 2. Permute rows of ~M for a large number of times, B, to
get a set of permuted residual matrices { ~M(1)

, . . . , ~M
(B)}. Obtain

the permutation set of p-values {p(1), . . ., p(B)}, by refitting the
regression model with the permuted residuals for b = 1, . . ., B.

Step 3. Follow Equations 2–6 to obtain S(b) � (S(b)1 , . . . , S(b)d ),
for b = 0, 1, . . ., B, where S(0), corresponding to p(0), denoting the
statistic based on the original data.
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Step 4. For each b = 0, 1, . . ., B and k = 1, . . ., d, calculate

P b( )
Sk

≈
1

B + 1
∑B
b*�0

I S b*( )
k ≥ S b( )

k{ }.
Then we can get the observed and permuted AF statistics
T(b)
AF � min1≤k≤dP

(b)
Sk
, for b = 0, 1, . . ., B.

Step 5. The p-value P(b)
AF of the AF statistic T(b)

AF can be
approximated by

P b( )
AF � Pr TAF ≤T b( )

AF{ } ≈ 1
B + 1

∑B
b*�0

1 T b*( )
AF ≤T b( )

AF{ },
where b = 0, 1, . . ., B.

Note that in Step 1 and 2, we permute the residuals of
regression M·k on Z and fit a generalized linear model using
the permuted residuals, which preserves the correlation among
covariates Z and abundance representation M even after
permutation. We also noted that we used index b = 0 to
denote the statistics calculated from the original observed data.
Therefore P(0)

AF is the final p-value of our proposed AF statistic if
there is only one list of OTU-level p-values p = (p1, . . . , pd) to
combine, e.g., only pl using Mu. Besides, we also calculated P(b)

AF
for b = 1, . . ., B, which are B permutations of the AF p-value.
These permutations can be further used to combine the results of
multiple AF p-values generated by combining p-values from our
multiple OTU abundance representations, which we discuss next.

2.4 Combining Multiple AF Tests
In the method described in the previous subsections, there are
multiple variations or factors that can affect the performance
of the test under different scenarios, including the choice of
OTU-level tests, the transformation from relative abundance,
A, to an abundance representation, M, the usage of one-sided
or two-sided p-values, and the weights used in the combination
step. Therefore, to construct a statistical test that is robust
under various scenarios, it is often desirable to combine the
results from multiple tests based on different parameter
choices. We therefore, propose to combine the results of
multiple AF tests with different parameter selections to
form a unified test.

The p-value combination approach that we described
previously in Section 2.2 can be viewed as a general method
for combining multiple p-values with or without weights, as long
as we can obtain a permuted sample while preserving the
correlation among them. We define operation AF{p[; ω]} as
the procedure that combined a p-value vector p with optional
weight vector ω, which defaults to ones when omitted. By using
this AF operator, we can redefine our MiAF method that
combines results from different choices of OTU-level test
p-values, weights, and abundance representations. For
illustration purpose, in the rest of our paper, we combine
results from lower- and upper-tail p-values using the
unweighted (Mu), weighted (Mw), square-root (M.5) abundance
representations for “extended” OTUs and their corresponding
weights as defined above, as well as the abundance
representations for leaf nodes only (Ma) and its corresponding
weights. Specifically, pul and puu denote the lower- and upper-tail

p-values of the OTU-level tests using Mu. Similarly, we use pwl

and pwu for Mw, p.5l and p.5u for M.5, and pal and pau for Ma.
With the associated weights denoted as ωa, ωw, ω.5 and ωa,

respectively, we can obtain the p-value for each of the eight
community-level MiAF tests by combining the corresponding
OTU-level p-value vectors and the corresponding weight vectors
using the AF operator defined above; details are given in the 5th

and 6th columns of Table 1. The two one-sided community-level
tests are then combined to form a two-sided test, again using the
AF operator, for each of the four abundance measure tests
(column 7 of Table 1). Our eventual test statistic, MiAF,
combines the unweighted UniFrac-like test p-value PMiAFu, the
weighted UniFrac-like test p-value PMiAFw, the generalized
UniFrac-like test p-value PMiAF.5 and the leaf-nodes-only test
p-value PMiAFa, again using AF operator (last row of Table 1). We
declare that the microbial community is significantly associated
with the clinical outcome if PMiAF is smaller than a prespecified
significance level α.

