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The last two decades have generated numerous studies that
show the close link between immune response and cancer pro-
gression in the mammalian system. In parallel, we have also
witnessed significant progress in systemic approaches, such as
high-throughput, multi-dimensional and dynamical analyses, in
tackling biological complexities. We took this opportunity to
organize a research topic that encompasses the current advances
in immunology and cancer. The intention is to emphasize the
importance of holistic view, and how such outlook can help shape
the future of biological research. In total, our topic consists of 10
articles: five reviews, three research, and two perspectives.

Owens and Naylor introduces the current understanding of
cancer heterogeneity and stemness (Owens and Naylor, 2013).
They surveyed a depth of recent literature that points to the
presence of breast cancer stem cells (CSCs), which are respon-
sible to mediate metastasis and are resistant to both radiation-
and chemo-therapies. Although the classification of CSCs are
currently based on the expression levels of cell surface mark-
ers CD44+CD24− and enzyme Aldehyde dehydrogenase (ALDH)
activity, they note that the heterogeneity of single cancer cells
makes this classification a nontrivial process. Thus, they ask for
more mechanistic approaches to elucidate the origins for CSCs,
so that more targeted novel therapies can be developed.

In another survey of cancer mechanisms, Catalan et al. dis-
cuss the importance in understanding the connection between
adipose tissue immunity and cancer (Catalán et al., 2013). They
first quote numerous works that showed obesity-related chronic
inflammation and, next, mention others that have demonstrated
increased levels of immune cells and proinflammatory mediators
in the expanded adipose tissue. Finally, they note specific obesity-
associated adipokines that can promote tumor growth. Although
the mechanistic links between obesity and cancer still remains
unclear, more systemic analyses could reveal better hints in the
future.

Sangdun Choi and colleagues present a detailed update on the
different structures of the crucial innate immune pattern recogni-
tion receptors, namely the Toll-like receptors (TLRs) (Manavalan
et al., 2011). There are 13 known mammalian TLRs to-date, how-
ever, details of TLR12 and 13 is vastly unclear. Here, the authors
cover the details of TLR1-11, especially on their structures, to
understand the interactions of TLRs with their ligands and activa-
tors. They also argue that 3-D molecular simulations can be useful
to make predictions on unknown interactions between TLRs and
other possible novel interacting partners.

Remaining on the same topic of TLRs, to investigate the
differential roles of adaptor molecule MyD88 and MAP kinase
activation in early and late immune response, which will influence
the spatial movement of macrophages, Wenzel et al. developed an
intelligent algorithm for automated image analysis (Wenzel et al.,
2011). The novel approach is able to track cell spreading, after
ligand stimulation, more accurately and with significant improve-
ment in processing time, compared with manual techniques that
are commonly adopted. Their main findings indicate that MyD88
is key for late spreading of macrophages while MAP kinase p38 is
crucial for early spreading.

Apart from innate immunity, another important aspect of our
immune response is the orchestration of the adaptive immunity.
T cells are lymphocytes that are central in the adaptive responses.
In order to perform its specialized task, T cells need to differen-
tiate into different lineages for executing distinct responses. In
the unstimulated naïve form, T cells exist mainly as two sub-
types depending on their surface markers, CD4+, and CD8+ T
cells. Ganusov and colleagues reviewed the differentiation lin-
eages taken by CD4+ T cells on encountering MHC class II found
on the surface of antigen-presenting cells such as macrophages or
dendritic cells (Magombedze et al., 2013). Mainly, they emphasize
on the functional plasticity of CD4+ T cells, and argue that under-
standing this will help treat diseases such as autoimmune diseases
and allergic reactions where the elevated activity of differentiated
T cells (e.g., T helper 17 or Th17 cells) may be reprogrammed to
reach a different attractor state or back to its naïve form that will
not be injurious to the host. They acknowledged that computa-
tional or mathematical models can be useful for predicting how
one could convert a particular T cell subset into another.

A subsequent manuscript by Blair et al. reviews some of the
most common mathematical and statistical approaches used for
immune and cancer systems biology at different scales of biologi-
cal modularization (Blair et al., 2012). Next, Hiroi and colleagues
present a method to optimize the model parameters where exper-
imental data are either sparse or noisy (Hiroi et al., 2014).
They tested their method on well-established data on c-Myc and
E2F transcriptional processes. The following article by Oyama
and colleagues briefly discusses about recent high-throughput
phosphoproteomics research (Kozuka-Hata et al., 2012). They
describe the basic terminologies used and also highlight the
importance of such methods for the development of large-scale
signal transduction models for systemic interpretation of EGF
signaling, TLR signaling or any other pathways of interest.
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Fitting with the theme of adopting systemic approaches for
understanding immune and cancer response is the paper by
Campbell et al. (2011). Here, they have studied the distinct roles
of CD8+ T cells to the pathogenesis of cancer. Using in vivo
derived quantitative data of tumor promoting Tag-expressing
mice cells encountering CD8+ T cells, they developed a computa-
tional model to investigate the interaction pathways. Remarkably,
using a simple ordinary differential equation model, the responses
of CD8+ T cells to different perturbations in silico were consistent
with matched experiments. However, from the model, it became
clear that the proliferation and decay rates of CD8+ T cells were
strongly constrained and hence, Tag-expressing mice cells become
tolerant to tumors. Knowing such information a priori will surely
aid researchers to understand and possibly avoid poor targets for
regulating cancer progression.

Finally, we conclude our collection with an interview with a
prominent Japanese physicist, Kaneko (2011), who has switched
his interest from pure theory to understanding complex liv-
ing systems. In the article, he describes the reason behind his
renewed interest, and the challenges facing theoreticians in biol-
ogy. In summary, we believe the articles in “Advances in Systems
Immunology and Cancer” research topic or e-book will bring
continued interests for the development and utility of multidis-
ciplinary approaches to tackle complex diseases.
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Cancer metastasis, resistance to therapies and disease recurrence are significant hurdles
to successful treatment of breast cancer. Identifying mechanisms by which cancer
spreads, survives treatment regimes and regenerates more aggressive tumors are critical
to improving patient survival. Substantial evidence gathered over the last 10 years
suggests that breast cancer progression and recurrence is supported by cancer stem cells
(CSCs). Understanding how CSCs form and how they contribute to the pathology of breast
cancer will greatly aid the pursuit of novel therapies targeted at eliminating these cells. This
review will summarize what is currently known about the origins of breast CSCs, their role
in disease progression and ways in which they may be targeted therapeutically.

Keywords: breast cancer, cancer stems cells, transcription factors, cell fate, mammary gland

INTRODUCTION
Breast cancer is the leading cause of cancer death in women,
causing extensive morbidity and psychological distress to millions
globally. Encouragingly, the combination of better screening and
treatment programmes have moderately improved the chances of
surviving the disease, but there is still much to be done if the many
women who are refractory to current therapies are to have a bet-
ter chance of survival. Over the last decade breast cancer cells
with stem-cell-like properties have been identified and charac-
terized. There is now much interest around the role that these
breast cancer stem cells (CSCs) have in the disease and whether
they provide the key to unlocking new insight into the mech-
anisms driving breast cancer progression, drug resistance and
reoccurrence.

Often described as a caricature of normal tissue development,
cancer occurs when the regulation of tissue homeostasis is per-
turbed, resulting in the evolution of cells with increased growth
and survival potential. The breast, like many other organs, is a
hierarchically-organized tissue maintained by a series of stem and
progenitor cells that have decreasing potency as they differentiate
toward terminally-committed epithelial cells. Below, we describe
briefly the normal breast epithelial hierarchy, but for compre-
hensive analyses we recommend (Visvader, 2009; Van Keymeulen
et al., 2011; Raouf et al., 2012; Šale et al., 2013).

The breast is composed of a bilayered epithelium comprising
two main epithelial cell types; luminal and basal (Watson and
Khaled, 2008; Gusterson and Stein, 2012). The luminal cells line
the ductal structures that will transport milk to the nipple dur-
ing lactation. The basal cells surround the luminal cells and are
in contact with the surrounding basement membrane that sepa-
rates the parachyme from the stromal component of the tissue.
Mammary stem cells (MaSCs) share cell surface and expres-
sion profiles consistent with basal cells and are hence thought to
reside within the basal compartment of the gland. Isolated several

years ago through the use of cell surface expression markers,
cell populations greatly enriched for MSCs have been shown to
be capable of reconstituting an entire mammary gland when
transplanted into a mammary fat pad cleared of endogenous
epithelium. Furthermore, serial transplants have demonstrated
that the MSCs can self-renew as well as give rise to the other cell
types (Shackleton et al., 2006; Stingl et al., 2006).

Initially thought to be restricted to relatively few cell types
(luminal, basal, and stem cells), the repertoire of mammary cell
types has expanded over the last few years. Development of
lineage-specific markers and in vitro functional assays has enabled
the isolation of discrete sub-populations of epithelial progeni-
tors (Raouf et al., 2012; Sheta et al., 2012). Using an alternative
approach, in vivo lineage-tracing has recently identified previ-
ously undescribed epithelial cell types (Šale et al., 2013). In the
future, these techniques will likely unearth additional levels of
complexity in the epithelial cell hierarchy that will no doubt aid
our understanding of breast cancer and CSCs. However, when
discussing CSCs, it is imperative to highlight that they are distinct
from normal stem cells.

DEFINING CANCER STEM CELLS
It is important to clarify that although they share functional sim-
ilarities to normal stem cells, CSCs are not necessarily derived
from stem cells. A CSC is functionally defined by the ability to
(1) form a tumor in immunocompromised mice, (2) self-renew—
shown by tumor formation in secondary mice and (3) “dif-
ferentiate,” i.e., produce cells with non-stem cell characteristics
(McDermott and Wicha, 2010).

In certain tissues, new technological advances are enabling
CSCs to be studied in their primary setting, without the need for
transplantation, however comparable studies have not yet been
described in the breast (Chen et al., 2012; Driessens et al., 2012;
Schepers et al., 2012).
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We have chosen to use the term CSC but we recognize that
cells with defining features of CSCs are also referred to as tumor-
initiating cells (TICs) and tumor-propagating cells. In the major-
ity of cases, these terms refer to the same functional entity. TICs
can also describe the cell from which the cancer originated and
CSCs may form long after the tumor was initiated. The cancer
cell of origin is discussed in length elsewhere (Visvader, 2011).
This review will focus on breast CSCs, their origins, pathological
significance and potential therapeutic strategies to tackle them.

DISCOVERY OF BREAST CANCER STEM CELLS
Historically, the hematopoietic field has led the way in the identi-
fication of stem and progenitor cells and their resulting lineages.
The same was true in the CSC field, with the CSC-theory in solid
tumors validated only relatively recently (Al-Hajj et al., 2003).
Using cell surface markers Al-Hajj and colleagues found that
CD44+CD24−/low Lin− cells from breast cancer patients were sig-
nificantly enriched for tumor forming ability in NOD/SCID mice
compared with CD44+CD24+ Lin− cells. Moreover, the tumors
formed by CD44+CD24−/low Lin− cells could be serial passaged
(self-renew) and also reproduce the tumor cellular heterogeneity
observed in the initial tumor (differentiation).

CD44 is a cell surface receptor for the extracellular matrix
molecule hyaluronan, that influences cell behavior by direct sig-
naling/structural roles or by acting as a co-receptor for receptor
tyrosine kinases (Ponta et al., 2003). CD24 is a cell surface glyco-
protein whose level of expression has become commonly used to
isolate distinct cell populations from the normal mammary gland
and breast cancer cells. CD24high expression in normal human
mammary gland and breast carcinoma corresponds to a differ-
entiated gene expression signature, whereas, CD44+ cells exhibit
a more “stem-like” signature of gene expression (Shipitsin et al.,
2007). In the mouse mammary gland, CD24−, CD24low, and
CD24high expression levels correspond to populations of non-
epithelial, basal and luminal epithelial cells, respectively (Sleeman
et al., 2006). Functionally, the epithelial cell populations exhibited
differential stem potential in mammary fat pad transplanta-
tion assays, with CD24low cells being significantly enriched for
mammary gland repopulating capacity.

The combination of CD44 and CD24 expression have been
used to successfully enrich for CSCs in both cell line and
tumor samples but caution must be exercised. For example,
within epithelial populations CD44highCD24− was shown to
mark mesenchymal-like cells that formed mammospheres and
had an invasive phenotype, but the cells lacked the capacity to
produce the heterogeneity of the parental cell line (Sarrio et al.,
2012). Therefore, these cells did not meet all the criteria of
bona fide CSCs and thus highlight the importance of function-
ally testing “stemness” rather than assuming that a particular
combination of cell surface markers is indicative of a phenotype.

In addition to cell surface markers, other expression-based
methods of CSC-enrichment have been developed. Aldehyde
dehydrogenase (ALDH) activity has been identified as a method
of enriching for normal human breast stem and CSCs (Ginestier
et al., 2007). Furthermore, by combining ALDH activity with
CD44highCD24− expression, the CSC fraction was refined fur-
ther compared to either method alone. Interestingly, the ALDH−,

CD44highCD24− population was not enriched for CSCs demon-
strating that the CD44highCD24− population retains significant
heterogeneity.

Separating cell populations based on protein expression pro-
files of either cell surface markers or ALDH1 requires func-
tional validation of the isolated cells to confirm their capacity as
CSCs. Recently, Pece and colleagues developed a novel reciprocal
approach of using function to isolate CSCs that were then used to
identify new markers. By taking advantage of the stem cell ability
to survive in suspension culture combined with slow prolifera-
tion rate they isolated stem cells from normal human mammary
gland based on retention of a membrane-labeling dye, PKH26
(Pece et al., 2010). Gene expression analysis of the PKH26+ cells
revealed a novel set of stem cell markers that the group then used
to isolate stem cells from both normal breast and tumor samples
(i.e., DNER and DLL1).

Due to the intra- and inter-tumor heterogeneity in cancer, it
is possible that CSCs from different tumors have distinct expres-
sion profiles. Thus, isolating CSCs by function and detailing
their expression profiles may prove extremely valuable where
traditional markers fail.

ORIGINS OF CANCER STEM CELLS
The stem cell characteristics of CSCs draw in to question the
cell type from which they derive. Two potential models of CSC
formation are: (1) the tumor cell of origin had stem cell or pro-
genitor properties, or (2) the tumorigenesis process yields cells
distinct from the cells of origin that are capable of reconstituting
the tumor (Figure 1).

The simple model of hierarchical tissue organization suggests
that as cells differentiate along a particular lineage, they lose the
potential to give rise to multiple cell types and are therefore less
likely to be able to act as CSCs. Normal stem cells already have

FIGURE 1 | Models of CSC formation. In the linear hierarchy model of
CSC formation, the transformation events that drive tumorigenesis occur in
a stem or progenitor cell that then gives rise to more differentiated progeny
as the tumor develops. These differentiated progeny have reduced
tumor-forming potential. In the second model, cancer stem cells evolve,
perhaps via induction of EMT, either as part of disease progression or in
response to selective pressures in the tumor microenvironment.
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many of the properties associated with CSCs. Moreover, the long-
lived nature of stem cells allows more time for multiple genetic
lesions to be acquired. Therefore, it is possible that CSCs originate
from tissue stem cells.

Studies demonstrating an increased risk of breast cancer in
children exposed to radiation suggest that the cells subject to
transformation would be long-lived stem or progenitor cells
(Miller et al., 1989; Modan et al., 1989). Much more recently,
luminal progenitor cells were identified as the likely cell of origin
in BRCA1 driven tumors (Lim et al., 2009; Molyneux et al., 2010;
Proia et al., 2011). Cells displaying the markers of stem cells have
also been identified in early DCIS lesions suggesting that possi-
ble CSC are present at early stages of tumorigenesis (Pece et al.,
2010). If the transformed cell has stem/progenitor properties then
it is understandable that this could give rise to CSCs, as well as the
non-CSCs that make up the majority of the tumor.

The model in which the cancer cell of origin is responsible for
the properties of the CSC would be encouraging when it comes to
designing therapies to tackle the disease. If the tumor behaves in
a rigid linear hierarchy with relatively few stem cells giving rise to
the majority “differentiated” tumor cells then therapies that can
kill CSCs or drive them to differentiate would remove the ability
of the tumor to regenerate following therapy.

However, cancer is a disease that forms over many years, so
even if the original transformation event had occurred in a stem-
like cell, the tumor that presents at the clinic is likely to be a
much more evolved and heterogeneous entity than a linearly-
hierarchical tissue. A linear hierarchy in cancer would also not
explain why recurring tumors are resistant to therapy, as suc-
cessive rounds of tumor growth may be expected to be produce
similarly-sensitive progeny. In this sense, it appears that tumors
have also evolved mechanisms to be self-sustaining even if their
original CSC pool is destroyed, potentially via the generation
CSCs cells from non-stem cells.

FORMATION OF CSCs FROM NON-CSCs
A range of breast cancer cell lines are now known to be com-
posed of a heterogeneous mixture of cells. A proportion of the
cells act as CSCs by being able to give rise to all the cell types
within that line, while the other cells show reduced ability to act
as CSCs. There is also suggestion of heterogeneity within the CSC
populations themselves (Wong et al., 2012). Significantly, several
studies have now demonstrated that cells have the capacity to
interconvert between phenotypes.

Breast cancer cell lines SUM159 and SUM149 sorted into
stem-like, basal and luminal populations demonstrated the ability
to transition between these cell states to maintain the overall het-
erogeneity of the parental line (Gupta et al., 2011). This stochastic
cell state transition enabled purified populations to reconstitute
the proportions of the parental cell line within 11 days of sorting
(Gupta et al., 2011). Piggott and colleagues used the mammo-
sphere assay to demonstrate that MDA-MB-231, BT474, SKBR3,
and MCF7 cells all contained self-renewing mammosphere form-
ing units (MFUs). Interestingly, BT474 cells depleted of MFUs
reacquired these progenitor-like cells following 4 weeks in culture
(Piggott et al., 2011). In vitro, Ca1a, MCF7, Sum159, and MDA-
MB-231 breast cancer lines, sorted CD44+CD24+ non-invasive

cells could give rise to invasive CD44+CD24− cells (and vice
versa), even when initially plated as single cell clones (Meyer et al.,
2009).

The generation of CSCs from non-CSCs has been con-
firmed in vivo using transplantation assays. Clones of non-
invasive CD44+CD24+ sorted cells from Ca1a, ZR75.1 and
MCF7 breast cancer lines transplanted into immunocompro-
mised mice gave rise to molecularly heterogeneous tumors that
exhibited local invasion (Meyer et al., 2009). Moreover, the stem-
like-depleted basal and luminal populations of SUM159 cells
were also able to transition to stem-like cells during tumor
formation in NOD/SCID mice. However, it is interesting that
the non-stem-like SUM159 populations required co-injection
with irradiated parental SUM159 cells for tumor formation to
occur. This co-injection requirement suggests that additional
factors to those in the homogenous luminal or basal pop-
ulations are required for conversion to stem-like phenotypes
(Gupta et al., 2011).

Recent evidence suggests that the ability of the cancer cells to
trans-differentiate is related to the transformation process. Using
an inducible Src oncogene to drive transformation of MCF10A
cells, CSC-like cells were generated during the transformation
process within 16–24 h of Src activation (Iliopoulos et al., 2011).
Furthermore, once generated the relative proportion of CSCs was
maintained over several weeks in culture. Isolated CSCs readily
formed non-CSCs whereas the reciprocal spontaneous conver-
sion did not occur. However, media from CSC was found to
drive non-CSCs to form CSCs and this was dependent of IL-6
(Iliopoulos et al., 2011).

Chaffer and colleagues demonstrated that hTERT-
immortalized HMECs gave rise to a population of floating
cells they term HME-flopcs (Chaffer et al., 2011) CD44low

HME-flopcs were able to spontaneously convert to CD44high

cells that had stem-like properties. Moreover, transformation of
the HME-flopcs with the SV40 and H-ras increased the efficiency
with which the conversion to CD44high cells occurred.

Despite the growing evidence of the ability of non-CSCs to
produce CSCs it is noteworthy that in the parental popula-
tions the proportions of CSCs remains constant over time. Even
when sorted into distinct populations, the sorted cells eventu-
ally recapitulate the proportions of cells originally present in the
parental line. Tumor molecular expression profiles remain con-
stant during disease progression, suggesting a level of stability
within a population of tumor cells (Ma et al., 2003; Weigelt et al.,
2003). Moreover, similar molecular profiles of primary tumor and
metastases suggest ancestors are common rather than genetically
distinct (Sorlie, 2004). This supports a hypothesis that perhaps
paracrine signals mediate a level of homeostatic control over the
proportions of different cell types present within a tumor.

CSC AND EPITHELIAL-TO-MESENCHYMAL TRANSITION
Inter-conversion of CSC and non-CSC (spontaneously or oth-
erwise) means that CSCs do not behave like classical stem cells.
The question remains of how CSCs could arise from non-
CSCs. Epithelial-to-Mesenchymal transition (EMT) is a natu-
ral process that occurs during development and is a method
by which cancer cells metastasize during cancer progression
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(Thiery and Sleeman, 2006). EMT is also thought to be a mecha-
nism by which CSCs form.

Induction of EMT in normal human mammary epithelial
(HMLE) cells by expression of Snail, Twist or treatment with
TGFβ1 caused the majority of cells to adopt the CD44+CD24low

expression profile consistent with CSCs. There was also a sig-
nificant increase in the number of mammosphere forming cells
following EMT (Mani et al., 2008; Morel et al., 2008). In addition
to EMT driving cells to acquire stem cell characteristics, natu-
rally occurring stem cell fractions of normal mouse and human
mammary epithelium cells as well as human neoplastic samples
expressed significant levels of EMT markers (Mani et al., 2008).

The mechanism by which EMT induces CSC formation may
involve the transcription factor FOXC2, which was upregulated
in immortalized normal human mammary epithelial (HMLE)
cells in response to multiple EMT-inducing stimuli (Mani
et al., 2007). The CSC-characteristics acquired through EMT
were attenuated by suppression of FOXC2 expression (Hollier
et al., 2013). Furthermore, FOXC2 was upregulated in CSC-
enriched populations and expression of FOXC2 in V12H-Ras-
transformed HMLE cells was sufficient to drive EMT and increase
their tumor forming and metastatic potential in transplants
(van Vlerken et al., 2013).

The ability of EMT-driving factors to induce CSC formation is
likely to be dependent on the cell type in which EMT occurs. Slug
is a transcription factor that can drive EMT and its expression
is enriched in MaSCs. Exogenous expression of SLUG in luminal
progenitor cells was sufficient to drive them to a more stem-like
phenotype, whereas SLUG expression in differentiated luminal
cells failed to do so (Guo et al., 2012). Interestingly, co-expression
of Sox9 with Slug could induce differentiated luminal cells into
a stem-like state by activating distinct gene sets. Moreover, Snail,
but not Twist could substitute for Slug and cooperate with Sox9 in
driving differentiated luminal cells into stem-like cells. Therefore,
EMT contributes to, but is not sufficient for the non-stem cell
to stem-cell transition and not all EMT-driving factors elicit the
same effect (Guo et al., 2012).

Analysis of non-tumorigenic mammary epithelial cell lines
(MCF12A, MCF10-2A, and MCF10A) and immortalized
Myo1089 cells using EpCAM and CD49f expression levels,
identified heterogeneous cell populations. The EpCAM+CD49f+
had an epithelial morphology with an expression profile char-
acteristic of luminal progenitors, while EpCAM−CD49fmed/low

were fibroblastic in appearance and expressed genes associated
with EMT (Twist1/2 and Slug) (Sarrio et al., 2012). Interestingly,
although the epithelial (EpCAM+) Myo1089 cells gave rise to
mesenchymal-like cells that were more invasive and could form
mammospheres, it was the epithelial cells that had higher ALDH1
activity and could recapitulate the heterogeneous cell populations
seen in the parental line. Therefore, in this instance EMT was
associated with a loss of stem-cell capacity and re-iterates the
importance of determining “stemness” functionally (Sarrio et al.,
2012).

The reprogramming of cancer cells into CSCs by EMT-
associated transcription factors highlights the importance of
understanding how transcription factor networks regulate cell
fate determination in breast cancer (Kalyuga et al., 2012). The

power of transcription factor-mediated cell fate control is most
notably demonstrated by the creation of induced pluripotency
stem (iPS) cells by the introduction of Oct4, Sox2, c-Myc and Klf4
into differentiated adult cells (Takahashi and Yamanaka, 2006).
The same factors that induce pluripotency in normal differenti-
ated cells may also be involved in the formation of CSCs. Non-
tumorigenic MCF10A cells transduced with Oct4, Sox2, c-Myc,
and Klf4 formed iPS-like cells that upon differentiation adopted
a CSC phenotype (Nishi et al., 2013). These induced CSC-like-
10A cells were largely CD44+CD24low, expressed ALDH1 and had
high tumorigenicity in vivo. In metastatic breast cancer cells, Klf-
4 expression increased the proportions of CD44+CD24low and
mammosphere-forming cells (Okuda et al., 2013). Oct4 alone
was able to transform primary HMLE cells into cells capable of
initiating tumors in xenografts and Oct4 is also thought to be
the downstream effector of IL-6 induced CSC formation (Beltran
et al., 2011; Kim et al., 2013).

Transcription factors mediate changes in gene expression, but
the action of transcription factors is also influenced through
epigenetic genome modification. Epigenetic regulation of gene
expression controls cell fate specification by activating or repress-
ing genes associated with lineage commitment. Epigenetic
changes are also associated with cancer progression.

In mammary epithelial cells, repressive and activating histone
methylation patterns are associated with changes in gene expres-
sion during lineage determination (Pal et al., 2013). CSCs isolated
from breast cancer cell lines had elevated levels of the polycomb
group protein, EZH2, which catalyses histone methylation (van
Vlerken et al., 2013). EZH2 knockdown by siRNA moderately
reduced the CSC populations in breast and pancreatic cancer cell
lines, inducing a more differentiated pattern of gene expression.
Moreover, high EZH2 expression correlates with poor prognosis
in breast and prostate cancer (Varambally et al., 2002; Pietersen
et al., 2008).

Interestingly, the methylation patterns in mammary epithe-
lial cells alter during pregnancy and also in ovariectomized
mice, demonstrating that they are subjected to hormonal control.
Furthermore, experiments in isolated epithelial cells suggested
that EZH2 is induced by progesterone in a paracrine fashion (Pal
et al., 2013). Thus, changes in local tumor environment could
alter methylation patterns and facilitate CSC formation in rela-
tively few generations, as it does not require further mutations to
occur.

FACTORS INFLUENCING CSC FORMATION
Selective pressure in a genetically unstable environment can drive
selection for epigenetic or genetic changes that support survival.
Factors that influence this tumor environment include infiltrating
cells, hypoxia and chemotherapy, all of which have been linked to
CSC development.

Co-culture of SUM159 cells with bone marrow-derived mes-
enchymal cells induced an expansion of the ALDH1-expressing
SUM159 population (Liu et al., 2011). This expansion was due
to a chemokine signaling loop between cancer-cell derived IL-6
and CXCL7 produced by ALDH+ mesenchymal cells. Moreover,
co-injection of ALDH+ mesenchymal cells with SUM159 cells
into NOD/SCID mice accelerated tumor growth and increased
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the capacity of the SUM159 cells to form secondary tumors
following serial passage. Intratibial injection of mesechymal
cells demonstrated that they could augment tumor growth
and home to the site of breast tumor xenografts (Liu et al.,
2011).

The immune response in FVB mice to cells derived from
tumors in a Her2/neu transgenic strain caused the outgrowth of
Her2-negative tumors. This antigen loss effect was dependent on
CD8+ T cells. Her2-negative tumor cells had reduced CD24 lev-
els compared with the parental Her2-positive cells and were more
mesenchymal in appearance and expression patterns. Moreover,
these CD24−/low cells were much more tumorigenic than controls
suggesting that the CD8+ T cell-dependent immune response was
inducing EMT in the cancer cells to generate CSCs (Santisteban
et al., 2009).

HYPOXIA
As tumors develop, the requirement for oxygen increases, leading
to regions of hypoxia. Hypoxia causes activation of hypoxia-
inducible factors, HIFs, which enable to cells to adapt to the
low-oxygen environment. Hypoxic culture conditions (1% O2)
induced an increase in the ALDH1+ proportion in breast can-
cer cell lines (Conley et al., 2012). Moreover, CSCs were enriched
in hypoxic regions of tumor xenografts compared with normoxic
regions (Conley et al., 2012). Using cycles of hypoxia and re-
oxygenation to model the tumor microenvironment, Louie and
colleagues enriched for populations of MDA-MB-231 and BCM2
cells that were significantly more tumorigenic than the parental
lines (Louie et al., 2010). The hypoxia-selected populations also
had a greater proportion of CD44+CD24−/low cells. The low
oxygen levels may influence the progenitor-like state of CSCs,
as hypoxia blocked differentiation in MCF10A cells, possibly by
maintaining greater levels of histone acetylation (Vaapil et al.,
2012).

CHEMOTHERAPY
In addition to CSCs forming as a part of tumor progres-
sion, therapeutic intervention may contribute to CSC gene-
sis. Anti-angiogenic agents sunitinib and bevacizumab, which
induce hypoxia in tumors, increased the number of CSCs in
breast cancer xenografts (Conley et al., 2012). The release of
factors by dying tumor cells may also act to augment the
CSC pool. Interleukin-8 (IL-8) levels increased in SUM159
breast cancer cells following treatment with chemotherapeu-
tic docetaxel (Ginestier et al., 2010). Interestingly, IL-8 sig-
naling via its receptor CXCR1 on CSCs can expand CSC
numbers in breast cancer cell lines (Charafe-Jauffret et al.,
2009).

Further to the dying tumor cells releasing CSC-promoting fac-
tors, chemotherapy could alter the cells intrinsic mechanisms
of preventing EMT. ER can directly suppress the EMT-driver
SLUG; therefore anti-estrogen therapies may promote CSC for-
mation by inducing EMT (Ye et al., 2008). Clearly the benefits of
anti-estrogen therapies, such as tamoxifen, in prolonging patient
survival are unarguable, but it is possible that under certain
circumstances, initial anti-estrogen treatment may predispose the
patient to recurrence of the disease.

PATHOLOGICAL SIGNIFICANCE OF BREAST CANCER STEM
CELLS
TUMOR AGGRESSIVENESS
Since the discovery of breast CSCs, they have been touted as
critical targets for the design of future therapeutics. However,
it is important to understand how CSCs influence the pathol-
ogy of breast cancer so that treatments can be targeted
appropriately.

Different subtypes of breast cancer are associated with dif-
ferent prognoses; luminal cancers offer the best chance of long-
term survival and basal, claudin-low and Her2-positive can-
cers offer a much shorter life expectancy. Gene set enrich-
ment analysis demonstrated similarity between the expression
profile of stem cells and basal-breast cancers (Pece et al.,
2010). The proportion of cells expressing stem-cell mark-
ers was approximately 3–4-fold higher in poorly differenti-
ated compared with well-differentiated breast tumors. TAM-
resistant ER-positive breast cancers are more basal-like, show-
ing reduced E-Cadherin expression, increased CD44 and NF-
κB expression along with increased motility (Hiscox et al.,
2009).

A CSC gene signature from comparative analysis of
CD44+CD24− sorted tumor cells and cancer mammospheres
showed that this signature was associated with claudin-low
breast cancers, suggesting that claudin-low tumors are enriched
for CSCs (Creighton et al., 2009). Moreover, the expression
profile of the CSC-regulator, FOXC2 was enriched in claudin-low
tumors and cell lines (Hollier et al., 2013). Her2 expression
has been shown to correlate with ALDH1 expression in human
breast cancer. ALDH1 levels also correlated with poor clinical
outcome and proved to be an independent prognostic marker
(Ginestier et al., 2007; Morimoto et al., 2009). Together, these
studies suggest a link between CSCs and the aggressiveness of
the disease.

In inflammatory breast cancer (IBC), ALDH1 expression cor-
related with histological grade but interestingly not with the
CD44highCD24− phenotype (Ginestier et al., 2007). This may be
due to differences in analyzing CD44 and CD24 expression by
immunohistochemistry rather than FACS or that CD44/CD24
may not be suitable markers of CSCs in IBC. A second study
using IHC to assess prognostic significance of CD44 and CD24
expression in breast cancer also failed to find a correlation
between the CD44highCD24− phenotype and tumor progression,
although there was suggestion of a correlation with bone metasta-
sis (Abraham et al., 2005). These discrepancies between FACS and
IHC studies could be due to the different techniques employed
or other factors, such as the source of the tumor cells being
analyzed.

There is accumulating evidence that CSC are involved in the
metastatic progression of breast cancer. This is particularly sig-
nificant given that the majority of cancer deaths are due to
secondary lesions that have disseminated from the initial tumor.
Immunohistochemistry of breast cancer cells isolated from bone
marrow using the CD44highCD24−/low phenotype suggests that
there may be a much greater proportion of CSCs in metastatic
tumors compared with the primary site (Balic et al., 2006). In IBC
models, CSCs isolated by ALDH activity were shown to mediate
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metastasis in both in vitro and xenograft studies (Ginestier et al.,
2007). Moreover, detection of ALDH+ cells in tumors from IBC
patients correlated with both early onset of metastasis and over-
all decreased survival (Ginestier et al., 2007). CSCs have also been
proposed to alter tissue architecture by driving epithelial remod-
eling. This disruption of normal tissue structure could be another
method by which CSCs contribute to metastasis (Parashurama
et al., 2012).

CANCER RECURRENCE FOLLOWING THERAPY
Resistance of CSCs to chemotherapy/radiotherapy is a pos-
sible mechanism to explain breast cancer recurrence. CSCs
are enriched following neoadjuvant chemotherapy suggest-
ing that CSCs are more resistant to therapy than the bulk
of the tumor (Yu et al., 2007; Li et al., 2008). Treatment
of both SUM159 and SUM149 cells with chemotherapeu-
tics (paclitaxel or 5-fluorouracil) led to enrichment in the
proportion of stem-like cells (Gupta et al., 2011). CSC-
like MCF7 cells were resistant to several commonly used
chemotherapeutics (Adriamycin, Etoposide, 5-Fluorouracil cis-
Platinum, and Methotrexate), although they were more sen-
sitive to Taxol (Creighton et al., 2009; Sajithlal et al.,
2010).

The association between EMT and CSCs is also relevant to
chemo-resistance, as cells undergoing EMT are more resistant
to chemotherapeutics (Li et al., 2009). Cells isolated from Her2-
antigen loss tumors that had undergone EMT had upregulated
expression of protein pumps associated with drug resistance
(BCRP and PGP). Accordingly, these cells were protected from
chemotherapeutics mitoxantrone and etoposide. The mesenchy-
mal tumor cells also had increased levels of DNA repair enzymes
and were resistant to ionizing radiation (Santisteban et al., 2009).

TUMOR MAINTENANCE
CSCs are often referred to as being responsible for “maintain-
ing” the tumor. In some respects, this maintenance role is an
extrapolation of data showing that CSCs can recapitulate tumors
of heterogeneous cell types over several passages in immune-
compromised mice. Few studies have examined whether elim-
ination of CSCs actually causes spontaneous-regression in the
primary setting, which could be expected if the CSCs were main-
taining the tumor. Part of the reason for this, is the lack of models
in which to test the maintenance of tumors by CSCs.

Seminal lineage tracing experiments in both the skin and
intestine demonstrated that during early transformation the
tissues retain a cellular hierarchy akin to the normal tissue
(Driessens et al., 2012; Schepers et al., 2012). Notably, in con-
trast to benign skin tumors, squamous cell carcinomas had
an increased proportion of CSC, which had reduced propen-
sity to differentiate. These studies demonstrate that CSCs exist
early in the tumorigenesis process, but does still not delin-
eate whether these early CSCs are maintaining the tumor. In
a mouse model of glioblastoma, Chen and colleagues demon-
strated the presence of quiescent CSCs that could expand and
re-populate the tumor following chemotherapy with temozxolo-
mide (TMZ). Eradication of these CSCs using a thymidine kinase
transgene and ganciclovir (GCV) significantly improved survival.

Moreover, the tumors in the GCV treated mice had reduced levels
of proliferation and were less invasive suggesting that the CSCs
were in indeed maintaining the tumor progression (Chen et al.,
2012).

THERAPEUTIC TARGETS IN CSCs
The growing evidence that CSCs contribute to cancer progression
and recurrence shows that developing anti-CSC therapies will
likely improve chances of long-term survival of cancer patients.
A proof of principle for targeting CSCs has been demonstrated
in AML where the anti-leukemia drug TDZD-8 selectively killed
leukemia stem cells while not affecting normal hematopoietic
stem and progenitor cells (Guzman et al., 2007).

Many of the pathways currently under investigation as poten-
tial therapeutic targets in CSCs have been shown to regulate nor-
mal stem and progenitor cells, so finding methods to selectively
target the pathways in cancer will be critical. Two developmen-
tal pathways that have received much recent attention as cell fate
regulators in the breast are Notch and Wnt (Gu et al., 2013; Meier-
Abt et al., 2013; Regan Joseph et al., 2013; Šale et al., 2013). It
is therefore not surprising that they may be therapeutic targets
in CSCs. In a model of Notch1-driven mammary tumorigene-
sis, inhibition of Notch signaling induced tumor regression and
reduced tumorsphere formation in vitro (Simmons et al., 2012).
Upregulation of the Notch ligand, Jagged2 in breast cancer cells
and bone marrow derived cells in response to hypoxia led to an
expansion of CSCs (Xing et al., 2011). Notch 4 activity is increased
in breast CSCs and Notch and Wnt signaling were found to
mediate radio-resistance in breast progenitor and CSCs (Phillips
et al., 2006; Woodward et al., 2007; Harrison et al., 2010). The
Wnt co-activator Pygo2 augmented mammosphere formation in
MDA-MB-231 breast cancer cells (Chen et al., 2010). Conversely,
deletion of pygo2 in MMTV-Wnt1 tumor cells reduced both
mammosphere and tumor-forming capacity (Watanabe et al.,
2013).

The potential therapeutic benefit of targeting Wnt-signaling
was demonstrated by the identification of Salinomycin in a
screen for CSC-inhibitors. Salinomycin preferentially eliminated
CSCs by inhibiting Wnt signaling and inducing apoptosis Gupta
et al., 2009; Fuchs et al., 2009; Lu et al., 2011; Tang et al.,
2011. Salinomycin also killed iCSCL-10A cells that were resis-
tant to Taxol and Actinomycin D (Nishi et al., 2013). Another
drug that appears efficacious against CSCs is the anti-diabetic
drug Metformin. Metformin targets CSC and can act synergis-
tically with chemotherapy drugs to reduce CSC numbers and
tumor growth (Hirsch et al., 2009; Vazquez-Martin et al., 2011).
Subsequent work demonstrated that Metformin might act by
inhibiting nuclear translocation of NF-κB and phosphorylation
of STAT3 in CSCs compared with non-CSCs (Hirsch et al.,
2013). Metformin may therefore be a candidate to treat TAM-
resistant ER+ cancers that have been shown to upregulate NF-κB
(Hiscox et al., 2009). Significantly, metformin treatment over-
came Herceptin™ resistance in a Her2-positive xenograft model
(Cufi et al., 2012).

Cell surface receptors make attractive targets for therapeutic
design, as they are accessible to drugs. The growth factor recep-
tor PDGFR-β was shown to lie downstream of FOXC2 in cells
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induced to undergo EMT and both proteins were expressed in
CSC-enriched populations of SUM159 and HMLER cells (Hollier
et al., 2013). The PDGFR-β inhibitor sunitinib reduced tumor
growth and metastasis of FOXC2-expressing tumor cells (Hollier
et al., 2013). Thus, sunitinib may be effective to combat CSC that
arise as a result of EMT. FGF-receptor 2 (FGFR2) was enriched
in CSC isolated from a MMTV-PyMT mouse breast cancer
model (Kim et al., 2013). Moreover, FGFR2-expressing human
tumor cells were more tumorigenic than FGFR2-negative cells in
the xenograft experiments. Treatment with the FGFR inhibitor,
TKI258, reduced the proportion of CSCs in MMTV-PyMT-driven
tumors and delayed tumor growth (Kim et al., 2013).

The enrichment of CSCs that occurs under certain condi-
tions, suggests that CSCs are capable of increasing their num-
bers by symmetric division. Blocking this mechanism of CSC
expansion may slow tumor progression and allow more suc-
cessful elimination of the CSC pool. By restoring p53 function
in Her2 over-expressing cells, asymmetric cell division in the
CSCs was restored leading to reduced tumor formation (Cicalese
et al., 2009). Hedgehog (Hh) signaling via Bmi1 increased the
frequency of mammosphere forming cells and this effect was
reversed using the Hh inihibitor cyclopamine (Liu et al., 2006).
Suppression of cFLIP eliminated CSCs in response to TRAIL,
reducing formation of primary tumors in transplant models and
almost completely preventing metastasis (Piggott et al., 2011).
cFLIP suppression also reduced MFU-enrichment following pas-
sage of mammospheres, suggesting symmetric CSC division was
compromised.

The plasticity of tumor cells is another hurdle that needs
to overcome in order to prevent de novo CSC formation from
non-CSCs. By blocking Activin/Nodal signaling, the ability of
CD44+CD24+ (non-stem) cells to give rise to CD44+CD24low

(CSC) progeny was also blocked (Meyer et al., 2009).
Therapeutic ablation of specific cell populations is likely

to only provide temporary relief from tumor progression.
Moreover, as some therapies appear to support CSC produc-
tion, it will be necessary to tackle cancer in a multi-pronged

approach, targeting both CSC and non-CSCs. The CXCR1
inhibitor repertaxin killed bulk tumor cells by upregulating Fas
expression and also prevented IL-8 signaling through CXCR1
to kill the CSCs (Ginestier et al., 2010). Combining GCV
and TMZ to target both CSCs and non-CSCs significantly
reduced the tumor burden compared with GCV treatment
alone (Chen et al., 2012). Unfortunately, the outgrowth of cells
that had suppressed the TK transgene precluded the authors
from determining if there was a significant benefit to overall
survival.

A problem with current cancer therapies is that they have
been tested, selected and approved based on the ability to reduce
tumor size without testing the effect on CSCs. Therefore, in addi-
tion to developing drugs that target CSCs it will be necessary to
develop new assays focused on being able to detect changes in
CSCs function that alone may not necessarily cause a reduction in
tumor size. The efficacy of CSC-targeted therapeutics could also
be determined by examining cancer recurrence in patients treated
with combined drug regimes.

SUMMARY
There is now little doubt that cancer cells with the properties of
stem cells exist within heterogeneous populations and that these
CSCs have tumor-forming capacity. However, the role that these
cells have in the formation and progression of the tumor in the
primary setting is still unclear and will require suitable models to
be developed for this to be delineated. The mechanisms of CSCs
formation will require particular attention if they are to be suc-
cessfully eliminated from patients. Finally, new assays that can
detect the efficacy of targeting CSCs are essential if CSC-therapies
are to make it to the clinic.
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Inflammation and altered immune response are important components of obesity and
contribute greatly to the promotion of obesity-related metabolic complications, especially
cancer development. Adipose tissue expansion is associated with increased infiltration
of various types of immune cells from both the innate and adaptive immune systems.
Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and
cytokines providing a microenvironment favorable for tumor growth. Accumulation of B
and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade
inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes
an important mechanism described in the obese state correlating with increased tumor
growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue
include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress,
and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk
between tumor cell/immune cell/adipocyte. In this sense, future therapies should take
into account the combination of anti-inflammatory approaches that target the tumor
microenvironment with more sophisticated and selective anti-tumoral drugs.

Keywords: adipose tissue, inflammation, immune cells, adipokines, angiogenesis, hypoxia, macrophages, tumor

growth

INTRODUCTION
The incidence of obesity and its associated disorders is increas-
ing at an accelerating and alarming rate worldwide (Flegal et al.,
2012; Frühbeck et al., 2013). Relative to normal weight, obesity is
associated with significantly higher all-cause mortality (Frühbeck,
2010; Flegal et al., 2013). Body mass index (BMI) represents the
most used diagnostic tool in the current classification system of
obesity, frequently used as an indicator of body fat percentage
(BF). The controversy in studies (Hughes, 2013) arises in part
because a wide variety of BMI cutoffs for normal weight has been
applied to correlate with mortality which can yield quite diverse
findings. Furthermore, in spite of its wide use, BMI is only a
surrogate measure of body fat and does not provide an accurate
measure of body composition (Frühbeck, 2012; Gómez-Ambrosi
et al., 2012). Noteworthy, obesity is defined as a surplus of body
fat accumulation, with the excess of adipose tissue really being
a well-established metabolic risk factor for the development of
obesity-related comorbidities such as insulin resistance, type 2
diabetes (T2D), cardiovascular diseases and some common can-
cers (Bray, 2004; Kahn et al., 2006a; Van Gaal et al., 2006; Renehan
et al., 2008; Bardou et al., 2013).

