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Editorial on the Research Topic

Biological and Robotic Inter-Llimb Coordination

1 INTRODUCTION

Animals on Earth have evolved to counteract the effect of gravity, negotiate terrestrial ground, and
locomote efficiently for predation and survival. Locomotion is thus one of the fundamental functions
of life. Through many cycles of evolutionary selection, both vertebrates and invertebrates have
acquired sophisticated locomotor skills, exhibiting resilient and flexible locomotion in response to
changes in body morphology, environment, and context, by coordinating leg movements, i.e., inter-
limb coordination. Thus, understanding the inter-limb coordination mechanism is both essential for
understanding the locomotive mechanism in legged animals and useful for establishing design
principles for legged robots that can reproduce flexible and efficient locomotion resembling that
exhibited in animals.

Understanding the principles of legged locomotion is a goal shared among biologists and
robotics engineers, who have struggled to build multi-legged robots able to exhibit adaptive
locomotion via inter-limb coordination. Although it is now possible to create a high-performance
architecture, e.g., CPU/GPU, to control the movement of a robot, robots are still not able to carry
out more than a small fraction of the complex and adaptive behaviors found in animals. Given the
limited number of neurons that comprise a nervous system (insects for example possess only
approximately 105 to 106 neurons in their nervous system) we must consider the potential role of
not only intrinsic neural circuits in adaptations to dealing with unpredictable situations, but also
that of the sensory feedback mechanisms that reflect body properties and physical interactions
with the environment. Understanding the mechanisms that underlie adaptive locomotion
contribute not only to biology but also to the field of robotics, by facilitating the design of
durable and resilient legged robots capable of adapting to unpredictable and changing situations,
much like animals.

Thus, the goal of this Research Topic is to consolidate topics related to “Biological and Robotic Inter-
limb Coordination”, in order to encourage the acceleration of collaborative approaches between the fields
of biology and robotics. The topic contains 22 articles, addressing biological and robotic inter-limb
coordination mechanisms in different robotic and animal systems (Figure 1), as well as the translation of
results to real-world applications, such as electromyographic (EMG)-based limb prostheses control.
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2 BIOLOGICAL INTER-LIMB
COORDINATION

A major feature of animal locomotion is that of its flexibility or
adaptability, i.e. the capacity of the locomoting animal to maintain
robust and consistent movement through a variable and constantly
changing environment. This outstanding ability, perfected by a long
evolutionary history, is manifested at all levels of control and
execution of locomotion: from the central and local neuronal
circuits controlling and generating locomotion-related motor
patterns, through the complex interactions of the central nervous
system with ongoing as well as transient sensory signals, via the
interactions of the central and sensory system with the muscular
system responsible for executing movement of the body parts (legs,
tail, and trunk), and last but not least, the dynamic interaction of
these body parts with the physical environment (Figure 1, Center). A
number of contributions to this special issue have addressed the
distinctive plasticity of animal locomotion, focusing on aspects of
locomotion and inter-limb coordination related to the different
levels noted above (Figure 1, Left).

Starting with the central circuits, David and Ayali (2021)
present a detailed investigation of the locomotion central
pattern generating (CPG) neuronal networks and their
underlying connectivity scheme in the cockroach, an
established model in the study of locomotion control. They
discuss the role of rhythmic properties of the endogenous
local (segmental) CPGs vs inter-circuit coupling in the
production of the functional, adaptable motor output during
locomotion in the behaving animal. Yet another model insect, the
cricket, is utilized by Naniwa and Aonuma (2021) in order to
present the instrumental role of descending and ascending inputs
into the thoracic motor control center (the CPGs controlling leg

movements) in maintaining the walking pattern. They
demonstrate that descending signals from the head ganglia
play an inhibitory role in initiating leg movements; and that
both the descending and ascending signals from the abdominal
nervous system are important in initiating and coordinating the
walking gait patterns.

Inter-limb coordination is directly investigated by Niemeier
et al. (2021) by way of controlled lesions of thoracic connectives in
one of the leadingmodels in the study of leg coordination - the stick
insect. The importance of neural information transfer among the
legs is nicely demonstrated. Furthermore, the findings show that
spatial and temporal coordination of leg movements are obtained
independently, with the former rather than the latter being affected
by the experimental manipulations. Overall this offers yet another
example of the importance of proprioceptive feedback in the
generation of a coordinated gait.

Insects search for and find the source of a desired odor as a
basic locomotion behavior, such as when searching for food or a
mate. This behavior offers an interesting research topic in regard
to motor-cognitive function: how is such successful locomotion
achieved under conditions of turbulent odor plumes, utilizing the
insects’ small number of neurons. Hernandez-Reyes et al. (2021)
measured the behavior of moths using a virtual reality system that
presents accurate and reproducible odor stimuli by using blue
light and optogenetic moths. Their results demonstrate that
behavioral variations have a higher probability of obtaining
more information than “programmed behaviors” (i.e., reactive,
exploitative behaviors), suggesting that silk moths incorporate
some stochasticity into their behavior in order to balance the
exploration and exploitation of the acquired information.

Moving from invertebrate to vertebrate models, Donatelli et al.
(2021) utilize the unique model of the bluespot salamander to

FIGURE 1 | Overview of this Research Topic: “Biological and Robotics Inter-limb Coordination”.
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demonstrate the robustness of locomotion patterns. Animals
adjust their gait to a changing environment. In addition to
adjusting to heterogeneities in their environment, animals can
adjust their locomotion to contend with damage to appendages
(tail or legs). This is ubiquitous in salamanders, which have the
potential to regenerate missing limbs, tails, and even parts of the
spinal cord in some species. As the authors suggest,
understanding the changes that take place in locomotion
kinematics as a lost limb regrows, may provide important
insights to assist roboticists working on terrestrial as well as
amphibious locomotion.

As noted above, one level of control, allowing consistency and
also adaptability in inter-limb coordination; is the muscular
system. Camardella et al. (2021) visit the cutting edge
technique of myo-control: a type of brain-machine interface in
which recorded electromyographic (EMG) signals are utilized in a
computed control signal that drives robots or machines (e.g., limb
prostheses control). For such applications, there is much interest
in characterizing the minimummuscle set, termed an optimal set,
that preserves performance and demonstrates a high consistency
of motor activity. Such an optimal set is described as considering
the best trade-off in terms of myo-control performance and
muscle set size.

3 ROBOTIC INTER-LIMB COORIDINATION

To date, robotics research has made substantial progress in
reproducing (adaptive) inter-limb coordination inspired by
animal locomotion. The contributions to this special issue
present various methods of control (including central and
local (neural) control with sensory feedback) that have been
investigated and developed, as well as validated on different
animal-like robots (Figure 1, Right).

Starting with a snake-like robot, Inazawa et al. (2021)
proposed a unified model-based method for designing the
motion of a robot to deal with complicated pipe structures.
The central control with a model considering slippage between
robot and pipe coordinates the connected pitch-axis and yaw-axis
joints of the robot body. It enables the robot to perform various
maneuvers to deal with multiple pipe structures and obstacles
such as junctions, bends, changes in pipe diameter, shears, and
blockages.

Rather than employing system models for inter-limb
coordination and locomotion generation, Owaki et al. (2021)
proposed a model-free method for simulated bipedal robot
locomotion. Their method is based on the Tegotae concept,
which describes how well a perceived reaction based on
sensory feedback matches the expectation (i.e., an intended
motor command). The control method’s implementation
makes use of vertical and horizontal ground reaction forces
(GRF), as well as decentralized local control circuits, to allow
the robot to walk on both flat and uneven terrains while adapting
to environmental changes.

In addition to the snake and biped robots, several studies in
this special issue employs quadruped robots as their experimental
platforms in order to investigate and develop control mechanisms

for adaptive inter-limb coordination. Sun et al. (2021) employed a
simulated quadruped robot to investigate two classical adaptive
inter-limb coordination mechanisms: continuous phase
modulation (also known as Tegotae) and phase resetting.
These mechanisms use decoupled neural central pattern
generators (CPGs) or local neural control circuits with sensory
feedback, such as GRFs, to generate self-organized robot
locomotion. Theses authors compared the characteristics of
the two mechanisms by observing the CPG phase convergence
processes at different control parameter values. They also
investigate the robustness of the mechanisms under various
unexpected conditions, such as noisy feedback, leg motor
damage, and carrying a load, in a simulated quadruped robot.
From their findings, they suggest a strategy for the appropriate
selection of adaptive inter-limb coordination mechanisms under
different conditions and for the optimal setting of the control
parameter values in order to enhance the control performance.
Aoi et al. (2021) demonstrated the use of local CPG-based control
with phase resetting as well as slow and fast adaptation
mechanisms for quadrupedal locomotion on a split-belt
treadmill. For the implementation, while the CPG control,
modulated by phase resetting based on touch sensor signals
(i.e., discrete GRFs) and desired (predicted) touchdown
timing, forms adaptive inter-limb coordination, fast adaptation
induces asymmetric inter-limb coordination following a change
of the treadmill speed condition and slow adaptation slowly
reduces or balances the asymmetry following fast adaptation.
This leads to stable quadrupedal split-belt treadmill walking.
Saputra et al. (2021) present central CPG-based control with
multiple sensory feedback provided by exteroceptors (i.e., quad-
composite time-of-flight and dual-laser range finder sensors), for
detecting the surroundings and interoceptors (i.e., force and
touch sensors and an inertial measurement unit (IMU)). Using
this control approach, they are able to generate versatile
locomotion and short-term adaptation for a cat-like
quadruped robot. The robot can, consequently, walk on
natural terrain, walk with a leg malfunction, avoid a sudden
obstacle, and climb a vertical ladder.

Robust robot state estimation and sensory event mistiming
detection are important issues for adaptive inter-limb
coordination. Accordingly, Calandra et al. (2021) proposed a
data-driven method using reservoir computing for translating
local proprioceptive feedback, acquired at the leg joints of a
simulated quadruped robot, into global exteroceptive
information, which include both GRFs at the level of the
different legs and information about the type of terrain
traversed by the robot. This mechanism enables the robot to
effectively estimate its walking state (i.e., estimating the GRFs
from joint torques) and classify terrains for adaptive locomotion.
Szadkowski et al. (2021) proposed a novel self-supervised method
based on dynamic Hebbian-like rules for learning sensory event
mistiming detection during robot walking. The sensory
mistiming detector is integrated into central CPG-based
control. Consequently, the CPG-based control engages with
inter-limb coordination for gait generation while the detector
engages with adaptive intra-limb coordination by triggering the
elevator reflex, used to avoid an obstacle, and the search reflex,
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used to grasp at a missed foothold. This control method enables a
hexapod robot to negotiate an unstructured and slippery
subterranean environment. As well demonstrated by the
biological studies in Section 1, yet far from fully resolved,
insects excel in highly variable limb coordination patterns.
Fukuhara et al. (2022) address this gap by proposing a simple
mathematical model for the mechanism of variable inter-limb
coordination in insect locomotion. Their model, largely based on
active load sensing, was tested in simulation experiments and
shown to entitle a hexapod robot with a range of typical gait
patterns and improved adaptability in different locomotion
speeds.

The salamander constitutes a model animal for focusing on
the following two issues, representing an evolutionary process of
moving from water to land: 1) versatile behavior generation
against a changing environment, based on CPGs coordinated
by both descending signals and sensory feedback; and 2) body-
limb coordination, i.e., coordination between undulatory
movements of the body and leg movements based on the
salamander’s characteristic morphology. Using a robot, Knüsel
et al. (2020) were able to reproduce the five motor behaviors
observed in salamanders: swimming, struggling, forward
underwater stepping, and forward and backward terrestrial
stepping. A mathematical model is presented that allows the
robot to switch between various motor patterns using a neural
circuit with descending brain signals and proprioceptive feedback
as input. The results suggest that a single flexible neural circuit
contributes to the generation of various animal behaviors when
modulated by descending drive and sensory feedback. When
walking on level ground, the salamander coordinates not only its
legs but also other body parts such as the trunk, head, and tail,
i.e., body-limb coordination, to generate the standing and
traveling waves of lateral bending depending on the walking
speed and stride length. Suzuki et al. (2021) showed that a CPG-
based controller with four feedback rules, limb-to-limb, limb-to-
body, body-to-limb, and body-to-body, without assuming any
inter-leg coupling is able to reproduce various walking patterns,
suggesting that sensory feedback plays a crucial role in flexible
body-limb coordination during sprawling quadruped
locomotion.

Quadruped robots possess the minimum number of legs
required for postural stability; hence, it is also a useful
platform to discuss the effects of a lower level of control and
of biomechanics, e.g., spinal reflexes or body softness, due to the
high postural stability and relative simplicity of leg coordination
control. Tanikawa et al. (2021) focused on spinal reflex, which is
essential for quadruped walking, and experimentally verified the
reflex mechanism using a robotic platform that mimics legs with
high back-drivability and Hill-type muscle properties. Their
findings suggest that the basic structure of the reflex circuit is
that of the reciprocal coupling between extensor muscles via
excitatory neural pathways, followed by the prolongation of the
stance phase caused by the reciprocal excitatory reflex
contributing greatly to the generation of a steady gait. Masuda
et al. (2021) showed the feasibility of generating various
quadruped gaits using only actuators and body dynamics.
Although the developed robot has no sensors or

microprocessors, its motors were able to autonomously adjust
the phase according to the leg dynamics and its locomotion
eventually converges to a stable gait pattern. Furthermore, by
increasing the input voltage to the motors, the robot is able to
reproduce pacing, bounding, rotary galloping, and half-bound-
like lateral galloping. Tanaka et al. (2021) developed a quadruped
robot driven by McKibben pneumatic artificial muscles and
verified its turning motion. In particular, the experiments
demonstrate that the softness of legs leads to adaptive changes
in inter-leg coordination and enables the robot to turn
dynamically, merely by changing the phase difference between
the left and right hind legs. Their results suggest that a soft body
can simplify the design of the controller for leg coordination in
locomotion even for complex tasks.

Hopping motion offers an effective test-bed for theoretical
approaches and systematic verification of energy optimization.
The simple mechanical structure and constrained one-
dimensional vertical motion allows simulation and robotic
platform to uncover the contributing mechanisms and control
schemes. Zamboni et al. (2021) investigated optimal energy
efficiency of Tegotae control based on proprioceptive feedback
previously used in bipedal, quadrupedal, and hexapod robot
locomotion in the context of embodiment. For this purpose,
simple one- and two-legged mechanical hopping robot simulation
were conducted. Their results suggested that the Tegotae-based
approach combined with a reflex-like actuation generate optimal
energy-efficient motion as well as environmental adaptability and
gait transitions. Discrete impact with the ground is a major factor
of instability during legged locomotion due to their unknown
timing and impact magnitude. Ashtiani et al. (2021) examined the
effect of the combination of passive and active compliance on leg
control during the landing event. Simulation and experiment with
a single leg robot, followed by simulation with a quadruped robot
were conducted. Their results showed that hybrid passive/active
control was robust against feedback delays, comparable to the
sensory-motor delays of neuromuscular systems in animals.

4 CONCLUDING REMARKS

In this research topic, we have brought together studies that
provide an overview of recent developments in biological and
robotic inter-limb coordination. Since inter-limb coordination
constitutes the fundamental basis of motion control, the studies
covered range from high-level cognitive functions to CPGs and
spinal reflexes, as well as biomechanics and interaction with the
environment. In terms of animal species, the studies in biological
inter-leg coordination incorporate insects, salamanders, and
human muscle control. The robotic inter-leg coordination
studies, center on quadrupedal robots that display posture
stability and controllability, and include monopod, biped,
salamander, hexapod, and even snake locomotion. A birds-
eye-view of the overall research topic reveals that “modeling,”
including abstract mathematical description and physical
implementation, is a key approach for discussing and
understanding inter-leg coordination mechanisms in a unified
manner encompassing biology and engineering. In addition,
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recent pioneering technologies, such as animal cyborgs that
externally control the behavioral output of animals, and
Virtual Reality (VR) or Augmented Reality (AR) systems that
externally manipulate the sensory input to animals, are expected
to lead to further understanding of the leg coordination
mechanisms in animals. We hope that this research topic
devoted to biological and robotic inter-limb coordination will
help researchers to enter novel research areas related to leg
coordination and that novel research results will ensue, based
on the further integration of biology and robotics.
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Diverse locomotor behaviors emerge from the interactions between the spinal central

pattern generator (CPG), descending brain signals and sensory feedback. Salamander

motor behaviors include swimming, struggling, forward underwater stepping, and

forward and backward terrestrial stepping. Electromyographic and kinematic recordings

of the trunk show that each of these five behaviors is characterized by specific patterns

of muscle activation and body curvature. Electrophysiological recordings in isolated

spinal cords show even more diverse patterns of activity. Using numerical modeling

and robotics, we explored the mechanisms through which descending brain signals

and proprioceptive feedback could take advantage of the flexibility of the spinal CPG

to generate different motor patterns. Adapting a previous CPG model based on abstract

oscillators, we propose a model that reproduces the features of spinal cord recordings:

the diversity of motor patterns, the correlation between phase lags and cycle frequencies,

and the spontaneous switches between slow and fast rhythms. The five salamander

behaviors were reproduced by connecting the CPG model to a mechanical simulation

of the salamander with virtual muscles and local proprioceptive feedback. The main

results were validated on a robot. A distributed controller was used to obtain the

fast control loops necessary for implementing the virtual muscles. The distributed

control is demonstrated in an experiment where the robot splits into multiple functional

parts. The five salamander behaviors were emulated by regulating the CPG with two

descending drives. Reproducing the kinematics of backward stepping and struggling

however required stronger muscle contractions. The passive oscillations observed in the

salamander’s tail during forward underwater stepping could be reproduced using a third

descending drive of zero to the tail oscillators. This reduced the drag on the body in

our hydrodynamic simulation. We explored the effect of local proprioceptive feedback
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during swimming and forward terrestrial stepping. We found that feedback could replace

or reduce the need for different drives in both cases. It also reduced the variability of

intersegmental phase lags toward values appropriate for locomotion. Our work suggests

that different motor behaviors do not require different CPG circuits: a single circuit can

produce various behaviors when modulated by descending drive and sensory feedback.

Keywords: central pattern generator (CPG), proprioceptive sensory feedback, descending drive, distributed

control, salamander, locomotion, numerical modeling, robotics

INTRODUCTION

Many motor behaviors in animals require coordinated rhythmic
activation of multiple muscles. Neural networks capable of
producing such activity patterns without rhythmic input from
other networks or from sensory feedback are called central
pattern generators (CPGs). It has been shown that CPGs
in the spinal cord underlie locomotion in many vertebrate
species (for review, Grillner and El Manira, 2020). Drive
signals descending from brain neurons control locomotion
initiation, speed and gait transitions (Brocard et al., 2010;
Capelli et al., 2017; Caggiano et al., 2018; Josset et al., 2018)
and steering movements (Fagerstedt et al., 2001; Ryczko et al.,
2016b; Cregg et al., 2020). Sensory feedback plays an important
role in modulating the CPG activity to adapt the locomotor
pattern to the environment (e.g., Wyart et al., 2009; Akay
et al., 2014; Hubbard et al., 2016; Knafo et al., 2017). These
feedback signals depend on the interactions between the neural
networks, the mechanical properties of the body and the
environment, making it a challenge to fully understand the
operation of the CPG even at a high level of abstraction.
Numerical models of the complete system can be used to
investigate the effect of sensory feedback on the CPG, but
some aspects such as hydrodynamic and friction forces are
difficult to simulate reliably. Robots are thus useful to validate
simulation results in the real world, with real physics. Here,
we used numerical simulations and robotics to investigate
the generation of different behaviors in the salamander, an
interesting animal model as it can move underwater and on
ground (Ryczko et al., 2020). In particular, we addressed the
following questions:

1. Can different motor behaviors be generated by a single
spinal CPG circuit as opposed to requiring several dedicated
CPG circuits?

2. What are the roles of descending drives in generating these
different motor behaviors, and how many independent drives
are necessary?

3. What is the potential role of sensory feedback
in shaping the patterns and in reducing the
variability of CPG activity observed in isolated spinal
cords?

We used the Salamandra robotica II robot (Crespi et al.,
2013) driven by a spinal CPG model and virtual muscles
to reproduce the five salamander behaviors documented
in Ryczko et al. (2015): forward swimming, forward
and backward terrestrial stepping, forward underwater

stepping, and struggling. To match the biological data
from that study, we focused on reproducing the patterns
of muscle activation and body curvature along the
body axis.

For the CPG, our starting point was the abstract oscillator
model of Ijspeert et al. (2007), with modifications to allow for
the flexible coordination of limb and axial network activities
(Knüsel et al., 2013). This flexibility is required to reproduce
the observations from Ryczko et al. (2015). Here, we extended
the model to comprise 25 segments and introduced random
parameters to account for the differences between individuals.
The main hypotheses are the following: (1) limb oscillators
project only to the axial oscillators close to the corresponding
girdles; (2) couplings between axial oscillators are stronger in
the head-to-tail direction; (3) limb oscillators saturate1 at lower
excitatory drives than axial oscillators; (4) hindlimb oscillators
are intrinsically slower than forelimb oscillators. Hypotheses 1
and 2 make the model’s intersegmental phase lag flexible and
controllable (Knüsel et al., 2013). Hypotheses 3 and 4 allow the
model to reproduce the distribution of phase lags of recordings
in vitro.

We modeled the biomechanical properties of the body axis
using virtualmuscles that determine the torques of the axial joints
based on the CPG activity and the current joint position and
velocity (Ekeberg, 1993). The joint positions were also used for
proprioceptive feedback, simulating stretch receptors that send
phasic inputs to the local CPG segments. The virtual muscle
model requires a small time step for stability and accuracy of
the numerical integration, which is challenging to achieve with
eight joints given the limited bandwidth and processing power
of the robotic platform. We solved this difficulty by distributing
the computation of the CPG and muscle models in the eight
active modules, so that each module calculates the part of the
model that controls its own joint. The modules use peer-to-peer
communication, such that splitting the robot results in several
functional pieces (unlike most robots).

The isolated CPG model was tuned to reproduce the diversity
of coordination patterns observed in isolated spinal cords. To
determine values for the proprioceptive feedback and virtual
muscle parameters, we systematically explored the parameter
space using a mechanical simulation of the robot: Using the
same tonic drive for all oscillators, we identified parameter values

1When the excitatory inputs to the spinal cord increase beyond a certain level,
CPG units saturate: they cease to produce rhythmic output. In the model, this is
implemented as a decrease of oscillation amplitude toward zero (see the left part of
Figure 3 for an illustration).

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2020 | Volume 14 | Article 60442611

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Knüsel et al. A CPG for Five Behaviors

that allowed feedback to have a positive effect on swimming
speed whilemaintaining stable CPG rhythms.We then attempted
to reproduce the five salamander behaviors without sensory
feedback, by varying the tonic drive sent to different parts of the
CPG, adapting other model parameters when necessary. Further
simulations were made to investigate the effect of proprioceptive
feedback during swimming and forward terrestrial stepping.
Finally, we used the real robot to validate simulation results.
Each behavior was reproduced on the robot using different
“individuals” from the family ofmodels used inmodeling isolated
spinal cords, to check the robustness of the control architecture
to individual variations.

MOTOR CONTROL IN SALAMANDERS

The salamander spinal CPG produces the rhythmic movements
of the limbs (Cheng et al., 1998; Lavrov and Cheng, 2004; Ijspeert
et al., 2007), trunk (Delvolvé et al., 1999; Branchereau et al., 2000;
Ryczko et al., 2010), and tail (Charrier and Cabelguen, 2013). This
spinal circuitry is controlled by the brainstem in salamanders
as in other vertebrates (for review, see Ryczko and Dubuc,
2013). Stimulation of the salamander mesencephalic locomotor
region elicits stepping at low stimulation intensities, whereas
swimming requires higher intensities (Cabelguen et al., 2003).
These descending commands are carried to the spinal cord by
reticulospinal neurons (Ryczko et al., 2016a, see also Ryczko et al.,
2020 for a recent review).

The coordination of muscles along the body axis plays an
important role in salamander locomotion, to generate thrust
during swimming and to maximize the stride length during
terrestrial stepping (Delvolvé et al., 1997). So far, at least five
salamander motor behaviors have been characterized: forward
swimming, forward and backward terrestrial stepping, forward
underwater stepping, and struggling (Ryczko et al., 2015).
Forward terrestrial stepping generally takes the form of a walking
trot, but lateral sequence walks have also been observed (reviewed
in Chevallier et al., 2008, see also Ashley-Ross et al., 2009).
During forward underwater stepping, the salamander progresses
at the bottom of water, with periods of suspension in water
without ground contact. Struggling refers to the behavior of
the salamander when it is firmly grasped at the pelvic girdle.
Electromyographic (EMG) recordings of multiple segments in
the salamander mid-trunk show that each of the five behaviors
is characterized by a specific pattern of muscle activation, in
terms of cycle frequencies and intersegmental phase lags: (1)
rostrocaudal waves occur during forward swimming and, with
lower cycle frequencies, during backward terrestrial stepping; (2)
slow caudorostral waves occur during struggling; (3) standing
waves are stable during forward terrestrial stepping but more
variable during forward underwater stepping (Ryczko et al.,
2015).

Kinematic recordings show similar patterns of trunk
curvature. However, kinematic intersegmental phase lags are
significantly larger during forward terrestrial stepping and
swimming (Frolich and Biewener, 1992; Ryczko et al., 2015).
In other words, the delay between muscle activation and body

bending gets larger toward the tail. This suggests that the
mechanical properties of body tissues play an important role
during these behaviors, as suggested by a lamprey modeling
study (Tytell et al., 2010).

The increasing EMG-mechanical delay toward the tail also
suggests that proprioceptive feedback might have a different
effect at various points along the body axis. Salamanders
are known to have sensory cells that generate proprioceptive
information relative to axial movements: The skin contains
mechano-sensitiveMerkel cells (Scott et al., 1981; Diamond et al.,
1986), and some cells in the spinal cord are morphologically
similar to the mechano-sensitive “edge cells” (Schroeder and
Egar, 1990) that encode body bending in lampreys (Grillner
et al., 1982, 1984). They also have cerebrospinal fluid contacting
neurons (Kolmer-Agduhr cells, Harper and Roberts, 1993),
which are active during body bending in zebrafish (Böhm et al.,
2016) and provide mechanosensory input to the swimming CPG
(Wyart et al., 2009; Hubbard et al., 2016, Orts-Del’Immagine
et al., 2020, see also Jalalvand et al., 2016 in lampreys). The limbs
are another source of proprioceptive feedback, as they contain
fibers that respond to stretch similarly to muscle spindles in other
species (Bone et al., 1976).

According to in vitro recordings of the salamander spinal cord,
the isolated CPG can generate stable patterns for the three types
of axial waves (caudorostral, standing and rostrocaudal waves),
with occasional switches between two wave types (Ryczko et al.,
2015). The intersegmental phase lags generated by the isolated
CPG cover a greater range than those observed in EMG recording
(−12.6 to +12.4% of a cycle duration for recordings in vitro,
and −4.8 to +6.4% for EMG recordings), with a distribution
showing three peaks centered on −9.6, −1.0, and +6.6%. The
salamander CPG thus provides a flexible ground onto which
sensory feedback and descending drives could act to influence the
spinal motor output.

RELATED MODELING WORK

Previous studies have modeled the CPG components using
abstract oscillators (Ijspeert et al., 2005, 2007; Knüsel et al.,
2013; Yin et al., 2016), single bursting neurons (Liu et al.,
2018, 2020), integrate-and-fire neurons (Ijspeert, 2001; Bem
et al., 2003; Harischandra et al., 2011; Knüsel et al., 2013)
and detailed networks of three compartment Hodgkin-Huxley
neurons (Bicanski et al., 2013).

The mechanical body of the salamander has been modeled
with varying accuracy. Many models include four joints between
the girdles and a single degree of freedom (DOF) per limb
(Ijspeert, 2001; Ijspeert et al., 2005, 2007; Suzuki et al., 2019a) or
three DOFs per limb (Harischandra et al., 2010, 2011; Liu et al.,
2018, 2020). The simplest model has one of each (Yin et al., 2016),
while other models have one joint between the girdles and two
DOFs per limb (Zhong et al., 2018; Suzuki et al., 2019b). Bem
et al. (2003) have modeled the swimming salamander as a chain
of ten links, corresponding roughly to three trunk joints and no
limbs. Themost accuratemodel has five joints between the girdles
and four DOFs in each limb (Karakasiliotis et al., 2016; Horvat
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and Ijspeert, 2017; Horvat et al., 2017). Mechanical properties
(damping and elasticity) of the body tissues were included in the
muscle models used by Ijspeert (2001; 2005) Bem et al. (2003),
Harischandra et al. (2010, 2011), and Liu et al. (2018, 2020), and
in the controller of Suzuki et al. (2019b).

The effect of sensory feedback on the activity of the
salamander CPG has only been investigated in simulation (Bem
et al., 2003; Ijspeert et al., 2005; Harischandra et al., 2011;
Liu et al., 2020). The role of sensory feedback in body-limb
coordination has also been investigated using controllers without
CPG, both in simulations (Horvat and Ijspeert, 2017) and with a
robot (Suzuki et al., 2019a).

Most studies have focused on the reproduction of forward
terrestrial stepping (with a walking and/or trotting gait),
swimming, transitions between these behaviors, and turning.
The exceptions are the works of Karakasiliotis et al. (2016)
which reproduced underwater stepping in addition to swimming
and forward terrestrial stepping (though using predefined
joint trajectories rather than a CPG) and Liu et al. (2018)
which reproduced backward terrestrial stepping in addition
to forward terrestrial stepping (using dedicated networks for
each gait).

Table 1 summarizes the particularities of past studies and how
they compare to the present one. To our knowledge, the present

TABLE 1 | Related studies.

CPG Trunk

joints

Limb

DOFs

Robot Biomech Proprio.

feedback

Force

feedback

Behaviors Turning Transition

Trunk Limbs Trunk Limbs Swim Walk Trot Back

step

U.w.

step

Struggle

Bem et al.

(2003)

IF • • •

Bicanski

et al. (2013)

HH

Knüsel et al.

(2013)

AO+IF

Ijspeert

(2001)

IF • • • • •

Ijspeert et al.

(2005)

AO • • • • •

Ijspeert et al.

(2007)

AO • • • • •

Harischandra

et al. (2010)

• • • • • • •

Harischandra

et al. (2011)

IF • • • • • • •

Yin et al.

(2016)

AO • •

Karakasiliotis

et al. (2016)

• • • • • • • • •

Horvat et al.

(2017)

• • • • • • • • •

Horvat and

Ijspeert

(2017)

• • • • • • • • •

Liu et al.

(2018)

BN • • • • • • •

Zhong et al.

(2018)

• • •

Suzuki et al.

(2019a)

• • • • •

Suzuki et al.

(2019b)

AO • • •

Liu et al.

(2020)

BN • • • • • • •

This study AO • • • • •

CPG: IF, Integrate and fire; HH, Hodgkin-Huxley; AO, Abstract oscillators; BN, Bursting neurons. Trunk joints: counting joints between girdles (a joint on the girdle counts as a half).

DOFs: degrees of freedom. The number of black dots represents the number of trunk joints and limb degrees of freedom respectively. Biomech: mechanical properties from body tissues

such as muscles. Walk: forward terrestrial stepping with lateral sequence walking. Trot: forward terrestrial stepping with walking trot. Colors indicate different groups of model features:

mechanical model (green), sensory feedback modalities (orange), behaviors (gray).

Frontiers in Neurorobotics | www.frontiersin.org 4 December 2020 | Volume 14 | Article 60442613

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Knüsel et al. A CPG for Five Behaviors

FIGURE 1 | Robot with distributed controller with the spinal central pattern generator (CPG) model, axial proprioceptive feedback, descending drives and virtual

muscles. (A) The robot Salamandra robotica II. (B) The axial CPG was divided in 8 groups (gray rectangles) to distribute the computations in the 8 robot modules with

active joints. Left: tonic descending drives are applied to limb (blue), trunk (green) and tail (yellow) oscillators. Virtual stretch receptors (orange triangles) project to the 3

nearest segments with opposite ipsilateral (excitatory) and contralateral (inhibitory) weights. Feedback from the neck joint (dashed orange) was disabled for robot

experiments (see Results). Black lines indicate bidirectional couplings between oscillators (see Figure 2A). Middle: 2 outputs xi , xi+25 of each group (purple horizontal

arrows) govern left (l) and right (r) muscle activities Mi from which the muscle model calculates an output torque Ti . Right: the torque Ti is applied at each axial joint

(orange circles). The joint position φi and velocity φ̇i are fed back (orange arrows) to the muscles. Virtual stretch receptors only receive φi . The phases θi of limb

oscillators (red horizontal arrows) determine the limb positions.
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work is the first to incorporate biomechanical properties and
proprioceptive sensory feedback in a real salamander robot.

MATERIALS AND METHODS

CPG Model
The model was developed using the Codyn framework and
exported to C code to run on the robot microcontrollers. Only
the 25 most rostral axial segments (each comprising 1 left and
1 right hemisegments) are modeled out of the 40 segments
that salamanders typically have (for review see, Chevallier et al.,
2008). Four additional oscillators control the limbs. The 25 axial
segments control the active part of the robot. The caudal half
of the robot tail is a passive, flexible caudal fin (Figure 1A).
Each axial hemisegmental oscillator and each limb oscillator is
modeled as a phase oscillator with controllable amplitude, and
the connections between oscillators are functions of the phase
difference between sender and receiver:

θ̇i = 2πνi +
∑

j

rjwij sin
(

θj − θi − ϕij

)

−
si

ri
sin θi

ṙi = a (Ri − ri) + si cos θi

xi = ri (1+ cos θi)

νi = diei

Ri = diP
(

di, d
th
i

)

A positive output xi (which determines the muscle activation)
is calculated from the instantaneous phase θi and amplitude
ri. The intrinsic frequency νi is proportional to the oscillator
excitability ei and to a drive di that represents the excitation
from descending drives. The intrinsic amplitudeRi increases with
increasing drive until it approaches a saturation threshold dthi
after which it decreases progressively to zero due to the sigmoid

function P
(

d, dth
)

=
1

1+eb(d−dth)
with b the saturation rate. The

excitability ei determines the intrinsic frequency of a particular
oscillator as a function of the external drive. The excitability
of each oscillator is drawn from a Gaussian distribution with
different means for forelimb, hindlimb and axial oscillators.
The saturation thresholds of the forelimbs, hindlimbs and axial
network are also drawn from a Gaussian distribution with
different means for the axial and limb networks. The coupling
from oscillator j to oscillator i is characterized by a strength
wij and phase bias ϕij. The gain a determines the speed of
convergence for the amplitude. The symbol si represents the
feedback signal from simulated stretch receptors (see below). The
terms − si

ri
sin θi and si cos θi are the polar coordinate equivalent

of adding si to the derivative ẋ of an oscillator in Cartesian
coordinates (see Supplementary Materials for the derivation).

The network connectivity is described in Figure 2A and
Table 2. Other parameter values are provided in Tables 3, 4.

Simulations of the Isolated CPG
For simulations of in vitro electrophysiological recordings of
the isolated salamander spinal cord reported in Ryczko et al.
(2015), the same drive di = d was used for all oscillators

FIGURE 2 | The CPG model. (A) The axial (i.e., trunk and tail) spinal network

model is constituted by a double chain of 50 oscillators, i.e., 25 segments of

which 19 are shown (green). Four oscillators (blue) control the limbs. Thicker

arrows denote stronger couplings. For simulations of the isolated CPG, a

randomly fluctuating tonic drive mimicking the pharmacological activation used

in Ryczko et al. (2015) was applied to all oscillators. (B) Intersegmental phase

lags from 10,000 simulations of the isolated CPG using different random seeds

(intersegmental phase lag calculated by taking the average of intersegmental

phase lags between segments 8–12, see Methods). Simulations are ordered

by decreasing intersegmental phase lag on the vertical axis. A positive phase

lag corresponds to a rostrocaudal traveling wave (i.e., from head to tail), a zero

phase lag to a standing wave, and a negative phase lag to a caudorostral

traveling wave. (C) Trimodal distribution of intersegmental phase lags. (D)

Cycle durations vs. intersegmental phase lags. A linear fit was applied to the

dataset. The square of the correlation coefficient and the significance of the fit

are given.

to represent a tonic pharmacological stimulation, with small
fluctuations over time added in the form of a mean reverting
random walk: ḋ = c

(

d0 − d
)

± σ with d0 the drive picked
from a Gaussian distribution, c a convergence factor, and ±σ a
random process yielding positive and negative steps with equal
probability. Multiple simulations were performed with different
random seeds to reflect the diversity of coordination patterns
observed in individual spinal cord preparations.

Muscle Model
A linear spring-damper model with variable stiffness (Ekeberg,
1993) was used to model a pair of antagonist muscles and
calculate the resulting torque at each axial joint (Figure 1B):

Ti = α

(

Ml
i −Mr

i

)

− β

(

Ml
i +Mr

i + γ

)

φi − δφ̇i

An active term is calculated from the difference of the left and
right muscle activations Ml

i and Mr
i multiplied by a gain α. A

stiffness term is calculated from the muscle activities, the tonic
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TABLE 2 | CPG coupling parameters.

Coupling type Strength wij Phase bias ϕij (rad.)

Intersegmental, rostrocaudal 5 0.066·2π

Intersegmental, caudorostral 1 −0.066·2π

Intrasegmental, lateral 10 π

Interlimb, rostrocaudal 3 π

Interlimb, caudorostral 30 π

Interlimb, lateral 10 π

Limb to axial oscillators 30 4 (BTS: 5.5*)

Axial to limb oscillators 2.5 −4 (BTS: −5.5*)

*BTS, backward terrestrial stepping.

TABLE 3 | Other CPG parameters.

Name Symbol Value (mean ± SD)

Amplitude convergence

factor

a 5

Saturation rate b 500

Drive random walk

convergence factor

c 0.001 (in vitro)

0 (in vivo)

Drive random walk step

size

σ 0.03 (in vitro)

0 (in vivo)

Drive di See Table 4

Saturation threshold dthi 0.3 (axis, in vitro)

3 (axis, in vivo)

0.09 ± 0.02 (limbs, in vitro)

1.27 ± 0.02 (limbs, in vivo)

Excitability ei 1.1 ± 0.07 (axis)

0.8 ± 0.05 (forelimbs)

0.5 ± 0.03 (hindlimbs)

Axial proprioceptive

feedback, ipsilateral

wipsi See Table 4

Axial proprioceptive

feedback, contralateral

wcontra -wipsi

stiffness γ , a stiffness gain β and the joint angle φi. A damping
term is calculated from a damping constant δ and the joint
angular velocity φ̇i. Parameter values are given in Table 5.

In simulations, a delay of 10ms was introduced between the
CPG outputs xi, xi+25 and the corresponding muscle activations
Ml

i , M
r
i , respectively, as a minimum to account for the muscle

activation dynamics. This delay was not necessary in robot
experiments since the motor torque controller already introduces
a larger delay of the order of 50ms, which is consistent with the
reported range (50ms to 1 s) of the low-pass filter properties of
muscle contraction (Partridge, 1965).

Limb Joints
For the limbs, the oscillator phase θi is used directly as a
representation of the desired position, with a piece-wise linear
transfer function that modulates the swing and stance rotation
speeds such as to obtain a duty factor of 77% (Ashley-Ross and
Lauder, 1997; Ashley-Ross et al., 2009). For backward terrestrial

stepping the direction of limb rotation was inverted by using−θi
instead of θi.

Sensory Feedback
Proprioceptive feedback signals si are derived from the joint
angles φi by simulating the activity of stretch receptors: si =

wipsisi
ipsi + wcontrasi

contra, with si
ipsi and si

contra the positive part
of φi and −φi, respectively, for the left side (−φi and φi for the
right side), and wipsi and wcontra the feedback weights. Since the
axial part of the CPG model has 25 segments (each containing 2
hemisegmental oscillators) and the robot only 8 active axial joints
(Figure 1B), some mapping is necessary. The signal from each
joint is sent to the 3 neighboring segments, while only the middle
segment is used to drive the joint muscles (Figure 1B). This
leaves segments 3 and 16 without feedback, which is reasonable
since the amplitude of the body curvature is smallest at these
positions in the animal (Karakasiliotis et al., 2013).

In some simulations, an additional term was added to
the θ̇i equation for limb oscillators to represent excitatory
proprioceptive feedback from the limbs, as used in a previous
study (Harischandra et al., 2011). Here a simplified form
was used:

θ̇i = 2πνi +
∑

j

rjwij sin
(

θj − θi − ϕij

)

+wlimbmax

(

0, 1−

∣

∣φi − φ0
i

∣

∣

π
2

)

Here wlimb is the feedback weight, φi the joint angle of the robot
rotational limb and φ0

i the angle at the transition from stance
to swing. The feedback is maximal at the end of the stance and
decreases linearly on either side until it reaches zero. The rate of
decrease is such that the feedback is non-zero for half of the leg
rotation. The value is always positive or zero, so this feedback
term can only have an accelerating effect.

Mechanical Simulation
3D simulations of the robot were performed using the Webots 6
software (Cyberbotics, Switzerland), which is based on the Open
Dynamics Engine (ODE, www.ode.org). The physics engine was
extended with a hydrodynamics model that includes reactive
and resistive forces (Porez et al., 2014). The passive tail fin was
modeled as a chain of 10 small segments with passive stiffness.
The physics was simulated with a time step of 0.5ms. The robot
controller used a time step of 1ms, theminimum value supported
by Webots. This was just too high for a stable simulation of the
muscles, so the physics plugin was used to implement the muscle
model and set the joint torques.

Robot Hardware
The robot Salamandra robotica II (Crespi et al., 2013) is made of
a head module (9.6 cm long), 8 active modules (9.6 cm long each)
and a 24.6 cm long, passive, flexible caudal fin (Figure 1A). This
allowed the robot to approximately reach the tail length/total
body length ratio of the real animal (around 0.5–0.6, see Ryczko
et al., 2015). Each module actuates an axial joint with motion
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TABLE 4 | Parameters regulating the CPG activity.

Drives di Feedback weights

Seg. 1–3 Seg. 4–25 Limbs wipsi wlimb

Robot experiments with 5 individuals (Figure 5)

Swimming 1 10 0

Forward terrestrial stepping 0.60 ± 0.02 1.00 ± 0.04 0 0

Forward underwater stepping 0.42 ± 0.01 0.71 ± 0.03 0 0

Backward terrestrial stepping 0.23 ± 0.01 0.46 ± 0.02 0 0

Struggling 0.27 ± 0.01 0.38 ± 0.01 0 0

Other robot experiments

Swimming without regulation (Supplementary Movie 1) 1 0 0

Swimming with differential drive (Supplementary Movie 2) 0.9 1 0 0

Forward terrestrial stepping with feedback (Figure 6E) 0.61 0.98 from

−10 to 6

0

Simulations

Isolated CPG (simulation of in vitro experiments) (Figures 2, 3) 0.1 ± 0.01 0 0

Swimming without regulation (Supplementary Figure 4A) 1.34 0 0

Swimming with differential drive (Supplementary Figure 4B) 1.03 1.34 0 0

Swimming with axial feedback (Supplementary Figures 4C,D) 1.34 21 0

Forward terrestrial stepping without regulation (Figure 6A) 0.98 0 0

Forward terrestrial stepping with differential drive (Figure 6B) 0.63 0.98 0 0

Forward terrestrial stepping with axial feedback (Figure 6C) 0.98 −0.65 0

Forward terrestrial stepping with limb feedback (Figure 6D) 0.98 0 3.7

Robot experiments used lower drives for swimming to stay in the robot operating range (see Results). Standard deviations for the drive reflect variations between the simulated individuals.

Drive values are shown centered across two or three columns in cases where the same value was applied to the corresponding groups of oscillators.

TABLE 5 | Muscle parameters.

Name Symbol Value

Muscle active gain (N·m) α 0.4 (BTS, ST: 4*) (simulation)

0.5 (BTS, ST: 5*) (robot)

Muscle stiffness gain (N·m/rad) β 1.2 (BTS, ST: 12*)

Muscle tonic stiffness (no unit) γ 0.2

Muscle damping (N·m·s/rad) δ 0.1

*BTS, backward terrestrial stepping; ST, struggling.

restricted to the horizontal plane; the two girdle modules also
include rotational joints for the limbs. The entire robot measures
111 cm and weighs 2.48 kg. The robot modules have LEDs on
the covers which were used to track the robot’s motion with two
Basler A622F video cameras (15 frames/s) to cover the whole
track length (6m) with an accuracy of± 1 cm. The Supplemental
Movies of the robot were captured with another camera at 15
or 30 frames/s. Two adaptations were made to the robot to
reproduce the different behaviors. During forward underwater
stepping, the buoyancy was adjusted by adding 72 g of lead in
the head. This corresponds to +2.9% of the total robot weight,
or + 41.8% of the normal weight of the head module (172 g).
During struggling, tape was added under the feet to increase
slipping, mirroring the conditions of the animal experiments
(Ryczko et al., 2015).

Distributed Electronics and Control
Software
The robot controller is distributed: each module reads the
position and velocity of the local joint and computes the control
loop for the corresponding part of the CPG and the joint’s
virtual muscles, with a time step of 10ms. The numerical
integration of CPG segments with floating-point operations
required a modification to the hardware described by Crespi
et al. (2013): the modules were upgraded to include an LPC2129
ARM7TDMI microcontroller running at 60 MHz, as already
present in the head. Communications between modules are
restricted to drive signals from the head and CPG couplings
between adjacent modules, sent over the CAN bus running at
1 Mbps. The leg positions are set by PD controllers using the
motor encoders. The axial torques are set by PI controllers using
current sensing. The CPG state from each module was recorded
by logging coupling and debug messages sent over the CAN
bus. This logging was done on an external computer, by spying
on the bus using long, thin wires attached to the caudal end
of the robot. Two modifications were made to the distributed
controller between the initial tests and the final version (see
Results): (1) The numerical integration of the CPG was changed
to estimate the phases θj and amplitudes rj of coupling sources at
the time of integration using a linear extrapolation of the values
from the two latest CAN messages and their times of arrival
(coupling terms are dropped entirely from the integration if
the two previous CAN messages are older than 200 or 400ms,
respectively); (2) The phases and amplitudes were encoded in
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CANmessages as 16-bit half-floats rather than 32-bit floats, such
that coupling signals from a module to a particular neighbor
would fit in a single message.

Selection of Parameter Values
The CPG parameters were hand-tuned to reproduce the
distribution of intersegmental phase lags and cycle durations
from in vitro recordings of isolated spinal cords (Ryczko et al.,
2015). To emulate the motor behaviors displayed by the animal
in vivo, the CPG model was subjected to higher excitatory
drives which were tuned to reproduce typical electromyographic
patterns for each of the five motor behaviors, in terms of cycle
frequency and intersegmental phase lags (Ryczko et al., 2015).
However, the cycle frequencies targeted with the model were set
to half that of the in vivo recordings. This was chosen to reflect
the scaling of locomotion frequency with body mass observed
in animals (Bejan and Marden, 2006). For robot experiments,
the target frequency for swimming was further lowered to 1.1Hz
due to the limits of operation of the robot (in particular torque
limits). Other than the drive levels and sensory feedback, the
only changes from in vitro to in vivo CPG conditions were in the
average saturation thresholds which had to be increased to match
the higher drives used in vivo.

The parameter space for the virtual muscles and
proprioceptive feedback was explored systematically using
the 3Dmechanical simulation of the robot during swimming. An
“average individual” was used by setting the standard deviations
of the CPG excitabilities to zero, to increase reproducibility (this
restriction was relaxed for robot experiments). We used uniform
muscle parameter values for trunk joints, and progressively
smaller values in the tail to emulate body taper: the values of α

and β in modules 6, 7, and 8 were multiplied by a factor 0.7, 0.5,
and 0.2, respectively. The same feedback parameter values were
used for all joints, and the same feedback weights (with opposite
signs) were used for ipsilateral and contralateral projections.
Initial tests were made with a tonic muscle stiffness γ = 0:
this parameter is mostly redundant with the stiffness gain β for
a given (non-zero) amplitude of CPG oscillations. A uniform
excitatory drive was used for all oscillators, which in absence of
feedback results in high intersegmental phase lags inappropriate
for swimming. The drive was set to 1.34, corresponding to a
swimming frequency of 1.47Hz (in absence of sensory feedback),
which is close to our target of half the frequency observed in
the animal (2.78Hz and 3.12Hz during EMG and kinematic
recordings, respectively, Ryczko et al., 2015). We selected muscle
and feedback parameter values that showed a significant increase
in swimming speed and high stability of the CPG and kinematic
patterns, while keeping the joint torques close to the robot’s limit
of 0.7Nm (Supplementary Figures 1–3).

The five salamander behaviors were first reproduced in
simulation without sensory feedback, by tuning the CPG
drive levels and optimizing the limb-body phase bias for
speed of locomotion. Additional simulations were done with
varying strengths of axial proprioceptive feedback during
forward terrestrial stepping and swimming. Further simulations
were made with proprioceptive limb feedback during forward
terrestrial stepping.

FIGURE 3 | The CPG spontaneously switches between axial motor patterns

as a function of a fluctuating background drive strength. The strength of the

simulated pharmacological drive applied to the CPG is shown together with

the outputs of the oscillators of the left forelimb, left trunk segments 8 and 10,

and the left hindlimb. Before the switch, limb oscillators (blue lines) are

saturated by the drive strength. Therefore, they show low amplitude

oscillations and are entrained to the higher frequency of the trunk oscillators,

and the motor pattern in the trunk segments (green) is a rostrocaudal wave

(white dots). Then, a progressive decrease in drive strength occurs through

random fluctuations, and this progressively de-saturates the limb oscillators.

The de-saturation allows limb circuits to oscillate at higher amplitude, causing

a switch (arrows) from a fast rostrocaudal wave to a slower caudorostral wave

(black dots). After the switch, the de-saturated limbs show high amplitude

oscillations and therefore entrain to their slower frequency the trunk oscillators,

because effective connection strength in the model is proportional to the

amplitude of oscillations from the sender (see Methods). The same switches

have been observed in the isolated spinal cord [Figures 5A,B of Ryczko et al.

(2015)].

The limb-body phase bias was optimized again on the robot,
due to the different zero-point reference and the backlash in the
gears. The main simulation results were then reproduced on the
robot with five different “individuals,” which were modeled by
initializing the CPG parameters using different random seeds.
The descending drives were adjusted for each “individual” and
each motor behavior. Other parameters were sometimes adjusted
between behaviors but always using the same values for all
individuals (see Results). The movies shown in the Supplemental
Materials were prepared using an average individual.

Data Processing
The joint angles from simulations and robot experiments were
calculated in Matlab by fitting the kinematic chain of the
robot to the positions of the LEDs. The CPG and kinematic
intersegmental phase lags were calculated in Matlab from
the CPG output and joint angle oscillations using the same
algorithm: The timing of each cycle was defined as the centroid
of the positive part of each oscillation (Knüsel et al., 2013). These
timings were used to calculate a median phase lag (over time) for
each pair of consecutive segments (CPG lag) or consecutive joints
(kinematic lag). The CPG intersegmental phase lag was calculated
using the average of the median phase lags between segments 8 to

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2020 | Volume 14 | Article 60442618

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Knüsel et al. A CPG for Five Behaviors

12. For simulations, the kinematic intersegmental phase lag was
calculated using the average of the median phase lags between
joints 3 to 5. For robot experiments, joint 5 was often an outlier
due to the robot torque limits, so joints 2 to 4 were used instead.

Statistics
Data are given as means ± standard deviation (SD) unless
specified otherwise. Correlations between variables were
evaluated in SigmaPlot 11.0 using the Pearson Product Moment
Correlation test.

RESULTS

The Isolated CPG Model Reproduces the
Main Features of Recordings From Isolated
Spinal Cords
We found that asymmetric intersegmental couplings, together
with different excitabilities and saturation thresholds between
forelimb, hindlimb and axial oscillators, enabled the spinal
cord model to reproduce the trimodal distribution of phase
lags observed in vitro during fictive locomotion (Ryczko
et al., 2015). The values shown in Tables 2, 3 were found
to produce a range of phase lags similar to the biological
data, with peaks centered on 6.7 ± 1.3, 1.3 ± 1.3, and
−6.1 ± 1.0% (Figures 2B,C). The positive correlation between
phase lag and cycle duration (Ryczko et al., 2015) was also
reproduced (Figure 2D). Furthermore, the small fluctuations in
the excitatory drive over time allowed the model to reproduce the
spontaneous switches between slow caudorostral waves and fast
rostrocaudal waves of axial activity reported in the isolated spinal
cord (Delvolvé et al., 1999; Ryczko et al., 2015). Figure 3 shows
an example of the model producing such a switch.

Improving Swimming With Proprioceptive
Feedback Requires Specific Muscle
Stiffness and Damping Properties
Using a uniform drive yielded an intersegmental phase lag of
6.6% in an average individual (leftmost peak of the distribution).
This resulted in inefficient swimming, with toomany nodes in the
traveling wave (Supplementary Movie 1). We looked for muscle
parameters that would allow proprioceptive feedback to improve
swimming by decreasing the phase lag towardmore physiological
values. For the active gain α, a value of 0.4 proved optimal, as
higher values (together with higher stiffness β or γ ) would have
given higher swimming speeds but would have required torques
beyond our robot’s limits. Systematic tests in the β , δ,wipsi space
showed a single region where feedback increased the swimming
speed thanks to a decrease of the phase lag, while keeping the
CPG rhythm stable. This stable region corresponds to a stiffness
gain β between 1.6 and 2.3, a damping δ between 0.05 and
0.15 and feedback weights wipsi = −wcontra between 17 and
22 (Supplementary Figures 1–3). Further tests in the β , γ ,wipsi

space showed that we could trade some fitness gain β for tonic
stiffness γ . We settled on β = 1.2, γ = 0.2, which give
qualitatively reasonable passive mechanical properties (Table 5).

Simulation Results Transferred to the
Robot Following Some Adaptations
The simulation results could be reproduced on the robot, with
the following changes made based on qualitative judgements:
the muscle active gain α had to be increased from 0.4 to 0.5 to
obtain reasonable amplitudes of oscillation during swimming.
Uniform muscle parameter values were used in all robot joints:
the tapering of the active and stiffness gains was removed to
obtain reasonable amplitudes of oscillations in the tail and good
swimming speeds. Due to the limits of operation of the robot,
the target frequency for swimming had to be lowered down
to 1.1 Hz2. The feedback weights were reduced to 10. Sensory
feedback from the neck joint was removed as it was destabilizing,
leading to aperiodic rhythms. Finally, in simulation we found
that a common limb-body phase bias gave near-optimal speed
for all stepping behaviors. This was not the case with the robot: a
specific limb-body phase bias was required for backward stepping
(Table 2) to obtain the optimal speed for that behavior.

Two Drive Signals Suffice to Reproduce the
Five Motor Behaviors, but Backward
Terrestrial Stepping and Struggling Require
Stronger Muscle Contractions
We found that tonic drives with only two different values
applied to different parts of the CPG were sufficient to
reproduce qualitatively the five motor behaviors with the
robot, as shown by movies (Supplementary Movies 2–6),
frame sequences (Figure 4) and robot kinematics (Figure 5,
Supplementary Figure 4B). In particular, the differences
in CPG and kinematic intersegmental phase lags between
the five behaviors were reproduced (Figures 5F,G), as
well as the differences in cycle durations (Figure 5H).
Figures 5A–E show the CPG outputs and joint oscillations
for a single individual. The rostrocaudally increasing
lag between CPG and kinematic waves is reproduced
(increasing gap between the thick red and thick
black lines).

Swimming could be obtained by sending a strong
drive (i.e., saturating limb oscillators, Hypothesis 3) to
the whole CPG, with a slightly lower drive to the most
rostral oscillators (segments 1-3 in Figure 2) to adjust
the phase lag as proposed in numerical simulation of the
lamprey locomotor CPG (Kozlov et al., 2009). The other
behaviors were obtained by adjusting the drive to the limb
oscillators independently from the drive to the axial oscillators
(Figure 5H, Supplementary Movies 3–6). Higher axial phase
lags required a greater relative difference between the two
drives, and higher frequencies required higher values of
both drives.

While two drives were sufficient to generate the CPG
activity patterns for all behaviors, we found that stronger
forces from the virtual muscles were required to reproduce the

2This meant producing a swimming gait in the frequency range of forward
terrestrial stepping, i.e. with drives under the limb saturation threshold, so limb
oscillators had to be silenced artificially.
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FIGURE 4 | Frame sequences showing from top to bottom one complete stride for the five motor behaviors. Light-emitting diodes were tracked on each module for

kinematic analysis. A black dot was added on each frame to illustrate robot progression. Inter-frame time intervals in ms are, respectively: 200 (swimming, SW); 133.3

(forward underwater stepping, FUS); 166.7 (forward terrestrial stepping, FTS); 400 (backward terrestrial stepping, BTS); 466.7 (struggling, ST). Scale bar (white),

10 cm. The different background colors are due to the different environments: water tank for SW and FUS, wooden board for the other behaviors. The behaviors are

close to those observed in the real animal [Figure 1 of Ryczko et al. (2015)].

kinematics of backward terrestrial stepping and struggling.
To avoid introducing additional parameters, this was
implemented by increasing the muscle gains α and β .
A 10-fold increase was found appropriate to avoid large
deviations between the CPG activity and the kinematics (Table 5,
Figures 5A,E).

Proprioceptive Feedback Can Regulate the
Phase Lag During Swimming and Forward
Terrestrial Stepping, and Reduces
Variability
With axial proprioceptive feedback, swimming could be
reproduced with a single drive to the whole CPG (Figures 5B,I,
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Supplementary Movie 8). In absence of feedback, the axial
network of the five robot “individuals” produces intersegmental
phase lags of 6.1 ± 1.4% (Supplementary Figure 4A,
Supplementary Movie 1). With feedback, this could be reduced
to 1.9 ± 1.1%, which matches the values observed in the animal
(1.89 ± 0.25%, Ryczko et al., 2015). Feedback also reduced the
variability between individuals: Without feedback, the individual
corresponding to the leftmost curve in Figure 5I (dashed lines)
was an outlier. Using feedback with identical weights in all
individuals (solid lines), the outlier showed phase lags similar to
the other individuals.

Axial proprioceptive feedback could also replace differential
drives (i.e., different drive values for different parts of the
CPG) as a means of obtaining axial phase lags close to
zero in simulations of forward terrestrial stepping. However,
this required feedback weights of opposite signs compared
to swimming. Using uniform drives and no feedback, the
CPG generated negative phase lags (Figure 6A). With uniform
drives, positive values of wipsi (as used in swimming) had
a destabilizing effect on the CPG, with oscillators failing to
lock in frequency. With differential drives as in Figure 6B,
we found that positive values of wipsi were counterproductive,
decreasing again the CPG phase lag to negative values. However,
negative values of wipsi produced higher phase lags as desired
and could be used to reproduce forward terrestrial stepping
with uniform drives (Figure 6C). This effect of an increasing
intersegmental phase lag with decreasing feedback weights
during forward terrestrial stepping was reproduced in robot
experiments (Figure 6E).

Instead of axial feedback, the differential drive could
also be replaced with limb proprioceptive signals fed back
to the limb oscillators. This was only tested in simulation
(Figure 6D). The effect of feedback here was again to increase
the negative CPG phase lags toward slightly positive values, close
to zero.

A Passive Tail Decreases the Drag During
Underwater Stepping
During forward underwater stepping, the locomotor
performance could be improved by using “passive” tail
segments (Supplementary Movie 7), similar to the animal
which shows passive tail undulations during this locomotor
behavior (see Cabelguen et al., 2014). This was implemented
using a third drive level of zero to the tail segments. The tail
CPG was then inactive, but the robot modules continued
to generate torques corresponding to the passive parts of
the muscle model (the terms that remain when Ml

i and Mr
i

are 0). Measurements of the hydrodynamic forces in the 3D
mechanical simulation suggest that for this particular gait, the
undulations of passive tail segments allow the caudal fin to
generate more thrust than in the case of active tail segments
(Figure 7). The drag at the head and girdles is also reduced
in the passive case. The net drag on the body axis is thus
reduced from −0.0422 ± 0.0003N to −0.0295 ± 0.0004N
(standard errors).

Coupling Delays Introduce Systematic
Phase Biases in the Distributed Robot
Controller
Initial tests on the robot with the distributed controller gave
non-uniform phase lags along the body, unlike what was
seen in simulation. We investigated the issue using a chain
of 7 simple modules (no girdles) and a CPG model with
symmetrical ascending and descending coupling weights and
phase biases of 5%. We found increased phase lags between
the first modules and decreased phase lags between the more
caudal ones (Figure 8A). An analysis of the coupling terms
used in the numerical integration of the CPG showed that
rostral modules were significantly slowed down by caudal ones
(Figure 8B). This suggested that the θj values (the phases
of the couplings’ source oscillators) used in the numerical
integration of the target oscillators were out of date. We
modified the numerical integration to estimate the state of
the source oscillator at the time of integration using a
linear extrapolation of the two previous coupling messages
and their times of arrival (see Methods). This considerably
reduced the slow-down effect and yielded almost uniform phase
lags (Figures 8C,D). Further improvements (not shown) were
obtained by encoding the coupling phases and amplitudes
as 16-bit half-floats. This halved the number of messages
sent over the CAN bus and helped decrease the rate of
transmission errors.

The Distributed Controller Allows for
Autonomously Moving Robot Parts
We found that the distributed implementations of the CPG
and muscle models have the side effect of making the
robot modular at runtime. We conducted forward terrestrial
stepping experiments with screws between some modules
removed, causing the robot to break into parts (no other
changes were made to the hardware or software). Each part
kept functioning, still coordinated by its own section of the
CPG model. This is demonstrated in Supplementary Movie 9,
Figure 9.

DISCUSSION

A Modulable CPG Architecture
Our results suggest that the answer to question 1 is yes: a
modulable CPG provides a robust framework for generating
multiple motor patterns, such that different motor behaviors
do not necessarily require dedicated CPGs. This concept was
proposed by Grillner (1981) as the “unit burst generator” theory,
which states that independent rhythmogenic circuits can be
flexibly coupled from one behavior to another. Such circuits
have been identified in many animals. In the salamander,
specific spinal hemisegments have been shown to control
muscles of the trunk (Ryczko et al., 2010), tail (Charrier
and Cabelguen, 2013) and limbs (Cheng et al., 1998; Lavrov
and Cheng, 2004; Ijspeert et al., 2007). Other examples
include the spinal hemisegments in the lamprey (Cangiano
and Grillner, 2003, 2005; Cangiano et al., 2012), the flexor
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FIGURE 5 | CPG output and joint kinematics during the five motor behaviors reproduced with the robot. Results obtained using a single drive level and proprioceptive

feedback for swimming, two drive levels (to limb and axial oscillators) and no feedback for the other behaviors, with a third drive of zero for the tail during underwater

stepping. (A–E) and (F,G) emulate the biological data illustrated in Figures 2, 3 of Ryczko et al. (2015), respectively. (A–E) Kinematic angular oscillations (thin black

(Continued)
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FIGURE 5 | lines) and CPG outputs xi (thin red lines) are shown for each joint, with circular markers indicating the centroid of the positive half of each cycle.