3 RESULTS

3.1 Simulation Study
3.1.1 Simulation Strategy
We conducted simulation studies to investigate whether MiAF
correctly controls type I error and to evaluate the performance of
MiAF in a wide range of scenarios. We generated unobvserved
absolute abundances and read counts of OTUs using the R
package SparseDOSSA2 which can parameterize real microbial
profiles and then simulate new profiles based on the estimated
parameters (Ma et al., 2021). SparseDOSSA2 depicts the
unobserved absolute abundance via a Gaussian copula model
with zero-inflated log normal marginal distributions. To address
the identifiability issue, it imposes L1 penalization on the
correlation matrix. Using SparseDOSSA2 package, we first
parameterized a real upper-respiratory-tract microbiome data
set consisting of 856 OTUs and 60 samples (Charlson et al., 2010).
The penalizing tuning parameter was chosen to be 0.1 since it
achieved the largest likelihood among {0.1, 0.2, . . ., 1}. 616 OTUs
remained after discarding the OTUs with only one non-zero
count across the samples. Then the microbial community profiles
for 616 OTUs and 100 samples, including unobserved absolute
abundance and read counts, based on the estimated parameters
were simulated. We denoted the simulated absolute abundance
matrix by X, where Xij was the absolute abundance of OTU j in
sample i.

To evaluate our method, we implemented three simulation
scenarios where the OTUs were divided into different clusters and
related to both binary and continuous outcomes in different ways.
The clustering on OTUs was based on partitioning around
medoids (Kaufman and Rousseeuw, 1990) with cophenetic
distance (Sokal and Rohlf, 1962). We chose three cluster
numbers: 10, 22 and 29, corresponding to the first three local
maxima of the mean silhouette values shown in Supplementary
Figure S1 of Supplementary Material. Under scenario 1, the 616
OTUs were grouped into 22 clusters. The abundance varied
greatly among these 22 clusters. In order to test our new
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method in broader circumstances, we performed the simulation
analysis assuming that the outcome is truly associated with each
cluster of OTUs iteratively instead of evaluating the performance
on only a few clusters. The binary outcome Yi for sample i, i = 1,
. . ., 100, was simulated based on model

logit E Yi | Xi,Zi( )( ) � 0.5 scale Zi1 + Zi2( ) + β scale ∑
j∈C

Xij
⎛⎝ ⎞⎠.

(8)
We simulated continuous outcomes under the model

Yi � 0.5 scale Zi1 + Zi2( ) + β scale ∑
j∈C

Xij
⎛⎝ ⎞⎠ + ϵi, (9)

where ϵi ~ N(0, 1). For both binary and continuous outcomes, Zi1
and Zi2 were covariates, and C was the set of OTUs that belong to
a selected cluster. The scale(·) function standardizes the sample
mean to 0 and standard deviation to 1. Zi1 was drawn from a
Bernoulli distribution with success probability 0.5 independently.
For Zi2, we consider two situations where Zi2 and the abundance
of the microbial community Xi· are either independent or
correlated. In the independent case, Zi2 was generated from
standard normal distribution N (0, 1), and the effect size β
was set as 0.6, 0.8, 1.2, 1.6 and 2 for binary outcomes, and 0.2,
0.4, 0.6, 0.8 and 1 for continuous outcomes to mimic different
levels of association strength between the OTUs and the clinical
outcome. In the correlated case, we let Zi2 = scale(∑j∈CXij) + τ,
where τ ~ N(0, 1) and the effect size β was set to be twice as large
as the corresponding value in the independent case, in order to
show a clearer difference among the methods compared.

Under scenario 2, we divided the 616 OTUs into 10 clusters
and simulated the data on all clusters following the same settings.
For scenario 3, all OTUs were divided into 29 clusters following
the same procedure.