Results from epidemiological studies indicate that overweight
and obesity contribute to the increased incidence and/or death
from quite diverse types of cancers, including colon, breast
(in postmenopausal women), endometrium, kidney (renal cell),
esophagus (adenocarcinoma), stomach, pancreas, gallbladder and
liver, among others (Calle and Kaaks, 2004). The mechanisms
linking excess of adiposity and cancer are unclear but the obesity-
associated low-grade chronic inflammation is widely accepted

as an important factor in cancer pathogenesis (Catalán et al.,
2011d; Hursting and Dunlap, 2013). Chronic hyperinsulinaemia
as well as the alterations in the production of peptide and
steroid hormones associated to obesity are other postulated
mechanisms involved in cancer development (Calle and Thun,
2004). Particular attention is placed on the pro-inflammatory
microenvironment associated with the obese state (Catalán et al.,
2011d; Ribeiro et al., 2012; Hursting and Dunlap, 2013), specif-
ically highlighting the involvement of obesity-associated hor-
mones/growth factors in the cross-talk between macrophages,
adipocytes, and epithelial cells in many cancers. Among the vari-
ous pathophysiological mechanisms postulated to explain the link
between obesity and cancer, the dysfunctional adipose tissue may
be a unifying and underlying factor (van Kruijsdijk et al., 2009).
Understanding the contribution of obesity to growth factor sig-
naling and chronic inflammation provides mechanistic targets for
disrupting the obesity-cancer link (Harvey et al., 2011).

In this regard, obesity prevention is a major part of several
evidence-based cancer prevention guidelines (Kushi et al., 2012).
Recent studies exploring the effect of weight loss, suggest that
severe caloric restriction in humans may confer protection against
invasive breast cancer (Michels and Ekbom, 2004). This protec-
tive effect includes reductions in the initiation and progression
of spontaneous tumors in several tissues (Longo and Fontana,
2010). Moreover, the association between obesity and cancer is
consistent with data from animal models showing that caloric
restriction decreases spontaneous and carcinogen-induced tumor
incidence (Dunn et al., 1997; Yun et al., 2013). Both bariatric
surgery and short-term intentional weight loss have been shown
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to improve insulin sensitivity and inflammatory state, which have
been postulated to contribute to the relationship between obesity
and cancer (Sjöström et al., 2007; Cummings et al., 2012).

THE IMPORTANCE OF OBESITY-INDUCED CHRONIC
INFLAMMATION
Adipocytes, the principal cellular component of adipose tissue,
are surrounded by connective tissue comprising macrophages,
fibroblasts, preadipocytes, and various cell types included in
the stromovascular fraction (Hausman et al., 2001; Nishimura
et al., 2007; Cinti, 2012). Although adipocytes have been con-
sidered primarily as fat-storage depots, in recent years, it has
become clear that together with other metabolically active organs,
adipose tissue is a dynamic endocrine system key in the regula-
tion of whole body energy homeostasis (Frühbeck et al., 2001a;
Ahima, 2006; Sáinz et al., 2009). Indeed, mature adipocytes are
involved in endocrine, paracrine, and autocrine regulatory pro-
cesses (Ahima and Flier, 2000) through the secretion of large
number of cytokines, hormones and other inflammatory mark-
ers, collectively termed adipokines (Lago et al., 2007, 2009;
Lancha et al., 2012). In addition to playing key roles in the reg-
ulation of the lipid and glucose homeostasis, adipokines modify
physiological processes, such as hematopoiesis, reproduction, and
feeding behavior, being also involved in the genesis of the mul-
tiple pathologies associated with an increased fat mass including
cancer development (Rajala and Scherer, 2003). However, adipose
tissue not only secretes adipokines but also functions as a target
of these pro-inflammatory mediators, expressing a wide variety
of receptors for cytokines, chemokines, complement factors, and
growth factors (Frühbeck, 2006a,b; Schäffler and Schölmerich,
2010).

The connection between inflammation and diabetes was sug-
gested more than a century ago (Williamson, 1901), but the
evidence that inflammation is an important mediator in the
development of insulin resistance came recently. It was described
that the administration of tumor necrosis factor-α (TNF-α) led
to increased serum glucose concentrations (Feingold et al., 1989).
The first study that established the concept of obesity-induced
adipose tissue inflammation was conducted by Hotamisligil et al.
(1993), demonstrating that the pro-inflammatory cytokine TNF-
α mediate insulin resistance in many experimental models of
obesity. Importantly, the development of adipose tissue has been
associated with increased plasma levels of well-known inflam-
matory and acute phase proteins such as C-reactive protein,
interleukin (IL)-6, IL-8, serum amyloid A (SAA) and mono-
cyte chemotactic protein (MCP)-1 in patients and different
animal models of obesity (Frühbeck et al., 1995; Wellen and
Hotamisligil, 2003; Frühbeck, 2005; Gómez-Ambrosi et al., 2006;
Kahn et al., 2006b; Kim et al., 2006; Catalán et al., 2007,
2008), whereas production of the anti-inflammatory and insulin-
sensitizing adipokine adiponectin is reduced with increasing
body weight (Kadowaki et al., 2006). In obesity, the activation
of the c-Jun N-terminal kinase (JNK) and nuclear factor κB
(NF-κB) transduction signals is key in the inflammation pro-
cess of adipose tissue and these pathways could interact with
insulin signaling via serine/threonine inhibitory phosphoryla-
tion of IRS (Bastard et al., 2006; Gil et al., 2007). Genetic or

pharmacological manipulations of these different effectors of the
inflammatory response modulate insulin sensitivity in different
animal models.

Recent data suggest that stromovascular cells also contribute
to the secretion of inflammatory adipokines. In this sense, the
infiltration of adipose tissue by immune cells is a feature of obe-
sity, with adipose tissue macrophage (ATM) accumulation being
directly proportional to measures of adiposity in both mice and
humans (Weisberg et al., 2003). This evidences a role of adipose
tissue as part of the innate immune system.

ADIPOSE TISSUE INFLAMMATION, A MICROENVIRONMENT
FOR TUMORIGENESIS
Analogously to adipose tissue, the tumor microenvironment is
composed by multiple cell types including epithelial cells, fibrob-
lasts, mast cells, and cells of the innate and adaptive immune
system that favor a pro-inflammatory and pro-tumorigenic envi-
ronment (Harvey et al., 2011). These inflammatory cells secrete
cytokines, growth factors, metalloproteinases, and reactive oxy-
gen species, which can induce DNA damage and chromo-
somal instability, thereby favoring carcinogenesis (Khasawneh
et al., 2009). The abundance of leukocytes in neoplasic tissue
was crucial to establish the link between chronic inflamma-
tion and cancer development (Virchow, 1863). Now, inflam-
mation is a well-known hallmark of cancer, and growing
evidence continues to indicate that chronic inflammation is
associated with increased cancer risk (Aggarwal and Gehlot,
2009).

The expanded adipose tissue constitutes an important ini-
tiator of the microenvironment favorable for tumor develop-
ment (Catalán et al., 2011d) due to its ability to produce
and secrete inflammatory cytokines by adipocytes or infiltrat-
ing macrophages (Xu et al., 2003). Noteworthy, novel adipokines
[lipocalin-2 (LCN-2), osteopontin (OPN) and YKL40] related
to inflammation and insulin resistance with emerging roles in
tumor development have been recently described to be increased
in adipose tissue from patients with colon cancer (Catalán et al.,
2011d).

In this line, periprostatic adipose tissue of obese subjects shows
a dysregulated expression of genes encoding molecules involved
in inflammatory processes including antigen presentation, B cell
development, and T helper cell differentiation. Moreover, subjects
with prostate cancer display an altered profile of genes with great
impact on immunity and inflammation in their periprostatic
adipose tissue (Ribeiro et al., 2012). The up-regulation of comple-
ment factor H and its receptor in periprostatic adipose tissue from
patients with prostate cancer has been also described, suggesting
an inhibitory modulation of the complement activity in prostate
tumor cells and evasion to attack. Other altered molecules include
the B lymphocyte antigen CD20 encoded by the MS4A1 gene with
a functional role in B-cell activation and FFAR2 that encodes a
protein reported to modulate the differentiation and/or activation
of leukocytes (Ribeiro et al., 2012). This observation highlights
the bi-directional interactions between periprostatic adipose tis-
sue and tumor cells, which influence adipose tissue function and
may influence prostate cancer progression inducing an environ-
ment favorable to cancer progression.
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Clusters of enlarged adipocytes become distant from the
vasculature in expanding adipose tissue leading to local areas
of hypoxia and eventually necrosis. The reduction in oxygen
pressure associated with adipose tissue hypoxia is considered to
underlie the inflammatory response (Trayhurn et al., 2008; Ye,
2009; Trayhurn, 2013). The master regulator of oxygen homeosta-
sis is the hypoxia-inducible factor (HIF)-1α. HIF-1α is increased
in the adipose tissue of obese patients and its expression is
reduced after surgery-induced weight loss (Cancello et al., 2005).
It is well-documented that HIF-1α also influences both the
innate and the adaptive immunity regulating functions of myeloid
cells, neutrophils, macrophages, mast cells, dendritic cells, natu-
ral killer cells and lymphocytes (Eltzschig and Carmeliet, 2011).
Similarly to what takes place in tumor tissue, adipose tissue
hypoxia is related to the presence of macrophages, which migrate
to the hypoxic regions and alter their expression profile increasing
inflammatory events (Fujisaka et al., 2013). Hypoxia activation
is a critical microenvironmental factor during tumor progres-
sion with oxygen concentrations in solid tumors being frequently
reduced compared with normal tissues (Semenza, 2003; Jiang
et al., 2011). HIF-1α and HIF-2α are overexpressed in certain solid
tumors (Zhong et al., 1999; Talks et al., 2000), with these ele-
vated levels being associated with cancer-related death in specific
tumoral types of the brain (oligodendroglioma), breast, cervix,
oropharynx, ovary, and uterus (endometrial) (Semenza, 2003).
HIF-2α is also strongly expressed by subsets of tumor-associated
macrophages, sometimes in the absence of expression in any
tumor cell (Talks et al., 2000). Overall, hypoxia has effects on the
function of adipocytes and appears to be an important factor in
adipose tissue dysfunction in obesity increasing the risk of cancer
development.

Moreover, hypoxia is a primary physiological signal for angio-
genesis (growth of blood vessels) in both physiological and patho-
logical conditions. Angiogenesis is a physiological response that
regulates adipogenesis representing a hallmark of tumor growth
(Hanahan and Folkman, 1996; Carmeliet and Jain, 2000; Cao,
2007). Adipocytes seem regulate angiogenesis both by cell to cell
contact and by adipokine secretion (Cao, 2007; Lemoine et al.,
2013). In this regard, many cytokines produced by adipose tissue
show angiogenic activities such as leptin, TNF-α, IL-6, IL-8, vas-
cular endothelial growth factor (VEGF) and tumor growth factor
β (TGF-β) (Ferrara and Kerbel, 2005; Ye, 2009; Gómez-Ambrosi
et al., 2010).

The blocking of tumor angiogenesis as an anticancer strat-
egy has shown desirable results across multiple tumor types
(Folkman, 1971; Schneider et al., 2012). The standard chemother-
apy usually results in partial or total resistance after different
cycles of treatment (Kerbel, 1997). Based on the hypothesis that
endothelial cells have a normal complement of chromosomes and
a relative genetic stability, the use of inhibitors of angiogene-
sis may avoid acquired drug resistance (Kerbel, 1997). Current
pharmacotherapeutic options for treating obesity and related
metabolic disorders remain limited and ineffective. Emerging
evidence shows that modulation of angiogenesis is a possible
therapeutic intervention to impair the development of obesity
by regulating the growth and remodeling of the adipose tissue
vasculature (Rupnick et al., 2002; Cao, 2010). Adipose tissue

growth is angiogenesis-dependent (Rupnick et al., 2002) and
the modulation of angiogenesis appears to have the potential to
impair the development of obesity (Lijnen, 2008). Studies in mice
have shown that the administration of anti-angiogenic agents
prevents diet-induced or genetic obesity (Brakenhielm et al.,
2004a). Genetically obese mice treated with different angiogenesis
inhibitors such as TNP-470, angiostatin, endostatin, Bay-129566,
a matrix metalloproteinase inhibitor, or thalidomide showed
reduced body and adipose tissue weights as well as increased
apoptosis in the adipose tissue compared with control mice
(Rupnick et al., 2002). In this regard, targeting a proapoptotic
peptide to prohibitin in the adipose vasculature caused ablation of
white fat in both, diet-induced and age-related obesity (Kolonin
et al., 2004). Recently, the antiangiogenic treatment blocking
VEGFR2 by antibodies but not of VEGFR1 has been described to
limit adipose tissue expansion (Tam et al., 2009). To evaluate the
effects of the different antiangiogenic agents characterized in the
cancer field in obesity models in vivo may be an attractive target
to limit adipose tissue expansion. However, a too strong inhibi-
tion of adipose tissue expansion by impairing angiogenesis may
lead to ectopic lipid storage, increased inflammation, and fur-
ther deterioration of systemic insulin sensitivity (Sun et al., 2012;
Lemoine et al., 2013). Moreover, adipose tissue development is
a multifactorial process and it is unlikely that a single angiogen-
esis inhibitor will allow reduction of obesity without associated
side effects (Lijnen, 2008). Thus, blocking the capacity for angio-
genesis may have different outcomes, depending on the stage of
obesity.

IMMUNE CELL TYPES PRESENT IN EXPANDED ADIPOSE
TISSUE
In cases of severe obesity, adipose tissue can constitute up to
50–60% of the total body mass being the expanded adipose tis-
sue a largely uncharacterized immunological organ with distinct
subpopulations of cells of the immune system (Kanneganti and
Dixit, 2012). Furthermore, excess of body fat is accompanied by
altered immune cell function and different expression profile of
genes related to immunity in obese human subjects compared
with healthy-weight individuals (Gómez-Ambrosi et al., 2004).
Discrepancies in leukocyte number, subset, and activity of mono-
cytes between lean and obese individuals have been reported
(Nieman et al., 1999). Adipose tissue has been shown to exhibit a
dynamic infiltration by innate and adaptive cells during the onset
of insulin resistance and diet-induced obesity (Duffaut et al.,
2009). The observation of infiltrated macrophages in the adipose
tissue of obese patients prompted an increased interest in the
interplay between immune cells and metabolism. Recent stud-
ies have revealed a growing list of immune cell types (including
macrophages, lymphocytes, mast cells, eosinophils neutrophils
and foam cells) that infiltrate adipose tissue and have potential
roles in insulin resistance (Olefsky and Glass, 2010; Dalmas et al.,
2011; Wu et al., 2011; Shapiro et al., 2013) (Figure 1).

The role of adaptive immune cells in obesity-induced adi-
pose tissue inflammation has been less characterized than that
of innate immune cells. Based on studies in mouse models,
lymphocyte infiltration in adipose tissue might occur in a chrono-
logical sequence. B and T lymphocytes are recruited during early
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FIGURE 1 | Obesity is associated with a great infiltration of cells from both the innate and adaptive immune systems. The aberrant population
expansion of these cells is related to the onset of obesity-related comorbidities, primarily cancer development.

obesity-induced inflammation by preadipocytes or chemotactic
adipokines like CCL5, CXCL5, CXCL12, or CCL20. Furthermore,
the cytokines derived from Th lymphocytes reportedly modu-
late macrophage phenotype switching, which is directly linked to
insulin resistance (Sell et al., 2012).

To explain the chronological order of how immune cells
infiltrate adipose tissue in obesity, it has been proposed that
T cells may stimulate preadipocytes to induce the recruitment
of macrophages via chemotactic factors such as MCP-1, shed-
ding new light on the importance of chemotaxis in this scenario
(Kintscher et al., 2008).

INNATE IMMUNE SYSTEM IN ADIPOSE TISSUE
Macrophages and monocytes are representative of the innate
immune system and represent a large proportion of the stro-
movascular cell fraction in adipose tissue. Several cell types of the
innate immune system are involved in the development of adipose
tissue inflammation and the most studied cell type among these
is the ATM (Kalupahana et al., 2012). Neutrophils and mast cells,
also members of the innate immune system have been also impli-
cated in promoting inflammation and insulin resistance during
obesity, whereas eosinophils and myeloid-derived suppressor cells
have been suggested to play a protective role (Wu and Van Kaer,
2013).

MONOCYTES AND MACROPHAGES IN ADIPOSE TISSUE
The majority of macrophages found in the adipose tissue of
diet-induced obese mice are originated from blood monocytes
(Weisberg et al., 2003; Dalmas et al., 2011). Monocytes are a
heterogeneous cell population that differ in their migration and
cell fate properties (Saha and Geissmann, 2011). The pheno-
type of macrophages depends on the subset of monocytes upon

arrival at target tissues being probably determined by the local
microenvironment (Dalmas et al., 2011). The number of resi-
dent macrophages present in adipose tissue was found to correlate
positively with obesity in various mouse models and in human
adipose tissue (Weisberg et al., 2003; Xu et al., 2003). Thus, it is
possible to speculate that macrophages might be involved in the
growth of the fat mass in a similar manner to that described in
tumors (Curat et al., 2004).

Based on their cytokine profile secretion and cell surface mark-
ers, ATMs are classified into two main types: the “classical”
macrophages named M1 in contrast to the “alternatively acti-
vated” M2. M1 macrophages are the first line of defense against
intracellular pathogens with high microbicidal activity and are
classically stimulated by interferon (IFN)-γ or by lipopolysaccha-
ride (LPS). M1 induce the secretion of inflammatory cytokines
(IL-1, IL-6, TNF-α, MCP1) and reactive oxygen species, and nitric
oxide (NO) through the stimulation of inducible NO synthase
(iNOS) (Lumeng et al., 2008). Alternative activation, resulting
from induction by the Th2 cytokines interleukin IL-4 and IL-
13 (Gordon, 2003) is associated with tissue repair and humoral
immunity producing immunosuppressive factors, such as IL-
10, IL-1Ra, and arginase (Gordon and Taylor, 2005). Obesity
induces a phenotypic switch from an anti-inflammatory M2-
polarized state to a pro-inflammatory M1 state (Lumeng et al.,
2007). The importance of the M1/M2 ratio has been reported
in macrophage-specific Pparg-deficient mice that show impaired
alternative macrophage activation, increased development of obe-
sity and adipose tissue inflammation as well as glucose intolerance
(Odegaard et al., 2007). The identification of the signaling path-
ways that control macrophage polarization in expanding adipose
tissue remains a challenging issue. In this sense, it has been
described that the local hypoxia in expanding adipose tissue
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may promote the M2 to M1 switching (Ye and McGuinness,
2013). Moreover, a recent study in Trib1-deficient mice has
shown a severe reduction of M2-like macrophages in adipose
tissue highlighting the contribution of Trib1 for adipose tissue
homeostasis by controlling the differentiation of tissue-resident
M2-like macrophages (Satoh et al., 2013).

INVOLVEMENT OF NEUTROPHILS, EOSINOPHILS, AND MAST CELLS IN
OBESITY
The notion that a transient “acute inflammatory infiltrate” pre-
cedes the “chronic inflammatory infiltrate” in obesity and that
neutrophils play a key role (Wagner and Roth, 2000) produc-
ing chemokines and cytokines, thereby facilitating macrophage
infiltration has been proposed (Talukdar et al., 2012). In this
line, adipose tissue neutrophils could have a role in initiating the
inflammatory cascade in response to obesity based on the fact
that mice fed with a high-fat diet show an increase in neutrophil
recruitment to adipose tissue peaking at 3–7 days and subsid-
ing thereafter (Elgazar-Carmon et al., 2008). The treatment of
hepatocytes with neutrophil elastase causes cellular insulin resis-
tance while deletion of neutrophil elastase in obese mice leads to
reduced inflammation (Talukdar et al., 2012).

Although eosinophils are associated with allergic diseases and
helmintic infections (Rothenberg and Hogan, 2006), the biologic
role of these cells in adipose tissue remains incompletely defined
(Maizels and Allen, 2011). It has been shown that eosinophils are
the main source of IL-4 and IL-13 in white adipose tissues of
mice, and, in their absence, M2 macrophages are greatly atten-
uated (Wu et al., 2011). Moreover, in the absence of eosinophils,
mice which were fed a high-fat diet develop increased body fat and
insulin resistance (Wu et al., 2011). The promotion of eosinophil
responses can protect against metabolic syndrome (Wu et al.,
2011).

Mast cells, like macrophages, are inflammatory cells, but the
exact mechanisms of mast cells in the pathogenesis of obesity
are not fully understood. In this regard, increased mast cells in
adipose tissue from obese subjects compared with those of lean
subjects have been reported. Obese subjects also had significantly
higher tryptase concentrations in their serum than lean indi-
viduals. Mast cells may contribute to inflammation through the
secretion of IL-6 and IFN-γ (Stienstra et al., 2011). Moreover,
mast cell number is related to fibrosis, macrophage inflamma-
tion and endothelial activation of adipose tissue in human obesity
(Divoux et al., 2012). These observations suggest a possible asso-
ciation between mast cells and obesity-associated inflammation
(Liu et al., 2009; Zhang and Shi, 2012).

ADAPTIVE IMMUNE SYSTEM IN ADIPOSE TISSUE
Recent advances in the field of adipose tissue biology reveal a
prominent role of different types of lymphocytes (T-lymphocytes,
B-lymphocytes, and natural-killer cells) in adipose tissue inflam-
mation depending on the obese state in parallel to macrophages
(Sell and Eckel, 2010).

T-LYMPHOCYTES IN ADIPOSE TISSUE
CD4+ T cells along with CD8+ T cells constitute the majority
of T-lymphocytes. Experimental data suggest that T-lymphocytes

might play a role in the development of insulin resistance dur-
ing obesity. In this sense, T-lymphocytes are described in visceral
and subcutaneous adipose tissue of obese mice and humans
(Bornstein et al., 2000) but the role of different subtypes of lym-
phocytes, CD4+, and CD8+ cells, in adipose tissue inflammation
remains largely unexplored. The increase in the number of T
cells in adipose tissue from diet-induced obesity mice is gender-
dependent, with higher numbers of T cells in obese males than in
females or lean males (Wu et al., 2007). Based on studies in mouse
models, lymphocyte infiltration in adipose tissue might occur
in a chronological sequence with T lymphocytes being recruited
during early obesity-induced inflammation by chemokines like
RANTES, a T-cell specific chemokine also known as CCL5 (Sell
et al., 2012). In this regard, the expression of RANTES and its
respective receptor CCR5 in visceral adipose tissue of morbidly
obese patients have been described (Wu et al., 2007).

CD4+ T cells are crucial in achieving a regulated effective
immune response to pathogens. In adipose tissue, CD4+ T
cells are mainly classified into the classical T-helper 1 (Th1)
and T-helper 2 (Th2) although new subsets have been identi-
fied including T-helper 17 (Th17), induced T-regulatory cells
(iTreg), and the regulatory type 1 cells (Tr1), among others
(Luckheeram et al., 2012). The roles for CD4+ T lymphocytes
in adipose tissue are related to the regulation of body weight,
adipocyte hypertrophy, insulin-resistance, and glucose tolerance.
Thus, CD4+ cells are key in the control of disease progression
in diet-induced obesity (Winer et al., 2009). Th1 cells show
a pro-inflammatory profile, secreting IFN-γ, which elicits the
production of macrophage mediators, induces leukocyte adhe-
sion molecules and chemokines, as well as increases antigen-
presenting capacity by macrophages and endothelial cells (Geng
and Hansson, 1992; Tellides et al., 2000). Interestingly, T cells
extracted from fat tissue of obese mice and stimulated in vitro
produced higher amounts of IFN-γ than those extracted from
lean animals. This finding suggests that obesity primes T cells
from adipose tissue toward a Th1 switch (Rocha et al., 2008).
Winer et al. (Winer et al., 2009) reported that the increase of
CD4+ T cells with obesity in mice is largely due to the accu-
mulation of IFNγ produced by Th1 cells. The elevated levels of
IFNγ also contribute to the classical activation of adipose tissue
macrophages, resulting in increased inflammation in adipose tis-
sue. On the other hand, Th2 are anti-inflammatory cells and are
a source of IL-4 and IL-13. In this regard, T cells may orchestrate
an inflammatory cascade, depending on the set of cytokines they
predominantly produce (Hansson and Libby, 2006). A dramatic
increase in the number of Th1 cells has been described in diet-
induced obesity states, whereas the number of Th2 cells remained
unchanged (Sell and Eckel, 2010).

T regulatory (Treg) cells are a small subset of T lympho-
cytes constituting normally 5–20% of the CD4+ compartment.
Tregs are critical in the defense against inappropriate immune
responses such as inflammation and tumorigenesis (Sakaguchi
et al., 2008) because they control the behavior of other T cell
populations and influence the activities of the innate immune sys-
tem cells (Maloy et al., 2003). Treg cells regulate the activities of
macrophages and adipocytes probably secreting IL-10, given their
association with improved insulin sensitivity in both rodents and
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humans (Scarpelli et al., 2006). It has been recently described that
the accumulation of Tregs in visceral adipose tissue is mediated
by the nuclear receptor peroxisome proliferator-activated recep-
tor (PPAR)-γ (Cipolletta et al., 2012). PPAR-γ tended to impose
the transcriptional characteristics of visceral adipose tissue Tregs
on naïve CD4+ T cells (Cipolletta et al., 2012). Tregs may be reg-
ulated by local hypoxia, increased adipocyte death and adipocyte
stress (Feuerer et al., 2009). The diminished Treg cells in obesity
could promote the infiltration of macrophages in adipose tissue
and, thereby, increase the production of inflammatory cytokines.

CD8+ T cells are involved in the initiation and propagation of
inflammatory cascades in obese adipose tissue (Nishimura et al.,
2009). CD8+ cells are required for adipose tissue inflammation
and have major roles in macrophage differentiation, activation
and migration (Nishimura et al., 2009). A study in mice reported
mainly CD8+ lymphocyte infiltration in hypoxic areas of epi-
didymal adipose tissue in mice fed a high-fat diet, whereas the
numbers of CD4+ and regulatory T cells were reduced (Rausch
et al., 2008). The infiltration by CD8+ T cells precedes the recruit-
ment of macrophages. Indeed, immunological and genetic deple-
tion of CD8+ T cells lowered macrophage infiltration and adipose
tissue inflammation as well as ameliorated systemic insulin resis-
tance (Rausch et al., 2008). Another study also demonstrates an
early T lymphocyte infiltration during the development of insulin
resistance in a mouse model of high fat diet-induced obesity as
well as a correlation of T cells with waist circumference in dia-
betic patients (Kintscher et al., 2008), highlighting the association
of insulin resistance with adipose tissue lymphocyte infiltration.
Oppositely, most of these cells were CD4+ with only a few CD8+
cells.

Recent studies have focused on another regulatory T cell
subset, natural killer T (NKT) cells, in the development of
obesity-associated inflammation and comorbidities (Lukens and
Kanneganti, 2012; Lynch et al., 2012). NKT cells are abun-
dant in metabolically active organs such as liver and adipose
tissue (Emoto and Kaufmann, 2003; Lynch et al., 2009) and
show the capacity to produce a variety of both pro- and
anti-inflammatory cytokines (Wu and Van Kaer, 2013). NKT
cells exert their effects in the development of inflammation
and metabolic diseases in response to nutritional lipid excess
(Wu and Van Kaer, 2013).

B-LYMPHOCYTE ACCUMULATION IN DYSFUNCTIONAL ADIPOSE
TISSUE
A fundamental pathogenic role for B cells in the development
of metabolic abnormalities has been described (Winer et al.,
2011; DeFuria et al., 2013). In mice, B-lymphocytes accumulate
in adipose tissue before T cells, shortly after the initiation of a
high-fat diet (Duffaut et al., 2009). The early recruitment of B
cells promotes T cell activation and pro-inflammatory cytokine
production, which potentiates M1 macrophage polarization and
insulin resistance (Winer et al., 2011).

Moreover, an impaired function of toll-like receptors in
B cells from patients with T2D that increases inflammation
by the elevation of pro-inflammatory IL-8 and lack of anti-
inflammatory/protective IL-10 production has been described
(Jagannathan et al., 2010).

ADIPOKINE DYSREGULATION AND CANCER
A growing body of evidence suggests that the inflammatory
milieu of the obese state is linked to the development of can-
cer through different mechanisms (Grivennikov et al., 2010).
Infiltrating immune cells in adipose tissue regulates the local
immune response, inducing increased levels of pro-inflammatory
cytokines and adipokines and providing a major link to the
obesity-associated tumor development (van Kruijsdijk et al.,
2009). Critical molecules involved in the promotion of tumor cell
proliferation include inflammatory transcription factors [such
as NF-κB and signal transducer and activator of transcription 3
(STAT3)], adipokines (leptin and adiponectin) as well as inflam-
matory cytokines and enzymes (TNF-α, IL-6, MCP-1, SAA) and
matrix metalloproteases (Gómez-Ambrosi et al., 2006; Aggarwal,
2009). Among all these molecules, perhaps the transcription fac-
tor NF-κB is the central mediator of inflammation (Aggarwal,
2004).

Leptin, the product of the ob gene, is an adipocyte-derived
hormone that is a central mediator in regulating body weight by
signaling the size of the adipose tissue mass (Zhang et al., 1994).
Leptin levels are closely correlated with adiposity in obese rodents
and humans (Maffei et al., 1995; Frühbeck et al., 1998, 2001b;
Muruzábal et al., 2002). Subsequent studies have suggested that
this hormone may be linked to the increased incidence of cancer
in obesity (Khandekar et al., 2011). Leptin has attracted atten-
tion due to its potential function as an antiapoptotic, mitogenic,
proangiogenic, and prometastatic agent, as observed in numerous
in vitro studies (Frühbeck, 2006a,b; Park et al., 2011). Circulating
levels of leptin have been investigated to determine the corre-
lation with cancer and progressive disease. A strong association
between leptin levels and colorectal and endometrial cancer has
been reported (Petridou et al., 2002; Koda et al., 2007a). However,
the findings of clinical studies of the relationship between leptin
and breast cancer are inconsistent (van Kruijsdijk et al., 2009).
Interestingly, many colorectal, breast, and endometrial cancers
overexpress the leptin receptor OB-R (Koda et al., 2007a,b).
Leptin produced by adjacent adipose tissue might promote the
growth of colorectal cancer enhancing the proliferation of colon
cancer cells although other factors released by adipocytes are also
likely to be involved in the process. It suggests that the pres-
ence of tumor-associated adipose tissue represents an important
microenvironmental influence (Amemori et al., 2007; Vansaun,
2013).

It has now been extensively documented that adiponectin
expression is inversely correlated with obesity (Scherer et al., 1995;
Hu et al., 1996). Adiponectin may influence cancer risk through
its well-recognized effects on insulin resistance, but it is also plau-
sible that adiponectin acts on tumor cells directly (Yamauchi et al.,
2001; Barb et al., 2007). Interestingly, several cancer cell types
express the adiponectin receptors AdipoR1 and AdipoR2 that may
mediate the inhibitory effects of adiponectin on cellular prolifera-
tion (Kim et al., 2010). Epidemiologic studies show that low levels
of adiponectin have an inverse association with the risk for the
development of multiple cancers as well as advanced progression
of disease (Wei et al., 2005; Barb et al., 2007; Bao et al., 2013). In a
prospective analysis, adiponectin levels were inversely associated
with endometrial (Dal Maso et al., 2004) and breast cancer risk
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FIGURE 2 | Adipose tissue constitutes an active endocrine organ. In the
lean state, adipose tissue exhibits resident macrophages polarized toward an
M2 status and Treg cells involved in support a metabolic homeostasis.
Moreover, the inflammation is controlled through the eosinophil-derived
interleukin (IL)-4 and IL-13 as well as the IL-10 secreted by Treg cells and M2
macrophages. With a progression of obesity, adipocytes undergo

hypertrophy and release adipokines that promotes the acquisition of an M1
macrophage phenotype with increased production of pro-inflammatory
factors such as tumor necrosis factor-α, (TNF-α), monocyte chemotactic
protein (MCP)-1, and IL-6. This is accompanied by the infiltration of mast cells
and T lymphocytes contributing to the dysregulation of adipose tissue and
favoring and perpetuating an inflammatory state.

in postmenopausal women (Tworoger et al., 2007). Adiponectin
also inhibits prostate and colon cancer cell growth (Bub et al.,
2006). In a mouse tumor model, adiponectin markedly induced
a cascade activation of caspase−8, −9, and −3, which leads to
cell death inhibiting primary tumor growth (Brakenhielm et al.,
2004b).

TNF-α, a cytokine originally identified as mediating
endotoxin-induced tumor necrosis (Carswell et al., 1975),
has been shown to be involved in the development of a number
of cancers through the promotion of vessel growth and tumor
destruction by direct cytotoxicity angiogenesis (Leibovich
et al., 1987) as well as the metastatic potential of circulating
tumor cells (Orosz et al., 1993). However, although TNF-α is
the most potent activator of NF-κB, elevated levels of TNF-α
in tissue or serum are not very common in cancer patients
(Aggarwal and Gehlot, 2009). The increased circulating levels
of TNF-α of both obese rodents and obese humans, suggest a
possible link between obesity and tumorigenesis (Khandekar
et al., 2011). In this regard, obesity-promoted hepatocellular
carcinoma development was dependent on increased produc-
tion of the cytokines TNF-α and IL-6, which cause hepatic
inflammation and activation of the oncogenic transcription
factor STAT3 (Park et al., 2010). Diet-induced obesity produces
an elevation in colonic TNF-α giving rise to a number of
alterations including the dysregulation of the Wnt signaling
pathway, with an important involvement in colorectal cancer
(Liu et al., 2012).

Another pro-inflammatory molecule produced in adipose tis-
sue is IL-6. The circulating levels of IL-6 are higher in subjects

with obesity-related insulin resistance (Kern et al., 2001). IL-6
is a pleiotropic cytokine with a significant role in growth and
differentiation (Ghosh and Ashcraft, 2013) that signals to the
nucleus through STAT3, an oncoprotein that is activated in many
human cancers and transformed cell lines (Bromberg et al., 1999).
Interestingly, STAT3 is activated by leptin (Vaisse et al., 1996) and
probably may have a role in the pro-tumorigenic effects of this
adipokine. Moreover, different studies indicate that serum IL-6
levels are a negative indicator of the development of breast cancer
in overweight or obese patients with prominent insulin resistance
(Gonullu et al., 2005; Knupfer and Preiss, 2007).

MCP-1 is a member of the CC chemokine superfamily (Panee,
2012) that plays a crucial role in recruitment and activation of
monocytes during acute inflammation and angiogenesis (Charo
and Taubman, 2004). Circulating levels of MCP-1 are generally
increased in obese patients compared to lean controls (Catalán
et al., 2007). Gene expression levels in adipose tissue follow the
same trend, being higher in the visceral and subcutaneous adi-
pose tissue of obese patients compared to lean volunteers (Huber
et al., 2008). There is emerging evidence that MCP-1 induces
tumor cell proliferation via activation of the phosphatidylinositol
3-kinase/protein kinase B (PI3K/Akt) pathway in various cancer
types (Loberg et al., 2006). Moreover, MCP-1 promotes cancer
tumorigenesis indirectly via its effects on macrophage infiltra-
tion (Walter et al., 1991). It has been described that MCP-1 is
highly expressed by breast tumor cells and has causative roles in
breast malignancy and metastasis (Soria and Ben-Baruch, 2008).
The pleiotropic roles of CCL2 in the development of cancer are
mediated through its receptor, CCR2 (Lu et al., 2007).
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Novel adipokines involved in obesity-associated inflammation
have emerged as important players of tumor growth (Catalán
et al., 2011d). OPN is a secreted glycoprotein expressed by dif-
ferent cellular types (Brown et al., 1992). Recently, several studies
have highlighted the expression of OPN in adipose tissue of both
humans and mice and its involvement in obesity and obesity-
associated T2D promoting inflammation and the accumulation
of macrophages in adipose tissue (Gómez-Ambrosi et al., 2007;
Nomiyama et al., 2007). High OPN expression in the primary
tumor is associated with early metastasis and poor outcome in
human breast and other cancers (Denhardt et al., 2001). LCN-
2 also known as neutrophil gelatinase associated lipocalin is a
component of the innate immune system with a key role in the
acute-phase response to infection (Flo et al., 2004). Increased
levels of LCN-2 in visceral adipose tissue in human obesity
and a relationship with pro-inflammatory markers has also been
described (Catalán et al., 2009, 2013). In addition to inhibiting
invasion and metastasis, LCN-2 also appears to be a negative
regulator of angiogenesis in cancer cells (Chakraborty et al.,
2012). Tenascin-C (TNC) is an extracellular matrix glycopro-
tein specifically induced during acute inflammation and persis-
tently expressed in chronic inflammation (Chiquet-Ehrismann
and Chiquet, 2003; Udalova et al., 2011). Increased expression of
TNC has been described in most solid cancers, playing important
roles in enhancing proliferation, invasion and angiogenesis dur-
ing tumorigenesis and metastasis (Midwood and Orend, 2009;
Midwood et al., 2011). In this line, elevated expression levels
of TNC have been found in visceral adipose tissue in obesity
with a tight association of genes being involved in maintaining
the chronic inflammatory response associated to obesity (Catalán
et al., 2011c). YKL-40 is another adipokine involved in inflamma-
tion and cancer cell proliferation. YKL-40 is a growth factor with
elevated gene and protein expression levels in visceral adipose
tissue in human obesity-associated T2D (Catalán et al., 2011b).
Moreover, circulating levels of this cytokine are described as an
obesity-independent marker of T2D (Nielsen et al., 2008). On
the other hand, elevated levels of YKL-40 were found in patients
with different types of solid tumors, including several types of

adenocarcinomas, small cell lung carcinoma, glioblastoma, and
melanoma (Johansen et al., 2006). Calprotectin is a member of
the S100 protein family released by activated phagocytes and rec-
ognized by TLR4 on monocytes (Vogl et al., 2007). Calprotectin
is not only involved in differentiation and cell migration but has
also been identified as an important regulator of inflammation in
cancer development and tumor spreading (Hiratsuka et al., 2008;
Ehrchen et al., 2009). The increased levels of calprotectin in obe-
sity and obesity-associated T2D have been shown decrease after
weight loss achieved by RYGB (Catalán et al., 2011a).

CONCLUSIONS
The prevalence of obesity has risen steadily for the past several
decades. Excess of adiposity is associated with increased death
rates for all cancers combined and for cancers at multiple specific
sites with the strongest evidence for endometrial cancer, post-
menopausal breast cancer, colon cancer, renal cell carcinoma of
the kidney, liver, gallbladder, esophageal, and pancreatic cancer.
The mechanisms linking obesity and cancer are unclear but low-
grade chronic inflammation, dysregulation of growth signaling
pathways, chronic hyperinsulinemia, and hypoxia associated to
obesity are widely accepted as important factors in cancer patho-
genesis. Particular attention is placed on the pro-inflammatory
environment associated with the obese state, specifically high-
lighting the involvement of infiltrated immune cells into adipose
tissue. In this sense, the understanding of the regulatory mech-
anisms that lead to polarization of macrophages or lympocytes
in adipose tissue toward a pro-inflammatory phenotype will pro-
vide new ways to control adipose tissue inflammation (Figure 2).
A better understanding of the mechanistic links between obesity
and cancer will help to identify intervention targets and strategies
to avoid the pro-tumorigenic effects of obesity.
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Toll-like receptors (TLRs) are pattern recognition receptors that recognize conserved struc-
tures in pathogens, trigger innate immune responses, and prime antigen-specific adaptive
immunity. Elucidation of crystal structures of TLRs interacting with their ligands such as
TLR1-2 with triacylated lipopeptide, TLR2-6 with diacylated lipopeptide, TLR4–MD-2 with
LPS, and TLR3 with double-stranded RNA (dsRNA) have enabled an understanding of the
initiation of TLR signaling. Agonistic ligands such as LPS, dsRNA, and lipopeptides induce
“m” shaped TLR dimers in which C-termini converge at the center. Such central conver-
gence is necessary to bring the two intracellular receptorTIR domains closer together and
promote their dimerization, which serves as an essential step in downstream signaling.
In this review, we summarize TLR ECD structures that have been reported to date with
special emphasis on ligand recognition and activation mechanism.

Keywords: innate immunity, ligand, myeloid differentiation factor 88,Toll-like receptor

INTRODUCTION
The Toll-like receptor (TLR) protein family plays an important
role in the innate immune system by recognizing common struc-
tural patterns in diverse microbial molecules (Gay and Gangloff,
2007). TLRs are type I transmembrane glycoproteins character-
ized by the presence of an extracellular domain (ectodomain;
ECD) containing leucine rich repeats (LRRs), which is primarily
responsible for mediating ligand recognition, followed by a single
transmembrane helix and an intracellular Toll-like/interleukin-1
(IL-1) receptor (TIR) domain that is responsible for downstream
signaling. To date, 10 and 12 functional TLRs have been iden-
tified in humans and mice, respectively. TLR1-9 is conserved in
both species; however, mouse TLR10 is not functional because
of a retrovirus insertion, and TLR11-13 have been lost from the
human genome (Kawai and Akira, 2010). “Toll” was first identi-
fied as a protein important in the early stages of development in
Drosophila. Later, it was discovered that Toll signals to Dorsal (like
mammalian NF-κB) and is involved in the coordination of anti-
fungal and antibacterial responses (Rosetto et al., 1995; Lemaitre
et al., 1996).

The TLR family can be largely divided into two subgroups,
extracellular and intracellular, depending on their cellular local-
ization. TLR1, 2, 4, 5, 6, and 10 are largely localized on the cell
surface to recognize PAMPs. Conversely, TLR3, 7, 8, and 9 are
localized in intracellular organelles such as endosomal/lysosomal
compartments and the endoplasmic reticulum (ER). Among the
TLRs, the ligand (lipopolysaccharide; LPS) of TLR4 was first iden-
tified by genetic studies (Lemaitre et al., 1996). Lipopeptides or
lipoproteins are recognized by TLR2 in complex with TLR1 or 6,
while viral double-stranded RNA (dsRNA) is recognized by TLR3,
flagellin is recognized by TLR5, single-stranded RNA is recognized
by TLR7 and 8, and host- or pathogen-derived DNA is recog-
nized by TLR9. In addition to known pathogen/microbial derived

ligands, TLR also recognizes the endogenous ligands (produced
by stressed or damaged cells) and synthetic ligands listed in
Table 1.

The common mechanism of TLR signaling is that interaction of
an agonist with the ECD either induces the formation of a recep-
tor dimer, or changes the conformation of a pre-existing dimer
(Latz et al., 2007; Zhu et al., 2009) in such a way that it brings two
intracellular TIR domains of the TLRs to interact physically. This
simple rearrangement serves as a nucleating act for the recruitment
of downstream signaling adapter proteins (Jin and Lee, 2008). Sig-
naling cascades via the intracellular TIR domains are mediated by
specific adaptor molecules such as Myd88 (Myeloid differentiation
factor 88), Mal (Myd88 adaptor like), TRIF (TIR domain con-
taining adaptor inducing interferon-β), and TRAM (TRIF related
adaptor molecule). These adaptor proteins also contain TIR
domains that mediate TIR–TIR interactions between TLR recep-
tors, receptor–adaptor, and adaptor–adaptor interactions that are
critical for signaling (Palsson-Mcdermott and O’Neill, 2007). In
general, intracellular TIR domain of adaptor proteins are com-
posed of approximately 160 amino acid residues and the primary
sequences of TIR domains are characterized by three conserved
sequence boxes designated Box 1, 2, and 3. Box 1 is considered
to be the signature sequence of the family, whereas boxes 2 and
3 contain functionally important residues involved in signaling
(Carpenter and O’Neill, 2009). These processes result in the for-
mation of a large multimer complex, or “signaling platform,” that
propagates downstream signaling, eventually leading to changes
in the expression of several hundred primary immune response
genes. However, the architecture of the TLR signaling complexes
is poorly understood at this time due to a lack of reliable meth-
ods to study such interactions as well as the inherent weaknesses
of individual inter- and intra-protein interactions in transitory
complexes.
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Table 1 | Toll-like receptors and their principal ligands.

