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The Biosynthesis of Enzymatically
Oxidized Lipids
Ali A. Hajeyah1*, William J. Griffiths2, Yuqin Wang2, Andrew J. Finch3

and Valerie B. O’Donnell 1

1 Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom,
2 Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom, 3 Centre for Tumour Biology,
Barts Cancer Institute, Queen Mary University of London, London, United Kingdom

Enzymatically oxidized lipids are a specific group of biomolecules that function as key
signaling mediators and hormones, regulating various cellular and physiological processes
from metabolism and cell death to inflammation and the immune response. They are
broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid
oxygenated PUFA “oxylipins”, endocannabinoids, oxidized phospholipids) or cholesterol
derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is
accomplished by famil ies of enzymes that include l ipoxygenases (LOX),
cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In
contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and
are broadly considered to be harmful. Here, we provide an overview of the biochemistry
and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present
biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and
steroid hormones. Last, we address gaps in knowledge and suggest directions for
future work.

Keywords: biosynthesis of oxidized lipids, lipoxygenase (LOX), cyclooxygenase (COX), cytochrome P450, aldo-keto
reductase (AKR), oxylipins, oxidized phospholipids, sterols and steroid hormones
INTRODUCTION

Lipids are a key component of life. They play essential roles in membrane structure, cell signaling
and energy production. Like other biomolecules, they undergo chemical modifications that expand
their functional repertoire. One modification that has been steadily gaining attention is lipid
oxygenation, with interest being attributed to two factors: advances in analytical methods that allow
detection of oxygenated species, and the ever-growing body of literature implicating them in
biological processes and disease. “Enzymatically oxidized lipids” constitute a large portion of known
oxygenated lipid mediators, being bioactive lipids that are produced locally through specific
Abbreviations: 4-HNE, 4-hydroxy-2-nonenal; AA, arachidonic acid; AKR, aldo-keto reductase; ALA, a-linolenic acid; COX,
cyclooxygenase; CE, cholesteryl ester; CYP, cytochrome P450; DGLA, dihomo-g-linolenic acid; DHA, docosahexaenoic acid;
DPEP2, dipeptidase 2; EET, epoxy-eicosatrienoic acid; EPA, eicosapentaenoic acid; GGT, g-glutamyl transpeptidase; GLA,
g-linolenic acid; GPCR, G protein-coupled receptor; HETE, hydroxy-eicosatetraenoic acid; HpETE, hydroperoxy-
eicosatetraenoic acid; HSD, hydroxysteroid dehydrogenase; LA, linoleic acid; LOX, lipoxygenase; LTA4, leukotriene A4;
lysoPL, lysophospholipid; oxPL, oxidized phospholipids; PG, prostaglandin; PL, phospholipid; PUFA, polyunsaturated fatty
acid; SDR, short-chain dehydrogenase/reductase; SPM, specialized pro-resolving mediator.
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biosynthetic pathways in response to extracellular stimuli. Those
derived from oxygenation of polyunsaturated fatty acids (PUFA)
such as arachidonic acid (AA) include prostaglandins (PG),
thromboxanes and leukotrienes, which function in modulating
inflammation, the immune response, and hemostasis, and are
broadly termed “oxylipins” (1, 2). Oxylipins also include
multiply oxygenated derivatives of eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA), of which specific enantiomers
have been termed “specialized pro-resolving mediators” (SPM)
for their proposed roles in the resolution of inflammation (3).
SPMs derived from DHA include D-resolvins, maresins and
protectin. On the other hand, E-resolvins are proposed to be
generated from EPA but the enzymatic pathways are unclear and
require further investigation. Oxylipins also constitute a core
functional group on larger lipids including oxidized
phospholipids (oxPL), endocannabinoids and cholesteryl esters
(CE). Oxidized CEs are conversely associated with
atherosclerosis progression (4), whereas enzymatically oxidized
phospholipids (eoxPL) are pro-coagulant and promote a variety
of innate immune actions in leukocytes and platelets (5).

Enzymatically oxidized lipids are not limited to those
containing oxygenated PUFA functional groups. Oxidized
derivatives of cholesterol include steroid hormones, bile acids
and their oxysterol precursors. Steroid hormones regulate
multiple physiological processes including metabolism (e.g.,
glucose homeostasis by glucocorticoids), water retention,
immune function, and development of sex characteristics (6–
8). Bile acids, while traditionally known for aiding in fat digestion
and bilirubin excretion, are also being increasingly revealed as
signaling molecules and metabolic regulators (9, 10). Similarly,
accumulating evidence is revealing oxysterols as more than just
bile acid intermediates with functions in signaling (11).

Enzymatic lipid oxidation is facilitated by a network of proteins
that use PUFAs or sterols as substrates, specifically, lipoxygenase
(LOX), cyclooxygenase (COX), and cytochrome P450 (CYP), all of
which exist as several isoforms exhibiting broad substrate specificity
(12–16). In general, PUFA oxygenation is initiated by COXs, LOXs,
and to a lesser extent CYPs. For example, the biosynthesis of PGs is
initiated by COXs, whereas the formation of leukotrienes begins
with a LOX. Additionally, crossover between COX, LOX, and CYP
is proposed to produce various SPMs. On the other hand,
cholesterol oxidation is dominated by CYPs. For example,
sidechain shortening during steroid hormone synthesis is
catalyzed by CYP11A1 (P450scc). Bile acids are synthesized from
cholesterol predominantly by two pathways: the neutral pathway
starting with an endoplasmic reticulum resident enzyme CYP7A1,
and the acidic pathway starting with CYP27A1 in mitochondria
(17). CYPs account for many enzymes in both pathways, catalyzing
the formation of oxysterols as well as oxygenated PUFAs. Last, aldo-
keto reductases (AKR) and hydroxysteroid dehydrogenases (HSD)
catalyze key redox reactions in bile acid and steroid
hormone biosynthesis.

By contrast, non-enzymatically oxidized lipids are produced
through uncontrolled oxidation via free radical mechanisms.
This involves the oxidation of lipids by free radicals, followed by
chain propagation and ultimately termination. Notably, during
Frontiers in Endocrinology | www.frontiersin.org 25
oxygenation of PUFA, active site intermediates can escape to
react in an uncontrolled manner, leading to some oxidized lipids
forming due to non-enzymatic rearrangements of enzymatic
pathway intermediates.

Here, we provide an overview of major enzymes involved in
lipid metabolism, including LOXs, COXs, CYPs and AKRs. Then
we outline the biosynthetic pathways of oxylipins, oxPLs,
oxysterols, bile acids and steroid hormones. Finally, we address
outstanding questions and suggest directions for future work.
ENZYME FAMILIES INVOLVED IN THE
BIOSYNTHESIS OF OXIDIZED LIPIDS

Lipoxygenase (LOX)
Human LOX: Isoforms and Tissue Distribution
Lipoxygenases (LOX) are a family of non-heme iron-containing
dioxygenases. They catalyze the stereospecific addition of
dioxygen to lipids containing a (1Z,4Z)-pentadiene group
producing lipid hydroperoxides. The human genome contains
six functional LOX genes, expressed in various tissues (Table 1).
LOXs were traditionally named according to their positional
specificity for arachidonic acid (AA). However, the latest
characterized member eLOX3 has limited lipoxygenase activity
(38), while some LOXs show preference for other PUFA.
Sequence analysis of human LOXs (using UniProt entries (39))
shows that 12R-LOX (ALOX12B) is evolutionarily closer to 15-
LOX-2 (ALOX15B; 48.2% identity) than 12S-LOX (ALOX12;
35.7% identity). Additionally, human 15-LOX-1 (ALOX15)
exhibits dual positional specificity which is not reflected in the
name (18). The lack of a robust naming system is a common
cause of confusion. Thus, the use of gene names alongside
enzyme names is recommended (14).

LOXs are typically constitutively expressed, except for 15-
LOX-1 (ALOX15) which is inducible by IL-4 and IL-13 in
monocyte-derived macrophages (28). Although 15-LOX-2
(ALOX15B) is constitutively expressed in the same cell type, its
expression can be increased by cytokines, hypoxia, and
lipopolysaccharide. It is possible that other constitutively
expressed LOXs share this property.

Structure and Membrane Association
of Mammalian LOXs
There are a limited number of published crystal structures for
mammalian LOXs. Available structures of 5- and 15-LOXs show
a single polypeptide chain that consists of two domains: a small
b-barrelN-terminal domain and a larger a-helix-rich C-terminal
domain containing the catalytic non-heme iron (40–42). The
coordination positions of the catalytic iron are occupied by three
conserved His residues, the carboxyl group of the C-terminus Ile
residue, a water molecule and one last variable ligand (water, His,
Asn, or Ser). Studies on mammalian LOXs found that the N-
terminal domain is not required for catalytic activity, but instead
functions in membrane binding and regulation (43, 44). The N-
terminal domain of mammalian 5-LOXs (ALOX5) was found to
be important for the calcium-dependent translocation from the
November 2020 | Volume 11 | Article 591819
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cytosol or nucleus (depending on cell type) to the nuclear
envelope and enzyme activity (45, 46). Similar findings were
reported for mammalian 15-LOXs, with the translocation from
the cytosol to the cell membrane instead (47, 48). Unlike other
LOXs, the activity of 5-LOX requires interaction with partner
proteins 5-lipoxygenase activating protein (FLAP), coactosin-
like protein (CLP) and cytosolic phospholipase A2 (cPLA2) (49,
50). Additionally, 5-LOX undergoes phosphorylation at multiple
sites, regulating its translocation and activity, and is allosterically
activated by ATP (51–53).

On the other hand, 15-LOXs do not require accessory proteins
for free FA oxygenation. Instead, 15-LOXs form a complex with a
small scaffolding protein, phosphatidylethanolamine-binding
protein 1 (PEPB1) (54). This complex facilitates 15-LOX activity
on PL-esterified PUFA and is proposed to play regulatory roles in
ferroptosis along with GPX. PEPB1 has been suggested to direct 15-
LOX activity toward PL substrates when free AA is depleted (55).
The crystal structure of human 15-LOX-2 (ALOX15B) revealed a
hydrophobic loop in the N-terminal domain that is flanked by
calcium binding sites, a feature that is absent in 5-LOX (42).
Hydrogen-deuterium exchange mass spectrometry showed a
decrease in H/D exchange for the hydrophobic loop, supporting a
role in membrane hopping (48, 56). Both 5-LOX and 15-LOXs
associate with membranes in a calcium-dependent process but they
exhibit differences in activity, translocation and binding partners.

Calcium-dependent membrane association has also been
shown for platelet 12S-LOX (ALOX12), and more recently,
12R-LOX (ALOX12B), and eLOX3 (19, 57). The activity of
12S-LOX (ALOX12) is thought to be regulated by the
availability of its substrates, which are supplied through the
action of phospholipases. It is currently unknown whether
12S-LOX is regulated by other mechanisms. Research on the
regulation of 12R-LOX and eLOX3 is also limited, although
calcium has been shown to increase the activity of mouse 12R-
LOX but not eLOX3 (58).

Aside from the catalytic domain of 12S-LOX (ALOX12), no
crystal structures are available for 12-LOXs or eLOX3. However,
human platelet 12S-LOX (ALOX12) was characterized using
small-angle x-ray scattering, showing its occurrence as a dimer
Frontiers in Endocrinology | www.frontiersin.org 36
in solution (59). This challenged the idea that all human LOXs
exist and function as monomers. Human 5-LOX displays full
activity as a monomer but forms functional dimers as well,
thought to exist in equilibrium (60). Similarly, rabbit 15-LOX-
1 (ALOX15) undergoes ligand-induced dimerization in aqueous
solutions, and molecular dynamics predicts stable dimers in the
presence of substrate fatty acids (61). This supports the idea of
monomer-dimer equilibria in LOXs. Human 15-LOX-1 (81.1%
sequence identity to rabbit) likely exhibits the same property.

In summary, all six human LOXs associate with membranes
in a calcium-dependent manner. 5-LOX requires the help of
protein partners for membrane translocation and activity,
whereas 15-LOXs only require a partner protein to efficiently
catalyze the oxygenation of PL-esterified PUFA. Less is known
about the regulation of 12-LOXs and eLOX3. Dimerization and
monomer-dimer equilibria have been observed in several LOX
isoforms and represent a potential regulatory mechanism.
Finally, complete crystal structures have yet to be reported for
12S-LOX, 12R-LOX, and eLOX3. In the case of 12S-LOX, a
crystal structure would be beneficial in the rational design of
inhibitors, as the enzyme functions in platelet activation.

Reaction Mechanism of LOX
The dioxygenase activity of LOX represents a highly controlled
form of lipid peroxidation (Figure 1A). First, stereospecific
hydrogen atom removal is carried out by the non-heme ferric
iron [Fe(III)]. Fe(III) is not a strong enough oxidizer to abstract
hydrogen directly. Thus, a mechanism involving proton-coupled
electron transfer (PCET) has been proposed (62) (Figure 1A). In
this, the electron is directly transferred to Fe(III) and the proton
is picked up by the hydroxide ligand in a concerted mechanism
(simultaneously), producing a lipid alkyl radical and ferrous iron
[Fe(II)]. This is followed by a rearrangement of the lipid radical
into the more stable conjugated diene. After that, dioxygen is
introduced onto the opposite side of the removed hydrogen
(antarafacially), generating a lipid peroxyl radical. Finally, the
lipid peroxyl radical is reduced by Fe(II) and protonated to form
a lipid hydroperoxide, through PCET. This reforms Fe(III) for
another round of catalysis.
TABLE 1 | Human LOXs: Genes, substrates, and major expression sites.

Gene Protein Preferred substrate(s) Expression sites Refs.

ALOX12 12S-LOX DHA & EPA > AA Platelets, umbilical vein endothelial cells, vascular smooth muscle cells,
skin epidermis

(18–22),

ALOX12B 12R-LOX O-Linoleoyl-w-hydroxyceramide
AA & 8,11,14-eicosatrienoic acid >
GLA

Hair roots, keratinocytes, B-cells, tonsil epithelial cells, bronchial epithelial
cells

(23–27)

ALOX15 15-LOX-1
(12/15 LOX murine
ortholog)

DHA > EPA > AA Monocytes, macrophages, dendritic cells, eosinophils, reticulocytes,
tracheal epithelium

(18, 28–32)

ALOX15B 15-LOX-2
(8-LOX
murine ortholog)

DHA > EPA > AA Macrophages, hair roots, prostate, lung, cornea, skin (18, 28, 33),

ALOX5 5-LOX AA & 5S-HpETE Leukocytes, dendritic cells, mast cells, lung, placenta (34–36)
ALOXE3 eLOX3 9R-Hydroperoxy-linoleoyl-w-

hydroxyceramide
12R-HpETE

Skin epidermis (25, 37)
November 2020 | Volume 11 | A
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The stereo and regio-specificity of lipoxygenation are
determined by structural features which: (i) accommodate and
position the substrate in a specific orientation, and (ii) direct
radical rearrangement and oxygen insertion. These features
include a U-shaped cavity that accommodates the substrate
(63), a migration channel for oxygen (64), a glycine/alanine
“switch” that determines stereospecificity by directing oxygen
(65), and several amino acid residues that control positional
specificity (66, 67). These properties are explored in-depth by
Newcomer and Brash (68).

In addition to classical dioxygenase activity, LOXs catalyze
other reactions that involve free-radical processes like hydrogen
abstraction, homolytic bond cleavage, and radical rearrangement
(69). eLOX3 exhibits a hydroperoxide isomerase activity
(lipohydroperoxidase activity) which converts hydroperoxides
to epoxy-alcohols and ketones (70) (Figure 1B). eLOX3 has
restricted dioxygenase activity (38), and its hydroperoxide
isomerase activity is considered its primary catalytic reaction.
Also, mammalian 5-LOXs and human 15-LOX-1 (ALOX15)
possess leukotriene A4 synthase activity which produces
epoxides from hydroperoxides (71–74). The mechanism
involves the homolytic cleavage of a hydroperoxide into an
alkoxy radical and hydrogen atom removal (via PCET) from a
bis-allylic methylene carbon generating an alkyl radical. The
resulting biradical is stabilized by epoxide formation
(Figure 1C).

LOXs are inactive in their basal form with Fe(II) and require
activation via oxidation into Fe(III) (Figure 1D). LOX activation
is facilitated by hydroperoxides such as their dioxygenase
reaction products. Although the proposed LOX catalytic cycle
regenerates the ferric iron for another round of catalysis, small
amounts of radical intermediates can escape the active site
resulting in an incomplete catalytic cycle and requiring
repeated activation of the enzyme (formation of Fe(III) by
hydroperoxide) for sustained catalysis (69, 75, 76).

Some LOXs exhibit suicide inactivation, a property in which
the reaction product rapidly inactivates the enzyme. Human 5-
LOX is irreversibly inactivated by both of its products 5-HpETE
and leukotriene A4 (77). Similarly, rabbit reticulocyte 15-LOX
(human 15-LOX-1 ortholog) is inactivated by its product 15-
HpETE, and the mechanism is suggested to be through
formation of reactive intermediates that covalently bind the
enzyme (78). The dioxygenase reaction and the other two
activities (lipohydroperoxidase and leukotriene synthase) have
been proposed to inactive LOXs through different mechanisms,
but the mechanistic details remain unclear (78).

LOXs Act on a Broad Range of Substrates
LOX isoforms have different substrate preferences. Substrates of
mammalian 5-LOXs include AA, its hydroperoxide product 5S-
HpETE, as well as epoxy-alcohols derived from EPA and DHA
(71, 79). The former two are important in the biosynthesis of
leukotrienes, while the latter two are proposed to be precursors of
E- and D-series resolvins, respectively (75, 80). 15-LOXs
(ALOX15 and ALOX15B) accept AA, EPA, DHA, linoleic acid
(LA), and g-linolenic acid (GLA) as substrates. The preference of
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human 15-LOX orthologs is: DHA > EPA > AA > GLA > LA
(18). One key difference is that 15-LOX-1 (ALOX15) possesses
dual positional specificity for some of its substrates (e.g., 12 and
15-lipoxygenase activities for AA), whereas 15-LOX-2
(ALOX15B) exhibits singular specificity (15-lipoxygenase
activity) (55). The hydroperoxide isomerase and epoxidase
activities of 15-LOX-1 (ALOX15) are proposed to function in
the synthesis of eoxins, E-series resolvins, and protectin from
their respective precursors. Additionally, human 15-LOX-1
oxygenates PUFA-containing fatty amides and 2-arachidonoyl-
glycerol ester (81, 82). Finally, mammalian 15-LOXs can catalyze
the oxygenation of PUFA in lysophospholipids (lysoPL), PLs,
CEs, and lipoproteins (83–88).

PUFA substrates of platelet 12S-LOX (ALOX12) include AA,
EPA, DHA, and dihomo-g-linolenic acid (DGLA) (18, 89). While
no single study has compared all substrates at the same time, one
determined the order of preference for the first three substrates
to be: DHA > EPA > AA (18). Another found comparable kinetic
parameters for EPA, AA, and DGLA as substrates (89). Both
observed a singular positional specificity for 12S-LOX. LA, GLA,
and a-linolenic acid (ALA) were all found to be poor substrates
for 12S-LOX (18, 89, 90). Furthermore, human 12S-LOX
possesses lipoxin synthase activity, which converts leukotriene
A4 into lipoxins A and B (91). The enzymatic activities of 12S-
LOX are also proposed to function in the biosynthesis of
hepoxilins and maresins (92, 93). Recently, 12S-LOX was
shown to oxygenate 2-AA-lysoPL, proposing alternate
pathways for oxylipin and oxPL biosynthesis (94).

Mammalian 12R-LOX (ALOX12B) and eLOX3 (ALOXE3) are
co-expressed in skin and their functions are related. 12R-LOX
efficiently catalyzes the peroxidation of AA, DGLA and GLA, and
less efficiently LA, EPA and DHA (23, 24). Later, 12R-LOX was
shown to oxygenate LA esterified to w-hydroxyacyl-sphingosine
more efficiently than free LA (25). The hydroperoxide product of
this reaction is further converted into an epoxy-alcohol by the
isomerase activity of eLOX3. These two reactions are essential for
the proper formation of the water-impermeable barrier in
corneocytes (25). Human eLOX3 isomerase activity has also been
observed on the 12R- and 12S-hydroperoxides of AA, with the
reaction occurring 2-3 times faster for the R-stereoisomer (95).
These reactions produce hepoxilins, which play a role in skin
inflammation. Curiously, mouse 12R-LOX and eLOX3 metabolize
the methyl esters of AA and LA more efficiently than the
unmodified FAs (58). However, human and mouse orthologs are
known to exhibit differences in substrate preference and regio-
specificity (95). Thus, further work is needed to assess the ability of
human 12R-LOX tometabolize fatty methyl esters and whether that
reaction is biologically relevant.

Several aspects of LOX enzymology remain unresolved. First,
the functional implications of suicide inactivation are unknown,
that is, the reason why some LOXs have not evolved to resist
suicide inactivation. This suggests a biological function for this
property, perhaps in regulation. Additionally, the mechanistic
details of suicide inactivation are not fully understood. Second,
due to the ever-increasing list of LOX substrates, it has been
difficult to pinpoint biologically relevant substrates and assign
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clear functions to all LOX isoforms. For example, the function of
15-LOX-2 (ALOX15B) in macrophages remains unclear,
although it has been recently shown to regulate cholesterol
levels (96). Unique substrates of each isoform (e.g., CEs for 15-
LOXs, lysoPLs for 12S-LOX) might be worth investigating.
Cyclooxygenase (COX)
Human COX: Isoforms and Tissue Distribution
Cyclooxygenases (COXs), also called prostaglandin-
endoperoxide synthases and prostaglandin G/H synthases, are
heme-containing enzymes that possess both oxygenase and
peroxidase activities. There are two COX genes in humans:
PTGS1 and PTGS2, which encode for COX-1 and COX-2,
respectively. Traditionally, it was thought that COX-1 is
constitutively expressed, whereas COX-2 is inducible in
response to inflammatory signals. However, several studies
suggest constitutive COX-2 expression in the brain, lungs, gut,
thymus, kidneys, and blood vessels (97–99). In the vasculature,
COX-2 has been demonstrated to be a key source of vascular
prostacyclin (100, 101). COX-1 is ubiquitously expressed in the
body, and its expression sites include blood vessels, prostate,
immune cells (monocytes, T-cells), platelets, stomach, resident
inflammatory cells, smooth muscles, and mesothelium of many
organs (102–105). On the other hand, COX-2 is inducible in
many tissues including prostate, immune cells (T-cells, B-cells,
monocytes), and stomach (102–104, 106), but also constitutively
expressed in some tissues as previously mentioned.

Structure of COX
The role of COXs as mediators of inflammation and their
potential as drug targets were drivers for the elucidation of
their structures. The crystal structure of sheep COX-1 has been
solved in the presence and absence of various synthetic ligands
(107–109). Similarly, there are available structures for mouse
COX-2 in the presence and absence of natural and synthetic
ligands (13, 110–113), as well as human COX-2 with several
inhibitors (114, 115).

Both COX isoforms are homodimers, and this quaternary
structure is necessary for enzymatic activity (116). Each
monomer consists of three domains: An N-terminal epidermal
growth factor (EGF)-like domain, a membrane binding domain,
and a large C-terminal catalytic domain. The EGF-like domain is
located at the dimer interface and potentially facilitates
dimerization. It is also thought to facilitate membrane binding
(117). The membrane binding domain consists of four
amphipathic a-helices that insert into one face of a membrane
bilayer. Both COXs are found on the luminal face of the
endoplasmic reticulum (ER) and the inner and outer nuclear
membranes (118). However, COX-2 is also found in the Golgi
apparatus (119). The catalytic domain (in both isoforms)
contains separate oxygenase and peroxidase active sites on
opposite sides of the heme cofactor. The oxygenase active site
is located towards the membrane binding face at the end of a
hydrophobic tunnel that allows substrate entry, whereas the
peroxidase active site is in a groove on the opposite face of the
enzyme (120).
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COXs undergo N-glycosylation at multiple asparagine
residues. This facilitates their proper folding, and regulates the
turnover of COX-2 by controlling its trafficking between the ER
and the Golgi apparatus (119, 121, 122). COX-2 can also be S-
nitrosylated by inducible nitric oxide synthase, which has been
proposed to enhance its activity (123). In vitro experiments on
recombinant human COX-1 and COX-2 demonstrated that both
isoforms can be S-nitrosylated by a nitric oxide donor, but only
COX-2 showed increased cyclooxygenase activity (124). Circular
dichroism data suggest an altered, less dynamic conformation for
both isoforms after S-nitrosylation with less a-helices, turns, and
random coils, but more b-sheets. The structural change was
more pronounced in COX-2 compared to COX-1. These
findings provide new insight into the structural dynamics of
COXs. The occurrence and biological relevance of this altered
COX conformation is unexplored in vivo and would benefit from
further investigation.

Although COXs are sequence homodimers, they are
considered conformational heterodimers because one
monomer functions as the catalytic subunit (Ecat) and the
other as an allosteric regulator (Eallo) (125–127). For both COX
isoforms, the binding of one heme molecule to Ecat is required for
full activity. Several substrate and non-substrate FAs can bind
Eallo to regulate the activity of Ecat, and the two COX isoforms
exhibit differences in this regard. COX-1 is inhibited by palmitic
acid, stearic acid, margaric acid and oleic acid (127), none of
which are COX substrates. On the other hand, COX-2 is
stimulated by palmitic acid and stearic acid (126). Substrate
FAs (like AA and EPA) also bind to Eallo to regulate COX
activity, with notable differences in the responses of the two
isoforms (reviewed in (128)).

Catalytic Mechanism of COX
COXs possess two enzymatic activities: a dioxygenase activity
and a peroxidase activity. The dioxygenase activity is a controlled
peroxidation process (129), and the role of the enzyme is to
direct hydrogen abstraction and the stereochemistry of
formation of intermediates (120). Unlike LOXs where
hydrogen abstraction is carried out by a non-heme associated
Fe(III), hydrogen abstraction in COX is carried out by a catalytic
tyrosyl radical (Figure 2A). The heme group oxidizes a tyrosine
residue in the active site into a radical, which then abstracts a
hydrogen (stereo- and regio-specifically) from the (1Z,4Z)-
pentadiene group of the lipid. Using AA as an example
substrate, the 13-pro-S hydrogen is abstracted. The resulting
alkyl radical rearranges into a conjugated diene before the
addition of dioxygen at C11, generating a peroxyl radical (11R-
stereochemistry). Rotation of the peroxyl radical positions the
outer oxygen atom in the correct orientation to attack the C9
carbon resulting in an endoperoxide (130). A second cyclization
involving C8 and C12 generates a bicyclic ring and a radical at
C15. Note that the cyclopentane ring is formed in the trans
configuration (131). This differs from the non-enzymatically
generated isoprostanes which occur predominantly in the cis
configuration (132). Following the second cyclization, dioxygen
is added onto the si face of the C15, forming a peroxyl radical
(15S-stereochemistry). Hydrogen atom transfer from the active
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site tyrosine residue forms prostaglandin G2 (PGG2) and
regenerates the tyrosyl radical for another round of catalysis.

The peroxidase activity of COX reduces PGG2 into PGH2

(Figure 2A). The mechanism involves a two-electron reduction
of the hydroperoxide into an alcohol, with a corresponding
oxidation of the heme group into the oxoferryl form (133)
(Figure 2B). Regeneration of the heme group can be achieved
by two sequential one-electron reductions. The peroxidase
activity is required for the dioxygenase activity as the oxidation
of the tyrosine into a radical is done by the oxoferryl-porphyrin
cation radical generated during the peroxidase reaction cycle
Frontiers in Endocrinology | www.frontiersin.org 710
(133) (Figure 2B). Suicide inactivation has been described for
both the dioxygenase and peroxidase activities of COX
(133, 134).

The dioxygenase activity of COX can also result in a
lipoxygenase-type reaction, in which one dioxygen molecule is
introduced and no endoperoxide formation occurs (135, 136)
(Figure 2A). In this case, the peroxyl radical formed after the
addition of the oxygen is reduced into a hydroperoxide instead of
participating in the cyclization reaction. This reaction represents
an incomplete catalytic cycle and occurs as a side product. Using
AA as a substrate, this lipoxygenase-type reaction (after
A

B

FIGURE 2 | Reaction mechanism of cyclooxygenases (COXs). (A) Production of eicosanoids from arachidonic acid through the dioxygenase and peroxidase
activities of COX. The cyclooxygenase reaction is colored black. Peroxidase reactions are coloured blue. Reactions that produce HpETEs are colored red. Side
reactions that produce 15-HETEs are depicted by dashed arrows. (B) The peroxidase cycle generates the Tyr radical required for hydrogen abstraction (porphyrin
ring of heme not shown).
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reduction by peroxidase) leads to the formation of 11R-HETE
(HETE: hydroxy-eicosatetraenoic acid), 15R-HETE and 15S-
HETE (minor product compared to 15R-HETE in both
isoforms) (137). C11 and C15 are the same oxygen insertion
sites in the dioxygenase (cyclooxygenase reaction), and these by-
products are thought to arise from alternate conformations of
substrate in the active site (138).

Aspirin (acetylsalicylic acid) is an inhibitor of COXs, and its
mechanism of action involves the acetylation of a serine residue
(Ser530 in COX-2) in the active site. Acetylation of COX-1 leads
to complete inhibition (139), whereas the acetylation of COX-2
promotes the lipoxygenase-type reaction and the formation of
15R-HETE (140). It was previously thought that acetylation
completely inhibits PG production by COX-2 (cyclooxygenase
reaction). However, recent evidence shows that the acetylated
enzyme retains that activity (15S-PG formation) but also more
favorably forms 15R-PGs (141), although PGs are still minor
products compared to 15R-HETE for acetylated-COX-2. These
findings are consistent with an earlier study that reported the
formation of 15R-PGE2 in COX-2 Ser530 mutants (137). Thus,
both acetylation and mutagenesis of Ser530 in COX-2 promote
15R-PG formation.

COX Isoforms Differ in Their Substrate Specificity
COXs catalyze the transformation of AA into PGH2, which is a
precursor of other PGs (PGD2, PGE2, PGF2a, PGI2) and
thromboxane. These oxygenated AA derivatives are generated
through the action of tissue-specific enzymes downstream of
COX (discussed in section 3.1) and play roles in inflammation,
blood flow regulation and blood clotting through interactions
with specific GPCRs (142).

COXs also accept other PUFAs as substrates including
DGLA, LA, ALA, EPA, and GLA (143), at least in vitro. An
early study determined the efficiency of substrate utilization for
human COXs (Kcat/Km) to be AA > DGLA > LA > ALA, with
ALA being a poor substrate for COX-1. EPA and GLA are poor
substrates for both isoforms but they are better substrates for
COX-2 than for COX-1 (143). Later studies have tested other
PUFAs like eicosadienoic acid, adrenic acid, docosapentaenoic
acid and DHA as COX substrates (127, 144). In general, COX-2
was found to be more efficient than COX-1 for a broader range of
PUFAs. That said, AA is the preferred substrate for both
isoforms, but COX-2 can oxygenate it at lower concentrations
compared to COX-1 due to differences in their allosteric
regulation by FAs (145).

COX-2 can also catalyze the 11R-, 15R-, 15S-dioxygenation and
bis-oxygenation of 5S-HETE, forming diHETEs in the former three
reactions and a di-endoperoxide product in the later reaction.
However, acetylation of COX-2 shifts the specificity into favoring
15R-dioxygenation producing 5S,15R-diHETE (146). Additionally,
COX-2 can oxygenate AA in complex lipids for example;
arachidonoylethanolamide, 2-arachidonoylglycerol (2-AG), and
N-arachidonoyl-glycine (147–149). Recently, 2-AA-lysoPL, and
ethanolamide derivatives of EPA and DHA were also shown to
be COX-2 substrates (88, 150). Oxygenation of AA-lysoPL by COX-
2 generates eicosanoid-lysoPL, which can be hydrolyzed to release
eicosanoids through intracellular lipases (88). The ability of COX-2
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to bind and oxygenate a broader range of substrates compared to
COX-1 has been attributed to a larger active site, the orientation of
an Arg residue in the substrate binding pocket and amino acid
residues lining the tunnel leading to the cyclooxygenase active
site (13).

COX isoforms exhibit differences in expression, tissue
distribution, allosteric regulation, and substrate specificity.
However, some aspects of COX biochemistry are unclear. For
example, the physiological functions of COX-2-derived
oxygenated endocannabinoids are unclear. Additionally, COX-
2 oxygenates AA-lysoPLs into eicosanoid-lysoPLs, which are
proposed to function in signaling and as precursors to other
mediators (88). However, the metabolism of eicosanoid-lysoPLs
requires further investigation.

Cytochrome P450 (CYP)
Human CYPs: Nomenclature and Tissue Distribution
Cytochrome P450s (CYP) are a superfamily of heme-containing
monooxygenases that are ubiquitous across all domains of life.
There are 57 functional CYP genes in humans, and their products
are further divided into 18 families and 41 sub-families based on
amino acid sequence (151, 152). A robust, unified nomenclature
system has been devised for CYPs, encompassing all known CYPs
across living organisms (153, 154). The name includes the root
“CYP”, followed by a number for family, a letter for subfamily, and
a gene-identifying number for isoforms. Additionally, an asterisk
and a number are added at the end to denote alleles (155). Families
and subfamilies are based on 40% and 55% amino acid sequence
identity, respectively.

CYPs are widely distributed in mammalian tissues (156–158),
with a particularly high expression in the liver, brain, kidney and
lung. Intracellularly, mammalian CYPs are generally bound to
mitochondrial membranes and the endoplasmic reticulum (ER;
microsomes when in vitro) (159, 160). There is also evidence of
mammalian CYPs in other compartments including the plasma
membrane and the nucleus, based on in vitro studies on cultured
cells (161–164). Some microsomal CYPs are also targeted into
the mitochondria (159). In the human genome, 50 out of the 57
functional CYP genes code for microsomal CYPs, and the
remaining seven for mitochondrial isoforms. Some CYPs are
inducible by environmental stimuli, whereas others are
constitutively expressed (152). Induction of CYP expression by
environmental compounds can be through interactions with
nuclear receptors, transcriptional regulatory elements, or non-
coding RNAs (165).

Two major functions of CYPs are in drug metabolism and
lipid metabolism. Here, we focus on lipid metabolism which
involves members of most human CYP families. For an extensive
review, the reader is referred to Nelson and Nebert (166).

Structure of Mammalian CYPs
Structural characterization was first carried out on bacterial
CYPs, which are typically water soluble. On the other hand,
mammalian CYPs are membrane-bound, and initial attempts to
crystallize them were unsuccessful until a small N-terminal
hydrophobic helical segment was replaced with a hydrophilic
sequence from a related protein. The first structure to be
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published was of rabbit CYP2C5, a microsomal CYP isoform
that hydroxylates progesterone (167). Comparison of CYP2C5
structure with closely related microbial CYPs showed a similar
folding geometry, but unique features of the mammalian enzyme
were observed such as a hydrophobic surface that was proposed
to play a role in membrane binding (167).

CYPs consist of two domains: a b-sheet-rich N-terminal
domain and a larger helix-rich C-terminal catalytic domain.
The N-terminal domain in microsomal CYPs contains a
transmembrane helix that plays a role in membrane anchoring,
but that role is not exclusive as CYPs contain other regions (in
the catalytic domain) that bind the membrane. This
transmembrane helix is not present in mitochondrial CYPs,
and their membrane binding is facilitated by hydrophobic and
amphipathic regions on the surface (160, 168). The N-terminus
also contains a signal peptide sequence for trafficking into the
appropriate compartment, that in the case of mitochondrial
CYPs, is cleaved during transport. The catalytic domain
contains a deep cavity that houses the heme prosthetic group.
A thiolate ion in a conserved cysteine residue occupies the fifth
coordination position of heme, and a water molecule occupies
the sixth position in the resting state. There is variable flexibility
in the active site among CYPs, and a high degree of flexibility has
been correlated to substrate promiscuity (169, 170). Residues in
helices surrounding the active site heme position the substrate
for catalysis. Additionally, in the CYP4 family, a covalent linkage
has been identified between the heme group and a conserved
glutamic acid residue (171), and this interaction plays a role in
substrate positioning for w-hydroxylation (hydroxylation at the
methyl end of FAs) (172).

Other structural features of CYPs include access channels that
allow entry of substrates from both the aqueous and membrane
compartments and an exit channel for the product (160).
Furthermore, oligomerization is well-documented in both
microsomal and mitochondrial CYPs, which can be between
subunits of the same CYP (homomeric; e.g., CYP2C2) or
different CYPs (heteromeric; e.g., CYP2E1/CYP3A4 and
CYP1A2/CYP2B4) (173–180). These interactions provide an
additional layer of regulation and play a role in substrate specificity.

Enzymology of Mammalian CYPs
CYPs catalyze a wide range of reactions (181, 182), but the most
common include C-hydroxylation, heteroatom oxidation,
heteroatom dealkylation, epoxidation, and group migration
(182). Many reactions of CYPs are dependent on their ability
(owing to the thiolate-heme group) to catalyze the scission of
dioxygen and incorporate one of the oxygen atoms into the
substrate, with the other being reduced to water. These reactions
require electron transfer from a donor, NADPH, to the heme iron.
However, transfer of electrons from NADPH to CYPs requires
protein partners: NADPH cytochrome P450 reductase in the case
of microsomal CYPs, and the combined functions of adrenodoxin
reductase and adrenodoxin in mitochondrial CYPs. Thus, CYPs
form complexes with their redox partners, at least during catalysis.
That said, not all CYP reactions require external oxygen or
electron donors. Examples are isomerization reactions catalyzed
Frontiers in Endocrinology | www.frontiersin.org 912
by CYP5A1 (thromboxane synthase) and CYP8A1 (prostacyclin
synthase) (183), two enzymes involved in PGH2 metabolism.

A generalized reaction mechanism for CYPs (Figure 3A)
contains the following steps: starting with the resting state,
substrate recruitment displaces H2O from the 6th (axial)
position of the heme Fe(III). This is followed by a 1-electron
reduction from a donor forming Fe(II), O2 binding, and another
1-electron reduction resulting in a negatively charged peroxo
group. Protonation of this complex twice by nearby H2O or
amino acid residues results in the scission of the dioxygen (O-O
bond) into an oxoferryl intermediate (compound I) and a water
molecule (184). Compound I is thought to be the direct oxidant
in many CYP oxidation reactions (185). In hydroxylation
reactions, compound I abstracts a hydrogen from an alkyl
group in the substrate generating a carbon radical and an iron
oxygen complex, which rapidly react together forming a
hydroxyl group on the substrate and regenerating the heme
iron into the Fe(III) state (Figure 3B). Although this is a
generalized reaction scheme for CYPs, the intermediates
following O2 binding until compound I have been difficult to
characterize due to their instability and the exact electronic
structures are not fully assigned (185).

Mammalian CYPs Play Crucial Roles in Oxidative
Lipid Metabolism
CYPs are involved in the metabolism of a wide range of lipids
including PUFAs and sterols (Table 2). Hydroxylation and
epoxidation are two common CYP-mediated reactions for PUFA
substrates. CYPs can hydroxylate FAs terminally (w-
hydroxylation) or midchain. Similarly, CYP-mediated
epoxidation can occur on various double bonds in PUFA. CYPs
exhibit variable preference with respect to the reaction type and
positional specificity. CYP1-3 families catalyze epoxidation and
hydroxylation reactions for FAs, whereas the CYP4 family favors
hydroxylationoverepoxidation, specificallyw-hydroxylation (204).

Terminal hydroxylation of AA by CYPs produces 20-
hydroxyeicosatetraenoic acid (20-HETE), which functions in
blood pressure regulation and water balance (205).
Additionally, terminal hydroxylation functions in w-oxidation
(a catabolic pathway for FAs), the degradation of some
eicosanoids (206, 207), and the proper formation of the skin
permeability barrier (208). Midchain hydroxylation of PUFA
produces mono-hydroxylated derivatives (HETEs in the case of
AA) with various bioactivities (reviewed in (152)). Unlike LOXs
and COXs which oxygenate carbons two bonds away from bis-
allylic methylene carbons, CYPs can also oxygenate bis-allylic
carbons (producing 7-, 10- and 13-HETE from AA), and various
other positions (209–211). However, bis-allylic hydroxylation
products are unstable in mildly acidic conditions and rearrange
into conjugated dienes (211).

Epoxidation of AA by CYPs produce epoxy-eicosatrienoic
acids (EET). However, other PUFA like LA, EPA and DHA also
undergo CYP-mediated epoxidation. Epoxy derivatives of
PUFAs are implicated in blood pressure regulation and
inflammation (15). Their metabolism is undertaken by several
epoxide hydrolases including soluble epoxide hydrolase (sEH)
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and microsomal epoxide hydrolase (mEH) (212). The action of
epoxide hydrolases produces dihydroxy derivatives which
possess different bioactivities from their epoxide precursors (15).

Arachidonoylethanolamide also undergoes CYP hydroxylation
and epoxidation (213, 214). Similarly, CYPs catalyze epoxidation of
EPA and DHA ethanolamides, producing compounds with anti-
inflammatory and anti-angiogenic effects (215). These lipids can be
degraded by both sEH and fatty acid amide hydrolase (FAAH)
(215), suggesting a link between the CYP epoxygenase and
endocannabinoid pathways. The metabolism and biological roles
of these mediators is an active area of research (216).

CYPs catalyze several types of reactions in the metabolism of
sterols, some of which involve multiple oxygenation/
hydroxylation steps. Demethylation of lanosterol by CYP51A1
is a key reaction in cholesterol biosynthesis and involves three
successive oxidations of a methyl group, resulting in its release as
formic acid and the introduction of a double bond at the D ring
(217). Similarly, the formation of estradiol from testosterone via
the action of CYP19A1 (P450arom) involves the elimination of a
methyl group by three successive oxidation steps and the
introduction of a double bond at the A ring. Additionally,
cholesterol side-chain cleavage by CYP11A1 (P450scc) involves
two hydroxylation steps on different carbons followed by a C-C
bond cleavage (218). This reaction produces pregnenolone which
is a key intermediate in the formation of androgens, estrogens,
glucocorticoids and mineralocorticoids.

CYP-mediated hydroxylation reactions are ubiquitous in
cholesterol metabolism, leading to the formation of oxysterols,
steroid hormones and bile acids. Key enzymes in the bile acid
Frontiers in Endocrinology | www.frontiersin.org 1114
biosynthesis pathways are CYP7A1 (cholesterol 7a-hydroxylase),
CYP8B1 (sterol 12a-hydroxylase), CYP27A1 (commonly named
sterol 27-hydroxylase, but more correctly sterol (25R)26-
hydroxylase) and CYP7B1 (oxysterol 7a-hydroxylase) (219, 220).
Of these enzymes, CYP27A1 can both hydroxylate and carboxylate
the terminal carbon of the sterol side-chain (221). Other enzymes
involved in quantitatively minor bile acid biosynthesis pathways
are CYP46A1 (cholesterol 24S-hydroxylase) which 24S-
hydroxylates cholesterol (222, 223) and CYP3A4 which has 4b-
and 25-hydroxylase activity (189, 224). CYP enzymes involved in
steroid hormone biosynthesis include CYP11A (P450scc) (225),
CYP17A1 (steroid 17a-hydroxylase) (226), CYP21A2 (steroid 21-
hydroxylase), CYP11B1 (steroid 11b-hydroxylase), and 11B2
(aldosterone synthase) and CYP19A1 (aromatase) (198).

Thus, CYPs play indispensable roles in the metabolism of
both PUFA and cholesterol. However, some human CYPs like
CYP2A7 and CYP20A1 have no assigned functions and remain
orphan enzymes.

Human Aldo-Keto Reductases (AKRs) and
Hydroxysteroid Dehydrogenases (HSDs)
AKRs: Nomenclature, Genes, and Tissue Distribution
Aldo-keto reductases (AKRs) are a superfamily of NADPH-
dependent oxidoreductases. They catalyze the reduction of
carbonyl groups to alcohols. A nomenclature system has been
proposed for AKRs (227). Like CYPs, AKRs are grouped into
families and subfamilies based on amino acid sequence. Families
have 40% sequence identity, whereas subfamilies are defined by
60% sequence similarity. The nomenclature consists of the root
TABLE 2 | Examples of human cytochrome P450s (CYPs) and their involvement in lipid metabolism.

Enzyme Lipid substrate(s) Reaction(s) Refs.

CYP1A1 AA, EPA, DHA Epoxidation & hydroxylation (186)
CYP2C8 AA, EPA, DPA, DHA Epoxidation & hydroxylation (186–188)
CYP3A4 Sterols Hydroxylation (189–191)
CYP4A11 Lauric acid, PA

AA, EPA, DPA, DHA
w-Hydroxylation
w/w-1-Hydroxylation

(188, 192),

CYP4F2 AA, EPA, DPA, DHA w/w-1-Hydroxylation (188)
CYP5A1
(thromboxane synthase)

PGH2 Isomerization (183)

CYP7A1 Cholesterol, 7-DHC 7a-Hydroxylation, epoxidation, carbonylation (161, 193, 194)
CYP7B1 Oxysterols, steroids 7a-Hydroxylation (195)
CYP8A1
(prostacyclin synthase)

PGH2 Isomerization (183)

CYP8B1 Sterols 12a-Hydroxylation (196)
CYP11A1
(P450scc)

Cholesterol Side-chain cleavage (197)

CYP11B1 11-Deoxycortisol, 11-deoxycorticosterone 11b-Hydroxylation (198)
CYP11B2 11-Deoxycorticosterone 11b-Hydroxylation, 18-hydroxylation & oxidation (198)
CYP17A1 Pregnenolone, progesterone 17-Hydroxylation (199)
CYP19A1
(P450arom/aromatase)

Testosterone Aromatization (199)

CYP21A2 Progesterone Hydroxylation (199)
CYP24A1 Calcitriol 24-Hydroxylation (200)
CYP26A1 all-trans-Retinoic acid Hydroxylation (201)
CYP27A1 Sterols (25R)26-Hydroxylation and carboxylation (197)
CYP39A1 24-hydroxycholesterol 7a-Hydroxylation (17)
CYP46A1 Cholesterol, desmosterol 24S-Hydroxylation, 24S-epoxidation (197, 202)
CYP51A1 Lanosterol 14a-Demethylation (203)
November 2020 | Volume 11
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“AKR” followed by a number for family, a letter for subfamily
and finally a number as a unique gene identifier. The
nomenclature has also been expanded to accommodate
multimers (228). The older (trivial) names of AKRs are still
heavily in use, which could lead to confusion. Thus, it is advised
to follow the nomenclature system proposed by Jez et al. (227).

There are 15AKRs in the human genome spanning three families
and seven subfamilies. Human AKRs have variable expression and
accept a wide range of substrates (Table 3). They are involved in the
metabolism of sugars, prostaglandins and sterols, as well as the
detoxification of carbonyl compounds like lipid peroxidation
products. Additionally, members of family 6 (AKR6A3, AKR6A5,
and AKR6A9) are constituents of voltage-gated potassium channels
(250). All human AKRs have either established or proposed roles in
lipid metabolism except for AKR1E2.

Human AKRs are generally cytosolic with some exceptions.
AKR1B15 is found in mitochondria (236). Members of the
AKR1C subfamily in the lung (1C1, 1C2 and 1C3) are also
secreted in pulmonary surfactant (256). AKR1B10 is present in
lysosomes and is secreted into the intestinal lumen by epithelial
cells (257). AKR6 members form a complex with a plasma
membrane voltage channel on the cytosolic side. Finally, rat
AKR7A2 associates with the Golgi apparatus (258). Human
AKR7A2 contains a similar N-terminal amphipathic sequence
and likely associates with the Golgi apparatus.

Mammalian AKRs: Structure and Enzymology
Crystal structures have been solved for many mammalian AKRs.
They comprise of a triosephosphate isomerase barrel motif (a/b)
Frontiers in Endocrinology | www.frontiersin.org 1215
8 which has alternating a-helices and b-strands repeating eight
times. The a-helices surround an internal b-barrel formed by the
b-strands. The active site is located at the base of the barrel, in
which the substrate and the nicotinamide head group of NADPH
(cofactor) are proximally positioned for the reaction, while three
flexible loops form the back of the barrel and control substrate
specificity (259, 260). The structure also contains two additional
helices that are not part of the barrel motif. Family 1 AKRs are
monomeric, whereas families 6 and 7 form tetramers and dimers,
respectively (258, 261).