Under all three simulation scenarios, the performance of
MiAF was compared to MiRKAT, aMiSPU, OMiAT, aMiAD
and MiHC. We did not include PERMANOVA because it is
essentially equivalent to MiRKAT without covariates (Zhao et al.,
2015). aMiSPU combines unweighted and weighted UniFrac
versions of test. MiRKAT combines four kernels, including the
unweighted and weighted UniFrac, a generalized UniFrac with
tuning parameter at 0.5, and the Bray-Curtis. MiAF combines the
unweighted, weighted, generalized UniFrac-like and the leaf-

nodes-only test p-values. We used default setting of OMiAT,
which includes all the kernels in MiRKAT but with an addition of
the Jaccard distance. aMiAD combines six alpha diversity metrics
as its default setting, which includes Richness, Shannon, Simpson,
phylogenetic diversity (PD), phylogenetic entropy (PE) (Allen
et al., 2009) and phylogenetic quadratic entropy (PQE) (Rao,
1982). MiHC combines the unweighted higher criticism test,
weighted higher criticism test and Simes test, and the
candidate set for both higher criticism tests to modulate low
sparsity level was set as {1, 3, 5, 7, 9}. We set the significance level
to be 0.05 for each test. When evaluating the type I error under all
the simulation scenarios, we simulated data according to model
(Eqs 8 and 9) by setting β = 0. We set the number of permutation
for all five methods as 10,000 to assess their ability for correct
control of type I error. When comparing power, the number of
permutation was set to be 1,000. All simulation results were based
on 1,000 independent replicates.

We investigated the performance of the proposed heuristic
taxa selection procedure when setting β > 0 in the model (Eqs 8
and 9). Although only tip nodes were explicitly assumed to be
associated with the outcome in the simulation setting, we also
viewed the internal nodes as associated taxa if any of their
descendants was associated. Since the outcome were generated
to be positively correlated with the abundances of OTUs within
the associated cluster, we recorded the number of every taxon
being selected from upper-tail p-values in the 1,000 independent
replicates.

3.1.2 Simulation Results
Figure 2 shows the statistical power for binary outcomes under
scenario 1, where 616 OTUs were partitioned into 22 clusters, and
when both covariates Zi1 and Zi2 are independent of the microbial
community. The cluster size and mean absolute abundance varies
greatly among 22 clusters (see details in Supplementary Table
S1B of Supplementary Material), covering different underlying
association patterns. We evaluated the performance of all the
methods under situations where each phylogenetic cluster of
OTUs was set to be associated with the binary outcome
successively. The power of the six methods was plotted against
clusters sorted by the sum of estimated mean absolute abundance
of OTUs within the cluster that was truly associated from the
greatest to the least, representing the total strength of signals. As
expected, for each associated cluster community, the statistical
power increased as the effect size β increased. For aMiSPU,

TABLE 1 | MiAF implementation algorithm.

Tests Abundance measure Relationship to
A

Phylogenetic
information

Single measure Combine multiple
measuresLower-Tail Upper-Tail

MiAFu Mu Mu
ik � I(Aik > 0)* ✓ Pul = AF{pul; ωu} Puu = AF{puu; ωu} PMiAFu � AF{(Pul ,Puu)T }

MiAFw Mw Mw
ik � Aik* ✓ Pwl = AF{pwl; ωw} Pwu = AF{pwu; ωw} PMiAFw � AF{(Pwl ,Pwu)T }

MiAF.5 M.5
M.5

ik � Aik
.5* ✓ P.5l = AF{p.5l; ω.5} P.5u = AF{p.5u; ω.5} PMiAF.5 � AF{(P.5l ,P.5u)T }

MiAFa Ma
Ma

ik � Aik
† 7 Pal = AF{pal; ωa} Pau = AF{pau; ωa} PMiAFa � AF{(Pal ,Pau)T }

MiAF — — — — — PMiAF = AF{(PMiAFu ,PMiAFw ,PMiAF.5 ,PMiAFa)T }
*k = 1, . . ., m.
†k = 1, . . ., q.
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MiRKAT and MiAF, the performance of the unweighted version
of tests was outperformed by the weighted version of tests in the
majority of the clusters, with exceptions of clusters 7, 12, 16, 20
and 22. Another observation for all methods was that the

combined tests lose only a little power compared to the best
one of their corresponding component tests, which justifies the
use of a combined or optimal test to draw a unified conclusions
from multiple parameter choices. Therefore, we focused on