Rostrocaudal (A-C, line descending to the right), standing (D, almost vertical line) and caudorostral (E, line descending leftward) kinematic waves (thick black lines)

followed the CPG activity (thick red lines) with variable delays during the 5 motor behaviors: backward terrestrial stepping (BTS), forward swimming (SW), forward

underwater stepping (FUS), forward terrestrial stepping (FTS) and struggling (ST). All figures are from the same simulated individual. (F,G) Intersegmental phase lag

distributions for CPG waves (F) and for kinematic waves (G) in the robot trunk. Each marker represents a single recording. (H) Comparison of the tonic drive signals

applied to the CPG and resulting oscillation frequencies (Hz) for each motor behavior. Data represent mean ± SD over the 5 simulated individuals. The overlap in limb

drive values between SW and FTS is due to reduced drive and limb saturation thresholds during SW to accommodate for the robot’s torque limitations (See Methods).

Without these limitations, the limb and axial drives for SW would be 1.34 as in simulation. (I) Rostrocaudal axial waves generated during SW by the CPG without

sensory feedback (dashed lines) and with sensory feedback (solid lines), with uniform drive di = 1, in the 5 simulated individuals. For each individual, the wave with

feedback is horizontally positioned in the figure to connect to the wave without feedback. The experiments with sensory feedback correspond to the SW data in (F–H).

and extensor networks in the left and right side of the mouse
spinal cord (Hägglund et al., 2013), the crayfish swimmeret
system (Mulloney and Smarandache-Wellmann, 2012) and the
networks controlling individual leg joints in the stick insect
(Büschges et al., 1995). A modeling study of insect locomotion
suggests that the recruitment of a single neural structure for
various behaviors also applies to situations where locomotion
is largely driven by sensory feedback (Schilling and Cruse,
2020).

Oscillator Couplings
Biological data indicate that in salamanders, limb activity
can occur together with traveling waves in vivo and in vitro
(Ryczko et al., 2015). In our previous robotic study (Ijspeert
et al., 2007), limbs projected to all axial oscillators (forelimb
oscillators to trunk oscillators, and hindlimb oscillators to tail
oscillators). Two axial outputs were therefore possible: either
a standing wave when limb oscillators were active (during
stepping), or a rostrocaudal wave when limbs were saturated
(during swimming). Here we made the limb oscillators project
only to neighboring axial oscillators (Hypothesis 1), which gives
more flexibility for the coordination of axial oscillators when
limbs are rhythmically active (Ijspeert et al., 2005; Knüsel et al.,
2013). In the animal, a unidirectional connection from excitatory
interneurons generating the limb rhythm to those generating
the axial rhythm would be sufficient to impose the slow limb
oscillations to the axial segment, according to a detailed model of
salamander spinal networks based on Hodgkin-Huxley neurons
(Bicanski et al., 2013).

In our model, the asymmetry between ascending and
descending coupling weights wij is required to reproduce a
wide diversity of axial phase lags with consistent values along
the axis as observed in vitro and in vivo (Ryczko et al.,
2015). Symmetric weights as used in Ijspeert et al. (2007)
produce non-uniform phase lags along the axis when the
oscillators have different intrinsic frequencies. Future studies
should determine whether such a coupling is present in
salamanders and how it is implemented. Possibilities include
an asymmetry at the neuroanatomical level (dominance of
descending projections, see Buchanan et al., 1989; Buchanan,
2001 in lamprey) or in electrophysiological terms (stronger
synaptic strengths toward caudal segments, see Smarandache
et al., 2009 in crayfish; more spikes per locomotor cycle
in neurons projecting caudally, see Mulloney et al., 2006
in crayfish).

Oscillator Frequencies and Saturation
For our CPG model to be able to generate the three types of
axial waves recorded in vitro and in vivo in salamanders, and
the positive correlation between cycle duration and phase lag
(Ryczko et al., 2015), we had to modify the intrinsic frequency
of limb networks compared to our previous study (Ijspeert
et al., 2007). Forelimb and hindlimb oscillators still have an
intrinsic frequency slower than axial oscillators, but here forelimb
oscillators are faster than hindlimb ones (Hypothesis 4). Data in
mammals suggest that forelimbs deprived of normal interactions
with the hindlimb networks tend to accelerate in vivo. Indeed, in
adult cats where the spinal cord is partially lesioned, forelimb and
hindlimb rhythms often dissociate, and forelimbs adopt a faster
rhythm, yielding a 2:1 forelimb-hindlimb coupling (for review,
see Frigon, 2017). At the cellular level, modification of a single
conductance controlling burst termination should be sufficient
to make limb segments generate slower oscillations, as suggested
by a detailed Hodgkin-Huxley model of a salamander spinal
segment (Bicanski et al., 2013).

A hypothesis that we kept from our previous work (Ijspeert
et al., 2007) is that with a strong descending drive, limb networks
“saturate” whereas axial oscillators do not (Hypothesis 3). Future
studies should examine whether and how such a function is
implemented in the animal. It could be a differential recruitment
of specialized interneuron populations as a function of drive
strength, as documented as a function of speed in zebrafish
(McLean et al., 2007, 2008; Gabriel et al., 2011; Ampatzis et al.,
2014, for review see Berg et al., 2018) and mice (Talpalar
et al., 2013, for review see Kiehn, 2016). It could also involve
a shift in the active set of reticulospinal neurons as a function
of speed/gait. Some reticular neurons increase their firing
specifically during swimming in salamanders (Lowry et al., 1996).
Different reticulospinal neurons are activated as a function of
speed in zebrafish (Kinkhabwala et al., 2011).

Regulation Through Descending Drives
In answer to question 2, our results (Figure 5,
Supplementary Figure 4B, Supplementary Movies 2–6) suggest
that independent drive levels to a few parts of a CPG network
(here two, or three to reproduce passive tail undulations) are
sufficient to emulate a diversity of motor behaviors. In the
model, the regulation of CPG activity by descending drives
can be understood intuitively. The drive signals control the
intrinsic (uncoupled) frequencies of the oscillators. Because
rostrocaudal couplings are stronger than caudorostral couplings,
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FIGURE 6 | Effect of axial or limb proprioceptive feedback on CPG activity and kinematics during forward terrestrial stepping (FTS). (A–D) Joint kinematics (black) and

CPG activity (red, dashed for limb oscillators) in simulation. Circular markers indicate the centroid of the positive half of each cycle. The limb-body phase bias ϕij was

adapted in each case for optimal speed of locomotion. (A) With uniform drive (di = 0.98) and no feedback, the CPG with active (non-saturated) limb oscillators

produces caudorostral waves of activity. (B) Standing waves of CPG activity can be obtained by using a different drive of 0.63 for the limb oscillators. (C) Standing

CPG waves can also be obtained using uniform drives and axial proprioceptive feedback, with wipsi = −wcontra = −0.65. (D) Standing waves of CPG activity could

also be obtained with uniform drives using proprioceptive limb feedback, with wlimb = 3.7. (E) Effect of the axial feedback weight on CPG axial intersegmental phase

lag in robot experiments. Before introducing feedback, differential drives to the limb (di = 0.98) and axial (di = 0.61) oscillators were used to increase the phase lag

toward zero. Positive ipsilateral feedback weights (as those used during swimming with sensory feedback, Figure 5I) decreased the phase lag, whereas negative

ipsilateral weights increased it.

a segment will entrain a slower or faster caudal neighbor, and
the resulting common frequency will be close to the frequency
of the rostral segment. However, the faster segment will lead
the slower one with a delay that increases with the difference
in uncoupled frequencies (this delay being in addition to the
coupling’s natural phase bias). This effect will propagate down
the chain of segments, such that the resulting frequency and
phase lag of the whole chain can be controlled by adjusting two

values: the uncoupled frequency of the first segment, and that of
the other segments.

This mechanism of regulation is close to the “trailing
oscillator hypothesis,” which states that the oscillator of higher
excitability becomes the leader of the chain. This hypothesis is
based on lamprey experimental data showing that increasing
the excitability in caudal segments causes a switch from a
rostrocaudal to a caudorostral wave in isolated spinal cords
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FIGURE 7 | Passive tail CPG segments reduce drag during forward

underwater stepping (FUS) in simulation. The hydrodynamic forces acting on

different parts of the robot modules along the direction of motion are given.

The caudal fin provides more thrust when the tail is passive. Forces on each

module were measured for an “average individual” during 15 s after a warm-up

period of 15 s, and averaged over the 30,000 time steps. The procedure was

repeated 100 times with different starting conditions. The bars show the

means over the 100 repetitions. Error bars for the standard error are shown,

but barely visible (all standard errors are < 0.00013).

(Matsushima and Grillner, 1990, 1992). However, this lamprey
model assumed symmetrical rostrocaudal and caudorostral
couplings, while we found that the coupling asymmetry is
important to maintain a uniform phase lag along the chain of
oscillators. A later lamprey modeling study with a detailed neural
network of Hodgkin–Huxley neurons showed that dominant
descending couplings allow for flexible control of forward and
backward swimming with constant phase lag along the spinal
cord at different speeds: the frequency and intersegmental phase
lag can be controlled by adjusting the excitatory drive of the first
segments compared to the remaining ones (Kozlov et al., 2009).

In our salamander model, the differential excitation of the first
segments can be realized through the strong connections from
the forelimb oscillators (when they are active). The regulation of
the axial CPG pattern is then achieved by adjusting the excitation
of the limb oscillators compared to the axis, instead of the first
axial segments compared to the others as in the swimming case.
This mechanism of regulation has been investigated with abstract
oscillators and validated with a more detailed integrate-and-fire
model (Knüsel et al., 2013).

The coordination of limbmuscles was beyond the scope of this
study: the limbs of our robot have a single rotational degree of
freedom, and the direction of rotation was artificially inverted
for backward stepping. We expect that more drives would be
required in a model with more realistic limbs. Turning was also
not investigated here but can in principle be obtained during
swimming and stepping using different drives for axial oscillators
on the left and right sides (Ijspeert et al., 2007).

The Regulation Mechanism in the Isolated
CPG
The mechanism of regulation described above, together with
the differences in excitability and saturation thresholds between

forelimb, hindlimb and axial oscillators (Table 3), enable the
isolated CPG model to reproduce the trimodal distribution
of phase lags observed in vitro: In the model, hindlimb
oscillators are intrinsically slower than forelimb oscillators.
Given the random nature of the saturation thresholds, forelimbs
or hindlimbs can selectively saturate due to slightly different
threshold values. When all oscillators are active, the hindlimb
oscillators slow down the forelimbs, and the strong local
connections from limb to axial oscillators slow down the girdle
segments, leading to a highly negative phase lag in the trunk
and tail axial networks. This corresponds to the rightmost peak
of the distribution (i.e., negative lags, Figures 2B–D). When the
hindlimb oscillators saturate, the forelimb oscillators accelerate
a bit but continue to slow down the first segments, yielding the
phase lags that make up the middle peak of the distribution (i.e.,
near zero lags, Figures 2B–D). When all limb oscillators saturate,
the axial network is no longer influenced by limb network activity
and generates the higher, positive phase lags found in the leftmost
peak (i.e., positive lags, Figures 2B–D).

This mechanism also explains the spontaneous switches
between slow caudorostral waves and fast rostrocaudal waves
of axial activity: In the isolated CPG model, the transitions
between the active and saturated states are triggered by small
fluctuations in the excitatory drive (Figure 3), which represents
tonic pharmacological excitation as in Ryczko et al. (2010, 2015)
or Delvolvé et al. (1999). The progressive saturation of the
limb oscillators causes their oscillation amplitude to diminish
as the cycle frequency increases. The model thus suggests that
limb burst amplitude in vitro should be higher during slow
caudorostral wave of activity than during a rostrocaudal wave
(Figure 3).

Regulation Through Proprioceptive
Feedback
Recordings from isolated spinal cords show much more
variability among salamander individuals than EMG recordings
of intact animals (Ryczko et al., 2015). In response to
question 3, our results from robot experiments with five
swimming “individuals” suggest that local sensory feedback
could explain this reduction of variability from the in vitro
to the in vivo condition (Figure 5I): sensory feedback made
it unnecessary to tune the drive levels in each individual
(compare the standard deviation of the drives in Figure 5H

for swimming vs. the other behaviors). Results from robot
experiments and simulations also suggest that local sensory
feedback can replace differential drive as a modulator of the
CPG activity to produce forward terrestrial stepping (Figure 6)
and swimming (Figures 5B,I, Supplementary Figures 4A,C,
Supplementary Movies 1, 8), which answers the other part of
question 3.

The regulation of our CPG model by proprioceptive feedback
can be explained with the same mechanism as regulation by
different drive signals. Sensory feedback has been previously
reported to increase the locomotion cycle frequency through
an excitatory effect on the lamprey CPG activity (e.g., Kiemel
and Cohen, 2001). In our model, the addition of proprioceptive
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FIGURE 8 | Systematic phase biases due to the slow-down effect of coupling delays in the robot’s distributed controller. Undesired phase lags in the distributed

controller were analyzed using a chain of 7 simple (non-girdle) robot modules and a CPG model with symmetrical ascending and descending coupling weights and a

uniform intersegmental phase bias of 5%. (A) CPG intersegmental phase lags calculated from the middle segment of each module, as percentage of the cycle

duration. The observed values are higher than the target of 5% in the rostral modules and lower than the target in the caudal ones. (B) Average effect of the ascending

and descending couplings on the left oscillator of the middle segment in each module. Values shown correspond to the coupling terms rjwij sin
(

θj − θi − ϕij
)

, averaged

over the whole recording. The negative red bars show that the net effect of both coupling types is to slow down the oscillation. The effect is stronger in more rostral

modules. (C) Phase lags observed after the implementation of coupling message extrapolation. The observed values are almost uniform and close to the target of 5%.

(D) With coupling message extrapolation, the slow-down effect has almost vanished.

feedback in the axis increases the uncoupled frequency of
the segments in the axial network. If the first segment
receives no feedback, as is the case in robot experiments,
its uncoupled frequency is comparatively reduced. This leads
as expected to a decrease in phase lags during swimming
(Figure 5I).

Interestingly, simulations showed that feedback can
also regulate swimming when neck feedback is included
(Supplementary Figures 1–3, 4C). This suggests that feedback
has a weaker accelerating effect in the first segment than in
the others, even though the feedback amplitude is comparable
(see Supplementary Figure 4C). This can be explained by
looking at the model equations: axial feedback adds the term
−

si
ri
sin θi to the instantaneous frequency θ̇i of the oscillator.

The average value of this term is highly dependent on the

phase relationship between θi and the phase of the feedback
signal si. In particular, if the kinematics follow closely the CPG
output, and if we approximate si with a sine wave, then si will
be proportional to cos θi. Assuming a constant amplitude ri,
the effect of feedback on θ̇i can be written k cos θi sin θi, which
averages to zero over a 2π interval for θi. We conclude that if θi
increases approximately linearly with time, the effect of feedback
on the frequency will approach zero when the CPG-mechanical
phase lag approaches zero. And this lag (the distance between
the red and black dots) is indeed very small for the neck joint in
Supplementary Figure 4C.

We can also explain the need for reversed axial feedback
weights during forward terrestrial stepping: Excitatory axial
feedback (as in swimming) accelerates the mid-trunk oscillators,
which tends to decrease the intersegmental phase lag. This is
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FIGURE 9 | Frame sequences showing the behavior of the robot when split

into several parts. (A) After losing its tail, the robot keeps moving (although

with a malfunction in the pelvic girdle module). The tail modules continue to

oscillate. The tail CPG maintains the coordination in the form of a rostrocaudal

traveling wave. (B) The robot splits behind both girdles. The three robot parts

keep moving independently.

counter-productive since the unregulated intersegmental phase
lag is already too low (Figure 6A). With inverted weights,
axial feedback slows down the mid-trunk and increases the
phase lag as desired. The inclusion of neck feedback has
little importance in this case: when the limbs are active, the
activity of segment 3 is largely determined by the strong
connections from the forelimb oscillators, irrespective of the
activity in the first and second segments. This also means that
we would expect similar results with a model that includes
head stabilization as observed in the animal during forward
terrestrial stepping (Ryczko et al., 2015). Our results with
inverted weights are reminiscent of the reversal of the effects
of sense organs that signal forces on a leg when switching
from forward to backward stepping in the stick insect (Akay
et al., 2007, for review see Mantziaris et al., 2020). The
mechanism underlying such a switch in sensory encoding could
involve an interplay between the descending drive to the CPG
and sensory feedback. In line with this possibility, brainstem
stimulation changes how lamprey motoneurons respond to
rhythmic movements imposed to the spinal cord (Hsu et al.,
2013).

The regulation mechanism also explains the effect of limb
feedback: the excitatory signal increases the frequency of the

limb oscillators. These in turn increase the frequency of the
first segments, and thus the intersegmental phase lag. Such limb
feedback has been proposed in a simulation study as a way
of facilitating the transition from walking to trotting in the
salamander (Harischandra et al., 2011).

The cells underlying proprioceptive axial feedback remain
to be identified in salamanders (see section Motor control
in salamanders). The limb sensory feedback introduced in
simulation could be provided by cutaneous receptors during foot
contact since mechano-sensitive Merkel cells are present on the
skin of salamanders (Scott et al., 1981, Diamond et al., 1986),
and/or stretch receptors of limb muscles that are sensitive to
joint angle, since fibers behaving as muscle spindles have been
identified in salamanders (Bone et al., 1976). In mammals, it is
well-established that limb feedback plays a key role in establishing
the locomotor patterns (e.g., Musienko et al., 2012; Akay et al.,
2014; Takeoka et al., 2014; for review see Frigon, 2017).

Muscles and Passive Biomechanical
Properties
We found that higher muscle torques were required to
emulate struggling and backward stepping (Table 5). Behavior-
dependent changes in limb electromyographic activity have
been reported in salamanders when comparing forward and
backward terrestrial stepping. The electromyographic bursts
increase during backward stepping in the extensor iliotibialis
pars posterior (the homolog of the rectus femoris in mammals,
which elevates the femur and extends the knee), mostly during
the swing phase, whereas the bursts decrease in the other limb
muscles (Ashley-Ross and Lauder, 1997). Future studies should
determine whether an increase in electromyographic activity
occurs in axial muscles during backward terrestrial stepping. A
differential ratio of activation of epaxial vs. hypaxial muscles
in the animal could also occur, as observed when comparing
forward underwater stepping and forward terrestrial stepping in
salamanders (Deban and Schilling, 2009). The same comparative
electromyographic measurements should be done for struggling
in salamanders. Caudorostral waves of axial activity are also used
during struggling in Xenopus and during backward swimming
in eels and lampreys. Lateral body undulations are much larger
during struggling and backward swimming than during forward
swimming in Xenopus (Kahn and Roberts, 1982), in eel (D’Aout
and Aerts, 1999) and in lamprey despite a similar duty cycle of
the electromyographic burst (Islam et al., 2006), suggesting that
an increase in muscle strength occurs during caudorostral waves.

Passive tail segments reduced the drag during forward
underwater stepping in simulation (Figure 7). In line with this,
tail muscles show weak or no activation despite large tail
undulations during forward underwater stepping in salamanders,
suggesting that the body generates thrust by transmitting trunk
movements passively to the tail (Cabelguen et al., 2014).
At the low frequencies of underwater stepping, the passive
biomechanical properties of the tail could be sufficient to
propagate the body undulation, while higher frequencies might
require a higher stiffness and thus active muscles (Blight, 1976,
1977) as observed in the salamander during swimming (Delvolvé
et al., 1997). In salamanders, whether tail deactivation during
forward underwater stepping is due to reduced activity of
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e.g., some reticulospinal neurons remains to be determined.
Biological observations and robotic experiments suggest that
salamanders can use their tail as a “fifth limb” to provide thrust
in slippery conditions (Karakasiliotis and Ijspeert, 2009). This
suggests the existence of reticulospinal neurons that can both
decrease and increase the activity of the tail independently from
the trunk.

Robotic Platform and Distributed Control
Some of the adaptations required to reproduce the simulation
results on the robot can be explained by mechanical differences:
The need for stronger muscle forces (no tapering) in the robot’s
tail might be due to the passive fin exerting more resistance than
in the simulation. The different optimal limb-body phase bias for
backward stepping could be due to the backlash in the leg gears.

Our initial implementation of the controller was centralized
in the head module. This required retrieving the position and
velocity of all joints and sending back the torque setpoints at
each time step over the CAN bus. These are slow operations
since the module has to forward the requests over a local I2C
bus. The resulting control loop was too slow, making the muscle
model unstable. The distributed controller solved this problem
by keeping the communication of joint positions, velocities and
torque setpoints local to each module. This solution shows
interesting similarities with the vertebrate nervous system, which
distributes the processing of sensory signals and the generation
of locomotor patterns along the spinal cord, close to the
target muscles.

Watanabe et al. (2009) have shown that a distributed
controller with proprioceptive feedback can have interesting
fault-tolerance properties, such as robustness to lesions in
the communication pathways. It would be interesting to
experiment with such lesions in our CPG model. The distributed
controller would probably accommodate such experiments: the
Supplementary Movie 9 shows that the different sections of the
CPG continue to function after the robot has been split in several
parts. This is an interesting feature that few robots have. It is
made possible by the distributed computation of the CPG and
muscle model, the multi-master nature of the CAN bus and the
nearest-neighbor couplings of the CPG model.

The distributed controller also introduces a difficulty in the
form of coupling delays, which can be hard to predict when
many modules share the same communication bus. As illustrated
in Figure 8A, these delays can have a significant impact on the
coordination between modules: the phase lags between rostral
modules are markedly increased, while those between caudal
modules are decreased. The asymmetry is probably related to
the priority of messages on the CAN bus: the last modules
have higher CAN identifiers so lower priorities when several
modules attempt to talk at the same time. This means that
ascending couplings will be on average more delayed than
descending couplings, inducing larger lags in the rostral modules
(Figure 8B). The problem was mostly solved by extrapolating in
the receiver module the state of the oscillators at the origin of
the couplings (see Results). Extrapolating these states is easily
done in our CPG model, where the state variables are the phase
and amplitude of the oscillators: during steady state locomotion,
these variables, respectively, grow at an almost constant rate or

stay almost constant. It would be more difficult to extrapolate the
state in a model without explicit phase variables. In conclusion,
the CAN bus, being shared by all modules, limits the benefits
of the distributed controller. A future revision of the robot
should include direct communication between adjacent modules,
in addition to the shared bus, to fully realize the benefits of
distributed control.

CONCLUSION

Following the analogy proposed by Loeb (2001), our study
suggests that the spinal cord is as a puppet on strings, and
that a complex motor repertoire can be generated by pulling a
limited set of “sensory” or “descending” strings, which in turn
take advantage of a flexible spinal motor circuit.
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Insects search for and find odor sources as their basic behaviors, such as when

looking for food or a mate. This has motivated research to describe how they achieve

such behavior under turbulent odor plumes with a small number of neurons. Among

different insects, the silk moth has been studied owing to its clear motor response

to olfactory input. In past studies, the “programmed behavior” of the silk moth has

been modeled as the average duration of a sequence of maneuvers based on the

duration of periods without odor hits. However, this model does not fully represent

the fine variations in their behavior. In this study, we used silk moth olfactory search

trajectories from an experimental virtual reality device. We achieved an accurate input by

using optogenetic silk moths that react to blue light. We then modeled such trajectories

as a probabilistic learning agent with a belief of possible source locations. We found

that maneuvers mismatching the programmed behavior are related to larger entropy

decrease, that is, they are more likely to increase the certainty of the belief. This

implies that silkmoths include some stochasticity in their search policy to balance the

exploration and exploitation of olfactory information by matching or mismatching the

programmed behavior model. We believe that this information-theoretic representation of

insect behavior is important for the future implementation of olfactory searches in artificial

agents such as robots.

Keywords: Bombyx mori, infotaxis, olfaction, ethology, adaptive-behavior, exploration-exploitation

1. INTRODUCTION

Odor source localization is a search problem that requires fast decision-making based on sporadic
and stochastic detection of chemical particles. Despite the challenge of turbulent and dilute plumes
that often have a complex spatio-temporal structure (Mafra-Neto and Cardé, 1994; Celani et al.,
2014), insects such as the fruit fly (van Breugel and Dickinson, 2014) and various species of moths
(Vickers, 2005) rely on olfactory searches to conduct essential behaviors such as searching for food
or potential mates. The high performance that insects show on such a complex search problem
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despite their simple brain motivates researchers to further
analyze and understand the decision processes that these insects
execute when conducting olfactory searches (Baker et al., 2018).

With this motivation, our research group has analyzed
the olfactory behavior of the male silk moth Bombyx mori
(lepidoptera: bombycidae). Despite having wings, this insect is
unable to fly, and has a body that is on average 30 mm long
and 10 mm wide. It has two antennae of approximately 6 mm
in length on its head. This insect has been widely employed to
analyze olfactory behavior because it exhibits only one action:
It walks only when it detects a pheromone (Bombykol) released
by its female counterpart (Obara, 1979). Such behavior consists
of a series of maneuvers called a “surge,” “zigzag,” and “loop.”
This sequence of maneuvers has been approximated to a mean-
response model denoted as “programmed behavior” (Kanzaki
et al., 1992).

Based on the mean durations of the surge, zigzag, and loop
maneuvers, the programmed behavior has been algorithmically
defined as follows: first, immediately after a pheromone stimulus,
the moth advances in a straightforward manner through a surge
motion. Then, if there is an absence of pheromone detections, the
moth moves on a zig-zag pattern, trying to detect pheromones
again. Finally, if the pheromone remains undetected, the moth
transitions into a loopmotion until the next detection. A diagram
of the programmed behavior is shown in Figure 1. Because the
silkmoth is motionless by default and only elicits its programmed
behavior after the first pheromone hit, this search strategy has
been labeled as “reactive” by Voges et al. (2014). Despite the
simplicity of this sequential pattern, the male silk moth can
effectively locate females with remarkable efficiency.

However, this model does not reflect how the motions of the
moth vary in response to fine spatio-temporal fluctuations of
the odor plume and individual differences among specimens. In
previous studies, such variability was investigated by identifying
maneuver transitions with machine learning (Shigaki et al.,
2018b) and fuzzy logic (Shigaki et al., 2019b). Although
these studies succeeded in identifying deviations from the
programmed behavior, they relied on data from electro-
physiological signals obtained from implanting electrodes in the
wing muscles or brain of the silk moth; however, electrode
implantation is technically challenging and risks degrading
the tissues of the moth. Therefore, an analysis method that
allows modeling adaptive olfactory behavior from non-intrusive
experimental measurements is necessary.

To identify adaptive olfactory behavior, recent studies have
used the information-theoretic framework of infotaxis, which
was first proposed by Vergassola et al. (2007). A recent study by
Pang et al. (2018) investigated the features of odor encounters
that modulate the intensity of upwind turns in the fruit fly
Drosophila melanogaster and the mosquito Aedes aegypti. The
authors found through simulations that, compared to a centerline
inferring odor source search algorithm, infotaxis produced
trajectories that were more similar to those of the actual
animals, in the sense that they exhibit weaker upwind turns
later in a sequence of odor encounters. Similarly, Calhoun et al.
(2014) recently demonstrated the possibility of using infotaxis
to model the multi-stage foraging behavior of the nematode

Caenorhabditis elegans. In their paper, the authors showed that
infotaxis-like search strategies, which minimize the entropy of
the probability distribution of odor source locations, reflects both
the “local” and “global” stages of the C. elegans foraging behavior.

In this paper, we investigate the potential causes of variability
in the behavioral maneuvers of the silk moth B. mori by
using a non-invasive experimental method and an infotaxis-
based model similar to those described in recent studies. We
measured the silk moth trajectories and input stimuli data
with a tether, a two-dimensional treadmill, and a virtual odor
plume. To ensure accurate and reproducible stimuli, we used
optogenetic silk moths that react to the impulses of blue light
in the same way as with pheromone particles. We modeled
the trajectories and stimuli measurements as infotaxis agents
and found that; maneuvers that mismatch the programmed
behavior model correspond to higher expected information
rewards regarding the location of the source. In summary, we
believe that this paper demonstrates the possibility of using
non-invasive experimental measurements and infotaxis-based
modeling to identify variability in the olfactory behaviors of the
male silk moths.

This paper is structured as follows: section 2 states the
research questions of this paper. Section 3 describes the usage
of optogenetic silk moths, the experimental virtual reality
system to measure their behavior, and how to model it as
infotaxis agents. Section 4 shows the results of the behavior
measurement experiments and calculations of the information
entropy of infotaxis-modeled silk moths. Section 5 discusses the
contributions of this study and possible future areas of research.

2. PROBLEM STATEMENT

In this paper, we look for possible causes of adaptive mechanisms
in the olfactory behavior of the silk moth, which are not
represented in the programmed behavior model. Specifically, we
investigate the following two hypotheses:

• Are deviations from the programmed behavior motivated by
higher information gains?

• Can a probabilistic framework such as infotaxis explain how
the male silk moth balances exploration and exploitation of
olfactory information?

To test the first hypothesis, we need to measure the behavior of
the silk moth in an olfactory environment that can be accurately
reproduced in each experimental run. Therefore, in this paper
we utilize a “virtual reality” behavioral measurement system
in which we can subject moths to virtual odor plumes and
measure their motor response to odor stimuli. However, such
a system faces the challenge of an accurate stimulation of the
moth antennae. In other words, stimulating the antennae with
gaseous pheromone particles results in uncertain stimulation
because such particles diffuse in the air; hence, they do not
produce stimuli with the same intensity or duration each time. To
overcome this, we employed genetically modified silkmoths that
elicit their normal olfactory behavior response when subjected
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FIGURE 1 | (A) Specimen of a male silk moth pictured next to a ruler in mm. (B) Conceptual diagram of the “programmed behavior” model of the male silk moth

behavior.

to a blue light stimulus at their antennae; thus, we can present
reproducible olfactory inputs.

To test the second hypothesis we modeled the trajectories of
silkmoths as an agent that minimizes the information entropy
of its probabilistic belief of the location of an odor source.
Such a maximally informative agent is based in the infotaxis
algorithm (Vergassola et al., 2007). We related the decrease in
entropy of the infotaxis-modeled moth to the time steps in which
the moth behavior matched or mismatched the programmed
behavior model. Finally we determined whether infotaxis can
explain the exploration-exploitation strategy of the silk moth
behavior by evaluating the distribution of entropy reductions by
either matching or mismatching behaviors.

3. MATERIALS AND METHODS

Here, we describe our methodology for conducting olfactory
search experiments with optogenetic male silk moths and a
non-invasive behavior measurement system. We also describe
the method we used to represent the silk moth trajectories
as those of an infotaxis agent. The silk moth experiments
in this study were examined and approved by the Tokyo
Institute of Technology Gene Recombination Experiments Safety
Management Committee.

3.1. Virtual Reality System for
Measurement of Moth Behavior
We conducted non-intrusive behavioral measurements on
tethered male silk moths. Although similar systems to measure
the olfactory behavior of insects have been used in the past
(Shigaki et al., 2018a, 2019b), in this study we ensure that
odor stimuli are accurately presented by using optogenetic
silk moths. Using genetically modified specimens that react to
blue light stimuli in the same way as normal specimens react
to the pheromone bombykol, allowed us to present stimuli
accurately and with reproducibility. This is because gaseous
pheromones diffuse in the air; therefore, not all stimuli present
the same amount of pheromone molecules to the antennae

of the moth. Furthermore, in this case, the response of the
antennae is measured using an electroantennogram (EAG),
which is technically challenging and subjected to electrical noise;
in addition, damage to the antennaemay occur. Our non-invasive
behavior measurement system for the silk moth is shown in
Figure 2, and fulfills the following purposes:

• Measuring the pose (x, y, θ) of the moths.
• Accurately presenting light stimuli to the antennae of the

moth.
• Subjecting moths to a virtual odor plume to which we can alter

the emission rate, wind speed, and other parameters.

To measure the pose of the silk moth, we fixed its back to a thin
aluminum rod (Ø 2 mm; length 150 mm) with glue (G17 Bond,
Konishi K.K., Osaka, Japan) and placed it on a polysterene sphere
(Ø 60 mm), which served as a two-dimensional treadmill. When
the moth walked, the sphere moved in response because it was
being levitated by the flow of wind from a small fan (FW1251-
1051C2ALARX, ARX,Wanchai, HongKong). Themovements of
the sphere were detected using two optical sensors, such as those
found in a computer mouse (ADNS-5030, Avago Technologies,
California, USA), at a sampling rate of 20 Hz. They were then
translated into translational and rotational movements of the
moth, that is, the pose.

We developed a virtual representation of an odor plume
by modeling the dispersion of white smoke in a wind tunnel.
First, we recorded videos of the dispersion of smoke. We also
calculated the statistics of the position and intensity of the pixels
in the smoke video. Based on these statistics, we programmed a
random process that generates virtual circular puffs that match
the intensity and transit the positions of the real smoke puffs in
the video. An example of a virtual plume is shown in Figure 2A.
In addition to the virtual representation of the odor plume,
we also programmed a virtual representation of a silk moth.
As in the real world, the virtual moth reacts to the virtual
plume and travels toward its source. By using a virtual odor
plume environment, we can tune parameters such as wind speed,
emission rate, and particle lifetime. Tuning such parameters is
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FIGURE 2 | (A) A diagram of the behavioral measurement system used in our experiments. (B) An actual ChR2 moth used in the measurement system with optic

fibers pointed at its antennae to present blue light stimuli. (C) The dimensions of the virtual environment to which we subjected the moths and their initial position.

particularly useful in infotaxis-based behavior modeling because
it allows for faster testing of various plume structures and
higher reproducibility; compared with real plume experiments.
In summary, the following process describes the operation of our
experimental device:

1. Themoth in the virtual world encounters a puff of pheromone.
2. Blue light is shown to the real moth depending on which

antenna of the virtual moth reacted.
3. The real moth moves after receiving the stimulus.
4. The movement of the real moth is sent to the virtual world.
5. The virtual moth reflects the movement of the real moth.
6. The loop is repeated until either the moth reaches the virtual

source or until a predetermined time limit is passed.

3.2. Use of Optogenetic Moths for
Accurate Antennae Stimulation
The presentation of accurate stimuli is important for the
applied infotaxis-based analysis because updating the probability
distribution of the source position; as well as the calculation of the
expected entropy decrease, are directly affected by whether the
agent experiences a hit or not at a given time step. In addition,
reproducible odor stimuli are an overall useful property for an
olfactory behavior measurement system because their duration
and frequency can be finely tuned. Both properties have been
reported to directly influence the olfactory behavior of moths
(Celani et al., 2014) and other animals (Ache et al., 2016). To

present olfactory stimuli to the moth, previous studies have
presented pheromones from glass tubes placed directly in front
of the antennae of the moth. However, the amount of pheromone
particles that effectively reach the antenna varies owing to their
gaseous nature.

To ensure that each stimulus has the same intensity and
is accurately sensed by the antennae, we utilized genetically
modified moths. These BmOR1-GAL4/UAS-ChR2 silk moths
(ChR2 hereinafter); express channelrhodopsin-2 in their
olfactory receptor neurons. As a result, they execute their
olfactory search behavior when their antennae encounter blue
light, rather than pheromone particles. This property has
been used in previous studies to ensures that all stimuli are
reproducible with the same intensity and duration (Shigaki
et al., 2018b, 2019a). To activate channelrhodopsin-2, i.e., blue
light sensitivity in these moths, we injected all-trans retinal
(ATR) into their abdomen on the day before the experiments;
because insects do not intrinsically possess ATR. All behavior
measurement experiments were conducted from 9:00 to 17:00 to
reduce circadian effects (Tomioka et al., 1993). It is reported that
brain serotonin level increases in the daytime and that serotonin
enhances pheromones sensitivities in the silk moth (Gatellier
et al., 2004).

We generated stimuli for the ChR2 silk moths with LEDs
(LBW5AP-JYKY-35-Z; Osram Opto Semiconductors), which
produced blue light with a 470 nm wavelength and a light
intensity of more than 1.6 mW/mm2. Such values of wavelength
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and light intensity have been reported to reliably produce
olfactory search responses in ChR2 moths (Tabuchi et al., 2013).
On each LED, we attached optical fibers of 3 mm in diameter
to ensure that blue light was directed only to each antenna,
as seen in Figure 2B. In addition, moths are unable to make
yaw turns because their back is glued to an aluminum rod.
The only rotation they are able to make is on their neck
(see Supplementary Video). However, this neck rotation is very
small and it does not decrease the sensibility or the amount of
stimulation to the antennae.

3.3. Modeling the Silk Moth as an Infotaxis
Agent
Infotaxis was first proposed by Vergassola et al. (2007) as an
odor source search algorithm for turbulent environments. In
this algorithm, a point-mass agent is located at a position r and
searches for an odor source by iteratively reducing its uncertainty
about the distribution of possible source locations rsrc. The agent
has knowledge of its trajectory, Tt , which contains its sequence of
positions as well as the odor “hits” it has experienced throughout
the search. The agent also maintains a probability map P(rsrc|Tt)
or “belief” (Thrun et al., 2005) about the location of the source.
This belief spans all possible locations of the source rsrc that in
both the original infotaxis study and the present paper, consist
of a two-dimensional lattice of discrete locations. The certainty
of the belief P(rsrc|Tt) is represented by Shannon’s entropy as in
Equation (1):

St = S
[

P(rsrc|Tt)
]

= −
∑

rsrc

P(rsrc|Tt) ln
(

P(rsrc|Tt)
)

(1)

The goal of infotaxis is to minimize the entropy of the belief
P(rsrc|Tt); therefore, at every time step, the agent calculates the
expected change of entropy by moving from its current position
rt to a future position r′ as defined in Equation (2).

E[1S(rt 7→ r′)] = p∗1S∗ + (1− p∗)1S (2)

Where p∗ is the probability of finding the source at r′, and
1S∗ and 1S are the change in entropy if the source is found
or not found at r′, respectively. The agent then executes the
move rt 7→ r′ with the largest negative value of E[1S], or;
in other words, the move that causes the greatest reduction of
uncertainty in the agent’s probability map of the possible source
locations. Figures 3A,B show conceptual representations of the
agent’s belief as well as the effect of odor detections on such belief.
Detailed derivations of the infotaxis formulae are presented in
Appendix A of this paper.

We modeled the body of the silk moth as a point agent with a
radius of 10 mm (half of its average body length). We reduced the
three degrees of freedom of themoth to (x, y) coordinates because
an infotaxis agent moves in a two-dimensional grid ignoring the
orientation. Furthermore, we considered as odor hits only those
that occurred when the moth was facing upwind, that is, when
cos(π − θ + θsrc) > 0 (see Figure 3C), where θ and θsrc are
the angle of the moth and the plume’s centerline, respectively.
We considered this capture region because real moths limit the

odor hits to those coming from the front by flapping their wings
(Loudon and Koehl, 2000).

3.4. Classification of Variability in the Moth
Behavior
We determined whether the behavior of the silk moth matches
the definition of the programmed behavior (Kanzaki et al., 1992)
by comparing it to the definition of Minegishi et al. (2012).
Accordingly, we classified the maneuvers of the silk moth by
simply considering the time elapsed since the last odor hit,
which we call “blank duration” τb as in Celani et al. (2014).
We also classified maneuvers according to both τb and the
moth’s linear and angular velocities (v and ω, respectively) based
on Minegishi et al. (2012). We denote the first and second
classification as “temporal” and “kinematic,” respectively. Table 1
shows a comparison of both schemes used to classify maneuvers
and Figure 4 shows the result of using each scheme. The blank
duration threshold of 500 ms in the “temporal” classification
of Table 1 was selected because this is the average duration of
surge motions after an odor hit as reported in Kanzaki et al.
(1992). Throughout all olfactory search experiments, we classified
the moth maneuvers by both schemes and labeled the state of
the moth at each time step as “matching” if it matches the
criteria of both schemes and “mismatching” if it only matches the
“kinematic” criteria.

To determine whether “mismatching” behaviors are
motivated by higher information gains, we analyze the value
of the entropy change 1S and the expected entropy change
E[1S] regarding the rate of odor hits and the cumulative odor
hits experienced by moths over a search. We are particularly
interested in these variables because recent studies identified that
they influence the decision-process of olfactory behaviors (Celani
et al., 2014; Pang et al., 2018). We also evaluate whether the
distribution of 1S is different for “matching” and “mismatching”
behaviors with a two-sample Kolmogorov-Smirnov test and
by comparing their histograms. In addition, we calculate
the cumulative density function (CDF) of 1S and E[1S] to
specifically determine whether “mismatching” behaviors have a
higher probability of obtaining larger negative values of those
variables, that is, greater information gains. Finally, we calculate
the root mean squared error (RMSE) between the values of 1S
and E[1S] to determine what type of behavior is more similar
to infotaxis, regarding the rate of odor hits and the cumulative
sum of hits, which are our variables of interest. The following
section presents the results of the calculations of 1S and E[1S]
regarding hit rate and cumulative hits, the histograms and CDFs,
and the RMSE of “matching” and “mismatching” behaviors.

4. RESULTS

Here, we present the results of the VR odor source search
experiments using optogenetic silkmoths. First, we present the
trajectories of the moths as well as their information entropy.
We then show the statistics of the matching versus mismatching
states, followed by the relationship between those two states and
the expected decrease in information entropy for each.
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FIGURE 3 | (A) An agent (blue dot) at the start of an infotaxis search. Each cell of the map has the same probability of being the odor source; thus, the entropy is

maximal. (B) An agent that has narrowed down the probability distribution of the source location to an area near the actual source (star symbol). In this case, the

information entropy of the belief is low. (C) How a silkmoth is modeled as a point-mass agent for infotaxis calculations. In this illustrative example, only the green area

will react to pheromone particles owing to the “wingflap effect” i.e., when cos(π − θ + θsrc) > 0. (D) The adaptation of the infotaxis navigation policy to a silkmoth. In

this case, moving forward from position rt to r′ yields more expected entropy decrease than rotating. Please note that a more negative value is more desirable

because it would narrow down the possible locations where the odor source is located.

FIGURE 4 | Classification of moth actions by (A) the kinematic criteria and (B) the temporal criteria.

4.1. VR Olfactory Search Experiments
We subjected ChR2 silkmoths to olfactory search experiments.
We conducted 20 trials in which the moth searched for a
pheromone source in a 350 mm long by 200 mm wide virtual
environment where the wind was blowing in the positive

x-direction at a mean speed of 0.1 m/s. The initial position of the
moth in the virtual environment was (x, y, θ) = (180, 0, −π/6),
where θ is in radians. Moths searched for a source located at (x,
y) = (0, 0) by entering a radius of 35 mm around it under a time
limit of 180 s. The mean± std. dev. of the time required to reach
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TABLE 1 | Definitions for the maneuvers of silk moths when classified by either a

temporal or a kinematic state.

Temporal Kinematic

Surge τb ≤ 500 ms τb ≤ 500 ms and v > 0 or

τb > 200 ms and |ω| < 5deg/s

Rotate τb > 500 ms τb > 500 ms and |ω| > 0

Stop Otherwise Otherwise

the source was 73.92 ± 46.5 s. Figure 5A shows the information
entropy for the experiments where moths found the pheromone
source. The solid line represents the average value, the shaded
range represents the standard deviation, and the gray lines show
the value for each trial. Figure 5B shows the moth trajectories
of these successful trials. The color gradient represents the value
of the information entropy. Table 2 shows the statistics of the
matching and mismatching moth states. Surge (temporal) and
Rotate (kinematic) represent the proportion of time taken when
the silk moths exhibited a mismatching state over the entire
duration of the search experiments. In total we conducted 20
experiments with 10 specimens. Out of these, 12 trials from six
specimens successfully found the odor source under the time
limit; thus achieving a success rate of 60.0%. We considered
only the data from the successful trials for the classification of
matching and mismatching behaviors.

4.2. Relationship Between Behavior
Variability and Information Gains
We investigated whether there is a relationship between
mismatching maneuvers and a higher expected decrease in
entropy E[1S(rt 7→ r′)]. Figure 6 shows the actual rewards
1S and expected rewards E[1S] of the match and mismatch
behaviors. As can be seen in Figures 6A,C, matching and
mismatching behaviors generate large decreases in entropy at
low or high hit rates, respectively. In addition, the matching
behaviors generated penalties (entropy increase) at high numbers
of accumulated hits. Please note that entropy is non-monotonous
(Hajieghrary et al., 2016; Rodríguez et al., 2017) and can increase
on detection to non-detection sequences since the agent’s belief
is narrowed by the detection but broadens again at the non-
detection. Figures 6B,D show that the expected rewards are
greater at low or high hit rates for mismatching and matching
behaviors, respectively. Figures 7A,C show histograms of the
actual and expected rewards, respectively. We validated the
statistical difference in the distributions of the matching and
mismatching states (Kolmogorov-Smirnov test p < 0.01).

Figure 7B shows the cumulative density function of the
actual rewards 1S for matching and mismatching behaviors.
As shown in the figure, mismatching behaviors have a higher
probability of greater entropy reductions (particularly values
of approximately 10−4 and 10−1). Mismatching behaviors also
have a higher probability of a larger decrease in entropy
(values of approximately -4×10−3) as shown in Figure 7D.
Figures 8A,B show the cumulative odor hits and hit rate
against the root mean squared error between the actual

1S and the expected reward E[1S]. This was calculated
as shown in Equation (3), where N is 20 because the
sampling frequency of the behavioral measurement system
is 20 Hz.

RMSE =

√

√

√

√

1

N

N
∑

i =1

(1Si+1 − E[1Si])
2 (3)

5. DISCUSSION

In this study, we investigated the possible causes of variability
in the programmed behavior model of the male silk moth.
Specifically, we asked whether such variability leads to
higher information gains; in other words, if it minimizes
the information entropy of the probability distribution
of the moth regarding the location of an odor source.
We also investigated whether the probabilistic framework
of infotaxis can explain how the male silk moth selects
maneuvers to balance the exploration and exploitation of the
expected rewards.

5.1. Relationship Between Behavioral
Variability and Information Rewards
In a recent study, Shigaki et al. (2019b) simultaneously measured
the odor search behavior of male silkmoths and the neural
activity from their lateral accessory lobe (LAL). The LAL
generates motor commands in response to odor stimuli. That
study found that silkmoths are less likely to “surge” (move
forward) as the frequency of odor hits increases. In terms of
infotaxis, this can be interpreted as moths preferring rotations
(exploration) because, at high odor encounter rates, the expected
decrease in entropy is less than at low rates. Our results found
that matching and mismatching behaviors generate rewards
at high and low hit rates, respectively (Figure 6). Thus, this
leads us to believe that at high hit rates, silk moths prefer
reactive or more exploitative behaviors, and at low rates,
they prefer more stochastic or explorative behaviors such as
rotations instead of straight forward moves. Furthermore, this
tendency was observed on all specimens that reached the
odor source.

An interesting interpretation of these results can also be
made from the viewpoint of reinforcement learning (RL). In
this field, an agent learns to behave according to an optimal
policy with the highest expected accumulated reward over
a time horizon. Nonetheless, many RL algorithms face the
exploration and exploitation dilemma in which greedily selecting
the actions with the highest reward can lead to suboptimal
policies stuck in the local maxima. A common way to avoid
this is to add stochasticity in the selection of actions; thus
balancing exploration and exploitation, using methods such as
ǫ-greedy algorithms (Sutton and Barto, 2018). An analogy can
be made to the behavior of the silkmoth in the sense that some
randomness in the selection of the “surge” maneuver leads to
higher information gains and possibly a better odor source search
performance. This can be clearly seen in Figures 7B,D, where

Frontiers in Computational Neuroscience | www.frontiersin.org 7 February 2021 | Volume 15 | Article 62938038

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Hernandez-Reyes et al. Information-Theoretic Modeling of Silkmoth

FIGURE 5 | (A) Information entropy of infotaxis-modeled silkmoths. Gray lines represent each of the 12 runs that found the odor source. The blue line represents the

average entropy. (B) Trajectories of the successful experimental runs. The star symbol represents the pheromone source.

TABLE 2 | Normalized counts of each maneuver taken by the moths.

Temporal

Kinematic Surge Rotate

Surge 0.1597 ± 0.07 0

Rotate **0.1939 ± 0.11 0.6464 ± 0.19

The “kinematic” classification scheme is based on the linear and angular velocities of the

moths. The “temporal” scheme is based on the time since the last odor hit. The values

with the asterisks indicate “mismatching” behaviors.

the probability of obtaining better rewards is higher for the
mismatching behaviors.

5.2. Exploration and Exploitation in Silk
Moth Behavior
We found that maneuvers that deviate from the programmed
behavior model correspond to a larger expected decrease
in entropy, that is, a higher expected reward in the
terminology of reinforcement learning. Therefore, we
demonstrated the capability of the infotaxis strategy to
quantitatively express maneuvers that deviate from the
programmed behavior as explorative and those that match
it as exploitative.

Another interesting point to note is the relationship
between matching and mismatching behaviors with the
root mean squared error (RMSE) of the real vs. expected
rewards. As shown in Figure 8A, the error decreases
proportionally to the accumulation of odor hits. This is
relatively intuitive because more detections narrow down
the belief of the source location. However, more RMSE
occurs between real and expected rewards at times of high
hit rates. Furthermore, the matching behaviors have a
lower error than the mismatching behaviors. One possible
interpretation for this is that matching behaviors are more

exploitative; thus they are more similar to the greedy
infotaxis policy, whereas the mismatching behaviors are
more explorative; hence, they differ from the expected reward of
the infotaxis strategy.

We believe that being able to represent animal olfactory
behavior through a method such as infotaxis is an important
contribution to the fields of ethology and robotics because
having a representation of the decision process of animals
in terms of probabilistic beliefs and expected rewards
facilitates the algorithmic implementation of these processes
in robots. Furthermore, it allows for the refinement of
these decision processes using tools such as machine and
reinforcement learning.

6. CONCLUSION

In this study, we measured the behavior of moths using a
virtual reality system that presents accurate and reproducible
odor stimuli by using blue light and optogenetic moths. We
then took trajectories from these measurements and modeled
them as an infotaxis (Vergassola et al., 2007) strategy. We
used infotaxis-based modeling to determine if variability in the
silkmoth behavior is related to higher gains in information
regarding the probabilistic distribution of the source location.
We found that variations have a higher probability of obtaining
larger information gains than “programmed behaviors” (i.e.,
reactive, exploitative behaviors). This suggests that silkmoths
incorporate some stochasticity into their behavior to balance the
exploration and exploitation of information gains. Future studies
should be conducted to develop ways to extract decision-making
mechanisms from free-running silkmoths. In this study, we used
tethered moths walking on a treadmill, and, although such a
device imposes minimal disturbances on the moth behavior, we
believe it is necessary to study whether models from free-running
experiments will differ from those in this specific study. It would
also be useful to develop an olfactory search algorithm based on
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FIGURE 6 | (A,C) The actual rewards obtained by either matching or mismatching behavior. (B,D) The expected rewards. Blue hue indicates more entropy decrease,

that is, greater information rewards. Red hue indicates the opposite. In this figure, 1St indicates the actual entropy change, in other words, S(rt+1)− S(rt ). E[1S]

indicates the expected entropy change for all possible actions (i.e., moving from rt to r′).

FIGURE 7 | (A,C) Histograms of actual and expected rewards, respectively. (B,D) Cumulative density functions of the actual and expected rewards, respectively.
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FIGURE 8 | Root mean squared error (RMSE) between actual and expected rewards. Lower values indicate that the expected reward calculated by Equation (2)

matches the actual rewards 1S. (A) RMSE against the accumulated odor hits of the agent over time. (B) RMSE against hit rates, which are the average number of

odor hits per second.

the silkmoth exploration/exploitation mechanisms elucidated in
this paper and then implement such an algorithm on a robot to
test whether the search performance is improved compared with
either the programmed behavior or the infotaxis strategy.
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APPENDIX A: INFOTAXIS STRATEGY

Herein, we provide a more detailed explanation of the derivation
of the infotaxis formulae. We based this explanation on the work
of Pang (2018) and the original infotaxis strategy developed by
Vergassola et al. (2007). The agent’s belief in the source location
P(rsrc|Tt) can be written using Bayes’ theorem, as indicated in
Equation (A1).

P(rsrc|Tt) =
P(Tt|rsrc)P(rsrc)

P(Tt)
∝ P(Tt|rsrc)P(rsrc) (A1)

where P(Tt|rsrc) is the likelihood of the source position and P(rsrc)
is the prior distribution of the source. Infotaxis assumes that odor
hits andmisses are independent of one another and the likelihood
of the source position takes the following form:

P(Tt|rsrc) =
∏

t

P(h(rt)|rsrc) (A2)

where h(rt) is 1 if the agent detects an odor hit at time t and 0 if
it detects a miss. The infotaxis strategy considers that the number
of hits follows a Poisson distribution; hence, the probability of a
hit or miss becomes the following:

P(h(rt) = 0|rsrc) = exp[−R(rt|rsrc)1t] (A3)

P(h(rt) > 0|rsrc) = 1− P(h(rt) = 0|rsrc) (A4)

where R(rt|rsrc)1t is the mean rate of hits the agent expects
at rt , during a time period of 1t, given a source position rsrc.
The Supplementary Material of the original paper on infotaxis
indicate that the hit rate is derived from the advection-diffusion
equation of a turbulent plume and define it as follows:

R (r|rsrc) =
E

ln
(

λ
α

) e
(xsrc−x)V

2D K0

(

|r− rsrc|

λ

)

(A5)

λ =

√

Dτ

1+ V2τ/(4D)
(A6)

where E is the emission rate of odor particles, which have an
effective diffusivity D and, a finite lifetime τ , and are advected
by a wind with mean velocity V that blows in the positive x-
direction. K0 is the modified Bessel function of order zero, and
α is the radius of a round-shaped agent. In our calculations of
the information entropy of the silkmoth we used the following
parameters into Equation A6: α=10 mm, E=1, τ=6.3 s, D=0.012,

andV=0.1m/s tomatch the wind speed in themoth experiments.
The range of possible values for the source location was a 1730×
770 lattice; i.e. the size of each cell was 0.26 mm. For Equation A4
we set 1t to 50 ms; which is the same as the sampling period of
the treadmill described in section 3.1. At each time step, the belief

of the source position distribution P(Tt|rsrc) can be recursively
updated as follows:

P(rsrc|Tt+1) = P(h(rt+1)|rsrc)P(rsrc|Tt) (A7)

At each time step, the agent considers five possible actions:
moving forward, backward, left, right, or waiting. For each
possible action, it calculates the probability p∗ that the action will
result in finding the source:

p∗ =
∑

rsrc

P(rsrc|Tt)P(|r
′
− rsrc| ≈ 0) (A8)

Consequently, the probability of not finding the source is 1− p∗.
If the source is found, then the entropy of the belief will become
zero, that is, 1S∗=(0 − St)=−St . To balance the exploration and
exploitation, the agent also considers the case in which it does
not find the source after taking an action. In such case, it would
sample from the environment either a miss with a probability pm
or a hit with a probability ph=1−pm. The probability of sampling
a miss is the average of the miss probability over the range of
possible source locations:

pm =
∑

rsrc

Pm(rsrc|Tt) =
∑

rsrc

P(h(r′) = 0|rsrc)P(rsrc|Tt) (A9)

where r′ is the future position of the agent after taking an action.
The agent also estimates how its source position belief, as well as
its entropy, would change after moving. The change in entropy
after sampling a miss or a hit at r′ would be the following:

1Sm = −
∑

rsrc

Pm(rsrc|Tt) ln
(

Pm(rsrc|Tt)
)

− St (A10)

1Sh = −
∑

rsrc

Ph(rsrc|Tt) ln
(

Ph(rsrc|Tt)
)

− St (A11)

Overall, the agent calculates the expected change of entropy by
moving from rt to r′ as follows:

E[1S(rt 7→ r′)] = p∗(0−St)+(1−p∗)(pm1Sm+ph1Sh) (A12)

where the terms on the left and right sides of the sum are the
change in entropy if the source is found or not found at r′,
respectively. Finally, the agent chooses the action a with the
largest expected decrease in entropy (see Figure 3D) as:

a = argminr′
(

E[1S(rt 7→ r′)]
)

(A13)

After making a move, the agent encounters either a miss or a hit
from the odor plume and updates the probability distribution of
the source location. The agent then repeats the navigation policy
process iteratively until it finds the source.
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A repetitive movement pattern of many animals, a gait, is controlled by the Central Pattern

Generator (CPG), providing rhythmic control synchronous to the sensed environment.

As a rhythmic signal generator, the CPG can control the motion phase of biomimetic

legged robots without feedback. The CPG can also act in sensory synchronization,

where it can be utilized as a sensory phase estimator. Direct use of the CPG as the

estimator is not common, and there is little research done on its utilization in the

phase estimation. Generally, the sensory estimation augments the sensory feedback

information, and motion irregularities can reveal from comparing measurements with the

estimation. In this work, we study the CPG in the context of phase irregularity detection,

where the timing of sensory events is disturbed. We propose a novel self-supervised

method for learning mistiming detection, where the neural detector is trained by dynamic

Hebbian-like rules during the robot walking. The proposed detector is composed of

three neural components: (i) the CPG providing phase estimation, (ii) Radial Basis

Function neuron anticipating the sensory event, and (iii) Leaky Integrate-and-Fire neuron

detecting the sensory mistiming. The detector is integrated with the CPG-based gait

controller. The mistiming detection triggers two reflexes: the elevator reflex, which avoids

an obstacle, and the search reflex, which grasps a missing foothold. The proposed

controller is deployed and trained on a hexapod walking robot to demonstrate the

mistiming detection in real locomotion. The trained system has been examined in the

controlled laboratory experiment and real field deployment in the Bull Rock cave system,

where the robot utilized mistiming detection to negotiate the unstructured and slippery

subterranean environment.

Keywords: locomotion, central pattern generator, Hebbian learning, phase estimation, radial basis function

neuron, reflexes, hexapod walking robot, bio-inspired robotics

1. INTRODUCTION

Maintaining fluent gait motion in a body with a high degree of freedom while continually reacting
to terrain irregularities is a challenging problem that, however, can be observed in nature (Bekey,
1996). During the gait, the legged locomotion control sustains the regular repetitive motion using
reflexive reactions triggered by detected motion irregularities. In nature, animals demonstrate
stunning adaptability to motion disruptions through reflexes (Pearson and Franklin, 1984; Duysens
et al., 2000). Many of such reflexes are wired in neural circuits located close to the legs inside
the vertebrates’ spine or thoracic ganglia of many invertebrates. The spinal neural circuits must
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recognize an irregularity in the locomotion through
proprioception to trigger a reflex (Bekey and Tomovic, 1986).
Hence, the irregularity recognition needs a model of regularity
to which a measured state is compared. In this work, we focus on
phase irregularities, where the timing of the measured event is
compared to its estimate. The tool for phase modeling is a neural
structure that centrally generates rhythms, the Central Pattern
Generator (CPG).

CPGs play an essential role in gait locomotion control.
The CPG’s rhythmic patterns are combined with the sensory-
motor neural circuits and stabilize the gait periodicity. The CPG
activity and spinal neural control can generally be controlled
by descending (e.g., from the brain) signals. Interestingly, the
locomotion can be sustained without the brain’s participation
and sensory input in virtual locomotion (Brown, 1912), since
the CPG sustains its rhythmic signals even if it is disconnected
from its sensors and effectors. This suggests the CPG can
work in an open-loop mode, and thus the CPG provides
the motor control even without input excitations. On the
other hand, if the CPG is synchronized to the sensory
signals, the CPG acts as an estimator of the sensory phase
(Kuo, 2002).

We can identify that some signals are tightly coupled to
the gait motion and thus inherit the gait period, such as
swing stop or ground contact. The CPG that synchronizes
to such a periodic signal continually estimates the signal
phase. The estimated and measured sensory phase should
be the same during a regular motion. However, a regular
motion disturbed by unexpected dynamics, elevations, and
depressions can induce disturbances in the sensory signal.
Hence the motion irregularities can be detected by comparing
the measured sensory phase with its estimation (Miall and
Wolpert, 1996). Any difference between the timing of the
measured and estimated sensory events can be utilized for
mistiming detection (Goldschmidt et al., 2014), which is
insufficiently researched within the context of plastic CPG-based
neural networks.

In this paper, we propose a trainable CPG-based event
mistiming detector integrated into gait controller architecture
introduced in Szadkowski and Faigl (2020). Unlike common
architectures that model the phase of sensed (input) signal and
motor (output) signal with one CPG, the employed architecture
models each signal with either the motor CPG, generating the
motor signal phase, or sensory CPG, estimating the phase of
the sensory signal. We propose to utilize the sensory CPG
for the detection of irregularities in the sensory phase. We
couple a plastic Radial Basis Function (RBF) neuron to each
sensory CPG, which learns to anticipate sensory events. The
difference in timing of anticipated and measured events is
the phase error. The error is integrated by Leaky-Integrate-
and-Fire (LIF) neuron, which learns to distinguish the regular
phase error induced by regular measurement imperfections, and
fires on irregular phase error detecting the event mistiming.
Two types of event mistiming are distinguished: event absence,
which occurs when the sensory event is delayed, and event
disruption occurs when the sensory event is too early; see
Figure 1. Both types of event mistiming are detected by the

proposed CPG-based mistiming detector that augments the
sensory feedback information.

We demonstrate the benefits of the proposed mistiming
detector using the detection as a trigger of two reflexes: the
elevator and search reflexes. The elevator reflex elevates the leg
to avoid an obstacle detected during the leg swing phase. The
search reflex is a behavior where the leg searches for supporting
ground after not detecting the expected support at the end of the
swing phase. Hence, the elevator reflex is triggered by the early
stop of the swinging leg, and the escape reflex is triggered by
ground contact absence. Finally, even though the focus of this
work is plastic mistiming detection, we also extend the motor
control of our previous work to control multiple motion phases
with position and maximum torque commands.

The proposed CPG-based controller is deployed on a real
hexapod walking robot. The robot is trained to walk tripod gait
on flat terrain. First, the robot self-learns to estimate the sensory
phase needed for mistiming detection in a regular environment.
Then, we demonstrate the mistiming detector by guiding the
robot over elevations and depressions in two scenarios. In the
first scenario, the robot walks in a controlled environment, where
the detections are isolated and thus easily observable. The second
scenario tests the proposed controller’s limits in the Bull Rock
cave system, which provides highly unstructured terrain depicted
in Figure 1A.

The rest of the paper is organized as follows. The following
section is dedicated to related work. In section 3, the phase
estimation problem is described within the context of gait
control and the theoretical foundations for the event mistiming
detection. The CPG-based controller is presented in section 4,
where the sensory prediction and mistiming detection system
is described, followed by the description of the motor control
and reflex system. The experimental deployment is described in
section 5 and further discussed in section 6. Finally, the paper is
concluded in section 7.