AKRs catalyze the stereospecific reduction of carbonyls into
alcohols. They can also catalyze the reverse oxidation reaction.
However, the reducing direction is generally favored due to the
abundance of reduced cofactor in the cellular environment. AKRs
can use both NADPH and NADH, but NADPH is the preferred
cofactor for most known AKRs as they interact with the
phosphoryl group present in NADPH but not NADH (262, 263).
The stereospecific nature of the reaction is due to the orientation of
the NADPH and the substrate in the active site. The NADPH is
bound in the anti-conformation (with respect to the ribose ring)
which promotes the transfer of the 4-pro-R hydride (264), and the
substrate is positioned perpendicular to the cofactor.

The reaction of AKRs follows an ordered bi-bi mechanism in
which the NADPH cofactor binds first and leaves last. The active
site of AKRs contains a highly conserved catalytic tetrad of Tyr,
Lys, Asp and His. The hydride transfer is facilitated by acid-base
catalysis involving the protonation state of Tyr and the other
catalytic residues. In the reduction direction, the protonated
form of Tyr acts as an acid by participating in proton relay
TABLE 3 | Human AKRs: Genes, expression sites, and example substrates.

Gene Alternative protein name Expression sites Example substrates Refs.

AKR1A1 Aldehyde reductase Brain, kidney, liver, small
intestine

4-HNE, acrolein, succinic semi-aldehyde, D-glucuronic
acid, phospholipid aldehydes

(229, 230),

AKR1B1 Aldose reductase/Prostaglandin F
synthase

Ubiquitous Glucose, 4-HNE & its glutathione conjugate, acrolein,
PGH2, phospholipid aldehydes

(229, 230),

AKR1B10 Small intestine aldose reductase Small intestine, colon, liver,
cornea

Farnesal, retinoids, acrolein, phospholipid aldehydes (229, 231–235),

AKR1B15 Aldo-keto reductase/3-Keto-acyl CoA
reductase

Placenta, testis, adipose tissue Androgens, estrogens,
3-keto-acyl CoA conjugates

(236)

AKR1C1 20a-HSD Kidney, lung, liver, testis, brain Progesterone, estrone, 5a-dihydrotestosterone, 4-HNE (230, 237–239),
AKR1C2 Type 3 3a-HSD Liver, brain, lung, prostate Progesterone, estrone, 5a-dihydrotestosterone (237, 238),
AKR1C3 Type 5 17b-HSD/Prostaglandin F

synthase
Liver, lung, prostate, brain,
breast, lymphocytes

Progesterone, estrone, 5a-dihydrotestosterone, PGH2,
PGD2, 4-HNE

(238, 240–242),

AKR1C4 Type 1 3a-HSD Liver 3-Keto-5b-sterols,
5a-dihydrotestosterone

(230, 238),

AKR1D1 Steroid 5b-reductase Liver, placenta, brain D4-Ketosteroids, particularly bile acid intermediates (237, 243–245),
AKR1E2 1,5-Anhydro-D-fructose reductase Liver, testis 1,5-Anhydro-D-fructose (246, 247)
KCNAB1 Potassium voltage-gated channel b-

subunit-1 (Kvb1)/AKR6A3
Brain, heart Lipid peroxidation-derived aldehydes (presumed)* (248, 249)

KCNAB2 Potassium voltage-gated channel b-
subunit-2 (Kvb2)/AKR6A5

Brain, spinal cord Methylglyoxal, acrolein, 4-ONE, oxPL, PGJ2* (250–252)

KCNAB3 Potassium voltage-gated channel b-
subunit-3 (Kvb3)/AKR6A9

Brain No data. (253)

AKR7A2 Aflatoxin aldehyde reductase (AFAR1) Ubiquitous Aflatoxin B1, succinic semi-aldehyde, 4-HNE (230, 254)
AKR7A3 Aflatoxin aldehyde reductase (AFAR2) Liver, stomach, pancreas,

kidney
Aflatoxin B1 (255),
November 2020 | Volume 11
*Evidence from work on the rat ortholog. 4-HNE, 4-hydroxy-2-nonenal; 4-ONE, 4-oxo-2-nonenal; HSD, hydroxysteroid dehydrogenase; oxPL, oxidized phospholipid; PG, prostaglandin
(e.g., PGH2, PGD2, PGJ2).
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with His (259) (Figure 4A). This polarizes the carbonyl group of
the substrate, allowing it to accept a hydride ion from the
cofactor. In the oxidation direction, the phenolate form of Tyr
(generated through proton relay with Lys and Asp) acts as a base
and abstracts a proton from the alcohol group of the substrate,
facilitating hydride transfer to the cofactor (259) (Figure 4B).

AKR1D subfamily members catalyze the irreversible 5b-
reduction of sterol double bonds into single bonds, instead of
the reversible reduction of carbonyls typical of AKRs (Figure
4C). They possess an altered catalytic tetrad with Glu replacing
His (265). This substitution allows the substrate to penetrate
deeper into the active site pocket, positioning C5 close to the 4-
pro-H of NADPH (259). The catalytic Glu residue is thought to
act as a superacid, facilitating the enolization of the steroid
double bond and allowing hydride transfer to C5 (259, 265).

Human AKR1B1 catalyzes the isomerization of PGH2 to
PGD2 in the absence of cofactor, as well as the reduction of
PGH2 to PGF2a in the presence of cofactor (266). Curiously, both
Frontiers in Endocrinology | www.frontiersin.org 1316
of these reactions are reported to be facilitated by a catalytic triad
of Lys, His and Asp, without the involvement of Tyr in catalysis,
although Tyr is still required for the p‐nitrobenzaldehyde
reductase activity of the enzyme (266). Thus, both Tyr and His
can participate in acid-base catalysis, at least in AKR1B1.

Involvement of Human AKRs in Lipid Metabolism
Human AKRs play roles in the detoxification of reactive
carbonyls. Several AKRs metabolize lipid peroxidation-derived
aldehydes like acrolein and 4-HNE (Table 3). Additionally, some
AKRs (1A1, 1B1, 1B10, 6A5) can reduce oxidized phospholipids,
particularly phospholipid aldehydes (229, 251). These activities
mitigate the cytotoxicity of reactive carbonyls (240, 267–269),
and in the case of family 6 AKRs are also thought to function in
redox sensing (251).

Both AKR1B1 and AKR1C3 exhibit prostaglandin F synthase
activity (270, 271). AKR1B1 catalyzes the reduction of PGH2 to
PGF2a. AKR1C3 catalyzes the same reaction as well as the
A B

C

FIGURE 4 | Catalytic mechanism of aldo-keto reductases (AKRs) in the: (A) Reduction direction and (B) Oxidation direction. (C) 5b-Reduction of steroid double
bond by AKR1D1.
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reversible reduction of PGD2 to 9a ,11b-PGF2 (241).
Furthermore, AKR1B1 catalyzes the isomerization of PGH2 to
PGD2 exclusively in the absence of NADPH as noted previously.
However, the biological relevance of this activity is not clear as
this isomerization reaction is also catalyzed by two prostaglandin
D synthases (272), and the cellular redox status favors the
reduction reaction. Both PGF2a and its isomer 9a,11b-PGF2
promote uterine contractions during labor (237).

Six of the 15 human AKRs are involved in sterol/steroid
metabolism: AKR1B15, the four members of the AKR1C
subfamily (also grouped as hydroxysteroid dehydrogenases;
HSDs), and AKR1D1. AKR1B15 catalyzes the 17b-reduction of
androgens and estrogens (236). AKR1C1 (20a-HSD) catalyzes the
20a-reduction of progesterone inactivating it (273), whereas
AKR1C2 (Type 3 3a-HSD) possesses a 3a-dehydrogenase activity
and deactivates 5a-dihydrotesterone (259). AKR1C3 (Type 5 17b-
HSD) exhibits 17-ketoreductase activity and produces testosterone
and estradiol from their respective precursors.

AKR1D1 and AKR1C4 (Type 1 3a-HSD) catalyze key steps
in bile acid biosynthesis. AKR1D1 catalyzes irreversible 5b-
reduction of a double bond in 3-ketosterols. This modification
changes the geometry of the steroid nucleus from flat to twisted,
with a bend in the A/B ring junction. Next, AKR1C4 catalyzes
the 3a-reduction of the ketosteroid, resulting in a 3a,5b-
configuration, a characteristic feature of bile acids.
Other HSDs Belong to the Short-Chain
Dehydrogenase/Reductase (SDR) Family
Some HSDs belong to a different family of enzymes: the short-
chain dehydrogenases/reductases (SDR). SDRs exhibit key
differences from AKRs in structure, kinetics, catalytic
mechanism, and reaction stereochemistry (reviewed in (274)).
Of note, HSDs of the SDR family work as either ketosteroid
reductases or hydroxysteroid oxidases, depending on their
preference for the corresponding forms of NADP(H) or NAD
(H). This contrasts with HSDs of the AKR1C family which
operate in the reduction direction using (primarily) NADPH
(274). Like CYPs and AKRs, a systematic nomenclature has been
proposed for SDRs (275). However, the old names (especially for
HSDs) remain heavily in use. HSDs of the SDR family have
important functions in sterol/steroid metabolism (Table 4).
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BIOSYNTHETIC PATHWAYS OF OXIDIZED
LIPIDS

Oxygenated PUFA and Oxidized
Phospholipids
Classification of Oxygenated PUFA as Eicosanoids
and Docosanoids
The term “oxylipin” refers to oxygenated PUFA derivatives. It
encompasses a wide range of oxidized lipids like hydroxy-,
epoxy-, oxo-FAs, and endoperoxides. Oxylipins can be
classified according to their precursor into eicosanoids (C20)
or docosanoids (C22), etc., and this system will be used from here
on. Following the classification system of the LIPID MAPS
consortium, eicosanoids include prostaglandins, leukotrienes,
thromboxanes, lipoxins, hepoxilins, E-resolvins, as well as
hydroxy-, hydroperoxy-, epoxy-, and oxo-eicosanoids (286).
Likewise, docosanoids include D-resolvins, protectins, maresins,
hydroxy-, hydroperoxy-, epoxy-, and oxo-docosanoids. Structures
of these lipids are available on the LIPID MAPS database (287).

Here, we focus on the biosynthesis of eicosanoids derived
from AA and EPA, and docosanoids derived from DHA, as they
are the most studied. Due to the broad substrate specificity of
enzymes involved in lipid oxidation, PUFAs with shorter chains
or different number of double bonds also undergo similar
reactions. Similarly, oxygenation of endocannabinoids occurs
on the PUFA moiety and follows the enzymatic mechanisms
described here. Further aspects of oxygenated endocannabinoids
are discussed in other reviews (216, 288).

Release of PUFA from Membranes for Oxylipin
Biosynthesis
Intracellular concentration of free PUFA is tightly regulated
through conjugation with coenzyme A (CoA) and subsequent
esterification into lysoPL forming PL or shuttling into other
pathways (like b-oxidation). PUFAs are abundant in membrane
PLs, typically esterified at the sn-2position.The classical pathwayof
oxylipin biosynthesis involves the release of PUFA frommembrane
PL via the action of lipases like phospholipase A2 (PLA2),
phospholipase C and diacylglycerol lipase (289, 290). PLA2

enzymes are classified into six types: secreted (sPLA2), cytosolic
(cPLA2), calcium-independent (iPLA2), platelet-activating factor
TABLE 4 | Human SDR-HSDs and their substrates/reactions.

Gene Alternative protein names Substrates Reaction Refs.

HSD3B1 Type 1 3b-HSD/D5-4 isomerase/SDR11E1 3b-Hydroxy-D5-sterols Oxidation & isomerization (276, 277),
HSD3B2 Type 2 3b-HSD/D5-4 isomerase/SDR11E2 3b-Hydroxy-D5-sterols Oxidation & isomerization (277, 278),
HSD3B7 Type 7 3b-HSD/SDR11E3 3b-Hydroxy-D5-sterols Oxidation & isomerization (279)
HSD11B1 Type 1 11b-HSD/Corticosteroid 11b-dehydrogenase

isozyme 1/SDR26C1
11b-Hydroxysterols (e.g. cortisol), Oxidation (280)

HSD11B2 Type 2 11b-HSD/Corticosteroid 11b-dehydrogenase
isozyme 2/SDR9C3

11b-Hydroxysterols (e.g. cortisol), Oxidation (280)

HSD17B1 Type 1 17b-HSD/Estradiol 17b-dehydrogenase 1/
SDR28C1

Estrogens and androgens Reduction (281, 282)

HSD17B4 Type 4 17b-HSD/Peroxisomal multifunctional enzyme type
2/SDR8C1

(24R,25R)-3a,7a,12a,24-Tetrahydroxy-5b-
cholestan-26-oyl-CoA

Reduction (283)

HSD17B7 Type 7 17b-HSD/3-Ketosteroid reductase/SDR37C1 3b-Hydroxysterols, 17b-estradiol Reduction (284, 285)
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acetylhydrolases (PAH-AH), lysosomal (LPLA2), and adipose
(AdPLA), and these are further divided into groups and
subgroups (291, 292). cPLA2a is localized in the cytosol but
translocates to intracellular membranes upon calcium activation,
and exhibits selectivity for phospholipids containingAA at the sn-2
position (293, 294).On the other hand, the release ofDHA from the
membrane can be facilitated by iPLA2b (295, 296). Last, sPLA2

enzymes are involved in the release of AA, EPA and DHA (297,
298). PLA2 enzymes are extensively reviewed by Murakami (299).

Biosynthesis of Eicosanoids
Arachidonic acid is a substrate of eicosanoids produced through
the actions of COXs, LOXs, CYPs, and other downstream
Frontiers in Endocrinology | www.frontiersin.org 1518
enzymes (Figure 5A). The most established of these are mono-
oxygenation products of AA, DHA, and EPA and classic
prostaglandins, leukotrienes, and thromboxane from COXs,
LOXs, and CYPs. Most of these were described from the
1950s–90’s in seminal studies, with many conducted at the
Karolinska Institute in Stockholm by Sune Bergstrom, Bengt
Samuelsson and colleagues. Indeed, the Nobel Prize for
Physiology and Medicine was awarded for discovery of
prostaglandins and related biologically active substances in
1985 to Bergstrom, Samuelsson and John Vane. More recently,
research has focused on characterization of multiply oxygenated
PUFAs from AA, EPA, and DHA including several which are
proposed to form from transcellular sequential oxygenation by
A

B

FIGURE 5 | Biosynthesis of eicosanoids derived from: (A) Arachidonic acid and (B) Eicosapentaenoic acid. HETE, hydroxy-eicosatetraenoic acid; Hp, hydroperoxy;
Ep, epoxy; LTA4H, leukotriene A4 hydrolase; LTC4S, leukotriene C4 synthase; GGT, g-glutamyl transpeptidase; DPEP2, dipeptidase 2; sEH, soluble epoxide
hydrolase; 12-HEDH, 12-hydroxyeicosanoid dehydrogenase; PGES, prostaglandin E synthase (m: microsomal, c = cytosolic); PGDS (prostaglandin D synthase (L:
lipocalin type, H: hematopoietic); 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; PG-9KR, prostaglandin 9-ketoreductase; EET, epoxyeicosatrienoic acid;
DiHETrE, dihydroxy-eicosatrienoic acid; HEPE, hydroxy-eicosapenataenoic acid.
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various enzymes. However, for many of these, their specific
biosynthetic pathways, enantiomeric composition and
biological actions in tissues are not well understood and the
levels formed are extremely low in comparison to classic PGs and
monohydroxy-oxylipins. Furthermore, their bioactions often
require amounts of lipids that are considerably higher than
levels detected in cell and tissue samples, and thus could be
considered pharmacological.

COXs convert AA into PGG2 which is reduced into PGH2

(Figure 5A). From there, PGH2 functions as substrate for classic
PGs and thromboxane, generated by tissue-specific enzymes.
CYP5A1 (thromboxane synthase) is expressed in several cell
types and tissues (platelets, macrophages, lung, kidney, liver) and
catalyzes the isomerization of PGH2 into thromboxane A2, a
potent vasoconstrictor and activator of platelet aggregation (300,
301). CYP5A1 also catalyzes the cleavage PGH2 into
malondialdehyde and 12-hydroxyheptadecatrienoic acid.
CYP8A1 (prostacyclin synthase) is widely expressed (abundant
in ovary, heart, lung, skeletal muscle, and prostate) and catalyzes
the isomerization of PGH2 into prostacyclin (PGI2), a vasodilator
and inhibitor of platelet aggregation (302).

PGH2 can also be converted into PGD2 through the action of
AKR1B1 or PGD synthases, of which there are two isoforms:
lipocalin-type PGD synthase (in the central nervous system, male
genitalia, heart, cerebrospinal fluid and plasma) and
hematopoietic PGD synthase (in antigen-presenting cells, mast
cells and megakaryocytes) (266, 303). PGD2 plays roles in the
regulation of body temperature, sleep cycle, pain perception and
the immune response (304). In the uterus, AKR1C3 catalyzes the
reduction of PGD2 into 9a,11b-PGF2, which promotes uterine
contractions (237). Similarly, AKR1C3 and AKR1B1 catalyze the
reduction of PGH2 into PGF2a, which also promotes uterine
contractions (305). Finally, PGH2 can be converted into PGE2
via the action of PGE synthases, of which there are three
isoforms: an inducible microsomal isoform (mPGES-1), a
constitutive microsomal isoform (mPGES-2) and a constitutive
cytosolic isoform (cPGES) (306). PGE2 is abundant in the body
and plays a complex role in immunity and inflammation (307).
Additionally, PGE2 is reduced into PGF2a by prostaglandin 9-
ketoreductase (PG-9KR) (308).

COXs also produce 11R-, 15R-, and 15S-HpETEs as side
products, all three of which can be reduced into their
corresponding alcohols by peroxidase activity, which are in
turn reduced into oxo-ETEs by 15-hydroxyprostaglandin
dehydrogenase (15-PGDH). Bioactivities of HETEs and oxo-
ETEs are extensively reviewed by Powell and Rokach (309).

5-LOX converts AA into 5S-HpETE (Figure 5A), which is
reduced into 5S-HETE through the action of a peroxidase (e.g.,
GPX) or converted into leukotriene A4 (LTA4) through the
leukotriene synthase activity of 5-LOX. Various immune cells
(neutrophils, monocytes, platelets) express 5-hydroxyeicosanoid
dehydrogenase (5-HEDH) which converts 5S-HETE into 5-oxo-
HETE, a potent chemoattractant for eosinophils (310). On the
other hand, LTA4 serves as a precursor for LT peptide conjugates
(LTC4, D4 and E4) and lipoxins (A and B). LTC4, D4, and E4 are
synthesized from LTA4 through LTC4 synthase (a gluthathione-
Frontiers in Endocrinology | www.frontiersin.org 1619
S-transferase), g-glutamyl transpeptidase (GGT) and dipeptidase
2 (DPEP2). Leukotrienes exhibit pro-inflammatory properties
and are implicated in asthma and allergic reactions (311). On the
other hand, lipoxins are thought to be synthesized by 12S-LOX
through a transcellular pathway which involves interactions
between two cell types (312). Lipoxins exhibit anti-
inflammatory properties and are proposed to play a role in
wound healing and tissue homeostasis (313). Alternatively,
LTA4 can be hydrolyzed by leukotriene A4 hydrolase (LTA4H)
into LTB4, which attracts neutrophils (314).

15-LOXs converts AA into 15S-HpETE (Figure 5A), which
can be reduced into 15S-HETE then oxidized into 15-oxo-ETE.
15S-HpETE and 15S-HETE are also substrates for 5-LOX, which
produces a 5S,6S epoxy intermediate that can be hydrolyzed into
lipoxins by unidentified hydrolases. Additionally, 15S-HpETE is
proposed to be a precursor for eoxin A4 (a 14,15 leukotriene),
which is converted into peptide conjugates (eoxin C4, D4, and E4)
similar to leukotrienes (315). Conversion of eoxin A4 into C4 is
thought to involve LTC4S. Enzymes that catalyze the following
two steps leading to eoxin D4 and E4 are unidentified,
presumably a GGT isoform and DPEP2. Eoxins are produced
in eosinophils, mast cells and airway epithelial cells, and have
been shown to possess pro-inflammatory properties (316).

12S-HpETE and 12R-HpETE are produced by 12S-LOX and
12R-LOX, respectively (Figure 5A). These hydroperoxides can
be reduced to their corresponding alcohols via a peroxidase,
and both alcohols further oxidized into 12-oxo-ETE by 12-
hydroxyeicosanoid dehydrogenase (12-HEDH) (309). Both
hydroperoxides are also precursors for hepoxilins, which are
epoxy-alcohols. eLOX3 in skin converts 12R-HpETE into either
hepoxilin A3 or 12-oxo-ETE. On the other hand, 12S-HpETE
can be converted into hepoxilin A3 or B3 by either 12S-LOX or
eLOX3, but eLOX3 also generates 12-oxo-ETE (70, 317).
Hepoxilins A3 and B3 are hydrolyzed by sEH into trioxilins
A3 and B3, respectively (318). Hepoxilin A3 can also be
conjugated with glutathione via LTC4S producing hepoxilin
A3-C, which can be converted into a hepoxilin A3-D by GGT
(319). The occurrence of hepoxilin A3-E (cysteinyl conjugate)
has also been proposed but not confirmed. Hepoxilin A3 is
proposed to regulate mucosal inflammation by recruiting
neutrophils across the epithelial junction into the gut
lumen (320).

CYPs generate various midchain R- and S-HETEs as well as 20-
HETE through hydroxylation of AA (Figure 5A). Alternatively,
epoxyeicosatrienoic acids (EET) are produced from AA through
epoxidation of its double bonds. Major mammalian CYP
epoxygenases include CYP2C8, CYP2C9, and CYP2J2 (15). EETs
are further metabolized by sEH (and potentially other epoxide
hydrolases) into dihydroxyeicosatrienoic acids (DiHETrE). Note
that EPA and other PUFA are also targets of CYP-mediated
reactions, which generate the corresponding hydroxy-, epoxy-,
and dihydroxy- derivatives.

“E-resolvins”, another class of eicosanoids, are proposed to be
generated from EPA (Figure 5B). COX-2 and CYPs have both been
proposed to act on EPA to produce 18R-hydroxyeicosapentaenoic
acid (18R-HEPE), which is in turn a proposed precursor for lipids
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termed resolvins E1, E2 and E3 (E-resolvins). It is known that the
acetylation of COX-2 shifts its activity into favoring the
lipoxygenase-type reaction over the cyclooxygenase activity, and
that acetylated COX-2 generates 18R-HEPE from EPA (321).
However, acetylated COX-2 is not a physiologically relevant form,
and 18R-HEPE could be potentially generated through othermeans.
COX-2 is theoretically capable of generating 18R-HEPE from EPA
in a lipoxygenase-type reaction followed by peroxidase activity.
However, whether the generation of 18R-HEPE from EPA occurs in
vivo and in sufficient amounts without COX-2 acetylation is
unknown. Microbial CYPs have also be proposed as sources of
18R-HEPE during infection. E-resolvins are proposed to be
produced through a transcellular mechanism involving microbial
and mammalian cells (322). Alternatively, mammalian CYPs are
also potential sources of 18R-HEPE, although the exact isoforms
involved are unknown.

18R-HEPE can be metabolized by 5-LOX into a 5S-
hydroperoxy intermediate and further into a 5S,6S-epoxy
intermediate (323). The former is proposed to be converted
into resolvin E2 by a peroxidase, whereas the latter is proposed to
be hydrolyzed into resolvin E1 by LTA4H (324). 18S-analogues
of resolvin E1 and E2 have also been described and are proposed
to be generated from 18S-HEPE through a similar pathway
(Figure 5B), although the enzymatic sources of 18S-HEPE
(aside from acetylated COX-2) are also unknown. 18R-HEPE
is also proposed to be a precursor to two stereoisomers
collectively called resolvin E3 generated by 15-LOX-1 (325).
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E-resolvins are proposed to exhibit anti-inflammatory effects and
promote the resolution of inflammation (325, 326).

Both lipoxins and E-resolvins have been classified as specialized
pro-resolving mediators (SPMs), a term which currently describes
families of oxygenated PUFAmetabolites with proposed roles in the
resolution of inflammation and tissue regeneration generated at
extremely low levels in biological samples.

Biosynthesis of Docosanoids
Oxygenation of DHA by LOXs and CYPs forms oxygenated
docosanoids (hydroxy-, epoxy-, and dihydroxy derivatives). DHA
is also the precursor to several classes of multiply oxygenated
docosanoids, including additional SPMs which have been named
maresins, D-resolvins, and protectins (Figure 6). Maresin
biosynthesis has been proposed to start with action of 12S-LOX,
generating 14S-hydroperoxy-DHA (14S-HpDoHE) then a 13S,14S-
epoxy intermediate. Hydrolysis of this epoxy intermediate by sEH
or an unidentified hydrolase is proposed to generate maresin 2 and
maresin 1, respectively (93, 327). The biosynthesis of protectin and
D-resolvins both begin with 15-LOX-1 which generates a 17S-
hydroperoxide (17S-HpDoHE). Further conversion of this
hydroperoxide into a 16S,17S-epoxy intermediate by 15-LOX-1
followed by hydrolysis (unidentified hydrolase) is proposed to
generate protectin D1 (328). Alternatively, 17S-HpDoHE could be
reduced into an alcohol by a peroxidase, which then serves as a
precursor for D-resolvins. In this route, 5-LOX is proposed to
generate two distinct products hydroperoxides (4S or 7S), which
FIGURE 6 | Biosynthesis of specialized pro-resolving mediators (SPMs) derived from docosahexaenoic acid. HDoHE, hydroxy-docosahexaenoic acid; Hp,
hydroperoxy; Ep, epoxy; CTR, conjugate in tissue regeneration (M: maresin, P: protectin, R: resolvin); sEH, soluble epoxide hydrolase; LTC4S, leukotriene C4

synthase; GGT, g-glutamyl transpeptidase; DPEP2, dipeptidase 2.
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undergo further transformations leading to several D-resolvins
(Figure 6). Additionally, epoxide intermediates in the previously
described pathways are proposed to undergo glutathione
conjugation by LTC4S, generating peptide conjugates of maresin,
protectin and D-resolvin named MCTR1, PCTR1, and RCTR1,
respectively (CTR = conjugate in tissue regeneration). These
conjugates are proposed to be metabolized by GGT and DPEP2,
similar to leukotrienes (329).

Oxygenation of Esterified PUFA and Biosynthesis of
Oxidized Phospholipids
The classical pathway for the biosynthesis of oxidized
phospholipids starts with the release of PUFA from membranes
through the action of PLA2. PUFA are then oxygenated by the
enzymes discussed earlier. This is followed by acylation of
oxygenated PUFA with CoA and esterification into a lysoPL via
the action of an sn-2 acyltransferase.

The generation of PL-esterified eicosanoids is well-
documented in mammalian cells such as epithelial, endothelial
and immune cells (330). HETE-PLs are acutely generated by
activated neutrophils, platelets and monocytes (331–333).
Similarly, PGD2 and PGE2 generated from COX-1-derived
PGH2 in activated platelets are rapidly incorporated into PE-
lysoPLs (334). Also, EET-PLs have been detected in rat liver
(335). For most of these, the mechanism of formation requires
endogenous generation of an oxylipin, which is then rapidly
esterified into membrane PL pools (e.g., on a timescale of
minutes) via Lands cycle enzymes (336).

15-LOXs also contribute to the formation of oxPL by two
other pathways. The first involves direct oxygenation of
membrane PLs (331, 337). In the second pathway, 15-LOXs
oxygenate the PUFA moiety of CEs, then hydrolysis of
oxygenated PUFA from CE liberates oxygenated PUFA which
can be esterified to lysoPL (87).

Recent studies found that COX-2, 15-LOX-2, and platelet
12S-LOX can catalyze the oxygenation of 2-AA-lysoPL released
by iPLA2g in response to calcium ionophore stimulation (88, 94).
These reactions generate 2-eicosanoid-lysoPLs which are
proposed to be a source of free eicosanoids as well as acting as
signaling mediators themselves. 2-eicosanoid-lysoPLs can also be
converted into oxPLs through the action of sn-1 acyltransferase
(338). Cytochrome c has been recently been identified as a
plasmalogenase, and is proposed to be a source of 2-
eicosanoid-lysoPLs under conditions of oxidative stress (339).
These findings describe novel pathways for the biosynthesis of
oxPLs (Figure 7). Further research is required to assess the
contribution of these pathways to the formation of oxPLs and
other mediators in vivo.
Biosynthesis of Oxysterols, Bile Acids, and
Steroid Hormones
Oxysterols
Oxysterols are formed in the first steps of cholesterol
metabolism: they are oxidized forms of cholesterol and also of
its precursors (340). 7a-Hydroxycholesterol (7a-HC) is formed
from cholesterol by CYP7A1 and represents the first metabolite
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in the neutral pathway of bile acid biosynthesis (Figure 8) (219,
220). (25R)26-Hydroxycholesterol (26-HC), more commonly
called 27-hydroxycholesterol, and 3b-hydroxycholest-5-en-
(25R)26-oic acid (3b-HCA) are both formed from cholesterol
by CYP27A1 and are the first members of the acidic or
alternative pathway of bile acid biosynthesis (219–221). While
CYP7A1 is an endoplasmic reticulum and liver specific protein,
CYP27A1 is mitochondrial and expressed in many tissues.
CYP46A1 is almost exclusively expressed in neurons, its
function is to maintain cholesterol balance in the brain,
converting cholesterol from a molecule unable to pass the
blood brain barrier to 24S-hydroxycholesterol (24S-HC), a
more polar molecule which can cross the barrier (222, 223,
341). CYP11A1, like CYP27A1, is a mitochondrial inner
membrane protein. It is highly expressed in steroidogenic
tissue and will oxidize cholesterol to pregnenolone in a three
step process involving 22R-hydroxycholesterol (22R-HC) and
20R,22R-dihydroxycholesterol as intermediates (20R,22R-diHC)
(342, 343) (Figure 9). The pathways of bile acid biosynthesis are
discussed in more detail below.

While most “primary” oxysterols are formed from cholesterol
in CYP catalyzed reactions, cholesterol 25-hydroxylase
(CH25H), the dominating enzyme that generates 25-
hydroxycholesterol (25-HC) is an exception, in that is not a
CYP, but a member of a family of enzymes that utilize di-iron
cofactors to catalyze the hydroxylation (344). CH25H is
expressed in activated immune cells and 25-HC has both anti-
bacterial and anti-viral activities (345–348). 25-HC is
metabolized by CYP7B1 to 7a,25-diHC, a ligand to the GPCR
Epstein Barr virus induced gene 2 (EBI2 or GPR183). 7a,25-
diHC acts as a chemoattractant to GPR183 expressing immune
cells (349, 350). An alternative route to 7a,25-diHC production
is through CYP3A4 oxidation of 7a-HC (190), while the same
enzyme has also been reported to act as a second cholesterol 25-
hydroxylase and also a 4b-hydroxylase of cholesterol (189, 351).

Oxysterols can also be formed from cholesterol precursors in
reactions catalyzed by CYP enzymes (202, 352). These reactions
may be important in patients suffering from inborn errors of
cholesterol biosynthesis such as Smith-Lemli-Opitz syndrome
(SLOS, 7-dehydrocholesterol reductase deficiency) and
desmosterolosis (3b-hydroxysterol-D24-reductase deficiency) or
where there is very high expression of sterol hydroxylases, e.g.,
CYP7A1 in cerebrotendinous xanthomatosis, where CYP27A1
is deficient.

Bile Acid Biosynthesis
There are two quantitatively major and at least five minor
pathways of bile acid biosynthesis and all pathways involve
multiple oxidation reactions (219, 220, 353–358). Besides CYP
enzymes, key oxidation reactions are carried out by
hydroxysteroid dehydrogenase (HSD) members of the short
chain dehydrogenase/reductase (SDR) family and reductions
by aldo-keto reductases (AKR) enzymes. One of the minor
pathways that results in the formation of 3b ,5a ,6b-
trihydroxycholan-24-oic acid involves of cholestane-3b,5a,6b-
triol which is likely formed via the cholesterol peroxidation
product 5,6-epoxycholesterol (219, 354).
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While the acidic pathway may be most important in infants
(359), at later stages of life the neutral pathway is dominant. This is
initiated by CYP7A1 oxidation of cholesterol to generate 7a-HC in
the liver. Further oxidation may occur at C-12 by CYP8B1 to
generate 7a,12a-dihydroxycholesterol (7a,12a-diHC), whichmay
be preceded or succeeded by oxidation and isomerization of the 3b-
hydroxy-5-ene structure to a 3-oxo-4-ene by HSD3B7, giving 7a-
hydroxycholest-4-en-3-one (7a-HCO) and 7a ,12a-
dihydroxycholest-4-en-3-one (7a,12a-diHCO), respectively
(Figure 8). A general feature of bile acid biosynthesis is that many
of the enzymes involved in the pathways accept multiple substrates
resulting in variations in the order of reactions depending on the
tissue in which they proceed (360). The next steps involve A-ring
reductions which may be succeeded or preceded by (25R)26-
hydroxylation and (25R)26-carboxylation to ultimately give
3a,7a,12a-trihydroxy-5b-cholanestan-(25R)26-oic acid. The A-
ring reductions are carried out by AKR1D1 and AKR1C4, while
CYP27A1 carries out the (25R)26-oxidations. Side-chain
shortening of the cholestanoic acid proceeds in the peroxisome
through the CoA-thioester formed by bile acid Co-A synthetase
(BACS, SLC27A5) or very long chain acyl-CoA synthetase (VLCS,
SLC27A2). Following C-25 racemization by a-methylacyl-CoA
racemase (AMACR) the next oxidation involves the introduction
of D24 double bond by the enzyme acyl-CoA oxidase 2 (ACOX2).
The D24 double bond is then hydrated by D-bifunctional protein
Frontiers in Endocrinology | www.frontiersin.org 1922
(DBP), which then oxidizes the C-24 hydroxy to a C-24 ketone via
HSD17B4 activity. The resulting product 3a,7a,12a-trihydroxy-
24-oxo-5b-cholestan-(25R)26-oyl-CoA is then oxidized by the
enzyme peroxisomal thiolase 2 (SPCx) to the thioester of cholic
acid ready for conjugationwith glycine, taurine, or hydrolysis to the
free acid by peroxisomal acyl-CoA thioesterase (ACOT) (219, 220).

The acidic pathway starts with (25R)26-hydroxylation and
(25R)26-carboxylation of cholesterol by CYP27A1 and this and
many other steps may proceed extrahepatically (Figure 8). Most
of the enzymes involved in the neutral pathway are also involved
in the acidic pathway although not in the same order (361). An
exception is CYP7A1, which is replaced by CYP7B1 as the 7a-
hydroxylase in the acidic pathway. CYP7B1 is expressed in many
tissues, not just liver (362, 363), and unlike CYP7A1 uses side-
chain oxysterols as its substrate. The acidic pathway mostly
generates chenodeoxycholic acid rather than cholic acid, so
CYP8B1 has minor involvement. The order of A-ring
reduction and side-chain cleavage can be reversed in the acidic
pathway with the formation of bile acid intermediates possessing
3-oxo-4-ene or 3b-hydroxy-5-ene functions.

Steroid Hormone Biosynthesis
The classical steroid hormones aldosterone (mineralocorticoid),
cortisol (glucocorticoid), testosterone (male sex hormone) and
17b-estradiol (female sex hormone) are all formed from
FIGURE 7 | Biosynthetic pathways of oxidized phospholipids. (1) The classical pathway involves the action of PLA2 on membrane phospholipids, releasing sn-2 PUFA which
are oxygenated by cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs) then re-esterified. *Oxygenated PUFA can be also be esterified with
plasmalogen lysophospholipids (2) Direct oxygenation of membrane phospholipids by 15-LOXs. (3) 15-LOX-mediated oxygenation of PUFA in cholesteryl esters followed by
hydrolysis of oxygenated PUFA provides substrates for the classical pathway. (4) An alternative pathway involves the action of PLA1, forming 2-PUFA-lysophospholipids which
are oxygenated by COX-2, 12S-LOX, and 15-LOXs then re-esterified with FA. (5) Cytochrome c releases 2-PUFA-lysophospholipids by cleaving the vinyl ether bond in
plasmalogen phospholipids, providing substrates for the alternative pathway. PLA, Phospholipase A; oxPUFA, oxygenated PUFA; ACS, acyl-CoA synthase; CE, cholesteryl
ester; CEH, neutral cholesterol ester hydrolase; FA, fatty acid/acyl; lysoPL, lysophospholipid.
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FIGURE 8 | A simplified view of the major bile acid biosynthesis pathways. The “neutral” pathway (highlighted in blue) starts with 7a-hydroxylation of cholesterol by
CYP7A1, the “acidic” pathway with (25R)26-hydroxylation then (25R)26-carboxylation of cholesterol by CYP27A1. In the “acidic” pathway (highlighted in red)
CYP7B1 is the 7a-hydroxylase.
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cholesterol through multiple oxidation reactions (Figure 9) (364,
365). Pregnenolone formed via CYP11A1 oxidation of
cholesterol represents an intermediate between oxysterol and
steroid hormone biosynthesis. It is oxidized by HSD3B2 to
progesterone on the pathway to aldosterone or by CYP17A1 to
17a-hydroxypregnenolone on the route to cortisol. Both these
pathways use CYP21A2 as a C-21 hydroxylase and CYP11B
Frontiers in Endocrinology | www.frontiersin.org 2124
enzymes as the 11b-hydroxylase. Note, HSD3B1 is the enzyme
which generates progesterone from pregnenolone in the
placenta, when progesterone acts as the hormone of
pregnancy. Further oxidation of 17a-hydroxypregnenolone by
CYP17A1 leads to dehydroepiandrosterone on the road to
testosterone and17b-estradiol. In this pathway additional
oxidations and reductions are carried out by HSD3B2 and
FIGURE 9 | Simplified view of steroid hormone biosynthesis. Highlighted in red are the classical steroid hormones, progesterone, aldosterone, cortisol, testosterone,
and 17b-estradiol.
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HSD17B3, respectively, while CYP19A1 is required to generate
estrogens. Besides being synthesized in the adrenal gland and sex
organs it is noteworthy that steroids can be synthesized in the
brain and are then named neurosteroids (366, 367). A more
general term for brain steroids which may be synthesized in the
brain or imported from the periphery and exert rapid non-
genomic effects is neuroactive steroids. It is beyond the scope of
this review to discuss steroid hormone biosynthesis and
metabolism in greater detail and the reader is directed to the
excellent reviews of Shackleton and colleagues (364, 368–370).
CONCLUDING REMARKS

Enzymatically oxidized lipids are derivatives of PUFA or cholesterol
with critical functions in cellular and physiological processes as
signaling mediators and hormones. Their biosynthesis is highly
regulated and carried out by enzymes that include LOXs, COXs,
CYPs, and AKRs. Advances in our understanding of these enzymes
have led to the discovery of novel lipid mediators and their
biosynthetic routes. Many functional aspects of these enzymes
and their products remain unclear, requiring further investigation.
These include elucidating the function of 15-LOX-2 (ALOX15B) in
macrophages, the regulatory mechanisms of 12-LOXs and eLOX3,
the mechanistic details of transcellular biosynthesis, the origin of 18-
HEPE required for E-resolvin biosynthesis, the biological functions
of orphan CYPs, and the bioactivities/functions of oxygenated
endocannabinoids. The relative physiological importance of some
multiply oxygenated PUFA mediators, which are generated in
extremely low amounts, also needs to be further clarified. This is
also true for multiply oxygenated derivatives of cholesterol.

Research on oxygenated PUFA and oxysterols has been
carried out largely in parallel, and both areas have benefited
greatly from advances in analytical methods. However, there are
still major questions to be answered in terms of their proposed
roles in human disease including atherosclerosis and
neurodegeneration. Here, we presented biosynthetic pathways
of oxygenated PUFA and oxysterols, highlighting their (known)
functions to show the diversity of products but also to draw
connections between the two groups. An integrated approach
encompassing the analysis of both lipid groups could be useful in
examining the etiology of disease. Despite their involvement in
the progression of disease such as atherosclerosis and
Frontiers in Endocrinology | www.frontiersin.org 2225
neurodegenerative disease, the two lipid groups are rarely
analyzed together. We propose that oxygenated PUFA and
oxysterols are more connected than previously thought,
especially as 15-LOX is being increasingly recognized as a
regulator of cholesterol metabolism. The immune and nervous
systems are both of particular interest as major sites of
cholesterol metabolism and 15-LOX expression. Further work
on the enzymology of 15-LOX with cholesteryl substrates could
lead to the discovery of novel oxidized lipids. For example, 15-
LOX oxygenation of PUFA esters of oxysterols could generate
novel lipids that link both classes directly in cell types that
possess the enzymatic machinery for oxysterol and oxylipin
biosyntheses (e.g., macrophages). An alternative biosynthetic
route could be through the esterification of oxylipins with free
oxysterols. That said, the detection of these proposed molecules
could be challenging due to low abundance and sensitivity to
alkaline conditions commonly used in analysis. Finally, the
substrate promiscuity of many of the enzymes involved in
production of oxidized lipids provides a technical challenge for
dissection of (patho)physiological function of specific oxidized
lipids. Clearly, there is plenty of scope for ongoing exploration of
the molecular, cellular, and physiological functions of
oxidized lipids.
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Esterification of cholesterol is a universal mechanism to store and transport large
quantities of cholesterol between organs and tissues and to avoid toxicity of the excess
of cellular cholesterol. Intended for transport and storage and thus to be inert, cholesteryl
esters (CEs) reside in hydrophobic cores of circulating lipoproteins and intracellular lipid
droplets. However, the inert identity of CEs is dramatically changed if cholesterol is
esterified to a polyunsaturated fatty acid and subjected to oxidative modification. Post-
synthetic, or epilipidomic, oxidative modifications of CEs are mediated by specialized
enzymes, chief among them are lipoxygenases, and by free radical oxidation. The
complex repertoire of oxidized CE (OxCE) products exhibit various, context-dependent
biological activities, surveyed in this review. Oxidized fatty acyl chains in OxCE can be
hydrolyzed and re-esterified, thus seeding oxidized moieties into phospholipids (PLs), with
OxPLs having different from OxCEs biological activities. Technological advances in mass
spectrometry and the development of new anti-OxCE antibodies make it possible to
validate the presence and quantify the levels of OxCEs in human atherosclerotic lesions
and plasma. The article discusses the prospects of measuring OxCE levels in plasma as a
novel biomarker assay to evaluate risk of developing cardiovascular disease and efficacy
of treatment.

Keywords: cholesteryl ester, oxidized, macrophage, atherosclerosis, cardiovascular disease, biomarker,
inflammation, toll-like receptor 4
INTRODUCTION

Cholesterol esterification is a mechanism the body uses to store and transfer cholesterol, while at the
same time to avoid cellular toxicity of the excess of unesterified (often called free) cholesterol.
However, oxidation of a cholesteryl ester (CE) drastically changes the part CE plays, from a subdued
supporting actor to a contender for the leading role. The script, in other words, the specific
physiological or pathological context, defines if oxidized CE (OxCE) plays a villain or the hero.

Unesterified cholesterol is an essential component of cellular membranes, where it plays both
structural and signaling roles, the latter via regulation of lipid rafts and binding to many
transmembrane proteins. In the nervous system, cholesterol is a major component of myelinated
sheath of many nerve fibers. Cholesterol is also a precursor for biosynthesis of steroid hormones and
bile acids. Thus, no wonder that cholesterol homeostasis is under tight control to ensure proper
cellular and systemic functions. Dysregulation of cholesterol metabolism underlies
n.org November 2020 | Volume 11 | Article 602252136
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many pathologies, from cardiovascular disease (CVD) to
neurodegenerative disorders to cancer (1, 2). In homeostatic state,
cellular cholesterol content is tightly controlled by balancing de
novo synthesis, uptake of lipoproteins, export to extracellular
milieu, and storage (2–4). The strategy for storage and transport
of amphipathic cholesterol molecules is their esterification to fatty
acids and tight packaging of the resulting hydrophobic CEs in the
core of intracellular lipid droplets or circulating lipoproteins
(Figure 1—Transport and Storage).

Inside the cells, after a threshold level in cellular cholesterol
mass has been reached, excess cholesterol is esterified in the ER
by the enzyme acyl CoA cholesterol acyltransferase (ACAT), and
the newly synthesized CEs are stored in lipid droplets. To re-
enter the cellular pathway, CE is hydrolyzed by neutral CE
hydrolase (NCEH). Alternatively, lipid droplets are packaged
Frontiers in Endocrinology | www.frontiersin.org 237
into autophagosomes and fuse with lysosomes, where the CE is
hydrolyzed by lysosomal acid lipase (LAL), generating
unesterified cholesterol for delivery to cellular membranes or
for export (5). Cellular CEs undergo a continual cycle of
hydrolysis and re-esterification with a half-life of about 24 h
(6, 7).

In circulation, lower density lipoproteins transport CEs from
digestive organs to tissues, and high-density lipoprotein (HDL)
returns excess cholesterol in the form of CE back to the liver. In
brief, very-low-density lipoprotein (VLDL), packing triglycerides
(TGs) and CEs, undergoes intravascular remodeling by shedding
TGs and transitions into low-density lipoprotein (LDL), which is
the most CE-rich lipoprotein in circulation. LDL is internalized
by many cell types and thus delivers CEs to tissues. Serving the
opposite function, HDL gathers excess of unesterified cholesterol
FIGURE 1 | In search of CE identity—from inert storage to bioactivity and CVD biomarker. This diagram illustrates different biological processes that involve CEs,
using examples described in text, and potential biomarker applications of detecting OxCEs in plasma and atherosclerotic plaques. Transport: Cholesteryl esters
(CEs) together with triglycerides (TGs) populate the hydrophobic core of circulating lipoproteins, serving to deliver cholesterol and fatty acids to organs. Depicted is
the low-density lipoprotein (LDL), a major CE-transporting lipoprotein in blood. Shown are representative structures (from top to bottom) of a TG, a CE with saturated
fatty acyl [cholesteryl palmitate], and a CE with polyunsaturated fatty acyl (PUFA) [cholesteryl arachidonate], the latter is susceptible to oxidation. Storage:
Intracellular lipid droplets predominantly store either CEs, like in macrophage foam cells in atherosclerotic lesions, or TGs, like in adipocytes. Oxidation: PUFA-CEs
are the preferential substrate for 12/15-lipoxygenase (12/15-LO). Shown is cholesteryl 15(S)-HPETE, the product of 12/15LO-mediated oxidation of cholesteryl
arachidonate, which in turn is oxidized to more complex products, like BEP-CE. Hydroperoxide, endoperoxide and aldehyde groups in OxCEs are reactive and can
covalently modify proteins. Bioactivity: In one example of OxCE biological activity, BEP-CE and minimally modified LDL (mmLDL), which carry many OxCE
molecules, activate an MD-2/TLR4/SYK pathway in macrophages, resulting in ROS generation, inflammatory cytokine secretion, and macropinocytosis-mediated
LDL uptake and foam cell formation. OxCEs also activate endothelial cells, but their effects on vascular smooth muscle cells have not been studied. Biomarkers:
Antibodies against OxCE-protein adducts stain human atherosclerotic lesions and recognize a fraction of ApoB and ApoA-I lipoproteins that carry OxCE in human
plasma. In one example, an immunoassay measuring levels of OxCE-apoA lipoproteins detects reduced levels of this potential biomarker in subjects after treatment
with atorvastatin compared to placebo. The artwork in this figure uses panels originally published in the Journal of Lipid Research. Gonen et al. A monoclonal
antibody to assess oxidized cholesteryl esters associated with apoA-I and apoB-100 lipoproteins in human plasma. J Lipid Res 2019; 60:436-445. © The American
Society for Biochemistry and Molecular Biology.
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from extrahepatic tissues in order to move it back to the
liver. The HDL-associated enzyme lecithin-cholesterol
acyltransferase (LCAT) catalyzes the esterification of free
cholesterol with a fatty acyl transferred from the sn-2 position
of phosphatidylcholine (PC), resulting in the formation of a CE.
In addition, there is a bidirectional exchange of CEs and TGs
between HDL and the apoB-containing lipoproteins VLDL and
LDL, mediated by the CE transfer protein (CETP) in plasma (8,
9). In plasma of healthy human subjects, approximately 70% of
cholesterol molecules are esterified and reside in lipoprotein
cores (10, 11).

This abridged description of CE metabolism illustrates
complex pathways involved in keeping CE locked away in
hydrophobic cores of lipid droplets and lipoproteins for
storage and safe passage through the body—that is until CE
undergoes oxidation and becomes biologically active.

CE Oxidation
The acyl chain in a CE can be derived from a saturated,
monounsaturated or polyunsaturated fatty acid (PUFA). The
most common PUFA-CEs are cholesteryl linoleate [CE(18:2)],
arachidonate [CE(20:4)], and docosahexaenoate [CE(22:6)]. The
PUFAs are more susceptible to oxidation than cholesterol due to
the presence of a weaker C-H bond at the bis-allylic position and
will therefore be oxidized preferentially (12). The hydrogen
atoms are easily abstracted from the bis-allylic positions of
PUFAs to form a lipid radical - the first intermediate of
enzymatic or non-enzymatic lipid peroxidation (13, 14). This
article will be largely focused on the OxCEs with oxidized acyl
chain and non-oxidized sterol, with a brief discussion of
oxysteryl-containing OxCEs.