FIGURE 2 | Power comparison for binary outcomes under the independent case of scenario 1. A total of 616OTUs were divided into 22 clusters. The covariates Zi2
and OTUsXi·were independent. The effect size was set as 0.6, 0.8, 1.2, 1.6 and 2. The 22 clusters were sorted by the sum of estimatedmean absolute abundance of the
OTUs within the cluster that was truly associated from the greatest to the least.
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comparing the performance of the combined version of the six
tests in the rest of this section. When the total sum of estimated
mean absolute abundance of OTUs within the associated clusters
was relatively large (around top 40% of the sum of absolute
abundance of associated OTUs among the 22 clusters), MiAF
either outperformed the other fivemethods or was commensurate
with the best of the other five.WhenMiAF was not the best, either
MiRKAT or OMiAT was always among the top, where the power

of OMiAT was predominantly driven by MiRKAT. When the
sum of estimated mean absolute abundance of the associated
OTUs was relatively small (around lower 60% among the 22
clusters), OMiAT had overall the best performance. In most
cases, MiAF outperformed the inferior methods by a large margin
even if it was not the best.

The results for binary outcomes under scenario 1 with
covariate Zi2 correlated with the OTU abundance were

FIGURE 3 | Power comparison for binary outcomes under the correlated case of scenario 1. A total of 616 OTUs were divided into 22 clusters. The covariates Zi2
and OTUs Xi· were correlated. The effect size was set as 1.2, 1.6, 2.4, 3.2 and 4. The 22 clusters were sorted by the sum of estimated mean absolute abundance of the
OTUs within the cluster that was truly associated from the greatest to the least.
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shown in Figure 3. Similar to the independent covariate case,
the weighted tests possessed relatively higher statistical power
with exceptions of clusters 7, 12, 16, 20, 21 and 22. In terms of
the combined test, the advantage of MiAF over the other
methods was more prominent than that in the independent
case. In all the clusters except for cluster 7 and 8 where several
methods were on par, MiAF achieved a dominant position over
the other five methods or was a close second. We observed

distinct advantage of MiAF in clusters 3, 9, 14 and 21, where
MiAF had moderate power even when the effect size was small.
It was interesting to see that the unweighted tests achieved
their greatest power in cluster 22 where the mean OTU
abundance was the lowest among all clusters. It confirmed
that the unweighted tests are more powerful when clinical
outcomes are associated with rare microbial taxa (Chen et al.,
2012).

FIGURE 4 | Power comparison for continuous outcomes under the independent case of scenario 2. A total of 616 OTUs were divided into 10 clusters. The
covariates Zi2 and OTUs Xi· were independent. The effect size was set as 0.2, 0.4, 0.6, 0.8 and 1. The 10 clusters were sorted by the sum of estimated mean absolute
abundance of the OTUs within the cluster that was truly associated from the greatest to the least.
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The simulation results for binary outcomes under scenario 2
and scenario 3 showed similar results, when the OTUs were
partitioned into 10 or 29 clusters respectively. The power
comparisons were shown in Supplementary Figures S2–S5.
Our method, MiAF, achieved a dominant position over other

methods consistently in correlated cases, where the existence of
correlation between microbes and covariates is more biologically
relevant in practice. MiAF performed equivalently well with
OMiAT and MiRKAT in the independent cases when the sum
of absolute abundances of the associated OTUs was relatively

FIGURE 5 | Power comparison for continuous outcomes under the correlated case of scenario 2. A total of 616 OTUs were divided into 10 clusters. The covariates
Zi2 and OTUs Xi· were correlated. The effect size was set as 0.4, 0.8, 1.2, 1.6 and 2. The 10 clusters were sorted by the sum of estimated mean absolute abundance of
the OTUs within the cluster that was truly associated from the greatest to the least.
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large (around top 70% and 30% among the 10 and 29 clusters
respectively); while when the sum of absolute abundance of the
associated OTUs was relatively small around lower 30% and 70%
among the 10 and 29 clusters respectively, OMiAT was always in
the lead. The power of MiAF was affected by the effect size and
underlying association patterns, but not the direction of the effect
(see the power comparison under the independent case of 10
clusters with positive and negative effects in Supplementary
Figure S6).

