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Editorial on the Research Topic

Chemo-Radiation-Resistance in Cancer Therapy

In recent years, technical advances in chemotherapy and radiotherapy have helped substantially
improve the treatment outcome and quality of life of cancer patients. Nevertheless, successful cancer
therapy remains a major challenge, particularly in tumors that are resistant to chemotherapy or
radiation therapy. Searching the topic “Chemoradiation Resistance in Cancer Therapy” results in 34
articles (six reviews, 27 original research, and one brief research report) contributed by more than
262 authors with over 90000 views in all of time until 20 April 2022, in the fields of cancer diagnosis
and therapeutics. Our aim was to generate a collaborative discussion contributing to the future
direction of overcoming chemoradiation resistance and improve cancer patient care during chemo-
and/or radiation therapy.

Characteristics of chemo-and radiation-resistant cells include altered membrane transporter
expressions and functions, enhanced DNA repair activity, apoptotic pathway defects, alteration
of target molecules, or enzymatic deactivation. There are two general causes of failure of
antineoplastic therapy: Inherent genetic characteristics that induce resistance in cancer cells
and acquired resistance after drug exposure and radiation exposure. As the primary anti-cancer
therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or
indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to
hypersensitivity or resistance of cancer cells to genotoxic agents. Targeting DNA repair
pathway can therefore increase the tumor sensitivity to cancer therapies. While more
attention have been paid lately to the relationship between defective nuclear DNA repair
pathway and therapeutic resistance, less is known about the role of mitochondrial repair
pathways. Lan-Ya Li et al. (Li et al., 2021) reviewed the biology and the regulatory mechanisms
of DNA repair pathways, which has the potential to facilitate the development of inhibitors of
nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA
damage-based therapy.

Platinum resistance poses a significant problem for oncology clinicians. The role of epigenetics
and DNA methylation in platinum-based chemoresistance has gained increasing attention from
researchers in recent years. Ruizheng Sun et al. (Sun et al, 2021) analyzed the platinum
chemotherapy response-related methylation patterns from different perspectives of 618 patients
across 13 cancer types and integrated transcriptional and clinical data. They indicated that the
methylation-transcription axis exists and participates in the complex biological mechanism of
platinum resistance in various cancers. Six methylated positions (differentially methylated positions,
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DMPs) and four associated genes may have the potential to serve
as promising epigenetic biomarkers for platinum-based
chemotherapy and guide clinical selection of optimal treatment.

Cisplatin (DDP) is commonly used for gastric cancer
treatment, whereas recurrence and metastasis are common
because of intrinsic and acquired DDP-resistance. Experiments
by Yingying Kou et al. (Kou et al., 2020) suggested that berberine
improves chemo-sensitivity to cisplatin by enhancing cell
apoptosis and repressing PI3K/AKT/mTOR signaling pathway.

Cisplatin-based regimens also commonly applied for
nasopharyngeal  carcinoma (NPC) patients receiving
concurrent chemotherapy and radiation. The sensitivity of
cisplatin is closely associated with the efficacy of radiation
therapy. Wenwen Hao et al. (Hao et al, 2021) found that
Solute Carrier Family 1 Member 6 (SLC1A6) contributed to
reducing cisplatin sensitivity in radioresistant NPC cells by
altering drug metabolism profiles and genes.

Carboplatin is the cornerstone of chemotherapy for ovarian
cancer. However, drug resistance to this agent continues to
present challenges, and the mechanism of resistance to
carboplatin in ovarian cancer has become a focus of research
in recent years. Increasing evidence has shown that collagen type I
alpha 1 chain (COL1Al) has an important role in
chemoresistance and could represent a potential therapeutic
target, but the mechanism of COLIA1 in carboplatin-resistant
ovarian cancer has remained unclear. Feng Yang et al. (Yang et al.,
2021) discovered that COL1A1 had a pivotal role in carboplatin
resistance in ovarian cancer and identified two key pathways
involving COL1A1 in carboplatin resistance: the “extracellular
matrix (ECM)-receptor interaction” and “focal adhesion” Kyoto
Encyclopedia of Genes and Genomes pathways. Furthermore,
they proposed that ZINC000085537017 and quercetin were
potential drugs for COL1Al based on virtual screening and
the TCMSP database, respectively.

Besides platinum, paclitaxel (PTX) is a first-line
chemotherapeutic drug for the treatment in many different
types of cancer, but drug resistance seriously limits its clinical
use. Fenfen Xiang et al. (Xiang et al., 2021) showed that DNA-
methyltransferase 1 (DNMT1) mediated hypermethylation of
Kriippel-like  factor 4 (KLF4) promoter leads to
downregulation of KLF4 in breast cancer. The level of KLF4 is
correlated with the sensitivity of MCF-7 and T47D cells to PTX
3,3'-diindolylmethane (DIM) could enhance the antitumor
efficacy of PTX on MCF-7 and T47D cells by regulating
DNMT1 and KLF4. In ovarian cancer, Yaqing Zhang et al.
(Zhang et al, 2021) found that the drug resistance protein
CSAG2 is translationally induced by cytoplasmic
polyadenylation element binding protein 4 (CPEB4), which
underlies CPEB4-promoted paclitaxel resistance in ovarian
cancer in vitro. They found interfering CPEB4/CSAG2 axis
might be of benefit to overcome paclitaxel-resistant ovarian
cancer.

Doxorubicin (DOX) is a first-line chemotherapeutic drug for
breast cancer, which can kill tumor cells but it causes multidrug
resistance (MDR) if used for a long period of time, resulting in
chemotherapy failure. In DOX-resistant breast cancer cells, P-
glycoprotein protein can pump DOX out of MCF-7/DOX cells, as

Editorial: Chemo-Resistance, Radiation-Resistance, Cancer Therapy, Editorial

a result, DOX fails to exert effective cytotoxic effect and breast
cancer cells can evade attack of chemotherapeutics. Reversal of
drug resistance can be realized by repressing P- glycoprotein
protein. Ting Wang et al. (Wang et al.,, 2021a) identified that a
new chalcone derivative, C49, reverses DOX resistance in MCF-7/
DOX cells by inhibiting P-glycoprotein expression.

Despite chemotherapy is the most effective treatment for
breast cancer, many patients develop chemoresistance. Early
indicator of therapy efficacy might aid in the search for better
treatment and patient survival. Emerging evidence indicates a key
role of the purinergic receptors P2X7 and A2A in cancer. Victor
Manuel Ruiz-Rodriguez (Ruiz-Rodriguez et al., 2020) explored
the purinergic receptors P2X7 and A2A in cancer and their
involvement in breast cancer chemoresistance, demonstrating
the importance of purinergic signaling in CD8" T cells during
chemoresistance as the chemotherapeutic treatment stimulates
immune system response, and how it could be considered for
implementing personalized therapeutic strategies.

Both long-term anti-estrogen therapy and estrogen receptor-
negative breast cancer contribute to drug resistance, causing poor
prognosis in breast cancer patients. Breast cancer resistance
protein (BCRP) plays an important role in multidrug
resistance. The study by Wenting Ni et al. (Ni et al, 2021)
suggested that cryptotanshinone (CPT) is a novel BCRP
inhibitor that blocks the oligomer formation of BCRP on the
cell membrane. CPT can inhibit the activity of BCRP in an ERa-
dependent and -independent manner, sensitizing breast cancer
cells to chemotherapy.

Histone deacetylases and histone acetylases (HDACs) are
important enzymes participating in the regulation of gene
expression by acetylating and deacetylating of histones.
Specifically, HDACs are the enzymes controlling the epigenetic
modifications of histone. In recent years, inhibition of HDACs
has exhibited potency for the treatment tumors. Nitrogen
mustard anticancer drugs were used clinically since 1942,
which effectively bind and cross-link to DNA, resulting in
prevention of DNA replication and cell proliferation. Yiming
Chen et al. (Chen et al., 2020b) discovered that N-(2-amino-4-
fluorophenyl)-4-[bis-(2-chloroethyl)-amino]-benzamide (FNA)
was a potent HDAC3 inhibitor by inhibiting tumor growth
and promoting apoptosis and G2/M phase arrest, which
improved the anticancer activity of paclitaxel and camptothecin.

Overexpression of nucleophosmin (NPM) is involved in the
MDR development during acute lymphoblastic leukemia (ALL).
Donghui Gan et al. (Gan et al., 2021) identified that doxorubicin/
nucleophosmin binding protein-conjugated nanoparticle (DOX-
PMs-NPMBP) was able to significantly exert growth inhibition
and apoptosis induction, and markedly enhance anti-leukemia
activity in acute lymphoblastic leukemia cells in vitro and in vivo.
Mechanistically, p53-driven apoptosis induction and cell cycle
arrest played essential role in DOX-PMs-NPMBP-induced anti-
leukemia effects.

Nowadays, many natural-derived drugs serve as sources of
novel drug discovery and are tested clinically. However, the
efficacy of certain natural products could be compromised by
MDR-associated ATP-binding cassette (ABC) transporters. ABC
subfamily C member 1 (ABCCI1, multidrug resistance protein 1/
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MRP1), ABC sub-family B member 1 (ABCB1, multidrug
resistance protein 1/MDRI1, P-glycoprotein/P-gp), and ABC
sub-family G member 2(ABCG2, breast cancer resistance
protein/BCRP, mitoxantrone-resistant protein/MXR) are
extensively studies, and are commonly responsible for MDR.
Betulin is susceptible to drug resistance mediated by ABCC1
overexpression, and a known ABCCI inhibitor, MK571, can
sensitize the cells expressing ABCCI to betulin. Xuan-Yu
Chen et al. (Chen et al, 2021) explored ABCCl-induced
resistance to betulin by its upregulated protein expression of
ABCC1 and found that betulin at high concentration had the
ability to inhibit ABCCI transport function, which may affect the
pharmacokinetic profile of other ABCC1 drug substrates, such as
vincristine.

Sorafenib, a multireceptor tyrosine kinase inhibitor is FDA
approved first-line drug for the treatment of advanced liver
cancer and is reported to extend the overall survival in
individuals with advanced hepatocellular carcinoma (HCC).
However, the primary or acquired resistance to sorafenib is
gradually increasing, leading to failure of HCC treatment with
sorafenib. Wubin He et al. (He et al, 2021) reported that
artesunate regulates neurite outgrowth inhibitor protein B
receptor (NgBR) to overcome resistance to sorafenib of HCC
in a cell culture model.

Typically, renal cell carcinoma (RCC) is insensitive to
traditional ~chemo- and radio-therapeutic  treatments.
Moreover, the use of targeted treatment options as first- and
second-line treatments have limited effect on the survival rates.
Dian Fu et al. (Fu et al, 2020) explored low-toxicity novel
treatment strategies for RCC and investigated costunolide
(Cos), a natural sesquiterpene compound isolated from various
medicinal plants, and found that it exerted autophagic and
apoptotic effects on renal cancer through the ROS/JNK-
dependent signal route.

Chemoresistance has become a prevalent phenomenon in
cancer therapy, which alleviates the effect of chemotherapy
and makes it difficult to break the bottleneck of the survival
rate of tumor patients. Jin-Feng Xu et al. (Xu et al,, 2021) reviewed
the functional roles of ginsenosides in chemoresistance reversal.
Its underlying mechanism is correlated with inhibition of drug
transporters, induction of apoptosis, and modulation of the
tumor microenvironment(TME), as well as the modulation of
signaling pathways, such as nuclear factor erythroid-2 related
factor 2 (NRF2)/AKT, IncRNA cancer susceptibility candidate
2(CASC2)/protein tyrosine phosphatase gene (PTEN), AKT/
sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/
PI3K/AKT, PI3K/AKT/mTOR and nuclear factor-xB (NF-xB).

Modulated electro-hyperthermia (mEHT), induced by
13.56 MHz radiofrequency, has been demonstrated both in
preclinical and clinical studies to efficiently induce tumor
damage and complement other treatment modalities. Tamas
Vancsik et al. (Vancsik et al,, 2021) used a mouse xenograft
model of human melanoma (A2058) to test mEHT (~42°C), both
alone and combined with NK-cell immunotherapy. They found
that mEHT monotherapy of melanoma xenograft tumors
induced irreversible heat and cell stress leading to caspase-
dependent apoptosis to be driven by p53. mEHT could
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support the intra-tumoral attraction of distantly injected NK
cells, contributed by CXCL11 and MMP?2 upregulation, resulting
in additive tumor destruction and growth inhibition.

Many cancer patients who are treated with chemotherapy and/
or radiotherapy eventually become resistant, and acquired
resistance accounts for the majority of cases. One of the most
well understood mechanisms of chemoresistance is the
overexpression of ABC transporters. Zhuo-Xun Wu et al. (Wu
etal., 2021) reported how to establish a novel irinotecan-resistant
human colon cell line to investigate the underlying mechanism(s)
of irinotecan resistance, particularly the overexpression of ABC
transporters.

Radiotherapy is recommended as an important and effective
method for malignant treatment in about half of cancer patients
during clinical treatment. Esophageal squamous cell carcinoma
(ESCC) patients who have contraindications for surgery or locally
advanced disease have a treatment option through Radiotherapy.
However, radioresistance is a major cause of treatment failure,
contributing to inadequate cure, relapse, and metastasis. Zuoquan
Zhu et al. (Zhu et al.,, 2021) provided evidence that the FMS-
related tyrosine kinase 3 ligand (FL) increases the radioresistance
of esophageal cancer cells and that FL-related tyrosine kinase 3
(F1t-3) could be a potential target for enhancing radiosensitivity
in ESCC.

More attentions have been attracted to radiosensitizers
because of their abilities to increase the radiosensitivity of
cancer cells and reduce the side effects on normal cells. In
order to identify promising radiosensitivity agents, a large
number of natural products with anti-inflammatory,
antioxidant, and antitumor activations have been considered.
The major treatment modality for non-small-cell lung carcinoma
(NSCLC) is radiotherapy. However, radiotherapy can induce
radioresistance in cancer cells, thereby resulting in a poor
response rate. Yarong Du et al. (Du et al, 2021) demonstrated
the effects of isorhamnetin (ISO), which is a naturally occurring
radiosensitizer, and its impact on the responsiveness of lung
cancer cells to irradiation through IL-13 and the NF-«B signaling
pathway.

Protein turnover is a dynamically regulated process
influencing many important biological functions, including
DNA damage response (DDR), cell cycling, and signaling

transductions. Pharmacological intervention of protein
turnover offers a new  therapeutic = window for
radiosensitization. ~Driven by their unique cytotoxic

mechanisms, the novel strategies targeting the ubiquitin-
proteasome system (UPS) with NEDDylation inhibitors and
the PROteolysis TArgeting Chimeras (PROTACs) carry great
potential as radiosensitizers to improve the efficacy of
radiotherapy. The NEDDylation inhibitor MLN4924 exerts
several cytotoxic functions, including DNA damage, cell cycle
checkpoints dysregulation, and inhibition of NF-kB, and mTOR
pathways. Preclinical studies had validated the efficacy of
NEDDylation inhibitors as radiosensitizers. Meanwhile, recent
progress in PROTAC technology has shown significant
improvements in terms of the cellular permeability and
substrate specificity. The PROTACs can selectively recruit key
proteins related to radioresistance, such as EGFR, androgen
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receptor (AR) and estrogen receptor (ER), cyclin-dependent
kinases (CDKs), MAP kinase kinase 1 (MEK1), and MEK2,
for the cullin-RING E3 ligase (CRL)-mediated polyubiquitin
conjugation and subsequent degradation. Shuhua Zheng et al.
(Zheng and Tao, 2020) summarized basic and preclinical
investigations on NEDDylation inhibitors and PROTACs as
radiosensitizers.

Chemotherapy is the backbone of subsequent treatment for
patients with lung adenocarcinoma (LUAD) exhibiting radiation
resistance, and pemetrexed plays a critical role in this
chemotherapy. Yuqing Wang et al. (Wang et al, 2021b)
assessed changes in the sensitivity of LUAD cells to
pemetrexed under radioresistant circumstances. They showed
the much lower efficacy of pemetrexed in radioresistant cells
than in parental cells, and that the mechanism of action was the
significant downregulation of folate receptor alpha (FRa) by long-
term fractionated radiotherapy, which resulted in less cellular
pemetrexed accumulation. The activation of FRa by decitabine
can sensitize radioresistant LUAD cells to pemetrexed both
in vitro and in xenografts.

NPC is endemic in southern China and South-East Asia.
Radiotherapy is the primary treatment for the non-metastatic
disease. Although the local control of NPC can be increased by
intensity-modulated radiation therapy (IMRT) rather than
conventional radiotherapy, approximately 20% of the patients
still present locoregional recurrence following radical IMRT.
Tumor recurrence has been recommended to have relationship
strong association with radio-resistance. Shan-Shan Guo et al.
(Guo et al., 2021b) demonstrated the radioresistant function of
angiogenin, as a biomarker that can help identify radio-
sensitivity, and showed the clinical prognostic significance of
ANG, which could help predict radiosensitivity and stratify high-
risk patients or tumor recurrence.

Identifying metastasis-associated genes and finding effective
targets is the main strategy to prevent metastasis and improve
survival of breast cancer. On the explore of putative tumor
suppressor protein, Xin An et al. (An et al, 2020) confirmed
that Cavin3 expression is significantly downregulated in breast
cancer, and correlated with distant metastasis and worse survival.
Cavin3 functions as a metastasis suppressor by downregulating
the Akt pathway, which suggests that cavin3 can be a potential
prognostic biomarker and a target for breast cancer treatment.
Studies by Xin Hua et al. (Hua et al., 2020) suggested that IQ
motif-containing GTPase activating protein 3 (IQGAP3), the
latest identified member of the IQGAP family, was
significantly upregulated in breast cancer cell lines and human
tumor tissues at both the mRNA and protein level compared to
controls, and the expression was an independent prognostic
factor among all 257 breast cancer patients in their cohort.
Therefore, IQGAP3 may be a reliable prognostic biomarker in
breast cancer.

E3 ubiquitin ligases (E3s) are a large class of proteins, and
there are over 800 putative functional E3s. E3s play a crucial role
in substrate recognition and catalyze the final step of ubiquitin
transfer to specific substrate proteins. The diversity of the set of
substrates contributes to the diverse functions of E3s, indicating
that E3s could be desirable drug targets. The E3s MDM2,
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FBWX?7, and SKP2 have been well studied and have shown a
relationship with drug resistance. Strategies targeting E3s to
combat drug resistance include interfering with their
activators, degrading the E3s themselves and influencing the
interaction between E3s and their substrates. Yuanqi Liu et al.
(Liu et al, 2021) summarize the role of E3s in cancer drug
resistance from the perspective of drug class and the most
important research findings of targeting the cullin-RING E3
ligases for radiosensitization.

The crosstalk between cancer «cells and  their
microenvironment triggers a variety of critical signaling cues
and promotes the malignant phenotype of cancer. As a type of
transmembrane protein, integrin-mediated cell adhesion is
essential in regulating various biological functions of cancer
cells. Integrins are the adhesion molecules and receptors of
ECM. They mediate the interactions between cells-cells and
cells-ECM. Recent evidence has shown that integrins present
on tumor cells or tumor-associated stromal cells are involved in
ECM remodeling, and as mechanotransducers sensing changes in
the biophysical properties of the ECM, which contribute to cancer
metastasis, stemness and drug resistance. Chao-Yue Su et al. (Su
et al,, 2020) outlined the mechanism of integrin-mediated effects
on biological changes of cancers and highlight the current status
of clinical treatments by targeting integrins.

Most tumor cells are in a hypoxic microenvironment that
promotes resistance to radiation therapy. In addition to radiation
resistance, the hypoxic microenvironment also promotes cancer
proliferation and metastasis. Cordell Gilreath et al. (Gilreath et al.,
2021) reviewed the hypoxic microenvironment of breast cancer
tumors, related signaling pathways, breast cancer stem-like cells,
and the resistance to radiation therapy.

Microenvironmental serine may alter cancer proliferation and
invasion. A high serine content in body fluid was identified in a
portion of patients with gastric cancer, but its biological
significance, such as cell growth, migration and invasion, and
drug resistance, was not clearly. Jun Li et al. (Li et al., 2020)
characterized the basal gene expressing profiles of MGC803 and
HGC27. The HGC27 cells were more differentiated than
MGC803 cells while MGCB803 cells were more sensitive to the
change of serine content. They demonstrated that genetic profiles
can affect the biological effects of serine on gastric cancer cells.

The tumor immunological microenvironments of gliomas
differ based on their molecular properties. In glioblastoma
(GBM), Ji Zhang et al. (Zhang et al, 2020) profiled the
immune status of O-6-methylguanine-DNA methyltransferase
(MGMT) promoter methylation in GBM and established a local
immune signature for GBM that could independently identify
patients with a favorable prognosis, indicating a relationship
between prognosis and GBM immune signature. MGMT
promoter methylation with lower Tim-3 expression was
significantly associated with better survival.

Tumorigenesis is strongly associated with a series of cumulative
genetic and epigenetic changes occurring in a normal cell; it is also
closely related to the body’s microenvironment and immunity. The
immune system recognizes and kills cancerous cells and their
precursors, while cancerous cells develop strategies to escape from
immune-surveillance thereby promoting tumorigenesis. Recently,
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long non-coding RNA (IncRNA) was proven to play an active part in
the regulation of the immune system by affecting tumor
microenvironment, epithelial-mesenchymal transition, dendritic
cell and myeloid-derived stem cell regulation, and T and B cell
activation and differentiation. Immune-related IncRNAs, which were
identified as a prognostic marker of various types of cancer, are
markedly connected with immune cell infiltration, and might be a
potential target for cancer treatment. Peijie Chen et al. (Chen et al,,
2020a) constructed a prognostic model and explored the immune
characteristics of different risk groups in cervical cancer patients to
analyze the relationship between immune-related IncRNAs and the
prognosis.

Inherent gene/protein-associated drug and radiation resistance is
largely rooted in cancer cell heterogeneity. For this type of resistance,
we may be able to detect variants through gene sequencing, flow
cytometry, and microarray to determine their mechanisms of
resistance, and guide physicians in choosing the right approach
for their individual patients. While variants identified for leukemia
and lung cancer have improved our ability to predict prognoses and
provide personalized medical care, there remain other types of cancer
where many new advances could be made.

The efficiency and safety of hypofractionated radiotherapy
(HFR) combined with paclitaxel chemotherapy for the treatment
of post surgery tracheoesophageal groove lymph node (TGLN)
metastasis in patients with esophageal cancer were investigated by
Jian Wang et al. (Wang et al, 2020). They found that the
combination of hypofractionated radiotherapy (HFR) and
chemotherapy improved the prognosis of esophageal cancer
patients with tracheoesophageal groove lymph node (TGLN)
metastasis with no increased adverse events.

In recent years, multimodal approaches are recommended in
unresectable hepatocellular carcinoma (HCC), either as first-line
or subsequent therapy. Some studies have shown that the
combination of transarterial chemoembolization (TACE) and
sorafenib or TACE and thermal ablation is superior to
monotherapy. However, few data are available on patients
with huge unresectable HCCs treated by TACE and sorafenib,
with or without thermal ablation. Ying Wu et al. (Wu et al., 2020)
retrospectively evaluate and compare the benefits of TACE and
sorafenib with or without thermal ablation in the management of
patients with huge unresectable HCCs. They provided a
promising strategy of TACE-sorafenib-thermal ablation, which
demonstrated extended long-term overall survival in patients
with huge unresectable HCC, and this may be a better choice
than TACE-sorafenib alone.
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Esophageal cancer is one of the most common cancer types,
with its most common distant metastatic site being the lung.
Currently, population-based data regarding the proportion and
prognosis of patients with esophageal cancer with lung metastases
(ECLM) at the time of diagnosis is insufficient. Analyses
conducted by Jida Guo et al. (Guo et al, 202la) on
Surveillance, Epidemiology, and End Results (SEER) database
from 2010 to 2016 of ECLM indicated that age, number of
extrapulmonary metastatic sites, treatment three factors as
independent predictors for esophageal cancer-specific survival
(CSS). Considering the factors that may predict the occurrence of
lung metastasis at diagnosis, high-risk patients should undergo a
64-slice multidetector CT (MDCT) examination for small lung
nodules screening. According to their findings, chemotherapy or
chemoradiotherapy may represent the most advantageous
treatments for patients with ECLM.

In conclusion, the “Chemoradiation Resistance in Cancer
Therapy” research topic highlights the complex phenomenon
of resistance to anticancer therapy in cancer cells. The recent
research implies the need to continue improving our
understanding into the fundamental mechanisms of
chemoradiation resistance related to target mutations, tumor
microenvironment, undiscovered genes and signaling pathways
in cancers, with the aim of identifying relevant new biomarkers
and to develop the strategies that can overcome chemoradiation
resistance or improve patient care during chemo- and/or
radiation therapy.
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Purpose: To investigate the effectiveness and safety of transarterial chemoembolization
(TACE) combined with sorafenib and thermal ablation in patients with huge hepatocellular
carcinoma (HCC).

Materials and Methods: This retrospective study examined 50 patients with huge
unresectable HCC treated from January 2009 to December 2015. Among them, 28 cases
received TACE-sorafenib treatment (TACE-sorafenib group), and 22 cases received
TACE-sorafenib plus thermal ablation treatment (TACE-sorafenib-thermal ablation
group). The Overall survival (OS), progression-free survival (PFS), and adverse events
(AEs) were compared.

Results: The median follow-up was 13.5 months (ranges 4.2 to 96.7 months). The
median OS was significantly longer in the TACE-sorafenib-thermal ablation group than
that in the TACE-sorafenib group (20.8 vs. 10.4 months, £=0.003). The median PFS of the
ablation and no ablation groups were 4.3 vs. 7.1 months (P=0.546). The treatment
modality was an independent predictor of OS (P=0.004). There were no notable drug-
related high grade adverse events or permanent adverse sequelae.

Conclusion: TACE-sorafenib-thermal ablation provided extended OS to patients with
huge unresectable HCC and could be a better choice than TACE-sorafenib.

Keywords: hepatocellular carcinoma, transarterial chemoembolization, thermal ablation, sorafenib, treatment,
drug resistance
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the second most common
cause of cancer-related mortality in China (Jemal et al,, 2011).
Huge unresectable HCC (i.e., >10 c¢cm in its larger axis) is
encountered in a considerable portion of patients at diagnosis.

Huge HCCs have specific features that need to be taken into
account for successful management. Firstly, HBV-related liver
cirrhosis is the predominant underlying cause of HCC in China
(Chen et al., 2016). Secondly, huge HCCs always show an
incomplete capsule and are prone to invade local vasculature,
increasing the risk of tumor thrombus and metastasis (Xue et al.,
2015). Thirdly, huge HCCs have an increased risk of rupture,
which may accelerate their local spread and deterioration of liver
function (Poon et al., 2002). Hence, adequate management of
huge HCC:s is a challenge.

For unresectable huge HCC, multiple approaches such as
sorafenib adminstration, transarterial chemoembolization
(TACE), and thermal ablation can be used for its management.
Sorafenib, is approved in patients with unresectable HCC based
on two phase III randomized trials (Llovet et al., 2008; Cheng
et al,, 2009) and is the recommended treatment for patients with
advanced HCC (Omata et al., 2010; European Association For
The Study Of The et al., 2012). However, the efficacy of sorafenib
monotherapy is generally limited. Sorafenib is beneficial in only
approximately 30% of patients, and acquired resistance often
develops within 6 months, with a mean overall survival (OS) and
time to progression of 10.7 and 5.5 months, respectively, in the
SHARP study (Cheng et al., 2009), and 6.5 and 2.8 months,
respectively, in the Asia-Pacific study (Llovet et al., 2008).

TACE is considered as the standard treatment for
unresectable HCC (Llovet et al., 2002; Llovet and Bruix, 2003),
but TACE monotherapy rarely results in complete necrosis of the
lesions (Han et al., 2019). In addition, TACE increases VEGF
levels, and VEGF is known to stimulate tumor angiogenesis,
thereby contributing to tumor invasion and metastasis (Sergio
et al,, 2008; Shim et al., 2008). Thermal ablation therapies such as
radiofrequency ablation (RFA) and microwave ablation (MWA)
have been shown to be safe and effective for local control in
patients with HCC (Lee et al., 2014; Hernandez et al., 2015). For
early-stage HCC, thermal ablation has been shown to have
similar OS compared with surgical resection (Lee et al., 2014;
Hernandez et al., 2015). For moderate to advanced stage HCC,
thermal ablation can provide a good local control (Lee et al,
2014; Hernandez et al., 2015). Both TACE and thermal ablation
are local therapies, and they have limited preventive effect against
tumor recurrence and metastasis.

In recent years, multimodal approaches are recommended in
unresectable HCC, either as first-line or subsequent therapy. Some
studies have shown that the combination of TACE and sorafenib or
TACE and thermal ablation (Cabrera et al., 2011; Kim et al., 2011;

Abbreviations: AEs, adverse events; AFP, alpha-fetoprotein; CT, computed
tomography; HCC, hepatocellular carcinoma; mRECIST, modified Response
Evaluation Criteria in Solid Tumors; MWA, microwave ablation; OS, overall
survival; PFS, progression-free survival; RFA, radiofrequency ablation; TACE,
transarterial chemoembolization.

Kudo et al., 2011) is superior to monotherapy. However, few data
are available on patients with huge unresectable HCCs treated by
TACE and sorafenib, with or without thermal ablation. In the
present study, we retrospectively evaluate and compare the benefits
of TACE and sorafenib with or without thermal ablation in the
management of patients with huge unresectable HCCs.

MATERIALS AND METHODS

Patients

This study followed the requirements of the Declaration of
Helsinki and was approved by the Institutional Review Board
of Sun Yat-sen University Cancer Center. This single-center
retrospective study examined the clinical data of patients with
huge unresectable HCC treated from January 2009 to December
2015 at Sun Yat-sen University Cancer Center.

The inclusion criteria were: (1) diagnosis of HCC confirmed
by liver biopsy or clinically according to the American
Association for the Study of Liver Diseases (AASLD) criteria
(Llovet et al., 2008); (2) original tumor 210 cm in diameter, and
satellite foci <2 cm; (3) All target lesions that could be measured
according to the modified Response Evaluation Criteria in Solid
Tumors Group (mRECIST) guidelines (Lencioni and Llovet,
2010); (4) 18-80 years of age; and (5) underwent TACE with
sorafenib or TACE, sorafenib, and thermal ablation treatment.
The exclusion criteria were: (1) procedure other than TACE and
thermal ablation; (2) extrahepatic HCC metastases; (3)
portal vein tumor thrombus beyond type Ila (Chan et al,
2016); or (4) previous treatment for HCC.

A total of 533 patients with HCC were treated with sorafenib
in our cancer center during the study period. According to the
inclusion/exclusion criteria, only 50 patients with huge HCC
were included in the present analysis.

Treatment Option

Prior to their treatment, the patients were fully informed of the
specific implications of TACE-sorafenib and TACE-sorafenib-
thermal ablation therapies, as well as the possible adverse effects
(AEs). The fact that there is limited evidence on the treatment
effect was emphasized. Then, the patient received the treatment
he/she selected. Informed treatment consent was obtained from
all patients before treatment.

Transarterial Chemoembolization

All TACE treatments were performed by three physicians who
have at least 5 years of experience. Under local anesthesia, a 5F
French catheter (Yashiro type; Terumo Corporation, Tokyo,
Japan) was introduced into the abdominal aorta via the
femoral artery using the Seldinger technique. Hepatic arterial
angiography was performed using fluoroscopy to guide the
catheter into the celiac and superior mesenteric arteries. The
feeding arteries, tumor, and vascular anatomy surrounding
the tumor were identified. A microcatheter (Renegade Hi Flo;
Boston Scientific Corporation, Boston MA, USA) was super-
selectively inserted into the feeding arteries. A solution
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containing pirarubicin (10-40 mg, Shenzhen Main Luck
Pharmaceuticals Inc., China), lobaplatin (50 mg/mz, Hainan
Changan International Pharmaceutical Co., Ltd., China), and
10 mg of mitomycin ¢ (Zhejiang Hisun pharmaceutical Co., Ltd.,
China) in iodized oil (Lipoid ultra-fluid, Guerbet, France) was
infused into the arteries according to the number and size of the
lesions. Liver and kidney function of the patient, and blood
supply of the tumors (Chung et al., 2011) were evaluated. Follow-
up imaging was performed 1-3 months later to evaluate the
effects of TACE. The treatment was repeated once every 1-2
months. Reexamination was conducted one month after TACE.
If there were still enhanced tumors, repeated thermal ablation
therapy was required. Treatments were discontinued in the
presence of significant liver function deterioration or complete
elimination of the liver tumors.

Thermal Ablation

All thermal ablation treatments were performed by three
physicians who have at least 5 years of experience. For patients
who were willing to receive thermal ablation therapy, we usually
performed 3-4 TACE sessions for hypervascular HCCs and 2-3
TACE sessions for hypovascular HCCs before performing
thermal ablation based on our experience. Patients were
instructed to fast from all foods for 12 h before the procedure.
Computed tomography (CT) (Brilliance CT Big Bore; Philips,
Best, The Netherlands) was used to locate the liver tumors and to
design the optimal route for puncture needle. Routine
disinfection and local anesthesia were applied around the
puncture points. A microwave antenna (FORSEA; Qinghai
Microwave Electronic Institute, Nanjing, China) or RFA
(RITA2000, Mountain View. California, USA) was gradually
inserted into the tumor along the predetermined angle. The
whole MWA procedure was conducted under intravenous
anesthesia (propofol; AstraZeneca, London, UK). Vital signs
were monitored during the procedure. The settings of the
ablation parameters depended upon the manufacturer’s
recommendation and our experience. An upper abdominal CT
scan was carried out immediately after the procedure to evaluate
the ablation area and complications. Routine blood and
biochemical tests were performed on the first day after ablation
treatment to monitor for eventual complications. After the first
thermal ablation, TACE was repeated according to the
proportion of residual tumor or disease status. If the
proportion of residual tumor was >50% or new tumors
appeared in the liver, additional TACE were performed.

Sorafenib Treatment

All patients received continuous standard doses of sorafenib (400
mg twice a day, orally). Sorafenib was started from 3 days to 2
months after the TACE treatment or when tumor progression
was found. During sorafenib treatment, the patients visited the
outpatient clinic every three or four weeks for AE and tolerability
assessments. Dose adjustments were made based on clinically
significant toxicity (grade 3 or 4 according to the National
Cancer Institute Common Terminology Criteria for Adverse
Events Version 4.0) or the determination of patient tolerance
by clinicians. For patients who have grades 3 and 4 toxicities,

sorafenib was withdrawn until the symptoms improved to grade
2 or lower. Sorafenib was reintroduced at a dose of 200 mg bid
for 5 days and then increased back to 400 mg bid if well tolerated.
Otherwise, sorafenib was continued at 200-mg bid. Sorafenib was
continued until toxicities were unmanageable.

Follow-Up

OS was calculated from the date of treatment of HCC until the
date of the final follow-up or death (no patient was lost in follow-
up). Progression-free survival (PFS) was calculated from the day
of diagnosis to radiologic progression based on the modified
Response Evaluation Criteria in Solid Tumors (mRECIST)
evaluation (Lencioni and Llovet, 2010). The procedure-related
complications of TACE and thermal ablation were evaluated
based on the guidelines for trans-catheter therapy and image-
guided tumor ablation (Brown et al., 2009; Goldberg et al., 2009).
Major complications were defined as events that led to
substantial morbidity or disability, required hospital admission,
or substantially lengthened hospital stay (Sacks et al., 2003). All
other complications were considered minor. The drug-related
toxicity was observed and recorded according to the National
Cancer Institute Common Terminology Criteria for Adverse
Events Version 4.0.

Liver function, blood coagulation profile, and serum alpha-
fetoprotein (AFP) levels were examined monthly. A three-phase
helical CT (HiSpeed or LightSpeed QX/I; GE Medical Systems,
Milwaukee, WI, USA) or MRI (Discovery MR750 3.0T; GE
Medical Systems, Milwaukee, WI, USA) examination was
carried out every month for the first 3 months post-
operatively. Patients with residual tumor were re-treated with
the original procedure. If no residual tumor or tumor recurrence
was found, re-examinations were carried out every 3-6 months.
Follow-up was censored on June 30, 2017.

Statistical Analysis

Continuous variables were presented as mean * standard
deviation (SD) and analyzed using the Student’s t test.
Categorical variables were analyzed using the Chi-square or
Fisher’s exact test, as appropriate. Survival rates were estimated
by the Kaplan-Meier method. Differences in OS were assessed
for significance using the log-rank test. The Cox proportional
hazards regression model was used to determine the factors
associated with survival. As per initial design, all variables
with a P<0.05 by univariable analysis were entered in the
multivariable analysis; finally, only one variable was found to
be associated with survival and multivariable analysis could not
be performed. All analyses were performed using SPSS 13
(SPSS, Inc., Chicago, IL, USA). Two-tailed P-values <0.05
were considered statistically significant.

RESULTS

Baseline Clinical Characteristics
Among 533 patients with HCC who were treated with sorafenib
at our hospital between January 2009 and December 2015, 28
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and 22 patients with huge HCCs were treated with TACE-
sorafenib and TACE-sorafenib-thermal ablation therapy,
respectively. The baseline characteristics of these patients are
shown in Table 1. In the TACE-sorafenib group, the 28 patients
with 56 liver tumors received 72 TACE treatments (2.6 + 1.3,
range: 1-7). In the TACE-sorafenib-thermal ablation group, 22
patients with 40 liver tumors received 88 TACE treatments and
71 ablations. The specific information about RFA and MWA
procedures are provided in Table 2.

Patient Survival and Tumor Progression

The median follow-up of the entire cohort was 13.5 months
(ranges 4.2-96.7 months). During follow-up, 28 (100%) and 18
(81.8%) patients died in the TACE-sorafenib and TACE-
sorafenib-thermal ablation group, respectively. The median OS
was significantly longer in the TACE-sorafenib-thermal ablation
group than in the TACE-sorafenib group (20.8 vs. 10.4 months,
P=0.003) (Figure 1). The 1-, 2-, and 3-year cumulative survival
rates in the TACE-sorafenib-thermal ablation and TACE-
sorafenib groups were 68.2%, 40.9%, and 31.8% vs. 46.4%,
10.7%, and 3.6%, respectively (all P<0.05). The median PFS of

TABLE 1 | Baseline characteristics of the patients.

Variables TACE-sorafenib-thermal TACE- P
ablation (n=22) sorafenib
(n=28)

Sex >0.999*
Female 0 1(3.6%)

Male 22 (100%) 27 (96.4%)

Age (years) 46.4 + 11.9 48.8 +12.3 0.479
<50 15 (68.2%) 15 (53.6%) 0.295
>50 7 (31.8%) 13 (46.4%)

HBYV infection >0.999*
Positive 22 (100%) 27 (96.4%)

Negative 0 1(3.6%)

AFP (ng/ml) 0.522
<400 9 (40.9%) 9 (32.1%)
>400 13 (59.1%) 19 (67.9%)

Child-Pugh 0.246*

grade
A 22 (100%) 25 (89.3%)
B 0 (0%) 3 (10.7%)

BCLC stage 0.749*
A 4 (18.2%) 3 (10.7%)

B 6 (27.3%) 8 (28.6%)
¢} 12 (54.5%) 17 (60.7%)

Tumor 12.3+25 123+ 24 0.988

diameter (cm)

Tumor number 1.82 £ 0.8 196 1.0 0.559
1 9 (40.9%) 13 (46.4%) 0.696
2-3 13 (59.1%) 15 (563.6%)

Growth pattern 0.481*
Infiltrative 5 (22.7%) 4 (14.3%)
Noninfiltrative 17 (77.3%) 24 (85.7%)

Vascular 0.449

invasion
Present 11 (560.0%) 11 (39.3%)
Absent 11 (50.0%) 17 (60.7%)

*The Fisher exact test was used.

TABLE 2 | Procedure-related information about radiofrequency ablation (RFA)
and microwave ablation (MWA) in the transarterial chemoembolization (TACE)-
sorafenib-thermal ablation group.

Variables TACE-sorafenib-thermal P
ablation
RFA (n=11) MWA (n=9)
Number of procedures 0.702
Range 1-7 2-5
Mean + SD 28+19 31+13
Procedure duration (min) 0.385
Range 8-110 6-118
Mean + SD 456 + 314 39.0 +25.3
Number of ablation sites 0.306
Range 1-7 1-8
Mean + SD 34+18 39+20
Ablation duration at each site (min) <0.01
Range 5-25 3-20
Mean + SD 1832 +4.7 9.0+£35
Hospital stays (days) <0.01
Range 1-7 1-5
Mean + SD 348 £ 1.1 246 £ 0.9
1.0
—MITACE ib-thermal
—I1TACE-sorafenil
——TACE ib-thermal alati d
—+— TACE-censored
0.8+
Qo
e
(2] |
3 o
[
2
=
K/
g o4 P=0.003
S
(&)
0.2+ )
0.0
T T T T T T
.00 20.00 40.00 60.00 80.00 100.00

Survival time(months)

FIGURE 1 | Overall survival of the transarterial chemoembolization
(TACE)-sorafenib-thermal ablation and TACE-sorafenib groups.

the TACE-sorafenib-thermal ablation and TACE-sorafenib
groups were 4.3 vs. 7.1 months, respectively (P=0.546)
(Figure 2).

In the subgroup analysis, the median OS of the patients
without and with vascular invasion/metastasis were 14.0 vs. 9.8
months (P=0.648) in the TACE-sorafenib group, and 22.2 vs.
13.7 months (P=0.55) in the TACE-sorafenib-thermal group
(Figure 3). The median OS of the patients who received RFA
and MWA alone were 25.0 vs. 10.5 months (P=0.18) in the
TACE-sorafenib-thermal ablation group (Figure 4).

Frontiers in Pharmacology | www.frontiersin.org

15

July 2020 | Volume 11 | Article 1130


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Wau et al. TACE-Sorafenib + Thermal Ablation in Huge HCC
1.0 1.0-
—I1TACE-sorafenib-thermal alation
—I1TACE-sorafenib —RFA
—— TACE-sorafenib-thermal alati d _IMWA
—+— TACE-censored —+— RFA-censored
—— MWA-censored
0.8 0.8
] [)
2
g s
[y @D .6
re 0.6 8 os
[
4 >
2 2
& =
= =]
g o4 £ 0.4
= 3 P=0.18
(%) o
0.2-] 0.2
0.0 0.0
T T T T T T T 1 1 T T
.00 20.00 40.00 60.00 80.00 .00 20.00 40.00 60.00 80.00 100.00
PFS(months) suvival(month)
FIGURE 2 | Progression-free survival of the transarterial chemoembolization FIGURE 4 | Overall survival of patients who received radiofrequency ablation
(TACE)-sorafenib-thermal ablation and TACE-sorafenib groups. (RFA) and microwave ablation (MWA) in the transarterial chemoembolization

Cox Analysis

The predictors of OS in the Cox analysis are shown in Table 3.
Multivariate analysis was not performed because only the choice of
treatment had a P-value <0.05 in univariable analyses. HBV status
and Child-Pugh grades could not be analyzed because the number
of patients in some categories are too small. TACE-sorafenib-
thermal ablation (HR=2.512, 95%CI:1.348-4.680, P=0.004) was
found to be a predictor of OS.

(TACE)-sorafenib-thermal ablation group.