TLRs Localization Ligands

Exogenous Endogenous Synthetic

analogs

Fully synthetic

molecules

TLR1 Plasma

membrane

Lipopeptides (Bacteria and Mycobacteria)

Soluble factors (Neisseria meningitidis)

Triacyl lipopeptides

TLR2 Plasma

membrane

Lipoprotein/lipopeptides (Gram-positive

bacteria, Mycoplasma, Mycobacteria,

Spirochetes)

Peptidoglycan (Gram-positive bacteria)

Lipoteichoic acid (Gram-positive bacteria)

Phenol-soluble modulin (Staphylococcus

epidermidis)

Heat-killed bacteria (Listeria monocytogenes)

Porins (Neisseria)

Atypical lipopolysaccharides (Leptospira

interrogans, Porphyromonas gingivalis)

Soluble factors (Neisseria meningitidis)

Glycolipids (Treponema maltophilia)

Outer membrane protein A (Klebsiella

pneumonia)

Glycoinositolphospholipids (Trypanosoma

cruzi )

Phospholipomannan (Candida albicans)

Structural viral proteins (Herpes simplex

virus, Cytomegalovirus)

Hemagglutinin (Measles virus)

Lipoarabinomannan (Mycobacteria)

Zymosan (Saccharomyces)

HSP60 HSP70

HSP96 HMGB1

Hyaluronic acid

Diacyl and triacyl

lipopeptides

TLR3 Endolysosome Single-stranded viral RNA (ssRNA) and

double-stranded RNA (dsRNA; Viruses)

mRNA Poly(I:C)

Poly(I:C12U)

TLR4 Plasma

membrane

Lipopolysaccharide (Gram-negative bacteria)

HSP60 (Chlamydia pneumonia)

Envelope proteins (Respiratory syncytial virus

and mouse mammary tumor virus)

Fusion protein (syncytial virus)

Glycoinositolphospholipids (Trypanosoma

cruzi )

Taxol (Plant product)

HSP22

HSP60

HSP70 HSP96

HMGB1

β-defensin 2

Extra domain A of

fibronectin

Hyaluronic acid

Heparan sulfate

Fibrinogen

Surfactant-protein A

Lipid A mimetics

(Monophosphoryl

lipid A, aminoalkyl

glucosamine

4-phosphate)

E6020

E5531

E5564

TLR5 Plasma

membrane

Flagellin (Gram-positive or Gram-negative

bacteria)

Discontinuous 13-

amino acid peptide

CBLB502

TLR6 Plasma

membrane

Diacyl lipopeptides (Mycoplasma)

Lipoteichoic acid (Gram-positive bacteria)

Phenol-soluble modulin (Staphylococcus

epidermidis)

Zymosan (Saccharomyces)

Heat-liable soluble factor (Group B

streptococcus)

Diacyl lipopeptides

(Continued)
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Table 1 | Continued

TLRs Localization Ligands

Exogenous Endogenous Synthetic

analogs

Fully synthetic

molecules

TLR7 Endolysosome Single-stranded RNA (Viruses) Endogenous RNA Oligonucleotides Imidazoquinolines

(Imiquimod,

Resiquimod)

Guanosine

nucleotides

(Loxoribine, Isatoribine)

Bropirimine

TLR8 Endolysosome Single-stranded RNA (Viruses) Endogenous RNA Imidazoquinolines

(Resiquimod)

TLR9 Endolysosome Unmethylated CpG motifs (Bacteria and

viruses)

Hemozoin (Plasmodium)

Endogenous DNA CpG oligodeoxynu-

cleotides (CPG 7909,

CPG 10101, 1018 ISS)

TLR10 Extracellular Unknown, may interact with TLR2 and TLR1

TLR11 Plasma

membrane

Profiling-like molecule (Toxoplasma gondii )

Structural studies of TLR–ligand complexes have been an
attractive area of research that has enabled a better under-
standing of the structure based activation of innate immunity.
Such information is essential for the development of adjuvants
that specifically bind to TLR ECD and activate its signaling
and also in the development of anti-inflammatory drugs that
block TLR mediated signaling. To date, five TLR–ligand struc-
tures (TLR1–TLR2–Pam3CSK4, TLR2–TLR6–Pam2CSK4, TLR4–
MD-2–Eritoran, TLR4–MD-2–LPS, and TLR3–dsRNA) have been
determined (Jin et al., 2007; Kim et al., 2007b; Liu et al., 2008; Kang
et al., 2009; Park et al., 2009). Currently, these solved atomic mod-
els can be used as templates to predict the structures of other
unknown TLRs. In this review article, we discuss how similar
structures of TLR ECD LRRs have evolved to bind a wide array of
different ligands and their activation mechanism.

GENERAL STRUCTURE OF TLR ECDs
The ECD of TLR members contains multiple blocks of LRR,
which are protected by cysteine rich regions to form cap-like
structures at the LRR-N- and -C-terminal ends. The C-terminal
capping structure of TLRs is connected to the cytoplasmic TIR
domain via a single transmembrane α helix. Individual LRR
module (approximately 20–30 amino acid residues long) con-
sists of conserved “LxxLxLxxNxL” motifs and a variable region
(Figure 1A). The conserved leucine residue in these motifs can be
substituted by other hydrophobic amino acids (Matsushima et al.,
2007). The asparagine residues that are also present in the motif
form continuous H-bonds with the backbone carbonyl group of
neighboring strands throughout the entire protein, resulting in
an asparagine ladder. These conserved asparagine residues are
important in maintaining the overall shape of the ECD, which
can also be replaced by other residues such as cysteine, threonine,
or serine, which are able to form H-bonds (Kajava et al., 1995;
Kobe and Deisenhofer, 1995; Bell et al., 2003). The variable “x”

residues present in the motif are exposed to the solvent. Among
them, only few residues are involved in ligand recognition. The
“LxxLxLxxNxL” motifs located in the inner concave surfaces of
the horseshoe-like structure form parallel β-strands, whereas the
variable region forms a convex surface generated by α helices, β-
turns, and loop structures (Figure 1A). LRR proteins are present
in a very large and diverse group of proteins and have been found
to be involved in a wide variety of physiological functions includ-
ing immune responses, signal transduction, cell cycle regulation,
enzyme regulation, and transcriptional regulation (Buchanan and
Gay, 1996; Dolan et al., 2007).

The crystallization of some LRR proteins, including TLRs, has
proven to be very difficult. This problem was overcome by the
introduction of a new method known as the “hybrid LRR tech-
nique” (Jin et al., 2007; Kim et al., 2007a,b; Kang et al., 2009; Park
et al., 2009). Hagfish variable lymphocyte receptors (VLRs) were
chosen as fusion partners, and the TLR and VLR were fused at
their conserved LxxLxLxxNxL motifs. Interestingly, the TLR–VLR
hybrid demonstrated that the structure and function of the fusion
proteins were not altered. Some hybrids fail to form soluble pro-
teins due to the atomic collisions or the exposed hydrophobic core
at the fusion sites. However, hybrids that produced soluble pro-
teins formed stable heterodimers and possibly bound with ligands
that were used for the crystallographic studies (Jin et al., 2007; Kim
et al., 2007a,b; Kang et al., 2009; Park et al., 2009).

The LRR protein family can be classified into seven sub-
families based on their sequence and structural patterns. TLR
belongs to the typical subfamily of the LRR superfamily (Kobe
and Kajava, 2001; Matsushima et al., 2007). Each LRR region con-
sists of 24 amino acid residues, possesses the conserved motif,
xLxxLxxLxLxxNxLxxLPxxxFx, and displays a unique horseshoe
shape structure (Figure 1B). LRR modules of TLR1, 2, 4, and 6,
but not TLR3,have been shown to deviate from their conformation
and length when compared with other typical members (Kim et al.,
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FIGURE 1 | Structure of Leucine rich repeats. (A) LRR consensus repeats
for TLR4. Residues forming the hydrophobic core, asparagine ladder and
variable regions are mentioned. Secondary structure of LRR, the residues
forming the hydrophobic core is highlighted in a box and the remaining portion

of the LRR forming the convex surface. (B) Ribbon diagram of TLR3–ECD:
LRR domain has uniform β sheet angles and a continuous asparagine
network. (C) Ribbon diagram of TLR4 ECD showing the position of three sub
domains: N-terminal, Central, and C-terminal.

2007b; Jin and Lee, 2008; Kang et al., 2009; Park et al., 2009). These
four TLRs have major structural changes in their central β-sheets;
hence, their LRR domains can be divided into an N-terminal, cen-
tral, and C-terminal domain, respectively (Figure 1C). The central
domain of TLR1, 2, 4, 6, and 10 lacks an asparagine ladder, which
is primarily responsible for the stabilization of the horseshoe-
like structure. Furthermore, this broken asparagine ladder leads
to unusual structural distortions. LRR modules of the central
domain differ considerably in the number of residues, varying
from 20 to 33. However, the LRR modules present in the majority
of LRR proteins are of uniform length (Kajava et al., 1995; Kobe
and Deisenhofer, 1995; Matsushima et al., 2007). LRR subfam-
ilies with shorter LRR modules encompass loops in the convex
surface, and those containing longer LRR modules have bulkier
α helices. It should be noted that helices require more space than
loops; therefore, subfamilies with α helices have smaller radii than
those with loops that generate enough space in the convex region
(Jin and Lee, 2008; Kang and Lee, 2011). This anomaly explains
the structural conformation variations of TLR receptors and the
ability of the receptor to bind with diverse ligands as well as
co-receptors.

CRYSTALLOGRAPHIC STRUCTURES OF TLR ECD WITH THEIR
LIGANDS
To date, five crystallographic structures of the TLR ECDs and
their ligand complexes have been reported. Of those, four were

complexed with agonistic ligands and the remaining one was
complexed with a co-receptor and an antagonistic ligand. These
structures provide evidence about how pattern recognition recep-
tors (PRRs) recognize patterns present in the ligands. Additionally,
these studies suggest that ECD activation mechanisms are also
common among all TLR receptor family members.

TLR2 COMPLEXES
Toll-like receptor-2 heterodimerizes with TLR1 or 6 to recognize
multiple PAMPs of fungi, Gram-positive pathogens and mycobac-
teria (Kawai and Akira, 2010). TLR2 recognizes lipopeptides that
are anchored to the bacterial membrane by lipid chains cova-
lently attached to N-terminal cysteine (Hantke and Braun, 1973).
Lipopeptides from Gram-negative bacteria have three lipid chains.
Two of these are attached to the glycerol through an ester bond,
which is in turn connected to the sulfur atom of the N-terminal
cysteine. The third lipid chain is connected to the amino termi-
nal via amide bonds. Lipopeptides from Gram-positive bacteria
or mycoplasma have only two lipid chains and lack the amide-
linked lipid chain (Muhlradt et al., 1997; Shibata et al., 2000).
Synthetic lipopeptide analogs (Pam2CSK4,Pam3CSK4) containing
a di- or tri-acylated cysteine group mimic the pro-inflammatory
properties of the lipoproteins, which confirms that acylated N-
terminal cysteine is the primary motif responsible for stimu-
lating the immune response. Furthermore, TLR2 receptor also
recognizes other ligands such as lipoteichoic acid, lipomannan,
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peptidoglycan, zymosan, and phenol-soluble modulin (Zahringer
et al., 2008).

TLR1–TLR2–TRIACYLATED LIPOPEPTIDE COMPLEX
The crystal structure of TLR2 in association with TLR1 and a syn-
thetic triacylated lipopeptide, Pam3CSK4, has been determined
(Jin et al., 2007). Indeed, this is the first crystal structure of a
TLR dimer resulting from the binding of agonists, which further
explains the ligand-induced dimerization. In this structure, the
ECD of TLR2 and 1 form an “m” shaped heterodimer, with the
two N-terminals extending in the opposite direction and the C-
terminals converging in the middle region (Figure 2A). Pam3CSK4

consists of three lipid chains, two of those insert into the hydropho-
bic pocket of TLR2 and the remaining one inserts into a narrow
hydrophobic channel of TLR1 (Figure 2B). Apart from the acyl
chain binding, the head groups of Pam3CSK4 also interact with
TLRs 1 and 2. In particular, TLRs form H-bonds with glycerol
and peptide backbone and also form hydrophobic interactions
with sulfur atoms. The ligand-binding pockets of TLR1 and 2 are
located at the junction of the central and C-terminal domains,
indicating the importance of structural transition in the forma-
tion of ligand-binding pockets. The ligand binding in the convex
surface of TLR2/1 was found to be quite unusual because most
ligand-binding sites on LRR proteins that have been identified were
found to be present on the concave surfaces (Kobe and Deisen-
hofer, 1995). The ligand bound complex of TLR1 and 2 is stabilized
by non-covalent forces such as H-bonding, hydrophobic interac-
tions and ionic interactions at the interface near the ligand-binding

pocket. It is worth noting that TLR1 P315L polymorphic varia-
tion has been reported to interfere with TLR1 signaling (Omueti
et al., 2007). In fact, this P315 residue is located at the TLR1/2
dimer interface, highlighting the importance of P315 in TLR1
and 2 heterodimerization. Moreover, species-specific lipoproteins
response has also been observed (Grabiec et al., 2004). Lipopep-
tides with shorter lipid chains act as more potent activator in
mouse than human TLR2. This phenomenon is mainly due to
the structural variations observed in the TLR2 pocket (Jin et al.,
2007).

TLR2–TLR6–DIACYLATED LIPOPEPTIDE COMPLEX
The crystal structure of TLR2 in association with TLR6 and a
synthetic diacylated lipopeptide Pam2CSK4 has been determined
(Kang et al., 2009). In this structure, the ECD of TLR2 and 6 form
an “m” shaped heterodimer, with the two N-terminals extending
in the opposite direction and the two C-terminal ends converg-
ing in the middle region (Figure 2C). The dimeric arrangement
of TLR2/6 is similar to TLR2/1 complex. However, TLR1 and 6
contain important structural differences in their ligand-binding
sites and dimerization interface. In TLR6, the side chains of two
phenylalanine (F343 and F365) residues block the lipid-binding
pocket, leading to a pocket that is less than half the length of
the TLR1 (Figure 2D). This structural feature provides selec-
tivity for diacylated over triacylated lipopeptides, as confirmed
by the mutation studies of these phenylalanine residues to the
corresponding amino acids of TLR1 that rendered TLR6 fully
responsive not only to diacyl but also to triacylated lipopeptides. In

FIGURE 2 | Structures ofTLR2–TLR1/6 heterodimers induced by

lipopeptides. (A) Crystal structure of TLR1/2–Pam3CSK4 complex.
TLR1, TLR2, and Pam3CSK4 are colored in sandy brown, hot pink, and
black, respectively. (B) Lipid-binding pocket in TLR1/2–Pam3CSK4

complex. The structures of TLRs are omitted to reveal the shape of

lipid-binding pocket. (C) Crystal structure of TLR2/6–Pam2CSK4

complex. TLR2, TLR6, and Pam2CSK4 are colored in hot pink, gray,
and deep magenta, respectively. (D) Lipid-binding pocket in
TLR1/2–Pam2CSK4 complex. The lipid-binding channel is blocked by F343
and F365.
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the TLR2/6 complex, two-ester bound lipid chains of Pam2CSK4

are inserted into a hydrophobic pocket in TLR2 that is located
between the LRR11 and 12 loops. Whereas, F319 located in the
LRR11 loop of TLR6, forms an H-bond with the peptide bond of
the ligand. Such an H-bond network is absent in the TLR2–TLR1–
Pam3CSK4 structure. Moreover, TLR2-6 heterodimerization is
primarily mediated by surface exposed residues of LRR11-14 mod-
ules. In the TLR2-1 complex, the amide bound lipid chain plays
an important role in bridging the two TLRs. Although Pam2CSK4

lacks these amide bound chains, it still forms a dimer, primar-
ily through hydrophobic and hydrophilic interactions of their
surface exposed residues between the two TLRs. This area of
hydrophobic interaction is 80% larger than in the TLR1/2 complex,
suggesting that this surface interaction together with the H-bond
between LRR11 and the ligand drives the heterodimerization of
TLR6.

TLR2–LPTA
During the course of TLR2–TLR6–diacylated lipopeptide com-
plex determination, TLR2 in complex with two non-peptide
ligands, Streptococcus pneumonia lipoteichoic acid (pnLTA) and
PE-DTPA (1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine-
N -diethylenetriaminepentaacetic acid), has been determined
(Kang et al., 2009). PE-DTPA is a synthetic derivative of phos-
pholipid in which metal coordinating DTPA is attached to the
ethanolamine head group. In the monomeric TLR2–pnLTA struc-
ture, the overall horseshoe-shaped structure of TLR2 and the
ligand-binding pocket remain unchanged. When compared with
TLR2-6–Pam2CSK4, the position of the sugar head group of LTA of
the TLR2–pnLTA complex displaces upward by ∼5.2 Å and rotated
by 110 Å toward the lateral surface of the ECD. Moreover, the
hydrogen donor and acceptor atoms in the sugar head group of
pnLTA have a different arrangement than the lipopeptides. Hence,
it is not possible to form an H-bonding network. Due to the shift,
TLR1 or TLR6 cannot approach TLR2 to form heterodimers. In the
TLR2–PE-DTPA structure, the acyl chain and head group arrange-
ments are similar to those of TLR2–pnLTA. When compared with
TLR2-6 lipopeptide complexes, the head group of PE-DTPA is
shifted ∼4.3 Å. This structural shift primarily occurs due to a
lack of proper H-bonding between the ligand head group and
the TLRs, as well as to repulsion of the hydrophilic oxygen atom
of the ligand, whose corresponding position in lipopeptide con-
tains sulfur that forms a hydrophobic interaction with TLRs. These
complexes (pnLTA and PE-DTPA) have little or no ability to acti-
vate TLR2 because of the structural shift in ligand head groups,
which strongly suggests that the ligand/lipopeptide head group
plays an important role in TLR2 activation via heterodimerization.
A large proportion of TLR2 ligands are lipopeptides that can bind
to the TLR2 hydrophobic pocket, but some TLR2 ligands including
peptidoglycan, hyaluronic acid, teichoic acid, and zymosan do not
contain this hydrophobic region (Table 1). Hence, the interaction
of these ligands with TLR2 might use different binding sites. Fur-
ther crystallographic or modeling studies are required to clarify the
exact binding sites of non-lipid ligands and to verify whether these
bindings induce the formation of similar heterodimeric structures
such as TLR1-2 or TLR2-6.

TLR3–dsRNA COMPLEX
Toll-like receptor-3 has been shown to recognize dsRNA pro-
duced during viral replication (Alexopoulou et al., 2001). The
first TLR3 structure was identified independently by two differ-
ent groups (Bell et al., 2005; Choe et al., 2005). Both groups have
shown that the LRR region of TLR3 displays a heavily glycosy-
lated horseshoe-shaped solenoid structure. Choe et al. (2005),
postulated that dsRNA might bind at the convex surface because
this region is a glycan-free face, which enables dsRNA to bind
to the positively charged residues of the TLR ECD. However,
Bell et al. (2005) suggested that the nucleotide binding site is
located in the concave surface. This is likely due to the fact
that during crystallization, two sulfate molecules from the crys-
tallization medium stably bound to residues in LRRs 12 and
20, and these two LRRs contain large insertions. As the sulfate
ions share the same atomic arrangement as phosphate groups,
those present in the dsRNA backbone might be able to bind to
one or both of the sulfate binding sites. Hence, each group pre-
diction differs in the dsRNA binding sites and it was not clear
how TLR3 specifically recognizes dsRNA and initiates signaling.
However, the recently solved crystal structure of mTLR3 bound
to dsRNA explains how this is accomplished (Liu et al., 2008).
TLR3 ECD exists as a monomer in solution and the dimeriza-
tion only occurs upon ligand binding. In the structure, dsRNA
interacts with both the N- and C-terminal sites on the lateral
side of the convex surface of the TLR3 ECD (Figure 3A). The
N-terminal interaction sites are composed of LRRNT and LRR1-3
modules, whereas the C-terminal site is composed of LRR19-21
modules. The dsRNA in the complex retains a typical A-DNA
like structure, in which the ribose phosphate backbone and the
position of the grooves are the major determinants in binding
(Figure 3B). The mTLR3–ECD interacts with the sugar phos-
phate backbones, but not with individual bases, which accounts
for the lack of any particular nucleotide specificity in binding
(Alexopoulou et al., 2001; Leonard et al., 2008). This feature
would prevent the viruses from escaping detection by mutation
(Botos et al., 2011). Moreover, the identified structure reveals the
possible reasons for the inability of TLR3 to recognize dsDNA.
The helical structure of dsDNA is the B form, whereas dsRNA
is present in A form. The B form helical structure would not be
structurally compatible with the two terminal binding sites on the
TLR3–ECD. Moreover, several H-bonds were observed between
TLR3–ECD and the 2′-OH groups of dsRNA that is missing in
dsDNA.

The TLR3–TLR3 interaction site located near the LRRCT occu-
pies only a small portion, demonstrating that ligand–protein
interaction as the major driving force behind TLR3 dimeriza-
tion. The ligand interaction sites (two TLR3 ECD N-terminal
regions) are separated by about 120 Å, thus showing why only
40–50 base pairs are sufficient for the stabilized binding of dsRNA
to TLR3 (Leonard et al., 2008). However, there have also been
study reports of dsRNA of substantially less than 40 base pairs
being able to initiate TLR signaling (Kariko et al., 2004; Klein-
man et al., 2008). This raises the possibility that the N-terminal
interaction site is not essential for efficient TLR3 signal induc-
tion in some experimental conditions. Moreover, mutation studies
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FIGURE 3 | Structure ofTLR3–dsRNA. (A) Ribbon structure of TLR3 dimer
(colored according to the secondary structure: helix-pink; sheet-yellow;
loop-green) bound with dsRNA (red). (B) Top view.

have identified functional amino acid residues in three differ-
ent regions (N-terminal, C-terminal, and dimerization region) of
the TLR3 ECD. H539E and N541A mutation in the C-terminal,
H39A/E and H60A/E mutation in the N-terminal region, and
D648A, T679A, and P680L in the dimerization region leads to
a loss of TLR3 activity (Bell et al., 2006; Ranjith-Kumar et al.,
2007; Fukuda et al., 2008; Wang et al., 2010). Although hydropho-
bic interactions play a crucial role in binding of lipopeptides
to TLR1/2 and 2/6, the TLR3 interaction with dsRNA mainly
involves electrostatic interactions and H-bonds. Despite these
differences in ligand interactions, the ligand-induced dimers of
TLR3, TLR2-6, and TLR1-2 adopt a similar fold, the “m” shaped
dimer, in which the two C-termini of the TLR ECDs are in prox-
imity, thereby bringing the two TIR domains together on the
cytoplasmic side and providing a scaffold for the recruitment of
adaptor proteins and subsequent initiation of further downstream
signaling.

TLR4–MD-2-AGONIST/ANTAGONIST COMPLEX
A crystal structure of human TLR4–MD-2 complex binding with
an antagonist (Eritoran) has been described (Kim et al., 2007b).
Unlike other TLRs that recognize ligands directly, TLR4 does not
directly interact with ligands. Alternatively, TLR4 forms a stable
1:1 heterodimer with MD-2 and uses the hydrophobic pocket in
MD-2 to interact with the LPS of Gram-positive bacteria (Shimazu

et al., 1999). Two accessory proteins such as lipid-binding protein
(LBP) and CD14, whose main function is to extract LPS from
the bacterial membrane and transferring it efficiently into MD-2.
The general structure of bacterial LPS consists of a hydrophobic
lipid A domain, an oligosaccharide core and a distal polysaccha-
ride (the O antigen; Bryant et al., 2010). Lipid A moiety alone is
sufficient to activate innate immune responses. Lipid A consists of
a diglucosamine diphosphate head group that is substituted with
a variable number of acyl chains, ranging from four to eight. In
general, lipid A moieties consisting of hexa acylated lipid chain and
two phosphate groups are powerful immune stimulators, whereas
Lipid A with five acyl chains have ∼100-fold less activity. Several
synthetic derivatives of lipid A have been developed as candidate
drugs against sepsis and septic shock syndrome. Eritoran or E5564
is a synthetic molecule derived from the lipid A component of
non-pathogenic LPS of Rhodobacter sphaeroides. This compound
contains only four acyl chains and acts as a strong antagonist of
TLR4–MD-2 complex and is currently in Phase III clinical trial
(Mullarkey et al., 2003; Rossignol and Lynn, 2005).

Toll-like receptor-4 ECD has 22 LRRs capped by LRRNT and
LRRCT at its N- and C-termini, respectively. MD-2 has a cup fold
like structure and is composed of antiparallel β sheets forming a
large hydrophobic core, with the surface area of ∼1000 Å that is
able to bind with ligand. The opening of the pocket is lined with
positively charged residues and three disulfide bridges that stabi-
lize the cup-like structure. It should be noted that MD-2 does not
have either a transmembrane or an intracellular domain; hence it
is not able to transmit the signals. Recent TLR4 and MD-2 complex
clearly indicated that only one-third of MD-2 is involved in TLR4
binding, the remaining part is available for the interaction with
ligands (Kim et al., 2007b; Park et al., 2009). The MD-2 binding
site of TLR4 can be divided into two chemically and evolutionary
distinct areas, termed as A and B patches. The A patch is provided
by the N-terminal domain of TLR4, which is mainly comprised of
negatively charged amino acids. The B patch is located in the cen-
tral domain that is predominantly comprised of positively charged
residues. The TLR4 binding surface of MD-2 shows a clear charge
complementarity to the TLR4 surface (Figure 4E). In the crystal
structure, four acyl chains of Eritoran occupy approximately 90%
of the solvent accessible volume of the MD-2 pocket. Of those,
two acyl chains are in the fully extended conformation within the
binding pocket, while the remaining two acyl chains are bent in the
middle (Figure 4A). The diglucosamine backbone is fully exposed
to the solvent and the phosphate groups make ionic contacts with
positively charged residues at the surface of the pocket. Addition-
ally, there is no direct interaction between Eritoran and TLR4 (Kim
et al., 2007b). Indeed, this is very similar to the recently identified
structure of MD-2 in complex with the lipid IVA (Figure 4B; Ohto
et al., 2007). Lipid IVA, or compound 406, is an intermediate in
LPS biosynthesis, which contains four lipid chains with lengths
and structures that differ from the Eritoran. Lipid IVA acts as
an antagonist of human TLR4–MD-2, but behaves as an agonist
of mouse TLR4–MD-2 (Means et al., 2000). Despite the signifi-
cant structural differences seen between lipid IVA and Eritoran,
their binding modes are similar. The structural superimposition
of TLR4–MD-2–Eritoran and MD-2–lipid IVA have shown that
lipid chains of different lengths are accommodated in the MD-2
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FIGURE 4 |The interactions of agonist and antagonistic ligands in

TLR4–MD-2 complex. (A) When TLR4–MD-2 binds to Eritoran, the F126 loop
is exposed to the solvent area. (B) When MD-2 binds to lipid IVA, the F126
loop is exposed to the solvent area. (C) When TLR4–MD-2 binds to LPS; the
F126 loop forms hydrophobic interactions with lipid chains and the second
TLR4. This interaction causes a structural shift in the F126 loop, which enables
the correct positioning of the R2 lipid chain to interact with the second TLR4

as well as TLR4 dimerization to occur. (D) Structure of TLR4–MD-2–LPS
complex. TLR4, MD-2, and LPS are colored in magenta, light green,
and red, respectively. (E) TLR4–MD-2 dimer interface formed by
electrostatic interaction. Positive and negative charged residues are
marked in blue and red color, respectively. (F) TLR4 homodimer interface.
Hydrophilic and hydrophobic residues are colored in green and khaki,
respectively.

pocket with only a 2-Å shift in the glucosamine backbone (Kim
et al., 2007b). In both lipid IVA–MD-2 and Eritoran-TLR4–MD-2
structures, the ligands did not induce any conformational changes
in the receptors, thereby demonstrating that these molecules are
antagonists.

The much anticipated TLR4–MD-2–LPS complex has recently
been solved (Park et al., 2009). The authors demonstrated that
TLR4 and MD-2 proteins associate with each other without LPS,
but the dimerization of the TLR4–MD-2 complex with another
TLR4–MD-2 occurs only via binding of LPS. The receptor multi-
mer is composed of two copies of the TLR4–MD-2–LPS complex
arranged in a symmetrical fashion (Figure 4D). In the crystal
structure, five of the six lipid chains of LPS bind to this pocket,
while the remaining lipid chain that is exposed on the surface
of MD-2 forms hydrophobic interactions (F440, F463, and L444)
with the second TLR4 (Figure 4C). Mutation of the F440 and
F463 interface residues disrupt TLR4 dimerization and its signal-
ing (Resman et al., 2009). The binding of LPS induces localized
conformational changes in MD-2, primarily on the F126 loop
region, which leads to the hydrophilic residues in the F126 loop

and R90 residues of MD-2 form H-bonds and ionic interac-
tions with the second TLR4, further stabilizing the complex. In
addition to the above major interaction, TLR4 makes an addi-
tional contribution to dimerization by directly interacting with
second TLR4 (Figure 4F). The previously solved MD-2 bound to
the Eritoran and lipid IVA structures revealed that F126 of MD-2
was exposed to the solvent, thereby showing no conformational
changes and hence MD-2 complex was unable to induce TLR4
dimerization. Park et al. (2009) clearly demonstrated that struc-
tural changes that mainly occurred at the F126 loop of MD-2
following LPS simulation are necessary for the dimer forma-
tion and subsequent initiation of downstream signaling. Mutation
studies of the F126 residue of MD-2 supports this finding. The
mutation of F126 did not affect LPS binding; however, it abol-
ished the ability of the TLR4–MD-2 heterodimer to form the
activated heterotetramer, suggesting that these residues form part
of the dimerization region (Kobayashi et al., 2006; Kim et al.,
2007b). Moreover, LPS contain two phosphate groups that are
important for forming ionic interactions with positively charged
residues on both TLR4 and MD-2. Comparison of LPS bound
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MD-2 with Eritoran–MD-2 indicates that the additional two lipid
chains in LPS displace the phosphorylated glucosamine back-
bone upward by 5 Å toward the solvent area, which allows the
phosphate groups to associate with the second TLR4 (Park et al.,
2009). In addition to the displacement, the glucosamine backbones
are also rotated by 180˚, interchanging the phosphate groups. It
should be noted that there is a general rule for TLR signaling
(based on the structural and biochemical studies); specifically,
TLR agonists induce TLR dimerization, whereas antagonists are
likely to interfere with dimerization (Brodsky and Medzhitov,
2007).

Crystallographic studies have provided almost 50% of the
mammalian TLR structures (TLR1, 2, 3, 4, and 6), which have
provided a basis for the understanding of agonistic induced TLR
activation and antagonistic mediated TLR inhibition. Each TLR
member recognizes “n” number of ligands starting from the
microbes, and each ligand has its own unique properties. From
this review, we come to know that the binding sites of these lig-
ands cannot be similar in all TLRs. For example, TLR4 recognizes
various ligands (Table 1), but the binding site of those ligands
are not the same as LPS in TLR4–MD-2 complex. X-ray crys-
tallographic studies have revealed that there are only a limited
number of TLR ECD interactions with ligands. The identification
of all ligand interactions with each TLR member (listed in Table 1)
using X-ray crystallographic studies have proven to be very diffi-
cult. Hence, we have to rely on molecular modeling studies along
with biochemical validation, to gain further insights into these
interactions.

COMPUTATIONAL STUDIES OF THE TLR ECD
To date, approximately 20 molecular modeling studies have inves-
tigated on TLR signaling. These studies include: (i) prediction
of TLR ECD using available TLR crystal structures as a template
and identification of its possible ligand-binding region. (ii) Struc-
tural basis identification of positive and negative regulators in
TLR signaling and (iii) Identification of the interaction between
the TIR domain and its adaptor molecules, which provides struc-
tural insights into the mechanism responsible for TLR mediated
downstream activation or inhibition.

The first modeling study reported the structures of the mouse
(m) and human (h) TLR4 ECD. These structures were generated
using the first solved hTLR3 structure as a template (Kubarenko
et al., 2007). Their target–template alignment showed that N-
terminal and C-terminal domains aligned with the template, but
the central domain did not align well. Hence, the alignment of
this portion was conducted individually by matching LRRs in
hTLR3. These sub domains (N-terminal, C-terminal, and indi-
vidual LRRs) were manually assembled and subjected to MD
simulation. Their analysis revealed that the central domain of
TLR4 ECD (LRR9-13) is hypervariable across human and mouse.
It should be noted that the ECDs of TLR7 and 9 are cleaved in the
endolysosome to recognize ligands, and this cleaved form is nec-
essary for Myd88 activation (Kawai and Akira, 2010; Basith et al.,
2011b). Wei et al. (2009) generated structural models of cleaving
ligand-binding domains of TLR7, 8, and 9. Based on comparison
of the structures, they have identified potential ligand-binding

sites as well as possible configurations of the receptor–ligand
complexes. Conversely, Kubarenko et al. (2010) modeled full
length ECD structures of TLR7, 8, and 9. Structural compar-
ison of these ECDs revealed that the insertion mainly takes
place in the TLR9 loop regions (LRR2, 5, and 8), which con-
tains primarily cysteine and few proline residues (Kubarenko
et al., 2010). Finally, the loop insertion residues have been
quantified through biochemical studies and identified the func-
tional role of these residues (C98, C110, P183, C184, C265,
C268, and P269) in TLR9 signaling. The first modeling report
to show the ligand binding to the TLR ECD is TLR5, whose
concave surface interacts with flagellin and the biochemical
studies provided that D296 and D367 of TLR5 are neces-
sary for mediating this interaction (Andersen-Nissen et al.,
2007).

Recently, the LRRML and TollML tools were designed to iden-
tify appropriate templates for each LRR and the functional anno-
tation of TLR primary sequences, respectively (Wei et al., 2008;
Gong et al., 2011). LRRML, the program produces the alignment
for each LRR along with templates that were subsequently used for
homology modeling of LRR proteins. Generally, one or more full
length protein has been used as a template for modeling. However,
due to variations in the LRR numbers among TLRs, sequences with
low similarity between the target and full length template are usu-
ally not sufficient for homology modeling. The LRRML tool was
developed to address this issue. This tool currently contains 1261
individual LRRs (obtained from 112 PDB structures) that serve
as a local template for each target. As a test case, the developers
modeled the structure of the mouse TLR3 ECD and excluded the
LRRs of the mouse/human TLR3 ECD from the LRRML dataset.
The final 26-line multiple alignments were generated by 25 tem-
plate sequences and the target sequences were used for modeling.
Superimposition of the modeled TLR3 structure with the actual
TLR3 crystal structure revealed an RMSD value of 1.9 Å, con-
firming the reliability of modeling studies. This method has since
been used to predict series of human TLR5-10 and mouse 11–13
(Wei et al., 2010). These models can be used to conduct ligand
docking studies or design mutagenesis experiments to investi-
gate the TLR–ligand-binding mechanism. Recent studies by our
group have shown that the Pam3CSK4 might be the ligand for the
TLR2/10 complex and Pam2CSK4 might activate TLR10/6 and
TLR10 homodimer. The predicted TLR10 complexes are similar
to the available TLR1 family complexes. However, the binding ori-
entation of TLR10 homodimer was different due to the presence
of negatively charged surface near LRR11-14, that defined the spe-
cific binding pocket (Govindaraj et al., 2010). This has been the
first study to suggest the possible ligands for TLR10. Our predic-
tions were also confirmed by the recent biochemical studies by
showing that chimeric receptors [TLR10 ECD and endodomain
(TIR) TLR1] along with TLR2 recognize triacylated lipopeptides
(Guan et al., 2010).

It is well known that lipid IVA acts as an agonist or antagonist for
TLR4–MD-2 complex, depending upon the species. To identify the
species specificity, Walsh et al. (2008) conducted modeling studies
and identified differences in primary sequences among the species
(mouse, cat, horse, and human). Mouse, cat and horse species
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were able to induce signaling in response to lipid IVA, whereas
human species were not able to induce signaling, primarily due to
the conservative substitution. However, this reason alone cannot
be expected to have a large influence on the overall structure of
the protein. Furthermore, they identified significant differences in
the local charge distribution on the surfaces of MD-2 and TLR4
from different species, which suggests that electrostatic forces also
govern the pharmacology of lipid IVA, further leading to the trans-
duction of TLR4 signaling. In general, the assembly of active TLR4
complexes is a stepwise process, with initial TLR4–MD-2 complex
formation being induced by the binding of lipid IVA, further pro-
moting the subsequent homodimerization of receptor ECDs. In
the modeled complex structure, LRR 15–17 modules were found to
participate in the main dimerization interface of TLR4. Their pre-
dicted modeling and mutagenesis data were remarkably accurate
when the LPS bound TLR4–MD-2 crystal structure was released
(Park et al., 2009).

African swine fever viruses (ASFV) encode a novel protein
(pI329L) that has been shown to inhibit TLR3 signaling pathway.
Modeling studies have shown that pI329L structural arrangement
is similar to TLRs (Henriques et al., 2011). However, the dif-
ference observed in ECD of pI329L, which is shorter than the
TLR. This protein forms a heterodimer with TLR3, thus acting
like a decoy receptor, demonstrating that viral protein hinders
the TLR3 homodimerization, and thereby inhibiting the TRIF
mediated pathways. A recent study showed that the pentameric
B subunit of type IIb Escherichia coli enterotoxin (LT-IIb-B5),
a non-lipidated protein ligand, activates TLR2/1 signaling path-
ways. Molecular modeling along with mutagenesis studies showed
that the upper pore of LT-IIb-B5 (M69E, A70D, L73E, and S74D)
defines an interactive surface for binding with the concave sur-
face of the TLR2/1 central domain (Liang et al., 2009). Unlike
TLR2–TLR1–triacylated lipopeptide complex, non-lipidated lig-
ands cannot fit into the small hydrophobic channel; however,
these ligands can engage in TLR surface interactions via specific
residues.

TIR MEDIATED DOWNSTREAM ACTIVATION AND
INHIBITION
Toll-like receptor ECD activation leads to TIR dimerization of
TLRs, which creates specific scaffold for the binding of adaptor
proteins such as Myd88, Mal, TRIF, and TRAM. This assembly
of the TIR complexes activates the downstream signaling path-
ways, leading to the expression of pro-inflammatory cytokines,
antiviral response and also in the initiation of adaptive immu-
nity. To date, five mammalian TIR structures have been reported
(TLR1, TLR2, TLR10, IL-1RAPL, and Myd88; Xu et al., 2000;
Tao et al., 2002; Khan et al., 2004; Nyman et al., 2008; Ohnishi
et al., 2009). All these TIR domains, containing alternative β

strands and α helices are arranged as a central five stranded
parallel β sheets surrounded by α helices. The TIR domains of
TLR1 and TLR2 exist as a monomer in the crystal. Conversely,
TLR10 TIR domain without the extracellular and transmem-
brane regions behaves as a monomer in solution, but it forms
a homodimer in the crystal asymmetric unit. This structure
has been used to represent the signaling dimer of TIRs. In the
TLR10 TIR dimer interface, BB-loop connecting the βB strand

and the αB helix, and the death domain (DD) loop connect-
ing the βD strand and the αD helix, have been reported to be
important for the downstream signaling. Moreover, part of the
BB-loop exposed to the surface is essential for the binding of
the adaptor proteins during signal transduction (Nyman et al.,
2008).

On the basis of TLR10 TIR structure, TLR4 TIR homod-
imer has been modeled by computational studies and identified
two symmetrically related interfaces that are potentially capa-
ble of binding to adaptors, Mal and TRAM (Figure 5; Nunez
Miguel et al., 2007). It is of worth noting that TLR4 TIR P681H
polymorphism variation has been reported to abolish signal in
response to LPS. In fact, this P681 located at the BB-loop, high-
lights its importance in TIR dimerization. Moreover, this model
indicates that two adaptors could bind simultaneously to the
TLR4 TIR dimer. Another important question raised by this
study is whether adaptors binding is mutually exclusive, that is
whether a single activated receptor complex recruits either Mal
or TRAM, but not both simultaneously. Kagan et al. (2008)
suggested that TLR4 signaling via Mal–Myd88 occurs at the
plasma membrane and the signaling via TRAM–TRIF might be
endosomal.

The crystal structures of bacterial (Chan et al., 2010) and
the plant TIR domains (Chan et al., 2009) are highly homol-
ogous to those of mammalian TIRs. In bacterial TIR domain,
the dimerization interface involves DD loop but not the BB-loop
(important for TLR10 dimer). Chan et al. (2009) suggest that

FIGURE 5 | Molecular model of MAL andTRAMTIR domains bridged to

the activatedTLR4TIR domains. The BB-loops in each TIR domain are
highlighted in red. MAL and TRAM proteins are both predicted to bind to
the TLR4 homodimer interface. It is probable that binding of MAL or TRAM
protein is mutually exclusive, with the former binding to activated receptors
at the cell surface and the latter in endosomes.
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the BB-loop is not important for the homotypic interactions but
may have a defined role in the heterotypic interactions with Mal
or Myd88 TIR domains. Moreover, the available TIR structures
lack the region immediately following their transmembrane seg-
ment, further making it hard to predict their exact orientation.
Myd88 contains an N-terminal DD that is separated from the
C-terminal TIR domain by a short linker sequence. After bind-
ing of Myd88 TIR domain to TLR TIR domains, Myd88 DD
can interact with DD members of IRAK family, to activate their
downstream signaling cascades. Recently, Lin et al. (2010) iden-
tified the complex crystal structures formed by DD of Myd88,
IRAK4, and IRAK2. This complex structure known as Myd-
dosome, consists of left handed helical structure in the order
of 6 Myd88, 4 IRAK4, and 4 IRAK2 DDs. Like TIRs, DD are
small globular proteins but have an anti parallel α helical fold
rather than α–β structure. The dimerization of TLR TIR dimer
recruits two Myd88 TIR domains then the larger myddosome
superhelix could possibly bridge several activated receptor dimer
in the network (Gay et al., 2011). Polymorphism of S34Y and
R98C in the human DD, interfere with the myddosome assem-
bly and may contribute susceptibility to infection (George et al.,
2011).

Single immunoglobulin interleukin-1 receptor TIR domain
(SIGIRR) and ST2L, belong to the TIR/IL-1R superfamily, which
act as a negative regulator of Myd88-dependent TLR signaling.
Specifically, this family attenuates the recruitment of Myd88 adap-
tors to the receptors via its intracellular TIR domain. Thus, these
molecules are highly important for the treatment of autoimmune
diseases caused by TLRs. Gong et al. (2010) proposed a residue
detailed structural framework of SIGIRR inhibiting the TLR4
and 7 signaling pathways. In their multimer complex, SIGIRR
exerts its inhibitory effect by blocking the molecular interface of
TLR4, TLR7, and Myd88 adaptors, mainly via its BB-loop region.
Our group proposed a structural framework of ST2L inhibiting
the TLR4, TLR2/1, and TLR2/6 signaling pathways (Basith et al.,
2011a). Apart from this, our group identified the structure based
modulation of IκB family proteins. These proteins are structurally
similar that are activated by TLR signaling and it has specific
role in the cytoplasm and the nucleus by interacting with dif-
ferent subunits NF-κB dimer. Although the structures are similar,
the binding specificities of these proteins remain unknown. The
modeling studies have identified that variation in charged surfaces
among the IκB proteins and also differences in the flexible resid-
ual position might be the chief factor for the IκB protein binding
specificities (Manavalan et al., 2010, 2011).