Figures 4, 5 displays the statistical power for continuous
outcomes under scenario 2 for independent and correlated
cases respectively, where 616 OTUs were divided into 10
clusters. The largest cluster consists of 171 OTUs (27.76%),
and the sizes of the rest clusters are between 23 (3.41%) and 68
(11.04%) (see details in Supplementary Table S1A). In
contrast to clearly different power comparison trend
between independent and correlated cases for binary
outcomes, the comparative power among the six methods
was mainly affected by the associated clusters for
continuous outcomes. MiAF continued to thrive when the
sum of estimated mean absolute abundance of the OTUs
within the selected cluster was relatively large (top 70%
among 10 clusters for independent case and all 10 clusters
for correlated case). We observed a great disparity in the
performance of MiHC between binary and continuous
outcomes, where MiHC was more capable of detecting the
association between microbial communities and a continuous
outcome. Besides, MiHC was barely able to detect the
association for small effect size scenarios, and its power
surged when the effect size raised to high level. MiHC had
the greatest power among all the methods for relatively small
sum of absolute abundance of the associated OTUs (around
lower 2/3 and 1/2 for independent and correlated case
respectively among 22 and 29 clusters), especially in some
results with 22 or 29 clusters where the associated clusters
tended to be in small size due to the large number of clustering
(see Supplementary Figures S7–S10).

Empirical Type I error rates of the six methods across different
simulation scenarios are shown in Table 2. Under the null model
of independent case where the selected OTU cluster did not play a
role, we had one unified assessment of type I error. For the
correlated case, we averaged the type I error rates over all clusters
within each scenario. The details of type I error rates for each
cluster are provided in Supplementary Tables S2–S7 for binary
and continuous responses respectively. Further, we investigated

the Type I error rates for the independent case with QQ-plot of
p-values in − log10 scale against a uniform distribution between 0
and 1 shown in Supplementary Figures S11, S12. We can see
that the error rate was conservative for MiHC under binary
responses, and that it was well under control for other
methods (~ 0.05) in general, which confirmed that our
method is statistically valid.

We compared the taxon selection results with the truth in
our simulation settings. To demonstrate the performance of
our heuristic taxon selection procedure, we took cluster 1 out
of 10 clusters for continuous outcomes under independent
case with effect size 1 as an example shown in Supplementary
Figure S13 (see more results in Supplementary Figures
S14–S16). The most often selected taxa over 1,000 replicates
tended to be in high abundance, belonging to the truly
associated cluster. MiAF had more difficulties in identifying
associated taxa with low abundance, since the selection of low
abundance taxa suffered from random noise, which renders
the selection results of low abundance taxa unstable and
unreliable. Therefore, the taxon selection result was more
useful for abundant taxa, leading to more trustworthy
insight into selecting taxa at relatively higher level of the
phylogenetic tree in general, as their counts were aggregated
from their descendants. To help navigate the taxa selection
result and focus on abundant taxa only, we provide a
visualization tool in our R package where the transparency
of each branch was set according to the abundance of its node.
The tendency to discover abundant associated taxa was
consistent with the prominent performance of MiAF when
the sum of absolute abundance of associated OTUs was large in
the previous power results. We called the 10% most often
selected taxa over 1,000 replicates as selected taxa in a
simulation scenario, or otherwise as non-selected taxa to err
on the conservative side. Under the independent case for
continuous outcomes with effect size 1 where 616 OTUs
were divided into 10 clusters, we also provided the
sensitivity and specificity for abundant taxa, specifically taxa
with abundance over 75%, 80% and 85% quantiles respectively
in Supplementary Table S8. The overall specificity was
considerably high, although the sensitivity was lower. It
suggests that a subset of the associated taxa can be
identified, and that we are unlikely to select wrong taxa
based on our heuristic taxon selection algorithm. It should
be noted that the taxa selection result is only exploratory and
should not be over-interpreted.

TABLE 2 | Type I error rates under independent case and mean type I error rates under correlated cases for both binary and continuous outcomes.