The enzyme 12/15-lipoxygenase (mouse 12/15-LO is highly
homologous to human and rabbit 15-LO) differs from other
PUFA-oxidizing enzymes like cyclooxygenases in that its
preferential substrate is a CE and not a free fatty acids or a
phospholipid (PL) (12, 15). In a test-tube reaction of LDL
oxidation by rabbit 15-LO, even when the LDL particle is
loaded with free linoleic acid, cholesteryl linoleate constitutes
the major 15-LO substrate (15). However in vivo, 12/15-LO is an
intracellular enzyme and LDL is an extracellular lipoprotein, so it
was at first puzzling how CEs were oxidized by 12/15-LO.
According to one suggested mechanism (16, 17), LDL binds to
macrophage LDL receptor related protein-1 (LRP-1), which in
turn induces 12/15-LO translocation from the cytosol to the cell
membrane and mediates CE transport from LDL to the cell
membrane, where it becomes oxidized by 12/15-LO, as well as
the return of an OxCE to the LDL. It is unknown if any of lipid
droplet-associated proteins can mediate a similar CE exchange
and if CE oxidation can occur on the surface of intracellular
lipid droplets.

Products of 12/15-LO–mediated CE oxidation are vulnerable to
subsequent oxidation in free radical reactions, forming numerous
and complex isoprostane OxCE products, with up to 6 oxygen
atoms inserted in the molecule of cholesteryl arachidonate (18, 19).
Among these polyoxygenated CE products, molecules with a
bicyclic endoperoxide group (18–20), such as cholesteryl (9,11)-
epidioxy-15-hydroperoxy-(5Z,13E)-prostadienoate (abbreviated as
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BEP-CE for the presence of bicyclic endoperoxide and
hydroperoxide groups), have biological activities and can
covalently modify proteins, including apolipoproteins, as
discussed below. OxCEs can also decompose to produce highly
reactive end products, like malondialdehyde (MDA) or 4-hydroxy-
2-nonenal (4-HNE), which in turn covalently modify proteins and
phosphatidylethanolamines (21, 22). These posttranslational
modifications profoundly affect protein function.

In addition, intracellular OxCE hydrolysis and subsequent re-
esterification of an oxidized fatty acyl chain can produce oxidized
PL (OxPL) in the cell (12). In wild type but not 12/15-LO–
deficient murine macrophages, radioisotope-labeled cholesteryl
linoleate and cholesteryl arachidonate, either intracellular or as
part of LDL, were oxidized by the macrophage 12/15-LO, and the
oxidized fatty acyls in OxPL molecules originated from the
OxCEs (12).

Esterification of Oxysterols
Oxysterols, derived from either enzymatic or non-enzymatic
oxidation of cholesterol, are bioactive and play important
regulatory roles (23, 24). Similar to esterification of cholesterol,
esterification of oxysterols is mediated by ACAT in cells and
LCAT in plasma, as well as by lysosomal phospholipase A2 (25,
26). Esterification of oxysterols in plasma shifts their distribution
away from albumin to LDL and HDL (27), where approximately
95% of plasma esterified oxysterols are found (28–31).

OxCE Trafficking
Transport of OxCEs in circulation and their uptake by cells occur
via the same pathways that traffic non-oxidized CEs. HDL carries
85% of total plasma CE hydroperoxides. While HDL and LDL
carry approximately equal numbers of CE hydroperoxide
molecules per particle, the CEs in HDL on a per lipid basis are
over 20-fold “more oxidized” than those in LDL (32). Lipid
peroxidation products in HDL are increased due to direct
oxidation, transfer from LDL to HDL or by enzymatic re-
esterification from OxPL by LCAT (9, 33, 34). CETP does not
distinguish between CE and OxCE and mediates exchange of
OxCE between HDL and LDL at the same rate as it transfers CE
(9). Oxidized cholesteryl linoleate in which the fatty acyl moiety
is oxidized to a hydroperoxide moves readily from HDL to
hepatoma cells in serum-free medium (35), and the rate of SR-
BI-mediated OxCE uptake by cells is approximately 9 times
faster than that of non-oxidized CE and at least 40 times faster
than the uptake of a whole HDL lipoprotein (36, 37). Because of
the presence of hydrophilic, oxygen-containing groups in OxCE
molecules, they become amphipathic and more mobile and
presumably less confined to hydrophobic cores of lipoproteins
or lipid droplets.

Biological Activity of OxCE
There is an important feature of OxCEs that sets them apart from
other oxidized lipids—a combination of reactive and/or
functional oxidation moieties in the fatty acyl chain, which we
already discussed, with cholesterol. Unmodified cholesterol is a
major regulatory molecule for many proteins. The cholesterol
recognition/interaction amino acid consensus (CRAC) motif and
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its reverse version CARC are present in many transmembrane
proteins and are essential for their function (38). In model
binding experiments, cholesterol is often replaced with an
acidic short-chain CE, cholesteryl hemisuccinate (39),
suggesting that cholesterol esterification does not significantly
affect its interaction with CRAC/CARC motifs. However, we
have not seen direct experimental or modeling comparison of
cholesterol and long-chain CE or OxCE binding to these
domains. And we are unaware of studies of interaction
between transmembrane proteins, like GPCRs, with OxCEs,
which are bifunctional—carrying both unmodified cholesteryl
and fatty acyl oxidation moieties.

In addition to transmembrane cholesterol-binding proteins,
there are non-membrane proteins that have hydrophobic pockets
where cholesterol docks, CETP and Niemann-Pick disease, type
C2 protein (NPC2) being the most characterized proteins in this
class. Another cholesterol-binding protein is MD-2 (40). MD-2 is
the LPS-binding co-receptor for TLR4, an obligatory component
for LPS-induced TLR4 activation and signaling. MD-2 has a b-cup
fold structure composed of two antiparallel b sheets forming a
hydrophobic pocket, with positively charged residues located near
the opening rim of the pocket (41–43). Fatty acyl chains of LPS
dock into the hydrophobic pocket, and negatively charged
phosphate groups of LPS bind positively charged residues at the
pocket opening. Likewise, in the molecule of cholesterol, a
hydrocarbon chain together with the steroid form an elongated
hydrophobic structure, which docks in the hydrophobic pocket of
MD-2, and a hydroxyl group linked to the other side of the steroid
stabilizes cholesterol at the positively charged entrance to the
pocket. Test-tube experiments confirm that MD-2 binds
cholesterol (40). Furthermore, cholesterol is found associated
with the MD-2 immunoprecipitated from human plasma or
from mouse atherosclerotic lesions (40). It is unlikely that
unesterified cholesterol binding to MD-2 activates TLR4 because
there is no moiety in the MD-2-bound cholesterol that would
interact with TLR4, however, such a moiety is present in the
cholesteryl esterified to a fatty acyl–CE. The hypothesis that an
oxygenated fatty acyl chain in OxCE provides additional
interaction surfaces, which, in combination with cholesteryl
anchoring in the MD-2 hydrophobic pocket, provide sufficient
interfaces for OxCE-induced MD-2-TLR4 binding,
remains untested.

Although structural determinants are not yet elucidated,
OxCE, and specifically BEP-CE, indeed induces MD-2
recruitment to TLR4 and TLR4 dimerizat ion (44).
Interestingly, MyD88, a TLR4 adaptor which mediates the bulk
of LPS effects, minimally contributes to macrophage responses to
minimally modified LDL (mmLDL), a major carrier of OxCE.
Instead, spleen tyrosine kinase (SYK) has been identified as a
kinase, which is recruited to TLR4 and mediates the majority of
mmLDL- and OxCE-induced effects in macrophages (45–47).
This dichotomy between LPS- and OxCE-mediated TLR4
responses attests, in addition to the pattern-recognition
character of TLR4, to the TLR4 functional selectivity, similar
to biased agonism of GPCRs (48).
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The SYK-dependent activation of TLR4 by mmLDL and
OxCE results in profound cytoskeleton changes in
macrophages, including actin polymerization, cell spreading,
membrane ruffling and macropinocytosis (44, 46, 49) (Figure
1—Bioactivity). Macropinocytosis is a robust mechanism of
OxLDL, mmLDL, and native LDL uptake by macrophages and
foam cell formation. In addition, mmLDL induces PLCg, PKC
and NOX2-dependent ROS production, which regulates
expression of RANTES (CCL5), IL-1b, and IL-6 (45). NOX-2
also regulates mmLDL-induced expression of MCP-1 (CCL2),
TNFa, MIP-2 (CXCL2), and MIP-1a (CCL3) (45). Tlr4−/−

primary macrophages fail to respond to mmLDL or OxCE (44,
46, 49). Remarkably, in in vitro experiments, mmLDL and low-
dose LPS, imitating subclinical endotoxemia observed in patients
with the metabolic syndrome, synergize to produce higher levels
of inflammatory cytokines. Although published data point to
pro-inflammatory effects of OxCE, a more extensive literature on
biological effects of OxPL describes both pro-and anti-
inflammatory effects depending on the disease or pathological
condition context (21). Thus, we cannot exclude the possibility of
context-dependent, anti-inflammatory effects of OxCE, but this
requires further research.

In contrast to the biological activity of fatty acyl-oxidized
OxCE, esterification of oxysterols largely serves to curtail their
biological activity (50). However, in neurons, ACAT-mediated
esterification of 24(S)-hydroxycholesterol results in the
formation of atypical lipid droplets and neurotoxicity (51).
These findings suggest cell type and context dependent effects
of esterification of oxysterols.

In addition to free lipid OxCE, cholesteryl fatty acyl
hydroperoxides or endoperoxides (like in BEP-CE) can make
covalent adducts with proteins and thus affect their function and/
or produce novel protein-OxCE epitopes. For example,
cholesteryl hydroperoxyoctadecadienoate (HPODE) forms
covalent adducts with PDGF, TGFb, and bFGF and inactivates
them (52). In contrast, cholesteryl HPODE does not modify EGF
(52), implying specificity of OxCE-protein modification,
however, determinants of this specificity remain unclear.
Similarly, remain unclear the exact mechanisms of cholesteryl
HPODE and cholesteryl 9-oxononanoate (9-ON) induced
activation of PKC and ERK1/2 in endothelial cells, which
results in expression of fibronectin connecting segment-1 and
enhanced adhesion of monocytes to endothelial cells (53).
Cholesteryl 9-ON induces expression of both TFG-b and TGF-
b receptor type I in human U937 promonocytic cells. This effect
is mediated by ERK1/2 and potentially is involved in sustaining
vascular remodeling in atherosclerosis (54). Cholesteryl HPODE,
but not HPODE-containing OxPL, has been identified as an
active component that induces PPARa-dependent expression of
CD36 in human monocyte-derived macrophages (55). It is also
possible that in the experimental systems employed in the above
experiments, cholesteryl HPODE underwent further oxidative
modifications, resulting in more complex products, which in
turn evoked biological activity different from that of an
initial hydroperoxide.
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OxCE in Human Atherosclerotic Lesions
How relevant is the biological activity of OxCE to the
pathogenesis of atherosclerosis? Definitive studies for OxCE
are yet to be conducted but if any guide, recent work from
Witztum’s group has demonstrated that constitutive expression
of the single-chain E06 antibody, which neutralizes atherogenic
effects of OxPL, in Ldlr−/− mice significantly reduces
atherosclerosis and its co-morbidities (56, 57). In the absence
of similar work targeting OxCE, we can only hypothesize that the
substantial presence of OxCE in atherosclerotic lesions may have
an atherogenic effect. Indeed, using advanced mass spectrometry
techniques helped identify many OxCE species in human
atherosclerotic lesions, estimating that, on average, 23% of
cholesteryl linoleate, 16% of cholesteryl arachidonate and 12%
of cholesteryl docosahexaenoate are oxidized (58). In a different
study, OxCEs have accounted for 11 to 92% of the CE-PUFA
pool in atherosclerotic plaques from different subjects (59). BEP-
CE has been detected in human atherosclerotic lesions as
well (44).

The studies cited in the previous paragraph identified free lipid
OxCEs. It is technically challenging to construct a mass
spectrometry method that would detect covalent OxCE adducts to
proteins. However, these new epitopes can be detected with
antibodies raised against the OxCE moiety independent of a
protein, which has been covalently modified by this OxCE. For
example, a monoclonal antibody raised against proteins modified
with cholesteryl 9-ON has been shown to stain atherosclerotic
lesions (60). Studies in our lab have produced a new monoclonal
antibody that recognizes an OxCE epitope on modified proteins. To
ensure the independence of an OxCE epitope recognition from the
protein carrier, mice were immunized with OxCE-KLH and the
antibody was selected against OxCE-BSA. The resulting antibody,
AG23, bound OxCE-modified KLH, BSA, apoA-I, and a 6-amino
acid peptide (61). The OxCE used for covalent modification of these
proteins was a product of cholesteryl arachidonate oxidation with
2,2’-azobis (2,4-dimethylvaleronitrile) in an atmosphere of oxygen,
which predominantly produced BEP-CE, but other complex
oxidation products were present as well (44). The AG23
immunoreact ivi ty was abundant in human carotid
endarterectomy specimens, demonstrating the presence of OxCE
epitopes in atherosclerotic lesions (Figure 1—Biomarkers) and
suggesting relevance of OxCE to the pathogenesis of human
CVD (61).
OxCE in Human Plasma as a Biomarker
for CVD
As with detection of OxCE in atherosclerotic tissue, early studies
employing biochemical and mass spectrometry techniques
reported a wide range of CE hydroperoxides in human plasma,
from 3 to 920 nmol/L (62, 63), with hydroperoxides of
cholesteryl linoleate and cholesteryl arachidonate as the major
oxidation products (32, 64–66). Plasma levels of CE
hydroperoxides have been significantly increased on day 1 and
peaked at day 5 after subarachnoid hemorrhage, returning to
normal levels on days 7 and 9 (67). This temporal sequence
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correlates well with the known time course of cerebral
vasospasm, which typically has its onset between 5 and 7 days
after subarachnoid hemorrhage. Using a targeted lipidomic
approach to quantify multiple classes of OxCE, Yin’s group
tested plasma samples from 49 CVD patients and observed a
significant elevation of multiple oxidation products of cholesteryl
arachidonate and cholesteryl linoleate in plasma of patients with
myocardial infarction compared to that of control and other
CVD groups. These results suggest release of OxCEs from the
raptured atherosclerotic plaque (68).

The AG23 mAb against OxCE described in the preceding
section has been used to develop a new ELISA method to
measure OxCE associated with apoA-I or apoB-100
lipoproteins in human plasma (61). This assay measures levels
of lipoproteins that have at least one OxCE epitope. Measuring
OxCE-apoB and OxCE-apoA in plasma samples from PROXI, a
randomized parallel-arm double-blind placebo-controlled trial
in which human subjects received placebo or a statin treatment
for 16 weeks, we demonstrated that the OxCE-apoA levels were
significantly lower in subjects treated with atorvastatin than in
the placebo group, independent of the apoA-I levels (Figure 1—
Biomarkers) (56). Testing larger cohorts of human subjects with
different conditions and treatment regimens will determine if
this particular OxCE assay will become a useful diagnostic and/
or prognostic CVD biomarker.
CONCLUSIONS AND UNRESOLVED
QUESTIONS

Biological activity and biomarker potential of OxCEs remain
understudied. In part, this is due to a common perception of
CEs as inherently inert intracellular “storage” and lipoprotein
“transport” lipids, which is certainly the case for CEs with
saturated fatty acyls. However, there exist mechanisms for
oxidative modification of CEs with polyunsaturated fatty
acyls, producing a multitude of OxCEs, which exhibit
biological activity as free lipid and can covalently modify
proteins. The unique feature of OxCEs is that they contain
both an oxidized fatty acyl, which is often reactive and/or
makes OxCEs less hydrophobic and thus more mobile, and
the unmodified cholesteryl, which binds to and modulates
function of many membrane and soluble proteins. In this
article, we reviewed how cholesterol binding to MD-2 makes
OxCE an agonist for TLR4, resulting in inflammatory and lipid
accumulation responses in macrophages. Future studies will
elucidate whether OxCE can interact with GPCRs, which
potentially may have broad implications. More work is also
needed to understand biological effects of esterified oxysterols,
which seem to be tissue and pathology context dependent. The
spectrum of proteins in plasma and in tissues that have OxCE
covalent adducts remains unexplored, as remain poorly
understood determinants of the OxCE specificity in covalent
modification of proteins. The development of new antibodies
that recognize OxCE-protein covalent complexes independent
of a protein carrier will be instrumental in answering these
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quest ions . However , there remains a chal lenge of
characterization of the exact chemical structure of OxCE-
protein covalent adducts; where mass spectrometry methods
are insufficient, co-crystallization of antibodies with their
OxCE antigens may become a productive approach. Initial
studies using OxCE-specific antibodies, as illustrated in this
article, are promising but examination of larger cohorts of
subjects with CVD and possibly other conditions are needed
to fully evaluate the diagnostic and prognostic potential of
OxCE as a new biomarker.
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An improper balance between the production and elimination of intracellular reactive
oxygen species causes increased oxidative stress. Consequently, DNA, RNA, proteins,
and lipids are irreversibly damaged, leading to molecular modifications that disrupt normal
function. In particular, the peroxidation of lipids in membranes or lipoproteins alters lipid
function and promotes formation of neo-epitopes, such as oxidation-specific epitopes
(OSEs), which are found to be present on (lipo)proteins, dying cells, and extracellular
vesicles. Accumulation of OSEs and recognition of OSEs by designated pattern
recognition receptors on immune cells or soluble effectors can contribute to the
development of chronic inflammatory diseases. In line, recent studies highlight the
involvement of modified lipids and OSEs in different stages of the spectrum of non-
alcoholic fatty liver disease (NAFLD), including inflammatory non-alcoholic steatohepatitis
(NASH), fibrosis, and hepatocellular carcinoma. Targeting lipid peroxidation products
shows high potential in the search for novel, better therapeutic strategies for NASH.

Keywords: oxidative stress, innate immunity, non-alcoholic fatty liver disease, lipid peroxidation, steatohepatitis
(NASH), oxidation-specific epitopes
INTRODUCTION

In parallel with the global epidemic obesity, the prevalence and incidence of non-alcoholic fatty liver
disease (NAFLD) has greatly increased over time and continues in doing so, making it the most
common liver disease worldwide (1). Nowadays, the prevalence of NAFLD is estimated around 25%
in Western countries. NAFLD covers a histological spectrum of liver conditions with varying
degrees of liver injury and scarring in individuals who do not consume alcohol in harmful quantities
and was first recognized as distinct entity about 40 years ago. NAFLD ranges from excessive hepatic
lipid accumulation alone (steatosis) that might progress into non-alcoholic steatohepatitis (NASH),
which is characterized by inflammatory cell infiltrates. NASH increases the risk for further liver
fibrosis, cirrhosis and hepatocellular carcinoma, ultimately requiring liver transplantation (2). In
fact, progressive NASH is the second ranked cause for liver transplantation, directly following
alcoholic liver disease (3). Although the diagnosis for NAFLD or NASH can be suspected based on
ultrasound imaging and abnormal levels of liver enzymes in serum, NASH can only be definitely
diagnosed by liver biopsy and evaluation of a pathologist. While lifestyle interventions and
associated weight loss can improve steatosis alone, sustained effects are difficult to obtain and the
presence of inflammation makes prognosis considerably worse. Further, although multiple drugs
and combination therapies are under investigation, currently no truly effective treatment exists (4,
5). The progression from steatosis alone into NASH can be explained by the so-called “two-hit
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hypothesis,” in which lipid accumulation would represent the
first hit, rendering the tissue more prone for a second hit (such as
oxidative stress and lipid peroxidation) triggering inflammation
and liver damage. However, this concept changed into a more
“multiple parallel hits” theory, in which different molecular
triggers simultaneously cause steatosis and liver injury (6–8).
More recently, metabolic associated fatty liver disease (MAFLD)
has been suggested as a novel term reflecting current knowledge
about disease pathology more precisely (9). In this review, we use
NASH as term for describing more advanced fatty liver disease
compared to steatosis alone in NAFLD.

Theoccurrenceof oxidative stress reactions and the accumulation
of reactive oxygen species are common features observed in different
stages of the NAFLD spectrum (10, 11). On one hand, excess
exposure and build-up of free fatty acids in hepatocytes cause
lipotoxicity and damage to mitochondria, and stimulates the
release of pro-inflammatory cytokines and microvesicles (12).
Further, the activation of non-parenchymal cells, especially resident
Kupffer cells, together with the recruitment of infiltratingmonocytes
and neutrophils to the liver contributes to inflammation via the
release of cytokines, chemokines, nitric oxide, and reactive oxygen
species (2). Importantly, although reactive oxygen species are
produced normally as by-products of cellular metabolism, they can
attack different vital macromolecules such as proteins, lipids, and
nucleic acids (DNA/RNA). This results in different oxidative damage
products such as protein carbonyls, lipid peroxides, and 8-hydroxy-
2′-deoxyguanosine (8-OH-dG), respectively. These products are
often used as biomarkers of oxidative stress and have all been
associated with NAFLD/NASH (reviewed in (13)). In order to
overcome inappropriate levels of reactive oxygen species, we
depend on the scavenging capacity by antioxidants in our system.
Relevantly, in parallel to increased oxidative stress, reduced systemic
levelsof antioxidants suchasglutathioneorvitaminE, aswell as lower
anti-oxidative enzyme activity has been documented duringNAFLD
(13–15). In this review, we will particularly focus on the oxidation of
membrane lipids, a process called lipid peroxidation, and their
involvement in steatohepatitis (16).

Besides affecting their biological function, peroxidation of lipids
also results in the generation of several degradation end-products
which can further modulate the normal properties of proteins and
lipids. Furthermore, highly reactive aldehydes generated in the
process of lipid peroxidation modify self-molecules and form
antigenic adducts, known as oxidation specific epitopes (OSEs),
which are bound by various receptors of the immune system to
alert the host and promote their removal to prevent inflammatory
effects (17, 18).However, accumulation ofOSEs and their insufficient
clearance triggers sterile inflammation. Major carriers of OSEs are
cells undergoing cell death (apoptosis), extracellular vesicles, and
damaged lipoproteins, such as oxidized low-density lipoproteins
(OxLDL). Owing to their biological activities, OSEs and their
immune recognition are involved in a wide variety of physiological
and pathological processes, including atherosclerosis (19–21) and
several autoimmune diseases such as systemic lupus erythematosus
(22). Here, we provide an overview of studies linking OSEs and their
immune recognition toNASH and potential implications in the field
of fatty liver disease.
Frontiers in Endocrinology | www.frontiersin.org 245
OSE Generation
Various mechanisms cause lipid peroxidation, particularly
polyunsaturated fatty acids (PUFAs), which involves both
enzymatic and non-enzymatic mechanisms (23). The enzymatic
processes of lipid peroxidation include the activation of
lipoxygenases, myeloperoxidases, cyclo-oxygenases, and
cytochrome p450. On the other hand, non-enzymatic oxidation is
done by free radicals, which are indirectly generated by nicotinamide
adenine dinucleotide phosphate (NADPH)oxidases andnitric-oxide
synthases. Both enzymatic and non-enzymatic mechanisms result in
the generation of lipid-hydroperoxide molecules (LOOH), which
thendecompose. As part of this degradation process a large variety of
secondary products including malondialdehyde (MDA), 4-
hydroxynonenal (4-HNE), and the remaining core aldehyde of
oxidized phospholipids (OxPL) are produced (24, 25). These
remaining end-products of lipid peroxidation can further
propagate oxidative damage as a result of defective clearance and as
such, have been considered as downstream mediators of oxidative
stress. Notably, measuring lipid peroxidation degradation products,
especiallyMDAand4−HNE,by the frequentlyused2−thiobarbituric
acid reaction (TBAR) assay, is an established method for assessing
oxidative stress (16).

PUFA-containing phospholipids are particularly prone to
oxidative damage (16, 23). Hence, the major membrane
phospholipid phosphatidylcholine is very susceptible to free-
radical-induced oxidation, resulting in the exposure of hydrophilic
phosphocholine (PC) headgroups and the generation of a complex
mixture of OxPL and their terminal degradation products (26).
Especially, oxidation of the PUFA chain at the sn−2 position of
phosphatidylcholine results in its degradation and the formation of
reactive PUFA fragmentation products such as MDA. Further, the
oxidation of cholesterol and cholesteryl esters can take place,
resulting in structural changes and altered biological activities (27,
28). Owing to their biological activities and pro-inflammatory
potential, the formation of lipid peroxidation-derived adducts can
be viewed as post-translational modifications generating neo-
epitopes which are now recognized as a type of danger-associated
molecular pattern (DAMP) (20). Importantly, several of these
lipid-derived adducts have been documented and implicated in a
wide variety of pathologies, including NAFLD and NASH (18,
29, 30).

OSE Presence in NAFLD
Oxidation of LDL is thought to contribute to fatty liver disease
progression by multiple mechanisms, including the formation of
OSEs (31, 32). As mentioned before, OSEs are present on
apoptotic cells, OxLDL, and microvesicles, components that all
have been shown to be associated with NAFLD. Here, we provide
several lines of evidence that indicate the presence and
importance of different lipid peroxidation products in the
onset of NASH (see Figure 1).

Among the different aldehydes that can be formed as secondary
products during lipid peroxidation, MDA and 4-HNE are the most
extensively studied and both are associated with different stages of
fatty liver disease. A significant correlation between hepatic 4-HNE
adducts and the stage of fibrosis has been described (33), and
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increased mitochondrial 4-HNE–protein adducts during NASH
development have been reported (34). Multiple studies have
indicated increased amounts of MDA, as measured by the TBAR
assay, and OxLDL levels in human NAFLD and NASH patients in
comparison to control subjects (15, 35–39). In addition, the presence
of MDA adducts in livers has been documented for several different
experimental rat and mouse models of NAFLD and NASH (40–43).
In line with these publications, work from our group indicated the
presence of MDA adducts in livers of human NASH (44), as well as
during steatohepatitis in hypercholesterolemic Ldlr−/−mice on high-
fat high-cholesterol diet (45), a murine model resembling human
lipid profiles of NAFLD (46). Using in vitro and in vivo approaches,
weshowedthatMDAepitopesdetectable inhepatic inflammationact
as sterile mediators of inflammation via their stimulation of cytokine
secretionbymacrophagesandpromotionof leukocyte recruitment (45).

Recently, Sun et al. reported elevated amounts of PC-OxPLs in
the liver and circulation during NASH compared to controls using
various murine models and human subjects (47). In humans,
increased plasma and liver PC-OxPL was more closely associated
with NASH rather than steatosis, suggesting their importance
during disease progression. Mechanistically, OxPLs induced
mitochondrial damage and ROS accumulation, partly via
modification of the anti-oxidative enzyme manganese superoxide
dismutase (MnSOD/SOD2), thereby blocking its activity.

Work from our group demonstrated that various OSEs are
carried by circulating extracellular vesicles (48), a heterogeneous
population of small membrane-deliminated structures including
exosomes and microvesicles. Importantly, the release of
extracellular vesicles has been identified as a result of hepatocyte
lipotoxicity and has been implicated in NAFLD (49). Indeed, toxic
lipid classes are abundantly present in circulation of NASH
patients and stressed/damaged hepatocytes as a result of
treatment with lipotoxic lipids causes the release of large
amounts of extracellular vesicles (50). Besides, microvesicles
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have been proposed as potential biomarkers for chronic liver
diseases (51). Microvesicles, potentially hepatocyte-derived, have
been shown to stimulate pro-inflammatory responses via the
activation of immune cells and stellate cells in the liver and thus
might link lipotoxicity and lipid peroxidation to inflammation
and fibrosis, major components of NASH. More specific
microvesicle profiling, including assessment of biological
properties and cell-cell interaction, will enable us to better
understand the role of OSE-carrying microvesicles during
NASH development and progression.

Another phospholipid component prone to oxidation is
cardiolipin, which is almost exclusively present at the inner
mitochondrial membrane. Cardiolipin is importantly involved in
mitochondrial energetics and mitochondrial dependent steps of
apoptosis. Hence, oxidized cardiolipin (OxCL) has been associated
with mitochondrial dysfunction. Relevantly, increased cardiolipin
levels are reported in experimental NASHmodels as well as human
NAFLD (52–54). Moreover, patients with NAFLD have increased
circulating IgG antibody titers towards OxCL compared to healthy
controls (55), further supporting thepresenceofOxCLduringNAFLD.

Innate Immune Recognition of OSEs
As described above, lipid peroxidation and its end-products are
associated with both structural and functional alterations of these
macromolecules. In order to protect us from potential detrimental
effects of accumulated altered self-molecules, the human body
requires recognition mechanisms to provide effective clearance.
Indeed, OSEs are believed to represent a class of DAMPswhich can
stimulate both adaptive and innate immune responses, dependent
on recognition by pattern recognition receptors (PRR) (21, 56).
Detailed characterization of various OSEs and the innate immune
responses towards them indicated thatOSEs are recognized byboth
cellular and soluble PRRs, which we will discuss in this section in
view of steatohepatitis (see Figure 2).
FIGURE 1 | Increased oxidative stress causes lipid peroxidation, which can occur via enzymatic reactions, such as myeloperoxidase and 12/15-lipoxygenase, and
non-enzymatic reactions, such as reactive oxygen species (ROS). Lipid peroxidation of membrane phospholipids results in their fragmentation and the generation of
breakdown products which can further modify free amino groups of proteins and lipids, forming covalent adducts and creating oxidation-specific epitopes (OSEs),
including malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), phosphocholine on oxidized phospholipids (PC-OxPL), and oxidized cardiolipin (OxCL). These epitopes
are carried by oxidized low-density lipoproteins (OxLDL), modified proteins, microvesicles, and apoptotic cells, aspects that have been shown to be present during
NAFLD. This figure was produced using Servier Medical Art (Servier, www.servier.com, licensed under a Creative Commons Attribution 3.0 Unported Licence).
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Cellular Receptors
As part of the innate immune response triggered by OSEs, PRR
present on the surface of immune cells, such as the scavenger
receptor family, recognize and internalize oxidized but not native
LDLparticles (57).As such,macrophagesmediate the phagocytosis
of oxidatively altered molecules, triggering inflammatory cascades
via the secretion of pro-inflammatory chemokines and cytokines
such as CC-chemokine ligand 1 (CCL1), CCL2, and CCL5, thereby
promoting increased recruitment of monocytes which further
contribute to the production of pro-inflammatory mediators as
well as oxidative damage (58). Among the family of scavenger
receptors,CD36, SR-A1, andSR-A2are the best described andmost
relevant receptors for OxLDL uptake as macrophages lacking
CD36, SR-A1, and SR-A2 have 75–90% reduced binding and
degradation of OxLDL (59). In addition, we demonstrated that
bonemarrow-derivedmacrophages frommice lackingCD36orSR-
A1 secreted less CXCL1 compared to wildtype cells after
stimulation with malondialdehyde-acetaldehyde (MAA) epitopes,
the immunodominant subset of MDA epitopes (45). Similar to
lipid-laden foam cells as occurring during atherosclerotic lesions,
Kupffer cells, resident macrophages of the liver, show a foamy
appearance after the enhanced uptake of modified lipoproteins
duringNAFLD(60). Importantly, we found that hematopoietic SR-
A1 and/or CD36 deficiency protects against hepatic steatosis and
inflammation in hyperlipidemic Ldlr−/− mice fed an atherogenic
diet, indicating that SR-mediateduptakeofmodified lipids is at least
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in part responsible for diet-induced inflammation in the liver (61).
Further studies indicated that OxLDL uptake by macrophages is
associated with abnormal intracellular trafficking, resulting in
lysosomal trapping of OxLDL, cholesterol crystal formation, and
dysfunctional lysosomes (31). Similar to cholesterol crystals,
stimulating J774 macrophages with MDA-modified hen egg
lysozyme (MDA-HEL) caused lysosomal rupture (62). Therefore,
onemight hypothesize that OSE-induced lysosomal damagemight
account for inflammatory responses and apoptosis during diet-
induced liver disease. Indeed, human NASH patients have
increased circulatory levels of cathepsins, lysosomal enzymes
responsible for breakdown of internalized products, indicating
lysosomal leakage (63). Taken together, ample evidence supports
the involvementof scavenger receptor-mediateduptakeofmodified
lipids in NAFLD.

Toll-like receptors (TLRs) are another class of PRR taking
part in the response to damaged lipoproteins, capable of binding
to a variety of different pathogen-associated molecular patterns
(PAMPs), including bacterial and viral components, as well as
DAMPs. Additionally, certain TLRs have been shown to
recognize—as part of a multimeric complexes with other PRRs—
OxPL, OxLDL, and other OSEs, thereby mediating pro-
inflammatory signals (18). Particularly TLR2, TLR4, and TLR6
have been shown to respond to OSEs, i.e. oxidized cholesteryl esters
(OxCE) and OxPL on the surface of extracellular vesicles appear to
be ligands for TLR4 (29, 64). In relation to NAFLD, the
FIGURE 2 | Oxidation-specific epitopes (OSEs) act as danger-associated molecular patterns (DAMPs) which are recognized by different pattern recognition
receptors (PRR) as part of the cellular immune response towards OSEs. Receptors known to bind to certain lipid peroxidation adducts are the family of scavenger
receptors (SR) such as CD36, Toll-like receptors (TLRs) and the triggering receptor expressed on myeloid cells 2 (TREM2). In the liver, the presence of SR and TLRs
on Kupffer cells and their uptake of modified lipids has been shown to cause inflammation, thereby leading to liver damage during NAFLD progression. The functional
role of TREM2 during NAFLD has not been addressed yet. Moreover, B cell-derived antibodies are able to recognize OSEs. Whereas increased anti-OSE IgG titers
are associated with NASH and fibrosis, potentially via triggering pro-inflammatory responses, IgM antibodies targeting OSE are found to be protective against NASH,
both by neutralizing the pro-inflammatory effects of OSE and by enhancing the clearance of dying cells.
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involvement of certain TLRs in disease progression has been
described, such as TLR2, TLR4, TLR7, and TLR9 (65). For
instance, absence of TLR4 in Ldlr−/− mice on atherogenic diet has
been shown to protect against triglyceride accumulation in the liver
(66) and features of NASHwere ameliorated in TLR4 deficient mice
receiving methionine choline-deficient (MCD) diet (67). Further,
activation of TLR7 signaling was found to reduce lipid
accumulation and autophagy in hepatocytes, thereby preventing
NAFLD progression. Interestingly, 4-HNE and MDA potentially
inhibit this process, thereby aggravating disease onset (68).
Nevertheless, a direct link between OSE-TLR signaling and fatty
liver disease development is missing as most studies focus on the
recognition of bacterial ligands.

More recently, the triggering receptor expressedonmyeloid cells
2 (TREM2), belonging to the immunoglobulin superfamily and
mainly expressed on myeloid cells, has been shown to bind and
recognize lipoproteins and apolipoproteins, including ApoE, LDL,
and MDA-LDL particles (69), suggesting TREM2 might also
recognize OSEs. Upon cleavage of TREM2 by A Disintegrin And
Metalloprotease (ADAM) 10 and ADAM17, soluble TREM
(sTREM2) is released (70). Whether sTREM has similar binding
capacities as TREM2 is currently not known. Interestingly, single-
cell RNA sequencing (scRNAseq) studies have identified the
presence of Trem2 expressing macrophages in several lipid-
mediated diseases, including obesity (71) and atherosclerosis (72).
Importantly, also in relation to liver damage during fatty liver
disease, the emergence of so-calledNASH-associatedmacrophages
(NAMs) (73) and scar-associated macrophages (SAMs) (74), that
are characterized by high Trem2 expression, has been described.
Xiong et al. found more hepatic Trem2 expression in human and
murine NASH and described that increased Trem2 expression in
livers of NASH patients is positively correlated with AST and ALT
levels (73). These findings are further supported by another study,
which indicatedmoreTrem2 expressingmacrophages in the liver of
human subjects with cirrhosis based on scRNAseq analysis of
CD45+ cells (74). As the receptor has been reported to bind
MDA-LDL, these data suggest a potential novel mechanism of
OSE-induced immune recognition.Nevertheless, functional studies
assessing the role of TREM2 during the onset of NAFLD are
currently missing and more specific insights in recognition of
different OSEs by TREM2 and its soluble form are needed.

Soluble Receptors
Besides recognition by receptors present on the cell surface, OSEs
represent targets for several soluble PRRs that also include secreted
forms of cellular PRR.One soluble protein capable of bindingOSEs
is C-reactive protein (CRP), an acute-phase reactant made in the
liver. Originally, CRP was identified as the plasma component
binding PC located on the capsular polysaccharide of Streptococcus
pneumoniae. Only later, CRP was also identified to bind PC-OxPL
onOxLDL anddying cells, indicatingCRP to respond to a common
OSE of microbial origin or derived from lipid peroxidation (75).
Although some discrepancies exist over the relationship between
CRP levels in NAFLD, most studies report increased circulatory
CRP levels, which is a known marker for systemic inflammation,
during NAFLD (76). One could hypothesize that changes in CRP
levels are correlated with oxidative stress and/or lipid peroxidation
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products, thereby affecting studyoutcomes.However,whetherCRP
itself has a functional role in NAFLD development is unclear.

Further,MDAepitopeshavebeen found tobe targets of proteins
involved in the complementmachinery,which exerts a key function
in the maintenance of tissue homeostasis via immune surveillance
and managing clearance of metabolic waste and dead cells (77).
Besides the C3 cleavage product C3a (78), a pro-inflammatory
anaphylatoxin, we identified that complement factor H (CFH)
recognizes and binds MDA epitopes. CFH is a regulator of
complement activity as it inhibits the alternative pathway by
preventing C3 cleavage. Whereas increased activation of the
complement system is reported in NAFLD (79), the specific levels
of CFHmRNA were found downregulated in patients with NASH
in line with protein levels of CFH in the liver (80). Therefore, low
CFH expression might contribute to the harmful effects of lipid
peroxidation products in fatty liver disease. In addition, our group
has shown that genetic variants of one of theMDA-binding sites of
CFH influence the capacity of CFH to bindMDA (81). Further, we
recently demonstrated that genetic deletions of complement factor
H-related protein 1 (CFHR1), which was previously shown to bind
toMDA-LDL (82), and3 (CFHR3) affects the ability ofplasmaCFH
to bind MDA surfaces. Moreover, purified CFHR1 and CFHR3
competes with CFH for binding to MDA-epitopes (83). Our
findings indicate the influence of genetic variations within the
CFH/CFHR1/CFHR3 locus on the recognition and binding of
OSEs, thereby affecting outcome in diseases associated with
oxidative stress and aging such as NAFLD. Further molecular and
genetic studies are needed to elucidate the involvement of CFH and
CFHRproteins in relation toOSErecognitionduring fatty liverdisease.

Natural antibodies are pre-existing germline-encoded
antibodies that are already present at birth and of which the
occurrence does not depend on external antigens, as they can be
found in germfree mice. Natural antibodies are predominantly of
the IgM type, with a broad specificity to various pathogens, but
which are also able to recognize endogenous antigens, such asOxPL
and adducts formed by end products of the lipid peroxidation
process (84). Besides their protective function in the first line
defense against invading microbes, natural IgM antibodies
maintain homeostasis via the clearance of dying cells and
metabolic waste products. Indeed, MDA-specific natural IgM
recognize apoptotic cells as well as microvesicles carrying MDA
epitopes (48). Natural IgM antibodies are produced by B1 cells,
which are widely studied in the field of atherosclerosis and believed
to exert protective effects via the production of natural IgM
antibodies (85). In line with these findings in cardiovascular
disease, we found that patients with NAFLD have lower levels of
IgM targeting OSEs than healthy individuals (44). In addition, we
demonstrated that IgM plasma titers towards an immunological
mimotope ofMDA, P1mimotope, inversely correlate with signs of
obesity, systemic inflammation, and liver injury. Further studies by
others and us indicating the protective role of OSE-IgM in the
course ofNAFLD are described later on in the section aboutOSE as
targets for treatment options.

Taken together, OSE represent DAMPs that initiate certain
immune responses upon recognition by several cellular and
soluble PRRs as part of the innate immune system. Besides
that, adaptive immune reactions can also be triggered by OSEs.
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Adaptive Immune Recognition of OSEs
In contrast to innate immunity, adaptive immunity is acquired
throughout life as a direct consequence of exposure to external
antigens. This way, an immense repertoire of highly specific
receptors is generated, resulting in lifelong immune memory,
which is mediated by B cells and the antibodies they secrete as
well as various T cell subsets. The role of adaptive immunity in the
progression of NAFLD, including anti-OSE responses, has recently
been reviewedelsewhere [see (30)].Hence,wewill onlybrieflydescribe
OSE-specific B-cell mediated adaptive responses during NAFLD.

In addition to the involvement of anti-OSE IgM inNAFLD, IgG
antibodies targetingOSEhavebeen shown tobe elevated in~40%of
adults diagnosed with NAFLD or NASH (55) and in 60% of
children with NASH (86). Particularly, IgG antibodies against the
cyclic MAA adduct are increased in adults with NAFLD or NASH
(55). Further, anti-OSE IgG levels are correlated with the degree of
lobular inflammation and are an independent predictor offibrosis.
Incontrast tonatural IgM, anti-OSE IgGare thought tobeproduced
by B2 cells, suggesting the involvement of specific acquired
immunity by different B cell subsets in NASH (87). In line,
increased IgG titers were found to be associated with increased
maturation of liver B2 cells to plasma cells in diet-induced NAFLD
in rats as well as in MCD-induced NASH in mice (88). As such,
increased B2 cells might be involved in NASH by promoting pro-
inflammatory signals and antigen presentation to CD4 T cells and
as a source of pathogenic IgG antibodies. The potential opposing
effects of B1 andB2 cells (decreased IgMand elevated IgG titers) are
similar to observations during atherosclerosis (89). Hence, further
studies investigating the role of B1 and B2 cell subsets and their
implications in NASH are needed to potentially identify novel
therapy options in which specific B cell subsets are targeted.

OSE as Targets for the Treatment of
NAFLD
As oxidative stress is one of the best characterized triggers for liver
inflammation during NASH, makes it an attractive target for
intervention to prevent disease progression. Although work by us
and others point to the potential of targeting lipid peroxidation
products and immune recognition of OSEs to ameliorate the
inflammatory response occurring in NASH, these studies only
involve the usage of different murine models. So far, evidence
from human studies in which OSEs or immunity towards OSEs
are directly targeted for the treatment of NAFLD and NASH is
lacking. Nevertheless, multiple studies exploited the effect of
nutrients and antioxidants to reduce oxidative stress and liver
damage. The protective effects of vitamin E provided promising
results (90, 91), and subsequently the effect of vitamin E
supplementation was tested in NASH adults (PIVENS trial) and
NAFLD children (TONIC trial). Both studies demonstrated a
favorable effect by decreasing NAS score and stimulating
resolution of inflammation, but did not affect fibrosis (92, 93).
Importantly, these studies used very high doses of vitamin E (400–
800 IU) while the daily-recommended intake is around 22.4 IU,
thereby raising some concerns regarding increased risk for
unwanted side-effects. Interestingly, a recent study found an
inverse correlation between vitamin E intake and serum MDA
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levels among women with NAFLD and NASH (39), indirectly
supporting the idea to target MDA adducts in NASH. Besides
vitamin E, several other approaches such as vitamin C have been
proposed to reduce oxidative stress. Although vitamin C intake has
been reported to be inversely correlated with NAFLD severity (94),
sufficient data to support the clinical importance is still lacking and
more studies in human subjects are necessary to identify modes of
action to reduce reactive oxygen species and limit lipid peroxidation.

Using a transgenic Ldlr−/− mouse expressing a functional
single-chain variable fragment of E06, a natural antibody capable
of neutralizing OxPLs, targeting PC-OxPLs protected against
several aspects of NASH, including lipid accumulation,
inflammatory responses, fibrotic scarring, hepatocyte cell
death, and progression to hepatocellular carcinoma, further
supporting the causal role of OxPLs in the pathogenesis of
NASH (47). In addition, E06 administration has been shown
to protect against liver injury in a mouse model of ischemic
reperfusion via the blockage of TLR4-mediated neutrophil
activation by extracellular vesicles carrying OxPLs (95).

In linewith lower anti-OSEIgMtiters inhumanNAFLD(44), an
increase in B1-derived natural IgM with specificity for OxLDL
resulted in a better outcome for liver disease in atherogenic diet-fed
Ldlr−/− mice deficient for the sialic acid-binding immunoglobulin-
like lectin G (Siglec-G), a negative regulator of B1 cells and OSE-
specific IgM.Further, sincePCepitopes as foundonOxLDLare also
present on the cell wall of S. pneumoniae, cross-reactivity exists
betweenPC epitopes fromOxLDL and thismicrobe (96). Similar to
findings in experimental atherosclerosis (97), immunization with
heat-inactivated S. pneumonia increased specific anti-PC IgM titers
and protected Ldlr−/− mice from diet-induced steatohepatitis (98).
Immunized mice fed a Western-type diet presented less foamy
Kupffer cells, reduced inflammatory cell infiltrates and less
cholesterol crystals in the lysosomes of Kupffer cells compared to
mice without immunization. Moreover, we previously showed that
in vivo neutralization of endogenously generatedMDA epitopes by
intravenous administration of a specific MDA antibody (LR04)
results in reduced liver inflammation in Ldlr−/− mice (45). Taken
together, these studies indicate that anti-OSE IgM expansion is
protective and suggest a beneficial role for B1 cells in the course of
NAFLD. Therefore, identifying additional epitopes that are
recognized by protective antibodies would identify novel antigens
that couldbeuseful in the developmentof stable peptides thatmight
work as vaccine against NAFLD and NASH. One such example
peptide might be the P1 mimotope for MDA identified by us (99).
Future studies investigating the potential use of this P1 peptide in
ameliorating NASH hold great promise for future applications.
More studies involving human participants are needed to translate
murine findings and elucidate potential protective mechanisms to
identify novel treatment targets for patients with chronic fatty
liver disease.
DISCUSSION

Evolutionary developed specialized immune recognizers of
OSEs, both cellular and humoral, enables the human body to
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deal with key housekeeping functions such as the removal of cell
debris, dying cells and damaged molecules. Heightened lipid
levels and higher oxidative stress as seen during the development
and progression of NASH is accompanied with increased
generation and burden of lipid peroxidation end products and
OSEs. Under such circumstances of excess OSE formation and/
or dysfunctional removal, the immune system gets activated,
generating inappropriate amounts of chemokines and pro-
inflammatory cytokines, and subsequently the development
and propagation of chronic inflammatory diseases such as
NASH become manifest.

Of note, multiple unresolved questions remain in our
understanding of the mechanisms by which OSE-induced
immunity can contribute to NASH and its resolution. For
instance, as bacterial dysbiosis and the role of the gut-liver axis
has been widely accepted in the field of multiple chronic lipid-
mediated diseases including NASH (100), one could question the
potential direct effect of OxLDL and OSEs on intestinal
communities. Moreover, it is not entirely clear yet how B cell-
mediated antibody responses towards lipids are mediated in the
gut and how these can effect liver disease manifestation. Further,
as discussed in this review, although studies indicating the
beneficial effect of IgM associated immune response towards
OSE, all these data come from experimental mouse models.
Translational studies further supporting the importance of this
field in the human clinical condition during NASH are still
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limited. Nevertheless, it can be envisioned that gaining insights
in the role of OSEs and OSE-reactive immunity in maintaining
homeostasis and in controlling inflammatory responses will
ultimately identify new treatment targets that can be explored
to modulate NAFLD progression and inflammatory states
in general.
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While often regarded as a subset of metabolomics, lipidomics can better be considered as
a field in its own right. While the total number of lipid species in biology may not exceed the
number of metabolites, they can be modified chemically and biochemically leading to an
enormous diversity of derivatives, many of which retain the lipophilic properties of lipids
and thus expand the lipidome greatly. Oxidative modification by radical oxygen species,
either enzymatically or chemically, is one of the major mechanisms involved, although
attack by non-radical oxidants also occurs. The modified lipids typically contain more
oxygens in the form of hydroxyl, epoxide, carbonyl and carboxylic acid groups, and
nitration, nitrosylation, halogenation or sulfation can also occur. This article provides a
succinct overview of the types of species formed, the reactive compounds involved and
the specific molecular sites that they react with, and the biochemical or chemical
mechanisms involved. In many cases, these modifications reduce the stability of the
lipid, and breakdown products are formed, which themselves have interesting properties
such as the ability to react with other biomolecules. Publications on the biological effects of
modified lipids are growing rapidly, supporting the concept that some of these
biomolecules have potential signaling and regulatory effects. The question therefore
arises whether modified lipids represent an “epilipidome”, analogous to the epigenetic
modifications that can control gene expression.