CONCLUSION
In the past few years, there has been tremendous progress in the
study of interaction of TLRs with their ligands and activators.
Herein, we have discussed recent structural information regarding
the TLR family and its proposed activation and inhibition mecha-
nisms. Recent crystallographic studies of TLR1/2, 2/6, 4, and 3 have
provided an explanation for in vivo, in vitro, and clinical observa-
tions. The solved structures have demonstrated that TLR exists as a
monomer in solution and that dimerization takes place only upon

ligand binding. Conversely, TLR8 and 9 exist as preformed dimers
that subsequently change the conformation upon ligand binding.
The solved (TLR1, 2, 6, 3, and 4) and modeled TLR ECD struc-
tures appear to have a common fold that belong to a well known
LRR family with repeated LRR modules. Sequence and structural
analyses indicate that TLRs present in the extracellular membrane
(TLR1, 2, 4, 6, and 10) belong to a three-domain subfamily that
binds to hydrophobic ligands such as lipoprotein, LTA and LPS.
Conversely, TLRs present in the endolysosome (TLR3, 7, 8 and 9)
belong to a single domain family that interacts with hydrophilic
proteins or nucleic acids. This ligand-induced dimerization leads
to the juxtamembrane sequences at the C-terminal ECDs com-
ing into close proximity. These sequences are then transmitted
across the transmembrane, resulting in reorientation or homod-
imerization between the receptor TIR domains. The homodimeric
receptor TIR domains provide specific molecular surfaces for the
recruitment of adaptor TIR domains. Although the structures of
the TLRs are similar, the binding pocket and electrostatic sur-
faces are not conserved among these receptors. These variations
are mandatory for the discrimination of the ligand specificity
in each TLR family member. For example, triacylated lipopep-
tides bind to the hydrophobic binding pocket of TLR1/2; however,
LT-IIb-B5 protein binds to the same receptor on another surface
rather than the hydrophobic pocket. This is primarily due to the
patterns present in the ligands with different properties (lipids
and proteins), which causes the binding site of ligands to vary
among all TLRs according to the surface and cavity provided by
the receptors.

It is essential that we continue to develop a thorough and
detailed understanding of the structural or molecular interac-
tions of the ligands listed in Table 1 with their corresponding
TLR family members. Such studies facilitate the rational design of
receptor agonists and antagonists, leading to potential improve-
ments in the treatment of diseases. However, there are still many
important unanswered questions about TLR signaling. For exam-
ple, the conformation of the transmembrane spanning segment
once the TLR ECDs are activated is not known. The process
leading to the recruitment of adaptor proteins following TLR acti-
vation is also not clear. Furthermore, it is not known if other
ligands bind to the receptors in the same orientation and induce
similar “m” shaped dimerization as seen in crystal structures.
TLR4 receptor activation requires a co-receptor such as MD-2,
but further work is needed to determine if this mechanism holds
true for TLR4 designed agonists and if these synthetic agonists
also need a co-receptor to bind with TLR receptor. The recent
advances that have been made in structure–function analyses
should allow many of these questions to be resolved in the near
future.
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Sensing of infectious danger by toll-like receptors (TLRs) on macrophages causes not only
a reprogramming of the transcriptome but also changes in the cytoskeleton important for
cell spreading and motility. Since manual determination of cell contact areas from fluo-
rescence micrographs is very time-consuming and prone to bias, we have developed and
tested algorithms for automated measurement of macrophage spreading. The two-step
method combines identification of cells by nuclear staining with DAPI and cell surface
staining of the integrin CD11b. Automated image analysis correlated very well with manual
annotation in resting macrophages and early after stimulation, whereas at later time points
the automated cell segmentation algorithm and manual annotation showed slightly larger
variation. The method was applied to investigate the impact of genetic or pharmacological
inhibition of known TLR signaling components. Deficiency in the adapter protein Myd88
strongly reduced spreading activity at the late time points, but had no impact early after
LPS-stimulation. A similar effect was observed upon pharmacological inhibition of MEK1,
the kinase activating the mitogen-activated protein kinases (MAPK) ERK1/2, indicating that
ERK1/2 mediates Myd88-dependent macrophages spreading. In contrast, macrophages
lacking the MAPK p38 were impaired in the initial spreading response but responded nor-
mally 8–24 h after stimulation.The dichotomy of p38 and ERK1/2 MAPK effects on early and
late macrophage spreading raises the question which of the respective substrate proteins
mediate(s) cytoskeletal remodeling and spreading. The automated measurement of cell
spreading described here increases the objectivity and greatly reduces the time required
for such investigations and is therefore expected to facilitate larger throughput analysis of
macrophage spreading, e.g., in siRNA knockdown screens.

Keywords: macrophage, spreading,TLR, image analysis

INTRODUCTION
Macrophages reside in all tissues and play an important role in
tissue remodeling and homeostasis by phagocytosis and diges-
tion of dead cells and cellular debris. Their second function as
sentinels for infectious danger is embodied by the expression of
pattern recognition receptors for pathogen-associated molecular
patterns. The best characterized group of PRR is the toll-like
receptor (TLR) family, which includes TLR9 as the receptor for
CpG-rich bacterial DNA and TLR4, which together with MD2
forms the receptor for the lipopolysaccharide from the cell wall
of Gram-negative bacteria (Kawai and Akira, 2010). Triggering
of TLR family members by microbial ligands, e.g., during phago-
cytosis of bacteria, induces a rapid and massive transcriptional
response engendering the inflammatory response to infection. A
bottleneck in the signal transduction of TLR is the adapter pro-
tein Myd88 that binds to the intracellular TIR domain of most
TLR and recruits further adapters (e.g., TRAF6) and kinases (e.g.,

IRAK1; IRAK4; Kawai et al., 1999; Kawai and Akira, 2010). The
major signaling modules activated by TLR are the IKK complex
leading to NFκB translocation to the nucleus, and the cascade of
mitogen-activated protein kinases (MAPK). MAPK family mem-
bers expressed in macrophages are ERK1/2, JNK1/2, and p38.
These MAPK control the transcriptional response to TLR liga-
tion through phosphorylation-mediated activation of transcrip-
tion factors (e.g., AP-1, CREB, and many others; Lang et al., 2006);
in addition, the plethora of MAPK substrate proteins are involved
in diverse cellular processes including cell motility, adhesion, and
phagocytosis (Schmidt et al., 2001; Blander and Medzhitov, 2004;
West et al., 2004; Kang et al., 2008).

In a recent global and quantitative analysis of TLR4-driven
phosphorylation events in primary macrophages, we identified
more than 1800 phosphoproteins containing nearly 7000 phos-
phorylation sites. LPS-stimulation caused reproducible changes
in the phosphorylation of around a quarter of all sites both early
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(15′) and late (4 h) after stimulation (Weintz et al., 2010). Bioin-
formatic analysis of the regulated phosphoproteome showed an
enrichment of known TLR signaling pathway molecules, but also
revealed that genes annotated in Gene Ontology as cytoskeletal-
and actin-binding proteins were enriched and thus are a hotspot of
TLR-induced phosphorylation. The set of cytoskeleton-associated
proteins showing phosphorylation after TLR4 triggering includes
(among others) adapters like Arp3, Paxillin and Vasp, kinases
like Ptk2, and motor proteins like Myo1e, Myo1f, and Myo9b.
Some of these proteins possess well characterized functions
in phagocytosis, cell spreading and motility in macrophages,
or other cell types (Schaller, 2001; Sechi and Wehland, 2004;
Kim et al., 2006; Hanley et al., 2010). Others have not yet
been associated functionally with cytoskeleton-based macrophage
responses.

In order to better understand the control of TLR-driven changes
in phagocytosis and macrophage spreading by signaling molecules
and components of the cytoskeleton, quantitative readout systems
are needed. Ideally, such assay systems should have the potential for
high-throughput analysis, for example to test the effects of siRNA
knockdown of a larger group of candidate genes. The spreading
response of cells to stimulation increases the contact area with the
cell culture support material, an effect that can be easily visualized
in fluorescence microscopy. Quantitation of spreading responses
from many cells can be done manually, e.g., using ImageJ soft-
ware (Girish and Vijayalakshmi, 2004; Collins, 2007). However,
this approach has the drawback of being very labor-intensive and
time-consuming, hence excluding the analysis of multiple sam-
ples in a reasonable amount of time. In addition, the manual
delineation of the cell borders introduces potential bias. In con-
trast, automatic image analysis has the potential of circumventing
these drawbacks and is therefore highly desirable. Available free-
ware software packages like the so-called CellProfiler (Carpenter
et al., 2006) are able to perform an automated image analysis.
The software can be adapted to the image content by adjusting
the minimum and maximum cell diameter and by choosing a
threshold selection method. Furthermore various pre-processing
methods exist that can improve image quality. However, the
requirement to adjust all these parameters until satisfying results
are obtained makes the use very time-consuming for researchers
not trained in image processing. Thus, we have developed algo-
rithms to segment nuclei and to determine cell size and contact
areas (Held et al., submitted; Held et al., 2011). Here, these meth-
ods were applied and optimized to investigate the macrophage
spreading in response to TLR4 stimulation and its control by the
Myd88 adapter protein and the MAPK family members ERK1/2
and p38.

MATERIALS AND METHODS
MICE
Colonies of C57BL/6, Myd88−/− (Kawai et al., 1999), and
p38flox/flox; Mx-Cre (Engel et al., 2005; Bohm et al., 2009) mice
were maintained at the Franz Penzoldt Center of the Medical
Faculty at the University Erlangen-Nuremberg. p38flox/flox; Mx-
Cre mice were injected three times i.p. at week 5 with poly I:C
(13 mg/kg body weight) for depletion of p38a in hematopoietic
cells as described (Bohm et al., 2009).

REAGENTS
LPS (Escherichia coli 0111:B4) and Cytochalasin D were pur-
chased from Sigma-Aldrich. MEK1 inhibitor was received from
Selleck Chemicals. Antibodies to phosphorylated (p)-Erk1/2, p38,
p-p38, pMAPKAPK2 (p-MK2) were obtained from Cell Signaling
Technology and to Grb2 from BD Biosciences.

MACROPHAGE DIFFERENTIATION
Mouse bone marrow was flushed out of the prepared femurs and
tibiae with sterile ice-cold PBS. After 5 min of erythrocyte lysis
at room temperature with NH4CL [0.15 M] cells were washed
in complete Dulbecco’s modified Eagle’s medium (cDMEM;
0.05 mM β-mercapthoethanol, 1% Pen/Strep; 10% FCS). After
overnight depletion of adherent cells non-adherent cells were
further incubated in cDMEM containing 10% L-cell condi-
tioned medium (LCCM) as a source of M-CSF for 6 days on
10 cm bacteriological plates at 37˚C, 5% CO2. After 3 days in
between 5 ml of cDMEM + 10% LCCM was added to the cell
culture.

STIMULATION OF MACROPHAGES
Differentiated macrophages were washed with 10 ml sterile
PBS, incubated with accutase, collected and washed twice with
cDMEM. Macrophages were seeded at a density of 5 × 104 and
2.5 × 104 cells/well on eight-well Permanox chamber slides (Nalge
Nunc International). After an overnight cultivation at 37˚C cells
were stimulated with 100 ng/ml LPS for different time points and
finally fixed for 20 min with 2% PFA. Supernatants of stimu-
lated cells were collected for examination of cytokine secretion
by ELISA.

WESTERN BLOT
To determine the efficiency of MEK1 inhibitor and p38 dele-
tion, parallel cultures with 1 × 106 cells/well were cultured in
1 ml cDMEM in 12-well plates. Cell lysates were prepared at
the indicated time points after LPS-stimulation. 25 μl of lysate
were loaded on 10% PAA gel containing SDS. After blotting
membrane was blocked in TBS buffer containing 3% BSA and
0.01% Tween20 and proteins were detected with the respective
antibodies.

ELISA
Supernatants from the spreading experiments were collected from
the respective conditions and cytokine concentration was mea-
sured by ELISA kits from R&D. Samples were treated as described
in the manufacturer’s instructions.

STAINING PROCEDURE
For visualization of the cell surface by fluorescence microscopy,
macrophages were incubated for 30–45 min at room temperature
with 1 μg/ml Allophycocyanin (APC)-labeled anti-mouse CD11b
antibody (BioLegends) in PBS containing 2% FCS. Cells were
washed twice with PBS and nuclei were stained by addition of
1 μg/ml DAPI (Sigma D8417) in PBS and incubation of 10 min
at room temperature. For further sample preparation cells were
washed again with PBS, mounted with 70% glycerol on specimen
and covered.
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IMAGE ACQUISITION AND PROCESSING
Images were acquired using a Zeiss AxioVert 200M (Germany)
widefield microscope connected to an AxioCam MRm camera.
Images were taken using a 20× objective and post-processed
by contrast and brightness enhancement within the AxioVison
4.8.2 software (Carl Zeiss MicroImaging). CD11b–APC stained
macrophages were imaged using a CY5 filter set from AHF
(Germany).

ALGORITHM DESCRIPTION
Staining of the cell nuclei facilitates the unequivocal definition
of individual cells in macrophage cultures containing cells in
contact with each other. This information about the nuclei was
also included for automatic segmentation, i.e., the definition of
macrophage cell bodies against the background and from other
cells. The resulting two-step segmentation method consists of the
segmentation of all cell nuclei based on the DAPI stain, followed
by the segmentation of the macrophages according to the CD11b
cell surface signal.

SEGMENTATION AND SEPARATION OF NUCLEI
For the automatic segmentation of the nuclei, a watershed
transform-based segmentation routine (Roerdink and Meijster,
2000) was applied. For pre-processing, Gaussian smoothing was
applied to reduce the noise level in the image. After shading cor-
rection, an additional pre-processing filter is applied which facil-
itates the splitting of touching cell nuclei. This algorithm will be
described in detail elsewhere (Held et al., submitted). In brief, this
filter uses adaptive weighting of the local principal curvature CP.
As boundaries between touching cells usually hold CP > 0, inten-
sities of these pixels are reduced while other pixels are preserved.
The result of this operation is denoted as modified curvature C−

P :

C−
p =

{
Cp, if Cp > 0

0, else
.

After normalization to the range of [0,1] the modified curvature
C−

P can be used as a weight map for the input image I, yielding a
filtered image I F:

IF = α + (1 − C−
P )p

1 + α
,

where the parameters α and p determine the strength of the applied
filter. After filtering, the nuclei are separated from the image back-
ground by a k-means clustering-based threshold selection method
(Hartigan and Wong, 1979). Holes in the resulting binary image
were filled and a distance transform (Saito and Toriwaki, 1994) was
applied to incorporate prior knowledge on the morphology of the
nuclei. For separation of nuclei touching each other a watershed
transform was applied to the distance image.

SEGMENTATION OF CELLS
After segmentation of the cell nuclei, the contact area of the
macrophage with the slide was segmented. Details on this algo-
rithm have been described elsewhere (Held et al., 2011). In brief,
analog to the nuclei image, the macrophage image was smoothed

with a Gaussian filter and a shading correction was performed.
Afterward, the cells were separated from the image background
by application of the k-means clustering algorithm. Note that a
different number of clusters was used for the separation of “back-
ground and cells” and “background and nuclei.” For separation
of the cells a gradient magnitude based fast marching level set
method (Sethian, 1999) was performed, using the segmented cell
nuclei as initialization.

STATISTICAL ANALYSIS
If not described otherwise in the figure legend, results were
expressed as means ± SEM of at least 300 cells per condition.
Graphs were generated with GraphPad Prism and statistical signif-
icance was determined with Student t test for unpaired conditions
(ns = not significant; ∗ p < 0.05; ∗ ∗ ∗ p < 0.0001).

RESULTS
To quantitatively measure spreading responses of macrophages
to TLR stimulation, the contact area of the cell to the support
material needs to be determined. In order to define the cell
borders against the background of the slide, we tested different
staining approaches for the best discrimination. In our hands,
using bone marrow derived mouse macrophages cultured on Per-
manox chamber slides, the staining of the integrin CD11b with
an APC-labeled antibody resulted in more even staining than the
lipid-staining molecule PKH and in a better signal-to-noise ratio
than the cytosolic dye CFSE (data not shown). Therefore, CD11b
staining of the macrophage cell surface was used for definition of
the contact area to the slide and combined with a DAPI staining
of the cell nuclei to clearly identify individual cells on fluores-
cent microscopy images (Figure 1A,B). The spreading response of
macrophages to stimulation with the TLR4 agonist LPS was exam-
ined in a kinetic analysis using time points between 1 h and 24 h
(Figure 1C). A small but significant increase in the contact area
of 10–15% was observed already 1 h after addition of 100 ng/ml
LPS. Over time, macrophages continued to spread on the Per-
manox surface and extended the contact area to approximately
twice the initial size after 8–24 h. In most experiments, the maxi-
mum effect was observed at 24 h; in some experiments, a peak was
reached already 8 h after LPS-stimulation (see below). The increase
in the macrophage contact area with the Permanox surface was
completely prevented when the inhibitor of actin polymerization
Cytochalasin D was added to the cultures before addition of LPS
(Figure 1C).

The manual annotation of contact areas from the fluorescence
microscopy images is very time-consuming, prohibiting the per-
formance of experiments with multiple conditions. Therefore, we
applied the automated two-step segmentation algorithm described
in the Section“Materials and Methods” to the raw image data from
resting and LPS-stimulated macrophages (Figure 2). The results of
the automated segmentation are displayed by the software and the
annotation of the cell borders is highlighted (Figure 2B), allow-
ing quality control and manual editing by the user (Figure 2C).
While for most cells, the segmentation obtained by the software
was found to be correct upon inspection, in the case of overlap-
ping cells some manual editing of the contact area annotation was
required (arrows in Figure 2C).
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FIGURE 1 | LPS-induced spreading of macrophages. BMM were plated in
eight-well chamber slides and rested overnight before addition of LPS
(100 ng/ml). The inhibitor of actin polymerization Cytochalasin D (5 μg/ml) was
added 1 h prior to LPS-stimulation. At the indicated time points after addition
of LPS, slides were processed for staining of CD11b and nuclei, followed by
fluorescence microscopy. (A,B) Representative images from control and 24 h

time points. Scale bar = 50 μm. (C) Quantitation of cell spreading by manual
annotation of CD11b staining. Shown are mean and SEM of at least 300 cells
per condition from one representative experiment. Media control (open
circles), LPS (closed circles), and LPS in the presence of Cytochalasin D
(closed squares). Statistical significance refers to LPS-treated compared to
untreated condition. ns = not significant; * p < 0.05; *** p < 0.0001.

To test the accuracy and reliability of the automatic seg-
mentation algorithm, we directly compared the distribution of
contact areas on a large number of macrophages under resting
and LPS-activated conditions using automated segmentation by
the software tool versus manual annotation as the gold standard
(Figure 3A). In this comparison based on the image data from
a single experiment, both methods yielded very similar distribu-
tion of contact areas and median values in resting cells and early
after LPS-stimulation. At the later timepoints, the automatic seg-
mentation algorithm produced a “shrinkage effect” with a smaller
median value compared to the manual annotation. To determine
whether this “shrinkage effect” is generic at later timepoints, we
extended this comparison analysis to a series of six independent
experiments (Figure 3B). Comparison of the median contact area
values shows a consistent high agreement between the automated
method and the manual annotation in resting macrophages and
early (2 h) after stimulation. At the later timepoints, the differences
obtained by both methods tended to become larger; however, in
addition to “shrinkage effects” there were also “blow-up effects,”
i.e., examples where automatic annotation gives larger values com-
pared to the manual annotation method. Overall, we observed a

good agreement between the results obtained by automated seg-
mentation and manual annotation even at the later timepoints.
Therefore,we employed the automated method to investigate TLR-
triggered macrophage spreading and its control by canonical TLR
pathway molecules; for comparison and validation of the method,
the time-consuming manual editing of the automatic annotated
data was included in each experiment.

Most TLR employ the adapter protein Myd88 for activation
of the major signaling pathways leading to gene expression and
cytokine secretion. The MAPK p38 and ERK1/2 are activated by
TLR stimuli and contribute to cellular responses through phos-
phorylation of transcription factors and other substrate proteins.
We employed macrophages with genetic deletion of Myd88 and
p38, and pharmacological inhibition of the ERK1/2 kinase MEK1,
to determine the control of LPS-induced macrophage spreading by
these molecules. The effect of genetic and pharmacologic deletion
on the cytokine response to LPS was examined using supernatants
from the cultures used for analysis of cell spreading (Figure 4).
In the absence of Myd88, secretion of the pro-inflammatory TNF,
IL-6, and IL-12p40, as well as of anti-inflammatory IL-10 was
almost completely absent. In contrast, the inhibition or genetic
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FIGURE 2 | Segmentation and annotation of macrophages with

two-step segmentation software. Fluorescence microscopy images of
CD11b–APC- and DAPI-stained macrophages were uploaded into the
software (A), nuclear segmentation and contact area annotation was
performed by the software tool (B), and finally checked and corrected by
the user (C). Arrowheads indicate shrinkage effects; arrows point to
overlapping cells necessitating manual editing of the annotation. Cells were
imaged by a 20× objective. Scale bar represents 50 μm.

ablation of the MAPK family members had more subtle effects.
TNF is secreted rapidly after LPS-stimulation; its levels were mod-
erately (40–60%) decreased by the MEK1 inhibitor PD184352
or in p38-deficient macrophages throughout the time course
(Figure 4A). In contrast, IL-6 is secreted later and was less affected
by interference with MAPK signals (Figure 4B). Of interest, IL-
12p40 was increased upon inhibition of MEK1 or in p38-deficient
macrophages (Figure 4C). IL-10 production was severely impaired
in the absence of p38, but also blocked considerably by MEK1
inhibition (Figure 4D).

We next determined the spreading response of macrophages
after LPS-stimulation in the absence of Myd88 (Figure 5). In a
comparison of Myd88 heterozygous and knockout macrophages,
we observed that the strong induction of macrophage spreading
at the late 8 and 24 h timepoints was indeed severely impaired
in the absence of Myd88. However, Myd88−/− macrophages did
respond nearly as well to LPS at the early timepoint of 2 h as the
heterozygous control cells. Although there were slight differences
in the absolute values, this pattern of responsiveness was robustly
identified by both segmentation methods (left and right panel in
Figure 5). Myd88−/− macrophages showed a complete lack of
cytokine secretion when supernatants from the chamber slide cul-
tures were examined by ELISA (Figure 4). The conserved early
spreading response in the absence of Myd88 is therefore likely
independent of cytokine secretion. Furthermore, it indicates that
other signaling molecules (e.g., the adapter TRIF) may play an
important role in cytoskeletal rearrangement after LPS.

The second generation MEK1 inhibitor PD184352 has been
reported to have a higher specificity than the older reagents U0126
and PD98059 for MEK1 over MEK5 (Grill et al., 2004), and was
therefore used here. Pretreatment of macrophages with PD184352
strongly reduced the levels of basal and LPS-induced phosphory-
lation of ERK1/2 without obvious impact on the phosphorylation
of p38 MAPK (Figure 6A). MEK1 inhibition had no effect on basal
macrophage spreading, and did not change the significant spread-
ing observed at the 2 h timepoint (and in the single experiment
also at the 1 h and 4 h timepoints). However, the further increase
in spreading at the 8 h and 24 h timepoints was prevented; in fact,
similar to the effect of Myd88 deficiency, MEK1 inhibition caused
a reduction of the macrophage contact area between 8 h and 24 h
(Figure 6B). Again automatic annotation and manual editing gave
basically identical results.

A possible contribution of the p38 MAPK to LPS-induced
macrophage spreading was investigated using macrophages
derived from the bone marrow of conditional p38flox/flox; Mx-
Cre mice treated with poly I:C to induce deletion of p38. As shown
in Figure 7A, deletion of p38 was very efficient in mice expressing
Cre; consequently, phospho-p38 was undetectable. In contrast, the
early activation of ERK1/2 was unchanged in the absence of p38,
whereas at later timepoints an even stronger ERK1/2 activation was
apparent. The spreading of macrophages in response to LPS was
only moderately affected by the absence of p38 (Figure 7B). At the
early 2 h timepoint, p38−/− macrophages showed a significantly
attenuated increase in the contact area. This effect was seen with
the automatic annotation method as well as after manual editing
of the segmentation results. However, by 8 h and 24 this difference
between p38−/− and p38+/+ macrophages had nearly vanished
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FIGURE 3 | Quantitative comparison of manual versus automatic

analysis versus automatic with manual editing. (A) Comparison of
cell contact area measured automatically versus manual annotation.
Data are from one experiment. Each dot represents one cell. Black bars
within the scatter plot show median contact area (numerical value

indicated above). (B) Comparison of data obtained by annotation with
tool (open circle) versus combination of tool and manual correction
(closed circle) from six independent experiments and four experimental
conditions. Each dot represents the median of at least 300 annotated
cells.

and p38−/− macrophages displayed similar spreading behavior
as p38+/+ cells. The 8 h time point in this experiment is the
only instance, where the slight variation between the automated
image analysis and the manual editing method led to a different
result, in that a significant effect of p38-deficiency was found with
the automated annotation but not after manual editing. Together,
p38 appears to be required for maximal early spreading, but in
marked contrast to the strong effects observed for Myd88 defi-
ciency and inhibition of ERK1/2 activation, p38 is not involved at
later timepoints.

DISCUSSION
In this manuscript, we have described the application of a newly
developed algorithm for automated image analysis in the inves-
tigation of macrophage spreading in response to TLR stimula-
tion. The rapid acquisition of quantitative and reliable data from
microscopy-based assays of changes in cell size and adherence
is necessary for the comprehensive investigation of the typically
relatively large number of candidate genes identified in systems
approaches like transcriptome or proteomic screens. We report
here that the algorithm developed, a combination of nuclei sepa-
ration filter based on a watershed segmentation with subsequent
cell segmentation by fast marching level set (Held et al., 2011),
performed very well in resting macrophages and early after stim-
ulation; at later timepoints an increase in variation was observed.
However, our comparison of the automated algorithm with manu-
ally corrected annotations showed that overall very similar results
were obtained across several experiments investigating the effects
of perturbations in TLR signaling on macrophage spreading. Thus,
at least for the relatively strong effects on macrophage spreading
observed here, the two-step segmentation method presented and
tested here can be used without the need for manual editing of
the data, leading to a tremendous reduction in the time and labor
required to obtain quantitative data on macrophage spreading.

Hence, using this method medium and high-throughput analysis
of macrophage spreading appear feasible. For the investigation
of more subtle differences, and for validation of effects found
with the automated analysis tool, manual inspection, and edit-
ing of the annotation may be required. Of note, even with such
a semi-automated method of combining tool-based annotation
with manual editing the processing time of the microscopy data
is reduced by a factor of two to three compared to manual anno-
tation of cells, thereby enabling the investigation of much larger
data sets in a reasonable time frame. Taken together, we are con-
vinced that the method described here represents a considerable
technical advance and valuable addition to the toolbox required
for quantitative, unbiased, and automatic image analysis of innate
immune cells.

To further improve the performance of the automatic segmen-
tation tools several issues should be addressed in future work.
First, the quality of the input data, i.e., fluorescence microscopy
pictures, in terms of intensity of staining and signal-to-noise ratio
of cells versus slide background, appears to be the most criti-
cal parameter. We have compared the cytosolic dye CFSE, the
membrane lipid stain PKH and APC-labeled anti-CD11b stain-
ing (data not shown) and obtained the best results with surface
molecule staining by anti-CD11b antibody. The reduced accuracy
of the annotation tool at later time points after stimulation may be
related to changes in CD11b surface expression and/or redistribu-
tion of CD11b in different cellular compartments, creating internal
maxima that are falsely recognized as cell borders (Figure 2B,C).
Thus, staining of other surface markers with strong expression
independent of the activation status could lead to enhanced per-
formance of the tool; possible surface markers on macrophages
could be MHC-I, CD45, or Fc receptors. In addition, the use of
fluorescent dyes yielding stronger signals for labeling of antibodies
will be tried to increase signal-to-noise ratios. Another difficulty is
the automatic segmentation and annotation of overlapping cells,
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FIGURE 4 | Control of LPS-induced cytokine secretion by Myd88,

ERK1/2, and p38. Supernatants of the cultures used for macrophage
spreading analysis were analyzed by ELISA for the presence of the
cytokines TNF (A), IL-6 (B), IL-12p40 (C), and IL-10 (D). To normalize for

differences between experiments in the absolute amount of cytokines
produced, the maximum level of the LPS-treated WT or control macrophage
was set to 100% (shown as —–). Shown are mean + SD values from two
independent experiments.

which may be solved by further development of the segmentation
algorithm.

TLR4-triggered macrophage spreading on Permanox slides
induced by stimulation with LPS was observed first after 1 h and
increased steadily until 8–24 h. The spreading response could be
a consequence of direct TLR-driven signals causing actin poly-
merization and cytoskeletal rearrangement, or it could depend on
indirect effects of TLR-induced secretion of cytokines, e.g., TNF
or IL-1. We have not dissected these possibilities here; to do so will
require the use of inhibitors of protein synthesis (e.g., Cyclohex-
imide), transport and secretion (e.g., Brefeldin A), or specific inter-
ference with certain cytokines by using knockout macrophages. By
comparing the kinetics of secretion of the cytokines TNF, IL-6, and

IL-12p40 with the spreading response, we observe that only TNF is
produced early enough to have a potential role in the initial spread-
ing response. To assess the role of TNF in macrophage spreading,
inhibitors of the metalloprotease Adam17 (also known as TACE)
could be used.

The central adapter protein of TLR signaling, Myd88, is
required for LPS-induced cytokine production (Figure 4) and
for the late and enhanced increase in the contact area; how-
ever, the early spreading response at 2 h was surprisingly nor-
mal in Myd88−/− macrophages (Figure 5). To our knowledge,
macrophage spreading of Myd88−/− macrophages has not been
analyzed before. Since TLR4 utilizes in addition to Myd88 the
adapter protein TRIF (Yamamoto et al., 2003; Weighardt et al.,
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FIGURE 5 | Phenotype of Myd88−/− macrophages in cell spreading.

BMM from Myd88± and Myd88−/− mice were plated and stimulated as
described in Figure 3. Macrophage spreading was analyzed by automated
image analysis (left panel) and manual editing (right panel). Shown are mean

and SEM from one representative experiment of two performed. LPS (closed
symbols), media control (open symbol), Myd88± (circles), Myd88−/−
(squares). Statistical significance refers to Myd88± compared to Myd88−/−
genotypes. ns = not significant; *** p < 0.0001.

FIGURE 6 | Role of the MAPK ERK in macrophage spreading. BMM
from C57BL/6 mice were plated as described in Figure 3. (A) Western
blot control for ERK1/2 and p38 phosphorylation. Cell lysates were taken
at indicated time points (15 min to 24 h) from two individual experiments.
Grb2: loading control. (B) Effect of pharmacological blockade of ERK1/2
activation on spreading. Macrophages were pre-incubated with the

MEK1 inhibitor PD184352 (10 μM, squares) or not (circles) for 1 h prior to
addition of LPS (closed symbols) or media control (open symbols).
Contact area data obtained by automated image analysis (left panel) and
manual editing (right panel). Statistical significance refers to
PD184352-treated compared to no inhibitor. ns = not significant;
*** p < 0.0001.
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FIGURE 7 | Role of the MAPK p38 in macrophage spreading. Bone
marrow from p38flox; Mx-cre; and p38flox mice treated with poly I:C to
induce deletion of the p38 gene was used to generate BMM. These cells
were plated and stimulated as described in Figure 3. (A) Western blot
control for p38 protein levels and phosphorylation of p38 and ERK1/2. Cell
lysates were taken at indicated time points (15 min to 4 h). Grb2: loading

control. (B) Macrophage spreading kinetics of Cre+ (KO, squares) and
Cre− (WT, circles) BMM stimulated with LPS (closed symbols) or media
control (open symbols). Results of automated image analysis (left panel)
and manual editing (right panel). Statistical significance refers to the
comparison of p38-deficient versus WT macrophages. ns = not significant;
*** p < 0.0001.

2004), signaling via this pathway may be responsible for the early
increase in contact area. Macrophages from mice deficient in Trif
or in both Myd88 and Trif will be useful to formally test this
possibility. In addition, to differentiate between direct effects of
Myd88 on macrophage spreading and indirect effects via secreted
cytokines, transfer of supernatants from WT macrophages onto
Myd88−/− macrophages should be informative. The MAPK p38
and ERK1/2 are activated by TLR4 signaling and were therefore
investigated for a role in LPS-induced macrophage spreading. An
unexpected dichotomy in the requirement for p38 and ERK1/2
for early and late spreading responses, respectively, was found
(Figures 6 and 7). The spreading response in cells treated with the
MEK1 inhibitor PD184352 was very similar to that of Myd88−/−
macrophages, with intact spreading at 2 h but a strongly reduced
response after 8 and 24 h. Hence, it appears that ERK1/2 is the main
kinase of the Myd88-dependent spreading response. A caveat to
consider here is the limitation of pharmacological inhibitors: first,
PD184352 did not completely suppress the initial ERK1/2 phos-
phorylation (although strongly diminishing basal and induced
expression), and secondly, it may have additional effects indepen-
dent of MEK1 inhibition that could contribute for the observed
late inhibition of spreading. Therefore, a definitive experiment to
test the role of ERK1/2 will require the use of macrophages defi-
cient in these MAPK proteins. This genetic approach was used
here for p38 MAPK, with apparently complete deletion of p38

after poly I:C injection. In the absence of p38, a reduced early,
but intact late spreading response was found. It is worth men-
tioning that p38-deficient macrophages, similar to Myd88−/−
macrophages, had a slightly reduced basal contact area (Figures 5
and 7), which could also indicate differences in macrophage dif-
ferentiation in the absence of Myd88 and p38. To corroborate the
p38-dependence of early LPS-induced spreading, specific pharma-
cological inhibition of p38 in future experiments will be helpful.
Such experiments have already been performed in a macrophage
cell line, showing that p38 induces integrin-dependent spread-
ing of J774 macrophages via activation of the Ras-like GTPase
Rap1 (Schmidt et al., 2001). As this early defect was not seen in
Myd88-deficient macrophages, the logical implication of the data
is that p38 activation should be independent of Myd88. In fact, the
LPS-induced phosphorylation of p38 and ERK1/2 MAPK is only
somewhat delayed in Myd88-deficient macrophages (Kawai et al.,
1999).

Which adapters, GTPases and motor proteins are involved
in the LPS-induced spreading response, and how are they con-
trolled by the Myd88- and MAPK-dependent pathways described
here? One established pathway from TLR4 to integrin activation
is via activation of the focal adhesion kinase-related Pyk2 and
the adapter protein paxillin (Williams and Ridley, 2000). Paxillin
activation and cell spreading in response to LPS involves ERK1/2-
dependent phosphorylation of Ser130 which is a prerequisite for
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GSK3-dependent phosphorylation of Ser126 (Cai et al., 2006). All
members of the ERK1/2–GSK3–Pyk2–Paxillin module were found
strongly phosphorylated after LPS at multiple sites in our pub-
lished phosphoproteome analysis (Weintz et al., 2010). Of interest,
paxillin and Pyk2 activation were only partially reduced in Myd88-
deficient macrophages (Hazeki et al., 2003), consistent with their
potential role in the intact initial spreading in Myd88-deficient
macrophages observed here. The observation that Cdc42 and Rac
GTPase activation proceeds independent of Myd88 early after
LPS-stimulation (Kong and Ge, 2008) provides another potential
mechanism for macrophage spreading. Clearly, while some of the
players in macrophage spreading are well established, the regulated
phosphorylation of more than 40 proteins with a Gene Ontology
annotation of “actin-binding” or “cytoskeleton-binding” (Weintz

et al., 2010) indicates that multiple proteins contribute to the
changes in macrophage shape, contact area and motility after TLR
stimulation. Elucidation of the functional role of these proteins
will require siRNA knockdown experiments, macrophages from
knockout mice and the use specific pharmacological inhibitors.
We believe that the method of semi-automatic measurement of
macrophage spreading will greatly facilitate the timely, unbiased
and quantitative investigation of these perturbations.
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Vertebrates are constantly exposed to pathogens, and the adaptive immunity has
most likely evolved to control and clear such infectious agents. CD4+ T cells are the
major players in the adaptive immune response to pathogens. Following recognition of
pathogen-derived antigens naïve CD4+ T cells differentiate into effectors which then
control pathogen replication either directly by killing pathogen-infected cells or by assisting
with generation of cytotoxic T lymphocytes (CTLs) or pathogen-specific antibodies.
Pathogen-specific effector CD4+ T cells are highly heterogeneous in terms of cytokines
they produce. Three major subtypes of effector CD4+ T cells have been identified: T-
helper 1 (Th1) cells producing IFN-γ and TNF-α, Th2 cells producing IL-4 and IL-10, and Th17
cells producing IL-17. How this heterogeneity is maintained and what regulates changes
in effector T cell composition during chronic infections remains poorly understood. In this
review we discuss recent advances in our understanding of CD4+ T cell differentiation
in response to microbial infections. We propose that a change in the phenotype of
pathogen-specific effector CD4+ T cells during chronic infections, for example, from Th1 to
Th2 response as observed in Mycobactrium avium ssp. paratuberculosis (MAP) infection
of ruminants, can be achieved by conversion of T cells from one effector subset to
another (cellular plasticity) or due to differences in kinetics (differentiation, proliferation,
death) of different effector T cell subsets (population plasticity). We also shortly review
mathematical models aimed at describing CD4+ T cell differentiation and outline areas for
future experimental and theoretical research.

Keywords: CD4+ T cells, differentiation, plasticity, mathematical modeling, Johnes disease

INTRODUCTION
Adaptive immune responses are in general required for protec-
tion against many if not most pathogens. CD4+ T cells are the
key component of adaptive responses to both intracellular and
extracellular pathogens. The major function of CD4+ (helper) T
cells is to provide help to other lymphocytes to mount an effi-
cient immune response. By secreting appropriate cytokines and
expressing a variety of co-stimulatory molecules, CD4+ T cells
are required for the generation of high affinity antibody responses
to pathogens and for the formation of long-lived plasma cells
and memory B cells (Crotty, 2011). Although it is currently
believed that CD4+ T cells are not needed for the generation
of cytotoxic T lymphocyte (CTL) responses against many intra-
cellular pathogens such as viruses (Wiesel and Oxenius, 2012),
help from CD4+ T cells is required to generate memory CD8 T
cells which are able to expand upon secondary exposure to the
pathogen (Prlic et al., 2007). CD4+ T cells are in general needed
to control chronic viral infections such as lymphocytic chori-
omeningitis virus (Zajac et al., 1998; Prlic et al., 2007; Zhang and
Bevan, 2011). Recent evidence also suggests that CD4+ T cells
could directly impact virus replication by killing virus-infected

cells which express MHC-II molecules (Swain et al., 2012). By
secreting a variety of cytokines, effector CD4+ T cells can also
recruit other cells including neutrophils and monocytes to the
sites of infection (Huber et al., 2012). CD4+ T cells are also
involved in dampening immune responses either via the action
of thymus-derived regulatory T cells (Tregs) or via production
of anti-inflammatory cytokines such as IL-10 (Pot et al., 2011;
Josefowicz et al., 2012).

How CD4+ T cells become activated, how they differenti-
ate into effector cells, how effector phenotype of CD4+ T cells
is maintained, and whether T cell effector phenotype can be
changed to better control infections has been a subject of intensive
research. In some circumstances, during progression of a chronic
disease the efficient pathogen-specific CD4+ T cell response is
lost and pathological response leading to exacerbation of the dis-
ease arises. Such a “switch” occurs during Mycobactrium avium
ssp. paratuberculosis (MAP) infection of cattle and sheep where
initially dominant MAP-specific cellular response (T-helper 1,
Th1) is lost over time of infection, and MAP-specific antibody
response (Th2) appears as the disease reaches clinical stage (Begg
et al., 2011). In other circumstances, inappropriate responses
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arise following the first priming event. For example, exposure to
allergens often leads to the generation of CD4+ T cell response
that results in allergic reactions (Th2) rather than in protective
immunity (Th1) (Holt and Thomas, 2005).

It is generally possible to bias differentiation on naïve CD4+
T cells into a particular effector T cell subset (e.g., Th1 or Th2) by
providing appropriate environmental conditions. However, reg-
ulation of the phenotype of differentiated effector CD4+ T cells
has proven to be more challenging. We propose that change
of the phenotype of pathogen-specific CD4+ effector T cells
during a chronic infection or a chronic inflammatory condi-
tion can be achieved via two distinct mechanisms: “cellular” and
“population” plasticity of T cell effectors. We illustrate how math-
ematical modeling has been used to understand factors driving
naïve CD4+ T cell differentiation and plasticity of effector T cell
responses in chronic infections.

CELLULAR AND POPULATION PLASTICITY OF CD4+ T CELL
RESPONSES
T CELL DIFFERENTIATION
Naïve CD4+ T cells differentiate into various subsets upon inter-
action with an antigen presented by the professional antigen-
presenting cells (APCs) such as dendritic cells (DC). CD4+ T cells
require 3 signals for their lineage commitment (Kenneth et al.,
2008). The first signal is generated following the interaction
between T-cell receptor (TCR) and the peptide presented in the
context of major histocompatibility complex (MHC) class II on
an APC (Yamane and Paul, 2012). The second signal is generated
following the interaction between the CD28 co-receptor on the T
cell and B7 family of co-stimulatory molecules such as CD80 or
CD86 on the APC. The third signal is generated by inflammatory
cytokines produced by the APC or other cells at the site of T cell
activation. These cytokines direct differentiation of naïve CD4+
T cells into a particular effector subset. Effector CD4+ T cells
can be categorized into three major subsets based on the type of
cytokine they produce and the major transcription factor (TF)
they express (Figure 1). If an APC secretes interleukin (IL)-12,
naïve CD4+ T cells differentiate into Th1 effectors. Th1 effec-
tors express a transcription factor T-bet and secrete the cytokines
IFN-γ and TNF-α; these cells play an essential role in inhibit-
ing replication of intracellular pathogens such as viruses (Hsieh
et al., 1993; Lighvani et al., 2001; Kenneth et al., 2008). If an APC
secretes IL-4, naïve CD4+ T cells differentiate into Th2 effectors.
Th2 cells express TF GATA-3, secrete cytokines IL-4, IL-5, and IL-
13 (Le Gros et al., 1990; Eltholth et al., 2009); these cells are critical
during infection by extracellular pathogens such as extracellular
bacteria and helminthes. In the presence of IL-6 and transforming
growth factor (TGF)-β, naïve CD4+ T cells differentiate into Th17
cells. Th17 cells express a transcription factor ROR-γt and pro-
duce cytokines IL-17 and IL-22 (Harrington et al., 2005; Ivanov
et al., 2006); these cells are important for control of certain bacte-
rial and fungal infections. Th1, Th2, and Th17 cells are considered
to be the major effector CD4+ T cells (Mosmann et al., 1986;
London et al., 1998; O’Garra, 1998; O’Garra and Arai, 2000;
Yates et al., 2000; Murphy and Reiner, 2002; Chakir et al., 2003;
Motiwala et al., 2006; Callard, 2007; Dong, 2008; Kenneth et al.,
2008; Liao et al., 2011; Hong et al., 2012; Yamane and Paul, 2012).

FIGURE 1 | Major pathways of naïve CD4+ T cell differentiation into

effectors. Upon encountering the antigens presented by the professional
antigen-presenting cells (APCs) naïve CD4+ T cells differentiate into Th1,
Th2, or Th17 effector cells. Cytokines present in the environment during
differentiation play the major role in determining the phenotype that the
CD4+ T cell will acquire. Two other CD4+ T cell subsets include regulatory
T cells (Treg) and T follicular helper cells (Tfh). Due to cellular plasticity
differentiated effector CD4+ T cells may convert from one type into
another. For example, Th17 cells under strong polarizing conditions (e.g.,
high concentrations of IL-12) may convert into Th1 cells.

Two other subsets of CD4+ T cells have been also iden-
tified (Figure 1). Tregs express TF FoxP3; these cells secrete
anti-inflammatory cytokines like TGF-β and IL-10. Tregs main-
tain immune homeostasis by limiting the magnitude of immune
response against pathogens and control inflammatory reactions
(Sakaguchi, 2004). T follicular helper cells (Tfh) express a TF Bcl-
6 and these cells are essential for the production of high affinity
IgG antibodies (Crotty, 2011). Existence of Th9 and Th22 subsets
was also recently suggested (Veldhoen et al., 2008; Eyerich et al.,
2009).