Adverse Events

The most common drug-related toxicities were hand-foot
syndrome (HFS, 86.4% vs. 85.7%), alopecia (31.8% vs. 39.3%),
diarrhea (18.2% vs. 35.7%), and hypertension (13.6% vs. 3.6%) in
the TACE-sorafenib-thermal ablation and TACE-sorafenib groups,
respectively. Most adverse events were grade 1 or 2. Four cases of
drug-related grade 3 toxicitiy were reported, including one case of
HES in the TACE-sorafenib-thermal ablation group and three cases

1.07 1.0 —without vascular invasion/metastasis
—Mwith vascular invasion/metastasis
- w:::‘:‘:;éi?:;‘::;;':{::};";{::::z‘:"s —t without vasular invasion/metastasis-censored
—t- with vasular invasion/metastasis-censored
0.8 0.8
2 2
© ©
b <
@ g6 D .64
o o
o o
2 2
s s
S S
£ 0.47 £ 0.4
3 3 =
3 o P=0.55
0.2 0.24
0.0 0.0+

T T T T
20.00 30.00 40.00 50.00

suvival (month)

TACE-sorafenib-thermal ablation group (B).

T T T T
40.00 60.00 80.00 100.00

survial(months)

T
20.00

FIGURE 3 | Overall survival of patients with and without vascular invasion/metastasis in the transarterial chemoembolization (TACE)-sorafenib group (A) and the
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TABLE 3 | Factors influencing overall survival according to the Cox analysis.

TABLE 5 | Procedure-related complications.

Variables HR (95% CI) P
AFP (ng/ml)

<400 1.000

>400 1.317 (0.772-2.401) 0.369
BCLC stage

A 1.000

B 2.097 (0.791-5.558) 0.137

C 2.108 (0.865-5.137) 0.101
Tumor number

Single 1.000

Multiple 1.385 (0.768-2.498) 0.279
Growth pattern

Non-infiltrative 1.000

Infiltrative 1.555 (0.743-3.255) 0.241
Vascular invasion

Absent 1.000

Present 1.259 (0.701-2.262) 0.441
Therapy

TACE-sorafenib-thermal ablation 1.000

TACE-sorafenib 2.512 (1.348-4.680) 0.004

Multivariate analysis was not performed because only the choice of treatment had a P-
value <0.05 in univariable analyses. HBV status and Child-Pugh grades could not be
analyzed because of the too small number of patients in some categories.

TABLE 4 | Drug-related toxicity.

Adverse event TACE-sorafenib-ablation TACE-sorafenib (n=28)

(n=22)

Any grade Grade 3 Any grade Grade 3
Hand-foot reaction 19 (86.4%) 1(4.5%) 24 (85.7%) 1 (3.6%)
Rash 8 (36.4%) 0 6 (21.4%) 0
Diarrhea 4 (18.2%) 0 10 (35.7%) 0
Hypertension 3 (13.6%) 0 1(3.6%) 0
Voice changes 1(4.5%) 0 2 (7.1%) 0
Bleeding 0 0 1(3.6%) 1(3.6%)
Liver dysfunction 0 0 1(8.6%) 1(3.6%)
Alopecia 7 (31.8%) 0 11(39.3%) 0

(one with HFS, one with bleeding, and one with liver dysfunction)
in the TACE-sorafenib group. No drug-related grade 4-5 AEs were
recorded. All drug-related toxicities are listed in Table 4.

The most common minor complications were post-embolization/
ablation syndrome which includes fever (37.7% vs. 83.3%), pain (28.9%
vs. 15.3%), and vomiting (7.5% vs. 4.2%) in the TACE-sorafenib-
thermal ablation and TACE-sorafenib group, respectively. Meanwhile,
two cases of minor bleeding (one thoracic hemorrhage and one liver
subcapsule hemorrhage) were observed in the TACE-sorafenib-
thermal ablation group; both cases resolved without special
treatment. Four major complications were reported, including two
cases of liver dysfunction in the TACE-sorafenib-thermal ablation
group and two cases of myelosuppression in the TACE-sorafenib
group. No permanent adverse sequelae or treatment-related death were
observed. All procedure-related complications are listed in Table 5.

DISCUSSION

Few data are available on the treatment strategies for huge HCC.
This study compares the effectiveness and adverse events (AEs) of

Procedure-related TACE-sorafenib-thermal TACE-
complications ablation sorafenib
(n=159) (n=72)
Minor complications
Postembolization/ablation
syndrome
Fever 60 (37.7%) 60 (83.3%)
Pain 46 (28.9%) 11 (15.3%)
Vomiting 12 (7.5%) 3 (4.2%)
Bleeding
Thoracic hemorrhage 1(0.6%) 0
Liver subcapsule hemorrhage 1(0.6%) 0
Major complications
Liver dysfunction 2 (1.3%) 0
Myelosuppression 0 2 (2.8%)

TACE combined with sorafenib and with or without thermal
ablation in patients with huge unresectable HCC. The results
suggest that TACE-sorafenib-thermal ablation provided an
extended long-term OS to patients with huge unresectable HCC.
TACE-sorafenib-thermal ablation may be a better choice than
TACE-sorafenib for huge unresectable HCC.

TACE-sorafenib therapy has received more and more
acceptance for the treatment of HCC. Compared with the studies
of TACE monotherapy for huge HCCs by Xue et al. (2015) and
Min et al. (2014), the present study suggests that the TACE-
sorafenib group had a higher 1-year survival rate than the studies
by Xue et al. (2015) and Min et al. (2014) (46.4% vs. 33% and
37.8%), despite the fact that the patients in the present study had a
high risk of vessel invasion and multiple tumors. Hence, TACE-
sorafenib therapy could provide survival benefits for patients with
huge unresectable HCC. However, TACE is not a curative
treatment and the rates of objective response range from 16% to
60% (Llovet and Bruix, 2003), suggesting limited benefits for huge
HCC, particularly for hypovascular HCC. In addition, post-TACE
vascular changes and hepatic dysfunction caused by sequential
TACEs ultimately limit the number of TACE treatments that a
patient can receive. Thus, TACE-sorafenib could only provide
limited survival benefits for huge unresectable HCC.

Thermal ablation is a minimally invasive technique and is
increasingly being used in managing HCCs. The present study
provided evidence that thermal ablation plus TACE and sorafenib
could be used for the treatment of huge unresectable HCC. In the
present study, patients in the TACE-sorafenib-thermal ablation
group had significantly higher 1-, 2-, and 3-year survival rates and
longer median survival than those in the TACE-sorafenib group.
Moreover, although all patients included in the present study had
unresectable huge HCCs, Mok et al. (2003) and Hwang et al. (2015)
reported that patients treated with TACE+MW A had a similar 1-year
OS survival rate (68.6%) compared with surgical resection. TACE-
sorafenib-thermal ablation has the following advantages. Firstly,
increased levels of proangiogenic factors following thermal ablation
have been reported and may be a potential reason for tumor
recurrence (Dong et al., 2015). As reported by Dong et al. (2015),
sorafenib inhibits the up-regulation of p-Akt and p-ERK1/2 in HCC
cells after insufficient RFA, and further down-regulates the expression
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of N-cadherin, vimentin, and snail, resulting in enhanced migration
and invasion of HCC cells after insufficient RFA. Secondly, thermal
ablation can directly and efficiently kill tumor cells and lighten tumor
load, especially for hypovascular HCC or HCC with arteriovenous
fistula, in which failures to TACE are common. Thermal ablation can
specifically eliminate residual tumor tissues after TACE, which could
increase the local control rate and reduce neovascularization. Thirdly,
thermal ablation causes little damage on liver function and allows an
extension of the time interval between two TACE treatments, thus
protects liver function. Finally, thermal ablation, especially RFA,
could enhance various TAA-specific T cell response and release
tumor antigen, heat shock protein, etc., thereby improving tumor-
specific immunity, killing residual tumor cells, and reducing
recurrence (Mizukoshi et al., 2013). Therefore, TACE-sorafenib-
thermal ablation therapy could have great benefits for the
treatment of huge unresectable HCC.

In the present study, TACE-sorafenib therapy was the only
independent predictor for poor prognosis according to the Cox
analysis, suggesting that the addition of thermal ablation is of vital
importance in treating huge unresectable HCC. In the ablation
procedure, the following principles are taken into account at our
hospital and may contribute to the survival benefits. Firstly, for
huge HCCs with satellite foci, the original or relatively larger
tumor is always the first MWA target. Secondly, MW A should be
performed first in the center of the tumor, then in the peripheral
residual lesions. Finally, MWA ablation should be given to tumor
located in a relatively safe place, then in the tumor that is adjacent
to susceptible organs such as the intestines and gallbladder.

The difference of PFS between the TACE-sorafenib-thermal
ablation and TACE-sorafenib groups was not statistically
significant. We noticed that the median PFS and the 1-year PES
rates were longer in the TACE-sorafenib group, which may be
caused by different sorafenib treatment time. The patients in the
TACE-sorafenib-thermal ablation group began to take sorafenib at
a later time than the patients in the TACE-sorafenib group. Kudo
et al. (2011) reported that sorafenib did not significantly prolong
survival in patients who responded well to TACE, due to delays in
starting sorafenib (>9 weeks) after TACE. Therefore, we
recommend starting sorafenib as soon as possible.

In the subgroup analysis, as in the study by Qu et al. (2012), we
observed that there was no significant difference in OS between
patients with and without vascular invasion in the two groups.
Meanwhile, there was no significant difference in OS between
patients who received only MWA and RFA treatment in the
TACE-sorafenib-thermal ablation group. Nevertheless, patients who
received MWA treatment had a slightly shorter time of ablation per
site, and this may be due to its advantages over RFA, i.e., more rapid
heating rate, higher intratumor temperature (reaching 130°C), larger
ablation range, deeper tissue penetration, and smaller influence of
blood flow (Hernandez et al, 2015). Hence, it is suggested that
priority should be given to MWA for the treatment of huge
unresectable HCCs, but this has to be validated by future studies.

In terms of AEs, the present study suggests that TACE-sorafenib-
thermal ablation was well tolerated and led to only manageable side
effects in patients with huge unresectable HCC. The most common
reported drug-related toxicities were HEFS, alopecia, diarrhea, and

hypertension, similar to previous studies (Abdel-Rahman and
Elsayed, 2013). Furthermore, TACE-sorafenib-thermal ablation did
not increase the procedure-related complications in patients with
huge unresectable HCC. The most common reported procedure-
related complications were post-embolization/ablation syndrome,
similar to a study by Yao et al. (2015). The major complications in
the TACE-sorafenib-thermal ablation and TACE-sorafenib groups
were liver dysfunction (n=2) and myelosuppression (n=2), similar to
the 4.6% incidence reported for large HCCs by previous studies (Paul
et al,, 2011; Liang et al,, 2013), but lower than in another study by
Dong et al. (2016), which could be due to the choice of drugs for
TACE. Meanwhile, no permanent adverse sequelae or treatment-
related death were observed. Thus, these results suggest that TACE-
sorafenib-thermal and TACE-sorafenib are well tolerated by patients
with huge unresectable HCC.

There are some limitations in the current study. Firstly, it was a
retrospective study and treatment strategy was determined by the
choice of patients. Secondly, it was a single-center study in China.
The HBV infection rate was higher in China than in Western
countries. Thirdly, the sample size might not be large enough. In
addition, our study failed to reveal the difference of RFA and
MWA and risks factors for prognosis, maybe due to the relatively
small sample size. Fourthly, the duration of sorafenib use in these
two groups was not the same, which may have affected the OS.
Therefore, a prospective trial with a larger sample size is needed.

In conclusion, the present study provides the evidence that
TACE-sorafenib and TACE-sorafenib-thermal ablation are well-
tolerated and beneficial in patients with huge unresectable HCC.
TACE-sorafenib-thermal ablation is associated with significant
survival benefits for patients with huge unresectable HCCs
compared with TACE-sorafenib.
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A high serine content in body fluid was identified in a portion of patients with gastric
cancer, but its biological significance was not clear. Here, we investigated the biological
effect of serine on gastric cancer cells. Serine was added into the culture medium of
MGC803 and HGC27 cancer cells, and its influence on multiple biological functions,
such as cell growth, migration and invasion, and drug resistance was analyzed. We
examined the global transcriptomic profiles in these cultured cells with high serine content.
Both MGC803 and HGC27 cell lines were originated from male patients, however, their
basal gene expression patterns were very different. The finding of cell differentiation-
associated genes, ALPI, KRT18, TM4SF1, KRT81, A2M, MT1E, MUC16, BASP1,
TUSCS, and PRSS21 in MGC803 cells suggested that this cell line was more poorly
differentiated, compared to HGC27 cell line. When the serine concentration was increased
to 150mg/ml in medium, the response of these two gastric cancer cell lines was different,
particularly on cell growth, cell migration, and invasion and 5-FU resistance. In animal
experiment, administration of high concentration of serine promoted cancer cell
metastasis to local lymph node. Taken together, we characterized the basal gene
expressing profiles of MGC803 and HGC27. The HGC27 cells were more differentiated
than MGC803 cells. MGC803 cells were more sensitive to the change of serine content.
Our results suggested that the responsiveness of cancer cells to microenvironmental
change is associated with their genetic background.

Keywords: gastric cancer, MGC803, HGC27, microenvironment, serine

INTRODUCTION

Gastric cancer (GC), which ranks the fifth in incidence and the third in mortality worldwide, is one
of the most common malignant tumors of digestive tract. This malignancy commonly occurs in
Asian countries, especially in China, Japan, and South Korea (Torre et al., 2015; Bray et al., 2018).
Because there is no sensitive and specific diagnostic method for GC, most patients have developed to
advanced stage and lost the best time for surgical treatment when they were diagnosed. Therefore,
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novel detection methods and molecular biomarkers for early
diagnosis have been extensively explored (Dou et al., 2018; Song
et al,, 2019).

Our team has been working on translational research and
exploring the pathogenesis of gastric cancer. In a previous study
on urine metabolites, a group of amino acids were found to be
abnormally elevated in GC patients than that in healthy controls.
Those amino acids include alanine, glycine, valine, serine,
isoleucine, threonine, proline, methionine, tyrosine, and
tryptophan. Among them, all the values of the area under
curve (AUC) of the diagnostic curves of threonine, serine, and
alanine were above 0.8, indicating the good diagnostic value for
GC. Moreover, some of the amino acids showed predictive
potential for prognosis (Chen et al., 2016). These findings
implied that increased certain amino acids in body fluid might
have biological significance on GC development.

Tumor is the overgrowth of cell clusters and the result of
abnormal metabolism. Compared with normal cells, tumor cells
demand more nutrients for their rapid proliferation and
metastasis, and reshape a variety of anabolic and catabolic
pathways in the nutrient-deficient microenvironment (Davidson
et al,, 2016; Bubnovskaya and Osinsky, 2020). Amino acids are
important metabolites of tumor cells. Elevation of some amino
acids in microenvironment could provide favorable conditions
for tumor growth, metastasis, drug resistance, and others. For
example, Saito et al. reported that elevated leucine in
microenvironment can promote cell proliferation in breast
cancer, and induce resistance to tamoxifen (Saito et al., 2019).
Engel et al. found that serine content of microenvironment
determined the growth and survival of glioblastoma (Engel
et al., 2020). In lung cancer, the imbalance of kynurenine to
tryptophan ratio in microenvironment was closely related to
the resistance for immune checkpoint inhibitor (Li et al., 2019).
In this study, we explored the influence of high serine
concentration on multiple biological behaviors, as well as the
possible molecular mechanisms for GC.

MATERIALS AND METHODS

Cell Culture and Reagents

GC cell lines MGC803 and HGC27 were stored at the Shanghai
Institute of Digestive Surgery. Both cell lines were cultured in
RPMI-1640 medium (Gibco, USA) supplemented with 10% fetal
bovine serum (Gibco, USA) and 5 pg/ml penicillin-streptomycin
in a humidified incubator at 37°C with 5% CO2. In addition,
RPMI-1640 medium supplemented with 1% fetal bovine serum
was prepared for experiments and stored at 4°C.

Serine (Purity>98.5%, LR, BBI Life Sciences, China) was
fully dissolved with phosphate buffer (1 x PBS) to the
concentration of 150 mg/ml and was filtered with 0.22 um
aperture needle filter (Millipore, United States) and then
stored at 4°C. Puromycin (Cat. #ANT-PR-5B, Invivogen,
USA), rabbit GFP monoclonal antibody (Proteintech, 50430-
2-AP, China), HRP-labeled goat anti-rabbit antibody
(Servicebio, GB23305, China), 5-Fluorouracil (5-FU,
Shanghai Xudong Haipu Pharmaceutical Co., Ltd., China)

and Cryptotanshinone (2.5 uM, $2285, SELLECK, Houston,
USA) were stored at —20°C.

Determining the Serine Concentration

In order to find proper concentration of serine in functional
experiments, we designed five serine concentrations of 0, 30, 150,
300, and 600 pg/ml. Then we calculated migration cells through
transwell experiment. Briefly, MGC803 or HGC27 cells (8x10*/
well) were added onto a 24-well plate (Corning Life Science,
Acton, MA, USA). A 700-ul RPMI-1640 medium complemented
with 10% fetal bovine serum (FBS), and different concentration
of serine was added to the lower chamber of the 24-well plate,
and 300 pul FBS-free medium to the upper chamber. After
incubation for 24 h, we stained the GC cells on the inserts by
0.5% crystal violet for 20 min at room temperature. The upper
remaining cells of the inserts were removed with cotton swabs.
Finally, the migrated GC cells were counted at the 200x under
the Olympus BX50 microscope (Olympus Optical Co. Ltd.,
Tokyo, Japan), and photographed by Nikon Digital Sight DS-
U2 (Nikon, Tokyo, Japan) camera. Five visual fields were
randomly chosen to calculate the number of migrated cells.

RNA Sequencing and Data Analysis

HGC27 and MGC803 cells (1x10°) were planted in 10cm dish
with RPMI-1640 medium and 10% FBS. The next day, the cells
were divided into two groups. One is in standard RPMI-1640
medium plus with serine 30 pg/ml and 1% FBS. The other is in
standard RPMI-1640 medium with 1% FBS and an additional
serine of 150 pg/ml. Three repeated wells were set for each group.
After incubation for 48h, cells were collected into 1.5ml tube with
1 ml Trizol (Invitrogen, USA) for RNA extraction. RNA
purification was checked by NanoPhotometer® spectrophotometer
(IMPLEN, CA, USA), and RNA integrity was evaluated by
Bioanalyzer 2100 system (Agilents, CA, USA). After the RNA
quality control, sequencing libraries were generated using
NEBNext® UltraTM RNA Library Kit for Hlumina® (NEB, USA).
RNA sequencing was performed on Illumina Novaseq6000 platform
(Jiayin Biomedical Technology Co., Ltd., Shanghai, China). Indexes
clustering were performed on cBot Cluster System using TruSeq PE
Cluster Kit v3-cBot-HS (Illumia). HTSeq v0.6.0 was used to count
the reads numbers mapped to each gene, and then the FPKM
(Fragments Per Kilobase per Millions base pairs) of each gene was
calculated based on the length of each gene and reads counts. The
DESeq2 algorithm was used to filter the expression of differential
genes. Differential genes between MGC803 and HGC27 cell lines
were plotted with R software (version, R i386.3.6.3). The differential
genes (at the standard |log2 (fold change)| >0.585 and P<0.001)
between high-serine medium group and standard medium group
were analyzed. The RNA-seq data of cancer cell lines treated by
serine could be found in SRA database (PRINA638214).

Cell Proliferation Assay

In the CCK8 assays, MGC803 or HGC27 cells (2 x 10°/well) were
added into the 96-well plate with six repeated wells for each
condition under RPMI-1640 medium 100 pl with 10% FBS
incubation for 24 h. Then, the medium was replaced by RPMI-
1640 medium with 1% FBS. The experimental groups were
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divided as above. On the first, second, and third days, each
well was added 100 pl 10% CCK8 solution diluted in medium
with 1% FBS for 2 h incubation. The OD values at 450nm
wavelength were measured by a spectrophotometry (BioTek,
Vermont, USA).

Colony Formation Assay

In the colony formation assay, cancer cells (1 x 10°/well) were
added to six-well plate, and incubated with 2.5 ml mediums with
1% FBS for 3 days. And then, the medium was replaced with
2.5 ml above medium for another four days. The chemical
cryptotanshinone was added at the 7th day. On the 14th day,
the cell colony were fixed and dyed with 0.5% crystalline purple
diluted in methanol for 20 min. After washing with clean water,
the colony was photographed and counted by observing visible
colony units in five fields.

Cell Migration and Invasion Assays

Cell migration and invasion assay were performed by using
transwell chambers (Corning, Lowell, MA, USA) coated with
or without matrigel (BD Biosciences, Bedford, MA). MGC803 or
HGC27 cells (8x 10*/well) were added to the upper chamber and
cultured for 48 h at 37°C with 5% CO2. RPMI-1640 medium
700 ul with 10% FBS and different serine concentration was
added to lower chambers and 200 pl medium without FBS but
containing different serine concentration or cryptotanshinone
was added to upper chamber. After incubation for 48 h, cells on
the inserts were fixed and stained with 0.5% crystal violet diluted
by methanol for 20 min at room temperature. The upper
remaining cells of the inserts were removed with cotton swabs.
Permeating cells were counted under the inverted microscope in
five random fields. The photographs were taken under the 200x
field (Nikon, Tokyo, Japan).

5-FU Sensitivity Assay

MGC803 or HGC27 cells (5 x 10*/well) were added into 96-well
plates, and incubated in 100 pl high serine medium (150 pg/ml)
or standard medium with 1% FBS for 24 h. Then, the medium
was replaced with above two mediums containing gradient
concentrations of 5-FU (0, 0.25, 0.5, 1, 2, 4, and 8 pg/ml).
After incubation for 48 h, 100-ul solution of 10% CCK8 was
added for 2 h, and OD values at 450nm were measured by a
spectrophotometry (BioTek, Vermont, USA).

Popliteal Lymph Node Metastasis

A total of twelve 5-week-old female nude mice (BALB/C nude,
Beijing Vitolihua Experimental Animal Technology Co., Ltd.)
were randomly divided into two groups. One is high serine
group, and another is standard group (Normal). The mice were
raised at the Shanghai Experimental Animal Research Center.
The experiment was approved by the Research Ethics Committee
of Shanghai Jiaotong University School of Medicine. A total of
5 x 10° HGC27 cells were injected into the left rear foot pad. The
detailed steps were reported in the previous study (Xiang et al.,
2019). The experimental animals were injected intraperitoneally
with serine solution (2g/kg) (Sasaki et al., 2017), and control

animals were injected intraperitoneally with 150-ul PBS solution.
The first three injections were given every two days, then
changed to every three days. Four weeks later, the mice were
sacrificed, and primary tumors in foot pad and popliteal lymph
nodes were removed for analysis. The size of the popliteal lymph
nodes were calculated using the formula (volume=length xwidth
xwidth/2). The popliteal lymph nodes were fixed with 4%
formalin and slices were made for examination.

All removed lymph nodes were fixed by formalin and
embedded in paraffin. The 4-um thick slices were made to
perform H&E and IHC staining by streptavidin-peroxidase
method. Rabbit anti-GFP monoclonal antibody (1:100,
Proteintech, 50430-2-AP, China) and HRP-labeled goat anti-
rabbit antibody (1: 200, Servicebio, GB23305, China) were used.
After staining, semi-quantitative analysis of GFP was conducted
according to the proportion and intensity of stained tumor cells.
The photographs were taken under the Nikon Digital Sight DS-
U2 (Nikon, Tokyo, Japan) at low- and high-power fields.

Statistical Analysis

All data were performed using GraphPad Prism 8.0 (Inc., La Jolla,
CA, USA). The inter-group differences were analyzed by the
Student’s t test. The positive popliteal lymph node metastasis was
analyzed by y2 test. P<0.05 was considered statistically significant.

RESULTS

The Effect of Serine on Cancer

Cell Migration

Five concentrations of serine (0, 30, 150, 300, and 600 pg/ml)
were added to RPMI-1640 medium. After incubating MGC803
or HGC27 cells with the above five mediums for 24 h, the
medium with 150 pg/ml serine showed the highest effect in
promoting cell migration (69.2 + 5.4) compared to that in RPMI-
1640 medium (28.8 + 5.3) in HGC27 cells (P<0.0001). The
similar trend was observed in MGC803 cells (146.6 + 11.5 vs
71.6 £ 6.2, P<0.0001) (Figure 1). In addition, the MGC803 cells
showed more migrating cells than that of HGC27 cells in high
serine culture medium (146.6 + 11.5 vs. 69.2 + 5.4, P<0.0001).

The Effect of Serine on Global
Transcriptomic Profiles on Gastric Cancer
Cells

Because 150 pg/ml serine promoted cancer cell migration, we
analyzed the effect of serine on global transcriptomic profiles of
these two cancer cells. By RNA-Seq analysis, although the basal
expression of Y chromosome-located genes of MGC803 and
HGC27 cells were highly associated (coefficient R=0.794), the
expression of thousands of autosomal genes were very different.
For instance, the top ten highly expressed genes in HGC27 cells
were ALPI, KRT18, TM4SF1, KRT81, A2M, MT1E, MUCI6,
BASP1, TUSC3 and PRSS21. The expression levels of each of
those genes in HGC27 cells were over ten thousand-fold higher
than that in MGC803 cells (Figure 2A). We separately analyzed
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FIGURE 1 | The effect of different serine concentration on cancer cell migration. Five serine concentrations from O to 600 pug/ml in culture medium were set. After
incubating MGC803 or HGC27 cells in mediums with different serine concentrations for 24 h, the optimum serine concentration of 150 ug/ml medium was observed
in both cancer cell lines. In addition, the migratory ability of MGC803 cells was higher than that in HGC27cells at high serine condition. These data are representative
examples taken from one of the three experiments. “*” represents P < 0.05, comparing to “Normal” group, **P < 0.01, **P < 0.001, ***P < 0.0001.
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FIGURE 2 | The effect of serine on global transcriptomic profiles of MGC803 and HGC27 cells. (A) Image of hierarchical clustering analysis for basal expression
profiles of MGC803 and HGC27 cancer cells. The heatmap is presented by the FPKM of each differential gene. Row represents experimental cells, and column
represents genes. The up-regulated genes are marked by light red color, and down-regulated genes are marked by dark blue color. (B, C) The volcano plots of
differential gene expression of MGC803 cells and HGC27 cells in high serine group and standard medium group. (D) The fold change of differential genes in
MGC803 and HGC27 cells. These data are representative examples taken from one of the three experiments.

the effect of high serine on MGC803 cells and HGC27 cells.
Under the strict condition, only one gene TAP2 was differentially
expressed between high-serein group and standard medium
group in MGC803 cells (Figure 2B), while nine genes were
differentially expressed in HGC27 cells. Among those different
genes, four were up-regulated, and five were down-regulated
(Figure 2C). The fold changes of different genes in both cell lines
were presented in Figure 2D. Notably, gene PDKI, which
involves in the JAK/STAT3 molecular pathway and associates
with cell growth and invasion, was one of the differentially
increased genes in the high serine group.

The Effect of Serine on Cell Growth

CCK-8 assay showed that the cell proliferation ability of HGC27
and MGC803 cells were significantly increased in high serine
group (1.69 + 0.07, 72 h and 1.96 + 0.01, 72 h, respectively),
compared with that in standard medium (1.22 + 0.05, 72 h, and
1.62 + 0.05, 72 h, respectively, p<0.0001). The cell proliferative
ability could be suppressed by cryptotanshinone (0.52 + 0.01,
72 h, P<0.0001) in high-serine condition (0.57 + 0.01, 72 h, 0.55 +
0.01, 72 h, respectively, P < 0.0001, Figure 3A). The cell
proliferation promoting effect of high serine in MGC803 cells
was stronger than that in HGC27 cells (P<0.001, Figure 3B). In
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v represent

addition, we observed much more colony formation of HGC27
cells in high serine group (219.3 £ 5.7), compared with that in
standard medium (147.7 + 2.5, p<0.001). The cryptotanshinone
could suppress colony formation in high serine condition (47.3 +
3.7, P<0.001, Figure 3C). In MGC803 cells, colony formation was
higher in high serine group (182.3 + 3.7), compared with that in
standard medium (137.3 + 2.5, p<0.01). The cryptotanshinone
suppressed colony formation in high-serine-condition (51.7 + 2.5,
P<0.001). There are more colony formation in HGC27 cells that in
MGC803 cells with high serine concentration (P<0.01,
Figure 3D).

The Effect of Serine on Cell

Migration and Invasion

High serine promoted cell migration of HGC27 cells (58.0 + 4.4),
compared to standard medium (41.8 + 5.9 cells, P<0.0001), The
cryptotanshinone significantly suppressed cell migration in high-
serine condition (5.2 + 1.2, P<0.0001). Similar experimental
results were obtained in MGC803 cancer cells (Figure 4A). In
addition, the migration cells of MGC803 in high serine group
were much more than that in HGC27 cells (138.2 + 8.5 vs. 58.0
4.4, P < 0.0001, Figure 4B). In cell invasion assay, the strongest
invasion ability of HGC27 cells (102.6 + 7.3) was observed in
high serine group, compared with that in standard medium (62.4 +
5.2 cells, P < 0.0001). The cryptotanshinone significantly
suppressed cell invasion of HGC27 cells in high-serine condition
(14 +£1.7,P <0.0001). Similar experimental results were obtained in
MGC803 cells (Figure 4A). We noticed that the cell invasion ability
in high serine group in MGC803 were stronger than that of HGC27
cells (149.8.2 £ 10.0 vs. 102.6 £ 7.3, P<0.0001, Figure 4C).

The Effect of Serine on 5-FU Sensitivity

To evaluate the effect of high serine on chemosensitivity, MGC
803 and HGC27 cells were treated with 5-FU. The IC50 of 5-FU
on HGC27 cells was higher in high serine group (1.46 + 0.06 ug/
ml), compared to standard medium group (0.76 + 0.02 pg/ml,
p<0.01) (Figure 5A). Similarly, the IC50 of 5-FU on MGC803
cells was higher in high serine group (1.01 + 0.03 pg/ml) than
that in standard medium group (0.89 + 0.03 ug/ml, p<0.05)
(Figure 5B). In standard medium, the IC50 of 5-FU in MGC803
cells (0.89 + 0.03 pg/ml) was higher than that in HGC27 cells
(0.76 £ 0.02 pg/ml, P<0.05, Figure 5C). However, in high serine
condition, the IC50 of 5-FU in MGC803 cells (1.01 + 0.03 pig/ml)
was lower than that in HGC27 cells (1.46 + 0.06 pg/ml, P<0.01)
(Figure 5D). It means that the sensitivity to 5-FU on MGC803
cells was 1.45-fold higher than that in HGC27 cells in high-
serine condition.

The Effect of Serine on Lymph

Node Metastasis In Vivo

To examine the possible effect of serine on promoting cancer cell
metastasis in vivo, we established a popliteal lymph node
metastatic model in nude mice. In experimental group, high
concentration of serine (2g/kg) was administrated via abdominal
cavity, while PBS was administrated via abdominal cavity as
control (Figure 6A). After ten times administration of serine, the
mice were sacrificed, and the popliteal lymph nodes were
examined (Figure 6B). It was found that the sizes of the
popliteal lymph nodes in high serine group were significantly
larger than that in controls (4.29 + 1.56 mm® vs.1.54 + 0.67 mm”,
P<0.01, Figures 6C, D). We further detected the metastatic
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FIGURE 5 | Drugs sensitivity analyzed by CCK8 assay. (A, B) Dose-response curves and drug concentration of IC 50 of 5-FU between high serine group and
standard medium in HGC27 and MGC803 cells. The sensitivity to 5-FU is reduced in high serine condition. (C) The difference of IC50 between HGC27 and MGC803
cells in standard medium. (D) The difference of IC50 between HGC27 and MGCB803 in high serine medium. These data are representative examples taken from one
of the three experiments. “*” represents P < 0.05, comparing to “Normal” group, **P < 0.01, **P < 0.001,
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cancer cells histologically, and found that the metastatic rate of
cancer cells in lymph nodes of high serine group was significantly
higher than that in controls (83.3% vs 16.7%, P<0.05, Figures
6E, F).

DISCUSSION

Gastric cancer is the most common primary malignancy of
digestive tract with a dismal prognosis. Multimodal therapeutic
approaches have been used in gastric cancer treatment, such as
surgical resection, chemotherapy, and radiotherapy. However,
the response to therapies is very different, which could be
attributed to different genetic background of individuals.
Cancer cells are frequently used as experimental model in basic
and clinical studies. MGC803 and HGC27 cell lines have been
used for many years in gastric cancer research, however, the
difference of their genetic background have not been reported
(Tamura et al., 1996; Zhang et al., 2004; Jin et al., 2015). By global
transcriptomics profiling for both cell lines, we characterized the
differential expression of genes between these two cell lines.
Among those, HGC27 cell line showed much more expression of
differentiated genes compared to MGC803 cells. MGC803 cells
had more genes of poorly differentiated cells. Cancer cells with
different genetic backgrounds may response differently to
external stimulation, including drug treatment. There were
reports indicated that microenvironmental serine may alter
cancer proliferation and invasion. For instance, Engel and
colleagues reported that tumor microenvironment with high
serine concentration contributed to rapid cell growth in
glioblastoma. Interfering serine metabolism could be a

plausible therapeutic target (Engel et al., 2020). It was reported
that the proliferative ability of cancer cells could be enhanced by
high content of microenvironmental serine (Labuschagne et al.,
2014). Serine promoted cancer growth in prostate cancer (Reina-
Campos et al,, 2019). Up to date, there is no report on the
biological effects of microenvironmental serine on gastric cancer.

In our previous study, significantly increased amino acids,
including serine, were found in urine of patients with gastric
cancer, implying a disturbed metabolism of amino acids (Chen
et al., 2016). Amino acids serve the essential functions of redox
balance, energetic regulation, biosynthesis, and homeostatic
maintainence for living things (Lieu et al., 2020; Vettore et al,
2020). Serine is one of the pivotal nutrients for cell growth in
routine RPMI-1640 culture medium with 30 ptg/ml concentration
(Mossinger, 1991). In the current study, in order to find out a
proper high serine environment, we screened several
concentrations and found that 150 pg/ml serine is the optimal
concentration on enhancing cell growth and invasiveness of
cancer cells. Our study showed that MGC803 cells and HGC27
cells had different biological behaviors no matter in standard
condition or in high serine condition. This phenomenon could be
explained by their different genetic backgrounds. These two cell
lines were established from male patients, because they showed
similar expression of genes of Y chromosome. However, the top
ten significantly decreased genes (ALPI, KRT18, TM4SF1,
KRT81, A2M, MT1E, MUCI16, BASP1, TUSC3 and PRSS21) in
MGCB803 cell were over ten thousand-fold lower than that in
HGC27 cells. Most of those genes were closely related to
epithelium differentiation (Wang et al., 2008; Green et al., 2009;
Shin et al., 2014; Kratochvilova et al., 2015; Wang et al., 2016;
Conway et al., 2019; Golob-Schwarzl et al.,, 2019). This result
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indicated that the MGC803 cell originated from poorly
differentiated gastric cancer, while HGC27 cell might come
from relatively differentiated gastric cancer. Our results will
provide important reference for selecting proper cell models for
future research. The higher proliferating and invasive ability of
MGC-803 cells may attribute to its lower differentiation.

We treated MGC803 and HGC27 cells with same concentration
of serine in vitro. The change of gene expression pattern was very
different. Upon analysis, only TAP2 (transporter 2, an ATP binding
cassette subfamily B member) gene showed significant down-
regulation in high serine condition in MGC803 cells. TAP2
encodes a membrane-associated protein, which is a member of
the MDR/TAP subfamily. Members of the MDR/TAP subfamily
are involved in multidrug resistance (Lage et al., 2001). Since
high serine stimulation significantly reduced TAP2 expression,
the MGC803 cells showed increased sensitivity to 5-FU
treatment after up-regulation of microenvironmental serine
content. However, the molecular mechanisms should be
explored further. In HGC27 cells, high serine condition resulted
in different gene expression pattern. The increased expression of
genes included oncogenic gene PDK1. PDKI encodes a pyruvate
dehydrogenase kinase 1, which is one of the major enzymes
responsible for the regulation of homeostasis of carbohydrate
fuels in mammals (Ba et al., 2020). The aberrant activation of
PDKI and its downstream effectors has been reported to involving
in pathological phenotypes such as uncontrolled cell proliferation,
apoptosis escape, invasion, and metastasis (Qian et al.,, 2020a),
which may explain why HGC-27 cells showed higher metastatic
ability in high serine administration in animal experiment. Some
researches showed that PDK1 plays a role in chemoresistance in
different types of malignancies, and targeting PDK1 could be a
selection for promoting chemosensitization (Emmanouilidi and
Falasca, 2017; Qian et al., 2020b). Recently, Yuan and colleagues
reported that cryptotanshinone, originally a STAT3 inhibitor
showed multiple suppressing activity on eight targets with
anticancer potential, including MAP2K1, RARalpha, RXRalpha,
PDK1, CHK1, AR, Ang-1 R, and Kif11 (Yuan et al., 2014). Those
targets are related to promoting cancer growth. Their results
provided a clue for the study of the anticancer effects and
mechanisms of cryptotanshinone (Gagliardi et al., 2018). In our
study, cryptotanshinone showed the suppressing effect on both
cancer cell lines. It implied that microenvironmental high serine
may activate multiple pathways. The biological behaviors observed
in our study suggested that cancer cells might respond differently
to microenvironmental serine and the difference might be related
to different genetic background and original histological
classification. Carter and coworkers reported that sensitivity of
radiotherapy of colorectal cancer depended on the genetic
background of cancers (Carter et al., 2019).

CONCLUSIONS

This study demonstrated the global basal expression profiles of
MGC803 and HGC27 cells. We found HGC27 cell was more

differentiated than MGC803 cell. Although high serine condition
could enhance the malignant behaviors in both cancer cells,
MGCB803 cells are more sensitive to change of serine
concentration. This discrepancy could be attributed to different
genetic background of cells. Since MGC803 and HGC27 cell lines
are commonly used in basic experiments of gastric cancer. This
finding will provide important references for cell selection for
future research. Moreover, microenvironmental serine content
could affect multiple biological behaviors, such as cell growth,
cell migration, and invasion, and chemoresistance. Altering
serine content of tumor microenvironment could be a new
direction for cancer therapy in future.
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As a dynamic regulator for short-lived protein degradation and turnover, the
ubiquitin-proteasome system (UPS) plays important roles in various biological processes,
including response to cellular stress, regulation of cell cycle progression, and
carcinogenesis. Over the past decade, research on targeting the cullin-RING (really
interesting new gene) E3 ligases (CRLs) in the UPS has gained great momentum with
the entry of late-phase clinical trials of its novel inhibitors MLN4924 (pevonedistat) and
TAS4464. Several preclinical studies have demonstrated the efficacy of MLN4924 as
a radiosensitizer, mainly due to its unique cytotoxic properties, including induction of
DNA damage response, cell cycle checkpoints dysregulation, and inhibition of NF-kB and
mTOR pathways. Recently, the PROteolysis TArgeting Chimeras (PROTACSs) technology
was developed to recruit the target proteins for CRL-mediated polyubiquitination,
overcoming the resistance that develops inevitably with traditional targeted therapies.
First-in-class cell-permeable PROTACs against critical radioresistance conferring
proteins, including the epidermal growth factor receptor (EGFR), androgen receptor (AR)
and estrogen receptor (ER), cyclin-dependent kinases (CDKs), MAP kinase kinase 1
(MEK1), and MEK2, have emerged in the past 5 years. In this review article, we will
summarize the most important research findings of targeting CRLs for radiosensitization.

Keywords: NEDDylation, EGFR, PROTAC, cullin-RING E3 ligase, MLN4924

INTRODUCTION

Over 60% of cancer patients undergo radiotherapy (RT) during their course of illness, with an
estimated 40% contribution toward curative cancer treatment (1, 2). While RT is an essential
element for curative, adjuvant, and palliative treatment of a range of human malignancies, a key
challenge in RT is to maximize radiation doses to the tumor mass while sparing the surrounding
healthy tissue (1). To that end, various approaches combining RT with chemotherapies as
radiosensitizers have been explored, which led to improvements in tumor response and higher
overall survival (OS) rates (3). Despite a clear success, the favorable clinical outcome of
chemoradiotherapy still comes at the sacrifice of increased toxicity in many clinical contexts,
mainly due to the limited specificity of conventional chemotherapies (4). In the past two decades,
several clinical trials have been conducted to test combining RT with targeted therapies against
radioresistance conferring proteins such as epidermal growth factor receptor (EGFR), histone
deacetylase (HDAC) and the B-rapidly accelerated fibrosarcoma (BRAF), aiming to develop
combined-modality treatment regimens with fewer side effects (5-7). Clinical studies consistently
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suggested increased efficacy and improved survival rates of these
new strategies, highlighting the clinical importance of using
targeted agents as radiosensitizers (4). However, cancer cells will
inevitably develop resistance toward these targeted therapies,
leading to disease progression and relapse (8). Therefore, there
is an urgent need to develop new strategies for radiosensitization.

In the past decade, targeting the activities of cullin-RING
(really interesting new gene) E3 ligases (CRLs) in the ubiquitin-
proteasome system (UPS) has gained considerable momentum
for cancer treatment with the entry of several late-phase clinical
trials of its first-in-class inhibitor MLN4924 (pevonedistat)
(9). As early as the 1990s, the implication of targeting CRL
for radiosensitization was suggested when its key component
RING box protein 2 (Rbx2, a.k.a., SAG, ROC2) was identified
as a redox inducible antioxidant protein (10). In recent
years, studies showed that CRLs carry out the turnover of
vital proteins involved in DNA damage response (DDR), as
well as those in cell signaling pathways that are critical for
radiosensitization (9, 11). Furthermore, in the past 5 years, the
development of cell-permeable PROteolysis TArgeting Chimeras
(PROTACs), which can selectively recruit radioresistance
conferring proteins for CRL-mediated polyubiquitination,
paved new methods in developing radiosensitizers that are less
likely to develop chemoresistance (12). As such, it is crucial
to systematically overview the mechanism of actions of CRL
inhibitors for radiosensitization.

In this review article, we will summarize major strategies
targeting CRLs and evaluate their potential as radiosensitizers
based on the revised framework of the Steel hypothesis, originally
described by George Steel in the 1970s (4). The revised hypothesis
describes the scenario whereby combined-modality of targeted
therapies and RT can improve the therapeutic outcomes by five
mechanisms: (1) spatial cooperation, (2) temporal modulation,
(3) biological cooperation, (4) cytotoxic enhancement, and (5)
normal tissue protection (4).

A GLIMPSE OF TRADITIONAL
RADIOSENSITIZERS

Typical RT involves ionizing radiation (IR), which uses high-
energy photon radiation, such as X-rays and gamma (y) rays, and
particle radiation, such as electron (e), carbon ion and proton
(13, 14). The IR exerts cytotoxic effects via direct DNA damage,
or indirectly via generation of free radicals, particularly reactive
oxygen species (ROS) (15-17). Therefore, the radiosensitivity of
cancer cells can be influenced by biological factors that regulate
DNA damage repair, oxygen perfusion levels, and cell cycle
stage (16). Traditional radiosensitizers target these underlying
parameters for radiosensitization.

Platinum analogs, 5-fluorouracil (5-FU), and taxanes are
the most common clinically used radiosensitizers. Platinum
analogs, such as cisplatin and oxaliplatin, can bind to DNA
and produce DNA-DNA crosslinking, which will lead to cell
cycle arrest and exacerbating the radiation-induced DNA damage
(18). Meanwhile, 5-FU, capecitabine (a 5-FU oral prodrug), and
gemcitabine act as pseudo-substrates, incorporation of these

nucleoside analogs can dysregulate cell cycle checkpoint in the S
phase, disabling DNA damage repair machinery in cancer cells
upon IR administration (19, 20). On the other hand, taxanes,
such as paclitaxel and docetaxel, synchronize tumor cells at
cell cycle G2-M phase and trigger chromosomal missegregation
(21, 22). Meanwhile, tumors in the hypoxic microenvironment
(low pO;) are more radioresistant than those well-oxygenated
(13). At the presence of oxygen, RT-induced DNA damages
will be “fixed” via the formation of peroxyl radicals in DNA
that had been insulted by free radicals (23). The oxygen
mimics such as nitroimidazole derivatives (i.e., pimonidazole
and nimorazole), and hypoxia-specific toxins were investigated
in clinical trials as radiosensitizers (24, 25). Wang et al. (16)
provided a comprehensive review on the recent development of
radiosensitizers based on these principles.