Keywords: phospholipids (PL), oxidation, nitration, oxysterols (cholesterol oxidation products), free radicals,
hypochlorous acid (HOCl)
INTRODUCTION

The oxidation of lipids and lipid-like substances has been known for centuries, and has been widely
regarded as an undesirable effect: in foods, lipid oxidation leads to the development of rancidity and
acrid flavors, while in materials such as rubber it causes loss of elasticity and perishing (1). In
biology, where lipids have important structural, nutritional, and signaling roles, the adventitious,
radical oxidation of lipids in cells and tissues was for many years also be regarded as a detrimental
process, for example disrupting cell membranes and causing cytotoxicity (Figure 1A) (2, 3). On the
other hand, in the 1950s the structure of prostaglandins was elucidated and found to result from
peroxidation of arachidonic acid [reviewed by (4)]; subsequently, thromboxanes and leukotrienes
were also realized to be derived from hydroperoxyeicosatetraenoates (HPETEs) (5).
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Spickett Formation of Oxidized Lipids
These enzymatically generated non-esterified lipid products
were recognized as important signalling molecules in the
cardiovascular and immune systems, and therefore as important
therapeutic targets (6). Consequently, there was much interest in
their enzymatic production by cyclooxygenases, lipoxygenases,
and cytochrome P450-dependent enzymes (7), a topic that
continues to be of interest and is reviewed elsewhere in this issue.
Later, the non-enzymatic formation of analogous compounds
(F2-isoprostanes) was discovered (8) and, in parallel, evidence
began to emerge that non-enzymatic oxidation products of fatty
acids esterified in phospholipids also had biological activities (9).
While initial studies reported detrimental effects in atherosclerosis,
soon it was noted that some of these compounds were able to block
immune receptors and prevent damaging immune responses, e.g.
in sepsis (10).Theyears from2000onwardswitnessedan explosion
in the identification of non-enzymatic lipid modifications and
resulting biological effects. A wide variety of additional oxidation
product families were identified, including isolevuglandins,
nitrated and halogenated fatty acids or phospholipids, oxysterols
and halogenated sterols, as well as the discovery of resolvins (11)
and maresins (12) from oxidation products of the omega-3 fatty
acids eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA)
Frontiers in Endocrinology | www.frontiersin.org 255
and docosahexaenoic acid (DHA). Inmost cases, a strong driver in
their discovery has been the elucidation of biological signalling
effects and, as the field has evolved, it has become clear that certain
modified lipid species have beneficial effects in specific
circumstances; in many cases, we also have an understanding
of the mechanisms involved. Thus, oxidatively modified lipids
are now well-established as mediators of biological processes (2,
13–16).
CHEMICAL PROPERTIES OF LIPIDS THAT
ENABLE MODIFICATIONS

Lipids are a hugely diverse chemical group, but the
lipid species most prevalent in biological systems, and especially
in mammalian cells, are free fatty acids, ceramides, phospholipids
(including phosphatidylglycerols and sphingomyelin), mono-, di-
and tri-acylglycerols, and sterols. The lipid structure determines
the nature and likelihood of oxidative modifications to it, but
reactive oxidizing compounds also demonstrate different
specificities (17). The chemical moieties most typically
susceptible to oxidative attack and modifications are shown in
A

B

FIGURE 1 | History and basics of lipid oxidation. (A) Diagrammatic timeline of research into lipid oxidation identifying key discoveries and concepts. (B) Major site
sites of attack in phospholipids and types of reaction that can occur there, using 1-(1-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphoethanolamine as an
example. Other phospholipids containing these or analogous chemical groups show similar susceptibility.
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Spickett Formation of Oxidized Lipids
Figure 1B. In general, these are electron-dense regions of the
molecules (double bonds), or ones where the bonds are polarized
and can be broken with lower energy input.

The site of attack that leads to the widest range of
modifications and oxidation products is the fatty acyl chain.
Although fully saturated hydrocarbon chains can be attacked by
high energy oxidants, e.g. ozone and triplet oxygen, higher
numbers of double bonds increase the susceptibility to radical
attack, as hydrogen atoms can more easily be abstracted from
bis-allylic carbon atoms (17). On the other hand, mono-
unsaturated fatty acyl chains react readily with non-radical
oxidants, such as hypochlorous acid (18). In sphingomyelins,
the sphingosine moiety appears to be the main site of
modification, at least by hydroxyl radicals, reflecting the
presence of a C-C double bond (19). Likewise, in cholesterol
the mono-unsaturated B ring is readily oxidized, although
enzymatic oxidation of the tail also occurs (20–22).

In phospholipids, fatty acyl chains are connected to the glycerol
backbone by 3 different types of bond: ester bonds, ether bonds (in
alkanyl phospholipids), or vinyl ether bonds (in alkenyl
phospholipids, also called plasmalogens). The ether or vinyl ether
bonds occur mostly commonly at the SN-1 position of the glycerol.
The ester bonds are most common biologically and can be
hydrolyzed enzymatically, for example by phospholipase A1 or
A2, which results in formation of lysophospholipids. These have
altered biological properties and can be considered as biological
mediators. In contrast, vinyl ether bonds are susceptible to attack by
radicals (23) and electrophilic oxidants (24), forming oxidant-
dependent products. Phospholipid headgroups containing an
amine group can also undergo oxidation, although the quaternary
ammonium structure of phosphocholine is resistant; changes in
headgroup structure are likely to impact significantly on the
phospholipid function within the cell membrane (25, 26).
TYPES OF LIPID MODIFICATIONS

The variety of sites of modification in lipids present the basis for
the large range of products that can be formed (27), but this is
expanded by the type of oxidant that causes the modification and
the stability or otherwise of the initial product. This aspect will be
explored in the following sections to illustrate the potential for
diversity in modified lipids. Figure 2 provides an overview of the
key types of products.

Peroxidation of Fatty Acyl Chains Caused
by Free Radical Attack
Whether enzymatic or non-enzymatic lipid modification is
considered, radical attack leads to the widest range of products,
largely because of the unstable nature of the initial oxidation
products, their potential for rearrangement, and subsequent
breakdown or fragmentation. For hydrocarbon chains, radical
attack involves the abstraction of a hydrogen to form a carbon-
centered radical, and leads to formation of a peroxide by
incorporation of molecular oxygen (28). The potential for
rearrangement at carbon radical stage depends on the degree
Frontiers in Endocrinology | www.frontiersin.org 356
and nature of unsaturation in the local area; for example,
whether it is a conjugated system.

Hydrogen abstraction at bis-allylic carbons is favored, although
it can also occur at allylic sites. This makes polyunsaturated fatty
acyl chains such as linoleate (1 bis-allylic carbon); linolenate acid
(2 bis-allylic carbons), arachidonate (3 bis-allylic carbons),
eicosapentenoate (4 bis-allylic carbons), and docosahexenoate (5
bis-allylic carbons) increasingly susceptible to peroxidation, which
can occur at multiple sites (3, 17). As the extent of modification by
oxygen increases, the complexity of the oxidation product set
increases, and their stability decreases. The initial product is a
peroxyl radical, which can either react intramolecularly to form an
endoperoxide in which the molecule retains an unpaired electron,
or it can abstract a hydrogen from an adjacent molecule to form a
hydroperoxide, concomitantly initiating the chain reaction of
lipid peroxidation.

Endoperoxide formation is central in the formation of a
number of bioactive oxidized lipid families, including the
isoprostanes (29). Rearrangement of the endoperoxide results
in formation of 5-membered ring structures, such as
cyclopentenone rings, which are present in isoprostanes and
their enzymatic analogues prostaglandins (30). Alternatively, the
hydrocarbon chain can be cleaved to form the highly reactive
compounds isolevuglandins, which are di-aldehydes (31, 32).
Similar reactions also result in formation of the lipid oxidation
breakdown product malondialdehyde.

In contrast, the hydroperoxides are relatively stable, and can be
detected in biological samples following organic extraction and
storage at -20°C or lower (33). Hydroperoxides can be reduced
through the action of phospholipid-dependent glutathione
peroxidase (GPx4), which converts the hydroperoxide to an
alcohol (34, 35), although a mechanism for removing the –OH
moiety to regenerate the hydrocarbon chain is not currently
known. Hydroperoxides can also be converted to epoxides
through homolytic cleavage of the hydroperoxide to form an
alkoxyl radical, which attacks the adjacent carbon atom (36).

Either peroxyl radical, endoperoxides, or hydroperoxides can
undergo intra-molecular reactions leading to the fragmentation of
the carbon chain, which usually generates an aldehyde at one or
both sides of the cleavage site. This process is responsible for the
formation of a variety of lipid peroxidation breakdown products, of
which the best-known example is 4-hydroxynonenal, in parallel
with the corresponding chain-shortened phospholipid (37). These
products can subsequently be metabolized by enzymes of the
aldoketoreductase (AKR) and aldehyde dehydrogenase families,
involving either reduction to alcohols or oxidation to carboxylic
acids (38–40), thus generating further product diversity. An idea of
the extent of the possible diversity can be obtained by considering
that addition of two molecular oxygens to arachidonate can yield a
family of 64 F2-isoprostanes, when stereoisomers are included (41).
Moreover, fragmentation of oxidized phospholipids can yield
multiple breakdown products, and analysis is challenging as ones
from different parent lipids may be isomeric or isobaric, as observed
by liquid chromatography tandem mass spectrometry (42).

Analogous reactions can also take place on cholesterol and
sphingolipid chains. Radical oxidation of cholesterol yields a
December 2020 | Volume 11 | Article 602771
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family of oxysterols modified on the B-ring, including 7-
hydroxycholesterol, 7-keto cholesterol, 5-hydroperoxycholesterol,
5,6-epoxycholesterol and cholestane-3,5,6- triol (43). In contrast,
enzymatic oxidation catalyzed by cytochrome P450 enzymes (e.g.
CYP27A1, CYP46A1) tends to hydroxylate the saturated
hydrocarbon tail, although 7a-hydroxycholesterol is formed by
CYP7A1 (20). Carotenoids contain conjugated polyunsaturated
chains and are also highly susceptible to oxidative attack; carotene
Frontiers in Endocrinology | www.frontiersin.org 457
oxidation products reported include cyclized hydroxy- and keto-
containing as well as aldehydes resulting from chain cleavage (44,
45). Oxidation of sphingosylphosphorylcholine has been observed
to form hydroxyl and keto derivatives on the sphingosine
chain (19).

The ability of radicals to initiate hydrogen abstraction varies.
Hydroxyl radical (OH•) is one of the most reactive radicals
formed in biological systems, and readily causes lipid
FIGURE 2 | Types of oxidative modifications on fatty acyl chains. The products are organized according to section of the article (numbered), showing the wide
variety of chemical structures possible. These chemical moieties can occur on esterified or non-esterified fatty acyl chains, or cholesterol, and for each generic
structure many distinct compounds (isomers and stereoisomers) may exist—for example, 64 in the case of isoprostanes—as well as analogous compounds from
starting lipids with different chain length and unsaturation.
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peroxidation (46). In contrast, superoxide, a radical produced by
certain NADPH oxidases, is relatively poor at initiating lipid
peroxidation, and hydrogen peroxide is unable to do this in the
absence of transition metal ions that support Fenton chemistry
to generate hydroxyl radicals (17); transition metals such as
copper, manganese and iron readily undergo one-electron
(radical) reactions. Similarly, the non-radical anion
peroxynitrite (ONOO-) does not cause hydrogen abstraction
directly, although it is reactive and can be converted to
nitrogen-containing radicals such as nitrogen dioxide that do,
and also reacts with carbon dioxide to form carbonate radicals
(CO−·

3 ) that enhance peroxidation (47). Although a radical, nitric
oxide (NO) is a better reductant than oxidant in biological
systems (48). Radical nitrogen species can also be generated by
the neutrophil enzyme myeloperoxidase; as well as its
conventional non-radical product hypochlorous acid, it is able
to oxidize nitric oxide to form the radical NO2, and can also
oxidize other compounds, for example tyrosine to yield tyrosyl
radicals (49, 50). Oxygen itself is a di-radical and can initiate the
direct peroxidation of dry lipid monolayers in vitro (auto-
oxidation), but this process may not be biologically relevant as
the oxygen concentration in cell membranes is much lower
than air.

Modification of Fatty Acyl Chains by
Radical Nitrogen Species
As well causing peroxidation, reactive nitrogen radicals can also
cause nitration and nitroxidation of unsaturated fatty acyl
chains, and the resulting nitrated lipids have important
biological functions, for example as anti-inflammatory agents
and stress signaling molecules in both animals and plants (51–
53). The formation of nitrogen-containing oxidized lipid
derivatives was first documented in the mid-1990s (54) and
was rapidly followed by further mechanistic studies of nitration
reactions (55). Radical-initiated nitration can occur by two
distinct mechanisms. The first requires hydrogen abstraction
by a radical followed by addition of NO2 at the carbon-centred
radical, in a mechanism analogous to lipid peroxidation. Under
acidic conditions, peroxynitrite is converted to peroxynitrous
acid (ONOOH), which decomposes to form OH• and NO2; thus
hydroxyl radical initiates the hydrogen abstraction followed by
addition of NO2 to nitrate the hydrocarbon chain, forming a
nitro-lipid (51, 56). The radical NO• could also undergo a radical
condensation with the carbon-centred radical, which would
result in lipid nitrosylation. NO2 can also react directly with
one of the carbons in the double bond to form a nitroalkane
radical, and if the NO2 concentration is high a second nitration
can occur to yield a di-nitro species. Subsequent loss of nitrous
acid (HNO2) leads to nitro-alkenes, and substitution with water
can form nitrohydroxy lipids (51). As with oxidation products
resulting from free radical attack, the molecular rearrangements
of nitro-lipids allow a wide variety of positional and
stereochemical isomers to be formed, for example on
phosphatidylserine (57), cardiolipin (58), phosphatidylcholine,
and phosphatidylethanolamine (59). Nitrated fatty acids have
been detected in human plasma, suggesting that they are
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biologically relevant lipid products (60). Nitration of
unsaturated fatty acids can also occur by non-radical
electrophilic substitutions, as described in the following section.

Electrophilic Attack by Non-Radical
Species
Unsaturated fatty acids and fatty acyl chains of phospholipids
can be oxidatively modified in a non-radical manner via
electrophilic addition of oxidants to double bonds. For
example, addition of the reactive nitronium ion (NO+

2 ), usually
from a polarized nitronium carrier such as nitronium
hexafluorophosphate, generates nitroalkenes (51), although it is
not clear that such a mechanism is biologically relevant. In
contrast, electrophilic addition of hypohalous acids to
unsaturated lipids is better established, with more evidence for
its occurrence in vivo. Hypohalous acids include hypochlorous
acid (HOCl), hypobromous acid (HOBr), and hypoiodous acid
(HOI) and are produced mainly by phagocytes (18). The main
source of HOCl is the neutrophil enzyme myeloperoxidase; this
enzyme has a higher Km for bromide than chloride, but the
higher biological chloride levels mean that HOCl is the major
product (61, 62). Eosinophil peroxidase is a related enzyme that
is highly selective for HOBr production (61).

Hypohalous acids can add across double bonds in
unsaturated fatty acyl chains to form halohydrins: the products
on mono-unsaturated chains (e.g. mono-chlorohydrins) are
fairly stable, but reaction with poly-unsaturated chains leads to
a large number of products through rearrangement by loss of
water or loss of chlorine, with the possibility of further reactions
in the presence of high concentrations of HOCl (7).
Chlorohydrins of fatty acids (adjacent hydroxy and chloro
groups) have been detected in clinical conditions such as acute
pancreatitis and sepsis (63, 64). Hypohalites can also attack vinyl
ether bonds in plasmalogen phosholipids, which causes cleavage
to form a lysophospholipid and releases an a-halo-fatty aldehyde
(24, 65). This contrasts with radical attack of plasmalogens,
which yields fatty aldehydes (23). It has most commonly been
reported for HOCl, and a-chloro hexadecanal and a-chloro
octadecanal have been detected in plasma of patients with
cardiovascular disease (66) and sepsis (67, 68), but bromo-fatty
aldehydes can also be formed (69). HOCl can react with the
double bond in cholesterol to form 5-chloro-6-hydroxy-
cholesterol and its isomer (70); these were reported in cell
membranes (71) and subsequently myeloperoxidase-derived
chlorine was reported to form a family of chlorinated sterols
(72). HOCl can react with b-carotene and shows overlap in the
products formed by free radical cleavage (73). Thus although the
variety of halogenated products is less than that from radical
oxidation, it still adds substantially to the modified lipid family.

Modifications of Phospholipid Headgroups
Although attention tends to focus on hydrocarbon chain
oxidation, amine-containing phospholipid head groups can be
attacked both by radicals and electrophilic oxidants. The
photooxidation of phosphatidylethanolamines (PE) has been
demonstrated to cause loss of ethanolamine to form
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phosphatidic acid; interestingly, glycation by reaction with the
amine enhanced the propensity for oxidation and led to oxidative
cleavages in the glucose unit (Figure 2) (74, 75). The
ethanolamine head group can also be modified by reaction with
isolevuglandins (76), illustrating the complexity of effects of
phospholipid oxidation, and such products have been detected
in cells (77). Radical oxidation of phosphatidylserine (PS)
typically yields glycero-3-phosphoacetic acid (GPAA) via oxidative
deamination (78, 79), whereas glycero-3-phosphoacetaldehyde
and glycero-3-phosphonitrile were observed following reaction
with HOCl (80). These modifications are important as the head
groups play key roles in membrane structure and function, as well
as cell signaling.
DISCUSSION

It is clear that oxidative modifications of lipids are legion,
resulting a substantial expansion in the variety and properties
of lipids. Many of the oxidized, nitrated, and chlorinated
products show altered biological activities, including toxicity,
altered proliferation, differentiation, pro-inflammatory, anti-
inflammatory and barrier protective effects, via diverse
signalling pathways to affect gene expression or other
regulatory processes. In this sense, the modifications offer a
chemical/biochemical mechanism to alter cell behaviour in
both beneficial and deleterious ways, and to some extent meet
the concept of an epilipidome. There is a close analogy to the
recent shift in thinking on “reactive oxygen species (ROS)” as
potentially beneficial signalling compounds, rather than agents
Frontiers in Endocrinology | www.frontiersin.org 659
of destruction (81, 82). On the other hand, the modifications
underlying epigenetics are reversible and enzyme-catalyzed,
offering clear evidence that they are a regulatory process. The
recent concept of epi-proteomics also depends on the principle
of reversibility: many post-translational modifications are
enzymatically controlled and reversible, e.g. phosphorylation,
and histone acetylation (83, 84). In contrast, the same cannot be
said of lipid oxidation. While some enzymes are specific for lipid
oxidation products, such as GPx4, aldoketo reductases and
aldehydes dehydrogenases, these constitute metabolism rather
than direct reversibility. On this basis, the epilipidome would
function in the sense of a metabolic loop, involving formation
and degradation via distinct pathways. It is also worth bearing in
mind that reactive lipid oxidation products exert at least some of
their effects via covalent interactions with proteins in the form of
post-translational modification known as lipoxidation, and these
reactions are chemically reversible (85). In view of the wide
variety of cellular effects reported for modified lipids, as well as
its role in ferroptosis (86, 87) and inflammatory diseases (88), it
is important to continue to explore their potential as an
epilipidome, including aspects of reversibility and enzyme
interaction. This will require development of new technologies
to handle the large datasets of modified lipids that form the
epilipidome (89).
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Lipids are highly diverse biomolecules crucial for the formation and function of cellular
membranes, for metabolism, and for cellular signaling. In the mammalian skin, lipids
additionally serve for the formation of the epidermal barrier and as surface lipids, together
regulating permeability, physical properties, acidification and the antimicrobial defense.
Recent advances in accuracy and specificity of mass spectrometry have allowed studying
enzymatic and non-enzymatic modifications of lipids—the epilipidome—multiplying the
known diversity of molecules in this class. As the skin is an organ that is frequently
exposed to oxidative-, chemical- and thermal stress, and to injury and inflammation, it is
an ideal organ to study epilipidome dynamics, their causes, and their biological
consequences. Recent studies uncover loss or gain in biological function resulting from
either specific modifications or the sum of the modifications of lipids. These studies
suggest an important role for the epilipidome in stress responses and immune regulation
in the skin. In this minireview we provide a short survey of the recent developments on
causes and consequences of epilipidomic changes in the skin or in cell types that reside in
the skin.

Keywords: skin, ultraviolet, inflammation, stress, oxidized phospholipid, epilipidome, aging, senescence
INTRODUCTION

The lipidome of keratinocytes (KC), the dominant cell type of the basal layer of the epidermis is
made up mainly of phospholipids, cholesterol, and triacylglycerides. Differentiation of living KC
into dead corneocytes, a controlled cell death process that continuously renews the epidermal
barrier (1), drastically changes the KC’s lipid composition several times during the process. The last
living (granular) epidermal layer contains cells with lamellar bodies containing glucosylceramides,
phospholipids, and sphingomyelin which are further metabolized to produce the stratum corneum
(SC) lipids, a mixture of free fatty acids (FFAs), cholesterol and ceramides (2, 3). The SC lipids form
the lipid matrix, a flexible connection of low water permeability between the corneocytes which
remain from terminal differentiation (4) and the FFAs contribute to the required acidification of the
SC (5). Part of the surface lipids derive from the sebum, a mixture of TAG, wax esters, squalene and
FFA, produced by holocrine secretion of terminally differentiating cells of the sebaceous gland, a
lipid producing skin appendage. Most biological consequences of epilipidomic modification take
n.org January 2021 | Volume 11 | Article 607076162
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place in the living layers of the epidermis or in the dermal
compartment underneath; nonetheless SC lipids are susceptible
to modifications. Some of these modifications are ROS-mediated
(squalene oxidation), while others depend on enzymatic
cascades, as for example in the formation of the lipid envelope
where hydroxyl ceramides are esterified to corneocyte proteins
by specific transglutaminases.
Modification of The Skin Epilipidome by
Ultraviolet Radiation
The best-studied oxidative modifier of skin lipids is solar
radiation and wavelength bands thereof, which are used alone
or in combination with photoactive chemicals as therapy for
various skin diseases. The action of UV radiation (UVR) on
human skin depends on wavelength and can induce acute
inflammation-, immunosuppression, or cell death (6). The
latter is elicited by combining UVR with photoactive drugs to
specifically target cancer- or immune system cells. UVR can
cause both enzymatic and non-enzymatic modification of lipids.
The long-wavelength UVA (320–400 nm) oxidizes lipids in
absence of enzymes (7, 8) but also shorter wavelength
radiation can non-enzymatically generate oxidized lipids via
free radical mechanisms (9). Cholesterol, phospholipids, free
fatty acids, and squalene are targets for non-enzymatic lipid
oxidation and yield bioactive products. Enzymatic synthesis of
oxidized lipids, most prominently eicosanoids and related
oxidized polyunsaturated fatty acids (PUFAs) results from UV
activation of phospholipases, lipoxygenases and cyclooxygenases
(10–12). Most of the work on enzymatic generation of
eicosanoids [rev. in (10)] has been done on the response to
Frontiers in Endocrinology | www.frontiersin.org 263
clinically relevant short wavelength UVB irradiation. This may
lead to an underestimation of non-enzymatic effects to solar UV
exposure which are mostly elicited by longer wavelength
radiation. Similarly biasing may be that UV-regulated
eicosanoids (and related FA derived mediators) are investigated
mainly in their free form, while a large fraction of the modified FA
may be presently attached to more complex lipids.

Previously it was observed that the UVA-photo-oxidation of
PUFA esterified to phospholipids is more efficient than photo-
oxidation of the same PUFA in the free form, probably due to
increased UVA induced singlet oxygen generation in the PL
esterified configuration of the PUFA (13). Indeed, Leung et al.
found in HaCaT cells exposed to UVA little effect on n-6 PUFA
and their non-enzymatic oxidation products immediately after
exposure (14) but detected elevation of enzymatically modified
hydroxides of docosahexaenoic acid (DHA). The authors
conclude that HaCaT cells required 24 h to return to
PUFA homeostasis.

In primary human dermal fibroblasts, our group identified
more than 500 features corresponding in retention properties to
polar and oxidized phosphatidylcholines (PCs) that were induced
immediately after irradiation with UVA (15), and also in primary
human keratinocytes we found significant elevation of 173 OxPC
species immediately after irradiation. In both cell types, the
elevated species comprised also non-enzymatic PUFA-PC
oxidation products such as PC-hydroperoxides and hydroxides,
di-carboxylic and carbonyl group containing PC species. In the
keratinocyte investigation we found that even at the high UVA-1
fluence of 40 J/cm² the cells recover, and most lipid species return
to baseline levels within 24 h, insofar as the KC appear to limit
especially the amount of highly reactive carbonyl containing
lipids. The restoration of phospholipid redox (or epilipidome)
FIGURE 1 | Formation routes and action spectrum of modified lipids in the skin.
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homeostasis involves the antioxidant response, autophagy, the
unfolded protein response and, as recent findings suggest, the
transcriptional regulator NUPR1 (16). Conversely, in vitro
oxidized PUFA-PC are potent inducers of autophagy and Nrf2
(17, 18). These are mechanisms and signaling pathways that can
be assigned to the protective, pro-resolving spectrum of oxidized
phospholipid action. At the same time these lipid extracts or in-
vitro oxidized PAPC preparations contain phospholipids with
known pro-inflammatory activity and highly reactive carbonyl
compounds (19, 20). A detailed investigation of the quantities of
individual lipid species and localization of the lipids, their
functional groups and their adducts will be next steps for
elucidating the biological net effect of epilipidomic
modifications on (phospho-) lipids through oxidative stressors
in the skin. Elaborate mass spectrometric methods are required
for structural analysis of aldehyde adducts to proteins [rev in
(21)]. Because even as antibodies to protein-lipid adducts and the
dinitrophenylhydrazine method to investigate protein
carbonylation are widely used, lipid oxidation products and
especially malondialdehyde can show not only high diversity in
the type of modification of proteins (and thereby yielding very
different epitopes) (22), but also interfere with the detection of
other adducts (23).

The dietary intake of fatty acids affects the systemic and
cutaneous composition of systemic free fatty acids and the
composition of phospholipids to which these fatty acids are
dynamically esterified. It also affects the potential enzymatic and
non-enzymatic oxidation products that will form after UV
exposure. Supplementation with eicosapentaenoic acid (EPA)
and a subsequent UV exposure led to a shift in the UVA induced
eicosanoids that were recovered from skin suction blisters from
arachidonic acid metabolites (prostaglandin E2 and 12-HETE)
towards EPA metabolites (prostaglandin E3 and 12-hydroxy-
eicosapentaenoic acid, respectively) which have less pro-
inflammatory activity (24). When administering docosahexaenoic
acid (DHA) to cultured fibroblasts, we observed an elevation of
DHA-containing phospholipids which were highly susceptible to
photo-oxidation. Only in Nrf2 deficient cells this increased oxidation
susceptibility led to increased expression of inflammation markers.
Therefore, both the type of UV-induced lipid signalingmediator and
the cell’s capability to limit peroxidation may determine the
epilipidomic effect on UV mediated inflammation regulation. UV
not only can enzymatically generate immunomodulatory platelet
activating factor (PAF), but PAF-like lipids can also result from free
radical action on phospholipids. PAF and PAF-like lipids relay both
acute inflammatory and delayed immunosuppressive UV effects,
and potentially elicit systemic signals by releasing microvesicles from
KC (25).

The effects of UV exposure are not restricted to cellular lipids.
Also the sebum is susceptible to modification. Hydroperoxides of
squalene generated by UV exposure have been identified in vitro
and in vivo (26, 27), and as squalene is a major component of the
epidermal surface lipids, its peroxidation products including also
reactive aldehydes (28) were proposed as sensors conveying
metabolic and inflammatory responses to UV radiation (29).
One study even suggested that corneocyte dust containing high
Frontiers in Endocrinology | www.frontiersin.org 364
levels of oxidized squalenemay be a relevant environmental irritant
(30). The full spectrum of immunomodulatory actions of (UV-)
oxidized squalene and other sebaceous lipids is discussed in (31),
where the epidermal NLRP3 inflammasome is suggested as the
cellular component that senses and relays inflammatory signaling.

An amplification of photo-damage is elicited by photosensitizers
in photo(dynamic) therapy. Porphyrins and their derivatives have
hydrophobic properties that locate them to membranes of target
cells, allowing to kill those with light through photosensitized ROS
generation. At the same time, this treatment leads to massive
oxidation of (phospho) lipids (32), and it remains to be elucidated
whether oxidized lipids interfere with- or contribute to the
therapeutic efficacy. Lipotoxicity upon oxidative stress is mainly
exerted by aldehydolipids and was reviewed in (33). In the skin
context, the OxPL POVPC was toxic in melanocytes in the
micromolar range (32), at which (34) we detected this lipid after
exposure to physiologic fluences of UVA in other cell types (15).
THE SKIN EPILIPIDOME IN
INFLAMMATION

The two major chronic inflammatory skin diseases associated
with impaired barrier function, psoriasis and atopic dermatitis
(AD), affect composition and ordering of the epidermal barrier
lipids and composition of basal epidermal, dermal, and systemic
lipids [reviewed in (10, 35, 36)]. Metabolites attributable to the
epilipidome are regulated and likely contribute to the disease, but
functional data are yet limited. 9- and 13-hydroxyoctadecadienoic
acids (9- and 13-HODE) were significantly elevated in plasma
samples from psoriatic patients, as was 7-hydroxycholesterol. In
skin biopsies from the same patients the free and esterified levels
of 8- and 12-hydroxy-eicosatetraenoic acids (8- and 12 HETE)
and 9- and 13-HODE were accordingly elevated, but also
eicosanoids with known anti-inflammatory properties (37). First
data where resolvin D1 was applied on patient KC and reduced
interleukin synthesis by these cells indicate that small pro-
resolving mediators of the epilipidome that are topically applied
or generated in situ could be useful for the treatment of psoriasis
(38). At the same time the pro-inflammatory components of the
epilipidome likely contribute to the inflammation. Interestingly, a
phospholipase that is transferred via exosomes to Langerhans
cells seems to process psoriasis specific antigens (39). Thus, clear
spatial localization of lipid metabolites, e.g. with high resolution
mass spectrometric imaging and detailed functional studies are
needed to fully understand the contribution of the epilipidome
in psoriasis.

In the sera of juvenile AD patients, leukotriene B4 (LTB4),
thromboxane 2 (TXB2), prostaglandins, HETE and HODE were
found elevated, and lipidomic analysis could distinguish between
clinically relevant subgroups of patients with high versus low
immunoglobulin E levels (40). Among the distinguishing
markers lysophosphatidyl-ethanolamine (18:2), thromboxane b
2 (TXB2), and 11-, 12-dihydroxyeicosatrienoic acid (DHET) can
January 2021 | Volume 11 | Article 607076
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be attributed to the epilipidome. TXB2 and 11, 12-DHET were
found elevated in skin tissue lipid samples in a comparable study
(41), that came to the conclusion that the ratio of pro-
inflammatory to pro-resolution mediators was increased in the
patients, especially PPARalpha agonistic oxidized lipids. These,
especially 12-HETE mediate inflammation and disturb
differentiation in AD organotypic skin models (42). Further
research will elucidate the contribution of non-enzymatically
formed isoforms or mimetics to the downstream signaling of
these enzymatically generated mediators in skin inflammation.
Agonism or signaling via prostaglandin receptors, PPARs, and
pattern recognition receptors (PRR) through ROS mediated
changes to lipids in other context has been reported (43–45).
MODIFICATIONS OF THE SKIN
EPILIPIDOME BY EXPOSURE TO AGING,
CHEMICAL IRRITANTS, DRUGS, AND
OTHER STRESSORS

Highly reactive lipid oxidation products and their adducts to other
macromolecules accumulate in the skin that prematurely aged due
to sun exposure (46, 47). However, also chronologic aging of the
skin at the cellular level and senescence of cells are similarly
associated with lipoxidizing redox events, for example ROS
accumulation in mitochondrial dysfunction and in senescence
related chronic inflammation (48). The skin’s cellular composition
as well as the synthetic and metabolic fidelity changes during the
mammalian lifespan, and these changes leave traces in the skin’s
lipidome and epilipidome. Those epilipidomic changes introduce
a novel, autonomous layer of signaling for complex exposure–
response relationships (49) in cellular stress, aging, and
inflammation. Recently, elevated leukotriene generation was
identified as a feature of senescent fibroblasts that promotes
lung fibrosis (50), and we found compatible changes in the
oxidized phospholipidome of senescent dermal fibroblasts (51).

The skin is exposed to temperature fluctuations, which likely
affects the dynamics of enzymatic- and ROS-mediated
epilipidomic modifications. One study monitored barrier lipids
of acne and control patients over the course of a year, together with
trans-epidermal water loss (TEWL) measurements and assessment
of acne severity. The authors found that in acne-affected skin the
ceramide species Cer[NH] and Cer[AH] were significantly
reduced. This effect was greatest in winter and correlated with
the highest TEWL measurements. Ceramide species with 18-
carbon species of 6-hydroxysphingosine appeared to be most
significantly reduced, an example of the diverse consequences
that oxidative modification of lipids has in epidermal barrier
function (52). Compatible with the latter finding, a (redox-)
lipidomic study (53) on SC lipids from volunteers receiving
glucocorticosteroids (GC) identified that the barrier damage,
which is a side effect of GC therapy, was associated with
reduction of ceramides with an esterified omega-hydroxy acyl
chain. Furthermore, anti-cancer chemotherapy can affect the skin
Frontiers in Endocrinology | www.frontiersin.org 465
epilipidome, shown in a murine melanoma model, where
chemotherapy generated, probably due to ROS generation, PAF-
receptor agonistic lipids which negatively affected anti-tumor
immunity (54). In murine epidermis exposed to the carcinogenic
chemical irritant 12-O-tetradecanoylphorbol 13-acetate (TPA), we
found strong epilipidome modification. Phospholipid
hydroperoxides were elevated three days after the last treatment,
and we found that peroxiredoxin 6 is an important regulator of
epidermal lipid (per) oxidation in vivo (55). Cigarette smoke (CS) is
a lifestyle-related environmental stress for the skin, and exposure of
KC to CS increases the formation of carbonyl (4-hydroxy-2-
nonenal; 4-HNE) adducts which likely result in part from lipid
oxidation (56), and the immunosuppressive PAF-like lipids (57). A
novel therapeutic option for dermatological wound- and
inflammation management is the directed application of beams
of cold atmospheric plasma (CAP) which contains highly dynamic
matter, to tissue (58). One consequence when this treatment is
applied to surface lipids is a massive change in the skin epilipidome
(59), and it remains to be investigated whether epilipidomic
changes contribute to the efficacy of the treatment which appears
to involve activation of the antioxidant response (60).

Whereas most of the studies discussed so far have investigated
the modification of fatty acid residues, Maciel and colleagues
reported that the radical generating 2,20-azobis(2-
amidinopropane) dihydrochloride (AAPH) modifies the
headgroup of phosphatidylserines in cultured keratinocytes,
adding an additional layer of complexity and novel potential
biological consequences to the epilipidome (61). Beyond the
oxygen-mediated modifications to lipids, the complexity of the
epilipidome can be increased by sulfonation of lipids (62)
nitration and nitroxidation of phospholipids, observed in vivo
in diabetes models and under metabolic stress [Rev. in (63)] and
several nitro- and nitroso modifications of unsaturated PC and
PS have been characterized (64). Nitro fatty acids were also
found in dermal fibroblasts upon virus infection and impaired
interferon gamma signaling (65) by modulating the
palmitoylation of the adaptor molecule stimulator of IFN genes
(STING) which led to inhibition of interferon release, and the
authors suggested the pharmacological potential of these lipids in
diseases caused by abnormally high STING activity.
DISCUSSION AND OUTLOOK—
CONNECTION OF THE EPILIPIDOME WITH
OTHER NON-CANONICAL REGULATORS
AND LOCALIZATION OF EPILIPIDOMIC
MODIFICATIONS WITHIN THE SKIN

Although the importance of the epilipidome for the regulation of
cellular processes is clearly evidenced (66), little is known about its
interaction with other non-canonical regulators of cell fate (“epi-
omics”), such as the epigenome, epitranscriptome, epiproteome
or epimetabolome. As all of these “epi-omics” are influenced by
oxidative stress, it is well conceivable that oxidized lipids further
January 2021 | Volume 11 | Article 607076
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exacerbate the effects of the original redox stressor. For example,
4-HNE is formed by lipid peroxidation and is highly reactive
towards cysteine, lysine and histidine residues. Thereby, protein
adducts are formed which do not only impinge on the
epiproteome (67), but also on the epigenome through covalent
modification of histones. Histones are common advanced
lipoxidation endproducts (ALEs), and some of them are
associated with human disorders, such as systemic lupus
erythematosus or Alzheimer’s disease (68). ALE formation
impairs the interaction of histones with DNA and consequently
leads to increased vulnerability of exposed DNA stretches to
oxidative stress (69, 70). Similarly, chromatin reader, writer and
eraser enzymes might be covalently modified by oxidized lipids
and thereby their function might be altered. Besides histone
acetylation, the epigenome is shaped by methyltransferases,
adding methyl groups to bases of DNA. The metabolite S-
adenosyl-methionine (SAM) might represent an important link
between the different layers of “epi-omics”, because it acts as the
universal methyl group donor for most DNA, RNA, lipid, and
protein methylation reactions. Phospholipid methylation is the
major consumer of SAM and SAM availability in cells is limited.
Thus, changes in themethylation of phospholipids strongly reflect
on methylation reactions of other substrates. Ye and colleagues
provided evidence for this phenomenon by demonstrating that
loss of phospholipid methylation causes hypermethylation of
histones as well as of the major phosphatase PP2A (71). In
contrast to DNA methylation, chemical modifications of
different RNA species came into focus only recently (72), and
might be subject to similar redox- and metabolism-based
connections with the epilipidome (73–75). Moreover, RNA
modifications were already implicated in the interaction of
specific RNA molecules with lipid bilayers (76). N6-adenosine
methylation of ribosomal RNA (rRNA) by METL-5 represents an
interesting example for a complex crosstalk between the different
layers of “epi-omics” in Caenorhabditis elegans. Methylation of
A1717 on 18S rRNA enhances selective ribosomal binding and
translation of CYP-29A3 mRNA. This enzyme is required for
oxidation of eicosapentaenoic acid to eicosanoids and modulates
heat stress resistance (77). Oxidized lipids might also directly
influence selective protein synthesis through oxidation of
ribosomal proteins (78). Since the synthesis of post-translational
protein modifications, such as glycosylations, is tightly
synchronized with translation, the epiproteome might be
regulated by the epilipidome as well.

The novel gold standard methods for redox- and other
epilipidomic investigations are typically based on high
resolution mass spectrometry (HRMS), often in combination
with chromatographic separation and require intensive
bioinformatic post-processing. These methods and their
application on the lipidome, redoxlipidome and especially the
skin are the topic of recent reviews that are suggested to the
reader (35, 66, 79–85). The emerging technology of mass
spectrometry-based imaging (MSI) has the unique feature to
reveal the distribution of analytes within a tissue allowing the
detection, localization and identification of multiple lipid species
in an area of interest. Ionization techniques like secondary ion
Frontiers in Endocrinology | www.frontiersin.org 566
mass spectrometry (SIMS) (86), matrix assisted-laser desorption/
ionization (MALDI) or desorption electrospray (DESI) (87) are
the methods of choice allowing sensitive measurements. One
tissue section can be used for consecutive measurements in
positive and negative ion modes depending on the lipid class
under investigation (88). However, low concentrations and ion
suppression effects can lead to low ion intensities making lipid
identification difficult. However, low signal intensities in respect
to concentration levels of lipid peroxidation products or method-
inherent ion suppression effects makes lipid identification by
tandem MS often infeasible and HRMS (i.e. Fourier Transform
Ion Cyclotron or Orbitrap) is indispensable. The novelty of MSI
in the context of skin research is reflected by the limited number
of publications available. Few papers focusing on sample
preparation (89), few studies are available giving a general
overview of lipid changes in skin during wound healing (90),
in reconstructed skin equivalents (91) studying lipid profiles over
time and in ex vivo human skin samples (92). Worth mentioning
is research on the effect of topically applied compounds on lipid
changes in the skin (93, 94). Despite the promising future of MS
imaging, limitations have to be considered and challenges have to
be met. One limitation is the rather low spatial resolution
achieved with most instruments. (Nano)DESI provides spatial
resolutions of approximately 40 to 100 μm, and conventional
MALDI measurements can be carried out at pixel sizes down to
10 μm, still larger than most mammalian cells. As a result, each
pixel represents the average lipid profile of maybe multiple cells
and not of individual cells within the tissue. Reducing the spot
size to a single cell level is therefore one of the most important
endeavors in MSI research and instrument development (95).
SIMS on the one hand has the potential to measure at a few nm
spot size (approximately 30 nm), easily reaching cellular levels.
However, SIMS is not a soft ionization technique, fragmenting
lipid species and providing only lipid class information by head
group analysis but not the full molecular information one is
usually striving for. MALDI on the other hand is allowing the
detection of intact lipid species at rather low resolution, being
therefore the most often used method so far. But MALDI shows
different ionization efficiencies for different lipid classes, making
a comprehensive analysis for the entire lipidome a challenge,
choosing the appropriate matrix is key (96). In summary, combining
a multimodal approach at high spatial and mass resolution
information on the skin’s epilipidome with immunohistological
features of individual cells, their activation- and differentiation
state, their metabolic configuration and their (epi-) transcriptome
will be an important task in the imminent future that will help
elucidate the contribution of the epilipidome to skin biology
(Figure 1).
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Within the lipidome oxidized phospholipids (OxPL) form a class of chemically highly reactive
metabolites. OxPL are acutely produced in inflamed tissue and act as endogenous,
proalgesic (pain-inducing) metabolites. They excite sensory, nociceptive neurons by
activating transient receptor potential ion channels, specifically TRPA1 and TRPV1. Under
inflammatory conditions, OxPL-mediated receptor potentials even potentiate the action
potential firing rate of nociceptors. Targeting OxPL with D-4F, an apolipoprotein A-I mimetic
peptide or antibodies like E06, specifically binding oxidized headgroups of phospholipids,
can be used to control acute, inflammatory pain syndromes, at least in rodents.With a focus
on proalgesic specificities of OxPL, this article discusses, how targeting defined substances
of the epilipidome can contribute to mechanism-based therapies against primary and
secondary chronic inflammatory or possibly also neuropathic pain.

Keywords: oxidized phospholipids, TRP channel, ion channel, analgesia, pain therapy, nociception, therapeutic
antibody, mimetic peptide
INTRODUCTION

Pain is the result of molecular and psycho-behavioural elements triggered by tissue damage (1). In
developed countries, the estimated prevalence of chronic pain is about 20% (2, 3). In the new, eleventh
international classification of diseases (ICD-11), primary chronic pain has been classified as an
independent disease, like low back pain or fibromyalgia, and separated from syndromes where pain is
secondary to another underlying disease, like in osteoarthritis or rheumatoid arthritis (4). To improve
the quality of life, an effective pain treatment has major impact. Reports by the National Institutes of
Abbreviations: 4-HNE, 4-hydroxynonenal; 13-HODE, 13-hydroxy-10E,12Z-octadecadienoic acid; 9-HODE, 9-hydroxy-
10E-,12Z-octadecadienoic acid; ApoA-I, Apolipoprotein A-I; D-4F, D-amino-4-phenylalanine mimetic peptide of
Apolipoprotein A-I; E06, E06 monoclonal antibody; H2O2, Hydrogen peroxide; HDL, High density lipoprotein; LDL, Low
density lipoprotein; LPC, Lysophosphatidycholin; OxLDL, Oxidized low density lipoprotein; OxPAPC, Oxidized 1-palmitoyl-
2-arachidonyl-sn- glycero-3-phosphorylcholine; OxPL, Oxidized phospholipids; PEIPC, 1-palmitoyl-2-(5,6)-
epoxyisoprostane E2-sn-glycero-3-phosphocholine; PGPC, 1-palmitoyl-2-glutaryl phosphatidylcholine; POVPC,
1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine; ROS, Reactive oxygen species; TLR-4, Toll-like receptor 4;
TRPA1, Transient receptor potential ankyrin type 1; TRPC5, Transient receptor potential canonical type 5; TRPV1,
Transient receptor potential vanilloid type 1.
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Health indicate that opioids have been themost prescribed drugs for
pain treatment in the US leading to the opioid overdose crisis
uncovered in 2017/18. In addition, over the counter drugs like
ibuprofen can provoke severe side effects such as gastrointestinal
bleedings. Hence, a better understanding of pain-inducing
mechanisms as well as the development of novel targets for acute
and chronic inflammatory pain treatment is essential.

Pain can be initiated and maintained by a subpopulation of
primary sensory neurons, the nociceptors, which have their cell
bodies in dorsal root ganglia (5, 6). According to the International
Association for the Study of Pain (IASP), nociceptors are defined as:
‘A high-threshold sensory receptor of the peripheral somatosensory
nervous system that is capable of transducing and encoding noxious
stimuli’ (7). Peripheral branches of these pseudounipolar dorsal root
ganglion neurons sense physical and chemical stimuli. After passing
the dorsal root ganglion, central branches transmit the sensory
information to the spinal cord. Nociceptive dorsal root ganglion
neurons mostly have small-diameter cell bodies and are primarily
responsible for slow pain sensation evoked by noxious stimuli (6).
Chronic pain often results from temporary to permanent changes in
the signaling cascades responsible for nociception. This leads to
prolonged and enhanced transmission of nociceptive signals from
the periphery to the central nervous system. For instance, the local
inflammatory environment can sensitize nociceptors, increase the
Frontiers in Endocrinology | www.frontiersin.org 271
spontaneous action potential firing rate, and facilitate the
responsiveness to endogenous or exogenous, proalgesic irritants (8).

Recent research on lipids points toward its new role in pain
signaling. Molecular components that act as pro- and analgesic
factors, are found within the epilipidome. When looking at lipids
in a hierarchical order (Figure 1A), compound lipids such as the
ubiquitous phospholipids or glycerophospholipids, both
critically important for integrity and function of all cellular
membranes (9), are identified as upstream pain-inducing
metabolites (10, 11). Phospholipids carry unsaturated fatty
acids making them accessible for oxidation, nitration, and
subsequent oxidative degradation. Chemical, non-enzymatic
production of oxidized phospholipids (OxPL) leads to diverse
biologically active OxPL species (proalgesic metabolites are
indicated in Figure 1B). Besides non-enzymatic oxidation of
phospholipids, enzymatic activity, for instance by lipoxygenases,
also regulates OxPL abundance (9, 12, 13). Experimental
evidence, mostly in preclinical rodent models, has corroborated
the view that OxPL contribute to many diseases, including
diverse pain syndromes, thus, making them attractive for a
broad range of therapeutic approaches (Figure 2).

This review focuses on the biology of oxidized phospholipids
(specifically in pain syndromes) and summarizes recent data in
preclinical rodent pain models that show how targeting the
A

B

FIGURE 1 | (A) Classification of lipids. The large group of lipids can be divided in four groups with respective subgroups. Oxidized phospholipids, pain-inducing,
natural metabolites, are discussed in this review. Created with biorender.com©. (B) Pain-related oxidized phospholipids. The unoxidized PAPC consists of a 1‐
palmitoyl‐sn‐glycero‐3‐phosphocholine backbone (R) and a linear, arachidonic tail of 20 carbon atoms including four double bonds. Oxidation of this phospholipid
generates fragments such as POVPC and PGPC. In both molecules, the arachidonic tail is shortened to C5. Both molecules carry an aldehyde group or a carboxyl
group, respectively. In addition, PEIPC is generated from PAPC by formation of a bond between C8 and C12, within the arachidonic tail, by reduction of two double
bounds and additional oxygenation as well as radical formation.
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biological activity of OxPL can control pain or can even
contribute to natural pain resolution.
OXIDIZED PHOSPHOLIPIDS ARE LINKED
TO INFLAMMATORY CONDITIONS
AND PAIN

Research on inflammatory pain in the early years focused on stable
biomolecules like prostaglandins and peptides/proteins such as
cytokines which trigger the action potential firing of nociceptors
(8). Recently, works by our group and others have identified OxPL
as proalgesic compounds in preclinical pain models (10, 11, 14, 15).
Mechanistically, the highly reactive, transient, endogenous irritants
directly activate ion channels on nociceptive C-fiber neurons. This
function is different to the sensitizing effects provoked by typical
inflammatory mediators (10, 11). Ion channels, like transient
receptor potential ankyrin 1 (TRPA1) or voltage-gated sodium
channels like NaV1.9, are exciting pharmacological targets for
pain relief. Inhibiting ion channel function can stop effectively the
Frontiers in Endocrinology | www.frontiersin.org 372
transmission of nociceptive signals toward the central nervous
system, devoid of central nervous system side effects. Therapeutic
strategies against OxPL-mediated pain aim to reduce their direct
excitatory function on nociceptors.