2. RELATED WORK

CPG-based gait controllers were proposed for many robots and
body models, where the controller implementations vary in
architecture. In this section, we provide a brief overview of
existing related CPG-based controller architectures. In particular,
we focus on whether the CPG represents the phase of a sensory
signal (input), motor/control signal (output), or both. Existing
CPG-based controllers primarily use the CPG as a generator
of the motor phase. For example, the CPG in the controller
presented in Maufroy et al. (2008) determines whether the leg
is in the extension or flexion phase to select a subnetwork that
controls the respective actuator. Similarly in limbless locomotion,
a chain of coupled CPGs controls the flexion rhythm of each
servomotor in a modular lamprey-like robot (Li et al., 2014).
Locomotion patterns can be changed by altering the parameters
of the CPG. In Yu et al. (2020), the frequency of the CPG
oscillation is temporarily increased as a part of reflexive behavior,
where the leg performs fast spiral motions. Switching the
topology of coupling between CPGs changes the gait pattern,
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FIGURE 1 | (A) The utilized hexapod walking robot in Bull Rock cave. The unstructured environment causes motion disturbances, which result in sensory event

mistiming. The sensory phase φx measurement is compared to its estimation φ̂x , where their difference is the phase error e. We distinguish two types of phase error:

event absence, φx > φ̂x , and disruption, φx < φ̂x . An example of event absence is illustrated in (B), where at the beginning of the stance phase, the front leg finds

itself in a depression (orange dot) and thus detects the ground contact later than expected (blue dot). In the disruption example (C), at the end of the swing phase, the

front leg hits elevated terrain (orange dot) and thus detects the ground contact sooner than expected (blue dot).

which is used inWang et al. (2014) where CPG network generates
multiple gaits for a fish-like robot, such as forward and backward
swimming and turning. Besides the motor signal generation, a
CPG can also be used as a sensory phase estimator. A CPG that is
entrained by a periodic sensory signal can become synchronized
with the signal where the phases of the CPG and its entraining
signal evolve at the same rate (except for a short transient
behavior) (Pikovsky et al., 2001). In Kuo (2002), Kuo proposes
the CPG synchronization to model the sensory signal phase
continuously. He showed that the actuator controller that uses
the CPG’s sensory estimate, is more stable than a controller using
a raw sensory signal.

The difference between a motor CPG and a sensory CPG is
that the former represents an actuator phase, while the latter
represents a phase of the entraining sensory signal. Assuming the
sensor andmotor phases are the same, a single CPG can represent
both phases. In Yan et al. (2017), it is assumed that the gait phase
is a function of the sensory phase, e.g., a function of the hip joint
angle. Thus the gait phase is estimated by the CPG synchronized
to sensory events, such as maximum hip flexion. The functional
dependence between the sensory andmotor variables is implicitly
assumed by synchronizing the CPG to the sensory input and
using the same CPG as themotor phase generator (Fukuoka et al.,
2003; Endo et al., 2004; Righetti and Ijspeert, 2006). However,
such an architecture needs some prior knowledge about the
robot morphology, where it must be determined which motors
and sensors are functionally dependent. On the other hand, the
morphology agnostic approach is not to assume any functional
dependence and model each phase, be it sensory or motor, with
its respective CPG. The controller presented in Héliot and Espiau
(2008) is composed of a layer of the sensory CPGs estimating the
phase that is fused and fed into the central motor CPG, which
controls the gait phase. A more general approach is presented in
our previous work (Szadkowski and Faigl, 2020), where both the
sensory and the motor variables have their own CPGs forming a
layer of sensory CPGs, which is connected to a layer of the motor
CPGs. Hence, the CPGs in biomimetic controllers have two basic

roles: motor phase generator and the sensory phase estimator. In
the rest of this section, we focus on the sensory CPGs only, as the
proposed approach enriches their utilization.

A sensory model that estimates the sensory state can help
in the detection of motion disturbances. In the context of
animal locomotion, such disturbances can be small obstacles,
depressions, slippage, and others, to which the animal reacts
with reflexes documented in Pearson and Franklin (1984)
and Duysens et al. (2000). The reflexes are triggered by
proprioceptive events such as increased load on a muscle or
tensile sensing (Bekey and Tomovic, 1986; Duysens et al.,
2000), which indicates a motion disturbance. Motion disturbance
detection is implemented in a number of biomimetic reflex
controllers, where each reflex has to be triggered by such
a disturbance. The disturbance detection can be realized by
comparing the estimated values with the measured ones; if
the difference is too high, a disturbance is detected. In the
context of periodic sensory signals, two differences can be
measured: difference in amplitude and difference in phase. The
amplitude trigger is simple; the detector directly measures a
value above (or below) a certain threshold, which triggers the
reflex reaction. For example, the reflexive slip responses can be
triggered by detecting leg movement while the leg is on the
ground (Boone and Hodgins, 1995). The elevator reflex, where
the leg avoids an obstacle blocking its protraction during a
swing motion, can be triggered by a significant angle error in
the protractor motor, as shown in Klaassen et al. (2002). The
author of Bläsing (2006) shows that the search reflex, where
the leg tries to find support during the stance, can be triggered
by lowering the leg under the threshold, which indicates a gap.
Besides, the search and elevator reflexes are implemented in
multiple other controllers (Espenschied et al., 1996; Li et al.,
2018; Yu et al., 2020). However, the above-mentioned reflex
triggers are hand-tuned and thus dependent on the robot body
morphology. Generally, the robot morphology can change in
time or is not entirely known, and thus the disturbance detection
algorithm must adapt. A simple, adaptive mechanism is used
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in Lewinger and Quinn (2010), where the system remembers
the depressor motor position during the last stance. Another
learning algorithm is presented in Kirkwood et al. (1989), where
the controller is trained to fusemultiple sensor inputs into a given
reflex trigger.

The presented amplitude-based detectors are dependent on
measuring unusual sensory values directly, where the value
crosses a threshold. However, some disturbances do not change
the sensory signal’s amplitude but a phase, causing a sensory
mistiming, such as the absence of anticipated foot contact or
protraction stopping too early. The event mistiming can be
detected from the difference between the phasemeasurement and
phase estimation provided by the internal model. Generally, the
internal model estimates the sensory feedback either by directly
processing the current sensory measurement or processing the
copy of motor command (so-called efference copy) (Miall and
Wolpert, 1996). In Goldschmidt et al. (2014) the efference copy
from a motor CPG is processed into a ground contact phase
estimation, where the absence of ground contact triggers the
search reflex. Maffei et al. pointed out that the sensory model
that maps the efference copy onto sensory estimation is sensitive
to the specific controller configuration. The authors propose to
adapt the sensory model directly to the sensory feedback (Maffei
et al., 2017). In the context of phase estimation, the CPG
entrained to the sensory feedback estimates the sensory phase.
The idea of phase estimating CPGs introduced in Kuo (2002) is
expanded in Dzeladini et al. (2014), where the difference between
the measured and estimated sensory phase is used as a corrective
term that participates in motor activity regulation. However,
the authors use one CPG per actuator and select the entraining
sensory feedback using prior knowledge.

In the proposed approach, we leverage the sensory/motor
CPG distinction presented in Szadkowski and Faigl (2020) and
design a self-learning mistiming detector on the sensory CPG
layer. Hence, the main expected advantage of the proposed
motion irregularity detection is that no prior knowledge about
sensory-motor relation is needed.

3. PROBLEM STATEMENT

The sensory mistiming detection is based on the periodicity
of the sensory signal, which is entrained by the repetitive gait
motion. The repetitive motion pattern arises from the rhythmical
motor actuation. The motor actuation is controlled by the control
signal u(t) which has period Tgait during the regular motion.
The periodically actuated body interacts with the environment,
and the effects of the interactions are measured by sensors. We
focus on such a sensory signal x(t) that inherits the actuation
periodicityTgait . Themotor φu and sensory φx phases are defined
as variables that grow linearly with time at the rate ωgait =

2π(Tgait)−1 during the regular motion, formally φ̇x = φ̇u =

ωgait ; see Figure 2. Likewise, we define the sensory amplitude Ax

as a variable that does not change, i.e., Ȧx = 0 and similarly for
the motor amplitude Au; however, this work is focused on the
phase variables.

The phase difference between sensory and motor phases
1φux = φu(t) − φx(t) is not changing in regular environments
with 1φ̇ux = φ̇u − φ̇x = 0, but it is dynamic in irregular
environments, which cause disturbance of the motion. The
motion disturbances propagate into the controller through the
sensory signal, and the controller needs to react to sustain the
regular gait.

The disturbance in a sensory signal can be assessed by
comparing the sensory signal with the sensory estimation x̂(t).
Focusing on the phase, the sensory phase estimation φ̂x(t) yields
the phase of a sensory signal during regular motion: φ̂x(t) =

ωgaitt + 8, where 8 is the sensory phase at t = 0. During
the regular motion, the phase difference between estimated and
measured phase, refered to as phase error, is e(t) = φx(t) −
φ̂x(t) = 0. However, the phase error can be non-zero due
to sensory signal disturbances caused by irregular motion. The
authors of Pikovsky et al. (2001) describe the disturbance in
dynamic systems with stable periodicity as perturbations in
the phase and amplitude of the system. The perturbations can
be approximately formalized as Ȧx(t) = pA(t) and φ̇x(t) =

ωgait + pφ(t), where pA(t) and pφ(t) are amplitude and phase
perturbations, respectively. The phase error then gains dynamics
driven by the phase perturbation ė(t) = ωgait + pφ(t) −

ωgait = pφ(t). Hence, the positive error e(t) > 0 represents
sensory signal being ahead of time while negative e(t) < 0 is
being delayed, which is illustrated in Figures 1B,C. If the phase
error accumulated over one gait cycle exceeds a given threshold,
∫ τ

τ−Tgait
|e(t)|dt > θ , then the sensory mistiming is detected at the

time τ .
There are two necessary tools for detecting the sensory

mistiming: the sensory phase estimator φ̂x(t) and the phase error
threshold θ . Moreover, the sensory phase is rarely measured
continually, as pointed out in Héliot and Espiau (2008). Instead,
it is measured as a short periodic event, and only during this
sensory event, the phase measurement can be compared to the
phase estimation. In this work, the i-th sensory input xi(t) ∈

[0, 1] is a binary signal, where its high level xi(t) ≈ 1 indicates the
event. However, since each sensor has a different sensitivity and
the sensory events have different duration, the estimator and the
error threshold must be self-learned for each sensor input. The
proposed neurodynamic approach for self-learnable mistiming
detection and its utilization in gait locomotion is presented in the
next section.

4. THE GAIT LOCOMOTION CONTROLLER

This section presents the proposed sensory event mistiming
detector that is integrated within the CPG-based gait controller.
The overall architecture of the gait controller, depicted in
Figure 3, can be described as two coupled sub-controllers: the
phase control, which estimates the phase of sensory input and
generates the motor phase, and the amplitude control, which
generates the command values for the actuators. The phase
controller is composed of two CPG layers: the sensory CPGs
that estimate the phase for each i-th sensory input φx

i , and the
motor CPGs that generate the motor phase of each j-th actuator
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FIGURE 2 | (A) An illustration of an ant during the tripod gait, a motion pattern where three legs propel the body while the other three legs swing forward. During the

tripod gait, the ant puts a front leg on the ground and senses the ground contact with x(tevent) = 1 at the fourth of the gait period tevent =
1
4 T

gait. During the

regular motion, such an event occurs periodically with x(tevent + nTgait ) = 1 for any n ∈ N . Therefore, (B) for the sensory signal x, we define the sensory phase φx

on which we can map the event occurrence at φx (tevent + nTgait) = 1
2π for any n ∈ N . Notice that the sensory phase is directly measured only at tevent, and there

is no sensory phase measurement for the rest of the gait cycle.

φu
j . The sensory CPGs provide a continuous estimation of the

sensory input phases utilized by themotor CPG. Themotor CPGs
generate the phase of the motion for each actuator. Based on the
motor phase, the amplitude control generates the control signal
uj for each j-th actuator, which performs the regular motion. In
this work, the amplitude control is extended with reflex reactions
to motion disturbances triggered by mistiming detection. The
mistiming detector is an extension of the sensory CPG layer
utilizing the provided sensory phase estimation.

4.1. Central Pattern Generator as Phase
Estimator
The CPG provides a stable periodic rhythm that can be
synchronized with an input signal. In the gait motion context,
the periodic stability sustains the motion periodicity while the
synchronization is utilized for the sensory phase estimation. The
synchronization is a property of CPGs modeled as a dynamic
system with a limit-cycle attractor (Pikovsky et al., 2001). The
employed CPG can be formalized as follows.

Let ẏ = f (y, c(t)) ∈ R
D be the CPG dynamics in the

D-dimensional space with the input signal c(t). The limit-
cycle Y ⊂ R

D is a closed trajectory in the phase space to
which the unperturbed dynamic system y(t) converges. After the
convergence, the unperturbed CPG produces a stable periodic
signal with the natural frequency ωcpg. If the CPG is entrained
by the periodic signal c(t) with a frequency close to the natural
frequency ω ≈ ωcpg, the CPG synchronizes the input signal. The
synchronization is a phase relation, where the phase difference
between the CPG output and the entraining signal 1φyc =

φy(t)−φc(t) becomes stable. Note that the stable phase difference
implies that the entrained CPG frequency becomes the same as
the entraining signal frequency ωcpg = ω, and if the phase of the
input signal shifts, the phase of the CPG shifts as well. Hence, the
phase of the synchronized CPG continuously estimates the phase
of the entraining signal: φ̂c(t) = φy(t) − 1φyc. However, since
neither the phase difference1φyc, nor the function that maps the
CPG state y ∈ Y onto the CPG phase φy(t) are known in general,
the explicit value of the CPG phase φy(t) cannot be directly used
in practice. Instead, we exploit the fact that there exists one-to-
one mapping between the CPG phase φy(t) ∈ [0, 2π) and the

limit-cycle points Y(φy) = y. Thus, since Y(φy −1φyc) = Y(φ̂c)
is one-to-one mapping, each point on the limit-cycle y ∈ Y

represents the phase of the entraining signal φ̂c. This limit-cycle
representation of the input signal phase is the essential CPG
property in the proposed approach.

We employ Matsuoka’s neural oscillator (Matsuoka, 1987) as
the CPG

ẏ = f (y, c(t)) =









τ ẏ1
τ ẏ2
γ ẏ3
γ ẏ4









=









h(y3)− y1
h(y4)− y2

−y3 − h(y4)α − y1β + 1
−y4 − h(y3)α − y2β + 1+ c(t)λ









,

(1)

h(z) = max(z, 0), (2)

where the parameters α = 2.5,β = 2.5, τ = 0.5, and γ = 0.25
define the limit-cycle Y ⊂ R

4 to which y converges; and the
parameter λ = 0.5 scales the input signal c(t). The input signal
of the sensory CPG is the sensory signal c(t) = x(t); thus, the
limit-cycle Y represents the sensory phase.

4.2. Sensory Event Mistiming Detection
The mistiming detection module, depicted in Figure 4, is
composed of the CPG estimating the sensory phase, Radial Basis
Function (RBF) neuron estimating the sensory event, and Leaky-
Integrate-and-Fire (LIF) neuron, which fires on the integrated
mistiming error. For each sensory input, the detector is trained to
recognize two types of mistiming error: the sensory event absence
and disruption.

Event mistiming occurs when a sensory event unexpectedly
transpires, or no event happens when the sensory phase estimator
expects it. The phase estimation is provided by the sensory CPG
entrained by its respective sensory signal ẏsensei = f (ysensei , xi(t)).
Assuming the natural CPG frequency and gait frequency are
similar ωcpg ≈ ωgait, the CPG synchronizes to the sensory signal
and thus estimates the phase of the sensory signal continuously.

The sensory event phase estimation is utilized by the RBF
neuron, which learns to anticipate the sensory event, when x(t) ≈
1. The RBF neuron activity coupled to the CPG represents a
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FIGURE 3 | The proposed gait controller architecture takes the sensory signal x as the input and outputs the control signal u. The gait controller is composed of two

sub-controllers: (i) Phase Control, which detects the mistiming and regulates the phase of the gait, and (ii) Amplitude Control, which maps the motor phase φu and

mistiming detections v into actuator commands u. The phase control is CPG-based, where a coupled ensemble of CPGs estimates the sensory phase φx and

generates the motor phase φu. The mistiming detector compares the sensory phase estimation φx to sensory input x, and self-learns to detect sensory phase errors

v. The mistiming detection v and generated motor phase φu flow into the amplitude control, which transforms the inputs into the control signal u. There are two

modules of the amplitude control: the regular control and the reflex control that modifies the regular control if triggered by mistiming detection.

FIGURE 4 | The architecture of the proposed mistiming detector with the sensory phase estimator. The sensory CPG synchronizes the sensory signal x and thus

estimates the sensory phase φx . The RBF neuron learns the phase during which the event occurs; the RBF neuron is active, a ≈ 1, during the anticipated event. A

difference between the RBF neuron activation and sensory signal gives two types of mistiming error: eabsence and edisruption. Each error excites its respective LIF

neuron, where each LIF neuron learns the activation threshold during the regular motion. If the sensory signal contains disturbances, the LIF activation v exceeds the

threshold and fires. The LIF firing detects the mistiming.

particular phase interval, be it motor phase (Pitchai et al., 2019)
or sensory phase. The RBF neuron uses the activity function

ϕ(y;m) = exp(−ε||y−m||
2), (3)

where y is the CPG state and m is the center parameter. Hence,
the RBF neuron is excited if the CPG state is near the RBF center.
The excitation timing is learned to be the same as the timing of
the regular sensory event using the periodic Grossberg learning
rule ṁi = ν(t)xi(t)(yi −mi). The periodic Grosberg rule pushes
the RBF center near the point on the CPG limit cycle Ysense

i that
represents the phase during the signal event xi(t) ≈ 1. Therefore,
the RBF activation ϕ(ysensei (t);msensor

i ) = ai(t) anticipates the
binary sensory event xi(t) ≈ 1.

Motion disturbances can perturb the timing of the sensory
event. Then, the perturbed sensory event does not overlap the
imitated event |ai(t) − xi(t)| > 0 and thus generates the phase
error. Two types of mistiming errors are used to measure the lack
of overlap: the disruption error (4) and absence error (5):

e
disruption
i (t) = h(xi(t)− ai(t)), (4)

eabsencei (t) = h(ai(t)− xi(t)). (5)

The disruption error is non-zero e
disruption
i (t) > 0 when the

RBF neuron does not anticipate the event occurrence, while the

absence error is non-zero eabsencei (t) > 0 when the event is
anticipated but does not occur.

The mistiming errors indicate the phase perturbation;
however, they can also be non-zero during the regular motion in
practice. In particular, since the waveforms of the signals ai(t) and
xi(t) are generally different; thus, there is always some mistiming
error even during the regular motion. Moreover, false sensory
events may occur due to sensory processing or measurement
imperfections. Hence, in practice, the integral of the mistiming
error (i.e., the absence or disruption) over one gait period E(τ ) =
∫ τ

τ−Tgait
e(t)dt might be non-zero even during the regular gait,

E(τ regular) > 0.We assume that if the motion is disturbed during
the gait, the integrated mistiming error is greater than the regular

error E(τdisturbed) > E(τ regular). Therefore it is possible to set
the threshold θ = E(τ regular) which delimits the regular sensory
input error from irregular.

We propose approximating the integration with the LIF
neuron and adapting the firing threshold θ using a learning rule.
The LIF neuron with activation dynamics v̇i = −viγ + ei fires
when the neuron activation vi reaches the threshold θi. Since the
threshold depends on many factors, such as the sensory variance
and the shape of the CPG limit-cycle, the threshold must be
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parameterized for each sensory input xi. A similar LIF threshold
parametrization problem is described in Diehl and Cook (2015),
where authors introduce a learning rule for threshold adaptation.
The adaptation mechanism increases the threshold during LIF
firing and then slowly decays when LIF is at a non-firing activity.
The LIF fire rate is then lower, and it is more likely that LIF
fires at an irregular input. We employ the idea of the threshold
adaptation in the following dynamics:

θ̇i = ν(t)(h(vi + γ − θi)− (θmin − θi)), (6)

where γ adds margin to the threshold and θmin sets the default
threshold value. The threshold is adapted only during learning
ν(t) > 0, when LIF is fed by a regular input; therefore, the LIF
threshold is adapted to regular integrated phase error. For each
i-th signal input, there are two LIF neurons. The first is for the

disruption error v
disruption
i , θ

disruption
i and the second is for the

absence error vabsencei , θabsencei . If a motion irregularity occurs,
the integrated mistiming error (the absence or disruption) in the
LIF neuron exceeds the respective threshold θi, and the neuron
fires. Thus, the firing activity of the LIF neuron vi indicates
the mistiming detection, which can trigger a reflex reaction
modifying the regular motor control.

4.3. Amplitude Motor Control
The amplitude controller generates a control signal combining
the regular gait motion, which produces the tripod gait, and
the reflexive motion triggered by sensory event mistiming. The
regular motion of an actuator is divided into four phases: first,
the (i) early and (ii) late swing phases, and then the (iii) early and
(iv) late stance phases, illustrated in Figure 2. Each phase defines
the joint angle and torque limit set into the actuator during
the motion. If a disturbance is detected, the respective reflex
reaction modifies the joint angle and torque limit for a short
period. Hence, the modification of the regular control causes a
reflex behavior.

4.3.1. Control of Regular Motion
The regular motor phase of the j-th actuator is generated by the
motor CPG

ẏmotor
j (t) = f (ymotor

j , cmotor
j (t)). (7)

Four motor RBF neurons are trained with periodic Grossberg
rule to be excited at the corresponding k-th motor phase 8u

j,k,

see Figure 5A. For the training, we generate target binary
signals dj,k(t) ∈ [0, 1] for six-legged robot walking a tripod
gait, where two tripplets of legs alternate in stance. Thus,
four motor phases k ∈ {1, 2, 3, 4} and legs of the first group
j ∈ {actuators of the left front/hind and right middle legs}, the
signals are defined as

dj,k(t) =











1 if for any n ∈ N : t ∈ [(n+ (k− 1)/4)Tgait,

(n+ (k− 1)/4+ 0.05)Tgait],

0 else.

The target signals for actuators of the second group j′ are shifted
dj′ ,k(t) = dj,k(t + Tgait/2). The four motor phases on the

limit-cycle Ymotor
j are approximated by four RBF centers learned

with the periodic Grossberg rule ṁmotor
j,k = ν(t)dj,k(t)(y

motor
j −

mmotor
j,k ). During the learning, the motor CPG is entrained

by the first target signal cmotor
j (t) = dj,1(t) to keep the

limit-cycle consistent through multiple learning episodes; see
Figure 5C. After the learning, the RBF activities amotor

j,k =

ϕ(ymotor
j ;mmotor

j,k ), see (3), generate peaks, where each peak

indicates the particular motor phase 8u
j,k.

The regular motor control transforms the motor phase into
regular actuator commands, see Figure 3. Commands of each

j-th actuator are u
angle
j =

∑K=4
k=1 amotor

j,k u
angle
j,k and u

torque
j =

∑K=4
k=1 amotor

j,k u
torque
j,k for joint angle and maximum torque,

respectively; where u
angle/torque
j,k are the set parameters. The

motion command parameters are set up so that the leg performs
stance and swing, depicted in Figure 5B. The swing is designed
to be flexible and protracts the leg over the ground. If the leg
hits an obstacle, the leg stops due to its flexibility caused by a
low torque limit. On the other hand, during the stance, the leg
becomes rigid and pushes the body forward by retracting the leg.
Three legs move together during the stance, the ipsilateral front,
hind legs, and the contralateral middle, creating the tripod gait.

4.3.2. Control During Irregular Motion
The controller provides two mechanisms reacting to the phase
error: sensory-motor phase difference stabilization and reflexes.
The phase difference stabilization (introduced in the base
work Szadkowski and Faigl, 2020) couples the sensory and
motor CPGs using a layer of sensory RBFs. Each motor CPG
is connected to all sensory CPGs through RBF neurons, each
trained by the target signal dj,1(t) to find the corresponding
phase on the sensory CPG. Effectively, each sensory RBF center
encodes the phase difference between the particular sensory CPG
and motor CPG. The averaged sensory RBF activity entrains
the motor CPG, and thus the sensory-motor phase difference
is stabilized.

The sensory-motor phase difference stabilization is used to
handle the long term phase errors. However, reflexes represent
a more suitable tool for critical errors since they affect the
amplitude control by modifying the regular commands; thus,
creating the reflexive behaviors. Two reflexes are implemented in
this work: the search reflex and the elevator reflex. The search
reflex is triggered by the absence of the ground contact event,
and its reaction is the leg’s rapid elevation and protraction.1 The
elevator reflex is triggered by a disruption of the protraction
stop event, where the leg rapidly retracts and elevates, and then
continues the protraction. Both reflexes utilize the presented
sensory eventmistiming detection and demonstrate the proposed
approach in a practical deployment from which results are
reported in the next section.

1It is a simplified version of the search reflex observed in a locust (Pearson and
Franklin, 1984), where the insect searches for the foothold with circular motions.
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FIGURE 5 | The leg motion control and the inter-limb synchronization for the tripod gait. (A) For each j-th joint, the motion is divided into four phases

8u
j,1,8

u
j,2,8

u
j,3,8

u
j,4. (B) At the k-th phase, the j-th joint is controlled by the set control command uj,k that sets the joint angle u

angle
j,k and torque u

torque
j,k . In effect, the

leg performs the motion with the foot-tip trajectory. The leg is rigid (high maximum torque set on joints) during stance so it can propel the body forward, while during

the swing, the leg is flexible (low maximum torque) and stops on the obstacle contact. The contact is detected as the difference between the expected and measured

positions. The ground contact is measured by poking the end of the swing at 8u
j,1 when the flexible leg tries to lower the foot tip below the expected ground. (C) The

relation between motion phases of each leg depends on the gait. During the tripod gait, two groups of legs move together, where the first group is composed of the

left front/hind (L1, L3) and right middle leg (R2), and similarly the second with legs R1, R3, and L2. The phase relations for the tripod gait is trained by the target signal

d. Targets for the l-th leg’s coxas dl,1 representing motor phase 8u
l,1 are shown in the plot. A single gait cycle is 223 steps long.

5. DEPLOYMENT AND EMPIRICAL
VALIDATION

The proposed CPG-based controller has been deployed on the
real hexapod walking robot depicted in Figure 6A. The setup of
the deployment is detailed in section 5.1. The robot controller
learns the motor control for the tripod gait and the mistiming
detector; see the description provided in section 5.2. The trained
controller has been examined in two scenarios. Section 5.3
reports on the first scenario, where the robot encounters two
obstacles, detects mistiming events, and performs the elevator
and search reflexes. The robustness of the proposed controller has
been examined in the second scenario, described in section 5.4, in
which the robot traverses highly unstructured terrain in the Bull
Rock cave system. Further, the found insights are discussed in
section 6.

5.1. Setup and Deployment
The proposed mistiming detector is deployed on the hexapod
walking robot shown in Figure 6 , a six-legged robot where each
leg is formed from three Dynamixel AX-12 servomotors (Faigl
and Čížek, 2019). In this work, we control two servo motors
per leg: the body-coxa and coxa-femur joint servomotors; the
third servomotor, femur-tibia joint, is set to a static angle. The
servomotors provide the joint angle measurements processed
into sensory signals for leg protraction stops and ground contact
events. Both events occur during the swing when the leg is

flexible. The stop of the l-th leg protraction x
stop
l

occurs at8u
4 (see

Figure 5B), where the body-coxa servomotor position change
is near zero. If the leg encounters an obstacle, the body-coxa
stops sooner due to low torque. The ground contact of the l-
th leg xcontact

l
occurs at the end of 8u

1 , where the coxa-femur
servomotor cannot lower the leg anymore because of the ground,
and the position error therefore grows. On the other hand, if

there is a depression in the ground, the coxa-femur servomotor
continues to lower the leg, and the contact event occurs later than
usual, or not at all if the leg does not reach a foothold. Each leg

generates a pair of sensory signals, x
stop
l

and xcontact
l

, fed into the
controller during both phases: the learning and deployment.

The dynamics of the proposed controller described by the
differential equations are numerically solved by the Euler method
with the step size of 0.01. The execution of 100 steps was
measured to be 5.15s long (Tgait = 223 steps ≈ 11.5s).

5.2. Tripod Gait Training and Mistiming
Detection Learning
The controller has been learned in two parts with the hexapod
walking robot on flat ground. First, the robot is trained to
generate the motor phase. In the second part, the robot learns
to detect sensory mistiming. The reflexive behavior is turned off
during the learning. The individual training parts are detailed
as follows.

5.2.1. Tripod Gait Training
The motor phase generation has been trained for 30,000 steps on
a flat terrain by the given target signal d for each joint, as shown
in Figure 5C. Four motor RBFs are trained to be active during
their respective motion phases, which determine the hand-tuned
configuration of the control commands, see Figure 7A. The

regular control signal uregular for body-coxa and coxa-femur
joint angles, shown in Figure 7B, follows the general foot-tip
trajectory depicted in Figure 5B. The maximum torque utorque

is set to 1.25Nm (rigid) during stance and 0.5Nm (flexible)

during swing. The reflex control signal ureflex is hand-tuned to
perform the elevator and search reflexes, plotted in Figures 7C,D,
respectively. The example of joint angle evolution is shown
in Figure 7E, where both reflexes occur within five gait-cycles.
During any reflex, the coxa-femur servomotor, affecting the leg
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FIGURE 6 | (A) Photo of the hexapod walking robot in the laboratory test track. The robot has six legs, each comprising three Dynamixel AX-12 servomotors;

however, only the body-coxa and coxa-femur servomotors are controlled in experiments presented in this work. The servomotors also provide the joint angle

measurement, which is further processed into swing stop and ground contact events for each leg. (B) Leg schema.

elevation, is rigid, while the body-coxa servomotor is flexible. The
inter-leg phase relations given by the target d(t) are learned by
the motor phase generator, and the hexapod robot walked the
tripod at the end of the gait training. The walking hexapod robot
interacts with the environment that generates the regular sensory
signal, which trains the mistiming detector.

5.2.2. Mistiming Detection Self-Learning
The mistiming detection is learned during 13000 steps of
walking tripod gait in the regular environment, as shown in
Supplementary Video 1.

We first let the robot learn to anticipate the sensory events
for 8,000 steps with the learning rate ν(t) linearly decreasing
from one to zero. As can be seen in Figure 8, the event RBF
neurons find their respective phase represented by a limit-cycle
Ysense. At the end of the anticipation learning, the event RBF
neurons anticipate the sensory events with high accuracy, as
shown in Figure 8D.

After the event anticipation learning, the robot adapts the
LIF thresholds during 5,000 steps, where the learning rate ν(t)
linearly decreases from one to zero. At the start, mistiming
error causes LIF to fire, as it is shown in Figures 9A,B, which
increases the threshold with dynamics (6). Then, the threshold
slowly decays. On some occasions, the threshold descends too
close to the regular LIF activity and fires again, increasing the
threshold. However, since the learning rate ν(t) converges to zero,
the threshold increments are smaller as the learning progresses.

At the end of the learning, the thresholds are adapted so LIFs
do not fire in the regular environment, see Figures 9C,D. The
thresholds are also close to the LIF activity maxima; therefore,
LIF fires and detects the phase mistiming if there is more error
accumulated due to the motion disturbances.

5.3. Walking Over Obstacles
The proposed mistiming detection is demonstrated in the
deployment of the robot on track depicted in Figure 6A, where
the mistiming detector triggers reflexes. The robot’s left legs must
negotiate one obstacle and one depression to continue its gait.
The obstacle is 7 cm high and 4 cm long, which is higher than
the maximum elevation during the regular swing. Hence, the leg
is stopped by the swing, and the event disruption is detected,
which triggers the elevator reflex, see Figure 10A. After avoiding
the obstacle, the leg encounters a depression 10 cm deep, and

5 cm long, which is further than the leg reaches during regular
motion. Since the leg is not stopped by the ground as anticipated,
an absence of the ground collision is detected, which triggers the
search reflex, see Figure 10B. The searching leg grasps the far
away support, and the motion continues. In Figure 10C, we can
see the right legs moving regularly as no obstacle was detected.
The record of the robot walking over obstacles is provided in
Supplementary Video 2.

5.4. Irregular Locomotion in Bull Rock Cave
Limits of the proposed controller have been tested during
the field deployment in Bull Rock cave, where the robot
crawled over highly unstructured terrain with a wet slippery
surface and cracks, see Figure 1A. In such an environment,
multiple reflexes are triggered at once; see Figure 11C and
Supplementary Video 3, which changes the locomotion of the
whole body and, in some cases, detects event mistiming when
there is seemingly none. For example, the combination of
triggered reflexes toggles the robot on the left side, and thus when
the right leg enters the stance, it touches the ground later, which
triggers the search reflex. On the other hand, the elevator reflex
works in unintended situations, that have been observed for a leg
is stuck in a crack, which is documented in Figures 11A,B. In
such a situation, the leg does not move during the swing, and
thus the elevator reflex is triggered, which frees the leg. Overall,
the hexapod walking robot with the proposed locomotion control
traversed the highly irregular terrain multiple times and detected
parallelly multiple phase mistiming, supporting the expected
advantage of the mistiming detector in a real cave environment.

6. DISCUSSION

The proposed controller has been trained to perform the tripod
gait. During the tripod gait on flat terrain, the hexapod walking
robot learned to anticipate the ground contact and swing stop
with accuracy shown in Figure 8. LIFs then adapt the regular
difference between sensory anticipation and measurement. The
thresholds are upper-bound of the regular LIF activity, see
Figure 9; therefore, LIFs are at rest during regular motion. The
benefit of mistiming detection is further demonstrated in two
deployment scenarios where mistiming detection triggers the
designed reflex reactions. The reflexes allowed the robot to
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FIGURE 7 | The regular and reflex motions of the left front leg during late swing 8motor
1 (in the yellow), early stance 8motor

2 (in the blue), late stance 8motor
3 (in

the red), and early swing 8motor
4 (in the green). (A) The limit cycle Ymotor generated by the motor CPG of the front left body-coxa joint. The duration of each motor

phase 8motor
i is projected on the limit cycle, which trajectory direction is indicated by black arrows. The motion phases determine the joint angle control. (B) The

regular triangular leg trajectory. At the end of the late swing 8motor
1 , the leg pokes the ground. (C) The search reflex triggered at the end of the late swing. The leg

tries to grasp for support in the protraction direction. (D) The elevator reflex triggered shortly after early swing 8motor
4 . The leg avoids the obstacle from above. (E)

Five gait-cycles of body-coxa (black curve) and coxa-tibia (red curve) joint angles during regular motion and the search and elevator reflexes. Both reflexes are

highlighted by the gray area, where the search reflex starts at 222 step, and the elevator reflex starts at step 832.

locomote through terrains that are otherwise untraversable with
the regular gait. From this perspective, the expected advantage of
the proposed idea has been fulfilled.

On the other hand, in some cases, the reflexes were triggered
even though there was no obstacle nor depression. In the testbed
scenario visualized in Figure 10C, the middle left leg performs
the elevator reflex at step 1100, albeit the leg already cleared
the obstacle at step 900. The elevator reflex at step 1,100 has
been triggered by detected early swing stop, which has not been
caused by an obstacle, but by the search reflex of the front left
leg triggered at step 1,050. Such behavior can also be observed
in Figure 11C, where the search reflex of the front legs causes
the elevator reflex of the middle legs. The search reflex leaves the
robot body slightly tilted, which causes the adjacent middle leg
to stop the swing earlier. Thus, the middle left leg detects the
search reflex of the adjacent leg. It is a cautionary tale that the
interpretation of mistiming detection, or generally any sensory
error, is dependent on the context in which the robot is. The
direct interpretation of the situation in which an obstacle stops
the swing is correct only if the robot’s current state is close to the
state of the regular motion. Sustaining the regular gait motion
improves not only the locomotion but also the interpretability
of the sensory input. Therefore, improving the gait control, e.g.,
adding balancing reflex, is one strategy preventing incorrect
interpretation of the sensory input. Another strategy can be based

on fusingmultiple sensory inputs as it is less likely that each of the
sensory input provides incorrect interpretation at the same time.

The proposed mistiming detector relies on the CPG
providing the sensory phase estimation; thus, the mistiming
detector inherits the robustness of the CPG dynamics but
also its drawbacks. While short-term changes of sensory signal
properties have little effect on the CPG, if the change is lasting,
then the CPG behavior changes as well. Consider that the sensory
signal changes in phase or frequency. If the sensory signal
changes in phase, the sensory CPG shifts its phase and maintains
the stable phase difference between the signal and the CPG.
However, there are more possible outcomes if the sensory signal
frequency of ωc changes. The CPG has a range of detuning
1ω = ωc − ωcpg where the CPG can synchronize with the input
signal (Pikovsky et al., 2001). Outside the synchronization range,
the phases of the CPG and input signal evolve with different
speeds; therefore, if the detuning is too high 2, the sensory CPG
does not estimate the sensory phase.

2 In particular, the synchronization range depends on the input signal strength,
which is set to λ = 0.5 in this work. The range gets smaller with lesser input
strength creating a structure in the λ-1ω plane called the Arnold tongue. In
general, the Arnold tongue cannot be found analytically, yet there must be some
small synchronization region around 1ω = 0 for high enough λ.
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FIGURE 8 | Detail of learning the left leg’s contact event anticipation and the overall anticipation accuracy. (A) Projected CPG limit-cycle Ysense (in the gray) and the

event RBF weight msensor trajectory (in the magenta) of the front left leg’s contact event. During the learning, the RBF weight approaches the limit-cycle segment,

during which the left leg senses contact x > 0 (in the blue). At the end of the learning, the RBF weight (the magenta dot) is close to the limit-cycle segment; therefore,

the RBF activity a spikes during the phase segment can be seen in the following plots. (B) At the start of the learning, the RBF activity a (in the magenta) is low and

peaks outside of the left leg contact event x > 0 (in the blue). (C) However, at the end of the learning, the RBF activity peaks are close to the maximum possible

activity (one), and the peaks overlap with the events. Ideally, the total number of such overlaps during one gait-cycle is twelve, one per each sensory input. (D) The

plotted sum of the anticipation-event overlaps over a sliding window of the size Tgait = 223 divided by the number of sensory inputs (12). At step 4, 000, all RBF

neuron anticipations overlap with the measured sensory events.

FIGURE 9 | Adaptation of the firing threshold θ . (A) Detail of the LIF threshold θdisruption (visualized as the red dashed line) adaptation for the left leg’s early swing

stop. Initially, the threshold is set to zero, thus LIF fires (in the green) at the first non-zero error edisruption (in the black), where the error is rectified difference between

the early stop event x (in the blue) and RBF anticipation a (in the magenta), h(x − a). During the LIF firing, the threshold rapidly grows; therefore, the next LIF non-zero

activity at step 400 is below the threshold, and LIF does not fire. The threshold slowly decays (not observable in plots). (B) The LIF detector (in the yellow) for the left

leg’s contact absence behaves similarly. The last thousand steps of the LIF neuron activations are aggregated in histograms, where it is shown that the respective

thresholds are upper-bound of the regular activations. (C) The swing stop perception is precise during the regular motion; thus, the LIF activity (in the green) is similar

for all legs, and so are the thresholds (showed as the red dashed line). (D) However, the ground contact perception differs for each leg (probably due to different loads

on the legs during the stance) and is less precise (the leg sometimes did not detect the ground contact). It resulted in the increased variance of the ground contact

absence thresholds across the legs. Note that the contra-lateral legs (e.g., cL1 and cR1) have similar thresholds.
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FIGURE 10 | Walking over obstacles deployment scenario. (A) At step 300, the front left leg (L1) encounters an obstacle, which stops the swing sooner, and thus the

xstop event starts sooner, creating a high error edisruption (in the black). The error excites the LIF neuron activity (in the green) over the threshold (visualized as the

dashed red line), thus the LIF fires triggering the elevator reflex on the L1 leg. (B) At step 1,000, the RBF neuron anticipates ground contact, which does not happen.

The absence of the error excites the LIF neuron (in the yellow) and triggers the search reflex. (C) An overview of the triggered elevator (in the green) and search (in the

yellow) reflexes for each leg. The black events show early and late stance phases. The left legs of the hexapod walking robot gradually detect and avoid the obstacle.

At step 1,050, the front left leg steps into the depression, and the search reflex is triggered. Since there are no obstacles on the robot’s right side, no reflexes are

triggered for the right legs.

In the gait control context, the sensory inputs for the
mistiming detector are a consequence of the interaction between
the environment and periodic motor activity. A persistent change
in motor activity can induce a change in the sensory signal,
influencing the sensory CPGs, as described above. The terrain
in Bull Rock cave is a source of such persistent change, see
Figure 11, where the rough terrain caused a change in the motor
activity by triggering one reflex after another. Although it was not
observed during the short span of the Bull Rock cave deployment,
the change of the sensory CPG properties (phase or frequency)
influences the motor phase generation (see Figure 3), which
may compromise the gait pattern. Therefore, the presented gait
controller can generate a disturbed motion pattern if it operates
in a highly unstructured environment. Such disturbances can be
prevented by adding more reflexes, which would stabilize the
regular motion, or the controller can react to an unstructured
environment by a switch to a different gait. For both cases, the
mistiming detector provides the means to recognize a highly
irregular environment.

The mistiming detection adds an alternative to usual
amplitude error detection, where the measured sensory
value rises above some threshold. Notice, from a practical

point of view, the ground contact absence and the swing
stop detections are implemented simply from reading
the position from the Dynamixel AX-12 servomotors,
without the need for any additional sensory equipment.
Generally, the proposed mistiming error augments the
information gained from the measured sensory input, and
further utilization of the augmentation is a subject of our
future work.

7. CONCLUSION

In this paper, we present a novel learnable CPG-based event
mistiming detection. We propose to combine CPG with the
RBF neuron into a sensory event estimator and compare the
estimation with measurement to assess the phase error. The
phase error is integrated by the LIF neuron, which detects the
irregularity in the timing of event occurrence. The proposed
mistiming detection is self-learned with dynamic Hebb-like
learning rules by the robot on which the system is deployed.
We integrated the mistiming detection with the CPG-based gait
controller, where the detection triggers reflexive behavior. An
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FIGURE 11 | The hexapod walking robot deployed in the Bull Rock cave. (A) During the traversal, the front left (L1) leg got stuck in a crack for two gait-cycles. At step

1,850, the leg detects the swing stop disruption and performs the elevator reflex. (B) The elevator reflex worked well in this context and successfully freed L1. (C) An

overview of the triggered reflexes. In the examined unstructured environment, the motion was highly irregular, which resulted in many triggered reflexes.

absence of the ground contact triggers the search reflex, while
the elevator reflex is triggered by detecting an obstacle during the
swing. The CPG-based controller is deployed on a real hexapod
walking robot, which is trained to walk using a tripod gait
and learns the properties of twelve sensory signals. The learned
controller has been examined in two deployment scenarios. In
the laboratory testbed, the robot encounters a depression and an
obstacle on flat terrain, where each leg reacts independently with
corresponding reflexes. In the second scenario, we demonstrate
the robustness of the proposed controller in Bull Rock cave,
where the robot traverses slippery and highly unstructured
terrain. The proposed plastic CPG-based mistiming detection
enhances the information gained from the periodic sensory
signal, which can be utilized not only for reflex control but also
can serve as an input for other control centers.
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Faigl, J., and Čížek, P. (2019). Adaptive locomotion control of hexapod walking
robot for traversing rough terrains with position feedback only. Robot. Auton.
Syst. 116, 136–147. doi: 10.1016/j.robot.2019.03.008

Fukuoka, Y., Kimura, H., and Cohen, A. H. (2003). Adaptive dynamic walking of a
quadruped robot on irregular terrain based on biological concepts. Int. J. Robot.
Res. 22, 187–202. doi: 10.1177/0278364903022003004

Goldschmidt, D., Wörgötter, F., andManoonpong, P. (2014). Biologically-inspired
adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobot.
8:3. doi: 10.3389/fnbot.2014.00003

Héliot, R., and Espiau, B. (2008). Multisensor input for cpg-based sensory–
motor coordination. IEEE Trans. Robot. 24, 191–195. doi: 10.1109/TRO.2008.
915433

Kirkwood, C., Andrews, B., and Mowforth, P. (1989). Automatic detection of gait
events: a case study using inductive learning techniques. J. Biomed. Eng. 11,
511–516. doi: 10.1016/0141-5425(89)90046-0

Klaassen, B., Linnemann, R., Spenneberg, D., and Kirchner, F. (2002). Biomimetic
walking robot SCORPION: control and modeling. Robot. Auton. Syst. 41,
69–76. doi: 10.1016/S0921-8890(02)00258-0

Kuo, A. D. (2002). The relative roles of feedforward and feedback in the
control of rhythmic movements. Motor Control 6, 129–145. doi: 10.1123/mcj.
6.2.129

Lewinger, W. A., and Quinn, R. D. (2010). “A hexapod walks over irregular
terrain using a controller adapted from an insect’s nervous system,” in IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS) (Taipei),
3386–3391. doi: 10.1109/IROS.2010.5650200

Li, G., Zhang, H., Zhang, J., and Hildre, H. P. (2014). An approach for adaptive
limbless locomotion using a cpg-based reflex mechanism. J. Bionic Eng. 11,
389–399. doi: 10.1016/S1672-6529(14)60052-4

Li, J., Yu, H., Gao, H., Zhang, L., and Deng, Z. (2018). “Enhancing adaptability
of a legged walking robot with limit-cycle based local reflex behavior,”
in Intelligent Robotics and Applications, eds Z. Chen, A. Mendes, Y. Yan,
S. Chen (Newcastle, NSW: Springer International Publishing), 297–310.
doi: 10.1007/978-3-319-97589-4_25

Maffei, G., Herreros, I., Sanchez-Fibla, M., Friston, K. J., and Verschure, P. F. M. J.
(2017). The perceptual shaping of anticipatory actions. Proc. R. Soc. B Biol. Sci.
284:20171780. doi: 10.1098/rspb.2017.1780

Matsuoka, K. (1987). Mechanisms of frequency and pattern control in the neural
rhythm generators. Biol. Cybernet. 56, 345–353. doi: 10.1007/BF00319514

Maufroy, C., Kimura, H., and Takase, K. (2008). Towards a general neural
controller for quadrupedal locomotion. Neural Netw. 21, 667–681.
doi: 10.1016/j.neunet.2008.03.010

Miall, R., andWolpert, D. (1996). Forwardmodels for physiological motor control.
Neural Netw. 9, 1265–1279. doi: 10.1016/S0893-6080(96)00035-4

Pearson, K., and Franklin, R. (1984). Characteristics of legmovements and patterns
of coordination in locusts walking on rough terrain. Int. J. Robot. Res. 3,
101–112. doi: 10.1177/027836498400300209

Pikovsky, A., Rosenblum, M., and Kurths, J. (2001). Synchronization: A Universal

Concept in Nonlinear Sciences. Cambridge: Cambridge University Press.
doi: 10.1017/CBO9780511755743

Pitchai, M., Xiong, X., Thor, M., Billeschou, P., Mailänder, P. L., Leung, B., et al.
(2019). “CPG driven RBF network control with reinforcement learning for gait
optimization of a dung beetle-like robot,” in Artificial Neural Networks and

Machine Learning-ICANN 2019: Theoretical Neural Computation (Munich),
698–710. doi: 10.1007/978-3-030-30487-4_53

Righetti, L., and Ijspeert, A. J. (2006). “Programmable central pattern
generators: an application to biped locomotion control,” in IEEE International

Conference on Robotics and Automation (ICRA) (Orlando, FL), 1585–1590.
doi: 10.1109/ROBOT.2006.1641933

Szadkowski, R., and Faigl, J. (2020). “Neurodynamic sensory-motor phase binding
for multi-legged walking robots,” in International Joint Conference on Neural

Networks (IJCNN) (Glasgow), 1–8. doi: 10.1109/IJCNN48605.2020.9207507
Wang, M., Yu, J., and Tan, M. (2014). CPG-based sensory feedback control

for bio-inspired multimodal swimming. Int. J. Adv. Robot. Syst. 11:170.
doi: 10.5772/59186

Yan, T., Parri, A., Ruiz Garate, V., Cempini, M., Ronsse, R., and Vitiello, N.
(2017). An oscillator-based smooth real-time estimate of gait phase for wearable
robotics. Auton. Robots 41, 759–774. doi: 10.1007/s10514-016-9566-0

Yu, H., Gao, H., and Deng, Z. (2020). Enhancing adaptability with local
reactive behaviors for hexapod walking robot via sensory feedback
integrated central pattern generator. Robot. Auton. Syst. 124:103401.
doi: 10.1016/j.robot.2019.103401

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Szadkowski, Prágr and Faigl. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 February 2021 | Volume 15 | Article 62965257

https://doi.org/10.1109/ROBOT.1986.1087702
https://doi.org/10.1016/0921-8890(96)00022-X
https://doi.org/10.1177/105971230601400307
https://doi.org/10.1109/IROS.1995.525878
https://doi.org/10.1098/rspb.1912.0051
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1152/physrev.2000.80.1.83
https://doi.org/10.3389/fnhum.2014.00371
https://doi.org/10.1109/ROBOT.2004.1307523
https://doi.org/10.1016/0921-8890(96)00003-6
https://doi.org/10.1016/j.robot.2019.03.008
https://doi.org/10.1177/0278364903022003004
https://doi.org/10.3389/fnbot.2014.00003
https://doi.org/10.1109/TRO.2008.915433
https://doi.org/10.1016/0141-5425(89)90046-0
https://doi.org/10.1016/S0921-8890(02)00258-0
https://doi.org/10.1123/mcj.6.2.129
https://doi.org/10.1109/IROS.2010.5650200
https://doi.org/10.1016/S1672-6529(14)60052-4
https://doi.org/10.1007/978-3-319-97589-4_25
https://doi.org/10.1098/rspb.2017.1780
https://doi.org/10.1007/BF00319514
https://doi.org/10.1016/j.neunet.2008.03.010
https://doi.org/10.1016/S0893-6080(96)00035-4
https://doi.org/10.1177/027836498400300209
https://doi.org/10.1017/CBO9780511755743
https://doi.org/10.1007/978-3-030-30487-4_53
https://doi.org/10.1109/ROBOT.2006.1641933
https://doi.org/10.1109/IJCNN48605.2020.9207507
https://doi.org/10.5772/59186
https://doi.org/10.1007/s10514-016-9566-0
https://doi.org/10.1016/j.robot.2019.103401
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


ORIGINAL RESEARCH
published: 29 March 2021

doi: 10.3389/frobt.2021.625094

Frontiers in Robotics and AI | www.frontiersin.org 1 March 2021 | Volume 8 | Article 625094

Edited by:

Amir Ayali,

Tel Aviv University, Israel

Reviewed by:

Daniel Knebel,

Tel Aviv University, Israel

Silvia Daun,

University of Cologne, Germany

*Correspondence:

Hitoshi Aonuma

aon@es.hokudai.ac.jp

Specialty section:

This article was submitted to

Computational Intelligence in

Robotics,

a section of the journal

Frontiers in Robotics and AI

Received: 02 November 2020

Accepted: 01 March 2021

Published: 29 March 2021

Citation:

Naniwa K and Aonuma H (2021)

Descending and Ascending Signals

That Maintain Rhythmic Walking

Pattern in Crickets.

Front. Robot. AI 8:625094.

doi: 10.3389/frobt.2021.625094

Descending and Ascending Signals
That Maintain Rhythmic Walking
Pattern in Crickets
Keisuke Naniwa and Hitoshi Aonuma*

Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan

The cricket is one of the model animals used to investigate the neuronal mechanisms

underlying adaptive locomotion. An intact cricket walks mostly with a tripod gait, similar

to other insects. The motor control center of the leg movements is located in the thoracic

ganglia. In this study, we investigated the walking gait patterns of the crickets whose

ventral nerve cords were surgically cut to gain an understanding of how the descending

signals from the head ganglia and ascending signals from the abdominal nervous system

into the thoracic ganglia mediate the initiation and coordination of the walking gait pattern.

Crickets whose paired connectives between the brain and subesophageal ganglion

(SEG) (circumesophageal connectives) were cut exhibited a tripod gait pattern. However,

when one side of the circumesophageal connectives was cut, the crickets continued to

turn in the opposite direction to the connective cut. Crickets whose paired connectives

between the SEG and prothoracic ganglion were cut did not walk, whereas the crickets

exhibited an ordinal tripod gait pattern when one side of the connectives was intact.

Crickets whose paired connectives between the metathoracic ganglion and abdominal

ganglia were cut initiated walking, although the gait was not a coordinated tripod pattern,

whereas the crickets exhibited a tripod gait when one side of the connectives was intact.

These results suggest that the brain plays an inhibitory role in initiating leg movements

and that both the descending signals from the head ganglia and the ascending signals

from the abdominal nervous system are important in initiating and coordinating insect

walking gait patterns.

Keywords: locomotion, rhythmic movement, cricket, gait, descending signal, ascending signal

INTRODUCTION

One of the common issues between biologists and robotics scientists is revealing the mechanisms
underlying adaptive locomotion in animals. It is generally believed that insects appeared on the
earth roughly 400million years ago and that approximately 1,000,000 insect species are living on the
earth. One of the reasons why insects have successfully evolved to spread across the earthmay be the
development of adaptive locomotion. Locomotion is the act of moving from place to place and is a
crucial behavior for insects to obtain resources such as foods, territories, to find mating partners, to
avoid predators, and so on. Revealing the neuronal mechanisms underlying locomotion in insects
can aid in understanding the evolution of insect behaviors, as well as accelerate the development of
novel design and control laws for legged robots.

This study focuses on cricket locomotion. Cricket is one of the ideal experimental animals to
investigate neuronal mechanisms underlying varieties of behaviors such as locomotion [walking
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(Owaki et al., 2021), flight (Schul and Schulze, 2001; Pollack
andMartins, 2007), swimming (Matsuura et al., 2002), aggressive
behavior (Stevenson et al., 2000; Sakura et al., 2012; Rillich and
Stevenson, 2014, 2017), escape behavior (Jacobs et al., 2008;
Yono and Aonuma, 2008), mating behavior (Nagao et al., 1991;
Ureshi et al., 2002; Nagamoto et al., 2005; Killian et al., 2006),
learning and memory (Matsumoto et al., 2006), phonotaxis
(Baden and Hedwig, 2008; Pollack and Kim, 2013), circadian
rhythm (Saifullah and Tomioka, 2002) and so on]. On the
other hand, in the robotics field, cricket inspired robots are
made where design and control law of autonomous robots
are investigated [the locomotion of micro-cricket robot: (Birch
et al., 2000), phonotaxis robot: (Lund et al., 1997; Reeve et al.,
2005), group behavior: (Funato et al., 2008, 2011), cricket-robot
interaction: (Guerra et al., 2010; Kawabata et al., 2013a, Kawabata
et al., 2013b)]. Some of the robotics scientists struggle to make
hexapod robots that move like an insect (Delcomyn and Nelson,
2000; Meyer et al., 2020). However, probably because they
employed centralized control, it seems hard to realize a robot that
behaves adaptively like an insect. Other robotics scientists employ
sensory-feedback-based control to realize adaptive locomotion
(Owaki et al., 2017). But still, it seems difficult to realize
exploratory behavior like an insect. To establish suitable design
and control law for adaptive robots, it is one of the effective
strategies to understand the adaptive behavior of insects using
biological approaches.

Exploratory behavior to identify resources is initiated by
the command signals generated in the brain. Thus, descending
signals from the brain are necessary for the initiation of voluntary
walking in both vertebrates and invertebrates (Kagaya and
Takahata, 2011). External and internal signals are associated
with the initiation of various behaviors. Chemical cues initiate
exploratory behavior in insects because they are attracted by the
chemical components of food and pheromones (Dethier, 1947).
Auditory signals are another type of cue for attracting conspecific
insects. For example, female crickets express phonotaxis to the
calling song stridulated by males (Alexander, 1961; Nagao and
Shimozawa, 1987; Jacob and Hedwig, 2016). Internal signals also
function to initiate behaviors. Starvation and thirst can increase
the motivation to initiate exploratory behavior for food and
water, indicating that food digestion and the excretion system are
associated with initiating behaviors in insects.

Insects are hexapod animals and most of them exhibit a
tripod gait pattern, whereby the foreleg and hind leg on one
side move in synchrony with the midleg on the other side
(Wilson, 1966; Bender et al., 2011; Smolka et al., 2013; Ramdya
et al., 2017). Descending signals via the central complex in the
brain are important for initiating walking in insects (Strausfeld,
1999; Bender et al., 2010; Emanuel et al., 2020). The central
complex is one of the important neuropils in the brain where
multi kinds of sensory information are converged and processed,
such as visual and olfactory information, auditory information
(Homberg, 2008; Pfeiffer and Homberg, 2014). It is believed
that the key role of the central complex is locomotor control
(Strauss, 2002; Bender et al., 2010; Ritzmann et al., 2012), spatial
orientation (Neuser et al., 2008; Triphan et al., 2010; Homberg
et al., 2011), visual memory (Liu et al., 2006; Ofstad et al.,

2011), and various forms of arousal (Lebestky et al., 2009; Kong
et al., 2010). The local centers of the leg movements lie within
the thoracic ganglia, where oscillatory neuronal activities, which
are known as central pattern generators (CPGs), contribute to
rhythmic leg movements (Borgmann et al., 2009). Descending
information from the brain into the thoracic ganglia is necessary
to coordinate the movement of the legs (Heinrich, 2002; Emanuel
et al., 2020). The subesophageal ganglion (SEG) plays a crucial
role in walking (Knebel et al., 2018). However, our previous study
demonstrated that headless crickets do not exhibit voluntary
walking, except following defecation (Naniwa et al., 2019).
After-defecation walking is initiated by ascending signals from
the terminal abdominal ganglion. This suggested to us that
ascending signals from abdominal ganglia may also contribute
to coordinated walking. Indeed, cricket elicits avoidance walk by
responding to air displacement that is detected by circus (Camhi
et al., 1978; Shimozawa et al., 2003; Dupuy et al., 2011). The
sensory signals from the circus are converged and processed
in the terminal abdominal ganglion (Kanou and Shimozawa,
1984; Yono and Aonuma, 2008). Activation of ascending giant
interneurons introduce activation of motor control in the
thoracic ganglia to initiate avoidance walk (Ritzmann and Camhi,
1978; Ritzmann and Pollack, 1986). It is also demonstrated that
abdominal ganglia in the cricket control the timing of the calling
song pattern (Jacob and Hedwig, 2016). These indicate that
the ascending signals from the abdominal ganglia can mediate
neuronal activities of the thoracic ganglia. Thus, understanding
the roles of ascending signals from the abdominal gangliamust be
necessary to reveal the neuronal mechanism underlying adaptive
locomotion in insects.

In this study, we aimed to determine how the ascending
signals from the abdominal nervous system and the descending
signals from the brain and SEG influence the coordinated walking
gait pattern. To investigate this issue, we surgically cut the
connectives of the ventral nerve cord at different positions
and analyzed the walking gait pattern of the field cricket. To
determine the roles of the brain in initiating and regulating
the walking gait, either the paired connectives or one side
of the connectives between the brain and SEG were cut. To
investigate the roles of the SEG, either the paired connectives
or one side of the connectives between the SEG and prothoracic
ganglion were cut. Furthermore, to investigate the roles of the
ascending signals from the abdominal nervous system, either
the paired connectives or one side of the connectives between
the metathoracic ganglion and first free abdominal ganglion
were cut. Based on these results, we demonstrated that both the
descending signals and the ascending signals into the thoracic
ganglia play an important role in maintaining a coordinated
walking pattern.

MATERIALS AND METHODS

Animals
The cricket Gryllus bimaculatus (De Geer) used in this study
were raised in a laboratory colony. They were reared on a 14
h:10 h light and dark cycle (lights on at 6:00 h) at 28± 2◦C. They
were fed a diet of insect food (Sankyo Lab, Tokyo, Japan) and
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water ad-libitum. Adult male crickets that had molted within 2
weeks before the experiments were randomly selected for use in
this study.

Behavioral Experiments
The crickets used were randomly selected from the colony. A
cricket was placed on a handmade passive treadmill using a
floating ball to observe its walking pattern. The treadmill ball was
composed of a Styrofoam sphere (φ150mm) that hovered over
a stream of air flowing beneath it. Each cricket was anesthetized
with CO2 gas for 10 s and was then placed on the ball. A steel
rod (φ100µm) was attached to the thorax of the cricket using
dental wax (Shofu, Kyoto, Japan). The rod was inserted into a
plastic tube (φ500µm) that was fixed to a manipulator, by means
of which the cricket was placed in the exact desired position on
the Styrofoam sphere (floating ball). The behavioral experiment
was performed 1 h after the cricket was placed on the ball so that
it adapted to the new circumstances. A cricket on the ball could
walk as well as change its orientation and ground clearance freely.

To investigate the roles of either the ascending or descending
signals into the thoracic ganglia, where the premotor signals
for locomotion are generated, the intersegmental connectives
between the brain and SEG, between the SEG and prothoracic
ganglion, and between the metathoracic ganglion and abdominal
ganglia were cut using a razor blade. Surgical treatment was
performed after administering anesthesia. A cricket held by hand
was placed under the dissection microscope (SZX-12, Olympus,
Tokyo Japan), and then a small square window was opened on
the head to cut the intersegmental connectives. The cuticle cut
off was replaced, and the hemolymph clotted quickly to close
the window. Behavioral experiments were performed 3 h after
surgical treatment.

The locomotion patterns of the crickets were observed and
recorded using a high-speed camera (800 × 600 pixels, 300
fps, HAS-L1, DITECT, Japan). Intact crickets and the crickets
whose intersegmental connectives between thoracic ganglia and
abdominal ganglia were cut initiated voluntary walking on the
ball. In contrast, the cricket whose paired circumesophageal
connectives were cut did not walk without external stimulation.
To initiate walking, the cercus of the cricket was stimulated by
touching with a paintbrush. The detail of the touching stimuli
is described in the previous study (Aonuma, 2020). Tactile
stimuli were applied once or twice using a paintbrush in each
trial and intertrial interval was varied between 1 and 5min to
prevent habituation. Continuous walking-period was shortened
in connective-cut crickets compared to intact one (see Table 1).
Therefore, we focused on a continuous walking-period to analyze
gait patterns. The images were saved as sequential JPEG files on a
Windows PC for subsequent analysis.

Data Analysis
To analyze and evaluate the leg movement patterns, we drew
polar histograms (Naniwa et al., 2020), in which we focused on
the leg movement direction. In brief, we defined the power stroke
as the thrust produced when the angle between the femur and
tibia increased in the case of the hindleg, or when the angle
between the femur and trunk increased in the case of the foreleg

and midleg. During the recovery stroke, the angle between the
femur and tibia decreased for the hindleg or the angle between
the femur and trunk decreased for the foreleg and midleg. The
stroke mode was obtained manually from the video data. The
condition of each leg in a frame was compared to those of
the adjacent frames to determine whether it was a power or
recovery stroke.

In the definition of the phase for each leg, t is a certain time
and tn is the start time of the power stroke directly before the nth
step of the leg of interest.

The phase φ at a time t is defined as

φ (t) =
t− tn

tn+1 − tn
360(deg).

Therefore, the leg phase is defined as the period between
the beginning of two consecutive power strokes. In this case,
φobject,φsubject are the phases of an arbitrary leg, where the
subscripts object and subject indicate the leg positions (e.g.,
LF, RM).

The leg phase difference of the subject leg relative to the object
leg at a time t is expressed as

φobject−subject (t) =
{

φobject (t) − φsubject (t)
(

φobject ≥ φsubject
)

φobject (t) − φsubject (t) + 360
(

φobject < φsubject
).