The therapeutic potential of radiosensitizer is largely
determined by the enhanced efficacy and selectivity against
cancer cells but not normal tissue. However, traditional
radiosensitizers are also chemotherapeutic drugs, which can
cause prominent side effects. For example, cisplatin can cause
intolerable nausea, vomiting, hearing loss, and kidney damage
(26). Targeted therapies, such as MLN4924 and PROTACs
are highly selective and would have fewer side effects. In fact,
clinical trials of MLN4924 showed that this compound is
well-tolerated (27).

TARGETING THE
UBIQUITIN-PROTEASOME SYSTEM (UPS)

Cellular protein levels are tightly controlled by both protein
synthesis and degradation. The ubiquitin-proteasome system
(UPS), first characterized in the mid-20th century, is a
dynamically regulated multi-enzyme process that earmarks
substrate proteins for proteasomal-mediated degradation via
polyubiquitination (28). Targeted inhibition of the UPS via
direct eradication of the proteasome activities using bortezomib,
carfilzomib, or ixazomib has been proven clinically effective
for treating multiple myeloma (MM) (29). Several clinical
trials also investigated the UPS inhibitors for their potential
as radiosensitizers in the treatment of metastatic melanoma
(Phase I), head and neck cancer (Phase I), and glioblastoma
multiforme (GBM; Phase II) (30-32). However, unexpected
earlier tumor progression as a result of EGFR stabilization has
been reported with the combined administration of bortezomib
and conventional radiochemotherapy in head and neck cancer
(32, 33). Such suboptimal response is conceivable as proteasome
inhibition indiscriminately stabilizes the substrates, including
EGFR and other oncogenic proteins, limiting the clinical
applications in targeting proteasome as a radiosensitizing
strategy (32). Instead of directly inhibiting the proteasome,
recent studies have employed alternative strategies such as
targeting the UPS via inhibition of the upstream ubiquitin
(Ub) conjugation events or directly recruiting specific substrate
protein for polyubiquitination using PROteolysis TArgeting
Chimeras (PROTACsS) (Figures 1, 2).
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FIGURE 1 | A schematic overview of cullin-RING E3 ligase (CRL) and NEDD8 conjugation. Conjugation of NEDD8 to the scaffold cullin protein in the CRL is carried
out in three enzymatic steps involving NEDD8-activating enzyme (NAE, E1N), UBC12, and UBE2F (E2N). The substrate receptor protein, docked in the CRL complex
by binding to the adaptor protein, recruits substrates for ubiquitin conjugation. MLN4924 and TAS4464 are specific NAE inhibitors, prohibiting NEDD8 conjugation

and thus inhibit CRL activity. The 2-D structure of MLN4924 and TAS4464 was derived from Yu et al. (34). N, NEDD8; U, ubiquitin; Rbx, RING box protein.

NEDDYLATION INHIBITION

NEDDS8 Conjugation Pathway

The cullin-RING E3 ligases (CRLs) are responsible for
polyubiquitination of about 20% of cellular proteins degraded
via the UPS, most of which are critically involved in cell cycle
progression, DDR, and oncogenic signaling cascades (9). The
CRL complex’s core structure is formed with a scaffold protein
cullin bound with the RING-finger containing proteins (Rbx1
or Rbx2) at the C-terminus of cullin (35). This core complex
will be joined by the adaptor protein, which binds the cullin’s

N-terminus domain to form a complete CRL complex (Figure 1)
(35). Fully activation of CRLs requires conjugation of an Ub-like
protein called neural precursor cell-expressed developmentally
downregulated 8 (NEDDS) to near the C-terminus of the cullin
in the CRL complex (11). Conjugation of NEDDS to cullins is
carried out in three enzymatic steps involving NEDD8-activating
enzyme (NAE; E1), UBC12 and UBE2F (E2s), and E3s (Figure 1).
NAE adenylates NEDD8 on its C-terminal glycine, forming a
NEDDS8-NAE complex via a covalent thiol-ester bond, and
then transfers NEDD8 to the E2s via another thiol-ester bond
(36, 37). NEDDS8 E3 ligases execute the final step in conjugating
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NEDDS to cullins, forming an isopeptide bond with the e-amino
group of a substrate lysyl residue (38, 39). NEDD8 conjugation
facilitates the CRL structural remodeling that will juxtapose the
substrate toward the catalytically active ubiquitylation site of
CRL (40-42). The substrate receptor protein, docked in the CRL
complex by binding to the adaptor protein, recruits substrates
for Ub conjugation once CRL is fully functional (43) (Figure 1).
So far, seven different types of human cullin proteins (CULI,

2, 3, 4A, 4B, 5, 7) have been identified, and new members of
the receptor and adaptor proteins are emerging (44). A more
detailed overview of NEDDS8 conjugation in CRLs has been
summarized by Petroski and Deshaies in their review paper (45).

MLN4924 is an adenosine sulfamate analog that inhibits
NEDDylation via the formation of an MLN4924-NEDD8 adduct,
blocking the downstream NEDDS8 conjugation cascade within
a few hours after administration (46) (Figure 1). TAS4464 is
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another NAE inhibitor recently developed with more potent
inhibitory effects and prolonged duration of target-binding
compared with MLN4924 (47, 48). NAE inhibitors MLN4924
and TAS4464 targeting the process of NEDDS8 conjugation
have shown particularly promising results in several clinical
trials (phase I/II/III) for cancer treatment (46). NEDDylation
inhibition appears to have a unique profile of sensitivity
toward various types of malignancies. So far, the primary
identified cytotoxic mechanisms of MLN4924 include induction
of DNA rereplication, senescence, dysregulation of cell cycle
checkpoints control, as well as inhibition of mTOR and NF-
kB pathways (Figure 2) (46, 49-55). Substrates of CRLs, such
as Weel, checkpoint kinase 1 (CHK1), p21, and cell division
cycle 25A (CDC25A), are key components of double-strand
breaks (DSBs) repair proteins (56-60) (Figure 2). Mainly, the
degradation of cell cycle proteins Cdtl, p21, and Set8 is
mediated by CRL4%42, in which Cdt2 plays as a substrate
recognition protein (61-63). Genotoxic insults trigger binding
of Cdt2 on to the DNA sliding clamp—proliferating cell
nuclear antigen (PCNA)—loading CRL4“4? on to DNA for
the substrate degradation (61-63). Set8 stabilization leads to
lysine 20 of histone H4 (H4K20) hypermethylation, triggering
transcriptional downregulation of histone with the resultant
chromatin decompaction and DNA damage activation, as
depicted elegantly by Abbas et al. (61). Driven by the fact that the
development of radioresistance is largely determined by factors
such as DNA damage response DDR activation after ionizing
radiation (IR), cell cycle checkpoints controls, and anti-apoptotic
pathways dysregulation, it is essential to investigate the potential
of using NEDDylation inhibitors as radiosensitizers (64).

NEDDylation Inhibitors as

Radiosensitizers—DNA Damage Response
One of the major cytotoxic effects of MLN4924 is achieved
through the stabilization of its substrate Cdtl, a so-called “DNA
replication licensing factor,” which tightly regulates the cell cycle
progression by facilitating the formation of the pre-replicative
complexes (pre-RC) at the G1 phase of cell cycle (46, 65). To
prevent relicensing, which will lead to multiple rounds of DNA
replication initiation per cell cycle, Cdtl is rapidly degraded
by the CRL Skpl-cullinl-F-box protein (SCF) right after G1
phase (66) (Figure 2). MLN4924-mediated inhibition of SCF
will lead to the accumulation of Cdtl, causing firing of several
rounds of DNA replication initiations without cell division, as
evidenced by the accumulation of cells with > 4N DNA in flow
cytometry (46) (Figure 2). This process will lead to the collision
of replication forks and the induction of overwhelming both
single- and double-strand DNA damage (67).

The majority of IR-mediated cell killing is mediated by the
massive induction of DNA DSBs (64). Radiosensitivity of tumor
cells is largely decided by their ability to trigger the DDR, via
activation of cell cycle checkpoints and DNA damage repair
(64). MLN4924 functions as a radiosensitizer in several types
of cancer by potentiating DNA damage and interfering with
DDR activation. In the orthotopic xenograft mouse models
of human pancreatic cancer and head and neck squamous

cell carcinoma (HNSCC), MLN4924 overcame radioresistance
via induction of DNA rereplication, leading to prominent
induction of DSBs (68, 69). In pancreatic cancer cells, the
maximal radiosensitizing effects of MLN4924 was achieved when
MLN4924 was administered 24 h prior to receiving RT (69).
MLN4924 pretreatment before RT administration will allow time
for CRL substrates’ accumulation. The radiosensitizing effect
of MLN4924 was partially reversed in pancreatic cancer cells
with Cdtl knockdown (69). However, the exact involvement of
Cdt1 stabilization in MLN4924-induced radiosensitization needs
further investigation.

Expression levels of CRL components were significantly
elevated in HNSCC cells compared with those in adjacent normal
squamous mucosa of the oral cavity and nasopharynx (68). As a
result, DNA rereplication was not observed in the cells of normal
tissue (68). Besides HNSCC, hyperactivation of CRLs was also
observed in GBM, breast cancer, and liver cancer (70). Therefore,
the unique cytotoxic mechanism highlights the potential of
NEDDylation inhibitors as radiosensitizers from the perspectives
of “spatial cooperation,” “biological cooperation, “normal tissue
protection,” and “cytotoxic enhancement” based on the revised
Steel framework.

MLN4924 as a Radiosensitizer—Cell Cycle

Arrest

Due to the lethality of unrepaired DNA DSBs, developing
new agents to prevent activation of cell cycle checkpoints
in response to IR is critical to overcoming radioresistance
(71). DDR is initiated by activation of ataxia-telangiectasia
mutated (ATM) and ataxia-telangiectasia and RAD3-related
(ATR), which will locate the DNA damage and activate various
downstream proteins (72). ATM is the major regulator of
DDR following IR-induced DSBs, leading to phosphorylation of
downstream CHKI1 and CHK2 (72). Activated CHKs will then
phosphorylate the isoforms of CDC25 phosphatases, triggering
their polyubiquitination and degradation (73). Meanwhile, the
dephosphorylation and activation of CDK2-cyclinE and CDK1-
cyclinB depend on the phosphatase activities of CDC25 (73).
As a result, with activation of DDR and subsequent CDC25
degradation, cell cycle arrest will occur at the end of G1 phase
or the end of G2 phase to allow time for DNA repair (73)
(Figure 2). Among the three isoforms of CDC25s (CDC25A, B,
C), CDC25A regulates both early (G1 phase to S phase) and late
(G2 phase to M phase) cell cycle checkpoints (Figure 2) (73).
Rapid degradation of CDC25A is critical for activating cell cycle
arrest upon IR-induced DNA damages (72). The ubiquitination
of CDC25A is carried out by the CRL E3 ligase SCFPt2~TrCP,
in which the beta-TrCP (B-transducin repeat-containing protein)
facilitates the recruitment of the CDC25A for Ub conjugation
(74). MLN4924-mediated inhibition of SCEP¢2~TrCP yil] stabilize
the CDC25A protein, causing cell cycle checkpoint dysregulation
and potentially radiosensitization (Figure 2).

Accumulation of CRL substrates may also induce cell cycle
arrest via checkpoint activation. The Weel kinase, which
phosphorylates and keeps CDK1 in inactive form for activation of
cell cycle checkpoints, is another major CRL substrate (Figure 2)
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(75). Meanwhile, degradation of members of the universal cyclin-
dependent kinase inhibitors (CDKIs) family p21 (Cipl) and p27
(Kipl) is also mediated by CRLs (76). As such, several studies
reported the activation of cell cycle checkpoints with MLN4924
treatment (77-79). In cell lines of hormone-refractory prostate
cancer (HRPC), MLN4924 triggered cell cycle arrest at the G2
phase due to Weel, p21, and p27 accumulation (79). In the
colorectal cancer cell lines of HT-29 and HCT-116, and breast
cancer cell lines of SK-BR-3 and MCF7, MLN4924 induced
stabilization of p27 and p21, respectively, leading to cell cycle
G2/M arrest (77, 78). MLN4924 and RT cotreatment induced a
more significant accumulation of Weel, p21, and p27 than either
treatment modality alone, leading to prominent cell cycle arrest
and unanimous sensitization all these types of cancer cells toward
RT (77-79).

MLN4924 as a

Radiosensitizer— Anti-apoptotic Pathways
Increased radioresistance of cancer cells is developed by
the activation of several compensatory pro-survival cell
signaling pathways, including phosphatidylinositol 3-kinase
(PI3K)/AKT/mTOR pathway, EGFR/mitogen-activated protein
kinase (MAPK) pathway and NF-kB signaling pathway (80, 81).
The classical theories of how radiation activates these anti-
apoptotic pathways state that ionizing events in the cytosol
and the mitochondria will generate large quantities of reactive
oxygen species (ROS) and reactive nitrogen species (RNS)
that will inhibit protein phosphatase (PTPase) activities
(81). Radiation can also promote membrane-associated
receptor activation by lipid rafts aggregation, leading to
activation of downstream pathways (82). Activation of the
PI3K/AKT/mTOR, EGFR/MAPK, and NF-kB pathways can
facilitate the development of radioresistance by promoting DNA
damage repair, and transcriptional upregulation of a myriad of
stress-responsive proteins (83, 84) (Figure 2). Therefore, it is
critical to understand the impact of NEDDylation inhibition on
these compensatory pro-survival pathways activated by RT.
Inhibition of NF-kB pathway is one of the major causes of
MLN4924 induced cytotoxicity, as evidenced in the initial studies
in acute myeloid leukemia (AML) (49). The inhibitor of nuclear
factor kappa B (IkBa) binds to the NF-kB p65 and p50 complex
and keeps the heterodimer in the cytosol as an inactive form (85).
Activation of the pathway triggers rapid degradation of IxBa via
the SCFP—TrCP E3 ligase, releasing the p65 and p50 heterodimer
for nuclear translocation and transcriptional upregulation of
its target genes (86). Treatment of MLN4924 will inhibit the
SCFP=TCP and prohibit RT-induced IkBa degradation, with
resultant sequestration of p65 and p50 in the cytoplasm (49,
52, 87) (Figure2). This mechanism is validated in studies
showing that eradication of the RING-box protein Rbx2 in
the SCFP~TTCP complex triggered IkBa stabilization and NF-kB
pathway inhibition, leading to re-sensitization of cancer cells
toward RT (88) (Figure 2). Furthermore, the existing studies
also suggested that the radiosensitizing effect of bortezomib is
largely due to the inhibition of the NF-kB pathway (89). As a

result, another major radiosensitizing mechanism of MLN4924
is achieved through the NF-kB pathway inhibition (Figure 2).

Several mTOR inhibitors, including everolimus and
temsirolimus, are under early Phase (I/II) clinical trials as
a radiosensitizer to treat several cancer types such as prostate
cancer, GBM, and lung cancer (90-92). In human cancer cell lines
of acute lymphoblastic leukemia (ALL), AML, cervical, breast,
colon, GBM, and kidney, the activity of mTOR is downregulated
by MLN4924 in an almost dose-dependent manner, as
evidenced with dephosphorylation of mTOR downstream
targets such as p70S6 kinase (51, 93-95). Intrinsic mTOR’s
upstream inhibitors, including the DEP domain containing
MTOR interacting protein (DEPTOR) and the regulated
in development and DNA damage responses 1 (REDDI1),
are substrates for SCFPT™CP and cullindA-RING (CRL4A),
respectively. These protein-drug interactions largely explain the
unanimous response of mTOR inhibition toward NEDDylation
inhibition (50, 51, 55). The significant inhibitory effect of
MLN4924 on the PI3K/AKT/mTOR axis has implicated the
NEDDylation inhibitors as potential therapeutic radiosensitizers
(Figure 2).

In summary, NEDDylation inhibition can block key
pro-survival pathways activated with RT via stabilization
of their intrinsic upstream inhibitory proteins. The unique
role of MLN4924 in blocking these compensatory pathways
demonstrated its potential application as a radiosensitizer
via “spatial cooperation”  “biological cooperation,” and
“cytotoxic enhancement” (4).

PROTEOLYSIS TARGETING CHIMERAS
(PROTACS)

Neither bortezomib nor MLN4924 addresses specific proteins
as they broadly inhibit the general machinery necessary for
protein degradation. MLN4924 is not selective since all the CRL
complexes in the cells are inhibited, blocking the activities of
over 400 enzymes (70). The PROteolysis TArgeting Chimeras
(PROTACs) technology was developed in recent years to
overcome these limitations of targeting the protein degradation
machinery (96). PROTACs are heterobifunctional molecules
with two different ligands connected via a linker (Figure 3).
One end of the PROTAC, ie., the “warhead binds to
the protein of interest (POI), and the other end binds to the
receptor protein in the CRL complex, thereby promoting the
physical interaction of the target protein with the E3 ligase for
polyubiquitination (Figure 3) (97). Traditional targeted therapies
using occupancy driven pharmacology only affect enzymatic
function via competitive inhibition, which requires druggable
active sites in those enzymes that are susceptible to mutations
and protein overexpression (8). Whereas, polyubiquitinated POIs
will be degraded by the proteasome with the eradication of
both the enzymatic activities and the scaffold functions of
target proteins (97). Furthermore, PROTACs-induced protein
degradation is a catalytic process, as PROTACs will dissociate
from the CRL complex after POI polyubiquitination and binds
to a new target. This unique catalytic property of PROTACs
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FIGURE 3 | An overview of the PROTAC targeting EGFR for CRL2VH--mediated polyubiquitination. (A) 2D structure of the PROTAC MS39 that targets EGFR. The
“warhead” potion of the PROTAC is based on EGFR inhibitor (EGFRI) gefitinib. (B) MS39 can recruit EGFR for polyubiquitin conjugation by the CRL2"H-. MS39
mediated EGFR degradation is a catalytic process, as evidenced with dissociation of the PROTAC from the CRL2V™- complex after EGFR polyubiquitination.

can lead to efficient POI clearance at a very low dose (99) (Figure4). PROTACs against radioresistance-related
5 (98) (Figure 3). key substrates of CRL2 and CRL4 have been developed.

Due to these unique characteristics, targeting CRL substrates ~ These substrates include the EGFR, androgen (AR) and
related to the development of radioresistance with PROTACs  estrogen (ER) receptors, CDKs, MAP kinase kinase 1 (MEK1)
could provide a new strategy to sensitize cancer cells toward RT  and MEK2, anaplastic lymphoma kinase (ALK), Bruton
(70) (Figure 4). Since 2015, over 30 small-molecule PROTACs  tyrosine kinase (BTK), bromodomain and extra-terminal
have been reported, most of them utilize substrate receptor = motif (BET) proteins, and bromodomain (BRD) proteins
proteins von Hippel-Lindau (VHL) in the CRL2 complex (Figure4) (100-107). Since all these PROTACs are first-in-
(CRL2VHL), and cereblon (CRBN) in the cullin4-RING complex  class protein degraders developed within the past 5 years, a
(CRL4“RBN) a5 the PROTAC binding sites in the E3 ligase  comprehensive understanding of the underlying molecular
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FIGURE 4 | A non-exhaustive list of PROTACs targeting proteins related with the development of radioresistance. Corresponding CRLs that mediate
polyubiquitination of these proteins were also identified. EGFR, epidermal growth factor receptor; ER, estrogen receptor; AR, androgen receptor; CDK,
cyclin-dependent kinase; ALK, anaplastic lymphoma kinase; MEK, mitogen-activated protein kinase kinase; BTK, Bruton tyrosine kinase; BET, bromodomain and

Substrates PROTAC E3 Ligase
EGFR MS39/PROTAC3 CRL2VHL
EGFR MS154 CRL4CREN
ER ERD-308 CRL2VHL
AR ARD-69/ARD-266 CRL2VHL
CDK4/CDK6 BSJ-03-204 CRLA4CREN
ALK TL13-112 CRLA4CREN
MEK1/2 MS432 CRL2VHL
BTK DD-03-171 CRL4CREN
pan-BET ARV-771 CRL2VHL
| BRD4/9 dBET6/dBRD9 CRLA4CREN

mechanism of these novel compounds is essential for developing
next-generation radiosensitizers.

PROTACSs as Radiosensitizers —Targeting

Receptors

Targeting EGFR using traditional targeted therapies, such as
monoclonal antibodies or tyrosine kinase inhibitors (TKIs), as
radiosensitizers have gained moderate success in non-small-
cell lung cancer (NSCLC), but failed in GBM and HNSCC
to improve OS rates (108, 109). Genetic alterations, including
amplification, rearrangement, altered splicing, and mutations,
that regulate EGFR expression levels and protein activities in
GBM and HNSCC, will eventually lead to the development
of resistance toward EGFR inhibitors (108, 110). Lysosome-
independent degradation of EGFR is mediated by CRL2VHE,
consistent with the report in clinical trial showing stabilization
of EGFR with bortezomib-mediated proteasome inhibition (32,
111). Recently, several PROTACs were developed to target
EGFR for CRL2VHl mediated degradation. PROTAC-based
technology offers great flexibility in choosing the clinically
relevant forms of EGFR proteins targeted for degradation
by changing the “warhead” of the degrader (Figure 3). For
example, the lapatinib-based PROTAC largely degraded the
wildtype, and exon-20 insertion mutant forms of EGFR; the
gefitinib-based PROTAC selectively degraded EGFR with exon-
19 deletion, and L858R point mutation; afatinib-based PROTAC
degraded double mutant (L858R/T790M) EGFR (112). All these
PROTACs can efficiently eliminate EGFR at low-nanomolar
concentrations, and exerted sustained inhibitory effects on
cancer cell proliferation and downstream kinases signaling of
EGEFR (112).

RT-induced overexpression of hormonal receptors, including
AR and ER, plays a vital role in mediating radioresistance in
prostate and breast cancers, respectively (113, 114). In castration-
resistant prostate cancer (CRPC) cells, the PROTAC ARD-61
can efficiently degrade AR and inhibited cancer cell proliferation
with half-maximum inhibitory concentration (IC:50) values <
500 nM, regardless of AR mutations, and expression status of
AR splice variants, such as AR splice variant-7 (AR-V7) (102).
Meanwhile, the viability of cells not expressing AR was not
affected (102). Another AR degrader ARD-69 has DC50 values
of < 1nM in prostate cancer cell lines LNCaP and VCaP (DC50:
the concentration at which 50% of the target protein has been
degraded) (115). The importance of these PROTAC:s as potential
radiosensitizers for prostate cancer is emphasized by the study
showing that targeted degradation of RT-increased AR with FDA-
approved AR degradation enhancer, dimethylcurcumin (ASC-
J9), significantly sensitized prostate cancer toward radiation
in xenograft models, while conventional anti-androgen drugs,
such as enzalutamide, has no radiosensitizing effects (114).
Meanwhile, the ER degrader ERD-308 can induce over 95% of
ER degradation at concentrations of < 5nM in ER+ breast
cancer cell lines of MCF-7 and T47D (101). Given the synergistic
effect of typical anti-estrogenic drugs with RT in the breast, and
cervical cancers, these ER degraders can also be used as potential
radiosensitizers alongside with RT (116). More importantly,
these degraders can overcome the common resistant mechanism
developed during anti-hormonal therapy.

PROTACSs as Radiosensitizers —Targeting

Oncogenic Kinases
It is well-known that many patients will eventually become
drug resistant and develop disease relapse with prolonged
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treatment
of drug

of protein kinase inhibitors (117). The mechanism
resistance is mainly attributed to the kinome
rewiring effect, whereby reactivation of the oncogenic
pathways restored via compensatory feedback activation of
alternative kinases (117). Particularly, RT-induced activation
of MEKI1/2 is associated with radioresistance is found in
several human malignancies (118, 119). Targeted inhibition
of MEK1/2 using kinase inhibitors led to radiosensitization
in several types of cancer, such as astrocytoma and pancreatic
tumor (120, 121). Meanwhile, CDK inhibitors, especially
those against CDK4 and CDKS6, synergized with RT in
killing GBM cells and prolonged survival in the orthotopic
GBM model (122). However, resistance toward MEK1/2
and CDK inhibitors will inevitably occur with prolonged
treatment (123).

Treatment with PROTACs will lead to catalytic degradation
of specific kinases, offering sustained inhibition on their
downstream targets (112). PROTACs for kinases critical for
radioresistance, including CDKs, MEK1/2, ALK, and BTK,
have been recently developed (103, 105-107). Given their
unique pharmacological characteristics, these PROTACs
carry great potential as radiosensitizers. For example, the
PROTAC MS432 recruits MEK1/2 for CRL2VHL.mediated
polyubiquitination (105). It can suppress extracellular signal-
regulated kinase (ERK) phosphorylation and efficiently inhibit
colorectal cancer cell proliferation with DC50 values of
31nM and 17nM for MEK1 and MEK2 in HT-29 cells,
respectively (105). Meanwhile, the CDK6 degrader was
recently developed by linking the FDA-approved CDK6
inhibitor palbociclib with a thalidomide derivative for targeted
CDK6 polyubiquitination by CRL4AREN (124). Given that
the combination treatment of RT with CDK inhibitors
palbociclib and ribociclib are well-tolerated in malignancies
such as breast cancer and glioma (NCT 02607124), CDKs-
targeting PROTACs are great pharmaceutical candidates for
radiosensitizers (125).
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Hypofractionated Radiotherapy in
Combination With Chemotherapy
Improves Outcome of Patients With
Esophageal Carcinoma
Tracheoesophageal Groove Lymph
Node Metastasis

Jian Wang’, Jingping Yu?, Youqin Jiang?, Dong Pei?, Haiwen Zhu®* and Jianlin Wang?*

' Department of Radiotherapy, Jiangyin People’s Hospital, Jiangyin, China, 2 Department of Radiotherapy, The Affiliated
Changzhou No. 2 People’s Hospital, Nanjing Medical University, Changzhou, China, ® Department of Radiotherapy,
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This study investigated the efficiency and safety of hypofractionated radiotherapy
(HFR) combined with paclitaxel chemotherapy for the treatment of postsurgery
tracheoesophageal groove lymph node (TGLN) metastasis in patients with esophageal
cancer (EC). Fifty-three EC patients with TGLN metastasis after surgery admitted to the
Yancheng Third People’s Hospital from January 2013 to June 2015 were included in
this study. They were randomly divided into the HFR group (n = 25) and conventional
fractioned radiotherapy (CFR) group (n = 28) based on the random grouping method.
Patients in the HFR group received treatment with radiation of 60 Gy (5 fractions per
week, total 20 fractions) combined with paclitaxel chemotherapy at a dose of 50 mg
once per week for 4 weeks. Patients in the CFR group received radiation of 60 Gy (5
fractions per week, total 30 fractions) combined with paclitaxel chemotherapy at a dose
of 50 mg once per week for 6 weeks. The adverse events and treatment outcomes in
these two groups were analyzed. It was found that there was no significant difference
in the incidence of radiation esophagitis in the HFR group compared with that of the
CFR group (grades 3-4, 44.0 vs. 25.0%; P = 0.149). There was no statistical difference
in the incidence of radiation pneumonitis between these two groups (grades 3—-4, 16.0
vs. 7.1%; P = 0.314). No statistical difference was noticed in complete response (CR),
partial response (PR), and no response (NR) between these two groups. The median
overall survival (OS) in the HRF group was significantly longer compared with that of
the CRF group (24.2 months (95% ClI, 16.2-32.1 months) vs. 11.8 months (95% Cl,
9.2-14.4 months); P = 0.024). Our results indicated that the combination of HFR and
chemotherapy improved the prognosis of EC patients with TGLN metastasis with no
increased adverse events.

Keywords: esophageal cancer, tracheoesophageal groove Ilymph node metastasis,
radiotherapy, conventional fractioned radiotherapy, chemotherapy, prognosis
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INTRODUCTION

Esophageal cancer (EC), the common malignancy in China, is
one of the leading causes of cancer-related death (1). Currently,
surgery is preferred for the treatment of EC; however, a
larger number of patients may present tracheoesophageal
groove lymph node (TGLN) metastasis after surgery, with
an incidence of 12-80% (2-5). Most of these patients are
featured by hoarseness, bucking, and dyspnea, which hamper
their quality of life. Furthermore, TGLN is also a negative
prognostic factor for patients with EC. Radiotherapy is a major
treatment option for TGLN metastasis in EC patients (6).
Recently, the application of intensity-modulated radiation
therapy (IMRT) contributes to target conformance and
dose homogeneity, which reduces the dose of radiation
to normal tissues and increases the local control and
survival rate (7).

In a previous study, the efficiency and prognosis of EC patients
who underwent chemoradiotherapy (CRT) were superior to
that of the radiation monotherapy, and the related adverse
events were tolerable (8). In clinical practice, conventional
fractionated radiotherapy (CFR) has been commonly used for
the treatment of EC. In recent years, it has been reported
that hypofractionated radiotherapy (HFR) is feasible for treating
moderate and advanced EC as it contributes to the overall
survival (OS) (9, 10).

In this study, we investigate whether HFR could be used
to improve the treatment efficacy in EC patients with TGLN
metastasis after surgery. EC patients with TGLN metastasis were
divided into two groups and treated with HFR or CFR, combined
with paclitaxel chemotherapy. The treatment efficiency, toxicity,
and prognosis of patients who underwent these two different
treatment options were analyzed.

MATERIALS AND METHODS

Patients

Postoperative EC patients with TGLN metastasis admitted to
the Yancheng Third People’s Hospital from January 2013 to
June 2015 were included in this study. The inclusion criteria
were as follows: (1) patients aged less than 75 years, with
clinical symptoms of hoarseness and bucking, after excluding
vocal cord lesions; (2) patients who were diagnosed with TGLN
metastasis using CT, MRI, and/or PET-CT; (3) patients with
no severe cardiovascular diseases (CVDs), renal or splenic
dysfunction; and (4) patients with an expected survival duration
of at least 3 months. The exclusion criteria were as follows: (1)
women with pregnancy or lactation; (2) patients complicated
with concurrent malignancies; (3) patients with metastasis in
the other organs and/or lymph nodes; (4) patients with CRT
contraindications; and (5) patients with inadequate follow-
up data. The following variables were gathered for analysis:
age, gender, previous history, clinical symptoms, laboratory
test results, and imaging findings. All participants provided
informed consent. The study protocol was approved by the
Ethical Committee of Yancheng Third People’s Hospital. This

clinical trial was registered in the Chinese Trial Registry
(ID: CTR1800016848).

Grouping of Patients

As the radiation frequency in both groups was different in this
study, we could not arrange the blinded study. Instead, an open-
label study was conducted. The patients were randomly divided
into two groups: the HFR group and the CFR group. Patients
in the HFR group received radiation of 60 Gy/20 fractions
(3 Gy/fraction, 5 fraction/week) combined with chemotherapy
using paclitaxel with a dose of 50 mg once per week for
4 weeks. Patients in the CFR group received radiation of
60 Gy/30 fractions (2 Gy/fraction, 5 fraction/week) combined
with chemotherapy using paclitaxel with a dose of 50 mg once
per week for 6 weeks.

For the radiotherapy, all the patients were fixed with a
thermoplastic head mask, followed by cervical and thoracic
scanning with a slice thickness of 2.5 mm. The CT images were
delivered to the Eclipse system. The gross tumor volume (GTV)
was defined as TGLN shown on CT, MR, and/or PET-CT scans.
Planning target volume (PTV) was termed by adding a 1-cm
margin around the GTV. The maximal doses for the spinal cord
in the CRT and HRT groups were less than 45 and 40 Gy,
respectively. The average dose for lung in the CRT and HRT
groups were less than 13 and 10 Gy, respectively. The volume
of the whole lung receiving >20 Gy (V) in the CRT and HRT
groups was less than 25 and 20%, respectively. The treatment was
carried out in a linear accelerator (Varian Unigue) using a photon
beam of 6 MV. For the chemotherapy, paclitaxel was given via
intravenous drip (50 mg) before radiotherapy for 4 weeks in the
HER group and 6 weeks in the CFR group.

Patients Follow-Up

The evaluation for the acute radiation-induced esophageal and/or
pulmonary injury was based on the standards proposed by
the Radiation Therapy Oncology Group (RTOG) in 1997 (11).
The lymph node metastasis was evaluated using the Response
Evaluation Criteria in Solid Tumors (RECIST, version 1.1). After
treatment, the patients were followed up every 3 months within
the first 2 years and 6 months once after 2 years. The follow-
up data included case history, physical examination, laboratory
test results, electrocardiogram, cervical CT, and thoracic CT. The
primary endpoint was OS. All the patients were followed up until
November 30, 2017.

Statistical Analysis

The SPSS 19.0 software was used for the statistical analysis.
Measurement data were presented as mean =+ standard deviation
and were compared using the Student’s ¢ test. The numeration
data were compared using the Chi square test. Non-parametric
statistics was used for the analysis of ranked data. Kaplan-Meier
method was used to calculate the OS and PFS. Log rank test was
used for the analysis of prognosis, and Cox regression analysis
was used for the multivariate analysis. P < 0.05 was considered to
be statistically significant.
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RESULTS

Patients’ Characteristics and Adverse

Events of Radiotherapy

Fifty-three patients were included in the study. Among them, 25
patients were in the HFR group and 28 in the CFR group. There
was no statistical difference in the demographic characteristics of
patients, such as sex, age, site of lymph nodes, diameter of lymph
node, and clinical TNM stage between the two groups (P > 0.05;
Table 1).

The adverse events of radiotherapy for patients with EC were
mainly manifested by radiation esophagitis and pneumonitis.
HFR caused no alternation to the incidence of radiation
esophagitis and pneumonitis compared with CFR. The incidence
of grades 1-2 or 3-4 radiation esophagitis in the HFR group
showed no statistical difference compared with that of the
CFR group (44.0 vs. 25.0%; P = 0.149). Similarly, no statistical
difference was noticed in the incidence of grades 0-2 or 3-4
radiation pneumonitis between these two groups (P = 0.314;
Table 2).

HFR Showed Similar Short-Term
Efficiency Compared With CFR

Two months after radiotherapy, the complete response (CR) and
partial response (PR) rate of HFR was 36 and 44%, while that of
CFR was 21.4 and 53.6%, respectively. There was no statistical
difference in the treatment efficiency between these two groups

(P = 0.314; Table 3). The treatment efficiency in patients with
lymphatic lesion with a diameter of <2 cm was significantly
higher than those with lymphatic lesion with a diameter of >2 cm
(P < 0.001; Table 4).

HFR Treatment Prolonged OS and
Reduced Mortality

The 1- and 2-year survival rate of patients was 56.6 and 35.6%,
respectively (median OS, 14.7 months; 95% CI, 9.6-19.8 months).
The median OS was significantly higher in the HFR group
compared with that in the CFR group (24.2 months (95% CI,
16.2-32.1 months) vs. 11.8 months (95% CI, 9.2-14.4 months);
P = 0.024; Figure 1). For the patients with lymphatic metastatic
lesion <2 cm, the median OS was 24.1 months (95% CI, 12.0-
36.1 months), which was significantly higher than those with
a lymphatic metastatic lesion >2 c¢m, who had a median OS
of 7.3 months (95% CI, 6.2-8.2 months; P = 0.001; Figure 2).
Patients with a lymphatic metastatic lesion <2 c¢m in the HFR
group showed alonger OS compared with those of the CFR group
(31 vs. 7.3 months; P = 0.039; Figure 3). Meanwhile, patients
with a lymphatic metastatic lesion >2 cm in the HFR group
showed a longer OS compared with those of the CFR group
(12.1 vs. 6.9 months; P = 0.027; Figure 4). Univariate analysis
indicated that TGLN diameter (P < 0.001) and fractioned
types (P = 0.028) were risk factors for the prognosis. After
adjusting with the age, gender, TGLN, and fractioned types,
multivariate analysis indicated that TGLN with a diameter <2 cm
(HR = 0.108; 95% CI, 0.047-0.249) and HFR (HR = 0.236;

TABLE 1 | Patients’ characteristics.

Variables N Test group (n = 25) Control (n = 28) x2 value P value
Sex 0.007 1.000
Male 40 19 21
Female 13 6 7
Age (years) 1.002 0.365
37-59 39 20 19
60-75 14 5 9
Site of lymph nodes - 0.856
Left 28 12 16
Right 19 10 9
Both 6 3 3
Diameter of lymph nodes (cm) 0.335 0.769
<2 17 9 8
>2 36 16 20
T stage - 0.784
T1-2 16 7 9
T3 31 16 15
T4 6 2 4
N stage 00.061 1.000
NO 14 7 7
N1 39 18 21
TNM stage - 0.452
| 3 2 1
I 36 15 21
Il 14 8 6
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TABLE 2 | Comparison of radiation-induced adverse events.

Groups N Radiation esophagitis Radiation pneumonitis
Grades 1-2 Grades 3-4 Grades 0-2 Grades 3-4
HFR group 25 56.0 44.0 84.0 16
CFR group 28 75.0 25.0 92.9 71
Z value —1.444 —1.006
P value 0.149 0.314
HFR, hypofractionated radiotherapy; CFR, conventional fractionated radiotherapy.
TABLE 3 | Comparison of short-term efficiency between two groups.
Group N CR PR SD Z value P value
HFR group 25 36.0% 44.0% 20.0% —1.006 0.314
CFR group 28 21.4 53.6 25.0
HFR, hypofractionated radiotherapy; CFR, conventional fractionated radiotherapy.
TABLE 4 | Comparison of short-term efficiency in patients with a lymphatic metastatic lesion of different diameters.
Tumor diameter (cm) N CR PR SD Z value P value
<2 36 36.1 55.6 8.3 —3.741 <0.001
>2 17 0.0 52.9 471
100 100 T
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80F 80
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S < eok
< eof T 60
I ~—
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&~ a0k wn  40F
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FIGURE 2 | Comparison of OS in patients with various lymph node
FIGURE 1 | Comparison of OS between HFR group and CFR group. Patients metastases. Patients with lymph node diameter <2 cm have better OS than
who received HFR treatment have better OS than those treated with CFR. those with >2 cm.

95% CI, 0.105-0.528) were independent risk factors for better
prognosis (Table 5).

There were 38 deaths in total (71.70%) during the study
period. Among the death cases, 3 cases died from TGLN
recurrence in the HFR group, while in the CFR group, 12 cases
died from TGLN recurrence. In each group, five cases died from
metastasis to other organs. In the HFR group, one died from
pulmonary embolism and one died from cardiac failure. In the
CER group, one died from pulmonary embolism. Five cases died
from unknown causes in each group. The TGLN recurrence in
the HFR group was significantly lower than that of the CFR group
(12.0 vs. 42.9%; P = 0.016).

DISCUSSION

Surgery is commonly used for the treatment of EC, while
lymphadenectomy is used for the resection of TGLN (12-15).
However, TGLN metastasis after surgery is the major cause of
treatment failure of EC, with an incidence of 12-80% (2-5),
especially the right lymph node metastasis (16, 17). The diagnosis
of TGLN metastasis is mainly relied on CT and PET-CT scans
(6, 18-21), where there is a presence of a short diameter >0.5 cm
and/or high uptake of 18F-PDG (22). In clinical practice, lymph
node metastasis may induce injury of laryngeal nerve, which
results in hoarseness and bucking and a poor prognosis.
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There is no consensus on the treatment of TGLN metastasis
after surgery. Local radiotherapy and adjuvant chemotherapy
are usually used for treating TGLN metastasis. After surgery,
there is a decrease in blood supply to the TGLN leading
to lower sensitivity of radiotherapy. Thus, the treatment
efficiency of CFR is not satisfactory. Currently, HFR has
rarely been used for the treatment of TGLN metastasis,
because severe tracheal and/or esophageal perforation might
occur. In a previous study, Song et al. showed that a daily
dose of radiation <5 Gy was feasible for treating patients
with advanced EC with satisfactory tolerance (10). Besides,
Ma et al. showed that a dose of 54-60 Gy/18-20 fractions
induced no obvious adverse events and may contribute to
improving efficiency. Radiotherapy was used for the management
of local tumor and peripheral infiltration, and it could not
control distal metastasis (23). Several studies had tried the

combination of radiotherapy and chemotherapy using low-
dose paclitaxel to improve the sensitivity of radiation of EC
cells, which could inhibit the metastasis and improve the
OS (24, 25). In this study, the major effects of paclitaxel
were to sensitize radiation rather than its chemotherapy-
related features.

In this study, we compared the treatment efficacy using
either HFR or CFR combined with chemotherapy in patients
with TGLN metastasis after surgery. The dose used in the
HFR group was about 80 Gy. The incidence of radiation
esophageal and pulmonary injury in the HFR group was
slightly higher than those of the CFR group, but there was
no statistical significance. The median OS in the patients with
a lymph node diameter <2 c¢cm was significantly higher than
that of the counterparts with a lymph node diameter >2 cm

TABLE 5 | Univariate and multivariate analyses of OS covariants.

Variable Univariate analysis Multivariate analysis
HR 95% ClI P value HR 95% CI P value
Gender
M/F 1.326 0.639-2.749 0.449 1.371 0.626-3.002 0.429
Age (years)
<60 vs. >60 0.832 0.393-1.761 0.832 0.537 0.247-1.164 0.115
T staging, postoperative
Ta_avs. T1_o 1.262 0.610-2.613 0.530
N staging, postoperative
N4 vs. No 1.457 0.685-3.096 0.328
TNM staging, postoperative
= vs. Il 1.117 0.541-2.304 0.765
Diameter of lymph nodes
<2vs.>2cm 0.217 0.110-0.426 <0.001 0.108 0.047-0.249 <0.001
Fractioned types
HFR vs. CFR 0.474 0.244-0.921 0.028 0.236 0.105-0.528 <0.001
HFR, hypofractionated radiotherapy; CFR, conventional fractionated radiotherapy.
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(24.1 months (95% CI, 12.0-36.1 months) vs. 7.3 months (95%
CI, 6.2-8.2 months), P < 0.05). This demonstrated that it would
be beneficial for EC patients to receive regular thoracic CT or
PET/CT in order to monitor TGLN metastasis at an early stage.
The median OS in the HFR group was higher than those of
the CFR group (24.2 months (95% CI, 16.2-32.1 months) vs.
11.8 months (95% CI, 9.2-14.4 months), P < 0.05). Patients
with a lymph node metastasis of <2 cm in the HFR group
showed a longer OS compared with those of the CFR group
(31 months vs. 7.3 months, P = 0.039). In addition, patients
with a lymph node metastasis of >2 cm in the HFR group
showed a longer OS compared with those of the CFR group (12.1
vs. 6.9 months, P = 0.027). These demonstrated that patients
with TGLN metastasis may benefit from the HFR. This was
not consistent with the previous description in which a higher
radiotherapy dose was required for the patients with a large
tumor size (26). As previously described, pathological staging was
a prognostic factor for EC (27, 28). Nevertheless, in this study,
TGLN with a diameter <2 cm (HR = 0.108; 95% CI, 0.047-0.249)
and HFR (HR = 0.236; 95% CI, 0.105-0.528) were independent
risk factors for better prognosis.

There are some limitations in this study. The sample
size is small because the incidence of TGLN is usually
low. Studies involving a larger sample size are required to
further validate the efficiency and safety of the combination
of HFR and chemotherapy for the treatment of TGLN
metastasis after surgery.