Acute and chronic inflammation can cause a variety of pain states.
By affecting many different organs and the contribution to
chronification of pain, inflammation is hindering pain resolution.
Immune cells continuously produce reactive oxygen species (ROS), a
source of highly reactive hydroxyl radicals. The reactions of ROSwith
phospholipids in plasma membranes and in lipoproteins lead to a
continuous and even self-perpetuating production of OxPL (16). For
instance, in inflammatory and neuropathic conditions such as
arthritis or sciatic nerve axotomy, levels of a variety of reactive
lipids rise in the plasma and in dorsal root ganglion neurons (17–19).
Furthermore, levels of reactive lipids correlate positively with
nocifensive behavior in mice. In endometriosis oxidized LDL
(OxLDL) levels increase and subsequently occurring fragments
such as prostaglandins evoke pain. In addition, OxLDL correlate
with symptom severity in patients with fibromyalgia (20, 21).
However, oxidized LDL levels remain comparable in patients with
and without polyneuropathy due to type 2 diabetes (22). Notably,
FIGURE 2 | OxPL contributing to disease pathophysiology. OxPL can be found in several tissue affected by inflammatory diseases throughout the body. Most of the
evidence comes from preclinical models, but especially in atherosclerotic cardiovascular disease and multiple sclerosis, there is evidence of OxPL in human tissue.
Created with biorender.com©.
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OxPL levels also rise in many other diseases (13). These include
classical inflammatory diseases like peritonitis, nephritis, lung injury
and multiple sclerosis (Figure 2). Most of the evidence comes from
preclinical and clinical studies in cardiovascular disease (12, 23, 24).
Many other bioactive lipids, e.g., eicosanoids (prostaglandins,
leukotrienes, resolvins; see Figure 1) also rise already during the
early acute phase of inflammation. It is obvious that both OxPL and
eicosanoids co-exist in acute pain. It might be that OxPL, when
generated non-enzymatically, appear a little bit earlier than
eicosanoids. As some eicosanoids such as prostaglandin E2 are
pro-inflammatory and are able to sensitize nociceptors and OxPL-
mediators (e.g., NaV1.9), it might be beneficial to target non-
enzymatic OxPL production as well as cyclooxygenases as early
as possible.
OXPAPC, A MIXTURE OF PAIN-INDUCING
OXPL METABOLITES

Oxidation of PAPC (1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphorylcholine) generates long-chain and fragmented oxidized
PAPC (OxPAPC) products. These include POVPC (1-palmitoyl-2-
(5’-oxo-valeroyl)-sn-glycero-3-phosphocholine), PGPC
(1-palmitoyl-2-glutaryl-sn-glycero-3-phospho-choline) and PEIPC
(1-palmitoyl-2-5,6-epoxyisoprostane E2-sn-glycero-3-phosphatidyl-
choline) (Figure 1B) (13). Commercially available OxPAPC is a
mixture of molecules that is produced by air oxidation of synthetic
PAPC. This OxPAPC-formulation serves as model substance for
investigating OxPL functions in pain (10, 11).

OxPL can also be produced by enzymatic reactions, e.g., by
lipoxygenases, cyclooxygenases, cytochrome P450 and cytochrome
c. Enzymatic OxPL synthesis leads to a more precise formation of
individual, often truncated, oxidized lipids (25). An enzymatic
modification of PAPC has also been reported (26). How enzymatic
production of phospholipids contributes to pain is not known yet,
but it can well be that especially secreted lipoxygenases promote local,
continuous and long-lasting OxPL production. From a mechanistic
point of view, enzymatic OxPL production might even contribute to
pain sensation in case of bacterial infections, because microbes such
as Pseudomonas aeruginosa, a critical human pathogen responsible
for many healthcare-associated infections, secrete lipoxygenases to
produce OxPL (27).

OxPAPC as well as its corresponding metabolites excite
nociceptors and pain behaviour in different models for
inflammatory pain (10, 11, 14, 15, 28, 29). Specific OxPAPC
components such as PGPC and POVPC as well as the OxPL
degradation product lysophosphatidylcholine (LPC) are increased
in chloroform-based lipid extracts from inflamed tissue by MALDI-
TOF (10). Highly reactive, long-chain OxPL, such as PEIPC or
POVPC, degrade to transient products or rearrange to more stable
metabolites. These degradation products also show biological activity
and include molecules such as LPC, the oxidation end product
PGPC, the fragmented product 4-hydroxynonenal (4-HNE), or
prostaglandin 15d-PGJ2 (10, 30). The ladder is a remote metabolite
of OxPAPC. In addition to oxidative processes, enzymatic reactions,
e.g., by phospholipase A2, facilitate the metabolization of OxPL
Frontiers in Endocrinology | www.frontiersin.org 473
species. The fast metabolization of the compounds produces new
physiologically relevant, bioactive signaling molecules. Important is
that many of the OxPL metabolites generated under inflammatory
conditions can induce pain by acting as acute excitants.
OXPL-MEDIATED SIGNAL
TRANSDUCTION

The transient receptor potential channels TRPA1 and TRPV1 are
excitatory ion channels mediating OxPL effects (Figure 3). They are
polymodal, ionotropic receptors detecting noxious stimuli including
chemical (e.g., capsaicin) or physical stimuli (e.g., heat) (5).
Both cation channels are highly expressed in sensory neurons.
When activated, the channels mediate pain behaviour and
promote inflammation by triggering the increased release of
neurotransmitters, inflammatory mediators and neuropeptides (8).
Behavioural studies in knock-out mice and in vitro experiments on
cultured small-diameter dorsal root ganglion neurons revealed that
TRPA1 is the main target of OxPAPC and its components PGPC
and POVPC. Much higher concentrations of the OxPL compounds
are needed to stimulate TRPV1 responses and the induced activation
of TRPC5, another TRP channel involved in pain mediation, is only
short-lasting (10, 11, 31).

When applied rapidly and locally to cultured small-diameter
neurons the prototypical OxPL compound PGPC induces calcium
spikes – an effect mediated by TRPA1, but not TRPV1 (29). This is
not easy to understand but points to a different mechanism of how
OxPL activate TRP channels. For instance, TRPA1 activation by
OxPL via an interaction with cysteines in the TRP N-terminus
requires an electrophilic substance, similar to activation by the
mustard oil compound AITC or 4-HNE or electrophilic OxPAPC
compounds (28, 32, 33). Electrophilic compounds such as 4-HNE
covalently bind via Michael addition and Schiff base formation to
histidine, lysine, and cysteine residues, a key mechanism of TRPA1
activation. However, in an OxPAPC-hTRPA1 peptide binding study,
no adduct formation and direct thiol oxidation were detected,
suggesting that OxPAPC act as two-electron oxidants. However,
Kelch-like ECH-associated protein 1 (Keap1), the oxidative stress
sensor, is activated by the same electrophilic compounds as TRPA1
including OxPAPC (34).

Due to its chemical properties, the prototypical OxPL PGPC,
a stable but non-electrophilic, acid oxidation end-product of
OxPAPC, must use a different mechanism to activate TRPA1
(29). PGPC and other oxidized phospholipids rapidly integrate
into the lipid bilayer of plasma membranes and thereby
modulate functional properties of lipids and proteins (35). At
least some of the OxPL compounds or even other members of the
epilipidome probably induce rearrangements of the plasma
membrane to mechanically activate TRPA1 and maybe even
TRPV1 (36–38). When co-expressed, TRPA1 function can be
increased via TRPV1-induced calcium influx. Though, an
interaction of TRPA1 and TRPV1 might contribute to the
rather complex OxPAPC action (see below).

Fast calcium imaging and patch-clamp recording revealed
additional relevant ion channels that are involved in the signal
January 2021 | Volume 11 | Article 613868
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transduction of OxPL stimuli (29). The unique low-threshold
sodium channel NaV1.9 is of outstanding importance. In
nociceptors, NaV1.9 is switched on under inflammatory
conditions, by coincident signaling pathways (29, 39). When
active, Nav1.9 potentiates acute OxPL responses and increases
the excitability of neurons (29). This even induces calcium spikes
in nociceptors that can be blocked with W -conotoxin, a high-
affinity blocker of N-type voltage-gated calcium channels (29,
40). This is remarkable as N-type calcium channels mediate
rather strong calcium influx signals. Activity-dependent calcium
influx is often upstream of cellular plasticity effects such as
activity-dependent axon growth (40) and is able to stimulate
long-term changes in gene expression. It will be interesting to
find out whether this calcium influx is involved in gene
expression changes or axon sprouting upstream of nociceptor
sensitization. Also, downstream, the stimulation of TRP channels
with OxPAPC is sufficient to release calcitonin gene-related
peptide (CGRP), a potent vasodilator and mediator of
peripheral nociceptor sensitization. This indicates that OxPL
are not only excitants, but also contribute indirectly to
neurogenic inflammation (10, 15).

In summary, OxPL are nociceptor excitants and trigger
signaling cascades that are able to induce long-term changes in
nociceptors. Interrupting acute OxPL signaling might support
pain resolution in transient and chronic inflammatory and
possibly also neuropathic pain.
Frontiers in Endocrinology | www.frontiersin.org 574
OxPL act locally and acutely on nociceptors. Biochemically,
proalgesic OxPL are produced in all cellular membranes. It is likely
that OxPL act autocrine as well paracrine. But, OxPL are also highly
enriched in apolipoproteins. OxPL-rich apolipoproteins can also be
found in the cerebrospinal fluid in the brain, spinal cord and dorsal
root ganglion. Therefore, it is theoretically possible that OxPL
contribute systemically to certain pain syndromes, maybe via a
dysbalanced OxPL/apolipoprotein/cholesterol axis.
ADDITIONAL OXIDIZED LIPIDS INVOLVED
IN PAIN PERCEPTION

Besides the long-chain OxPL, other lipid metabolites being generated
in inflammation evoke nocifensive behaviour in rodents. For
instance, fragmented products of OxPAPC such as eicosanoids and
prostaglandins are downstream of phospholipase A2-mediated
conversion of arachidonic acid. Oxidized metabolites of the
arachidonic and linoleic acids increase upon systemic stimulation
mice with nerve growth factor, a most important neurotrophic
factor involved in pain signaling (41, 42). In sterile inflammation,
evoked by physical burn as well as UVB-mediated sunburn, derivates
of oxidized linoleic acid increase (43, 44). Lysophosphatidic acid 18:1
and lysophosphatidyl choline 16:0 and 18:1, additional metabolites
deriving from phosphatidylcholine precursors, mediate neuropathic
pain (45–48). In a mouse model of chronic inflammation,
A B

FIGURE 3 | The proalgesic role of oxidized phospholipids and therapeutic options to target OxPL. Display of representative terminals of nociceptors, the first neuron
in the pain pathway, found in peripheral tissue. (A) Inflammation attracts immune cells invading the tissue, e.g., in arthritis. Especially neutrophils and macrophages
release reactive oxygen species (ROS). They oxidize lipids like those found in the plasma membrane (purple circle). The resulting oxidized phospholipids (OxPL)
activate non-selective, excitatory ion channels like transient receptor potential ankyrin 1 (TRPA1) or transient receptor potential vanilloid 1 (TRPV1). Activation of TRP
channels leads to a subsequent activation of voltage gated sodium channels (NaV) and the release of proalgesic molecules like calcitonin gene related peptides
(CGRP). Action potentials are induced and propagated along the pain pathways, resulting in pain perception. (B) Treatment with monoclonal E06 antibodies or with
the ApoA-I mimetic peptide D-4F scavenge OxPL and thereby reduce nociceptor firing, pain and inflammation. Created with biorender.com©.
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oxidized linoleic acid-derived mediators increase in the central
nervous system (49). The complex mode of actions in algesia are
highlighted by modulation of small G-proteins such as GPR132 in
addition to direct ion channel activation (18). These findings indicate
that a variety of alterations of the lipid signaling cascade have
deciphered promising approaches for future pain treatment.
TARGETING OXIDIZED PHOSPHOLIPIDS
TO TREAT PAIN SYNDROMES

Advances in lipidomics give the opportunity to identify lipids that
may serve as biomarkers or treatment targets. Based on the idea
that proalgesic OxPL are preferentially produced locally and non-
enzymatically, OxPL neutralization was thought to be a feasible
strategy to target the proalgesic function of OxPL, at least in rodent
pain models (10, 14, 15). Targeting enzymatic OxPL production
with small molecule inhibitors, for instance oxazolone-derived
compounds for lipoxygenase inhibition, is antinociceptive (50). It
could well be that co-treatment with OxPL scavengers together
with small molecule lipoxygenase blockers can synergistically even
enhance the efficiency of pain control.
THERAPEUTIC EFFECTS OF
MONOCLONAL E06 ANTIBODIES FOR
PAIN TREATMENT

Oxidation of the phosphatidylcholine headgroup creates “neo”-self-
antigens that are recognized by the acquired immune system.Distinct
chemical structures and the conformation of lipids are indispensable
for the formation of pattern recognisingmolecules such as antibodies.
Anti-OxPL antibodies were originally discovered in preclinical
models for atherosclerosis and pneumonia where they substantially
increased under inflammatory conditions and (51, 52). One class of
antibodies, the monoclonal E0 antibodies, were isolated from apoE-
deficient mice, their eponym. Due to its high affinity to the oxidized
head group of phosphatidylcholines, the monoclonal antibody
(mAb) E06, also known as T15, got striking attention (53–55). Due
to its unique properties, mAb E06 became an often-used tool to
investigate OxPL abundance in various inflammatory diseases like
acid-induced lung injury, arteriosclerosis, bacterial peritonitis,
multiple sclerosis, inflammatory nephritis, and age-related macular
degeneration (52, 56–60). Furthermore, the antibody was employed
in immunohistochemistry or ELISA for OxPL binding studies.
Notably, the mAb E06 also has therapeutic potential: passive
immunization with E06 protects against atherosclerotic plaque
development and inflammatory arthritis (61, 62).

In a model of inflammatory pain using complete Freund’s
adjuvant (CFA), an E06-based competitive binding assay allowed
for quantification of OxPAPC species in freshly isolated tissue. These
experiments revealed rather high amounts of mAb E06 reactive
OxPL in inflamed tissue (15, 28). These observations raised the idea
that the pro-inflammatory OxPL function could also be blocked by
antigen neutralization with the mAb E06. Indeed, locally applied E06
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allowed to control pain behaviour in preclinical pain models (15, 28).
Intraplantar application of E06 even ameliorated hypersensitivity in
CFA-induced hind paw inflammation and collagen-induced arthritis
(10). Furthermore, E06, but not its isotype control IgM, reduced the
levels of low mass metabolization products of OxPAPC, like
lysophosphatidylcholine (LPC 16:0).

In order to nail down specific mediators interacting with E06,
TRPA1 and TRPV1 ligands were tested. In vitro, E06 prevented 4-
HNE, OxPAPC, AITC, but not capsaicin-induced calcium influx in
HEK-293 cells expressing recombinant TRPA1 and TRPV1.
Furthermore, E06 could also inhibit corresponding TRPA1 and
TRPV1 responses in dorsal root ganglion neurons. Mechanical
hypersensitivity induced by intraplantar OxPAPC, or irritants like
AITC or 4-HNE, was also prevented by local E06 application (15, 28).
This was not due to binding of 4-HNE itself, but rather the formation
of E06-reactive OxPLs after local irritant injection (15, 54).

Recently, in a series of very elegant experiments, the single-chain,
non-immunogenic variable fragment of E06 (E06-scFv) has been
expressed in transgenic mice. These experiments showed a striking
potential of E06 to ameliorate atherosclerosis, non-alcoholic
steatohepatitis, and high fat-induced bone loss (63–65). In
summary, E06 is an exciting tool to scavenge ROS-induced
downstream mediators and is a promising therapeutic for
inflammatory diseases and inflammatory pain.
D-4F, AN APOA-I MIMETIC PEPTIDE
SHOWS ANALGESIC POTENTIAL

OxPL are typically transported by apolipoproteins, which can
provide anti-atherogenic and anti-inflammatory properties. In
order to mimic this function, apolipoprotein A-I (ApoA-I)-
mimetic peptides have been developed. Especially the peptide D-
4F, a small peptide of 2.3 kDa, shows considerable anti-inflammatory
features in vitro and in animal models (66, 67). In addition, multiple
doses of oral D-4F lower the HDL inflammatory index in high-risk
coronary heart disease patients (68). D-4F has high affinity to OxPL –
actually several magnitudes higher than ApoA-I. Apo-mimetic
peptides, however, are not specific for OxPAPC: the binding
capacity of D-4F to PGCP, POVPC, PEIPC and 1-(palmitoyl)-2-
(5-keto-6-octene-dioyl) phosphatidylcholine (KOdiaA-PC) is
substantially higher than for PAPC or other non-oxidized lipids,
cholesterol, or oxidized lipids like 5(S)-hydroperoxy-5Z,8Z,10E,14Z-
eicosatetraenoic acid (HPETE). Hence, the peptide D-4F is a well-
suited tool to scavenge and neutralize free OxPL (67). As OxPL are
involved in many diseases (Figure 2) and due to the fact that D-4F
mimic a natural and commonmechanism, it was suggested that these
peptides could have a rather broad therapeutic potential. However,
albeit the basic concept is rather old, mimicking the beneficial role of
HDL/Apo-A1 or OxPL scavenging with mimetic peptides has not
reached the clinic yet.

D-4F blocks H2O2, 4-HNE, and OxPAPC, but not capsaicin- or
AITC-induced calcium influx in TRPA1- or TRPV1-expressing
HEK293 cells or dorsal root ganglion neurons (10, 14). Apart from
OxPL scavenging, other mechanisms of function are discussed for
D-4F. It may be that 4-HNE, a lipid peroxidation downstream
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product, is the functional target of D-4F. 4-HNE could possibly bind
to the lysine residues in D-4F and consecutively being inactivated
(14). Indeed, in a murine asthma model, 4-HNE production was
decreased after D-4F treatment. Alternatively, D-4F stimulates
cholesterol efflux from cellular membranes, a mechanism altering
lipid rafts and thereby nociceptors excitability (69, 70). Similar
mechanisms have been observed in experiments with the ApoA-I
binding protein which reduces lipid raft abundance via increased
removal of excess cholesterol, thereby preventing allodynia in
different preclinical models (71).

When D-4F is applied systemically, it inhibits capsaicin-,
OxPAPC- and 4-HNE-evoked hypersensitivity in rodents (14,
28). In these experiments, D-4F was more effective against
mechanical than thermal hypersensitivity. In preclinical models
of inflammation like collagen-induced arthritis and CFA-
induced hind paw inflammation, systemic D-4F reverses
mechanical and thermal hypersensitivity as paw edema (14, 28).

In summary, D-4F is an analgesic substance ameliorating
inflammatory pain. Whether it is beneficial in other painful
diseases like traumatic nerve injury or chemotherapy-induced
neuropathy needs further evaluation. Likewise, its exact
mechanisms of function other than OxPAPC scavenging, e.g.,
interference with cholesterol metabolism like ABC transporters,
and its potential in clinical trials have to be examined in the future.
CONCLUSION

This review highlights oxidized phospholipids as novel targets for the
treatment of acute and prolonged inflammatory pain. New
technological developments allow an in-depth classification of
oxidized lipids within the epilipidome and, thereby, the
identification of innovative biomarkers and druggable targets.
Detection of undiscovered compounds by oxidized lipidomics
provide new insights into pain-generating mechanisms. Research
shows that endogenous OxPL, generated under inflammatory
Frontiers in Endocrinology | www.frontiersin.org 776
conditions, activate well-studied pain pathways like the TRPA1
signaling cascade. Deciphering their modes of action improve the
development of pharmacological tools like the monoclonal antibody
E06 and the ApoA-1 mimetic peptide D-4F as promising new
therapeutic options. E06 antibodies as well as ApoA1 are
physiologically present in our body. This may point to the body’s
own potential to handle pain and give a better understanding of the
fundamental mechanisms of OxPL physiology. Insights might open
new gates for pain management by strengthening natural
mechanisms of pain resolution. Proven biological compatibility of
D-4F in humans opens the possibility of local or systemic application
of D-4F for patients with inflammatory pain, in the near future.

As our understanding of anti-OxPL therapy in pain has only
been tested in preclinical rodent models in a few studies, mostly
by a few research groups (10, 11, 14, 15, 29), a broad evaluation
of the OxPL biology and anti-OxPL therapy by the science
community is essentially needed.
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A huge diversification of phospholipids, forming the aqueous interfaces of all
biomembranes, cannot be accommodated within a simple concept of their role as
membrane building blocks. Indeed, a number of signaling functions of (phospho)lipid
molecules has been discovered. Among these signaling lipids, a particular group of
oxygenated polyunsaturated fatty acids (PUFA), so called lipid mediators, has been
thoroughly investigated over several decades. This group includes oxygenated
octadecanoids, eicosanoids, and docosanoids and includes several hundreds of
individual species. Oxygenation of PUFA can occur when they are esterified into major
classes of phospholipids. Initially, these events have been associated with non-specific
oxidative injury of biomembranes. An alternative concept is that these post-synthetically
oxidatively modified phospholipids and their adducts with proteins are a part of a redox
epiphospholipidome that represents a rich and versatile language for intra- and inter-cellular
communications. The redox epiphospholipidome may include hundreds of thousands of
individual molecular species acting as meaningful biological signals. This review describes
the signaling role of oxygenated phospholipids in programs of regulated cell death. Although
phospholipid peroxidation has been associated with almost all known cell death programs,
we chose to discuss enzymatic pathways activated during apoptosis and ferroptosis and
leading to peroxidation of two phospholipid classes, cardiolipins (CLs) and
phosphatidylethanolamines (PEs). This is based on the available LC-MS identification and
quantitative information on the respective peroxidation products of CLs and PEs. We
n.org February 2021 | Volume 11 | Article 628079179
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focused on molecular mechanisms through which two proteins, a mitochondrial
hemoprotein cytochrome c (cyt c), and non-heme Fe lipoxygenase (LOX), change their
catalytic properties to fulfill new functions of generating oxygenated CL and PE species.
Given the high selectivity and specificity of CL and PE peroxidation we argue that enzymatic
r eac t i ons ca ta l y zed by cy t c /CL comp lexes and 15- l i poxygenase /
phosphatidylethanolamine binding protein 1 (15LOX/PEBP1) complexes dominate, at
least during the initiation stage of peroxidation, in apoptosis and ferroptosis. We contrast
cell-autonomous nature of CLox signaling in apoptosis correlating with its anti-inflammatory
functions vs. non-cell-autonomous ferroptotic signaling facilitating pro-inflammatory (necro-
inflammatory) responses. Finally, we propose that small molecule mechanism-based
regulators of enzymatic phospholipid peroxidation may lead to highly specific anti-
apoptotic and anti-ferroptotic therapeutic modalities.
Keywords: regulated cell death, apoptosis, ferroptosis, phospholipid peroxidation, redox lipidomics, cytochrome c,
cardiolipin, lipoxygenase
The real reason for not committing suicide is because you always
know how swell life gets again after the hell is over.

Ernest Hemingway
If you’re going through hell, keep going. Winston Churchill
SIGNALING BY POLYUNSATURATED
LIPIDS: AUTOCRINE, PARACRINE, AND
ENDOCRINE TYPES

Billions of years of evolution created and optimized
mechanisms for efficient translation of genomic information
into thousands of finely tuned protein machines (1) and
perfected functional interactions between the proteins
through sophisticated multi-leveled signaling systems (2).
Lipids of biological membranes constitute a critical part of
this complicated signaling network (3). The metabolic
coordination requires that the flow of signaling information
proceeds with optimized levels of fidelity and speed.
Conservative estimates indicate that the number of proteins
in the human proteome is on the order of 105-106 (4, 5). Thus it
is not surprising that the diversity of signaling lipids
coordinating multiple protein-protein and lipid-protein
interactions within and between subcellular organelles, cells,
and tissues may be even greater resulting in the possible >106 of
individual molecular species in the lipidome. Engagement of
membrane phospholipids (PLs) in the signaling process occurs
via their biochemical modifications leading to the appearance
of small amounts of “unusual” PL molecules such as their
hydrolysis or peroxidation products (6). This review is focused
on oxidatively modified (phospho)lipids as the signaling
entities. Among them are well known lipid mediators
represented by oxygenated free polyunsaturated fatty acids
(PUFA) as well as oxygenated PUFA esterified into different
classes of membrane phospholipids (PLs). The latter group will
be the subject of the current review.
n.org 280
Cultural beliefs of successful societies have led to the common
opinion that suicidal elimination is not the necessary way to
resolve life conflicts that may encompass transient dark episodes
within an otherwise bright present and even more wonderful
future. This optimistic view has been expressed in many
statements by politicians, writers and other artistic celebrities
(including those by W. Churchill and E. Hemingway quoted
above). On the molecular level, however, the ruthlessness of life/
death elimination decisions is frequently a necessary attribute of
the high fidelity of cell populations and their adaptive
adjustments. The suicidal programs of cell death are genetically
pre-determined and deciphering their specific mechanisms
represents one of the emerging fields of cell biology. The lipid-
derived signals may act within a given cell (autocrine signaling),
affect cells within the surrounding neighborhood (paracrine
signaling) or act on remote targets using the circulatory system
for the transportation of death signals (endocrine signaling).
Currently, more than a dozen regulated death programs have been
identified in cells that accumulate excessive amounts of the (geno)
toxic materials and hence are recognized by the surveillance
machinery as irreparably damaged. It is believed, but not
proven, that peroxidation of polyunsaturated lipids (PUFA-
lipids) has been associated with the initiation and execution of
many, if not all, of these programs (7). In spite of these general
associations, neither the specific roles of peroxidized PLs in the
fulfillment of the programs nor their chemical identity have been
identified. Notable exceptions are apoptosis and ferroptosis, two
programs for which the progress in redox lipidomics has resulted
in the deciphering of death signals.
REDOX DEATH SIGNALS IN APOPTOSIS
AND FERROPTOSIS

The structural core of biological membranes is formed by the
bilayer of PLs—amphipathic molecules with long lipophilic
February 2021 | Volume 11 | Article 628079
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hydrocarbon chains and water-soluble polar heads. The
hydrophobic/hydrophilic balance of phospholipids dictates the
organization of the bilayer in which lipophilic chains interact
with each other while the polar head-groups are localized at
interface with the aqueous phase. In PLs, the chains represent
fatty acids covalently attached to two sites of the glycerol
backbone whereas the third position is occupied by phospho-
base that may be a non-charged zwitter-ion (when the negative
charge of the phosphate is compensated by a positive charge) or
carry a negative charge (when an extra negatively charged group
is present). Fatty acyls of PLs may have no double bonds
(saturated) or contain one (mono-unsaturated) or several
methylene-interrupted double bonds [polyunsaturated PLs
(PUFA-PL)]. While unsaturated PLs may be biosynthesized
both in anaerobic and aerobic conditions, the huge diversity of
PUFA-PLs is characteristic for different domains of aerobic
life (8).

One of the most popular concepts explaining the presence of
diversified PUFA-PLs in the lipid bilayer relates to their function
as a regulator of membrane fluidity necessary for the rapid
diffusion and conformational flexibility of membrane proteins
(9). In spite of its attractive simplicity, this concept does not
explain the huge molecular variety of PUFA-PLs. Indeed,
contemporary lipidomics detects 103–104 individual molecular
species of major classes of phospholipids in cells and tissues. This
is a conservative estimate of the species with differing masses.
Indeed, with the two acyls/PL molecule and a menu of >30
commonly found fatty acids the number of possible isomeric
species of “two-legged” PLs should be close to 103. However, for
“three-legged” tri-glycerides this estimate would yield 104 species
and for “four-legged” mitochondrial cardiolipins (CL) – >105

molecular species.
One of the prominent features of PUFA-PLs is their

susceptibility to peroxidation via free radical mechanisms
(10). These mechanisms may be comprised of enzymatic
systems for the activation of oxygen and/or lipid substrates or
occur non-enzymatically (see below). As the general schema of
peroxidation includes abstraction of hydrogen from bis-allylic
positions, PLs with multiple (four-six) double-bonds, are
preferred substrates, particularly for non-enzymatic free
radical reactions (10, 11). The primary product of the
peroxidation process generates hydroperoxy-PLs (HOO-PLs).
These products are not stable and readily undergo secondary
decay reactions leading to a variety of electrophilic aldehydic-,
keto-, hydroxy-derivatives as well as cyclic compounds (10). In
terms of lipid diversification, this adds another order of
magn i tude to the poss ib l e number o f ind iv idua l
phospholipids, thus bringing it to 105 species. It should be
noted, however, that the measurable amounts of peroxidized
PLs in healthy cells and tissues is markedly lower than their
non-oxidized parent PLs (12). This is partly due to the fact that
only a fraction of PUFA-PLs are involved in peroxidation and also
to the high reactivity of the secondary electrophilic decay products
toward nucleophilic sites in proteins (13). As a result, the life-time
of these products in “free” form may be relatively short as they
form lipid-protein adducts. However, the levels of these products
Frontiers in Endocrinology | www.frontiersin.org 381
may increase many-fold in conditions associated with cell injury
and death. These reactive secondary intermediates of PUFA-PL
peroxidation represent the proximate entities affecting functions of
numerous proteins (14). Given that the formation of these adducts
is, in a way, a reaction of protein “lipidation” that may
dramatically change the distribution and functional
characteristics of the affected proteins, it has been hypothesized,
although not proven, that electrophilic products of PL
peroxidation and their adducts with specific proteins represent
the proximate “gateways” of cell’s demise in regulated cell
death programs.
TYPES OF REGULATED CELL DEATH:
INVOLVEMENT OF LIPID PEROXIDATION
AND POSSIBLE INVOLVEMENT OF
PL-OOH

Since the time of the first detailed description of regulated cell
death almost five decades ago, about a dozen different programs
have been identified (15). The best described programs include
apoptosis, necroptosis, pyroptosis, ferroptosis, entotic cell death,
netotic cell death, parthanatos, lysosome-dependent cell death,
autophagy-dependent cell death, alkaliptosis, and oxeiptosis (15).
The majority of them have been qualified as responses to
different types of stresses causing irreversible changes not only
to one particular cell but also representing a high-risk threat to
the entire community of surrounding cells. Among the different
causative factors, oxidative stress has been universally identified
as one of the leading mechanisms engaged early at the initiation
or later during the execution stages of the death programs (15)
(Table 1).

Given the vague definition of what exactly “oxidative stress”
means, attempts have been made to connect the death programs
with specific pathways and manifestations of the aberrant redox
metabolism. Due to the high sensitivity of PUFA-PL to oxidative
modifications, lipid peroxidation (LPO) has been considered as
one of the common denominators of programmed cell death (57,
58). However, the specific role and mechanisms of LPO in the
pathways leading to cell demise remain poorly defined. This is
due, to a large extent, to difficulties in the analysis of highly
diversified and very low abundance LPO products (12). These
technological problems were resolved with the advent of high-
resolution liquid-chromatography-mass spectrometry (LC-MS)
based redox lipidomics (6, 12) with its capability to detect,
identify and quantitatively characterize a variety of PL
oxidation products. While the application of this technology
may provide important information in any of the known death
pathways, so far the significant results have been obtained mostly
for two death programs—apoptosis and ferroptosis (16, 21,
34, 36).

Numerous studies of PL peroxidation in model chemical
and biochemical systems using different initiating agents
(e.g., azo-initiators of peroxyl radicals, Fe-ascorbate
dependent generators of HO• radicals) demonstrated that the
February 2021 | Volume 11 | Article 628079
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susceptibility to oxidative modification is largely defined by the
number of double bonds in the fatty acid residues (59). As a
result, PLs with hexa-, penta-, and tetra-enoyl residues are the
predominant peroxidation substrates as compared to doubly or
triply unsaturated PLs. Notably, the nature of the polar part of
the PL molecules was not influential as a factor determining
vulnerability to oxidation. In sharp contrast, redox lipidomics
studies of programmed death associated peroxidation has
determined that there is a high selectivity of the process
toward specific classes of PLs. Execution of the intrinsic
apoptotic program revealed a high selectivity toward
peroxidation of mitochondrial CLs whereby the species with
C18:2 represented the major substrates (16, 21). Notably, CL
molecular species containing more PUFA residues remained
non-oxidized. Moreover, in hetero-acylated CL species,
oxidation of C18:2 residues occurred preferentially even when
C22:5 and C22:6 residues remained non-oxidized within the
same molecule (Figure 1).

Ferroptosis-associated LPO was also highly selective toward a
specific PL class—PUFA-containing phosphatidylethanolamines
(PE) (34). Interestingly, two types of PE-molecular species with
C20:4 and C22:4 displayed the highest sensitivity toward
Frontiers in Endocrinology | www.frontiersin.org 482
oxidative modification. In terms of positional specificity, the
15th position in C20:4 and the 17th position in C22:4 were the
preferred oxidation sites. Importantly, these PE oxidation
products exerted predictive features of ferroptosis biomarkers
and displayed pro-ferroptotic activity upon co-incubations with
target cells (34). A recent study demonstrated that not only di-
acyl-phospholipids but also PUFA-plasmalogens (ether-
phospholipids), synthesized in peroxisomes, underwent
peroxidation in ferroptosis (60). Downregulation of ether
phospholipids was associated with the increased resistance of
cancer (carcinoma) cells to ferroptosis in vivo.

Selectivity and specificity of the PL peroxidation process in
two different cases of apoptotic and ferroptotic (non-apoptotic)
regulated cell death suggest a possible involvement of enzymatic
catalytic mechanisms. Indeed, two different metalloproteins, a
hemoprotein cytochrome c (cyt c) (Figure 2A) and a non-heme
Fe-protein, 15-lipoxygenase (15LOX) (Figure 2B), have been
identified as the highly likely enzymes initiating the peroxidation
process in apoptosis and ferroptosis, respectively (16, 34). In
both cases, the selectivity of the enzymatic peroxidation
mechanisms is achieved due to the formation of lipid-protein
or protein-protein complexes as described below.
TABLE 1 | Involvement of lipid peroxidation in the execution of regulated cell death programs.

Death type Target Stimuli Lipid peroxidation

Implicated but not
evidenced by LC/MS

(References)

Implicated with evidence by LC/MS (References)

Apoptosis Intrinsic
pathway

STS; rotenone; ActD; Hyperoxia;
NAO/light; g-IR; TBI; stretch

Kagan et al. (16); Tyurin et al. (17); Tyurina et al. (18, 19);
Huang et al. (20); Mao et al. (21); Belikova et al. (22); Bayir
et al. (23); Ji et al. (24)

Extrinsic
pathway

Anti-Fas Jiang et al. (25); Serinkan et al.
(26) (evidence by HPLC)

Wiernicki et al. (7)

Ferroptosis System X−
c Erastin; IKE; sorafenib Dixon et al. (27); Yang et al. (28);

Larraufie et al. (29); Louandre
et al. (30)

Gaschler et al. (31)

GPX4 RSL3; with aferin A; FINO2; ML162;
Smoke/COPD; BAY-87-2243

Dixon et al. (27); Yang et al. (32);
Basit et al. (33)

Kagan et al. (34); Doll et al. (35); Wenzel et al. (36); Kapralov
et al. (37); Dar et al. (38); Hassannia et al. (39); Gaschler et al.
(31); Yoshida et al. (40); Wiernicki et al. (7)

Glutamate-
cysteine
ligase

BSO Yang et al. (32)

Glutathione-
S-transferase

Artesunate Eling et al. (41); Lisewski et al. (42)

FSP1 FSP1ko/RSL3 Bersuker et al. (43); Doll et al. (44)
iNOS iNOS kd/RSL3 Kapralov et al. (37)
Iron oxidation FINO2 Gaschler et al. (31)
Other TBI; P. aeruginosa; viral infection;

AKI;
heart transplants

Matsushita et al. (45) Kenny et al. (46); Wenzel et al. (36); Dar et al. (38); Li et al. (47)

Necroptosis GSH
depletion

Hemin; gallic acid Laird et al. (48); Chung et al. (49)
Myocardial infarction (RIP3) Ghardashi Afousi et al. (50)

GPX4 GPX4 ko Canli et al. (51)
TNF-a Wiernicki et al. (7)

Pyroptosis Caspase-11 Gasdermin-D Kang et al. (52); Chen et al. (53)
Other HIRI; CI; LPS/ATP; sevoflurane Zhang et al. (54); Liang et al. (55);

Li et al. (56)
Wiernicki et al. (7)
g-Irradiation, g-IR; staurosporine, STS; actinomycin D, ActD; nonyl-acridine orange, NAO; acute kidney injury, AKI; buthionine sulfoximine, BSO; imidazole ketone erastin, IKE; traumatic
brain injury, TBI; hepatic ischemia-reperfusion injury, HIRI; cerebral ischemia, CI.
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ENZYMATIC AND NON-ENZYMATIC LIPID
PEROXIDATION MECHANISMS;
CATALYTIC ROLE OF IRON

PUFA residues of lipids are believed to be highly susceptible to
oxidative modification by oxygen (10, 64). This process, LPO,
Frontiers in Endocrinology | www.frontiersin.org 583
proceeds via the formation of radical intermediates. The rate
limiting stage is the initial formation of radicals that can further
propagate the overall process. Therefore, the peroxidation rate is
very low in the absence of catalysts. While there are many
different radical initiators—physical factors like irradiation or
chemical agents, like compounds spontaneously decomposing to
A B
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FIGURE 2 | Structural models of phospholipid peroxidizing Fe-proteins. (A) Structure of cytochrome c (pdb ID 1hrc) (61) shown in ribbon diagram, with the heme
molecule (in cyan) and the Cyt C residues (H18 and M80) highlighted in space filling representation. The inset shows the coordination of the Heme molecule by the
Cyt C residues, including H18 and M80. (B) Structure of 15LOX Ipdb ID 4nre) (62), also shown in ribbon diagram, with the arachidonic mimic (AA) shown in
magenta, stick representation. The catalytic site region is shown in detain in the inset. The b-barrel, which interfaces with the membrane, is labelled. (C) Structure of
cyt c-cardiolipin complex. The residue M80 which coordinates the heme has moved away from the Heme molecule, leading to an unfolded cyt c conformation. This
unfolded conformation, which was obtained from an earlier study (16) was used to dock a cardiolipin molecule (shown in pink). (D) Structure of 15LOX/PEBP1-
HpETE-PE complex. The model of the complex, proposed by us (36) is shown in ribbon diagram. The PEBP1 (shown in cyan) is docked onto the 15LOX, and this
complex model, was used to dock HpETE-PE molecule (shown in pink). The ligand docking for both cyt c and 15LOX/PEBP1 complex was performed by SMINA
(63). The insets in (C, D) depict the interfacing of peroxidase complex and membrane bilayer. The models for the protein-membrane complexes were built using the
Orientation of Proteins in Membrane webserver (https://opm.phar.umich.edu/ppm_server) which calculates translational and rotational position of membranes and
proteins from their three-dimensional structures.
FIGURE 1 | Preferential peroxidation of C18:2 residue in hetero-acylated cardiolipin (CL) molecule in apoptosis.
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form carbon-centered radicals—the most important biological
peroxidation catalysts are transition metals, particularly iron (Fe)
(65). Therefore, the levels of redox active free Fe-ions or “loosely
bound” Fe in low molecular weight complexes are strictly
controlled in cells and biological fluids (Figure 3A). Catalytic
Fe of active enzymes is regulated by the protein structure. Fe
required for these catalytic functions is delivered to the respective
protein clients—Fe-sulfur proteins, hemoproteins, and non-
heme Fe-proteins—by several specialized protein chaperons
(66). Quantitatively, hemoproteins represent the most abundant
endogenous source of Fe and catabolic degradation of these
proteins accompanied by the release of ferrous ions (Fe2+) is
operated by heme oxygenases (67). Specialized ferroxidases
convert (Fe2+) to (Fe3+)—the form suitable for the intracellular
iron storage by ferritin (Figure 3).

Normally regulated Fe-catalyzed reactions are enzymatic.
However, under special conditions such as Fe-overload,
excessive catabolism of Fe-proteins or diseases, aberrant non-
enzymatic Fe-driven lipid peroxidation by poorly controlled low
molecular Fe-complexes may occur, becoming excessive or even
overwhelming (68). These reactions commonly proceed via the
production of reactive oxygen species (ROS), particularly HO•
radicals, generated in Fenton/Haber-Weiss reactions or via the
formation of lipid radicals generated during decomposition of
organic hydro peroxides, including lipid hydroperoxides (69)
(Figure 3B). As cell death programs are based on regulated
mechanisms, the associated LPO is initiated by a selective and
specific enzymatic process (Figures 3C, D). Interestingly, the
enzymes involved in the production of lipid death signals via
peroxidation mechanisms during apoptosis and ferroptosis—cyt
c and 15LOX—usually are involved in different biological
Frontiers in Endocrinology | www.frontiersin.org 684
functions. For example, cyt c is shuttling electrons between
mitochondrial respiratory complexes III and IV in the
intermembrane space (70). 15LOX is a dioxygenase catalyzing
the formation of oxygenated lipid mediators from free PUFA,
particularly free arachidonic acid [AA or eicosatetraenoic (ETE)
acid 20:4] (71). Upon the initiation of the cell death program,
these enzymes change their properties/functions and switch their
activity to the peroxidation of PLs. The transformation of
enzymatic activity occurs due to protein interaction with other
molecules—a mitochondria-specific PL molecule, CL, in the case
of cyt c (Figure 2C), and the protein PEBP1 in the case of 15LOX
(Figure 2D).

Cyt c-Catalyzed Peroxidation
of Cardiolipins
Cyt c is a small mitochondrial intermembrane space hemoprotein
(MW about 12.5 kD, 104 amino acids) (72). As a transporter of
electrons, cyt c utilizes hexa-coordinated heme whereby the Fe has
four coordination bonds with a protoporphyrin IX and His18 and
Met80 at the proximal and distal sides as the fifth and sixth iron
ligands (73). Participation in the execution of the apoptotic death
program is a recently established important function of cyt c.
There are two pro-apoptotic processes that depend on cyt c: i)
apoptosome formation and ii) CL peroxidation (16, 74, 75). These
two seemingly unrelated roles of cyt c may, in fact, be closely
linked to each other. Cyt c that is released from mitochondria into
the cytosol interacts with the apoptotic protease-activating factor 1
(Apaf-1) to form the apoptosome, thus initiating the activation of
caspase-9 and downstream caspases (75). The outer mitochondrial
membrane (OMM) is permeable to small molecules—co-factors,
small peptides, etc.—that get readily released through the pores
FIGURE 3 | Metabolic redox pathways of iron in cells. (A) Tight control of redox-active iron in cells prevents its participation in peroxidation reactions; (B) redox activity of
low molecular iron complexes (labile iron); (C) oxidation of CL in cyt c/CL complexes; (D) formation of lipid radicals by the catalytic site of 15LOX/PEBP1 complex.
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with the size limit of ~2nm in diameter (76). As the average
diameter of the cyt c globule is ~4nm, it is normally retained
within the intermembrane space (77). It has been hypothesized
that products of CL peroxidation may accumulate in the OMM
where they can get oxidized and became involved in the
production of pores with diameters >4nm that will facilitate the
release of cyt c from the intermembrane space into the cytosol.

The accumulation of irreparable defects in mitochondria
triggers their elimination through a special type of autophagy,
mitophagy (78). This is a multistage process in which the
signaling by a mitochondria-specific CL plays a prominent
role. Normally confined almost exclusively to the matrix leaflet
of the inner mitochondria membrane (IMM), CL undergoes
several trans-membrane migrations to the mitochondrial surface
(the outer leaflet of the OMM) (79, 80). Externalized CL binds
microtubule-associated proteins 1A/1B light chain 3B (LC3)
(79), one of the central executioners of autophagy. Timely and
successful elimination of damaged organelles via activation of
mitophagy is a pro-survival mechanism (81). However,
incomplete autophageal digestion of injured mitochondria with
dysregulated electron transport represents a peril to the entire
community of surrounding cells. As a result, the entire cell
undergoes apoptotic elimination.

The transition from the pro-survival mitophagic to the
apoptotic death program relies on a new interaction of cyt c
with CL (which becomes possible during CL migration from
IMM to OMM). Noteworthy, formation of the cyt c/CL complex
causes a strong negative shift of its redox potential (by ~400 mV)
such that cyt c can no longer act as an electron acceptor from
complex III, and function as an electron carrier in the respiratory
chain (82). This results in the elevated production of superoxide
anion-radicals and their dismutation to H2O2. The latter can be
used as a source of oxidizing equivalents for a peroxidase
reaction, provided that an inadvertent peroxidase activity is
present in the microenvironment. The formation of cyt c/CL
complexes offers this opportunity.

Evidently both pools of CL facing the intermembrane space—
in the outer leaflet of the IMM and the inner leaflet of the OMM
—bind cyt c to form a peroxidase complex activated by the
available H2O2. Deprotonated CL phosphate groups can
electrostatically interact with eight positively charged lysine
residues of cyt c, particularly Lys72/73 (74). The electrostatic
binding is followed by strong hydrophobic interactions
between PL acyl chains and non-polar regions of the protein
(83). There are different views on the degree of the protein
conformational changes induced by CL. While some of the data
have been interpreted as the evidence for dramatic protein
unfolding and denaturation (“molten globule”), recent
multidimensional solid-state NMR results favors the model in
which only minimal structural rearrangements take place
whereby the hydrophilic milieu at the membrane interface
stabilizes a native-like fold, but also leads to localized flexibility
at the membrane-interacting protein face (84). One way or
another, CL induced changes weaken and/or disrupt the
coordination bond between heme-iron and Met80 (Figure 2C).
Other amino acids can interact with the distal position of heme
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iron but they are not strong ligands and can be replaced by small
molecules, including H2O2 and FA-OOH (73). Overall, the
catalytic site of the cyt c/CL complex adopts peroxidase activity
triggered by the available H2O2 or HOO-PUFA. If the iron in the
cyt c/CL is in ferrous state, H2O2 oxidizes it into ferric form thus
completing the conversion of cyt c/CL into a peroxidase. H2O2

leads to the formation of highly reactive oxoferryl porphyrin-p-
cationic radical (compound I), which can oxidize various
substrates (Figure 3C). In the case of pseudo-peroxidases, like
cyt c/CL, compound I oxidizes protein amino acids to form a
protein-immobilized radical (most likely tyrosyl) thus designating
the emergence of compound II. Tyr67 is located in closest
proximity to the heme group of cyt c and mediates oxidation of
CL (Figure 2C) (85). The lower “pro-oxidant” capacity of
compound II suggests that it is an unlikely candidate to further
oxidize protein amino acids but it can readily abstract bis-allylic
hydrogens from PUFA-CL (86). While other negatively charged
lipids, like PIPs, PG, and PS, can also activate cyt c into a
peroxidase, nevertheless the effectiveness of these alternative
peroxidase complexes of cyt c with PLs is markedly lower than
that of cyt c/CL complexes. Notably, the most abundant non-
charged PLs of mitochondria, PC and PE, neither form peroxidase
complexes with cyt c nor undergo peroxidation during apoptosis
(16). Lipid hydroperoxides are orders of magnitude more effective
in initiating CL peroxidation by cyt c/CL complexes than H2O2

(87). This indicates that accumulation of small amounts of HOO-
CL may strongly stimulate the peroxidation process. Indeed,
progressive acceleration of CL peroxidation in the presence of
CL-OOH has been experimentally confirmed (74). The described
role and specific features of CL peroxidation by cyt c/CL
complexes may inform the mechanism-based design of small
molecule anti-apoptotic regulators with therapeutic potential as
described below (88, 89).

15LOX-Catalyzed Peroxidation of
Phosphatidylethanolamines in Ferroptosis
The execution of ferroptosis includes the Fe-dependent
production and accumulation of ox-PUFA-PL (27, 90).
Theoretically, both an enzymatic mechanism as well as a
random free radical reaction may be engaged in this process. As
sn2-15-HpETE-PE has been identified as a selective and specific
product eliciting pro-ferroptotic activity, it is reasonable to assume
that an enzymatic mechanism should be, at least in part, enacted
in ferroptosis. Among several possible redox-catalyzing Fe-
proteins, 15LOX has been proposed as the likely candidate (34).
Mammalian LOXes are a family of non-heme iron containing
dioxygenases that effectively catalyze oxidation of one or more 1,4-
cis,cis-pentadiene segments of free PUFA. A typical U-shaped
PUFA binding channel is organized such that the oxidizable bis-
allylic carbon is juxtaposed to Fe. The LOX nomenclature—5LOX,
8LOX, 12LOX, 15LOX—is based on the ETE carbon position that
is oxidized by the enzyme’s Fe (91, 92). The highly organized
catalytic site contains Fe3+ with five coordination bonds occupied
by the protein’s amino acids and the sixth position interacting with
the hydroxide (in the native enzyme) or water (in the
intermediate) (Figure 3D). Fe3+-OH abstracts hydrogen from
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PUFA and yields a carbon-centered radical and Fe2+-OH2 (93).
Thus formed lipid radical (L•) interacts with molecular oxygen
(O2) delivered to the catalytic site through a special channel (94)
which controls the production of the peroxyl radical at the
catalytic site. The completion of the catalytic cycle is achieved
via the hydrogen transfer from Fe2+-OH2 to the peroxyl radical
resulting in the formation of the lipid hydroperoxide.