This method aims to provide an intuitive and precise
representation of the rhythmic pattern corresponding to the
variations in the cricket legs owing to movement. Therefore, even
in a polar representation, in which the area represents the ratio of
frequencies, the height of a bar is the value of the square root of
the frequency that it represents. As a result, the total area of the
bar is 1 in a polar histogram (Nemec, 1988). The phase difference
between the legs can be calculated for each frame. The polar
histogram of the experimental results represents a summary of
the frequencies of leg phases for all individuals and all frames
in each experimental pattern. In an ideal tripod, the leg phase
difference between adjacent legs (e.g., LF and RF or LF and LM)
is always 180◦.

In the polar histogram, the phase mean Φ is calculated as:

ReiΦ =
1

N

∑

t

eiφ(t),

where R is the mean resultant length of each histogram, N is the
total amount of sample data, and i is an imaginary number.

The circumferential dispersion s and circumferential standard
deviation ν of the circumferential data are defined as follows:

s ≡ 1− R (0 ≤ s ≤ 1)

ν ≡
√

−2 log (R).

Frontiers in Robotics and AI | www.frontiersin.org 3 March 2021 | Volume 8 | Article 62509460

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


N
a
n
iw
a
a
n
d
A
o
n
u
m
a

In
te
rse

g
m
e
n
ta
lS

ig
n
a
ls
fo
r
W
a
lkin

g
P
a
tte

rn

TABLE 1 | Summary of the results.

Specimens Number of

specimens

Average time

analyzed [sec]

Average number of

steps analyzed

± SD[step]

Combination of

legs

Sample size: total

number of steps

analyzed [step]

Φ [deg] ν [deg] R d Power Kuiper test vs.

intact

Kuiper statistic

V-test for 180

V Statistic

(A) N = 5 3.06 11.3 ± 3.0 LF-RF 113 185 39.6 0.79 - 9.97†

P < 0.01

LM-RM 113 165 47.6 0.71 - 9.00†

P < 0.01

LH-RH 114 180 28.9 0.88 - 12.1†

P < 0.01

LF-LM 112 212 42.2 0.76 - 8.98†

P < 0.01

LM-LH 113 225 42.6 0.76 - 6.76†

P < 0.01

LF-LH 114 68.7 62.1 0.56 - −2.50

P = 0.99

RF-RM 114 194 35.1 0.83 - 9.96†

P < 0.01

RM-RH 114 241 29.3 0.88 - 4.14†

P < 0.01

RF-RH 114 71.7 57.9 0.60 - −2.45

P = 0.99

(B) N = 5 2.46 5.8 ± 2.3 LM-RM 57 193 55.5 0.63 0.54 0.90 0.18

P = 0.87

5.45†

P < 0.01

(C) N = 5 3.30 6.2 ± 2.6 LM-RM 57 187 131 0.07 0.22 0.27 0.57

P < 0.01

−2.12

P = 0.98

(D) N = 5 11.5 0.7 ± 0.6 LM-RM - - - - - - - -

(E) N = 5 2.86 11.1 ± 3.5 LM-RM 109 165 37.3 0.81 0.00 0.05 0.23

P = 0.56

9.53†

P < 0.01

(F) N = 5 8.47 12.2 ± 3.7 LM-RM 121 109 108 0.17 0.67 0.99 0.59

P < 0.01

−1.38

P = 0.92

(G) N = 5 6.43 6.4 ± 2.7 LM-RM 63 87.5 110 0.16 0.91 1.00 0.58

P < 0.01

−3.46

P = 1.00

(H) N = 5 3.26 7.6 ± 2.7 LM-RM 71 199 108 0.17 0.41 0.74 0.41

P < 0.01

1.65

P = 0.05

(I) N =5 1.71 4.1 ± 1.5 LM-RM 51 180 55.7 0.62 0.29 0.38 0.23

P = 0.56

4.12†

p < 0.01

(A) Intact crickets. (B) Crickets whose paired circumesophageal connectives were cut. (C) Crickets whose left side of the circumesophageal connective were cut. (D) Crickets whose paired connectives between SEG and prothoracic

ganglion were cut. (E) Crickets whose left side of the connective between SEG and prothoracic ganglion was cut. (F) Crickets whose left side connective between brain and SEG, and left side connective between SEG and prothoracic

ganglion were cut. (G) Crickets whose right side connectives between brain and SEG, and left side connectives between SEG and prothoracic ganglion were cut. (H) Crickets whose paired connectives between metathoracic ganglion

and 1st free abdominal ganglion were cut. (I) Crickets whose left side connective between metathoracic ganglion and 1st free abdominal ganglion was cut. Φ, mean phase difference; ν, circular standard deviation; R, mean resultant

length; d, effect size. Kuiper statistic is a descriptive statistic for a two-sample Kuiper test with intact crickets. The significance level α = 0.05; V statistic is a descriptive statistic based on the V-test for 180. It tests the null hypothesis that

there is no tendency for leg phase differences to be distributed around 180. Significance level α = 0.05. †the V statistic is greater than the rejection threshold at α = 0.05 (Batschelet, 1981).
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FIGURE 1 | Walking gait patterns of intact crickets. Polar histograms indicate the phase differences between two legs in the intact crickets (N = 5), where the radial

axis is the probability that the intact crickets exhibited a tripod gait pattern on the floating ball of the treadmill. (A) The phase difference between left and right forelegs.

(B) The phase difference between left and right midlegs. (C) The phase difference between left and right hindlegs. (D) The phase difference between left foreleg and

midleg. (E) The phase difference between left foreleg and hindleg. (F) The phase difference between left midleg and hindleg. (G) The phase difference between right

foreleg and midleg. (H) The phase difference between right foreleg and hindleg. (I) The phase difference between left midleg and hindleg. LF, left foreleg; RF, right

foreleg; LM, left midleg; RM, right midleg; LH, left hind leg; RH, right hind leg.

The rank statistics of the measured circumference data φ̄ (t),

sorted in ascending order in the range of 0 ≤ φ < 2π , are
represented by {φ̄∗

(1), φ̄
∗
(2), · · · , φ̄

∗
(N )

}.
In this case, the empirical distribution function S (φ) can be

expressed as

S
(

φ
∗

(n)

)

= n/N, n = 1, 2, · · · N.

The variations in the phase differences between legs could be
intuitively understood by comparing the shapes of the empirical
distribution functions. In this study, the empirical distribution
function of the leg phase difference between the midlegs in
each experiment is illustrated as a representative example.
The phase distribution of the midlegs was tested. G∗Power
(Version 3.1.9.6) was used to conduct a post-hoc analysis of
effect size d and power—the significance level α =0.05. The
two-sample Kuiper test was performed for comparison with
midleg phase distribution of intact cricket. The two-sample
Kuiper test assesses the anomaly of continuous, one-dimensional

probability distributions (Kuiper, 1960; Paltani, 2004). The V-
test was performed to confirm that the midleg phases were in
the opposite phase. It tests the null hypothesis that there is no
tendency for leg phase differences to be distributed around 180.
The number of specimens used in each experimental condition
was five. The samples used for the tests were the leg phase at the
timing of each leg grounding (n= 51–121).

RESULTS

An intact cricket was anesthetized and placed on the floating
ball of the treadmill. After recovered from anesthesia, voluntary
evoked walking of the cricket was observed and recorded for
10min, and then the periods of continuously walking were
focused to analyze the gait pattern. The intact crickets exhibited
a tripod gait pattern during walking on the floating ball of the
treadmill (N = 5, Table 1A, Figure 1, Supplementary Video 1).
The polar histogram indicates the phase difference between two
of the six legs. The phase difference between the left and right
forelegs occurred in an almost anti-phase manner. The mean of
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the foreleg phase difference ΦLF−RF was 185◦, with a standard
deviation νLF−RF of 39.6◦. The mean vector length RLF−RF was
0.79. Similarly, the left and right midlegs moved in an anti-phase
manner. The mean of the midleg phase difference ΦLM−RM was
164◦, with a standard deviation νLM−RM of 47.6◦. The mean
vector length RLM−RM was 0.71. The left and right hindlegs
also moved in an anti-phase manner. The mean of the midleg
phase difference ΦLH−RH was 180◦, with a standard deviation
νLH−RH of 28.9◦. The mean vector length RLH−RH was 0.88.
The foreleg and midleg on the same side moved in an almost
anti-phase manner (ΦLF−LM : 212, νLF−LM : 42.2, RLF−LM

: 0.76, ΦRF−RM : 194, νRF−RM : 35.1, RRF−RM : 0.83 ), and
the foreleg and hind leg on the same side moved slightly later
than in-phase (ΦLF−LH : 68.7, νLF−LM : 62.1, RLF−LM : 0.56,
ΦRF−RH : 71.7, νRF−RH : 57.9, RRF−RH : 0.60 ). A V-test for
180 was also performed on the inter-leg phase differences of the
intact crickets. The leg phases tended to be concentrated at 180◦,
between the adjacent legs in the tripod gait [LF-RF: n = 113, V
statistic for 180◦: 9.97, LM-RM: n= 113, V statistic for 180◦: 9.00
(P < 0.01), LH-RH: n = 114, V statistic for 180◦: 12.1, LF-LM:
n = 112, V statistic for 180◦: 8.98 (P < 0.01), LM-LH: n = 113,
V statistic for 180◦: 6.76 (P < 0.01), RF-RM: n = 114, V statistic
for 180◦: 9.96 (P < 0.01), RM-RH: n = 114, V statistic for 180◦:
4.14 (P < 0.01), Table 1A]. However, the degree of concentration
varied. These results indicate that the legs did not maintain a
perfectly coordinated relationship with one another during the
tripod gait in the intact crickets. The intact crickets maintained
the leg-phase relationship characteristic of a tri-pod gait with a
certain degree of variability.

To investigate the manner in which the ordinary tripod
gait pattern is regulated by descending signals from the brain
or ascending signals from the abdominal nervous system,
the connectives of the ventral nerve cord were surgically
disconnected. The central nervous system of insects has a
symmetric structure. The brain (protocerebrum, deutocerebrum,
and tritocerebrum) is joined by paired nerve connectives to the
SEG, which is, in turn, linked to the thoracic and abdominal
ganglia by paired connectives.

Disconnection of Circumesophageal
Connectives
The cricket whose paired circumesophageal connectives were
cut did not show voluntary evoked walking. To investigate
the walking gait pattern of the surgically treated cricket, we
touched the cercus using a fine paintbrush to evoke walking. The
disconnection of the paired circumesophageal connectives did
not change the walking gait pattern of the test crickets, which
walked on the floating ball with a tripod gait (N = 5, Figure 2A,
Supplementary Video 2). The test crickets did not respond to
tactile stimuli on the antennae, although they responded to
tactile stimuli on the cercus while walking. This indicates that
the descending signals from the brain into the SEG were shut
down. The crickets mainly walked straight forward and did not
turn voluntarily. The phase difference between the left and right
midlegs occurred in an anti-phase manner (Figure 2Ab). In the
intact crickets, the mean midleg phase difference ΦLM−RM was

164◦, with a standard deviation νLM−RM of 47.6◦. The mean
vector length RLM−RM was 0.71. In contrast, in the test crickets,
the mean of the midleg phase difference ΦLM−RM was 193◦,
with a standard deviation νLM−RM of 55.5◦. The mean vector
length RLM−RM was 0.63. The shape of the empirical distribution
function of the midlegs of the test crickets was similar to that
of the intact crickets (Figure 2B). The inter-leg phase difference
of the midlegs of the test cricket was not significantly different
from that of intact cricket and was concentrated in an anti-phase
manner [LM-RM: n= 57, Kuiper statistic vs. intact LM-RM:0.18
(P = 0.87), V statistic for 180◦: 5.45 (P < 0.01), Table 1B]. In
contrast, leg frequencies tended to be lower than those of intact
crickets (Supplementary Figure 1). This indicates that the gait
pattern of the test cricket is classified as a tripod gait although its
walking pattern is slightly different from that of the intact cricket.

However, the crickets in which only the left side
of the circumesophageal connectives was cut did not
walk straight forward but continued to turn clockwise
(Supplementary Video 3). This kind of surgically treated
crickets showed voluntary evoked walking without tactile
stimuli. Their gaits did not exhibit an ordinary tripod pattern
(N = 5, Figure 3). The polar histogram of these test crickets
indicates that the phase differences between the left and right
legs were not consistent (Figure 3A). In the test crickets, the
mean of the midleg phase difference ΦLM−RM was 187◦, with a
standard deviation νLM−RM of 131◦ (Table 1C). The mean vector
length RLM−RM was 0.07. The shape of the empirical distribution
function of the midlegs in the test crickets was different from
that of the intact crickets [LM-RM: n = 57, Kuiper statistic vs.
intact LM-RM:0.57 (P < 0.01), V statistic for 180◦: −2.12 (P
= 0.98), Table 1C, Figure 3B]. This analysis also demonstrates
that the walking pattern was far from the ordinary tripod gait
(Figure 3C). The gait chart diagram of the test crickets reveals
that the duration of the left leg movements appeared to be
rhythmic, similar to that of the intact crickets. The duration of
the right legs touching the floor was much longer than that of the
left legs. The frequency of the right legs was lower than that of the
left side, and the stroke angle of the right legs was smaller than
that of the left side (Supplementary Figure 1C). This indicates
that the left legs moved more than the right legs, making the
cricket continue to turn clockwise. Similarly, when the right side
of the circumesophageal connective was cut, the test crickets
continued to turn counterclockwise and did not exhibit a tripod
walking gait pattern (Supplementary Video 4).

Disconnection of Connectives Between
SEG and Prothoracic Ganglion
To investigate the role of the SEG, the paired connectives
between SEG and prothoracic ganglion in the crickets were
surgically cut. The behavior of these test crickets was the
same as those of the headless crickets previously reported
(Naniwa et al., 2019). The test crickets did not show voluntary
evoked walking on the ball, except during defecation. They
did not respond with walking to the tactile stimuli using the
paintbrush. Therefore, the gait chart diagrams indicate that
all legs of the crickets were always on the ground (N = 5,
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FIGURE 2 | Walking gait pattern of crickets in which paired nerve connectives between brain and SEG were cut. (A) Polar histograms indicate phase differences

between two legs in test crickets (N = 5). The polar histograms demonstrate that the test crickets exhibited a tripod gait pattern on the floating ball of the treadmill.

(a–i) Phase differences between pairs of legs. (B) Comparison of the empirical distribution function of leg phase differences between left and right legs ΦLM−RM The

black line indicates the empirical distribution function of the intact crickets and the red line indicates that of the crickets in which the pair of connectives between the

brain and SEG was cut. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right midleg; LH, left hind leg; RH, right hind leg.
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FIGURE 3 | Walking gait patterns of crickets in which left side of nerve connectives between brain and SEG was cut. (A) Polar histograms indicate phase differences

between two legs in test crickets (N = 5). The test crickets continued to turn clockwise. The polar histograms demonstrate that the walking pattern was not a tripod

gait. (a–i) Phase differences between pairs of legs. (B) Comparison of the empirical distribution function of leg phase differences between left and right legs ΦLM−RM.

The black line indicates the empirical distribution function of the intact crickets and the red line indicates that of the test crickets. (C) Gait chart diagram of test cricket.

The filled part indicates the duration of the power stroke period and the blank part indicates the duration of the recovery stroke. This also demonstrates that the

walking pattern was not a tripod gait in the test cricket. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right midleg; LH, left hind leg; RH, right hind leg.
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FIGURE 4 | Gait chart diagram of cricket in which paired nerve connectives between SEG and prothoracic ganglion were cut. The filled parts indicate that the tip of

the legs touched the floor, demonstrating that the cricket did not walk on the floating ball of the treadmill. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right

midleg; LH, left hind leg; RH, right hind leg.

Figure 4, Supplementary Video 5). All test crickets did not walk
a sufficient number of steps to analyze leg phase difference,
frequency, and amplitude (average n = 0.7, Table 1D). However,
if only one of the connectives between the SEG and prothoracic
ganglion was cut, the crickets exhibited intact-like walking. The
test crickets in which the left-side connective between the SEG
and prothoracic ganglion was cut could walk with a tripod
gait (N = 5, Figure 5, Supplementary Video 6 0:00-1:15). The
crickets showed voluntary evoked walking. We focused on the
periods of continuously walking to analyze the gait pattern. The
phase differences between the left and right legs occurred in
an anti-phase manner (Figures 5Aa–c). The foreleg and midleg
of the same side moved in an anti-phase manner, whereas the
foreleg and hindleg of the same side moved in an in-phase
manner (Figures 5Ad–i). In the test crickets, the mean of the
midleg phase difference ΦLM−RM was 165◦, with a standard
deviation νLM−RM of 37.3◦. The mean vector length RLM−RM

was 0.81. The shape of the empirical distribution function of
the pair of midlegs of the test crickets was similar to that of
the intact crickets (LM-RM: n = 109, Kuiper statistic vs. intact
LM-RM:0.23 (P = 0.56), V statistic for 180◦: 9.53 (P < 0.01),
Table 1E, Figure 5B). Neither leg frequency nor stroke angle
was significantly different from that of intact crickets under
this experimental condition (Supplementary Figure 1D). We
also examined the behavior when only the right-side connective
between the SEG and prothoracic ganglion was cut. The results
were quite similar to those of the crickets with the left-side
connective cut (Supplementary Video 6 1:15–2:12).

The crickets in which the left-side connectives between both
the brain and SEG, and the SEG and prothoracic ganglion were
cut did not walk straight forward, but continued to turn clockwise
(N = 5, Supplementary Video 7 0:00–1:06). The walking of the
crickets was evoked without tactile stimuli. We focused on the
periods of continuously walking to analyze the gait pattern. The

gaits in these test crickets did not exhibit an ordinary tripod
pattern (Figure 6). The polar histogram of the test crickets
indicates that the phase differences between the left and right
legs were not consistent (Figure 6A). In the test crickets, the
mean of the midleg phase difference ΦLM−RM was 109◦, with
a standard deviation νLM−RM of 108◦. The mean vector length
RLM−RM was 0.17. The shape of the empirical distribution
function of the midlegs of the test crickets was different from
that of the intact crickets [LM-RM: n = 121, Kuiper statistic
vs. intact LM-RM: 0.59 (P < 0.01), V statistic for 180◦: −1.38
(P = 0.92), Table 1F, Figure 6B]. The gait chart diagram of
the test crickets demonstrates that the duration of the left leg
movements appeared to be rhythmic, as in the intact crickets
(Figure 6C). Compared with intact crickets, the frequencies of
leg movements were rather low. In addition, the frequencies of
the movement in the midleg and hind legs on the right side were
smaller than those on the left side (Supplementary Figure 1E).
The duration of the right legs touching the floor was much
longer than that of the left legs. The angular stroke of the left
midleg was not significantly different from that of intact crickets,
while the angular stroke of the right midleg was suppressed.
As a result, the test crickets turned in the clockwise direction.
We also investigated the behavior of the crickets in which the
right-side connectives between both the brain and SEG, and
between the SEG and prothoracic ganglion were cut. These
crickets continued to turn counterclockwise and did not exhibit
a tripod gait (Supplementary Video 7 1:06–2:12).

The behavior of the crickets in which the left-side connective
between the brain and SEG, and the right-side connective
between the SEG and prothoracic ganglion were cut was the
same as that of the crickets in which the left-side connectives
between the brain and the SEG, and between the SEG and
prothoracic ganglion were cut. The walking of the crickets
was evoked without tactile stimuli. Again, the test crickets did
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FIGURE 5 | Walking gait patterns of crickets in which left side of nerve connectives between SEG and prothoracic ganglion was cut. (A) Polar histograms indicate

phase differences between two legs in test crickets (N = 5). The polar histograms demonstrate that the test crickets exhibited a tripod gait pattern on the floating ball

of the treadmill. (a–i) Phase differences between pairs of legs. (B) Comparison of the empirical distribution function of leg phase differences between left and right legs

ΦLM−RM. The black line indicates the empirical distribution function of the intact crickets and the red line indicates that of the crickets in which only the left side of the

nerve connectives between the metathoracic ganglion and abdominal ganglia was cut. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right midleg; LH, left hind

leg; RH, right hind leg.
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FIGURE 6 | Walking gait patterns of crickets in which left sides of nerve connectives between brain and SEG, and between SEG and prothoracic ganglion were cut.

(A) Polar histograms indicate phase differences between two legs in test crickets (N = 5). The test crickets continued to turn clockwise. The polar histograms

demonstrate that the walking pattern was not a tripod gait. (a–i) Phase differences between pairs of legs. (B) Comparison of the empirical distribution function of

phase differences between left and right legs ΦLM−RM. The black line indicates the empirical distribution function of the intact crickets; the blue line indicates that of the

test crickets, and the red line indicates that of the crickets in which the left side of the nerve connectives between the brain and SEG was cut (shown in Figure 3B).

(C) Gait chart diagram of test cricket. The filled parts indicate the duration of the power stroke period, and the blank part indicates the duration of the recovery stroke.

This demonstrates that the walking pattern was not a tripod in the test crickets. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right midleg; LH, left hind leg;

RH, right hind leg.
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not walk straight forward, but continued to turn clockwise
(N = 5, Supplementary Video 8 0:00–0:55). The gaits pattern
of these test crickets did not exhibit a tripod (Figure 7). The
polar histogram of the test crickets indicates that the phase
differences between the left and right legs were not consistent
(Figure 7A). In the test crickets, the mean of the midleg phase
differenceΦLM−RM was 87.5◦, with a standard deviation νLM−RM

of 110◦. The mean vector length RLM−RM was 0.16. The shape
of the empirical distribution function of the midlegs of the test
crickets was different from that of the intact crickets [LM-RM:
n = 63, Kuiper statistic vs. intact LM-RM:0.58 (P < 0.01), V
statistic for 180◦: −3.46 (P = 1.00), Table 1G, Figure 7B]. The
gait chart diagram of the test crickets demonstrates that the
duration of the left leg movements appeared to be rhythmic, as
in the intact crickets, but the right legs were not coordinated
(Figure 7C). Compare to intact crickets, the frequencies of the leg
movements were rather low. In addition, the frequencies of the
legmovement on the right side were smaller than those on the left
side (Supplementary Figure 1F). The angular stroke of the left
midleg was not significantly different from that of intact crickets,
while the angular stroke of the right midleg was suppressed. As a
result, the test crickets turned in the clockwise direction. When
the right-side connective between the brain and SEG, and the
left-side connective between the SEG and prothoracic ganglion
were cut, the test crickets continued to turn counterclockwise
(Supplementary Video 8 0:55–2:12).

Disconnection of Connectives Between
Metathoracic Ganglion and Abdominal
Ganglia
The crickets in which the pair of connectives between the
metathoracic ganglion and first free abdominal ganglion
was cut did not exhibit a tripod gait (N = 5, Figure 8A,
Supplementary Video 9). The crickets showed voluntarily
evoked walking although they did not respond with walking to
the tactile stimuli of the cercus. The phase differences between
the left and right midlegs were not consistent (Figure 8Aa).
In the test crickets, the mean of the midleg phase difference
ΦLM−RM was 199◦, with a standard deviation νLM−RM of 108◦.
The mean vector length RLM−RM was 0.17. The shape of the
empirical distribution function of the midlegs of the test crickets
was far from that of the intact crickets [LM-RM: n = 71, Kuiper
statistic vs. intact LM-RM:0.41 (P < 0.01), V statistic for 180◦:
1.65 (P = 0.05), Table 1H, Figure 8B]. The frequency of the
movements in all legs and the amplitude of the movement
in the midleg were slightly lower than those of the intact
cricket (Supplementary Figure 1G). However, the walking gait
pattern in the crickets in which the left-side connective between
the metathoracic ganglion and first free abdominal ganglion
was cut exhibited an ordinary tripod gait pattern (Figure 9A,
Supplementary Video 10 0:00–1:06). The walking was evoked
voluntarily. The polar histogram of the test crickets in which the
left-side connective was cut indicates that the phase differences
between the left and right legs occurred in an anti-phase manner
(Figure 9Aa). In the test crickets, the mean of the midleg phase
difference ΦLM−RM was 180◦, with a standard deviation νLM−RM

of 55.7◦. The mean vector length RLM−RM was 0.62. The shape
of the empirical distribution function of the midlegs of the test
crickets was similar to that of the intact crickets [LM-RM: n =

51, Kuiper statistic vs. intact LM-RM:0.23 (P = 0.56), V statistic
for 180◦: 4.12 (P < 0.01), Table 1I, Figure 9B]. The frequency
of movements in all legs was slightly lower than those of the
intact cricket (Supplementary Figure 1H). Similarly, when the
right-side connective between the metathoracic ganglion and
third abdominal ganglion was cut, the test crickets exhibited an
intact-like tripod gait walk (Supplementary Video 10 1:06–2:20).

DISCUSSION

Crickets walk with a tripod gait pattern on a flat floor. Although
the tripod gait is typical in insect walking, the gait patterns are
not always fixed, but rather, change flexibly depending on the
ground surface structure. The walking gait patterns may also
vary if the body structure is changed; for example, owing to a
loss of legs as a result of an accident (Full and Tu, 1991; Owaki
et al., 2021). To evaluate the changes in the gait patterns, gait
chart diagrams of insects have been drawn in many previous
studies (Wilson, 1966). A gait chart diagram has also been used
to evaluate the gait pattern of legged robots (Owaki et al., 2017).
Such a diagram expresses the movements of each leg and clearly
indicates a snapshot of the position of each leg. Moreover, polar
histograms describing gait patterns evaluate the phase differences
of a given pair of legs during walking (Naniwa et al., 2020). One of
the advantages of using a polar histogram is that it enables us to
evaluate the gait patterns of not only individuals but also a group
of animals and legged robots. We investigated the effects of the
loss of either the descending signals or ascending signals into the
thoracic ganglia on regulating the cricket gait pattern.

Descending Signals Into Thoracic Ganglia
to Initiate Walking
Although the crickets in which the paired circumesophageal
connectives were cut could walk, they did not change their
direction while walking on the floating ball. The polar histograms
of the treated crickets demonstrated that their gait was very
close to the typical tripod pattern of the intact crickets in
terms of inter-leg phase difference. As voluntary walking is
initiated by descending signals originating in the brain (Kien
and Altman, 1992; Kagaya and Takahata, 2011), the walking
of the treated crickets was different from voluntary walking
but could be initiated by receiving exteroceptive stimuli. The
crickets responded to either tactile stimuli or air puffing on the
cerci while walking. Crickets detect air currents using filiform
hairs that are arranged on the surface of the cerci of the
abdomen and respond with rapid avoidance movement when
they are deflected (Edwards and Palka, 1974). Information on
air movements is processed and integrated into the terminal
abdominal ganglion, and the signals are transferred to the
thoracic ganglia to initiate avoidance walking (Mendenhall and
Murphey, 1974; Aonuma et al., 2008; Yono and Aonuma, 2008).
Furthermore, the ascending signals from the abdominal nervous
system also contribute to the initiation of walking; for example,
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FIGURE 7 | Walking gait patterns of crickets in which left side of nerve connectives between brain and SEG, and right side of connective between SEG and

prothoracic ganglion were cut. (A) Polar histograms indicate phase differences between two legs in test crickets (N = 5). The test crickets continued to turn

clockwise. The polar histograms demonstrate that the walking pattern was not a tripod gait. (a–i) Phase differences between pairs of legs. (B) Comparison of the

empirical distribution function of phase differences between left and right legs ΦLM−RM The black line indicates the empirical distribution function of the intact crickets;

the blue line indicates that of the test crickets, and the red line indicates that of the crickets in which the left side of the nerve connectives between the brain and SEG

was cut (shown in Figure 3B). (C) Gait chart diagram of test cricket. The filled parts indicate the duration of the power stroke period, and the blank part indicates the

duration of the recovery stroke. This demonstrates that the walking pattern was not a tripod gait in the test crickets. LF, left foreleg; RF, right foreleg; LM, left midleg;

RM, right midleg; LH, left hind leg; RH, right hind leg.
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FIGURE 8 | Walking gait patterns of crickets in which paired nerve connectives between metathoracic ganglion and abdominal ganglia were cut. (A) Polar histograms

indicate phase differences between two legs in test crickets (N = 5). The polar histograms demonstrate that the test crickets did not exhibit a tripod gait pattern on the

floating ball of the treadmill. (a–i) Phase differences between pairs of legs. (B) Comparison of the empirical distribution function of phase differences between left and

right legs ΦLM−RM. The black line indicates the empirical distribution function of the intact crickets and the red line indicates that of the crickets in which the paired

nerve connectives between the metathoracic ganglion and abdominal ganglia were cut. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right midleg; LH, left hind

leg; RH, right hind leg.
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FIGURE 9 | Walking gait patterns of crickets in which left side of nerve connectives between metathoracic ganglion and abdominal ganglia was cut. (A) Polar

histograms indicate phase differences between two legs in test crickets (N = 5). The polar histograms demonstrate that the test crickets exhibited a tripod gait pattern

on the floating ball of the treadmill. (a–i) Phase differences between pairs of legs. (B) Comparison of the empirical distribution function of phase differences between

left and right legs ΦLM−RM. The black line indicates the empirical distribution function of the intact crickets and the red line indicates that of the crickets in which the left

side of the nerve connectives between the metathoracic ganglion and abdominal ganglia was cut. LF, left foreleg; RF, right foreleg; LM, left midleg; RM, right midleg;

LH, left hind leg; RH, right hind leg.
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after-defecation walking (Naniwa et al., 2019). Thus, certain types
of internal or external stimuli contribute to the initiation of
walking in brainless crickets. It has been reported that the brain
inhibits all reflex activities (Bethe, 1898). Neuronal signals for
coordinating the leg movements are generated in the thoracic
ganglia of insects. A decrease in the inhibition from the brainmay
have contributed to the treated crickets walking straight forward
in this study.

One of the remarkable findings of this study is that the
crickets in which one side of the circumesophageal connectives
was cut exhibited walking, while it continued to turn in
the opposite direction to that of the surgical cut of the
connective (Figure 3). The disconnection of the connective
induces loss of frequency entrainment, which in turn causes loss
of phase entrainment. This phenomenon appeared as though
the inhibition from the brain to the cut-side pathway was
abolished. The legs on the side of the connective cut moved
more (Supplementary Figures 1C–F), which in turn pushed the
body to the opposite side to continue turning. Movements of
the opposite side could be introduced when they were bent.
Therefore, the movements of the opposite side legs appeared to
be caused by the local reflex. Movements of the legs in insects
are detected by proprioceptive receptors (Tuthill and Wilson,
2016) such as the chordotonal organs (Hofmann et al., 1985;
Büschges, 1994), campaniform sensilla (Bässler, 1977), and hair
plate (Pearson et al., 1976; Wong and Pearson, 1976). Moreover,
sensory afferents directly activate the extensor motor neurons of
the trochanter and directly inhibit the flexor motor neurons in
the cockroach (Pearson et al., 1976). The leg reflection initiated
by a tactile stimulus was suppressed by the inhibitory descending
signals from the brain, whereas the reflection occurs without
brain signals in cockroach (Mu and Ritzmann, 2008). Thus,
bending the leg joints could activate the directory extensor motor
neurons to extend the legs of the crickets. Therefore, our results
suggest that inhibition of the brain contributes to the regulation
of coordinated walking in crickets.

The descending signals from the SEG into the thoracic
ganglia are important for initiating walking. Inhibiting or
blocking descending signals from SEG reduces the induction
and maintenance of walking (Gal and Libersat, 2006, 2008).
The crickets in which the paired connectives between the SEG
and prothoracic ganglion were cut did not walk, except after
defecation, as reported for the behavior of the headless cricket
(Naniwa et al., 2019). The motor neurons that activate the
leg muscles originate in the thoracic ganglia. The rhythmic
activities of neurons, known as CPGs, in the thoracic ganglia
are thought to be closely linked to coordinated leg movements
(Büschges et al., 1995; Büschges, 1998; Ritzmann and Büschges,
2007). The CPGs are modulated by the descending signals
from the brain that initiate, maintain, modify, and stop the
motor outputs for walking (Bidaye et al., 2017). The roles of
the SEG are believed to modulate the interactions between the
sensory inputs from the legs and motor output (Knebel et al.,
2018, 2019). It has also been reported that descending signals
from the SEG can exhibit pattern generators in the chest and
abdomen (Kien, 1990). It has been reported that the SEG plays an
important role in the initiation, maintenance, and coordination
of walking in the locust (Kien and Altman, 1984). Our behavior

experiments confirmed the important role of the SEG in
initiating walking.

Another significant finding in this study is that the crickets
in which one side of the paired connective between the SEG
and prothoracic ganglion was cut walked like the intact crickets
(Figures 5, 9). Furthermore, the crickets in which one side of the
circumesophageal connectives and one side of the connectives
between either the ipsilateral or contralateral side of the SEG and
prothoracic ganglion were cut continued to turn in the opposite
side to that of the circumesophageal connective cut (Figures 6, 7).
This suggests that the descending signals from the SEG converge
and are processed in the thoracic ganglia and that the leg
movements are regulated by the information from the SEG, even
if it is only passed through one side of the connectives. Therefore,
neurons may exist that integrate the information passed through
the left and right pathways. Bilaterally symmetrical dorsal
unpaired median (DUM) neurons have been identified in insects
[locust: (Plotnikova, 1969); cockroach: (Crossman et al., 1971);
and crickets (Clark, 1976)]. Certain DUM neurons terminate
in the leg muscles of cockroaches (Denburg and Barker, 1982;
Tanaka and Washio, 1988). Moreover, the DUM neurons in the
prothoracic ganglion contribute to walking regulation in crickets
(Gras et al., 1990). In the case of locusts, the effect of the neural
network comprising the brain, subesophageal ganglion, and
thoracic ganglion on locomotion patterns has been investigated
(Kien, 1983; Kien and Williams, 1983). Further investigation
is required to clarify which neurons contribute to interlimb
coordination in crickets.

Effect of Ascending Signals From
Abdominal Nervous System on Walking
In insects, the abdominal nervous system serves as the center
for controlling avoidance behavior (Mendenhall and Murphey,
1974; Tauber and Camhi, 1995; Card, 2012), mating behavior
(Killian et al., 2006), egg-laying behavior (Sugawara and Loher,
1986), and defecation walking (Naniwa et al., 2019). These
behaviors are closely linked to walking. Therefore, ascending
signals from the abdominal ganglia into the thoracic ganglia
may contribute to initiating and regulating walking in crickets.
Furthermore, the descending signals that are modulated by
the sensory feedback signals from the legs contribute to the
modulation of the coordinated walking gait (Bidaye et al., 2017;
Knebel et al., 2018). Thoracic ganglia form a network as CPGs
that are spontaneously excited by SEG to establish a constant
rhythm, while also coordinating leg motor patterns based on
ascending signals from the lower ganglia (Bässler et al., 1985;
Kien and Altman, 1992; Knebel et al., 2019). The coordinated
rhythmic leg motor pattern is modulated by sensory signals
acquired by mechanoreceptive organs of the legs (Owaki et al.,
2021). These studies indicate the activities of the CPGs in the
thoracic ganglia are modulated by multi kinds of signals, e.g.,
descending signals, sensory feedback, and so on. Our results add
ascending signals as other signals to modulate CPG activities
in the thoracic ganglia. Activation of the giant interneurons
originated in the terminal abdominal ganglion elicit avoidance
walking in the crickets (e.g., Jacobs and Murphey, 1987; Yono
and Aonuma, 2008). Some of the giant neurons innervate axons
into the thoracic ganglia and extend neuronal branches (Hirota
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et al., 1993). The neuronal branches of the ascending neurons
in the anterior ganglia have outputs to motor control (Aonuma
et al., 1994). Therefore, ascending signals from the abdominal
nervous systems could modulate motor control in the thoracic
ganglia. Ascending signals from the abdominal nervous systems
and the descending signals from the brain and SEG could
converge in the thoracic ganglia to coordinate walking gait
patterns in crickets. The disconnection of the paired connectives
between the metathoracic ganglion and first free abdominal
ganglion prevented tripod gait walking in the crickets. However,
the disconnection of one side of the connectives between the
metathoracic ganglion and first free abdominal ganglion did not
affect the expression of the tripod gait. Therefore, similar to
the descending signals from the SEG into the thoracic ganglia,
the ascending signals may be transferred into the bilateral
neurons to be integrated and processed in the thoracic ganglia.
Coordinated walking gait patterns are thought to be produced by
the CPGs, descending central commands, and sensory feedback
loops. This study demonstrated that the ascending signals
from the abdominal nervous system also contribute to the
generation of coordinated walking gait patterns in insects. It
is technically difficult to cut the metathoracic ganglion and to
fuse the first and second abdominal ganglia to examine how
these ganglia contribute to the coordinated gait pattern. In
contrast, cutting between the terminal abdominal ganglion and
the sixth abdominal ganglion did not affect the expression of
the tripod gait pattern (Supplementary Video 11). This suggests
that the sensory signals from cercus may not mainly contribute
to the expression of the tripod pattern. Thus, it is necessary to
investigate which ganglion or which group of ganglia interact
with SEG to coordinate the tripod gait and to investigate which
types of neurons contribute to regulating the leg movements
in crickets.
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Supplementary Figure 1 | Mean and standard deviation of the frequency of

movement of each leg and the movement amplitude of the midleg. The black

letters indicate the frequencies of the leg movements. The red letters indicate the

stroke angle of the midleg. A comparison test between intact cricket and

experimental crickets was performed. A comparison test between the right and

left middle leg in the experimental cricket was performed. Mann–Whitney U-test

was used for the comparison test of the leg frequency and the movement

amplitude. Significance level α = 0.01. (A) Intact crickets exhibited a tripod gait.

(B) Disconnection of the paired circumesophageal exhibited a tripod gait. (C)

Disconnection of the left-side of the circumesophageal connective exhibited a turn

clockwise. (D) Disconnection of the left-side connective between the SEG and

prothoracic ganglion exhibited a tripod gait. (E) Disconnection of the left-side of

the circumesophageal connective and the left-side connective between the SEG

and prothoracic ganglion (cutting ipsilateral side) exhibited a turn clockwise. (F)

Disconnection of the left-side of the circumesophageal connective and the

right-side connective between the SEG and prothoracic ganglion exhibited a turn

clockwise. (G) Disconnection of the paired connectives between the metathoracic

ganglion and first free abdominal ganglion exhibited an uncoordinated gait. (H)

Disconnection of the left-side connective between the metathoracic ganglion and

first free abdominal ganglion exhibited a tripod gait.
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A Reciprocal Excitatory Reflex
Between Extensors Reproduces the
Prolongation of Stance Phase in
Walking Cats: Analysis on a Robotic
Platform
Toyoaki Tanikawa*, Yoichi Masuda and Masato Ishikawa

Department of Mechanical Engineering, Osaka University, Suita, Japan

Spinal reflex is essential to the robust locomotion of quadruped animals. To investigate

the reflex mechanisms, we developed a quadruped robot platform that emulates the

neuromuscular dynamics of animals. The leg is designed to be highly back-drivable, and

four Hill-type muscles and neuronal pathways are simulated on each leg using software.

By searching for the reflex circuit that contributes to the generation of steady gait in

cats through robotic experiments, we found a simple reflex circuit that could produce leg

trajectories and a steady gait. In addition, this circuit can reproduce the experimental

behavior observed in cats. As a major contribution of this study, we show that the

underlying structure of the reflex circuit is the reciprocal coupling between extensor

muscles via excitatory neural pathways. In the walking experiments on the robot, a steady

gait and experimental behaviors of walking cats emerged from the reflex circuit without

any central pattern generators. Furthermore, to take advantage of walking experiments

using a neurophysiological robotic platform, we conducted experiments in which a part of

the proposed reflex circuit was disconnected for a certain period of time during walking.

The results showed that the prolongation of the stance phase caused by the reciprocal

excitatory reflex contributed greatly to the generation of a steady gait.

Keywords: spinal reflex, neurophysiology, bio-inspired robot, quadruped, walking, gait generation, hill-type

muscle, autonomous decentralized control

1. INTRODUCTION

Quadruped animals can immediately respond to various environmental disturbances and achieve
steady locomotion. Many experiments have been conducted to reveal the mechanism of motion
generation in quadrupeds. Grillner (1975) reported that the central pattern generator (CPG) in
the spinal cord generates a rhythmic gait pattern, even when the nerves from the brain and
proprioceptors are suspended. However, sensory feedback from receptors contributes significantly
to the motion generation of animals. Pearson (2004) demonstrated that sensory feedback through
reflex pathways determines the timing of phase transitions in a step cycle and shapes the
characteristics of movement patterns, which contributes significantly to extensor activation in
walking cats.
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Functions of the motor coordination of reflexes in walking
quadrupeds have been investigated in animal experiments. In
experiments byWhelan et al. (1995), electrical stimulation on the
afferent nerves from ankle extensor muscles prolonged the stance
phase in walking cats. This result suggests that the unloading
of the ankle extensor muscles initiates the stance-to-swing
transition. In experiments by McVea et al. (2005), assisting the
flexor muscle movement in walking cats during the swing phase
accelerated the activation timing of the ankle extensor muscles.
This result suggests that the angle of the hip joint initiates the
swing-to-stance transition. These studies highlight individual
reflex mechanisms in stance and swing phases; however, the
entire reflex circuit that generates the walking motion has not yet
been identified.

In recent years, the constructivist approach has been
employed to investigate the locomotionmechanism of animals by
reproducingmotor control of animals using robots and computer
simulations. Habu et al. (2018) has proposed a neuromuscular
model that reproduces the musculoskeletal system and detailed
neural pathways of cats. In the walking simulation, they designed
a CPG network to generate a trot gait, and when they introduced
feedback of ground reaction forces into the CPG, the model
changed the gait from trot to walk and gallop. As a simpler model
to understand the locomotion mechanism of animals, Maufroy
et al. (2010), Aoi et al. (2013), and Owaki and Ishiguro (2017)
proposed an oscillator model that adjusts leg phase based on
the ground contact information. In a walking experiment, their
robots can produce multiple animal-like gait patterns depending
on the speed.

Several studies have shown a crucial result in this research
field that the leg trajectories and steady gait can be achieved
by the interaction between spinal reflexes, body dynamics, and
environment, without using oscillator models or complex CPG
models. A human musculoskeletal model of Geyer and Herr
(2010) produced steady alternating gait using only reflex rules. A
cat hind leg model of Ekeberg and Pearson (2005) also showed
alternative gait only with the reflex rules, and Rosendo et al.
(2014) investigated this idea in real-world experiments using a
musculoskeletal robot. However, in these studies, the designers
divided the walking motion into multiple phases (ex. stance,
liftoff, swing, and touchdown phase) and designed a separate
reflex rule for each phase. Therefore, it is not clear how these
many reflex rules are integrated in the animal body, i.e., the
overall structure of the reflex circuit that produces a steady gait
and leg trajectory.

In order to clarify the structure of the reflex circuit that
generates the steady locomotion of cats, we explored the reflex
circuit using a quadruped robot platform that emulates the
neuromuscular dynamics of animals.

As a result, we found a simple reflex circuit that could
produce a steady gait and leg trajectories and also reproduce the
experimental behavior of cats. The major contribution of this
study is clarifying the essential structure of the reflex circuit to
produce a steady gait, which is the reciprocal excitatory reflex
between hip and knee–ankle extensor muscles. To evaluate the
proposed reflex circuit, we conducted walking experiments and
reproduced a neurophysiological experiment based on cats on

a quadruped robot. In the walking experiments, the quadruped
robot did not have a central pattern generator; however, it
produced a gait pattern and leg trajectories autonomously. In
the reproduction experiment of cats’ walking behaviors, the
robot reproduces the swing-to-stance transition based on the
hip angle in McVea et al. (2005) and a prolongation function
of the stance phase, with stimulation on the ankle extensor
nerves, as in Whelan et al. (1995). Moreover, utilizing a robot
with a reprogrammable reflex law in real time, we conducted an
experiment to remove the reciprocal excitatory pathway between
the extensors (the prolongation function of the stance phase)
during walking. The absence of the reciprocal excitatory pathway
reduced the gait stability of the robot. This result suggests that
the prolongation function provided by the reciprocal excitatory
pathway between the hip and knee–ankle extensors stabilizes the
gait pattern.

In section 2, we explain the mechanical design and control
system of the quadruped robot platform. Sections 3 and 4
describe muscle and reflex model and their implementation to
the robot. Section 5 presents the result of walking experiments,
and the gait emergence mechanism and a comparison with a
previous study are discussed in section 6. Section 7 summarizes
the effect of proposed reflex circuit and addresses about
future work.

2. QUADRUPED ROBOT THAT
REPRODUCES MUSCULAR PROPERTIES
AND REFLEXES

To reproduce and understand the reflex mechanism of animals,
we construct a quadruped robotic platform, shown in Figure 1,
that can reproduce muscle characteristics and reflexes like those
in Zhao et al. (2020). This quadruped robot comprises highly
back-drivable legs to reproduce the flexibility of animals and
torque-controllable motors that enable the robot to emulate the
muscle characteristics virtually.

First, we explain the mechanical design of the quadruped
robot platform. As shown in Figure 2, each leg consists of two
links, and the legs can move freely in the sagittal plane by driving
the upper and lower rotational joints. The leg module can also
rotate in the roll direction as adduction and abduction motion;
thus, the legs have three degrees of freedom. Each joint is driven
by a brushless direct current (BLDC) motor (MN6007 KV160,
T-Motor, China). The torque is transmitted by gears and timing
belts in the lower rotational joints and by only gears in the other
two joints. We embed the motors inside the hip part of the leg
module to reduce the moment of leg inertia. The reduction ratio
is as low as 1:7 so that all joints achieve high back-drivability,
and the measurement of motor current enables torque control.
A rotary encoder (ATM102-V, CUI Devices, USA) is installed on
the back of each motor to measure the rotation angle. The body
length, distance between the hips, link length of the legs, and
weight are 470 mm, 289 mm, 152 mm, and 7.6 kg, respectively.

Next, we describe the control system of the quadruped
robot. This control system comprises a low-level controller for
the BLDC motor and a high-level controller that reproduces
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FIGURE 1 | Snapshot of a quadruped robotic platform that can reproduce

muscle characteristics and reflexes.

the muscle characteristics and reflexes. The motor driver (v3.6
24V, ODrive) provides low-level control for the motor torque
with current feedback and measures the angle using the rotary
encoder at a frequency of 8 kHz. A microcontroller (Teensy
3.6) provides high-level control. It emulates virtual muscles and
reflex circuits based on the angle information received from the
motor driver and commands the target torques to reproduce
their characteristics to the motor driver. The communication
frequency between the controllers is 1 kHz.

3. REPRODUCTION OF MUSCLE
PROPERTIES

To reproduce and understand the reflex mechanisms of animals,
we emulate muscles and neural models using a quadruped robot
software.

3.1. Muscle Model
We introduce a Hill-type muscle model developed by Geyer
and Herr (2010), which is shown in Figure 3A. The Hill-
type muscle model consists of a contractile element (CE) that
exerts tension according to the muscle activation, a parallel-
connected elastic element (PE), and a series-connected elastic
element (SE). The CE has a length-dependent property, wherein
the contraction force is maximized at an optimal length, and
a velocity-dependent property. The contraction force becomes
relatively small and large during contraction and extension,
respectively. The elastic elements, PE and SE, have non-linear
elastic properties that produce tension when they exceed a
particular length.

Next, we formulate the details of the Hill-type muscle model
developed by Geyer and Herr (2010). Using muscle activity A ∈

[0, 1], we express the generated CE force, Fce, as

Fce = AFmaxfl(lce)fv(vce), (1)

where Fmax is the maximum isometric force, and lce and vce are
the length and velocity of the CE, respectively. The force–length
and force–velocity characteristics, fl(lce) and fv(vce), respectively,

are represented as

fl(lce) = exp

(

c

∣

∣

∣

∣

lce − lopt

loptω

∣

∣

∣

∣

3
)

(2)

fv(vce) =











vmax − vce

vmax + Kvce
vce < 0

N + (N − 1)
vmax + vce

7.56Kvce − vmax
vce ≥ 0

, (3)

where lopt is the length of fl(lopt) = 1, and c, ω, vmax, K,
and N are parameters that are used to determine the muscle
characteristics. The graphs of functions fl(lce) and fv(vce) are
presented in Figure 3B. The PE force, Fpe, and SE force, Fse, are
expressed as

Fpe(lce) =

{

Fmax

(

lce−lopt
loptǫpe

)2
lce > lopt

0 lce ≤ lopt
(4)

Fse(lse) =

{

Fmax

(

lse−lslack
lslackǫref

)2
lse > lslack

0 lse ≤ lslack
, (5)

where lse is the SE length, lslack is the rest length of SE, and ǫpe
and ǫref are the reference strains of PE and SE, respectively.

3.2. Implementation of Muscle Models to
the Robot
In this subsection, we discuss the muscle placement on the
quadruped robot. Although quadruped animals have numerous
muscles in their legs, we classify them into radial and angular
muscles based on the direction of force generation to improve
our understanding of the walking phenomena. According to the
muscle classification, the two-link legs of the quadruped robot are
considered to possess virtual rotational hip joints and linear joints
between the hips and toes, as shown in Figure 4. The extensors
and flexors are placed on each virtual joint. Themuscles of virtual
rotational and linear joints approximately correspond to the hip
muscles and knee–ankle muscles in animals, respectively.

We reproduce the muscle characteristics in the quadruped
robot using the following method developed by van Soest and
Bobbert (1993):

1) Compute muscle length lmtu from the measured leg joint
angles.

2) Update CE length lce. Because the SE is connected in series to
the CE and the PE, the muscle force, Fmtu, is expressed as

Fmtu = Fse = Fce + Fpe. (6)

Using Equations (1) and (6), the velocity of the CE is deformed
as

vce =
dlce

dt
= f−1

v

[

Fse(lse)− Fpe(lce)

AFmaxfl(lce)

]

, (7)

and lce is computable by integrating Equation (7).
3) The muscle force, Fmtu, is obtained by calculating Fse in

Equation (5) using lse = lmtu − lce. The muscle characteristics
are reproduced by generating motor torques that correspond
to the muscle forces.
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FIGURE 2 | Leg design of the quadruped robot. (A) Degree of freedom for the legs. (B) Detailed mechanism of the legs.

FIGURE 3 | Muscle properties reproduced on a quadruped robot. (A) Hill-type muscle model. (B) Force–length and force–velocity characteristics of the contractile

element (CE).

FIGURE 4 | Placement of muscle models on the quadruped robot.

Please see Geyer and Herr (2010) for more detail.

4. IMPLEMENTATION OF THE REFLEX
CIRCUIT

To reproduce and understand the reflex mechanism in animal
walking, we construct a reflex circuit that can reproduce the

walking functions of cats. In this section, we propose a simple
reflex circuit based on the results of previous experiments on
walking cats.

4.1. Design of the Reflex Pathway
We describe two results from previous experiments on walking
cats to construct a reflex pathway for the quadruped robot. In
experiments by Whelan et al. (1995), electric stimulation on
afferent nerves from ankle extensor muscles prolonged the stance
phase. This result suggests that the unloading of ankle extensor
muscles initiates the stance-to-swing transition. In experiments
by McVea et al. (2005), assisting the flexor muscle movement
during the swing phase accelerated the activation timing of the
ankle extensor muscles. This suggests that the angle of the hip
joint initiates the swing-to-stance transition.

We designed the reflex pathways, shown in Figure 5, using
these results. From the first experiment, we embedded excitatory
reflex pathways from the force receptors of the knee–ankle
extensors to the hip and knee–ankle extensor muscles. These
pathways provide a function; if the knee–ankle receptors
continue to sense the ground reaction force, themuscles continue
to extend the knee–ankle and hip joints. From the second
experiment, we embedded an excitatory reflex pathway from the
force receptors of the hip extensors to the knee–ankle extensor
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FIGURE 5 | Reflex pathways embedded in the quadruped robot.

muscles. With this pathway, if the hip extensor muscles are
fully stretched and generate tension, the sensory signal initiates
the swing-to-stance transition. It is important to note that to
suppress excessive excitation of the hip extensor at the end of
the swing phase, we embedded an inhibitory reflex pathway from
the force receptors of knee–ankle flexors to hip extensors through
trial and error.

4.2. Modeling of the Reflex Circuit
This subsection introduces a model of the spinal reflex that
can generate walking motions with the quadruped robot. We
implemented a simple reflex circuit, shown in Figure 6A, which
is part of the neural circuit model proposed by Rybak et al. (2006).

We formulate a model of the reflex circuit. In the following
equations, the superscript set of the leg muscles is denoted as
M = {HE,HF, KE, KF}, where HE, HF, KE, and KF denote the
hip extensors, hip flexors, knee–ankle extensors, and knee–ankle
flexors, respectively. For the state of a muscle, i ∈ M, at time t,
we denote the muscle activation as Ai(t), the muscle force scaled
by Fmax as Fi(t), and the excitation of the interneuron as Si(t).

The implementation model of the reflex circuit is shown in
Figure 6B. The behavior of a motor neuron that determines
muscle activity Ai(t) is expressed by Geyer et al. (2003) as

τmn
dAi(t)

dt
+ Ai(t) = Si(t), (8)

where τmn is a time constant of the excitation-contraction
coupling. The excitation of the interneuron, Si(t), is given by

τin
dsi(t)

dt
+ si(t) = si0 +

∑

j∈M

Gi
Fj
Fj(t − 1f)− Gi

mS
ī(t) (9)

Si(t) =







0 si(t) < 0
si(t) 0 ≤ si(t) ≤ 1
1 si(t) > 1

, (10)

where si(t) is the internal state of the interneuron. The second
term on the right-hand side of Equation (9) expresses the reflex

pathways that feedback muscle force to the interneurons, and
the third term expresses the reciprocal inhibition pathways of
the interneurons. In Equation (9), superscript ī ∈ M is the
antagonist muscle of muscle i, and ī represents HF, HE, KF, and
KE, when i is HE, HF, KE, and KF, respectively. Moreover, si0
is the bias of the neural input, τin is the time constant of the
interneurons, Gi

Fj
is the gain of the muscle force feedback, Gi

m is
the gain of the reciprocal inhibition, and 1f is the time delay of
the signal propagation.

5. WALKING EXPERIMENTS USING THE
QUADRUPED ROBOT WITH REFLEX AND
MUSCLE CHARACTERISTICS

To evaluate the proposed reflex circuit based on cat walking
behaviors, we conducted walking experiments and reproduced
a physiological experiment based on cats on the quadruped
robot. In addition, by utilizing a robot with a reprogrammable
reflex law in real time, we conducted an experiment to remove
the reciprocal excitatory pathway between the extensors (the
prolongation function of the stance phase) during walking.

5.1. Experimental Conditions
The parameters for the hip muscles were set as lopt = π/6 rad,
lslack = π/6 rad, and Fmax = 5 N·m, and those for the knee–
ankle muscles were set as lopt = 80 mm, lslack = 80 mm, and
Fmax = 80 N. Additionally, we positioned the muscles to satisfy
lce = 0.9lopt for the hip muscles and lce = 0.8lopt for the knee–
ankle muscles when the toe coordinates with respect to the hip
joint are (x, z) = (0 m, −0.21 m). Other muscle parameters were
obtained from Geyer and Herr (2010).

We applied a virtual spring-damper characteristic to the roll
joint of the leg module with a natural angle in the downward
direction. The spring constant was set to 100 N·m/rad, and the
damping factor was set to 1 N·m·s/rad.
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FIGURE 6 | Neural circuit reproduced for the quadruped robot. (A) Reflex circuit extracted from the neural circuit model by Rybak et al. (2006). (B) Implementation

model of the reflex circuit for the hip muscles. The same neural circuit is used for the knee–ankle muscles.

TABLE 1 | Values of the reflex circuit parameters in Equation (9).

i si0 Gi
FHE Gi

FHF Gi
FKE Gi

FKF Gi
m

HE 0 0 0 1.2 −1 0.15

HF 1 0 0 0 0 10

KE −0.1 4 0 1.5 0 0

KF 1 0 0 0 0 10

The parameters of the reflex circuit in Equation (9) are
presented in Table 1. In Table 1, GHE

FKE
, GHE

FKF
, GKE

FHE , and GKE
FKE

represent the gains for the excitatory feedback from the knee–
ankle extensor to the hip extensor, the inhibitory feedback
from the knee–ankle flexor to the hip extensor, the excitatory
feedback from the hip extensor to the knee–ankle extensor,
and the self-excitatory feedback of the knee–ankle extensor,
respectively. The parameters of the reflex circuit were adjusted
to generate a walking motion. The delay time of the muscle
information, 1f, was set to 15 ms, and the time constants of the
motor neurons, τmn, and interneurons, τin, were set to 10 and
5 ms, respectively.

Figure 7 depicts the experimental environment. The
quadruped robot walked on a treadmill, and a motion capture
system measured its movements.

5.2. Walking Experiment on a Treadmill
First, we conducted a walking experiment using the proposed
reflex circuit1. The periodic motion of the legs did not appear
in the air because this robot, which has a reflex circuit, generates

1For the video of walking experiments, please refer to the following link: https://
youtu.be/kxsAbZCh5KY.

FIGURE 7 | Snapshot of the experimental environment.

motion via its interaction with the environment. At the beginning
of the walking experiment, we held the robot with each leg at rest
and placed it on a treadmill to activate the reflex circuit.

The quadruped robot generated a steady gait, even though it
did not contain a central rhythm generator or pattern generator.
Figure 8 presents the gait diagram of the robot. RF, LF, RH, and
LH in Figure 8 represent the right–fore leg, left–fore leg, right–
hind leg, and left–hind leg, respectively, and the colored regions
indicate ground contact. The result reveals that the ground
contact timing of each leg is gradually adjusted with time. After
4 s, the timing of the stance phases between RF–RH and LF–LH
were the same, and each of them was in antiphase; thus, a pace
gate emerged.

Figure 9 depicts the toe position of the RH leg with respect
to the hip joint (in the x-axis) and the ground (in the z-axis)

Frontiers in Neurorobotics | www.frontiersin.org 6 April 2021 | Volume 15 | Article 63686483

https://youtu.be/kxsAbZCh5KY
https://youtu.be/kxsAbZCh5KY
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tanikawa et al. Reflex Analysis on Robotic Platform

FIGURE 8 | Gait diagram. RF, LF, RH, and LH represent the right–fore leg, left–fore leg, right–hind leg, and left–hind leg, respectively, and the colored regions indicate

ground contact.

FIGURE 9 | Toe trajectory of the right–hind leg. The foot position is based on

the hip joint in the x-axis and the ground in the z-axis. Only one cycle of

walking is shown from the time of ground contact at 6.95 s.

for one cycle of walking from 6.95 s, when the leg contacted
the ground. The arrows in Figure 9 indicate the direction of
the toe movement. The result indicates that the proposed reflex
circuit produces a walking trajectory autonomously, without a
pre-designed trajectory.

Moreover, we investigated the mechanism of the motion
generation phenomenon using the proposed reflex circuit.
Figure 10 presents the values of each term on the right-hand side
of Equation (9) for the hip and knee–ankle extensors, displaying
the neural input from each feedback pathway and the total
neural input to the interneurons2. In Figure 10, before the touch-
down, the hip extensor is inactive, the knee–ankle extensor is
activated, and the leg is located down the front. After the touch-
down, tension is generated in the hip and knee–ankle extensors,
and the terms of muscle force feedback, FHE and FKE, became
larger, resulting in the activation of both hip and knee–ankle
extensors. At the time of the stance-to-swing transition, the terms
of FHE and FKE become smaller, owing to the unloading of the
weight on the leg; the hip and knee–ankle extensor muscles

2The neural input of flexor interneurons is not displayed in Figure 10 ; however,
the flexor muscle becomes inactive when the extensor is activated for each joint.
In contrast, the flexor is activated when the extensor is inactive, owing to the
reciprocal inhibition of interneurons.

become inactive. At that time, the hip and knee–ankle flexors
are activated, owing to the reduced inhibitory effect from the
extensor interneurons, which produces a swing motion. At the
timing of the leg swinging down, when the leg is moved forward,
the term of FHE on the knee–ankle extensor becomes larger. This
implies that the hip extensor muscle is fully stretched, and it
generates tension in the late swing phase. This activates the knee–
ankle extensor muscle, which results in the swinging down of the
leg. Subsequently, the swing-to-stance transition occurs at the
timing of touch-down, and the walking motion is generated by
repeating these sequences.

5.3. Walking Experiment With Different
Initial States
In order to investigate the convergence property of the
gait emerging from the reflex circuit, we conduct walking
experiments from different initial conditions. When using the
reflex parameters in Table 1, all the legs remain forward and
stationary in the air. Therefore, to prepare the different initial
conditions, we set the input bias sHE

0 of the hip extensors
to different values until just before the start of the walking
experiment. The different bias values for sHE

0 force the hip
extensors to be activated or deactivated, as a result, we prepare
two initial positions, one with the leg forward (sHE

0 = −1)
and one with the leg backward (sHE

0 = 1). By combining the
two initial positions of each leg, we prepared the initial state of
Table 2.

Note that we fixed the initial state of the right hind leg to
sHE
0 = −1 to evaluate the stability of the gait by the phase
difference between each leg and the right hind leg.

The phase difference of the leg k ∈ {RF, LF, LH} to the right
hind leg, 8k, was calculated by the following equation based on
Rosendo et al. (2014) using the ground contact time;

8k = 2π
Tk(actual) − TRH(previous)

TRH(next) − TRH(previous)
, (11)

where Tk(actual) is the contact time of each leg k, TRH(previous)

and TRH(next) is the previous and next contact time of the right
hind leg respectively. In Equation (11), since the phase difference
between leg k and the right hind leg is calculated in the range
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FIGURE 10 | Neural input to interneurons of the hip extensor (HE) and knee–ankle extensor (KE) and the breakdowns. FKE, FKF, and FHE are the magnitude of the

muscle force feedback, and SHF is the inhibitory neural input from the interneuron of the antagonist muscle. It should be noted that the sum of the knee–ankle

extensor neural inputs includes an offset of –0.1.

of [0, 2π), the value of 8k changes drastically around 0 and 2π ,
e.g., it becomes 0 when exceeding 2π and 2π when falling below
0. Therefore, in order to prevent this drastic change in value,
when the phase difference 8k converges around the 0 or 2π , we
calculate the phase difference within the range of [−π ,π) using
the following equation;

80k =

{

8k 8k < π

8k − 2π 8k ≥ π
. (12)

Figure 11 illustrates the experimental results from the initial
state in Table 2. In the results from all initial conditions, the
RF–RH phase difference 8RF converges near 0 rad, and the RF–
RH phase difference 8LF and LH–RH phase difference 8LH

converges near π rad. The results indicate that the front–hind
legs are in the in-phase, and the left–right legs are in anti-phases,
thus the robot produced a steady pace gait in all experiments.

5.4. Reproduction Experiment of
Prolongation of Stance Phase via Nerve
Stimulation
In the experiments by Whelan et al. (1995), electrical stimulation
of the afferent nerves from the ankle extensor muscles prolonged
the stance phase in walking cats. In this section, we conduct a
robotic experiment using a similar condition as that in the cat
experiment to evaluate the proposed reflex circuit.

TABLE 2 | List of initial conditions (value of sHE0 ) at the beginning of the walking

experiment.