In conclusion, EC patients with TGLN metastasis after
surgery may benefit from the combinational treatment using
HFR and paclitaxel chemotherapy. This study would help
clinicians to make individual treatment decisions on late-stage
cancer patients.
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Background: A profound understanding of the molecular landscape of glioblastoma
multiforme (GBM) will make it possible to develop better and more intelligent therapies
directed toward specific molecular targets and may one day yield better prognostic
capabilities. Immune checkpoint molecules have inspired the emergence of immune
checkpoint-targeting therapeutic strategies. However, the prognostic significance of the
immune checkpoint molecule T cell immunoglobulin mucin-3 (Tim-3) on tumor-infiltrating
immune cells (TlICs) and O-6-methylguanine-DNA methyltransferase (MGMT) promoter
methylation status has not yet been fully elucidated. We aimed to develop an MGMT
promoter methylation status-associated immune prognostic signature for GBM.

Patients and Methods: A total of 84 patients with newly diagnosed GBM were included
in this study. MGMT promoter methylation status was retrospectively analyzed, and the
expression level of Tim-3 was investigated using immunohistochemistry (IHC). The
correlation between Tim-3 expression combined with MGMT promoter methylation
status and prognosis was explored.

Results: Tim-3 expression varied in GBM patients. Mesenchymal expression of Tim-3 in
GBM tissues was present 73.81% (62/84) of patients, and these were subdivided into
groups based on low 15.48% (13/84), moderate 7.14% (6/84), or strong expression
51.19% (43/84). Forty-eight patients had tumors that tested positive for MGMT promoter
methylation, while the remaining 36 patients tested negative.

Conclusions: We profiled the immune status of MGMT promoter methylation in GBM
and established a local immune signature for GBM that could independently identify
patients with a favorable prognosis, indicating a relationship between prognosis and GBM
immune signature. MGMT promoter methylation with lower Tim-3 expression was
significantly associated with better survival.

Keywords: glioblastoma multiforme, O-6-methylguanine-DNA methyltransferase, prognosis, immune, T cell
immunoglobulin mucin-3
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INTRODUCTION

Glioblastoma is the most common and devastating primary brain
tumor in adults (Wirsching et al., 2016). Despite recent advances,
only a few treatment strategies are available for GBMs, and their
outcomes remain dismal (Stupp et al., 2015). There are few effective
treatment options for GBMs, and these carry high risks of relapse
and short survival periods. Because the biology of GBM at the
cellular and molecular levels is not well understood, especially in
relation to treatment, the development of novel therapeutic
approaches requires a deeper understanding of the tumor’s nature
(Yu et al, 2017). In addition to standard treatment involving
surgery, radiotherapy and chemotherapy, immunotherapy has
been rapidly identified as a promising modality to treat GBM
(Deng et al, 2019). A number of immune-related parameters
have been reported to be predictive of outcomes for patients with
GBM (Han et al,, 2014; Han et al., 2015). In particular, MGMT
promoter methylation status was reported to be significantly related
to GBM prognosis (Rao et al., 2018). However, there is still a lack of
studies that systematically explore the effects of MGMT promoter
methylation status on the immune microenvironment and on the
associations between MGMT promoter methylations status,
immune microenvironment, and prognosis.

Tim-3 is widely expressed by mature T lymphocytes and
macrophages (Sabatos et al., 2003). Of note, with the exception of
the immune response, increasing evidence has suggested that
Tim-3 has functional roles in tumor biology (Yan et al., 2015).
Previous studies suggest that Tim-3 is a negative immune
regulator that may be upregulated in the GBM tumor
environment, so Tim-3 is a promising target in glioma treatment.
However, until now, no evidence has revealed the value of Tim-3 as
a prognostic biomarker in GBM patients. The present study aimed
to investigate the influence of MGMT promoter methylation on the
immune microenvironment and to develop an MGMT-associated
immune prognostic signature for GBM.

MATERIALS AND METHODS

Patients and Specimens

A cohort of patients with newly histologically diagnosed GBM
(WHO grade IV) was studied consecutively from July 2016 to
January 2018. We only included patients for whom affirmatory
MGMT promoter methylation status, treatment course, and
survival outcome were known. Patients with a mixed history of
cancer other than GBM and previous adjuvant radiotherapy or
chemotherapy were excluded. Patients who died of diseases
unrelated to glioma were also excluded from the study. Patient
age ranged from 18 to 70 years at the time of diagnosis.
Neurological status was assessed before and after neurosurgery,
and Karnofsky performance status (KPS) was not less than 70 in
all patients. A series of 84 eligible patients who had tumor tissue
available for testing were included in this study. These patients
received standard subsequent treatment according to the Stupp

Abbreviations: Tim-3, T cell immunoglobulin mucin-3; GBM, glioblastoma
multiforme; OS, overall survival; IHC, immunohistochemistry.

protocol (Stupp et al., 2005). Follow-up was carried out regularly.
The overall survival (OS) was defined as the interval from GBM
diagnosis until either death or, for those who were removed, until
the last known follow-up.

Immunohistochemistry (IHC)

Tim-3 was immunohistochemically stained using a previously
described standard technique (Li et al, 2018). Briefly, slides were
deparaffinized in xylene and rehydrated in graded alcohol. Antigen
retrieval was performed in tris-ethylenediaminetetraacetic acid
(EDTA; pH 9.0) buffer at 95°C for 20 min. Slides were incubated
in tris-buffered saline (TBS) for 5 min. Endogenous peroxidase
blocking was performed in 3% H,O, for 10 min. Subsequently, the
slides were incubated in a rabbit polyclonal antibody against Tim-3
(1:500; Abcam, Inc., Cambridge, MA) overnight at 4°C. The slides
were rinsed five times with 0.01 M phosphate-buffered saline (PBS;
pH 7.4) for 10 min. Sections were incubated with primary
antibodies against Tim-3 (1:1,000; catalog no. ab185703, Abcam)
and with a horseradish peroxidase (HRP)-tagged secondary
antibody (1:1,000; catalog no. sc-3836, Santa Cruz Biotechnology,
Inc.) for another 1 hour at 37°C. Subsequently, the slides were
washed in PBS and stained with 3,3-diaminobenzidine (DAB).
Finally, the slides were counterstained, dehydrated, and mounted.

IHC Assessment

The degree of Tim-3 protein expression was independently
reviewed by two neuropathologists. The number of stained
cells was designated as unexpressed (0), weak (1-5 cells/HPF),
moderate (5-10 cells/HPF), or strong (>10 cells/HPF). The
model of the microscope was a BX53, Olympus.

MGMT Promoter Methylation

For the subset of patients who had documented positive MGMT
promoter methylation of their initially resected tumor tissues,
MGMT promoter methylation was further confirmed by
methylation-specific real-time PCR, according to our
institutional practice.

Statistical Analysis

Statistical analyses were performed using GraphPad Prism
version 7.0.0. The correlation between Tim-3 expression
intensity combined with MGMT promoter methylation status
and prognosis was calculated using a chi-square test. Spearman’s
correlation analysis and the corresponding statistical significance
were used to evaluate correlations with gene expression.
Independent prognostic factors for OS were identified using
the Cox’s proportional hazards model. The OS curves were
plotted using the Kaplan-Meier method, and log-rank tests
were employed to assess the resulting survival curves. A
probability value of less than 0.05 was regarded as significant.

RESULTS

Clinicopathological Characteristics
Archival tissue samples from 84 patients with GBM were
enrolled in the study. Of the 84 GBM patients, 43 were men
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(51.19%) and 41 were women (49.81%). The median age at
diagnosis was 41 years (range, 18-70 years), and the median KPS
was 90 (range, 70-100). All specimens were obtained from the
supratentorial area as identified by preoperative MRI. The
follow-up duration ranged from 4 to 47 months, and the
median OS was 17.3 months.

Tim-3 Expression

The expression status of specific inhibitory receptors, including
Tim-3, programmed cell death 1 (PD-1), cytotoxic T-
lymphocyte-associated protein 4 (CTLA4), and lymphocyte-
activation gene 3 (LAG-3), are associated with T cell
exhaustion and immune escape. The Oncomine database was
used to investigate the mRNA levels of these molecules in GBMs
and normal tissues (Figure 1C). As shown in Figure 1A, Tim-3
expression was markedly higher in GBM than in corresponding
normal tissue. To validate the relationships between the immune

checkpoint molecules Tim-3 and LAG-3 and between Tim-3 and
PD-1, RNA-seq data from the TCGA database (https://
cancergenome.nih.gov/) were analyzed. As shown in Figure
1B, with a p-value threshold of 0.05, Tim-3 expression was
significantly related to both LAG-3 and PD-1 expression in
GBM. Further, Tim-3 and other exhausting immune molecules
(LAG-3, PD-1, CTLA4, CD244, and PD-1) exhibited
significantly different expression profiles between normal brain
tissues and GBM tissues according to the TCGA database,
indicating their potential correlation with glioma progression
(Figure 1). According to our immunohistochemical analysis,
mesenchymal expression of the immune checkpoint molecule
Tim-3 in tumor-infiltrating immune cells (TIICs) was not
observed in 22/84 patients (26.19%), weak in 13/84 patients
(15.48%), moderate in 6/84 patients (7.14%), and strong in 43/84
patients (51.19%) (Figure 2 and Table 1). Notably, strong
expression of Tim-3 was more frequently observed in GBM
than it was in other tissues.
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FIGURE 1 | Differential expression of the immune checkpoint molecules PD-1, CTLA4, Tim-3 and LAG-3 in GBM tissues compared to corresponding normal adjacent
tissues by TIMER analysis. Tim-3 expression in GBM compare with normal adjacent tissues (A). Tim-3 expression is significantly associated with LAG-3 and PD-1 in GBM
according to the TCGA database (B). Tim-3 is one of the genes expressed differentially in exhausted T cells in GBM according to the TCGA database (C).
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FIGURE 2 | (A-D) Immunohistochemical staining of Tim-3 expression in formalin-fixed, paraffin-embedded GBM tissues.

TABLE 1 | Tim-3 expression in 84 GBM samples.

No. of cases (84) NE (22) Tim-3 expression Strong (43)
Weak (13) Moderate (6)

Methylation 14 2 22

Non-methylation 8 4 21

NE, no expression.

MGMT Methylation Status in 84

GBM Samples

MGMT methylation status was analyzed for the 84 patients
included in this study. All patients had MGMT promoter
methylation test results. Testing was performed via methylation
specific real-time PCR at the time of diagnosis. Forty-eight
patients (57.14%) were determined to have MGMT methylated
tumors, and 36 patients (42.76%) were determined to have
MGMT unmethylated tumors (Figure 3 and Table 1).

Correlations Between MGMT Methylation
Status Combined With Tim-3 Expression
and Survival

The relationship between Tim-3 expression and MGMT promoter
methylation status is shown in Table 1 and Figure 3. A low
expression of Tim-3 in TIICs was associated with MGMT
promoter methylation status. Univariate analysis revealed a
significant correlation between low expression of Tim-3 in TIICs
in combination with MGMT promoter methylation and a better
prognosis. We summarized the correlation between Tim-3

expression combined with MGMT promoter methylation and
GBM patient prognosis (Figure 4). Increased expression of Tim-3
combined with MGMT promoter nonmethylation was significantly
associated with a poor prognosis. No significant correlations
between Tim-3 expression level and either gender (P = 0.846) or
tumor location (P = 0.447) were observed. However, moderate or
strong expression of Tim-3 with either MGMT promoter
methylation or nonmethylation was associated with a poor
prognosis. In patients with no Tim-3 expression in combination
with MGMT promoter nonmethylation, there was a similar
association with prognosis, while MGMT promoter methylation
was associated with a good prognosis.

Multivariate Cox regression analyses confirmed that a
combination of Tim-3 expression and MGMT promoter
methylation status was an independent risk factor for survival in
GBM patients. Strong expression of Tim-3 in combination with
MGMT promoter nonmethylation correlated significantly with
shorter OS in each of the four subgroups (p < 0.05, Figure 4). The
median survival was 16.9 and 16.4 months for patients whose tumor
had unexpressed and moderate levels of Tim-3, respectively, whereas
the median survival was 7.6 months for those who showed high
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levels of Tim-3 expression and MGMT promoter nonmethylation.
In patients with low expression of Tim-3 and with MGMT promoter
methylation, the average survival time was 21.8 months.

DISCUSSION

Glioblastoma is the most common and lethal primary brain
tumor, with a high risk of recurrence and a short survival period,
and finding the cure for this formidable disease is a daunting task
(Stupp et al,, 2015; Li et al., 2018). Recent developments in
glioblastoma research emphasize targeting the molecular
characteristics of the tumor as well as various approaches
related to immunotherapy. Many new molecular markers have
been identified, but MGMT promoter methylation status in
particular is commonly used in GBM studies (Guo et al., 2019).

The discovery that differential MGMT promoter methylation
in GBM plays a key role in the understanding of glioma biology
(Chai et al,, 2019). Increasing numbers of studies indicate that
the tumor immunological microenvironments of gliomas differ
based on their molecular properties (Berghoff et al.,, 2017).
However, the mechanism that regulates the relationship
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FIGURE 3 | The bar graph shows the methylated and unmethylated MGMT distributions in different Tim-3 expression groups.

between MGMT promoter methylation status and the immune
microenvironment is still unknown. The current study
systematically investigated the prognostic impact of GBM of
immune checkpoint molecule Tim-3 expression and MGMT
promoter methylation status in TIICs. We identified Tim-3
expression in combination with MGMT promoter methylation
status as a novel prognostic parameter for GBM. MGMT
promoter methylation status was related to Tim-3 expression
in immune cell infiltrating GBM. Our data demonstrated that
Tim-3 is differentially expressed in most GBM tissues. Further,
we observed that the checkpoint molecule Tim-3 in combination
with MGMT promoter methylation status showed significant
prognostic potential. Interestingly, strong expression of Tim-3 in
combination with MGMT promoter nonmethylation showed a
poor effect on survival. Thus, expression of Tim-3 with MGMT
promoter methylation status has potential to be a prognostic
predictor in immune cell infiltrating GBM.

To the best of our knowledge, the present study is the first to
report that Tim-3 expression in combination with MGMT
promoter methylation status is a critical prognostic variable for
patients with GBM. Tim-3 is an immune regulatory molecule
that motivates downstream cascade events upon stimulation by
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FIGURE 4 | Kaplan-Meier survival curves showing overall survival according to MGMT promoter methylation status.

Frontiers in Pharmacology | www.frontiersin.org

September 2020 | Volume 11 | Article 584652


https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles

Zhang et al.

MGMT Status-Associated Immune Prognostic Signature

its ligand (Liu et al.,, 2014; Yan et al., 2015). Emerging research
has demonstrated the importance of Tim-3 in human
tumorigenesis. However, no studies have been performed
which investigate the role of Tim-3 expression in combination
with MGMT promoter methylation status in GBM patient
prognosis. Aberrant expression of Tim-3 has been reported to
boost tumor progression and to be associated with unfavorable
prognosis in many types of cancers (Piao et al., 2014; Yan et al,,
2015; Zheng et al,, 2015; Tawk et al., 2016; Zhang et al., 2019).

Tim-3 has previously been reported to be highly expressed in
prostate cancer, hepatocellular carcinoma, and melanoma (Piao
et al,, 2014; Yan et al,, 2015; Zheng et al., 2015; Tawk et al., 2016;
Zhang et al., 2019). We initially examined Tim-3 protein levels in
GBM tissues using immunohistochemical analysis and observed
the expression of Tim-3 in GBM interstitial tissue. In line with
previous reports, the present study found that expression of Tim-
3 was significantly stronger in GBM samples without MGMT
methylation. Tim-3 can efficiently predict the aggressive behavior
of head and neck squamous cell carcinomas (Chakravarthi et al.,
2014). In prostate cancer, Tim-3 overexpression results in an
attenuated level of tumor suppressor FLRT3 and increased
expression of genes that trigger invasion and metastasis, such as
MMPs (Kim et al, 2017). One study reported that Tim-3
promotes glioma cell proliferation, and increased levels of Tim-3
enhance angiogenesis by inducing transdifferentiation of glioma
stem cells into endothelial cells and by stabilizing vascular base
membranes, which was implicated as a mechanism by which Tim-
3 furthers the progression of gliomas (Hegi et al., 2005). However,
that study did not explore the association between Tim-3 levels
and prognosis in glioma patients, probably due to the limited
number of glioma specimens available. Therefore, the prognostic
significance of Tim-3 in glioma remains unclear.

Molecular genetic testing, in particular testing for MGMT
promoter methylation, is currently performed to predict the
success of standard chemotherapy in GBM (Wick et al., 2010).
In one study, 57.14% of responders exhibited MGMT promoter
methylation. The same study concluded that patients with MGMT
promoter methylation had better outcomes following treatment
with temozolomide (Malmstrom et al., 2010). Another single-
center study reported that MGMT promoter methylation is an
independent prognostic factor for positive outcomes in GBM,
including prolonged progression-free survival (PFS) and OS
(Dunn et al, 2009). To further investigate the relationship
between MGMT promoter methylation status and the expression
of Tim-3 in GBM, we retrieved 84 specimens from a tumor tissue
bank. In line with previous findings, Tim-3 was expressed at
differing levels in GBM tissues. High Tim-3 expression was more
frequently observed in GBMs from patients who did not show
MGMT promoter methylation, which itself was capable of
predicting poor prognosis. Among the 84 patients included in
this study, the median OS was 17.3 months. The survival time for
the subset of GBM patients with low Tim-3 expression and MGMT
promoter methylation was longer than those with moderate or
strong Tim-3 expression. Subsequent multivariate cox regression
analyses confirmed that Tim-3 expression with MGMT promoter
methylation was an independent prognostic factor for GBM

patients. The subgroup analysis revealed that strong Tim-3
expression together with MGMT promoter nonmethylation was
strongly correlated with shorter survival time. The average survival
time, however, hardly differed between patients with unexpressed
and those with moderate Tim-3 expression.

We also observed that high-risk GBM patients had higher
levels of Tim-3 and unmethylated MGMT. We then constructed
an MGMT-associated immune prognostic signature which
demonstrated the potential to provide novel insights into the
GBM immune microenvironment and possible immunotherapies.
This enabled us to classify patients into subgroups with distinct
outcomes and immunophenotypes, signifying that this signature
may be used to delimit the current prognostic model and facilitate
further stratification of patients with GBM and improve the
accuracy of prognoses. The results of the current study integrate
the complementary values of molecular pathology and immune
checkpoint molecule Tim-3 expression to develop a novel model
which provides superior survival prediction.

CONCLUSION

Our data demonstrate that Tim-3 expression together with MGMT
promoter methylation status is correlated with survival in GBM,
indicating that Tim-3 is a promising target. Our study assessed the
association between clinical prognosis and Tim-3 expression in
combination with MGMT promoter methylation. For the first
time, we report an association between high levels of Tim-3
expression without MGMT promoter methylation in GBM
tissues and worse prognoses. More importantly, univariate and
multivariate analyses revealed that a high expression of Tim-3 with
MGMT promoter methylation status was a clear prognostic factor
for patients with GBM. Moreover, the checkpoint molecule Tim-3
is clearly associated with treatment response and offers prompt,
meaningful information for selecting chemotherapeutic drugs.

LIMITATIONS

The current study has several limitations. First, it was a retrospective
study. Second, the number of patients was limited. Third, selection
bias could not be avoided completely. In addition, there may be
other parameters we did not consider that could have influenced the
study’s results.
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Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They
mediate the interactions between cells-cells and cells-ECM. The crosstalk between
cancer cells and their microenvironment triggers a variety of critical signaling cues and
promotes the malignant phenotype of cancer. As a type of transmembrane protein,
integrin-mediated cell adhesion is essential in regulating various biological functions of
cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-
associated stromal cells are involved in ECM remodeling, and as mechanotransducers
sensing changes in the biophysical properties of the ECM, which contribute to cancer
metastasis, stemness and drug resistance. In this review, we outline the mechanism of
integrin-mediated effects on biological changes of cancers and highlight the current status
of clinical treatments by targeting integrins.

Keywords: integrins, cancer metastasis, drug resistance, stemness, extracellular matrix, therapeutic targeting

INTRODUCTION

The transformation process from normal cells to malignant cancer cells involves a series of complex
pathological mechanisms, including the abnormal activation/deactivation of various cancer-related
signaling molecules and signaling pathways (Cooper and Giancotti, 2019). Incipient cancer cells
acquire multiple biological functions during their evolution that enable them to become
tumorigenic and ultimately malignant (Hanahan and Weinberg, 2011). Integrins are widely
present on the surface of cells and mediate the adhesion between cells -to -cells and cells to
ECM (Hamidi and Ivaska, 2018). Accumulating evidence showed that integrins and integrin-
dependent biological process play vital roles in mediating cancer stem-like property, cancer
metastasis and drug resistance (Seguin et al.,, 2015; Hamidi et al., 2016; Cooper and Giancotti,
2019). Interaction between integrins and ECM enhances cell adhesion and activates cancer cell pro-
survival and anti-apoptotic programs, resulting in the development of drug resistance (Leask, 2019).
In addition, integrins are involved in the regulation of survival signaling of cancer stem cells (CSCs),
which is another reason for developing cancer drug resistance (Seguin et al., 2015). A number of
studies in recent years have reported that integrins on exosomes make a significant contribution in
mediating cancer organotropic metastasis and preparing pre-metastatic niche (Hoshino et al., 2015;
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Paolillo and Schinelli, 2017; Shimaoka et al., 2019). Hoshino
et al. (2015) first demonstrated that tumor exosomal integrins
mediated organotropic metastasis. Given the multiple biological
functions mediated by integrins in cancers, integrins have been
regarded as a promising target for cancer treatment. Although
there are few successful clinical trials, many preclinical studies
have shown encouraging results (Hamidi and Ivaska, 2018).
Additionally, integrins, such as integrin avf3, integrin 06 and
integrin o7 might have potential as cancer diagnostic and
prognostic biomarkers (Seguin et al., 2015; Haas et al.,, 2017).
In this review, we summarized current studies on the roles of
integrins in cancer progression and its clinical value.

INTEGRINS: AN OVERVIEW

Integrins consist of 18 o and 8 3 subunits, that pair to form at
least 24 different functional heterodimeric receptors (Humphries
et al., 2006). Integrin heterodimers are transported from the
endoplasmic reticulum to Golgi apparatus, where they are
further post-translationally modified and transferred to the cell
surface in an inactive state (De Franceschi et al., 2015). The
integrin o and P subunits are both glycosylated, and their amino
acid terminals are bonded to each other by a non-covalent bond,
thereby forming off integrin heterodimers (Seguin et al.,, 2015).
Some integrin subunits only appear in a single heterodimer, 12
integrins contain PB1-subunits and five contain ov-subunits
(Kechagia et al., 2019). As a receptor on the cell membrane,
integrins mainly interact with ECM components to mediate cell
adhesion (Dustin, 2019). According to different types of ECM
components, integrins can be classified into two main categories:
receptors that recognize Arg-Gly-Asp (RGD) peptide motifs and
receptors that independent on RGD binding region (collagen
receptors, laminin receptors and leukocyte-specific integrins)
(Hamidi and Ivaska, 2018). On one hand, different types of
integrins can recognize and bind the same ligand (Kechagia et al.,
2019). For example, all five o integrins (owvBl, ovB3, ovp5,
ovf6, and owf8) and two B1 integrins (05B1 and a8B1) and
olIbPB3 are RGD-binding integrins (Humphries et al., 2006).
Integrins ol1P1, o2B1, atl0B1, and o11PB1 binding to laminins
and collagens (Humphries et al., 2006). The common feature of
these integrins is that they contain an o-subunit of the oA-
domain, which specifically bind to Pl-subunit. Additionally,
three Bl integrins (031, o6P1, and a7B1) and o6P4 are
highly selective laminin receptors (Marsico et al., 2018).
Interestingly, the o-subunits of these integrins do not contain
0lA-domain (Marsico et al., 2018). Moreover, 041, 04p7, o9p1,
and 0EP7 recognize similar sequences in their ligands. On the
other hand, the same integrins can bind to multiple ligands
(Kechagia et al., 2019). For instance, owP3 not only recognizes
RGD peptide motifs but also binds to other ligands, including
ADAM (a disintegrin and metalloprotease) family members,
COMP (cartilage oligomeric matrix protein), connective tissue
growth factor, ICAM-4 (intercellular cell adhesion molecule-4),
and MMP-2 (Seguin et al., 2015). Other integrins that have been
identified but less reported include D2, alf2, aMP2, and

oXPB2 (Hamidi et al.,, 2016). Compare with RGD-independent
integrins receptors, 8 types of integrins that recognize RGD
motifs constitute a most important integrin receptor subfamily
instrumental in cancers and their metastasis (Kechagia et al.,
2019). However, not all integrins exert a tumor-supporting role
in tumorigenesis. Studies have reported that laminin-binding
integrins (03B1 and o6PB4) have opposite roles in tumors
(Ramovs et al, 2017). Laminin-binding integrins have high
affinity to the tetraspanin CD151, which in turn regulate the
binding properties of integrin and ECM (Ramovs et al., 2017).

Integrins switch specific ligands from an inactive low avidity
state to a high avidity state when binding with them (Shattil et al.,
2010). Integrins with altered configuration mediate signal
transduction from “outside-in” through physical connection
between intracellular domain and actin cytoskeleton, and
subsequently activate focal adhesion kinase (FAK) and SRC
family kinase (SFK) (Seguin et al., 2015; Cooper and Giancotti,
2019). The activation of intracellular signals can mediate
signal transduction from “inside-out,” resulting in increased
affinity of integrins and ligands. In conclusion, integrins
act as “intermediate contacts” to transmit bidirectional
transmembrane signals, thereby affecting the biological
functions of cancer cells, including proliferation, metastasis,
drug resistance, metabolism and cancer cell stemness (Seguin
et al., 2015).

INTEGRINS AND CANCER METASTASIS

Cancer metastasis is a complex multi-step process that requires
cancer cells to invade from their primary tumor site, survive in
the circulation, and eventually colonize on nearby or distant
organs (Hoshino et al., 2015). It has gradually become clear that
integrins participate in various aspects of these steps in tumor
metastasis (Casal and Bartolome, 2018). Integrins are the main
receptors of ECM molecules, and cell adhesion mediated by them
is crucial for the spread of cancer cells (Casal and Bartolome,
2018). In addition, integrins participate in ECM remodeling,
provided cancer pre-metastatic niche, and promote survival of
circulating cancer cells (CTCs) and colonization of cancer cells in
new metastatic sites (Wortzel et al., 2019). However, recent
studies have reported that certain integrins, such as integrin
03B1 and a6P4, might exert an inhibitory role in cancer
metastasis (Ramovs et al., 2017).

Integrins Involve in ECM Remodeling

The TME is rich of ECM components, such as collagens,
fibronectin, and laminins, and is the key regulator of cancer
metastasis (Hamidi and Ivaska, 2018). In recent years, various
studies have reported that integrins are involved in ECM
remolding that provide a favorable microenvironment for
tumor metastasis (Kai et al,, 2019). For example, cancer-
associated fibroblasts (CAFs), the most abundant tumor
stromal cells in TME, mediated matrix remodeling and matrix
deposition through integrins, resulting in increased tumor tissue
stiffness (Handorf et al., 2015; Attieh et al., 2017; Jang and
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Beningo, 2019). CAFs express a variety of integrins, such as
integrin ovB3 (Attieh et al,, 2017), a5B1 (Erdogan et al., 2017),
and ou11 (Primac et al., 2019; Zeltz et al., 2019), that participate in
the assembly of fibronectin in ECM and facilitate the conversion
of fibronectin matrix to fibronectin and the deposition of CAFs
on tumor stroma (Cavaco et al., 2018). Studies have shown that
platelet-derived growth factor receptor (PDGFR) is an important
intermediate mediator of integrin-mediated ECM remodeling
(Erdogan et al,, 2017). CAFs aligned fibronectin matrix by
increasing non-muscle myosin II and PDGFRo-mediated
contractility and traction forces and then converted it to
fibronectin by o5B1 integrin (Erdogan et al, 2017). A study
performed by Primac and colleagues showed that the crosstalk
between CAFs-integrin 011 and PDGFR activated downstream
JNK signaling pathway, leading to the production of tenascin C
(an ECM molecule) (Primac et al., 2019). In addition, pericyte
integrin 0t6B1, a laminin receptor, has been reported to control
PDGFRP and basement membrane structure, which plays a vital
role in the stability of tumor blood vessels and the recruitment of
pericytes (Reynolds et al., 2017). It is worth noted that tumor
cells recruit CAFs and promote their survival by expressing
integrins (Peng et al, 2018). Peng et al. (2018) showed that
integrin ov6 on colon cancer cells induced inactive fibroblasts
to become CAFs. Overexpression of integrin 09B1 in breast
cancer promoted the recruitment of CAFs (Ota et al, 2014).
Briefly, these findings indicated that integrin-mediated ECM
remodeling in the TME enables CAFs and cancer cells to
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communicate with each other, consequently supporting cancer
progression and metastasis (Figure 1).

Interaction Between Integrins and ECM
Promotes Cancer Invasion and Migration
Cell migration occurs in a variety of physiological and
pathological processes, including wound healing, development,
induction of immune response, and cancer metastasis (Maritzen
et al.,, 2015). The invasion and migration of tumor cells not only
allow cancer cells to spread to distant organs, but more
importantly, the increased cell motility permits tumors to grow
rapidly by avoiding the steric hindrance and crowding
(Waclaw et al,, 2015). In the complex regulatory network of
tumor metastasis, integrin, as a key regulatory molecule,
connects ECM and actin cytoskeleton to support tumor spread
(Manninen, 2015). Accumulated studies have shown that
integrins interact with a variety of ECM components, activate
metastasis-related signaling pathways or molecules, and trigger
cancer cell invasion and migration to adjacent tissues. For
example, the interaction between integrin 09p1 and tenascin-C
promoted the migration of glioblastoma and osteosarcoma cells
as well as induced lung metastasis (Sun et al., 2018). Poor cell
adhesion mediated by tenascin-C and integrin a9B1 inhibited
actin stress fibers, resulting in decreased activity of MKL1 and
YAP (Sun et al,, 2018). In addition, the combination of integrin
ovPB3 and ECM protein vitronectin upregulates mTOR activity,
which overrides the inhibition by hypoxia and facilitates tumor
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FIGURE 1 | Integrin-mediated crosstalk between cancer cells and tumor-associated stromal cells in the TME promotes cancer metastasis. Integrins expressed on
CAFs interacted with ECM and promoted the metastasis of cancer cells. Cancer cells also expressed integrins to recruit and promote the activation of fibroblast.
Moreover, pericytes and epithelial cells in TME promoted tumor angiogenesis through the interaction of integrins and ECM.
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cell invasion (Pola et al., 2013). In oral squamous cell carcinoma,
integrin 03 combines with laminin y2 rich extracellular vesicles
(EVs) is absorbed by lymphatic endothelial cells, resulting in
enhanced lymphangiogenesis and tumor metastasis to lymph
nodes (Wang S. H. et al,, 2019). Interestingly, the o5 subunit of
integrin a5PB1 can be replaced by c-Met to form a c-Met/1
complex, which has a much greater affinity for fibronectin than
05B1 integrin (Jahangiri et al., 2017). In addition, integrin-linked
kinase phosphorylates c-Met, leading to ligand-independent
receptor activation (Jahangiri et al, 2017). Crystallography
showed that the c-Met/B1 complex could maintain a high-
affinity B1 integrin conformation (Jahangiri et al., 2017). The
cross-activation of c-Met/B1 integrin complex and its high
affinity for fibronectin together drive invasive oncologic
processes (Jahangiri et al., 2017).

In addition to activating metastasis-related signaling
pathways, the interaction between integrins and ECM has also
been reported to promote the intracellular circulation and
plasma membrane expression of integrins via the endosomal
pathway (Novo et al.,, 2018). The integrins produced through
the endosomal pathway can regulate the accumulation and
remodeling of proteins in the ECM, thereby facilitating the
invasion of tumor cells into adjacent tissues (Novo et al.,
2018). Mutant p53 tumor cells showed enhanced invasiveness,
characterized by the recycling of Rab-coupling protein (RCP)
and diacylglycerol kinase-o. (DGKat)-dependent endosomal
pathway (Novo et al, 2018). RCP is known for its ability to
control integrin recycling (Muller et al., 2009). Mutant p53
tumor cells produced exosomes, which were transmitted
horizontally to other tumor cells, and mediated invasiveness
and migratory function by activating RCP-dependent integrin
recycling (Novo et al., 2018). RCP-driven endocytic recycling of
integrin 05B1 promoted actin-related protein 2/3 (ARP2/3)
complex-independent ovarian cancer cell migration in 3D
ECM rich in fibronectin (Paul et al., 2015). Further research
found that ROCK-dependent phosphorylation and FH1/FH2
domain-containing protein 3 (FHOD3)-dependent activation
were key mechanisms for cancer cells to mediate invasive
migration via the RCP-05B1 integrin pathway (Paul et al,
2015). These findings suggest that integrins play important
roles in cancer migration and invasion, mainly through
interaction with ECM.

Integrin Mediates Organ-Specific
Metastasis of Cancer Cells

The formation of a pre-metastatic niche is conducive to cancer
metastasis to specific sites and colonization of distant organs.
Recent evidence has shown that integrins on extracellular
vesicles, especially exosomes, promote the establishment of
pre-metastatic niche by interacting with cells or ECM at
specific tissue sites (Hoshino et al., 2015; Huang et al., 2020).
Hoshino and his collages first revealed that exosomal integrins
secreted by tumor cell is the decisive factor for tumor
organotropic metastasis (Hoshino et al., 2015). Lung-tropic
cancer cells secreted 06B1- and o6P4-bearing exosomes
preferentially transported to the lungs and were mainly taken

up by S100A4" fibroblasts and SPC" epithelial cells (Hoshino
et al., 2015). Similarly, liver-tropic cancer cells secreted owvf5s-
bearing exosomes, which were preferentially distributed in
the liver and were mainly taken up by F4/80" macrophages
(Hoshino et al., 2015). Further research found that integrins
061 and 0634 located in the lung bind to laminin in the lung
microenvironment, while integrins owvf35 located in the liver bind
to fibronectin (Hoshino et al., 2015). In a study of colorectal
cancer, it was found that the primary tumor secreted integrin
Bl-rich EVs were taken up by resident fibroblasts of remote
organs (Ji et al., 2020). Fibroblasts were activated to secrete
proinflammatory cytokines (IL-6, IL-8, IL-1B, a-SMA, TGEF-3,
and CXCL12) to induce the formation of pre-metastatic niche (Ji
et al,, 2020). It was worth noting that exosomes derived from
CAFs also possessed ability to induce the formation of lung pre-
metastatic niche (Kong et al,, 2019). Exosomal integrin a2f1 of
CAFs were uptaken by lung fibroblasts and activated TGF-f3
signaling pathway, which led to metastasis of salivary adenoid
cystic carcinoma (Kong et al., 2019). In a nutshell, tumor
exosome integrins are key molecules that mediate tumor cells
organ-specific metastasis.

In addition, it has been reported that the integrins expressed
on circulating tumor cells (CTC) also made a significant
contribution to organ-specific metastasis of primary tumor
cells (Aceto et al., 2014). For example, melanoma is prone to
metastasize to different organs in human body, depending on the
type of integrins expressed on circulating melanoma tumor cells
(Huang and Rofstad, 2018). Melanoma cells expressing integrin
B3 tend to metastasize to lungs, while melanoma cells expressing
integrin B1 preferentially undergo lymph node metastasis
(Vink et al,, 1993; Hieken et al., 1999). Additionally, integrin
of target organ endothelial cells can help infiltration of CTCs.
The underlying mechanism may be related to regulating
microvasculature (Huang and Rofstad, 2018). In conclusion,
integrins interact with specific ECM components in the tissue
microenvironment to promote the formation of pre-metastatic
niche, thereby providing a favorable “soil” for cancer cells to
metastasis and colonize in specific organs (Figure 2).

The Opposing Roles of Integrins in Cancer
Metastasis

Most studies have shown that upregulation/overexpression of
integrins is closely associated with cancer metastasis. However,
several studies reported that the role of integrins in different
types of tumors and different stages of tumor development might
be different, meaning that the role of integrins in tumors was
complex (Longmate and Dipersio, 2017; Ramovs et al., 2019).
For example, in HER2-driven breast cancer, downregulation of
integrin 03B1 not only reduced the survival of mice, but also
increased tumor growth and vascularization, resulting in an
increased burden of lung metastasis (Ramovs et al., 2019).
Another study on prostate cancer reported that integrin o3p1
inhibited cancer cell metastasis by regulating Hippo signaling
pathway (Varzavand et al,, 2016). Integrin a3B1 signals by Abl
family kinases to suppress Rho GTPase activity, leading to the
inhibition of Hippo pathway, and restrain prostate cancer
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FIGURE 2 | Integrin mediates the formation of cancer pre-metastatic niche. Primary cancer cells secreted extracellular vesicles-containing multiple types of integrins,
such that integrin aBB1, a6B4, and avp5, which reprogramed lung or live resident fibroblasts, epitheliums, and macrophage to cancer-supporting phenotype and
facilitated the formation of cancer pre-metastatic niche.

migration and invasion (Varzavand et al, 2016). Moreover, = HCC, the overexpression of integrin 09 significantly suppressed
integrin o9, a molecule related to cell adhesion, mobility and  cancer cell migration in vitro and tumor metastasis in vivo
angiogenesis, has been reported to play opposite role in different ~ (Zhang et al,, 2018). Thus, attention should be paid to the
types of cancers (Zhang et al., 2018; Wang Z. S. et al,, 2019). The  inhibitory effect of certain integrins in tumors when targeting
depletion of integrin o9 in triple-negative breast cancer  integrins are used for tumor treatment. More studies are
significantly reduced tumor angiogenesis and metastasis (Wang  warranted to clarify the mechanisms (Table 1).

Z. S. et al, 2019). Mechanistically, knockout of integrin o9

caused integrin-linked kinase (ILK) to relocate from cell

membrane to cytoplasm. ILK interacted with protein kinase A |[NTEGRINS AND CANCER STEMNESS
(PKA) and inhibited its activity, subsequently increased activity

of glycogen synthase kinase 3 (GSK3) and promoted the  Accumulating evidence suggested that crosstalk between
degradation of B-catenin (Wang Z. S. et al., 2019). However, in  integrins and cancer cells activated cancer cell stemness-related
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TABLE 1 | Role of integrins in cancer metastasis.

Type of Cancer cell type/source Ligand/downstream target Functions Ref.
integrins
oBp1/06p4/ Breast cancer-Exo/Pancreatic S100 Promote the formation of pre-metastasis niche  (Hoshino et al., 2015)
avpB5 cancer-Exo
B1 Colorectal cancer-EVs IL-6, IL-8, IL-1B, a-SMA, TGF-B and  Promote the formation of pre-metastasis niche  (Ji et al., 2020)
CXcL12
Hepatocellular carcinoma-Exo IL-6/IL-8/NF-xB Promote the formation of pre-metastasis niche  (Fang et al., 2018)
Gastric cancer Galectin-1 Promote migration and invasion (Kwan et al., 2017)
o2B1 CAFs TGF-B Promote the formation of pre-metastasis niche  (Kong et al., 2019)
avp3 CAFs Fibronectin Promote tumor invasion (Attieh et al., 2017)
Breast cancer Vitronectin/mTOR; Promote tumor metastasis (Pola et al., 2013)
IL-8/PI3K/Akt/NF-kB
Pancreatic cancer-EVs - Promote tumor metastasis (Shao et al., 2015)
ab5B1 CAFs Fibronectin Promote tumor migration (Erdogan et al., 2017)
Ovarian cancer Rab-coupling protein Promote tumor migration and invasion (Paul et al., 2015)
a3p1 Pancreatic duct adenocarcinoma  Laminin-332 Promote tumor invasion (Cavaco et al., 2018)
Breast cancer - Inhibit tumor growth and vascularization (Ramovs et al., 2019)
Prostate cancer Abl/Rho GTPase/Hippo Inhibit tumor metastasis (Varzavand et al., 2016)
avp6 Colon cancer TGF-B Induce fibroblasts to CAFs and promote tumor  (Peng et al., 2018)
metastasis
all CAFs PDGFRB/JINK Promote tumor metastasis (Primac et al., 2019)
BB Pericyte PDGFRB/Akt-mTOR Promote tumor angiogenesis (Reynolds et al., 2017)
ob Qvarian cancer - Promote tumor metastasis (Gao et al., 2019)
B3 Breast cancer IL-32/p38-MAPK Promote EMT and invasion (Wen et al., 2019)
o9B1 Breast cancer - Promote lymphatic metastasis (Ota et al., 2014)
a3 Lymphatic endothelial cells Laminin y2 Promote tumor metastasis to lymph nodes (Wang S. H. et al.,
2019)
B4 Endothelial cells Src, PI3K, Akt, and INOS Promote tumor angiogenesis (Siddharth et al., 2018)
ox HUVEC VEGFR2/VEGF-A/PISK/AkY/ Promote tumor angiogenesis (Wang J. S. et al,,
2019)
a9B1 Breast cancer Tenascin-C Promote migration (Sun et al., 2018)
and metastasis
a9 Breast cancer ILK/PKA/GSK3/B-catenin Promote tumor angiogenesis and metastasis (Wang Z. S. et al.,
2019)

Hepatocellular carcinoma -

Inhibit tumor migration and metastasis (Zhang et al., 2018)

Exo, exosomes; CAF, cancer-associated fibroblasts; TGF-f3, transforming growth factor-f; a-SMA, o-smooth muscle actin; PDGFR, platelet-derived growth factor receptor ; HUVEC,
human umbilical vein endothelial cell; VEGF, vascular endothelial growth factor; ILK, integrin-linked kinase; PKA, protein kinase A; GSK3, glycogen synthase kinase 3; “”, not mention.

signaling pathways, which promoted the transformation of stem-
like phenotype and caused the transformation of non-CSCs to
CSCs (Seguin et al., 2015). In addition, integrins are biomarkers
for normal adult stem and progenitor cells. Recent studies have
found that these integrins, such as integrin 31, B4, a6, and o7
also exist on CSCs, that could help identify CSC phenotype
(Bierie et al., 2017; Moon et al., 2019; Ge et al., 2020).

INTEGRINS AS BIOMARKER OF CANCER
STEM CELLS

Cancer cells with overexpression of certain specific integrins
exhibit the characteristics of CSCs, suggesting that integrins may
become potential biomarkers of CSCs (Haas et al., 2017; Krebsbach
and Villa-Diaz, 2017). In fact, integrins 1, 06, and B3 have been
found to be overexpressed in normal adult stem and progenitor
cells, and recent studies have shown that they are also biomarkers
of CSCs. Enrichment of integrin 06 is found in a variety of CSCs,
including breast cancer (Brantley et al., 2016), glioblastoma (GSC)
(Herrmann et al., 2020), colorectal cancer (Haraguchi et al., 2013)

and squamous cell carcinoma (Schober and Fuchs, 2011).
Moreover, the overexpression of integrin 4 is associated with
enhanced self-renewal ability and chemotherapy resistance in lung
cancer cells. Similarly, integrin B4 is overexpressed in GSCs and
breast CSCs (Ma et al., 2019). Inhibiting the expression of integrin
4 reduced the self-renewal capacity and tumorigenicity of CSCs
(Bierie et al.,, 2017; Ma et al., 2019). These findings suggest that
integrin 4 may be used as a novel biomarker for CSCs. In
addition, studies showed that integrin o7 might be a potential
biomarker for CSCs (Haas et al., 2017). Integrin o7 is usually up-
regulated in CSCs and tumor tissues, which associated with poor
clinical characteristics and poor prognosis of patients (Ming et al.,
2016; Ge et al., 2020; Lv et al,, 2020). Thus, specific integrins can
help identify a small subset of the most aggressive and dangerous
cancer cells, and provide beneficial information for the diagnosis
and prognosis of tumor patients.