Normally, 15LOX effectively oxidizes free ETE as a preferred
substrate to generate 15-hydroperoxy-eicosatetraenoic acid
(15HpETE) (71). Among the members of the LOX family,
15LOX is uniquely organized to also catalyze peroxidation of
esterified PUFA, particularly membrane PLs (95). ETE-
phosphatidylethanolamines (ETE-PE) represent one of the
preferred substrates for 15LOX leading to the production of
15-HpETE-PE (96). The catalytic efficiency of 15LOX toward
ETE-PE is relatively low. However, its formation has dramatic
consequences as 15-HpETE-PE has been identified as a pro-
ferroptotic signal (34). Paradoxically, a number of phenolic
compounds and aromatic amines effectively prevent ferroptotic
death but are poor 15LOX inhibitors (97). It has been
hypothesized that 15LOX alone is not sufficient for the
production of pro-ferroptotic death signals but there may be
an additional factor modifying the enzymatic properties of
15LOX under ferroptotic conditions. Indeed, this factor has
been identified as a scaffold protein, PE-binding protein-1
(PEBP1) (36). PEBP1 was shown to form a complex with
15LOX in which allosteric changes in 15LOX permit the entry
and positioning of ETE-PE (Figure 4) in a way that the
enzymatic activity toward specific oxidation of the ETE-residue
increases two-fold (99). Participation of 15LOX/PEBP1 in the
generation of pro-ferroptotic PEox death signals was
demonstrated in a number of different types of cultured and
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primary cells as well as in vivo in airway epithelial cells in asthma,
kidney epithelial cells in renal failure, cortical and hippocampal
neurons in brain trauma (100), and in intestinal epithelial cells
after total body irradiation (101). Given the demonstrated necro-
inflammatory consequences of ferroptosis (102), the specific
features of 15LOX/PEBP1 complexes offer an exciting
opportunity for the design of ferroptosis-specific small
molecule regulators with profound implications for human
disease. It should be noted, however, that alternative enzymatic
mechanisms of peroxidation of PUFA-PE may be involved in
triggering ferroptosis. A recent study identified a NADPH-
dependent oxidoreductase (possibly with a partner isoform of
cytochrome P450), as an essential activator of pro-ferroptotic
phospholipid peroxidation in several types of cancer cells with
low levels of 15LOX expression (103). The sensitivity of cells to
pro-ferroptotic stimulation was decreased after downregulation
of the oxidoreductase but not of 15LOX. In contrast, in cells with
high levels of 15LOX expression (e.g., after stimulation of human
airways epithelial cells by inducers of Th2 responses), 15LOX KD
caused a strong suppression of ferroptosis (36).

Non-Enzymatic Lipid Peroxidation by
“Loosely Bound” Fe-Complexes
Under extreme circumstances where the strict control of Fe is
lost, Fe can display its redox activity mostly via participation in
Fenton/Haber-Weiss reactions leading to the formation of ROS.
The major biologically impactful event in these reactions is the
reductive splitting of H2O2 by Fe2+ to yield highly reactive
HO• radicals capable of initiating the oxidation process. H2O2

reacts poorly with most biological molecules due the high
activation energy barrier that must be overcome (104). The
rate constant of the reaction of H2O2 with free iron is low
A
B

FIGURE 4 | Allosteric modification of lipid binding in the 15LOX/PEBP1 complex. (A) Surface representation of 15LOX, viewed from top, showing the entrance to
the catalytic site, the residues of which are highlighted in blue (top panel). The opening of the entrance site is reduced in the 15LOX/PEBP1 complex (bottom panel,
right), compared to that in 15LOX alone (bottom panel, left). (B) The binding of sn1-18:0/sn2-20:4-PE onto 15LOX alone (red) and 15LOX/PEBP1 complex (green),
showing the position of the nearest carbon at the catalytic iron. In 15LOX alone, this carbon is C10, leading to peroxidation at C13, where is in the complex it is C13,
which leads to peroxidation at C15. These figures were adapted from (98).
February 2021 | Volume 11 | Article 628079

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kagan et al. Enzymatic Lipid Peroxidation in Cell Death
(< 102 M−1s−1), however, Fe-ligation may accelerate the reaction
by several orders of magnitude (up to 104 M−1s−1). In the context
of lipid peroxidation, HO• radicals avidly attack lipid molecules
to produce carbon-centered lipid radicals (69) which, in the
presence of O2, are converted into peroxyl radicals (LO2•). The
latter are much less reactive toward lipids and the abstraction of a
hydrogen atom from the oxidizable lipid molecules represents
the “most difficult” initiating event. The easiest “victims” of RO2•
are bis-allylic positions in PUFA—hence their number in PUFA
is the major factor defining the oxidizability of lipids.

Random free radical chemical reactions are driven by the
reactivity of the participating reagents—radicals and oxidation
substrates and enzyme-imposed structural factors which do not
limit the peroxidation process. Consequently, detection of
selectivity of the peroxidation that deviates from this principle
of oxidizability governed by the number of bis-allylic sites can be
viewed as a strong argument against the participation of a free
radical chemical reaction in the overall peroxidation process.
Importantly, lipid peroxidation occurring during apoptosis and
ferroptosis is highly specific not only with regards to classes of
PLs—CL and PE. Indeed, linoleoyl (C18:2)-CLs represent the
major substrates of pro-apoptotic peroxidation in mitochondria.
Further, arachidonoyl (C20:4)- and adrenoyl (C22:4)-PE species,
rather than more polyunsaturated docosapentaenoyl- and
docosahexanoyl-PE species, are predominantly peroxidized in
cells undergoing ferroptosis.

Another important difference between enzymatic and non-
enzymatic LPO is that the latter is mostly driven by ferrous iron
—in contrast to cyt c or 15LOX-dependent processes where
ferric iron is the major catalytic species. In contrast, ferrous iron
is markedly more effective in decomposing lipid hydroperoxides,
the reaction leading to the production of secondary oxidatively
truncated electrophilic products of LPO that can modify proteins
and change their structure and functions. This is yet another
controversy in understanding the leading role of Fe-dependent
enzymatic vs. non-enzymatic reactions of LPO.
PRIMARY AND SECONDARY LIPID
PEROXIDATION PRODUCTS

LPO—enzymatic or non-enzymatic—has a radical-mediated
reaction in its nature. Radical intermediates are very short
lived and cannot be directly detected by conventional high
resolution analytical protocols such as LC-MS. The primary
molecular products of LPO are hydroperoxides and they
represent the first opportunity for the LC-MS based
quantitat ive characterization. The analysis of l ipid
hydroperoxides has become a formidable task for several
reasons. First, their chemical and metabolic instability and
thermolabile nature most often results in the formation of
secondary products, some of which are susceptible to
degradation. Second, the sheer number of lipid signaling
molecules is staggering which translates directly into a plethora
of potential LPO products that, in many circumstances, occur at
very low levels. Finally, while lipid hydroperoxides are the initial/
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primary products of lipid oxidation, secondary products such as
aldehyde, ketone, hydroxy, and epoxide products add to the
heterogeneity and complexity of the signaling language. Thus,
this rich signaling language should include not only full-length
peroxidation products, but also truncated PLs, cyclized PLs as
well as fragments of oxidized fatty acyl chains resulting from
secondary reactions of lipid hydroperoxides (34, 105).

Lipid hydroperoxides are present in very low steady-state
concentrations and are unstable due to their cleavage to yield,
dependent on the reducing or oxidizing environment, new
alkoxyl- or peroxyl- radicals, which readily decompose into
secondary products (34). Indeed, many studies have focused
on small reactive lipid fragments, such as malondialdehyde, 4-
hydroxynonenal, etc. that can act as secondary downstream
reactive products in a variety of cell death mechanisms and
can covalently modify proteins [3]. However, this will depend on
whether the reactive group (a reactive aldehyde for example)
resides with the “leaving” short lipid fragment or remains with
the truncated parent PL. Either of these two groups of reactive
products can potentially react with nucleophilic amino acids,
such as histidine, cysteine, and lysine that reside in cellular
proteins. It has been well established that the process of PL
peroxidation generates electrophilic species that are able to
modify proteins and change their structure, activity and
function (106). As PEs are preferentially peroxidized during
ferroptotic death, it is likely that the truncated reactive parent
PL is necessary for driving the downstream effects of ferroptosis
(Figure 5). Indeed, small reactive lipid fragments can be formed
from any polyunsaturated (phospho)lipid class, hence will not be
specific for ferroptosis. By forming conjugates with a protein,
lipidation by truncated reactive parent PLs will undoubtedly
change the hydrophobic-hydrophilic balance, likely changing the
distribution of the proteins into membranes (107–109) where
they can form dreadful oligomeric pores.

Peroxidation reactions catalyzed by cyt c/CL complexes yield
a highly diversified set of oxidized CL species with hydroperoxy-,
hydroxy-, epoxy-, and oxo-functionalities (110). These CL
peroxidation products are similar to the CLox signals detected
in cells during execution of the intrinsic mitochondria-mediated
apoptotic program triggered in cells by actinomycin D (16),
staurosporine (17), and ionizing radiation (22, 111). Given that
oxidizable PUFA-CLs are found exclusively in mitochondria, it is
not surprising that oxidatively modified CL species, particularly
mono-oxygenated C18:2-containing CLs, have been associated
with the execution of the apoptotic death program (21). It should
be noted, however, that a variety of CLox species, including
hydroperoxy-, epoxy-, and oxo-CLs are detectable in cells and
tissues in vitro and in vivo. For instance, CLox containing
hydroxy-, epoxy-, oxo-, and hydroperoxy-functionalities have
been detected in the small intestine of mice exposed to total body
irradiation (110, 112, 113). Similarly, hydroxy- and
hydroperoxy-CL species were detected in the brain of mice
after traumatic injury (114). Notably, prevention of apoptosis
by a mitochondrial electron acceptor, XJB-125, was associated
with decreased levels of CLox in the peri-contusional zone of the
traumatized brain.
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It is possible that oxidatively truncated CLox species with
high electrophilic potential can be formed in mitochondria.
These products can readily attack nucleophilic sites in proteins
and form protein adducts that will affect mitochondrial function
and damage their integrity (115). Oxidatively truncated CL
species can be formed in cyt c/CL catalyzed reactions in vitro
(Figure 6) and were detected in vivo in the ileum of mice exposed
to total body irradiation (Figure 7). While it is possible that
truncated CLox products can modify a number of mitochondrial
proteins, including those involved in the execution of
mitochondria-dependent cell death programs (e.g., apoptosis),
this work has not been accomplished and represents a goal for
future investigations. The isolation and determination of the site of
lipidation on proteins directly participating in the execution of cell
death in apoptosis and ferroptosis is a formidable task. However,
lipidated proteins, and more importantly lipidated peptides
Frontiers in Endocrinology | www.frontiersin.org 1088
generated from protein digests, should impart a dominant
hydrophobic characteristic whereby the peptides should be
highly retained on reverse-phase solid supports. Adjusting and
modifying gradients for extremely hydrophobic species and/or
applying different chromatographic solid supports should aid in
the separation and identification of lipidated species.
INTRACELLULAR LOCALIZATION OF
LIPID PEROXIDATION CENTERS

Apoptosis
The execution of the intrinsic apoptotic program is initiated in
mitochondria as it requires the oxidation of CLs (117). Formation of
the peroxidase cyt c/CL complexes (16, 118) along with the H2O2-
producing interruption in electron transport causes accumulation of
FIGURE 5 | Oxidatively truncated electrophilic products formed from phosphatidylethanolamine (PE) and their conjugates with target proteins.
February 2021 | Volume 11 | Article 628079

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kagan et al. Enzymatic Lipid Peroxidation in Cell Death
CLox leading to the release of cyt c into the cytosol and apoptosome
formation (75). In the cytosol, the released cyt c can bind an anionic
phospholipid, phosphatidylserine (PS), located in the inner
(cytosolic) leaflet of the plasma membrane. This complex also
displays peroxidase activity that can trigger PS oxidation and
accumulation of oxidized PS (PSox) (119, 120). As a membrane-
disrupting agent, PSox can act as a “non-enzymatic scramblase”
leading to the appearance of both PS and PSoxmolecules on the cell
surface (120, 121). Both lipids serve as universal “eat-me” signals in
efferocytosis, whereby PSox is more efficiently recognized by
professional phagocytes (122–124). Thus, two separate cyt c-
dependent oxidation mechanisms utilizing CL and PS are
Frontiers in Endocrinology | www.frontiersin.org 1189
activated at different stages of apoptosis and generate signals with
two distinctive functions. CLox is involved in the intracellular
signaling at the initiation stage of apoptosis and leading to the
release of cyt c from mitochondria, whereas PSox is an important
part of inter-cellular communications regulating efferocytotic
clearance of apoptotic cells by professional phagocytes (80, 125).

Ferroptosis
Intracellular localization of LPO and participation of different
organelles in the generation of ferroptotic death signal remains
an important but still controversial issue (126, 127).
Fluorescence-based measurements using a reagent selectively
A B

FIGURE 7 | Peroxidized CLs, including oxidatively truncated species, are produced in the small intestine (ileum) of mice in vivo after total body irradiation (9.5 Gy)
(110, 116). Two truncated CL species, ONA/LA3-CL (A) and OA/LA2/ONA-CL (B), have been identified by MS2/MS3 fragmentation analysis (ONA, 9-oxo-nonanoic
acid; LA, linoleic acid; OA, oleic acid). As previously described (110, 112, 113, 116), the levels of peroxidized CL (including oxidatively truncated CL species
containing ONA) are elevated after irradiation. Insets: structural formulas of ONA/LA3-CL (A) and OA/LA/ONA-CL (B).
A B

FIGURE 6 | Enzymatic peroxidation of polyunsaturated CL by cyt c yields a variety of products (12, 110), including oxidatively truncated molecular species. Shown
are LC-MS results identifying the production CL molecular species containing 9-oxo-nanoic acid. (A) Profiles of tetralinoleyl cardiolipin (LA4-CL, upper panel) with m/z
1,447.9656 and 9-oxo-nanoyl (ONA)/LA3-CL with m/z 1,339.8342 (lower panel); (B) MS2 fragmentation pattern and structural formulae (inset) of molecular ion with
m/z 1,339.8342. MS2 analysis reveals the fragments with m/z 1,185.79, m/z 695.47, and 587.33 produced due to the loss of oxidatively truncated residue as well
as to di-linoleoyl-glycerol phosphatidate and diacylglycerol phosphatidate containing linoleic acid (LA) and its oxidatively truncated residue. Further MS2 fragmentation
of ion with m/z 587 yield ions with m/z 307 and m/z 415. The fragments corresponding to ONA (m/z 171) and LA (m/z 279) were detected as well. ONA, 9-oxo-
nonanoic acid; LA, linoleic acid.
February 2021 | Volume 11 | Article 628079

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Kagan et al. Enzymatic Lipid Peroxidation in Cell Death
reacting with lipid hydroperoxides, Liperfluo, indicate that the
endoplasmic reticulum (ER) is the major site of ferroptosis
initiation (127). Both 15LOX and low molecular weight Fe-
complexes are found in the ER compartment suggesting that
both enzymatic initiation and non-enzymatic cleavage of HOO-
PLs can take place in the ER (128, 129). The ER can also promote
ferroptotic peroxidation indirectly via induction of autophagy
driving the degradation of several important regulators of lipid
peroxidation such as ferritin, lipid droplets and glutathione
peroxidase 4 (GPX4) (130, 131). Given the likely engagement
of mitochondria in the ferroptotic peroxidation, it is possible that
mitochondria-associated ER membranes (MAMs) are the
immediate locales where the LPO initiating events
predominantly occur (132, 133).

Mitochondria are likely to be directly and/or indirectly
involved in pro-ferroptotic LPO. There are several lines of
evidence favoring the mitochondrial participation: i) GPX4 is
localized in the intermembrane space of mitochondria, whereas
15LOX is associated with the mitochondrial membrane (94, 134–
137), ii) a significant part (~40% of total phospholipids) of the
major LPO substrate, PUFA-PE, is synthesized and present in
this organelle (138), iii) they play a crucial role in cellular iron
homeostasis, iv) they act as the major source of pro-oxidant ROS
as well as a variety of molecular species of phospholipid
hydroperoxides, v) they undergo dramatic morphological
changes during ferroptosis (27). While strongly supportive,
these characteristics make mitochondria a plausible but not
penultimately proven universal participant of ferroptosis (139–
141). It has been shown that cells incapable of generating mito-
ROS due to depletion of mitochondrial DNA or with
dramatically lowered levels of mitochondria (eliminated by
mitophagy) did not demonstrate decreased sensitivity to
ferroptosis (31). A highly effective mitochondria-targeted and
hydrophobic radical scavenger, TPP-tagged MitoQ, was less
effective than its non-targeted derivative (142). However,
another mitochondria-targeted nitroxide, XJB-5-131,
suppressed ferroptosis better than non-targeted nitroxides (143).

As an integral part of cell catabolism, lysosomes can, under
some circumstances, indirectly participate in the ferroptotic
program via autophagy e.g., by digesting Fe-containing
proteins and releasing Fe used in pro-ferroptotic machinery
(144, 145). However, it appears that lysosomal LPO is not
critical for ferroptosis, as prevention of the accumulation of
ferroptosis inhibitor ferrostatin-1 (Fer-1) in lysosomes, caused a
stronger inhibition of ferroptosis (31). Evidently, the plasma
membrane may be a target for the ferroptotic program rather
than a part of its execution machinery and phospholipid
peroxidation products may participate in the late destructive
stages of the cell’s demise. In line with this, only minimal
amounts of Fer-1 were detectable in the plasma membrane
during execution of ferroptosis (146, 147).

Non-Cell Autonomous Features of Lipid
Signaling in Ferroptosis vs. Apoptosis
Preservation of plasma membrane integrity and formation of
apoptotic bodies which are engulfed and removed by phagocytes
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are typical hallmarks of apoptosis. This process prevents spillover
of cellular contents andmakes apoptosis a non-inflammatory, cell-
autonomous phenomenon. Opposite to apoptosis, ferroptotic cell
death is “spread,” in a synchronized way, suggesting a direct cell-
to-cell communication for the delivery of death signals (38, 148–
150). The nature of potential death signals was revealed by LC-MS
based redox lipidomics in a number of experiments, including
those with the induction of ferroptosis by exogenous pLoxA, and
included the oxidation of exogenous ETE-PE yielding 15-HpETE-
PEs. Results of these experiments demonstrated the synchronous
character of the spreading of cell death. The fluorescence of
Liperfluo interacting with 15-HpETE-PEs demonstrated
propagation of these products among the neighboring cells
suggesting that they can serve as a death signal initiating
ferroptosis (38). The non-cell autonomous nature of ferroptosis
may be associated with intercellular communications stimulating
immune and metabolic responses (38).
REGULATION OF LIPID PEROXIDATION
IN APOPTOSIS AND FERROPTOSIS AND
ITS SPECIFICITY

The oxidation of CL during apoptosis occurs very early during
the time when its molecular reactions leading to the initiation of
apoptosis remain located in a restricted space inside of
mitochondria whereby its inhibition provides an effective
target for preventing apoptosis. This suggestion was confirmed
by the experimental results demonstrating, that genetic depletion
of CL-synthase as well as deficiency of cyt c or mutation of its
Tyr67 residue result in an increased resistance of cells to
apoptosis (20, 151–153). Several low molecular weight
compounds preventing CL oxidation by inhibiting of
peroxidase activity of cyt c have been designed and tested,
including mitochondria-targeted electron scavengers and stable
nitroxides radicals (116, 154–156).

Regulation of LPO which play crucial roles in the development
of ferroptosis is a key approach in preventing ferroptotic cell death.
One of the most important defenders is glutathione peroxidase 4
(Gpx4), converting toxic PL hydroperoxides to non-toxic alcohols
by using GSH as the reducing substrate (142). Direct inactivation of
GPX4 by small molecular weight compounds interacting with
selenocysteine such as RSL3, ML162, ML210, FINO2 as well as
indirect inhibition by deprivation of GSH were effective in inducing
ferroptosis (28, 126, 157) (Table 1). One of the prerequisites for
ferroptosis is the presence of ETE-PE, the substrate for the
production of the death signal, HpETE-PE. Enzymes participating
in the synthesis of ETE-PE such as ACSL4 responsible for the
formation of CoA-derivatives of ETE and LPCAT3 catalyzing the
esterification of CoA-ETE into lyso-PE, act upstream of GPX4 and
are important ferroptosis regulators. Experimental data
demonstrated a direct correlation between their expression and
sensitivity to ferroptosis (34–36). GPX4 andACSL4 double-KO cells
have the ability to overcome the deadly effect of GPX4 deficiency
and do not undergo ferroptosis (35).
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Some cells contain additional enzymatic mechanisms such
as inducible nitric oxide synthase (iNOS)/NO• which can
interact with 15LOX and/or lipid radicals and neutralize
them (37). The anti-ferroptotic effect of NO• involves the
inhibition of 15-LOX-dependent oxidation of ETE-PE and
neutralization of HpETE-PE as well as secondary lipid
radicals formed during cleavage and oxidative truncation of
this molecule, thus preventing their toxic effects. Increased
expression of iNOS/NO• in M1 macrophages/microglia or
addition of NO• donors to the M2 macrophages not
expressing iNOS lead to their high resistance to ferroptosis.
Due to its ability to neutralize the formation of HpETE-PE,
iNOS can inhibit ferroptotic cell death acting upstream
of GPX4.

Nrf2/NFE2L2 transcription factor is activated as a feedback
loop to protect cells from LPO generated during ferroptosis and
it is one of the key players in the protection of cells from
ferroptosis. After dissociation from its complex with its
negative regulator Keap1, Nrf2 translocates to the nucleus
where it activates the transcription of target genes (158, 159).
NRF2 inhibits ferroptosis through the regulation of hundreds of
genes, including genes participating in the regulation of
glutathione, GPX4 expression, iron, mitochondrial function
and lipid metabolism (159, 160).

Unique Role of Thiols
Reduced glutathione (GSH), the most prevalent non-protein
thiol and the major intracellular antioxidant, plays an
important role in maintaining a tight control over the redox
status and cellular defense against LPO. However, the specific
mechanisms of action of GSH in apoptosis and ferroptosis are
different in spite of the fact that GSH depletion is a common
feature of both extrinsic and intrinsic apoptosis (161). GSH
depletion creates redox instability promoting the activation of
signaling pathways leading to the initiation of apoptosis. One of
the possible mechanisms activated by GSH depletion involves
the deterioration of mitochondrial function. It appears that
GSH deficiency promotes pro-apoptotic effects of other
inducers; by itself GSH depletion is not sufficient to initiate
apoptosis (162).

In ferroptosis, GSH is required as a substrate for proper
functioning of GPX4. A decline in the GSH contents leads to the
accumulation of pro-ferroptotic PUFA-PLox. The cystine/
glutamate antiporter (system xc−) represents the main route
for extracellular transport of cystine serving as an essential
precursor for the synthesis of GSH. The xc−/GSH/GPX4 axis is
the crucial controlling mechanism of ferroptosis and its
inhibitors (e.g., erastin, imidazole ketone erastin, sulfasalazine,
etc.) are classified as “class 1” ferroptosis-inducing compounds to
distinguish them from RSL3 and other direct inhibitors of GPX4
classified as “class 2” (163).

Thiol-Independent Regulation of
Lipid Signaling
A recently discovered protein FSP-1—formerly known as
mitochondrial flavoprotein AIFM2—was found to inhibit
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ferroptosis in a GPX4/GSH-independent way. Accordingly,
FSP1 knockout cells display a higher sensitivity to ferroptosis
inducers whereas overexpression of FSP1 correlates with a higher
resistance to ferroptosis in multiple tumor cell lines. The
mechanisms of FSP-1 anti-ferroptotic effects involve its ability
to serve as an oxidoreductase catalyzing the NAD(P)H-
dependent reduction of CoQ to ubiquinol (43, 44).

Similar to vitamin E, a lipophilic radical-trapping
antioxidant CoQ10 is a very effective inhibitor of ferroptosis
both in vitro and in vivo (164, 165). The redox biochemistry of
CoQ and vitamin E are intertwined: the more powerful
antioxidant, vitamin E (tocopherol), neutralizes lipid radicals
by donating an electron and can be regenerated back to its
reduced form by CoQ-OH (166–169). This recycling of vitamin
E is maintained by FSP1 that maintains control of the reduced
CoQ-OH. In addition to FSP-1, cells contain several
oxidoreductases capable of reducing CoQ and vitamin E,
hence be involved in the GSH/GPX4 independent inhibition
of ferroptosis. Additional work in this area will elucidate the
role of several oxidoreductases such as NAD(P)H: (quinone
acceptor) oxidoreductase 1 (NQO1) (170), cytochrome b5
reductase (CyB5R), in CoQ/vitamin E anti-ferroptotic
regulations (171).
MECHANISM-BASED REGULATORS OF
ENZYMATIC PHOSPHOLIPID
PEROXIDATION AS SPECIFIC ANTI-
APOPTOTIC AND ANTI-FERROPTOTIC
AGENTS

Contemporary understanding of the role, contribution and
mechanisms of PL peroxidation as drivers of apoptotic and
ferroptotic death programs, leads to the design of new classes
of specific small molecule inhibitors with a potential for their
application as therapeutic agents. To emphasize the importance
of the structural and functional organization of the enzymatic
complexes directly involved in the production of PL death
signals, we will re-iterate their relevant and most important
features in this section.

Anti-Apoptotic Regulators
Oxidation of mitochondrial CL by the cyt c/CL peroxidase
complex is an early and critical step in apoptosis signaling. CL
oxidation facilitates the release of cyt c from mitochondria to
the cytosol and participates in apoptosome formation. CL
depletion disrupts the function of various IMM enzymatic
complexes (80, 172). Regulating enzymatic CL oxidation is a
promising LPO-focused anti-apoptotic therapeutic strategy. CL
is mitochondria-specific and asymmetrically localized, being
overwhelmingly localized and enriched (≤25% of total PL) at
the IMM inner leaflet. To interact with intermembrane cyt c,
CL is first flipped to the IMM outer leaflet. The mechanisms of
the overall process leading to CL externalization remain
enigmatic. Several candidate proteins contribute to loss of CL
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asymmetry following injury—such as PL scramblase-3 (PLS3)
that facilitates transposition of CL from the inner-to-outer IMM
leaflets and other transporters implicated in IMM-to-OMM CL
transport [e.g., mitochondrial nucleoside diphosphate kinase
(NDPKD), adenine nucleotide translocator (ANT), uncoupling
proteins (uCP), creatine phosphokinase (CPK), and truncated-
BH3 interacting domain death agonist (t-Bid)] (173, 174).

Interaction between CL and cyt c is mediated by electrostatic
forces between positively charged lysines in cyt c and CL’s two
negative phosphate groups (74, 175). Binding of CL induces: 1)
distortion of cyt c’s heme-associated Trp59 and reduction in cyt
c’s hydrophobic core volume; 2) disruption of cyt c’s Met80-Fe
bond, lead to a mixture of penta-coordinated and His33/His26
hexa-coordinated heme (176); 3) a decreased Fe(II)/Fe(III)
couple redox potential (~400 mV more negative than native
cyt c) abolishing its electron shuttling activity while gaining
peroxidase activity (177, 178); and 4) opening of cyt c’s heme
crevice enabling substrate access to the newly formed
peroxidase active site (153, 179). The newly formed cyt c/CL
peroxidase substrate specificity leans toward organic peroxides,
like CLox. However, given the complex’s proximity to
mitochondrial H2O2 sources (ETC complexes and TCA
dehydrogenase) and electrostatic affinity for unoxidized CL,
the primary substrate of the cyt c/CL complex is CLox
(180, 181). Liberation of CL’s oxidized acyl chains through
the action of phospholipases (e.g., iPLA2g) yields a suite of
immune activating signaling molecules—such as hydroxy-
octadecadienoic acids (HODEs), hydroperoxyoctadecadienoic
acids (HpODEs), and hydroxy-eicosatetraenoic acids (HETEs)
(182, 183).
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Small molecule therapies targeting CL peroxidation hold
promise as a specific anti-apoptotic interventions. However, the
administration of non-targeted global antioxidants (e.g., vitamin
E, CoQ10, or nitroxyl radicals) proved ineffective at improving
survival and CLox-associated apoptosis in acute injury models.
Poor localization of the therapeutic compounds to the pathogenic
target sites, low activity with the target substrate, and/or
deleterious off-target effects on ROS signaling may have led to
this failure (184). These limitations may all be overcome, to
varying degrees, by specifically targeting and enriching
antioxidant and electron scavengers, like nitroxide, to the IMM.
XJB-5-131 and JP4-039 are comprised of a hemigramicidin (HS)
peptide conjugated to TEMPO (114). These compounds attenuate
lesion volume and improve behavioral deficits following
experimental brain injury. Mechanistically, XJB-5-131 serves as
an electron scavengers, preventing O·−

2 and H2O2 formation and
limiting fuel for the cyt c/CL peroxidase. Alternatively,
mitochondrial-targeted imidazole-conjugated fatty acids (TPP-
ISA, TPP-IOA) coordinate the hepta-coordinated form of the
cyt c/CL complex, impeding CL access and oxidation (Figure 8)
(80). Therapies may also promote CL lipidome remodeling into a
less oxidizable, mono-unsaturated form using mitochondria
targeted oleic or stearic acid derivatives (185). While perhaps
less viable for application in acute injury, this remodeling
approach has shown potential in chronic neurodegenerative
disease models (114). Development of new mitochondria-
targeted molecules that suppress CL peroxidation, as well as the
optimization of the pharmacodynamic/pharmacokinetic
properties of existing ones may lead to promising ant-apoptotic
therapeutic modalities.
FIGURE 8 | Radiation protection and mitigation by TPP-IOA and TPP-ISA. C57BL/6NTac female mice were exposed to total body irradiation to a dose of 9.25 Gy
using a cesium source (n = 31–35 mice per group). The mice were irradiated and injected i.p. with TPP-IOA or TPP-ISA (5 mg per kg body weight in 100 ml of water
containing 25% ethanol) 10 min after irradiation. P < 0.0001 (a two-sided log-rank test)—TPP-IOA or TPP-ISA injected and exposed to total body irradiation mice vs.
mice exposed to total body irradiation only. These figure was adapted from (116).
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Anti-Ferroptotic Regulators
Most anti-ferroptosis strategies target LPO in one way or another
—whether they promote cellular lipidome remodeling into a less
oxidizable form, inhibit LOXs, or serve as lipophilic radical
trapping agents. As indicated above, many of the ferroptotic
inhibitors exhibit both LOX inhibition and radical trapping
capacity, although to varying degrees (186, 187). The lack of
appropriate analytical tools hindered the understanding of the
precise mechanism of these molecules. With regards to the LOX
inhibitors, their anti-ferroptotic effectiveness is often higher than
the LOX inhibitory activity (97). Notably, the EC50 values for LOX
inhibition have been calculated exclusively based on the
suppression of free HpETE production by LOX alone. The rate
of the HpETE production by 15LOX is many-fold higher than that
of HpETE-PE. Because the latter, but not free HpETE, act as pro-
ferroptotic signals, the meaning of these estimates in the context of
ferroptosis is dubious (34). Assuming that the 15LOX/PEBP1
complex is the generator of pro-ferroptotic HpETE-PE signals (36,
188), assessments of small molecule radical scavengers have to be
performed in this system. A recent study conducted with Fer-1,
known to act as good radical scavenger, demonstrated that the
EC50 value for Fer-1 in inhibiting the HpETE-PE production by
the 15LOX/PEBP1 complex is considerably lower than its effective
cytoprotective concentration in cells triggered to undergo
ferroptosis (98). Moreover, the Fer-1-driven ferroptosis
suppression was mainly realized through its enzymatic
inhibitory capacity (98). It should be noted that the radical
trapping reagents could have off-target effects that may decrease
the (phospho)lipid peroxide load of the cellular system. These
effects may be helpful to mitigate diseases involving multimodal
mechanisms of cell death as exemplified by traumatic brain injury
and inflammatory disease triggered by total body gamma-
irradiation (36, 46, 189). At the same time, highly specific
inhibitors could be beneficial for diseases in which ferroptosis is
the predominant pathogenic mechanism.
CONCLUDING REMARKS

PLs are the major building blocks of the membrane bilayer and
their structural role is indispensable and fundamental to
compartmentalization and interfacing of thousands of processes
in cells and their organelles. In this capacity, macroscopic
characteristics of the PL assembles such as fluidity, flexibility,
lateral and trans-membrane diffusion are essential for the function
of membranes as interactive barriers. Interconnected with this is
the signaling by membrane phospholipids that is associated with
their post-synthetic modifications. Most commonly this occurs via
oxidative transformations of polyunsaturated PL resulting in the
production of a huge variety of new molecular species of lipids,
integrated into a new concept of the epilipidome. The epilipidome
includes not only oxidatively modified lipids but also a huge
variety of their adducts with proteins thus merging with the epi-
proteome, post-translationally modified proteins. Signaling by
individual lipids and lipoprotein adducts comprising the
epilipidome/epiproteome is broadly employed in almost each of
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the myriads of life-defining activities of cells and cell communities.
This type of signaling is also essential for coordination of regulated
cell death programs. Although these programs may be viewed as
suicidal, their strict control and harmonized execution defines the
borderline between health and disease. Therefore, deciphering the
signaling phospholipid language of these programs is one of
the central areas of research not only in cell biology but also in
many fields of biomedicine.

While lipid peroxidation has been attributed to essentially all
known death programs, its specific mechanisms and role have
been clearly defined for only two of them—apoptosis and
ferroptosis. Formation of free radical intermediates in the
course of LPO occurs both during regulated enzymatic and
random non-enzymatic processes. As a result of this, a broad
spectrum of agents of different classes with high hydrogen/
electron-donating capacities, particularly phenolic compounds
and aromatic amines, may be effective in blocking the LPO
component of death programs. This has created an optimistic
view that many of these compounds may lead to “anti-suicidal”
cell-based therapies. The indiscriminative nature of this strategy
—likely affecting multiple vital biochemical reactions proceeding
via free radical intermediates—may be associated with low
effectiveness and serious side effects. Free radical scavengers/
sacrificial antioxidants/chain-breaking antioxidants—have been
designed and developed and ultimately tested in numerous
clinical trials in more than three dozens of diseases.
Disappointingly, the results of these were uniformly negative.
This strategic mistake in searches for a “magic antioxidant
bullet” should be avoided in the design of new anti-apoptotic
and anti-ferroptotic therapeutic agents—the lesson has to be
learnt. Future generations of small molecule regulators of
regulated cell death program therapies must consider their
selective and specific mechanisms, hence, to be precise and
highly discriminative. In line with this, distinctive inhibitors/
regulators have to be developed for controlling individual cell
death programs—as has been discussed above.
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Endogenous oxidized phospholipids are produced during tissue stress and are
responsible for sustaining inflammatory responses in immune as well as non-immune
cells. Their local and systemic production and accumulation is associated with the etiology
and progression of several inflammatory diseases, but the molecular mechanisms that
underlie the biological activities of these oxidized phospholipids remain elusive. Increasing
evidence highlights the ability of these stress mediators to modulate cellular metabolism
and pro-inflammatory signaling in phagocytes, such as macrophages and dendritic cells,
and to alter the activation and polarization of these cells. Because these immune cells
serve a key role in maintaining tissue homeostasis and organ function, understanding how
endogenous oxidized lipids reshape phagocyte biology and function is vital for designing
clinical tools and interventions for preventing, slowing down, or resolving chronic
inflammatory disorders that are driven by phagocyte dysfunction. Here, we discuss the
metabolic and signaling processes elicited by endogenous oxidized lipids and outline new
hypotheses and models to elucidate the impact of these lipids on phagocytes
and inflammation.

Keywords: oxidized phospholipids, oxPAPC, inflammation, immunometabolism, inflammasome, atherosclerosis,
lung, COVID-19
INTRODUCTION

Immune cells are strategically distributed in the body and react rapidly to internal and external cues,
thereby controlling tissue homeostasis. In particular, phagocytes such as macrophages play a key
role not only against pathogen invasions, but also in organ function. Macrophages regulate
remodeling and maturation of synapses during brain development (1), as well as bone formation
(2), electrical conduction in cardiomyocytes (3), gastrointestinal motility (4) and insulin sensitivity
(5), among others. Thus, perturbations in the biology of these cells, or in the quality of their
responses, have a profound impact on the etiology and development of several pathologies.
Classically, phagocytes respond to stress stimuli, which trigger inflammatory programs
and eliminate the source of stress, and/or support adaptation mechanisms. The persistence and
accumulation of stress signals may lead to the exacerbation and persistence of inflammation, and
thus to tissue dysfunction. Endogenous oxidized phospholipids have been shown to function as
stress signals that may profoundly impact the activity of innate immune phagocytes.
n.org March 2021 | Volume 12 | Article 626842199
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The arachidonic acid-containing phospholipid 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine (PAPC) is a
constituent of the plasma membrane of every cell type (6)),
lung surfactant (7–9), and circulating lipoproteins (10). PAPC
reacts with oxygen on the sn-2 chain to create a mixture of
oxidized phospholipids, collectedly referred to as “oxPAPC”.
Although exogenous acute administration of oxPAPC before
the encounter with an inflammatory moiety reduces the
subsequent immune response both in vitro and in vivo (11–
13), endogenous production and accumulation of oxPAPC
during pathophysiological conditions are strictly associated
with the onset of a detrimental chronic inflammation. In fact,
oxPAPC accumulates in apoptotic cells (14–16), microparticles
released by activated or dying cells (17, 18), oxidized low density
lipoproteins (oxLDLs) (19) and oxidized pulmonary surfactant
(20). oxPAPC also actively modulates cellular signaling
processes, and contributes to the initiation and amplification of
inflammation in atherosclerosis (21), lung injury and viral
infections (20), non-alcoholic steatohepatitis (NASH) (22),
colitis (23), leprosy (24), UV-irradiated skin (25), myocardial
and hepatic ischemia (17, 18, 26), multiple sclerosis (27, 28) and
inflammatory pain (29, 30).

In this review, after an overview of the capacity of lipids to
modify several signaling processes, we focus on the role of
endogenous non-enzymatically oxidized phospholipids (oxPLs)
such as oxPAPC, in sustaining and enhancing inflammatory
disorders. In particular, we discuss how oxPLs modulate pro-
inflammatory responses in immune cells, with special attention
on the crosstalk between metabolic and signaling pathways in
phagocytes; we discuss how oxPAPC affects the pathophysiology
of inflammatory diseases such as atherosclerosis and
lung infections.
LIPIDS MODULATE CELLULAR
SIGNALING PROCESSES

Lipids not only serve a structural role in membranes and
function as a source of energy, but they are able to modulate
cellular signaling processes. This last task is performed via
several mechanisms, which are not mutually exclusive.

Alteration of the relative abundance of lipid species that
constitute the cellular “lipidome” (31) is one of such
mechanisms. Changes in the lipid composition of the plasma
membrane can modify its mechanical proprieties, such as
curvature and fluidity, and can thereby affect several
membrane-dependent events, including phagocytosis (32), ion
channel gating (33), and signal transduction (34). Local
distribution of lipids in intracellular organelles also coordinates
their morphology and functionality, as has been described for
mitochondria in which the ratio of the phospholipids
phosphatidic acid (PA) and cardiolipin (CL) directs fusion or
fission dynamics (35, 36). Remodeling of the cellular lipidome
may be driven by perturbations of the extracellular milieu, as
occurs during atherosclerosis progression, wherein diet-derived
lipid deposition affects the lipid content of phagocytes and thus
Frontiers in Endocrinology | www.frontiersin.org 2100
the features of their cellular processes (37). Alternatively, the
remodeling can be actively governed by the cell that, by
activating a specific set of enzymes, reshapes its lipid pool to
trigger an optimal response toward a stress factor. This is the case
when immune cells (such as macrophages) modify their
lipidome configurations in relation to the nature of stimulus
they receive (38). In this manner, the activation of different
classes of Toll-like receptor (TLR) induces distinct lipidomes in
macrophages that are necessary to promote an appropriate
inflammatory response (38–41).

A second mechanism utilized by lipids to modify cellular
signaling is the co- and post-translational protein modification,
referred to as “lipidation”. Several lipids are covalently attached
to proteins and change the folding of the proteins, their half-life,
association to membranes and other proteins, sub-cellular
localization, and binding affinity to their co-factors and
substrates (42). Palmitoylation (the addition of palmitate to a
cysteine residue (43)), is one of the best characterized lipid
modifications and controls the stability, trafficking and
functionality of the target protein. This has been shown for the
nucleotide oligomerization domain (NOD)–like receptors 1 and
2 (NOD1/2), which are responsible for detecting bacterial
products in immune cells. NOD1/2 require palmitoylation in
order to be recruited to bacteria-containing endosomes and to
function therein (44). Lipids are also an important source of
acetyl-coenzyme A (acetyl-CoA) (45), which is a central
metabolite that drives protein acetylation and thereby controls
not only gene expression through histone modification, but also
other key cellular processes such as DNA repair of double-strand
breaks, cell cycle, cellular signaling, protein conformation,
autophagy and metabolism (46). For example, acetylation
supports the assembly and activation of the NACHT, LRR and
PYD domain-containing protein 3 (NLRP3) inflammasome (47),
an innate immune sensor that responds to several exogenous and
endogenous stressors (48).

Lastly, lipids can be chemically and structurally modified to
impact the signaling process. In this case, specific cellular
enzymes catalyze definite modifications to a target lipid.
Eicosanoids and steroid hormones are lipids that are produced
via a spatially and temporally controlled multi-step mechanism,
in which arachidonic acid (or other related polyunsaturated fatty
acids (PUFAs)) and cholesterol, respectively, are converted into
their final biological active forms by a succession of enzymatic
reactions (49, 50). G protein-coupled receptors for eicosanoids,
and nuclear receptors for steroid hormones then coordinate
regulatory responses that control cellular as well as systemic
metabolism, development, and tissue homeostasis (49, 50).
Production of new lipidic molecules can also occur in a non-
enzymatic manner: lipids can spontaneously react with free
radical species present in both extracellular and intracellular
compartments and give rise to a wide variety of biologically
active products. PUFAs can undergo uncontrolled nitration (51),
sulfation (52) and oxidation (19) during tissue stress conditions.
For example, prostaglandins are eicosanoids produced by the
strict guide of cyclooxygenase (COX) enzymes, on the contrary,
isoprostanes (53) are prostaglandin-like compounds formed by
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non-enzymatic peroxidation of the same COX’s substrates
during oxidative damage. OxPAPC is another important
example of a class of chemically modified lipid moieties that
are implicated in the development of inflammatory disorders.
OXIDIZED PHOSPHOLIPIDS BOOST AND
SUSTAIN INFLAMMATION IN
PHAGOCYTES

oxPLs per se are weak inductors of pro-inflammatory cytokine
production by phagocytes, and they only slightly upregulate
the expression of interleukin-6 (IL-6) and IL-1b (20, 54, 55).
Nevertheless, oxPLs potently boost and extend the inflammatory
capacity of dendritic cells (DCs) and macrophages (56–60). In
particular, prolonged exposure of phagocytes to oxPLs strongly
potentiates the production of pro-inflammatory cytokines
thanks to the ability of oxPLs to reprogram the mitochondrial
metabolism of the phagocytes (60) and to activate the release of
IL-1b, while maintaining cell viability (56).

Metabolic Activities of Oxidized
Phospholipids in Phagocytes
Depending on the type of signal that is detected, phagocytes
reprogram their cellular metabolism differently, in order to
support a proper response (61). The Gram-negative bacteria
lipopolysaccharide (LPS), one of the best characterized
exogenous stressors, induces global rewiring of the major
metabolic pathways that dictate microbial killing processes,
production of pro-inflammatory mediators and the control of
cell viability (62–66). LPS-activated phagocytes increase
glycolysis and the pentose phosphate pathway (PPP), which
in turn provide ATP and metabolic intermediates that
support protein translation and the biosynthesis of several
macromolecules, such as the fatty acids, necessary for the
expansion of secretory compartments (63, 65, 67–70). In the
LPS-activated phagocytes, mitochondrial activity undergoes
several alterations: i) the tricarboxylic acid (TCA) cycle is
“broken” in two places, due to a reduction in isocitrate
dehydrogenase (IDH) expression and a decline in succinate
dehydrogenase (SDH) functionality; and ii) the electron
transport chain (ETC) is suppressed, mainly due to the
production of nitric oxide (NO) (63, 64, 66, 71). These changes
shorten the cell’s lifespan (66) and allows the accumulation of
key metabolites such as citrate, succinate and itaconate, which
control the activity of transcription factors and effector molecules
such as hypoxia-inducible factor 1-alpha (HIF-1a) (63) and the
NLRP3 inflammasome (72).

Recent evidence suggests that oxPLs can modify the
metabolism of phagocytes, as reported for adipose tissue
macrophages (ATM) in obese animals (73) and for circulating
and tissue-resident monocytes/macrophages in atherosclerotic
mice (60). Prolonged exposure of LPS-activated macrophages to
oxPAPC (referred to hereafter as LPS+oxPAPC) profoundly
interferes with the behavior of the mitochondria, and induces a
Frontiers in Endocrinology | www.frontiersin.org 3101
novel metabolic state, termed hypermetabolism, that enhances
the production of pro-inflammatory cytokines (60) (Figure 1).
Mitochondrial activity is potentiated in cells treated with
LPS+oxPAPC, sustaining the TCA cycle and respiration. The
expression of IDH is selectively increased, and NO production is
severely impaired, thus preventing the loss and dysfunction of
ETC complexes. In this manner, the intact TCA cycle leads to the
export of citrate into the cytosol, where it is converted into
acetyl-coA and oxaloacetate (OAA) by the enzyme ATP-citrate
lyase (ACLY). In turn, OAA, probably through direct inhibition
of prolyl hydroxylases (PDH) (63, 74), stimulates stabilization of
HIF-1a, which potently increases the transcription and
production of IL-1b. This entire process is fed by glutamine
catabolism rather than by glycolysis, even though LPS+oxPAPC
cells continue to conserve a high rate of glucose utilization, as
occurs in response to LPS only. Notably, glutaminolysis also
plays a key role in epigenetic reprogramming, which controls
long-term macrophage responses such as their inflammatory
polarization and trained immunity (75–77). This mechanism is
further reinforced by acetyl-coA, formed by ACLY, which
directly supports histone modifications and thereby facilitates
the transcription of target genes (78–80). In addition, oxPAPC
treatment is sufficient to potently increase the mitochondrial
potential (Dym) of phagocytes (60), which is the gradient of the
electric potential on the inner mitochondrial membrane generated
by ETC proton pumps (81). Dym has been implicated in several
cellular processes in addition to ATP synthesis: these include
production of reactive oxygen species (ROS), cell proliferation,
functionality of sirtuin deacetylases, cell renewal, and transcription
factor activity (82–85). Thus, the conserved and increased
mitochondrial fitness induced by oxPLs, possibly assisted also by
production of a redox-balancing response (86), may prolong the
lifespan of macrophages, as has been described in atheromas (87)
and lung injuries (88) - and sustain their inflammatory signature.
We propose that all of the metabolic effects induced by oxPLs
work in concert, favoring the persistence of long-lived, detrimental,
pro-inflammatory phagocytes and collectively contributing to the
development of chronic inflammatory diseases.