Initial state Values of sHE0

RF LF LH RH

A −1 −1 −1 −1

B 1 −1 −1 −1

C −1 1 −1 −1

D 1 1 −1 −1

E −1 −1 1 −1

F 1 −1 1 −1

G −1 1 1 −1

H 1 1 1 −1

In the experiment, the muscle force feedback pathway was
stimulated after the quadruped robot produced a steady gait
under the same conditions as those detailed in section 5.2. To
reproduce the stimulation of afferent nerve which is considered
to carry muscle force information of the ankle, the value of
the afferent force feedback from the knee–ankle extensor was
set as FKE = 0.5 on the quadruped robot. The timing of the
stimulation is 200 ms after the activation of the knee–ankle
extensors as with the cat experiment. Figure 12 depicts the
ground contact of each leg during the walking experiment. We
stimulated the knee–ankle extensor afferent of the RH leg from
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FIGURE 11 | The phase difference between each leg and the right hind leg in the experiment from the different initial conditions. The initial states (A–H) correspond

with those in Table 2. The figure also shows the mean and standard deviation of each phase difference after 4 s, when the gait was stabilized.
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FIGURE 12 | Gait chart in the stimulation experiment of the reflex pathway. The colored regions indicate ground contact.

2 to 3.5 s. The contact time of the RH leg in Figure 12 during
stimulation increased by 1.37 s compared with the normal gait.
This indicates that the stance phase was prolonged. Thus, the
proposed circuit with the reciprocal excitatory reflex reproduces
the prolongation function of the stance phase observed in the
walking cat experiments.

5.5. Experiment to Disable the
Prolongation Function of the Stance Phase
In section 5.4, we demonstrated that the proposed circuit
reproduced the prolongation function of the stance phase
observed in the cat walking experiments by Whelan et al.
(1995). This section investigates the effects of the proposed reflex
pathway that provides the stance phase prolongation function for
walking.

We investigated the effects of removing the reciprocal
excitatory pathway in all the legs after the quadruped robot
produced a steady gait under the same conditions as those in
section 5.2. In the experiment, we set FKE = 0 to disable the
afferent feedbacks from the knee–ankle extensor to the hip and
knee–ankle extensors when the angle of the hip joint was greater
than 1.68 rad, thereby forcing the stance-to-swing transition. This
corresponds to the temporary disconnection of the afferent nerve
from the ankle extensor muscle in walking cats.

Figure 13A presents the ground contact for each leg during
the walking experiment, and Figure 13B depicts the phase
difference of each leg relative to the right hind leg. As shown
in Figure 13, when the afferent feedback from the knee–ankle
extensors was disabled after 2 s, the resulting gait was unsteady.
This result indicates that the reciprocal excitatory reflex with
a prolongation function of the stance phase stabilizes the
gait pattern.

6. DISCUSSION

6.1. Gait Emergence Mechanism With the
Proposed Reflex Circuit
To reveal the reflex mechanism in animal walking, we proposed
the simple reflex circuit based on walking cat experiments
and evaluated it using the quadruped robot. In the walking

experiment, the robot does not have CPGs or neural connections
between its legs; however, the proposed reflex circuit exhibited
rhythm generation and gait pattern adjustment, as shown in
Figure 8. In this subsection, we discuss the mechanism of rhythm
and gait emergence.

In the proposed reflex circuit, the rhythm generation function
is considered a result of the self-excitatory force feedback of the
knee–ankle extensor and the reciprocal inhibition of knee–ankle
interneurons. These circuits activate the knee–ankle extensor to
kick the ground when the reaction force is applied to the leg.
Additionally, they activate the knee–ankle flexor to lift the leg
when the leg is unloaded.

There are two possible reasons for the gait pattern adjustment.
The first is the force–velocity characteristics of the muscle.
Previous research by Masuda et al. (2017) has demonstrated
that a quadruped robot without any closed loop controllers
can lead to the emergence of some gaits depending on the
applied voltage. This gait emergence phenomenon was caused
by the characteristics of the DC motors that adjust the leg
phases by slowing down the rotational speed when subject to
the ground reaction force. The Hill-type muscle model used
in this study also exhibits the force–velocity characteristics,
which causes the contraction speed to slow down when a
reaction force is applied. This is shown in Figure 3B and
is similar to the DC motor’s characteristics. Therefore, the
contraction speed of the hip extensor muscles was adjusted
by the muscle property during the support phase, in response
to the ground reaction force, and it may have caused the
gait emergence.

The second reason for the gait pattern adjustment is the
prolongation function of the stance phase, owing to the muscle
force feedback. Support legs continue to prolong the stance
phase when the other legs are in the swing phase, owing to
load concentration on the support legs. They shift to the swing
phase immediately after the load is distributed when the other
legs come into contact with the ground, thereby controlling the
phase difference among legs. The studies (Ekeberg and Pearson,
2005; Maufroy et al., 2010; Rosendo et al., 2014; Habu et al.,
2018) focusing the prolongation function also showed the similar
phenomenon of gait stabilization.
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FIGURE 13 | Experimental result to disable the prolongation function of the stance phase. (A) Gait chart. The colored regions indicate ground contact. (B) The phase

difference between each leg and the right hind leg.

6.2. Major Reflex Pathways Contributing to
the Walking Motion Generation and
Reproduction of Cat Behavior
This study presented a simple reflex circuit that generated
leg trajectories and a steady gait and also reproduced the
behavior of cats. This reflex circuit consists of reciprocal
excitatory reflex between hip and knee–ankle extensors, self-
excitatory reflex of knee–ankle extensors, and inhibitory reflex
from knee–ankle flexors to hip extensors. In this section, we
discuss that the reciprocal excitatory reflex between extensor
muscles are particularly important in the generation of
walking motions.

First, there are two major motor functions provided by the
reciprocal excitatory reflex between extensors. The first is the
knee extension associated with hip flexion at the end of the
swing phase. When the hip extensor is fully stretched by the
leg inertia at the end of the swing phase, the reflex from the
hip extensor to the knee–ankle extensor is activated. As a result,
the robot swing down the limb. The second is propulsion
associated with leg loading during the stance phase. When an
external force is applied to the knee–ankle extensor due to leg
load in the early stage of the stance phase, the reflex from the
knee–ankle extensor to the hip extensor is activated, resulting
in a hip extension. Thanks to the reflex pathways, the hip
extensor is activated according to ground reaction force on
the knee–ankle extensor, as a result, the hip extensor produces

forward propulsion when ground reaction forces and frictional
forces increase.

Next, we explain how the reciprocal excitatory reflex between
the extensor muscles affects the reproduction of cat behavior.
The experiment by McVea et al. (2005) shows that assisting the
flexor muscle movement during the swing phase accelerated the
activation timing of the ankle extensor muscles. In the reciprocal
excitatory reflex between extensor muscles we proposed, when
the leg swing is accelerated by assisting the hip flexion, the
activation of the knee–ankle extensors is advanced according
to the hip flexion, thus reproducing the same phenomenon as
in the walking cat. Moreover in an experiment of walking cats,
Whelan et al. (1995) showed that electric stimulation on afferent
nerves from ankle extensor muscles prolonged the stance phase.
The same phenomenon was observed in the reciprocal excitatory
reflex as shown in the section 5.4. Therefore, the reciprocal
excitatory reflex between extensor muscles contribute to the
generation of leg trajectories and the reproduction of behavior in
cats, and may be a promising candidate for the structure of reflex
pathways in animals.

6.3. Comparison With Previous Studies
As a closely related study to our result, a phase oscillator
model of Maufroy et al. (2010) focusing on the prolongation
of the stance phase in cats generated a steady gait in
robot experiments.

Frontiers in Neurorobotics | www.frontiersin.org 11 April 2021 | Volume 15 | Article 63686488

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tanikawa et al. Reflex Analysis on Robotic Platform

On the contrary, in order to clarify the structure of the
reflex circuit that generates the steady locomotion of cats, we
implemented the reflex circuit model instead of a phase oscillator.
reciprocal excitation we proposed agree with the previous models
already know. In spite of the different implementations, since the
result of this study is similar to those of previous studies, the
reciprocal excitatory reflex between extensors we proposed has
similar functions as the previous model of Maufroy et al. (2010).

In researches without using oscillator models or complex
CPG models, a human model of Geyer and Herr (2010), cat
model of Ekeberg and Pearson (2005), and cheetah model of
Rosendo et al. (2014) produced leg trajectories and steady gait
by the interaction between spinal reflexes, body dynamics, and
environment. However, in these studies, the designers divided the
walking motion into multiple phases (ex. stance, liftoff, swing,
and touchdown phase) and designed a separate reflex rule for
each phase. Therefore, it is not clear how these many reflex rules
are integrated in the animal body, i.e., the overall structure of the
reflex circuit that produces a steady gait and leg trajectory.

On the other hand, the major contribution of this study is
clarifying the essential structure of the reflex circuit to produce
a steady gait, which is the reciprocal excitatory reflex between
hip and knee–ankle extensor muscles. This reciprocal excitatory
reflex between extensors, which activates the hip extensor as the
knee extensor is loaded, is a mechanically reasonable structure
to produce forward propulsion when ground reaction force and
frictional force increase. To the best of our knowledge, there are
no existing examples of such a simple reflex circuit that generates
the leg trajectory and steady gait autonomously. The proposed
reflex circuit may be the current minimum sufficient structure
for reflex circuits that reproduce animal gait.

In the simulation of a walking cat’s hind legs by Ekeberg
and Pearson (2005), the hip angle and the force of the ankle
extensors were considered sensory candidates to initiate the
stance-to-swing transition; a walking simulation was performed
for these two candidates. As a result, the quadruped fell down
in the case of the phase transition using the hip angle, and it
walked with a steady gait in the case of the phase transition
using the unloading of the ankle extensor. On the other hand, the
experiment that disabled the prolongation function of the stance
phase using the hip angle in section 5.5 demonstrated that the
prolongation function based on the knee–ankle extensor force
was more important for a steady gait than the phase transition
based on the hip angle. Therefore, the results of this study
support the hypothesis of Ekeberg and Pearson (2005) that ankle
extensor unloading is the dominant factor in the stance-to-swing
transition, instead of the hip angle.

6.4. Study Limitations
In this study, we showed that a reflex circuit with reciprocal
excitation between extensor muscles produced leg trajectories
and a steady gait, but the only gait observed within the
parameters studied by the authors was the pace gait. It is not
clear why the quadruped robot produced the pace gait, which
is not a typical gait in cats. However, the models of Owaki
and Ishiguro (2017) and Habu et al. (2018), which focused on
the prolongation of the stance phase, produced multiple gait

patterns such as walking, trotting, and galloping. Therefore, as
in the previous studies, our model may also generate other
gaits than pace by changing the body parameters, neuronal
parameters, or adding reflex pathways. For example, the robot
by Owaki et al. (2013) changed its gait from trot to pace by
adding a mass to the robot and raising its center of gravity. Since
our robot may also have a higher center of gravity than other
robots in previous studies, we expect that our robot generates
other gaits by changing the body parameters related to the
center of gravity. In addition, there are 10 adjustable parameters
in the reflex circuit. It is difficult to investigate the influence
of all these parameters on the gait, so it is a future task to
investigate it.

7. CONCLUSION

In this study, to clarify the structure of the reflex circuit
that generates the steady locomotion of cats, we explored the
reflex circuit using a quadruped robot platform that emulates
the neuromuscular dynamics of animals. This circuit consists
of a reciprocal excitatory muscle force feedback between
the hip and knee–ankle extensors, a self-excitatory muscle
force feedback in the knee–ankle extensors, and an inhibitory
muscle force feedback from the knee–ankle flexor to the hip
extensor, which is designed based on the results of walking
cat experiments.

The major contribution of this study is clarifying the essential
structure of the reflex circuit to produce a steady gait, which
is the reciprocal excitatory reflex between hip and knee–ankle
extensor muscles. In the walking experiments conducted on a
quadruped robot with virtual muscles and a reflex circuit, a leg
trajectory and gait pattern emerged, even though there were no
CPGs or neural connections among the legs. Additionally, the
robot reproduced the prolongation function of the stance phase
using the stimulation of the ankle extensor nerves, which has
been observed in walking cat experiments. Moreover, utilizing
a robot with a reprogrammable reflex law in real time, we
conducted an experiment to remove the reciprocal excitatory
pathway between the extensors (the prolongation function of
the stance phase) during walking. The absence of the reciprocal
excitatory pathway reduced the gait stability of the robot. The
results show that the reciprocal excitatory reflex between extensor
muscles contribute to the generation of leg trajectories and the
reproduction of behavior in cats. Therefore we believe that it may
be a promising candidate for a key structure for generating the
animal walking.
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Walking animals demonstrate impressive self-organized locomotion and adaptation

to body property changes by skillfully manipulating their complicated and redundant

musculoskeletal systems. Adaptive interlimb coordination plays a crucial role in this

achievement. It has been identified that interlimb coordination is generated through

dynamical interactions between the neural system, musculoskeletal system, and

environment. Based on this principle, two classical interlimb coordination mechanisms

(continuous phase modulation and phase resetting) have been proposed independently.

These mechanisms use decoupled central pattern generators (CPGs) with sensory

feedback, such as ground reaction forces (GRFs), to generate robot locomotion

autonomously without predefining it (i.e., self-organized locomotion). A comparative

study was conducted on the two mechanisms under decoupled CPG-based control

implemented on a quadruped robot in simulation. Their characteristics were compared

by observing their CPG phase convergence processes at different control parameter

values. Additionally, the mechanisms were investigated when the robot faced various

unexpected situations, such as noisy feedback, leg motor damage, and carrying a load.

The comparative study reveals that the phase modulation and resetting mechanisms

demonstrate satisfactory performance when they are subjected to symmetric and

asymmetric GRF distributions, respectively. This work also suggests a strategy for the

appropriate selection of adaptive interlimb coordination mechanisms under different

conditions and for the optimal setting of their control parameter values to enhance their

control performance.

Keywords: adaptive interlimb coordination, phase resetting, phase modulation, decoupled CPGs, sensory

feedback, self-organized locomotion

1. INTRODUCTION

Walking animals demonstrate impressive self-organized locomotion and adaptation to body
property changes by skillfully manipulating their complicated and redundant musculoskeletal
systems (Taga et al., 1991; Dickinson et al., 2000; Der and Martius, 2012; Grabowska et al.,
2012). Many studies have clarified that adaptive interlimb coordination plays a crucial role in this
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achievement (Aoi et al., 2017; Mantziaris et al., 2017).
Investigations of various aspects of adaptive interlimb
coordination mechanisms have attracted significant attention in
various research fields.

To demonstrates these mechanisms, biologists have proposed
some neurological principles, such as central pattern generators
(CPGs) (Marder and Bucher, 2001), reflex chains (Grillner,
1975), and sensory feedback (Grillner, 2003; Rossignol et al.,
2006), through biological experiments. In addition, roboticists
have developed many bio-inspired neural control schemes for
legged robots to emulate animal-like self-organized locomotion
(Kimura et al., 2007; Owaki et al., 2013; Barikhan et al.,
2014; Ambe et al., 2018; Fukui et al., 2019; Miguel-Blanco
and Manoonpong, 2020). To realize self-organized locomotion
and adaptation on artificial legged systems, many adaptive
robot control schemes based on distributed abstract CPGs
incorporating ground reaction force (GRF) feedback have been
proposed (Kimura et al., 2007; Owaki et al., 2013; Barikhan et al.,
2014; Ambe et al., 2018; Fukui et al., 2019). Specifically, the GRF
feedback is exploited to modulate the phase relationships of the
CPGs under two main strategies: (continuous) phase modulation
(PM) and (discrete) phase resetting (PR).

PM typically uses continuous GRFs to modulate CPG phases
continuously (Kimura et al., 2007; Owaki et al., 2013, 2017;
Barikhan et al., 2014; Fukuhara et al., 2018; Miguel-Blanco and
Manoonpong, 2020). In contrast, the PR uses discrete GRFs to
reset the CPG phases intermittently (Tsujita et al., 2001; Aoi
and Tsuchiya, 2007; Nomura et al., 2009; Aoi et al., 2010, 2012;
Ambe et al., 2018). While both mechanisms have proved their
effectiveness in their own right and have been widely used in
various fashions, they have not been systematically analyzed and
compared to identify their characteristics in detail. For instance,
how the control parameter values of the mechanisms influence
the phase convergence process and whether the mechanisms
show different performances in different situations. It is necessary
to consider in which situations the PM (PR) works better.

From this point of view, a comparative study of the PM and
PR for self-organized locomotion was conducted. They were
used to modulate four decoupled neural SO (2)-based CPGs1

(Pasemann et al., 2003) relying on local GRF information. The
modulated CPGs, acting as an adaptive neural controller, were
implemented on a quadruped robot in simulation, as shown
in Figures 1A,B. The CPG outputs were utilized to drive the
robot joint movements such that the robot could autonomously
perform self-organized locomotion, as shown in Figure 1C. The
study focused on: (1) the parameter characteristics of the PM
and PR and (2) their adaptations to unexpected robot situations
(e.g., noisy feedback, leg motor damage, and carrying a load). The
validation of the study was quantified by three metrics including:
phase convergence time, phase deviation, and cost of transport
(COT). Consequently, this work provides suggestions on how
to choose adaptive interlimb coordination mechanisms properly
in different situations and set their control parameter values
optimally to enhance their control performance.

1Note that an SO (2)-based CPG is a special type of 2-neuron network where the
weight matrix of the network is an element in the special orthogonal group SO(2).

The rest of this article is structured as follows. Details of
the materials and methods are provided in section 2. The
experimental results are presented in section 3. A discussion
of the experimental results and the conclusions are provided
in section 4.

2. MATERIALS AND METHODS

In this section, the adaptive neural controller for studying the
PM and PR is elucidated. It is composed of four identical and
decoupled neural SO (2)-based CPGs (Pasemann et al., 2003;
Sun et al., 2018) modulated by the PM or PR. Subsequently,
a simulation environment with a quadruped robot (called
“Lilibot”) is introduced. It is an experimental platform for
assessing the PM and PR by implementing the adaptive neural
controller on the robot to generate self-organized locomotion.
In addition, certain variables and metrics for analyzing and
assessing the CPG phase convergence and self-organized
locomotion are introduced.

2.1. Adaptive Neural Controller
The adaptive neural controller integrates the four CPGs with
either PM or PR. The controller was proposed for easily
demonstrating the PM and PR in an integrative manner. The
PM and PR have numerous forms that comply with different
CPG models and robots (Kimura et al., 2007; Owaki et al., 2013;
Barikhan et al., 2014; Sun et al., 2020). To compare the PM and
PR conveniently and consistently, four neural SO (2) oscillators
are used as four decoupled CPGs. The SO (2)-based CPG has a
simple neural network topology with analyzable neural dynamics
(Pasemann et al., 2003). Thus, it can easily integrate either the PM
or the PR for straightforwardly modulating or resetting the CPG’
phase. Detailed descriptions are provided in the following.

2.1.1. Decoupled Neural SO (2)-Based CPGs
Four decoupled neural SO (2)-based CPGs were used to produce
multiple periodic signals for driving the quadruped robot (see
Figure 1). Each neural SO (2)-based CPG consists of two
connected neurons, where their neural activities are later adjusted
by the PM or PR. It outputs two periodic signals that are
transferred by a motor preprocessing unit to drive the hip 2 and
knee joints of a leg. As a result, the leg’s foot can trace a proper
ellipse-like trajectory with swing forward and stance backward.
The foot movement status detected by the GRF is transferred
to the PM or PR through a sensory preprocessing unit. Based
on the GRF feedback, the PM or PR generates modulation
signals to its corresponding CPG. In the single closed-loop
CPG-based control, the outputs of the CPG coordinate the
two joint movements of the leg (i.e., intralimb coordination),
while the interlimb coordination among legs is realized only
by the interactions between the robot body dynamics and the
environment (i.e., physical communications) through the PM
(Owaki et al., 2013) or PR (Aoi et al., 2012) with GRF feedback of
each leg. This is because the four CPGs are decoupled and have no
direct neural communication between them. The four CPGs can
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FIGURE 1 | (A) Four identical and decoupled neural SO (2)-based CPGs

modulated by the PM or PR relying on the sensory feedback (i.e., GRFs). They

are used to control a quadruped robot. (B) Each CPG is composed of two

mutually connected neurons. It outputs two synchronized signals (o1,2). The

signals are linearly re-scaled as motor commands (θ1,2) for controlling the hip 2

and knee joints of a leg through the motor preprocessing unit. For simplicity,

here the hip 1 joint is kept fixed and set to a certain position. (C) The

quadruped was demonstrated under the self-organized locomotion generation

process. The process was divided into two stages: transition (Stage 1) and

formation (Stage 2).

be described using a matrix in discrete time equations as follows:

a(n+ 1) = w · o(n)+ b+ f (n) (1)

o = tanh(a), (2)

where a = (aik), o = (oik), and b = (bik) ∈ R
2×4 represent the

activations, outputs and biases of the CPG neurons, respectively.
Each column of the three matrix variables (i.e., a, o, and b)
represents the values of a CPG. Moreover, n indicates the time of
the discrete-time equations, where the update frequency is 60 Hz
in the following investigations. w ∈ R

2×2 is the synaptic weights
of a CPG (see Equation 4). f = (fik) ∈ R

2×4 represents the

modulation term of the PM or PR (see Equations 6–8). fik is the
PM or PR term projecting to the ith neuron of the kth CPG. The
projection can adjust the CPG neuron activities online, thereby
resulting in the CPG phase adaptation.

The CPG outputs (o) are used to drive the joint movements
through a linear transformation of the motor preprocessing unit
(see Figure 1). It is given by the following equation:

θ = αo+ β , (3)

where θ and β ∈ R
2×4 represent the desired joint angles and

their biases, respectively.
Based on previous work (Manoonpong et al., 2013), each

SO (2)-based CPG can generate periodic coordinated signals for
intralimb and interlimb coordination by setting its weights and
biases as follows:

w =

(

1.4 2.6
−2.6 1.4

)

, (4)

b =

(

0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01

)

. (5)

The CPGs’ parameter setup is used for the
following investigations.

2.1.2. Phase Modulation (PM) Mechanism
The fundamental principle of the PM is to modulate the CPG
phase continuously by relying on the continuous GRF signal.
Based on the model of the neural SO (2)-based CPG with sensory
feedback introduced by (Barikhan et al., 2014), amodified version
of the sensory feedback is proposed. It is formulated as the PM
modulation term in the following equations:

fik(n) =

{

−γ
Fk(n)
mg cos(oik(n)), i = 1,

−γ
Fk(n)
mg sin(oik(n)), i = 2,

(6)

where oik is the output of the ith neuron in the kth CPG, γ

is a positive constant that represents the sensory feedback gain,
and Fk is the GRF value whose range depends on the specific
robot weight. Here, mg represents the weight of the robot. It
is 2.5 kg for the robot used in the investigations. The robot
weight is introduced to normalize the sensory feedback gain for
generalization. In addition, γ is a dimensionless parameter that
is independent of the robot.

From Equation (6), one can find that the greater the Fk(n)
a leg perceives, the higher the inhibition [if fik(n) < 0] or
excitation [if fik(n) > 0] the corresponding leg’s PM makes.
More specifically, when the robot is on the ground, its four legs
support and promote the robot body together. Thus, there is an
approximately equal distribution among the GRFs of the four
legs during locomotion. This means that, when the GRF of a
stance leg decreases, the GRFs of other stance legs must increase.
Therefore, the four CPGs have different modulation strengths.
This results in phase differences among the four CPGs. Once
the CPG phase differences converge to a proper status, adaptive
interlimb coordination (i.e., self-organized locomotion) emerges
(Owaki et al., 2013; Sun et al., 2018).
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2.1.3. Phase Resetting (PR) Mechanism
The fundamental principle of the PR is to reset the CPG phase
intermittently by relying on the discrete GRF signal. For neural
SO (2)-based CPG, the PR functionality is realized by resetting
the CPG neuron activities to specific values when the GRF value
increases over a threshold. Thus, the PR modulation term can be
described as follows:

fik(n) =

{

(1− (w11o1k(n)+ w12o2k(n)+ b1k))κ , i = 1,
−(w21o1k(n)+ w22o2k(n)+ b2k)κ , i = 2,

(7)

κ =

{

1.0, Fk(n) > Ft
mg
4 , Fk(n− 1) 6 Ft

mg
4

0.0, otherwise
, (8)

where oik is the activity/output of the ith neuron in the kth
CPG, mg is the weight of the robot, and Ft is a positive value
representing GRF threshold factor that influences the timing of
the PR. Here, mg

4 is regarded as a reference GRF value given that
the four legs share the support of the robot weight. Once the
GRF [Fk(n)] of a leg becomes more than mg

4 , the leg is indicated
to be in the stance phase, thereby triggering the PR. Thus, to
realize proper phase resetting, Ft value can be easily set in a small
range ∼1.0. Moreover, Ft is a dimensionless parameter that is
independent of the robot.

More specifically, the condition in Equation (8) indicates that
once the GRF value of a leg increases over Ft

mg
4 , then κ of the leg

(e.g., the kth leg) is equal to 1.0. As a result,

fik(n) =

{

1− (w11o1k(n)+ w12o2k(n)+ 0.01), i = 1,
−(w21o1k(n)+ w22o2k(n)+ 0.01), i = 2,

. (9)

Replacing them into Equations (1) and (2), the kth neural SO(2)-
based CPG outputs at the next step are approximately reset to:

oik(n+ 1) = tanh(aik(n+ 1))

=

{

tanh(w11o1k(n)+ w12o2k(n)+ 0.01+ 1− (w11o1k(n)+ w12o2k(n)+ 0.01)), i = 1,
tanh(w21o1k(n)+ w22o2k(n)+ 0.01− (w21o1k(n)+ w22o2k(n)+ 0.01)), i = 2,

=

{

tanh(1), i = 1,
tanh(0), i = 2,

≈

{

0.76, i = 1,
0, i = 2,

.

(10)

The CPG outputs are reset to the approximation from its limit
cycle when a phase-resetting event occurs, followed by the CPG
outputs returning to its limit cycle (see Figure 3A). Owing to
the differences among the four GRFs, the phases of the CPGs
are reset at different moments, thereby having phase differences.
For example, when the robot wriggles with four legs supporting
it on the ground, the GRFs of the four legs are close to Ft

mg
4 .

In this case, the robot torso twisting back and forth leads to
the GRFs with different change tendencies (e.g., front leg GRFs
increase while hind leg GRFs decrease), which results in the
GRFs of the legs meeting the PR condition at different moments.
When the CPG phase differences converge to a proper status,
adaptive interlimb coordination (i.e., self-organized locomotion)
emerges (Aoi et al., 2010, 2012). More detailed information on
the locomotion generation process can be found in the following
experiments and corresponding videos.

2.2. Experimental Platform
The experimental platform for studying the PM and PR is
a quadruped robot in the simulation. The simulated robot is
based on a small-size quadruped robot with multiple sensory
feedback (Lilibot) which was developed in our previous works
(Sun et al., 2020). The simulation environment was built using
CoppeliaSim2 with physical engine Vortex3. The framework
for connecting the robot with the adaptive neural controller
(including the PM or PR) is based on the robot operation system
(ROS)4 (see Figure 2). The robot and controller are regarded
as two ROS nodes and communicate with each other through
two ROS topics. A motor topic is used to transfer commands
from the controller node to the robot node, while a sensory
topic is used to acquire GRF signals from the robot node and
then send them to the controller node. The update frequency
of the two ROS nodes is 60 Hz, the CoppeliaSim calculation
time step is 50 ms (20 Hz) during which main script of the
simulated models is executed once. The simulation runs on a
laptop (Thinkpad E470C) setup with an Intel Core i5-7200U and
8GB DDR4. The detailed information and source of the robotic
platform can be found at https://gitlab.com/neutron-nuaa/lilibot.
The launch sequence of the modules in the simulation is the
CoppeliaSim initially and the two ROS nodes after 60 steps (3
s in CoppeliaSim).

2.3. Measurement of CPG Phase
Convergence and Self-Organized
Locomotion
In this study, we focused on the autonomous phase regulation
of decoupled CPGs modulated by the PM and PR, resulting in
quadruped self-organized locomotion. Here, we consider a neural
SO(2)-based CPGwith specific dynamical properties in which the

CPG with a certain frequency exhibits a limit cycle similar to a
unit circle in phase space, as shown in Figure 3A. In other words,
the PM and PR are used to modulate the CPG phase rather than
adapting to other properties (for example, amplitudes, offsets,
and frequency). As a result, under the CPG parameter setup in
Equations (4) and (5), the phase relationship of the decoupled
CPGs converges to a certain state where the quadruped robot can
form a specific gait (i.e., trot-like gait).

To clearly analyze and assess the characteristics of the PM and
PR for the CPG phase regulation, several variables and metrics
(see Table 1) were introduced to measure their CPG phase
convergence process and resulting self-organized locomotion

2https://www.coppeliarobotics.com/
3https://www.cm-labs.com/vortex-studio/
4https://www.ros.org/
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FIGURE 2 | Experimental platform with the quadruped robot in CoppeliaSim (20 Hz) communication with the adaptive neural controller. The controller and the robot

are regarded as two ROS nodes (60 Hz) and communicate with each other through two ROS topics. A motor topic transfers commands from the motor

preprocessing unit of the controller node to the robot joints while a sensory topic acquires GRF signals from the robot and then send them to the sensory

pre-processing unit of the controller node.

(see Figure 3). The metrics were used to assess the PM and PR in
the experiments. Because the variables are the basis of the metric
definitions, the variables are here introduced in the following
subsection first. They include the phase difference and its mean
and standard deviation.

2.3.1. Variables
A phase difference between two CPGs can identify the phase
relationship of the two CPGs as well as the movement
relationship between the two limbs/legs controlled by the two
CPGs. The outputs of a CPG (e.g., ok1 and ok2) at a moment can
be illustrated as a point (Pk) in a phase diagram (see Figure 3A).
The two axes of the phase diagram represent the CPG outputs
o1,2. When the CPGs produce periodic signals (see Figure 3B),
their outputs follow their limit cycle to move. The limit cycle of
a neural SO (2)-based CPG is similar to a circle whose origin is
at the center of the coordinate. In the adaptive neural controller,
the four neural SO (2)-based CPGs are identical with the same
parameter values, so their limit cycles are the same in the phase
diagram. Therefore, a phase difference (e.g., φkl) between two
CPGs (i.e., the kth and lth CPGs) can be represented by the
angle between the two points (i.e., Pk and Pl). Its mathematical
description is as follows:

φkl = arccos(
Pk · Pl

‖Pk‖‖Pl‖
), (11)

where Pk and Pl represent the vectors of the kth and lth CPGs
in the phase diagram, respectively (Figure 3A). φkl ∈ [0,π]
represents the magnitude of their (relative) phase difference.
Based on this definition (φkl), when the adaptive neural controller
is implemented on the quadruped robot to generate self-
organized locomotion (Figure 3D), one can find the phase

differences (i.e., φ12 and φ13) change from in phase to stable
phase relationships (Figure 3B). As a result, the phase differences
among the CPGs can display their phase relationship online (see
Figure 3C). A video to show the phase difference convergences
of the four decoupled CPGs modulated by the PM and PR can be
seen in http://www.manoonpong.com/AICM/video1.mp4.

The phase differences undulate during the phase convergence
process. To monitor the undulation, the mean and standard
deviation of the phase differences are introduced. Because φkl ∈

[0,π] changes in a linear manner, it can be regarded as linear data
rather than circular data when calculating its statistical variables.
Thus, the mean and standard deviation are described as follows:

φmean
kl (n) =



























1

N

n
∑

i=n−N

φkl(i), n > N

1

n

n
∑

i=0

φkl(i), n ≤ N

, (12)

φstd
kl (n) =































1

N

√

√

√

√

n
∑

i=n−N

(φkl(i)− φmean
kl

(n))2, n > N

1

n

√

√

√

√

n
∑

i=1

(φkl(i)− φmean
kl

(n))2, n ≤ N

, (13)

φstd(n) =
4

∑

l=2

φstd
1l (n), (14)

where φmean
kl

(n) and φstd
kl
(n) are the mean and standard deviation

of the phase difference φkl at current step n, respectively. N is
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FIGURE 3 | (A) The limit cycle of the SO(2)-based CPGs that was used to investigate the autonomous phase regulation. The coordinates (0.76, 0) represent the

phase-reset point realized by the PR. A phase difference (e.g., φkl ) between two CPGs (i.e., the kth and lth CPGs) is defined as the angle between the two points (i.e.,

Pk and Pl ). (B) The first neuron outputs (o1k with k=1, 2, 3, and 4) of the four CPGs that are used to control the four legs, respectively (see Figure 1). (C) The CPG

phase differences (i.e., φ12, φ13, φ14) and their standard deviation (φstd ). φstd can indirectly reflect the phase deviation. Empirically, once the value of φstd reduces to

< 0.7 (see the red point), the CPG outputs and phase differences become more stable. The CPG phase convergence process can be divided into two stages (Stage

1 and Stage 2) determined by the point. (D) In the corresponding gait diagram, the black areas indicate stance phases while the white areas indicate swing phases.

Note that, φ12, φ13, and φ14 are the phase differences of the CPG2, CPG3, and CPG4 with respect to the CPG1, respectively. RF, RH, LF, and LH are the right front,

right hind, left front, and left hind legs, respectively.

TABLE 1 | List of the variables and defined metrics.

Variables Symbols Metrics Symbols

Phase difference φkl (n) Phase convergence time T

Mean of phase difference φmean
kl (n) phase deviation φs

Standard deviation of phase difference φstd
kl (n) Cost of transport COT

Sum of standard deviation of phase differences φstd (n)
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the number of steps in a period from the current to a previous
step. It is empirically set to 50 in the following experiments.
Here, φstd(n) is the sum of φstd

12 (n),φ
std
13 (n), and φstd

14 (n) at the nth
step. This can reflect the instantaneous/current deviation of the
phase differences in overall. The less φstd(n), the higher the phase
deviation at the nth step.

To identify whether the CPG phase relationships are so
stable that self-organized locomotion is recognized to be formed,
according to the instantaneous indication of the phase deviation
[φstd(n)], a constant φstd

t is introduced as a threshold for
distinguishing the phase convergence process. It is empirically set
to 0.7 in the following experiments.

2.3.2. Metrics
Based on the proposed variables (see Table 1), the first metric
is phase convergence time, which indicates how long the CPG
phase relationship takes to converge and the robot takes to
generate self-organized locomotion under the restrict conditions.
The state transition of the decoupled CPGs with the PM/PR from
the initial fixpoint (0, 0, 0) to the desired fixpoint (π , π , 0) is
accompanied by a process in which φstd first increases and then
decreases. Based on many experiments, we realize that if φstd first
reduces to less than a threshold (φstd

t = 0.75) from a high value,
the dynamical system will converge, and the quadruped robot
can form a trot-like gait. Thus, the phase convergence time (T)
is described as:

T =
min(ni)

H
, φstd(ni − 1) ≥ φstd

t ,φstd(ni) < φstd
t , (15)

where φstd
t is the threshold. ni is the step when φstd is reduced

to less than φstd
t in a trial, whereas min(ni) is the minimal value

of ni and represents the step when φstd first reduces to less than
the threshold. H is the update frequency of the control node
(i.e., 60Hz).

The second metric is phase deviation, which estimates the
deviation of the phase differences. It can reflect the extent to
which the converged CPG phase relationships are sustained
during a self-organized locomotion period. It is defined using the
reciprocal of the mean of φstd(n) as follows:

φs
=

1

mean(φstd(n))
, mean(φstd(n)) 6= 0, (16)

where mean(φstd(n)) represents the mean of φstd in the period
(e.g., withM steps). The greater φs, the higher the phase deviation
of the formed self-organized locomotion over the period.

The last metric is the cost of transport (COT). It is used
to measure the energy efficiency of the formed self-organized
locomotion over a period. The COT is described as bellows:

{

COT =
E

mgd
,

E =
∑12

j=1

∑M
n=1

Ij(n)Vj(n)
H ,

(17)

where E is the energy consumption when the robot with weight
mg travels with a distance d. The energy is calculated using the
robot joint motor current Ij(n) and voltageVj(n).M indicates the
number of steps over the period.H is the update frequency of the
experimental system.

3. EXPERIMENTAL RESULTS

To systematically analyze and compare the characteristics of
the PM and PR for self-organized locomotion, three robot
experiments were conducted to measure the proposed metrics.
First, the phase convergence time (see Equation 15) of the
PM and PR under different parameter values was investigated.
Subsequently, the phase convergence time of the PM and PR
under different robot situations (i.e., a normal situation as a
baseline, noisy feedback, leg damage, and carrying a load) were
compared. Finally, the phase deviation (see Equation 16) and
COT (see Equation 17) under the robot situations were also
studied. More than 15 trials were conducted for each experiment
under each mechanism (i.e., the PM or PR). Each trial was
performed for more than 35 s.

At the beginning of each trial, an identical initialization
procedure was conducted to maintain all experimental trials with
the same initial conditions when the PM/PR was activated (initial
state). The initialization required 270 time steps of 13.5 s, from
the start of the simulation (n = 0) to the moment of dropping the
robot on the ground (n = n0, where n0 = 270 in the following
experiments). This initialization duration was selected to provide
sufficient time to fulfill three settings: (1) setting/initializing the
GRFs [Fk(n0)] to zero by holding the robot in the air; (2) setting
the joints of the four legs to the initial positions [θik(n0)] at the
beginning of the simulation in all trials, so that the four legs
had the same initial movement when the robot was dropped on
the ground; (3) setting the CPG weights and biases to the initial
values shown in Equations (4) and (5). The four neural SO(2)-
based CPGs had the same parameter values and performed as
the quasi-periodic attractors (see Figure 3A). As a result, the
four CPGs generated stable periodic signals [oik(n0)] in phase to
control leg movement in the initial state (see Figure 3B).

3.1. Phase Convergence Time Under
Different Parameter Values
From Equations (6) and (8), it is known that the PM and PR
parameters (i.e., sensory feedback gain γ and force threshold
factor Ft) play a key role in the CPG phase convergence.
Therefore, this experiment investigated the optimal parameter
values for fast CPG phase convergence through massive trails.
To do that, the proposed adaptive neural controller with the
PM or PR was applied to the robot. After initialization, the
robot was placed on the ground, and it started to interact
with the environment to form self-organized locomotion. The
experimental results are depicted in Figures 4, 5.

For the PM, a sequence of the sensory feedback gains from
0.0 to 1.0 was tested. The range of the gain (i.e., 0.04, 0.12, 0.2,
0.28, 0.36, and 0.4) is shown in Figure 4. The other parameter
values are not shown because they cannot enable the CPG
phase differences to converge in all 15 trials. In the figure, the
phase convergence time and success rate within 15 trials were
recorded. Obviously, when the gain is in the range of [0.12, 0.36],
the success rate is 100%. This means that the PM with these
parameter values enables the robot to generate self-organized gait
robustly in all 15 trials. One can also find that the best value of the
gain is 0.36, by which the average phase convergence time is∼6 s.
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FIGURE 4 | The phase convergence time and success rate of the PM trials

with different sensory feedback gains (γ in Equation 6). The green points and

bars show the average and variance of the phase convergence time,

respectively. The blue points represent the success rate. When the gain is

0.36, the success rate is 100% and has the fastest phase convergence.

FIGURE 5 | The phase convergence time and success rate of the PR trials

with different force threshold factors (Ft in Equation 6). The green points and

bars show the average and variance of the phase convergence time,

respectively. The blue points represent the success rate. When the threshold

factor is 0.64, the success rate is 100% and has the fastest phase

convergence.

Consequently, the fastest phase convergence speed of the PM can
be realized by setting γ to 0.36. This value was used for the PM in
the following experiments.

For the PR, a sequence of the force threshold factor from
0.0 to 1.5 was tested. The range of the threshold (i.e., 0.0,
0.09, 0.27, 0.45, 0.64, 0.82, 0.91, and 1.0) is shown in Figure 5.
The other parameter values are not shown because they cannot
enable the CPG phase differences to converge in all 15 trials.
In the figure, the phase convergence time and success rate

FIGURE 6 | Four different situations that the robot experienced in the

experiments. S1 was a normal situation. In S2, the GRFs of the four legs were

added with Gaussian noise. In S3, the hip joint and knee joint of the right front

leg were fixed to imitate leg damage. In S4, the robot carried a load of 0.6 kg.

within 15 trials were recorded. Obviously, when the threshold
factor is in the range of [0.09, 0.91], the success rate is ≥40%.
Especially, when the threshold factor is 0.64, the success rate
is 100%. This means that the PR with the parameter value
enables the robot to generate self-organized gait robustly in all 15
trials. In addition, the corresponding average phase convergence
time is just approximately a second with a small derivation.
Consequently, 0.64 is the optimal parameter value of the PR for
the fastest phase convergence speed. This value was also used for
the PR in the following experiments.

A success rate of 0 and 100% implies that the robot could
not and could perform self-organized locomotion in all 15 trials.
The basis for determining whether the robot forms self-organized
locomotion (walking pattern) is that the phase differences (φ12,
φ13, φ14) among the four CPGs converge to particular states
around the desired fixpoint (π ,π , 0) or the sum of their standard
deviation (φstd) first reduces to less than a threshold (i.e., 0.7).
For example, if the robot can perform a trot-like gait, the phase
differences (φ12, φ13, φ14) should converge to approximately (π ,
π , 0) (see Supplementary Figures 1, 2).

3.2. Phase Convergence Time in Different
Situations
The sensory feedback, GRF information, plays an essential role
in the function of the PM and PR. To observe the adaptation of
the PM and PR with respect to the GRFs, the PM and PR were
examined in different robot situations, in which the robot might
perceive different GRFs. The situations are illustrated in Figure 6.
Their description can be seen in Table 2.

The abnormal situations (S2, S3, and S4) were used to
compare the functional properties of the PM and PR. The
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TABLE 2 | The description of the four different situations that the robot

experienced in the experiments.

Situations Description

S1 (normal situation) This was a normal situation. It served as a baseline for

comparison with other unexpected situations.

S2 (noisy feedback) The GRFs of four legs were added with Gaussian noise

with an amplitude of 20% of the maximum value of the

GRFs.

S3 (leg damage) The hip and knee joints of the right front leg were fixed,

so the right front leg was unable to move during the

experiments.

S4 (carrying a load) The experiment robot (Lilibot) carried a 0.6 kg load, and

the load was near its hind legs.

FIGURE 7 | Phase convergence time of the PM and PR in four different

situations. The solid and dashed lines in the boxes indicate the median and

mean values of the phase convergence time, respectively.

parameter settings of the abnormal situations were determined
empirically to distinguish them from the normal situation (S1).
In the S2 situation, Gaussian-distributed noise was empirically
determined based on a trade-off between significant noise effects
and the undisturbed phase regulation function of the PM and
PR. Consequently, we used Gaussian distributed noise with a
standard deviation of 20% of the GRFs. In the S4 situation, the
weight of the payload was selected based on a trade-off between
obviously distinct GRFs of the legs and the robot load capability.

The experiments were also performed by implementing the
adaptive neural controller with the PM or PR on the quadruped
robot but in the four situations. A video to show the robot
generating self-organized locomotion under the PM and PR
in the four situations are shown in http://www.manoonpong.
com/AICM/video2.mp4. The experimental results can be seen
in Figure 7.

For the PM, the average phase convergence time is <3 s in
all situations. The best performance is in the S3 situation with
the lowest average and variance of the phase convergence time,

while the worst is in the S2 situation with the largest variance.
Moreover, some trials in the S2 situation require more than 6 s
to realize phase convergence. Overall, the unexpected situations
(i.e., S2, S3, and S4) have faster phase convergence than that of the
normal situation (S1). This is because the unexpected situations
induced significant differentiation among the GRFs which can
speed up the phase difference convergence.

For the PR, the phase convergence time of every situation in
some trails is less than a second. Moreover, the average phase
convergence time is <2 s, except for in the S2 situation, which
exhibits the worst performance with the largest average and
variance of the phase convergence time. Some trails cost more
than 7 s to realize phase convergence in the S2 situation. This is
because the added sensory noise made the GRFs randomly cross
the force threshold so that the regular phase resetting process
was destroyed. In the worst case, the CPG phase would never
be reset.

To compare the results, the PR shows faster phase
convergence than the PM on average, except for the trials
in the S2 situation. This is because the PR rapidly reset the
CPG phases once the GRFs increased over the threshold (i.e.,
0.64) while the PM utilized the continuous GRFs with the gain
(i.e., 0.36) to adjust the CPG phases smoothly. Consequently,
the continuous phase modulation of the PM can cause slower
but stable phase convergence. The rapid but intermittent phase
resetting of the PR can cause faster phase convergence but with
random success.

3.3. Phase Deviation and COT in Different
Situations
After the CPG phase differences (φkl) converge, the robot
exhibits self-organized locomotion. It is also important to study
how the phase differences and the formed locomotion are
maintained. Therefore, this experiment exploited the deviation
of the converged phase differences and used energy efficiency to
assess the self-organized locomotion in the various situations.

The results of the phase deviation are shown in Figure 8.
For the PM, the S1 situation has the greatest average phase
deviation among the four situations. Specifically, the average
phase deviation in the S1 and S2 situations is >1.5, while it is
<1.5 in the other two situations. For the PR, the S2 situation has
a large drop in the average phase deviation compared with the
other situations. Specifically, the average phase deviation in the
S1 and S2 situations is <1.75, while it is >1.75 in the other two
situations. Comparatively, the average phase deviation of the PM
is higher than that of the PR in the S1 and S2 situations, but lower
than that of the PR in the S3 and S4 situations.

The results of the energy efficiency (measured by COT) are
shown in Figure 9. For the PM, the lowest and the highest average
COT are in the S1 and S3 situations, respectively. Specifically,
the average COT in the S1 and S2 situations is <0.9, while it is
>0.9 in the S3 and S4 situations. For the PR, the S2 situation
has the highest COT in the four situations. Comparatively, the
average COT of the PM is less than that of the PR in the S1
and S2 situations, but higher than that of the PR in the S3 and
S4 situations.
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FIGURE 8 | Phase deviation of the self-organized robot locomotion under the

PM and PR in the four situations. The solid and dashed lines in the boxes

indicate the median and mean values of the phase deviation, respectively.

FIGURE 9 | COT of the self-organized robot locomotion under the PM and PR

in the four situations. The solid and dashed lines in the boxes indicate the

median and mean values of the COT, respectively.

According to the results shown in Figures 8, 9, the statistical
analysis reveals that the PM has higher phase deviation and
energy efficiency (lower COT value) than those of the PR in the
S1 and S2 situations, while this result is reversed in the S3 and
S4 situations.

Both the PM and PR have different performances (i.e.,
phase deviation and COT) in these situations. This results
from the situations causing the robot to perceive different GRF
distributions. The statistical GRFs under the PM and PR in the
experiments are shown in Figures 10, 11, respectively.

In Figure 10, under the PM, the four legs (i.e., the RF, RH,
LF, and LH legs) show more similar GRFs values in the S1 and
S2 situations than in S3 and S4 situations. This phenomenon can

FIGURE 10 | GRF distribution of the self-organized robot locomotion under

the PM in four situations. Note that RF, RH, LF, and LH indicate the right front,

right hind, left front, and left hind legs, respectively.

FIGURE 11 | GRF distribution of the self-organized robot locomotion under

the PR in the four situations. Note that RF, RH, LF, and LH indicate the right

front, right hind, left front, and left hind legs, respectively.

also be seen in Figure 11 under the PR. The GRF distributions
of the four legs in the S1 and S2 situations are symmetric, while,
in the S3 and S4 situations, the GRFs show relative asymmetry.
Taken together, the PM shows higher phase deviation and energy
efficiency when facing a symmetric GRF distribution, while
the PR shows higher performance when facing an asymmetric
GRF distribution.

4. DISCUSSION AND CONCLUSION

The aim of this study was to comparatively analyze the
characteristics of the two classical adaptive interlimb
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coordination mechanisms, the PM (see Equation 6) and PR
(see Equation 7), for autonomous CPG phase regulation
and resulting self-organized locomotion and adaptation. The
essential functions of the PM and PR represent two different
ways to regulate the phase relationships among decoupled CPGs.
Typically, the PM uses continuous GRFs to modulate CPG
phases gradually while the PR uses discrete GRFs to reset the
CPG phases intermittently. In this study, the two mechanisms
were separately applied to the adaptive neural controller with
four decoupled SO (2)-based CPGs (see Figure 1). They were
implemented on the quadruped robot to experimentally assess
the PM’s and PR’s parameters and adaptability to unexpected
robot situations (see Figure 6). The experimental results indicate
that (1) the PM and PR parameter values significantly influence
the success rate and speed of the CPG phase convergences;
(2) overall, the PM exhibits slower but more stable phase
convergence while the PR exhibits faster but less stable phase
convergence (see Figures 4, 5); (3) the CPG phase convergence
time varies in different situations (see Figure 7); and (4) the
PM and PR perform better when the robot is subjected to
symmetrical and asymmetrical GRF distributions, respectively
(see Figures 8–11).

The decoupled CPGs with the PM/PR form a complex
dynamical system that comprises three sublevels. Its difference
equations can be seen in Equations (1), (6), and (7). (1) The
top sublevel dynamical system comprises four identical and
decoupled CPGs with the PM or PR, the state variables of which
are the CPG phase differences (i.e., φ12, φ13, and φ14). (2) The
middle sublevel dynamical system is a CPG with the PM or PR.
The PM or PR term can be regarded as external adjustments
on the CPG (basis sublevel dynamical system) when the robot
interacts with the ground. (3) The basis sublevel dynamical
system is a neural SO(2)-based CPG. Its state variables are the
CPG outputs (oik, i = 1, 2). Here, it is an oscillatory system under
the proper parameter configuration (see Equations 4 and 5). Its
dynamics is a limit cycle in the phase space (see Figure 3A). The
initial conditions of a multiple-coupling CPG system strongly
influence the convergence results (Dénes et al., 2019). In this
work, the initial condition of the top sublevel dynamical system
is the CPG coordination [o1k(n0), o2k(n0)] at the CPG limit cycle
when the robot lands on the ground (n = n0). Thus, the ensemble
of the initial conditions of the top dynamical system is the entire
CPG limit cycle. In all experiments, we considered the initial
condition of the time 270 steps (n0 = 270) where o1k(n0) ≈ 0.836
and o2k(n0) ≈ 0.067.

The convergence results (e.g., success rate) of the top
sublevel dynamical system depend on the initial condition as
well as the PM and PR parameter values [sensory feedback
gain (γ ) and GRF threshold (Ft)]. When the PM and PR
parameter values are outside their effective range (e.g., γ /∈

[0.12, 0.6] and Ft /∈ [0.09, 0.91], see Figures 4, 5), the robot
cannot achieve self-organized locomotion (success rate is 0%)
regardless of any initial condition. In this case, the top sublevel
dynamical system always stays at an initial fixpoint (0,0,0) (see
Supplementary Figures 1, 2). This is because the PM and PR
with inappropriate parameter values cannot drive the system
dynamics from the initial fixpoint to the desired fixpoint (π , π , 0)

where a gait can be formed. More specifically, for the PM, if γ <

0.12 (e.g., γ = 0, Supplementary Figure 3), the sensory feedback
strength is extremely weak tomodulate the CPG phase; if γ > 0.6
(e.g., γ = 1, Supplementary Figure 5), the sensory feedback
modulation is extremely strong, thereby significantly changing
the CPG properties (e.g., output amplitudes and offsets). For
the PR, if Ft < 0.09 (e.g., Ft = 0, Supplementary Figure 6),
the four CPG phases are reset at the same time so that
their phase differences are zero; if Ft > 0.91 (e.g., Ft =

1.5, Supplementary Figure 8), the four CPG phases never
reset because the sensory feedback cannot meet the phase-
resetting condition.

The statistical results (success rate) of the self-organized
locomotion are related to the initial condition and parameter
values. For the PM, if the parameter value (γ ) is in the
range of [0.12, 0.6], the PM-based control enables the robot to
generate self-organized locomotion with a 100% success rate.
The experimental real-time data of the case (e.g., γ = 0.36)
are shown in Supplementary Figure 4. The dynamical system
converges to the desired fixpoint (π , π , 0) in the phase space
(see Supplementary Figure 1). For the PR, if the parameter value
(Ft) is in the range of [0.09, 0.91], the PR-based control enables
the robot to generate self-organized locomotion (e.g., Ft =

0.64, Supplementary Figure 7) with some uncertainties. The
dynamical system can converge to the desired fixpoint (π ,π , 0) in
the phase space (Supplementary Figure 2). A slight difference in
the initial condition may cause distinct convergence results. For
example, when Ft is 0.45, in one trial (Supplementary Figure 9),
the robot can perform self-organized locomotion; in another
trial using the same parameter value and the same initial
procedure, the robot cannot generate self-organized locomotion
(see Supplementary Figure 10). This is because, in the success
case, the GRFs of the four legs can cross the GRF threshold
at slightly different times owing to slightly different dynamics
among the four legs at the touch moment, even when the four
legs touch the ground at the same time. This is because the GRFs
of the four legs approached the GRF threshold with a slightly
different increase rate when the robot touched the ground (see
Supplementary Figure 9). According to this, the results based on
the PR are more sensitive to the initial condition than those based
on the PM.

The cases with a 0% success rate in Figures 4, 5 result from the
inappropriate “physical coupling strength” of the CPGs. In this
work, the adaptive synchronizations/coordination among the
decoupled CPGs is realized via sensory feedback in the form of
the PM or PR, which provides physical communication/coupling
effects on the CPGs. The PM and PR parameter values (γ of the
PM and Ft of the PR) determine the “physical coupling strength.”
When the parameter values are extremely small or large, the
“physical coupling strength” also becomes extremely small or
large such that synchronization will not be achieved. As a result,
the CPG phase relationships (φ12, φ13, and φ14) of the decoupled
CPGs are not appropriate for forming a stable gait.

The PM and PR have been analyzed from various aspects in
different ways in other works (Aoi et al., 2012; Owaki et al.,
2013, 2017; Ambe et al., 2018). For instance, Owaki et al. (2013)
have summarized the spontaneous phase shift of the decoupled
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CPGs, which are regulated by local force feedback in the form
of the PM, as follows: (i) a phase delay is introduced in the
CPG of each leg owing to the physical effect of the local force
feedback; (ii) this phase delay, which is introduced when the
leg is in a stance phase, allows time for other legs to enter the
stance phase; (iii) as more legs begin to support the body, the
load on the support leg decreases; consequently, the feedback
effect on the support leg decreases, allowing it to enter the swing
phase. The mechanism reveals how the phases of the CPG are
appropriately modified by local sensory feedback, resulting in
the generation of the self-organized locomotion. Ambe et al.
(2018) analyzed the phase evolution of (no direct interaction)
ipsilateral oscillators, which are regulated by local force feedback
in the form of the phase resetting. In this case, the CPG
phases are shifted and converge to the final state when the legs
touch the ground at proper moment. This is because the force
feedback can regulate the leg retraction timings by resetting the
CPG phase.

However, in the above-mentioned studies the characteristics
of the PM and PR models’ parameters seem to receive less
attention and have not been reported in detail. In this work, the
effects of the parameters of the PM and PR on the CPG phase
convergences were systematically investigated. As a result, their
optimal normalized parameter values were found (see Figures 4,
5). This increases the practicality of the two mechanisms for
obtaining fast phase convergence in the normal situation (i.e., the
S1 situation) by reducing themanual parameter tuning. However,
the phase convergence times vary in different robot situations
(see Figure 7). This suggests that adaptive parameter values of the
PM and PR are necessary in various situations. Recently, some
studies have implemented learning techniques to obtain adaptive
sensory feedback gains of the PM mechanisms (Sun et al., 2018;
Dujany et al., 2020; Miguel-Blanco and Manoonpong, 2020).

Another important property of the PM and PR is their
adaptability to changes in body properties. It has been reported
in many works (Owaki et al., 2013, 2017; Ambe et al., 2018), in
which researchers have reproduced certain impressive animal-
like movements on legged robots, such as self-organized gaits
and autonomous gait transition in response to changes in body
properties (e.g., leg amputations and weight redistribution) and
environments. These works viewed the adaptability in terms of
adaptive walking patterns. In this work, the phase deviation
(Equation 16) and energy efficiency (i.e., COT, see Equation
17) were exploited in four elaborated robot situations (see
Figure 6).

The four situations varied the four legs’ GRF amplitudes
and exhibited two different GRF distributions: symmetrical
GRFs (in the S1 and S2 situations) and asymmetrical GRFs
(in the S3 and S4 situations). The experimental results show
that the higher phase deviation of the CPGs corresponds to the
higher energy efficiency of the self-organized locomotion. This
reflects a straightforward relationship of the control metric to
locomotion performance. The relationship maybe attributed
to the higher phase deviation with fewer unpredictable joint
movement changes, thereby saving energy cost. Moreover,
the PM and PR exhibited good performance when they were
subjected to symmetric and asymmetric GRF distributions,

respectively. This indicates that the two mechanisms should
be selected in different situations in the self-organized
robot locomotion.

Taken together, the comparative study of the PM and PR
in this work reveals not only the relationship between their
parameter values and the speed of the self-organized locomotion
generation, but also the preferred situations for high phase
deviation and energy efficiency in locomotion. Based on this
study, it suggests that the PM and PR are effective in different
situations. However, these conclusions are based on the robot
experiments with the specific neural SO(2)-based CPG setup
and the simulated quadruped robot platform. This limits the
generality of the conclusions in general CPG and legged robots.
In addition, the definition of the phase convergence time depends
on empirically tuned parameters (i.e., φstd

t in Equation 15
and N in Equation 12), which were determined by observing
the experiments implemented in our specific robotic platform.
As a result, the statistical results of the phase convergence
time, phase deviation (Figures 4, 5, 7, 8) could be affected by
the experimental platform. Moreover, the metric φstd is not
monotonic and could crossover the threshold more than once,
for example, in the S2 situation where the GRFs have additional
noise (see Supplementary Figure 16). Thus, to obtain the same
experimental conclusion on other experimental platforms, the
empirical parameters should be adjusted manually according to
a specific experimental platform. Thus, in future work, we will
further theoretically investigate the two mechanisms based on
a dynamical system perspective (Sándor et al., 2015; Aguilar
et al., 2016; Martin et al., 2016; Dénes et al., 2019) to further
analyze the properties of the mechanisms (e.g., using Poincaré
map Owaki and Ishiguro, 2017) and structural stability and to
verify the experimental results on other robotic systems, such as
hexapod robots.
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A corrigendum on

A Comparative Study of Adaptive Interlimb Coordination Mechanisms for Self-Organized
Robot Locomotion
by Sun T, Xiong X, Dai Z, Owaki D and Manoonpong P (2021) A Comparative Study of Adaptive
Interlimb CoordinationMechanisms for Self-Organized Robot Locomotion. Front. Robot. AI 8:638684.
doi:10.3389/frobt.2021.638684

In the original article, there were errors.
In the published article, there was an error in affiliation 1. Instead of “College of Mechanical and

Electrical Engineering, Institute of Bio-inspired Structure and Surface Engineering, Nanjing
University of Aeronautics and Astronautics, Nanjing, China”, it should be “Institute of Bio-
inspired Structure and Surface Engineering, College of Mechanical and Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China”.

In the published article, there was an error in affiliation 2. Instead of “Embodied Artificial
Intelligence and Neurobotics Lab, University of Southern Denmark Biorobotics, Mærsk Mc-
Kinney Møller Institute, University of Southern Denmark, Odense, Denmark”, it should be
“Embodied Artificial Intelligence and Neurorobotics Laboratory, SDU Biorobotics, The Mærsk
Mc-Kinney Møller Institute, University of Southern Denmark, Odense, Denmark”.

The authors apologize for this error and state that this does not change the scientific conclusions
of the article in any way. The original article has been updated.
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Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
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AQuRo: A Cat-like Adaptive
Quadruped Robot With Novel
Bio-Inspired Capabilities
Azhar Aulia Saputra1*, Naoyuki Takesue1, Kazuyoshi Wada1, Auke Jan Ijspeert2 and
Naoyuki Kubota1

1Graduate School of Systems Design, Tokyo Metropolitan University, Hino-shi, Japan, 2Biorobotics Laboratory, School of
Engineering, Institute of Bioengineering, Lausanne, Switzerland

There are currently many quadruped robots suited to a wide range of applications, but
traversing some terrains, such as vertical ladders, remains an open challenge. There is still
a need to develop adaptive robots that can walk and climb efficiently. This paper presents
an adaptive quadruped robot that, by mimicking feline structure, supports several novel
capabilities. We design a novel paw structure and several point-cloud-based sensory
structures incorporating a quad-composite time-of-flight sensor and a dual-laser range
finder. The proposed robot is equipped with physical and cognitive capabilities which
include: 1) a dynamic-density topological map building with attention model, 2) affordance
perception using the topological map, and 3) a neural-based locomotion model. The novel
capabilities show strong integration between locomotion and internal–external sensory
information, enabling short-term adaptations in response to environmental changes. The
robot performed well in several situations: walking on natural terrain, walking with a leg
malfunction, avoiding a sudden obstacle, climbing a vertical ladder. Further, we consider
current problems and future development.

Keywords: quadruped robot, bio-inspired model, neural-based locomotion, internal-external sensory information,
novel capabilities

INTRODUCTION

Robots have become necessary to ease human tasks in many contexts such as industrial,
military, entertainment, and disaster settings. Robots have different structures for different
purposes. Arm-like robots feature in industrial contexts for performing hand-like functions.
Humanoid robots with a wheeled base are often used in social and entertainment contexts.
Likewise, robots with legs have an advantage on rough terrain, making them suitable for
military and disaster contexts. From a broader perspective, legged robots are more versatile
than wheeled robots simply because less than half of the world’s terrain can be accessed on
wheels.

There are currently many varieties of legged robot exhibiting inspired designs and
performance. Boston Dynamics has built many quadruped robots that have excellent
capability on rough terrain (Ackerman, 2016). Quadruped robots developed at Waseda
University have also demonstrated performance on rough terrain and in ladder-climbing
(Hashimoto et al., 2019). Their movement, however, seems slow compared with existing
quadruped robots. Most legged robot researchers implement biological structures of
quadruped animals to benefit from the animal’s performance. MIT, for example, has built
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a Cheetah-like robot that moves at high speed (Hyun et al.,
2014). BigDog (Raibert et al., 2008), Spotmini (Ackerman,
2016), HyQ (Semini et al., 2011), and Laikago (Spectrum,
2019) are inspired by dogs. They show flexibility of omni-
directional movement on natural terrain. Ijspeert’s group
took their inspiration from salamanders (Crespi et al.,
2013). Animal-inspired robots, however, draw their
mobility capabilities from the animals that they are
designed after. In contrast to dogs and salamanders, cats
are able to climb as well as walk, run and leap over rough
terrain. Their claws allow agile climbing behaviors. We have
therefore proposed a quadruped robot inspired by feline
morphology. We propose a unique paw structure with a
gripping mechanism.

The proposed robot is equipped with physical and
cognitive capabilities, which include: 1) affordance
perception for movement behavior, 2) path planning, 3) a
dynamic locomotion generator, 4) stabilization behavior.