Activation of Integrin Signaling Promotes
Cancer Stemness

Recent studies have shown that activation of integrin signaling
pathways plays crucial roles in the regulation of cancer cell
stemness (Cooper and Giancotti, 2019). Interestingly, current
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studies indicate that integrins regulate tumor stemness in either a
ligand-dependent or a ligand-independent manner. For example,
GSCs grown on laminin-coated dishes showed overexpression of
integrin owf33 and owf5, which was related to phosphorylation of
FAK and protein kinase B (Paolillo et al, 2018). This result
indicates that the interaction of integrins av3 and avfB5 with
laminin is necessary for regulating the stemness of GSCs. Breast
CSCs produced Laminin 511, which acted as a ligand for a6BB1
integrin and subsequently activated Hippo transducer TAZ to
promote the self-renewal ability of cancer cells (Chang et al,
2015). Moreover, colorectal cancer cells cultured on 2D collagen
showed enhanced cancer stemness (Wu X. et al., 2019).
Mechanistic studies have shown that the interaction of collagen-
integrin 02B1 activates the PI3K/Akt/Snail signaling pathway,
resulting in enhanced metastasis and stemness of colorectal
cancer cells (Wu X. et al,, 2019). In pancreatic cancer, integrin
ovP3 interacted with osteopontin on pancreatic stellate cells,
which led to the activation of ovB3-Akt/Erk-FOXM1 (forkhead
box protein M1) cascade and promoted CSC-like properties of
pancreatic cancer (Cao et al,, 2019). However, Seguin et al. (2014)
showed that integrin owvP3 promoted the stemness and drug
resistance of lung and pancreatic cancer in a ligand-independent
manner. The unliganded integrin o3 had the ability to recruit
KRAS and RalB to the plasma membrane of tumor cells, which
subsequently led to the activation of TBK1 and NF-xB (Seguin
et al., 2014). Indeed, several studies have found that integrins may
affect CSCs independent of their capacity to interact with the ECM
ligands. Ge et al. (2020) demonstrated that integrin 0.7 regulated
the stemness of HCC by activating PTK2-PI3K-Akt signaling
pathway. GSCs used integrin owvf8 to drive tumor initiation and
progression (Guerrero et al, 2017). The activation of integrin
owvP8-TGFp1 signaling pathway was crucial for the self-renewal of
GSCs (Guerrero et al,, 2017). Additionally, activation of integrin
B1-Notchl signaling pathway promoted the self-renewal ability
and xenograft tumorigenicity of head and neck squamous cell
carcinoma (Moon et al., 2019). It is worth noting that integrin o6
and fibroblast growth factor receptor 1 (FGFR1) play a synergistic
role in enhancing the expression of glioblastoma stem-related
factors and the growth of tumor spheroids (Kowalski-
Chauvel et al., 2019). The activation of integrin 06-FAK-STAT3
signaling pathway significantly increased the tumorigenicity and
drug resistance of GSCs. (Herrmann et al., 2020). To sum up,
integrins activate a variety of downstream signaling pathways in a

ligand-dependent or ligand-independent manner, thereby
regulating the stemness of tumor cells (Table 2).

INTEGRINS AND CANCER DRUG
RESISTANCE

More and more studies have elucidated the mechanisms of
acquisition and development of cancer drug resistance (Naci
et al.,, 2015; Cruz Da Silva et al, 2019). It is known that
resistance to anti-cancer therapies is driven by not only internal
factors, such as genetic mutations and epigenetics but also external
factors (Seguin et al., 2015). Tumor cells acquired drug resistance
by adaptive responses to external stimuli, activation of certain pro-
survival signals/anti-apoptotic programs, selection of drug-
resistant subpopulations, and alteration of microenvironmental
features (Eke and Cordes, 2015; Seguin et al., 2015). Cell adhesion
mediated by the interaction between integrins and ECM has been
proved to be one of the strategies for tumor cells to evade anti-
tumor therapies (Eke and Cordes, 2015).

Abnormal Activation of Integrin-Driven
Signals Leads to Tumor Drug Resistance
Tumor cells often develop resistance to certain targeted drugs
(such as tyrosine kinase inhibitors) (Wu and Fu, 2018). One of
the reasons is that tumor cells overexpress integrin molecules
and activate downstream signaling pathways, thereby triggering
cell proliferative signals independent of receptor tyrosine kinase
and bypassing the blocking effect of targeted drugs (Kim et al.,
2017). It has been reported that activation of integrin $1-driven
signal plays a key role in resistance to tumor treatment (Kim
et al,, 2017; Yang et al.,, 2018). For example, integrin B1-driven
Src-Akt hyperactivation triggered EGFR ligand-independent
proliferation signaling in PDAC, resulting in the failure
of cetuximab treatment (Kim et al, 2017). Interestingly,
Neuropilin-1 (NRP1) physically interacted with active integrin
B1, which could be blocked by NRP1 targeting peptide TPP11
(Kim et al., 2017). Therefore, co-targeting EGFR and integrin 31
could produce a synergistic effect, reversing the resistance of
PDAC to cetuximab therapy (Kim et al, 2017). In addition,
integrin B1 promoted PDAC resistance to gemcitabine by
activating the Cdc42 molecule on the PI3Kpll0f signaling

TABLE 2 | Role of integrins in the maintenance of tumor stemness.

Type of integrins Cancer cell type/source

Ligand/downstream target

Functions Ref.

ol Tongue squamous cell carcinoma FAK
Hepatocellular carcinoma PTK2-PI3K-Akt
o6 Breast cancer HIF
Breast cancer AhR
Glioblastoma FGFR1/FOXM1
Glioblastoma FAK-STAT3
avB3 Pancreatic cancer OPN/Akt-Erk-FOXM1
avp8 Glioblastoma stem cells TGFB1
B4 Breast cancer -
a6Bp1 Breast cancer stem cells Laminin 511/Hippo/TAZ

Enhance tumor stemness, EMT
Enhance tumor stemness

Enhance tumor stemness Brooks et al., 2016)
Promote mammospheres formation Brantley et al., 2016)

(Ming et al., 2016)
(
(
(
Enhance tumor stemness (Kowalski-Chauvel et al., 2019)
(
(
(
(
(

Ge et al., 2020)

Enhance tumorigenicity and resistance Herrmann et al., 2020)
Enhance tumor stemness Cao et al., 2019)
Promote self-renewal Guerrero et al., 2017)
Enhance tumorigenicity Ma et al., 2019)
Promote self-renewal Chang et al., 2015)

HIF, hypoxia inducible factor; AhR, aryl hydrocarbon receptors; FGFR1, fibroblast growth factor receptor 1; FOXM1, Fokhead Box M1; OPN, osteopontin; “-”, not mention.
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pathway (Yang et al., 2018). In head and neck cancer, targeting
integrin B1 enhanced the sensitivity on cancer cells (Eke et al.,
2012; Koppenhagen et al., 2017). c-Abl tyrosine kinase is an
important mediator of B1-integrin signaling for radioresistance.
AIIB2 (targets integrin B1)/imatinib (targets c-Abl) dual-targeted
therapy has radiosensitization effect on tumor cells that grown
on 3D laminin-rich ECM cultures and significantly inhibited the
DNA damage repair ability of head and neck cancer cells
(Koppenhagen et al., 2017). Additionally, a study performed by
Eke et al. (2015) showed that simultaneous targeting integral 1
and EGFR had a radiosensitization effect on head and neck
cancer. AIIB2 combined with cetuximab and X-ray enhanced
cytotoxicity and radiosensitization in various head and neck
cancer cells (Eke et al., 2015). Moreover, studies have shown that
long-term use of trastuzumab + pertuzumab + buparlisib (PI3K
inhibitors) combination treatment in HER2"/PIK3CAH1047R
transgenic mice with breast cancer produces buparlisib resistant
tumors (Hanker et al, 2017; Wang and Xu, 2019). RNA
sequencing showed that the genes of ECM and cell adhesion
were significantly up-regulated, accompanied by activation of
integrin B1/Src signaling pathway (Hanker et al.,, 2017). It was
worth mentioning that this drug-resistant tumor only showed
resistance to buparlisib when cells were coated on collagen or
re-introduced into mice, while those cells were sensitive to
buparlisib in vitro 2D culture (Hanker et al., 2017). This result
indicated that collagen/integrin $1/Src signal transduction was a
key regulatory pathway that mediated the resistance of HER2"
breast cancer to anti-HER and anti-PI3K inhibitor combination
therapy. In addition to integrin B1, another study found that
activation of the integrin o6/Src/Akt signal transduction
pathway mediated the resistance of breast cancer cells to
tamoxifen (Campbell et al., 2018). Upregulation of integrin o6
was found both in tamoxifen-resistant breast cancer cells and
tumor tissue sections from patients who relapsed on tamoxifen
treatment (Campbell et al., 2018). In short, integrin is a
promising anti-tumor target, and the combination of targeted
integrin and other anti-tumor therapies (radiotherapy,
chemotherapy, and targeted therapy) has the potential to
reverse tumor resistance.

Crosstalk Between Integrins and ECM
Promotes Tumor Drug Resistance

A number of studies have shown that interaction between
integrin and ECM is crucial for cancers to develop drug
resistance (Azzariti et al., 2016; Jin et al., 2019). Jin et al.
(2019) identified that integrin 38 in ECM-based 3D cell culture
regulated PDAC resistance to ionizing radiation and cytotoxic
drugs. Clinically, patients with HCC often show resistance to
sorafenib (Azzariti et al., 2016). Recent studies have shown that
HCC resistance to sorafenib is associated with the ECM protein
laminin-332 produced by hepatic stellate cells in the HCC TME
(Azzariti et al., 2016). The activation of laminin-332-integrin o3
signaling axis reversed the dephosphorylation of sorafenib on
FAK, leading to drug resistance (Azzariti et al., 2016). Indeed,
ECM stiffening endows tumor cells a strong resistance to

chemotherapy. In the collagen-rich microenvironment,
the activation of integrin Bl and its downstream effector
JNK mediated resistance to sorafenib in triple-negative breast
cancer (Nguyen et al., 2014). In addition, resistance to
Adriamycin in patients with T-cell acute lymphoblastic
leukemia might be due to the interaction between integrin 1
and matrigel that activated the ABCCI drug transporter
(Berrazouane et al,, 2019). Glucocorticoid drugs are often used
to reduce the toxic and side effects of chemotherapeutic drugs
(Chen et al.,, 2010). However, recent studies have found that
dexamethasone increased the levels of integrin B1, 04, and 05 in
ovarian cancer cells and enhanced the cancer cells adherent to
ECM, thereby mediating resistance to cisplatin and paclitaxel-
induced apoptosis (Chen et al., 2010). Another study in ovarian
cancer revealed that the combination of ECM protein TGFBI
(transforming growth factor beta induced) and integrin
B3 mediated the resistance of cancer cells to paclitaxel
(Tumbarello et al.,, 2012). The RGD motif present in the
carboxy-terminus of TGFBI is essential for cell adhesion
(Tumbarello et al., 2012; Zou et al., 2018) (Figure 3). Thus, it
would be a promising strategy to reduce or inhibit integrin-
mediated ECM stiffness and degradation to achieve homeostasis
in ECM, which will increase the penetration of anti-tumor drugs
(Table 3).

CURRENT CANCER THERAPEUTIC
STRATEGIES BY TARGETING INTEGRINS:
CHALLENGES AND OPPORTUNITIES

The interaction between integrins and their ligands activates
downstream signaling molecules and leads to a series of cell
biological processes, such as proliferation, differentiation,
migration, invasion and development of drug resistance
(Huang and Rofstad, 2018). With the elucidation of the
mechanisms of integrin-ligand interaction and the encouraging
results shown by in vitro experiments, integrin targeted drugs
and the clinical trials are developed (Stupp et al., 2014). Despite
the small number of successful clinical trials, integrins are
considered as potential targets for cancer treatment (Hamidi
and Ivaska, 2018). More importantly, integrins are also valuable
probes in cancer imaging studies and can be used to determine
prognosis and therapeutic efficacy (Haas et al, 2017; Huang
et al., 2017).

Main Challenges of Integrins as
Therapeutic Targets

Currently, drugs or inhibitors are primarily designed to interfere
with integrin-ligand interactions, with the treatment strategy
targets integrin itself. However, such treatment strategy has
encountered challenges in clinical trials. Multiple clinical studies
have shown that integrin-selective inhibitors have not achieved the
expected efficacy, whether used alone or in combination with
chemoradiation. A multicenter, open-label, phase III study
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FIGURE 3 | Integrin mediates tumor therapy resistance. Crosstalk between integrins and ECM promoted tumor drug resistance by activating the downstream

signaling pathways.

TABLE 3 | Role of integrins in cancer therapy resistance.

Type of Cancer cell type/source Ligand/downstream Functions Ref.
integrins target
B1 Pancreatic ductal carcinoma EGFR/Src-Akt Promote proliferation; and cetuximab (Kim et al., 2017)
resistance
Pancreatic ductal carcinoma Cdc42/PI3Kp1108 Gemcitabine resistance (Yang et al., 2018)
Head and neck cancer c-Abl Enhance DNA damage repair and (Koppenhagen et al.,
radioresistance 2017)
Head and neck cancer EGFR Cetuximab resistance and radioresistance (Eke et al., 2015)
Breast cancer Src/PIBK Resistance to anti-HER and anti-PI3K (Hanker et al., 2017)
inhibitor
Breast cancer JNK Sorafenib resistance (Nguyen et al., 2014)
T-cell acute lymphoblastic leukemia cells ABCC1 Doxorubicin resistance (Berrazouane et al.,
2019)
b Breast cancer Src-Akt Tamoxifen resistance (Campbell et al., 2018)
V] Hepatocellular carcinoma Laminin-332/FAK Sorafenib resistance (Azzariti et al., 2016)
B3 Ovarian cancer cells TGFBI Paclitaxel resistance (Tumbarello et al., 2012)
Melanoma stem cell-like cells - Doxorubicin and methotrexate resistance (Zhu et al., 2019)
B8 Glioblastoma-initiating cells - Radioresistance (Jin et al., 2019)
avB3 Lung cancer, breast cancer and pancreatic KRAS/RalB/TBK1/NF-kB  Enhance tumor stemness and resistance (Seguin et al., 2014)

cancer

=

EGFR, epidermal growth factor receptor; TGFBI, transforming growth factor beta induced; *-”, not mention.

(NCT00689221) evaluated the efficacy of cilengitide (a selective
ovB3 and avf5 integrin inhibitor) and standard treatment
(temozolomide combined with radiochemotherapy) in newly
diagnosed glioblastoma (particularly in tumors with methylated

MGMT promoter) (Stupp et al., 2014). Unfortunately, cilengitide
has not shown significant benefits for treatment, neither the
overall survival nor the prognosis was improved (Stupp et al,
2014; Nabors et al., 2015). Another phase I study (NCT00979862)
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on cilengitide also yielded frustrating results (Gerstner et al., 2015).
Cilengitide plus cediranib was used for the treatment of recurrent
glioblastoma showed well tolerance, but the survival and
response rate did not warrant further development of this
combination (Gerstner et al., 2015). Given the current clinical
trial data, cilengitide has been discontinued for the treatment of
glioblastoma. However, a phase II clinical trial (CERTO) showed
that cilengitide plus cetuximab and platinum-based chemotherapy
used in advance NSCLC patients showed potential clinical
significance (Vansteenkiste et al., 2015). Compared with the
control group, the cilengitide combined group had an improved
progression-free survival (PFS) trend (Vansteenkiste et al., 2015).
Another phase I study (NCT01118676) for stage III NSCLC
patients found that continuous infusion of cilengitide plus
chemoradiotherapy showed remarkably favorable clinical
response, with a PFS and OS of 14.4 and 29.4 months,
respectively (Massabeau et al., 2018). Therefore, although
cilengitide has not been further developed as an anti-cancer
drug, integrins are still potentially interesting therapeutic targets
(Vansteenkiste et al., 2015; Haddad et al., 2017; Yuan et al., 2019).

In addition to cilengitide, several clinical trials have also
investigated the efficacy of other integrin-targeted drugs
combined with chemotherapeutic drugs, such as abituzumab (a
humanized antibody specific for ov integrin) and MINT1526A
(an anti-0531 monoclonal antibody) (Wirth et al., 2014; Flez etal,,
2015; Hussain et al., 2016; Weekes et al., 2018). NCT01008475 was
a randomized phase I/II POSEIDON trial that evaluated the
efficacy and safety of abituzumab combined with cetuximab plus
irinotecan in KRAS wild-type metastatic colorectal cancer (Elez
et al,, 2015). Although abituzumab did not show improved PFS, it
produced an overall survival benefit for patients with high
expression of integrin owvf36 (Elez et al.,, 2015). In addition, two
other clinical trials of castration-resistant prostate cancer
(NCT00958477 and NCT01360840) showed that abituzumab
was not significantly extended PFS but had potential clinical
activity and was worthy of further study (Wirth et al, 2014;
Hussain et al., 2016). Moreover, a phase I study (NCT01139723)
showed that MINT1526A with or without bevacizumab was well-
tolerant and had a preliminary combined effect, although it could
not be distinguished from bevacizumab monotherapy (Weekes
et al, 2018). In conclusion, the combination of integrin-targeted
therapy and chemotherapeutics has potential clinical application
value, but there is still a need to develop more effective integrin-
specific targeted drugs.

Potential Treatment Opportunities

Since inhibitors that directly target integrin have not been
successfully reflected in clinical treatment, other alternative
strategies for inhibiting integrin were developed. Gao et al.
(2016) combined integrin-targeted treatment strategy with
tumor photodynamic therapy, with the goal of triggering the
host immune response to achieve tumor clearance. They used
phthalocyanine dye-labeled probes to perform photodynamic
therapy on tumors targeted by integrin owvf36, which significantly
inhibit lung metastasis in the mouse breast cancer model (Gao

et al,, 2016). In addition, the treatment promoted the maturation
of dendritic cells and the killing activity of CD8" T cells (Gao et al.,
2016). Combining integrin-targeted therapy with cancer
immunotherapy is another potential strategy. Kwan et al. (2017)
prepared an integrin-binding peptide fused to the antibody Fc-
domain and used it together with the engineered mouse serum
albumin/IL-2 fusion, which significantly improve the survival of
various types of tumor mouse models. This treatment strategy
promoted the activation of CD8" T cells and natural killer cells by
activating the host immune system, rather than blocking the
integrin function to achieve therapeutic effects (Kwan et al., 2017).

The overexpression of integrin in cancer cells makes it a
promising molecular target in integrin targeting-probes for non-
invasive medical imaging and development of biomarkers
(Cooper and Giancotti, 2019; Xiao et al., 2019). Recently, the
development of radiotracers for integrin targets was used to
predict the overall survival and prognosis of patients (Huang
et al,, 2017). An early phase I clinical trial (NCT04289532) was
the first to use 99mTc-RWY, a radiotracer targeting integrin
06, to conduct SPECT (single-photon emission computed
tomography) imaging in breast cancer patients. Moreover,
Huang et al. (2017) used the integrin a2P1 targeting 68Ga-
DOTA-A2B1-PET (positron emission tomography) imaging to
identify the phenotypes of aggressive lung cancer and monitor
drug responses. Interestingly, PET imaging of the RGD motif-
containing o6 integrin-binding peptides SFLAP3 also showed
the potential for diagnosing head and neck squamous cell
carcinoma (Roesch et al., 2018). Other similar radiotracers
include RDG-K5 PET/CT for integrin awvf3, which has the
potential to identify patients with incomplete response to
concurrent chemoradiotherapy (Chen et al., 2016). In addition
to being a molecular targeted probe, integrins can also be used
for cancer diagnosis and prognosis by directly detecting the
expression level of specific integrins in serum or tissues. For
example, integrin owvB3 has been shown to be a potential
diagnostic and prognostic biomarker in a variety of cancers,
including gastric cancer (Boger et al., 2015), breast cancer
(Radwan et al,, 2019), glioblastoma (Zhang et al., 2019), and
lung cancer (Schniering et al., 2019). It is worth noting that new
anti-cancer therapies targeting integrins using nanoparticles
as carriers are emerging. The treatment strategy is to use
integrin-specific ligands to engineer nanoparticles, thereby
increasing their affinity for cancer cells (Wu P. H. et al., 2019).
In summary, integrins have shown great potential in the
diagnosis, prognosis, and treatment of cancer. However, more
clinical trials are needed for further verification.

CONCLUSIONS

As a cell membrane receptor, crosstalk between integrin and
ECM is crucial for cancer metastasis, maintenance of cancer
stemness, and drug resistance. Integrin-targeted treatment
strategy is an emerging cancer treatment concept. Because of
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the remarkable therapeutic effect of targeting integrin in
preclinical research, more in vitro and preclinical studies are
warranted to fully understand the mechanisms of integrin-
mediated biological behavior of cancer cells, which will
facilitate further development of drugs targeting integrin
signaling pathways.
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Objective: Cavin3 is a putative tumor suppressor protein. However, its molecular action
on tumor regulation is largely unknown. The aim of the current study is to explore the
implication of cavin3 alteration, its clinical significance, and any potential molecular
mechanisms in the regulation of breast cancer (BC).

Methods: TCGA (The Cancer Genome Atlas) and GTEx (Genotype-Tissue Expression)
data bases, and 17 freshly paired BC and adjacent normal tissues were analyzed for
MRNA levels of Cavin3. Furthermore, cavin3 protein expression from 407 primary BC
samples were assessed by immunohistochemistry (IHC) and measured by H-score. The
clinical significance of cavin3 expression was explored by Kaplan-Meier analysis and the
Cox regression method. In vitro biological assays were performed to elucidate the function
and underlying mechanisms of cavin 3 in BC cell lines.

Results: Cavin3 mRNA was dramatically down-regulated in BC compared with the
negative control. The median H-score of cavin3 protein by IHC was 50 (range 0-270).
There were 232 (57%) and 175 (43%) cases scored as low (H-score<50) and high (H-
score >50) levels of cavin3, respectively. Low cavin3 was correlated with a higher T and N
stage, and worse distant metastasis-free survival (DMFS) and overall survival (OS).
Multivariate survival analysis revealed low cavin3 was an independent fact for worse
DMFS. In BC cells, an overexpression of cavin3 could inhibit cell migration and invasion,
and significantly decreased the level of p-Akt. Knockout of cavin3, meanwhile, promoted
cell invasion ability and increased the level of p-AKT.

Conclusion: Cavin3 expression is significantly lower in BC and is correlated with distant
metastasis and worse survival. Cavin3 functions as a metastasis suppressor via inhibiting
the AKT pathway, suggesting cavin3 as a potential prognostic biomarker and a target for
BC treatment.

Keywords: Akt, breast cancer, cavin3, metastasis, human patient
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Cavin3 Suppresses Breast Cancers

INTRODUCTION

Breast cancer (BC) is the most common cancer and the
second leading cause of cancer death in women worldwide
(DeSantis et al., 2016; Bray et al, 2018). Distant metastases
account for more than 90% of BC death. Therefore, identifying
metastasis-associated genes and finding effective targets is the
main strategy to prevent metastasis and improve survival of BC.

Caveolae are special lipid rafts located on plasma membranes.
As signal transducing organelles, caveolae play an essential role
in cell physiology through the regulation of molecule trafficking
and signaling, and are involved in a host of human diseases, such
as diabetes, cardiovascular disease, muscular dystrophy,
pulmonary fibrosis, and cancers (Razani and Lisanti, 2001;
Fridolfsson et al., 2014). There are two crucial components for
caveolae formation and function: caveolin and cavin proteins.
The caveolin family consists of caveolin-1 (Cav-1), caveolin-2
(Cav2), and caveolin-3 (Cav-3). The cavin family includes cavinl
(Polymerase 1 and Transcript Release Factor, PTRF), cavin2
(Serum-Deprivation Response Protein, SDPR), cavin3 (SDR-
related gene product that binds to c-kinase, SRBC), and cavin4
(Muscle-Restricted Coiled-Coil Protein, MURC). Increasing
evidence indicates the important role of caveolin and cavin
family members in cancer regulation. Thus, they are regarded
as new “tumor and metastasis-modifying genes” which might be
targeted in cancer therapies (Gupta et al., 2014; Martinez-
Outschoorn et al., 2015). However, heterogeneity expression
patterns and paradoxical roles of these proteins on tumor
suppression and oncogenesis have been reported on different
tumor types and stages (Zhang et al., 2008; Di Vizio et al., 2009;
Witkiewicz et al., 2009a), suggesting the dual role of these
caveolin and cavin family members in cancer regulation.

The two most studied cavin family members in cancer
regulation are cavinl and cavin2. Cavinl serves as a tumor
suppressor in prostate cancer, but acts as a tumor promoter in
pancreatic cancer (Aung et al.,, 2011; Liu et al.,, 2014). Several
recent studies showed that cavin2 functioned as a metastasis
suppressor in BC (Ozturk et al., 2016) and hepatocellular
carcinoma (HCC) (Jing et al., 2016). Loss of expression of
cavin2 was correlated with poor survival both in BC and HCC
(Ozturk et al,, 2016; Jing et al, 2016). Moreover, cavinl and
cavin2 were reported to be expressed in MDR cell lines and to be
involved in drug resistance. In contrast to cavinl and cavin2,
cavin3’s function in cancer is not well established. Loss of cavin3
was demonstrated in lung, gastric, ovarian, and colorectal
cancers (Zochbauer-Muller et al., 2005; Lee et al., 2008; Tong
et al, 2010; Lee et al,, 2011), suggesting the tumor suppressing
role of cavin3 in these tumors. Cavin3 inactivation was shown to
be associated with the acquisition of chemoresistance to
oxaliplatin in colorectal cancers (Moutinho et al.,, 2014).
Inactivation of cavin3 was first reported in BC cell lines (Xu
et al,, 2001). A later study by Lin Bai et al. observed the down-
regulation of cavin3 protein in human BC tissue compared with
adjacent normal tissue. However, only 40 pairs of samples were
tested in this study. Also, the clinical relevance of this down-
regulation and related signal pathway were not investigated (Bai
et al,, 2012). The current study enrolled a large number of BC

patients, and conducted analysis to explore the expression,
clinical relevance, and possible molecular mechanism of cavin3
in BC. In vitro studies were performed to determine the potential
molecular actions of cavin3.

METHOD

Databases for Bio-Informatics Analysis
Datasets from the Genotype Tissue Expression project (GTEx)
(dbGaP, http://www.ncbi.nlm.nih.gov/gap) and The Cancer
Genome Atlas (TCGA) project (CGHub, https://cghub.ucsc.
edu) were obtained to compare Cavin3 mRNA expression
from BC tissue and matched normal breast tissue.

Tissue Specimens and Cancer Cell Lines
Paired fresh-frozen breast tumor and adjacent normal tissues
from 17 BC patients who had undergone BC surgery at Sun Yat-
Sen University Cancer Center (SYSUCC) were obtained for
Cavin3 mRNA assay.

Paraffin-embedded (FFPE) specimens from 407 stage I-IV BC
patients who were diagnosed and treated at SYSUCC during
2011, and had complete clinical and pathological follow-up data
were collected. Duplicate tissue microarray (TMA) was
constructed for immunohistochemistry (IHC) analysis. Ethical
approval for the study was provided by the independent ethics
committee of SYSUCC.

BC (MCF7, MDA-MB-231) and 293FT cell lines were
purchased from the American Type Culture Collection
(ATCC), and cultured in Dulbecco’s Modified Eagle’s Medium
containing 10% fetal bovine serum, 1% L-glutamine, and 1%
penicillin/streptomycin. Cells were cultured at 37°C in 5% CO2.

Real-Time Quantitative PCR (qPCR)

Total RNA was isolated from fresh tissue samples using Trizol
Reagent (Invitrogen, USA). cDNA was synthesized via “5X All-
In-One MasterMix (with AccuRT Genomic DNA Removal Kit)”
(G492, ABM Company, Vancouver, Canada) according to the
manufacturer’s instructions. qPCR analysis was performed in
Roche Light Cycler 480 Real-Time PCR system. The cycling
program was 10 min at 95°C one cycle, 10 seconds at 95°C, 20
seconds at 60°C, and 30 seconds at 72°C, for 45 cycles. Primer
pairs for Cavin3 were: 5- CACGTTCTGCTCTTCAAGGAG -3
(forward); 5°- TGTACCTTCTGCAATCCGGTG -3’ (reverse).
Primer pairs for B-actin were: 5-ACCTTCTACAATGAGC
TGCG-3’(forward); 5- CCTGGATAGCAACGTACATGG -3’
(reverse). Relative expression (RE) of Cavin3 was calculated
with the formula: ACt=Ct (Cavin3) - Ct (B-actin). Fold
change expression of Cavin3 mRNA in BC tissue compared
with the normal control was calculated by the standard 2-
/A\/\Ct method (Giulietti et al., 2001).

Immunohistochemistry (IHC)

IHC staining was performed on an automatic immune stainer
(BenchMark XT; Ventana Medical Systems, Tucson, Ariz)
according to the manufacturer’s instructions. The primary
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antibodies used were anti-total cavin3 (PRKCDBP) antibody
(Cat# PA534523, Invitrogen, USA)). Expression of cavin3
protein was semi-quantified using H-scores (range 0-300),
which incorporate the staining intensity (range 0-3) and the
percentage of positively-stained tumor cells (range 0-100%). The
average H-score of the duplicate tissue microarray for each
tumor was calculated as the final score.

Construction of Cavin3 Overexpression or
Knockout Cell Lines

Cavin3 overexpression plasmid (cavin3-pLVX) was created by
cloning the protein coding sequence of cavin3 into the pLVX-
puro lentiviral vector (Invitrogen: Thermo Fisher Scientific, Inc.,
USA). A blank lentiviral vector was used as negative control. The
constructs were then transducted into 293FT cells with lentiviral
packaging vectors by using Lipofectamine 2000 (Invitrogen:
Thermo Fisher Scientific, Inc., USA) based on the manufacturer’s
instructions. Cavin3 knockout plasmid was generated using the
clustered regularly interspaced short palindromic repeats
(CRISPR) RNA-guided Cas9 nucleases technique.

Cell Proliferation and Viability Assays

The cell proliferation was evaluated by Cell Counting Kit-8
(CCK-8) assay (Sigma-Aldrich; Merck KGaA, Germany.). Cells
were grown in 96-well plates (2x10° cells/well) and incubated
overnight. CCK-8 solution (10 pl) was added to each well,
followed by incubation for 2 h at 37°C. After that, a microplate
reader (Thermo Fisher Scientific, Inc, USA.) was applied to
record the absorbance value of each well at 450 nm. Cell
viability was expressed as a percentage of that of the control
cells. The viability of cancer cells was measured by clonogenic
assay. Cells in a logarithmic growth period were plated in a 6-well
plate (about 600 cells each plate) and incubated for 14 days at
37C in a 5% CO?2 incubator. Thereafter, cells were fixed with
methanol/acetic acid and stained with crystal violet. The number
of colonies was counted manually.

Cell Migration and Invasion Assays

Migration and invasion assays were performed using a Transwell
system (BD Biosciences, USA). About 5 x 10° cells were seeded
into the upper chamber with serum-free medium, and DMEM
with 20% FBS was added into the lower chamber. After
incubation for 24 h, cells on the upper surface of the filter
were removed and the cells on the lower surface were stained
with 1% crystal violet for quantification. The invading cells were
counted under an optical microscope (Olympus Corporation,
Japan). The number of transferred cells was determined in 10
randomly selected fields.

Western Blotting

Cells were lysed in sample buffer and subjected to sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, and then
transferred to a polyvinylidene fluoride (PVDF) membrane.
The primary antibodies used included: anti-Akt rabbit mAb
(Cat# 4685S, Cell Signaling Technolog, USA), anti-phospho
Akt rabbit mAb (Cat# 4060S,Cell Signaling Technology, USA),

anti-Vimentin rabbit mAb (Cat# 5741S, Cell Signaling
Technology, USA), anti-E-Cadherin rabbit mAb (Cat# 3195,
Cell Signaling Technology, USA), anti-PTEN rabbit
mAb (Cat# 9188S,Cell Signaling Technology, USA), and anti-
p53 rabbit mAb (Cat# 25278, Cell Signaling Technology, USA).
The secondary horseradish peroxidase-conjugated antibody used
was HRP-Goat Anti-Rat IgG (H+L) (Cat# SA00001-2,
ProteintechGroup, USA). Bands were detected by enhanced
chemiluminescence (Amersham, Bucks, UK). Densitometric
values were normalized to GAPDH levels.

Statistical Analysis

We used SPSS software for Windows (V16.0; SPSS Inc., Chicago,
IL) for all statistical analyses. All data were expressed as the
means + standard deviations (SD). Student’s ¢ test was used to
compare mean values between the two groups. The correlation of
cavin3 with clinicopathological factors was analyzed by chi-
square test. Survival curves were plotted using the Kaplan-
Meier method and compared by log-rank test. The Cox
proportional hazards model was used for the univariate and
multivariate survival analyses, and hazard ratios and 95%
confidence intervals (CIs) were calculated. Breast Cancer Gene-
Expression Miner v4.4 (bc-GenExMiner v4.4) was used to
explore RNA-seq of cavin3 of different molecular subtypes of
BC. A P value of <0.05 was considered statistically significant.

RESULTS

Cavin3 mRNA Is Significantly Lower in BC
Compared With Adjacent Normal Control
We first analyzed TCGA and GTEx datasets and found
expression of Cavin3 mRNA was significantly lower in BC
tumors compared with normal tissues, P<0.05 (Figures 1A, B).
Cavin3 mRNA levels were further analyzed in 17 paired fresh-
frozen breast tumor and tumor-adjacent tissues collected in
SYSUCC, which showed the relative Cavin3 mRNA leves to 3-
actin were significantly lower in 14 out of 17 pairs of BC tissues
compared with normal control, P=0.0047(Figure 1C).

Reduced Cavin3 Protein Expression in BC
Tissue Is Correlated With Advanced Tumor
Stage and Poor Survival

IHC analysis of cavin3 was performed in all 407 of the enrolled
patients. The median H-score was 50 (range 0-270). There were
175 (43%) and 232 (57%) cases scored as high (H-score >50) and
low (H-score <50) levels of cavin3 expression, respectively.
Representative ITHC images for high and low levels of cavin3
expression were shown in Figures 2A, B. Low cavin3 expression
was found to be correlated with a higher pathologic T and N stage,
and poor recurrence-free survival (RFS) and distant metastasis-
free survival (DMFS) (Figures 2C, D). No significant association
between cavin3 expression and tumor grade, hormone receptor,
and HER?2 expression was found (Table 1). Patients with luminal
(HR+/HER2-) subtype showed a relative low level of cavin3
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fresh-frozen breast tumor and adjacent normal tissues. *p<0.05; **p<0.01.
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FIGURE 1 | Lower expression of Cavin3 mRNA in breast cancer samples compared with normal control. (A) TCGA database; (B) GTEx database; (C) 17paired
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TABLE 1 | Comparison of baseline characteristics between patients with high
and low expressions of cavin3.

All Cavin3 expression P
patients value
High (H- Low (H-
score>50) score<50)
n=407 (100)  n=175 (43.0) n=232 (57.0)

Median age 49(26-76) 50 (26-75) 49 (29-76) 0.399
(range)*
Age at surgery (yr) 0.918
<40 65(16.0) 29 (16.6) 36 (15.5)
>40,<60 281 (69.0) 121 (69.1) 160 (69.0)
>=60 61 (15.0) 25 (15.5) 36 (14.9)
Breast surgery” 0.347
Lumpectomy 31(7.7) 16 (9.3) 15 (6.6)
Mastectomy 370 (92.3) 156 (90.7) 214(93.4)
Histologic 0.566
subtype
Ductal 395 (97.1) 171(97.7) 224(96.6)
Other 12 (2.9) 4(2.3 8(3.4)
T stage 0.022
1 180 (44.2) 88 (50.3) 92 (39.7)
2 203 (49.9) 82 (46.9) 121 (52.2)
3 10 (2.5) 1(0.6) 9 (3.9
4 14 (3.4) 4(2.3) 10 (4.3)
N stage 0.000
0 177 (43.5) 94 (53.7) 83 (35.8)
1 128 (31.4) 52 (29.7) 76 (32.8)
2 60 (15.2) 19 (10.9) 41 (17.7)
3 42 (9.8) 10 (5.7) 32 (13.8)
LVI 0.481
Yes 60(16.5) 23 (13.1) 37 (15.9)
No 347(83.5) 152 (86.9) 195 (84.1)
Grade 1.000
1-2 336 (82.6) 145 (82.9) 191 (82.3)
3 71 (17.4) 30 (17.1) 41 (17.7)
Ki67 0.536
<20% 154 (37.8) 70 (40.0) 84 (36.2)
>20%, 253 (62.2) 105 (60.0) 148 (63.8)
HR 0.246
Positive 305 (75.1) 126 (72.0) 179 (77.5)
Negative 101 (24.9) 49 (28.0) 52 (22.5)
HER2 0.163
Positive 119 (29.2) 58 (33.1) 61 (26.3)
Negative 288 (70.8) 117(66.9) 171 (73.7)
Adjuvant CT* 0.137
Yes 359 (89.6) 149 (86.6) 210 (91.7)
No 42 (10.4) 23 (13.4) 19 (8.3)

*Including neoadjuvant chemotherapy.

“Five patients with metastatic and one patient with locally advanced disease at diagnosis
had no surgery.

CT, chemotherapy; LVI, lymphovascular invasion; PR, progesterone receptor.

Bold type indicates statistical significance.

expression compared with those in other subtypes, but the
difference did not reach statistical significance (Supplementary
Table 1). RNA-seq analysis by bc-GenExMiner v4.4 also
demonstrated significantly lower levels of Cavin3 RNA in
luminal A and B subtypes as compared with those in basal- like
and HER2 over-expression subtypes (Supplementary Figure 1).
The worse prognosis of low cavin3 seemed to not depend on T and
N stages (Supplementary Figure 2), but was more remarkable in
luminal (HR+/HER2-) subtype (Figure 3). No association
between cavin3 expression and a specific metastatic site was

found (Supplementary Table 2). Multivariate analysis showed
low cavin3 was an independently worse predictor for DMES.
Other risk factors for distant metastasis included positive lymph
nodes and negative hormone receptors (Table 2).

Cavin3 Suppresses BC Metastasis by
Down-Regulating AKT Pathway

In vitro studies were based on two BC cell lines: the
hormone receptor-positive MCF7 and triple-negative MDA-MB-
231cell lines. A lack of baseline cavin3 expression was observed in
the MCF7 cell line. Therefore, the MCF7 cell line with cavin3
overexpression and MDA-MB-231cell lines with cavin3
overexpression and knockout were generated. As a result, we
found overexpression of cavin3 inhibited cell invasion, while
knockout of cavin3 promoted cell invasion ability by transwell
assay (Figure 4). No effect of cavin3 expression on overall cell
proliferation rate (Supplementary Figure 3) or migration
(Supplementary Figure 4) were observed. Western blot study
showed the loss of cavin3 increased the level of p-AKT, while
gain of cavin3 decreased the level of p-AKT (Figure 5). Thus, these
results suggested that the metastasis suppressive function of cavin3
might be carried out by inhibiting the AKT signaling pathway.

DISCUSSION

Cavin3 was originally called SRBC (SDR-related gene product
that binds to c-kinase) or protein kinase C delta binding protein
(PRKCDBP), due to its high similarity with the serum
deprivation response (SDR) gene product and its ability to
bind protein kinase C delta (PKCdelta) (Izumi et al., 1997). The
gene is located in the 11p15.5 tumor suppressor region (Xu
et al., 2001). Loss of cavin3 expression has been observed in
several human malignancies including lung cancer (Xu et al,,
2001), gastric cancer (Lee et al., 2008), colorectal cancer
(Moutinho et al., 2014), ovarian cancer (Tong et al., 2010),
and BC (Xu et al, 2001; Bai et al., 2012). Therefore, it is
regarded as a potential tumor suppressor gene. However, till
now there has been no large-scale study involving a high
volume of patients to confirm the tumor suppressive role of
cavin3. Moreover, the clinical utility and molecular function of
cavin3 in cancer remains unclear. The inactivation of Cavin3
gene was first reported in BC cell lines in 2001. Down-
regulation of cavin3 protein in human BC tissue compared
with adjacent normal tissue was later reported in 2012 by Lin
Bai et al. (Bai et al., 2012). However, only 40 pairs of samples
were detected in Lin Bai’s study. Also, the clinical relevance of
this down-regulation was not investigated. In the current study, by
using the largest available data resources of TCGA and GTEx and
by analyzing more than 1000 patients, we confirmed that
expression of Cavin3 mRNA was significantly lower in BC
compared with normal breast tissue. In line with this result,
among the 17 paired fresh-frozen breast tumor and tumor-
adjacent samples from our cancer center, 14 showed
significantly lower expression levels of Cavin3 mRNA in BC
compared with adjacent normal tissue. All these observations
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TABLE 2 | Univariate and Multivariate analysis of factors for distant metastasis-
free survival (DMFS).

Variable Univariate Multivariate
P value HR (95% CI) P value
Age 0.946
<40 vs. >40,<60
>60 vs. >40,<65
Breast surgery 0.384
Lumpectomy vs. Mastectomy
T stage 0.000 2.413 (1.129-5.518) 0.023
T3-4 vs. T1-2
N stage 0.000 3.779 (1.878-7.607) 0.000
N+ vs. NO
Grade 0.087
3vs. 1-2
Kie7 0.086 0.693 (0.375-1.281) 0.242
>20% vs. <20%
LI 0.415
positive vs. negative
ER 0.214
negative vs. positive
PR 0.021 2.168(1.250-3.758) 0.006
negative vs. positive
HER2 0.324
positive vs. negative
Adjuvant CT 0.252
no vs. yes
Cavin3 0.005 1.911 (1.034-3.530) 0.039
low vs. high

HR indicates hazard ratio; Cl, confidence interval; CT, chemotherapy; ER, estrogen
receptor; HER2, LVI, lymphovascular invasion; PR, progesterone receptor.
Bold type indicates statistical significance.
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FIGURE 3 | Impact of cavin3 protein expression on distant metastasis-free survival stratified by IHC-based molecular subtypes. (A) HR+/HER2- subtype; (B) HR
+/HER2+ subtype; (C) HR-/HER2+ subtype; (D) HR-/HER2- subtype; HR, hormone receptor; HER2, human epidermal growth factor receptor-2.

suggest cavin3 functions as a tumor suppressor and is involved in
breast tumorigenesis. However, whether cavin3 can be used as a
marker for the early diagnosis of BC remains unclear. Another
caveolar protein caveolinl has been reported to be a useful
biomarker for early prediction of ductal carcinoma in situ
(DCIS) progression to invasive BC (Witkiewicz et al., 2009b).
Since the current study did not enroll hyperplasia and DCIS
populations, the role of cavin3 as an early diagnosis biomarker
remains to be investigated.