Inflammasome Activation by Oxidized
Phospholipids
Phagocytes are equipped with receptors that allow them to
respond to stress stimuli. In particular, inflammasomes are
multiprotein platforms that comprise a sensor protein (i.e.
NLRP3), inflammatory caspases (i.e. caspase-1) and an adapter
protein (i.e. apoptosis-associated speck-like protein containing a
caspase recruitment domain (CARD) – ASC); together,
inflammasomes integrate various non-self and self-signals and
induce the secretion of active IL-1b and IL-18 (89). Activation of
inflammasomes involves two steps: i) a priming step, generally
induced by exogenous molecules via TLRs (e.g., LPS and TLR4),
that is necessary for the expression of pro-IL-1b (an inactive
form of IL-1b) and inflammasome components; and ii) an
activation step, whereby a repertoire of intracellular stimuli
lead to inflammasome assembly and enzymatic activation of
dedicated caspases, resulting in the processing and release of IL-
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1b through a lytic cell death program (pyroptosis). Typically,
perturbations in homeostasis of the cytosolic compartment, such
as organelle dysfunction (90–93), ROS production (94, 95), ion
flux (96–98), and metabolic alterations (99), prompt “canonical”
activation of the NLRP3 inflammasome, while direct recognition
of intracellular LPS by caspase-11/4/5 triggers “noncanonical”
activation of the inflammasome (100–102). In this latter
pathway, LPS elicits oligomerization of caspase-11/4/5, and its
activation by auto-proteolytic cleavage (103); this then induces
plasma membrane pore formation via gasdermin D (GSDMD)
(104, 105) and subsequent potassium efflux (106) that, in turn,
causes NLRP3 inflammasome activation, pyroptosis and IL-
1b secretion.

Extracellular oxPLs can reach the cytosol via plasma
membrane receptors such as scavenger receptors (107). As
with LPS (108), oxPAPC is also a cargo for CD14 (57), which
induces internalization of the oxPAPC, and triggers an endocytic
process that is mediated by phospholipase C g (PLCg) and spleen
tyrosine kinase (SYK). How oxPAPC leaves the endosome and
enters the cytosol is a mystery. We suggest that other oxPL-
specific receptors, such as Transmembrane Protein 30A
(TMEM30A) (109) mediate this relocation, but we cannot rule
out the possibility that the oxPAPC itself alters the composition
of the endosomal membrane and provokes its own leakage from
intracellular organelles into cytosol (110). Additionally, oxPLs
can be produced intracellularly in response to cellular stress. For
Frontiers in Endocrinology | www.frontiersin.org 4102
example, a recent report showed in a model of age-related
macular degeneration that retinal pigmented epithelium cells
produce oxPAPC, which supports their pro-inflammatory
activity and their role in the development of pathology (111).

Once in the cytosol, oxPAPC binds caspase-11/4/5 and
triggers an atypical inflammasome activation, culminating in
active release of IL-1b, in the absence of pyroptosis (56) (Figure
1). This process, called “hyperactivation”, is critical not only for
establishing local long-term inflammation, but also for
promoting a strong adaptive immune response (56, 112). The
persistence of IL-1b-producing DCs in lymph nodes or in the
aortic wall (113), can boost T cell activation, proliferation, and
Th1/Th17 polarization, thereby further sustaining local and
systemic chronic inflammation.

Inflammasome activation governed by hyperactivation differs
from non-canonical inflammasome activation driven by LPS. In
fact, LPS and oxPAPC are believed to interact with different
domains of caspase-11/4/5, and differentially modulate the
downstream effects of this enzyme (56). The highly
hydrophobic lipid A moiety of LPS binds the CARD domain
of caspase-11/4/5, where basic residues are required for
interaction with the phosphate head groups of lipid A (102).
Upon engaging LPS, caspase-11/4/5 undergoes oligomerization
and activation. However, the exact nature of interactions
between oxPAPC and caspase-11/4/5 are still debated (56,
114). The first study on oxPAPC-caspase-11/4/5 of Zanoni
FIGURE 1 | oxPAPC boosts inflammatory responses in LPS-activated macrophages. Upon LPS encounter and/or during atherosclerosis development, oxPAPC
induces a metabolic remodeling state in phagocytes, termed hypermetabolism, that is characterized by 1) boosting of mitochondrial activity via iNOS inhibition and
ETC protection; 2) sustaining the TCA cycle with glutamine and upregulation of IDH; and 3) upregulating ACLY. These events result in the conversion of citrate to
OAA, which in turn stabilizes HIF-1a and increases production of pro-IL-1b. OxPAPC is also transported into the cytosol via the endocytic module CD14-SYK-PLCg,
where it interacts with caspse-11/4 and induces oligomerization of this enzyme. oxPAPC may also interact with caspase-1, to form caspase-11/4/5-1 hetero-
complexes, or to activate the NLRP3 inflammasome. These processes, termed hyperactivation, lead to IL-1b cleavage and release, but not to pyroptosis.
March 2021 | Volume 12 | Article 626842

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Di Gioia and Zanoni oxPAPC Governs Phagocyte Responses
et al. using surface plasmon resonance and pull-down
approaches, reported that oxPAPC binds the catalytic domain
of caspase-11/4/5, and not its CARD domain (56), which enables
oxPAPC to promote caspase-11/4/5 oligomerization but does
not trigger its enzymatic activity (56). Later on, Chu et al.
confirmed the interaction between oxPAPC and caspase-11/4/5,
but they found that oxPAPC competes with LPS for the CARD
domain of caspase-11/4/5, thus preventing downstream LPS-
initiated signaling (114). Although more experiments will be
needed to unveil the complex nature of the interactions between
oxPAPC, LPS and caspases, a possible explanation for the
discrepancies described in the previous studies is that
individual oxPAPC constituents bind caspase-11/4/5 in diverse
positions, with different affinity and via more than one
mechanism. In particular, oxPAPC’s interaction with proteins
occurs via at least two mechanisms. Electrophilic oxPAPC
components such as 1-palmitoyl-2-(5, 6-epoxyisoprostane E2)-
sn-glycero-3-phsphocholine (PEIPC) covalently bind cysteine
residues and modulate the activity of their protein targets. This
type of interaction has been previously established for H-Ras
(115), transient receptor potential cation channel, subfamily A,
member 1 (TRPA1) (30), and for Kelch-like ECH-associated
protein 1 (Keap-1) (116). Of note, no cysteine residues are
present in the CARD domain of murine as well as human
caspase-11/4/5 (117), but such residues are relatively abundant
in its catalytic subunit. These data support the observation that
oxPAPC selectively interacts with the catalytic portion of
caspase-11/4/5 rather than competing with LPS for binding to
the CARD domain (56). Alternatively, oxPAPC components that
incorporate a terminal g-hydroxy (or oxo)-a,b-unsaturated
carbonyl in their sn-2 chain interact with proteins via
electrostatic interactions. For example, positively charged
residues in the scavenger receptor CD36 are necessary for
interactions of the receptor with 1-palmitoyl-2-(5-keto-6-octene-
dioyl)-sn-glycero-3-phosphocholine (KOdiAPC) (118, 119).
These interactions mirror LPS binding mechanisms identified
for LPS binding protein (LPB) (120), caspase-11/4/5 (102), and
the newly discovered intracellular LPS receptor guanylate-binding
protein 1 (GBP1) (121), which have also been implicated in the
interaction of oxPAPC with caspase-11/4/5 (114).

The oligomerization of caspase-11/4/5 induced by oxPAPC is
sufficient to stimulate the NLRP3 inflammasome, even in
absence of its catalytic activity. Potassium efflux, a downstream
effect of caspase-11/4/5 activation, is not required for IL-1b
release from oxPAPC-treated DCs (56), which suggests that
“silent” caspase-11/4/5 aggregates can also work in other ways
to activate NLRP3 inflammasome.

oxPAPC also directly binds caspase-1 (56), as was identified
in RAW 264.7 macrophages with use of tandem mass
spectrometry (122). We postulate that the hetero-complexes
are composed of caspase-11/4/5 and caspase-1, in which the
lack of caspase-11/4/5 activity is balanced by the activity of
caspase-1. Also, that engagement of caspase-1 by oxPAPC can
bypass the requirement for caspase-11/4/5 to start or sustain
inflammasome activation. Indeed, after oxPAPC administration,
primed DCs that are caspase-11-deficient can decrease - but not
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abolish - levels of IL-1b, while those that are caspase-1-deficient
completely lose the ability to secrete IL-1b (57). Based on this
finding, we hypothesize that the oxPAPC-caspase-1 complex can
stimulate NLRP3 assembly and activation. However, we cannot
exclude the possibility that certain oxPAPC components,
depending on their concentration and the responding cell type,
can trigger NLRP3 activation also in “canonical mode” (58),
through ROS production (58) or metabolic alterations (58, 60).

Once activated by oxPAPC, neither caspase-11/4/5 nor the
NLRP3 inflammasome provoke pyroptosis, but the cell
nonetheless acquires the ability to secrete IL-1b. How this
cytokine is secreted from living cells is unclear, although
GSDMD pores are reportedly implicated in this process (59).
The pores form small channels for the secretion of cytosolic
cytokines, but the lack of a secondary stimulus, such as
potassium efflux (see above), may dampen the lytic death
program (56, 59). The cell may also activate a repair mechanism
that recruits the endosomal sorting complex required for transport
(ESCRT) machinery to the site of membrane damage, and
eliminate GSDMD pores from the plasma membrane in the form
of ectosomes (121). The rapid turnover of the GSDMD pores
allows IL-1b secretion but prevents them from causing extensive
plasma membrane damage, which thereby protects the cell from
pyroptosis. The effects of oxPAPC on mitochondrial activity (see
previous paragraph) may also interfere with the mitochondrial
damage that is induced by gasdermins (123), and thusmay protect
thecell fromdeath.Moreover, oxPAPC-potentiatedmitochondrial
metabolism can lead to accumulation of specific metabolic
intermediates that can alter GSDMD functionality. For example,
fumarate reacts with GSDMD at critical cysteine residues to form
S-(2-succinyl)-cysteine, thwarting its capacity to induce cell death
(124). As discussed above for caspase-11/4/5 binding, we speculate
that oxPAPCalso directly interactswithGS-DMD via thiol groups,
thus mimicking the effect of cysteine-modifying drugs such as
disulfiram, which block GSDMD pore formation (125).

Lastly, fatty acid epoxycyclopentenone, a sn-2 moiety
identified in some oxPAPC components, induces caspase-8
activation and IL-1b secretion (116). Caspase-8 has emerged as
a new player in inflammasome induction (89): it participates in
an alternative inflammasome activation pathway in human
monocytes, wherein TLR engagement is sufficient to trigger
inflammasome activation and IL-1b release, without pyroptosis
(126). Of note, murine macrophages exposed to oxPAPC for a
long time also acquire this capacity after they are stimulated by
LPS only - the cells rapidly secrete high amounts of IL-1b, but
preserve their viability (60). This phenotype is largely regulated
by the metabolism remodeling induced by oxPAPC that boosts
mitochondrial activity and favors the accumulation of
metabolites; this, in turn, controls transcriptional and
epigenetic programs (see previous paragraph). Nevertheless,
oxPAPC could also alter the signaling hub mediated by
caspase-8, enhance LPS-dependent responses and reshape
NLRP3 activity. Thus, although further work is needed to
understand whether or not oxPAPC interacts with human and
murine caspase-8, and how it does so (directly or indirectly),
oxPLs emerge as possible pleiotropic modulators also of
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alternative inflammasome pathways in both murine and
human phagocytes.
ATHEROSCLEROSIS: ROLES OF
OXIDIZED PHOSPHOLIPID-ACTIVATED
PHAGOCYTES

Atherosclerosis leads to a chronic and progressive deposition of
fatty and fibrous material in arterial walls. This inflammatory
condition can lead to a number of serious pathologies known
collectively as cardiovascular diseases (CVDs) – these include
coronary heart disease, hypertension and stroke (127).
Circulating LDLs that accumulate in the intima layer of blood
vessels and undergo oxidative modifications are the main
initiators of atherosclerosis. However, other stressors may also
contribute to this process. For instance, subclinical endotoxemia,
which results from gut mucosal leakages induced during
chronic infections, obesity, and ageing, may sustain the
development of atherosclerosis (128, 129). oxLDLs start an
enduring inflammatory reaction that involves multiple cell
types, including endothelial cells, smooth muscle cells, resident
macrophages and monocytes (127). In particular, activated
macrophages proliferate locally (87, 130), and later, monocytes
recruited from bloodstream sustain plaque formation (130).
These phagocytes produce inflammatory mediators, and favor
accumulation of lipid and lipid-laden cells called foam cells.
Foam cells originate from macrophages as well as monocytes
(130), and by metaplasia of smooth muscle cells (131), gather
and progressively form a lipid-rich necrotic core, which increases
over time. Non-immune cells also contribute to inflammation
and deposition of extracellular material and promote plaque
instability and rupture, with severe risk of thrombosis or other
complications (132).

Hyperlipidemic humans and animals exhibit high levels of
oxPLs, derived from oxLDLs and dead cells in their plasma and
atherosclerotic plaques (133–135). These modified molecules
control plaque inflammation and progression, and play a key
role in the etiology of atherosclerosis (Figure 2). Selective oxPL
neutralization, mediated by the ectopic expression of E06
antibody (136) single-chain variable fragment (E06-scFv) in
high-fat fed mice that are deficient in LDL receptor (LDLR),
results in severe reduction and slowing of pathology (21). In this
hypercholesterolemic model, E06-scFv binds oxPLs but not
unoxidized PLs, impairs pro-inflammatory macrophage
activation in the aorta, and diminishes the in locus recruitment
of monocytes and lymphocytes – this in turn reduces local and
systemic inflammation. Thus, E06-scFv decreases the formation
of atherosclerotic lesions and prevents valve dysfunction (21).
These findings are supported by a report that quenching of
reactive dicarbonyls also reduces atherosclerosis in LDLR-
deficient mice (137). Indeed, oxidative reactions in the sn-2
unsaturated chain of PLs may generate highly reactive
dicarbonyl moieties such as 4-oxo-nonenal (4-ONE),
malondialdehyde (MDA) and isolevuglandins (IsoLGs) (138),
which covalently bind proteins and other macromolecules. Thus,
Frontiers in Endocrinology | www.frontiersin.org 6104
use of the dicarbonyl scavenger 2-hydroxybenzylamine (2-
HOBA) to block the production of molecular adducts induced
by oxPL species reduces systemic inflammation and increases
plaque stability (137).

Interfering with the metabolic program induced in
phagocytes also indirectly dampens the pro-atherogenic effects
of oxPLs. oxPAPC induces glutamine utilization, ACLY-
dependent OAA accumulation, and HIF-1a stabilization, and
also boosts IL-1b expression. Systemic administration of
glutaminolysis or ACLY inhibitors in hypercholesterolemic
mice reduces early plaque formation and decreases the
production of IL-1b by macrophages in the aorta (60).
Additionally, peripheral blood transcriptional signatures from
Framingham Heart Study (FHS) (139) participants with pro-
atherogenic lipidemia reveal an enrichment of genes that control
the same metabolic pathways described for oxPAPC-treated
murine macrophages (60) - this indicates that similar
metabolic rearrangements are shared between humans and
mice, and that metabolic intervention could be a new clinical
tool for treating atherosclerosis.

IL-1b produced by myeloid cells is a crucial mediator of
atherosclerosis progression (140–142): it acts systemically and in
the plaque on bystander cells to augment expression of adhesion
molecules and proliferation (143–146). The essential role of this
cytokine in atherosclerosis and CVDs has been recently
highlighted in the Canakinumab Anti-Inflammatory
Thrombosis Outcomes Study (CANTOS) trial: treatment with
a monoclonal antibody against IL-1b (canakinumab) proved to
be protective against cardiovascular dysfunctions in patients with
a history of myocardial infarction (MI) and elevated high-
sensitivity C-reactive protein (CRP) (147). Single-cell
transcriptome analyses of human and murine atherosclerotic
lesions have mapped immune populations that participate in
plaque inflammation, and underscore the major role of IL-1b
(148–151). Of note, lipid-laden macrophages (described as
“foamy” BODIPYhiSSChi or TREM2hi cells) are not pro-
inflammatory, while “non-foamy” CCR2+ macrophages are
strongly enriched in inflammatory transcripts, including for
IL-1b (148, 149, 151). Notably, macrophages treated with
oxPAPC do not acquire a foamy phenotype and hugely
upregulate IL-1b (60). Based on these reports, we speculate
that the phenotype of inflammatory lesional non-foamy
macrophages is driven by the metabolic program induced by
oxPLs. And despite our lack of knowledge about the exact
mechanisms that control the cellular and molecular dynamics
induced by oxPLs in atheroma, we also propose that IL-1b release
from these cells is due either to the direct action of oxPLs on
macrophages (hyperactivation) or to canonical inflammasome
activation. In the latter case, progressive accumulation of
extracellular material such as cholesterol crystals (140) may
provide the initiation signals for the activation of the NLRP3
inflammasome. In addition, macrophages and endothelial cells
can form a functional circuit controlled by oxPLs (Figure 2).
Indeed, oxPLs reportedly trigger the production of chemotactic
mediators such as CCL2 and CXCL8 from endothelial cells (152–
155), and recruit monocytes, thereby increasing the number of
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oxPL-responsive cells. oxPLs also stimulate purine release from
endothelial cells and, via a metabolic reprograming that is
controlled by mitochondrial methylenetetrahydrofolate
dehydrogenase/cyclohydrolase (MTHFD2), also compensate for
loss of ATP (156). The extracellular ATP released by endothelial
cells can, then, activate the NLRP3 inflammasome in
macrophages and trigger IL-1b secretion (89). We also posit
that the nature and magnitude of inflammasome activation
reflects the progression status of the atherosclerotic plaque:
thus, following a dramatic increase of extracellular material in
the arterial wall, a prevalence of hyperactivated macrophages is
observed at early stages, and then a slow shift toward a pyroptotic
phenotype takes place at later stages.

Besides production of IL-1b and other pro-inflammatory
mediators, phagocytes carry out numerous functions that are
dysregulated in atherosclerosis. For example, removal of dead
cells is an essential anti-inflammatory process that slows down
the progression of atherosclerotic lesions (157). oxPAPC alters
actin polymerization in macrophages, and thereby reduces their
phagocytic activity (158). oxPLs may decrease the clearance of
dead cells, and thus favor inflammation and plaque widening.
Lastly, long-lived inflammatory phagocytes induced by oxPLs
promote and sustain the activation and proliferation of CD4+ T
cells (56, 113), which in turn maintain chronic inflammation.
This effect is further fueled by the capacity of some oxPAPC
components, such as 1- palmitoyl-2-glutaroyl-sn-glycero-3-
phosphorylcholine (PGPC), to enhance the ability of antigen
presenting cells to migrate to the draining lymph nodes and thus
potentiate T cell-dependent responses (112).
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In sum, the above findings collectively establish the role of
oxPLs in the induction and progression of atherosclerosis, but
the proposed cellular and molecular mechanisms that underlie
these effects remain to be verified.
LUNG INFECTIONS: PERSPECTIVES
ON A NEW ROLE OF OXIDIZED
PHOSPHOLIPID IN COVID19

Pulmonary surfactant forms a film at the alveolar air-liquid
interface and lowers surface tension, thereby preventing
atelectasis during breathing. Surfactant is a complex mixture of
lipids and proteins, whose primary components (90-80%) are
saturated PLs (such as 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC)), which are active tension-lowering
agents and are unreactive to air oxidation (7–9). Surfactant also
contains (4-6%) unsaturated PLs (such as PAPC (7–9)) that can be
oxidized (as discussed above). Under physiological conditions,
surfactant is protected from atmospheric oxygen by antioxidant
processes and by its rapid turnover. The first mechanism is
mediated by specific proteins, for example surfactant protein A
(SP-A) (159). The secondone is carried out by type II pneumocytes
and alveolarmacrophages,which control the production/recycling
and degradation of surfactant respectively (160–162).

Under stress, surfactant/lung homeostasis can be altered,
leading to oxidation of PUFA moieties contained in pulmonary
PLs. Several infections and treatments, such as acid aspiration,
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FIGURE 2 | oxPAPC triggers and sustains inflammation in atherosclerosis and viral lung infections. During atherosclerosis (left) oxPAPC released from dying cells or
contained in oxLDL induces the release of chemokines and ATP from endothelial cells (red). Phagocytes (blue) become hyperinflammatory, modify their metabolism, and
produce pro-inflammatory cytokines such as IL-1b and IL-6. IL-1b can also be induced by extracellular stressors such as ATP. In this manner, the endothelial cell-phagocyte
circuit sustains inflammation. During viral infections (right), oxPAPC released from infected-dead cells or from surfactant oxidation interacts with endothelial cells (red) that
produce chemokines and TF. Low doses of oxPAPC (early steps of infection) elicit barrier function, while high doses of oxPAPC (late steps of infections) disrupt the endothelial
barrier. Phagocytes (blue) activate inflammasome-dependent responses, secrete cytokines and TF and lead to inflammation and coagulation.
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influenza viruses (H5N1, H1N1 and H3N2), Monkeypox virus,
Yersinia pestis, Bacillus anthracis and severe acute respiratory
syndrome coronavirus (SARS-CoV) (20, 163) can induce
pulmonary oxPAPC accumulation, which is associated with a
detrimental pro-inflammatory response, acute injury, and organ
failure (20) (Figure 2). These detriment effects are triggered
primarily by pathogen-induced generation of ROS from alveolar
macrophages. Indeed, the genetic absence of NCF1 (neutrophil
cytosolic factor 1) (a key component of the NADPH oxidase
complex that is required for ROS production) in mice treated
with H5N1 virus reduces generation of oxPL in the lung and
alleviates lung dysfunctions (20). Once produced, oxPAPC
modulates the inflammatory responses of macrophages, and
boosts the production of cytokines such as IL-6 (20). oxPAPC
also acts on endothelial cells. Although low doses of oxPAPC
enhance the function of the lung endothelial barrier by
remodeling the cytoskeleton and tightening cell-cell contacts
(164–167), higher doses of oxPAPC, or its fragmented
products, have opposite effects, disrupting endothelial barrier
integrity (168, 169). This explains how pathogen-induced
damage, inflammatory mediators secreted by macrophages and
endothelial cell alterations can drive acute lung injury (ALI).

Coronavirus disease 2019 (COVID-19) that is caused by
SARS-CoV-2 has become a global pandemic that threatens the
lives of hundreds of millions of individuals around the world.
SARS-CoV-2 causes mild respiratory symptoms, including fever
and cough; but in some subjects it can degenerate to viral
pneumonia and acute respiratory distress syndrome (ARDS).
Uncontrolled pathology can lead to a cytokine storm, multi-
organ failure, septic shock and coagulation abnormalities, which
can lead to severe thromboembolic events (170).

SARS-CoV-2 shares 79.6% genomic sequence identity with
SARS-CoV, and these two viruses likely share many features of
their biology and pathogenesis (170). Notably, quantitative
lipidomic and metabolomic profiling of plasma from COVID-19
patients reveals profoundmetabolic dysregulation, with enhanced
oxidative stress and alteration of PUFA-PC homeostasis (171).
These data suggest that oxPLs, which accumulate during SARS-
CoV infections, also form during SARS-CoV-2 infections, and
play a central role in maintaining harmful inflammatory
responses. COVID-19 patients show high neutrophilia (172,
173). Since neutrophils are the major producers of ROS (174),
we hypothesize that surfactant composition is extremely altered
with the massive oxPAPC formation during SARS-CoV-2
infections. Moreover, high levels of IL-1b and IL-6 have been
identified in SARS-CoV-2-infected subjects (175), and single-cell
transcriptomic analysis of peripheral blood in COVID-19 patients
also show increased subsets of IL-1b-producing monocytes (176).
In addition, pulmonary arterial thrombosis has been detected in
autopsy from SARS-CoV-2 patients (177, 178). In fact, all of these
effects can be credited to inflammasome activation (179), which
also drives the release of tissue factor (TF) (180, 181), an initiator
of the coagulation cascade. Thus, oxPAPC, as an inflammasome
modulator, could elicit IL-1b and TF, and coordinate
inflammation as well as hemostasis during COVID-19 infection.
Indeed, CD14, that regulates inflammasome activation in
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phagocytes in response to oxPAPC (182), as been proposed
as a possible therapeutic target against COVID-19 (183). Lastly,
phagocytes infected with SARS-CoV-2 remodel their metabolism
and activate HIF-1a to sustain the cytokine storm (182).
Accordingly, we propose that the oxPAPC that is produced
during viral infections could also act on cellular metabolism,
favoring ROS production – in a feed-forward loop. Although
not yet validated experimentally, we propose that this detrimental
loop feeds PUFA-PC oxidation and controls transcriptional
responses via regulation of metabolite production.
CONCLUSIONS AND FUTURE
DIRECTIONS

Immune cells control tissue homeostasis and respond rapidly to
noxious stimuli to maintain physiological conditions. oxPLs are
endogenous stressors that reprogram phagocyte metabolism and
boost their pro-inflammatory responses, inducing a novel
hyperinflammatory phenotype that sustains chronic inflammatory
diseases. Several studies focused on oxPAPC have elucidated several
molecular events that underlie its effects on phagocytes, but some
questions remain unresolved: 1) Given that oxPAPC consists of a
mix of biomolecules, and single oxPAPC components can have
redundant or even antagonistic effects, what are the metabolic and/
or inflammatory responses of unique oxPAPC species? 2) What are
the receptors/targets/pathways of oxPAPC that are necessary for
inducing its metabolic and/or inflammatory activities? 3) How does
oxPAPC modulate the responsivity of phagocytes to other
endogenous or exogenous stressors? 4) How does oxPAPC
sustain cell viability when the NLR3 inflammasome is activated?
5) Does oxPAPC modulate other processes in phagocytes, such as
differentiation, proliferation, motility or migration?

Since oxPLs are virtually always present during inflammation
(i.e. through neutrophil-dependent ROS release or tissue
damage), we anticipate that identifying their biological targets
will be vital for creating new therapies against pathologies
initiated by exogenous agents, such as sepsis or cytokine storm,
or by endogenous moieties, such as atherosclerosis.
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Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-
activating factor (PAF) has been implicated in many pathologic processes. Indeed,
elevated levels of PAF can be measured in response to almost every type of pathology
involving inflammation and cell damage/death. In this review, we provide evidence for PAF
involvement in pathologic processes, with focus on cancer, the nervous system, and in
photobiology. Importantly, recent insights into how PAF can generate and travel via
bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What
appears to be emerging from diverse pathologies in different organ systems is a common
theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF
agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A
downstream consequence of PAF receptor activation is the generation and release of
MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The
knowledge gaps which when addressed could result in novel therapeutic strategies are
also discussed. Taken together, an enhanced understanding of the PAF family of lipid
mediators is essential in our improved comprehension of the relationship amongst the
diverse cutaneous, cancerous, neurologic and systemic pathologic processes.

Keywords: platelet-activating factor (PAF), oxidized glycerophosphocholine, skin, central nervous system, cancer,
inflammation, ultraviolet - B, microvesicle particles
INTRODUCTION

The term “platelet-activating factor” was first given by Benveniste and colleagues in their landmark
Journal of Experimental Medicine manuscript in 1972, to a biochemical activity released by
activated basophils which caused platelets to aggregate (1). This activity (PAF) was subsequently
determined to be a class of glycerophosphocholines (GPC) with 1-hexadecyl-2-acetyl-GPC being
amongst the most potent (2, 3). Though PAF has been demonstrated to have multiple biological
activities due to a binding at high picomolar-low nanomolar concentrations to single G-protein
coupled receptor widely expressed (4, 5), the term Platelet-activating factor has remained. Indeed,
the PAF family of lipid mediators have been implicated in pro-inflammatory processes ranging
from asthma to sepsis to ultraviolet radiation (UVR) responses. Administration of PAF results in an
n.org March 2021 | Volume 12 | Article 6241321112
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acute inflammatory response, yet also can generate
immunosuppressive effects via upregulation of regulatory T
cells (6–9). A recent PubMed search indicates that more than
14,000 publications involve PAF, which attests to the large body
of information available on this lipid mediator.

The synthetic pathways for PAF have been extensively
reviewed (5, 10). The major pathway associated with cellular
stimuli is the remodeling pathway. Cellular activation resulting
in increased intracellular calcium levels induces phospholipase
A2 (often group IVA cytosolic cPLA2) activation which releases
an unsaturated fatty acid from the sn-2 position of a GPC, with
the released fatty acid often a substrate to form eicosanoids. The
lyso GPC species then is acetylated using acetylCoA by an
acetyltransferase (10) to form PAF. Of interest, the PAF
receptor (PAFR) is a potent stimulus for enzymatic PAF
synthesis via this pathway, indicating a feed-forward system
(11). The limit on enzymatic PAF synthesis appears to be the
substrate as well as amounts of acetylCoA available. Once
produced, PAF is quickly broken down by cell- and serum-
associated PAF acetylhydrolases (PAF-AH) (12). Thus, PAF is a
highly potent mediator whose synthesis and degradation are
tightly regulated.

In contrast to the highly regulated enzymatic pathways, PAFR
agonists can also be formed in response to reactive oxygen
species (ROS) via the direct attack of free radicals on the sn-2
long-chained unsaturated fatty acids in the GPC (13–15).
Oxidation of the esterified fatty acyl residue can introduce oxy
functions, bond rearrangements and can result in the
fragmentation of carbon-carbon bonds via b-scission. This
process can result in a large number of phospholipid reaction
products, to include some that exert PAFR agonistic activity.
Unlike the tightly regulated enzymatic processes, this non-
enzymatic process producing oxidized GPC (ox-GPC) with
PAFR activity is dependent upon amounts of GPC substrate,
pro-oxidants and antioxidant defenses. It should be noted that
the majority of ox-GPC species have not been structurally
characterized to allow quantitation using mass spectrometric
techniques. Hence, we believe that the most accurate manner to
measure PAF is via its biochemical effects such as intracellular
calcium mobilization responses or release of cytokines such as
IL-8 in genetically engineered cell lines with/without the PAFR
(14, 16–18).

Once PAF is generated, it can either reside in the cellular
membranes and potentially act upon the cell itself or to neighbor
cells in juxtacrine fashion (19, 20). Some cell types, in particular
monocytes, neutrophils and keratinocytes have been demonstrated
to release PAF to allow it to exert effects away from the host cell. The
exact mechanisms by which cells release PAF is as yet unknown,
however, our group has recently demonstrated that a keratinocyte
cell line can generate subcellular microvesicle particles (MVP; see ref
(21–23) for recent reviews) released from budding from the plasma
membrane which contain PAFR agonistic activity (24, 25). As
PAFR activation results in both MVP release as well as PAF
generation, this results in the potential linkage of the two
processes. Presumably, traveling in an MVP might afford
protection from degradation by PAF-AH in comparison to being
Frontiers in Endocrinology | www.frontiersin.org 2113
free or protein-bound in tissue fluids. As MVPs merge with target
cells, this could place PAF back into a target cell membrane. It
should be noted that recent evidence from x-ray crystallography of
the PAFR indicates that helix VIII appears to cover the ligand-
binding site (26). This novel structural finding could be suggestive
that optimal PAFR agonists bind to the receptor while residing in
the plasma membrane, rather than accessing the binding site
extracellularly. This finding might also provide an explanation for
the low affinity of all known PAFR antagonists in comparison to
native PAF ligand (27). Of importance, MVP release from many
stimuli (including PAF) are dependent upon the lipid enzyme acid
sphingomyelinase (aSMase) (25, 28). As aSMase inhibitors
including imipramine and other molecules in the tricyclic anti-
depressive class of molecules are available (29), this could potentially
result in pharmacologic modulation of PAF release. This adds a
potential adjunctive pharmaceutical strategy in addition to the use
of PAFR antagonists.
PAF AND DISEASE PROCESSES

Because elevated PAF levels can be measured in many diseases,
and exogenous PAF can mimic many aspects of disorders, PAF
has been implicated in many processes. However, no actual
diseases have been demonstrated to be due entirely to the
presence or lack of the PAF system. The picture that is
emerging is that the PAF system appears to serve as a
modulator of pathologic processes. There are three areas that
we would like to focus this review upon- the role of PAF in
cancers and cancer therapy responses, central nervous system
pathologies, and the effects of ultraviolet B radiation. Given that
the skin is a complex organ that has epithelial, mesenchymal,
immunologic, and neuronal components, all of these areas link
to the overall theme of the epilipidome. Moreover, the three areas
are connected to what we believe is a common three-part
process. First, ROS from various agents generate small levels of
PAFR agonists. Second, these PAFR agonists act upon the PAFR
resulting in cellular activation and generation of additional PAF
enzymatically, potentially allowing a PAFR amplification
response. Finally, aSMase activation results in the formation
and release of MVP carrying PAFR agonists to other sites.
Activation of PAFR in target organs then mediate further
pathology. This process provides several therapeutic targets to
include antioxidants, PAFR antagonists, aSMase inhibitors as
well as agents that block down-stream effects such as
cyclooxygenase-2 (COX-2) inhibitors.
PAF AND CANCER AND CANCER
THERAPIES

Evidence Linking PAF System to Cancers
The ability of the PAF-PAFR signaling to induce a robust systemic
pro-inflammatory, pro-proliferative, and delayed immune
suppressive responses, implicated in various pathological
March 2021 | Volume 12 | Article 624132
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conditions, rationalized its exploration in cancer development as
many malignant cells were identified to express PAFR (3–5, 30).
Notably, studies by Im and colleagues provided the first report
demonstrating that a single systemic administration of PAF can
augment IL-1a andTNF-a-induced increasedpulmonarymetastasis
of murine B16F10 melanoma cells in syngeneic C57BL/6 hosts, in a
process blocked by the PAFR antagonist BN50739 (31). The critical
role of the PAF-PAFR signaling inmelanoma tumorigenesis was also
supported by the phenotype of the PAFR-overexpressing transgenic
mice that exhibited keratinocyte hyperplasia, which was
accompanied by hyperpigmentation and increased number of
dermal melanocytes in the ear and tail with subsequent
development of melanocytic tumors (32, 33). Since the PAFR is
expressed in keratinocytes but not melanocytes (34), it is presumed
that the melanocytic tumors are in response to inappropriate
expression of the PAFR which resulted in a proliferative response.
Biancone and colleagues also evaluated the role of the PAF-
metabolizing enzyme PAF-AH in melanoma tumor development
(35). C57BL/6 mice implanted with PAF-AH-overexpressing
B16F10 melanoma cells exhibited significantly decreased tumor
vascularization and growth, as well as increased survival compared
to themice harboring PAF-AH-deficient B16F10 tumors (35). These
studies provided the rationale to further define the contributions of
tumoral versus host PAFR signaling in melanoma development.

Given that ectopic PAF-AH expression in KS-Imm human
Kaposi’s sarcoma cells, or B16F10 melanoma cells resulted in
reduced neoangiogenesis and tumor growth in their respective
SCID and C56Bl/6J hosts, and that IFNg-stimulated PAF
synthesis enhanced the invasiveness of F10-M3, a clone of
B16F10 melanoma line (35, 36), the direct evidence of tumoral
PAFR in melanoma growth remained unclear as unlike many
human melanoma cell lines (37–40), murine B16F10 cells do not
express PAFR (41, 42). To address this question, our group
generated PAFR-expressing B16F10 melanoma cells and
demonstrated that regardless of the tumoral-PAFR expression,
systemic administration of a PAFR agonist, CPAF resulted in
increased growth of melanoma tumors in wild type (WT) mice,
but not in PAFR-deficient (PAFR-KO) counterparts (43). Using
environmental UVB exposure that generates PAF-agonists (to
mirror systemic immunosuppressive model), we observed that
similar to systemic CPAF injection, cutaneous UVB radiation
also significantly increased the growth of PAFR-deficient,
parental B16F10 tumor xenografts in WT hosts, and can be
blocked by antioxidants supplementation (43). Importantly, this
UVB-mediated increased growth of melanoma tumors was not
seen in PAFR-KO hosts (43). Along similar lines, we have also
shown that host activation of the host PAFR signaling augments
the in-vivo growth and metastatic ability of murine Lewis lung
carcinoma cells, yet these effects were not seen in PAFR-KO
hosts (44). These studies support an important role of the host
PAFR signaling in favoring the development and progression of
melanoma and lung tumors.

PAFR Expression in Tumor Proliferation
and Clinical Significance
As most malignant cells of murine and human origins such as the
Kaposi’s sarcoma, breast, prostate, lung, esophageal squamous
Frontiers in Endocrinology | www.frontiersin.org 3114
cell carcinoma, ovarian, and pancreatic cancers express PAFR
(40, 45–52), several studies have evaluated its relevance using
various experimental in vitro models, as well as in clinical
settings of cancer patients. Data from in vitro cellular models
indicate that regardless of the anatomical origins, genetic
backgrounds or the mechanisms involved, activation of tumoral-
PAFR or PAFR overexpression accelerate the proliferation,
aggressiveness, migration and invasion compared to respective
control cells in various cancer models (45, 49, 50). Of note,
multiple tumor cell lines expressing PAFR have been shown to
produce more PAF or undergo increased PAFR expression in
response to various stimuli including multiple growth factors and
therapeutic agents (39, 40, 42). These lines of evidence also suggest
that tumoral-PAFR expression could directly modulate the in vivo
tumor growth via inducing systemic immunosuppressive effects
mediated by more enzymatic PAF production by positive feed-
forward mechanisms. Of significance, high tumoral-PAFR
expression has also been detected in clinical settings of primary
as well as lymph nodemetastatic tumors compared to the matched
normal tissue (49, 50). High levels of tumoral PAFR expression
was found to be positively correlated with increasing tumor stages,
tumor status, tumor invasiveness, and poor prognosis in lung and
esophageal squamous cell carcinoma patients (49, 50).
Importantly, patients with high PAFR-expressing tumors
experienced significantly decreased overall survival compared to
the patients with low tumor PAFR expression (49, 50). Moreover,
increased PAF concentrations were also detected in tumor samples
of esophageal squamous cell carcinoma patients compared to
matched adjacent normal tissue (50). These studies suggested
the translational significance of tumoral PAFR expression in
impacting not only tumor progression but also affecting the
prognosis and overall survival of cancer patients.

PAFR Activation Blocking Anti-Tumor
Immune Responses
Immune and non-immune factors including inflammatory
milieu within the tumor microenvironment play significant
roles in fostering tumor growth, angiogenesis, and metastatic
progression (53). Given that PAFR activation is critical in both
acute inflammatory and delayed systemic immunosuppressive
effects, studies including ours have assessed its function in anti-
tumor immune responses. Among various immune cell types,
macrophages have been recognized for their contributions not
only in phagocytosis but also in pathological conditions such as
cancer. Macrophages express various receptors including for
immunoglobulin (e.g., IgG), endotoxin, phosphatidylserine
(PS) etc., which get stimulated upon the engulfment of
microbial organisms or their products to then mediate
proinflammatory signals. However, when apoptotic bodies are
presented, PS interaction with PS-receptor (PSR) on macrophages
induce anti-inflammatory signal (54, 55). Importantly, the
published reports have also shown that the clearance of
apoptotic cells by macrophages induces their differentiation into
a regulatory phenotype possessing immune suppressive function.
The scavenger receptor CD36 expressed on macrophages, binds to
oxidized low density lipoproteins (oxLDL) consisting of
phospholipids, which also act as ligands for apoptotic cells.
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Thus, CD36 mediates apoptotic cell recognition by macrophages
and facilitates its clearance (54, 55). As oxLDL mediated effects
were found to be blocked by PAFR antagonists, studies by Oliveira
et al., have demonstrated that blockade of PAFR or CD36
inhibited apoptotic cell phagocytosis (i.e., efferocytosis) by bone-
marrow derived murine macrophages (56). These studies have
also shown that this efferocytosis increased the colocalization of
CD36 and PAFR in the plasma membrane of macrophages (56).
Overall, the data indicate that apoptotic cell phagocytosis requires
the engagement of both CD36 and PAFR in lipid raft, which
induces macrophage differentiation into a regulatory phenotype.

Earlier studies have evaluated the role of PAF in macrophage
regulation via measuring its spreading ability ex vivo.
Macrophages were isolated from the peritoneal cavity of mice
bearing Ehrlich ascites tumor (EAT) tumors and treated with or
without PAF antagonist and added over glass coverslips.
Increased spreading of macrophages was observed within a
shorter period after tumor cell implantation. However, as
tumors continued to grow, the spreading of macrophages
derived from the normal (vehicle-treated) mice decreased, but
macrophages from PAF antagonist-treated mice maintained the
elevated levels of spreading (57).

Systemic treatment of PAF antagonists not only reduced the
in vivo growth of EAT but also restored the spreading capability
of macrophages (57). Importantly, PAFR antagonists have also
been shown to decrease the growth of B16F10 tumors as well as
the number of tumor-associated regulatory immunophenotypes
expressing galectin-3 (58). Based upon the stimuli and tumor
microenvironment, macrophages can acquire pro-inflammatory
(M1) or anti-inflammatory (M2) phenotypes. These findings
were supported by a recent report demonstrating that the in vivo
tumor growth of PAFR-expressing TC-1 carcinoma or PAFR-
deficient B16F10 melanoma were significantly reduced in PAFR-
KO compared to their WT counterparts. Interestingly, the
reduced growth of these tumor types in PAFR KO mice was
accompanied by increased infiltration of Gr-1+ neutrophils and
CD8+ T cells in B16F10 tumors, and CD4+ T cells in TC-1
tumors (59). In addition, both tumor types from PAFR KO mice
exhibited high frequency of CD11c+ M1 and decreased frequency
of CD206+ M2 macrophages consistent with higher iNOS, lower
arginase activity and IL-10 expression levels as compared to the
tumors implanted into WT mice (59). Overall, these findings
suggested that endogenous PAF-like molecules bind with
macrophages expressing PAFR, which then acquire more M2-
like phenotype (TAMs) in the tumor microenvironment to favor
tumor promotion. Importantly, a novel macrophage phenotype
(i.e., Mox) has also been identified from oxidized phospholipid-
treated murine macrophages, which possess distinct genetic
profiles characterized by overexpression of Nrf2-mediated
redox-regulatory genes, decreased phagocytic and chemotactic
capabilities (60). These studies indicated that Mox macrophages
could play critical roles in the development of development of
atherosclerotic lesion as well as chronic inflammation.

Notably, dendritic cells have been shown to express PAFR,
and its stimulation was found to result in increased production of
cytokines such as IL-10 and the prostaglandin PGE2 associated
Frontiers in Endocrinology | www.frontiersin.org 4115
with the regulatory phenotype in a process blocked by PAFR
antagonists (61). Our studies have also supported the
involvement of immune cells and PAFR in regulating the
tumor growth by demonstrating that PAFR activation did not
appreciably augment the growth of B16F10 melanoma tumors in
immunocompromised SCID mice (43). As other prominent
suppressive immunophenotypes which play critical roles in
host anti-tumor immune response are regulatory T cells
(Tregs), we have shown that increased growth of B16F10
tumors mediated via UVB-PAF agonists in syngeneic hosts
was correlated with upregulation of tumoral Tregs compared
to the sham-treated mice (43). Importantly, depletion of Tregs
via anti-CD25 Abs or neutralizing Abs against IL-10, a cytokine
secreted by immunosuppressive phenotypes including Tregs
significantly blocked both UVB- and CPAF-mediated increased
growth of B16F10 tumors compared to control groups of mice
injected with isotype control Abs (43). Similarly, these effects are
blocked by COX-2 inhibitors which appear critical for PAF-
mediated Treg generation (18, 42). Myeloid-derived suppressor
cells (MDSCs), a heterogeneous group of immature myeloid cells
have also been shown to favor tumor development via
mechanisms including the recruitment of other suppressive
immunophenotypes into the tumor microenvironment (62).
Given that murine MDSCs express CD11b and Gr-1 surface
markers, and that their depletion have been explored as potential
therapeutic approaches against solid tumors (reviewed in ref. 62),
we evaluated its role in mediating PAFR-dependent tumor
growth. Our studies found that UVB- or CPAF-mediated
increased growth of B16F10 melanoma tumors was blocked by
depleting MDSCs (via systemic injection of anti-Gr-1 Abs) (63).
Overall, these studies indicated the relative contributions of
several immune cell types in favoring tumor growth.

Multiple Therapies That Kill Tumor Cells
Generate PAF
That dying tumor cells could generate PAF ligands provided the
premise to explore the significance of PAFR signaling in the
therapeutic efficacies of anti-cancer agents with known cytotoxic
effects. Studies including ours have shown that multiple tumor
lines including melanoma, lung, lymphoma, pancreatic, and
nasopharyngeal carcinomas generate oxidized PAF agonists in
response to chemotherapeutic agents or radiation therapy, with
increased levels were detected in PAFR-expressing tumor cells
(41, 42, 52, 64). Importantly, increased tumoral PAFR expression
has also been detected upon the treatment of chemotherapy and
radiation therapy (39, 64). These findings led to the hypothesis
that systemic generation of PAF agonists via these therapies
could tolerize the tumor bearing mice due to their ability to
induce systemic immunosuppression, and thus, can impact their
therapeutic efficacies. Notably, one of the major challenges in the
medical oncology field is to define the mechanisms involved in
inducing tumor resistance to the ongoing therapeutic options for
cancer treatment, with the focus of devising novel approaches to
improve their effectiveness. To address this clinically relevant
question, ours and Sonia Jancar’s group have evaluated the
potential significance of this “bystander effect” generated by
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chemotherapeutic agents and radiation therapy using murine
cutaneous melanoma or squamous cell carcinoma (SCC) tumor
lines (41, 42, 64).

Consistent with the systemic immunosuppressive model, we
implanted two tumors into the flanks of mice, where one tumor
is treated with chemotherapy or radiation therapy and their
responses were evaluated on the growth of secondary-untreated
tumors. Our studies demonstrated that treatment of one tumor
resulted in increased growth of secondary tumor in a PAFR-
dependent manner in a process blocked by systemic
administration of antioxidants, cyclooxygenase type 2 (COX-2)
inhibitors or depleting antibodies against Tregs (41, 42).
Consistent with our findings, Jancar’s group have shown that
co-injection of irradiated TC-1 cells with TC-1 expressing
luciferase (TC-1 fluc+) in syngeneic hosts, or human PAFR-
expressing KBP cells with irradiated PAFR-deficient KBM cells
in immunocompromised mice resulted in increased tumor
growth compared to the mice co-injected with unirradiated
TC-1 cells with TC-1 fluc+ or KBM cells with irradiated KBM
cells (64). In another report, the same group investigated the
involvement of PAFR in tumor cell survival following radiation
therapy (65). They observed a dose-dependent increased
expression of the PAFR, increased generation of PAF agonists,
and secretion of PGE2 after radiation therapy in keratinocytes
(HaCaT), cervical cancer (C33, SiHa, HeLa), and squamous
carcinoma (SSC78 and SSC90) cell lines compared to their
respective unirradiated controls (65). Treatment with PAFR
antagonist CV3988 pre-radiation therapy reduced PGE2
secretion and increased tumor cell death compared to
untreated controls, indicating the tumor cells generate PAF
agonists to protect themselves from cell death (65).

Importantly, our studies have also detected an increased level
of PAFR activity in the perfusates collected post-chemotherapy
compared to pre-chemotherapy in melanoma patients using the
isolated limb chemoperfusion (42). Higher concentrations of
tumoral PAF were measured in post-radiation compared to pre-
radiation therapy treated basal cell carcinoma (BCC), bladder
cancer, or pseudo lymphoma patients (41). Increased tumoral
PAFR expression was detected in post-radiation therapy treated
compared to untreated cervical invasive carcinoma patients (64).
These studies suggest that PAF agonists generated via these
therapeutic agents impede treatment efficacies in a PAFR
dependent manner, and that PAFR serves to mediate pro-
survival responses to these agents.
Potential Pharmacologic Strategies
Several groups including ours have proposed PAFR as a
promising target to not only inhibit tumor growth but also to
increase the efficacy of therapeutic agents. This hypothesis has
been tested in multiple experimental models demonstrating that
genetic blockade of the PAFR (via studies in PAFR KO mice or
PAFR shRNAs) or pharmacologic PAFR antagonists significantly
reduced tumor burden, increased murine host survival, as well as
augmented the effectiveness of therapeutic agents compared to
their respective control groups (39, 41–44, 49, 50, 58, 64, 65).
While multiple structurally different but specific PAFR antagonists
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have been shown to exert promising effects against various
experimental tumor models (39, 58, 64, 65), none of these
agents have been explored in clinical settings of cancer patients.
Importantly, the structural analysis as well as anti-inflammatory
effects of several organic compounds (natural and synthetic) and
different classes of metal-based inhibitors of PAF have been tested
with the focus if these agents could exert anti-cancer properties
(66). The authors observed that while these metal-based inorganic
compounds possess a very promising class of anti-PAF and anti-
inflammatory drugs, the rhodium(III) PAF inhibitor Rh-1
exhibited the moderate cytotoxicity in HEK 293 cell lines, which
corroborates with its increased anti-inflammatory action (66).
Overall, these studies provided the rationale of designing and
exploring a new class of metal-based inhibitors of PAF. Another
recent review has summarized the effects and outcomes of major
synthetic PAF antagonists tested in clinical trials against several
disease pathologies (67). The overall outcomes of these clinical
studies are that majority of the synthetic PAF antagonists exerted
no significant effects in reducing the clinical symptoms in patients,
indicating the exploration of other compounds for their effects as
potent inhibitors of PAF or PAFR (67). Thus, other strategies such
as the inhibition of ox-GPC formation using antioxidants or the
PAFR-mediated immunomodulatory effects using COX-2
inhibitors could be alternative strategies. Finally, the role of
MVPs released from tumor cells as the potential source of
PAFR agonists could provide an alternative pathway which
could be amenable to aSMase inhibitors.
PAF IN CNS FUNCTION AND PATHOLOGY

Evidence for PAF System in CNS
Pathologies
At present, it is unclear whether the PAF system plays an
important functional role in the nervous system. Though PAF
injection into the skin has been reported to be painful (68–71),
much of the evidence linking the PAF system and
neuropathology is derived from studies of the central nervous
system (CNS). Previous work reported that PAFR agonists can
increase intracellular calcium concentration (72), inhibit
acetylcholine release in hippocampal slices (73), enhance
catecholamine release from cultured chromaffin cells (74),
inhibit ionotrophic GABA receptor activity in hippocampal
neurons (75), and enhance glutamate release from primary
hippocampal cultures (76). There is conflicting evidence with
regard to PAF’s role in long term potentiation (LTP), an example
of synaptic plasticity in which a synapse enhances its strength
typically resulting from high frequency stimulation. One study
reported PAF treatment can induce LTP in hippocampal slices at
similar potentiation level as that induced by high frequency
stimulation (77). However, these data could not be replicated in a
later study, in which they demonstrated that PAF alone could not
induce LTP in hippocampal slices (78).