For the movement-related perception process, researchers
have used different sensors and different strategies. LittleDog
(Kolter et al., 2009) used stereo-vision to build the terrain
model for the space in front of the robot. Then, it performs
footstep planning for the next stepping movement (Kolter
et al., 2008). Other researchers have done similar work in
perception strategy (Diebel et al., 2004)(Gao et al., 2007).
Havoutis et al. used an RGBD camera to perceive
environmental conditions. Their robot then generates a
motion pattern and undertakes foothold planning
(Havoutis et al., 2013). Their subsequent work continues
on to advanced implementation, such as stair-climbing
(Winkler et al., 2015). The MIT Cheetah robot performs
impressively while running and jumping to avoid an
obstacle (Park et al., 2015). This robot uses LRF (laser
range finder) sensors to detect upcoming obstacles, and
identifies them using an iterative end-point fitting (IEPF)
algorithm. Once an obstacle is perceived, the robot prepares
the jump by controlling speed.

Manchester et al., used more complex external sensors
such as vision, laser, and radar sensors. Their robot builds a
terrain map model and then generates a sequence of footstep
locations and associated joint trajectories. The perception is
only effective on slow timescales. The footstep planning is
updated in every footstep (Manchester et al., 2011). The
high-rate timescale is used only for internal sensory
response. Many researchers also conducted footstep
planning, updated at every footstep, in both bipedal (Deits
and Tedrake, 2014) (Maier et al., 2013) (Kuindersma et al.,
2016) and hexapodal robots (Belter and Skrzypczyński,
2011). Taking a different approach, Hoffmann et al. use a
closed-loop strategy for perception and action. They
developed interaction between the robot’s embodiment
and its environmental context. The robot adjusts its gait
or speed when environmental changes are detected
(Hoffmann et al., 2011). In this work, the robot
reconstructs its map before generating motion plans that
address only high-level motion (speed, step length, step
height). Next, the stability model controls the low-level

motion. The external sensory information is hence not
directly used in low-level motion planning. In our
proposal, the cognitive model plays a role in the lower-
level locomotion model. Using external sensory
information and a laser sensor costs less in computational
processing to detect object shapes, than using a vision
sensor.

The locomotion generator, as its name suggests, generates
the movement behavior appropriate to particular conditions.
There are many models for legged-robot locomotion. Most
researchers implement trajectory-based locomotion for its
simplicity; this has been done in bipedal (Manchester et al.,
2011)(Zhang et al., 2014b)(Nandi et al., 2016)(Saputra et al.,
2015a)(Khusainov et al., 2016)(Saputra et al., 2015c),
quadrupedal (Winkler et al., 2015)(Kolter et al.,
2008)(Mastalli et al., 2017)(Zhang et al., 2016)(Matsuzawa
et al., 2016), and hexapodal robots (Qian and Goldman, 2015)
(Zhu et al., 2016). Trajectory-based models control the
motion planning in Cartesian coordinates using
polynomial equations or Bézier curves (Manchester et al.,
2011). Other researchers use center-of-gravity–based
trajectory generation for quadrupedal robots (Winkler
et al., 2015)(Mastalli et al., 2017). These center-of-gravity
trajectory models have been successfully implemented for
complex terrain. However, this approach has proven lacking
on dynamic locomotion behavior. The trajectory-based
approach needs to plan scenario motion planning in
advance, and requires extensive parameter-tuning.

On the other hand, some researchers have tried other ways
to develop dynamic locomotion patterns that can
synchronize automatically with sensory feedback. They
consider natural processes to develop locomotion models
from human and animal gaits. Quadrupedal animals can
generate gait patterns (walk, pace, amble, trot, gallop)
automatically, depending on the animal’s intentions and
environmental conditions. The animal’s body structure
also regulates the gait pattern, which means every kind of
animal has different gait efficiencies. Nakada et al. propose a
neuromorphic locomotion model with a CMOS
(Complementary Metal Oxide Semiconductor) controller
for inter-limb coordination in quadrupedal robots (Nakada
et al., 2003), while other researchers propose central pattern
generation (CPG) for quadrupedal robot locomotion
(Ijspeert and Cabelguen, 2006)(Asadi et al., 2015)(Maufroy
et al., 2008)(Zhang et al., 2014a)(Sun et al., 2018)(Liu et al.,
2018). Ijspeert’s group proposed CPG–based control of their
salamander robot (Ijspeert and Cabelguen, 2006), which can
transition dynamically from walking to swimming.
Transitional movements in quadruped robot have also
been proposed using CPG model by several researchers
(Maufroy et al., 2010; Fukuoka et al., 2015; Owaki and
Ishiguro, 2017). Other researchers have developed
integration between CPG and ground reaction feedback to
synchronize the gait with terrain conditions (Maufroy et al.,
2008). Zhang et al., for example, designed a CPG-based
controller for trotting (Zhang et al., 2014a). CPG gait
generators can be implemented using a spiking neural
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network (Espinal et al., 2016) or a recurrent neural network
(Tran et al., 2014). Sun et al. used a decoupled neural CPG
circuit for adaptive locomotion (Sun et al., 2018). In our
previous model, we combined the CPG with a Bézier curve
model for efficiency. We implemented our ideas in a small
quadrupedal robot, but it showed limitations on handling
variant gait (Saputra et al., 2016)(Saputra et al., 2015b). The
quadrupedal robot proposed in the present paper will be
implemented as an efficient neural-based locomotion model
using a single-rhythm generator-based CPG model, and will
include a reflex system for synchronizing with locomotion
events. Here, the reflex system is composed as the muscle
reflex system explained in (Saputra et al., 2020b) and sensory
afferent from force sensor in each leg explained in Affordance
Detection for Grasping.

Our robot is equipped with external and internal sensors.
We use point-cloud data information generated by a laser
depth sensor as external sensory information. There are
many robots that effectively detect and recognize obstacles
using depth sensors (Park et al., 2015)(Hashimoto et al.,
2019)(Camurri et al., 2015). The WAREC robot, for example,
has a rotating laser range-finder array for scanning the
surrounding environment (Hashimoto et al., 2019). Since
depth sensors are limited in frequency rate, size, weight, and
range, we propose a light-weight array of time-of-flight
sensors which alleviates these limitations. To provide
internal sensory information, we use an inertial measuring
unit (IMU), four force sensors, and four grip-touch sensors.

This paper is organized as follows: In Design of Robot’s
Hardware, we describe the robot’s mechanical and hardware
design. Movement-Related Capabilities examines the robot’s

unique capabilities. Robot Implementationtn shows the
implementation of the robot and demonstrates its
effectiveness. Finally, in Conclusions and Future Plans, we
conclude the paper.

DESIGN OF ROBOT’S HARDWARE

As stated in the Council on Competitiveness—Nippon
(COCN) report, robots suitable for use in disaster
situations must be able to move over all of rough, sloped
and natural terrain (grass, uneven soil), through narrow
spaces, and be able to climb stairs and vertical ladders
(Council on Competitiveness Nippon (COCN), 2013).
When we seek inspiration from the animal kingdom, the
cat family (Felidae) stands out as able do all of these things.
Cats can handle many complex environmental conditions.
They can swim, are agile, and can climb trees. The cat offers a
most appropriate archetype to imitate in agile quadrupedal
robots. The feline robot that we developed is shown in
Figure 1.

Mechanical Design
Our proposed quadrupedal robot is similar in size to a mature
domestic cat: 25 cm (width) × 60 cm (length) × 30 cm
(height). The robot has around 7 kg of weight. Figure 2
The robot’s foreleg imitates the cat’s forelimb structure
minus the wrist joint. It has only two joints, the shoulder
and elbow. There are three actuators associated with the ball
joint structure of the shoulder, and one actuator associated
with the hinge joint structure of the elbow. To design the

FIGURE 1 | The quadruped robot. AQuRo v2 is attached with DLRF sensor and AQuRo v3 has slimmer body without DLRF sensor.

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 5625243

Saputra et al. AQuRo: A Cat-like Adaptive Quadruped Robot

108

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


robot’s hindleg, we considered the cat’s rhythmic motion, in
which the proximal and distal leg segments maintain their
relative angular orientation during most of the cycle, the
deviation of angular joints differing only at the onset of toe-
off (Witte et al., 2001). In the hindlegs, therefore, we
simplified by eliminating the knee joint so the ankle and
hip joints could be directly integrated. The leg can be seen in
Figure 3. There are five degrees of freedom in each leg, one of
which is used as the gripper joint. The tibia is 175 mm long,
and the femur is 145 mm long. The robot’s Denavit-
Hartenberg parameters are summarized in Table 1.

Robot Body
The robot’s overall body shape can be seen in Figure 1. The shell was
3D-printed in poly-(lactic acid) (PLA). The robot body comprises
three parts: rear, middle, and front. The rear legs are attached to the
rear part, which also holds the NUC PC, IMU sensor, and electrical
hardware. The middle part holds two batteries for the motors and a
USB Hub. The front part provides an attachment point for the neck
and head. The head holds a battery for the PC.

End Effector
We designed the end effector to support agile movements such as
walking on rough terrain and climbing vertical ladders. The end
effectors must also measure the ground reaction force, and must
satisfy size constraints. When climbing, cats use claws to grasp
rocky walls, trees, poles, etc. Shiquan et al. developed an end
effector with a dense array of micro-spines (Wang et al., 2016) for
rock climbing. It needs a larger space, however, than is
appropriate for our proposed robot. Furthermore, cats grasp
by using two limbs in concert. Cats also find it difficult to
climb vertical ladders.

In contrast, humans and monkeys have hands to hold and
hang from ladder rungs. However, the hand mechanism for
such hanging behavior needs a huge torque, which would
require a correspondingly bigger servomotor. We simplified
using a hook-shaped end effector that requires no actuator.
The design can be seen in Figure 4. The end is rounded to
simplify footing, eliminating the need for an actuator.
Furthermore, in the sensory design, we put a force-
sensitive resistor (FSR) between the upper and lower parts
of the paw. A switch inside the hook cavity serves as a sensor
to detect whether the paw is hooked over a rung. Behind the
paw is a moveable claw for grasping and for supporting the
hindleg to stand on a rung. The claw, moved by a low-torque
servomotor, helps to avoid slippage.

Sensory System
We provided the cat robot with several sensors representing
exteroceptors and interoceptors. To represent the
exteroceptors, we built a quad-composite time-of-flight
sensor for detecting the surroundings in front the robot,
and a dual-laser range-finder for observing more widely.
To represent interoceptors, we installed force sensors
(force-sensitive resistors) and touch sensors
(microswitches) in each leg, and an inertial measurement
unit (IMU) inside the body. We use IMUmodule NG-IMU, as
specified in Table 2.

Quad-Composite Time of Flight Sensor
This sensor will be installed in the head of the robot. It
combines four CamBoard pico flexx ToF sensors made by
pmd, as specified in Table 3. The composite sensor structure
is depicted in Figure 5. This design, combined with the

FIGURE 2 | The robot body (torso and head). (A) Orthographic projections. (B) Interior hardware placements. (C) Exploded parts.
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robot’s head shape, provides a wide field of view in order to
minimize the number of actuators needed in the robot’s neck.
The neck hence contains only one actuator, rotating in the
sagittal plane. The CAD design drawings and photographs
can be seen in Figure 6.

Dual-Laser Range Finder Sensor (DLRF)
The DLRF is composed of two LRF sensors, with each LRF is
attached to a Dynamixel MX-28 servomotor. This mechanism
allows the sensors to measure distances. The design can be seen
in Figure 7.Table 4 shows the specifications of the LRF sensor used.
In Figure 7C we can see the moving mechanism of the sensors. The
sensors will move symmetrically, where if the left sensor moving
clockwise then the opposite sensor will move counterclockwise. Each
sensor will move 240 [degree] of range. After reaching the limit
degree, then the sensor will move the opposite direction.

Electrical Hardware
The robot has been equipped with a hardware configuration to
handle both the internal and the external sensory information.

The hardware structure can be seen in Figure 8. We use an
ATmega 8 microcontroller as the sub-controller for pre-
processing the internal sensory inputs from the force
sensor, touch sensor, and IMU. A NUC PC core i3 serves as
the main controller for processing several advanced systems
such as perception, motion control, communication, and
interfacing.

The sub-controller processes analog signals from the force
sensor, touch sensor, and IMU sensor through its analog to digital
converter input. The data stream is then transferred to the main
controller via a USB connection. All external sensory information
is also conveyed via USB connections. The main controller
generates digital motor control signals for all of the
servomotors. There are 12 servo motors Dynamixel MX-106,
four servo motors Dynamixel MX-64, and seven servo motor
Dynamixel MX-28.

The electrical system is powered by two 4–cell
lithium–polymer batteries holding 2700 mAh (14.8 V) and
one 4–cell lithium–polymer battery holding 2200 mAh
(14.8 V). The batteries are expected to be power the robot
for around 15 min.

MOVEMENT-RELATED CAPABILITIES

We implemented the robot’s movement-related capabilities
by integrating external and internal sensory information.
This integration allows external sensory information to
inform movement behaviors in short adaptation times, as
happens in animals: when an obstacle suddenly appears

FIGURE 3 | The design of Leg (A) flexed, (B) extended. (C) Leg actualization.

TABLE 1 | DH Table of the joint leg structure.

Joint Hip-y (mm) Hip-x Hip-z (mm) Knee

αi π/2 −π/2 −π/2 0
ai 20 0 25 172 mm
di 35 0 145 0
θ0,j π/2 −π/2 −π/2 −π/2
θi θ0,1 + θ1 θ0,1 + θ2 θ0,1 + θ3 θ0,1 + θ4
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during the walking swing phase, the swing is changed in
response, bringing the foot into a safe area. This mechanism
illustrates the importance of external sensory information (in
this case, vision) for movement behavior.

To use depth information or a 3D point-cloud data as the
external sensory information, our robot’s processing system
includes 1) a dynamic-density topological map-builder with an
attention model, 2) an affordance perceptor using the topological
map, and 3) a neural network-based locomotion model.

Dynamic-Density Topological Map-Building
With Attention Model
We present a novel algorithm to realize an attention
mechanism for robot movement, based on the dynamic
density of a growing neural gas. The aim of this model is
to reduce the data representation overhead associated with
the 3D point-cloud data. The basic real-time Growing Neural
Gas (GNG) technique has been implemented in our previous
path planning model (Saputra et al., 2017). We extended the
GNG by adding a dynamic-density model. The algorithm’s
details are given in (Saputra et al., 2019b)(Saputra et al.,
2019a). A comparison between the common GNG and the

FIGURE 4 | The end effector. (A) CAD drawings (B) The 3D-printed effector.

TABLE 2 | NG-IMU sensor specifications.

Model NG-IMU

Sensors Gyroscope, Acceleromoter, Magnetometer, Pressure, Humidity
Update Rate 400 Hz
Static Accuracy (pitch/Roll) <1 [deg] RMS
Static Accuracy (Heading) <2 [deg] RMS
Communication USB, Serial, WiFi
Size and weight 50 × 33 × 8 [mm], 10 [gram]

TABLE 3 | Time-of-flight sensor specifications.

Model CamBoard pico flexx

Dimension, weight 68 × 17 × 7.35 mm, 8 g
Measurement range 0.1–4 m
Framerate Up to 45 fps (3D frames)
Resolution 224 × 171 (38k) pixels
Viewing angle (H x V) 62 ° × 45 °

FIGURE 5 | The quad-composite time-of-flight sensor arrangement.
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proposed GNG augmented with dynamic attention can be
seen in the link of Video 1.

Affordance Perception Model
The concept of affordance originated from Gibson, in
ecological psychology (Gibson, 1977). Turvey describes
affordance as the environment’s dispositional properties.
The actor’s effectivity or dispositional properties will
supplement what the environment provides. Affordance
provides important details governing the actor’s potential
behavior and capability. A difference in the robot’s
embodiment can therefore lead to different affordance
perceptions (Turvey, 1992). The aim of our proposed

FIGURE 6 | The quad-composite time-of-flight sensors. (A) Head housing; the sensors are mounted inside the downward-facing slits. (B) Head cap. (C) The head
with installed sensors.

FIGURE 7 | Design of DLRF sensor. (A) CAD design. (B) The structure of the sensor (C) The appearance design of the Dual LRF sensor.

TABLE 4 | LRF sensor specifications.

Model URG–04LX–UG01

Weight 160 g
Measurement range 20–5600 mm
Scanning time 100 ms
Scanning accuracy 60–1000 mm: ±30 mm; 1000–4095 mm: ±3 mm
Measurement range 240°
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affordance perception model is to find a suitable integration
between environmental conditions and possible actions for
the robot. We built affordance perception systems for the
robot’s locomotion, ladder detection, and grasping.

Affordance Detection for Locomotion
In the locomotion system, the active behavior is regulated by
perceiving the affordances. Prospective actions are therefore
produced according to the affordance information obtained.
In our model, affordances are detected by examining
planes in the topological map generated by the dynamic-
density growing neural gas (DD-GNG). The affordances of
interest are horizontal (or nearly horizontal) surfaces that the
robot can step on. These are found by calculating the plane’s
slope. We calculated the normal vector of triangular facets in
the topological structure using Eq. 1, as illustrated in
Figure 9.

N � (n0 − n1) × (n0 − n2)
‖(n0 − n1) × (n0 − n2)‖ (1)

After that, the slope of plane facet (ci) in every surrounding
surface needs to be calculated using Eq. 2. A safe-to-step-on
factor can then be calculated by considering how vertical the
plane is.

γi � cos− 1⎛⎜⎜⎜⎜⎝ Ob
�→(v)

i Δ N
→

(ver)

‖Obi‖�����→(v)
Δ
������N→(ver)

������
⎞⎟⎟⎟⎟⎠ (2)

Where, Ob
�→(v)

i is the normal vector of the ith obstacle plane and
N
→

(ver) is the vertical unit reference vector, [010].

Affordance Detection for Vertical Ladders
The model aims to present low-cost real-time vertical ladder-
detection from 3D point-cloud data. The output from the

FIGURE 8 | Structure of the electrical system.

FIGURE 9 | Calculating the normal vector of a plane triangle.
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TABLE 5 | Table of parameters.

vi Inhibition effect of its self-adaptation
yj Signal from other j-RG neurons, yj calculated as yj � max (xj,0)
w(RG,ij) Synaptic weight of j-RG neuron and i-RG neuron
τ and T The inner-state and self-adaptation effects
αi sensory feedback of i-RG neuron
αi,0 Basic stimulation of the ith neuron
w(FR,ij) and w(SR,ij) The synaptic weights of the force afferent (Fi) and the swing-phase afferent (Si) of the ith leg to the jth RG neuron
w(NS,ij) The synaptic weights of the nociceptor afferent (Ni), a pain receptor that detects the condition of leg damage and sends

damage stimuli to RG neurons
GSTIM The gain parameter controlling the relationship between speed stimulation SSTIM and the sensory network
τf Frequency control parameter

FIGURE 10 | The single-rhythm CPG model with a two-layered CPG. The rhythm generator neurons received feedback signals from a force sensor, a pain
receptor, and a swing sensor in each leg.
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DD–GNG is used as input to the affordance model. Feature-
extraction is needed to identify suspected artifacts for the
next stage of processing. Thereafter, vertical ladder-rung
detection is processed using an inlier–outlier system. The
ladder detection system thereby represents the ladder as a set
of nodes and edges. Next, we detect the graspable locations by
considering the robot’s embodiment. The details of the
proposed detection system can be seen in (Saputra et al.,
2019a).

Affordance Detection for Grasping
This affordance detection process aims to detect possible
gripping positions on the object. The process generates a
seven-dimensional representation of grippable locations: (3D
location, 3D rotation, and object diameter). We put an RGB
camera above the robot’s quad-composite ToF sensor to
detect the target object. Detection of target objects is
performed by a computer vision algorithm. After that, the
topological structure will be generated by using the proposed
DD–GNG. The density of the topological structure is
centralized on the desired object. Based on the
inlier–outlier process, the possible gripping information is
determined from topological map information and the robot
gripper embodiment. Gripping possibilities can then be
ranked from ‘best’ to ‘worst’ in any identified gripping
solution. Details of this process can be seen in previous
research (Saputra et al., 2019b).

Locomotion Model
Our locomotion model responds to current CPG
development challenges in quadruped locomotion research.
We present an efficient and solid CPG model that
dynamically integrates with sensory feedback for
generating various gaits, and allows for leg malfunction
compensation without greatly increasing the number of
parameters involved. The model has two feedback
mechanisms based on sensorimotor coordination
(Rossignol and Frigon, 2011)(Lam and Pearson, 2002). In
the first feedback mechanism, sensory feedback is used to
adjust CPG modulation. This is done by feeding

proprioceptive signals representing the leg’s force exertion
and swing phase back to the rhythm generator neurons (RG).
This feedback is reduced by the second feedback mechanism,
when legs are injured. A nociceptor neuron in the injured leg
sends a signal to modify the effects of that same leg’s other
sensory signals to the RG. Furthermore, we integrate the
locomotion functions with supraspinal-level functions
generated from cognitive information. Our overall model
mimics the descent of influence from attention
mechanisms driven by visual information down to muscle
activation. Our model addresses the problem of providing
short-term adaptation in response to perceiving a sudden
obstacle Table 5.

We designed a single-model CPG in which each RG
neuron represents the movement pattern of one leg, and
each pattern formation (PF) neuron represents the
activation of one muscle. Since we use four muscles in one
leg (flexor and extensor muscles of hip and knee joint), each
limb structure in the CPG network comprises one RG neuron
and four PF neurons. Our model uses two CPGs, one for the
forelimbs, and one for the hindlimbs. The overall CPG design
can be seen in Figure 10. We extend the CPG model from our
previous model published in (Saputra et al., 2020b). We used
the Matsuoka neural-oscillator model to generate a dynamic
signal. The inner state of the RG neuron can be seen in this
following equation:

τ
d
dt
xi � ⎛⎝vi − xi −∑n

j�1
w(RG,ij)yj + αi − bvi⎞⎠(τf SSTIM) (1)

T
d
dt
vi � (yi − vi)(τf SSTIM) (2)

αi � αi,0 +∑n
j�1

w(FR,ij)FiNj −∑n
j�1
(GSTIM,A(Si)(w(SR,ij)Nj)

−∑n
j�1
(GSTIM,B(Si)w(NS,ij)Nj) (3)

GSTIM,A � 3/(1 + exp( − 8 SSTIM + 15)) (4)

GSTIM,B � 2 exp(log(0.5) (2 SSTIM − 4)2) (5)

TABLE 6 | Optimized parameter of CPG.

τ T b τf Time step (s) αi,0 γref Q R

1.0 12.0 1.5 3 0.01 1.0 0.98 0.5 30

w(RG,ij) w(RG,i1) w(RG,i2) w(RG,i3) w(RG,i4) w(FR,ij) w(FR,i1) w(FR,i2) w(FR,i3) w(FR,i4)

w(RG,1j) 0.00 2.431 1.32 2.431 w(FR,1j) 0.00 1.002 0.960 1.023
w(RG,2j) 1.32 0.00 2.431 2.431 w(FR,2j) 0.960 0.00 1.023 1.002
w(RG,3j) 2.431 2.431 0.00 1.32 w(FR,3j) 1.002 1.023 0.00 0.960
w(RG,4j) 2.431 1.23 2.431 0.00 w(FR,4j) 1.023 0.960 1.002 0.00

w(SR,ij) w(SR,i1) w(SR,i2) w(SR,i3) w(SR,i4) w(NS,ij) w(NS,i1) w(NS,i2) w(NS,i3) w(NS,i4)

w(SR,1j) 0.00 0.00 2.059 0.00 w(NS,1i) 0.00 0.001 0.00 0.01
w(SR,2j) 0.02 0.00 0.00 0.00 w(NS,2j) 1.875 0.00 0.00 0.00
w(SR,3j) 0.00 0.00 0.00 0.02 w(NS,3j) 0.00 0.00 0.00 1.94
w(SR,4j) 0.00 1.987 0.00 0.00 w(NS,4j) 0.00 0.00 0.001 0.00
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The signal fromRGneurons will be transmitted to the PF neurons.
PF neuron will generate spike activation for swinging action in certain
leg. The spike signal of PF neurons (Pi) is calculated in theEq. 6, where
the references signal (hi

ref) is calculated in Eq. 7, R is subtraction
constant parameter, cref is discount rate of hi

ref, and q is the spike
threshold. We also provide a source code of the CPG model in the
attached link of Supplementary Material S3.

pi(t) � { 1 if (yi + hrefi (t))> q
0 Otherwise

(6)

hrefi (t) � crefΔhrefi (t − 1) − R if (Pi(t − 1) � 1)
crefΔhrefi (t − 1) Otherwise

(7)

PFi,k(t) � e(c1(|Pi,k(t)−μ|μΔw )), Pi,k(t) � Pi,k(t) + pi(t) (8)

In the process, RG neurons have a rhythmic pattern signal
and generate the spike signal to the PF neurons. The
parameter PFi,k(t)in Eq. 8 is the signal generated by kth
of PF neuron in ith leg. It will activate the muscle stimulation
explained in the previous research (Saputra et al.,
2020b)(Saputra et al., 2020a). The output of the muscle

stimulation (Si) will be converted to the direction the
torque of servo actuator in the robot’s leg. The connection
information can be seen in the Figure 10. Torque of one
servo motor is driven by two muscle stimulation for different
direction, flexor muscle stimulation is for CW direction and
extensor stimulation is for CCW direction. Regarding to the
Figure 10, the total torque and the servo angular velocity are
approached by Eqs. 9 Eqs. 10, where (r) is the attachment
length of muscle assumption, defined as 0.03 m.

τHIP(t) � rS1(t) + rS2(t) (9)

_θHIP(t) � _θHIP(t − 1) + (S1(t) − rS2(t))/r (10)

ROBOT IMPLEMENTATION

In order to test and demonstrate the robot’s capabilities, we
had the robot move across natural terrain, walk with a leg
malfunction, avoid a sudden obstacle while walking, and
climb on a vertical ladder. The optimization process of
CPG model and muscle activation function can be seen in

FIGURE 11 | The robot’s dynamic gait pattern (A) on natural terrain (B) on flat terrain. (C) Dynamic gait pattern on flat terrain with injured forelimb. (D)On flat terrain
with injured hindlimb. (E) On natural terrain with injured forelimb. (F) On natural terrain with injured hindlimb. The video of robot’s performance can be seen in the link of
Video 2.
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our previous papers (Saputra et al., 2020b)(Saputra et al.,
2020a).

Moving on Natural Terrain
We trialed the robot on natural terrain (grassed soil with
varying slope) and flat terrain (a carpeted floor). The robot’s
gait pattern was controlled using the proposed neural-
network locomotion generator. The optimized parameter
of CPG model as pattern generation can be seen in Table 6.

Sample snapshots of the robot’s performance can be seen
in Figures 11A,B. We set SSTIM from zero and gradually
increase along the value of time step (SSTIM � time step/1200). The

result can be seen in Figure 12A. The CPG model can generate
dynamic gait pattern. The robot can produce dynamic gait patterns to
walk, amble, pace and trot successfully across both terrains.

Moving With a Leg Malfunction
We tested the robot in two conditions: 1) with an injured
forelimb, and 2) with an injured hindlimb. Both tests began
with the robot in normal gait. After a few seconds, we set one
of the legs to its ‘injured’ state. In this case the locomotion
model cannot generate signal to the injured leg. However, the
torque force of the leg is still active. In both tests, the robot
responded by appropriately transitioning its without falling
down. These tests were conducted on both artificial and

FIGURE 12 | (A) The locomotion model can generate dynamic gait pattern by giving different speed stimulation. It shows there are five different known gait patterns
from slow speed to high speed. The CPGmodel can generate a dynamic gait pattern through differing speed stimulation SSTIM. This increases the frequency of the CPG
outputs x of five different known gait patterns from slow speed to high speed. Parameter FHR, FFR, FHL, FFL shows the ground reaction force for every limb. (B) The
generated gait patterns in malfunction conditions and the speed stimulation responses. The signal pattern p is changing to respond to the absence of CPG signals.
The time phase decreases after a leg is injured. Themalfunction of the right forelimb (NFL � 1) is at time step 1380. During injury, themodel tends to generate a pattern with
the same phase difference at a lower speed. At high speeds, left and right hindlimbs feature the same phase. (C)malfunction of the left hindlimb at time step 1400. In this
condition, the left and right forelimbs feature the same phase at a higher speed.
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FIGURE 13 | (A) The result of different condition perception in different levels of data (3D point-cloud being the raw data from the depth sensors, topological map
structure represent the attention model, perceived affordance, and generated action) (B) The snapshots show the integration between affordance and attention in
computer simulation.
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natural terrain. Snapshots of the robot’s performance can be
seen in Figures 11C–F. The corresponding video is can be
seen in the link of Video 2. Furthermore, the movement
transition when leg got injured can be analyzed in
Figures 12B,C.

Avoiding a Sudden Obstacle While Moving
In this trial, we set the robot to travel straight ahead. Once it
was moving, we suddenly put a few small pieces of woods in
front of the robot’s front leg. This experiment tested how
effectively the locomotion generator could produce short-
term adaptations in response to external sensory
information. The affordance process perceived the object
before the robot took any action. The four columns in
Figure 13A show affordance perception and adaptation in
progress. An increase in map density (case 3) corresponds to
the obstacle’s location. The robot performance avoiding

sudden obstacle dropped into its path can be seen in the
link of Video 3.

In order to show the integration of affordance and
attention in robot locomotion, we first analyze the
attention and affordance result in simulation, as shown in
this link Video 6 and Figure 13B. Simulation proved that the
degree of attention may affect the accuracy of affordance
detection. The topological structure (nodes and edges)
represent the attentional model. The green ball represents
the predicted foothold position for the current swinging
movement. We suddenly put an obstacle around that
intended foothold position 0.1 S after the leg starts
swinging. A few nodes appear with non-homogeneous
normal vectors (red color’s nodes), meaning that the
affordance detector has perceived some sudden obstacle
with low accuracy. In this condition, the affordance system
asks the attention process to focus on the obstacle. Then, the

FIGURE 14 | (A) The robot detects the ladder’s affordances while approaching it. (B) Robot detects graspability of a swinging ladder and grasps a rung of the
moving ladder. (C) The snapshot video of the robot performance detailed in the link of Video 5. The robot approaches and climbs a ladder, then transitions back to a
horizontal posture to stand on the tabletop (frames 9 – 10).
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red-colored nodes promptly generate new nodes. After 0.11 S,
the number of nodes has greatly increased around the
obstacle, showing that the affordance detector has
perceived the obstacle with high accuracy. The robot is
then directed to change its swing to a safe area (green nodes).

Climbing on Vertical Ladder
Before setting a climbing task, we tested the robot’s ability to
detect and interpret a vertical ladder detection using an
inlier–outlier method. Affordance detection, in this case, is
directed toward finding feasibly graspable locations. The
detail affordance detection is explained in the (Saputra
et al., 2019b). Figure 14A shows the robot detecting and
tracking the ladder structure in real time, identifying which
parts it can safely grasp. The detail video can be seen in the
link of Video 4.

The robot’s next task is to walk to the ladder and climb up it
onto a higher floor, all without handrail support. This task entails
transitions from horizontal motion to vertical motion, and then
from vertical motion to horizontal motion. To tackle this
problem, we propose an additional behavior generation model
using independent stepping and pose control in the robot.
Posture, safe movement areas, possible touch points,
graspability, and target movement all need to be determined
from the robot’s sensors. As noted in our earlier research, four
kinds of behavior are required: approaching, body–placing,
stepping, and grasping (Saputra et al., 2019c). The proposed
model was first optimized through simulation. The robot, in
turn, successfully moved from the lower level to the upper
level, negotiating the ladder between them (Figure 14C). The
video of the robot performance climbing the vertical ladder
can be seen in the link of Video 5.

CONCLUSION AND FUTURE PLANS

We developed a robot inspired by domestic feline morphology.
The main contribution of the proposed robot is finding some
benefit of biological morphology for robotics to tackle unsolved
terrain. We imitate the morphology of the Cat animal in the robot
structure and the paw mechanism. In the sensory system, we
design the novel structure of 3D point cloud sensors for
improving the efficiency. Then, the robot is built to show
some novel bio-inspired model. The robot responds to both
internal and external sensory information, processing the
sensory input through several bio-inspired novel capabilities
that enable the robot’s motion through complicated terrains.
The robot, though built on a low-cost budget (estimated as
12.000 USD), has been successfully trialed in several
environmental conditions. The locomotion model of the robot
can generate a dynamic gait pattern by stimulated only one single
speed parameter. There are five patterns generated in the robot
performance, walk, amble, pace, symmetrical walk, and trot gait.
There are, however, still some practical problems still to be solved.
Our continuing research will focus on these three areas:

• Improving stability: We will improve the robot’s use of its
inertial sensor data in manipulating the current stability model.

• Soften footfall: the robot’s step is currently heavy. We will
add a damper mechanism to soften footfall, inspired by
feline leg structure.

• Improving durability: the robot needs to run for longer.
This may be achieved by increasing battery capacity and
body efficiency, for example by decreasing the robot’s
weight.

• Advanced terrain handling: further experimentation is
required to develop the robot’s performance in more
complex environments. We will design and build an
artificial ruin in which to develop and test the robot.

LINK TO ONLINE VIDEO

(1) Video 1: https://youtu.be/9MEojC5SjdA Shows 3D point
clouds data generated by Quad ToF sensor, Comparison
of the proposed dynamic density topological generator with
other model, The proposedmodel can specified the density in
the obstacle area automatically.

(2) Video 2: https://youtu.be/4NeW1u3OfFo Shows the robot
performance in natural and rough terrain, dynamic gait
transition in different speed, and robot’s performance
during malfunction condition.

(3) Video 3: https://youtu.be/TYACHd9G88E Shows the
Robot Performance Avoiding Sudden Obstacle While
Moving

(4) Video 4: https://youtu.be/4sZH1vKzNp0 Shows the
performance of real time vertical ladder affordance
detection while approaching the ladder and performance
of moving ladder affordance detection.

(5) Video 5: https://youtu.be/Y_lmzQf-3Lk Shows the novel
capabilities of the robot moving through the vertical
ladder without handrail support.

(6) Video 6: https://youtu.be/hfL9vE847Es Shows the integration
between affordance and attention in computer simulation.
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Effect of Thoracic Connective Lesion
on Inter-Leg Coordination in Freely
Walking Stick Insects
Miriam Niemeier1†, Manon Jeschke1†‡ and Volker Dürr1,2*‡

1 Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld, Germany, 2 Center for Cognitive
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Multi-legged locomotion requires appropriate coordination of all legs with coincident
ground contact. Whereas behaviourally derived coordination rules can adequately
describe many aspects of inter-leg coordination, the neural mechanisms underlying
these rules are still not entirely clear. The fact that inter-leg coordination is strongly
affected by cut thoracic connectives in tethered walking insects, shows that neural
information exchange among legs is important. As yet, recent studies have shown that
load transfer among legs can contribute to inter-leg coordination through mechanical
coupling alone, i.e., without neural information exchange among legs. Since naturalistic
load transfer among legs works only in freely walking animals but not in tethered animals,
we tested the hypothesis that connective lesions have less strong effects if mechanical
coupling through load transfer among legs is possible. To do so, we recorded
protraction/retraction angles of all legs in unrestrained walking stick insects that either
had one thoracic connective cut or had undergone a corresponding sham operation. In
lesioned animals, either a pro-to-mesothorax or a meso-to-metathorax connective was
cut. Overall, our results on temporal coordination were similar to published reports on
tethered walking animals, in that the phase relationship of the legs immediately adjacent
to the lesion was much less precise, although the effect on mean phase was relatively
weak or absent. Lesioned animals could walk at the same speed as the control group,
though with a significant sideward bias toward the intact side. Detailed comparison of
lesion effects in free-walking and supported animals reveal that the strongest differences
concern the spatial coordination among legs. In free walking, lesioned animals, touch-
down and lift-off positions shifted significantly in almost all legs, including legs of the
intact body side. We conclude that insects with disrupted neural information transfer
through one connective adjust to this disruption differently if they experience naturalistic
load distribution. While mechanical load transfer cannot compensate for lesion-induced
effects on temporal inter-leg coordination, several compensatory changes in spatial
coordination occur only if animals carry their own weight.

Keywords: walking, leg coordination, locomotion, neural coupling, load transfer
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INTRODUCTION

Adaptive, coordinated walking requires appropriate and
simultaneous control of multiple legs (e.g., Graham, 1985; Dürr
et al., 2018; Ritzmann and Zill, 2019). While it is clear that
the interplay of rhythmic movements of all legs is monitored
and controlled by neuronal circuits and proprioceptive systems
(Tuthill and Wilson, 2016), neurophysiological and behavioural
evidence on leg coordination support slightly different weighting
of the relative importance of proprioceptive feedback in the
generation of a gait.

Neurophysiological evidence from insects suggests that
temporal patterning of activity in leg motor nerves arises from
local neuronal networks of each leg, convened into central pattern
generators (Bidaye et al., 2018), whose action can be adjusted
by both intra- and inter-limb sensory feedback (Büschges,
2005). Accordingly, the gait originates from central neural
network dynamics that is adjusted by proprioceptive input. In
comparison, behavioural evidence, particularly from stick insects
and crayfish, has been summarised in a set of coordination rules
that describe the pairwise interaction between neighbouring legs
(Cruse, 1990). In various software and hardware models of insect
locomotion (e.g., Cruse et al., 1998; Dürr et al., 2019; Schilling and
Cruse, 2020) these coordination rules have been implemented as
sensory-motor feedback mechanisms. As the pairwise coupling
through these feedback mechanisms dominates the execution of
each step cycle, the gait does not originate from central neural
network dynamics but emerges from distributed interaction of
the body and its environment (Schilling et al., 2013). While
this allows for several aspects of behavioural flexibility through
de-centralised inter-leg coordination (Dürr et al., 2018), the
neuronal mechanisms that underlie pairwise inter-leg coupling
are not entirely clear.

The present study aims to quantify the contribution of local,
load-dependent sensory feedback in insect walking without
ipsilateral neural coordination. Experiments on tethered walking
stick insects showed that inter-leg coordination is strongly
affected by cutting thoracic connectives. Following connective
lesions, animals showed shifted touch-down and lift-off positions
of the tarsi and temporally uncoordinated step cycles of
neighbouring legs (Dean, 1989). This strongly suggested that
neural information exchange among legs is important. However,
as rhythmic movement persisted in the leg posterior to the lesion,
the generation of a local step cycle was still possible without
neural input from the anterior hemi-ganglion.

More recently, experiments on freely walking stick insects
showed that step cycles of ipsilateral neighbouring legs can be
coordinated due to mechanical coupling alone (Dallmann et al.,
2017). This study suggests that load transfer among legs generates
sensory information about unloading that can be registered by
campaniform sensilla (Zill et al., 2004) which, in turn, drive
local reflex circuits involved in inter-leg coordination. Similar
sensorimotor mechanisms were also discussed in cockroaches
(Pearson and Iles, 1973; Greene and Spirito, 1979; Zill et al.,
2009). Since load transfer and the corresponding proprioceptive
impact on leg movement must differ considerably between
tethered and freely walking animals (at least if the tether

carries or supports the body weight), it is unknown to what
extent the results of the connective lesion experiments by Dean
(1989) hold for non-tethered walking animals. In contrast to
animals in most tethered walking experiments, freely walking
animals have to carry their own weight and, therefore, experience
load transfer among legs. Moreover, interaction forces between
body and substrate differ, not least during yaw rotation of the
whole body. Here we investigate how these differences affect
temporal and spatial inter-leg coordination in the absence of
ipsilateral neural coupling by repeating Dean’s connective lesion
experiments in freely walking stick insects. To do so, we recorded
protraction/retraction angles of all six thorax-coxa joints in the
Indian stick insect Carausius morosus (de Sinéty, 1901) after
cutting the right connective in the mesothorax or metathorax
and compared them with those of animals that had undergone
a corresponding sham operation. To ensure natural load transfer
among legs, animals were recorded while walking freely across
a plane horizontal arena, using marker-based motion capture.
We show that stick insects can still walk at similar speed
as sham-operated controls, although temporal coordination of
legs adjacent to the lesion remains disturbed. Moreover, a
detailed comparison of the effects of connective lesions between
supported and free walking animals reveals that compensatory
adjustments to disrupted neural information transfer concern
mainly parameters of spatial coordination among legs, not
temporal coordination.

MATERIALS AND METHODS

Animal Preparation
For this study, we used 20 adult, female stick insects of
the species Carausius morosus (de Sinéty, 1901) from a
laboratory colony bred at Bielefeld University. The animals
were divided in two cohorts of 10 animals. From each cohort,
five animals were assigned to a “treatment group,” whereas
the other five were assigned to a “sham group.” Animals of
the treatment group underwent an operation in which the
right connective was severed between either the pro- and
mesothoracic ganglion (Cohort 1) or between the meso- and
metathoracic ganglion (Cohort 2). To do so, the animal was
fixed on plasticine, ventral side up, and a small incision was
made in the cuticula of the meso- or metasternum, using the
splinter of razor blade. Then, both connectives were localised
by gently moving the tracheae, and the right connective was
slightly lifted and cut with fine scissors. Afterward, the incision
was closed and sealed with beeswax. The animals of the
sham group underwent a corresponding sham operation, in
which the same incisions were made to the cuticula, and
the connectives were touched gently with tweezers but not
cut. Thus, each cohort had its own control group, making
sure that any observed changes in locomotion were caused
by the treatment, i.e., cutting the connective, and not by the
operation itself.

For motion capture, the animals were marked with nine
retroreflective markers (Ø 1.5 mm, Prophysics, Zurich,
Switzerland). Three of these marked the leg bases and were
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FIGURE 1 | Experimental procedure. (A) Nervous system of the stick insect. The dotted box contains the ventral nerve cord ganglia of the thoracic segments
(adapted from Marquardt, 1939; the distance between the meso- and meta-thoracic ganglion is approximately 12 mm in adult female C. morosus). For the
operation, the right connective was severed either between pro- and mesothoracic ganglion or between the meso- and metathoracic ganglion (T2 and T3 lesion,
respectively, red lines). In the sham operations the corresponding connective was touched with a pair of tweezers. (B) Animals walked freely in a planar circular arena
containing three visual landmarks (black bars) of 10◦ width. (C) Schematic top view of the arena, indicating location and size of the landmarks (red) in relation to the
initial walking directions (central cross). (D) Schematic wiring diagram of the gantry system for manual two-axis tracking of animals walking within the arena. The
camera was mounted to a small sleigh that could be sled along a second, larger sleigh that, in turn, sled along rails on the main frame. The movement of both
sleighs was monitored by linear position sensors (PS). The computer ran two programmes that registered the data streams from the camera (blue line: Firewire
connection) and the two PS via an analogue-to-digital converter box (ADC box; purple line: USB2 connection. Black lines indicate analogue signals. The clock of the
flash trigger box synchronised the cameras, the infrared flashlights, and the ADC box (red lines: TTL connections).

placed on the dorsal thorax segments between the coxal
bases. The other six marked the leg posture, and were placed
on the distal, dorsal cuticle of each femur. Markers were
fixed to the cuticle with clear nail polish. Marker positions
on the body were photographed with a calibrated camera
on a stereo lens (Olympus SZ61T with SC30 camera) at an
accuracy of 0.1 mm.

Experimental Procedure
Experiments were carried out in a planar, circular arena (Ø
1,200 mm, height of margin: 200 mm) that was placed below
a camera gantry (Figure 1). Before starting the experiment, the
animals got a 10 min break for recovery after the operation.
Afterwards, they were placed into the arena following a pseudo-
random distribution of four cardinal starting directions within
the arena (0◦, 90◦, 180◦, 270◦). The wall of the arena was
illuminated from the outside with a set of eight projectors and
a corresponding set of mirrors. As an incentive for walking, three
black bars on a white background (width: 10◦) were projected
onto the arena rim at positions 60◦, 180◦, and 300◦. These bars
also served as visual landmarks (Figure 1C).

Prior to each recording the camera view was centred on a point
that marked the middle of the arena. Once an animal had been
placed onto this point, the video recording was started and the
walking animal was followed by shifting the camera on the gantry.
The recording was stopped as soon as the animals reached the rim
of the arena or stopped walking.

In total, we acquired 69–89 trials per cohort, with each
cohort contributing at least 6,200 step cycles to the data

set. The total number of trials and step cycles are listed in
Supplementary Table 1.

Data Acquisition
For analysing the pro- and retraction movements, a zoomed-
in top view of the walking stick insect was recorded by an
infrared-sensitive digital video camera (Basler A602f-2, Basler
AG, Ahrensburg, Germany) with a custom-built infrared LED
flashlight for illumination and a manual zoom lens (Pentax
H6Z810). The camera was mounted to the sled of a custom-
made gantry (Item International, Solingen, Germany) with
two horizontal movement axes. The camera position above
the arena was recorded by two contact-free, linear position
sensors (PMS-1-A-1000-K-2410, Megatron, Munich-Putzbrunn,
Germany) placed on both axes of the gantry. The camera shutter,
flashlight and camera position record were synchronised to via
TTL pulses generated by a custom-built flash trigger box (Michael
Dübbert, Electronics workshop of Zoological Institute, University
of Cologne; Figure 1D). The experimenter could manually move
the camera along the two gantry axes, while observing the live
image on a computer screen.

Videos were recorded with 50 frames per second at resolution
of 480× 640 pixels, and captured via Firewire (IEEE 1394) using
a custom-written frame grabber software (Sven Hellbach and
Peter Iseringhausen, Bielefeld University) that generated videos
in AVI format, along with a separate text file with time stamps for
individual frames. Camera position was recorded via USB using
an analogue-to-digital converter (Data Translation DT9802, Data
Translation GmbH, Bietigheim-Bissingen, Germany) that also
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registered a binary camera exposure signal for later alignment of
video and camera position data.

Data Analysis
Data analysis was done in MATLAB (The Mathworks, Natick,
United States) using custom-written scripts and graphical user
interfaces (GUIs). In a first step, the position records from
the gantry system and the time stamps of the video recording
software were aligned, yielding the 2D position time course of
the camera. In a second step, the recorded videos were processed,
yielding image positions of the nine markers for each video frame.
To do so, markers were assigned and labelled manually in the
first frame and then tracked semi-automatically using threshold-
based clustering of marker pixels and a nearest-neighbour
tracking algorithm. In a third step, the gantry position data, time
stamps, and extracted marker coordinates were combined with
calibration data for the camera projection and arena properties
in separate files per trial.

These combined data files allowed calculation of both
external, arena-centred information such as body orientation
and velocity, and local, body-centred information about leg
coordination. For the latter, positions were expressed relative
to a “root marker” (in our case, the marker on the posterior
metathorax) and aligned with the body axis. The resulting
body-centred marker trajectories were used to calculate the
time courses of protraction/retraction angles of all thorax-
coxa joints. Protraction/retraction of a leg was defined as the
angle between the line connecting the femoral and thoracic
marker and the line perpendicular to the body axis. As a result,
an angle of zero indicates that the femur was orthogonal to
the body axis, and a positive angle indicates that the femur
pointed forward. Extraction of local maxima and minima
from protraction/retraction time courses yielded the times of
movement reversals at the thorax-coxa joints. These served
as estimates of the lift-off and touch-down events and thus,
the onset/offset of stance and swing phases. Note that this
definition of swing and stance phases is common in the
literature (e.g., Wendler, 1964; Dean, 1989) but neglects small
phase shifts between the protraction/retraction cycle of the
thorax-coxa joint and the actual onset/offset of ground contact
(e.g., Theunissen et al., 2015, see their Figure 9). Also, all
positional step cycle parameters like step length, anterior and
posterior extreme positions correspond to angles and will be
given in degrees.

Body position and orientation within the arena were
calculated by combining the camera position relative to the
gantry and marker positions within each video frame. Forward
and sideward translational velocities [mm/s] and yaw rotational
velocity [deg./s] were calculated from the shift and rotation of
the animal between subsequent frames and smoothed by use of
a sliding median filter with a window of 60 ms (3 frames). For
further information about data analysis and sample data, see
Supplementary Material.

Because each one of the five animals per cohort contributed
a lot of steps, the statistical analysis had to take into account
the large but unbalanced samples per animal, for n = 5
independent samples per cohort. This was done in a two-step

procedure by first re-sampling balanced pooled distributions
with the original total sample size, and then bootstrapping
the median and its 95 and 99% confidence intervals from
10,000 balanced samples. Statistical significance of pairwise
comparisons was concluded whenever the 95% confidence
intervals (95% CI) did not overlap (p < 0.05). The corresponding
pairwise effect sizes were calculated as differences between
cohort medians, divided by their mean 95% CI. Circular
statistics on phase differences between step cycles were calculated
on per-animal means, using the MATLAB toolbox CircStat
(Berens, 2009).

RESULTS

General Observations
To analyse the effect of connective lesions on walking behaviour,
we will first provide a general overview of the walking parameters
of representative, single trials and later quantify the effects on
both temporal and spatial parameters of inter-leg coordination
across the different cohorts. Figure 2 compares trials from
animals with a lesion (T2 lesion) or sham operation (T2 sham)
at the pro-to-mesothorax connective. Despite the fact that both
animals walked a similar path, several aspects differed between
the sham-operated and lesioned animal. First, the lesioned animal
was slower and showed a leftward bias in sideward velocity
(Figures 2B,E). Furthermore, the local minima and maxima
of the protraction angles revealed pronounced shifts of several
extreme positions and/or working ranges of the different legs
(Figures 2C,F). Compared to the sham-operated animal, the left
front and hind legs (intact side) of the lesioned animal took bigger
steps by shifting their posterior extreme positions (PEP) to the
rear. Also, the left hind leg extended the stance phase such that
it tended to lift off later than the front leg (compare blue and
red crosses at local minima in Figure 2F). On the right side
(treatment side), the anterior extreme position (AEP) of the front
leg is strongly shifted forward, resulting in much larger steps.
Moreover, the working range of the right middle leg decreased
and shifted rearwards.

In contrast, the animal with a lesioned right meso-to-
metathorax connective shown in Figure 3 (T3 lesion) was
still capable of walking at a similar forward velocity as the
sham-operated animal (T3 sham), but also revealed a bias in
sideward translational velocity to the left (Figures 3B,E). The
protraction angles of the legs show that the hind leg of the
(right) treatment side executed only very small and seemingly
uncoordinated protraction movements. Also, its working range
was strongly shifted rearwards. At the same time, the opposite
(intact side) hind leg showed a strongly increased step length,
caused by a forward shift of the AEP and a rearward shift
of the PEP. Also, this leg stayed retracted at nearly the same
angle for some time before lift-off. This may indicate a further
rearward shift of the foot by extension of the femur-tibia
and/or depression of the coxa-trochanter joints which was
not monitored. Compared to the sham-operated animal, the
working ranges of the right front and middle legs of the
lesioned animal were enlarged and shifted forward. The opposite
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FIGURE 2 | Representative trials of animals that had undergone an operation at the pro-to-mesothorax connective. (A–C) T2 sham operation; (D–F) T2 connective
lesion. (A,D) Walked path of the animal in the circular arena. The animal was placed in the centre of the arena facing toward one of four starting directions (here:
180◦, see also Figure 1C) and walked toward a visual landmark on the arena wall in that same direction. (B,E) Fluctuation of forward (Tx ) and sideward (Ty )
translational velocities (in mm/s) as well as the rotational velocity about the yaw axis (in deg/s). (C,F) Time courses of protraction/retraction angles of the animals’
front (red), middle (green) and hind legs (blue). Zero degrees (black dashed lines) corresponds to a leg posture orthogonal to the body axis. The anterior and posterior
extreme positions are marked by circles and crosses. Note that the time course of the trial shown in (F) was truncated to the same time window as the trial shown in
(C). The complete trial is shown in Supplementary Figure 2.

front and middle legs showed little to no change in their
protraction/retraction time courses.

Taken together, these representative trials show that a number
of effects were induced on the treatment side, but several
adjustments concerned the opposite, intact body side, too. In the
next sections, we examine the consistency of these lesion-induced
differences across entire cohorts.

Effects on Velocity and Step Cycle
Parameters
As animals were walking freely on a horizontal plane, we could
determine all three degrees of freedom of motion in the plane and
assess lesion-induced effects on both translational velocities (Tx:
forward; Ty: sideward) and rotational velocity about the yaw axis.

Figure 4A shows that animals with a lesioned pro-to-mesothorax
connective walked with significantly increased sideward velocity
(Tysham = −0.8 mm/s, Tylesion = 4.2 mm/s, p < 0.05) and tended
to walk slightly slower than sham-operated animals, but the latter
difference was not statistically significant (Txsham = 30.4 mm/s,
Txlesion = 18.2 mm/s, n.s.). Similarly, animals with a meso-to-
metathorax connective lesion (Figure 4B) walked at a similar
forward velocity as sham-operated animals (Txsham = 36.2 mm/s,
Txlesion = 31.1 mm/s, n. s.). As for the other lesion, these
animals walked at a significantly increased sideward velocity
(Tysham = 0.2 mm/s, Tylesion = 3.3 mm/s, p< 0.05). Neither lesion
resulted in a change of median yaw rotation.

Since these differences in velocity can be due to changes in
the step length and step cycle period, we took a closer look
at these parameters. Figure 5A shows that R1 and R2 legs of
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FIGURE 3 | Representative trials of two animals that had undergone an operation at the meso-to-metathorax connective. (A–C) T3 sham operation; (D–F) T3
connective lesion. Same graphics details as in Figures 2 A,D: Walked path of the animal in the circular arena. Here, the animals started to walk in cardinal direction
90◦ (see Figure 1C) and turned toward the border of a visual landmark on the arena rim at 60 deg. (B,E) Fluctuation of forward (Tx ) and sideward (Ty ) translational
velocities (in mm/s) as well as the rotational velocity about the yaw axis (in deg/s). (C,F) Time courses of protraction/retraction angles of the animals’ front (red),
middle (green) and hind legs (blue). Zero degrees (black dashed lines) corresponds to a leg posture orthogonal to the body axis. The anterior and posterior extreme
positions are marked by circles and crosses. Note that the time course of the trial shown in (C) was truncated to the same time window as the trial shown in (F). The
complete trial is shown in Supplementary Figure 3.

animals with a lesion of the right pro-to-mesothorax connective,
i.e., the legs immediately anterior and posterior to the lesion,
had significantly longer step cycle periods than sham-operated
animals (R1sham = 0.6 s, R1lesion = 0.9 s, p < 0.01; R2sham = 0.7 s,
R2lesion = 1.0 s, p < 0.01). The step cycle period of all other
legs showed no statistically significant differences. Following a
lesion of the meso-to-metathorax connective lesion (Figure 5B),
both hind legs (L3, R3) as well as the right front leg (R1)
showed a significantly increased step cycle period after the lesion
(L3sham = 0.7 s, L3lesion = 0.8 s, p < 0.01; R3sham = 0.7 s,
R3lesion = 0.8 s, p < 0.05; R1sham = 0.5 s, R1lesion = 0.7 s,
p < 0.05). Generally, lesioned animals showed a large variance
in step cycle period (Figure 5B). For effect sizes see Table 1 (T2
lesion) and Table 2 (T3 lesion).

Other than step cycle period, step length was generally affected
more, both in terms of effect size and in number of legs
(Figure 6), corroborating the effects seen in the single trials
shown in Figures 2, 3. After cutting the right pro-to-mesothorax
connective, the leg posterior to the lesion took smaller steps
(R2sham = 35.9 deg., R2lesion = 25.7 deg., p < 0.01) while the
leg anterior to the lesion took larger steps (R1sham = 52.3 deg.,
R1lesion = 61.2 deg., p < 0.05). Furthermore, the contralateral
hind and middle legs showed significantly increased step
lengths (L2sham = 35.7 deg., L2lesion = 40.3 deg., p < 0.01;
L3sham = 26.9 deg., L3lesion = 40.1 deg., p < 0.01). Similarly,
animals with a lesioned meso-to-metathorax connective showed
altered step lengths of the legs anterior and posterior to the lesion
(Figure 6B). The right hind leg took significantly smaller steps
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FIGURE 4 | Lesion effects on translational and rotational velocities. Tx: Forward translational velocity (green); Ty: Sideward translational velocity, with positive values
indicating shifts to the left (blue); Rot: Rotational velocity, with positive values indicating ccw rotation (red). (A) Pro-to-mesothorax connective; (B)
meso-to-metathorax connective. Symbols show median velocity per animal (lesion: filled circles; sham operation: open circles). Boxes comprise all trials of the
cohort and show the median velocities and the bootstrapped 95% CI.

FIGURE 5 | Effects on step cycle period. (A) Pro-to-mesothorax connective; (B) meso-to-metathorax connective. Symbols show the median step cycle period per
animal after lesion (filled circles) or a sham operation (open circles). Boxes comprise all trials of the cohort and show the median and the bootstrapped 95% CI.
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FIGURE 6 | Effects on step length. (A) Pro-to-mesothorax connective; (B) meso-to-metathorax connective. Symbols show median step length per animal with
connective lesion (filled circles) or sham operation (open circles). Boxes comprise all trials of the cohort and show the median step length and the bootstrapped
95% CI.

(R3sham = 25.6 deg., R3lesion = 14.8 deg., p < 0.01) while the
middle leg took larger steps (R2sham = 35.4 deg.; R3lesion = 49.9
deg., p < 0.01). Moreover, all three contralateral legs took longer
steps compared to sham-operated animals (for p-values and effect
sizes see Table 2).

Taken together, the similar forward velocity with and without
lesion of the pro-to-mesothorax connective was mirrored by
fairly consistent step cycle periods in four of six legs, whereas
the changes in step length overall larger and left only two
leg unaffected (Table 1). Similarly, our finding that animals
with a cut meso-to-metathorax connective could walk equally
fast as sham-operated animals was mirrored by an overall
weaker change in step cycle period (concerning three legs) and
overall stronger and more wide-spread change in step length
(concerning five legs).

Spatial Coordination
Given the leg-specific changes in step length, we further
examined how these changes in step length related to forward or
rearward shifts of the actual touch-down and lift-off positions. To
this end Figures 7, 8 show the protraction/retraction angles at the
onset of swing or stance, which we interpret as equivalents of the
anterior (AEP) and posterior extreme positions (PEP) of all legs.
Figure 7 shows the effect a cut pro-to-mesothorax connective.
All six legs significantly shifted both AEP and PEP, though with
strongly different effect sizes (Table 1). The strongest effect was

observed for the median AEP (Figure 7A) and PEP (Figure 7B)
of the right middle leg, both of which strongly shifted to the rear
compared to sham-operated animals (R2: AEPlesion = −6.9 deg.,
p < 0.01; PEPlesion = −30.3 deg., p < 0.01). Also, the working
range of the right front leg shifted anteriorly by forward shifts
of both the AEP and PEP (R1: AEPlesion = 67.9 deg., p < 0.01;
PEPlesion = 14.8 deg., p < 0.01). Furthermore, the AEP of the
contralateral hind leg also shifted forward (L3: p < 0.05), thus
leading to the increase of step length observed in Figure 6A.
Finally, both AEP and PEP of the contralateral middle leg shifted
anteriorly (L2: AEPlesion = 27.7 deg., p < 0.01; PEPlesion = −9.7
deg., p < 0.01), resulting in a forward shift of the working range
with a small change in step length only (compare beating fields in
Figures 7C,D).

Similar to the results described above, a lesion of the meso-
to-metathorax connective affected the touch-down and lift-off
locations of most legs, again with very different effect sizes
(Table 2). Again, effects were strongest anterior and posterior to
the lesion (Figure 8). The median AEP and PEP of the right hind
leg both shifted to the rear (R3: AEPlesion = −44.7 deg., p < 0.01;
PEPlesion = −62.9 deg., p < 0.01), whereas the median AEP of
the right middle leg strongly shifted forward (R2: AEPlesion = 27.1
deg., p < 0.01) with no change of the PEP. As a consequence, the
narrowed working range of the right hind leg revealed a strong
rearward shift, whereas the broadened working range of the right
middle leg shifted only little (compare Figures 8C,D). Of the legs
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TABLE 1 | Summary of the changes in step parameters induced by a lesion of the pro-to-mesothorax connective.

T2 lesion Lesion Sham

Local changes Bilateral asymmetry Bilateral asymmetry

L1 L2 L3 R1 R2 R3 FL ML HL FL ML HL

AEP ↓

1.57
↑↑

3.84
↑↑

1.43
↑↑

3.29
↓↓

6.67
↓↓

1.85
↑↑

5.48
↓↓

9.94
↓↓

3.89
↑

1.45

PEP ↓

1.42
↑↑

1.83
↓

1.14
↑↑ 2.6 ↓↓

3.05
↓↓

1.73
↑↑

3.81
↓↓

3.75
↑

1.67
↑↑

1.61

LENGTH ↑

0.98
↑↑

3.02
↑

1.33
↓↓

2.79
↑↑

1.61
↓↓

4.4
↓↓

3.1

DURATION ↑↑

2.25
↑↑

1.33
↑

1.5
↓

1.12

The statistical significance and direction of the effect (arrows) as well as the effect size (numbers) are shown for local changes in single leg step cycles and bilateral leg
pairs of lesioned and sham-operated animals. Arrows indicate the direction and significance level (one arrow: p < 0.05; two arrows: p < 0.01). Effect sizes more than
twice the 95% CI are coloured in dark red, effect sizes larger than four times the 95% CI are coloured in bright red. Grey shading of local changes columns indicates the
location of the lesion.

FIGURE 7 | Effects of the T2 lesion on anterior and posterior extreme positions. AEPs (A) and (PEPs (B) of all legs following an operation at the pro-to-mesothorax
connective. Symbols show median extreme positions per animal with a cut connective (filled circles) or with a sham operation (open circles). Boxes show the
distributions for all trials per cohort with the median extreme positions and 95% CI. Zero degrees (black dashed lines) corresponds to a leg posture orthogonal to the
body axis. (C,D) Beating fields show both the size and boundaries of the working range of each leg with a sham operation in the mesothorax (C, top) or with a cut
pro-to-mesothorax connective (D, bottom). Schematic top views indicate the median femoral postures at the AEP and PEP for the left (red) and right legs (blue) in
relation to the body axis (black). Transparent areas show the corresponding 5% percentiles of the PEP and 95% percentiles of the AEP.

contralateral to the lesion, all legs showed a significant anterior
shift of the AEP, while the effect on the PEP differed among legs:
Whereas the PEP of the left middle leg shifted forward (i.e., in the
same direction as the AEP), it shifted rearward in case of the left
hind leg (i.e., in the opposite direction of the AEP) resulting in
a strong increase in step length (compare beating fields of L3 in
Figures 8C,D).

Taken together, these results show leg-specific, local shifts of
both AEP and PEP, with particularly strong effects on the legs
anterior and posterior to the lesion. The fact that all legs of the

intact (left) body side also underwent significant changes after
lesion highlights the complex interplay of local adjustments in
spatial coordination, potentially caused by direct effects of the
lesion as well as by local compensatory effects on both body sides.

Temporal Coordination
Given the fact that the observed spatial adjustments were not
equal across all legs, despite the fact that animals with connective
lesions could walk along the same paths as sham-operated
animals (Figures 1, 2), and even at a similar speed (Figure 2),
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TABLE 2 | Summary of the changes in step parameters induced by a lesion of the meso-to-metathorax connective.