To further explore the function of cavin3 in established BC,
expression of cavin3 in BC tissues was examined and compared
with clinicopathologic data. As a result, we found over 50% of
BC patients showed undetectable or low expression of cavin3.
Loss or reduction of cavin3 expression correlated with
advanced T and N stage and distant metastasis. DMFS was
significantly decreased in patients with low cavin3 expression,
suggesting the metastasis suppressive function of cavin3. It is
noteworthy that low expression of cavin3 was more prominent
in the HR+/HER2- subgroup of BC. Moreover, the worse
impact of lower cavin3 on DMFS was also more significant in
this subtype, indicating cavin3 will probably serve as a
promising prognostic marker and therapeutic target for the
HR+/HER2- subtype of BC. Harriet Wikman et al. reported the
Cavin3 (PRKCDBP) gene was significantly down-regulated in
BC with brain metastases compared to BC without relapse or
with bone-only metastasis (Wikman et al., 2012). In the current
study, we analyzed the correlation between cavin3 expression
and initial metastatic sites, and found five out of six patients
with brain metastasis showed lower cavin3. However, due to
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the small number of events, we could not confirm such  overexpression of cavin3 inhibited cell migration, while
a relationship. knockout of cavin3 by CRISPR increased the invasion ability of

In order to elucidate the potential signaling cascade associated ~ BC cells. These results further indicate cavin3 is a metastasis
with the metastasis suppression role of cavin3, in vitro cell lines  suppressor in BC. Moreover, we found the loss of cavin3 increased
studies were performed. Consistent with human studies, the  thelevel of active p-AKT, while gain of cavin3 decreased p-AKT. It
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is well known that AKT is a serine/threonine kinase with a crucial
role in major cellular functions. As a key element of the PI3K/
AKT/mTOR signaling pathway, AKT is one of the most important
pathways involved in BC survival, invasiveness, metastasis, and
drug-resistance (Hinz and Jucker, 2019; Khan et al., 2019). Besides
the PI3K/AKT/mTOR pathway, activated p-AKT also regulates
many other signal molecules in metabolism, proliferation,
apoptosis, and migration, such as GSK3, Mdm2, BAD, pro-
caspase 9, NFKB, Bcl-XL, MMP2, MMP9, and many more
(Khan et al, 2019). The study by Hernandez et al. reported
cavin3 suppressed p-AKT signaling by promoting EGR1 and
PTEN expression (Hernandez et al., 2013). However, we could
not find a change of PTEN in cavin3 overexpressed or knockout
breast cell lines. The exact molecular mechanism of cavin3 on the
AKT pathway in BC requires further investigation.

Previous studies showed epigenetic inactivation of cavin3
due to aberrant promoter hypermethylation was the main
mechanism for the loss of cavin3 (Lee et al., 2011; Wikman
et al., 2012). Meanwhile, both the demethylation drug
Decitabine (methylation inhibitor 5-aza-2’-deoxycytidine)
and chemopreventive agent Anethole Dithiolethione could
restore cavin3 expression (Primiano et al., 1996; Moutinho
et al,, 2014). Actually, many clinical trials concerning cancer
treatment or prevention of these two drugs are ongoing (Nervi
et al.,, 2015; Ramakrishnan et al., 2017; Ansari et al., 2018),
which makes cavin3 a promising target for the development of
new and more efficient therapies.

In summary, our current study suggests that cavin3 serves as a
metastasis suppressor in BC and might be a potential prognostic
marker and potential target for treating metastatic BC.
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In discovery of HDAC inhibitors with improved activity and selectivity, fluorine
substitution was performed on our previously derived lead compound. The synthesized
molecules N-(2-amino-4-fluorophenyl)-4-[bis-(2-chloroethyl)-aminol]-benzamide (FNA)
exhibited class | (HDAC1, 2, and 3) selectivity in the in vitro enzymatic assay and
especially potent against HDAC3 activity (ICsq: 95.48nM). The results of in vitro
antiproliferative assay indicated that FNA exhibited solid tumor cell inhibitory activities with
ICs0 value of 1.30 wM against HepG2 cells compared with SAHA (17.25 uwM). Moreover,
the in vivo xenograft model study revealed that FNA could inhibit tumor growth with tumor
growth inhibition (TGI) of 48.89% compared with SAHA (TGl of 48.13%). Further HepG2
cell-based apoptosis and cell cycle studies showed that promotion of apoptosis and
G2/M phase arrest make contributions to the antitumor activity of FNA. In addition, drug
combination results showed that 0.5 M of FNA could improve the anticancer activity of
taxol and camptothecin. The present studies revealed the potential of FNA utilized as a
high potent lead compound for further discovery of isoform selective HDAC inhibitors.

Keywords: 4-fluorine-benzamide, nitrogen mustard, HDAC, antitumor activity, isoform selectivity

INTRODUCTION

Histone deacetylases and histone acetylases are important enzymes participating in the regulation
of gene expression by acetylating and deacetylating of histones (1, 2). Specifically, HDACs are the
enzymes controlling the epigenetic modifications of histone, along with more than 50 nonhistone
proteins (3, 4). So far, a total of 18 different HDACs isoforms have been identified and classified
into four classes according to their size, distribution in cells, and homology (5-8). Among the four
classes, classes I (HDACI, 2, 3, and 8), II (HDAC4, 5, 6, 7, 9, and 10), and IV (HDAC11) HDACs
require zinc ion as cofactor and thus are known as zinc-dependent enzymes. On the other hand,
class IIl HDAC:s are a group of NAD+--dependent enzymes (also known as sirtuins), whose activity
does not require the presence of zinc iron (9-13).

In recent years, inhibition of HDACs has exhibited potency for the treatment tumors
(14, 15), diabetes (16), Parkinson disease (17), inflammation (18, 19), HIV (20), and heart
disease (21). In tumor cells, it had been shown that overexpression of HDACs led to increased
deacetylation of histones, which increases the gravitational pull between DNA and histones by
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restoring the positive charge of the histones, making the relaxed
nucleosomes very tight and unfavorable for the expression of
specific genes, including some tumor suppressor genes (22-28).

In the field of epigenetics, HDAC inhibitors (HDACIs) have
been successfully developed in the antitumor therapy, and
several HDACIs have been developed into the market (29).
Vorinostat (SAHA) is the first approved HDACI, which has
been administered clinically for the treatment of cutaneous T-
cell lymphoma (CTCL) (30). Afterward, romidepsin (FK-228),
belinostat (PXD101), and panobinostat (LBH589) were approved
for the treatment of CTCL, peripheral T-cell lymphoma (PTCL),
and multiple myeloma, respectively (31-33). Chidamide (CS055)
was approved by the Chinese Food and Drug Administration
for the treatment of PTCL (34). Generally, pharmacophores
of HDACISs are consist of three structural elements: a capping
group, which recognizes the hydrophobic region at the opening
of HDAC active site; a linker, which connects the hydrophobic
ring and the zinc-binding group (ZBG) via occupation of the
tubular channel; a ZBG, whose functions include binding to
the zinc ion located in the active center of HDACs, as well as
forming hydrogen bonds with certain amino acid residues of
active sites (35-37).

Nitrogen mustard anticancer drugs were used clinically since
1942, which effectively bind and cross-link to DNA, resulting
in prevention of DNA replication and cell proliferation (38).
Nitrogen mustard antitumor drugs are mainly composed of
alkylation part and carrier part. According to different carriers,
they can be divided into aliphatic nitrogen mustard and aromatic
nitrogen mustard (39). Aromatic nitrogen mustard is still used in

clinical because of its relatively low toxicity such as chlormethine
(40), chlorambucil (41), and melphalan (42).

In discovery of novel and potent HDACIs, aromatic nitrogen
mustard parts were integrated into the structure of HDACI
CI994 in our previous study (43). The resulting molecule, N-
(2-aminophenyl)-4-(bis(2-chloroethyl)amino)benzamide (NA)
exhibited class I selectivity in the enzymatic assay and potent
in vitro antitumor activity in the cell based assay. However, NA
exhibited lower potency than SAHA in the in vivo assay using
nude mice xenograft model with inoculation of HepG2 cells.
Fluorine substitution in the benzamide ZBG was discovered to
improve the metabolic stability of HDACISs, such as the design
of chidamide (44, 45). In the present study, to improve the
selectivity, activity, and in vivo stability of NA, fluorine was
introduced to the para-position of amide bond in the phenyl
ring of ZBG considering the structure of chidamide (Figure 1).
The designed compound N-(2-amino-4-fluorophenyl)-4-[bis-
(2-chloroethyl)-amino]-benzamide (FNA) was synthesized and
evaluated in the antitumor assay.

RESULTS AND DISCUSSION

Chemistry

The designed compound FNA was synthesized as described
in Scheme 1. Methyl esterification was performed to protect
the starting material 4-aminobenzoic acid (a). To synthesize
intermediate methyl 4-(bis(2-hydroxyethyl)amino)benzoate (c),
2-hydroxyethyl groups were added by reaction of intermediate
b with ethylene oxide. Subsequent chlorine substitution and

HoN

o >N

NA

FIGURE 1 | The design of FNA.

o >N
FNA
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SCHEME 1 | (1) CH3COCI, MeOH, reflux 5h. (2) oxirane, HoO/CH3COOH, 0°C 48h. (3) POCIs, MB, reflux 4 h. (4) 4 M HCI, reflux 4 h. (5) 1,2-diamino-4-
fluorobenzene, CDI, THF (dry), rt overnight.

TABLE 1 | Enzyme inhibitory activity of FNA compared with MS275 and SAHA
(ICs0, NM)2.

HDACs HDAC1 HDAC2 HDAC3 HDAC4 HDAC6 HDAC7 HDAC8 HDAC9

FNA 842.80 949.156 9548 =>5,000 =5,000 =5,000 >5,000 >5,000
MS275 46.17 100.90 43.89 =5,000 =5,000 >5,000 >5,000 >5,000
SAHA 5290 90.78 167.24 >5000 172.10 >5,000 4,120 >5,000

4Assays were performed in replicate (n > 2), the SD values are <10% of the mean.

deprotection of carboxyl group afforded key intermediate 4-
(bis(2-chloroethyl)amino)benzoic acid (e). Target compound
FNA was synthesized by condensation of intermediate e with 1,2-
diamino-4-fluorobenzene.

Enzyme Inhibitory Selectivity of FNA

To assess the isoform selectivity and the inhibitory activity of the
derived FNA, enzymatic assay was performed against HDACI,
2, 3,4,6,7, 8, and 9 using SAHA (nonselective inhibitor) and
MS275 (class I selective inhibitor) as positive control drugs. The
selectivity of isoforms and ICsy of the tested compounds were
displayed in Table 1. According to the results, FNA exhibited
ICsq values of 842.80, 949.15, and 95.48 nM against HDACI, 2,
and 3, respectively. While in inhibition of HDAC4, 6, 7, 8, and 9,
FNA exhibited more than 5,000 nM of ICsq values. It is suggested
that FNA is a highly class I-selective inhibitor. Nevertheless, in
the inhibition of HDACI, 2, and 3, it is remarkable that FNA
showed 8.83- and 9.94-fold of HDACS3 selectivity vs. HDAC1

and HDAC2, respectively. The results suggested that FNA has the
potential to be utilized as a lead compound for the discovery of
HDAC3-selective inhibitors.

Among all the HDAC isoforms found in human, HDAC3
is unique for its expression in the nucleus, cytoplasm, or
membrane. As a single HDAC isoform, HDAC3 was revealed
to promote the phosphorylation and activation of AKT, which
specifically binds to HDACS3, participate in the self-renewal of
liver cancer stem cells, and engage in the growth of triple-negative
breast cancer cells (15). Therefore, discovery of selective HDAC3
inhibitors make contributions to the treatment of specific
diseases related to the abnormal function of HDAC3. As a potent
lead compound, FNA could be utilized for further structural
modification in discovery of HDAC3-selective inhibitors.

Antiproliferative Activity of FNA

The in vitro antiproliferative activities of target compound
FNA along with the positive control SAHA were tested against
multiple tumor cell lines, including the lung cancer (H460, H322,
and A549), colon carcinoma SW480, renal carcinoma (OS-RC-
2, SK-NEP-1), thyroid cancer (FTC-133, SW-579), breast cancer
(MDA-MB-231), ovarian cancer (A2780), cervical carcinoma
(Hela), myeloma (U266), liver cancer (HepG2), and leukemic
(U937 and K562) cells. According to the results shown in Table 2,
potent antiproliferative activities against most of the tumor cell
lines tested (except SW480 and OR-RC-2) were observed from
FNA, as evidenced by the low IC5( values. Compared with SAHA,
it is obvious that FNA could effectively inhibit the growth of
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HepG2, U937, H460, FTC-133, HELA, and K562 cells with ICs
values of 1.30, 0.55, 4.73, 9.09, 1.41, and 1.31 pM, respectively. It
showed that FNA has a significant inhibitory effect on both solid

TABLE 2 | Antiproliferative activities of compound FNA against human cancer
cells (ICsp, M),

tumor cells and nonsolid tumor cells. Remarkably, in inhibition
the growth of HepG2 cells, FNA (similar to NA) was revealed
to be 13.3-fold (ICsg value of 1.30 wM) more potent relative to
SAHA, whose ICs value is 17.25 M. The present results indicate
the future of development of FNA analogs for the treatment of
liver cancer.

In vivo Antitumor Activity

Cell line FNA (M) SAHA (LM) . . : o
To further investigate the anticancer activity of FNA, HepG2
HepG2 1.30 £ 0.25 17.25 £ 046  xenograft nude mice model was utilized to assess the in vivo
U937 0.55 £ 0.03 0.86+003  antitumor activity of compound FNA. Mice were injected
H460 4.73+£0.05 7.63+003  intraperitoneally with FNA and SAHA, both at 100 mg/kg, once
SW480 ~100 291+ 004 a day for 15 days. When the tumor is prominent, the BALB/c
0S-RC-2 ~100 100 female mice were randomly assigned into control and treatment
H322 6.36 + 0.07 254 + 0.06 groups (six mice per group). As shown in Figure 24, all the mice
SK-NEP-1 8.3 4+ 0.18 368+002  In the treatment groups displayed no significant change in body
FTC-133 9.09 +0.13 oa30+ 040  weight. The results showed that both FNA and SAHA can inhibit
SW579 50.40 + 013 0430+ 007 tumor growth compared with the control group (Figures 2B-D).
MDA-MB-231 35.99 4 0.03 5804008 Compound FNA effectively inhibited the tumor growth with
AB49 35.74 4 0.04 492+ 004  tumor growth inhibition (TGI) rate of 48.89% compared with
A2780 430 £ 012 271 4 0.09 SAHA (with TGI of 48.13%). Although FNA exhibited improved
Hela 1.41 +0.04 1894005  inhibitory activity compared with SAHA in the in vitro test,
K562 1314005 oso400s  the activity improvement was not obvious in the in vivo study.
U266 0.63 4 0.32 0004003 1t s suggested that further structural modification of FNA is
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groups with anticancer activities to the structure of FNA will be
performed in further studies.

Cell Apoptosis Analysis

In order to confirm whether apoptosis contributes to the
observed antiproliferative activities of FNA, apoptosis study
was performed using HepG2 cells. Flow cytometry analysis
was shown in Figure3. From the annexin V-fluorescein
isothiocyanate/propidium iodide (FITC/PI) stating data, it
is obvious that compound FNA promoted cell apoptosis
against HepG2 cells dose-dependently. Following treatment with
different doses of FNA (1, 3, and 9 uwM), the apoptosis rate
of HepG2 cells was significantly elevated from 5.83% of the
normal group to 14.08, 19.11, and 28.83% compared with SAHA
(apoptosis rate of 10.03, 10.91, and 12.43% at concentrations of
1, 3, and 9 pM), respectively. It is suggested that apoptosis plays
arole in the HepG2 cell inhibitory activity of FNA.

Cell Cycle Analysis

Generally, the cell cycle consists of three phases: G0/G1, S,
and G2/M phase. A characteristic change in tumor cells is
dysregulated cell cycle due to genetic mutations, resulting in
uncontrolled cell proliferation. The designed compound FNA
was evaluated for the cell cycle effect on HepG2 with various
doses (0.125, 0.25, and 0.5uM). As shown in Figure4, it is
significant that FNA increased cell number at G2/M phase
with raising concentrations. The percentage of cells in G2/M
phase was increased from 18.84 to 59.36% in the FNA (with

concentration increase from 0.125 to 0.5 wM) group. However,
at the tested concentrations, SAHA did not exhibit any effects
in the regulation of HepG2 cell cycle. The results indicated that
induction of the G2/M phase arrest also plays a significant role in
the antiproliferative effects of molecule FNA.

Antiproliferative Activities of FNA in

Combination With Taxol and Camptothecin
It had been reported that HDACIs (HDACIs) may work as
chemosensitizers when used together with other antitumor drugs
(8). Because of the high cell cycle arrest ability of FNA, drug
combination investigation was performed by combining FNA
with the G2/M phase arrest drug taxol and camptothecin. HepG2
cells were used for the test, and percentage inhibition rate (PIR)
was used as a measure of potency. As shown in Figure 5, it is
revealed that the PIRs of FNA (0.5wM) in combination with
taxol and camptothecin are higher than that of the single-drug
groups on HepGz2 cells. The PIRs of taxol were 57.07 and 62.41
at the concentrations of 0.1 and 0.2 M, respectively. Addition of
0.5 wM of FNA increased the PIR to 62.43 (0.1 .M of taxol) and
67.23 (0.2 wM of taxol), respectively. The PIRs of camptothecin
at doses of 0.25 and 0.5 uM were 61.70 and 60.86, respectively.
Improved activities were obtained by addition of FNA (0.5 wM)
with PIR values of 67.07 (0.25 uM of camptothecin) and 75.52
(0.5 M of camptothecin), respectively. It is suggested that FNA
could synergistically improve the antiproliferative ability of the
cell cycle arrest drugs such as taxol and camptothecin.
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CONCLUSION

Benzamide HDACISs exhibited the advantage of class I selectivity
compared with HDACIs with hydroxamic acid as their ZBGs.
However, none of the benzamide HDACIs have been approved
by US Food and Drug Administration (FDA) yet. The
fluorine substituted benzamide HDACI, chidamide, approved
by the CFDA, exhibited advantage of high pharmacokinetic
properties compared with the unsubstituted benzamide (such
as MS275). Therefore, fluorine substituted was performed on
the previous lead compound NA. The derived FNA exhibited
HDACS3 selectivity and high HepG2 cell inhibitory activity.
Moreover, FNA was also effective in the HepG2 nude mice
xenograft model-based assay. Further investigations revealed
that promotion of apoptosis and cell cycle arrest at G2/M
phase both contributed to the antitumor activity of FNA.
Moreover, in combination with FNA, taxol and camptothecin
exhibited improved antiproliferative activities against HepG2
cells. Collectively, a potent HDAC3 inhibitor was discovered,
which could be utilized as a lead compound in the development
of new drugs for cancer treatments.

MATERIALS AND METHODS
Chemistry

All the starting materials and reagents commercially available
were used in the current study without further purifications.

The dry THF was used by heating reflux with sodium. TLC
with 0.25-mm silica gel plates (60GF-254) was used to monitor
all the reactions. The sports were visualized with UV light
and ferric chloride. With a Burker DRX spectrometer, the
'"H NMR spectra were recorded at 500 MHz, using TMS
as an internal standard. High-resolution mass spectra were
performed at Weifang Medical University in Weifang, China.
The derived target compound (FNA) is of 95.48% purity analyzed
by ultraperformance liquid chromatography (UPLC), which was
performed on a Waters Acquity H class UPLC instrument using
an Acquity UPLC®BEH C18 (150 x 2.1 mm). The mobile phase
was acetonitrile-water (90:10), and detection wavelength was
254 nm.

The synthesis and description of 4-(bis(2-
chloroethyl)amino)benzoic acid (e) were presented in our
previous work (43).

(2-Aminophenyl)-4-(bis(2-
Chloroethyl)Amino)Benzamide

To a solution of compound e (2.00 g, 7.7 mmol) in THF (50 mL),
CDI (1.87 g, 11.6 mmol) was added, and the solution was refluxed
for 3h. 1,2-Diamino-4-fluorobenzene (3.8 g, 30.6 mmol) and
TFA (1.1 g, 9.24 mmol) were added with stirring, and the mixture
was kept for 16 h at room temperature. The solvent was then
evaporated with the residue being dissolved in EtOAc (50 mL).
The resulting EtOAc solution was washed with NaHCO3 (3 x
20mL), 1M citric acid (3 x 20mL), and brine (3 x 20mL),
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FIGURE 5 | Antiproliferative activities of taxol and camptothecin alone and in combination with FNA.

dried over MgSOy, and evaporated under vacuum. The desired
compound FNA was obtained by crystallization in EtOAc under
4°C as brown powder. HRMS (AP-ESI) m/z calculated for
C17H19C12FN3O [M+H]+ 370.0889 found 370.0870. lH NMR
(400 MHz, (CD3)2S0): & = 9.33 (s, 'H), 7.86 (d, ] = 8.8 Hz,
2H), 7.08 (dd, J; = 2.3Hz, ], = 6.4Hz, 'H), 6.83 (d, ] = 8.8 Hz,
2H), 6.54 (dd, J; = 2.6Hz, J, = 11.2Hz, 'H), 6.35 (td, J; =
2.8Hz, ], = 8.5Hz, 'H), and 5.14 (s, 2H), 3.86-3.75 (m, 8H). 1*C
NMR (400 MHz, (CD3)2SO): 8§ = 165.60, 161.32, 149.41, 145.81,
130.06, 127.80, 122.59, 120.42, 111.39, 102.60, 102.09, 52.33, and
41.52 ppm.

Enzyme Inhibitory Selectivity of FNA

All of the HDAC enzymes tested were purchased from BPS
Bioscience. First, 20 iL of each recombinant HDAC enzyme
solution (HDACI, 2, 3, 4, 6, 7, 8, and 9) was mixed with various
concentrations of tested compound samples (20 pnL) in a 96-
well plate. The mixture was incubated at 30°C for 1h for the
dose-dependent assay. Additionally, mixtures were incubated
for 15, 30, 60, and 90 min, for the time-dependent assay, and
then 10 pL of fluorogenic substrate [3mM Boc-Lys(acetyl)-
AMC or Boc-Lys (trifluoroacetyl)-AMC for HDAC1/2/3/6 or
HDAC4/7/8/9, respectively] was added. Then, the acetylation

reaction was initiated by adding HDAC substrate working
solution and incubating at 30°C for 2 h. After the desired time,
10 pL developer with trypsin and trichostatin A was added to
stop the reaction, and then the mixture was incubated at 30°C
for another 30 min.

A microplate reader was used to determine fluorescence
intensity at excitation: 360nm and emission: 460 nm. The
inhibition ratios were calculated by comparing the fluorescence
intensities from tested wells to those of controls. The ICsq curves
and values were then obtained with GraphPad Prism 6.0 software.

Antiproliferative Activity of FNA

Antiproliferative activities of FNA were evaluated with cell
viability assay (MTT assay) with SAHA as the control drug (46).
The stock solutions of compounds to be tested were prepared
in culture medium. Tumor cell lines were cultured in 96-well
plates at a density of 5 x 10 cells per well and incubated
until 90-95% confluence, and then each well received 100 (L
medium containing desired concentrations of test compounds,
and then incubated at 37°C and 5% CO, for 48 h. To determine
cell viability, 20 wL MTT working solution (5 mg/mL) was then
added to each well and incubated for another 4h. After this
incubation, the medium was carefully aspirated, and 200 pL
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dimethyl sulfoxide (DMSO) was added to each well and vibrated
for 10min to make sure formed formazans were completely
dissolved. The optical densities (ODs) at 490 and 630nm
were counted by Universal Microplate Spectrophotometer. The
cell growth inhibition rate was calculated with the following
equation: % inhibition = [1-(sample group OD49¢-sample group
ODg30)/(control group ODggp-control group ODg3g)] % 100%.
Origin 7.5 software was used to calculate the ICsy values from at
least three independent experiments.

In vivo Antitumor Activity

All animal experiments were performed in compliance with the
Animal Experiment Ethical Review Board of Weifang Medical
University. For in vivo antitumor efficacy studies, male athymic
nude mice (5-6 weeks old, Slac Laboratory Animals, Shanghai,
China) were inoculated subcutaneously in the right shoulder with
1.8 x 107 HepG2 cells.

Injected mice were kept for 10 days; those with palpable
tumors were then randomly assigned into treatment and control
groups (six mice per group). The treatment groups were
administrated with 100 mg/kg/d test compound intragastrically,
whereas the control group was administered with an equal
volume of phosphate-buffered saline (PBS) solution. The tumor
size and body weight were assessed every day. After 15 days of
treatment, the mice were euthanized, and tumor weights were
acquired with an electronic balance. The TGI was calculated
using the following formula: TGI = 100% x [1 - (TVyr) -
TVinitial(r))/(TVi(c) = TVinitial(c))]> where TVyery and TVigigial(r)
stand for the mean tumor volume measured at final time
and at initial time for the treatment groups, respectively, and
TVyc) and TVipigal(c) represent the mean tumor volume for the
control group.

Cell Apoptosis Assay

HepG2 cells in logarithmic growth phase were cultured in 6-
well plates (4 x 10° cells per well).Various doses of FNA and
SAHA (1, 3, and 9 pM) were added and incubated for 24 h.
Then cells were washed with PBS, collected, and resuspended
with binding buffer from a commercially available annexin V-
FITC kit (Thermo Fisher Co., USA) and mixed with 5 wL of
annexin V-FITC gently. Following 10 min of incubation, 1 pL
of propidium iodide was added to the samples and incubated
for another 20min while avoiding light. Flow cytometry
was used to determine cell apoptosis status (CytoFLEX,
Beckman Coulter).

Cell Cycle Analysis

HepG2 cells in logarithmic growth phase were cultured in 6-well
plates with 6 x 10° cells per well and incubated with different
doses of FNA and SAHA (0.125, 0.25, and 0.5 uM). Following
6-h incubation, cells were washed twice with cold PBS and then
fixed in 70% precooled ethanol at 4°C for 12 h. The fixed cells
were washed again and then stained with PI/RNase A for 30 min
at room temperature.

Drug Combination Analysis

The efficacy of drug combination of FNA with taxol and
camptothecin was evaluated via cell viability assay (MTT assay).
The stock solutions of tested compounds were diluted to the
desired concentrations with culture medium. The cells were
cultured in 96-well plates at a density 5 x 10° cells per well
and incubated until 90-95% confluence, and then 100 L of
medium containing desired concentrations of test compounds
was added to the wells. Following 48-h incubation, 10 pL of
MTT working solution was added to each well and incubated
for another 4h. After removal of the medium, 200 wL. DMSO
was added to each well to dissolve the formed formazan. The
plates were vortexed for 10 min to ensure complete dissolution.
Then the OD was acquired with a microplate reader at 490 and
630 nm. The cell growth inhibition rate was calculated with the
following equation: % inhibition = [1 - (sample group ODygg
- sample group ODg3¢)/(control group ODy4gp — control group
ODg30)] x 100%.
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Although costunolide (Cos), a natural sesquiterpene compound isolated from various
medicinal plants, exhibits antiproliferative and pro-apoptotic effects in diverse types of
cancers, the mechanism associated with the anticancer property of Cos has not been
elucidated. The present investigation was carried out to study the anticarcinogenic
influence of Cos on kidney cancer cells. Several human renal cancer cell lines were
used and biological and molecular studies were conducted. It was found that Cos
significantly suppressed renal carcinoma cell growth via stimulation of apoptosis and
autophagy in a concentration-dependent manner. Further studies revealed that Cos
increased Bax/Bcl-2 ratio, decreased mitochondrial transmembrane potential (MMP),
and enhanced cytoplasmic levels of cytochrome ¢, and activation of caspase-9,
caspase-3, and cleaved PARP, resulting in cell apoptosis. The autophagy induced by
Cos resulted from the formation of GFP-LC3 puncta and upregulation of LC3B Il and
Beclin-1 proteins. Compared with Cos treatment, the autophagy inhibitor 3-MA or
ROS scavenger NAC significantly inhibited apoptosis and autophagy. Moreover, NAC
and JNK-specific inhibitor SP600125 attenuated the effect of Cos. Taken together,
Cos exerted autophagic and apoptotic effects on renal cancer through the ROS/JNK-
dependent signal route. These findings suggest that Cos could be a beneficial
anticarcinogenic agent.

Keywords: costunolide, renal cancer, ROS - reactive oxygen species, apoptosis, autophage

INTRODUCTION

Renal cell carcinoma (RCC) comprises 3-4% of all human cancers, and it is the most lethal
kidney malignant tumor (1). Surgical intervention is the most effective therapeutic strategy for
RCC. However, up to 30% of RCC cases are diagnosed at the stage of metastasis (2). The 5-year
overall survival of metastatic RCC patients is below 10%. Typically, RCC is insensitive to traditional
chemo- and radio-therapeutic treatments (3). Moreover, the use of targeted treatment options as
first and second-line treatments have limited effect on the survival rates. Therefore, there is need
for exploring low-toxicity novel treatment strategies for RCC.

Costunolide (Cos) is a naturally occurring sesquiterpene compound present in various
medicinal plants, including Magnolia sieboldii, L aurus nobilis, and Saussurea lappa (4, 5). It has
various effects such as anti-inflammatory and antifungal properties (6, 7). Recently, Cos has been
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reported to be able to assist chemotherapeutic agents
in overcoming multidrug resistance in cancer cells (8).
Although some studies have shown that Cos exhibits potent
anticarcinogenic activity in human cancer cells through
induction of cell cycle arrest and apoptosis (9, 10), its effect on
human renal cancer cells and the possible associated mechanisms
have not been unraveled.

Cell death can be classified according to the classical
morphological criteria as apoptotic or autophagic. Apoptotic
cell death is a tightly regulated event, which is important
for sustaining tissue constancy via removal of genetically
compromised cells. The typical features of apoptosis are
membranous blebs and nuclear fragments (11). It has been
established that apoptosis may occur through either extrinsic or
intrinsic route (12). Both pathways may lead to the activation
of a related group of caspases involved in the initiation
(caspases-8 and -9) and execution (caspases-3) phases of
apoptosis (13). Autophagy is an evolutionarily preserved process
by which cells degrade macromolecules, unwanted organelles
and certain types of bacteria via double-membrane structures
termed autophagosomes (14). Autophagy performs a complex
function in cancer development and treatment (15). It can
function as a cytoprotective mechanism that protects cancer
cells from apoptotic cell death induced by various anticancer
drugs (16). On the other hand, excessive autophagy can cause
cell death and arrest tumor progression. Therefore, extensive
attention has been paid to redefining the precise function of
autophagic processes in malignancy therapy, so as to enhance
the designing, selection, and utilization of autophagy-regulating
agents (autophagy inducers or inhibitors) (17). In addition,
increasing evidence have shown that apoptosis and autophagy
may be cooperative or antagonistic to determine cell fate
depending on cell types, strength, and duration of the stress-
inducing signals, and influence of other signaling routes (18).

In this study, it was found that Cos exerted reactive oxygen
species (ROS)-induced autophagic and apoptotic effects on renal
cancer cells through ROS induction, resulting in stimulation
of JNK signal pathway. Thus, Cos could be a promising
inducer of autophagy and apoptosis, which can be used for
targeting human cancers.

MATERIALS AND METHODS

Materials and Chemicals

Cos, 3-methyladenine, and inhibitors of JNK, MAPK, and
ERK1/2 were purchased from Selleck. Cos was dissolved in
dimethyl sulfoxide (DMSO) and preserved at —20°C. RPMI-
1640, DMEM, and FBS were products of Thermo Fisher, while
N-acetyl-L-cysteine was obtained from Sigma (St. Louis, MO,
United States). Immunoglobulins against caspases-3, -9, and -8;
and Bax, PARP, Bcl-2, Cyt ¢, CoxIV, JNK, p-JNK, p38, p-p38,
ERK, phospho-ERK, LC3B, Beclin-1, and B-actin were products
of Cell Signaling Technology (Shanghai, China). Reagents for
mitochondrial transmembrane potential (MMP) and apoptosis
were obtained from Beyotime Inst. Biotech (Beijing, China).

Polyvinylidene difluoride membrane was product of Millipore
Corp, United States.

Cell Maintenance and Cultural

Conditions

Four human RCC cells (786-O, A-498, ANCH, and 769-P)
were supplied by American Type Culture Collection (Manassas,
Virginia, United States). The cell lines were cultured in medium
(786-0 and 769-P in RPMI-1640; A-498 and ANCH in DMEM)
with fetal calf serum and antibiotics. The cell culture was
done in a 37°C and 5% CO; humidified atmosphere. The
cells were grown to confluence before drug treatment. Cos was
solubilized in DMSO.

Cell Viability Assay

The CCKB8 assay was used. The cells in suspension were exposed
to graded doses of Cos (5, 10, 20, and 40 pM) for 24 h, followed
by incubation with 10 wL CCKS solution for 180 s at 37°C and
measurement of absorbance at 455 nm.

For cell counting, cell suspension was incubated for 24 h
with the same doses of Cos as in CCK8 assay. Thereafter, the
population of dead cells was determined with trypan blue dye
exclusion procedure.

Nuclear Morphologies of Apoptotic Cells
Cell suspension treated with graded doses of Cos were subjected
to fixation in paraformaldehyde and stained with DAPI away
from light. Nuclear fluorescence intensities were obtained using
Nikon fluorescence microscopy (Nikon Inc., Japan).

Flow Cytometry Analysis of Apoptosis

After treatment with Cos, the cells were rinsed in phosphate-
buffered saline (PBS) and resuspended in 200-pL binding
solution that contained 5 wL Annexin V-FITC and 10 pL
propidium iodide for 20 min away from light. All samples were
subjected to flow cytometric analysis.

Caspase Activity Assay

Caspase-3, caspase-8, and caspase-9 were assayed
fluorometrically using Beyotime Kkits (Beijing, China) in
line with respective manual protocols.

Measurement of Mitochondrial

Transmembrane Potential

The MMP (A{rm) was measured using JC-1 Assay Kit (Beyotime,
Beijing, China) in line with the manufacturers protocol. The
Cos treatment was followed with JC-1 staining for 30 min
away from light at 37°C. Cellular fluorescent photographs
obtained with microscope (Nikon Inc., Japan) were analyzed
with flow cytometry.

RNA Isolation and Real-Time

Quantitative PCR Assays
The 769-P cells were plated in six-well plates. After 12-h
incubation, the cells were exposed to Cos (10, 20, and 40 pM) for
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24 h, followed by extraction of total RNA and cDNA generation,
and RT-PCR with Bio-Rad iQ5 System, with B-actin as control.
The p-actin primers were generated as outlined previously (19).
Relative abundances of the target mRNAs were calculated.

ROS Generation

The generation of intracellular ROS was determined with a cell-
permeable probe, DCFH-DA. Following treatment of the cells
with Cos, they were subjected to incubation with the fluorescent
probe at 37°C for /2 h away from light. Fluorescent photographs
of cells were analyzed with flow cytometry.

GFP-LC3 Puncta Assay

The 769-P cells with stable expression of GFP-LC3 were plated
in six-well plates. After treatment with Cos, the cells were
PBS-rinsed and paraformaldehyde-fixed at room temperature for

10 min. Following removal of paraformaldehyde, the cells were
washed thrice with PBS and then stained with DAPI away from
light at room temperature. Fluorescent images were captured
with a fluorescence microscope.

Western Blotting

Extraction of total protein from Cos-treated 769-P cells followed
the method outlined earlier (19). Moreover, proteins from
mitochondria and cytosol were extracted using appropriate
Kits (Pierce, Rockford, IL, United States). Bicinchoninic assay
method was used for determination of protein levels. Then,
equal amounts of protein were subjected to 12% SDS-PAGE
and electro-transferred to PVDF membranes, the membranes
were blocked in 5% non-fat dry milk at room temperature
for 1 h, and then incubated with primary antibodies for
overnight at 4°C. Thereafter, the membranes were subjected to
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FIGURE 1 | Treatment with Cos decreased cell viability and induced cell death. (A) Cell viability, as determined with CCK8 assay. (B) Cell death, as measured using
trypan blue exclusion assay. All results are presented as mean + SD (n = 3). “p < 0.05; **p < 0.01, vs the control.
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FIGURE 2 | Cos induced apoptosis in 769-P cells. (A) Apoptotic nuclear morphology, as assessed using DAPI staining and visualized using fluorescence
microscopy. (B) Percentage of Cos-induced apoptosis in 769-P cells, as measured using Annexin V-FITC/PI staining and flow cytometry. The histograms indicate the
percentage of early apoptosis and late apoptosis. All results are presented as mean + SD (n = 3). *p < 0.05; *p < 0.01, vs the control.
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incubation with HRP-linked 2° conjugated secondary antibodies
at room temperature for 1 h. The signals were detected using
chemiluminescence (ECL).

Statistical Analysis

All data are expressed as mean = SD of three independent
experiments. Student’s f-test and one-way ANOVA were
employed for statistical analyses. Values of p less than 0.05 were
considered statistically significant.

RESULTS

Cos Decreased Cell Viability via
Induction of Apoptosis in RCC

To determine the cytotoxic influence of Cos on RCC cells,
the 786-O, A-498, 769-P, and ACHN cells were exposed to
different concentrations of Cos (10, 20, and 40 wM) for 24 h,
followed by CCK8 and Trypan blue exclusion assays. Figure 1A
shows that Cos significantly decreased viability of RCC cells
concentration-dependently. Moreover, Cos enhanced apoptosis

in a concentration-based fashion (Figure 1B). The occurrence
of apoptosis in Cos-treated RCC cells was determined with
DAPI staining and flow cytometry. Results revealed that the
cells without Cos treatment had rounded nuclei with well
distributed chromatin, whereas typical apoptotic features of
condensed chromatin and nuclear fragmentation were seen
following treatment with Cos (10, 20, and 40 wM) (Figure 2A).
Flow cytometric analysis showed that significant and dose-based
increases in apoptotic cell number were observed after Cos
exposure (Figure 2B).

Previous studies have demonstrated that apoptosis involves
stimulation of cysteine proteases, including both initiators and
executors of cell death (13). Thus, further evaluation was done
on the effects of Cos on the levels of caspases-8, -9, and -3
using caspase fluorometric assay kits. No significant change was
observed in the activity of caspase-8 in the Cos-treated cells,
when compared with cells with no Cos treatment. Interestingly,
Cos treatment markedly enhanced levels of caspases 9 and 3
(Figure 3A). Consistent with these results, procaspases-9 and -3
levels were lowered with increase in Cos concentration, while the
cleaved forms of caspase-9 and caspase-3 increased (Figure 3B).
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FIGURE 3 | Cos-induced apoptosis was mediated by caspases 9 and 3 in 769-P cells. (A) Activities of caspase-3, caspase-8, and caspase-9 as measured using
the colorimetric assay kits. (B) Caspases-8, -9, and -3, and PARP in 769-P cells treated with various concentrations of Cos for 24 h. (C) Effect of caspase inhibitors
on Cos-induced cell viability, as measured with CCK8 assay. (D) Inhibitory effects of caspase-8 and caspase-9 inhibitors on caspase-3 activity. The activity of
caspase-3 was assayed using colorimetric assay kit. All results are presented as mean + SD (n = 3). *p < 0.05; *p < 0.01, vs the control.
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Procaspase-8 was not affected, while PARP was apparently
cleaved following Cos treatment for 24 h (Figure 3B). In addition,
specific inhibitors of caspase-9 or caspase-3, not caspase-8,
significantly attenuated Cos-provoked apoptosis (Figure 3C).
Caspase-3 was also significantly inhibited with treatment of
caspase-9 inhibitor, but not caspase-8 inhibitor (Figure 3D). The
observations provide evidence that Cos enhanced apoptosis via
stimulation of caspases-9 and -3 only.

Cos-Activated Mitochondrial Apoptotic
Route in RCC Cells

To determine whether mitochondrial pathway mediated Cos-
induced apoptosis, MMP (A{ym) was determined with JC-
1. In normal cells, JC-1 aggregates in normal mitochondria
emit red fluorescence. In contrast, JC-1 aggregates in cytosol
emit green fluorescence when the mitochondria membrane
is depolarized. The results obtained in this study showed
a clear change from red to green fluorescence after Cos
treatment, indicating that a change in Aym was triggered by
Cos treatment in 769-P cells (Figure 4A). Flow cytometric
analysis showed that MMP-depolarized cells were enhanced
from 6.83% (normal level) to 12.99, 22.77, or 37.70% after Cos
treatment (Figure 4B).

It is known that Aym is controlled by the Bcl-2 proteins.
Therefore, the expressions of Bax and Bcl-2 were assayed using
quantitative RT-PCR and Western blot. Results showed that the
expression of Bcl-2 was significantly decreased at both mRNA
and protein levels (Figures 5A,C). In contrast, Cos treatment
significantly increased the mRNA and protein expressions of
Bax (Figures 5B,C). Moreover, Bax/Bcl-2 was elevated in Cos-
exposed cells, relative to control, indicating enhancement of
occurrence of apoptosis (Figure 5D). In addition, Cos enhanced
transfer of Bax from the cytosol to the mitochondrion, and
enhanced the release of cytochrome ¢ from mitochondria
(Figures 5E,F). Thus, Cos provoked apoptosis through the
mitochondrial pathway.

Cos Induced Autophagy in RCC Cells

To determine whether Cos induced autophagy in 769-P cells,
GFP-LC3 dot formation was performed. The results showed
that Cos treatment accentuated GFP-LC3 puncta generation
in 769-P cells in a dose-based fashion (Figures 6A,B).
Moreover, the expression of several protein biomarkers of
autophagy were assayed with Western blot analysis. The results
revealed that Cos treatment increased the protein expressions
of LC3B II and Beclin-1 (Figures 6C-E). It is known that

A Red flourescence Green flourescence Merge
0
=
S
w
<]
O
40
Cos (uM)
B
. 0 10
® 50
N . — Kk
3 e =
8540
2 ® g9
. 683%| 12.99% é § 30 *k
172 T10® 10! 107 10% 100 100 0" 102 10° 10! [} g
£ 20 ; 40 S %20 s
Bl B =
I z3
% % % 10
<
5 % % 0 _i
il - 0 10 20 40
. 22.77%| 37.70% Cos (LM)

100

JC-1 monomers

FIGURE 4 | Influence of Cos on mitochondrial membrane potential in 769-P cells. (A) 769-P cells exposed to Cos (40 M) for 24 h and observed under fluorescent
microscope after JC-1 staining. Untreated cells served as control. Red fluorescence = normal Aym; green fluorescence = damaged Aym. (B) Aym after Cos
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autophagy may exert protective effect on cells or contribute
to apoptosis (16). Treatment of 769-P cells with 3-MA, an
autophagic suppressor, resulted in marked increase in viability
(Figure 6F). Furthermore, 3-MA markedly decreased Cos-
induced mitochondrial depolarization (Figures 6G,H). These
results suggest that inhibiting autophagy could attenuate
apoptosis induced by Cos in 769-P cells.

Cos Induced Autophagy-Associated Cell

Death Through ROS

It is established that ROS are involved in apoptosis and autophagy
(20-22). In this study, ROS generation was determined in
769-P cells with the ROS probe DCFH-DA. Treatment with
Cos increased ROS in a concentration-dependent fashion
(Figures 7A-C). Furthermore, the increases in ROS were

significantly attenuated by pretreating the cells with the ROS
scavenger N-Acetyl-cysteine (NAC) (Figure 7D). Moreover, NAC
treatment attenuated the decrease in cell viability (Figure 8A)
and apoptosis (Figure 8B) caused by Cos treatment, and
NAC significantly decreased the levels of Bax and LC3-II and
increased Bcl-2 level (Figures 8C,D). Thus, ROS are implicated
in autophagy and cell death induced by Cos.

Cos Induced Apoptotic and Autophagic

Changes via the JNK Signaling Pathway

The MAPK signaling route is linked to apoptosis and autophagy
(23). Levels of p-ERK1/2, p-JNK, and p38 were assayed
in this study. As shown in Figures 9A-C, Cos treatment
markedly increased the level of phosphorylated JNK in a
concentration-dependent manner. Furthermore, pretreatment
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with JNK inhibitor (SP600125), but not ERK1/2 inhibitor
(SCH772984) or p38 MAPK inhibitor (SB203580), significantly
attenuated cell viability caused by Cos treatment (Figure 9D).
The Cos-stimulated apoptosis was mitigated by SP600125
(Figure 9E). In addition, SP600125 decreased the protein
expressions of LC3-1I and Beclin-1 (Figure 9F). Taken together,
these results indicate the involvement of JNK in Cos-mediated
autophagy and cell death.