Simulation scenarios aMiSPU MiRKAT OMiAT aMiAD MiHC MiAF

Binary response Independent case 0.059 0.048 0.047 0.050 0.025 0.055
Correlated case, 10 clusters 0.046 0.042 0.046 0.043 0.032 0.051
Correlated case, 22 clusters 0.048 0.047 0.049 0.047 0.032 0.048
Correlated case, 29 clusters 0.050 0.046 0.047 0.048 0.025 0.048

Continuous response Independent case 0.049 0.047 0.059 0.055 0.038 0.050
Correlated case, 10 clusters 0.043 0.045 0.044 0.045 0.047 0.042
Correlated case, 22 clusters 0.047 0.048 0.047 0.046 0.039 0.049
Correlated case, 29 clusters 0.050 0.045 0.049 0.048 0.032 0.047
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3.2 Real Data Analysis
3.2.1 Application to a Throat Microbiome Dataset
In our first real data application to demonstrate the utility of our
proposed MiAF, we applied it and the competing methods to a
profiling study of microbial communities in the upper respiratory
tract to explore the effect of cigarette smoking (Charlson et al.,
2010). In the study, microbiota were collected from the right and
left nasopharynx and oropharynx of 29 smokers and 33 healthy
non-smokers. After PCR amplification and QIIME pipeline,
OTUs were constructed at 97% similarity. The preprocessed
dataset is included in many statistical software packages such
as GUniFrac (Chen et al., 2012), MiRKAT (Zhao et al., 2015) and
MiSPU (Pan et al., 2014) as the testing data, which contain
information on 856 OTUs in 60 samples (28 smokers and 32
nonsmokers), a slightly reduced data set from the original study.
Our application used this dataset following the papers of
MiRKAT and aMiSPU.

We applied MiRKAT, aMiSPU, OMiAT, aMiAD, MiHC and
MiAF on this dataset to test the association between smoking and
microbial community composition while controlling for gender.
Table 3 presents p-values of these six methods. The combined
MiAF generated a p-value of 0.0025, which confirmed the results
published in previous studies that the association between the
microbial community and smoking status remained significant
while adjusting for possible confounders (Brook and Gober, 2008;
Charlson et al., 2010; Schenck et al., 2016). MiHC was the only
method that failed to detect such association among the six
methods. The unweighted test of aMiSPU and MiAFu, as well
as aMiAD using alpha diversity metrics Richness, Shannon,
Simpson and phylogenetic diversity, alone failed to detect such
association at significance level 0.05, although their
corresponding combined results were significant. All the
component tests of MiHC failed to detect any association in
this dataset (see results of all the component tests of the six
methods in Supplementary Table S9).

Besides an overall evaluation of association, selecting
associated taxa in a microbial community is also of interest.
MiAF provides a heuristic taxon selection by choosing the top h
taxa in the p-value combination step, where h is the minimizer of
Equation 7. Supplementary Figure S17 shows the selected
associated taxa for this throat microbiome dataset. The
phylogenetic tree was plotted using the R package ggtree (Yu
et al., 2018). MiAF detected 1 associated node to be under-
presented in the smokers based on lower-tail p-values, and it
detected 128 associated nodes to be over-presented from upper-
tail p-values as well.

3.2.2 Application to a Stool Microbiome Dataset
HIV infection induces substantial gut microbiome alterations.
Lozupone et al. (Lozupone et al., 2013) revealed that HIV

infection was associated with highly characteristic gut
microbial community changes through 16 S rRNA sequencing
of feces. In our second real data application, we downloaded the
processed OTU data consisting of 10104 100% OTUs, i.e., ASVs,
from the MicrobiomeHD database (Duvallet et al., 2017). After
matching the samples to their clinical data, our analysis was
conducted based on 22 HIV-infected individuals and 13 HIV-
negative controls. After excluding OTUs with all zero counts in
the 35 samples, 9,460 OTUs remained in the analysis. We built
the phylogenetic tree using the QIIME2 pipeline (Bolyen et al.,
2019).

We investigated the association between disease status and the
overall microbial community composition using the six methods
all based on 10,000 permutations, adjusting for potential
confounder age. Table 4 shows the p-values generated by the
six methods, where all the methods were able to detect the
association at significance level 0.01 except for aMiSPU. While
the unweighted test of aMiSPU and aMiAD using Shannon,
Simpson and phylogenetic diversity, as well as the Simes test
combined by MiHC failed to detect any association, the results of
all the other component tests were significant at the 0.05 level (see
details in Supplementary Table S10). As in the first application,
we were also interested in finding individual taxa that are thought
to be associated with HIV status. To this end, MiAF detected 224
and 57 associated nodes from under- and over-presented in the
HIV-infected individuals respectively (phylogenetic tree plot was
not included because it was hardly readable due to the large
number of OTUs).