T3 lesion Lesion Sham

Local changes Bilateral asymmetry Bilateral asymmetry

L1 L2 L3 R1 R2 R3 FL ML HL FL ML HL

AEP ↑↑

1.25
↑↑

3.41
↑

1.18
↑

1.61
↑↑

6.37
↓↓

5.15
↓↓

4.11
↑↑

1.53

PEP ↑

1.19
↓↓

2.46
↓↓

5.12
↓

1.32
↑

2.17
↑

1.16

LENGTH ↑

1.38
↑↑

3.86
↑↑

3.29
↑↑

2.41
↓↓

2.76
↑↑

1.67
↓↓

4.03
↓↓

1.14

DURATION ↑

0.8
↑↑

1.68
↑

0.95

The statistical significance and direction of the effect (arrows) as well as the effect size (numbers) are shown for local changes in single leg step cycles and bilateral leg
pairs of lesioned and sham-operated animals. Same details as in Table 1.

FIGURE 8 | Effects of the T3 lesion on anterior and posterior extreme positions. AEPs (A) and PEPS (B) of all legs following an operation at the meso-to-metathorax
connective. Symbols show median extreme positions per animal with a cut connective (filled circles) or with a sham operation (open circles). Boxes show the
distributions of all trials per cohort with the median extreme positions and 95% CI. (C,D) Beating fields show both the size and boundaries of the working range of
each leg with a sham operation in the metathorax (C, top) or with a cut meso-to-metathorax connective (D, bottom). Same graph details as in Figure 7.

a major question was to find out which changes in temporal
coordination kept walking sufficiently coherent. In particular,
we were interested in potential changes in pairwise coupling of
ipsilateral leg pairs according to Cruse’s rule 2, i.e., the rule that
a receiver leg commences a swing movement shortly after touch-
down of its (posterior) neighbouring sender leg. Therefore, for
each ipsilateral leg pair we registered the onset of a swing phase
of the anterior (receiver) leg and related it to the step cycle
of its posterior neighbour (sender leg). The same was done for
contralateral leg pairs, expressing the phase of the onset of swing
on the operated (right) body side relative to the step cycles of their

neighbours on the intact (left) body side. In all cases, the reference
step cycle of the sender leg was defined as the interval between
the two subsequent anterior extreme positions, i.e., touch-down
events. This choice allowed us to interpret the phase shift in the
context of Cruse’s coordination rule 2, but also in relation to
the unloading event due to load transfer from sender to receiver
legs. The corresponding rose plots of Figures 9, 10 show the
mean phase shift per animal and the dispersion of the pooled
distribution, the latter being a measure of coupling strength
between leg pairs. All circular statistics reported below were
calculated on per-animal means.
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FIGURE 9 | Temporal coordination of step cycles after an operation in the mesothorax. (A) Sham-operated animals. (B) Animals with a lesion of the right
pro-to-mesothorax connective (T2 lesion). Square boxes labelled L1–L3 and R1–R3 show the arrangement of the six legs. For each leg pair labelled “Leg1 in Leg 2”,
rose plots show pooled distribution (blue) and per-animal mean phase shifts 8 (red) of the onset of swing by Leg 1 (receiver leg) in relation to the step cycle of
(sender) Leg 2. Accordingly, 8 = 0 indicates that L1 lifted off at the same time as L2 touched down. Circular histograms comprise all steps per cohort in 15 deg.
bins. Statistics were calculated on per-animal mean phase vectors, with 8 and R giving the corresponding angle and length of that vector, respectively. Significance
levels, *p < 0.05; **p < 0.01.

Figure 9A shows that the phase shifts were very similar for
all leg pairs in case of the T2 sham operation. Typically, the
receiver leg lifted off in the late first quarter of the step cycle of
the sender leg, with mean phase angles ranging between 50 and
78 deg. This coherent pattern of coordination was disrupted after

the lesion of the right pro-to-mesothorax connective (Figure 9B,
T2 Lesion). After lesion, the right front leg started its swing phase
without obvious coupling to the step cycle of the right middle
leg. Although the mean phase shift changed only little compared
to that of the sham-operated cohort (R1 in R2: ϕsham = 74;
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FIGURE 10 | Temporal coordination of step cycles after an operation in the metathorax. (A) Sham-operated animals. (B) Animals with a lesion of the right
meso-to-metathorax connective (T3 lesion). Same graph details as for Figure 9. Significance level ***p < 0.001.

ϕlesion = 78, p < 0.05, Watson-Williams test), we observed a
strong increase in dispersion of phase and, as a result, decreased
coupling strength (R1 in R2: rsham = 0.58, rlesion = 0.10, p < 0.01,
Kuiper test). Both effects were statistically significant. Not only
the temporal coordination of the ipsilateral leg pair adjacent
to the lesion was affected, but also the contralateral coupling
between the left and right middle legs: The right middle leg
tended to start its swing movement later in the step cycle of the

left middle leg (R2 in L2: ϕsham = 77, ϕlesion = 130; n.s.), but
the dispersion was similarly increased as for the ipsilateral leg
pair (R2 in L2: rsham = 0.417; rlesion = 0.11, p < 0.05). Owing
to the variation of per-animal mean phase, only the effect on
dispersion was statistically significant. A further effect concerned
the ipsilateral coupling of the hind and middle legs of the (left)
intact body side, that showed a reduced mean phase angle (L2 in
L3: ϕsham = 74, ϕlesion = 45, p < 0.05). Related to these changes
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we observed a tendency for increased phase angles between
contralateral front and hind leg pairs. Whereas the mean phase
shift of these contralateral pairs was very similar to that of the
left ipsilateral leg pairs in sham-operated animals (compare L2-
in-L3 to R3-in-L3, and L1-in-L2 to R1-in-L1 in Figure 9A),
there is a consistent increase of phase angle for all legs of the
operated side with reference to their contralateral neighbours
on the intact body side. Given the fact that the coordination of
R2-in-R3 remained unaffected by the lesion, despite the weaker
coupling of R2 and either L2 and R1, we suggest that the changes
in contralateral coordination and ipsilateral coordination on the
intact side are secondary effects. They could be a consequence
of maintaining coherence among the six legs, with the primary
lesion effects concerning R1-in-R2 and R2-in-L2.

Animals that had undergone a sham operation in the
metathorax (Figure 10A) showed similar temporal coordination
pattern as did the cohort with a sham operation in the
mesothorax (Figure 9A). In all contralateral and ipsilateral leg
pairs the receiver leg commenced swing with a phase lag between
50 and 98 deg, relative to touch-down of the sender leg. A small
but notable difference between the T2 sham (Figure 9A) and T3
sham cohorts (Figure 10A) concerned the slightly larger mean
phase shifts of the front legs (R1-in-R2 and L1-in-L2) compared
to that of the middle legs (R2-in-R3 and L2-in-L3).

Figure 10B shows that the T3 lesion of the right meso-
to-metathorax connective had a similar effect on the adjacent
ipsilateral leg pair as described above for the T2 lesion cohort.
After the lesion, the lift-off of the right middle leg was almost
randomly distributed in the step cycle of the posterior right
hind leg. Whereas the mean phase shift remained similar as in
sham-operated animals, angular dispersion was very large, i.e.,
coupling strength was weak (R2 in R3: ϕsham = 50, ϕlesion = 47,
n.s.; rsham = 0.82; rlesion = 0.17, p < 0.001). The phase relation
between the contralateral hind legs, however, did not change after
the lesion (ϕsham = 72, ϕlesion = 72, n.s.) and coupling strength
decreased only slightly and non-significantly (rsham = 0.62,
rlesion = 0.39, n.s.). A secondary effect involving the intact (left)
legs and contralateral coupling was weaker than described for the
T2 lesion above. As yet, we observed a slightly decreased phase
angle for the contralateral pair of middle legs in Figure 10B (R2
in L2), but this change was statistically non-significant.

Taken together, these results show that connective lesions
affected the temporal coordination of leg pairs only locally, i.e.,
not consistently among legs. After both types of lesion, the main
effect concerned the leg posterior to the lesion, indicating that
ipsilateral coupling is strongly affected by disruption of neuronal
information transfer from anterior to posterior legs.

DISCUSSION

Coordination Rules, Load Transfer, and
Motor Flexibility
Recent findings in cockroaches and stick insects revealed that
mechanical transfer among ipsilateral legs can be sensed by
campaniform sensilla at the base of the insect leg, and may
contribute to maintain temporal coordination (cockroach: Zill

et al., 2009; stick insect: Dallmann et al., 2017) without involving
intersegmental neurons. On the other hand, several studies have
investigated the effect of thoracic connective lesions on inter-leg
coordination (e.g., Blatta: Hughes, 1957; Periplaneta: Pearson and
Iles, 1973; Greene and Spirito, 1979; Carausius: Dean, 1989), and
all of them concluded that neural information transfer through
thoracic connectives is important for temporal coordination of
the adjacent, ipsilateral pair of legs. However, all analyses in the
mentioned studies dealt with inter-leg coordination in tethered
animals [some, with anecdotal remarks on free walking), and
except for Greene and Spirito (1979); for method see Spirito and
Mushrush, 1979] the animals were supported, thus altering the
nature and reducing the magnitude of sensory feedback about
load. Moreover, only the study of Dean (1989) has analysed the
effect of connective lesions on spatial coordination among legs.
Owing to the significance of spatial coordination for the resulting
load distribution among legs and, therefore, for mechanical load
transfer between legs (for examples in biology and biomimetics
see Dallmann et al., 2017; Dürr et al., 2019, respectively), the aim
of the present study was to assess the potential of mechanical load
transfer in insect walking without neural coupling of ipsilateral
leg pairs. To this end, we analysed both spatial and temporal
inter-leg coordination of unrestrained walking stick insects with
and without severed thoracic connectives.

A conceptual framework for behavioural analysis of inter-
leg coordination has been established by Cruse and coworkers,
who derived a set of inter-leg coordination rules (Cruse,
1990) that has set the stage for detailed experimental analysis
(temporal coordination: e.g., Kindermann, 2002; Dürr, 2005;
spatial coordination: e.g., Schumm and Cruse, 2006; Theunissen
et al., 2014) and modelling (e.g., Espenschied et al., 1996;
Cruse et al., 1998; Schilling and Cruse, 2020) of hexapedal
locomotion. Cruse’s rules describe interactions among adjacent
leg controllers that depend on their current state (being either
the thrust-generating stance phase or the re-positioning swing
phase) and local mechanosensory information about posture,
ground contact and/or load. Last not least, because of the
different coupling strengths between different leg pairs (Dürr,
2005; Grabowska et al., 2012) and context-dependent modulation
of coupling strengths (Dürr, 2005), Cruse’s concept of how
gaits and gait transitions emerge through distributed interaction
of pairwise, mutually coupled leg controllers offers a valuable
framework for understanding motor flexibility in general (for
review, see Dürr et al., 2018).

With regard to load transfer among legs, Cruse’s rules 1 and 2
are of particular interest, both of which operate from a posterior
“sender leg” to its anterior “receiver leg.” Rule 1 states that during
swing phase the sender leg inhibits the start of a swing movement
in the adjacent receiver leg. Rule 2 regulates the onset of a swing
movement of the receiver leg depending on the onset of stance
in the sender leg. In both cases, the crucial timing event is the
touch-down of the sender leg that, by taking on load, induces
mechanical load transfer from the receiver leg to the sender leg.
To test whether Cruse’s rules 1 and 2 require neural information
transfer, Dean (1989) tested ipsilateral coupling of leg pairs
after cutting thoracic connectives. His results showed that the
coordination of the legs immediately adjacent to the lesion was
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hampered significantly, leading to the conclusion that Cruse’s
rules 1 and 2 should be implemented by some sort of anteriorly
directed neural information travelling through the ipsilateral
connective. Although Dean’s conclusions are perfectly valid for
an experimental situation without mechanical load transfer,
recent insights into the mechanisms underlying mechanical load
transfer in insects (Zill et al., 2009; Dallmann et al., 2017) call
for a re-investigation under naturalistic load distribution. To this
end, we measured temporal and spatial coordination parameters
of visually guided but mechanically unrestrained walking stick
insects (Carausius morosus) in a planar arena after severing one
thoracic connective.

To account for Hughes’ warning that “in any experiment
involving operations such as these it is often difficult to
distinguish the effects produced by the specific operation from
those resulting from the general injury” (Hughes, 1957, p. 323)
we designed the study to compare lesioned animals with animals
that underwent a corresponding sham operation (other than
Dean, 1989, who conducted a “before-after” study). A potential
limitation of our experimental design concerns our decision
to opt for a relatively small number of individuals (N = 5
per cohort) with the benefit of having many step cycles per
animal and reliable estimates of per-animal means. To improve
comparability with Dean’s results, we did not differentiate
between distinct classes of step types (Theunissen and Dürr,
2013). Although short steps are known to be relatively infrequent
in planar walking, it is worth to bear in mind that neglecting
them would have mainly concerned observations on front legs,
where short steps are most frequent. Finally, to account for the
fact that insects are known to adjust to connective lesions (Greene
and Spirito, 1979) or genetic manipulation of mechanoreceptive
input (Isakov et al., 2016) over time, we focussed on immediate
effects of the lesion only (as opposed to long-term effects that, in
cockroaches, establish over a period of about 3 weeks; Greene and
Spirito, 1979).

As a further methodological note, it is useful to bear in
mind the differences in data acquisition by Dean (1989) and
us: Dean’s optical recording system measured the tangent of
the protraction/retraction angle, rather the leg angle itself, as
reported here. This makes it difficult to compare effect sizes, as
both angle and dispersion estimates by Dean (1989) were subject
to a non-linear transformation.

Under Load, Connective Lesions Affect
Spatial Coordination More Widely and
Strongly Than Temporal Coordination
In a qualitative description of the effects of a T2 lesion in free
walking stick insects, Dean (1989) noted that “the ipsilateral
middle leg usually remained in a posterior position, where it was
dragged over the ground. Because the ipsilateral front and rear
legs together provide sufficient support for the animal during
their common stance, the middle leg was sometimes able to
make long, slow swing movements” (Dean, 1989, p. 116). This
turned out quite differently in our experiments, as the middle leg
posterior to the lesion regularly engaged in rhythmic movements,
albeit with an altered working range (see Figure 2).

Qualitatively, Dean’s observation that in tethered animals a
connective lesion strongly affected the legs immediately adjacent
to the lesion, with multiple other, often minor effects, was
the same in our free walking animals. However, the results
differed quite strongly when comparing some details, even for
the adjacent leg pair. For example, Dean (1989) found after a T2
lesion that “the mean AEP and PEP of the ipsilateral [...] middle
leg, showed little change but their standard deviations increased”
(p. 116). Comparing his Table 4 with our Table 1 reveals that
in free walking, the effects on that middle leg were among the
strongest found in free walking animals (the rearward shift of the
AEP was more than six times the 95% CI). In case of the PEP,
shifts even were of opposite sign: We found a strong rearward
shift, Dean found a slight forward shift. At the same time, we
did not find a consistent increase of the 95% CI, which is in
contradiction with Dean’s observation of increased spread after
lesion. Related to these differences, Dean (1989) reported that
after a T2 lesion the middle leg frequently showed unusually long
swing movements and “often stepped onto the tibia or femur of
the front leg” (p. 116), an observation that we cannot confirm
for unrestrained walking stick insects. This difference may have
to do with the pattern of more distributed and overall stronger
changes in spatial coordination after T2 lesion as reported here.
For example, the strong, opposite effects on the working ranges
of the ipsilateral front and middle legs (our Figure 7) would
have greatly reduced the likelihood of an overstepping middle leg.
This is in line with the fact that increased overstepping in Dean’s
animals was accompanied by much less divergence of the front
and middle leg working ranges.

Moreover, we found strong anterior shifts of the entire
working range of the contralateral middle leg (Figure 7D) and
an increased step length in both the contralateral middle and
hind legs (Table 1). Both of these effects occurred on the intact
body side, where Dean (1989) reported effects with opposite
shift directions for the contralateral middle leg AEP and PEP,
as well as the hind leg AEP (rearward shifts for Dean, his
Table 4; forward shifts for us, our Table 1). Assuming that the
single major difference between Dean’s and our experimental
design concerned the load distribution and load transfer among
legs, we propose that the load distribution experienced by
the animal substantially affects adjustments in spatial inter-leg
coordination. To some extent, this also concerned the temporal
coordination, as Dean (1989) did not report a significant
change in temporal coordination of the legs on the intact body
side. In contrast, we did find significant adjustment in the
coupling of the contralateral hind and middle legs (L2 in L3,
Figure 9).

Dean (1989) himself noted quite different effects of a T3
lesion in supported and free walking stick insects. His qualitative
observations on free walking animals were that “the most obvious
effect [. . .] was an apparent weakness in the rear leg, an inability
to make a strong swing movement. [. . .] The ipsilateral rear
leg spent much of its time extended near its posterior extreme
position (PEP) where it dragged along the surface. This leg
contributed support to the animal [. . .]. Only when it was
unloaded by the other legs could it occasionally make a short
swing” (Dean, 1989, p. 107). He described a different behaviour
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for tethered walking (with reduced load), when the ipsilateral
hind leg stepped more regularly.

Our own observations on free walking insects confirm that,
after a T3 lesion, the ipsilateral hind leg moved only little. Overall,
the difference between Dean’s study and ours appeared less
pronounced for the T3 lesion than for the T2 lesion. Much like
Dean (1989), we found that the ipsilateral hind leg does not make
normal swing movements, although protraction/retraction of the
hind leg femur oscillated rhythmically (Figure 3). Nevertheless,
these rhythmic movements concern the femur and do not
necessarily imply that the hind leg conducted a genuine, active
swing movement with each femoral protraction. In principle, part
of this movement could be passive, as induced by a lateral pull by
the contralateral legs. As the difference between active and passive
movement is impossible to tell from our top view videos (see
Supplementary Videos), further studies would have to record
protractor activity and track the movement of the hind leg tarsus.

Our findings on temporal coordination after T3 lesion largely
corroborate Dean’s findings, in that the coordination of the
ipsilateral hind and middle legs was hampered, with greatly
increased dispersion, albeit little or no effect on mean phase (R2
in R3; Figure 10). Effects of T3 lesion on spatial coordination
look fairly similar in both studies (compare Dean’s Table 2 with
our Table 2), except for two differences: First we report a lot
more effects than Dean (1989); second, Dean reported a slight
rearward shift of the contralateral hind leg AEP (intact body
side), whereas we found a substantial forward shift, i.e., in the
opposite direction, with an associated strong increase of the step
length. Thus, as for the T2 lesion effects discussed above, we find
that spatial adjustments on the contralateral (intact) side differ
between tethered and unrestrained walking.

Load Transfer in Temporal and Spatial
Coordination
Perhaps the most important difference between the results on
tethered walking stick insects (Dean, 1989) and ours concerns
the somewhat dysfunctional swing movements and the increased
frequency of overstepping that were found in tethered but
not in unrestrained walking. What is more, our Figures 2, 3
demonstrate clearly that the overall walking behaviour remained
functional after connective lesion, as animals were still capable
of walking along the same paths and without significant
reduction of forward velocity. In fact, the significant increase
in sideward velocity after connective lesion (Figure 4) implies
that the difference in net translational velocity, i.e., the resultant
of forward and sideward translation, would be even smaller
than the difference in forward translation alone. Increased
sideward translation indicates that connective lesions induced
an asymmetry of the lateral forces exerted by the feet during
stance. We suggest that this asymmetry is reflected by significant
increase of step length on the intact (left) body side, which we
found in the two rear legs after T2 lesion (Figure 6A, L2 and
L3) and in all three legs after T3 lesion (Figure 6B, L1–L3).
On the lesioned (right) body side, step length increased only
in the leg immediately anterior to the lesion (R1 in Figure 6A
and R2 in Figure 6B), whereas the leg posterior to the lesion

took much shorter steps, and the remaining third leg did not
change step length at all. The fact that step duration, i.e., cycle
period (Figure 5), did not mirror these changes in step length
(see Tables 1, 2) suggests that movement velocities must have
differed strongly among legs, potentially on a stride-to stride
basis. Given the strong variance of step duration (see 95%
CI’s and per-animal means in Figure 5), we propose that legs
locally adjusted movement velocity to maintain the much more
consistent changes in step length and the associated touch-down
(Figures 7A, 8A) and lift-off positions (Figures 7B, 8B). This
is consistent with the observation that temporal coordination
became highly variable for the leg pair immediately adjacent
to the lesion (Figure 9: R1 in R2; Figure 10; R2 in R3) while
changing only little or not at all in almost all other leg pairs
(except contralateral coupling R2 in L2 and ipsilateral coupling of
intact L2 in L2 after T2 lesion, Figure 9). Thus, we conclude that
animals compensated for hampered inter-leg coordination in a
single leg pair by concerted action of all legs, leading to substantial
adjustment of spatial coordination with comparatively little
change in temporal coordination.

Concerning the contribution of load transfer among legs to
temporal coordination according to Cruse’s coordination rule
2, Dallmann et al. (2017) provided strong evidence for two
important aspects of mechanical inter-leg coupling: First, local
unloading of a middle leg may be related to a single, most
likely cause, that is the touch-down of the posterior hind leg
(i.e., the sender leg); second, local unloading precedes the switch
of depressor to levator activity, i.e., the transition from stance
to swing. Assuming that this evidence would hold for the
experimental situation of the present study, we expected that
normal ipsilateral coordination should have persisted even after
connective lesion. This was clearly not the case. Nevertheless,
while the fact that both lesions resulted in highly variable phase
relationships clearly points at the role of neural information
transfer through the ipsilateral connective, the small (Figure 9)
or even non-significant (Figure 10) change in mean phase
lag among animals indicates the persistence of some weak
coordinating effect. Whether or not this weak effect could be
driven by ipsilateral load transfer or rather by an influence
coming from the intact contralateral leg cannot be decided based
on our results. As yet, the results of Dallmann et al. (2017)
indicate that mechanical load transfer among two legs may only
be effective if the distance between feet is small. Accordingly, our
finding of increased distance between the sender leg AEP and
receiver leg PEP (Figures 7C,D, 8C,D) adjacent to the lesion
should have reduced efficacy of mechanical load transfer and
weakened its potential effect on inter-leg coordination.

Mechanical load transfer alone cannot maintain inter-leg
coordination after connective lesion in cockroaches either. “In a
male Blatta with the right pro-mesothoracic commissure cut, the
legs of the uninjured side showed a perfect rhythm L3, L2, L1 and
this was true of the right side to some extent, but sometimes R1
fell out of the rhythm” (Hughes, 1957, S. 323). Similarly, Greene
and Spirito (1979) found in that slow walking, tethered but load-
bearing Periplaneta americana, connective lesions caused strong
immediate effects on ipsi- and contralateral phase differences in
the leg pair posterior to the lesion. Similar to our own results,
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they found that the main effect concerned the precision of
coordination (i.e., strongly increased variance), whereas the mean
phase changed relatively little. Moreover, the remaining leg pairs
maintained rigid coordination, but with slightly altered mean
phase. Quite fitting to our own study, the authors concluded
that “it should be stressed at this point that these co-ordination
measures are not independent; a change in the relationship
between any one pair of legs will necessarily be accompanied
by changes in other pairs. Thus, the entire system must be
considered as an entity” (Greene und Spirito 1979, S. 251).
Overall, due to the extensive adjustments of all legs to a local
defect in neuronal information transfer, it would be far-fetched
to stress the significance of a single local mechanism of inter-
leg coordination. Our results show that stick insects adjust to
connective lesion quite differently if they experience a naturalistic
load distribution. However, since altered load distribution during
walking on inclines causes relatively weak effects on footfall
patterns of the legs or body posture, but rather strong effects on
muscle activity (Dallmann et al., 2019) future studies may need
to relate load-induced changes in distributed muscle activity to
ensuing kinematic changes in conjunction with local lesions.

As the experimental situations of Dean’s study (1989)
and ours mainly differed in load distribution among legs,
we conclude that these differences must be related to
load. Future modelling studies using suitable dynamic
simulation environments (e.g., see Schilling and Cruse, 2020),
biomimetic robots with distributed load sensing (e.g., see
Dürr et al., 2019) or conceptual robot models with load-
dependent step-cycle generation (e.g., Owaki et al., 2013)
could test the main prediction of our study: A change in
load distribution (e.g., tethered vs. free walking) can account
for compensatory spatial coordination after disruption of
information exchange between neighbouring legs, so as to
maintain the walking speed before the disruption. A corollary
of this prediction is that such spatial compensatory actions

occur at the cost of increased step-by-step variation of
temporal coordination among legs with disrupted information
exchange. Furthermore, we expect to see significant spatial
adjustment on the contralateral (intact) side of the disrupted
information exchange.
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Dynamic locomotion of a quadruped robot emerges from interaction between the robot

body and the terrain.When the robot has a soft body, dynamic locomotion can be realized

using a simple controller. This study investigates dynamic turning of a soft quadruped

robot by changing the phase difference among the legs of the robot. We develop a soft

quadruped robot driven by McKibben pneumatic artificial muscles. The phase difference

between the hind and fore legs is fixed whereas that between the left and right legs is

changed to enable the robot to turn dynamically. Since the robot legs are soft, the contact

pattern between the legs and the terrain can be varied adaptively by simply changing the

phase difference. Experimental results demonstrate that changes in the phase difference

lead to changes in the contact time of the hind legs, and as a result, the soft robot can

turn dynamically.

Keywords: quadruped robot, soft robotics, pneumatic artificial muscle, body-environment interaction, dynamic

turn

1. INTRODUCTION

Quadruped locomotion is more stable than bipedal locomotion and more adaptive than wheeled
locomotion to the terrain (He and Gao, 2020). However, if each leg is controlled to follow a given
trajectory based on force or touch information, the movement of the robot cannot be very fast
and adaptive. Thus, Compliance of each leg should to be a key to resolve the problem. Spröwitz
et al. (2013) developed a robot Cheetah-cub, a quadruped robot with compliant legs. Recently, to
realize fast and adaptive locomotion, some studies (e.g, Hyun et al., 2014) have proposed using
low-reduction gears and impedance control. Pneumatic artificial muscles are also good candidates
for realizing fast and adaptive quadruped locomotion, because they have natural compliance and
can react against the external forces without a time delay (Narioka et al., 2012). However, these
muscles have a large control latency, and it is very difficult to be control them precisely. To change
the robot behavior, for example, changing the direction of the movement, we have to develop a
different method for controlling the actuators.

This study describes a quadruped robot driven by pneumatic artificial muscles, and investigates
the turning behavior by changing the phase difference among the legs. Pneumatic muscles are
light; however, they can generate relatively large power. The compliance of the actuator absorbs
the impact that is associated with landing without feedback control. In addition, the artificial
muscles can be arranged similar to the muscles of animals, which may provide bio-inspired
design guidelines for the hardware and control. The tunable compliance of the actuator enables
multi-modal locomotion (Hosoda et al., 2008). It is even possible for a musculoskeletal robot
to generate a gait pattern, without needing any computational resources (Masuda et al., 2020).
However, it is difficult to control them precisely to change the behavior of the robot, because they
are quite nonlinear and have a large control latency.
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The target behavior of this paper is turning, which has been
a complex locomotion task. In static locomotion, the robot
can turn by changing the trajectory of its legs (Chan and Liu,
2016). To realize dynamic turning, however, it is necessary to
analyze the dynamic effects such as centripetal force (Tsujita
et al., 2005). Some researchers have proposed the application
of computational techniques, such as optimization or learning
methods (Bledt et al., 2018; Fahmi et al., 2019; Hwangbo et al.,
2019), without explicitly dealing with the dynamic effects. The
RHex robot utilizes hardware compliance for dynamic turning.
The robot turns dynamically by changing the phase difference
between the left and right sets of legs (Haldane and Fearing,
2014). Haldane et al. analyzed the turning moment that generates
roll oscillation, leading to the turning motion of the robot
in the simulation. This paper also utilizes phase difference
for a pneumatically driven quadruped robot. We propose a
simple controller for a quadruped robot that changes the phase
difference among the legs, and analyze the contact pattern of the
soft legs for dynamic turning.

The remainder of this paper is organized as follows. First, we
describe the design of a quadruped robot driven by McKibben
pneumatic artificial muscles. Each leg has two degrees of freedom
(DOF) and is driven by a fixed-valve pattern. The diagonal legs
are in phase, and the phase difference between the left and
right legs can be changed. Then, we experimentally investigate
whether the turning can be controlled by changing the phase
difference. We recorded the contact patterns of the leg during
the experiments, and found a relation between the patterns
and turning motion. The main contributions of this paper are
(1) developing a pneumatically driven soft quadruped robot
that can turn, (2) determining the relationship between the
contact patterns of the legs and turning behavior, and (3) finally,
experimentally realizing the turning of the robot experimentally.

2. HARDWARE DESIGN

During locomotion without slipping, a robot is strongly
restrained on the ground and receives a strong ground reaction
force (GRF). A change in the contact timing of the leg can cause
the robot to fall over, depending on the hardware design. For
example, unlike a conventional motor-driven robot, a soft robot
can contact the ground adaptively without falling over, even if
the contact timing is changed (Rosendo et al., 2014). Therefore,
we focus on softness and develop a soft quadruped robot named
“PneuHound.” In this section, we introduce the hardware design
of the developed robot.

2.1. Mechanical Design of Quadruped
Robot
Figure 1 provides an overview of the design of “PneuHound.”
The length, width, height, and weight of the whole body are 500,
300, 300 mm, and 3.5 kg, respectively. The main structure is
composed of aluminum components. Air and electrical power are
supplied externally. More detailed information about the design
is provided in Table 1.

FIGURE 1 | Pneumatic quadruped robot “PneuHound.” The main objective of

this robot is to perform dynamic turning by changing the phase difference

among its legs.

TABLE 1 | Key properties of PneuHound.

Property Value

Length × width × height 500 × 300 × 300 mm

Total weight 3.5 kg

Fore leg weight 0.24 kg

Hind leg weight 0.26 kg

Number of valves 8

Number of muscles 12

L1 segment length in fore legs 55 mm

L2 segment length in fore legs 52 mm

L2 segment length in fore legs 70 mm

L1 segment length in hind legs 65 mm

L2 segment length in hind legs 64 mm

L3 segment length in hind legs 70 mm

The musculoskeletal structure of “PneuHound” is shown in
Figures 2A,B. The robot has nine DOFs in total: each leg has
two DOFs, and the spine has one DOF. The leg design is based
on those reported in previous studies (Spröewitz et al., 2011;
Narioka et al., 2012). Each leg has a pantogragh structure with
four links and four joints, and a tension spring is provided on
the diagonal of the pantograph structure. The fore and hind legs
can be extended with springs to a maximum of 65 and 70 mm,
respectively. Due to the difference between the lengths of the
fore and hind legs, the spring constants are different: 2.4 and 2.9
N/mm for the fore and hind legs, respectively.

To manipulate the leg, the robot drives nine joints: scapula
and wrist joints in the fore legs, hip and ankle joints in the hind
legs, and the spine joint (Figure 2A). The scapula and hip joints
are antagonistically driven by two muscles, the wrist and ankle
joints are retracted by a muscle and extended by a spring, and
the spine joint is driven only by a spring (Figures 2A,B). The
moment arm of themuscles driving the scapula and hip joints can
be adjusted through the diameter of the pulley, which is set as 40
mm. In contrast, the moment arm of the wrist and ankle flexors
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FIGURE 2 | Musculoskeletal structure of “PneuHound.” Each leg, consisting

of four links and four joints, one of which is constrained by a pantograph

mechanism, has two DOFs. Passive springs are provided on the spine joint

and pantograph mechanisms (A). There are three muscles for each limb; #1

Scapula/Hip extensor, #2 Scapula/Hip flexor, and #3 Wrist/Ankle contractor,

and each pantogragh leg is composed of an L1segment, L2segment, and

L3segment (B).

FIGURE 3 | Pneumatic actuators and pneumatic system for driving one leg.

is very small (5 mm); this ensures that the flexors can shorten
the leg while minimizing the influence of the muscle driving the
scapula and hip joints.

FIGURE 4 | Proposed one-leg controller. The cyclic motion of the leg is

divided into four phases: touchdown phase for T1 ms, stance phase for T2 ms,

lift-off phase for T3 ms, and swing phase for T4 ms.

For running dynamically without slippage, the robot requires
high ground fiction. Hence, we install rubber pillars on the
toes. The radius and height of the rubber pillars are 17.5 and
37mm, respectively.

2.2. Pneumatic Actuator and Control
Architecture
Animals possess biological muscles, which provide a high output
force with compliance to enable locomotion. To impart softness
to the robot, we use McKibben pneumatic artificial muscles,
which are similar to biological muscles, as the actuators. For such
artificial-muscle-type actuators, the principle of actuation is that
supplying air to the muscle generates a contraction in the muscle,
while exhausting the same air relaxes the muscle. The compliance
offered by the actuator is proportional to the contraction, and the
force provided by the actuator depends on the internal pressure
and the muscle deformation, as shown in the following equation
(Klute et al., 2002):

F ∝
Pair

1/L0
, (1)

where F is the force, Pair is the internal pressure, L0 is the relaxed
length, and 1 is the deformation of the muscle. The actuators
are made from a rubber tube with an 8-mm diameter, 1-mm
thickness, and 200-mm length, covered with a polyester exterior
braid having an 11-mm diameter. The actuators are connected to
a valve through a tube with a 4-mm diameter.

Figure 3 shows the pneumatic system for driving one leg with
three actuators. Two solenoid valves (5 ports and 3 position
types, SYJ3340-6L, SMC Co.) are used for each limb. One of
the valves supplies compressed air to both the extensor and the
flexor driving the scapula and hip joints, while the other valve
supplies compressed air to the contractor driving the wrist and
ankle joints. The two actuators driving the scapula and hip joints
constitute the antagonistic muscles. However, only one valve is
connected to these muscles, and hence, the joint compliance
can’t be modulated by varying the pressure of the antagonistic
muscles as achieved in previous studies (Hosoda et al., 2008;
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Takuma et al., 2008). The supply air pressure was 0.54 MPa
when the turning experiment was conducted. Amicro–controller
(Arduino–Due) with the custom amplifier board is used for
valve control.

FIGURE 5 | Proposed interlimb controller. The phase difference is set as

follows: LF and RH controllers and RF and LH controllers are in phase. Phase

difference between two diagonal pairs (LF and RH controllers and RF and LH

controllers) can be changed by varying Tφ .

FIGURE 6 | Experimental setup.

3. CONTROLLERS FOR DYNAMIC
LOCOMOTION

To achieve dynamic turning for a rigid quadruped robot,
previous studies focused on controlling the phase difference
among the legs to adjust the imbalance between left and right
movements (Tsujita et al., 2005). This was only for compensating
the imbalance, not for generating turning motion. In contrast, we
control the phase difference among the legs to generate turning
motion, based on a previous study (Haldane and Fearing, 2014).
To design the locomotion controller, we divide it into one-leg and
inter-limb controllers. In this section, we explain the design of
each controller.

To generate the motions of the right hind leg (RH), right fore
leg (RF), left hind leg (LH), and left fore leg (LF), we design the
one-leg controller dividing the cyclic motion of a leg into four
phases (Figure 4). The four phases are touchdown, stance, lift-
off, and swing. To execute these phases, the valve–opening and
-closing times, which determine the actuation pattern of muscles
#1, #2, #3 (Figure 2B), are determined. For the touchdown phase,
muscle #1 is supplied with air, while muscles #2 and #3 are
expelled for T1 ms. For the stance phase, muscle #2 is supplied,
while muscles #1 and #3 are expelled for T2 ms. For the liftoff
phase, muscles #2 and #3 are supplied, while muscle #1 is expelled
for T3 ms. For the swing phase, muscles #1 and #3 are supplied,
while muscle #2 is expelled for T3 ms. Consequently, the period
of the leg motion is calculated as T = T1 + T2 + T3 + T4

ms. We heuristically determined the parameters T1 ∼ T4, such
that the robot could run fast in the forward direction (i.e., T1 =

0.1T,T2 = 0.4T,T3 = 0.1T,T4 = 0.4T). Herein, the one-leg
controller of each leg is denoted as the leg name followed by
“controller” (for example, the one-leg controller of LF is denoted
as “LF controller”).

Next, we design the inter-limb controller (Figure 5). The LF
and RH controllers and the RF and LH controllers start at the
same time. This means that the movements of the two diagonal
pairs are in phase. To set the phase difference between these two
diagonal pairs, the RF controller is started T/2+ Tφ ms after the
LF controller. The phase difference can be changed from the trot
gait (Tφ = 0) by varying the parameter Tφ .

FIGURE 7 | Turning behavior captured by the camera near the ceiling every 1/30 s with T = 300. (A) Tφ = −15, (B) Tφ = 0, (C) Tφ = 15.
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4. EXPERIMENTAL SETUP

We used the experimental setup shown in Figure 6, which
consists of the robot, a rubber mat, two cameras on diagonally
opposite corners of the rubber mat, and a camera near the ceiling.
The size of the rubber mat is 310 cm (L) × 180 cm (W). The
two cameras on the corners of the rubber mat are synchronized,
and their frame rate is 60 fps. The camera near the ceiling is
250 cm from the floor and captures the entire rubber mat; its
frame rate is 30 fps. For a behavior analysis of the robot, we used

image–processing software (Dipp-MotionV, DITECT, Inc.), and
two makers are attached to the left and right sides at the front of
the robot.

In this research, we define dynamic turning as follows: First,
we define “dynamic locomotion” as locomotion with a period
in which two or fewer legs contact with the ground. Next,
“dynamic turning” is defined as the dynamic locomotion with a
turning motion.

In the following experiments, we observe four quantities:
velocity, turning rate, duty ratio (the ratio of stance period

FIGURE 8 | Turning behavior captured by the camera near the ceiling every 1/30 s with T = 450. (A) Tφ = 0, (B) Tφ = 15.

FIGURE 9 | (A) Velocity vs. Tφ and (B) Turning rate vs. Tφ with T = 300. Error bars show one standard deviation.

FIGURE 10 | (A) Velocity vs. Tφ and (B) Turning rate vs. Tφ with T = 450. Error bars show one standard deviation. It is noted that the mean and the standard

deviation are calculated using the data the robot successfully ran.
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divided by cycle period), and the ratio of the period that two
or fewer legs contact with the ground divided by cycle time.
The velocity is calculated with reference to the midpoint of
the two markers on the robot. The turning rate is calculated
using the two markers; the angle when turning right from the
initial posture is considered as positive. The impulse received
from the ground can be estimated from the ground contact
time and gives the robot propulsion. Therefore, we use duty
ratio as a simplified indicator of propulsion and investigate the
changes in this parameter according to the phase difference
among the legs. Contact between the legs and the ground is
identified from the videos recorded by the two synchronized
cameras, and the duty ratio is calculated accordingly. To verify
whether the locomotion of the robot is dynamic turning, the
ratio of the period when two or fewer legs contact with the
ground divided by cycle time is calculated. We conducted
experiments by varying Tφ from 0 ms in increments of ±15 ms
with T = 150, 300, 450.

5. RESULTS

5.1. Velocity and Turning Rate in Dynamic
Turning
To investigate the effect of the phase difference among the
legs on the dynamic turning, we conducted an experiment by
varying Tφ where T = 150, 300, 450. With T = 150, the
running was not successful because the supply time of the air
was too short for the system to provide sufficient actuation
force for running. With T = 300, the robot ran for Tφ =

−30,−15, 0, 15, 30. Figure 7 shows the turning behavior of the
robot with different parameters. With T = 450, the robot ran for
Tφ = 0, 15. Figure 8 shows the turning behavior of the robot with
different parameters.

Next, the effects of Tφ on the velocity and turning rate were
examined when the robot ran successfully (that is, T = 300, 450).
Figure 9 shows the mean values and error bar of the velocity and
turning rate with T = 300. A total of 10 trials were conducted
for each parameter, and the average velocity and turning rate
were obtained through the 2-s locomotion experiments. While
the robot moved straight ahead with Tφ = 0, it turned right
for Tφ > 0 and left for Tφ < 0. The velocity varied slightly
depending on the value of Tφ . In contrast, the turning rate varied
significantly over the range of −15 ≤ Tφ ≤ 15. However, it did
not change considerably over the ranges of−30 ≤ Tφ ≤ −15 and
15 ≤ Tφ ≤ 30. Next, the velocity and turning rate with T = 450

TABLE 2 | Ratio of the period that two or fewer legs contact with the ground

divided by cycle time.

Phase difference Ratio

Tφ = −30 0.80

Tφ = −15 0.86

Tφ = 0 0.74

Tφ = 15 0.86

Tφ = 30 0.89

were investigated. Ten trials were conducted for each parameter,
and the average velocity and turning rate were obtained through
the 2-s locomotion experiments. However, only six trials were
successful with Tφ = 0, and only seven trials were successful with
Tφ = 15. Figure 10 shows the mean values and error bar of the
velocity and turning rate with T = 450. It is noted that the mean
and the standard deviation are calculated using the data in which
the robot ran successfully. The velocity with T = 450 was higher,
and had a larger variation than that with T = 300. The turning
rate with T = 450 had a larger variation than that with T = 300,
and showed a similar change with T = 300 between Tφ = 0
and 15.

FIGURE 11 | The gait diagram during 0.0–1.5 s for (A) Tφ = −15, (B) Tφ = 0,

and (C) Tφ = 15.
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FIGURE 12 | (A) LF duty ratio vs. RF duty ratio and (B) LH duty ratio vs. RH duty ratio for Tφ = −30,−15, 0, 15, 30. Error bars show one standard deviation.

5.2. Contact Pattern of Leg
In this experimental setup, we could capture the contact of the leg
with T = 300. Hence, we conducted an experiment to investigate
the dependence of the contact pattern of the leg on Tφ with
T = 300. Table 2 shows the ratio of the period that two or
fewer legs contact with the ground divided by cycle time with
T = 300. This table shows that the robot locomotion is dynamic
turning considering Figure 9 shows that the robot turned with
T = 300. Figure 11 shows the gait diagram during 0.0–1.5 s
with different values of Tφ . In the gait diagram, the black regions
represent the stance phase. The robot achieved different contact
patterns by changing the value of Tφ . The results showed that
the robot turned dynamically because there was a phase in which
two or fewer legs were in contact with the ground. Figures 12A,B
shows the mean value and error bar of the duty ratio of the fore
and hind legs. The line along which the duty ratios of the “left
and right legs” are equal is also shown in the figure. Five trails
were conducted for each parameter, and the average duty ratio
was obtained through experiments involving more than 10 steps
of locomotion.

From the experimental results, we observed a strong
correlation between the duty ratio of the hind legs and the
turning rate. For Tφ ≥ 15, the duty ratio of LH was higher
than that of RH (Figure 12B). Consequently, the left propulsion
was stronger than the right propulsion, causing the robot to
turn right (Figure 9B). For Tφ ≤ −15, the duty ratio of RH
was higher than that of LH, causing the robot to turn left.
However, the relationship between the duty ratios of LF and RF
was the opposite of the relationship between the duty ratios of
LH and RH. The propulsion of the hind legs was observed to
have a stronger influence on the turning of the robot than the
propulsion of the fore legs. Additionally, the variation in the
duty ratio was a similar to that in the turning rate: The duty
ratio and the turning rate varied significantly over the range of
−15 ≤ Tφ ≤ 15, but they did not vary considerably over the
range of−30 ≤ Tφ ≤ −15 and 15 ≤ Tφ ≤ 30. This indicates that
the contact pattern was not changed significantly upon changing

the phase difference. As a result, the turning rate was not changed
significantly either.

In addition, the experimental results show that the frequency
of the periodic leg movement (that is, 1/T) changed the turning
motion. Stable turning motion was generated with T = 300.
When the frequency of the leg movements increased, the running
was not successful. On the contrary, when the frequency of the leg
movement decreased, the turning became unstable.

6. DISCUSSION

We proposed a simple control method for dynamic turning of
a quadruped soft robot driven by pneumatic artificial muscles
as actuators. The experimental results show that the control
parameter Tφ controls the direction of dynamic turning. Our
results also indicate that when the gait deviates from trotting
(Tφ = 0) due to changes in Tφ , the contact pattern of the
legs is changed, causing the robot to turn. However, the contact
pattern does not change significantly depending on the size of
the phase difference. Consequently, the turning rate does not
change significantly either. In addition, the experimental results
show that the frequency of the periodic leg movement changes
the turning motion.

Haldane et al. reported that the phase difference between the
left and right sets of compliant legs of a hexapod robot modulated
the oscillations in height and roll angle. Additionally, they
demonstrated that the roll oscillations enabled the robot to turn
at high speeds through changes in the phase difference (Haldane
and Fearing, 2014). In their study, to calculate the turning
moment, the simulation setup parameters were simplified: the
contact of the leg was defined only by the rotation angle of
the motor. However, the interaction between the legs and the
ground has to be carefully considered because various speeds and
orientations are involved in the dynamic locomotion. Our study
presents a significant finding: the contact pattern of a soft leg
plays an important role in dynamic turning. In contrast, it seems
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that the roll oscillations confirmed in their study did not exist in
our system because the roll posture data of our robot were not
steady. The turning controllers of our study and their study were
similar. However, because the main structure of our robot’s body
is different from that of their robot, the turning mechanism may
be different.

In previous studies, the turning direction of motor-driven
robots have been precisely controlled using kinematic
approaches. For example, generating a three-dimensional
motion by increasing the DOF of the legs improves turning
maneuverability (Estremera and de Santos, 2005; Kimura et al.,
2007; Raibert et al., 2008). In this study, the trajectory of each
leg in the air was kept unchanged since we aimed to investigate
the effect of the phase difference among the legs. We believe that
integration of the kinematic method with our control method for
soft robot legs presents an important topic for further research on
precise control of the turning direction with a simple controller.

Our research has three limitations. First, is that in this
experimental setup, we could not capture the contact pattern
of the leg with T = 450 because the robot turned in various
directions. Therefore, we cannot confirm the effect of unstable
turning on the contact of the legs. Second, we did not verify
that the same simple controller would not produce turning in
a non-soft robot. In this experimental setup, it was extremely
difficult to control the stiffness of the leg for a quadruped robot.
Third, the structure makes a different turning mechanism from
the relevant study (Haldane and Fearing, 2014). We intend to
investigate more about these three issues in the near future.

7. CONCLUSION

In this study, we demonstrated dynamic turning of a soft
quadruped robot with a simple controller. Our findings show that
a soft body simplifies a controller design even for complex tasks.

We showed that a change in phase difference leads to a change
in the duty ratio of the hind legs, enabling the robot to turn
dynamically. Further investigation of the softness of quadruped
robots can elucidate the complex interaction between the robot
and the terrain, enabling the development of a specialized control
method for such robots.
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Brainless Walking: Animal Gaits
Emerge From an Actuator
Characteristic
Yoichi Masuda1*, Keisuke Naniwa2, Masato Ishikawa1 and Koichi Osuka1

1Department of Mechanical Engineering, Osaka University, Suita, Japan, 2Research Institute for Electronic Science, Hokkaido
University, Sapporo, Japan

In this study, we discovered a phenomenon in which a quadruped robot without any
sensors or microprocessor can autonomously generate the various gait patterns of
animals using actuator characteristics and select the gaits according to the speed. The
robot has one DC motor on each limb and a slider-crank mechanism connected to the
motor shaft. Since each motor is directly connected to a power supply, the robot only
moves its foot on an elliptical trajectory under a constant voltage. Although this robot does
not have any computational equipment such as sensors or microprocessors, when we
applied a voltage to the motor, each limb begins to adjust its gait autonomously and finally
converged to a steady gait pattern. Furthermore, by raising the input voltage from the
power supply, the gait changed from a pace to a half-bound, according to the speed, and
also we observed various gait patterns, such as a bound or a rotary gallop.We investigated
the convergence property of the gaits for several initial states and input voltages and have
described detailed experimental results of each gait observed.

Keywords: legged robot, quadruped robot, motion control, gait analysis, motors, autonomous decentralized control,
oscillator, vibration

1 INTRODUCTION

Most of the legged animals have the ability to adaptively select their gait patterns according to their
speed (Alexander, 1984). Although the mechanism of the gait selection in animals is still unclear,
conventional animal experiments have provided us with some knowledge. A study investigating the
oxygen consumption of running horses (Hoyt and Taylor, 1981) showed that horses choose an
efficient gait depending on their running speed. The result suggests that animals choose an
energetically appropriate gait to survive in nature with limited resources. A study comparing the
characteristics of the transition points in various animals’ gait (Heglund et al., 1974) showed that the
ratio of stride frequency to body weight at the transition points from trot to gallop was linear in
logarithmic coordinate. The result indicates that the control mechanism for selecting motion
patterns depends on the basic dynamics of the body rather than on animal species. As described
above, the control principle of selecting the gait patterns of animals is not only energy efficient but
also common to animals with different morphologies.

If we can imitate the ability of gait generation and selection in animals, the locomotor ability of
legged robots will be improved. However, since animal gait patterns emerge as a result of complex
interactions between the brain, body, and environment, it is difficult to determine which factors
dominate gait generation and selection. In order to understand the principles of animal locomotion,
researchers have conducted a variety of animal experiments and proposed gait generation models
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from various perspectives ranging from neural circuits to body
dynamics. The neural network called the central pattern
generator (CPG), which is located within the animal’s spinal
cord, is widely known as a mechanism for generating motor
patterns (Grillner, 1985). Experiments using the hind limbs of
cats (Brown, 1911) observed that they could generate alternating
muscle activity between flexors and extensors without sensory
information from the muscles. In other experiments focusing on
the generation of motor patterns, decerebrated cats generated
a walking gait on a treadmill (Rossignol, 2000), and observed
the gait transitions from walking to fast walking and galloping
(Stuart and Hultborn, 2008; Armstrong, 1988). After the
discovery of the CPG, some researchers have been tried to
replicate and understand the CPG (Marder and Bucher, 2001;
Ijspeert, 2008; Aoi et al., 2017). In connectionist approaches based
on mathematical neuron models, multi-layer CPG models
(McCrea and Rybak, 2008) have been proposed, which are
capable of generating several periodic motions. More abstract
CPG models using oscillators, such as the Kuramoto oscillator
(Kuramoto, 1975) and Matsuoka oscillator (Matsuoka, 1985),
were adopted as control laws for robots (Ijspeert, 2008; Maufroy
et al., 2010; Aoi et al., 2013; Fukuoka et al., 2015).

Although the CPG has the ability to generate motor patterns
by itself, several simulations and robotic experiments have shown
that the spinal reflex system, which is simpler than the CPG, can
also generate motor patterns by itself. It is theoretically shown
that the two stretch reflex system and the physical (nonneural)
interaction between the muscles stabilize the alternating motion
patterns between the antagonistic muscles in a one-joint
neuromechanical model (Masuda et al., 2019). In a simulation
study of bipedal walking (Geyer and Herr, 2010), a human model
in the sagittal plane with some reflexes, including neural
connections between the left and right limbs, generated a
stable gait pattern. In a simulation study of quadrupedal gait
(Ekeberg and Pearson, 2005), although a three-dimensional
model of the cat’s hind limbs has no neural connection
between the left–right limbs, it generated a stable gait using a
four-phase reflex rule. This reflex rule has also been implemented
in a musculoskeletal robot (Rosendo et al., 2014). Another
musculoskeletal robot with simpler reflexes (Masuda et al.,
2020) has developed fast running motions by using a
reciprocal excitatory reflex between the hip and knee
extensors, even though there was no neural coupling between
the left and right limbs, or explicit design of the walking phases
and the leg trajectories. As a robot that generate multiple motion
patterns, a quadruped walking robot (Owaki and Ishiguro, 2017),
which uses a reflexive rule described by an oscillator model,
generated various gait patterns, such as walk, trot, and gallop,
depending on the speed, using only physical (nonneural)
interactions between the limbs. These experiments suggest that
the physical interactions between the limbs through the body and
the ground play a greater role in the generation of adaptive gait.

In addition, some simpler gait generation phenomena have
been reported, in which gait patterns emerge from
body–environment dynamics alone, without even using
reflexes. A prime example is the passive dynamic walker,
which generates a bipedal gait through interaction with the

ground and gravity (McGeer, 1990; Collins et al., 2005). As
passive walkers that generate gait patterns, experiments with
passive quadrupedal walkers (Nakatani et al., 2009) and
passive bipedal walkers (Owaki et al., 2008) have shown a
variety of adaptive gait generations. Furthermore, as a motor
control approach that utilizes the body, which is slightly different
from passive walking, there are examples of gait generation that
utilize the vibration modes of the robot body. In a simple robot
with a body made of a flexible U-shaped curved beam and a single
DC motor (Reis et al., 2013), the continuous rotation of the DC
motor generates multiple gait patterns by entraining the coupled
body–environment dynamics into a resonant mode. These results
are a good example of the gait selection due to the interaction
between the dynamics inherent in the robot body and the
environment, without the need for control by the nervous
system. Thus, it has been shown that animals and robots can
generate gaits not only by CPGs but also by different levels of
subsystems, such as simpler reflex systems and body dynamics
alone. This suggests that the animal’s ability to generate gait is not
provided by a single functional module such as CPGs, but by
parallel overlapping gait generation mechanisms that
complement each other’s functions. Therefore, there may be
additional unknown mechanisms behind the phenomenon of
gait generation and selection.

This article describes a novel gait generation mechanism that
we discovered from a different perspective than previous studies.
The major contribution of this study was discovering a
phenomenon in which a quadruped robot without any sensors
or microprocessor can autonomously generates the various gait
patterns of animals using actuator characteristics and select the
gaits according to the speed. The robot, shown in Figure 1, has
one DC motor on each limb and a slider-crank mechanism
connected to the motor shaft. Since each motor is directly
connected to a power supply, the robot only moves its foot on
an elliptical trajectory under a constant voltage. In other words,
this robot does not have any computational equipment, such as
sensors or microprocessors. Nevertheless, when we applied a
voltage to the motor, each limb begins to adjust its gait
autonomously and finally converged to a steady gait pattern.

FIGURE 1 | Overview of the robot.
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Furthermore, by raising the input voltage from the power supply,
the gait changed from a pace to a half-bound according to the
speed, and also we observed various gait patterns, such as a bound
or a rotary gallop. We investigated the convergence property of
the gaits for several initial states and input voltages and describe
detailed experimental results of each gait observed. A prototype of
this robot was presented at an international conference on
robotics (Masuda et al., 2017b). The analysis of the
synchronization phenomenon of multiple DC motors in
fundamental systems is described in Masuda et al., 2017a.

2 QUADRUPED ROBOT

This section describes a quadruped robot that can generate gait
patterns and perform adaptive gait selection even though it has no
sensors, microprocessor, or other computing resources.

2.1 Mechanical Structure
Figure 2 shows the structure of the quadruped robot. The robot
consists of fore and hind body modules, and the modules are
connected with a spine. Figure 3 shows the measurements of the
robot.We designed the distance between the crank tip and foot tip to
be 90mm, and the foot width is 6 mm. The total mass of the robot,
which includes the two body modules and four limbs, is 183 g.

Each module has right and left limbs, and each limb has a
slider-crank mechanism connected to the shaft of a geared DC
motor (Pololu 75:1 Micro Metal Gearmotor HP). Figure 2A
shows the structure of the body modules. Each body module has
two DC motors, so the robot has four motors in total, and all the
motors are directly connected to a stabilized power source in
parallel.

Each limb of the robot consists of a slider-crank mechanism.
Figure 2B shows the robot limb. The limb has one degree of
freedom, and the motor just rotates continuously under a
constant voltage. Therefore the motor generates only an
elliptical trajectory as it turns the crank, as shown in Figure 3
right. The lengths of the major and minor axes of the elliptical
trajectory are 54 and 20 mm, respectively.

FIGURE 2 | Structure of the robot.

FIGURE 3 | Measurements of the robot. We designed the distance between the crank tip and foot tip to be 90 mm, and the foot width is 6 mm. The right figure
shows the foot trajectory of the robot. The blue box in the center of the image is a stand for fixing the robot in the air.
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We embedded a circular foot for smooth touch-down and
take-off of the limb. Figure 2C shows the circular foot. The shape
of the foot was designed as the arc of a circle. The radius of the arc
of the circular foot is 85 mm, and the foot length is 49 mm.

3 CONTROLLER INHERENT IN MOTOR
DYNAMICS

When the robot walks, each DC motor moves the foot on an
elliptical trajectory under a constant voltage; thus, it generates a
fixed foot trajectory. In spite of such a simple configuration, this
robot generates a gait according to the locomotion speed, while
adjusting the phases of the motors. The key to the phase
adjustment is the torque–velocity characteristics of DC motors,
as described below.

3.1 Modeling of DC Motor
Equation of motion and circuit for a DC motor with a constant
voltage V applied is given by

J€θ(t) + D _θ(t) � KTi(t) + τ(t)
n

, (1)

V � LM
_i(t) + Ri(t) + nKE

_θ(t), (2)

where i(t) is the input amplitude, θ(t) is the motor angle, τ(t) is
the load torque applied to the output shaft of the gearbox, n is the
gear ratio, LM is the inductance, and R is the armature resistance. J
and D are the inertia and the viscous resistance coefficient,
respectively, including the rotor, gears, and shafts. KT and KE

are the proportionality coefficient between torque–current and
the electromotive force constant.1 Note that since KT � KE from
the reciprocity theorem, we write K :� KT � KE in the following.

Assuming that the inductance LM of the motor are negligible,
the dynamics of the motor Eqs 1, 2 can be rewritten as follows:

nεJ€θ(t) � (ω − (nεD + 1) _θ(t)) + ετ(t), (3)

whereω :� V/nK is the rotation speed at no load and ε :� R/n2K2

is the motor constant.
Finally, assuming that the inertia J and viscous resistance

coefficient D are sufficiently small,2 the relationship between
the torque–velocity characteristics of the motor, that is, the
angular velocity _θ(t) and the load torque τ(t) can be written
as follows:

_θ(t) � ω + ετ(t). (4)

From the right-hand side of Eq. 4, in the absence of a
disturbance torque τ(t) from the environment, the angular
velocity converges to a constant _θ(t) � ω that is proportional
to the input voltage. In addition, when an external load τ(t)< 0
from the environment is applied to a DC motor, the rotation

speed of the motor _θ(t) increases or decreases. The interesting
point of this research is that the torque–velocity characteristics,
which cause inconvenience in general motor control, are utilized
as a control law to adjust the motor phases in response to external
forces.

3.2 Phase Adjustment Function Emerged
From Motor and Linkage
As introduced above, thanks to the torque–velocity
characteristics of the motors, the interaction between the
motors, body, and the environment changes the walking
motion of the robot. Next, in order to understand the general
behavior of the motors in a walking robot, we model the limb
linkage with a DC motor.

The structure of the load torque τ(t) changes depending on
the ground contact condition. For example, when a robot’s foot is
in the air, the dynamics are dominated by the inertia of the limb
linkage, the rotor, and the shaft of the motor. On the other hand,
when the foot is on the ground, the limb linkage is supported by
the ground and the dynamics of the robot body dominates.
However, the weight of the limb linkage was only 12 g
compared to the body weight of 178 g. Therefore, in this
study, we focus on the ground reaction force during the stance
phase, which is the largest influence that the motor receives from
the environment, and consider how the ground reaction force
may affect the motor phase during walking.3

Moreover, during the stance phase, the robot receives forces
from various directions depending on the condition of the
environment (unevenness of the floor and friction coefficient)
and the robot’s motion (gait, body posture, and relative velocity to
the environment). Since these external forces emerge from the
complex interaction between the body, motor, and the
environment, detailed modeling of floor reaction forces is not
possible and does not make sense. However, we know that the
reaction force the robot receives is typically an upward force
under gravity. Therefore, we discuss the general effect of a typical
ground reaction force: a vertical upward force to the ground.

In order to discuss the general effect of the vertical ground
reaction force on the rotation of the motor, we assume that the
body posture of the robot is constant with respect to the ground.
Moreover, we also assume that the ground contact point is nearly
under the motor shaft O and the slider shaft Q, thanks to the
circular foot, as shown in Figure 4. From this assumption, the
axial load from the slider shaft Q to the tip of the crank p can be
written asN(t)cosϕ(t). Here, N(t) is the vertical ground reaction
force received by the foot of the robot, and ϕ(t) is the relative angle
between the limbs and the body. Therefore, the torque from the tip
of the crank p to themotor shaft is τ(t) � aN(t)cosϕcos(ϕ(t)+θ(t)).
Here, since cos(ϕ(t)+θ(t)) � (b/a)sinϕ(t) by kinematics of the

1Note that, although J ,D,KT , and KE are also constants that depend on the gear
ratio n, we omitted them for simplicity.
2In most motors, the inductance and viscous resistance coefficient are kept small.
For the inertia term, the rotor and shaft with gears were only 2 g and 1 g.

3Although the dynamics of the limb linkage also exists during the stance phase, we
ignore its influence because the weight of the limb linkage is small compared to the
body weight, and the displacement of the center of gravity of the limb linkage is
very small because the toes are fixed to the ground.
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linkage, the load torque of the motor, τ(t), can be written as
follows:

τ(t) � b
2
N(t)sin2ϕ(t), (5)

where a and b is the length of the crank and the distance from the
motor shaft to the slider, respectively.

Then, the motor model Eq. 4 can be rewritten using Eq. 5 as
follows:

_θ(t) � ω + ε
b
2
N(t)sin2ϕ(t). (6)

Here, note that the leg angle ϕ(t) is a function of the motor
phase: ϕ(θ, t) � arctan(cosθ(t)/sinθ(t) + b/a). Here, let us see
the second term on the right side of Eq. 6. Interestingly, since the
state variable θ(t) is in the second term, the load torque
(b/2)N(t)sin2ϕ(t, θ) from the environment can be interpreted
as a state feedback rule of the motor angle θ(t). That is to say, DC
motors Eq. 6 are the physical devices that have all the three
functions of “actuate, sense, and control” necessary for adaptation
to the environment.

Now, let us consider the behavior of a quadruped robot when the
ground reaction forces are applied to the limbs. In Eq. 6, we consider
the case where a ground reaction forceN(t)> 0 is applied to the foot.
When the motor phase is −π/2≤ θ(t)< π/2, the load torque
becomes (b/2)N(t)sin2ϕ(t,θ)>0 4 and the motor speed increases,
and when the motor phase is π/2≤θ(t)<3π/2, the motor speed
decreases. Under a sufficiently large ground reaction force N(t)≫0,
Eq. 6 has a stable equilibrium point θ�π/2 and an unstable
equilibrium point θ�3π/2.5 Thanks to the torque–velocity

characteristics of the motor and the limb, which supports the
body weight and stays around the equilibrium point θ�π/2, and
when the external force decreases, the motor quickly drives the
limb to kick the ground.

4 EXPERIMENTAL RESULT

In this section, we report on the speed-adaptive gait generation and
selection due to the torque–velocity characteristics of the motor.
Figure 5 shows the experimental setting. All of the motors were
connected to a power supply in parallel. In the following, we call the
limbs [Left-Fore, Right-Fore, Left-Hind, and Right-Hind] as [LF,
RF, LH, and RH]. The phases of the motors and the robot posture
are calculated from data with a motion capture system (OptiTrack
Prime13, NaturalPoint). Markers are set on the top of the motor,
the tip of the crank, and the pivot of the slider. Since the robot has
neither microprocessor nor sensor, we derived the limb
configuration θ(t) kinematically by measuring the 3D positions
of several optical markers equipped with the links by a motion
capture system. The experimental videos are on https://www.
youtube.com/watch?v�VzXPOAgaCQU&feature�youtu.be.