ROS Production Preceded JNK

Stimulation in Cos-Provoked Apoptosis
Figure 10A shows that the JNK inhibitor SP600125 did not
affect Cos-induced ROS generation, suggesting that JNK did not
enhance ROS levels. Interestingly, suppression of ROS with NAC
eliminated Cos-associated JNK2 phosphorylation (Figure 10B),
indicating that ROS generation preceded the activation of JNK
in Cos-treated 769-P cells. Taken together, these findings indicate
that ROS/JNK pathway activated by Cos treatment is involved in
the induction of apoptosis and autophagy (Figure 11).

DISCUSSION

Cos is a sesquiterpene lactone isolated from the stem bark of
M. sieboldii. It exhibits various biological and immunological
properties. Previous studies showed that Cos exerted various
anticancer effects such as blockage of the angiogenic factor
(VEGFR) signaling pathway (24), disruption of microtubule
proteins (25), inhibition of telomerase activity (26), and
triggering of apoptosis and arrest of the cell cycle (9). However,
the association between Cos-induced cell death and autophagy
has not been reported. The present study has provided evidence,
indicating that Cos induced apoptosis and autophagy in human
renal cancer cells via ROS/JNK signaling pathway.

It is well-known that apoptosis is a basic event needed
for maintenance of tissue constancy (11). Earlier reports have
shown that Cos induced apoptotic cell death in different cancers
such as breast, lung, bladder, and esophageal cancers (9, 27-
30). Consistent with these reports, the results obtained in
this study showed that Cos decreased RCC cell viability and
increased cell death. Chromatin condensation and presence of
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phosphatidylserine on the exterior of the cell are crucial indices
of apoptosis. These features were present in RCC cells 24 h after
Cos treatment, indicating that Cos induced RCC cell apoptosis.
The possible mechanisms underlying Cos-induced apoptosis
in 769-P cells were investigated. Cascade activation of caspases
plays important roles in apoptosis. The two major caspase
activation pathways (death receptor and mitochondrial
pathways) have been well described (12). The death receptor
pathway is initiated by binding of ligands to death receptors,
resulting in caspase-8 activation (13). Mitochondria pathway
depends on Cyt c¢ release from mitochondrion into the
cytoplasm, leading to caspase-9 stimulation and activation of
capase-3 associated with generation of typical apoptotic features.

Previous studies showed that Cos induced cancer cell death via
stimulation of caspase-8 or caspase-9, depending on cancer cell
types or other factors. For instance, it has been reported that Cos
induced apoptosis of breast and leukemia cancer cells through
the extrinsic route (9, 31). Moreover, Cos induced apoptosis
in bladder and lung cancer cells through the mitochondrial
pathway (28, 29). The results of the present study revealed
that Cos promoted caspases-9 and -3, and cleaved PARP in
769-P cells, but caspase-8 was not affected. In addition, the
caspase-8 specific inhibitor (z-IETD-fmk) did not attenuate
cell death induced by Cos treatment. Western blot and other
assays revealed that Cos treatment enhanced Bax/Bcl-2, reduced
mitochondrial membrane potential, and resulted in cytochrome
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PARP

—Apepsis

¢ release from mitochondrion into the cytosol. These data
indicate that Cos induced apoptosis in 769-P cells through
mitochondrial pathway.

Protracted exposure of cancerous cells to chemotherapy
makes them resist apoptosis. Previous studies have demonstrated
that modulation of autophagic processes could be useful for
circumventing chemoresistance and enhancing the effects of
chemotherapeutics (32, 33). Autophagy is a cellular process
for clearance of damaged organelles, and it is involved in
carcinogenesis and sensitivity of cancer to therapy (16). Due to
different cell types as well as genetic factors, autophagy performs
dual roles in cancers. On the one hand, tumor cells can activate

autophagy to survive under metabolic and therapeutic conditions
by limiting tumor necrosis and mitigating genome damage,
such that cancer fighting strategy can be improved by blocking
autophagy (15, 34, 35). On the other hand, autophagy may be
beneficial in treatment of insensitive cancers (36). In recent years,
a great variety of natural products or chemotherapeutic drugs
have been demonstrated to participate in the modulation of
autophagy through different molecular mechanisms (17, 36-38).
For instance, hernandezine, an alkaloid, mediated autophagy in
drug-resistant fibroblasts or cancer cells via direct stimulation
of AMPK (39). Pirarubicin induced an autophagic cytoprotective
response via inhibition of mMTOR/p70S6K signal route in human
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bladder carcinoma (40). In this study, the results showed
that Cos-induced autophagy was evidenced by the increased
autophagic vesicle formation and LC3 conversion in 769-
P cells. Moreover, 3-MA decreased Cos-provoked cell death,
suggesting that autophagy due to Cos was involved in the cell
death. These results suggest that Cos induced pro-apoptotic
autophagy in 769-P cells.

ROS have been identified as important molecules in the
regulation of cell survival or cancer cell death (29, 36). Low
ROS concentrations participate in cellular signaling, whereas
excessive ROS impair proteins and DNA in the cell, eventually
causing autophagy or cell death (32, 41). This study has shown
that Cos induced significant increases in ROS, but pretreatment
with NAC markedly reversed Cos-associated apoptosis and
autophagy, indicating that Cos exerts apoptotic and autophagic
influences through the generation of ROS in 769-P cells. It
is well-known that ROS, acting as second messengers, exert
their biological effects via activation of downstream molecules,
mainly MAPK signaling pathways (21, 42, 43). Cinobufagin
exerted apoptotic and autophagic cell death via the ROS/JNK/p38
signaling pathway (44). The ROS-mediated JNK signal route can
also modulate autophagic cyto-protection in Ciclopirox olamine-
administered rhabdomyosarcoma (45). The results of this study
are consistent with these reports, in that among the members
of the MAP kinase family studied, only JNK, but not ERK or
P38 was activated in Cos-treated 769-P cells. The JNK inhibitor
SP600125 significantly reversed Cos-mediated apoptotic and
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Breast cancer (BRCA) is the most frequent cancer type that afflicts women. Unfortunately,
despite all the current therapeutic strategies, many patients develop chemoresistance
hampering the efficacy of treatment. Hence, an early indicator of therapy efficacy might aid
in the search for better treatment and patient survival. Although emerging evidence
indicates a key role of the purinergic receptors P2X7 and A2A in cancer, less is known
about their involvement in BRCA chemoresistance. In this sense, as the chemotherapeutic
treatment stimulates immune system response, we evaluated the expression and function
of P2X7 and A2A receptors in CD8* T cells before and four months after BRCA patients
received neoadjuvant chemotherapy. The results showed an increase in the levels of
expression of P2X7 and a decrease in the expression of A2A in CD8* T cells in non-
chemoresistant (N-CHR) patients, compared to chemoresistant (CHR) patients.
Interestingly, in CHR patients, reduced expression of P2X7 occurs along with a
decrease in the CDB2L shedding and the production of IFN-y. In the case of the A2A
function, the inhibition of IFN-y production was not observed after chemotherapy in CHR
patients. A possible relationship between the modulation of the expression and function of
the P2X7 and A2A receptors was found, according to the molecular subtypes, where the
patients that were triple-negative and human epidermal growth factor receptor 2 (HER2)-
enriched presented more alterations. Comorbidities such as overweight/obesity and type
2 diabetes mellitus (T2DM) participate in the abnormalities detected. Our results
demonstrate the importance of purinergic signaling in CD8" T cells during
chemoresistance, and it could be considered to implement personalized therapeutic
strategies.
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INTRODUCTION

Breast cancer (BRCA) is the most common type of cancer in
women, both in developed and underdeveloped countries. The
World Health Organization (WHO) estimates that 627,000
women died worldwide in 2018 due to this type of cancer.
The BRCA incidence rates range from 25.9 cases per 100,000
in South-Central Asia to 94.2 cases per 100,000 in Western
Europe (GCO, 2018). In 2015, Mexicos’ BRCA incidence was
27.70 new cases per 100,000 women aged 20 years and older
(INEGI, 2016). According to its origin, BRCA can develop in the
milk ducts (ductal cancers) or the milk-producing glands (lobular
cancers). Biopsy evaluation provides information about the
degree of aggressiveness of the tumor and the presence or
absence of specific markers that aid in making decisions about
the best chemotherapy option. In this sense, patients might fall
into one of the four intrinsic molecular groups depending on the
presence of estrogen receptor (ER), progesterone (PR) or human
epidermal growth factor receptor 2 (HER2): luminal A (ER+,
PR+, HER2-), luminal B (ER+, PR+/—, HER2+/-), HER2-
enriched (ER-, PR—, HER2+), and triple-negative (ER—, PR-,
HER2-) (Breastcancer.org, 2018).

To date, chemotherapy is the most effective treatment for
BRCA, which can be adjuvant, applied to patients after
mastectomy to avoid a recurrence or neoadjuvant, that targets
large tumors to reduce its size before the mastectomy. According
to Mexican guidelines, neoadjuvant therapy for BRCA includes
fluorouracil, cyclophosphamide, and doxorubicin (Secretaria de
Salud, 2017). These drugs favor the death of cancer cells due to
their cytotoxic mechanism of action, such as intercalating into
DNA, inhibiting pyrimidine synthesis or adding alkyl groups to
DNA. In this sense, chemotherapeutic treatment has a
stimulating effect on the immune system and its cytotoxic
action on the tumor cells (Haynes et al., 2008). One of these
effects is observed with doxorubicin or oxaliplatin, where the
cancer cells release the alarmin high-mobility group box protein 1
(HMGBI1), which acts upon the immune cell patter recognition
receptors (PRR). High levels of alarmins are found in patients
with BRCA after chemotherapeutic treatment (Apetoh et al.,
2007; Stoetzer et al., 2013). On the other hand, doxorubicin
induces greater involvement of the CD8" T cells that produce
IFN-y and increases the production of IL-1p and IL-17 in murine
models of BRCA. In samples from BRCA patients, higher
expression of genes for CD8«, CD8p, and IFN-y is associated
with a better response to treatment with doxorubicin (Mattarollo
et al., 2011). However, despite all the available therapeutic
strategies, many patients do not adequately respond to
chemotherapy and develop chemoresistance (Ji et al., 2019).

ATP also functions as an alarmin and emerging evidence
suggests that purinergic signaling pathways play a crucial role in
the development of various types of cancer and immune
activation (Buxton et al, 2010; Adinolfi et al, 2012; Zhou
et al,, 2015). In this regard, ATP activation of P2X7 receptors,
an ionotropic receptor that belongs to the P2X family, by ATP,
promotes the process of metastasis in a BRCA cell line (Xia et al.,
2015). In contrast, in glioma patients, higher expression of P2X7
receptors favors radiotherapy’s effectiveness by inducing
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apoptosis (Gehring et al., 2012). The efficiency of anticancer
treatment (oxaliplatin, doxorubicin, thapsigargin, staurosporine,
or cisplatin) relates to the degree of ATP released by cancerous
cells, which promotes the activation of the P2X7 receptor. P2X7
activation contributes to the activation of the NLRP3-
inflammasome pathway and the production of IL-1p, favoring
antitumor activity, and better treatment efficiency (Ghiringhelli
et al, 2009). Therefore, there is conflicting evidence to the
prognosis value of P2X7 expression, due to its pro-tumoral or
anti-tumoral functions depending its expression in cancer cells or
in immune cells.

The A2A and A2B receptors signaling, which belongs to the P1
receptor family, is activated mainly by adenosine, and it also poses
immunosuppressive activity. The A2A receptor is the most
studied of the P1 receptor family in the regulation of T cell
responses. Adenosine is produced from AMP, mainly by CD73,
an ecto-5"-nucleotidase. The A2A/A2B receptors antagonists on
CD73-positive cancer cells induce a reduction on metastasis while
A2A receptor antagonist increases the cytotoxic capacity of the
NK cells (Beavis et al., 2013). In triple-negative BRCA (TNBC)
that expresses high levels of CD73, conventional chemotherapy is
not effective (Spychala et al., 2004; Mittal et al., 2014). In this case,
activation of A2B and A2A receptors leads to metastasis and an
immune ineffective antitumor activity, which suppresses the
efficacy of anthracyclines (doxorubicin), leading to a worse
outcome for patients (Loi et al, 2013). These data together
suggest that purinergic signaling might influence the efficacy
of chemotherapy in BRCA, which might lead to tumor
chemioresistance. Because few studies have been conducted
with patients, it is crucial to determine the possible
of purinergic signaling in chemoresistance
mechanisms in BRCA patients and to generate relevant
information on the efficacy of first-line drugs to understand
better the role of the immune system in the evolution of
patients during chemotherapy.

involvement

MATERIAL AND METHODS

Study Group
This study included 50 newly diagnosed BRCA women that

received neoadjuvant chemotherapy with 5-fluorouracil,
adriamycin, and cyclophosphamide (FAC) scheme, which is
administered for six cycles consisting of one administration
every four weeks at doses of 600 mg/m” of five- fluorouracil
and cyclophosphamide, and 60 mg/m® of doxorubicin according
to the body surface area (BSA) of each patient (Arun et al., 2011).
A peripheral venous blood sample was taken before the start of
neoadjuvant chemotherapy (C0) and four months later, before
administering of the fourth cycle of chemotherapy (C4). The
response to chemotherapy was evaluated at the clinic following
the Response Evaluation Criteria in Solid Tumors (RECIST),
considering the reduction in initial tumor size measured by
clinical oncology doctors (Eisenhauer et al, 2009). The
patients with a tumor size reduction equal to or less than 30%
at C4 were considered chemo-resistant (CHR), including patients
who presented tumor enlargement. The molecular identification
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of each patient’s type of cancer was carried out in the pathology
service of the Central Hospital Dr. Ignacio Morones Prieto, San
Luis Potosi, using the immunohistochemical or fluorescence in
situ hybridization (FISH) technique to identify the presence of
hormone receptors and HER2; Luminal A (ER+, PR+, HER2-),
Luminal B (ER+, PR+/—, HER2+/-), HER2-enriched (ER—, PR—,
HER2+), and triple-negative (ER—, PR—, HER2-). All patients
signed an informed consent letter before the collection of blood
samples. Our study was approved by the Research Committee of
the Central Hospital (COFEPRIS 14 CI 24 028 083) and the
Committee of Ethics in Research (CONBIOETICA-24-CEI-001-
20160427).

Isolation of Peripheral Blood Mononuclear

Cells

The hospital’s nursing staff collected the peripheral blood
samples during the morning, and patients were no fasting.
The blood sample for CO was collected before the first
administration of chemotherapy, and C4 blood was drawn
before administering the fourth cycle of chemotherapy. The
blood samples were diluted with PBS in a 1:2 ratio and placed
in 3 ml of Ficoll per 10 ml of diluted blood. Then, the cells were
centrifuged at 2,500 rpm for 20 min, and the fraction of the
PBMC was separated and placed in a new tube. Then, a PBS wash
was performed at 1,500 rpm for 5 min, and a cell button was
obtained and resuspended in RPMI culture medium for the
experiments using different stimuli or in PBS, to carry out the
analyzes by flow cytometry. Cell viability was determined by
trypan blue staining; viable samples were considered when > 95%
of living cells were present.

Flow Cytometry Analysis

The PBMC were placed in a tube (at 2 x 10° cells), washed with
PBS, centrifuged at 1,500 rpm for 5 min, and the supernatant was
discarded to resuspend the cell button. Surface labeling was
performed to determine the expression of P2X7 or A2A
receptors on CD8 T cells, incubating the samples with anti-
CD8 antibody FITC (BD Biosciencem) or anti-CD8 PE (BD
Biosciencerm) respectively, for 20 min at 4°C in the dark; the
determination of each receptor was performed in separate tubes.
After washing with PBS, the cells were fixed with 4%
paraformaldehyde (PFA) for 15min at 4°C in the dark.
Subsequently, for P2X7 detection, 0.1% saponin was added for
10 min, then the sample was centrifuged at 1,500 rpm for 5 min,
and the supernatant discarded. Rabbit anti-P2X7-human
intracellular primary antibody (Sigma-Aldrich) was added and
incubated for 30 min at 4°C in the dark. After washing with PBS
and discarding the supernatant, the cell button was incubated
with the secondary anti-rabbit-PerCP antibody (Santa Cruz
Biotechnology) for 30 min at 4°C in the dark. A wash step was
then carried out with PBS, and 1% PFA was added and preserved
at4°C. For A2A detection, Triton X-100 was added and incubated
for 5 min at 4°C and washed with PBS + 1% albumin at 1,500 rpm
for 5 min. The supernatant was discarded, and the cell button was
resuspended and incubated with 0.1% saponin for 5 min. Then,
the cells were centrifuged at 1,500 rpm for 5 min, and the
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supernatant discarded. The anti-A2A-PE antibody (Santa Cruz
Biotechnology) was added and incubated for 30 min at 4°C in the
dark, then 1% PFA was added, and samples were preserved at 4°C.
The cells were analyzed in a FACSCanto II flow cytometer (BD
Biosciencesm) using FlowJo software (Becton, Dickinson and
Company). To determine the expression of the P2X7 or A2A
receptors in CD8" T lymphocytes by flow cytometry, the
following analysis strategy was followed: first, the singlets were
selected, and the doublets were discarded with the forward
scatter-height (FSC-H) vs. forward scatter-area (FSC-A)
analysis. Then, the population of lymphocytes was analyzed
based on their size (FSC) and granularity side scatter (SSC),
the CD8" T cells were subsequently determined as well as the
expression of each receptor.

Determination of the Shedding of CD62L by
Flow Cytometry

The PBMC were incubated in the presence or absence of 100 ng/
ml Phorbol 12-myristate-13-acetate (PMA) (as a positive control)
or 3mM ATP at 37°C and 5% CO, for 30 min. The cells were
washed with PBS and incubated in the presence of anti-CD8-PE
(BD Biosciencerm) and anti-CD62L-FITC antibody (BD
Biosciencers) for 30 min. After washing with PBS, the cells
were analyzed by flow cytometry, and the percentages of CD8"
cells that were positive for CD62L were obtained in the presence
and absence of ATP. The results are expressed as the percentage
of CD62L + cells of CD8" and as the percentage of shedding of
CD62L, according to the following formula: percent shedding of
CD62L = percentage of CD62L + cells of CD8" without ATP-the
percentage of CD62L + cells of CD8" stimulated with ATP.

Determination of the synthesis of IFN-y by
flow cytometry

The PBMC were incubated in the presence or absence of the CD3/
CD28 antibodies (5 ug/ml) for 5 days to favor cell activation at
37°C and 5% CO,. Besides, they were incubated separately and
simultaneously with the A2A receptor agonist and antagonist,
called CGS-21680 (70uM) and ZM-241385 (10 uM),
respectively, these stimuli were used for 1 h before stimulation
with the CD3/CD28 antibodies. Cells were washed with PBS and
incubated in the presence of an anti-IFN-y-FITC antibody
(BioLegendrv) for 30 min. After washing with PBS, the cells
were analyzed by flow cytometry.

Statistical Analysis
The data are shown as the mean + the standard error of the mean,

and the data were analyzed using the GraphPad Prism v.5
program (GraphPad Software Inc., San Diego, CA). The
Kolmogorov-Smirnov test determined the distribution of each
of the variables. For the analysis of parametric data, a paired
Student t-test was performed, and for the case of non-parametric
data, a Wilcoxon matched-pairs test was performed. A one-way
ANOVA test was performed with a Bonferroni post-hoc test or a
Kruskal-Wallis test with Dunn’s post-hoc test to determine the
differences between the variables and a Spearman r correlation
test to determine the correlation between the variables. A
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TABLE 1 | Anthropometric parameters of the individuals included in this study

Patients

n 50
Age (Years) 499 + 9.6
BMI (Kg/m?)

Before chemotherapy (CO) 30.5 + 6.6
After chemotherapy (C4) 31 +6.6

Normal weight 23.3 + 1.25 (24%)

Overweight 27.4 +1.42 (22%)
Obesity 35.0 + 5.56 (54%)
T2DM 30.9%
Hypertension 31.7%
Tumor size (cm) 2x2-12x 12
Luminal A (ER+, PR+, HER2-) 36%
Luminal B (ER+, PR+/—; HER2+/-) 24%
HER2-enriched (ER-, PR-, HER2+) 20%
Triple-negative (ER-, PR-, HER2-) 20%
Chemo-resistant 20%

Values are presented as the mean + standard deviation (SD) or percentage. BMI (body
mass index); T2DM (type two diabetes mellitus); estrogen receptor (ER), progesterone
receptor (PR) or human epidermal growth factor receptor 2 (HER2).

statistically significant difference with a value of P<0.05 was
considered.

RESULTS

Patient Characteristics
The BRCA study group was 49.9 + 9.6 years old and presented an

average body mass index (BMI) of 30.4 + 6.7. According to the
WHO classification of obesity, 54% of the studied patients
presented obesity. Also, 30.9% showed comorbidity with type
2 diabetes mellitus (T2DM), and 31.7% with hypertension. All
patients received chemotherapy followed the Mexican guide
using FAC therapy (5-fluorouracil, adriamycin, and
cyclophosphamide). The patients were classified by the
intrinsic molecular type; 36% were luminal A, 24% were
luminal B, and 20% of the patients were triple-negative, and
HER?2 enriched represented a 20% (Table 1).

Effect of Chemotherapy on P2X7
Expression in CD8" T Cells

We assessed how purinergic signaling influences the efficacy of
chemotherapy in the BRCA patients, as this pathway has been
linked to carcinogenic breast processes. We initially evaluated the
expression of P2X7 receptors before and after receiving the FAC
chemotherapy (CO and C4, respectively; see methods). An
unmarked control and isotype control were used to finally
determine the expression of the P2X7 receptors (Figure 1A).
There was a significant increase in P2X7 expression in CD8"
T cells at C4 (Figure 1B). However, as 20% of patients developed
chemoresistance, we evaluated P2X7 expression within each
group. Interestingly, CD8" T cells of non-chemoresistant
(N-CHR) patients showed the significant increase in P2X7
positivity (Figure 1C). In contrast, CHR patients showed
similar frequencies of P2X7 positive CD8" T cells
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(Figure 1D). When we evaluated the four intrinsic molecular
cancer subtypes, significant increased frequency of P2X7
positivity was observed in luminal B and HER2-enriched
BRCA (Figure 1EF), while no significant changes were
detected in luminal A or triple-negative patients (Figure 1G,H).

Relationship between P2X7 expression,

metabolic alterations and tumor size

As 76% of BRCA patients were overweight or obese, we analyzed
whether there was a relationship between P2X7 expression in
CD8" T lymphocytes and BMI levels. Interestingly, we found a
positive correlation before starting chemotherapy (r=0.2970;
p=0.04, Figure 2A). However, this correlation was not
observed at C4, presumably due to the increase in P2X7
expression in CD8" T cells (r=0.07; p=0.63, Figure 2B); also,
there were no changes in the BMI of patients after chemotherapy
(see Table 1). Subsequently, when patients were classified
depending on their response to chemotherapy, only the
N-CHR at CO showed a correlation between P2X7 expression
and BMI (Figure S1B). There was not a correlation between
P2X7 and BMI in N-CHR at C4, or CHR at C0 and C4
(Supplementary Figure S1A,B).

As BMI emerged as an influential component of our study, we
evaluated P2X7 expression in patients classified accordingly to
their BMI (Normal weight < 24.9; Overweight 25-29.9, Obesity >
30), and whether they also presented T2DM. The normal weight
and obesity group showed a significant increase in the frequency
of P2X7 expression in CD8" T cells in the T2DM group
(Supplementary Figure S2A). This difference was maintained
only in the group of normal weight when T2DM patients were
excluded from the analysis (Supplementary Figure S2B),
demonstrating that obesity could play a role in the regulation
of P2X7 expression after chemotherapy. On the other hand, when
the analysis was performed with BRCA patients who also suffer
from T2DM, a significant increase in the expression of P2X7 after
chemotherapy in both T2DM and non T2DM (N-T2DM)
patients was detected (Supplementary Figure S2C,D), which
shows that T2DM has no effect in the regulation of P2X7
expression.

Finally, we explore the change of P2X7 expression in CD8"
T cells according to the initial tumors size -the variable that
reveals the effectiveness of chemotherapy, as well as disease
progression- and a significant increase in P2X7 expression
only was observed in patients with initial tumors size < 5cm
(Figure 2C).

Alterations in the Function of P2X7 in
Chemo-Resistant Patients

Next, we determined the function of the P2X7 receptor in CD8" T
lymphocytes treated with ATP by flow cytometry measuring two
markers of activation, CD62L down-regulation and IFN-y
production. The following analysis strategy was carried out to
determine shedding of CD62L. First, the singlets were selected,
and the doublets were discarded with the analysis of FSC-H vs.
FSC-A. Then, the lymphocyte population was analyzed,
considering their size (FSC) and granularity (SSC), in which
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FIGURE 1 | Expression of the P2X7 purinergic receptor in CD8"* T cells from Breast cancer (BRCA) patients by flow cytometry. The graphic representations of
peripheral blood cells depict the flow cytometry analysis. The singlets were selected, and the lymphocyte population based on cell size and granularity characteristics
(FSC and SSC, respectively) was selected. The population of CD8* T cells was determined using specific CD8 staining, and then the expression levels of the P2X7
receptor (A) were obtained. Expression levels of P2X7 in CD8* T cells from total samples before the start of neoadjuvant chemotherapy (CO) and four months later,
before the administration of the fourth cycle of chemotherapy (C4) (B) and non-chemo-resistant (N-CHR) (C) or chemo-resistant (CHR) patients (D) are shown. P2X7
receptor expression is shown in CD8* T cells in different groups according to their molecular type; luminal A (E), luminal B (F), HER2-enriched (G) and triple-negative (H)
patients. The results correspond to the mean + SEM. *p<0.05, ***p<0.001. In graphs and onward, CHR is in red while N-CHR is in black symbols.

the population of CD8" T cells and the expression of CD62L was
determined (Figure 3A). It is expected that activation of the P2X7
receptor with ATP reduces the expression of CD62L. In N-CHR
patients, we found a significant decrease in the frequency of
CD62L positive CD8" T cells at CO and C4 when activating the
P2X7 receptor with 3 mM ATP (Figure 3B). In the case of CHR
patients, this P2X7 function was lost. No difference in the
expression of CD62L was observed in the presence of 3 mM
ATP (Figure 3C). The shedding of CD62L calculated at CO in
N-CHR patients was greater than that in CHR patients
(Figure 3D); therefore, the activation of P2X7 is diminished in
patients with CHR.

The analysis of the P2X7 receptor activation, when divided by
the molecular tumor type, showed a significant decrease in the
expression of CD62L only in patients classified as luminal A or in
ER + patients (Supplementary Figure S3). Regarding the role of
P2X7 in patients with metabolic disorders, we only found a
significant decrease in the frequency of CD62L positive CD8*

T cells in the group of BRCA patients with normal weight or
obesity at CO. However, this P2X7 activation was not observed at
C4 (Supplementary Figure S4A,B). Additionally, by eliminating
the group of patients who also suffer from T2DM to determine
the effect of this comorbidity, we were unable to observe any
difference (Supplementary Figure S4C,D). In contrast, the
analysis of data obtained from T2DM or N-T2DM patients
showed a decrease in the levels of expression of CD62L only
in the group of N-T2DM patients (Supplementary Figure
S4E,F).

The second strategy to study the influence of P2X7 expression
in T cell activation was through the production of IFN-y using the
same flow cytometry analysis described above to determine the
population of CD8" T cells (Figure 3E). The percentage of IFN-y
producing CD8" T cells was evaluated in a control condition
stimulated with anti-CD3/CD28. The N-CHR group presented
similar production of IFN-y between C0 and C4 (Figure 3F). In
contrast, the production of IFN-y was less at C4 in the group of

Frontiers in Pharmacology | www.frontiersin.org

105

November 2020 | Volume 11 | Article 576955


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Ruiz-Rodriguez et al.

Chemoresistance and Purinergic Signaling

A £ r=0.2970 B €4
_ r=0.07646
p = 0.0404 b = 0.6303
40 % 40+
& & e, 8 °
(=] [ ] o
O 304 ° O 304 hd
k] 5 e N
L) »
3 204 ° B 20- . .
i ® L1 = L
% 104 o® o % 10- o S e o o
o o e s © o . ® oy
=0l cwRedP e o = © *%¢, # o°
20 30 40 50 20 30 40 50
BMI BMI
c *
40-
& 3 v
o A
8 30 A v
[5) n A
L . A v
> 20
(%)
% * 4 ’%7
N0y o B A -
[ ] A %
< |de B s
0'_I_M T T T
Q ] Q ™ Q 1.3
() ) ($) < $) [¢)
B M BN
Tumor size
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(<5 cm, 6-9 cm, =10 cm) before starting treatment. Values are shown as the mean + SEM. *p<0.05.

CHR patients (Figure 3G) or triple-negative patients
(Figure 3H), compared to CO0. Additionally, when comparing
the percentage of IFN-y producing CD8" T cells between N-CHR
and CHR patients at C0, we found an increase in the percentage
of IFN-y in CHR vs. N-CHR patients. However, at C4, a
significant decrease was observed in the CHR patients
compared to N-CHR (Figure 3I).

Effect of Chemotherapy on A2A Expression

in CD8" T Cells

The expression of the A2A receptor in CD8" T lymphocytes by
flow cytometry was determined using an unmarked control as
shown in Figure 4A. It has been shown that A2A receptors
regulate the antitumor immune response. Contrary to what we
observed with the P2X7, we found a significant decrease in the
frequency of A2A positive CD8" T cells at C4 compared with
the same patient at CO (Figure 4B). When analyzing the
expression of A2A only in N-CHR patients (Figure 4C), a
significant decrease was also observed. However, when the
CHR patients were analyzed (Figure 4D), no differences were
detected. When analyzing A2A expression in the different

intrinsic molecular subtypes, we found that A2A positive
CD8" T cells decreased significantly at C4 in groups of
patients classified as ER+, luminal A, and luminal B
patients (Figure 4F-H).

Relationship Between A2A Receptor in

Patients With Metabolic Disorders

When comparing the expression of A2A relative to the BMI, no
correlation was found at CO or C4 (data not shown). However,
when A2A expression levels were analyzed in patients with BRCA
who also have T2DM, overweight or obesity, we found a
significant difference in the expression of A2A between CO
and C4 only in the group of normal-weight patients
(Supplementary Figure S5A). Also, by excluding patients who
also suffer from T2DM, the significant decrease in A2A
expression in patients with normal weight was preserved
(Supplementary Figure S5B). On the other hand, if we
compared the A2A levels of expression in T2DM
(Supplementary Figure S5C) or N-T2DM (Supplementary
Figure S5D) patients, we found a significant decrease only in
the group of N-T2DM patients.
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Alterations in A2A Function in

Chemo-Resistant Patients

To determine the function of the A2A receptor, the inhibition in
the production of IFN-y in CD8" T cells was determined by flow
cytometry (Figure 5A). The same flow cytometry analysis
strategy previously described was followed to determine the
percentage of IFN-y produced by CD8" T cells. It is expected
that upon activation of the A2A receptor with CGS-21680, a
specific agonist, the percentage of IFN-y producing by CD8"
T cells will decrease and when ZM-241385 -a specific antagonist-
is used, the levels of IFN-y are similar to basal point. A significant
decrease in the percentage of IFN-y producing CD8" T cells at CO
was observed in N-CHR patients when stimulating the A2A
receptor. Furthermore, no differences were detected between
CO0 and C4 when comparing the percentage of IFN-y
producing CD8" T cells (Figure 5B). On the other hand, in
the group of CHR patients, a decrease in the percentage of IFN-y
producing CD8" T cells was observed at CO and C4 when pre-
stimulated with CD3/CD28. However, no difference was found in
the percentage of cells when stimulating the A2A receptor at C4,
which was observed at CO (Figure 5C). Similar results in CHR

patients were observed in the group of patients classified as triple-
negative (Figure 5D).

Additionally, we performed an analysis of the A2A receptor
function in patients with T2DM. BRCA patients with T2DM did not
show a decrease in the percentage of IFN-y producing CD8" T cells
when stimulating the A2A receptor (Figure 5E). The function of
A2A was detected only in N-T2DM patients (Figure 5F).

P2X7+/A2A + RATIO IN CD8 T CELLS OF
BREAST CANCER PATIENTS

The expression and function results suggest a key role of the P2X7
and A2A receptors in CD8" T cells from patients with BRCA. Then,
we analyzed the P2X7/A2A ratio, and a significant increase only in
N-CHR patients between C0 and C4 was detected (Figure 6A).
Finally, the correlation between the P2X7/A2A ratio and the
percentage of response of each patient was determined, where
at CO a positive and significant correlation was obtained (p =
0.0448, R = 0.285, Figure 6B), but at C4 was lost (p =0.4514,R =
0.1089, Figure 6C).
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DISCUSSION

A growing body of evidence indicates that purinergic signaling
plays a key role during tumorigenesis and tumor growth (Di
Virgilio and Adinolfi, 2017). Among the purinergic receptors, the
P2X7 receptor is one of the most studied as it promotes cancer cell
proliferation, angiogenesis, and migration (Di Virgilio and
Adinolfi, 2017; Di Virgilio et al., 2018). Besides, the P2X7
receptor participates in immune cells activation response,
differentiation, and production of proinflammatory cytokines,
and it promotes cell death by forming a non-selective pore,
mainly in cells with high expression of the receptor as
monocytes/macrophages (Surprenant and North, 2009; Di
Virgilio et al., 2017; Adinolfi et al., 2018). Therefore, it is of
great interest to determine whether the P2X7 receptor expressed
in CD8" T lymphocytes plays a role in the chemoresistance of
BRCA patients. Here, we showed that CD8" T cells present an
increase in P2X7 receptor expression and a decrease in the A2A
content only in patients that positively responded to neoadjuvant
chemotherapy. In contrast, patients that developed
chemoresistance showed no change in the expression of P2X7
and A2A in CD8" T cells.

Our results showed that the administration of first-line
neoadjuvant  chemotherapy significantly increased the
expression of P2X7 in CD8" T cells. This effect might be
caused by the release of molecules such as HMGB1 or ATP
from cancer cells treated with drugs used in chemotherapy, which
then activate dendritic cells to promote the presentation of an
antigen (Aymeric et al., 2010), causing activation of CD8" T cells

and elevated the expression of the P2X7 receptor (Borges da Silva
et al., 2018). Therefore, this increase in extracellular ATP causes
stimulation of the P2X7 receptor in CD8" T lymphocytes, which
further favors its activation. On the other hand, in CHR patients,
there was no increase in P2X7 receptor expression, which could
indicate that the immune response against the tumor triggered
after chemotherapy administration is not optimal. In fact, mouse
models with deficient P2X7 expression developed accelerated
tumorigenesis, lower infiltration of CD8" T cells into the
tumor tissue, and reduced chemotherapy efficiency
(Ghiringhelli et al., 2009; Adinolfi et al., 2015). Some isoforms
of P2X7 have been reported related to cancer (Adinolfi et al.,
2010), which could be participating in the mechanisms of
chemotherapy efficacy. However, the relationship of each
isoform with chemoresistance in BRCA is still unknown.

We also observed altered function of P2X7 receptor in patients
who presented chemoresistance, as evidenced by no change in the
percentage of CD62L positive cells from CD8" T cells as well as
the lower production of IFN-y in the presence of ATP. These
results might be related to the reduced expression of P2X7
receptors in cells from CHR patients. This observation is
consistent with published results showing that changes in the
expression of P2X7 alter CD8" T cells maturation and its
production of IFN-y that impairs tumor infiltration (Borges da
Silva et al., 2018; De Marchi et al., 2019). The shedding of CD62L
is dependent on the activity of P2X7 (Mahnke et al., 2017);
therefore, low shedding of CD62L reflects diminished function
and expression of the P2X7 receptor. In the case of CHR patients,
no significant change in the expression of CD62L occurred when
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as the mean + SEM. *p<0.05, **p<0.01.

stimulated with ATP, as well as low shedding of CD62L at CO.
Therefore, these results suggest that an adequate response to
chemotherapy largely depends on the level of expression of the
P2X7 receptor. However, further assays need to be performed to
confirm this hypothesis.

Although it is known that there are differences in the survival
of BRCA patients according to the expression of hormonal
receptors, such as estrogen, progesterone, or the HER2
receptor (DeSantis et al., 2019), our results showed no changes
in the expression of P2X7 and the CD62L marker, as well as low
production of IFN-y in patients classified as triple-negative or
HER2-enriched. In the case of luminal B patients, expression
levels P2X7 were not modified after chemotherapy, and there
were no changes in the CD62L marker. However, the analysis
with the data from estrogen receptor-negative (ER-) or
positive (ER+) patients showed that only RE-patients
presented this alteration in the function of P2X7
(Supplementary Figure S3E,F). Therefore, these results
could corroborate previously published information showing
a relationship between disease-free survival or overall survival
in patients with ER—and triple-negative BRCA (Liu et al., 2012)
or HER2+ (Hou et al, 2018) and the presence of CD8" T
lymphocytes infiltrated in the tumor, which could indicate that
changes in the expression of P2X7 in these BRCA subtypes
could be used as a marker of worse prognosis and the survival
of these patients.

Metabolic disorders, such as T2DM, overweight obesity, are
known as some of the main risk factors that increase the
probability of developing cancer (Sun et al, 2017). As our
study group was obese or overweight (76%) or had T2DM
(30.9%), a significant correlation between P2X7 expression and
the BMI of patients before chemotherapy administration was
detected, but this correlation was lost during the fourth cycle of
chemotherapy. This was possibly due to the side effects of
chemotherapy that occasionally produce weight loss. However,
when analyzing patients in normal weight, overweight, and obese
(excluding patients with T2DM), we observed that in the obese or
overweight group, the expression of P2X7 was not modified, and
the function was altered. Our results confirm the previously
reported  relationship  between obesity and BRCA,
demonstrating the involvement of adipose tissue and the
promotion of BRCA metastasis (Sabol et al, 2019). In this
sense, we previously reported that purinergic signaling in
adipose tissue and peripheral blood participates in generalized
low-grade inflammation during overweight or obesity (Ruiz-
Rodriguez et al, 2019). Furthermore, BRCA patients with
T2DM showed no alteration in the P2X7 expression, which is
consistent with previously reported showing that the expression
and function of P2X7 on CD8" T cells is not modified in patients
with T2DM (Garcia-Hernandez et al., 2011).

On the other hand, one of the variables that are normally
considered to determine the progression of cancer, or as an
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indicator of treatment efficacy, is the tumor size. We found that
only patients with a initial tumor size less than or equal to 5 cm
presented an increase in the expression of P2X7 in CD8" T cells.
These results might indicate a possible relationship between the
P2X7 receptor and tumor size, BRCA subtype, and the number of
lymphocytes infiltrated in the reported tumor, as was previously
reported (Liu et al., 2012; Huang et al, 2015). The possible
association between the variations in the percentage of P2X7
in CD8" T cells and chemoresistance, in patients with small initial
tumor size (< 5cm), could be a preliminarily indicator of
chemoresistance and aid doctors during the decision-making
when administering the first-line chemotherapy regimen. In
this sense, one question that emerges in the context of our
results is how does the expression of the P2X7 and A2A
receptors change in the tumor during chemotherapy.

We also evaluated the A2A adenosine receptor, since it
participates in the regulation or inhibition of the immune
response (Linden and Cekic, 2012; Takenaka et al., 2016). It
promotes the development and progression of BRCA tumor
cells (Kutryb-Zajac et al, 2018). We found that CD8" T
lymphocytes showed a decreased expression of the A2A receptor
after the administration of chemotherapy, which may be related to
the activation of CD8" T lymphocytes caused by the chemotherapy
administration. Dendritic cells play an important role promoting
the activation of CD8" T lymphocytes, coupled with an increase in
extracellular ATP, possibly causing an increase in the expression of
transcription factors such as NF-kB, which has been described as
requiring activation in T lymphocytes for adequate control of

tumor development (Barnes et al., 2015). Besides, the activation
of NF-kB has a negative regulatory role for the A2A receptor
(Zhang and Li, 2018; Silva et al,, 2019). It has been shown the
anergic CD8" T lymphocytes secrete low IFN-y production impairs
NEF-kB signaling (Clavijo and Frauwirth, 2012). These results could
explain that the decrease in A2A receptor expression in patients
after chemotherapy may be evidence for an adequate response to
chemotherapy since CHR patients did not show a significant
difference in receptor expression after chemotherapy. Also, we
observed no changes in IFN-y production after chemotherapy
administration in N-CHR patients. In contrast, in the case of
CHR patients, a decrease in IFN-y production was detected,
which supports the idea that no changes in A2A expression can
continue to favor an inhibition in IFN-y production.

Additionally, the expression of A2A did no change in ER-,
HER2-enriched or triple-negative patients. A decrease in IFN-y
production after chemotherapy was observed, which might
confirm previous findings showing that triple-negative BRCA
patients were resistant to chemotherapy with doxorubicin and
expressed the ectonucleotidase CD73 (Loi et al., 2013). The CD73
protein favors an extracellular adenosine
concentrations, and A2A receptor activation is involved.

BRCA patients with metabolic alterations comorbidity such as
for overweight, obesity, or T2DM, significant changes in the
modulation of A2A expression, and possibly in its activity might
occur. For example, in the case of T2DM, a lack of function in the
A2A receptor was found between C0O and C4, which is consistent
with previously published results with T2DM patients showing that

increase in
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the A2A receptor has an altered function and a higher receptor
expression compared to healthy people (Guzman-Flores et al,
2015). Another comorbidity, such as obesity, hampers the
survival of residual tumor cells in a HER2+ BRCA model (Ecker
et al,, 2019), which may support the idea that obesity has a negative
impact on the response to chemotherapy, where the A2A receptor
could have a key role. However, a study focused on low-grade
inflammation present in adipose tissue from overweight or obese
subjects showed that the A2A receptor does not have an important
effect on this condition (Cortes-Garcia et al., 2018), which agrees
with our results where we did not observe differences in the function
of A2A in patients with alterations related to BMI (data not shown).
However, obesity could play an important role in the response at the
end of chemotherapy. Therefore, more studies are necessary to
focus on patients with obesity after chemotherapy has been
concluded, and searching for the role of purinergic receptors on
residual tumor cells and the possible clinic relapse.

A ratio analysis between the expression or absence of CD16 in
monocytes has been previously studied for some types of cancer
such as lymphomas to determine possible biomarkers predictive
of survival (Zhang et al., 2020). In our study, the P2X7/A2A ratio
is proposed as a good prognosis marker related to
chemoresistance, which was found only in N-CHR patients
and a correlation with the percentage of response before
starting chemotherapy. Therefore, it could be useful for
decision-making in the use of the neoadjuvant FAC scheme
for patients with BRCA, and it is also proposed as a possible
marker of chemoresistance in patients with BRCA.

In conclusion, purinergic signaling of P2X7 and A2A receptors
in CD8" T correlates with the response of BRCA patients to
chemotherapy, and it can be utilized to implement personalized
therapeutic strategies. Also, changes in the content of P2X7 and
A2A receptors in CD8" T cells could serve as a sign of good
prognosis in response to FAC chemotherapy for patients with
BRCA, especially in patients with small tumors (< 5cm) and
HER2-enriched or triple-negative patients. The metabolic
alterations are a risk factor for cancer, but they also have
implications for the chemoresistance of patients.
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A Prognostic Model Based on
Immune-Related Long Non-Coding
RNAs for Patients With Cervical Cancer

Peijie Chenf, Yuting Gao', Si Ouyang, Li Wei, Min Zhou, Hua You * and Yao Wang *

Medical Oncology Department, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangdong, China

Objectives: The study is performed to analyze the relationship between immune-related long
non-coding RNAs (IncRNAs) and the prognosis of cervical cancer patients. We constructed a
prognostic model and explored the immune characteristics of different risk groups.