CELLULAR PLASTICITY
It has been thought for a long time that differentiation of CD4+
T cells into various effector subsets is an irreversible event; CD4+
T cells that have differentiated into a particular subset cannot
revert into a different subset (Mosmann and Coffman, 1989).
However, recent studies suggest that effector T cells retain some
degree of functional plasticity and these cells can change their
effector phenotype (Murphy and Stockinger, 2010; O’Shea and
Paul, 2010) (Figure 1). For example, recent reports have shown
that both in vitro (Murphy et al., 1996) and in vivo (Panzer et al.,
2012) generated Th1 cells can acquire the Th2 characteristics
(Figure 1). Factors determining such cellular plasticity of CD4+
T cell effectors remain poorly understood. Experimental work
suggests that plasticity of Th1 and Th2 subsets strongly depends
on their differentiation state (Murphy et al., 1996) and that it is
very difficult to reprogram the terminally differentiated subsets.
For example, under some polarizing conditions Th2 cells cannot

Frontiers in Physiology | Systems Biology August 2013 | Volume 4 | Article 206 | 54

http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Magombedze et al. CD4+ T cell differentiation

revert back to Th1 cells partly due to the loss of IL-12 receptor
on these cells (Zhu and Paul, 2010). The definition “terminally
differentiated CD4+ T cells” is very subjective, though. Long anti-
genic stimulation of naïve CD4+ T cells in vitro under either Th1
or Th2 polarizing conditions has been used as a surrogate for
strong terminal differentiation. However, CD4+ T cells are rarely
exposed to one polarizing cytokine environment in vivo. Recent
work has also shown that Th1 cells are plastic; they can convert
into Th2 cells in the presence of IL-4 (Szabo et al., 1995; Zhu
and Paul, 2010). However, this conversion of the population of
Th1 cells into Th2 effectors can also be explained by develop-
ment of Th2 cells from naïve CD4+ T cells present in the Th1
cell population (Szabo et al., 1995). Recent studies also showed
that the Th17 effector subset is unstable as compared to Th1
and Th2 effector cells, since Th17 cells can be reprogrammed to
produce Th1 and Th2 cytokines (Lee et al., 2009). Furthermore,
Tregs are plastic when cultured under Th1 (Oldenhove et al.,
2009; Wei et al., 2009) or Th17 conditions (Yang et al., 2008a).
Taken together, current data indicate that cellular plasticity of
effector CD4+ T cell responses may be rather the rule than excep-
tion (Figure 1). How such plasticity is regulated remains poorly
understood, however. Epigenetics is now considered to be one
of the key mechanisms that dictates the stability and cellular
plasticity of effector T cell subsets (Wilson et al., 2009).

Cellular plasticity of Th1 cells in vivo was demonstrated
during Nippostrongylus brasiliensis infection during which the
conversion of Th1 into Th2 cells was dependent on exogenous
IL-4 (Panzer et al., 2012). Recent work suggests that conver-
sion of Th1 into Th2 cells may occur independently of IL-4
via STAT-5-coupled cytokine receptors (Zhu et al., 2003, 2004).
Furthermore, IL-4-independent conversion of Th1 into Th2 cells
driven by signaling via the Notch receptor was also reported
(Amsen et al., 2004, 2007).

Cell heterogeneity is a factor that can partially explain the
plastic nature of effector CD4+ T cell subsets (Zhu and Paul,
2010). Such heterogeneity may arise when effectors can pro-
duce more than one cytokine. For example, while Th1 cells
can produce IFN-γ, IL-2, and TNF-α, only a few of these cells
express all the cytokines simultaneously (Darrah et al., 2007).
Data from in vitro experiments (Murphy et al., 1996) showed that
naïve CD4+ T cells differentiate into Th2 cells when stimulated
with an antigen-loaded APCs in the presence of IL-4. However,
even in such polarizing conditions a small percentage of cells
in the cultures (4%) secrete IFN-γ. Similarly, in the presence
of IL-12 and anti-IL-4 antibodies, only 80% of the cells were
IFN-γ positive (Th1) and the rest, 20%, could either be undif-
ferentiated or be cells producing IL-4 (Th2). Interestingly, using
IL-4 to re-stimulate these strongly polarized Th1 cells induces
IL-4 production in at least 8% of the population. The source
of these IL-4 producing cells is unclear as they could have been
derived from the undifferentiated naïve CD4+ T cells or from
Th1 effectors. Taken together, recent work suggests that the phe-
notype of pathogen-specific effector CD4+ T cells may change
over the course of infection due to cellular plasticity of T helper
subsets. Yet, factors that regulate the efficiency at which the con-
version from one cell subset to another occurs are still poorly
understood.

POPULATION PLASTICITY
Population plasticity is another major mechanism that may con-
tribute to the change in the dominant phenotype of effector
CD4+ T cells during chronic infections. In this mechanism, the
size of the population of T cell effectors can increase due to pref-
erential proliferation or reduced death of cells in the population
(Figure 2). Generally, T cells undergo apoptosis under various
conditions like cytokine deprivation (Cohen, 1993; Akbar et al.,
1996), TNF-α level (Zheng et al., 1995), or a repeated stimula-
tion with specific antigen due to activation-induced cell death
(AICD) (Green and Scott, 1994; Kearney et al., 1994). Various
reports claim the possibility of acquired tolerance with selective
loss of Th1 cells and the persistence of Th2 cells (Burstein et al.,
1992; De Wit et al., 1992). Additionally, the higher sensitivity of
Th1 cells to AICD compared to Th2 counterparts was demon-
strated (Ramsdell et al., 1994), which is likely to be removed due
to a higher expression level of FasL in Th1 cells. The possibility
of AICD of antigen-specific CD4+ T cell effectors during chronic
infections was reported (Zhang et al., 1997). Once the majority
of Th1 cells undergo apoptosis accompanied by the proliferation
of Th2 cells (population plasticity), few Th1 cells that are present
in the heterogeneous population could convert to Th2 subtype by
epigenetic mechanisms (cellular plasticity). Population plasticity
may be the major contributor to the change of the phenotype
of the pathogen-specific T cells in chronic infections. Yet, the
kinetics of proliferation and death of different subsets of effec-
tor CD4+ T cells during chronic infections are still lacking.
Estimating the rates of proliferation, death, and re-differentiation
of T effectors will lead to better quantitative understanding factors
regulating the size of antigen-specific T cells in many pathological
conditions.

TH1/TH2 DYNAMICS IN CHRONIC INFECTIONS
CD4+ T cell responses play a critical role in several chronic infec-
tions such as LCMV and HIV (Bevan, 2004; Wiesel and Oxenius,
2012; Streeck et al., 2013). The dynamics of pathogen-specific
Th1 and Th2 responses has been studied during a mycobacte-
rial infection with MAP called Johne’s disease (JD, Figure 3). In
early stages of MAP infection, Th1 cytokines such as IFN-γ, IL-
2, and TNF-α, are highly expressed in serum of infected animals

FIGURE 2 | Population plasticity of effector CD4+ T cells in chronic

infections. During an acute phase of infection, naïve CD4+ T cells
differentiate into a heterogeneous population consisting mainly of Th1 cells
and a few Th2 cells. However, as the disease progresses into a chronic
phase, there is a gradual loss of Th1 cells and accumulation of Th2 cells.
Accumulation of Th2 cells may occur due to a higher proliferation
rate/reduced death rate of Th2 cells than that of Th1 cells.
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(Burrells et al., 1999; Stabel, 2000a), and culture of blood samples
with MAP antigens lead to expansion of the population of IFN-γ
producing CD4+ T cells. Expression of IFN-γ and TNF-α drives
differentiation of naïve CD4+ T cells into Th1 effectors while sup-
pressing differentiation of T cells into Th2 effectors (Harris et al.,
2007; Amsen et al., 2009) (Figure 3). Th1 response via the pro-
duction of IFN-γ plays a key role in controlling bacterial infection
by promoting macrophage activation to kill intracellular bacte-
ria and by up regulating MHC-II expression (Paludan, 1998).
At later stages of MAP infection (clinical JD) infected animals
shed a significant number of MAP in feces and produce a high
level of anti-MAP serum antibody (Fecteau and Whitlock, 2010).
Production of IFN-γ and IL-12 is generally reduced in cows with
clinical JD (Stabel, 1996, 2000a; Burrells et al., 1999) whereas
expression of a Th2 cytokine (IL-4) is elevated (Sweeney et al.,
1998). IL-4 suppresses IFN-γ induced macrophage activation
(Paludan, 1998) and inhibits autophagy-mediated killing of intra-
cellular mycobacteria (Harris et al., 2007). These experimental
findings suggest that during disease progression in MAP-infected
animals there is a switch from the initially dominant MAP-specific
cellular (Th1) response to the antibody (Th2) response (Stabel,
2000b).

What regulates the dynamics of this switch remains poorly
understood, however. There are two possibilities: (1) the Th1/Th2
switch is the cause of disease progression and death of the infected
animal, or (2) the Th1/Th2 switch is the consequence of dis-
ease progression which occurs independent of whether T-helper
responses are present or not. How exactly Th1 response is lost
and Th2 response arises is also unknown. In particular, the rel-
ative contribution of cellular vs. phenotypic plasticity of CD4+
T cell responses (Figures 1, 2) to the kinetics and likelihood of
the Th1/Th2 switch in MAP-infected animals is not known. The
issue is further complicated by the results of longitudinal studies

FIGURE 3 | Schematic representation of interactions between the

bacteria and MAP-specific immune responses occurring JD. During the
infection, resting macrophages internalize extracellular MAP bacteria.
Resting macrophages are unable to clear the bacteria, and after several
rounds of replication macrophages rupture releasing more extracellular
bacteria. Naïve CD4+ (Th0) cells differentiate either into Th1 or Th2 subsets
depending on the density of infected macrophages or extracellular bacteria,
respectively. Th1 and Th2 responses interact by inhibiting differentiation of
naïve T cells and by reducing effector function of the opposite subset. Th1
response activates resting macrophages which are then able to clear the
bacteria. Th2 response may contribute to the pathogenesis of the JD by
increasing the uptake of extracellular bacteria by macrophages.

on experimental infection of sheep with MAP that showed that
the timing of Th1-Th2 switch varies between individual animals
and that Th1 response [IFN-γ] may stay high even in late stages
of MAP infection (Begg et al., 2011; Stabel and Robbe-Austerman,
2011).

The prevalence of apparently non-protective Th2 responses
during a chronic infection occurs during leprosy caused by
Mycobacterium leprae in humans. Similar to the MAP infection,
leprosy is thought to be a dynamic process with changes in
bacteria-specific cellular immune responses leading to clinical
manifestations. M. leprae infects macrophages and their activa-
tion is a critical step for clearing the bacterial infection. When
the infected macrophages are inactive, M. leprae evades the cel-
lular immune response and replicates inside of the cell until
the cell bursts. Without any external signal, macrophages are
unable to mount any significant response to the bacteria, and the
infection spreads largely unchecked. Macrophages are generally
activated by IFN-γ-producing Th1 cells. Activated macrophages
are more likely to kill intracellular bacteria by facilitating fusion of
lysosomes with bacteria-harboring phagosomes (Kenneth et al.,
2008). Patients with tuberculoid leprosy show very few lesions
which are dominated by IFN-γ and very little bacteria can be
recovered from the lesions. In the case of lepromatous leprosy, the
infection is not contained, and there is a dominance of Th2 cell
cytokines and elevated levels of anti-M. leprae antibodies in serum
(Modlin, 1994). Reversal of cytokine pattern from Th2 to Th1 was
reported during the shift from lepromatous leprosy to tuberculoid
stage by administration of either IL-12 or IFN-γ to lepromatous
patients (Modlin, 1994). Exact mechanisms by which such a ther-
apy resulted in clearance of the pathogen from lesions remain
poorly understood, but it may involve direct suppression of Th2
cell differentiation by IFN-γ, and therefore could arise due to
population plasticity of CD4+ T cell responses (Modlin, 1994;
Misra et al., 1995).

Modulation of the pathogen-specific effector T-helper
responses has been also demonstrated in the case of
Leishmaniasis, a disease caused by an infection with a pro-
tozoan Leishmania major. This parasite causes cutaneous
leishmaniasis in mice and humans. Infection of mice with a
low parasite dose leads to parasite containment associated with
a Th1 type response, whereas infection with a high parasite
dose leads to progressive disease associated with a Th2/antibody
response (Menon and Bretscher, 1998). Similarly, humans with
localized cutaneous leishmaniasis (LCL) display few lesions and
the growth of the parasite is confined to the lesions. During
diffuse cutaneous lesihmaniasis (DCL) the lesions are widely
disseminated with an uncontrolled growth of the parasite.
Th1 cytokines are dominant in LCL; they help in the elimi-
nation of the infection. However, in case of DCL prevalence
of Th2 cytokines leads to uncontrolled growth of the parasite
(Castellano et al., 2009). Whether the switch from the dominant
Th2 response to the protective Th1 response in chronic infection
is possible remains unclear, but it has been shown that clinical
cure of patients with leishmaniasis occurs concomitantly with
the loss of Th2 effectors and persistence of Th1 cells from
the acute to the chronic stage of the disease (Castellano et al.,
2009).
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MATHEMATICAL APPROACHES IN MODELING CD4+ T CELL
DIFFERENTIATION
There have been many mathematical studies aimed at improving
our understanding of mechanisms regulating T cell differentia-
tion. Studies on mathematical modeling of Th1/Th2 responses
can be categorized into three main subgroups.

The first subgroup of studies developed and analyzed math-
ematical models of differentiation of naïve CD4+ (Th0) cells
into Th1 and Th2 subsets by including the dynamics of Th1/Th2
cytokines, intracellular molecules, and gene regulatory networks
(Biedermann and Röcken, 1999; Fishman and Perelson, 1999;
Yates et al., 2000, 2004; Bergmann et al., 2001, 2002; Richter
et al., 2002; Bettelli et al., 2006; Callard, 2007; Fenton et al., 2008;
Eftimie et al., 2010; Naldi et al., 2010; Vicente et al., 2010; Groß
et al., 2011; Hong et al., 2011, 2012; Liao et al., 2011). Some of
these models described differentiation of naïve CD4+ T cells into
different effector T cell subsets via upregulation of the phenotype-
specific TF (master regulators) such as T-bet, GATA-3, FoxP3, and
ROR-γt (Höfer et al., 2002; Mariani et al., 2004; Yates et al., 2004;
Callard, 2007; Van Den Ham and De Boer, 2008; Hong et al.,
2011, 2012). These studies explained how positive and negative
feedback loops between these master regulators result in differ-
entiation of a particular subset of T effectors. Cytokines that are
present in extracellular environment and are produced by effector
T cells strongly influence the direction of naïve T cell differentia-
tion. Signals provided by cytokines binding to cytokine receptors
and by antigens binding to the T cell receptors are summarized
internally and eventually determine the direction of cell differ-
entiation. Some of the predictions of these mathematical models
found confirmation in experimental papers (Zheng and Flavell,
1997; Chakir et al., 2003; Ivanov et al., 2006; Yang et al., 2008b;
Liao et al., 2011; van den Ham et al., 2013). Further advances in
understanding of T cell differentiation have been obtained using
curated Boolean network models which included the dynamics
of multiple genes in T cells such as those encoding for cytokines
and cytokine receptors (Mendoza, 2006; Thakar et al., 2007; Kim
et al., 2008; Santoni et al., 2008; Pedicini et al., 2010). Such
multi-scale models capture communications between cells via
cytokines and integrate intra- and extracellular dynamics of such
signaling molecules (Santoni et al., 2008; Pedicini et al., 2010).
Virtual deletion experiments of the key master regulators have
been used to predict factors (e.g., TF, cytokines, or cytokine recep-
tors) influencing differentiation of cells toward either Th1 or Th2
phenotype (Pedicini et al., 2010).

The second subgroup of studies modeled population plasticity
of Th1/Th2 cell responses. These models included the processes
of cross-regulation of Th1/Th2 cell responses either directly by
cell-to-cell interactions or via production of Th1/Th2 cytokines
(Fishman and Perelson, 1999; Yates et al., 2000, 2004; Bergmann
et al., 2001, 2002; Fenton et al., 2008; Eftimie et al., 2010; Groß
et al., 2011). Some of these models offered a theoretical explana-
tion of the switch from an initially dominant pathogens-specific
Th2 response to a later dominant Th1 response (or vice versa).
These models, however, only focused on the dynamics of popula-
tions of CD4+ T cells and did not incorporate intracellular genetic
and molecular networks that enable the cells to acquire different
physiological states. For example, studies of Yates et al. (2000) and

Bergmann et al. (2001) showed that when Th1 effectors fail to
clear the antigen, initially dominant Th1 response is lost and Th2
response arises. In the Bergmann et al. (2001) model, the shift in
dominance of effector T cell populations is regulated by differ-
ences in differentiation, cross-suppression and clonal expansion
of each subset as the function of the antigen concentration. In
the Yates et al. (2000) model, dominance of the particular effec-
tor T cell subset is driven by the level of Th1/Th2 cytokines.
The latter model also investigated how population dynamics of
T-helper responses is influenced by activation-induced cell death
which limits clonal expansion and hence aids in resolving the T
cell balance. It should be noted, however, that few if any of math-
ematical models in this subgroup have been developed to address
the kinetics of effector T-helper responses during infections with
biologically relevant pathogens.

The third subgroup of studies modeled cellular plasticity of
effector CD4+ T cell responses. Mathematical models of this sub-
group predict reversible phenotypic plasticity between effector
Th17 cells to induced regulatory T cells (iTregs) and reprogram-
ming of Th2-polarised cells to Th1 phenotype in Th1-polarising
conditions (Naldi et al., 2010; Pedicini et al., 2010; Carbo et al.,
2013). A typical example of such mathematical models is the
work by Pedicini et al. (2010), which predicted master transcrip-
tion regulators as attractors associated with development of Th1
and Th2 cells using a cytokine network model. This modeling
study makes testable predictions on the mechanisms that reg-
ulate the balance between Th1 and Th2 cells and how loss of
this balance can skew lineage selection. In silico virtual knock-
out experiments of GATA-3 predicted creation of attractors with
high expression of IFN-γ. Furthermore, deletion of both T-bet
and GATA-3 predicted increase in expression of several other
non-specific Th2 TF such as IRF4, MAF, NFAT, STAT1, and
STAT6. Although models in this subgroup often generate novel
predictions these models are in general very complex involv-
ing description of tens of genes and their products. Predictions
of these models will need to be tested in specifically designed
experiments.

DISCUSSION
Discovery of several novel subsets of effector CD4+ T cells includ-
ing Th17 and Tfh cells rejuvenated interest into factors that
influence differentiation of naïve CD4+ T cells into effectors
and the stability of different effector CD4+ T cell subsets both
in vitro and following immune response to antigens in vivo. One
of the most intriguing observations is that even differentiated
effector CD4+ T cells can change their phenotype if the envi-
ronmental conditions change (Murphy and Stockinger, 2010).
Factors that regulate such cellular plasticity of effector and mem-
ory CD4+ T cell responses still remain incompletely defined, and
how and whether such plasticity can be explored therapeutically
is unknown.

In a number of conditions including infections, autoimmune
diseases, and allergic reaction, the host generates an effector
CD4+ T cell response of inadequate phenotype that may lead
to worsening of symptoms and often to exacerbation of the dis-
ease. In particular, during MAP infection of ruminants initially
protective Th1 CD4+ T cell response is lost over time, and
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non-protective Th2 response arises (Stabel, 1996, 2000a; Burrells
et al., 1999). What regulates this change in the immune response
phenotype is unclear. Conversion of MAP-specific Th1 cells into
Th2 over time (cellular plasticity) could be one potential mecha-
nism. Alternatively, there may be quantitative differences in the
rates of differentiation of naïve CD4+ T cells into two sub-
sets of effectors, differences in the rates of proliferation, death,
and migration of different subsets of CD4+ T cells to the site
of infection (population plasticity). Finally, phenotype switch
could be driven by other helper cell types, for example, thymus-
derived Tregs or periphery-induced Tregs. Experimentally, it
will be a challenge to discriminate between these alternative
mechanisms of Th1/Th2 switch during JD. As for other condi-
tions (e.g., allergic reactions) mechanisms driving the change in
phenotype of allergen-specific CD4+ T cell effectors following
immunotherapy remain to be determined (Holt and Thomas,
2005; van Oosterhout and Motta, 2005). We believe that one of
the important experimental challenges is to evaluate the rates
at which different effector T-helper cell subsets proliferate and
die during chronic inflammatory conditions (e.g., infections) and
whether these rates are influenced by the type of inflammatory
environment.

Many mathematical models on CD4+ T cell differentiation
have been developed and analyzed. The vast majority of these
models focus on the initial differentiation step of naïve CD4+
T cells into a particular effector subset. Such models are useful
for the vaccine development where induction of an appropri-
ate CD4+ T cell response will be critical for the vaccine efficacy.
The discovery of cellular plasticity of effector CD4+ T cells
calls for the need to develop novel mathematical models that

explain and predict how one T cell subset is converted into
another subset. The use of gene expression and phenotypic data
from in vitro and in vivo generated effector CD4+ T cells will
be instrumental for testing and verifying such mathematical
models.

Mathematical models have also been developed to explain
population plasticity of effector T cell responses. These models
are more relevant to chronic conditions such as persistent
infections and autoimmune diseases. Yet, most of these mod-
els have been poorly parameterized and predictions of such
models have not been adequately tested in well-designed exper-
iments. More experimental data is needed to explain how
proliferation, death, and differentiation of effector T cells are
influenced by the environment and the subsets themselves.
Also, data on the dynamics of effector T cells at the sites
of infection will be useful for the development of models
for specific infections. In all cases, development of quantita-
tive mathematical models can be greatly enhanced by closer
collaborations between mathematicians/modelers and wet-lab
experimentalists.
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Cancer is a major health problem with high mortality rates. In the post-genome era, inves-
tigators have access to massive amounts of rapidly accumulating high-throughput data
in publicly available databases, some of which are exclusively devoted to housing Cancer
data. However, data interpretation efforts have not kept pace with data collection, and
gained knowledge is not necessarily translating into better diagnoses and treatments. A
fundamental problem is to integrate and interpret data to further our understanding in
Cancer Systems Biology. Viewing cancer as a network provides insights into the com-
plex mechanisms underlying the disease. Mathematical and statistical models provide an
avenue for cancer network modeling. In this article, we review two widely used modeling
paradigms: deterministic metabolic models and statistical graphical models. The strength
of these approaches lies in their flexibility and predictive power. Once a model has been
validated, it can be used to make predictions and generate hypotheses. We describe a
number of diverse applications to Cancer Biology, including, the system-wide effects of
drug-treatments, disease prognosis, tumor classification, forecasting treatment outcomes,
and survival predictions.

Keywords: cancer, metabolism, ODEs, steady-state, dynamic, graphical models, high-throughput data

MATHEMATICAL AND STATISTICAL MODELING IN CANCER
SYSTEMS BIOLOGY
In the last half a century, tremendous progress in understanding
the genetic and biochemical mechanisms underlying cancer has
been achieved. Despite these advances, cancer remains a major
health problem that is responsible for one in every four adult
deaths (Siegel et al., 2011). High mortality rates indicate that this
knowledge is not translating into effective cancer treatments (Lord
and Ashworth, 2010). Chemotherapy was discovered in chemical
warfare during World War I; it was first used to treat cancer in the
1940s when little was understood about the disease (Goodman
et al., 1946), and remains the most common form of treatment for
most types of cancers. Chemotherapy drugs target rapidly divid-
ing cells; as a result, normal tissues with high growth rates suffer
and patients often experience adverse and sometimes deadly side
effects.

Over the past 15 years, drugs have emerged that target cancer
metabolism, either directly through enzymes that facilitate meta-
bolic reactions or indirectly through signaling pathways (Zhukov
and Tjulandin, 2007; Heiden, 2011). Targeted therapy is typically
less damaging to normal cells than chemotherapy. However, cancer
cells are extremely robust for survival and often completely insen-
sitive to perturbations or develop resistance over time. Drug resis-
tance occurs when non-targeted genes or proteins kick in to rescue
the cancer cell by rerouting growth requirements through alterna-
tive mechanisms and pathways. Drug resistance is a major limita-
tion to targeted therapies. For this reason, they are most effective
when used in combination with chemotherapy treatments. It is
becoming apparent that, in order to develop effective targeted

therapies that overcome resistance, the drug development para-
digm will have to shift from single molecular targets to pathways
(Astsaturov et al., 2010; Thangue and Kerr, 2011). Systems biology
approaches will play a pivotal role in the development of drugs
that do not succumb to resistance.

Mathematical models of complex biological systems are cen-
tral to systems biology. They can be used as an exploratory tool to
complement and guide experimental work. Simulations, known as
in silico experiments, can be performed with mathematical mod-
els to validate hypotheses and make predictions about quantities
that are difficult or impossible to measure in vivo. Predictions can
provide much-needed insight into the pathways driving cancer
progression, and the robust compensatory mechanisms that pro-
tect cancer cells from drug intervention. Model simulations can be
used to predict the system-wide effects of molecular targets, e.g.,
determine the effects of molecular target(s) inhibition in specific
populations. They can also serve as an important clinical tool, e.g.,
classify benign and malignant tumors, predict disease prognosis
for individual patients, and predict outcomes of treatments.

High-throughput technologies offer the capability to simul-
taneously measure tens of thousands of molecular targets per
sample. As costs steadily decline, the number of omics datasets
characterizing the genome, proteome, and metabolome continues
to grow. A number of publicly available resources have been devel-
oped to house data and functional annotation. These resources can
be queried and have enabled scientists to better leverage omics-
based research efforts. To illustrate the size of such databases,
as of March, 2012, Gene Expression Omnibus (GEO) contained
data from 9,919 platforms, 710,229 samples, 28,873 series, and
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2,720 manually curated datasets (Barrett and Edgar, 2006). The
Progenetix database houses data from Comparative Genomic
Hybridization (CGH) experiments that focus on copy number
abnormalities in human cancer (Baudis and Cleary, 2001). The
Cancer Genome Atlas (TCGA) contains the results of subject-
ing patient samples from a variety of cancer subtypes to a bat-
tery of common high-throughput assays such as gene expression,
array comparative genomic hybridization (aCGH), SNP genotyp-
ing, methylation profiling, microRNA profiling, and some exon
sequencing platforms (Collins and Barker, 2008). The Sanger Can-
cer Genome Project has generated a cancer gene census (Futreal
et al., 2004), a catalog of somatic mutations in cancer (Forbes et al.,
2010), as well as several bioinformatic resources born out of the
interrogation of cancer cell lines.

The wealth of publicly available data offers an exciting oppor-
tunity to study cancer as a complex network. We are currently in
an era where collecting data in a high-throughput fashion is the
norm. However,our ability to interpret this data for knowledge and
discovery has not kept pace with the data collection efforts. Impor-
tantly, this message was echoed in NCI’s recent funding opportu-
nity addressing provocative questions, which pose game-changing
scientific questions to drive progress against cancer (RFA-CA-11-
01; Varmus and Harlow, 2012). A series of questions were posed
to inspire investigators to “. . .step back from the momentum of
these discoveries and make sure we have left no stone unturned and
no important but perhaps not obvious question left unexplored.”
Provocative question 17 asks the following:“Since current methods
to assess potential cancer treatments are cumbersome, expensive
and often inaccurate, can we develop other methods to rapidly test
interventions for cancer treatment or prevention?” Mathematical
models serve as a link between experimental and computational
biology, and can be used to address this question. Specifically, they
can serve as a tool to drive experimental advances in terms of
predication, classification, and hypotheses generation.

In this article, we describe two complementary and widely used
modeling paradigms: deterministic models of cellular systems and
graphical modeling. Deterministic models of cellular metabolism
are constructed in a bottom-up approach from known stoichiom-
etry, principles of mass balance, and physiological constraints,
whereas graphical models are inferred from the data using linear
statistical models in a top-down approach. These approaches offer
vastly different perspectives on network behavior and have been
instrumental for systems biology. We review the fundamentals of
these modeling paradigms and highlight applications of models
that have been developed to advance Cancer Systems Biology.

DETERMINISTIC MODELS OF CELLULAR METABOLISM AND
CELL SIGNALING
Cancer cells exhibit profound alterations to their metabolic and
signaling pathways. Many drugs that are either available or in the
development phase target proteins or enzymes in these pathways in
an effort to slow or halt cancer growth (Bates et al., 2012). Cell pro-
liferation, motility, and survival are tightly controlled in normal
cells. However, adjustments in cancer cell signaling enable prolif-
eration independent of exogenous signals, disrupt apoptosis, and
elicit tumor angiogenesis and metastasis to surrounding tissues
and vessels (Johnstone et al., 2002; Martin, 2003). Unlike their

normal counterparts, cancer cells use aerobic glycolysis instead
of oxidative phosphorylation for energy production (Warburg,
1956). Glutamine is central to cancer cell protein and nucleotide
biosynthesis, and replenishes the TCA cycle for anabolic processes
(Lu et al., 2010). Fatty acid biosynthesis occurs at high rates and
most fatty acids are produced de novo regardless of nutrition.
(Medes et al., 1953; Ookhtens et al., 1984). These metabolic and
signaling signatures are common to most forms of cancer.

Ordinary differential equations (ODEs) represent the most
widely used approach for modeling cellular dynamics. The under-
lying assumption is that reactions occur under well-mixed con-
ditions and that the abundance of reactants is not too low. The
differential equations are derived from laws of mass balance and
describe the rate of change of a species (dC/dt ) in terms of
production and utilization, i.e., dC/dt = production− utilization
(Figure 1A). In many cases, the stoichiometry of pathways are
well understood, and the topology of the system can be mod-
eled easily with ODEs (Ogata et al., 1999; Matthews et al., 2009).
However, the underlying processes, e.g., reaction fluxes and trans-
port rates, rely on parameters that are often unknown and require
challenging underdetermined estimation from time course data
(Figure 1B; Erguler and Stumpf, 2011). Another challenge is that
these systems can often exhibit sharp transients on different time
scales (stiffness),which requires computationally intensive numer-
ical integration (Shampine et al., 2003; MacLachlan et al., 2007).
These factors ultimately limit the scale of dynamic models. Con-
sequently, they are used to investigate small subsets of reactions
and pathways.

ODE models have been used extensively to examine the
dynamic properties of cancer signaling pathways. A model of
tumor suppressor p53 and oncogene Mdm2 revealed high vari-
ability in the oscillatory behaviors of cells following DNA damage
(Geva-Zatorsky et al., 2006). NF-κB signaling plays a critical role
in intracellular signaling, apoptosis, and resistance to chemother-
apy. A computational model was used to distinguish the roles of
NF-κB kinase isoforms, which regulate NF-κB through coordi-
nated system dynamics (Hoffmann et al., 2002). Extensions of this
model have been used to characterize feedback loops in the sys-
tem and identify the activation of downstream pathways (Covert
et al., 2005; Werner et al., 2005; Cheong et al., 2008). Several dif-
ferent mathematical models have been developed for the MAPK
(mitogen-activated protein kinase) pathway (35 models between
1960 and 2005; Orton et al., 2005). Despite differences in detail
and complexity, these models are able to explain the data and make
insightful system-wide predictions about the pathway dynamics.
Most of the differences between model outputs can be attributed
to model boundaries and simplifications. This has been suggested
to be a reflection of the robustness of ODE modeling and the
biological system at hand (Orton et al., 2005).

Advances in high-throughput technologies have spurred the
development of comprehensive genome-scale metabolic mod-
els (Oberhardt et al., 2009). These models have developed from
extensive curation of the data and literature. The metabolic sys-
tem is described by hundreds of metabolic reactions, multiple
compartments, and highly interconnected pathways. Constraint
based analysis (CBA) has been used to investigate the steady-state
behavior of these systems under a variety of conditions. In the
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FIGURE 1 | Simplified schematic describing mathematical modeling
of cellular systems with ODEs. (A) The cellular system is translated into
a mathematical model with system of ODEs reflecting the mass balance
of the system. (B) Dynamic analysis of the system requires specification
of fluxes as non-linear functions, which depend on a number of unknown

parameters. Solving the ODE system results in the time course of
concentration values as output. (C) Steady-state analysis of the system
requires the specification of an objective function and constraints, but the
ODE system reduces to a simple linear system. The output of the analysis
is optimal flux values.

steady-state, metabolites are stable and exhibit no change in con-
centration levels. Adopting this assumption reduces a complex
dynamical system of ODEs to linear system and eliminates the
need for large-scale parameter estimation (Figure 1C).

The purpose of steady-state analysis is to identify feasible
flux values that satisfy the steady-state assumptions and maxi-
mize an objective function describing the physiological objectives
of the cell (Lee et al., 2006). The solution space is bounded
with system constraints, e.g., stoichiometric, thermodynamic, and
enzyme capacity constraints. In single cell organisms, such as
Escherichia coli and Saccharomyces cerevisiae, the cellular objective

is to proliferate, and critical reactions and pathways are included in
biomass function which is maximized (Edwards and Palsson, 2000;
Förster et al., 2003). In these cases, optimizing cellular growth is
analogous to maximizing the likelihood of survival. Defining cel-
lular objectives is less straightforward in mammalian and human
systems, which consist of a variety of interacting tissues and cells
(Duarte et al., 2007; Livnat Jerby and Ruppin, 2010; Selvarasu et al.,
2010). However, unlike normal cells, cancer cells want to prolifer-
ate and exhibit biomass requirements which can be leveraged in
CBA modeling approaches. Recently, a genome-scale model has
been used to characterize the Warburg effect in cancerous cells
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(Shlomi et al., 2011). The model was validated against the full
panel of NCI-60 cancer cell lines, and provided novel insights
into phases of metabolic behavior through cancer progression. A
smaller model centered around a core set of critical enzymes and
coding genes was used to predict novel drug targets (Folger et al.,
2011).

ODEs are the most popular modeling technique largely because
of their simplicity. Several other modeling paradigms that vary in
complexity have been applied to study cancer cellular metabo-
lism, signaling, and response to treatment. Boolean models have
been used to represent reactions as logical gates with two states:
on and off (Lähdesmäki et al., 2003; Morris et al., 2010). Partial
differential equations (PDEs) are significantly more complex than
ODEs with respect to parameter estimation. Detailed information
about spatial dynamics and interactions between components is
required (Sleeman and Levine, 2001; Ribba et al., 2006; Fried-
man et al., 2007). Perturbation-response modeling approaches
are based on fundamental linear response rules, which leverage
flux conservation. This approach has been used to examine toll
like receptor (TLR) signaling and tumor necrosis factor related
apoptosis inducing ligand (TRAIL) resistance (Piras et al., 2011;
Selvarajoo, 2011). Pharmacokinetic modeling has also been used
to describe the time-dependent distribution of drugs in the system
(Gerlowski and Jain, 1983; Reitz et al., 1990; Sanga et al., 2006).

GRAPHICAL MODELS
Probabilistic graphical models (PGMs) can be used to describe
directed and undirected relationships between variables (Koller
and Friedman, 2009). In this setting, each variable (e.g., genes, pro-
teins) is a node in the network and viewed as a random variable,
which is subject to uncertainty. The links in the network convey a
relevant measure of association, e.g., correlation (undirected) or
causality (directed). The network structure can be decomposed
into small regions and translated into a product of conditional
probabilities, which represents the joint probability distribution.
Undirected graphs are known as Markov Networks and portray
symmetric relationships (Figure 2A). A link in this model is
present if the linked nodes are associated after controlling for the

influence of other nodes in the graph (conditional association). In
a directed graph, an edge A→B implies that independent variable
A (parent node) is upstream of the dependent variable B (child
node) in the underlying causal process (Figure 2B). Furthermore,
the directed edge implies a causal effect of A after the influence
of the remaining nodes upstream of B (ancestors of B) have been
controlled for or removed. Bayesian Networks (BNs) are directed
acyclic graphs (DAGs), which contain no cycles, and thereby pro-
hibit feedback in the model. Chain graphs contain a mixture of
directed and undirected edges.

A fundamental challenge is to infer graphical models from
data. There are two distinct and difficult learning tasks: parame-
ter estimation and structural learning. Parameter estimation is for
the parameters of the conditional probabilities for a given net-
work structure, and can be carried out using maximum likelihood
approaches (Koller and Friedman, 2009). In structural learning,
the aim is to identify the most likely network topology that came
from the observational data. Structural learning is especially chal-
lenging because the number of possible network topologies is
super-exponential with the number of nodes (Chickering et al.,
1994). As a result, enumeration of all possible network topologies
is impossible even for small problems, and machine learning and
optimization techniques must be utilized (Koller and Friedman,
2009).

PGMs have been applied to investigate a number of differ-
ent cancers and data types. Several applications involve predic-
tion and classification tasks, which have direct clinical relevance.
Markov networks were used to predict breast cancer survival
after patients received different forms of treatments, e.g., com-
binations of chemotherapy, radiotherapy, and hormonal therapy
(Pérez-Ocón et al., 2001). BNs were used to integrate clinical and
microarray data for the classification of breast cancer patients into
good and poor prognosis groups (Gevaert et al., 2006). Kahn et al.
developed a BN called MammoNet for radiological decision sup-
port in distinguishing malignant and benign mammary tumors.
The highly accurate classifier (88% correct diagnosis in test cases)
was constructed from observational data, patient history, and
expert advice from experienced radiologists (Kahn et al., 1995).
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FIGURE 2 | Probabilistic graphical models can be (A) undirected, or (B) directed. Relationships between variables can be expressed using conditional
independencies, allowing compact representation of the joint distribution.
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This group later developed a similar BN classifier called OncOs
to differentiate among bone lesions on the appendicular skeleton
(Kahn et al., 2001). A practical value of these models is to provide
a probabilistic guide for a clinician to diagnose and treat different
cancers. Another use of PGMs is to sort out the underlying muta-
tions which put individuals at high-risk. Conjunctive Bayesian
Networks (CBNs; Beerenwinkel et al., 2007), which describe an
accumulation of events, have been used to model the accumula-
tion of mutations using CGH mutation data from the Progentix
database (Gerstung et al., 2009). The inference problem is to iden-
tify CGNs, which represent the dependencies among accumulating
mutations in renal cell carcinoma, breast, and colorectal cancers.
The models identified multiple independent mutations, which
triggered downstream complex pathways.

A strength of PGM frameworks is the flexibility to integrate
across diverse data types. Recently, a PGM methodology based on
factor graphs known as PARADIGM (Pathway Recognition Algo-
rithm using Data Integration on Genomic Models) was proposed,
which integrates multiple high-throughput data sets together to
identify perturbed molecular pathways (Nigro et al., 2005). This
method was applied to breast cancer using gene expression data,
and glioblastoma using gene expression and copy number data, to
identify pathways and disease subclasses which correlate with sur-
vival. PARADIGM was recently applied to the same task using
a more comprehensive set of breast cancer data in the CGA,
including, mRNA, copy number alterations, micro RNAs, and
methylation data. The method revealed disease subclasses and
specific class signatures, which would not have been identified
without leveraging the different data sources. Specific perturba-
tions in immune response and interleukin signaling (IL-4, IL-6,
IL-12, and IL-23) were also shown to be drivers of the classification
and to have promising prognostic value. For example,patients with
gene signature that favors high-T helper 1 cytotoxic T-lymphocyte
response and represses Th2 driven humoral immunity, are more
likely to have a better survival outcome.

Expression quantitative trait loci (eQTL), protein QTL, and
metabolic QTL combine genotyping and high-throughput pheno-
typing of a population (Jansen et al., 2009). Genotype-phenotype
network inference leverages this data and the natural variation that
occurs within a population (Rockman, 2008). EQTL data on skin
tumor progression in mice revealed markedly different patterns in
the genetic architecture of malignant skin tumors (Quigley et al.,
2011). This rich data includes genotypes and gene expression from
F2 mice on benign and malignant skin tumors, as well as normal
skin samples. EQTL data from a mouse model of breast cancer
was used to identify Sipa1, a susceptibility and progression locus
in both mice and humans (Crawford et al., 2007). PGM based
algorithms utilize directed graphs to approximate the network of
causal relationships among phenotypes and genotypes in segre-
gating populations, but applications to cancer data are yet to be
explored (Neto et al., 2010; Hageman et al., 2011).

There has been recent progress in sparse genome-scale mod-
els for undirected graphs, with applications that include protein
signaling, breast cancer gene expression, and the genetics of gene
expression (Carvalho et al., 2008; Friedman et al., 2008; Edwards
et al., 2010; Yoshida and West, 2010). Sparse models can be esti-
mated when the number of variables greatly exceeds the sample

size. Importantly, estimation in graphical models requires large
sample sizes for accuracy. Although sparse modeling deals with
the issue of many variables, sufficient sample size is still required
for meaningful results.

Graphical reasoning about biological problems underlies many
approaches that are not formal PGMs. Cluster analysis is a class
of techniques whose motivation lies in the concept of modular-
ity, which has gained popularity more or less simultaneously in
molecular biology, systems biology, developmental biology, and
evolutionary biology (Wagner et al., 2007). Clustering (Gordon,
1999) can be viewed as a graph partitioning since members of the
same cluster are considered to be connected in terms of whichever
measure of association is adopted, and different clusters are rel-
atively disconnected from each other. The associations between
clusters may be specified in a variety of ways and no attempt is
made to specify all the links in the graph.Viewing high-throughput
data through clusters and modules increases our ability to dis-
tinguish subtle signals in tumorigenesis (Segal et al., 2005). This
type of analysis is often easier to interpret than traditional lists of
differential expression. Clustering methods have been extensively
applied to identify and classify different cancer subtypes, and asso-
ciate clusters with survival, e.g., (Furey et al., 2000; Guyon et al.,
2002; van’t Veer et al., 2002; Sørlie et al., 2003; Rich et al., 2005;
De Souto et al., 2008). Weighted Correlation Network Analysis
(WGCNA) was recently developed as a method for identifying
co-expression modules, relating modules to one another, relating
modules to external phenotypes, and identifying hub genes that
are highly connected within the module (Langfelder and Horvath,
2008). This method was used to identify a co-expression module
in glioblastoma, which was also present in breast cancer. ASPM, a
hub gene in the module,was experimentally validated as a potential
uncharacterized glioblastoma target (Horvath et al., 2006).

DISCUSSION: CHALLENGES AND OPPORTUNITIES
Data integration remains a major fundamental challenge for the
field of systems biology, which has limited our ability to take full
advantage of omics data for knowledge and discovery (Kitano,
2002; Sullivan et al., 2010). Comparisons and integration within
omics data types are complicated by a number of factors. Several
different platforms are available that use different technologies and
vary in coverage. Differences exist in sample quality, array pro-
cessing, the organism under investigation, tissue type, and exper-
imental conditions (e.g., diet). Integration between data types is
an even larger challenge (Figure 3). It is important to understand
how these different biological domains connect and give rise to a
phenotype or disease. Methods that integrate between and across
diverse data types are only beginning to emerge (Nigro et al., 2005).
Mathematical modeling is a promising avenue for this endeavor.
In Cancer Biology, data integration is of particular importance
because of the complex interplay between genetics, cell signaling,
and metabolic pathways.

Mathematical and statistical models are capable of integrating
biological knowledge that is outside of the observational data. In a
number of applications, the use of Bayesian methods that integrate
a priori knowledge into the model have been shown to improve
model behaviors and predictive output. We have described appli-
cations of BNs which incorporate expert advice from radiologists,
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FIGURE 3 | Understanding how molecular traits from different biological domains connect in networks is critical to progressing Cancer Biology.

which can be viewed as a model prior (Kahn et al., 1995). In
metabolic modeling, flexible Bayesian priors have been used to
guide the parameter estimation process. In this context, priors
favor parameter estimates which respect known physiology of the
system, e.g., steady-state, dynamic trends, feasible bounds on con-
centration levels, and fluxes (Calvetti and Somersalo, 2006; Calvetti
et al., 2006). In graphical models, priors have been developed in
the form of energy functions to guide network inference (Imoto
et al., 2004). Priors have been used to encode known relational
information from databases such as KEGG into the network infer-
ence process (Werhli and Husmeier, 2007; Mukherjee and Speed,
2008). Priors have also been used to enforce sparsity in the network
structure and prevent over-fitting (Hageman et al., 2011).