4 DISCUSSION

In this paper, we proposed an adaptive p-value combination
approach to construct a community-level association test from
those that are OTU-level based. In general, combining OTU-level
tests without adaptation or weighting may not generate
comparable statistical power to sophisticated methods
specifically designed for community-level association test. To
demonstrate the usage and statistical power of the proposed
approach, we constructed a community-level test, MiAF, by
combining the p-values of univariate score tests using
UniFrac-like and Bray-Curtis-like transformations and
weighting scheme, and showed that its statistical power is
comparable or better than methods specifically designed for
community test. We chose to combine the p-values of score
statistics to make it a fair comparison to the competing methods,
because the performance of our method depends on the selection
of univariate tests and the aMiSPU, MiRKAT and OMiAT test
statistics can all be viewed as functions of the score statistics with
similar weight selection.

TABLE 3 | P-values of aMiSPU, MiRKAT, OMiAT, aMiAD, MiHC and MiAF for the
association test between smoking status and throat microbial community.

aMiSPU MiRKAT OMiAT aMiAD MiHC MiAF

p-value 0.0025 0.0046 0.0096 0.0167 0.2249 0.0025

TABLE 4 | P-values of aMiSPU, MiRKAT, OMiAT, aMiAD, MiHC and MiAF for the
association test between HIV infectious status and gut microbial community.

aMiSPU MiRKAT OMiAT aMiAD MiHC MiAF

p-value 0.0114 0.0002 0.0001 0.0002 0.0001 0.0003
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It should be noted that the aMiSPU test can also be viewed as a
test that combines OTU-level score test statistics. However,
comparing to score statistic, p-value is a much more readily
available statistic for various univariate testing methods.
Although we demonstrated the usage of our proposed method
using score tests, p-values are the quantities that we ultimately
combine. This leads to the flexibility to our proposed framework
since other tests can be combined into community-level tests, as
long as they satisfy two conditions: 1) p-values (ideally one-sided)
are available and can correctly control type I error; and 2)
permutation or resampling methods exist to generate a
reference distribution for the p-values while maintaining the
correlation structure among the OTUs. We note that these
two condition are met by a lot of tests, such as the tests in
various regression models, where we can adopt a similar
permutation procedure that permutes the residual of the
condition of interest that regressed on the confounding
covariates. For example, using this strategy, it will be relatively
easy to construct a community-level test for survival outcome by
combining any survival models, such as the Cox model or the
accelerated failure time model. In addition, it is also possible to
combine OTU-level tests to accommodate longitudinal outcomes
or longitudinal microbiome measurements, which is our next
topic in the future research.

A side product of our method is taxon selection, which is
naturally provided by the minimizer. By plotting the selected taxa
along the phylogenetic tree, we can see that they tend to occupy
consecutive branches that leads to much fewer OTUs, which
matches our intuition, because if a species is over-presented, the
taxa in the upper hierarchy (such as genus, family, order, etc.) that
contains the species should also be over-presented. However, this
variable selection is only heuristic and is not the focus of this
paper, because the p-values we combined are from univariate
models, which perform marginal tests not conditional on other
OTUs. Therefore, the OTUs selected are only marginally related
to the outcome. It is still possible that some of the selected OTUs
correlate to the outcome through other OTUs, which is a
limitation of the proposed method. Another limitation is the
relatively slow computational speed compared to aMiSPU,
MiRKAT, OMiAT and MiHC when there are a large number
of taxa, but it is faster than aMiAD. When analyzing the data set
of our first real data application in a laptop with 8-core CPU and
8 GB unified memory, it takes 7 s for aMiSPU, 3 s for MiRKAT,

17 s for OMiAT, 21 s for MiHC, 5 min 45 s for MiAF, and 7 min
41 s for aMiAD. Despite relatively slower computational speed, it
is still computationally feasible to apply MiAF to real data sets
given that MiAF will only need to be performed once on the data
set to test the association. Improving the computational speed of
our method is one of our future work.
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