Methods: We downloaded the gene expression profiles and clinical data of 227 patients
from The Cancer Genome Atlas database and extracted immune-related IncRNAs. Cox
regression analysis was used to pick out the predictive INcRNAs. The risk score of each
patient was calculated based on the expression level of INCRNAs and regression coefficient
(8), and a prognostic model was constructed. The overall survival (OS) of different risk groups
was analyzed and compared by the Kaplan—-Meier method. To analyze the distribution of
immune-related genes in each group, principal component analysis and Gene set enrichment
analysis were carried out. Estimation of STromal and Immune cells in MAlignant Tumors using
Expression data was performed to explore the immune microenvironment.

Results: Patients were divided into training set and validation set. Five immune-related INCRNAs
(H1FX-AS1, AL441992.1, USP30-AS1, AP001527.2, and ALO31123.2) were selected for the
construction of the prognostic model. Patients in the training set were divided into high-risk
group with shorter OS and low-risk group with longer OS (o = 0.004); meanwhile, similar result
were found in validation set (o = 0.013), combination set (p < 0.001) and patients with different
tumor stages. This model was further confirmed in 56 cervical cancer tissues by Q-PCR. The
distribution of immune-related genes was significantly different in each group. In addition, the
immune score and the programmed death-ligand 1 expression of the low-risk group was higher.

Conclusions: The prognostic model based on immune-related INcRNAs could predict the
prognosis and immune status of cervical cancer patients which is conducive to clinical
prognosis judgment and individual treatment.

Keywords: Cervical cancer, Long non-coding RNA, Immunology, Gene express, Prognosis

BACKGROUND

Cervical cancer is the fourth most common malignant tumor among women worldwide, both in
morbidity and mortality (Bray et al., 2018). Approximately 90% of cervical cancer cases in recent
years occurred in developing countries, with a higher rate of morbidity and mortality than in
developed countries (WHO, 2018). Most of the early stage cervical cancer patients can be cured by
surgery, and the primary treatment for locally advanced cervical cancer is chemo-radiotherapy. The
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5-year overall survival (OS) rate of stage I cervical cancer patients
is 92.1%, and that of stages II, III, and IV patients is 74.2, 52.0, and
29.8%, respectively (Nagase et al, 2019). While the drug
resistance to patients leads to limited therapeutic response,
including chemotherapeutics and radiation therapy; it has
become a serious problem on cervical cancer therapy (Burger
et al., 2011; Eskander and Tewari, 2014). With the advancement
in tumor immunology, especially the development of immune
checkpoint inhibitors (ICIs), the treatment of cervical cancer has
made some progress in immunotherapy and targeted therapy
(Menderes et al., 2016; De Felice et al., 2018). Evidence suggests
that the objective response rate (ORR) of programmed death-
ligand 1 (PD-L1) inhibitor is only about 14% (Chung et al., 2019).
Nevertheless, the survival status and prognosis of recurrent and
advanced cervical carcinoma patients is not yet satisfactory. Thus,
performing risk stratification with immune factors for patients
with cervical cancer may be helpful in predicting their survival
and immunotherapeutic response.

Long non-coding RNA (IncRNA), a non-protein coding
transcript, is more than 200 nucleotides in length. Previous
research revealed that IncRNAs are extensively involved in
different aspects of the immune system, including immune cell
lineage development, immune cell activation, and immune-
related diseases (Atianand et al, 2017). Notably, IncRNA is
reported as a critical regulator in cancer immunity, covering
antigen presentation, immune stimulation, tumor infiltration and
soon (Yu et al.,, 2018). Numerous studies on cancer indicated that
IncRNAs take part in tumorigenesis of cervical cancer, being
closely correlated with the prognosis of patients. For instance,
gastric carcinoma high expressed transcript 1 is considered a
carcinogenic IncRNA that promotes proliferating, migrating and
infiltrating in different kinds of cancer, including cervical cancer
(Zhang et al., 2019). Another study demonstrated that IncRNA
cancer susceptibility 15 plays a driving role in cell proliferation,
invasion, cycle progression, and epithelial-to-mesenchymal
signaling pathway of cervical cancer (Shan et al, 2019).
LINCO0051 also promote the progression of cervical cancer, as
well as resistance to paclitaxel (Mao et al., 2019). Hence, IncRNA
may act as a potential target in the treatment and prognosis of
cervical cancer. However, we have not yet identified exactly what
role the immune-related IncRNAs play in the prognosis of
cervical cancer. Our study was, therefore, designed to explore
the correlation between immune-related IncRNAs and the
prognosis of cervical cancer, and construct a prognostic model
by analyzing the gene expression profile in The Cancer Genome
Atlas (TCGA) database.

MATERIALS AND METHODS

Samples and Datasets
In this research, we downloaded the gene expression profiles of

tumor samples, and the corresponding prognostic information of
255 cervical cancer patients from the TCGA database (https://
cancergenome.nih.gov/). Patients were excluded if the survival
time was <30 days because they may have died of other fatal
complications. Finally, 227 patients were enrolled in our research

LncRNA Model for Cervical Cancer

and each sample corresponded to one patient. The combination
set were divided into training set 167 and validation set 60
randomly for the following study. Data collection date was
January 10, 2020.

Immune-Related Long Non-Coding RNAs

Extraction and Mining

Extraction and mining methods of immune-related IncRNAs
were described previously (Wang et al, 2018; Wei et al,
2019). We obtained the immune-related genes from Molecular
Signatures Database 4.0.1 (Immune system process M13664,
Immune response M19817) on Gene Set Enrichment Analysis
(GSEA) website (http://software.broadinstitute.org/gsea/index.
jsp) (Wang et al, 2018). LncRNAs were extracted by the
GENCODE project (http://www.gencodegenes.org) (Derrien
et al, 2012). We obtained the expression levels of immune
genes and IncRNAs in each sample, and the cohort of
immune-related IncRNAs was identified according to
Pearson’s correlation analysis by the cor. test function of R
(correlation coefficient Cor > 0.6, p < 0.001).

Prognostic Model Construction and

Validation

The training set including 167 patients were used to construct the
model. The Survival package of R (3.5.2) software was used for
multivariate analysis of IncRNAs with statistically significant
differences in univariate analysis, and the optimal prediction
model was determined based on the Akaike Information
Criterion (AIC). The risk score of each patient
determined by the IncRNAs expression level and the
regression coefficient (g) of the weighted linear combination in
the multivariate analysis. The formula was listed as follows: Risk
score = g gene 1 X expr (gene 1) + p gene 2 X expr (gene2) + ...+
gene N X expr (gene N). exprgene referred to the expression of
IncRNAs. According to the median risk score, we divided all the
patients into two groups: high-risk group and low-risk group. To
evaluate the accuracy of this prognostic model, the same
algorithm was performed in the validation set (60 patients)
and combination set (227 patients) with the same coefficient
(B), and also performed for further examination of cancer tissues
from 56 cervical cancer patients in our center.

was

Patient Eligibility and Evaluation

We enrolled 56 cervical cancer patients treated in Affiliated
Cancer Hospital & Institute of Guangzhou Medical University
between January 1, 2013 and December 30, 2017. All of the
patients were diagnosed with postoperative histopathological
examination. Primary cancer tissues were stored
RNAlaterm Stabilization Solution (Invitrogen) immediately
after resection at —80 °C. This study was approved by the
Ethic Committee of Affiliated Cancer Hospital & Institute of
Guangzhou Medical University, and written informed consent
was obtained from each patient. Baseline characteristics were
obtained from the patients’ history. OSs were measured from the
date of diagnosis to either the end of the follow-up period, to the
date of death from any cause or to the date of loss to follow-up.

in
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Quantitative Real-Time PCR

Total RNA was extracted from tissue samples using TRIzol
(Invitrogen) according to the manufacturer’s protocol. Samples
were treated with DNase using the RNase-free DNase Set (Qiagen)
during the total RNA isolation. First strand complementary DNA
(cDNA) was synthesized using the cDNA Synthesis kit (Thermo
Fisher Scientific) according to the manufacturer’s instructions.
ABI prism 7900-HT sequence detection system (96-well, Applied
Biosystems) was used to perform quantitative real-time PCR (RT-
PCR) analysis. For RT-PCR, the following primers were used:

GAPDH: 5'- GACTCATGACCACAGTCCATGC-3' (forward),
5'- AGAGGCAGGGATGATGTTCTG-3' (reverse).

HI1FX-AS1: 5'- GATGGGGAAGGGATTCGCTC-3' (forward),
5'- TCTCCTTTGCTGTGTTCCCG-3' (reverse).

AL441992.1:5'- AAGAAGCTCTCGTGTGGCTC-3' (forward),
5'- TGGCTTTGAAGCGAGGATGA-3' (reverse).

USP30-AS1: 5'- AGCAATAGCTGACGGACCAC-3' (forward),
5'- TGAAAACCAAGCAGCCCCA-3' (reverse).

AP001527.2: 5'- ATTGGGAATGACTCATCTGTTTG-3'
(forward), 5'- AGCAGTAGACTCCCAGGAAAG-3' (reverse).

AL031123.2: 5'- ACACACGTGGTCTGTAGCG-3' (forward),
5'- GGGCCTTGCTTTCCCCATAA-3' (reverse).

TABLE 1 | Characteristics of 227 patients with cervical cancer from The Cancer
Genome Altas database.

Characteristics N (%)
Age
<60 178 (78.4)
>60 49 (21.6)
Grade
G1 10 (4.4)
G2 102 (44.9)
G3 92 (40.5)
G4 1(0.4)
GX 20 (8.8)
unknown 2(0.8)
FIGO stage
| 101 (44.5)
1 50 (22.0)
1l 13 (6.7)
\% 14 (6.2)
unknown 49 (21.6)
Tumor
T 101 (44.5)
T2 53 (23.3)
T3 14 (6.2)
T4 9 (4.0
Tis 1(0.4)
TX 14 (6.2)
unknown 35 (15.4)
Lymph node
NO 93 (41.0)
N1 45 (19.8)
NX 54 (23.8)
unknown 35 (15.4)
Metastasis
MO 88 (38.9)
M1 8 (3.5)
MX 94 (41.4)
unknown 37 (16.9)

LncRNA Model for Cervical Cancer

TABLE 2| Immune-related LncRNAs with significant prognostic value identified by
univariate Cox regression analysis.

LncRNA HR p value
AL133215.2 0.413 0.017
H1FX-AS1 0.416 0.012
AC015922.2 1.306 0.025
AC097468.3 0.445 0.007
AL441992.1 0.600 0.019
USP30-AS1 0.656 0.006
AP001527.2 1.359 0.012
AL031123.2 0.382 0.013
AC024060.1 0.557 0.008

LncRNA, Long non-coding RNA.

All samples were processed in triplicate. The relative gene
expression was determined using the 27**“" method.

Tumor Component Assessment
The distribution of immune-related genes was presented by principal

component analysis (PCA). To identify whether the functional
phenotypes were different between the high- and low-risk groups,
GSEA was performed. Estimation of STromal and Immune cells in
MAlignant Tumors using Expression data (ESTIMATE) was
performed to evaluate the immune microenvironment, including
the presence of stromal cell, tumor infiltration, and tumor purity in
each sample (Yoshihara et al., 2013).

Statistical Analysis
Kaplan-Meier curves were drawn to evaluate the OS and the data was

statistically compared with the log rank test. The prognostic value of
the immune-related IncRNAs was assessed by the univariate and
multivariate cox proportional-hazards regression model. The receiver
operating characteristic (ROC) curve was established to evaluate the
reliability and accuracy of the prognostic model. All the statistical
analyses were done using R software (version 3.5.2). p value (two-
sided) < 0.05 was taken as being statistically significant.

RESULTS

Patient Characteristics
We enrolled 227 patients with cervical cancer in our study, with

an average age of 48.35 years (20-88 years) and sorted out their
clinicopathological characteristics (Table 1).

TABLE 3 | The optimal immune-related prognostic LncRNAs screened out by
multivariate cox regression analysis and the AIC value, five IncRNAs were used
to construct the prognostic model.

LncRNA B HR p value
H1FX-AS1 -0.70 0.50 0.040
AL441992.1 -0.61 0.54 0.003
USP30-AST -0.28 0.76 0.045
AP001527.2 0.35 1.42 0.004
AL031123.2 -0.77 0.46 0.043

LncRNA, Long non-coding RNA.

Frontiers in Pharmacology | www.frontiersin.org

116

November 2020 | Volume 11 | Article 585255


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

LncRNA Model for Cervical Cancer

A Risk == High risk == Low risk B Risk == High risk == Low risk
1.001 1.001
z =
= 075 3 075
8 38
S o
s 0.501 o 0.501
g _g - -
2 ] S 025
03) 0.25 p=4.268e-03 (,3) p=1.325e-02
0.001 0.00
0 2 4 6 8 10 12 14 16 18 20 o 2 4 6 8 M0 12
Time(years) Time(years)
% Highrisk]{ 82 37 20 11 8 5 3 1.0 0 » Highrisk{31 11 3 3 3 2 2
& Lowrisk{85 45 21 13 8 6 5 3 1 0 0 @ Lowrisk129 15 6 3 2 1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 ) 6 8 10 12
Time(years) Time(years)
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Identification of Imnmune-Related Long
Non-Coding RNAs With Prognostic Value
We extracted 331 immune-related protein-coding genes from
Molecular Signatures Database and obtained 121 immune-related
IncRNAs by the co-expression network (correlation coefficient
Cor > 0.6, p < 0.001). Finally, univariate Cox regression analysis
based on the training set revealed nine immune-related IncRNAs
with the most significant prognostic value for cervical cancer

patients (Table 2). Among all the IncRNAs, AC015922.2 and
AP001527.2 were considered as perilous factors while the rest
were protective factors.

Construction and Verification of Prognostic
Model

Based on the multivariate analysis and the AIC value, five
IncRNAs were used to construct the prognostic model
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(Table 3). The expression level of IncRNAs and regression
coefficient (B) were integrated to calculate the risk score for
each patient. Based on the median risk score, we divided the
patients from the training set into a high-risk group with 84
individuals and a low-risk group with 83 individuals.
Kaplan-Meier plot showed differences in survival rate
between the two groups (p = 0.004, Figure 1A). We
verified this model in the validation set (p 0.013,
Figure 1B) and combination set (p < 0.001, Figure 2A)
with the similar result. In the combination set, the risk
score and survival time of each risk group and the
expression of five IncRNAs are shown in Figure 2B. To
further investigate the value of this prognostic model in
stratifying patients with different TNM stages, we carried
out Kaplan-Meier analysis and showed that the risk
subgroups differed significantly in both FIGO stage I and
II (p =0.023 and p =0.027, respectively; Figures 3A,B). The
area under the ROC curve (AUC) of the predictionmodel
was 0.780, which was much better than that of age (0.505),
grade (0.620), and FIGO stage (0.711) (Figure 3C).
Moreover, 56 patients (Table 4) with cervical cancer
were selected and QRTPCR was used to calculate the
expression level of five IncRNAs, finally the prognostic

modelwas validated using their accordingly clinical data.
We found differences in survival rate between the two
groups (p 0.024, Figure 3D).

TABLE 4 | Characteristics of 56 patients with cervical cancer, whom were enrolled
from our cancer center for further g-PCR examination.

Characteristics N (%)
Age

<60 40 (71.4)

>60 16 (28.6)
Grade

G1 7 (12.5)

G2 29 (51.8)

G3 20 (35.7)
FIGO stage

I 17 (30.4)

I 25 (44.6)

Il 9 (16.1)

v 5 (8.9
Death

Yes 15 (26.8

No 41 (73.2
Risk group

High 19 (33.9

Low 37 (66.1)

Frontiers in Pharmacology | www.frontiersin.org

118

November 2020 | Volume 11 | Article 585255


https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles

Chen et al.

Immune Characteristics of High-Risk and
Low-Risk Groups

Based on immune genes and whole gene expression profiles, we
investigated the distribution mode of the high-risk and low-risk
groups by PCA in the combination set. On whole gene expression
profiles, PCA showed that the high- and low-risk groups were
mixed up (Figure 4A). While based on the immune genes, these
two groups were obviously different, indicating that the
distribution of immune-related genes between the high- and
low-risk groups was significantly different (Figure 4B).
Further analysis by GSEA showed that the low-risk group had
adequate immune response and immune system process
pathways (Figure 4C). According to the ESTIMATE analysis,
the immune score of the low-risk group was higher than that of

LncRNA Model for Cervical Cancer

the high-risk group (Figure 5A). The low-risk group had more
immune and stromal cells but lower tumor purity (Figure 5B).
Meanwhile, PD-L1 expression of the low-risk group was higher
than that of the high-risk group (Figure 5C), presenting a
potential target for immunotherapy. Moreover, GO and KEGG
enrichment analysis found that the functions of this group were
mainly concentrated in immune-related functions (Table 5).

DISCUSSION

It has been reported that tumorigenesis is strongly associated with
a series of cumulative genetic and epigenetic changes occurring
in a normal cell; it is also closely related to the body’s
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microenvironment and immunity (Prendergast and Jaffee, 2007).
The immune system recognizes and kills cancerous cells and their
precursors, while cancerous cells develop strategies to escape
from immune-surveillance thereby promoting tumorigenesis
(Tesniere et al., 2006). Recently, IncRNA was proven to play
an active part in the regulation of the immune system by affecting
tumor microenvironment, epithelial-mesenchymal transition,
dendritic cell and myeloid-derived stem cell regulation, and T
and B cell activation and differentiation (Heward and Lindsay,
2014; Yu et al, 2015; Denaro et al., 2019). Immune-related
IncRNAs, which were identified as a prognostic marker of
various types of cancer (Wang et al, 2018), are markedly
connected with immune cell infiltration (Li et al., 2020), and
might be a potential target for cancer treatment.

Many IncRNAs have been shown to participate in the
occurrence and progression of cervical cancer, either

promoting (like SNHG7) or inhibiting (like GAS5) the disease
(Caoetal., 2014; Zeng et al., 2019). Recent study identified a two-
IncRNA signature (ILF3-AS1 and RASA4CP) as an independent
biomarker which could predict the prognosis of cervical cancer
based on the TCGA database and quantitative reverse
transcription PCR (qRT-PCR) (Wu et al, 2019). This new
finding further proved the importance of IncRNAs in cervical
cancer, enlarged its application prospect on the prognosis of the
disease, and emphasized the significance of future study on the
function and mechanism of IncRNAs. In this study, we explored
the connection between immune-related IncRNAs and prognosis
of cervical cancer. Among the five immune-related IncRNAs used
to construct the model, HIFX-AS1, AL441992.1, USP30-ASl,
and AL031123.2 were protective factors, while AP001527.2 was a
risk factor. As far as we know, all of these five immune-related
IncRNAs have not been studied in clinical and fundamental
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TABLE 5 | Significantly enriched GO terms and KEGG pathways of low risk group.

GO ID Description NSE p

BP GO: Regulation of leukocyte mediated immunity 2.14 0.015
0002704

BP GO: Regulation of type | interferon production 2.12 0.014
0032480

BP GO: Regulation of lymphocyte mediated immunity 2.10 0.014
0002707

BP GO: Regulation of T cell mediated immunity 2.08 0.016
0002710

BP GO: Extrinsic component of organelle membrane 2.06 0.022
0031312

KEGG hsa04623 Cytosolic DNA sensing pathway 1.93 0.002

KEGG hsa00190 Oxidative phosphorylation 1.89 0.006

KEGG hsa05322 Systemic lupus erythematosus 1.87 0.002

KEGG hsa05320 Autoimmune thyroid disease 1.87 0.002

KEGG hsa04612 Antigen processing and presentation 1.80 0.012

BP, biological process; CC, cellular component; GO, Gene Ontology; MF, molecular function.

research. We hypothesized that the immune-related IncRNAs in
our study might play a similar role in cervical cancer.

The prognostic model demonstrated superior ability in
dividing patients into low- and high-risk groups. We found
that patients in the low-risk group showed favourable
prognosis, either the training set or the validation set, as well
as in the combination set, which indicate that our model might be
capable of risk stratification. The AUC for the prognostic model
was 0.780, which was greater than the AUC of other
clinicopathological factors. Moreover, this model can also
distinguish the prognosis of patients in FIGO stages I and II,
and could be an important supplement to FIGO stage. It is
important that the value of the prognostic model was further
verified with the tissue samples of patients.

There is evidence demonstrating that immunotherapy is a
novel therapeutic strategy for cervical cancer treatment (Eskander
and Tewari, 2015; Ventriglia et al., 2017). While the efficacy of
immunotherapy varies from person to person, the ORR of
nivolumab (ICI, anti-PD-1) in cervical cancer is 26.3% and the
median OS is 21.9 months (Naumann et al., 2019). The efficiency
of immunotherapy depends on the immunogenicity of the tumor
microenvironment, therefore knowing more about the tumor
microenvironment is the key to evaluating the probability of
immunotherapy (Gasser et al., 2017). The predictive biomarkers
of cancer immunotherapy mainly include PD-L1 expression,
immune cell infiltration, tumor mutational burden, specific
gene mutations, and so on (Chen et al, 2018; Darvin et al,
2018; Yi et al., 2018; Otoshi et al., 2019). Though the efficacy of
immunotherapy is better than that for traditional treatment, only
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Gastric cancer is one of the most common malignancies ranks as the second leading
cause of cancer-related mortality in the world. Cisplatin (DDP) is commonly used for gastric
cancer treatment, whereas recurrence and metastasis are common because of intrinsic
and acquired DDP-resistance. The aim of this study is to examine the effects of berberine
on the DDP-resistance in gastric cancer and explore the underling mechanisms. In this
study, we established the DDP-resistant gastric cancer cells, where the IC5q values of DDP
in the BGC-823/DDP and SGC-7901/DDP were significantly higher than that in the
corresponding parental cells. Berberine could concentration-dependently inhibited the
cell viability of BGC-823 and SGC-7901 cells; while the inhibitory effects of berberine on
the cell viability were largely attenuated in the DDP-resistant cells. Berberine pre-treatment
significantly sensitized BGC-823/DDP and SGC-7901/DDP cells to DDP. Furthermore,
berberine treatment concentration-dependently down-regulated the multidrug resistance-
associated protein 1 and multi-drug resistance-1 protein levels in the BGC-823/DDP and
SGC7901/DDP cells. Interestingly, the cell apoptosis of BGC-823/DDP and SGC-7901/
DDP cells was significantly enhanced by co-treatment with berberine and DDP. The results
from animals also showed that berberine treatment sensitized SGC-7901/DDP cells to
DDP in vivo. Mechanistically, berberine significantly suppressed the PIBK/AKT/mTOR in
the BGC-823/DDP and SGC-7901/DDP cells treated with DDP. In conclusion, we
observed that berberine sensitizes gastric cancer cells to DDP. Further mechanistic
findings suggested that berberine-mediated DDP-sensitivity may be associated with
reduced expression of drug transporters (multi-drug resistance-1 and multidrug
resistance-associated protein 1), enhanced apoptosis and repressed PISK/AKT/mTOR
signaling.
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INTRODUCTION

Gastric cancer is one of the most common malignancies ranks as the
second leading cause of cancer-related mortality in the world (Thrift
and El-Serag, 2020). Around 30% of the total cases were diagnosed
in China (Leung et al., 2008; Pifieros et al., 2017). Recently, great
advancements have been made in early diagnosis and therapeutic
treatments including surgical resection and chemo-/radio-therapy,
whereas the clinical outcomes of the patients with this malignancy
remains poor (Van Cutsem et al, 2016). Cisplatin (DDP) as a
chemotherapeutic reagent has been widely used in the treatment for
gastric cancer, and DDP-based therapy could significantly improve
the survival of patients with gastric cancer (Wagner et al., 2017).
Unfortunately, metastasis and recurrence of the gastric cancer are
commonly existing in the patients due to the acquired and intrinsic
DDP resistance (Haller and Misset, 2002; Baek et al., 2012; Choi
et al,, 2017). As DDP is still the standard chemotherapy for gastric
cancer, developing effective way to reduce the DDP-resistance in
gastric cancer is of great clinical significance.

The compounds from the herbal medicine have been
attracting attentions due to their anti-cancer activities (Wang
et al., 2018). Berberine is an iso-quinoline alkaloid and can be
extracted from Beberis species (Imenshahidi and Hosseinzadeh,
2016; Wang et al, 2017). Studies have demonstrated that
berberine possessed various pharmacological actions including
anti-hypertensive, anti-arrhythmic, anti-bacterial and anti-cancer
effects (Imenshahidi and Hosseinzadeh, 2016; Wang et al., 2017).
Furthermore, studies found that berberine attenuated the radio-
resistance of colon cancer cells via repressing P-gp expression
(Guan et al., 2020). Gao et al., found that berberine could sensitize
breast cancer cells to different chemotherapeutic drugs (Gao et al.,
2019). Liu et al., showed that berberine could attenuate the DDP-
resistance of ovarian cancer cells by targeting miR-21/
programmed cell death 4 axis (Liu et al., 2013). Pre-treatment
with berberine was effective to promote the anti-tumor effects of
DDP in laryngeal cancer cells (Palmieri et al., 2018). Studies from
Pandey et al., showed the potential actions of berberine to
attenuate 5-fluoruracil-resistance in gastric cancer cells
(Pandey et al., 2015); however, the exact actions of berberine
in the DDP-resistance are not fully explored.

In the present study, we firstly established the DDP-resistant
cellular model using two gastric cancer cell lines (BGC-823 and
SGC-7901) under elevated concentrations of DDP. After that, we
explored if berberine could attenuate the drug-resistance in these
cell lines and deciphered the potential molecular mechanisms.
This study may provide a novel strategy for managing the DDP-
resistance in gastric cancer.

MATERIALS AND METHODS

Cell Lines and Generation of DDP-Resistant

Cells

The BGC-823 and SGC-7901 cells were purchased from the
Shanghai Institutes for Biological Sciences, Chinese Academy
of Sciences (Shanghai, China) and the cells were cultured

Berberine and Chemo-Sensitivity

according to the instructions. For the generation of DDP-
resistant BGC-823 (BGC-823/DDP) and DDP-resistant SGC-
7901 (SGC-7901/DDP) cells, the parental cells (BGC-823 and
SGC-7901) were initially treated with 0.5 uM DDP; and then the
concentrations of DDP were gradually increased to 1, 3 and
10 uM (the highest concentration) every days. BGC-823 and
SGC-7901 cells became resistant to DDP (10 uM) were chosen
for further experimentation.

Drug Treatments
The chemicals including DDP (catalogue #1134357) and

berberine (catalogue #200275; purity >95%) were purchased
from Sigma-Aldrich (St. Louis, United States). For the DDP
treatments, the BGC-823, SGC-7901, BGC-823/DDP and
SGC-7901/DDP  cells were treated with increased
concentrations of DDP (1, 3, 10, 30, 100 and 300 uM) for
24 h; for the berberine treatments, these cells were treated with
increased concentrations of berberine (1, 3, 10, 30, 100, 300 and
1,000 uM) for 24 h; for the co-treatments, these cells were co-
treated with DDP and berberine at different concentrations for
24 h. After the drug treatments, these cells were harvested for
further in vitro analysis.

3-(4,5-Dimethylthiazol-2-yl)-
2,5-Diphenyltetrazolium Bromide (MTT)

Assay

The effects of DDP and berberine on the cell viability were determined
by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)
MTT assay. Different cell lines with respective treatments were
seeded in triplicate in a 96-well plate, and after incubating at 37°C
for 24 h, the cells were incubated with 5 mg/ml MTT reagent in
phosphate buffered saline at 37 °C for 2 h. After that, the 50%
dimethyl formamide was added to solubilize the formazan
crystals. Finally, the optical density (OD) values at 570 nm
wavelength was determined using the microplate reader. Cell
viability (%) was calculated as follows: (OD in the experimental
group/OD in the control group) * 100. The ICs, values were
analyzed using the non-linear regression fit.

Caspase-3 and Capsase-9 Activities

Determination

Caspase-3 and caspase-9 activities of BGC-823/DDP and SGC-
7901/DDP cells with respective treatments were assessed using
the commercial caspase-3 and -9 activity kits, respectively
(Beyotime, Beijing, China) according to the supplier’s protocols.

Flow Cytometry for Cell Apoptosis
Cell apoptosis of BGC-823/DDP and SGC-7901/DDP cells were

assessed using the propidium iodide (PI) and fluorescein
isothiocyanate (FITC)-Annexin V Apoptosis Detection kit
(Thermo Fisher Scientific). BGC-823/DDP and SGC-7901/
DDP cells with respective treatments were harvested and
stained with PI and FITC-Annexin V according to the
supplier’s protocols. The percentage of Annexin V-positive
population cells was assessed using a Calibur Flow cytometer
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(BD Biosciences, Franklin Lake, United States), and the cell
apoptotic rates were determined using Flow Jo software
(Version 7.6.1, TreesStar, Ashland, United States).

Western Blot Analysis
BGC-823/DDP and SGC-7901/DDP cells with respective

treatments were lysed with Radioimmunoprecipitation assay
buffer supplied with the protease inhibitors cocktail (Sigma, St.
Louis, United States) on ice for at least 15 min. The protein
samples were collected by obtaining the supernatants after
centrifugation (12,000 ¢) for 20 min at 4°C. The concentration
of the protein samples was determined using the bicinchoninic
acid protein assay kit (Beyotime) according to the supplier’s
protocol. A total of 45ug proteins were separated on the
sodium dodecyl sulphate-polyacrylamide gel electrophoresis
followed by transferring to the polyvinylidene difluoride
membranes (Millipore) by using the electrophoretic method.
After blocking with non-fat milk (5%) in Tris-buffered saline
with 0.1% Tween-20 (TBST), the membrane was washed with
TBST followed by incubating with corresponding primary
antibodies at 4°C for 16h. After that, the membrane was
washed with TBST for 3 x 5 min followed by incubating with
the membrane was then washed with TBST three times, followed
by incubation with a horseradish peroxidase-conjugated
secondary antibody (Cell Signaling Technology) at room
temperature for 2h. The blot bands on the membrane was
detected using the enhanced chemiluminescence kit (Thermo
Fisher Scientific) according to the supplier’s protocol. The protein
expression levels were evaluated using densitometric method
using the Image ] software. The concentrations and the
sources of the primary antibodies were shown below: g-actin
(1:2,000; Cell Signaling Technology, Danvers, United States),
cleaved caspase-3 (1:1,000; Cell Signaling Technology), cleaved
caspase-9 (1:1,000, Cell Signaling Technology), Bax (1:1,000; Cell
Signaling Technology), multidrug resistance-associated protein 1
(MRP1; 1:1,000; Cell Signaling Technology), multi-drug
resistance-1 (MDRI1; 1:1,500; Cell Signaling Technology),
phosphorylated  (phospho)-PI3K  (1:1,000; Cell Signaling
Technology), PI3K (1:1,000; Cell Signaling Technology),
phospho-AKT (1:1,000; Cell Signaling Technology), AKT (1:
1,000; Cell Signaling Technology), phospho-mTOR (1:1,000;
Cell Signaling Technology) and mTOR (1:1,000; Cell Signaling
Technology). The protein levels were normalized to p-actin.

In vivo Tumor Growth of SGC-7901/DDP

Cells

The BALB/c-nu mice (5 weeks old; body weight: 15-19 g) were
purchased from Guangdong Laboratory Experimental Animal
Center (Guangzhou, China). The animals were housed in
individual ventilated cage at 254 + 22°C with 50.6 + 8.8%
humidity under controlled lighting (12h light/day). All the
animal experimental procedures were under the approval of
Animal Ethic Committee of Nanjing Medical University. For the
tumor inoculation and drug treatments, SGC-7901/DDP cells
(1x10” cells) were subcutaneously injected into the left flank of
the nude mice. For the drug treatments, the mice from the vehicle

Berberine and Chemo-Sensitivity

group received phosphate buffered saline (2 ml/kg/day, ip.); the
mice from the DDP group received intraperitoneal DDP injection at
3 mg/kg/day; the mice from berberine group were treated with
berberine (10 mg/kg/day); the mice from DDP + berberine group
were injected with both DDP (3 mg/kg/day, ip.) and berberine
(10 mg/kg/day, i.p.). The tumor volume was measured every 5 days
for 30 days. The formula for calculating tumor volume was as follow:
volume = length x width x width/2. All treatments for 30 days, the
animals were sacrificed by pentobarbitone (80 mg/kg, ip.). The
tumors were dissected and the weight of the tumors were
weighed using a balance. The tumor tissues were then fixed for
Ki-67 immunostaining and TUNEL assay.

Ki-67 Immunostaining and TUNEL Assay

The proliferative potential of the tumor cells assessed by Ki-67
immunostaining. The Ki-67 immunostaining for the tumor tissues
was performed according to previously published method (He
etal, 2019). Briefly, the 4% paraformaldehyde-fixed tumor tissues
were embedded in paraffin and sectioned into 4 um thickness
slices, and the slices were stained with Ki-67 (Cell Signaling
Technology). The Ki-67-positive cells were analyzed using a
confocal microscope by randomly choosing five fields. For the
TUNEL assay, the sectioned tumor tissues (4 pm in thickness) were
stained with TUENL In Situ Apoptosis Detection kit (Roche
Diagnostic, Mannheim, Germany) according to previous studies
(Ma et al., 2020). The TUNEL-positive cells were analyzed using a
confocal microscope by randomly choosing five fields.

Statistical Analysis
The statistical analyses were performed using GraphPad Prism

Software (version 6.0; GraphPad Software, La Jolla, United
States). Depending on the experiment type, two-tailed
Student’s t-test or one-way ANOVA followed by Bonferroni’s
multiple comparison tests was used for the analysis. The statistical
significance was evaluated based on p values, and p < 0.05 was
considered to indicate statistical significance.

RESULTS

Effects of cisplatin and berberine on the cell
viability gastric cancer cells and

DDP-resistant gastric cancer cells

Firstly, we performed the MTT assay to examine the effects of
DDP on the cell viability of the gastric cancer cells and DDP-
resistant cells. In the BGC-823 and BGC-823/DDP cells, DDP
dose-dependently inhibited the cell viability, and the ICs, of DDP
in BGC-823/DDP cells was significantly higher than that in BGC-
823 cells (BGC-823: 21.37 + 5.13 uM vs. BGC-823/DDP: 206.8 +
55.98 uM; Figure 1A). Similarly, DDP reduced the cell viability of
SGC-7901 and SGC-7901/DDP cells in a concentration-
dependent manner with the IC5, of DDP in the SGC-7901/
DDP cells being remarkably higher than that in SGC-7901
cells (SGC-7901: 23.66 + 2.14 uM vs. SGC-7901/DDP: 182.9 +
32.71 uM; Figures 1B). These results suggest that BGC-823/
DDP and SGC-7901/DDP exhibited resistance to the DDP
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treatment. Furthermore, we explored the effects of berberine on
the cell viability of BGC-823 and BGC-823/DDP cells, and
berberine at 30 uM started to exhibit inhibitory effects on the
cell viability of BGC-823 and BGC-823/DDP cells, and berberine
concentration-dependently supressed the cell viability of these
cells. The ICs, of berberine in BGC-823/DDP cells was
significantly higher than that in BGC-823 cells (BGC-823:
1179 + 2049uM vs. BGC-823/DDP: 549.6 + 56.88 uM;
Figures 1C). Consistent findings were observed in the SGC-
7901 and SGC-7901/DDP cell lines (SGC-7901: 87.90 + 15.23 uM
vs. SGC-7901/DDP: 562.1 + 135.9 uM; Figures 1B).

Berberine Sensitizes DDP-Resistance

Gastric Cancer Cells to Cisplatin Treatment
In order to examine if berberine could sensitize DDP-resistant
gastric cancer cells to DDP, we co-treated BGC-823/DDP and
SGC-7901/DDP cells with different concentrations of DDP and
berberine. As shown in Figure 2A, 3 uM berberine treatment
failed to significantly affect the ICs, values of DDP in BGC-823/
DDP cells; whereas berberine at 10 and 30 uM significantly
reduced the ICs, values of DDP in BGC-823/DDP cells when
compared to BGC-823/DDP cells treated with DDP alone.
Consistently, berberine at 10 and 30 uM significantly, but not
3 uM remarkably reduced the ICs, values of DDP in SGC-7901/
DDP cells when compared the cells treated with DDP alone
(Figure 2B). To gain into the mechanistic actions of berberine
on the DDP-resistance, the protein levels of MDR1 and MRP1
were determined in both BGC-823/DDP and SGC-7901/DDP
cells using Western blot analysis. DDP at 30 pM and berberine
at 30 uM both caused a significant reduction of MDRI1 and
MRP1 protein levels in BGC-823/DDP cells when compared to

Blank control group (Figure 2C). Importantly, berberine
concentration-dependently down-regulated MDR1 and MRP1
protein expression when compared to non-treated BGC-823/
DDP cells (Figure 2C). Consistent results were also shown in
the SGC-7901/DDP cells (Figure 2D). These data indicated that
berberine could sensitize BGC-823/DDP and SGC-7901/DDP
cells to DDP possibly via down-regulating MDR1 and MRP1
protein expression.

Berberine Promoted Cell Apoptosis of
DDP-Resistant Gastric Cells With DDP

Treatment

The cell apoptosis of BGC-823/DDP and SGC-7901/DDP cells
was evaluated by several experimental assays including flow
cytometry, caspase-3 and -9 activities and western blot. DDP
at 30 uM and berberine at 30 uM both slightly increased the cell
apoptotic rates of BGC-823/DDP and SGC-7901/DDP cells when
compared to Blank group (Figures 3A,B). Moreover, DDP and
berberine co-treatment dramatically increased the BGC-823/
DDP and SGC-7901/DDP cell apoptotic rates when compared
to the other three groups (Figures 3A,B). Further examination of
the capase-3 and -9 activities, we found that DDP and berberine
co-treatment increased the caspase-3 and -9 activities by around
two fold in BGC-823/DDP and SGC-7901/DDP cells; whereas
DDP alone and berberine alone only caused a slightly increase in
the capsase-3 and -9 activities of BGC-823/DDP and SGC-7901/
DDP cells (Figures 3C-F). Moreover, the western blot analysis
showed that the cleaved caspase-3,-9 and Bax protein levels were
slightly increased after DDP or berberine treatment in both BGC-
823/DDP and SGC-7901/DDP cells when compared to blank
group (Figures 3G,H). Moreover, DDP and berberine co-
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treatment dramatically enhanced the protein expression of
cleaved caspase-3,-9 and Bax in both BGC-823/DDP and
SGC-7901/DDP cells when compared to the other three
groups (Figures 3G,H).

Berberine Sensitizes DDP-Resistance
Gastric Cancer Cells to Cisplatin Treatment

In Vivo

The in vivo growth of SGC-7901/DDP cells were evaluated in
a xenograft mice mode, DDP (3 mg/mg/day) or berberine
(10 mg/kg/day) treatment caused a trivial suppression in the
tumor growth of SGC-7901/DDP cells when compared to blank
group (Figure 4A). Moreover, co-treatment with DDP and
berberine suppressed the in vivo tumor growth of SGC-7901/
DDP cells by around 50% when compared to blank group
(Figure 4A). The examination of tumor weight showed the
consistent results (Figure 4B). Further the proliferative potential
and apoptosis of tumor tissues were assessed by Ki-67
immunostaining and TUENL assay. As shown in Figures 4C,D,

DDP or berberine alone slightly suppressed the number of Ki-67-
positive cells and increased the number of TUNEL-positive cells,
when compared to blank group. Moreover, a dramatic reduction in
the number of Ki-67-positive cells and an increase in the number of
TUNEL-positive cells were observed in the tumor tissues from
DDP and berberine co-treatment group (Figures 4C,D).

Berberine inhibited PISBK/AKT/mTOR
signaling in the DDP-resistant gastric

cancer cells with cisplatin treatment

The effects of berberine on the PI3K/AKT/mTOR signaling were
further examined by western blot assay. The phospho-PI3K,-
AKT and -mTOR protein levels were slightly reduced after DDP
or berberine treatment in both BGC-823/DDP and SGC-7901/
DDP cells when compared to blank group (Figures 3G,H).
Moreover, DDP and berberine co-treatment dramatically
enhanced the protein expression of phospho-PI3K, -AKT and
-mTOR in both BGC-823/DDP and SGC-7901/DDP cells when
compared to the other three groups (Figures 5A,B).
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DISCUSSION

DDP has been widely used as the chemotherapeutic drugs for
treating different types of human malignancies; however, the
intrinsic and acquired DDP-resistance during the course of the
chemotherapy largely hindered the clinical use of DDP in these
patients (Venerito et al,, 2018). On the other hand, the severe side
effects of DDP are also an obstacle during the clinical application.
Thus, identifying novel targets/strategies to promote the sensitivity
of gastric cancer cells to DDP is of great importance. In this study, we
established the DDP-resistant gastric cancer cells, where the ICs
values of DDP in the BGC-823/DDP and SGC-7901/DDP were
significantly higher than that in the corresponding parental cells.
Berberine could concentration-dependently inhibited the cell
viability of BGC-8203 and SGC-7901 cells; while the inhibitory
effects of berberine on the cell viability were largely attenuated in the
DDP-resistant cells. Berberine pre-treatment significantly sensitized

BGC-823/DDP and SGC-7901/DDP cells to DDP. Furthermore,
berberine treatment concentration-dependently down-regulated the
MRP1 and MDRI protein levels in the BGC-823/DDP and
SGC7901/DDP cells. Interestingly, the cell apoptosis of BGC-823/
DDP and SGC-7901/DDP cells was significantly enhanced by co-
treatment with berberine and DDP. The results from animals also
showed that berberine treatment sensitized SGC-7901/DDP cells to
DDP in vivo. Mechanistically, berberine significantly suppressed the
PI3K/AKT/mTOR in the BGC-823/DDP and SGC-7901/DDP cells
treated with DDP. Taken together, our results indicated that
berberine sensitized DDP-resistant gastric cancer cells to DDP
via enhanced cell apoptosis and inhibited PI3K/AKT/mTOR
signaling.

The anti-tumor effects of berberine in gastric cancer have been
illustrated in various studies. Berberine was effective to induce cell
cycle arrest and apoptosis in human gastric carcinoma SNU-5
cells (Lin et al., 2006), and berberine-induced gastric cancer cell
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apoptosis is associated with Akt signaling (Yi et al., 2015). Moreover,
berberine inhibited SNU-5 cell migration via down-regulating
metalloproteinase-1, -2 and -9 expression (Lin et al., 2008). Wang
et al, showed that berberine enhanced the anti-tumor effects of
EGFR inhibitors in gastric cancer via supressing EGFR signaling
(Wang et al, 2016). A recent study by Hu et al, showed that
berberine attenuated gastric carcinoma proliferation, invasion, and
migration by targeting the AMPK/HNF4o/WNT5A signaling (Hu
et al, 2018). In agreement with previous findings, we also
demonstrated the berberine exerted tumor-suppressive effects on
the gastric carcinoma cell lines in a concentration-dependent
manner. In the gastric cancer cells with drug-resistance, berberine
could target surviving and STATS to sensitize gastric cancer cells to 5-
Fluorouracil (Pandey et al., 2015). Consistently, our data showed that
berberine sensitizes BGC-823/DDP and SGC-7901/DDP cells to DDP
in a concentration-dependent manner. MDR1 is encoded by the
ABCBI gene with a molecular weight of 1