Developing mathematical models which are consistent with
and predictive of the true underlying biological mechanisms is
a central goal of systems biology. The experimental design and
perturbations have been shown to have major influence on para-
meter estimation, and subsequently the output and accuracy of
the computational model (Apgar et al., 2010). Graphical model
network inference can be subject to a large proportion of false
positive edges (Li et al., 2010). Environmental and experimental
design factors that are not accounted for in the model can further
misguide models (Remington, 2009). Assessing and improving the
utility of mathematical models in the context of systems biology
will continue to be an active area of research.

A continuous cycle between mathematical modeling and the
wet-bench is critical to move systems biology forward. As George
Box famously stated, “all models are wrong, but some are use-
ful” (Box and Draper, 1987). Sensitivity analysis should routinely
be performed to assess how sensitive the model output (pre-
dictions) are to model parameters and input (data). However,
this is often not routine. Sensitivity analysis can also be used

to guide model reductions and expansions, e.g., marginalizing
over quantities that play little to no role in the system dynamics.
Mathematical models can provide, via model driven predictions
and hypotheses generation, a cheap and fast catalyst for experi-
mental advances in systems biology. On the other hand, models
which are more “wrong” than “useful” can lead to the design and
execution of experiments and studies which are unlikely to be suc-
cessful. Contrary to in silico studies, this can waste a lot of time
and money, and ultimately promote skepticism in the modeling
approach.

CONCLUDING REMARKS
In summary,mathematical models of networks can describe a wide
range biological processes. We have described two complementary
modeling approaches: deterministic modeling of cellular metab-
olism and graphical modeling, which offer different insights into
biological systems. Although they have been used to drive progress
in Cancer Systems Biology, they remain far from mainstream. At
present, there is an overwhelming need to view cancer as a com-
plex network in order to understand drug resistance, and develop
viable targets. It is also critical to better interpret and integrate data
to get at the mechanisms which drive the disease, classify cancer
subtypes, and predict treatment outcomes. In the coming years,
we believe that mathematical and statistical models will be pivotal
in advancing our understanding, and that they hold tremendous
promise for the future of Cancer Systems Biology.
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To perform parametric identification of mathematical models of biological events,
experimental data are rare to be sufficient to estimate target behaviors produced by
complex non-linear systems. We performed parameter fitting to a cell cycle model with
experimental data as an in silico experiment. We calibrated model parameters with the
generalized least squares method with randomized initial values and checked local and
global sensitivity of the model. Sensitivity analyses showed that parameter optimization
induced less sensitivity except for those related to the metabolism of the transcription
factors c-Myc and E2F, which are required to overcome a restriction point (R-point). We
performed bifurcation analyses with the optimized parameters and found the bimodality
was lost. This result suggests that accumulation of c-Myc and E2F induced dysfunction of
R-point. We performed a second parameter optimization based on the results of sensitivity
analyses and incorporating additional derived from recent in vivo data. This optimization
returned the bimodal characteristics of the model with a narrower range of hysteresis than
the original. This result suggests that the optimized model can more easily go through
R-point and come back to the gap phase after once having overcome it. Two parameter
space analyses showed metabolism of c-Myc is transformed as it can allow cell bimodal
behavior with weak stimuli of growth factors. This result is compatible with the character
of the cell line used in our experiments. At the same time, Rb, an inhibitor of E2F, can allow
cell bimodal behavior with only a limited range of stimuli when it is activated, but with a
wider range of stimuli when it is inactive. These results provide two insights; biologically,
the two transcription factors play an essential role in malignant cells to overcome R-point
with weaker growth factor stimuli, and theoretically, sparse time-course data can be used
to change a model to a biologically expected state.

Keywords: parametric identification, generalized least squares, sensitivity analysis, fisher information matrix,

bifurcation analysis

INTRODUCTION
Parametric identification is a significant process of model build-
ing. The identification problem concerns the possibility of draw-
ing inferences from observed samples to an underlying theoretical
structure. The basic results for linear simultaneous equation sys-
tems under linear parameter constraints were found in 1950, and
extensions to non-linear systems and non-linear constraints were
made by Fisher (1961) and others.

There exist some steps of parametric identification: (1) check-
ing structural identifiability, to clarify practical difficulties such as
multimodality and lack of practical identifiability; (2) analysing
sensitivity and ranking parameters; (3) model calibration includ-
ing problem formulation, numerical solution, and global opti-
mization methods of parameters; and based on this knowledge,
performing (4) optimal experimental design.

These processes are performed to explain observed biologi-
cal phenomena, or to fill gaps between the molecular level and
larger patterns. Meanwhile, we may identify the key mechanisms
of a system in a model, which can allow us to predict missing

components, concepts, or unobserved phenomena, and serve as
a guide for further experiments.

During each division cycle, cells need to duplicate their
genomes and distribute the two copies equally to the two daugh-
ter cells. The processes of DNA-duplication (S-phase) and cell
division (mitosis) are separated by two gap phases (G1 and
G2). During these phases, several mechanisms operate to pre-
vent cells from continuing the cell cycle under inappropriate
conditions. Normal cells can interrupt the cell cycle in the gap
phases through growth inhibitory mechanisms that activate the
retinoblastoma proteins (Rb) or p53 transcription factors. In can-
cer cells, these growth inhibitory pathways are often disrupted,
leading to unscheduled proliferation (Hanahan and Weinberg,
2000).

We used Yao’s 2008 model (Yao et al., 2008), which is con-
sistent with experimental data exhibiting bimodality. The model
represents the underlying mechanisms of a restriction point (R-
point), which is the critical event for a mammalian cell to commit
to proliferation independently from extracellular growth stimuli.
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Normal cells respond to extracellular growth factors. Their
absence arrests the cell cycle in the G1 phase. However, growth
factors are required only until a few hours prior to the initiation of
S-phase. This moment in G1 was first described in 1974 by Pardee
(1974) and is named the R-point. It was clarified later that cells
that pass the R-point can progress to S-phase independently of
mitogens (Sherr and Roberts, 2004). Importantly, Pardee found
that the R-point was defective in cancer cell lines. In addition,
cancer cells were much more resistant to the inhibition of pro-
tein synthesis, which is supposed to be required for the R-point,
suggesting that the required R-point factors are either stabilized
in cancer cells or not necessary to progress the cell cycle (Campisi
et al., 1982). An example of their findings is when the Rb pro-
tein has its activity inhibited, and the machinery of the R-point is
disrupted and the cell lines are transformed into malignant lines.

This model correctly reconstructs the most fundamental
behavior of the molecular network system of the mammalian cell
cycle, such as bimodality, by its structure. The molecular mech-
anism, which this model represents, is also significant to control
the switching among different physiological cellular states: from
normal cell proliferation to malignant, or differentiation and cell
death. These switching mechanisms between normal prolifera-
tion and other states are the key to tumourigenesis, the variation
in leukocyte production, and so on. The missing property of
this model is that it has never been fitted to a time-course data
of molecules. There exist other models that represent cell cycle
mechanisms; however, many of them have not yet been tested
with high resolution experimental data to follow the dynamics of
the system. This is a difficulty when using mathematical models,
even if they have good potential to predict important insights.

The model calibration problem consists of finding a model to
minimize the distance among model predictions and the experi-
mental data. There exist several strategies for model calibration.
One is the maximum likelihood. In this analysis, a probabilistic
distribution in the noise is considered but without considering
any uncertainty in the parameters. Another is Bayesian estima-
tion, which introduces information about a prior probabilistic
distribution of the parameters and noise.

We applied generalized least squares for our parameter opti-
mization, which requires almost no prior information (Balsa-
Canto et al., 2008). Prior to and after optimization, we performed
both local sensitivity analysis (LSA) and global sensitivity analy-
sis (GSA) (Rodriguez-Fernandez and Banga, 2010). LSA is usually
performed to measure how sensitive the model is to small changes
in the original parameter values that are first given. On the other
hand, GSA is performed to measure how sensitive the model is
to changes in the parameters over the full range of plausible val-
ues. The objective of performing the sensitivity analyses was to
rank the parameters in order of importance for observation, then
use the rank to assist in fixing parameters to improve practical
identifiability.

In order to find necessary additional information through
experiments, analysing the parameter sensitivity and checking
the global ranking and identifiability are needed (Balsa-Canto
and Banga, 2011). We used these results to design several rounds
of parameter optimization. The objective of the ranking was to
assess the importance of individual parameters. Several criteria

have been suggested to locally rank parameters (Balsa-Canto and
Banga, 2011). Relative local parametric sensitivities are computed
for a number of nIhs samples using the Latin Hypercube Sampling
approach within parameter bounds to generalize it to a global
rank (Balsa-Canto and Banga, 2011).

We performed bifurcation analysis to understand how the
parameter calibration affected the behavior of the model
(Ermentrout, 2002). Many numerical models, when applied to
real biological systems, involve non-linearities that make possi-
ble the model’s chaotic behavior and oscillation. At the same
time, many models are difficult to solve analytically because of
their complex structure. Numerical solutions have an advantage
in such cases in that they can be used to perform further anal-
yses with those models. The cell cycle model we chose shows
oscillation as one of the characteristics of this model. Bifurcation
analysis allowed us to test how the characteristics of the systems
depend on the parameters. Two-parameter curves show us a range
of parameters that may produce multiple states.

Here, we describe all the above investigation results and dis-
cuss the potential of parameter fitting to a sparse dataset to
improve model behavior when representing physiological condi-
tions. Finally, we discuss how to make further improvements with
additional experiments and simulations.

METHODOLOGY
MODEL AND DATA
The model we used for our analyses was originally published
by Yao et al. (2008) and was analyzed following the procedures
listed below. A diagram of the reconstructed model is shown
in Figure 1, and the differential equation set is shown in the
Appendix. The experimental data, which we used for the param-
eter fitting, were produced as described in the Experimental
Methods.

MODEL RECONSTRUCTION
We reproduced Yao’s 2008 Model with Cell Designer (Funahashi
et al., 2008). The Yao 2008 model is in Biomodels.net
(Chelliah et al., 2013) (no.318). We imported the Systems
Biology Markup Language (SBML) (Hucka et al., 2004) file
(BIOMD0000000318.xml) to CellDesigner, and then recreated
it as a reaction network. All the kinetic laws, parameters, and
annotations (RDF) from biomodels.net were kept in the model.

We modified the reaction network so as to be close to that
described in Yao’s study (Yao et al., 2008). The model consists of
7 ODEs (Appendix), thus there are 7 species (proteins) in our
version of the reaction network (Figure 1). Nevertheless, there
are only 5 proteins in Yao’s network as shown in Yao’s Figure 1
(Yao et al., 2008). We assume that this happened because they had
omitted two of the reaction species in their figure to focus on the
activation-inhibition process of the network to simplify the dia-
gram; as a result, inactive proteins are not shown in their figure.
We included these inactive reaction species to rebuild their model
correctly.

In our reaction network, the above 5 proteins in Yao’s Figure 1
(Myc, E2F, Rb, CycD, and CycE) are shown as “Active” pro-
teins (which have dashed rectangles around the proteins), and
the other 2 “Inactive” proteins (phosphorylated Rb and Rb-E2F
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FIGURE 1 | Reconstructed diagram of Yao’s 2008 model (Yao et al.,

2008) in Cell Designer (Funahashi et al., 2008). Each square indicates
protein, and rectangles with dotted lines indicate activated forms of those
proteins. The whole the diagram is included inside a compartment, which
represents a cell, with double yellow lines. White circles with a crossing
line indicate a reactant source, and gray circles with a crossing line indicate
waste. All edges correspond to the fluxes from a reaction species to the
others.

complex) are required to express the original mathematical model
(to be 7 ODEs). Highlighted reactions (colored in green, red, and
black) in the model are mapped to the reactions in Yao’s original
figure. We confirmed that our modified model generates the same
simulation results as the original BIOMD0000000318.xml.

ANALYSIS METHODS
We used the Matlab toolbox Advanced Model Identification using
Global Optimization (AMIGO) (Balsa-Canto and Banga, 2011),
which includes options for local and global sensitivity analyses,
local and global ranking of parameters, parameter estimation, and
Fisher Information Matrix evaluation. XPPAUT (Ermentrout,
2002) was used for the basic simulation and bifurcation analysis
of the model. In the following sections, we briefly describe each
analysis.

Parameter optimization
We performed model calibration by generalized least squares
because the method does not require any prior information of
the model. The generalized least squares is described as:

J(θ) =
nε∑

ε = 1

nO
ε∑

O = 1

(yε, O(θ) − ymε,O)
T

Qε, O(yε, O(θ) − ymε,O)

where Q is the quadratic cost function. In our case, we used
“standard least squares” with constant variance. Briefly, this is
encoded as

inputs.PEsol.PEcost_type=“lsq”; % “lsq” (weighted least
squares default) |“llk” (log likelihood) |“user_PEcost”

inputs.PEsol.llk_type=“homo”; % to be defined for llk function,
“homo” |“homo_var” |“hetero”

where “lsq” indicates Weighted Least Squares Funtion. For the
cases where no information about the experimental error is avail-
able, “homo” is given homoscedastic noise with known constant
variance.

θ, which gives minimum J(θ), is the least square estimator. This
method can provide the best estimate for a linear model. Qε, O is
a non-negative definite symmetric weighting matrix. The weight-
ing coefficients ωε, O

SS = 1, . . . ,nε, O
S located in the diagonal of

the matrix are positive or zero and fixed a priori. Basically, if
ωS= 1, it means to assign the same level of importance to all data;
if ωs= 0, it means a datum is eliminated because it is deemed
not relevant; if ωS= max(ymε, O)2, the square of the maximum
experimental data for the observable O and the experiment ε

reduces the effect of having observations of different orders of
magnitude. We used objective value in order to estimate if the
parameter optimization improved fitting of the model to our
experimental data. It is also mentioned frequently as residual
standard error, and known if the value is exactly 0 then the model
fits the data perfectly.

Local Sensitivity Analysis (LSA)
Local (Relative) Sensitivity Analysis (LSA) was performed with
AMIGO for the case of (a), with original parameter settings of
Yao’s model, and (b), optimized parameters with our experimen-
tal data, to rank the parameters in order of importance for the
observable variables.

Rank parameters based on LSA
The parameters were ordered according to the value of Sε, O

p. We
used the R programming language to produce the graphs of LSA
results (R Development Core Team, 2008).

Global Sensitivity Analysis (GSA)
Global Sensitivity Analysis (GSA) was performed to measure how
sensitive the observables are to changes in the parameters over
the full range of plausible values: (a), with default values of Yao’s
original model, and (b), with optimized parameters based on
experiments. We assessed the importance of individual parame-
ters and also ranked parameters based on the results of GSA, the
criteria of which were originally suggested by Brun et al. (2001),
but were extended to the formula shown below by Balsa-Canto
et al. (Balsa-Canto and Banga, 2011). The result of parameter
ranking based on GSA is indicated by the order of decreas-
ing msqr, which is best suited to serve as a ranking criterion
(Balsa-Canto and Banga, 2011).

msqris defined as:

δmsqr
p = 1

nIhsnεnOnS

√√√√ nIhs∑
Ihs = 1

nε∑
ε=1

nO∑
O = 1

nS∑
S = 1

(Sε,O
p(tε,Op))

2

We used the R programming language to produce the graphs of
GSA results (R Development Core Team, 2008).
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Bifurcation analysis
We performed Bifurcation analysis of Yao’s model with (a) default
and (b) optimized parameters by XPPAUT. Bifurcation analysis
was based on the parametric dependence of dynamic systems
encoded as differential equations. This approach is called the
continuation method. Its name is derived from the fact that the
number and type of steady states can vary as a function of one or
more parameters. Typically, one starts with a stable steady state
and then varies a particular parameter in very small increments
and calculates the type of the steady state at the next point of
parameter space. The parameter we used here was the stimulus,
S. For the 2-dimentional bifurcations plots, we scanned S vs. the
number of other parameters. We let XPPAUT scan the region
around their default or their optimized values starting at a low sta-
ble steady state. We defined the range from 0.1 to 10 times their
starting values for each parameter to test, and between 0.0 and
1.5–2.5 for the stimulus, S.

EXPERIMENTAL METHODS
Cell culture and synchronization
3Y1 rat embryonic fibroblasts were cultured in 5% CO2 at
37◦C in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal calf serum (FCS) (Hiroi et al., 2006).
Cell synchronization was performed by the thymidine double
block (Hiroi et al., 1999). Exponentially dividing cells were
incubated at 37±◦C for 18 h in medium containing 0.56 mM 20-
deoxythymidine. Then the cells were washed with fresh DMEM-
10% FCS without 20-deoxythymidine and then recultured for
15 h in drug-free medium. The cells were synchronized at the next
G1/S boundary by incubating them for a further 15 h in medium
containing 0.56 mM 20-deoxythymidine. After the removal of
the second thymidine-block, cells were harvested at the indicated
times and subjected to flow cytometry.

DNA flow cytometry
DNA content was determined by flow cytometry. 5 × 105 cells
were washed once in phosphate buffered saline (PBS) and fixed
in 70% ethanol for 30 min on ice. The cells were centrifuged
at 400 × g for 5 min, and the pellet was incubated at 37◦C for
20 min in 500 μl of PBS containing 0.1 mg/ml RNase A. The cells
were then pelletted and stained with 100 μl of 25 μg/ml propid-
ium iodide in PBS. Finally, the stained cells were suspended in
0.1% BSA/PBS and analyzed using a flow cytometer (Beckman-
Coulter). The data were acquired and analyzed by the provided
computer program (Beckman-Coulter, WinCycle). A sequence of
single-parameter DNA histograms was analyzed to determine the
proportions of cells in each phase.

Western blot detection
Western blot analysis was performed as described (Hiroi et al.,
2002). In preparation for western blotting, 5 × 105 cells were
lysed in 100 μl of radioimmunoprecipitation (RIPA) buffer
(150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate (SDS),
50 mM Tris-HCl (pH 7.5), 0.1 mM Na-orthovanadate, 0.1 mM
NaF, 1 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl
fluoride, 1 μg/ml pepstatin, 1 μg/ml leupeptin, and 1 μg/ml apro-
tinin). After a 10 min incubation on ice, lysed cells were cen-
trifuged at 20 000 × g for 10 min at 4◦C. After adjustment of

the protein concentration, the supernatants were used for western
blotting. The proteins or control peptide for each target protein
in SDS loading buffer (2% SDS, 10% glycerol, 60 mM Tris-
HCl, 100 mM DTT, and 0.001% bromophenol blue) were boiled
for 5 min, separated by SDS-polyacrylamide gel electrophore-
sis (16% polyacrylamide gels), and blotted onto Immobilon-PSQ

membranes (Merck Millipore, Billerica, MA). Sample transfer
was confirmed with gel staining (coomassie brilliant blue; CBB)
and a secondary-layered backup membrane. The filters were
blocked with 5% skim milk in Tris Buffered Saline with Tween-
20 (TBS-T) (150 mM NaCl, 20 mM Tris-HCl (pH 7.6), 0.1%
Tween-20) for 100 min and incubated with primary antibodies
(diluted 1:1000 to 1:2000 with 5% skim milk in TBS-T) for 1 h
at room temperature. The filters were then washed, incubated
for 1 h at room temperature with the secondary antibody (sheep
anti-mouse or donkey anti-rabbit) conjugated with horseradish
peroxidase (Amersham Biosciences, Piscataway, NJ), and washed
with TBS-T. Immunoblotted bands were detected by using the
ECL system (Amersham Biosciences, Piscataway, NJ) with the
same exposure time for all uses of a particular antibody.

RESULTS
MODEL CALIBRATION; THE FIRST ROUND OF PARAMETER FITTING TO
EXPERIMENTAL DATA
We performed model calibration with the generalized least
squares method using multi-start solver, which mimics Monte-
Carlo sampling of the initial parameter guesses.

For this study, we used the protein amount of cyclin D and
cyclin E at each phase in the cell cycle. Additionally, we used the
protein amount of total Rb (Supplemental Figure 1). The param-
eter fitting was performed for 12 parameters of 3 reaction species
(cyclin D, cyclin E, and total Rb in nuclei; equals the sum of hypo-
and hyper-phosphorylated Rb).

We chose part of the parameters for optimization because
(1) in Yao’s original paper, they indicated that a part of the model
parameters comes from experiments, so we decided to keep the
original values, and (2) the other 12 parameters were estimated
via numerical tests. We used these parameters for the fitting to
our experimental data. And (3), the aim of using only a part of
the parameters for fitting was to reduce error in the process of
parameter estimation.

The original parameter set is shown in Table 1, middle col-
umn, and the results of optimization of the parameter values are
shown in Table 1, right-most column. The time-course of each
molecule with the original (A) and new parameter sets after the
first round of parameter fitting (B) are shown in Figure 2. The
optimized parameter produced closer curves to experimental data
than the simulation results with the original parameter set. Now
we performed local and global sensitivity analyses to test if these
12 parameters changed the sensitivity of the model to estimate
how this parameter fitting affected the sensitivity of the model.

LOCAL SENSITIVITY ANALYSIS (LSA)
We performed LSA with published parameter values (Figure 3A,
blue line) and with the 1st set of optimized parameters
(Figure 3A, red line), and calculated the ratio between default and
optimized in order to visualize the changes in local sensitivity of
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Table 1 | The original and 1st sets after parameter optimization.

Parameter Original parameter 1st set of optimized

names values parameter values

dMC 0.70 −
dE 0.25 −
dCD 1.5 −
dCE 1.5 −
dR 0.06 −
dRE 0.03 −
kP1 18 −
kP2 18 −
kDP 3.6 −
KM 0.15 −
KCD 0.92 −
KRP 0.01 −
kRE 180 8.1647
kkE 0.4 19.977
kkM 1 0.081606
kCDS 0.45 4.9113
kR 0.18 0.013629
KS 0.50 0.53629
kkCE 0.35 1.1414
KE 0.15 19.996
KCE 0.92 18.890
dRP 0.06 0.0039885
kkCD 0.03 0.20762
kb 0.003 0.0000090144

A minus sign means the same value as the original.

parameters (Figure 3B). LSA was performed for all 24 parameters
in the model. The sensitivity analyses showed that the parame-
ter optimization of the time-course data induced less sensitivity
except for the parameters related to metabolism of transcription
factors c-Myc (dM, kM, and kkM) and E2F (dE).

GLOBAL SENSITIVITY ANALYSIS (GSA) OF OBSERVABLES
Next, we performed GSA with the original and optimized param-
eters. We compared the sensitivities of 12 identified parameters
and newly optimized parameters (Figure 4).

The result showed that the optimized parameters were less
sensitive, except for one parameter related to c-Myc activity.
These two kinds of parameter sensitivity analyses suggested a spe-
cific role for the transcription factors compared with the other
reaction species in the model, the cyclins.

Next, we performed bifurcation analyses with the original
parameter set and the 1st optimization parameter set to investi-
gate the effect of parameter fitting to the model behaviors.

FIRST BIFURCATION ANALYSIS
We performed bifurcation analyses to investigate how parame-
ter optimization using time-course data changed the dynamical
characteristics of the model. The result with the original parame-
ter set showed two bifurcation points, the so-called saddle nodes
where the stable and unstable (blue and red, respectively) meet
(Figure 5A). Bistability and hysteresis can be recognized in the
model behaviors. On the other hand, the 1st set of optimized
parameters showed transcritical bifurcation, i.e., a stable steady
state becomes unstable and vice versa (Figure 5B). This means

that the bimodality had been lost after the parameter opti-
mization. This result further suggests that the key molecules to
overcome the R-point, which are components of the model, seem
to accumulate in the cell, and theoretically, cells that can no
longer stop the accumulation by optimizing the parameter val-
ues convert to a malignant condition. Even if such conditions
could actually be induced in a malignant cell, the cell line we
used maintains contact inhibition and does not proliferate in an
anchorage-independent manner.

Next, we performed a second parameter optimization by
reconsidering the optimization target based on the results of our
own sensitivity analyses and knowledge about in vivo biochemical
reactions, and examined whether the newly optimized parameter
set would rescue the model bimodality.

New biochemical insights were found by Aoki et al. (2011),
where they showed that in the in vivo phosphorylation process,
a target molecule that has two possible phosphorylation residues
must have a different phosphorylation process than that in vitro.
Based on this knowledge, we selected the parameters kP1 and
kP2, which relate to Rb phosphorylation. At the same time, we
excluded 4 parameters (KCE, kkCD, kRE, and KS) because of
their low sensitivities in the results of both LSA and GSA. We
aimed by this exclusion to produce a parameter set that had less
sensitivity.

NEW ROUNDS OF PARAMETER OPTIMIZATION AND SENSITIVITY
ANALYSES
We included the results of sensitivity analyses and performed a
2nd parameter optimization. The optimized parameters are indi-
cated in Table 2, and the fitting results are shown in Figure 6. We
performed sensitivity analyses with these 2nd sets of optimization
parameters (Figure 7). Both LSA and GSA showed less sensitivity
in total than the 1st set of optimized parameters. We used this 2nd
set of optimized parameters for further bifurcation analyses.

SECOND BIFURCATION ANALYSIS
We performed a second bifurcation analysis with the newly opti-
mized set of parameters (Figure 8). The 2nd set of optimized
parameters showed bistability with a narrower range of hystere-
sis (Figure 8B). This result suggests that the sensitivity changed
less than the original, but the model behavior changed to be more
sensitive to the change of the extracellular stimulus level (S).

To investigate the bistable properties of the optimized model
in more detail, we performed a two-parameter space analysis
(Figures 8C–K). These results showed that the Rb and c-Myc
active-inactive state changes could happen with relatively small
amounts of extracellular stimuli (Figures 8C,E,I). These changes
may affect the behavior of the two key cyclins, cyclin D and
cyclin E. CyclinD is independent from the activity of E2F, and
cyclin E is dependent on the activity of E2F. Cyclin D is required
in an earlier stage of the cell cycle than cyclin E. Together, these
results suggest that by fitting the model to a malignant cell, the
model behaves such that cyclin D levels can easily accumulate
with a small amount of extracellular stimuli, but once cyclin E
starts to accumulate, there is no mechanism to stop the cell cycle.
This could mean that the R-point does not work properly in the
cell line we used.
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FIGURE 2 | Time-course of concentrations of proteins in the model. The
x-axis indicates the Time [min], the y-axis indicates the concentration of the
species [nM]. The upper left panel shows Cyclin D (line: simulation result,
cross: experimental result), upper right panel shows Cyclin E (line: simulation
result, cross: experimental result), lower panel shows phosphorylated (brown
line), dephosphorylated (green line) and their sum (black line) of simulation
data, with experimental result (black cross). The three species were fitted to

the experimental data. Simulation results were produced with the default set
(A) and the 1st set of optimized parameter values (B). Parameters chosen for
optimization were those, which have not been estimated experimentally, so
that the resulting simulation fits the qualitative behavior of the system. The
parameters are: “kRE,” “kkE,” “kkM,” “kCDS,” “kR,” “KS,” “kkCE,” “KE,”
“KCE,” “degRP,” “kkCD,” and “kb.” Optimized parameters are shown in
Table 1, right-most column. The objective value for the fit in (B) is 1.18.
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FIGURE 3 | Comparison of local parameter rank of the original

parameter set with the 1st set of optimized parameters. (A) The graph
shows the rdmsqr of the original and 1st set of 24 optimized parameters.
The blue line indicates the result of local sensitivity analysis with the
original parameter set, and the red line indicates the result with the
optimized parameter set. (B) Visualization of the changes in local

sensitivity with the original and the 1st set of optimized parameters for
the model. The ratio of each parameter sensitivity is indicated. The largest
changes happened with parameters related to Rb protein metabolism,
which is an inhibitor of the transcription factor E2F, or the metabolism of
the transcription factors themselves, c-Myc and E2F, except kCE (the
parameter relating to cyclin E concentration).

This raises the question as to why the model behaved more sen-
sitively after parameter optimization of the growth factor stim-
uli than in the original condition. Nevertheless, the parameters
were optimized into less sensitive conditions. We designed and
performed another parameter optimization to check if this alter-
nation of model behavior was correlated with the sensitivity.

BISTABILITY INDEPENDENT OF GLOBAL SENSITIVITY
We performed another parameter optimization in order to
address parameter sensitivity and whether the bimodality of this
model has causality. We optimized low sensitive parameters based
on the sensitivity analyses results of the original parameter set
(Supplemental Figure 3; dM, KM, kkM, dE, kRE, kR, dR, degRP,
dCE, KCE, kkCE, kkCD, kCDS, KS). Figure 9 shows the time-
course of 3 fitted species, and the optimized parameter values are
listed in Table 3. The third optimization process allowed to make
objective value smaller than the first round result (objective value
of the first round parameter fitting: 1.18; objective value of the

third round parameter fitting: 0.67). Even the fitting of siumu-
lated curves to the experimental data were improved, the results of
LSA indicated that we could not increase sensitivity at any param-
eter among the 24 (Figure 10A). On the other hand, GSA results
showed that some parameters are more sensitive compared to the
original parameters (3 parameters among 9 comparable param-
eters), and the 1st set of optimized parameters (7 parameters
among 8 parameters) (Figure 10B). We performed bifurcation
analyses with this parameter set; however, we did not see bista-
bility of this model with the third set of optimized parameters.
This result suggests that model bistability does not depend on the
global sensitivity of parameters.

DISCUSSION
We showed our results of model fitting to sparse time-course data.
Generally, even if the data can cover only some of the variables,
parameter optimization can change the model behavior to be dif-
ferent than the original. In our case, the original model indicated a
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FIGURE 4 | Comparison of global parameter rank of the original parameter set with the 1st optimized parameter set. The blue line indicates the result
of local sensitivity analysis with the original parameter set, and the red line indicates the result with the 1st optimized parameter set. (optimized → opmitized).

FIGURE 5 | The first bifurcation analyses with original parameter set (A) and optimized parameter set (B). The original parameter set produced
bimodality and showed a wide range of hysteresis. By optimizing parameters to a malignant cell condition, the model has lost bimodality (B).

healthy proliferating mechanism in that case R-point should work
strictly. On the other hand, cancer cells are believed not to have
proper R-point mechanisms; as a result, a cell can overcome the
R-point with a small amount of growth factors. Our results show
that at least some cancer cell-like properties can be produced
via parameter optimization to time-course data of malignant cell
lines (Figure 8).

We tested if the bistability of the model is correlated with
the sensitivity of the parameters, because we aimed to reduce
the parameter sensitivities by optimization to make the model
behavior robust against parameter changes; however, the range
of hysteresis had been reduced via parameter optimization, and
as a result, the bistability of the model became unstable with a
small change of extracellular stimuli (S, Figure 8). Our results
did not suggest that the bistability of this model is dependent on
the parameter sensitivity. Moreover, our results, which suggest the
significance of the transcription factors and different behaviors of
cyclin D and cyclin E, may indicate that the bistability of the cell

cycle machinery could depend more on the strict context of the
activation processes of these molecules.

The choices of the parameters for the second optimization
were based on the results and the hypothesis by Aoki et al.
(2011). Our idea is if we accept their hypothesis, the reason
why in vivo specific double phosphorylation process happens is
intracellular crowding. And it is independent from the specific
molecular binding such as anchorage protein for MAPK. Then,
the hypothesis should stand generally for in vivo double phos-
phorylation of single substrate. Therefore, we re-optimized the
parameters of double phosphorylation processes of Rb. On the
other hand, Rb protein has many other phosphorylation sites
(Rubin et al., 1998). More than 10 phosphorylation sites of this
protein had been counted. The parameter values may be differ-
ent for each reaction of phosphorylation. However, we possibly
estimate the difference would not affect to the critical behaviors
of the model, such as bistability, etc. Because we have assumed
that the multi-phosphorylation step of single substrate is a linear
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system, instead of a system, which shows switch-like, non-linear
behavior, based on the results of Aoki’s 2012 (Aoki et al., 2011).
In this case, we may contract these multiple reactions into shorter
steps as follows. When the first phosphorylation step shows lin-
ear process, and double phosphorylation also, and further, too,
these reaction schemes are characteristically the same with a
signal cascade which simply activates the next reaction species

Table 2 | Optimization results.

Parameter names 2nd optimization results of parameter values

kkE 7.9962E + 01

kkM 1.0234E + 00

kCDS 4.9260E + 00

kR 1.2490E − 02

kkCE 9.3132E − 01

KE 1.5554E + 02

degRP 3.8691E − 03

kb 1.3559E − 05

kP1 2.1629E + 01

kP2 4.4433E − 02

Newly optimized 1: normal bounds; newly optimized 2: the values are those

estimated with smaller bounds (increasingly enlarged where necessary) used

for estimation; newly optimized 3: “Km” included.

sequentially. We may describe this type of signal cascade with
the first species and the last species with single activation reac-
tion. Multiple-phosphorylation case is the same the sequentially
activating cascade if the systems is essentially linear. We may
describe the whole reaction process with the first site and the last
site, and it seems double-phosphorylation reaction. We cannot
eliminate the possibility that the reaction step includes actually
multi-phosphorylaitons over two, then the parameter value may
be multiplied into some other value. However, the change will
not make strong impact to the bistable behavior of the entire
model.

There could be another reason why the model property
changes via parameter optimization, which is a more specific
condition. One possible reason for the change of bifurcation
behavior and its consequences is the difference of cell synchro-
nization method of the fitting materials. By comparison with
Yao’s Supplemental Figure 2, however, the synchronization level
of our sample seems the same or better than that of their cells
(Supplemental Figure 1); therefore, this may not be the rea-
son for that weak bistability is produced. This means that we
may not simply conclude that the cellular synchronization con-
dition affected the behavior of the optimized model. On the other
hand, the timing of synchronization seems different between Yao’s
experimental data and ours, and this could affect the bistable
property. The cells we used showed quicker cell cycle than the
case of Yao’s experiments. This is consistent with the results

FIGURE 6 | Time-course of protein concentrations in the model. The x-axis
indicates the Time [min], the y-axis indicates the concentration of the species
[nM]. The upper left panel shows Cyclin D (line: simulation result, cross:
experimental result), upper right panel shows Cyclin E (line: simulation result,

cross: experimental result), lower panel shows phosphorylated (brown line),
dephosphorylated (green line) and their sum (black line) of simulation results,
with experimental result (black cross). The fitting to the experimental data was
repeated for the three species after the 1st set of parameter optimization.
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FIGURE 7 | The results of LSA (A,B), and GSA (C) with the 2nd set of optimized parameters. All the parameters show less sensitivity than the original or
the 1st set of optimized parameters.
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FIGURE 8 | Bifurcation analyses with the 2nd set of optimized parameters. (A,B) the results of bifurcation analysis with the original parameter set and the
2nd optimized set. (C–K) Two parameter space analyses. All x-axes indicate S values. The y-axis of each graph indicates (C) degRP.
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FIGURE 9 | Time-course of protein concentrations in the model. The
fitting to the experimental data was performed for the 3 species. The x-axis
indicates the Time [min], the y-axis indicates the concentration of the species
[nM]. The upper left panel shows Cyclin D (line: simulation result, cross:
experimental result), upper right panel shows Cyclin E (line: simulation result,

cross: experimental result), lower panel shows phosphorylated (brown line),
dephosphorylated (green line) and their sum (black line) of the simulation
results with experimental result (black cross). The objective value has
decreased for this estimation round and is equal 0.67, which is visible in the
improved fit of cyclin D.

Table 3 | Results of the third optimization.

Parameter names 3rd optimization results of parameter values

kRE 135.66

kCDS 4.9954

kR 0.015991

KS 2.8508

kkCE 1.6526

KCE 3.8474

kkCD 4.8351

KM 0.99638

kkM 0.017103

degM 0.01248

degE 0.18258

degR 0.071878

degCE 4.8474

degRP 0.005211

of bifurcation analyses, which showed the smaller jump and
hysteresis from a state to the other, which means overcoming cell
cycle checkpoint, in this case R-point, and moving to the next
phase, in the words of cell cycle. The loose restriction at R-point
could results short cycle of cellular proliferation.

We had found there exist three different types of parame-
ter conditions in the correlation with the model bistability; one

is the original (default) condition by Yao’s work. The condition
produces clear bistability. The second condition is the 2nd round
parameter set in this paper or the parameter set for Supplemental
Figure 4, which can produce narrow range of bistability. The last is
which produced the best fitting results to our time-course data of
Cyclin D (3rd round of this paper) or E (Supplemental Figure 5),
however the both of these parameter sets could not produce
bistability. Among our limited results, the following 4 parame-
ters showed straightforward trends as the condition to reproduce
bistability of the model. kRE contributes bistability when it takes
only the value 180 ∼ 194, both less or larger than it cannot pro-
duce bistability. As same as the case of kRE, kCDS can take less
value than 4.926, kkCE can take less value than 1.1414, KCE can
take less value than 1.0793 to reproduce bistability of the model.
These parameters affect almost all of the time course of molecular
concentration except c-Myc ([MC]). This may happen accord-
ing to the characteristics of our material cells, Rat fibroblast 3Y1.
This cell line does not express c-Myc before receiving the deple-
tion signal of growth factor in culturing medium (Tsuneoka et al.,
2003). We need to investigate both the theoretical properties of
the model and biological data to make them consistent with each
other.

These results indicate that even sparse and noisy experi-
mental data can be used to improve a mathematical model by
fitting to those data. In the case of Yao’s model and our exper-
iments, the parameter optimization allowed the model to adapt
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FIGURE 10 | LSA and GSA results of the third optimization of

parameters. (A) The results of LSA. There was no parameter that was more
sensitive than the original. (B) The results of GSA. KS, kkM, and kRE were
larger than the original parameter cases; and KS, KM, kkM, kRE, kCDS, kkCD,

and kCE were larger than the 1st set of optimized parameters. At the same
time, the following parameters were less sensitive than the original: kR,
kCDS, kkCE, kkCD, dRP, and KCE, or than the first set of optimized
parameters (dRP only).

to physiological (cancer cell) conditions, even though the exper-
imental data did not include enough information to identify the
whole the parameter set, but instead suggested one relevant set
of parameters to reduce the sensitivity against changes and to
maintain bistability.

When we need to identify the whole parameter set, we should
add more experimental data for other molecules, or perform
more optimization with a different set of initial conditions.
Partial evidence for the potential of changing initial conditions
was shown in our several rounds of parameter optimization
(Figures 2, 7, 9). We could produce better fitting to the exper-
imental data by performing several rounds of parameter opti-
mization; however, at the same time, the new parameter set
changed the model behavior fundamentally (Figures 5, 8), and

the possible causes may involve changes in the dynamics of
molecules that lack experimental evidence. This means that pro-
viding experimental data for those molecules which have not yet
provided experimental data for fitting would improve parameter
optimization.

In this study, we did not perform practical identifiability
analysis to consider if the model unknowns may be uniquely esti-
mated under given experimental conditions. The results from
practical identifiability may helpful to assess parameter esti-
mate reliability and to compare possible experimental designs.
Such analysis is especially important to improve experimental
design. To perform this analysis, we need to be careful with
noise. Fortunately, however, a lack of practical identifiability
is not critical for its solvability. Adequate global optimization
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solvers can be employed to deal with the presence of suboptimal
solutions.

In total, our results showed that optimizing parameters by
using experimental data is useful to get the model closer to
physiological conditions, even if experiments have not yet fully
shown the effect on the targeting system. At the same time,
we need enough resolution from experiments to provide good
identifiability for the model parameters.

In the future, we will perform Optimal Experimental Design
(OED) to determine a dynamic scheme of the measurements that
generates the richest information in order to estimate parameters
with greater precision. To provide measurements that maximize
the quantity and quality of the information provided by the
experiments while minimizing the experimental burden is the
desired goal to connect practical experimental information with
mathematical models of molecular mechanisms.

ACKNOWLEDGMENTS
We are grateful to Prof. Hiroaki Kitano (The Systems Biology
Institute, Tokyo, Japan) for allowing us to use the experimental
data that we produced while working under his supervision.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online
at: http://www.frontiersin.org/journal/10.3389/fphys.2014.00
128/abstract

REFERENCES
Aoki, K., Yamada, M., Kunida, K., Yasuda, S., and Matsuda, M. (2011). Processive

Phosphorylation of ERK MAP kinase in mammalian cells. Proc. Natl. Acad. Sci.
U.S.A. 108, 12675–12680. doi: 10.1073/pnas.1104030108

Balsa-Canto, E., and Banga, J. R. (2011). AMIGO, a toolbox for advanced model
identification in systems biology using Global Optimization. Bioinformatics 27,
2311–2313. doi: 10.1093/bioinformatics/btr370

Balsa-Canto, E., Peifer, M., Banga, J. R., Timmer, J., and Fleck, C. (2008). Hybrid
optimization method with general switching strategy for parameter estimation.
BMC Syst. Biol. 2:26. doi: 10.1186/1752-0509-2-26

Brun, R., Reichert, P., and Künsch, H. R. (2001). Practical identifiability analysis of
large environmental simulation models. Water Resour. Res. 37, 1015–1030. doi:
10.1029/2000WR900350

Campisi, J., Medrano, E. E., Morreno, G., and Pardee, A. B. (1982). Restriction
point control of cell growth by a labile protein: evidence for increased sta-
bility in transformed cells. Proc. Natl. Acad. Sci. U.S.A. 79, 436–440. doi:
10.1073/pnas.79.2.436

Chelliah, V., Laibe, C., and Le Novère, N. (2013). BioModels database: a reposi-
tory of mathematical models of biological processes. Methods Mol. Biol. 1021,
189–199. doi: 10.1007/978-1-62703-450-0_10

Ermentrout, B. (2002). Simulating, Analyzing, and Animating Dynamical Systems:
A Guide to XPPAUT for Researchers and Students Volume 14 of Software,
Environments and Tools SIAM. ISBN: 0898715067, 9780898715064

Fisher, F. (1961). Identifiability criteria in nonlinear systems. Econometrica 29,
574–590. doi: 10.2307/1911805

Funahashi, A., Matsuoka, Y., Jouraku, A., Morohashi, M., Kikuchi, N., and Kitano,
H. (2008). CellDesigner 3.5: a versatile modeling tool for biochemical networks.
Proc. IEEE 96, 1254–1265. doi: 10.1109/JPROC.2008.925458

Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57–70.
doi: 10.1016/S0092-8674(00)81683-9

Hiroi, N., Funahashi, A., and Kitano, H. (2006). Comparative studies of sup-
pression of malignant cancer cell phenotype by antisense oligo DNA and
small interfering RNA. Cancer Gene Ther. 13, 7–12. doi: 10.1038/sj.cgt.
7700869

Hiroi, N., Ito, T., Yamamoto, H., Ochiya, T., Jinno, S., and Okayama, H. (2002).
Mammalian Rcd1 is a novel transcriptional cofactor that mediates retinoic
acid-induced cell differentiation. EMBO J. 21, 5235–5244. doi: 10.1093/emboj/
cdf521

Hiroi, N., Maruta, H., and Tanuma, S. (1999). Fas-mediated apoptosis in
Jurkat cells is suppressed in the pre-G2/M phase. Apoptosis 4, 255–261. doi:
10.1023/A:1009652825846

Hucka, M., Finney, A., Bornstein, B. J., Keating, S. M., Shapiro, B. E., Matthews, J.,
et al. (2004). Evolving a lingua franca and associated software infrastructure for
computational systems biology: the systems biology markup language (SBML)
project. Syst. Biol. 1, 41–53. doi: 10.1049/sb:20045008

Pardee, A. B. (1974). A restriction point for control of normal animal cell pro-
liferation. Proc. Natl. Acad. Sci. U.S.A. 71, 1286–1290. doi: 10.1073/pnas.71.
4.1286

R Development Core Team. (2008). R: A Language and Environment for Statistical
Computing. Vienna: R Foundation for Statistical Computing. ISBN: 3-900
051-07-0

Rodriguez-Fernandez, M., and Banga, J. R. (2010). Sens, SB: a software tool-
box for the development and sensitivity analysis of systems biology models.
Bioinformatics 26, 1675–1676. doi: 10.1093/bioinformatics/btq242

Rubin, E., Tamrakar, S., and Ludlow, J. W. (1998). Protein Phosphatase type 1, the
product of the Retinoblastoma susceptibility gene, and cell cycle control. Front.
Biosci. 3:D1209–D1219. doi: 10.1080/15513819809168797

Sherr, C. J., and Roberts, J. M. (2004). Living with or without cyclins and cyclin-
dependent kinases. Genes Dev. 18, 2699–2711. doi: 10.1101/gad.1256504

Tsuneoka, M., Umata, T., Kimura, H., Koda, Y., Nakajima, M., Kosai, K., et al.
(2003). c-myc induces autophagy in rat 3Y1 fibroblast cells. Cell Struct. Funct.
28, 195–204. doi: 10.1247/csf.28.195

Yao, G., Lee, T. J., Mori, S., Nevins, J. R., and You, L. (2008). A bistable Rb-
E2F switch underlies the restriction point. Nat. Cell Biol. 10, 476–482. doi:
10.1038/ncb1711

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 15 September 2013; accepted: 14 March 2014; published online: 04 April
2014.
Citation: Hiroi N, Swat M and Funahashi A (2014) Assessing uncertainty in model
parameters based on sparse and noisy experimental data. Front. Physiol. 5:128. doi:
10.3389/fphys.2014.00128
This article was submitted to Systems Biology, a section of the journal Frontiers in
Physiology.
Copyright © 2014 Hiroi, Swat and Funahashi. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY). The
use, distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this jour-
nal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | Systems Biology April 2014 | Volume 5 | Article 128 | 83

http://www.frontiersin.org/journal/10.3389/fphys.2014.00128/abstract
http://www.frontiersin.org/journal/10.3389/fphys.2014.00128/abstract
http://dx.doi.org/10.3389/fphys.2014.00128
http://dx.doi.org/10.3389/fphys.2014.00128
http://dx.doi.org/10.3389/fphys.2014.00128
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology
http://www.frontiersin.org/Systems_Biology/archive


Hiroi et al. Parametric certainty based on data

APPENDIX
ODE EQUATIONS
The following is the full ODE system for the Yao 2008 model. S stands for the systems’ forcing function, in the form of the serum
concentrations, which here is a constant with values for the whole duration of the experiment/simulation of 0.5 and 3%.

d [MC]

dt
= kkM [S]

KS + [S]
− dMC [MC]

d[EF]
dt

= kkE [MC] [EF]
(KM + [MC])(KE + [EF])

+ kb
[MC]

KM + [MC] − dE [EF] − kRE [RB] [EF] + kP1 [CD] [RE]

KCD + [RE]
+ kP2 [CE] [RE]

KCE + [RE]

d[CD]
dt

= kkCD[MC]
KM + [MC] + kCD[S]

KS + [S] − dCD[CD]
d[CE]

dt
= kkCE[EF]

KE + [EF] − dCE[CE]
d[RB]

dt
= kR + kDP[RP]

KRP + [RP] − kRE [RB] [EF] − kP1 [CD] [RB]

KCD + [RB]
+ kP2 [CE] [RB]

KCE + [RB]
− dR[RB]

d[RP]
dt

= kP1 [CD] [RB]
KCD + [RB] + kP2 [CE] [RB]

KCE + [RB] − kDP [RP]

KRP + [RP]
+ kP1 [CD] [RE]

KCD + [RE]
+ kP2 [CE] [RE]

KCE + [RE]
− dRP[RP]

d[RE]
dt

= kRE [RB] [EF] − kP1 [CD] [RE]

KCD + [RE]
− kP2 [CE] [RE]

KCE + [RE]
− dRE[RE]
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Signal transduction systems coordinate complex cellular information to regulate biological
events such as cell proliferation and differentiation. Although the accumulating evidence
on widespread association of signaling molecules has revealed essential contribution
of phosphorylation-dependent interaction networks to cellular regulation, their dynamic
behavior is mostly yet to be analyzed. Recent technological advances regarding mass
spectrometry-based quantitative proteomics have enabled us to describe the compre-
hensive status of phosphorylated molecules in a time-resolved manner. Computational
analyses based on the phosphoproteome dynamics accelerate generation of novel method-
ologies for mathematical analysis of cellular signaling. Phosphoproteomics-based numeri-
cal modeling can be used to evaluate regulatory network elements from a statistical point
of view. Integration with transcriptome dynamics also uncovers regulatory hubs at the tran-
scriptional level.These omics-based computational methodologies, which have firstly been
applied to representative signaling systems such as the epidermal growth factor receptor
pathway, have now opened up a gate for systems analysis of signaling networks involved
in immune response and cancer.