Although the role of PAF in CNS function is unknown, the
PAF system has been implicated in multiple CNS pathological
states. Elevated PAF levels have been detected in and appear to
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correlate with severity of several CNS diseases. The association of
elevated PAF with Alzheimer’s Disease (AD), multiple sclerosis
(MS), cerebral infarction, cerebral ischemia-reperfusion injury,
and spinal cord injury has been recently reviewed (79). Moderate
increases of 20% in PAF were measured in healthy subjects as
they age over a 7.5 year period, whereas a greater than 60% average
increase in blood PAF levels was detected in AD patients (80).
Similarly, patients suffering from MS have elevated CSF as well as
plasma PAF levels as compared to healthy subjects (81). Increase
in hippocampal PAF levels was observed after evoked seizures in a
mouse model of temporal lobe epilepsy (82). Ischemia and
traumatic brain injury (TBI) have also been shown to result in
significant production of PAF contributing to the
pathophysiological events following ischemia or TBI (83–86).

In addition to increases in PAF levels, a reduction in PAF-AH
activity was observed in PD (87) and MS patients (88). PAF-AH
is an enzyme that degrades PAF and has been shown to be
upregulated in stroke patients likely as a response to elevated
blood PAF and PAFR agonist levels (86, 89). There is no clear
explanation for the reduction in PAF-AH measured in PD and
MS patients that were previously reported. The authors suggest
that there may additional lipid oxidation products during PD
andMS progression that may act to inhibit the PAF-AH and thus
inducing and/or augmenting the elevated PAF levels (87).
PAFR Activation and CNS Toxicity
Relevant to CNS pathologies, PAFR-mediated increases in
intracellular calcium levels and glutamate release can result in
excitotoxicity and apoptosis (82, 90, 91). On a tissue level, PAFR
are expressed in different regions of the brain including
hypothalamus, cerebral cortex, olfactory bulb, hippocampus,
brainstem and spinal cord (72). At the cellular level, PAFR is
expressed predominantly in microglia, the brain resident
immune cells (92, 93), but also found in neurons and other
glial cells such as astrocytes and oligodendrocyte progenitor cells
(72, 94–96). Though high (micromolar) levels of PAF can
certainly induce cell toxicity, PAF acts primarily through
PAFR. Indeed, its reported effects can be suppressed in the
presence of PAFR antagonists or no longer detected in a PAFR
knock-out mouse model. PAF-mediated increase in intracellular
calcium concentration (72) and neurotransmitter release (73, 74,
76) are no longer detected in the presence of PAFR antagonists.
In vivo administration of a PAFR antagonist (LAU-0901) in a
mouse model of temporal lobe epilepsy attenuated seizure
susceptibility and neuronal hyper-excitability as well as
reduced hippocampal damage (82, 96). The adverse CNS
effects following TBI were alleviated in mice deficient in PAFR
expression (97). Ischemic damage can be attenuated by
treatment with PAFR antagonist in rabbits (98). Preclinical
studies also showed that PAF signaling through PAFR is
involved in the dopaminergic neurodegeneration induced by 1-
methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as PAFR
knockout mice and mice treated with a PAFR antagonist did
not suffer neurological deficits from MPTP (99). Furthermore,
amyloid beta-induced neurotoxicity can be suppressed by
antagonizing PAFR (100, 101).
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Although the precise mechanistic steps by which PAF and
PAFR play a role in these CNS dysfunction are not yet clearly
defined, strong evidence indicates that PAF can induce or
enhance neuroinflammation by promoting microglia activation
thereby exacerbating disease states and neuronal injury in a
PAFR-dependent manner (92, 93). Exogenous application of
PAF was shown to induce a microglial chemotactic response that
was dependent on PAFR, as chemotaxis was not observed in the
presence of PAFR antagonist (WEB2086) or in PAFR deficient
mice (102). PAF-mediated activation of microglia is thought to
occur through an increase in intracellular calcium concentration
(103, 104). The source of the PAF-mediated calcium increase has
been reported to be primarily from endoplasmic reticulum stores
which in turn induce a more sustained increase in calcium by
activation of the store-operated calcium channels (SOCs)
(103, 104).

Excessive PAF can also disrupt the blood brain barrier (BBB)
via a PAFR-dependent mechanism (105–107). Rat brain
microvascular endothelial cells, an essential component of the
BBB, were shown to have increased PAF production when
exposed to hypoxia, consequently resulting in the breakdown
of BBB (105). There is evidence that similar to PAF effects on
microglia, this PAF-mediated BBB disruption occurs via an
increase in intracellular calcium (105, 107). However, unlike in
microglia, the source of PAF-mediated calcium increase in
microvascular endothelial cells is the influx of calcium ions
through L-type voltage-gated calcium channels, thereby
inducing depolarization, and ultimately resulting in increased
BBB permeability (107). Treatment with a PAFR antagonist
prevented the PAF-induced increase in calcium concentration
and prevented disruption in BBB permeability (105, 107).
MVP and CNS Pathologies
At present, there are no reports as to the identification of PAF-
containing MVP in the CNS. However, microglia release MVP
containing IL-1b within the CNS upon ATP stimulation (108).
Similar to the formation and release of MVP in other systems,
this process in microglia was found to be dependent on aSMase
(28). In the case of TBI, mice that were genetically deficient in
aSMase or pharmacologically treated with aSMase inhibitor
experienced significantly less adverse neurological effects at 1
month post injury (109). It is unclear whether these
microparticles also contain PAF or PAFR agonists in addition
to IL-1b.
Potential Pharmacologic Strategies
In summary, multiple studies have implicated the PAF system in
a number of neuroinflammatory and neurodegenerative
conditions. As these mechanisms are further elucidated, there
is potential for PAF and PAFR targeted therapeutics for various
CNS disorders. In particular, one area which has significant
promise as a therapeutic target relates to MVPs, which are likely
elevated in a broad range of CNS pathologies. It is presumed that
an enhanced understanding of the PAF system in CNS disorders
would be reflected upon the peripheral nervous system.
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PAF AND UVB RADIATION

Evidence Linking PAF System to UVB
There is accumulating data suggestive that the PAF system could
play a significant role in cutaneous pathophysiology, in
particular how the skin responds to exogenous environmental
stressors (110). Cell types in the skin such as the keratinocyte
(34), mast cell (111, 112), and multiple monocytic and
granulocytic cell types express PAFRs (113, 114). Of interest,
melanocytes, skin fibroblasts, and T cells do not, yet B cells
express PAFRs (34, 115, 116). Elevated PAFR agonist levels can
be detected following multiple pathophysiologic stressors
ranging from burn injury to X-radiation (41, 117, 118).
Moreover, PAF can be detected in cold urticaria (119),
immunobullous diseases such as bullous pemphigoid (120),
following sunburn (121), and in the skin disease psoriasis
(122). Consistent with the notion that PAF could exert
cutaneous effects, intradermal injection or topical application
of PAF onto skin results in an almost immediate painful
urticarial response (68–71).

Ultraviolet B radiation (290-320 nm; UVB) is a pro-oxidative
stressor which exerts profound cutaneous effects. Though only
appreciably absorbed in the epidermis, sunlight’s “burning rays”
are critical for vitamin Dmetabolism, yet, also generate sunburns
as well as both melanoma and non-melanoma skin cancer (8, 9,
123–126). Inasmuch as UVB generates anti-inflammatory effects
in skin, phototherapy is used clinically to treat a large number of
skin diseases including atopic dermatitis and psoriasis (9)..

Multiple lines of evidence link UVB with the PAF system.
UVB generates the production of PAF and ox-GPC with PAFR
agonistic activity (14). PAFR signaling is involved in two distinct
aspects of photobiology. First, PAFR activation has been
implicated in the early acute responses of UVB. In a murine
model of photosensitivity from deficiency of the DNA repair
enzyme xeroderma pigmentosum type A (XPA), UVB treatment
results in dramatically increased levels of ROS, as well as PAF
and ox-GPC formation (127). Moreover, UVB-mediated
exaggerated pro-inflammatory responses in XPA-deficient mice
are blocked by PAFR antagonists (127). Of interest, PAFR-
deficient epithelial cells and mice exhibit diminished acute
inflammation as well as decreased production of multiple
cytokines including tumor necrosis factor in response to UVB (71,
127–129). Second, UVB-mediated systemic immunosuppression
involves PAFR signaling via ox-GPCs (6–9, 112). Of note, UVB
induces both local immunosuppression (where a UVB-treated site is
anergic) in addition to systemic immunosuppression (where a non-
UVB-treated UVB site is anergic). UVB-mediated local
immunosuppression appears to involve dendritic cells, whereas
systemic immunosuppression involves mast cells and Tregs. It has
been reported by several groups that exogenous PAF is
immunosuppressive, and UVB-induced systemic immunosuppression
is attenuated by PAFR antagonists and absent in PAFR deficient mice
(6–9, 112). However, local immunosuppression is normal in PAFRKO
mice (129). As noted elsewhere in this review, exogenous PAF agonists
augment experimental melanoma tumor progression (41–43). Finally,
systemic PAFR antagonists have been reported to inhibit tumor
formation in a murine model of UVB photocarcinogenesis (130).
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PAF and UVB and MVP
Environmental stressors which produce PAF such as thermal
burn injury or UVB also cause the production and release of
MVP (24, 52, 131, 132). Indeed, MVP generated in response to
UVB or thermal burn injury by keratinocytes in vitro, human
skin ex vivo, and murine skin in vivo is dependent upon the
PAFR (24, 25). Finally, MVP produced in response to UVB or
thermal burn injury contain PAFR agonistic activity (24).

The picture that is emerging (see Figure 1) fits with the
hypothesis that UVB generates ox-GPC PAFR agonists, which in
turn act upon the PAFR-positive keratinocyte resulting in PAFR
activation. This PAFR activation then results in additional PAF
enzymatically, as well as increased ROS and thus more ox-GPC.
PAFR activation also translocates aSMase which then triggers
MVP release. The MVP which contain PAF and ox-GPC then
travel from the epidermis. One of the critical PAFR cell types
these UVB-generated MVP (UVB-MVP) encounter is the
dermal mast cell, which contributes to both UVB acute
responses as well as delayed systemic immunosuppression.

Potential Pharmacologic Strategies
Knowledge gaps which need to be addressed include the role the
PAF system and UVB-MVP in photosensitivity, as well as in
photocarcinogenesis. Of note, a human study using the COX-2
inhibitor celecoxib demonstrated decreased numbers of skin cancers
(133), which could be in part related to the ability of these agents to
block UVB-mediated systemic immunosuppression (6–9). Since
MVP generation and release can be modulated pharmacologically
by aSMase inhibitors such as imipramine (25, 29), addressing these
FIGURE 1 | Hypothetical model by which UVB generates PAFR agonists via
ROS which then result in PAF-laden MVP release. In this model, ROS
generated by UVB result in ox-GPC as well as enzymatic PAF synthesis.
These PAFR agonists act upon the PAFR resulting in MVP generation release
via acid sphingomyelinase activation. These MVP contain bioactive agents,
especially PAFR agonists which then can mediate UVB effects.
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knowledge gaps could result in novel strategies for managing
photodermatology disorders and photocarcinogenesis.
DISCUSSION

Though much has been learned about this class of lipid mediators
first described almost 50 years ago, significant knowledge gaps
remain. Several major hurdles have limited our understanding of
the PAF system. First, there is a tremendous heterogeneity of GPC
species produced enzymatically and even more via non-enzymatic
processes which can exert PAFR agonistic effects (5, 15).
Moreover, some members of the PAF family of mediators
include the 1-acyl species which are in much greater abundance
than 1-alkyl GPC, yet have much lower binding affinities and have
been suggested to act as antagonists (120, 134, 135). PAF is rapidly
metabolized, with a half-life in biological fluids measured in
minutes. Hence, it is challenging to be able to accurately
measure PAFR activity in biologic systems. A second issue that
potentially limits the study of, and ability to use pharmacologic
tools is also that PAFR antagonists are of much lower affinity than
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the most active PAF species, and that inhibitors of the biosynthetic
and inactivation enzymatic pathways are not available.

A relatively new area which could result in an enhanced
understanding of the PAF system relates to how PAF is released
from a host cell. Extracellular vesicles such as MVP appear to be
a logical mechanism for the release of PAF and multiple bioactive
molecules. Recent findings from our group indicate that PAFR
activation is a potent mediator for MVP generation/release, and
that these MVP contain PAFR agonistic activity (24). Inasmuch
as MVP formation can be blocked by aSMase inhibitors, this
allows another potential level of pharmacologic intervention.
Future studies should provide new insights into the PAF system
which should result in novel targets for diseases of the skin as
well as for other systemic disorders.
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Earlier studies investigating the pathogenesis of chronic vascular inflammation associated
with atherosclerosis described pro-inflammatory and vascular barrier disruptive effects of
lipid oxidation products accumulated in the sites of vascular lesion and atherosclerotic
plaque. However, accumulating evidence including studies from our group suggests
potent barrier protective and anti-inflammatory properties of certain oxidized
phospholipids (OxPLs) in the lung vascular endothelium. Among these OxPLs, oxidized
1-palmitoyl-2-arachdonyl-sn-glycero-3-phosphocholine (OxPAPC) causes sustained
enhancement of lung endothelial cell (EC) basal barrier properties and protects against
vascular permeability induced by a wide variety of agonists ranging from bacterial
pathogens and their cell wall components, endotoxins, thrombin, mechanical insults,
and inflammatory cytokines. On the other hand, truncated OxPLs cause acute endothelial
barrier disruption and potentiate inflammation. It appears that multiple signaling
mechanisms triggering cytoskeletal remodeling are involved in OxPLs-mediated
regulation of EC barrier. The promising vascular barrier protective and anti-inflammatory
properties exhibited by OxPAPC and its particular components that have been
established in the cellular and animal models of sepsis and acute lung injury has
prompted consideration of OxPAPC as a prototype therapeutic molecule. In this
review, we will summarize signaling and cytoskeletal mechanisms involved in OxPLs-
mediated damage, rescue, and restoration of endothelial barrier in various
pathophysiological settings and discuss a future potential of OxPAPC in treating lung
disorders associated with endothelial barrier dysfunction.

Keywords: oxidized phospholipids, OxPAPC, endothelial barrier, inflammation, lung injury, Rho GTPases, receptor
INTRODUCTION

In various pathological conditions, especially during inflammation and oxidative stress, circulating
and cell membrane phospholipids undergo oxidation to form a diverse group of oxidized
phospholipids (OxPLs). These bioactive OxPLs possess profound biological activities and exert
both beneficial and harmful effects on human body governed by their biochemical and biophysical
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properties. It has been long recognized that OxPLs accumulate in
atherosclerotic lesions (1–3), and later studies have shown
OxPLs elevation in other cardiopulmonary disorders driven by
increased inflammatory responses [Reviewed in (4)]. However,
emerging evidence suggests that OxPLs not only induce and
propagate inflammatory response but may also contribute to the
host response, resolution of inflammation and protection of
vascular endothelial barrier properties (5). Endothelial cell
(EC) lining of the vascular lumen forms a barrier that controls
the passage of fluids, macromolecules, and immune cells between
the blood and underlying tissue. The disruption of this selective
and semi-permeable barrier results in uncontrolled passage of
harmful substances leading to the development of pulmonary
edema and acute lung injury (ALI) observed in many disorders:
sepsis, severe infection, trauma, toxin inhalation, etc., and
culminating in acute respiratory distress syndrome (ARDS)
(6, 7). OxPLs play a dual role in regulating endothelial
function: some species of OxPLs have been involved in
enhancing endothelial barrier integrity while others increased
endothelial permeability. The wide structural heterogeneity of
OxPLs has been suggested to be responsible for their contrasting
biological activities (8, 9). For instance, full length oxidation
products of a major membrane phospholipid 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC, focus of
this review) possess potent endothelial barrier protective and
anti-inflammatory properties (10). On the other hand, truncated
or fragmented products of PAPC oxidation induce acute
endothelial barrier disruption and inflammation (11). Multiple
signaling pathways including receptor-mediated and cytoskeletal
reorganization have been implicated in OxPAPC-induced
upregulation of endothelial function which will be discussed in
detail in the following sections.
GENERATION OF OxPLs

A diverse spectrum of OxPLs are generated from the oxidation of
phospholipids that contain polyunsaturated fatty acids (PUFA)
at their sn-2 position. PUFAs are highly prone to oxidative
modifications by a group of specific enzymes such as
cyclooxygenases (COX) and lipoxygenases (LOX) or reactive
oxygen species (ROS)-mediated non-enzymatic lipid oxidation
(9, 12, 13). Briefly, fatty acids such as arachidonic acid (AA) and
linoleic acid (LA) are released from membrane phospholipids by
phospholipase A2 (PLA2). In turn, COX-mediated oxidation of
AA produces prostaglandins (PGs) and thromboxanes whereas
LOX-catalyzed metabolic pathways yield leukotrienes, lipoxins,
resolvins, protectins and eoxins. Multiple studies have shown the
Abbreviations: AJ, adherens junction; ALI, acute lung injury; ARDS, acute
respiratory distress syndrome; COX, cyclooxygenases; EC, endothelial cell; FA,
focal adhesion; LOX, lipoxygenases; LPS, bacterial lipopolysaccharide; MLC,
myosin light chain; MYPT1, myosin phosphatase 1; OxPLs, oxidized
phospholipids; OxPAPC, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-
phosphorylcholine; PGs, prostaglandins; ROS, reactive oxygen species; S1P,
sphingosine 1-phosphate; TLR, toll-like receptor; TJ, tight junction; TNF-a,
tumor necrosis factor-a; VEGF, vascular endothelial growth factor; VILI,
ventilator-induced lung injury.
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modulation of endothelial function by PGs but it is out of the
scope of this manuscript. Briefly, PGI2, PGE2 and PGA2
exhibited potent, although transient barrier protective activities
in pulmonary endothelium in comparison to OxPAPC effects
(14, 15). These PGs enhanced endothelial barrier by stimulating
cAMP production leading to PKA-dependent activation of Rac
and PKA-independent activation of Epac/Rap1/Rac1 signaling
cascade (14). PGE2, PGI2, and PGA2 also protect against
thrombin-induced hyperpermeability in vitro and LPS-induced
lung injury in vivo (15, 16). Similarly, PGD2 has been shown to
enhance endothelial barrier function and protect against ALI
(17–19). Furthermore, stable analogs of PGs such as beraprost
and iloprost possess protective and anti-inflammatory activities
in pulmonary endothelium (20–23). Both COX and LOX are
involved in the generation of hydroxyeicosatetraenoic acids
(HETEs) from AA oxidation and hydroxyoctadecadienoic acids
(HODEs) from LA oxidation. Free radicals-mediated non-
enzymatic oxidation of phospholipids produces a heterogenous
mixture of bioactive OxPLs species through the classical pathway
of lipid peroxidation characterized by initiation, propagation,
and termination steps (24).

PAPC, a major membrane phospholipid, undergoes oxidation
resulting in generation of wide varieties of full length as well as
fragmented oxidized products. The full-length OxPAPC
products contain same number of carbon atoms in oxidized
arachidonic fatty acid chain as in their precursor. Examples of
such products include 1-palmitoyl-2-(5, 6-epoxyisoprstane E2)-
sn-glycero-3-phosphatidyl choline (PEIPC) and 1-palmitoyl-2-
(5,6 epoxycyclopentenone) sn -glycero-3-phsphocholine (5,6-
PECPC), among others. Conversely, fragmented OxPAPC
products are oxidatively truncated at the sn-2 position. 1-Palmitoyl-
2-(5-oxovaleroyl)-sn-glycero-phosphatidylchonine (POVPC),
1-palmitoyl-2glutaroyl sn-glycero-phosphocholine (PGPC),
1-(palmitoyl)-2-(5-keto-6-octene-dioyl)phosphatidylcholine
(KOdiA-PC) represent examples of such products (25). Besides
phosphatidylcholine, other phospholipids containing different
polar groups such as 1-palmitoyl-2-arachidonoyl-sn-glycero-
3-phosphatidylethanolamine (PAPE) and 1-palmitoyl-
2-arachidonoyl-sn-glycero-3-phosphatidylserine (PAPS) are
also subjected to oxidative modifications and exhibit similar
effects on endothelial barrier regulation and inflammation (15).
Furthermore, lipid peroxidation also results in the production
of 4-hydroxy-2-nonenal (4-HNE) and malondialdehyde
(MDA) (24).
CONTRASTING EFFECTS OF OxPLs ON
ENDOTHELIAL FUNCTION

A continuous monolayer of EC covers vascular lumen and
provides a highly selective semi-permeable barrier between the
circulation and underlying tissues. EC barrier controls the
passage of fluids, solutes, and cells across the vascular
endothelium. Various injurious stimuli disrupt the endothelial
barrier integrity leading to an increased endothelial permeability
for macromolecules and immune cells that is a hallmark of
November 2021 | Volume 12 | Article 794437
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numerous disorders such as pulmonary edema, ARDS, sepsis,
and other pathologies (26–29). Bioactive lipid mediators may
have both, positive and negative impact on endothelial barrier
function (Figure 1). The principal reason behind the contrasting
effects of various species of OxPLs is best explained by structure-
function analysis. It appears that different molecular species
present in OxPAPC govern its function on endothelial barrier.
Precisely, full-length OxPLs species such as PEIPC and PECPC
mediate barrier protective and barrier-enhancing effects of
OxPAPC whereas sn-2-fragmented OxPLs such as PGPC and
POVPC induce endothelial permeability (11, 30). Likewise, polar
head groups present in OxPAPC also modulate its barrier
function. OxPLs with negatively or positively charged polar
head groups such as oxidized phosphocholine and
phosphoserine exerted potent and sustained barrier-protective
effects (31). But oxidized glycerophosphate lacking polar head
group had only transient EC barrier protective effects (31).

A role of OxPLs in various cardiopulmonary disorders
including ALI (32), ARDS (33), pulmonary hypertension (34),
asthma (35), and cystic fibrosis (36) has been suggested by many
studies showing the presence of elevated levels of lipid
peroxidation products. Furthermore, OxPLs have a direct
impact on EC function, as evidenced by OxPLs-driven effects
in chronic vascular inflammation associated with atherosclerosis
and manifested by enhanced adhesion of monocytes to EC,
augmented expression of several inflammatory genes and
secretion of inflammatory cytokines and chemokines such as
interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1)
(2, 8, 37). OxPLs are also shown to cause pro-thrombotic
phenotype of EC (38, 39) and act as potent oxidative stress
inducers in EC (40, 41).

In contrast to these pathological roles of OxPLs, multiple
studies have demonstrated potent anti-inflammatory and
Frontiers in Endocrinology | www.frontiersin.org 3126
endothelial barrier protective functions of OxPLs in host
defense against bacterial pathogens. Init ial studies
demonstrated a protective role of OxPAPC against endothelial
dysfunction caused by bacterial wall lipopolysaccharide (LPS) in
cultured EC as well as in murine models of ALI (30, 38, 39). Later
studies have reported the involvement of OxPAPC in rescue and
repair of endothelial function disrupted by various injurious
factors: live and killed bacteria, components of bacterial wall,
edemagenic agonists (thrombin), inflammatory cytokines
(TNFa, IL-6), and pathologic mechanical forces: high
amplitude cyclic stretch, disturbed flow [Reviewed in (42)].
Several signaling pathways mediating beneficial effects of
OxPLs have been described in endothelium (14). Anti-
inflammatory roles of OxPAPC have been summarized in our
recent reviews (10, 42). This review will solely focus on
OxPAPC-mediated endothelial barrier function.
MECHANISMS OF OxPAPC-INDUCED
ENHANCEMENT OF ENDOTHELIAL
BARRIER FUNCTION

Endothelial barrier is a dynamic structure that constantly
undergoes remodeling in response to mechanical forces and
various agonists that positively or negatively regulate barrier
function. Altered expression of cell junction proteins, the
assembly-disassembly dynamics of adherens junction (AJ -
VE-cadherin, a, b, g, and p120-catenins, nectin) and tight
junction (TJ - claudin-5, ZO-1, 2, 3, afadin) protein complexes
and reorganization of endothelial cytoskeleton in response to
chemical and mechanical stimulation are the major determinants
of endothelial barrier integrity. While barrier-disruptive insults
(edemagenic agonists or high magnitude cyclic stretch) stimulate
FIGURE 1 | Dual role of phospholipids in endothelial function. Full-length oxidized products of phospholipids and some groups of PGs enhance endothelial barrier
integrity. In turn, truncated OxPLs and some products of arachidonic acid such as thromboxane and leukotrienes disrupt endothelial barrier.
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stress fiber formation, actomyosin contraction, disassembly of
cell junction complexes leading to cell retraction and formation
of inter-cellular gaps, barrier-enhancing agonists (OxPAPC,
hepatocyte growth factor, sphingosine 1-phosphate) or
physiologic mechanical forces (laminar flow, low magnitude
cyclic stretch) stimulate enhancement of cortical cytoskeleton,
assembly and cooperation of AJ and TJ protein complexes (43,
44). Remodeling of cell junctions and actomyosin cytoskeleton is
precisely controlled by signaling protein kinases and
small GTPases.

Receptor-Mediated Pathways
A number of receptor-associated signaling pathways mediating
OxPAPC actions on lung endothelium has been described. The
earlier studies discovered important anti-inflammatory effects of
OxPAPC via interference with toll-like receptors (TLRs)
inflammatory signaling cascade activated by LPS (45, 46).
Analysis of OxPAPC-mediated endothelial barrier enhancing
mechanisms revealed Akt-dependent transactivation of
sphingosine 1-phosphate receptor 1 (S1P1) via threonine
phosphorylation in caveolin-enriched microdomain that
stimulated Rac1- and Rap1-dependent pathways of peripheral
F-actin and cell junction enhancement (47). The role of caveolin
and S1P1 in mediating the protective effects of OxPAPC was
further verified in vivo in VILI-induced lung injury where
siRNA-mediated knockdown of caveolin or S1P1 abolished the
OxPAPC-mediated protection of vascular leak (47). Further
analysis elaborated that OxPAPC-induced activation of S1P1 is
dependent on the binding of OxPAPC to HTJ-1, a co-factor of
cell surface receptor GRP78 (48). siRNA-mediated depletion of
HTJ-1 in EC abolished OxPAPC-induced cortical actin
formation and knockdown of mouse HTJ-1 homologue
suppressed the protective effects of OxPAPC against IL-6 or
VILI-induced lung vascular leak (48). Prostaglandin E receptor-4
(EP4) also appears to be involved in endothelial barrier-
enhancing responses of OxPAPC as recent study demonstrated
that EP4 mediates sustained phase of OxPAPC-induced barrier
protective effects (49). A selective role of EP4 in mediating
OxPAPC effects was established by the findings that OxPAPC
specifically increased EP4 mRNA expression levels in EC and
inhibitors targeting EP4 but no other receptors such as EP1-3,
PGI2, PGF2, PGD2, and thromboxane had no inhibitory effects
on OxPAPC-induced enhancement of EC barrier (49). The role
of EP4 in mediating the protective effects of OxPAPC was further
established in murine model of ALI as OxPAPC-administered
endothelial specific EP4 knockout mice failed to recover from
LPS-induced vascular leak and inflammation (49). We recently
reported that lipoxin A4 formyl peptide receptor-2(FPR2/ALX)
is involved in OxPAPC-induced protection against endothelial
permeability caused by TNF-a (50). The endogenous depletion
of only FPR2 but no other FPR subtypes inhibited OxPAPC-
mediated attenuation of TNF-a-induced increase in endothelial
permeability and inflammation suggested the specific
involvement of FPR2. Moreover, FPR2 specific inhibitor and
FPR2 knockout mice showed reduced inhibition of LPS-induced
ALI by OxPAPC further confirmed an essential role of FPR2 in
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mediating protective effects of OxPAPC (50). Interestingly, FPR2
depletion did not have any inhibitory effects on OxPAPC-
induced protection against thrombin-caused EC permeability,
suggesting that FPR2 dependent protective pathways also rely on
the nature of agonist (e.g., acute vs. chronic effects) that requires
further investigations.

Rho GTPases-Mediated
Cytoskeletal Remodeling
Ras superfamily of small GTPases specifically Rho GTPases
(RhoA, Rac1 and Cdc42) and Rap1 are critical regulators of
endothelial barrier in physiological and pathological conditions
(51). These GTPases control endothelial permeability by cycling
between GTP-bound active and GDP-bound inactive states
thereby driving the reorganization of EC junction-associated
actin cytoskeleton (52, 53). Among the GTPases, RhoA
mediates endothelial barrier disruption caused by various
agents while Rac, Cdc42 and Rap1 are involved in maintaining
and protecting EC barrier (44, 51, 52, 54). Our initial study
showed that cytoskeletal remodeling driven by the combined
activation of Rac1 and Cdc42 mediates OxPAPC-induced
upregulation of endothelial barrier function (30). The follow-up
study revealed that Rac/Cdc42-specific guanine nucleotide
exchange factors (GEFs) Tiam1 and betaPIX are involved in
Rac-mediated endothelial barrier protective effects of OxPAPC
(55). The mechanistic analysis demonstrated that a novel
interaction between focal adhesion (FA) and AJ complexes
facilitated by the association of paxillin and beta-catenin is
essential for Rac/Cdc42-dependent barrier protective responses
of OxPAPC (56). Furthermore, Rac effector p21-activated kinase
(PAK1)-mediated phosphorylation of paxillin serves as a
positive-feedback regulatory pathway contributing to sustained
enhancement of endothelial barrier by OxPAPC (57). A further
evidence of crucial role of Rac signaling in mediating barrier
protective effects of OxPAPC was substantiated by our recent
study where knockdown of Rac1/Cdc42 effector IQGAP1
inhibited OxPAPC-induced enhancement of endothelial barrier
by suppressing membrane accumulation of AJ proteins VE-
cadherin and p120-catenin, and cortactin (58). Consistent with
the role of RhoA in endothelial barrier disruption, Rac-mediated
barrier protective effects of OxPAPC were achieved by the
activation of p190RhoGAP, a negative regulator of RhoA (59).
Briefly,OxPAPC-stimulatedECs showed tyrosine phosphorylation
and peripheral translocation of p190RhoGAP leading to its
association with AJ protein p120-catenin. More importantly,
knockdown of p190RhoGAP abolished the protective effects of
OxPAPC against the vascular leak induced by pathological cyclic
stretch in vitro and ventilator-induced lung injury (VILI) in vivo
(59). Later studies have shown that interaction of p120-cateninwith
p190RhoGAP was essential for the recruitment of the latter at cell
periphery to inhibit Rho signaling (60). This notionwas established
from the findings that transient expression of p120-cateninmutant
lacking 820-843 amino acids residues at C-terminal domain
inhibited membrane translocation of p190RhoGAP causing an
attenuation of OxPAPC-induced endothelial barrier
enhancement resulted from the sustained activation of Rho
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signaling and suppression of Rac1 (60). In addition to Rac1/Cdc42,
Rap1 is also involved in mediating the barrier protective signals of
OxPAPC.Membrane accumulationand increased associationofAJ
proteinsVE-cadherin, p120-catenin, andb-catenin andTJ proteins
ZO-1,Occludin, and JAM-Awere dependent onOxPAPC-induced
Rap1 activation (61). An important role of Rap1 in OxPAPC-
induced beneficial effects on vascular endothelium was further
substantiated by the findings that Rap1 knockdown suppresses
OxPAPC-derived enhancement of EC barrier and represses
OxPAPC-induced protection against VILI (61). Our study also
demonstrated an essential role of Afadin during Rap1-mediated
barrier protective responses of OxPAPC (62). In this regard,
OxPAPC treatment of ECs caused Rap1-dependent accumulation
ofAfadin at cell periphery and its increased associationwithAJ and
TJ proteins- p120-catenin and ZO-1, respectively (62).
Consistently, siRNA-mediated knockdown of Afadin or Rap1
binding-defective mutant of Afadin inhibited OxPAPC-induced
enhancement of endothelial barrier andAfadin-depletedmicewere
no longer protected byOxPAPC against VILI-caused vascular leak.
Lastly, one of our studies have suggested an existence of Rho
GTPase-independent interaction of junction proteins that play a
role in OxPAPC-induced positive regulation of endothelial barrier
function. In this line, mechanosensitive adaptor protein vinculin
seems to be an important regulator of OxPAPC-induced
endothelial barrier protection via its interaction with AJ protein
VE-cadherin (63). The direct activation of Rac1 and Rap1 by
OxPAPC leading to enhanced assembly of endothelial cell
junction complexes and cytoskeletal remodeling leading to
strengthening of endothelial barrier are the best known two
critical mechanisms of OxPAPC-induced positive regulation of
endothelial barrier (Figure 2).
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Intracellular Signaling Pathways
A role of intracellular signaling pathways involving various
kinases has also been described to mediate the barrier
protective signals of OxPAPC. OxPAPC-stimulated ECs
showed time-dependent activation of protein kinase A (PKA),
protein kinase C (PKC), Raf-MEKMAP kinase cascade, and JNK
MAP kinase (64). Furthermore, OxPAPC treatment also induced
a transient increase in global tyrosine phosphorylation and Src
kinase-dependent phosphorylation of FA proteins- paxillin and
FA kinase in EC (64). By employing pathways-specific
pharmacological inhibitors, our study showed that PKA, PKC,
Src family kinases, and tyrosine kinases play essential roles
during OxPAPC-induced enhancement of endothelial barrier
(14). The same study ruled out the involvement of Rho kinase,
PI3 kinase, and p38 MAP kinases in mediating Rac-mediated
barrier enhancing responses of OxPAPC. OxPAPC has been
shown to induce the expression of anti-inflammatory proteins
such as heme oxygenase-1 via activation of PKA, PKC, and MAP
kinase pathways (65), and via Nrf2 activation (66) but its impact
on endothelial barrier function needs to be investigated. An
elevation of cAMP levels via PKA-mediated or PKA-
independent and Rap-mediated pathways induced by OxPAPC
are also suggested to play roles in barrier protective effects of
OxPAPC (14). Figure 2 demonstrates a network of signaling
pathways activated by OxPAPC and involved in EC barrier
regulation. Of note, EC barrier protective effects of OxPAPC
seems to vary among different EC types. In general, EC of
microvascular origin tend to be more sensitive towards
OxPAPC effects with more pronounced protective effects
against agonist-induced permeability (67). It will be interesting
to study if a variation of OxPAPC effects exists in the
FIGURE 2 | Mechanisms of OxPLs-mediated regulation of endothelial barrier. OxPAPC-induced activation of S1P1 in Akt or GRP78-dependent manner leads to an
increased interaction between various AJ, TJ, and FA proteins resulting in enhancement of endothelial barrier integrity. Similarly, OxPAPC-mediated activation of
Rac1 and Rap1 induces cytoskeletal reorganization favoring stabilized junctional assembly. On the other hand, truncated OxPLs-stimulated EC produce ROS that
activates Src which phosphorylates tyrosine residues in VE-cadherin causing its internalization, degradation, and ultimately leading to disrupted endothelial barrier.
Src also activates VEGFR2 that induces endothelial permeability via enhanced actomyosin contractility caused by increased myosin light chain phosphorylation.
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endothelium from different vascular beds such as lung, heart,
and brain.
MECHANISMS OF OxPLs-INDUCED
DISRUPTION OF ENDOTHELIAL BARRIER

As discussed above, truncated products of phospholipids
oxidation possess endothelial barrier disruptive properties.
Moreover, even OxPAPC at higher concentration (≥ 50 µg/ml)
causes barrier disruption as opposed to its barrier enhancing
function at lower concentrations (5-20 µg/ml) (11, 68). These
contrasting biological effects of OxPLs on lung endothelium are
largely due to the different signaling pathways activated by them.
This notion was best exemplified by one of our studies where the
same protein vinculin associated with two distinct proteins- with
FA protein talin during thrombin-induced barrier disruption
and with VE-cadherin during OxPAPC-induced barrier
enhancement (63). The selective activation of various signaling
pathways depending on the dose and structural variations of
OxPLs appears to be the primary determinants of their
biological function.

Role of Vascular Endothelial Growth
Factor Receptor 2 (VEGFR2)
The binding of VEGFA to VEGFR2 results in the
phosphorylation of the latter leading to the signaling cascades
that regulate endothelial survival, proliferation, and migration
but VEGFR2 activation is also linked to increased endothelial
permeability (69, 70). Interestingly, OxPLs are shown to activate
VEGFR2 in EC in Src-dependent manner (71). A role of
VEGFR2 in OxPLs-induced endothelial barrier disruption was
revealed by our study where only higher concentrations of
OxPAPC increased endothelial permeability via VEGFR2
activation (72). Mechanistically, higher OxPAPC dose-induced
endothelial barrier disruption was accompanied by Rho
activation-led increased actomyosin contractility evidenced by
increased phosphorylation of myosin phosphatase (MYPT1) and
myosin light chain (MLC) that were attenuated by siRNA-
mediated knockdown of VEGFR2 (72).

Reactive Oxygen Species (ROS)-Mediated
VE-Cadherin Phosphorylation
VE-cadherin is the major adhesive protein present in human EC
that is critically essential for maintenance of endothelial barrier
integrity (73). Tyrosine phosphorylation of this AJ protein leads
to its disassociation from the complex with catenin proteins
resulting in increased endothelial permeability (74). ECs treated
with higher doses of OxPAPC showed the increased tyrosine
phosphorylation of VE-cadherin at tyrosine-658 and tyrosine-
731 that was absent in cells treated with low, barrier enhancing
doses of OxPAPC (68). The endothelial barrier disruption
induced by higher doses of OxPAPC was associated with
increased protein tyrosine phosphorylation, activation of Src
with phosphorylation at tyrosine 418 and dissociation of VE-
cadherin complex with p120- and b-catenin. Furthermore, only
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high doses of OxPAPC exceeding 50 µg/ml exposure to EC
resulted in elevation of ROS levels and anti-oxidant N-acetyl
cysteine rescued endothelial barrier disruption caused by
OxPAPC (68). An identical pathway of ROS production, Src
activation, and VE-cadherin phosphorylation at tyrosine 658 and
731 was observed in ECs treated with PGPC, a truncated OxPLs
product (11). Likewise, particulate matter-induced endothelial
barrier disruption that is associated with increased production of
truncated OxPLs involves similar mechanisms of increased
oxidative stress-mediated tyrosine phosphorylation of VE-
cadherin (75). Thus, ROS-mediated activation of Src followed
by tyrosine phosphorylation of VE-cadherin leading to its
internalization and degradation appears to be a unifying
mechanism of OxPLs-induced endothelial barrier disruption.
OxPLs IN ENDOTHELIAL DYSFUNCTION-
DERIVED LUNG DISEASES

It is now widely accepted that OxPLs play dual roles on
regulating the function of vascular endothelium and thus they
can be either potentially developed into therapeutics or utilized
as targets of therapeutic interventions for various cardiopulmonary
diseases that are developed secondary to endothelial dysfunction.
In particular, with its proven endothelial barrier-protective and
anti-inflammatory activities against a broad spectrum of
injurious insults such as bacterial pathogens (76), thrombin
(30), LPS (45, 77, 78), and mechanical forces represented by
VILI or cyclic stretch (67), OxPAPC holds a strong therapeutic
potential against these agonists-induced ALI, ARDS and
sepsis. The central role of Rac/Rap1-mediated cytoskeletal
reorganization in OxPAPC-induced upregulation of endothelial
barrier function makes this molecule attractive therapeutic
candidate since the activation of these GTPases act as a
common platform for conveying barrier enhancing signals
originating from numerous barrier protective agents. The
involvement of a number of receptors and kinases in
mediating the beneficial actions of OxPAPC on the lung
endothelium further provides the opportunity to consider these
multiple molecules and associated pathways for the therapeutics.

Some OxPLs products are detected at the site of tissue injury,
inflammation and their deleterious effects on vascular
endothelium has been well documented (2, 4). More recent
studies suggest that these groups of OxPLs can also act as
secondary injurious insults and exacerbate endothelial
dysfunction. For instance, EC or mice lungs exposed to
particulate matter from polluted air resulted in the generation
of truncated OxPLs species such as POVPC, PGPC, and lyso-PC
that caused acute endothelial barrier disruption (75).
Furthermore, when combined with suboptimal dose of
particulate matter that does not cause endothelial barrier
dysfunction on its own, OxPLs augmented endothelial
permeability, indicating their additive role in exacerbation of
endothelial function in pre-existing disease conditions. This
phenomenon was further evident with the presence of higher
basal level of truncated OxPLs in aged mice and corresponding
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enhanced increase and delayed clearance of these phospholipids
in LPS-treated aged mice compared to their younger
counterparts (79). Aged mice were more susceptible to TNF-a-
induced lung injury and non-toxic dose of POVPC when
combined with TNF-a caused similar levels of lung
inflammation. These observations suggest that generation of
truncated OxPLs and their additive harmful effects with
inflammatory agents further exacerbate lung injury/
inflammation in aged population who may already have
impaired anti-oxidant system. The definite role of truncated
OxPLs as secondary injurious agonist was established by the
selective removal of these lipids with platelet-activating factor
acetyl hydrolase 2 (PAFAH2) which specifically hydrolyzes
truncated OxPLs. The overexpression of PAFAH2 in EC
rescued particulate matter- or inflammatory cytokines-induced
endothelial barrier disruption, while pharmacological inhibition
of PAFAH2 worsened lung injury in TNF-a-challenged mice
(75, 79). A few other studies have also reported the presence of
higher levels of truncated OxPLs in aged mice (80, 81), and
increased production of fragmented phosphatidylcholine in
human blood plasma as well as higher levels of ester-linked
but lower level of ether-linked phosphatidylcholine in aged
human individuals (82, 83). The changes in the levels of lipid
profile of ester- vs ether-linked with aging has been attributed as
a potential risk factor for the development of various diseases in
elderly population. Specifically, ether-linked phospholipids are
known to possess anti-oxidant activity and decreased serum
levels of these PLs is linked to type 2 diabetes and
hypertension (84, 85). Likewise, the oxidation of mitochondrial
phospholipid cardiolipin has been shown to contribute to EC
necrotic death and increased permeability (86), and hyperoxic
lung injury (87). The profile of cardiolipin also undergoes
changes with ageing as evidenced by the decrease of total
cardiolipin content in mitochondria accompanied by an
increase in oxidized forms in heart and brain from aged rats
(88, 89). All of these findings suggest that altered lipid profile
caused by excessive accumulation of bioactive truncated OxPLs
due to exaggerated oxidative stress during aging may play a
critical role in propagating associated adverse pathologies. On a
positive note, targeting such lipid program switch to selectively
inhibit the production or remove pre-formed harmful OxPLs
products may provide a potential therapeutic avenue.
FUTURE DIRECTIONS OF OxPL
RESEARCH AND CLINICAL
APPLICATIONS

Although OxPLs oxidized in vitro are increasingly recognized for
their anti-inflammatory and lung barrier-protecting activities in
vitro and in vivo, they have a number of serious limitations
precluding their therapeutic use. PAPC oxidation in vitro yields a
complex, structurally diverse mixture of OxPLs. Such natural
OxPLs are ineffective for in vivo therapy due to their various
shortcomings. First, natural OxPLs with either barrier-protective
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or barrier-disruptive properties are rapidly degraded by
phospholipases A that are very abundant in blood plasma,
tissues, and cells. Second, natural OxPL mixtures contain a
large proportion of oxidatively fragmented molecular species
which demonstrate low anti-inflammatory activity in
combination with increased toxicity and unwanted effects such
as disruption of lung endothelial barrier. Therefore, engineering
and synthesis of novel class of phospholipase-resistant
phospholipids that have enhanced stability and better
biological activities could lead to the discovery of effective
drugs that preserve and protect endothelial function and
ultimately can be used in the prevention and treatment of
endothelial dysfunction-driven diseases. To overcome these
limitations, we designed, synthesized, and experimentally
tested biological properties of a phospholipase resistant
phospholipid incorporating a prostaglandin I2 stable analog
iloprost (ILO) as a prototype synthetic phospholipid
compound with barrier-protective and anti-inflammatory
properties (90). Such incorporation of ILO into synthetic
phospholipid backbone led to more prolonged EC barrier
enhancement and more pronounced anti-inflammatory effect,
credited to its ability to cause a prolonged activation of Rap1 and
Rac. In our continued efforts to synthesize such optimal
phospholipids derivatives, recently an alkyl-amide OxPLs was
synthesized that retained endothelial barrier enhancement and
anti-inflammatory effects (91). As demonstrated by these
examples, chemically modified phospholipase-resistant
phospholipids may exhibit simultaneously two types of
activities. First, these compounds inhibit signaling induced by
TLRs (92). Second, these synthetic compounds enhance vascular
endothelial barrier, reverse action of edemagenic mediators and
prevent formation of lung edema in vivo (90, 91). Such poly-
pharmacological mode of action can make these compounds
especially effective for treatment of severe infections leading to
the development of lung edema.

The generation of chemically diverse species of OxPLs and
corresponding contrasting biological effects requires precise
structure-function analysis of these lipid mediators to define
their accurate pathophysiological roles. The advancements in
liquid chromatography-mass spectrometry (LC-MS) techniques
along with the use of sophisticated bioinformatics analysis has
now made possible to detect minor modifications in OxPLs
structure and its possible impact on biological activities. These
advanced analysis and detection techniques combined with
omics analysis approaches including lipidomics, metabolomic,
transcriptomic, and proteomics will reveal the signaling
cascades associated with OxPLs that will assist in identifying
potential therapeutic targets for OxPLs-derived diseases.
Furthermore, oxidative phospholipidomics analysis may serve
as a valuable tool for identification of biomarkers as suggested
by a recent study characterizing oxygenated cardiolipins
and phosphatidylethanolamines as predictive biomarkers of
apoptotic and ferroptotic cell death, respectively (93). Future
projects also should consider exploring the role of OxPLs in the
pathogenesis of other diseases besides its established role in
cardiopulmonary disorders since recent findings suggest their
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involvement in other diseases including aging (79) and traumatic
brain injury (94). The translation of potent beneficial effects of
OxPAPC into clinics is the most exciting challenge ahead and
other additional molecular targets such as receptors and Rho
GTPases that mediate OxPAPC actions on lung endothelium
could also be considered for therapeutic targets. Moreover,
enzymes such as PAFAH2 represent another category of
potential therapeutic candidates to prevent excessive
accumulation of deleterious OxPL products.
CONCLUSION

It is now widely appreciated that the complexity of contrasting
biological effects of OxPLs largely relies on their structural
heterogeneity with full-length oxidized products exerting
beneficial effects and truncated species acting as pathogenic factor
in various cardiopulmonary disorders. The studies so far have
established that OxPAPC itself or signaling intermediates that
mediate its functions on endothelium, barrier-disruptive OxPLs
targeting enzymes such as PAFAH2, and structure-based synthetic
analogues of barrier-protective OxPLs could be developed into
therapeutics against acute endothelial dysfunction associated with
Frontiers in Endocrinology | www.frontiersin.org 8131
injury, infection, or sepsis. The utilization of LC-MS advanced
detection techniques in combination with next generation omics
analytical tools has enabled to precisely monitor the lipid
modifications and possibly use these modifications as biomarkers
for various pathologies. Thus, the dual biological nature of OxPLs
presents the opportunity to consider both “good” and “bad”
oxidized products of circulating or membrane phospholipids for
therapeutic interventions.
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