Keywords: signal transduction, phosphoproteomics, quantitative proteomics, computational modeling, systems

biology

INTRODUCTION
Signal transduction networks are known to regulate complex bio-
logical events in orchestration with subsequent transcriptional
regulation (Hunter, 2000; Schlessinger, 2000). Previous in-depth
analyses on cell signaling under a variety of experimental condi-
tions have revealed many of the key molecules and related events
that result in each biological effect. Regarding the intensively stud-
ied signaling systems such as the epidermal growth factor (EGF)
receptor pathway, the accumulated experimental evidence has
clearly demonstrated the complexity of the interaction network
involved in the signaling (Oda et al., 2005; Jones et al., 2006).
As phosphorylation-dependent protein interaction networks play
a major role in transmitting signals, a comprehensive and fine
description of their status would contribute substantially toward
understanding the regulatory mechanisms at the system level.
Recent proteomics technology based on high-resolution mass
spectrometry (MS) has enabled us to quantitatively describe the
activation dynamics on phosphorylated signaling molecules in a
comprehensive and unbiased manner (Blagoev et al., 2004; Zhang
et al., 2005; Olsen et al., 2006; Oyama et al., 2009). Computational
systems analysis based on the phosphoproteome dynamics data
paves the way to theoretical approaches for defining regulatory
principles that govern complicated signaling processes. Some sta-
tistical methodologies including mathematical modeling (Tasaki
et al., 2006, 2010), Bayesian network (Bose et al., 2006; Guha et al.,
2008), or partial least square regression (Wolf-Yadlin et al., 2006;
Kumar et al., 2007) have already been applied to EGF signaling.
An integrated approach based on both phosphoproteomic and
transcriptomic data has also revealed a global view of cellular

regulation at the transcriptional level (Oyama et al., 2011). In
this article, we introduce the recent progress of proteomics-driven
computational analyses applied to the signaling behavior of rep-
resentative biological pathways and the potential impact on the
system-level analyses of heterogeneous signaling networks related
to immune response and cancer.

EMERGENCE OF HIGH-THROUGHPUT
PHOSPHOPROTEOMICS TECHNOLOGY FOR LARGE-SCALE
IDENTIFICATION AND QUANTIFICATION OF CELLULAR
PHOSPHORYLATED MOLECULES
Recent advancement in liquid chromatography–tandem mass
spectrometry (LC–MS/MS) measurement technology has greatly
improved the throughput and sensitivity of protein measure-
ments. We can now identify thousands of proteins in a single
study (Brunner et al., 2007; de Godoy et al., 2008). In order to
efficiently describe the status of phosphorylated molecules, a vari-
ety of biochemical methodologies have been developed for their
enrichment. Immobilized metal affinity chromatography (IMAC;
Stensballe et al., 2001; Ficarro et al., 2002), strong cation exchange
(SCX) chromatography (Ballif et al., 2004; Beausoleil et al., 2004),
metal oxide chromatography (MOC; Pinkse et al., 2004; Larsen
et al., 2005) were intensively evaluated as core analytical method-
ologies in the previous reports. For targeting tyrosine phosphory-
lation, anti-phosphotyrosine antibodies were applied to efficiently
purify the corresponding molecules (Rush et al., 2005). Through
these sophisticated enrichment methods, current shotgun pro-
teomics technology based on high-resolution LC–MS/MS has
enabled the detection of thousands of phosphorylated molecules
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FIGURE 1 | Schematic procedure for comprehensive identification

and quantification of phosphorylated proteins by shotgun

proteomics technology. The phosphorylated molecules differentially

encoded with stable isotopes for each interval of stimulation are
enriched through affinity purification and analyzed by high-resolution
nanoLC–MS/MS system.

from representative cell lines such as human HeLa cells (Figure 1;
Olsen et al., 2006, 2010).

Another important advance in MS-based systems analysis is
development of protein/peptide labeling strategies for quantitative
proteomics (Figure 1). Several methodologies for in vivo/in vitro
labeling have been established for relative quantification of the
activation status of signaling molecules. The representative in vivo
protein labeling methodology termed stable isotope labeling by
amino acids in cell culture (SILAC) can be conducted by incor-
porating distinguishable stable isotopes into specific amino acid
residues such as lysine and arginine during cell culture (Ong et al.,
2002, 2003). Another approach to introduce differential labels
in vitro is chemical tagging of specific amino acid residues such
as cysteine. The isotope-coded affinity tag (ICAT), which consists
of a cysteine-directed reactive group, a linker with stable isotope
signatures, and a biotin tag, is applied to purify labeled peptides
by biotin–avidin affinity (Gygi et al., 1999; Han et al., 2001). As for
amine-directed tagging, the isobaric tag for relative and absolute
quantitation (iTRAQ) enables comparative quantification of four
or eight samples in a single analysis (Ross et al., 2004).

By combining these technologies, time-resolved activation
profiles of ligand-induced phosphoproteome were depicted in
a quantitative manner (Figure 2). The original approach to
describe phosphotyrosine-dependent signaling dynamics led
to the identification of 81 effectors in human HeLa cells
upon EGF stimulation (Blagoev et al., 2004). The global
phosphoserine/threonine/tyrosine-related proteome analysis for

the EGF signaling system in the same cell line yielded a network-
wide view of the dynamic behavior of 6,600 phosphorylation sites
on 2,244 proteins (Olsen et al., 2006).

In a recent study, a highly time-resolved description of
EGF/EGFR signaling was measured in human epithelial A431
cells (Oyama et al., 2009). The quantitative activation data on
the EGF-regulated tyrosine-phosphoproteome were measured at
10 time points after EGF stimulation (0, 0.5, 1, 2, 5, 10, 15, 20,
25, and 30 min), generating a detailed view of their multi-phase
network dynamics. In this study, temporal perturbation of the
signaling dynamics was also conducted with a kinase inhibitor to
clearly distinguish between sensitive and robust pathways to this
treatment. This approach showed that phosphoproteomics-based
time-resolved description of the network dynamics functioned as
an analytical basis for evaluating temporal perturbation effects
in relation to specific signaling interactions, leading us to obtain
a system-level view of the regulatory relationships in signaling
dynamics.

COMPUTATIONAL MODELING OF SIGNAL TRANSDUCTION
NETWORKS BASED ON QUANTITATIVE PHOSPHOPROTEOME
DATA
Although phosphoproteomics-based temporal description of
signaling networks provides system-level information on
dynamic regulation of signal transduction via phosphoryla-
tion/dephosphorylation, the most important challenge for elu-
cidating the mechanistic aspects of signal transduction is the
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FIGURE 2 |Time-resolved description of signaling networks by quantitative proteomics. Time-course activation profiles of phosphorylated molecules are
generated through integration of a series of fold activation data that were measured at different time points.

establishment of statistical methodologies for performing com-
putational modeling with increasing species, states, and reactions
over the signaling network. In a recent study, some computa-
tional frameworks have been developed for analyzing flux-based
signaling information on quantitative phosphoproteomics data
(Figure 3). In the initial approach, self-organizing maps were
applied to identify EGF signaling modules based on time-resolved
description of 78 tyrosine phosphorylation sites on 58 proteins in
human mammary epithelial 184A1 cells (Zhang et al., 2005). The
cells with varying human ErbB2 (HER2) expression levels were
further analyzed to characterize HER2-mediated signaling effects
on cell behavior (Wolf-Yadlin et al., 2006). Partial least squares
regression (PLSR) was applied to estimate the phosphotyrosine
clusters exhibiting self-similar temporal activation profiles, lead-
ing to identification of the signals that were strongly correlated
with cell migration and proliferation and could function as a “net-
work gage” of cell fate control (Wolf-Yadlin et al., 2006; Kumar
et al., 2007).

Bayesian network modeling based on multiple sets of quan-
titative phosphoproteome data could generate probabilistic net-
works that represented core aspects of the models with a directed
graph of influence on protein phosphorylation. In combination
with the literature-based protein–protein interaction data on the
EGFR/ErbB signaling, this statistical approach not only recapitu-
lated known portions of the signaling pathways but also inferred
novel relationships between the related molecules (Bose et al.,

2006; Guha et al., 2008). In a recent study, a computational frame-
work based on data assimilation was also developed for analyz-
ing mutated EGFR signaling through phosphoproteomics-driven
numerical modeling (Tasaki et al., 2010). The hybrid functional
petri net with extension (HFPNe) is a computational modeling
architecture which can deal with discrete biological events as well
as continuous ones and enables us to analyze temporal data on bio-
logical entities such as phosphorylated signaling molecules within
the data assimilation framework. The HFPNe-based computa-
tional modeling of aberrant EGFR signaling led to reduction of
the factors responsible for mutational effect to several alterations
in the reaction parameters and provided a mechanistic description
of the disorders of their cell signaling networks at the system level.

Phosphoproteome dynamics data can be integrated with the
transcriptome dynamics to analyze the regulatory mechanisms
more systematically. In a very recent study, time-resolved phos-
phoproteome and transcriptome data on 17β-estradiol (E2) and
heregulin (HRG)-induced signal-transcription programs were
quantitatively analyzed to elucidate regulatory pathways in breast
cancer signaling (Oyama et al., 2011). Reconstruction of protein
interaction networks based on the phosphoproteome data shed
light on the activated signaling molecules over the network, while
statistical evaluation of transcription factor-binding site motif
significance for the entire gene expression data led us to focus
on the core transcriptional regulators. Functional association of
these factors using pathway databases revealed ligand-dependent
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FIGURE 3 | Computational approaches for analyzing network properties of phosphorylation-dependent signaling behavior. Phosphoproteomics-based
network models, in combination with literature-based network/pathway information, can be sophisticated to interpret regulatory aspects of signaling dynamics.

signal-transcription regulatory programs in both of wild type and
drug-resistant breast cancer MCF-7 cells, leading us to extract the
pathways activated in drug-resistant cells.

FUTURE PROSPECTS
Recent advances in proteomics technology have presented us with
a system-wide view of phosphorylation-dependent signaling net-
work dynamics in a quantitative manner. Mathematical analysis
of phosphoproteomics-based networks will lead to a better under-
standing of the critical factors controlling network behavior and
provide a computational platform to explore potential drug targets
for specific disease conditions and theoretically estimate the effect
of the corresponding drugs on a network-wide scale prior to clini-
cal application. As signaling network structures depend on cellular
context (Morandell et al., 2008), cell-specific signaling network
architectures need to be described independently using phospho-
proteomics to characterize the behavior of each signaling system.

Although this emerging technology has been applied to only a
limited fraction of signaling networks including the EGFR path-
way, further accumulation and integration of phosphoproteome
data on heterogeneous immune and cancer signaling networks
should accelerate elucidation of general and condition-specific
principles that govern signaling network behavior and pave the
way to understanding complex cellular responses from a systems
perspective.
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CD8+T cells have the potential to influence the outcome of cancer pathogenesis, including
complete tumor eradication or selection of malignant tumor escape variants. The Simian
virus 40 largeT-antigen (Tag) oncoprotein promotes tumor formation inTag-transgenic mice
and also provides multiple target determinants (sites) for responding CD8+ T cells in
C57BL/6 (H-2b) mice. To understand the in vivo quantitative dynamics of CD8+ T cells
after encountering Tag, we constructed a dynamic model from in vivo-generated data to
simulate the interactions between Tag-expressing cells and CD8+ T cells in distinct sce-
narios including immunization of wild-type C57BL/6 mice and of Tag-transgenic mice that
develop various tumors. In these scenarios the model successfully reproduces the dynam-
ics of both theTag-expressing cells and antigen-specific CD8+T cell responses.The model
predicts that the tolerance of the site-specificT cells is dependent on their apoptosis rates
and that the net growth of CD8+ T cells is altered in transgenic mice. We experimen-
tally validate both predictions. Our results indicate that site-specific CD8+ T cells have
tissue-specific apoptosis rates affecting their tolerance to the tumor antigen. Moreover,
the model highlights differences in apoptosis rates that contribute to compromised CD8+
T cell responses and tumor progression, knowledge of which is essential for development
of cancer immunotherapy.

Keywords: CD8+T cells,T-antigen, tumor, dynamic model, apoptosis and proliferation rates

INTRODUCTION
Tumors are masses of host cells containing both genetically unsta-
ble cancer cells and supporting host cells, including cells of the
immune system. Tumor progression causes destructive patho-
genesis within the host and ultimately death. Tumor antigens,
particularly those that are unique to the tumor, can elicit an
adaptive immune response (Qin and Blankenstein, 2000; Patel
and Chiplunkar, 2009; Xu et al., 2009; Behboudi et al., 2010). In
particular, CD8+ T cells (TCD8s) can eliminate continuously aris-
ing nascent transformed cells, inhibit carcinogenesis, and main-
tain cellular homeostasis under normal conditions; this process
is known as immunosurveillance (Dunn et al., 2002; Schreiber
et al., 2004). Tumors, nevertheless, can escape immunosurveillance
through both antigenic loss and the promotion of immunosup-
pression, which leads to their progression. The immune response
to cancer is often studied either by tumor implantation or by
inducing autochthonous tumor formation in specific tissues in
mice. Tumor development can be induced in transgenic mice by
expressing oncoproteins under tissue-specific promoters. Trans-
genic mice which develop autochthonous tumors are especially
interesting since the tumor antigens are often self antigens derived
from non-mutated cellular proteins and tumor formation occurs
over an extended period of time, reproducing some of the
immunological roadblocks which limit effective immunotherapy.

Dynamic models of tumor–immune interactions have pro-
vided insights into the processes leading to immune response
failure during tumor progression. Such models have been applied
to study the effect of immunotherapeutic approaches (Day et al.,
2006; Castiglione and Piccoli, 2007; Kirschner and Tsygvintsev,
2009) and to characterize the various stages of the immune
response to infection and cancer, with particular focus on TCD8s
(De Boer et al., 2003; Bocharov et al., 2004; Antia et al., 2005;
de Pillis et al., 2005). These models highlight the importance of
a variety of features of the immune response to tumors, includ-
ing the density of tumor antigen, the duration of the interaction
between MHCI-peptide complexes and the T cell receptor (TCR),
TCD8 activation rates, immunological memory, and recruitment
of precursor cells. Our study provides a unique perspective rela-
tive to previous studies, in that we focus on a comparative analysis
of T cell responses in tumor-bearing versus wild-type (WT) mice.

The Simian virus 40 (SV40) large T-antigen (Tag) is a potent
virus-encoded oncoprotein that can transform a variety of cell
types (Ahuja et al., 2005). The oncogenic activity of Tag stems
from its ability to inactivate tumor suppressor proteins (Rb and
p53) as well as to initiate cell cycle progression (Butel and Lednicky,
1999). Tag can induce responses by MHC-I-restricted TCD8s, as is
observed for other tumor antigens. Four unique Tag determinants
recognized by TCD8s have been defined in C57BL/6 mice (sites I,
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II/III, IV, and V; Mylin et al., 2000; Tevethia and Schell, 2001). The
TCD8 response to these four determinants forms a quantitative
hierarchy in which site IV, for which the most T cells accumulate,
is immunodominant followed by subdominant responses to sites I
and II/III. The response to site V, however, is immunorecessive, as
responding TCD8s are only detected following immunization with
Tag variants lacking the three dominant determinants, or after site
V-specific immunization (Tanaka et al., 1989; Fu et al., 1998). The
expression of Tag as a self-antigen within Tag-transgenic mice can
lead to TCD8s unresponsiveness by mechanisms promoting both
central and peripheral tolerance (Tevethia and Schell, 2001).

We construct a dynamic model describing tumor progression,
elimination of tumor cells, TCD8 expansion, and decay in the con-
text of the TCD8 response to SV40 Tag. We developed this model to
describe the TCD8 response in both WT C57BL/6 mice respond-
ing to immunization, where Tag-expressing cells are eliminated,
and in mice that express Tag as a transgene, leading to the devel-
opment of autochthonous tumors and TCD8 tolerance. For the
purposes of this model we define tolerance as the absence of a
functional T cell response in the presence of tumor antigen. In
transgenic mice, site-specific TCD8s become tolerant at different
time points (Theobald et al., 1997; Morgan et al., 1998; Colella
et al., 2000; Nugent et al., 2000; Cordaro et al., 2002; Otahal et al.,
2006; Fujimura et al., 2010) and this characteristic behavior is not
seen when the WT mice encounter the Tag as a foreign antigen.
Thus, the model parameterized to reproduce this observation gives
insights into the characteristics of TCD8s that are changed during
tumor development.

Our model quantitatively reproduces the TCD8 response to
immunization with Tag-transformed cells in WT mice (Pretell
et al., 1979; Mylin et al., 2000) and the qualitative behavior of the
TCD8 response in mice bearing Tag-induced pancreatic tumors
(Otahal et al., 2006), osteosarcoma (Schell et al., 2000), or brain
tumors (Schell et al., 1999). The model reveals strong constraints
on the proliferation rates and decay rates of TCD8s during tumor
formation. Additionally, the model gives insight into how the acti-
vation, proliferation, and apoptosis rates of TCD8s impact the
expansion and contraction phase during the site-specific immune
response in normal mice, as well as during tissue-specific responses
and development of tolerance. Our results indicate that though the
inherent characteristics of the site-specific T cell clones are differ-
ent, the overall TCD8 response dynamics are surprisingly similar
when encountering antigen in different tissues. We predict and
experimentally validate inequalities in the activation and decay
rates of the TCD8 responding to unique determinants. We also the-
oretically predict the rate constants leading to tumor formation,
the apoptosis rates of different TCD8 clones, the peaks of TCD8

activity in various tumor models and the mechanism of tolerance.

MATERIALS AND METHODS
DYNAMIC MODEL
Our model describes the growth of tumor by modeling the Tag-
expressing tumor/malignant cells (M ) and their removal by site I-,
II/III, IV-, and V-specific TCD8s (Ti; Figure 1). The basic model has
five ordinary differential equations and assumes that the cells form
well mixed populations. Since the dynamics after tumor clearance
are not considered in the current study, the memory T cell state is

FIGURE 1 |The interactions betweenTag-expressing cells (M) andTCD8s

and the parameters modeling the dynamics are depicted. Edges
represent activating (black arrows), inhibiting (blunt segments), and
tumor-induced (red arrows) interactions, f represents a Michaelis–Menten
function.

not modeled. The site-specific TCD8s are initially activated against
the tumor cells and are subsequently suppressed by the increas-
ing tumor size in addition to their apoptosis. Tag-expressing cells
exponentially proliferate at rate r which was estimated from the
initial growth phase of the tumors (see e.g., Mallet and De Pillis,
2006). The four site-specific TCD8s are assumed to kill tumor cells
(M ) at the same rate b; however, b is modulated by a Michaelis–
Menten function such that the rate of killing of tumor cells
stabilizes when the tumor size increases above β (Figure A1 in
Appendix).

Tag-expressing cells present four determinants I, II/III, IV, and
V that are recognized by MHCI molecules. MHCI-peptide com-
plexes are then recognized by TCR, which leads to the differenti-
ation of naive cells and subsequently the recruitment of TCD8s to
the tumor site. In the model, Tag-expressing cells induce a propor-
tion ni of competent site-specific TCD8s at a rate proportional to c.
Based on our recent experimental results (T. Schell, unpublished)
a 0.3/1/4 ratio for site V/I/IV TCD8 activation from naïve T cells was
used to determine ni. Since the experimental observations could
be reproduced by using the same value of the proliferation rate c,
it was kept the same for all site-specific TCD8s. Thus nic represents
the activation rate of TCD8s from precursor cells and c represents
the proliferation of TCD8s. TCD8s undergo natural death at rate wi

which is different for the four determinants. The immunogenicity
of the determinants is decided by the site-specific activation and
decay rates. Tumor cells alter the microenvironment leading to
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the suppression of the TCD8 response (Ganss and Hanahan, 1998;
Gajewski et al., 2006). This suppression is modeled as a negative
modulation of the proliferation and activation rates in response
to a higher number of tumor cells. In the case of proliferation,
the effect is modeled with a Michaelis–Menten function which
sets proliferation to 0 for M = 0 and saturates at c for M >> σ.
The negative modulation of activation rates is modeled in the
opposite way, using a “repressive” Michaelis–Menten function: for
M << αi , activation occurs at a constant rate ni; for M >> αi , it
asymptotically approaches 0. In the absence of spatial compart-
ments, inhibition of the activation of new TCD8s represents the
suppression of the recruitment of the TCD8s at the site of tumor
which can occur by diffusible cytokines and chemokines produced
by the tumor cells.

In Tag-transgenic mice both central (Faas et al., 1987; Schell
et al., 1999; Colella et al., 2000; Zheng et al., 2002) and peripheral
tolerance (Ye et al., 1994; Schell et al., 2000; Cordaro et al., 2002;
Otahal et al., 2006) is observed in response to tumors. Tolerance is
modeled by the absence of functional TCD8s even in the presence
of the Tag-expressing cells. In central tolerance self-reactive T cells
are deleted during development in the thymus and there is no
recruitment at the site of tumors, which can be modeled by setting
the value of ni to 0. During peripheral tolerance self-reactive T cells
that escape to the periphery are maintained in a state of unrespon-
siveness or are deleted following activation. The gradual process of
peripheral tolerance is simulated by the tumor-induced suppres-
sion of TCD8s and by retraining the parameter values (explained
in Section “Results”).

Thus the dynamics of tumor cells (M ) and TCD8s specific for
site i (Ti) are given by

dM

dt
= rM − M

M + β

∑
i

bTi

dTi

dt
= c

M

M + σ

(
ni

(
1 − M

M + αi

)
+ Ti

)
− wiTi ,

i ∈ [I, II/III, IV,V]

Note that though a constant source of site-specific precursor cells
(constant ni) was used in the model, their effective number is not

unlimited. In the WT model precursor cells stop differentiating
after the clearance of Tag-expressing cells, and in the tumor mod-
els activation of new TCD8s is inhibited by large tumors (so that
≈15 TCD8s are activated for 1000 tumor cells) and has a minimal
effect after the first few days.

SIMULATED IMMUNIZATIONS
Immunization of transgenic mice was modeled, similarly to
Kirschner and Panetta (1998), by introducing a variable si that
follows the clearance dynamics of Tag-transformed cells injected
in WT mice by obeying the relation dsi/dt = −γSi. In the presence
of immunization, the T equation becomes

dTi

dt
=

[
(c + si)

M

M + σ

] [
ni

(
1 − M

M + αi

)
+ Ti

]
− wiTi , i ∈ [I, II/III, IV,V]

NULLCLINE ANALYSIS
The nullcline analysis (Figures A2B–E in Appendix) is performed
to study the effect of parameter values on the temporal trajecto-
ries of the tumor cells and site-specific TCD8s (Figures 2B–E). The
nullcline analysis finds the equilibrium of the system when M and
Ti are in a steady state (dM/dt = dT/dt = 0). Considering a single
type of site-specific TCD8 for simplicity the equations become:

dM

dt
= 0 = rM − M

M + β
bT

dT

dt
= 0 = c

M

M + σ

(
n − n

M

M + α
+ T

)
− wT

Solving these equations in terms of M and T yields

M = b

r
T − β

T = cnαM

(M + α) (M (w − c) + σw)

For the biologically accepted range of β (>0) in our model,
M = T = 0 is an unstable steady state. That is, for small num-
ber of tumor cells (M ) and TCD8s (T ), the value of tumor cells

FIGURE 2 |The response of site IV-specificTCD8s is shown in case

of (A) clearance, (B) non-zero steady state, (C) oscillations,

(D) tumor, and (E) uncontrolled response ofTag-expressing cells

(Tag-expressing cells shown in insets). In all cases the initial
condition is Tag-expressing cells = 100, site IV-specific TCD8 = 0. The

parameters r = 0.03/day, n = 1.8 (proportion), b = 0.5/day, c = 0.5/day,
w = 0.2/day, α = 40 cells, β = σ = 10 cells are used in all figures
with the following exceptions: (A) n = 0.3 (proportion), c = 0.29/day;
(B) β = σ = 50/day; (C) β = σ = 100/day; (D) c = 0.15/day;
(E) c = 0.21/day.
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will always increase in the tumor model. Additional biologically
significant steady states are discussed in Section “Results.”

SUMMARY OF PUBLISHED EXPERIMENTAL DATA
We used published experimental data corresponding to TCD8s
derived from the spleen of WT C57BL/6 mice and three Tag-
transgenic mouse strains that develop distinct tumors. Data cor-
responding to splenic TCD8 responses were used since they are
available for all models and are representative for the systemic
response to the antigen. In the case of brain tumors, T cell accu-
mulation at the tumor site is correlated with spleen dynamics with
a time lag (Ryan and Schell, 2006).

Tag-specific TCD8 cells are measured by MHC tetramer staining
after encountering antigen which correlates with the number of
TCD8s that produce IFNγ upon peptide-specific in vitro stimula-
tion (Mylin et al., 2000). The published data and our own were
obtained from two independent sets of experiments that were
quantitatively different. In vivo model systems are often difficult
to standardize. Hence, to account for lab-specific differences and
to align the data, we scaled the data from Mylin et al. (2000) by a
multiplicative factor that maximized the agreement.

The number of endogenous TCD8s in Tag-transgenic mice can
be very low and difficult to detect. Hence induction of detectable
TCD8 responses can be stimulated by immunization of mice with
Tag-transformed cells expressing full-length WT Tag or Tag vari-
ants in which specific determinants have been eliminated by
mutagenesis. If immunization is not sufficient to induce the T cell
response, due to deletion of T cell precursors during T cell devel-
opment, then splenocytes from WT mice, which contain naïve
TCD8s as well as other immune cell subsets, are injected (adoptively
transferred) into the Tag-transgenic mice. In such experiments,
saturating amounts of splenocytes were given to achieve maximal
T cell response.

CHEMICALS AND REAGENTS
All chemical reagents were purchased from Sigma-Aldrich
(St Louis, MO, USA). RPMI-1640 with Glutamax and fetal bovine
serum (FBS) were purchased from Invitrogen (Carlsbad, CA,
USA). Benzonase® Nuclease was purchased from EMD Chemicals
(San Diego, CA, USA). Annexin V Apoptosis Detection Kit, rat
anti-mouse CD16/CD32 Fc block, Cytofix/Cytoperm, PermWash,
fluorescein isothiocyanate (FITC), phycoerythrin (PE), allophyco-
cyanin (APC) or APC-Cy7-labeled anti-mouse CD8α, PE-labeled
anti-CD90.1, and FITC-labeled anti-5-bromo-2-deoxyuridine
(BrdU) antibody were purchased from BD Biosciences (San Jose,
CA, USA).

ANIMALS
Male and female C57BL/6 (H-2b) mice (4–6 weeks old) were pur-
chased from The Jackson Laboratory (Bar Harbor, Maine) and
routinely used between the ages of 7 and 12 weeks. SV11 (H-2b)
mice express full-length SV40 T Ag under the control of the SV40
promoter (Brinster et al., 1984). Line SV11 mice were maintained
by breeding hemizygous Tag transgene+ males with C57BL/6J
females and transgene positive animals identified as previously
described (Schell et al., 1999). TCR-IV transgenic mice express-
ing the TCRα and TCRβ chains specific for Tag site IV have been

previously described (Tatum et al., 2008) and were maintained by
breeding transgene positive males with B6.PL-Thy1a/CyJ females.
All mice were maintained in the animal facility at the Pennsylva-
nia State University College of Medicine, Hershey, PA, USA and
experiments were performed under guidelines approved by the
Institutional Animal Care and Use Committee.

IMMUNIZATION AND IDENTIFICATION OF SITE-SPECIFIC TCD8s
The B6/WT-19 cell line was derived previously by transformation
of B6 mouse embryo fibroblasts with WT SV40 strain VA45-54
(Pretell et al., 1979; Tevethia et al., 1980). Production and char-
acterization of the Db/Tag site I (Db/I), Kb/Tag site IV (Kb/IV),
Db/influenza virus (Flu) nucleoprotein (NP) 366–374 (Db/Flu),
and Kb/HSV gB 498–505 (Kb/gB) PE-conjugated tetramers were
described previously (Mylin et al., 2000). For immunization,
5 × 107 live B6/WT-19 cells were injected by the intraperitoneal
route. For adoptive transfer, SV11 or transgene negative mice
were injected intravenously with lymphocytes derived from TCR-
IV transgenic mice containing 5 × 105 clonotypic site IV-specific
TCD8s. For tetramer staining, mouse spleens were harvested at the
indicated time points post immunization and processed to sin-
gle cell suspensions as previously described (Schell et al., 1999).
Erythrocyte-depleted splenocytes were washed twice in PBS–
FBS [PBS supplemented with 2% (vol/vol) FBS], resuspended at
2 × 107 cells/ml in PBS–FBS, and incubated with rat anti-mouse
CD16/CD32 (33 mg/ml) for 15 min on ice. Following incuba-
tion, cells were washed once in PBS–FBS and resuspended in
fluorescence-activated cell sorter (FACS) buffer [PBS–FBS sup-
plemented with 0.1% (wt/vol) sodium azide]. Aliquots containing
2 × 106 cells were prepared and the appropriate MHC tetramer
plus anti-mouse CD8α antibody were added. Alternatively, TCR-
IV transgenic T cells were identified according to their surface
expression of CD90.1. In this case, cells were incubated with
anti-CD90.1 antibody at room temperature for 15 min as well as
anti-CD8 and MHC tetramer to minimize non-specific staining.
Proliferation and apoptosis analysis focused on the population
of CD8+, Tetramer+, and CD90.1+ cells. Cells were then resus-
pended in FACS buffer and kept on ice or processed into apoptosis
assay prior to flow cytometry.

APOPTOSIS ASSAY
2 × 106 erythrocyte-depleted and MHC tetramer- and/or anti-
CD90.1-stained cells were incubated with conjugated Annexin
V and 7-AAD (1:100 dilution) in 100 μl 1× Annexin V stain-
ing buffer for 15 min at room temperature in the dark. Cells were
immediately assessed by flow cytometry (BD FACSCalibur or FAC-
SCanto). At least 10000 events were collected in the live cell gate
and analyzed for Annexin V and 7-AAD staining. Annexin V nega-
tive, 7-AAD positive cells were considered non-viable and excluded
from further analysis.

IN VIVO 5-BROMO-2-DEOXYURIDINE INCORPORATION ASSAY
Mice received a 1-mg dose of 1 mg/ml BrdU solution (diluted
in PBS) 3 h before sacrifice by intraperitoneal injection at the
indicated times post immunization. Splenocytes were stained for
BrdU incorporation using a modified staining protocol (BD Bio-
sciences). Briefly, 2 × 106 splenocytes were stained with MHC

Frontiers in Physiology | Systems Physiology July 2011 | Volume 2 | Article 32 | 93

http://www.frontiersin.org/systems_physiology/
http://www.frontiersin.org/systems_physiology/archive


Campbell et al. Quantitative study of tumor pathogenesis

tetramers and anti-mouse CD8α as described above. Cells were
then resuspended in 100 μl of Cytofix/Cytoperm (Becton Dickin-
son) and incubated for 30 min at room temperature. The cells
were washed once with 1× PermWash, resuspended again in
100 μl of Cytofix/Cytoperm and incubated for 10 min at room
temperature. Cells were washed again and resuspended in 100 μl
Cytofix/Cytoperm and incubated for 5 min at room temperature.
After one wash, cells were incubated at 37˚C for 1 h with 20 U Ben-
zonase nuclease in 100 μl DPBS with 1 mM MgCl2 and washed
once. Cells were then stained with 5 μl of FITC-labeled anti-
BrdU antibody (eBioscience) in 40 μl 1× PermWash for 20 min
at room temperature. Cells were washed and then fixed with
2% paraformaldehyde in PBS and analyzed by flow cytometry
as above.

STATISTICAL TESTS
We performed the Welch two-sample t -test to assess whether the
ratio of the percentage of site IV-specific TCD8s proliferating in
WT to the similar percentage in SV11 mice is significantly greater
than the similar ratio of the apoptotic cells. Three data points
were taken from the WT mice and four data points were taken
from SV11 mice. To construct the two groups for the statistical
test we used the percentage of proliferating and apoptotic cells in
all combinations in which WT values were in the numerator.

RESULTS
OVERVIEW OF TUMOR GROWTH (M ) AND TCD8 DYNAMICS
To study the characteristics of TCD8s modulation during tumor
development we developed a dynamic model of the interactions
between tumor cells (M ) and TCD8 (Ti) cells elicited in response
to the four unique determinants of Tag. In this section we dis-
cuss the repertoire of dynamical behaviors that emerged from the
model by describing the site IV-specific TCD8s in response to the
growing tumor (refer to Materials and Methods and Appendix for
details). Tag-expressing cells exponentially proliferate at rate r and
are killed by TCD8s at a rate that grows with tumor size, until the
tumor size becomes large compared to β (Figure A1 in Appendix);
after which the killing rate saturates to a rate b. Site IV-specific
TCD8s are activated against the tumor cells and proliferate but
their differentiation is subsequently suppressed by the increasing
tumor size and they also undergo natural death at rate w iv. Pro-
liferation and activation of TCD8s is suppressed by large tumors
and the suppression is modeled by Michaelis–Menten functions
parameterized by σ and αi respectively.

A repertoire of dynamical behaviors emerged from the model
including clearance of Tag-expressing cells, as in WT mice, or
tumor formation, as in Tag-transgenic mice. If Tag-expressing
cells are cleared, the T cell response contracts (Figure 2A). Tag-
expressing cells and T cells can also reach homeostasis (Figure 2B),
as is observed when mice are immunized prior to the develop-
ment of Tag-induced pancreatic tumors (Otahal et al., 2006).
In some cases, the number of TCD8 and Tag-expressing cells
fluctuate for extended periods of time before reaching a steady
state (Figure 2C). If the TCD8 response is incapable of control-
ling the proliferating Tag-expressing cells, they increase exponen-
tially, and TCD8s either undergo tolerance, becoming unresponsive
(Figure 2D), or themselves expand continuously (Figure 2E).

To understand the effect of the parameter values on the dynamic
behavior we performed a nullcline analysis (refer to Materials and
Methods and Appendix for details). The nullcline analysis provides
the long-term outcome resulting from the trajectories of change
in the concentrations of Tag-expressing cells and TCD8s. The
clearance scenario (Figure 2A; Figure A2A in Appendix) shows
increasing initial trajectories of Tag-expressing cells and TCD8s.
The increasing efficiency of TCD8-mediated killing of tumor cells
leads to first a slowing down of the increase, and later a decrease
in tumor cell numbers (modeled by the value of M ). When the
number of Tag-expressing cells is below a certain threshold value
given by the nullcline analysis, TCD8s begin decreasing and even-
tually Tag-expressing cells and TCD8s are depleted. In the clearance
scenario the TCD8 response is maximized by setting the Michaelis–
Menten constant αi, which models the effect of tumor size on the
recruitment of new TCD8s, higher than the Tag-expressing cells.
Though lower values of αi are used in the tumor models, increasing
αi cannot clear the tumor cells because it stimulates the differen-
tiation of effector cells from naïve T cells which is a linear process
and has a limited role in the control of exponential tumor growth
(Figure A1 in Appendix).

The nullcline analysis identified the salient parameters
that drive the system from one behavior type to another
(Figures 2B–E). Unlike in the clearance scenario in which tumor
cells are cleared, a larger value of Michaelis–Menten constants β

and/or σ, which model the effect of tumor size on the TCD8 activ-
ity, launch a protective TCD8 response characterized by a steady
state like behavior (Figure 2B; Figure A2B in Appendix). Further
increase in these Michaelis–Menten constants (β and/or σ) leads to
extended oscillations of TCD8s and tumor cells (Figures 2C and 3;
Figure A2C in Appendix). As expected, decreased tumor growth
(lower r) and increased TCD8-mediated killing (b) (Figure 2E;
Figure A2E in Appendix) pushes the system toward tumor clear-
ance. The extreme cases when r < 0 are not relevant in the systems
that lead to tumor formation. In the following sections we consider
the dynamics of all the determinants in which case site-specific
TCD8 apoptosis rates and inhibition by tumor cells lead to the
characteristic TCD8 response against each determinant.

Though various parameters can affect the fate of the tumors
and consequently the TCD8 response, only the net growth of TCD8s,
described by the difference between the rate of activation (c) and
cell death (wi), decides the tolerance behavior (unresponsiveness
of the TCD8 cells). Decrease in the net growth transitions the sys-
tem from a clearance state (if c − wi is positive and large) observed
in WT mice to a tumor state observed in transgenic mice (if c − wi

is negative; see Figure 2D; Figure A2D in Appendix). Thus to
reproduce the tolerance of TCD8s observed in Tag-transgenic mice
wi is assumed to be greater than c in all tumor models. Our para-
meter analysis (Figure A3 in Appendix) indicates a large deviation
from the experimental results when the above condition on the
net growth of TCD8s is not implemented.

TCD8 NET GROWTH AND TOLERANCE
The TCD8 response to Tag in WT mice and in transgenic mice bear-
ing tumors provides two unique immunological environments
which are modeled by assuming positive and negative net growth
(c − wi) of TCD8s in WT and transgenic mice respectively. The fact
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that the TCD8 response is strong in WT mice but is undetectable
in transgenic mice (Schell et al., 2000; Otahal et al., 2006) lends
support to this assumption. The early expression of antigen in
Tag-transgenic mice might lead to a lower rate of expansion (c)
of TCD8s, allowing tumors to grow. Indeed, it is experimentally
observed that high amounts of antigen reduce the proliferation of
TCD8s during tolerance (Ganss and Hanahan, 1998).

To validate our hypothesis of the positive versus negative net
growth of TCD8s in WT versus transgenic mice we experimen-
tally assessed proliferation and apoptosis of TCD8s in both WT
mice and Tag-transgenic mice bearing brain tumors (Schell et al.,
1999). It is difficult to obtain the absolute value of the rate of acti-
vation (c) and the rate of apoptosis (wi) through experimentation,
which renders it improper to directly compare the experimental
values. However, we noticed that if the net growth is positive in WT
(wWT < cWT) and negative in transgenic mice (wTumor > cTumor),
it implies that for a specific TCD8 clone, the ratio of proliferation
rates in WT to transgenic mice is greater than the similar ratio
of apoptosis rates [(cWT/cTumor) > (wWT/wTumor)]. The converse

implication is satisfied if the rates of T cell proliferation are
comparable in WT and tumor-bearing mice. To test this relation-
ship, we utilized TCD8s from TCR transgenic mouse line TCR-IV
in which 90% of the TCD8s were specific for site IV (Tatum et al.,
2008). Splenocytes isolated from TCR-IV transgenic mice were
adoptively transferred into groups of 3∼4 WT or SV11 mice before
immunization with Tag-expressing cells. The percentage of prolif-
erating and apoptotic TCR-IV cells recovered from the recipients
was assessed through in vivo BrdU incorporation assay (Figure 3B)
and Annexin V apoptosis assay (Figure 3C) on days 3 and 4 after
immunization, respectively. These data were subsequently used
to estimate the ratio of proliferation (P ratio – cWT/cTumor) and
apoptosis (A ratio – wWT/wTumor) rates of site IV-specific TCD8s
in WT to transgenic mice. As shown in Figure 3D, the value of
the proliferation ratio is higher than the apoptosis ratio for both
time points, and the difference is statistically significant [P < 0.032
(t = 2.07) at 3 days and P < 0.0001 (t = 4.57) at day 4 after immu-
nization]. Moreover, different trends of change in the frequency
of TCR-IV cells in WT and brain tumor-bearing transgenic mice

FIGURE 3 | Site IV-specificTCD8s have different proliferation and apoptosis

kinetics under WT and tumor conditions. Data was obtained 3 and 4 days
after immunization using Tag-expressing cells. From (A) to (C), each circle
represents data obtained from one mouse, either WT (•) or SV11 (◦).
(A) The percentage of adoptively transferred site IV-specific TCD8s in total
splenocytes as assessed by flow cytometry. Although not statistically
significant, there was an increase of site IV-specific TCD8s percentage in WT
mice, but a decrease of site IV-specific TCD8s percentage in SV11. Site
IV-specific TCD8s was defined as CD8+, Tetramer IV+ (indicating T cells
specific for epitope IV), and CD90.1+ (indicating T cells derived from the
TCR-IV mouse line). (B) The percentage of proliferating site IV-specific TCD8s in
total CD8+ T cells of WT and SV11 mice after immunization as assessed by

BrdU assay. The proliferation rate remained similar under WT and SV11
condition. (C) The percentage of apoptotic site IV-specific TCD8s in total CD8+
cells of WT and SV11 mice as assessed by apoptosis assay. Although not
statistically significant, there is an increase of apoptotic site IV-specific TCD8s
percentage in both WT and SV11, with SV11 more so than WT. (D) The WT to
SV11 ratio of percentages of proliferating site IV-specific TCD8s (P ratio:
proliferation ratio) and the same ratio of percentages of apoptotic site
IV-specific TCD8s (A ratio: apoptosis ratio) for both time points. Each circle
indicates one possible ratio between WT data and SV11 data at the same time
point, either proliferation ratio (•) or apoptosis ratio (◦). Proliferation ratio is
higher than the apoptosis ratio at day 3 (*P < 0.032, t = 2.07) and day 4
(**P < 0.0001, t = 4.57).
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between days 3 and 4, with a slight increase in TCR-IV T cells
in WT and slight decrease in TCR-IV T cells in transgenic mice
(Figure 3A) suggest that the rate of apoptosis is higher than the
rate of proliferation in the presence of tumors. The results suggest
that the net growth in TCD8s is negative in transgenic mice, while
positive in WT mice, assuming that the proliferation rate of the
TCD8 clones in WT and transgenic mice is in a comparable range.
Next, we discuss the dynamics of site-specific TCD8s in WT and
transgenic mice.

RESPONSE OF WT MICE TO IMMUNIZATION WITH TAG-TRANSFORMED
CELLS
We used our own experimental data (closed symbols in Figure 4)
and the data from (Mylin et al., 2000; open symbols in Figure 4)
to model the behavior of the TCD8 response to the four H-2b-
restricted Tag determinants following immunization with Tag-
transformed cells in WT mice. Mice were immunized with 5 × 107

SV40 Tag-transformed cells and the site-specific TCD8 response
was analyzed by staining with site-specific MHC tetramers at the
indicated time points. The simulations of the TCD8 activity were
then fit to the experimental data (Figure 4).

Figure 4 shows that TCD8s specific for site IV are highest in
numbers followed by TCD8s specific for site I and then TCD8s
specific for site II/III. The model can reproduce the observation
that the addition of excess site I-specific precursor cells reverses
the hierarchy so that the number of TCD8s specific to site I is
higher than that of site IV-specific TCD8s (Tatum et al., 2010). This

FIGURE 4 | Simulated (lines) and experimental (symbols)TCD8s in

response to the immunization of WT mice withTag-transformed cells.

The response of site I-, II/III-, IV-, and V-specific TCD8s is shown by the solid,
dashed, dash-dot, and dotted lines, respectively. The gray arrows represent
the terms in the mathematical model dominating the dynamics. The data
from Mylin et al. (2000); empty symbols) and current study (filled symbols)
representing site I (squares), II/III (triangles), and IV (diamonds) specific
TCD8s is shown. The data from Mylin et al. (2000) is scaled by a multiplicative
factor to minimize the variation between the two experiments. The initial
conditions were, TCD8s = 0, and Tag-expressing cells (non-proliferating) = 106.
The parameter values are n = 5 × 0.3/1/4 proportion for site V/I/IV
respectively, b = 0.50/day, c = 1.08/day, w I = 0.04/day, w II/III = 0.09/day,
w IV = 0.02/day, wV = 1.02/day, αi = 1E100 cells.

result indicates that the dominance hierarchy, at least among the
three most dominant determinants, is impacted by the precursor
frequency. However, the undetectable numbers of site V-specific
TCD8s are not explained by a lower precursor frequency but due to
their smallest net growth upon exposure to the antigen. These cells
become detectable upon immunization with mutated Tag express-
ing only site V determinant because of the availability of tumor
cells to drive their proliferation. For the fit shown in Figure 4 at
the peak of the response, the hierarchy of the Tag site-specific TCD8

response is dependent on the site-specific activation of new TCD8s
and the apoptosis rates. The proliferation rate (c) is kept the same
for all site-specific TCD8s since it was not required to be different
to reproduce the observed data in Figure 4.

The TCD8 dynamics can be characterized by an initial linear
conversion of naïve cells into activated TCD8s in response to tumor
cells, followed by exponential growth of the TCD8s. As a result, the
number of tumor cells rapidly decreases toward 0 (not shown). In
simulations, tumor cells are cleared around day 10, which coin-
cides with the experimentally observed time after which minimal
effector TCD8 are proliferating. When tumor cell numbers become
negligible, the contraction phase of TCD8s begin which is dom-
inated by exponential decay (at the rate wi). In this phase, the
relationships between the rates of apoptosis (wi) of site-specific
TCD8s can be estimated.

TCD8s targeting the dominant site IV and subdominant site
I make up 80% of the Tag-specific TCD8 response. The model
predicts that the only way to reproduce the highest and most pro-
longed site IV-specific TCD8 response is to have a lower apoptosis
rate for site IV-specific TCD8s compared to site I-specific TCD8s
(w IV < w I). To test this novel prediction of site-specific apoptosis
rates, we immunized groups of three WT mice by intraperitoneal
injection of C57BL/6-derived Tag-transformed cells. The percent-
age of apoptotic and proliferating TCD8s specific for site I and
IV was assessed 9 and 14 days after immunization as estimations
of the respective rates of apoptosis and proliferation. In addi-
tion, the percentage of site I-specific and site IV-specific TCD8s
in splenocytes was assessed 7, 9, 14, and 23 days after immuniza-
tion. Since the model estimates the relationship between the two
rates of apoptosis when the activation of the TCD8s is minimal, we
tested our prediction after day 14 when no significant prolifera-
tion was observed in the experiments (Figure 5A). As shown in
Figure 5B, the percentage of apoptosis for site I-specific TCD8 was
significantly higher than for site IV-specific TCD8s (P < 0.012). A
differential cell death rate was also reflected in Figure 5C, which
showed the percentage of site-specific TCD8s in splenocytes. While
the percentage of site IV-specific TCD8s remained consistent after
day 9, there was a drop in the percentage of site I-specific TCD8s
between day 9 and day 14. Taken together, these results suggest
that site I-specific TCD8s undergo cell death at a higher average
rate compared to site IV-specific TCD8s, explaining the prolonged
high level accumulation of site IV-specific T cells. We note that
the same rates of proliferation for site I- and IV-specific TCD8s
are used in the model; a parsimonious assumption which is also
supported by Figure 5A. However, day 9 is at the end of the
expansion phase and many parameters in addition to the pro-
liferation rates may play a role in explaining the observations
(Figures 5A,B).
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CD8+ T CELL RESPONSE IN TRANSGENIC MICE
The three Tag-transgenic systems that autonomously develop
tumors vary in the lifespan of the mice, metastasis of the tumors,
responsiveness to immune-therapies and tolerance of TCD8s. The
computer simulations were run to cover the duration of the life
span for each transgenic mouse line. The simulated tumor pheno-
type reproduces the exponential tumor growth and TCD8 expan-
sion during the early period of antigen expression, followed by
an unresponsiveness of TCD8s. The tolerance onset time is differ-
ent for site-specific TCD8s in different transgenic mouse lines. This
information was used to parameterize the apoptosis rates (Table 1;
Figure A3A in Appendix) and all the other parameters were kept
the same across different tumor models. Figures 6A,B reproduce
the sequential loss (tolerance onset) of site-specific TCD8s in pan-
creatic tumor (Otahal et al., 2006) and osteosarcoma (Schell et al.,
2000) models, respectively. Tissue specific death rates for TCD8s
against each site (wi) reproduce the correct tolerance onset in
different transgenic mouse lines. We observed interesting regular-
ities between the rates of apoptosis. For example, the apoptosis
rate of site I-specific TCD8s is always greater than that of site

IV-specific TCD8s as seen in the WT model. Thus while the spe-
cific values of the parameters can be different, the unavoidable
similarities pointed out by our dynamic model can improve our
understanding of the tumor growth and TCD8 response.

Changes in the other parameters including the growth rate of
tumor cells (r) and the rate of TCD8 mediated killing of tumor
cells (b) were not necessary to reproduce any of the observations,
though they could affect the modeled tumor size. The unrespon-
siveness of TCD8s targeting particular determinants was confirmed
by the absence of TCD8 activation after simulating in silico immu-
nization with Tag-expressing cells (modeled by si; Figure 7). In
the brain tumor model (Schell et al., 1999) TCD8s specific for the
three most dominant Tag sites undergo central tolerance; hence
we only see the TCD8s specific for the immunorecessive site V
which remain responsive throughout the lifespan of these trans-
genic mice. However, the simulations indicate that the activity of
these TCD8s is lower than in WT mice (Figure 6C).

Next, we used our model to predict the peak of TCD8 accumula-
tion, since tumor treatment is most effective when active TCD8s are
high. The tumor as well as WT models predict that site I TCD8s peak

FIGURE 5 | Site I- and site IV-specificTCD8s have different apoptosis

kinetics after immunization. (A) Percentage of proliferating cells
assessed by BrdU proliferation assay and (B) Annexin V positive cells
indicating apoptotic cells among site I (filled) and site IV (empty) specific
TCD8s. The site I-specific TCD8s undergoing apoptosis are significantly higher

than site IV-specific TCD8s (*P < 0.012). (C) Percentage of site I-specific
TCD8s (�) and site IV-specific TCD8s (�) among total splenocytes 7, 9, 14,
and 23 days after immunization. Comparing to site IV-specific TCD8s,
there is a drop in the percentage of site I-specific TCD8s between days 9
and 14.

Table 1 | Model parameters and description.

Parameter Description Units Average values

(of the non-zero

parameters

used in Figure 6)

Control characteristics

r Proliferation rate of tumor cells 1/day 0.09 Tumor growth

ni Number of TCD8’s activated against site i from naïve

cells

Cells 2.05 Initial growth of TCD8’s specific for site i

b Killing rate of tumor cells by TCD8’s 1/day 0.5 Tumor decay

c Proliferation rate of TCD8’s 1/day 0.35 Exponential growth of TCD8’s

wi Apoptosis rate of TCD8’s specific to site i 1/day 0.49 Exponential decay of TCD8’s specific for

site i

αi Number of tumor cells when the differentiation of

TCD8’s specific to site i is half of its maximum value

Cells 40.0 Effect ofTumor on linear growth ofTCD8’s

specific for site i

β Number of tumor cells when the rate of killing by

TCD8’s is half of its maximum

Cells 10.0 Effect of TCD8’s on Tumor decay

σ Number of tumor cells when TCD8’s proliferation is

half of its maximum

Cells 10.0 Effect of Tumor on TCD8’s growth
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FIGURE 6 | SimulatedTCD8s response in (A) pancreatic tumors, (B)

osteosarcomas, and (C) brain tumors. Y -axis depicts the number of TCD8s
in arbitrary units and x -axis depicts the time in days. Site I-specific TCD8s is
shown with a dashed line, TII/III with a dash-dot line, site IV-specific TCD8s
with a solid line, and TV with a dot line. Light gray arrows show the average
lifespan of mice. All cases show a sequential loss of TCD8 cells against
different sites. The insets indicate tumor growth.

earlier than site IV TCD8s (Mylin et al., 2000). In osteosarcomas, site
I-specific TCD8s reach higher numbers than in pancreatic tumors
(Figure 6B). The peaks in TCD8 accumulation in the osteosar-
coma model occur at later time points (at 18 days for T CD8I and
24 days for T CD8IV) as compared to the peaks of site I-specific
TCD8s (4th day) and site IV-specific TCD8s (7th day) in the pan-
creatic model (compare Figures 6A,B). The brain tumor model
(Figure 6C) predicts an earlier peak of site V-specific TCD8s com-
pared to the osteosarcoma model (days 23 and 30, respectively)
since TCD8s targeting the dominant sites are absent, resulting in
increased availability of antigen. Thus our model can detect the
differences in the timing of the peaks in different models.

In conclusion, the tumor models give insight into the tis-
sue specificity, for example revealing that osteosarcomas elicit a
stronger response as compared to pancreatic tumors. All tumors
inhibit activation of naïve cells and reduce the net growth of TCD8

cells but differences in the apoptosis rates of the recruited TCD8s
is a critical factor in determining a tissue-specific response.

FIGURE 7 |The pancreatic tumor shown in Figure 6 is here modified

(b = 3.5, β = 100) and subjected to in silico site IV immunizations of

equal strength on (A) day 35 and (B) day 180. Insets (A,B) show tumor
cells on a log scale. Site I-specific TCD8s is shown with a dashed line and site
IV-specific TCD8s with a solid line (TII/III and TV have negligible values). The
early immunization results in a steady state of tumor cells and site
IV-specific TCD8s, whereas the later immunization fails to significantly
influence tumor growth.

TUMOR CONTROL
Tumors can be controlled by various immune therapies including
immunization with tumor antigen and the adoptive transfer of
immune cells (Hersey, 2010; Moschella et al., 2010; van den Broek
et al., 2010). To gain insight into the mechanisms of tumor control
we simulated a known case of control of pancreatic tumors upon
immunization (Otahal et al., 2006). In this study early immuniza-
tion on day 35 can prevent pancreatic tumor appearance whereas
immunization after day 180 cannot prevent tumor formation.
Our simulations reproduce this behavior. Simulated immuniza-
tion leads to a sharp increase in site IV-specific TCD8s above the
endogenous levels, followed by a decrease that correlates with a
drop in tumor cells. Experimentally it is expected that the TCD8

response upon immunization surpasses the response generated
against the endogenous tumor. Thus the model could simulate
the effect of early and late immunization in case of pancreatic
tumors.

However, in transgenic mice Tag-expressing cells persist in
lower numbers in case of early immunization so that the pan-
creatic functions are not disrupted. To reproduce this observation
the rate of TCD8 proliferation, the maximal rate of TCD8 mediated
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killing of tumor cells, and the threshold number of tumor cells
that inhibit killing have to be increased. After increasing these
parameters the dose of immunization could be decreased and the
control of tumors with early immunization (Figure 7A) but not
late immunization (Figure 7B) was reproduced in the pancreatic
tumors (Figure 7, inset). Thus our model suggests that exposure
to external antigen in transgenic mice facilitates the detection of
tumor cells by TCD8s and the immunogenicity of Tag.

DISCUSSION
The current work sheds light upon mechanisms that determine
TCD8 tolerance onset and the characteristics leading to the site-
specific TCD8s response. Both the dynamic model and the exper-
imental data show that the apoptosis rates of TCD8 clones are
context dependent and that the response in WT C57BL/6 mice is
quantitatively stronger than the response in Tag-transgenic mice.
This weaker response in Tag-transgenic mice aids the establish-
ment of tolerance in the presence of progressing tumors. We
hypothesize that the weaker response is driven by the immediate
encounter of the peripheral T cells to Tag expressed on the tumor
leading to undetectable TCD8 numbers in the transgenic mice.
Figure 3 supports this hypothesis by showing a higher apoptotic
population in tumor-bearing mice. In fact, in SV11 mice trans-
ferred cells encounter tumor antigen earlier than Tag from the cells
used for immunization, suggesting that an early encounter with the
endogenous tumor antigen also limits response to the exogenous
antigen (Ryan and Schell, 2006). In the case of natural tumors, it
is possible that the net growth of TCD8s varies over the course
of tumor progression. The accumulation of responsive TCD8s
can be enhanced by using anti-CD40 or anti-CTLA-4 antibodies
(Otahal et al., 2007; Ryan et al., 2008). The tissue-specific differ-
ences in the peaks of the TCD8 response will affect the time at which
immune therapy will be most effective. Differential expression of
negative regulators of the receptors such as PD-L1 and Tim3 lig-
and within tumors of distinct tissues might lead to tissue-specific
apoptosis.

Though TCD8 tolerance is often observed, particularly in the
setting of cancer or transgene expression, the mechanisms leading
to tolerance are not clear. Factors that have received considerable
attention are the density of peptide/MHC-I complexes, the affin-
ity of TCR for peptide/MHC complexes and the avidity of the
interaction between T cells and antigen-presenting cells (Abbas
et al., 2004). These factors affect the activation of TCD8s and their
effects on the TCD8 response are modeled indirectly by assuming
high-dose inhibition, antigen-induced cell death (Kabelitz et al.,
1993), and immune suppression. While we also include satura-
tion of TCD8s in response to large tumors (Graw and Regoes,
2009), we compare the rate of activation and apoptosis in dis-
tinct mice in which tolerance is either observed or not. Although
experimentally it is difficult to measure the densities of peptide-
MHCI complexes and affinities of TCR, our approach allows us to
establish relationships between different parameters and test them
experimentally. Moreover, our model suggests that the differen-
tiation of naïve T cells is also affected during tolerance. Various
evidence such as the disruption of MHCI-peptide and TCR com-
plex (Nagaraj et al., 2007), TCD8 exhaustion (Moskophidis et al.,
1993) and tumor-induced TCD8 suppressive microenvironment

(Lee et al., 1999; Khong and Restifo, 2002) support the inhibition
of the differentiation from naïve T cells during tolerance. Studies
of the TCD8 response to the Tag determinants suggest that toler-
ance is related to immunodominance since TCD8 specific for the
immunorecessive determinant (site V) are the least sensitive to tol-
erance even in the highly tolerogenic brain tumor model (Schell
et al., 2000). In this context, it is interesting that subdominant
site I-specific TCD8s undergo tolerance earlier than immunodom-
inant site IV-specific TCD8s, suggesting that higher levels of site
I/MHC versus site IV/MHC complexes may be achieved in vivo
during tumor progression. We assume that the dependence of
the T cell response on the number of tumor cells is described by
Michaelis–Menten kinetics which is a commonly used functional
form to model saturating response at high doses in biological
systems. The support for such behavior comes from observa-
tions in chronic infections and cancers which limit the activation
of the immune responses even when the antigen is not cleared
(Kabelitz et al., 1993; Wigginton and Kirschner, 2001). We note
that the Michaelis–Menten function is a special case of a Hill
function which may also be a good choice but it has an addi-
tional unknown parameter as compared to the Michaelis–Menten
function.

Simulations in WT mice suggest that the differential activities
of site-specific TCD8s are driven by the site-specific rates of apop-
tosis. The rate of apoptosis was estimated in the contraction phase
when Tag-expressing cells are cleared. At earlier time points the
percentages observed in the experiments (Figures 3C and 6B) are
the outcome of the dynamics modeled by the rate of activation
(n), proliferation (c), and apoptosis (wi). In the absence of exper-
imental estimates the rate constants used in our model represent
an average rate of apoptosis over time. Hence we validate model-
predicted inequalities rather than attempting to estimate the exact
values of apoptosis rates. Though free decay is a commonly made
assumption in dynamic models, antigen concentrations and the
duration of antigen exposure can affect the apoptosis rate of
the TCD8 cells which can be included in a future extension of
the current model (Porter and Harty, 2006). On the contrary, the
accurate prediction of the rate of proliferation (c) was not pos-
sible (Figure 4) due to the sparse data (Trinchieri et al., 1976)
and various parameters affecting the expansion phase including
TCD8 apoptosis (wi; Figure 5B), differentiation from naïve T cells
(ni), and the proliferation of TCD8s (c). The use of similar pro-
liferation rates for TCD8s specific to site I and IV is supported by
the experimental data (Figure 5A). We maintain the same rate of
proliferation for all site-specific TCD8s, a simplification which we
believe is valid for the dominant sites. The rules may be differ-
ent for site V since the addition of more site V-specific precursors
does not overcome the weak response to site V (Otahal et al., 2005).
However, estimating the true proliferation rate of site V-specific
TCD8s is challenging since these cells remain below the thresh-
old of detection following immunization of WT mice with Tag.
Overall the data support a mechanism in which differences in the
rate of apoptosis explain the prolonged high level accumulation
of site IV-specific TCD8s cells relative to TCD8s responding to the
subdominant determinants.

The current model is an outcome of a step-wise process to
reproduce the TCD8 response in WT and Tag-transgenic mice.
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As a first step we modeled all the immune processes that are
hypothesized to be important in TCD8 activation. Next, we
reduced the model based on what is required to reproduce the
known experimental observations, for example separately mod-
eling pMHC complexes on the antigen-presenting cells did not
lead to an improvement of the model but increased the number of
unknown parameters (Handel and Antia, 2008). We do not explic-
itly include naïve TCD8s in the model, assuming that they are not a
rate limiting factor in the tumor-induced T cell interactions. How-
ever, in the biologically accepted range of parameters (Figure A3
in Appendix) the effective value of the rate of differentiation of
precursor cells is never unlimited in our model. Many mathemat-
ical models have assumed a constant number of precursor cells
and in those models estimates of the effective rate of thymic pro-
duction vary within 25% of the nic values used in our model. The
mathematical formulations modeling TCD8 response to tumors
generally incorporate higher values of the source for TCD8s com-
pared to the models of TCD8 response to viruses. This could be
because the immune response is measured following immuniza-
tion which usually inflates the response. We also would like to
note that the value of the rate of proliferation is also in the range
of estimations by other studies (De Boer et al., 2003; Bocharov
et al., 2004).

In the current model we did not explore the possibility of intro-
ducing competition between TCD8 clones because recent results
indicate that in WT mice competition between the endogenous
TCD8s responding to sites I and IV does not play a significant role
in limiting the magnitude of the T cell response (Tatum et al.,
2010). We did previously observe that the presence of the dom-
inant Tag determinants can limit the response to site V (Mylin
et al., 2000). The absence of a detectable endogenous site V-
specific TCD8 response upon immunization with Tag-expressing
cells makes it difficult to make assumptions about the interactions
between physiological levels of TCD8s specific for dominant and
recessive epitopes. Though we cannot rule out the possibility of
competitive interactions, non-competitive interactions mediated
by weak engagement of TCR with site V-MHCI complexes can
also drive the immunorecessive response as modeled in the cur-
rent study. In conclusion, the mathematical model presented here
is one of the few attempts to characterize in vivo TCD8 responses to
known autochthonous tumors and it systematically analyzes the

expansion and contraction phases during the TCD8 response to a
known tumor antigen.

In the future, this model could be expanded by including com-
petitive interactions between site-specific clones for different anti-
gens and by separately modeling the reactivation of memory T cells
in response to the antigen (Camus and Galon, 2010). Modeling of
naïve T cells as a separate entity will also allow us to study the effects
of adoptive transfers, which are currently under clinical investiga-
tion for several cancer types. One could also incorporate immune
cells such as T regulatory cells which are implicated in inducing
tolerance and model the recovery of responsive TCD8 cells (Sharabi
and Ghera, 2010). Moreover, the case of uncontrolled T cell and
Tag-expressing cell growth is similar to autoimmune response and
though it is not a focus of the current study, the model can be
used to study the relationship between tumor and autoimmunity
since tolerance (Schuetz et al., 2010) and dysregulation of immune
responses (Reeves et al., 2009) are implicated in both diseases.
While opportunities exist to build on this basic model, relevant
in vivo data are needed to inform and parameterize the expan-
sion. Moreover, standardization of experimental techniques will
be useful since the observations are not only affected by personal
and lab-specific factors but also by the mice strains used. We show
here that our model not only provides novel predictions that can be
experimentally validated but also gives important insights based
on sparse data. Models such as ours will be increasingly devel-
oped and used to provide novel predictions and biological under-
standing of the complex interaction between the immune system
and cancer.
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APPENDIX
THE EFFECT OF VARIATION OF THE PARAMETERS ON THE RATE OF
KILLING OF TUMOR CELLS BY TCD8s
Nullcline Analysis
In this section we elaborate upon the biologically relevant dynam-
ical regimes exhibited by the model. While we show the evolution
of the number of tumor cells and TCD8 cells as a function of time
in Figure A2, we here show the two variables plotted against one
another. This method allows for straightforward identification of
the system dynamics for any possible number of TCD8s and tumor
cells.

The directional field, which is represented by gray arrows in the
lower panels of Figure A2, indicates the evolution of tumor cells
and TCD8s with time. For instance, when the number of tumor cells
and TCD8s are in an area of phase space where the directional field
is increasing in both dimensions, the number of Tag-expressing
cells and TCD8s cells will both increase for a small advancement
in time, and their next position in phase space will decide the
change in both variables for the next advancement in time. The
trajectory is shown by the solid black line. Broken black lines show
the boundary between areas in phase space that are increasing or
decreasing with respect to TCD8s (dash-dotted line) or tumor cells
(dashed line). The intersection of nullclines corresponds to steady
states of the system. Zero tumor cells and TCD8s is always a steady
state; for the parameters investigated here, the nullclines typically
admit at most one additional steady state (see main text for the
mathematical form of the nullclines).

The clearance scenario (Figure A2A) shows the system’s start-
ing point in a location where the directional field is increasing
in both dimensions. The trajectory crosses the tumor cell null-
cline, whereupon the number of tumor cells begins decreasing.
Once it drops below the TCD8 nullcline, the number of TCD8s
also begins decreasing; the system eventually reaches a steady state

FIGURE A1 |The effect of the variation in the rate constant and the

number of tumor cells on theTCD8 mediated killing ofTag-expressing

cells. The inset shows the effect of tumor cell numbers on the activation of
TCD8s.

located very close to 0 tumor cells and TCD8s. The different para-
meters used in Figures 2B–E alter the properties of the directional
field and nullclines, and so influence the evolution of the sys-
tem despite the fact that they start in the same location in phase
space.

Parameter values and their sensitivity
There are a maximum of 18 parameters in the model. For sim-
plicity the parameters are assumed to have the same value in
different tissues in the absence of tissue-specific information to
constrain the values. However, site-specific apoptosis rates were
implemented to reproduce the different onset times of tolerance
of site-specific TCD8s. To study the effect of parameters we sys-
tematically varied the parameter values from 50 to 200% of their
initial values [i.e., pi = kp0, k ∈ (0.5,2)]. We calculated the percent
deviation due to a given parameter modification for variable V at
time τ as

dv(t=τ) =
∣∣∣∣V (p = p0, t = τ) − V (p = pi , t = τ)

V (p = p0, t = τ)

∣∣∣∣
Averaging over all time points gives an average percent deviation
(APD) for variable V and deviation k for parameter p.

In the model, the peak of the TCD8 accumulation corresponds
to the system crossing the TCD8 nullcline in phase space (see main
text). The main parameters that drive the response of the TCD8s are
c and wi. We modify these parameters and quantify the difference
of the ensuing dynamics from the original via an APD. There are a
maximum of 18 parameters in the model and the parameters are
assumed to have the same value in different tissues for simplicity in
the absence of tissue-specific information to constrain the values.
However, site-specific activation of naïve cells and apoptosis rates
were implemented to reproduce the onset times of tolerance. To
study the effect of parameters we systematically varied the para-
meter values from 50 to 200% of their initial values (i.e., pi = kp0,
k ∈ (0.5,2)). We calculated the percent deviation due to a given
parameter modification for variable V at time τ as

dv(t=τ) =
∣∣∣∣V (p = p0, t = τ) − V (p = pi , t = τ)

V (p = p0, t = τ)

∣∣∣∣
Averaging over all time points gives an APD for variable V and
deviation k for parameter p.

This measure identifies at a glance the sensitivity of the system
to variations in particular parameters. We show as an illustrative
example the APDs for the pancreatic, osteosarcoma, and WT cases
(Figures A3B–D). Reducing wIV in a tumor case serves to bolster
the immune response; T IV effectively chases after IC more vigor-
ously before giving up, until eventually it is able to clear the tumor
entirely. In the pancreatic case (Figure A3B), w is not decreased
enough to show the regime clearance. In the osteosarcoma case,
the full transition is seen. In the case of brain tumors, T IV plays
a minimal role; varying w IV has comparatively little effect on the
system dynamics.
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FIGURE A2 |The behaviors from Figure A1 are shown in phase space. Light gray arrows indicate the directional field, and the nullclines indicate boundaries
between positive and negative horizontal or vertical components of the directional field. Intersections of the nullclines indicate steady states of the system.

FIGURE A3 | (A) The values of the parameters that were varied in different
cases are shown on the x -axis for the wild-type (black squares), pancreatic
tumor (black diamonds), osteosarcoma (white squares), and brain tumor
(white diamonds) models. nI fixes the value of nIV( = 4nI ) and nV ( = 0.3nI ), and

are not shown. (B–D) The effect of varying the w IV parameters by a
multiplicative factor (x -axes) on the variables is shown as an average percent
deviation (APD) in the pancreatic, osteosarcoma, and wild-type cases
(y -axes). Very small APDs (<10−9) are not shown.
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Keio University, Japan, I discuss my approach to biology, what I call complex systems biol-
ogy. The approach is constructive in nature, and is based on dynamical systems theory
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tems; generic adaptation under noise, differentiation from stem cells in interacting cells,
robustness and plasticity in evolution, and so forth. Current status and future directions in
systems biology in Japan are also discussed.

Keywords: plasticity, adaptation, robustness, stem cell, noise

Q1: PROFESSOR KANEKO, CAN YOU INTRODUCE YOURSELF
AND YOUR RESEARCH?
I have been a physicist, and although I am more and more involved
in biology now, I think my approach is quite a physicist-type.
I started my graduate studies in the field of non-equilibrium
phenomena in terms of stochastic process, and then worked on
chaos, a deterministic dynamics that produce irregular, “unpre-
dictable” behavior (Kaneko, 1986). Then, my study shifted to
chaos in space and time, having many degrees of freedom. I
introduced the “coupled map model,” which proved to be a
powerful tool that allows one to study the properties of dynam-
ical systems with many degrees of freedom. Key concepts that
derived from it such as collective dynamics and chaotic itin-
erancy have had impacts on a variety of fields, ranging from
turbulence in fluid dynamics to neural activities in the brain.
A book “Complex Systems: Chaos and Beyond” (Kaneko and
Tsuda, 2000) that I wrote together with Ichiro Tsuda, to a certain
extent I believe, mediated the “Japanese own taste for complex
systems” (as reviewed in Nature; Shlesinger, 2001) to scientists
abroad.

Based on these studies and concepts, I proposed “Complex Sys-
tems Biology” at around 1994, to unveil universal properties in a
life system. It is not easy to judge if some features in the present
organism are chance or necessity, as they are shaped as a result of
one-time evolution in this Earth. It is not so sure if the features
appeared again when the tape of life were replayed. To unveil uni-
versal, essential features in life, it is then ideal to construct some
basic process of life (such as reproduction, adaptation, differenti-
ation, and so forth) and examine generic features therein. This is
a constructive approach Tetsuya Yomo at Osaka University and I
proposed in mid 1990s. The earlier works including collaborated
studies with experimental biologists Yomo and Makoto Asashima
at University of Tokyo are described in the book “Life: An Intro-
duction to Complex Systems” (Kaneko, 2006). During these years
I have served as a director of Center-of-Excellence Project “Search

for the Logic of Life as a Complex System” (1999–2004) and
the ERATO project ”Kaneko Complex Systems Biology” (2004–
2010), and am a head of Center for Complex Systems Biology at
University of Tokyo.

Q2: WHEN AND HOW DID YOU BECOME INTERESTED IN
BIOLOGICAL RESEARCH?
From the beginning of graduate studies at 1979 I was interested
in “what life is.” My intention was to understand its universal
characteristics, and what distinguishes life from non-living mat-
ter. So I hoped to understand what life is, theoretically, in terms
of physics. At that time, Prigogine’s “dissipative structure” was
popular among statistical physicists, in which the ultimate goal
would be to understand life as a spatiotemporal pattern pos-
sible in far-from-equilibrium state. However, there was a large
gap between such studies in physic-chemical systems and life sys-
tems. So I could not start biological research seriously until 1992,
when I first met Tetsuya Yomo at a meeting organized by Pro-
fessor Yuzuru Fushimi. I was then working on “globally coupled
maps,” in which simple identical dynamic elements interact with
every other in the same way. I found that even though these
elements are identical, their behaviors start to differ from each
other with time and then form a few groups within which the
behaviors are identical but the behaviors of elements belonging
to different groups are distinct (Kaneko, 1990). As this “differ-
entiation” occurs across elements sharing the identical “rule,” I
had thought that this might be similar with the differentiation
of cells that share the identical gene. This similarity, however,
had remained to be at “metaphorical” level. At that time Tet-
suya discovered that bacteria sharing the same gene differentiated
into active and inactive types, even in a well mixture culture (Ko
et al., 1994), and was seeking mechanistic interpretation for it. I
explained to him how my simple elements of coupled maps dif-
ferentiated, with a remark on “why not bacteria that have more
complex dynamics within?”. So, we started collaboration. This
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study on prototypical cell differentiation was also theoretically
interesting, as the number of elements (“cells”) change through
division and death, which aspect had not been studied in physics
before. Since then, we have continued collaboration to unveil basic
logic in cell reproduction, heredity, adaptation, development, and
evolution.

Q3: CAN YOU SHARE INITIAL EXPERIENCES WORKING WITH
BIOLOGISTS?
I think I was quite lucky with this initial experience. Tetsuya Yomo
has always been interested in general (universal) aspects, and does
not like such explanation that life system is special and finely
designed through evolution. We always try to understand a charac-
teristic property of life system as a general consequence of a system
that grows autonomously. So we have had a common picture, and
have enjoyed the collaboration. This, however, would be atypical
experience, since his way of thinking is far away from traditional
biologists. By the way, my way of thinking will be probably out
of standard physicists’. In the beginning we misunderstood the
way of thinking of each other as that of a typical biologist and
physicist, but that was wrong. Biologists generally are not so much
interested in universal properties or minimal models. For example,
they often ask me “why do not you add this and that processes to
make my model more realistic,” while I make effort to reduce the
complicatedness in the model. In physics, there are several abstract
models that do not fit the details of the nature but are essential to
understand universal features and unveil general laws, say Carnot
cycle, ideal gas, Ising model for phase transition, and so forth. In
this sense, I believe that learning how physics has succeeded in
extracting universal laws in nature is essential to establish theories
for a life system.

Q4: PLEASE HIGHLIGHT YOUR MAJOR FINDINGS IN A
SIMPLE WAY
Our “complex systems biology” is distinguishable from the so-
called “systems biology” developed in recent years (Kaneko, 2006).
By the word “complex,” we do not mean “complicated.” Systems
that consist of many elements, e.g., molecules within a cell or cells
within an organism exhibit homeostasis. Such systems should be
constrained so that consistency between each element and the
whole system is maintained, while keeping the reproduction of
both elements and the system. Indeed, we found that one can
derive widely applicable rules in the dynamics of gene expres-
sion and cellular organizations during adaptation to environment,
reproduction, cell differentiation, and evolution. To list a few
examples:

(i) Cell reproduction: in a cell that reproduces itself, all mole-
cules are replicated keeping the composition to some degree.
We found that this constraint on consistent reproduction
leads to universal law on statistical distribution of abun-
dances of each protein, as well as their fluctuations around
their average values across cells (Furusawa and Kaneko,
2003). This law will give a criterion for a steady state of cells,
while the fluctuations over cells are important in adaptation
and evolution, as will be discussed below.

(ii) Emergence of “natural adaptation,” for any growing cells
under stochastic gene expression, even without the use of
specific signal transduction network (see more discussion
in Q7; Kashiwagi et al., 2006; Furusawa and Kaneko, 2008).
This may provide a theoretical basis flexibility of cells as
well as multicellular organisms to adapt a huge variety of
environmental conditions.

(iii) Differentiation from a stem cell to committed cells, as
a general consequence of interacting cells whose gene
expression (abundances of some proteins) exhibits tempo-
ral oscillation (Furusawa and Kaneko, 1998, 2001; Suzuki
et al., 2011). Here this oscillation is not completely peri-
odic, but involves some irregularity. In fact, this irregu-
lar oscillation can show some instability in the expres-
sion state to switch to a different state upon cell–cell
interaction. Differentiated (committed) cells, then, appear
which lose such oscillation and stemness (see also in
Q7, and the introduction of Kaneko, 2011b for more
description).

(iv) General proportionality between variances of phenotype due
to genetic change and due to noise. In other words, the
variability of phenotype by genetic change (mutation) is
correlated with that by stochastic gene expression, or put
differently, the phenotype that has higher fluctuation with-
out genetic change has higher evolution speed (that is pro-
portional to variability by genetic change). In this way, we
can characterize the degree of evolvability. According to our
theory, this proportionality is also formulated in terms of
robustness, i.e., the robustness to noise in gene expression
leads to robustness to genetic change through the evolu-
tion (Sato et al., 2003; Kaneko and Furusawa, 2006; Kaneko,
2007).

Q5: WHY DO YOU FEEL STRONGLY FOR THE EXISTENCE OF
GOVERNING RULES IN LIVING SYSTEMS?
Of course there is no logical reasoning to demonstrate the existence
of universal laws in a living system, represented by few degrees of
variables. However, trained biologists have intuition on activity,
plasticity, and stability that make things “lively.” They somehow
characterize a “liveliness” by compressing detailed information in
such life system. Probably, they have some concept on liveliness
or biological activity, which does not necessarily require a huge
number of parameters, but is represented by a few. This suggests
that there exists some underlying logic in life that is represented
in terms of few variables. So far we do not know such variables
explicitly, though. This situation somewhat gives me an impres-
sion that we are in the time just before “thermodynamics” was
established; We had sense on “hot” or “cold” but had not yet estab-
lished the quantitative concept of temperature. Later we reached
the concept of temperature and entropy, from which we reached
the universal laws in thermodynamics. We have a sense on bio-
logical activity, plasticity, and robustness, but have not reached a
proper mathematical formulation yet. Anyway, living state is a very
common form of things (at least in this Earth and probably in the
Universe I hope), and as a genuine physicist, it is natural to expect
the existence of universal laws that govern such state.
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Q6: NOISE IN BIOLOGY HAS RECEIVED SIGNIFICANT
ATTENTION IN RECENT YEARS. WHAT ARE YOUR
EXPERIENCES ON THIS?
At the end of 1990s when we proposed “isologous-diversification”
theory for cell differentiation, one key issue was that the
amplification of noise then leads to robust cell distribution
through cell–cell interaction (Kaneko and Yomo, 1994, 1999).
Our view was summarized as “noise-amplification leads to noise-
tolerant cell society,” as small variation in protein concentration is
amplified in the irregular oscillation I mentioned earlier in Q5.

By looking at the data on the distribution of fluorescence of
proteins in bacteria cells obtained by flow cytometry experiments
by Yomo’s group at around 2000, we soon recognized that the cell-
to-cell variance is quite large, and furthermore the distribution of
fluorescence (or protein concentration) does not obey Gaussian
(normal) distribution, but the logarithm of them does. We have
shown that this is a necessity outcome of a multiplicative stochastic
process – this is common in catalytic reactions, as the rate equa-
tion of chemical reaction, in general, has a multiplicative form
between substrate and catalyst and their concentrations fluctuate
(Furusawa et al., 2005). The Gaussian distribution of logarithm
of the concentration that cell-to-cell variation by noise sometimes
ranges to the order of magnitude.

Then we were more interested in relevance of such fluctuations
to adaptation and evolution. During evolution, individuals with
higher fitness are selected. Developmental dynamics that give rise
to such individuals are continuously bombarded by noise in sig-
nal transduction, transcription, or translation. Since this generally
perturbs the optimal phenotype, most studies focus on how devel-
opmental systems reduce or eliminate such disturbances. However,
considering the recent observations of large noise in gene expres-
sion, it is natural to ask whether there is any positive role that noise
plays in the biological organization and evolution. By combination
of statistical physics based theory and evolutionary experiments
in the lab, we have demonstrated that there is a positive corre-
lation between noise and the rate of evolution. In other words,
developmental robustness to noise facilitates robustness against
mutation [see also Q4 (iv)]. This adds a new dimension to the
classic problem of nature versus nurture as it suggests a strong
relationship between phenotypic variation by mutation and that
by developmental noise (Sato et al., 2003; Kaneko, 2007, 2011a).

As for adaptation at a single-cell level, Kashiwagi, Urabe, Yomo,
Furusawa, and myself proposed a generic process for it, by not-
ing that stability of growing cells against intrinsic noise is higher
than non-growing cells, and there is general tendency that a cell
switched to a state with higher growth by a noise in gene expres-
sion (Kashiwagi et al., 2006; Furusawa and Kaneko, 2008). This
leads to “natural adaptation” of any cells even without the use of
specific signal transduction network. It will be relevant to under-
stand why bacteria, for example, can adapt to a huger variety of
different environments which they probably have not met before.

Q7: CAN YOUR FINDINGS BE VALIDATED EXPERIMENTALLY?
IF NOT, WHY AND WILL THIS CHANGE IN THE FUTURE?
When Chikara Furusawa and I proposed that irregular oscillation
in gene expression provides stemness more at 1998, many did not
believe in the existence of such oscillation. This is because they

measured the average of gene expressions over many cells at that
time. As long as the oscillation is not synchronized, oscillation in
gene expression, if it existed, would be averaged out and could
not be observed. Now, one can measure a protein expression in a
single-cell by imaging techniques. Indeed 2 years ago, Kobayashi
et al., 2009; Kageyama’s group) found the oscillation in HeS pro-
tein expression in embryonic stem cell. To our great pleasure, this
oscillation disappeared in differentiated cells, as is consistent with
our theory.

The studies on adaptation and evolution I mentioned started
from experiments, and in this sense, the theory is formulated to be
consistent with experimental findings. Then, the theory, in turn,
can predict something more, which should be confirmed experi-
mentally. Besides such confirmation, the experiments later chal-
lenge theorists with new findings. Ideally, theory and experiments
progress hand in hand, in a form of expanding spiral.

For example, the evolution study started from the analysis of
the experiment in Yomo’s group, and thus in the beginning we
proposed a theory to be consistent with experiments, i.e., the pro-
portionality between evolution speed and isogenic fluctuation of
phenotype by noise. Then our theory and simulations make new
predictions, the proportionality between this isogenic fluctuation
and the genetic variance that is the fluctuation due to genetic vari-
ation. Now it is a turn to check this relationship experimentally,
which is ongoing, and I am looking forward to hearing a positive
report soon.

As mentioned, study of “natural adaptation” stemmed from an
experiment by Kashiwagi et al. (2006). By embedding an artificial
gene network into bacteria, we demonstrated that E. coli are able
to adapt to an optimal-growth state without the need for a specific
induction mechanism. The accordingly proposed theory of ours
is general, so that now it is a turn to carry out an experiment to
demonstrate that this natural adaptation indeed works in natural
conditions or in a higher organism.

Q8: DO YOU THINK JAPAN WILL OPEN DOORS AND INVITE
INTERNATIONAL SCIENTISTS TO DO SYSTEMS BIOLOGY
RESEARCH IN THE FUTURE?
Generally, the answer is yes. Especially, in research institutes, the
doors have already been opened, and this will be further accel-
erated. As for universities, we have to decide if we start to give
lectures regularly in English. Considering the decrease in pop-
ulation in younger ages, we need to accept immigration more,
and at some point we probably have to decide it. To some degree
this will be good, but I also have some concern. Giving lectures
and thinking in one’ own language in science may be important
to cultivate creativity. As the world will be “Americanized,” the
originality in each culture may be declined, which may also sup-
press developing original ideas in science. In fact, the originality
in scientific activity was quite high when Japan was more isolated,
to give some examples, Yukawa’s meson theory, linear response
theory in statistical physics, and so forth. As the world is homoge-
nized, the frequency of original breakthrough in science seems to
be declined. Of course, whether we can expect true breakthrough
in the systems biology (as we experienced in the emergence of
thermodynamics, quantum mechanics, general relativity, Darwin-
ian evolution theory, and so forth) is another question, though.
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I may be one of the minority who expects that real theoreti-
cal breakthrough will take place in biology, and for it, I believe
that thinking differently under an appropriate level of isolation is
important.

Q9: WHAT ARE YOUR FUTURE ASPIRATIONS?
(1) Set up a general theory on what life is and fill a gap between

just a set of chemical reactions and a life system, while waiting
for a discovery of life in the outer space.

(2) Establish an appropriate phenomenological theory for uni-
versal properties on adaptation, development, and evolution,
as mentioned in the answer to Q5. Once this is done, we can

also understand the condition to recover multipotency in a
cell, and characterize a cancer cell.

Q10: YOUR ADVICE TO NON-BIOLOGISTS WHO CONSIDER
APPLYING THEIR SKILLS IN BIOLOGY
I have been interested in what life is, and to answer it I need first
to know universal features in non-life system, for which physics
is important. So far, I think mathematics is useful to understand
nature reasonably, and as for the application of mathematics for
natural science, physics has been most successful. So, I recommend
to study seriously what life is, in terms of physics and mathematics,
but this may be my biased viewpoint.
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