In the experiments, we investigate the basic gait pattern and
the convergence property of the gait. In order to investigate the
convergence property of the limb configuration according to the
input voltage, we conducted 84 trials in total, each of which
consisted of four trials from three different initial conditions
under seven different input voltages ranging from 1.5 to 4.5 V.
We set the initial states as follows:

(a)(θLF, θRF, θLH, θRH) � (π/2, π/2, π/2, π/2),
(b)(θLF, θRF, θLH, θRH) � (3π/2, π/2, 3π/2, π/2),
(c)(θLF, θRF, θLH, θRH) � (π/2, π/2, 3π/2, 3π/2).

Figure 6 shows the three initial conditions of motor phases.

4.1 Emerged Gaits
In order to investigate the convergence property of limb
configuration, the authors visualized the sequence of phase
differences of the limbs (θRF − θRH, θLF − θRH, θLH − θRH) on

FIGURE 4 | Slider-crank mechanism of the limb.

4From −π/2≤ θ(t)< π/2 and Figure 4, we get sin(ϕ)> 0. Moreover, we get
cos(ϕ)> 0 from a constraint of the slider crank mechanism −π/2< ϕ(t)< π/2.
Therefore, sin(2ϕ) � 2sin(ϕ)cos(ϕ)> 0.
5At the equilibrium point _θ(t) � 0, the limb angle satisfies
ϕ(t) � 1/2asin2ω/εbN(t). Therefore, when N(t)≫ 0, the limb angle becomes
ϕ(t) ≈ 0. Moreover, when ϕ(t) ≈ 0, from the geometric constraint in Figure 4,
the motor angle becomes θ(t) � π/2 or 3π/2. Finally, from the discussion so far,
we found a stable equilibrium point θ � π/2 and an unstable equilibrium point
θ � 3π/2.
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Poincaré section when the RH limb are fully extended, namely,
when the RH phase is θRH � (2n + 3/2)π, (n � 0, 1, 2, . . .) as
shown in Figure 7. We show the values ranging from −3π/2
to π/2 in a cyclic manner.

Figure 8 illustrates the sequences of phase differences of the
limbs. The red points denote θRF − θRH, the green points are
θLF − θRH, and the blue points are θLH − θRH. The authors
qualitatively decided the stability of the limb configuration
at each voltage as to whether or not it converged to a constant
value with high repeatability. The authors qualitatively
determined the gait name in the figure by comparing the
typical gait pattern with the limb configuration in the
figures and videos.

As shown in Figure 8, when we applied 2.5 V, the limb
configuration converged to a pace gait in which the phase
difference of front and hind limbs be zero, and with 4.5 V the half-
bound gait emerged inwhich the phase difference of LH and RH limbs
be zero. With low voltages such as 1.5 Vand 2.0 V, we observed a bi-
stable structure in which the convergence point changes depending on
the initial value. Furthermore, note thatwhen 1.5V is applied, the robot
generated a bound gait, in which the phase difference of left and right
limbs was small and slightly different from the 4.5 V half-bound. In
addition, althoughmost of the gait was unstable from3.0 to 4.0 V and a
rotary gallop gait was observed in the initial state 1) at 4.0 V.

Figures 9–12 shows the gait diagram of the quadruped robot,
roll, and pitch orientation. The robot has the circular foot to reduce

FIGURE 5 | Experimental setting.

FIGURE 6 | Initial states of the robot. The motor phases are illustrated in the figures.

FIGURE 7 | The phase differences between the limbs on the Poincaré
section.
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perturbation as much as possible and ground smoothly. Since the
ground contact occurs at any point on the circular foot, it is difficult
to detect the stance phase by the motion capture system. Therefore,
inFigures 9–12, we illustrate the gait chart with awhite region, when
the leg is contracted 0< sinθ, and a black region, when the leg is

extended sinθ ≤ 0. The numbers in the circle indicate the timing
when each leg phase becomes θ � π/2, assuming that the moment
when θLF � π/2 is 0 and the next θLF � π/2 is 1.

As shown in Figure 9, when we applied 1.5 V to the robot, as the
bound gait emerges, the side-to-side vibration in roll orientation

FIGURE 8 | Experimental result.
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decreases and the pitch vibration increases. On the contrary, in
Figure 10, when we applied 2.5 V to the robot, as the pace gait
emerges, the roll vibration increases and the pitch vibration decreases.
On the rotary gallop gait in Figure 11, the vibrations increased in
both roll and pitch, and on the half-bound-like transverse gallop in
Figure 11 keeps the vibration in the roll orientation to a low level.

5 DISCUSSION

5.1 Comparison With Previous Studies
The experimental results show that the brainless robot generated
roughly four types of animal gaits depending on the running
speed. These gaits were stabilized, exploiting only the physical

FIGURE 9 | Experimental result with an input voltage of 1.5 V. From the top: gait of the quadruped robot, roll, and pitch orientation. This bound gait emerged from
only a few initial values.

FIGURE 10 | Experimental result with an input voltage of 2.5 V. From the top: gait of the quadruped robot, roll, and pitch orientation. All the trials from the initial
values converged to this pace gait.
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interaction between the motor characteristics through the
body–environment dynamics. Although some gait
generation phenomena using nonneural interaction between
the limbs were already reported (McGeer, 1990; Reis et al.,
2013; Owaki and Ishiguro, 2017), there is no example of an
active walking with multiple motors that can adaptively
generate animal-like gait patterns without any sensors or
controllers, to the best of the authors’ knowledge. Our
results provide a new example of how the actuator and
body dynamics alone can generate a variety of gait.

The idea of utilizing the torque–velocity characteristics of a
motor for robot control is not completely novel in itself. For
example, the concept of back-drivability (Ishida and Takanishi,
2006), which allows a robot’s motion to adapt to the environment,
is already reported. The novelty of the phenomenon discovered in
this study is that multiple motors interact and synchronize with
each other through the physical body and the environment. In
other words, the motor, which has been recognized as a mere
actuator, actually has the function of a phase oscillator that
adjusts the motion pattern of the whole robot body according

FIGURE 11 | Experimental result with an input voltage of 4.0 V. From the top: gait of the quadruped robot, roll, and pitch orientation. This rotary gallop gait emerged
from only a few initial values.

FIGURE 12 | Experimental result with an input voltage of 4.5 V. From the top: gait of the quadruped robot, roll, and pitch orientation. All the trials from the initial
values converged to this half-bound-like transverse gallop gait.
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to the situation. The authors call this function as a phase
oscillator, in such a motor the compliant oscillator (Masuda
et al., 2017a).

Furthermore, the synchronization phenomenon between DC
motors may be observed in other types of actuators, such as
animal muscles and musculoskeletal robots. The animal muscles
have force–velocity characteristics (Kandel et al., 2000), and the
pneumatic artificial muscles have force–length characteristics
(Klute et al., 1999). In fact, a musculoskeletal robot with
pneumatic muscles (Masuda et al., 2020) generated alternating
gait patterns of left and right limbs without any computer.

In addition, the motor model Eq. 6 has some interesting
similarities with a CPG model proposed by (Owaki and
Ishiguro, 2017). Their control law is described as follows:

_θ(t) � ω − εN(t)cosθ(t). (7)

Comparing the motor model Eq. 6 and the controller Eq. 7,
the sign and the form of the function of the second term are
different. Although the form of the functions are different, they
share the same qualitative property of changing the phase speed
in response to an external force N(t). Moreover, the two
formulas are symmetric because the motor Eq. 6 has the
compliant property to external forces, and the controller Eq.
7 has the property of pushing back against external forces. The
similarities between the emerged gait patterns of these two
equations are interesting and we require further comparison
and analysis.

5.2 Mechanism of Gait Generation
There are two important factors in understanding this
phenomenon. The first factor is the torque–velocity
characteristics of the actuator that functions as a feedback
controller. The authors think that the dynamics of the motors
through the linkage mechanisms Eq. 6 makes the robot generate
an adaptive gait. This is because the structure of the robot is
extremely simple, and there is no adaptive element other than the
motor characteristics. When a limb is supporting the weight of
the robot, the phase of the limb stays in place, and when the
ground reaction force is decreased as the load is transferred to
other limbs, the motor is driven to kick the ground. In other
words, when a large external force is applied to the motor from
the environment, the motor does not generate inefficient motion
against the large external force. And after the peak of the external
force has passed, the motor sends momentum to the body with a
slight phase delay, and large-amplitude motion is effectively
generated.

The second important factor of the phenomenon is the
vibration mode intrinsic in the robot body. In the author’s
previous work (Masuda et al., 2017a), we have analyzed the
synchronization mechanism of motors in more fundamental
systems, such as spring–mass systems. The experiments and
simulations in the article show that the synchronized DC
motors converge to the resonant mode of the system and that
the motors generate the resonant modes (primary, secondary,
and tertiary modes) by increasing the input voltage. Although
the system in this study has many nonlinearities, the basic

effects that the motor brings to the system are not very
different from those of a linear system.

In the experiment Figures 8–12 with 1.5 V, at least two stable
periodic solutions exist. As the voltage increased from 2.0 to
2.5 V, the bound gait was not observed, and the convergence
property to the pace gait improved. And as the voltage was
increased further, the pace gait disappeared from 4.0 to 4.5 V,
and the gallop and half-bound gaits with a pitch oscillation
emerged. From the results and analogy with phenomena
observed in the previous study by Masuda et al. (2017a), we
hypothesized that the phenomenon of the gait selection from pace
to gallop could be interpreted as the frequency of the robot
motion, which left the resonant frequency of the side-to-side
motion and approached the resonant frequency of the gallop
modes due to the increase in voltage. In other words, the robot
body has a few vibration modes similar to the gait of an animal,
and that these modes are entrained by the rotating motor with the
force–velocity characteristics. We expect that a similar
phenomenon may occur in the body of an animal.

5.3 Discussion of the Individual Gaits
Emerged
Animals generally walk at slow speed and bound for high speed.
However, the robot showed bound at slow speed. Although it is
unclear why bound occurs when a low voltage is applied, we think
that it is difficult to propel the body with the torque of one leg
when the applied voltage is extremely low, so the leg stops until
the phases of both legs become equal.

Moreover, the robot did not generate trot gait. The mechanism
by which trot gait did not occur is also unclear. However, the
previous study using a CPG with similar dynamics to our model
(Owaki and Ishiguro, 2017) generated walk, trot, and gallop.
Therefore, the authors think the first step to understanding the
mechanism is to compare in detail the effects of this control law
and the motor dynamics used in this study.

Notably, the asymmetric gaits appeared from the left–right
symmetric robot. We expected that if the physical properties of
the robot were perfectly symmetric, then either symmetric gaits
would arise, or it would diverge into two types of gait (left-lead
and right-lead). However, the robot generated asymmetric gaits
(rotary gallop and half-bound-like transverse gallop) in the
experiments. Although the mechanism that causes the
convergence to asymmetric solutions is still unclear, we
expect that the system is sensitive to small asymmetric errors
such as individual differences of the motors, and these
asymmetric errors cause the solution to converge to the
asymmetric gaits.

5.4 Expected Application
We also expect synchronization between the motors to be applied
as a novel control method for real-world robots. Modeling and
controlling complex nonlinear systems, such as soft robots and
legged robots, is very difficult. In the motion generation approach
introduced in this study, some actuators embedded in the robots’
whole body react immediately to stimuli from the outside world
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and produce natural movement by harmonizing the
body–environment dynamics. This idea would be a new
approach to robot design, embedding a software-free
controller throughout the body to generate adaptive whole-
body movements without control.

6 CONCLUSION

In this study, we reported an example of how the actuator and
body dynamics alone can generate a variety of animal gait.
Although this robot does not have any sensors or
microprocessors, the motors adjust their phases autonomously
and finally converged to a steady gait pattern. Furthermore, by
raising the input voltage from the power supply, various gaits
(pace, bound, rotary gallop, and half-bound-like transverse
gallop) were observed. We investigated the convergence
property of the gaits for several initial states and input
voltages, and described detailed experimental results of each
gait observed. The analogy between the results and the
previous analysis in the work by Masuda et al., 2017a
suggested that the emerged gaits may be a kind of resonant
mode intrinsic in the robot body.
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A unified method for designing the motion of a snake robot negotiating complicated

pipe structures is presented. Such robots moving inside pipes must deal with various

“obstacles,” such as junctions, bends, diameter changes, shears, and blockages. To

surmount these obstacles, we propose a method that enables the robot to adapt to

multiple pipe structures in a unified way. This method also applies to motion that is

necessary to pass between the inside and the outside of a pipe. We designed the target

form of the snake robot using two helices connected by an arbitrary shape. This method

can be applied to various obstacles by designing a part of the target form specifically

for given obstacles. The robot negotiates obstacles under shift control by employing a

rolling motion. Considering the slip between the robot and the pipe, the model expands

themethod to cover cases where two helices have different properties. We demonstrated

the effectiveness of the proposed method in various experiments.

Keywords: snake robots, pipe inspection, bio-inspired robots, redundant robots, motion design

1. INTRODUCTION

Despite their simple body configuration and lack of limbs, biological snakes move in a wide variety
of environments, such as sandy and muddy places, in trees, and in narrow spaces. Inspired by
biological snakes, snake robots with simple structures formed from repeating connecting modules
have been developed and can perform various kinds of locomotion. They are expected to be used
in dangerous situations, such as rescue work and infrastructure inspections, especially when spaces
are narrow and inaccessible to humans, such as inside pipes. Controlling snake robots is a challenge
because of their redundancy, and much research has been conducted to overcome this difficulty.
The research that apply the motion observed in biological snakes, such as the undulation on the
plane (Hirose, 1987) and the locomotion utilizing obstacles (Kano et al., 2018) into the engineering
control of the snake robot has been done. Not only the motion but also the nervous system of
biological snakes is utilized as the Central Pattern Generator (CPG) (Crespi and Ijspeert, 2008; Wu
and Ma, 2013; Sartoretti et al., 2019).

Model-based control approach has also been studied. Several control methods have been
developed that aid the convergence of control values toward reference values in modeling the
interaction with snake robots and environments. These methods can be separated into two
approaches. One considers the sideslip of the robot body (Saito et al., 2002; Mohammadi et al.,
2015; Ariizumi et al., 2018), and the other considers non-holonomic constraints without sideslip
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(Matsuno and Sato, 2005; Tanaka et al., 2015; Nakajima
et al., 2019). These methods have the advantages of simple
environments and essentially planar surfaces but are unsuitable
for complex or unknown environments because it is difficult
to construct the dynamic model including the interaction with
such environments.

To fulfill locomotion in such complicated environments for
modeling, various designs of the whole form of the robot for
effective locomotion have been proposed. Thesemethods without
modeling are beneficial in challenging environments, such as
in narrow spaces and pipes in which the robot makes multiple
points of contact along its length. Several gaits, e.g., lateral rolling
and pipe crawling, have been realized by formulating a trajectory
of joint angles as a gait function and changing several gait
parameters that possess clear physical characteristics (Tesch et al.,
2009; Rollinson and Choset, 2016). For complicated target forms
for a snake robot, however, this approach is not feasible because
it is difficult to formulate target joint angles directly.

To realize locomotion based on more complex target curves,
methods of designing gaits by fitting a snake robot configuration
to a target curve, which is designed as a continuous curve, have
been proposed (Yamada and Hirose, 2006, 2008; Andersson,
2008; Hatton and Choset, 2010; Liljebäck et al., 2014). These
methods make it possible to consider snake robot configurations
as continuous curves, thus making it easy to design complicated
forms. Takemori et al. (2018a) expanded Yamada’s method
(Yamada and Hirose, 2006) and proposed a method involving
the design of a target curve by connecting simple shapes. They
used their proposed method to design a target form that required
the robot to partially lift the body around a flange on a pipe
and achieved movement over the flange. Movements over rough
terrain and climbing up ladders (Takemori et al., 2018b) were
also accomplished.

The research of the snake robot moving inside a pipe is on
the way to the final goal of our research that is to be able
to perform pipe inspections with snake robots. As shown in
Figure 1A, there are likely to be many “obstacles” that a robot
moving inside pipes will have to navigate, including junctions,
bends, continuous and discontinuous changes in pipe diameter,
shears, and blockages. Some of these obstacles, such as bends,
junctions, and continuous changes in pipe diameter are overcome
with the previous methods (Kamegawa et al., 2011; Rollinson
and Choset, 2016), whereas it has been difficult to deal with
discontinuous diameter changes, shears, and blockages. Also, the
robot is likely to encounter various kinds of obstacles one after
another in an actual pipeline system. Since previous methods are
designed only for an individual obstacle, many different methods
are needed to deal withmany kinds of obstacles serially. However,
it is impractical to seamlessly switch between disparate control
methods depending on the obstacle.

To get one step closer to the final goal, we address the
negotiation of the complicated pipe structures in this paper. We
propose a “unified” method that enables a snake robot to deal
with all obstacles in Figure 1A, some of which have not yet been
overcome and the others of which have already been overcome,
just by altering the target form of the robot partially depending
on the obstacle. Consequently, we can realize the motion control

FIGURE 1 | Concept of the research. (A) Various pipe structures. (B)

Structure of a snake robot. (C) Definition of ψ (s).

which serially negotiates various obstacles without switching to
another method. In this method, the snake robot negotiates an
obstacle by locally conforming to the shape of the obstacle while
propelling itself forward through the pipe with a rolling motion.
This method is improved by adjusting the rolling motion while
considering the slip between the robot and a pipe, so as to
make the method applicable to motion that includes two helices
having different radii and pitches. Furthermore, this method
creates a novel motion for entering and exiting a pipe. The entire
motion of the robot is conducted remotely by an operator using
simple inputs. We also demonstrate this unified motion, which is
applicable to complicated pipe structures, to design target forms
for junctions, bends, changes in pipe diameter, shears, blockages,
and the inside-out motion as examples of its application. We also
conduct experiments using this unified motion.

This research is based on Inazawa et al. (2020) and expands it
by adding a model that considers the slip between pipe and robot
in order to negotiate a change in diameter and to move from
inside to outside a pipe. Finally, we carry out these experiments
to verify the model.

2. PREVIOUS WORK

This section introduces the previous work mentioned in section
1 in detail.
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2.1. Approximation to a Continuous Curve
Methods for calculating the joint angles of the snake robot to
approximate to a continuous curve were proposed in Yamada
and Hirose (2006, 2008), Andersson (2008), Hatton and Choset
(2010), and Liljebäck et al. (2014). Andersson (2008) proposed a
method of fitting each joint to a target curve from head to tail
for an articulated robot with universal joints. Hatton and Choset
(2010) proposed annealed chain fitting, where approximation was
conducted from a head by minimizing a cost function about
the distance between each joint and a target curve. Liljebäck
et al. (2014) proposed a method of fitting to a continuous curve
generated by connecting points in three-dimensional space.
Yamada and Hirose (2008) modeled a target curve for a snake
robot (Yamada and Hirose, 2006) and proposed a method of
obtaining a target angle for each joint by the curvature and
torsion of the curve (Yamada and Hirose, 2008).

This Yamada’s method can be applied to a robot with any
joint configuration and is computationally inexpensive. Various
gaits employing this method have been proposed (Kamegawa
et al., 2009, 2011; Baba et al., 2010; Zhen et al., 2015; Zhou
et al., 2017; Qi et al., 2018; Yaqub et al., 2019). Kamegawa et al.
designed a helical target form and proposed helical rolling motion
for moving on a pipe (Kamegawa et al., 2009; Baba et al., 2010).
They also proposed a helical wave propagation motion (Qi et al.,
2018) to negotiate a branch on the pipe. By sending a waveform
down the helix, this motion enabled movement in the tangential
direction of the helix, which a rollingmotion cannot realize. Zhen
et al. (2015) designed a curve superimposing a hump onto an
arc and proposed a rolling hump that enables movement over
obstacles using a rolling motion. Zhou et al. (2017) designed
a target form including two helices and a connecting curve;
by expanding and contracting like a spring, the robot achieved
a movement outside a pipe with a changing diameter. Yaqub
et al. (2019) designed a spiral curve having a gradually changing
diameter, which enables the snake robot to move outside a pipe
with a discontinuous change in diameter.

When a target curve becomes more complicated, it is difficult
to express the spatial curve analytically. Also, the target joint
angle cannot be calculated with Yamada’s method (Yamada and
Hirose, 2008) when torsion at a point diverges as the curvature
is zero (Yamada and Hirose, 2006). To solve these problems,
Takemori et al. (2018a) expanded Yamada’s method (Yamada and
Hirose, 2006) and proposed a method to design a target curve by
connecting simple shapes, such as straight lines, circular arcs, and
helices. This method enables an intuitive design of connecting
shapes with familiar properties. Also, there is no need to calculate
the curvature or torsion of a curve that is already known.

2.2. Motion Inside a Complicated Pipe
Rollinson and Choset (2016) proposed a method of compliance
control in which the present form of the robot can be estimated
from the joint angles using an extended Kalman filter based
on gait parameters. This enabled semi-autonomous adaptation
to a changing environment and locomotion inside pipes having
bends, junctions, and continuous changes in diameter. This
method is thought to be difficult to apply to great and
discontinuous changes in diameter because the whole part of the

robot winds around the pipe. Kamegawa et al. (2011) designed
a target form by connecting a bending helical curve (Kamegawa
et al., 2011) to a helix and realized movement inside a pipe with
a bend. Some improvement is needed before these methods can
be applied to shears and blockages, which require the robot to
conform to obstacles elaborately.

3. GAIT DESIGN AND FITTING METHOD

3.1. Shape Fitting Using a Backbone Curve
The snake robot in this study consists of alternating connected
pitch-axis and yaw-axis joints, as shown in Figure 1B. The link
length is l, and the relative angle of the i-th joint is θi.

To start, we explain the approximation method with which we
configure the snake robot to a target form (Yamada and Hirose,
2008). We begin with the representation of a spatial curve based
on curvature and torsion. Let us consider the Frenet–Serret frame,
which is an orthonormal basis (e1(s), e2(s), e3(s)) that depends
on a single parameter s associated with the length along the
curve. Moreover, e1(s) is a vector tangential to the curve, e2(s)
is an inward vector normal to the curve, and e3(s) is defined
as e1(s) × e2(s). That is, the frame depends on the form of the
curve. In addition, we need to consider the coordinate system
that provides the orientation of the snake robot. We establish a
backbone reference frame (er(s),ep(s),ey(s)) on the curve. er(s) is
the same vector as e1(s), whereas ep(s) and ey(s) are vectors in the
direction of the pitch-axis and yaw-axis, respectively.

As in Figure 1C, ψ(s) is defined as the twist angle between the
Frenet–Serret frame and the backbone reference frame around
e1(s) and expressed by torsion τ (s) as

ψ(s) =

∫ s

0
τ (ŝ)dŝ+ ψ0, (1)

where ψ0 is an arbitrary constant of integration corresponding
to the initial value of the twist angle. Changing ψ0 rotates the
backbone reference frame around the curve and generates the
rolling motion. The curvature around the pitch-axis and yaw-axis,
denoted by κp(s) and κy(s), respectively, are expressible in terms
of curvature κ(s) and ψ(s) as follows:

κp(s) = −κ(s) sinψ(s), κy(s) = κ(s) cosψ(s). (2)

Finally, we obtain the target angle of each joint as

θdi =

{

∫ sh−(i−1)l
sh−(i+1)l κp(s)ds (i : odd)
∫ sh−(i−1)l
sh−(i+1)l κy(s)ds (i : even)

, (3)

where sh is the head position of the snake robot on the target
curve. The robot transforms itself smoothly under shift control,
by which the change in sh shifts the range corresponding to the
robot’s body within a target curve.

3.2. Backbone Curve Connecting Simple
Shapes
Next, we explain the method of representing the target form as
connected simple shapes for which the curvature and torsion
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are constant, such as straight lines, circular arcs, and helices
(Takemori et al., 2018a). This method expands Yamada’s method
(Yamada and Hirose, 2008) to address the Frenet–Serret frames
that are discontinuous at connection-parts, where simple shapes
are brought together.

A connected simple shape is called a segment, and the j-th
segment is referred to as segment-j(j ∈ Z). The connection-
part between segment-j and segment-(j + 1) is referred to
as connection-part-j at point s = sj. Points infinitesimally
before and after the connection-part-j are denoted by sj− and
sj+, respectively. The curvature and torsion of segment-j are
represented as κj and τj, respectively. Using κj and τj, the
curvature κ(s) and torsion τ (s) of the target curve at sj−1 <

s ≤ sj, which is equivalent to the point on segment-j within the
connected segments, are defined as

κ(s) = κj(s− sj−1), τ (s) = τj(s− sj−1) (sj−1 < s ≤ sj). (4)

Let us next consider twists at the connection-part. The twist angle
between e2(sj−) and e2(sj+) around e1(sj−) is denoted by ψ̂j. To
incorporate this twist angle into the calculation of shape fitting,
(1) is replaced by

ψ(s) =

∫ s

0
τ (ŝ)dŝ+ ψ0 +

∑

j

ψ̂ju(s− sj), (5)

where u(s) is the step function, for which its value is 0 if s < 0
and 1 if s ≥ 0.

In this study, we use straight lines, circular arcs, and helices
as segments. For a straight line, the Frenet–Serret frame and the
torsion cannot be determined; in this instance, we define the
torsion as 0. An arc has a constant curvature and zero torsion
and is defined by its radius rj and central angle φj. A helix
has curvature and torsion that are both non-zero and constant
and is defined by its radius aj, bj, and central angle φj. Here,
bj = pj/2π is satisfied, where pj is the pitch of the helix. Let
us call the angle between the tangent of the helix and the plane
perpendicular to the axis of the helix the lead angle, expressed
as α = arctan(pj/2πrj). On the helix, e2(s) is a vector directed
vertically from the helix to the axis of the helix.

3.3. Shape Constraints
We consider the shape constraints for a target form resulting
from the limits imposed on the joint angles. The maximum
bending angle of a joint is represented as θmax. Whereas it is
difficult to consider constraints in all states, here we only consider
instances where the integration range in (3) includes separately
only a circular arc and only a helix.

For the first instance, we let κc denote the curvature of the
circular arc. From (3), the condition imposed to limit the target
joint angle is given by

|θdi | =

{

|
∫ sh−(i−1)l
sh−(i+1)l −κ(s) sinψ(s)ds| (i : odd)

|
∫ sh−(i−1)l
sh−(i+1)l κ(s) cosψ(s)ds| (i : even)

≤

∫ l

−l
κcds = 2lκc ≤ θmax. (6)

In the second instance, the curvature and torsion of the helix is
denoted by κh and τh, respectively. By substituting these into (5),
ψ(s) is represented as

ψ(s) = τhs+ ψ0. (7)

Substituting this into (2), the equation is represented as

κp(s) = −κh sin(τhs+ ψ0), κy(s) = κh cos(τhs+ ψ0). (8)

By substituting these into (3), the condition limiting the target
joint angle is expressed as,

|θdi | =

{

|
∫ sh−(i−1)l
sh−(i+1)l −κh sin(τhs+ ψ0)ds| (i : odd)

|
∫ sh−(i−1)l
sh−(i+1)l κh cos(τhs+ ψ0)ds| (i : even)

≤ max

[
∣

∣

∣

∣

∣

∫ l

−l
κh sin (τh s̄+ x) ds̄

∣

∣

∣

∣

∣

(0 ≤ x < 2π)

]

= max

[

2

∣

∣

∣

∣

κh

τh
sin(τhl) sin(x)

∣

∣

∣

∣

(0 ≤ x < 2π)

]

≤ 2

∣

∣

∣

∣

κh

τh
sin(τhl)

∣

∣

∣

∣

≤ θmax, (9)

where

s̄ = s− (sh − il), (10)

x = τh(sh − il)+ ψ0. (11)

4. MOTION DESIGN

We now discuss the target form of the proposed motion. As
shown in Figure 2A, the target form consists of two helices on
straight pipes, called the head winding part near the head and the
tail winding part near the tail; an axis for each winding part, called
the head axis and tail axis; a guiding part from each winding part
to its respective axis, called the head guiding part and tail guiding
part; and a dodging part, which connects two guiding parts and
dodges obstacles. Tailoring this dodging part to obstacles enables
the robot to adapt to various obstacles. The robot negotiates an
obstacle under shift control while moving its whole body from
the tail winding part to the head winding part.

We mention the purpose of guiding each end of the dodging
part from the winding part to its axis. First, consider an instance
where each end of the dodging part (black dotted ellipse) is not
on the axis of a pipe, as shown in the left panel of the Figure 2B.
Although discussed in detail in section 4.2.1, here we remark that
each winding part rotates around its axis according to commands
from the shift control, and the relative position of the two end
points of the dodging part changes. It is difficult to deform the
dodging part (blue line) adequately in response to this change in
the relative position of two end points. To solve this, we design
guiding parts to guide each end of the dodging part (black dotted
ellipse) onto each axis. Although each guiding part rotates around
its axis, the relative position of the two ends of the dodging part
no longer changes as shown in the right panel of Figure 2B.
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FIGURE 2 | (A) Configuration of the target form for a snake robot negotiating a pipe. (B) Comparison between models with and without guiding parts. The black

dotted ellipses represent the ends of the dodging part.

TABLE 1 | Parameters describing segments that compose the form for pipe

negotiation.

Part Seg no. j Type Parameter ψ̂j

Tail winding

part

1 Helix (aj ,bj ,φj ) =
(

trw,
tpw/2π ,

tβw
)

0

Tail guiding

part

2 Helix (aj ,bj ,φj ) =
(

trin,
tpin/2π ,

tβin
)

0

3 Straight line lj =
t ls

π
2

4 Circular arc (rj ,φj ) =
(

rc,
π
2 − tα

)

φoffset +
tφrot

Dodging part – – – –

Head guiding

part

5+ nd Circular arc (rj ,φj ) =
(

rc,
π
2 − hα

)

0

6+ nd Straight line lj =
h ls

π
2

7+ nd Helix (aj ,bj ,φj ) =
(

hrin,
hpin/2π ,

hβin
)

0

Head winding

part

8+ nd Helix (aj ,bj ,φj ) =
(

hrw,
hpw/2π ,

hβw
)

0

Therefore, the dodging part (blue line) easily adapts to an obstacle
without deforming itself.

The winding and guiding parts are designed independently of
an obstacle, whereas the dodging part is designed for it. In the
following sections, we discuss the form design and the movement
to realize the motion described above.

4.1. Form Design
We discuss the design of common parts regardless of obstacles.
The parameters for these parts are shown inTable 1.We continue
to describe each of these parts.

4.1.1. Winding Part
The radius of the tail winding part trw is given by (tdpipe/2)−rlink,
where tdpipe is the inner diameter of the pipe on the tail side
and rlink is the link radius of the snake robot. The pitch of the
tail winding part tpw is designed along with the tail guiding part,
to which we turn next. The tail winding part is designed to be
long enough to cover the whole body of the robot. Using the
equation to obtain the length of the helix, the central angle of the

tail winding part tβw is determined to satisfy

lrobot ≤ l1 =
tβw

√

tr2w +

(

tpw

2π

)2

, (12)

where lrobot is the total length of the snake robot. The radius,
pitch, and central angle of the head winding part are denoted by
hrw, hpw, and hβw, respectively, and defined in a similar way to
those of the tail winding part.

4.1.2. Guiding Part
Figure 3A shows the segment configuration of the guiding parts.
In Table 1, nd is the number of segments comprising the dodging
part. The head and tail guiding parts have similar shapes and
parameters depending on the head and tail winding parts,
respectively. For this reason, we treat only the tail guiding part,
whose shape is determined by tpw, the radius of segment-2 trin,
and the radius of segment-4 rc.

A projection of the tail guiding part onto the xy plane in
the absolute coordinate system O − xyz, where the z axis is
equivalent to the axis of the pipe, is shown in Figure 3B. The
points P, Q, R, Ow on the top of the figure are the connection-
parts and have corresponding points on the bottom of the figure.
Ow represents the center point of the gray circle in Figure 3B,
which is the projection of segment-1 on the xy plane. Segment-2
is a helix, which changes the direction of the target curve toward
the tail axis. The axis of segment-2 is designed to be parallel to
the tail axis in order to simplify the geometrical calculation by
turning all helices into a circle and an arc on the xy plane, as
in Figure 3B. Oin represents the center point of the red circular
arc in Figure 3B, which is the projection of segment-2 on the
xy plane.

To realize this segment configuration, tpin and tβin, and tls are
determined after the following calculation. Since segment-1 and
segment-2 are connected continuously, the angle between the xy
plane and the target curve at connection-part-1 is equal to the
lead angle of segment-1. If the lead angle of segment-2 is equal to
that of segment-1, the axis of segment-2 is perpendicular to the
xy plane and parallel to that of segment-1. To ensure that the axes
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FIGURE 3 | (A) Segment configuration of the guiding parts. (B) Schematic of the tail guiding part on the xy plane. (C) Schematic of the tail guiding part on the xz plane.

of segment-2 and the tail winding part are parallel to each other,
the lead angle tα must satisfy

tα = arctan
tpw

2π trw
= arctan

tpin

2π trin
. (13)

Then, we obtain tpin as

tpin =

trin
trw

tpw. (14)

A projection of the tail guiding part onto the xz plane is also
shown in Figure 3C. The points P, Q, R, Ow on the top of the
figure are the connection-parts and have corresponding points
on the bottom of the figure. Oc represents the center point of
the green circular arc in Figure 3C, which is the projection of
segment-4 on the xz plane. tβin is derived by the geometric
relationship shown in Figure 3B as

tβin = 6 OinQOw + 6 OinOwQ =
π

2
+ arcsin

trin
trw − trin

. (15)

To obtain tls, we firstly derive OwR and RQ in Figure 3B by the
geometric relationship shown in Figure 3C as

RQ =
tls cos

tα, (16)

OwR = rc

{

1− cos
(π

2
−

tα

)}

. (17)

Then, tls is given by (16), (17), and the geometric relationship
shown in Figure 3B as

tls =
RQ

cos tα
=

OwQ−OwR

cos tα

=

√

(trw−trin)2−tr2in − rc
{

1− cos
(

π
2 −

tα
)}

cos tα
. (18)

Note that tpw and trin should be determined while satisfying
tls ≥ 0 for this segment configuration. In addition, the shape
constraints described in section 3.3 also should be satisfied.

We introduce a parameter, φoffset, that is tuned by an operator
and used to adjust the direction of the dodging part appropriately
to the shape of the pipe.

4.1.3. Dodging Part
The dodging part can be designed for a specific pipe structure.
Section 5 provides examples relevant to a junction, bend, shear,
blockage, and change in pipe diameter.
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FIGURE 4 | Procedure involved in movement.

4.2. Procedure of Movement
We next explain the movement for the proposed motion.
Figure 4 shows the procedural steps involved in negotiating an
obstacle. Here, we use the target form for the junction presented
in section 5. The four steps in Figure 4 are described as follows:

Step 1: Approach the obstacle using a rolling motion (rolling
angle).

Step 2: Shift the head position to the dodging part under shift
control (shift length).

Step 3: Adjust the position of the dodging part in the axial
direction with a rolling motion and the direction using
φoffset (rolling angle and φoffset).

Step 4: Negotiate the obstacle under shift control (shift length).

Here, an operator commands the value in parentheses in each
step. The operator can recognize the dodging part with Step 2
and adjust its position and direction with Step 3. The appropriate
position and direction of the dodging part in Step 3 are different
for each obstacle, as described in section 5.

4.2.1. Fixing of Dodging Part
The position of the dodging part should be fixed to an
environment while the robot is negotiating the pipe without
colliding with the pipe in Step 4. The following figures illustrate
instances for a junction. Here, no slip is assumed between the
robot and pipe.

First, consider the displacement in the axial direction. As
shown in the left panel of Figure 5A, just executing a shift
control leads to the collapse of the target form because of
the displacement of the dodging part in the axial direction.
Therefore, this displacement caused by the shift control is
canceled with a rolling motion, as shown in the right panel
of Figure 5A. To this end, as shown in Figure 5B, the rolling
velocity at connection-part-1 tψ̇roll is determined by the velocity
of the shift control ṡh,

tψ̇roll = −
ṡh sin

tα

tkaxis
, (19)

where tkaxis is the displacement in the axial direction per unit
rolling angle.

Second, consider the rotation around the axis. The rotation of
the dodging part also breaks the target form because the direction
of the dodging part becomes ill suited to the obstacle, as shown
in Figure 5C. tφrot, the term in ψ̂4 in Table 1, is changed so as to
cancel out the rotation of the dodging part (see Figure 5D). For
this purpose, as shown in Figure 5E, tφ̇rot, the time derivative of
tφrot is determined using ṡh and

tψ̇roll by

tφ̇rot = −
tkrot

tψ̇roll +
2ṡh cos

tα

tdpipe
, (20)

where tkrot is the rotation angle around the tail axis per unit
rolling angle. tkaxis and tkrot depend on the parameters of
the tail winding part. It is difficult to analytically derive these
values because of the fitting error of the robot and the slippage
between robot and pipe. Therefore, these are actually measured
in experiments in which only the rolling motion is performed.

4.2.2. Derivation for Fixing the Dodging Part
We derive the appropriate value of ψ̇0, the time derivative of
the initial twist angle ψ0, to realize tψ̇roll and hψ̇roll in the
previous section.

The point a away from the head of the robot is sr = sh − a
(0 ≤ a ≤ lrobot) on the target curve. From (5), ψ̇(sr), the rolling
velocity at s = sr, is expressed as

ψ̇(sr)= ṡr
d

dsr

∫ sr

0
τ (ŝ)dŝ+ ψ̇0 +

d

dt

∑

j

ψ̂ju(sr − sj). (21)

After substituting sr = sh − a and rearranging the equation, this
equation is expressed as

ψ̇(sh − a) = τ (sh − a)ṡh + ψ̇0 +
∑

j
˙̂
ψju(sh − a− sj)

+
∑

jψ̂jδ(sh − a− sj)ṡh, (22)

where δ is the impulse function. The impulse function has zero
value except at the connection-part, where sh − a − sj = 0.
On the other hand, the impulse function has non-zero value
at the connection-part. However, it doesn’t have any effect on
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FIGURE 5 | Fixing the dodging part. (A) Shift control executing rolling motion. (B) Displacement of the tail axis at connection-part-1. (C) Adjustment of the torsion

angle. (D) Definition of tφrot. (E) Rotation around the tail axis at connection-part-1.

the overall movement of the robot because the length of the
connection-part is zero. Therefore, the last term on the right-
hand side is negligible. The points on the tail winding part and
on the head winding part in the target curve are represented as
sr = sh−

ta and sr = sh−
ha, respectively. To realize ψ̇(sh−

ta) =
tψ̇roll on the tail winding part and ψ̇(sh − ha) = hψ̇roll on the
head winding part, the desired values of ψ̇0 on the tail winding
part and on the head winding part are given by

tψ̇roll = ψ̇0 +
tτw ṡh, (23)

hψ̇roll = ψ̇0 +
hτw ṡh +

tφ̇rot −
hφ̇rot, (24)

where tτw and hτw denote the torsions of the tail and head
winding parts, respectively.

When both of these winding parts have the same radius,
tψ̇roll =

hψ̇roll,
tτw = hτw, and tφ̇rot =

hφ̇rot. Therefore, (23) and
(24) are satisfied simultaneously. This means that the fixing of
the dodging part can be realized rigidly without the slip between
the robot and pipe, which depends on the frictional condition
and model.

However, when both winding parts have different radii,
tψ̇roll 6=

hψ̇roll,
tτw 6= hτw and tφ̇rot 6=

hφ̇rot. Therefore, there is
no ψ̇0 that satisfies (23) and (24) at the same time. For any value
of ψ̇0, the slip occurs between the robot and pipe on one or both
of the head and tail winding parts. This slip is possible to prevent
the fixing of the dodging part which is based on the assumption
of no slip. Hence, the model including the slip between the robot
and pipe is required to realize the fixing of the dodging part.

4.2.3. Model Including Slip Between Robot and Pipe
We next consider a model that includes the slip between the
robot and pipe, and aim to derive the relationship between the
shift velocity, ψ̇0, and φ̇diff to fix the dodging part against the

pipe, where

φ̇diff =
tφ̇rot −

hφ̇rot + ωslip. (25)

Here, ωslip is the sum of the slip angular velocity around the axis
on the tail and head winding parts.

Let us assume viscous friction between robot and pipe as in
Saito et al. (2002), Liljebäck et al. (2010), Ariizumi and Matsuno
(2017), and Ariizumi et al. (2018). The friction is assumed to be
proportional to the normal force from the pipe as in Hicks and
Ito (2005) and Ariizumi and Matsuno (2017). The normal force
is considered to work equally along the body of the robot and is
represented as T = ρlcont, which is proportional to the contact
length lcont. ρ is the coefficient of pressure per unit contact
length. Here, the equilibrium of force in the axial direction is
represented as

µtvslipρ
tlw + µhvslipρ

hlw = 0, (26)

where µ is the coefficient of friction, and tvslip and hvslip are the
slip velocities in the axial direction on the tail and head winding
parts, respectively. Also, tlw and hlw are respectively the lengths of
the tail and head winding parts within the range corresponding to
the robot’s body in the target curve. We next consider the velocity
of the dodging part against the pipe. In order to fix the dodging
part against the pipe, we consider the velocity occurring by shift
control, rolling motion, and slip, and make its value zero. Since
the target form is connected continuously, the two ends of the
dodging part have the same velocity against the pipe vdod. Our
purpose is to make vdod zero.

4.2.3.1. Change in Pipe Diameter
In the case of a change in diameter, the velocity of the
dodging part in the axial direction, as shown in Figure 6A, is
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FIGURE 6 | (A) Velocity of the dodging part in the axial direction in the case of a change in diameter. (B) Velocity of the dodging part in the axial direction in the case of

inside-out motion. (C) ψ̇0 for the inside-out motion obtained by (42).

represented as

vdod = −
tkaxis

tψ̇roll − ṡh sin
tα +

tvslip

= −
hkaxis

hψ̇roll − ṡh sin
hα +

hvslip. (27)

Using (23), (24), and (26), (27) is rewritten as

vdod = −
tkaxisψ̇0 − (tkaxis

tτw + sin tα)ṡh +
tvslip (28)

= −
hkaxisψ̇0 − (hkaxis

hτw + sin hα)ṡh −
tlw
hlw

tvslip

−
hkaxisφ̇diff. (29)

Moreover, φ̇diff is expressed using ψ̇0, ṡh, and ωslip by substituting
(20) into (25) as

φ̇diff = Aψ̇0 + Bṡh + ωslip, (30)

where

A = −

tkrot −
hkrot

1− hkrot
,

B =

−tkrot
tτw +

2 cos tα
tdpipe

+ hkrot
hτw −

2 cos hα
hdpipe

1− hkrot
. (31)

Eventually, by substituting (30) into (29), (27) is expressed as

vdod = −
tkaxisψ̇0 − (tkaxis

tτw + sin tα)ṡh +
tvslip (32)

= −
hkaxis(1+ A)ψ̇0 − {

hkaxis(
hτw + B)+ sin hα}ṡh

−

tlw
hlw

tvslip −
hkaxisωslip. (33)

As mentioned initially, our purpose is to derive ψ̇0 and φ̇diff as
functions of the input value in Step 4 ṡh, to realize the fixing of
the dodging part, i.e., vdod = 0. In addition to three equations,
(30), (32), and (33), another equation is needed to designate four
variables, ψ̇0, φ̇diff,

tvslip, and ωslip. We introduce the control of
the balance between the slip in the axial direction tvslip and slip

around the axis ωslip as another equation. There is a trade-off
relationship between tvslip and ωslip, and cannot be zero at the
same time in the case of the different radii of the head and tail
winding parts. Here, we deal with two extreme instances: (A) a
motion that no slip occurs around the axis but slip occurs in the
axial direction (tvslip 6= 0, ωslip = 0) and (B) a motion that where
no slip occurs in the axial direction but slip occurs around the
axis (tvslip = 0, ωslip 6= 0). In (A), the slip in the axial direction
tvslip should be derived based on the slip model to fix the dodging
part, whereas the slip around the axis ωslip is determined to be
zero. In (B), the slip around the axis ωslip should be derived based
on the slip model to fix the dodging part, whereas the slip in the
axial direction tvslip is determined to be zero.

(A) No slip around the axis but slip in the axial direction:

We discuss the motion of no slip around the axis but slip in the
axial direction (tvslip 6= 0, ωslip = 0) first. Since the position
of the dodging part in the axial direction is designed to be fixed
relying on the slip in the axial direction tvslip, the position is
possible to be moved if there is the modeling error of the slip
in the axial direction. On the other hand, the direction of the
dodging part is able to be fixed precisely because there is no slip
around the axis. Therefore, this motion is suitable for navigating
around an obstacle for which the direction of the dodging part
should be neatly fixed. In this motion, from (32), (33), and
ωslip = 0, the velocity of the dodging part is represented as

vdod = −

tFtlw + hFhlw
tlw + hlw

ψ̇0 −

tGtlw + hGhlw

(1− hkrot)(tlw + hlw)
ṡh, (34)

where

tF =
tkaxis,

hF =
1− tkrot

1− hkrot

hkaxis,

tG =
tkaxis

tτw + sin tα,

hG =

hkaxis

1− hkrot

(

−
tkrot

tτw +
2 cos tα
tdpipe

+
hτw −

2 cos hα
hdpipe

)

+ sin hα. (35)
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Therefore, ψ̇0 to fix the dodging part in the axial direction, i.e., to
realize vdod = 0, is obtained by

ψ̇0 = −

tGtlw + hGhlw
tFtlw + hFhlw

ṡh. (36)

Then, φ̇diff is calculated by substituting ωslip = 0 and (36) into
(30) as

φ̇diff = Aψ̇0 + Bṡh,

=

(

−

tGtlw + hGhlw
tFtlw + hFhlw

A+ B

)

ṡh. (37)

(B) No slip in the axial direction but slip around the axis:

Next, let us consider the motion of no slip in the axial direction
but slip around the axis (tvslip = 0, ωslip 6= 0). Since the direction
of the dodging part is designed to be fixed relying on the slip
around the axisωslip, the direction is possible to be moved if there
is the modeling error of the slip around the axis. On the other
hand, the position of the dodging part in the axial direction is able
to be fixed precisely because there is no slip in the axial direction.
Hence, this motion is effective when the position of the dodging
part in the axial direction has to be maintained primarily, e.g.,
a change in diameter whose target form is axially symmetric as
described later. Using (28), (29), and tvslip = 0, ψ̇0 and ωslip to fix
the dodging part are obtained by

ψ̇0 = −

(

tτw +
sin tα

tkaxis

)

ṡh, (38)

φ̇diff =

(

tτw +
sin tα

tkaxis
−

hτw −
sin hα

hkaxis

)

ṡh. (39)

Note that these twomotions (A) and (B) are equal to each other in
the junction, bend, shear, and blockage, which can be negotiated
without any slip in the axial direction and around the axis. For
these cases, tvslip and φ̇diff become zero, and the same result is
derived as in section 4.2.1.

4.2.3.2. Motion Between Inside and Outside
We next consider a case of inside-out motion. As in the case of a
change in diameter, the equilibrium of force in the axial direction
is described as (26). Then, the velocity of the two ends of the
dodging part, as shown in Figure 6B, is represented as

vdod = −
tkaxis

tψ̇roll − ṡh sin
tα +

tvslip =
hkaxis

hψ̇roll

+ṡh sin
hα +

hvslip. (40)

(A) No slip around the axis but slip in the axial direction:

We begin, as before, with the motion of no slip around the axis
but slip in the axial direction (tvslip 6= 0, ωslip = 0). From
(26), (40), and ωslip = 0, the velocity of the dodging part is
represented as

vdod = −

tFtlw − hFhlw
tlw + hlw

ψ̇0 −

tGtlw − hGhlw
tlw + hlw

ṡh. (41)

Therefore, ψ̇0 and φ̇diff to realize vdod = 0 is derived by

ψ̇0 = −

tGtlw − hGhlw
tFtlw − hFhlw

ṡh, (42)

φ̇diff =

(

−

tGtlw − hGhlw
tFtlw − hFhlw

A+ B

)

ṡh. (43)

Here, ψ̇0 ends up diverging when the denominator tFtlw − hFhlw
becomes zero, as shown in Figure 6C. Therefore, we introduce
the limitations −ψ̇0,lim and ψ̇0,lim for ψ̇0 so as not to require a
rapid change in the joint angle that the actuator cannot realize.
The effect of this limitation must be considered. Since vdod is
a linear function of ψ̇0, the sign of vdod is determined by the
coefficient of ψ̇0 and whether ψ̇0 is larger or smaller than ψ̇0

to realize vdod = 0 (42). Before the divergence, tFtlw − hFhlw
is positive and the coefficient of ψ̇0 in (41) becomes positive.
Here, tlw + hlw > 0 satisfies because tlw and hlw are the lengths
of the winding parts within the approximation range of the
robot. −ψ̇0,lim is smaller than ψ̇0 obtained by (42), as shown in
Figure 6C. After the divergence, tFtlw − hFhlw is negative, the
coefficient of ψ̇0 in (41) becomes negative. ψ̇0,lim is larger than ψ̇0

obtained by (42), as shown in Figure 6C. Therefore, vdod becomes
negative while the limitation is imposed on ψ̇0. This vdod < 0
indicates that both the head and tail winding parts move to the
side of the pipe until segment-5 contacts the pipe’s edge. This
phenomenon only fixes the dodging part and doesn’t interfere
with overall motions, such as the robot falling out of the pipe.

(B) No slip in the axial direction but slip around the axis:

We next consider the motion of no slip in the axial direction
but slip around the axis (tvslip = 0, ωslip 6= 0). This motion is
also suitable for the inside-out motion because its target form is
axially symmetric, as described later, and the displacement of the
dodging part in the axial direction has to be maintained more
appropriately than the rotation of the dodging part around the
axis. Using (40), ψ̇0 and φ̇diff to fix the dodging part, i.e., to realize
vdod = 0, are obtained by (38) and (39), the same equations as in
the case of the change in diameter.

Note that the position in the axial direction of the dodging
part can be compensated by the rolling motion, and the
direction of the dodging part can be compensated by φoffset if
the dodging part deviates from the appropriate position and
direction during movement.

5. FORM DESIGN FOR APPLICATION

In this section, we present the design of the dodging parts for
a junction, bend, shear, blockage, and change in pipe diameter
and the design of a guiding part for outside the pipe for the
motion between the inside and outside of a pipe as examples of
applications of the proposed motion.

5.1. Junction and Bend
The target form for a junction and bend is presented in
Figure 7A. The dodging part is composed of segment-5, an arc
segment, whose parameters are (rj,φj) = (rbend,φbend) and ψ̂5 =

π − hφrot. For a junction, rbend is the outer radius of a pipe and
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FIGURE 7 | Segment configuration for (A) junction and bend, (B) shear, (C) blockage, (D) change in diameter, and (E) inside-out motion.

φbend is the bending angle of the junction. For a bend, rbend is the
radius and φbend is the bending angle of the bend.

5.2. Shear
The target form for shear is shown in Figure 7B. The dodging
part is composed of segments-5–8, which are arc segments whose
parameters are (rj,φj) = (rc, γs), ψ̂5 = ψ̂6 = ψ̂7 = π , and

ψ̂8 = π − hφrot. The dodging part is defined by the distance
between the two axes of pipes dshear. γs is calculated from,

γs = arccos

(

1−
dshear

4rc

)

. (44)

5.3. Blockage
The target form for a blockage is illustrated in Figure 7C. The
dodging part is composed of four arc segments-5, 6, 8, 9, whose
parameters are (rj,φj) = (rc, γblock) and (ψ̂5, ψ̂6, ψ̂8, ψ̂9) =

(π , 0, 0,π ,−π
2 − hφrot), and a straight line segment-7, whose

parameters are lj = lblock and ψ̂7 = 0. The dodging part is
determined by its width dblock, which is defined as the length
between the axis of the pipe and the straight line segment parallel
to the axis, and l7 = lblock, depending on the shape of the
blockage. The geometric parameter γblock is calculated from,

γblock = arccos

(

1−
dblock

2rc

)

. (45)

5.4. Change in Pipe Diameter
The target form for a change in pipe diameter is shown in
Figure 7D. The dodging part is composed of segment-5, a
straight line segment, whose parameters are l5 = ldc and ψ̂5 = 0.
Since the dodging part is the straight line segment and ψ̂5 = 0,
ψ̂4 is determined by ψ̂4 = π + φoffset + φdiff instead, where φdiff
is the time integral of φ̇diff. The determination of the dodging
part depends on the length of the part of the pipe where the
diameter changes. This form is axisymmetric, and the direction
of the dodging part does not matter. Hence we set φoffset = 0.
Eventually, ψ̂4 is determined by ψ̂4 = π + φdiff.

5.5. Motion Between Inside and Outside
Expanding on the proposed motion, we propose a motion that
corresponds to passing between the inside and outside of a pipe.

TABLE 2 | Parameters of the segments comprising the head guiding part for the

outside of a pipe.

Seg. no. j Type Parameter ψ̂j

5 Circular arc (rj ,φj ) = (rio,π) γio

6 Circular arc (rj ,φj ) =
(

rc,
π
2 − hα

)

0

7 Straight line lj = lio −
π
2

This motion is useful when a pipe opening is difficult to approach
directly or when a pipe needs to be inspected from both inside
and outside. The target form for this motion is illustrated in
Figure 7E, and the parameters for each segment are shown in
Table 2. To begin, we design the guiding part for outside the
pipe. Here segments-5–7 comprise the head guiding part, which
is fixed by the radius of segment-5 rio. γio and lio are given by

γio = arcsin
hrw

2rio
, (46)

lio =

√

(2rio)2 − hr2w − rc

{

1− cos
(

π
2 − hα

)}

cos hα
. (47)

Here, rio should be determined so that lio ≥ 0 holds. In this way,
the proposed motion available for an arbitrary dodging part can
be expanded to outside the pipe by designing guiding part for the
outside. This target form does not have a dodging part, and the
tail guiding part is directly connected to the head guiding part.
Therefore, this motion can also be realized in the same way as for
inside the pipe, by determining ψ̂4 = π + φdiff. For the motion
from outside to inside a pipe, the tail guiding parts are composed
of segments listed in the opposite order in Table 2.

6. EXPERIMENTAL RESULTS

We performed experiments to verify the effectiveness of the
proposed method. The system configuration of a snake robot
is illustrated in Figure 8. We used the snake robot developed
in Takemori et al. (2018b). The snake robot has a module
configuration, which has a joint and link covered by an exterior.
This exterior has a pectinate shape, providing a smooth surface
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FIGURE 8 | System configuration of a snake robot developed in Takemori et al. (2018b).

TABLE 3 | Parameters used in experiments.

Pipe diameter
mrw

mpw
mrin

mkaxis
mkrot

mm mm mm mm/rad –

194 mm (inside) 69 501 31 24.2 0.348

194 mm (inside) 69 600 31 17.2 0.343

200 mm (outside) 128 150 – 37.8 0.0111

290 mm (inside) 117 556 53 27.1 0.187

without affecting the bending of the joint. The number of joints is
36, the link length is 70mm, the diameter of the link is 56mm, the
weight per link is 150 g, the maximum torque of a joint is 4.0 Nm,
and the maximum bending angle of a joint is 90◦. The motor was
driven by the position control with the limitation of the current
(0.3 A) to allow the compliance of the joint, and the PID gains
are set as (P, I, D) = (800, 0, 100). The snake robot is powered
via a cable, and the target angle for each joint is sent from a
computer via an RS485 interface. The camera is mounted on the
head to inspect the pipe and to help the operator control the robot
remotely. The operator uses a gamepad to perform an operation.

The pipes usedmost have an inner diameter of 194mm and an
outer diameter of 200mm. The only pipe used in the experiments
involving a change in pipe diameter had an inner diameter of
290 mm. The parameters used in the experiments are listed in
Table 3. Here, index m means t or h. mkaxis and mkrot for each
pipe weremeasured in the preliminary experiments in which only
the rolling motion was performed. We determined rc = 90 mm
for all subsequent cases.

We measured the static coefficient between the robot surface
and inner wall of the pipe. We put one unit of the robot, which is
composed of one link and one joint, on the pipe and measured
the tilted angle of the pipe when the unit started sliding. The
unit started sliding when the tilted angle was about 16◦, and
then, the measured static coefficient was arctan 16◦ = 0.27. This
value is the reference value because it seems to be easily changed
according to the condition of contact.

6.1. Evaluation of Proposed Slip Model
First, we conducted experiments to verify the model considering
the slip in cases where the head and tail winding parts have
different radii based on the displacement of the dodging part in
the axial direction. If two pipes have different radii, it is physically
impossible for a winding part having a larger radius to enter
the smaller pipe. In this case, the displacement of the dodging
part toward the smaller pipe is altered constrainedly and cannot
be observed correctly. Therefore, two pipes having the same
diameter, 194 mm, were used instead, and the tail winding part,
for this experiment only, had a larger pitch (tpw = 600 mm)
than the head winding part (hpw = 501 mm). To clearly show
the displacement of the dodging part, the head of the robot was
located between the ends of two pipes at the beginning of the
experiment, as indicated by the dotted line in Figure 7. Then,
the shift control, combined with the rolling motion and the
change in ψ̂4 calculated in Motions 1–4 [(Motion 1) considering
the displacement only on the tail winding part (23), (Motion 2)
considering the displacement only on the head winding part (24),
(Motion 3) considering the displacement with the slip between
the robot and pipe in the motion of no slip around the axis
but slip in the axial direction (tvslip 6= 0, ωslip = 0), and
(Motion 4) considering the displacement with the slip in the
motion of no slip in the axial direction but slip around the axis
(tvslip = 0, ωslip 6= 0)], was conducted in Step 4 until the tail of
the robot reached the head guiding part. Considering the target
form of the robot as shown in Figure 7D when ldc = 0 mm,
the tail of the robot is located just between the ends of two
pipes at the end of the experiment if the dodging part is fixed
properly. Therefore, we measured the position of the tail of the
robot at the end of each experiment, as indicated by the red
line in the image, and compared it under four conditions. Note
that this experiment is focused on the fixing of the position of
the dodging part only in the axial direction since it is difficult
to observe the change of the direction of the dodging part in
the axially symmetric target form. The results and data of these
experiments are shown in Figure 9. When the displacement of
the dodging part was considered on either the tail winding part
or the head winding part (Motion 1 and Motion 2), the error was
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FIGURE 9 | Experimental results and data from preliminary experiments. (A,B) Motion 1: fixing the dodging part only on the tail winding part, (C,D) Motion 2: fixing the

dodging part only on the head winding part, (E,F) Motion 3: employing the proposed slip model (tvslip 6= 0, ωslip = 0), and (G,H) Motion 4: employing the proposed

slip model (tvslip = 0, ωslip 6= 0).

458 or 222 mm, respectively. On the other hand, the proposed
model (tvslip 6= 0, ωslip = 0) (Motion 3) produced less error,
97 mm. Furthermore, the proposed model considering the slip
(tvslip = 0, ωslip 6= 0) (Motion 4) produced the smallest error,
5 mm. These results indicated that Motion 1 and Motion 2
produces the large errors because they ignore the effect of the
slip. Motion 3 reduced the error compared with the first two
motions by fixing the dodging part in consideration of the slip.
However, a small error was left due to the modeling error caused
by the viscous friction model or the condition of the contact in
the axial direction because Motion 3 is relying on the slip in
the axial direction. In contrast, Motion 4 successfully realized
the fixing of the dodging part in the axial direction as expected
because it did not require the slip in the axial direction and

was not affected by the modeling error of the slip in the axial
direction. Consequently, the proposed motions based on the slip
model both in the cases of (tvslip 6= 0, ωslip = 0) and (tvslip =

0, ωslip 6= 0) are regarded as effective for fixing the dodging
part. The reduction of the modeling error of the slip is left as our
future task.

6.2. Experiments for Various Pipe
Structures
We then performed four experiments in which the robot
negotiated a junction, a shear, a blockage, and a discontinuous
change in diameter. As mentioned in section 5, the target form
for a bend is similar to that for a junction, and the target form
for a continuous change in pipe diameter is similar to that for
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FIGURE 10 | Experimental results of (A) negotiating a junction (rbend = 100 mm and rbend = 90◦), (B) negotiating shear (dshear = 100 mm), (C) negotiating a blockage

(the right half of the pipe is blocked in width by 10 mm, and dblock = 48.5 mm, lblock = 30 mm), (D) negotiating a change in diameter (pipe inner diameter changes

from 290 to 194 mm, and ldc = 0 mm) using the proposed slip model (tvslip 6= 0, ωslip = 0), (E) moving from inside to outside a pipe using the proposed slip model

(tvslip 6= 0, ωslip = 0, rio = 90 mm, ψ̇0,limit = 0.03 rad/s), and (F) moving from inside to outside a pipe using the proposed slip model (tvslip = 0, ωslip 6= 0, rio = 90 mm).

a discontinuous change in pipe diameter. Therefore, these four
experiments can demonstrate the effectiveness of the proposed
method for all pipe structures in Figure 1A. Also, we performed
an experiment in which the movement is from inside to outside
a pipe. The operator looked at the snake robot directly and
performed the operation according to the procedure described
in the first part of section 4.2.

As shown in Figures 10A–D, the snake robot successfully
negotiated the junction, shear, blockage, and change in pipe
diameter. The snake robot was also able to move from the inside
to the outside of the pipe, as shown in Figure 10F. Please also
see the Supplementary Video 1 for details. Figure 11 indicates
the values of ψ0, sh, and φoffset for each experiment. For the
experiments involving a junction, shear, and blockage, the robot
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FIGURE 11 | Experimental data on (A) negotiating a junction, (B) negotiating a shear, (C) negotiating a blockage, (D) negotiating a change in diameter using the

proposed slip model (tvslip 6= 0, ωslip = 0), (E) moving from inside to outside a pipe using the proposed slip model (tvslip 6= 0, ωslip = 0), and (F) moving from inside to

outside a pipe using the proposed slip model (tvslip = 0, ωslip 6= 0).

was able to negotiate the pipe under shift control and rolling
motion, as described in section 4.2, with only the first adjustment
by the operator of the position and direction of the dodging part
in Step 3.

Since the junction is the severest obstacle that does not
allow the slightest deviation of the position and direction of the
dodging part, the experiment to verify the angle error of the
joint between the desired angle and the actual angle was also
conducted for negotiating a junction. Due to the limitation of the
communication speed, the time step of this experiment (1t =

0.2 s) is 10 times as large as that of the other experiments to
obtain the joint angle. As shown in Figure 12B, the actual angle

of the joint θi(t) (green line) lagged behind the desired angle
θdi (t) (black line). This steady delay is thought to be caused by
the communication delay to send the desired angle to each joint
and receive the actual angle from each joint and the time delay
needed to change the angle of each joint from the actual angle to
the desired angle due to the limitation of the speed of the motor.
The length of the time delay was about five steps for every joint
except the first joint, which responded one time step earlier than
the others. The actual angle moved forward five steps θi(t+ 51t)
(red line) matched the desired angle well for the second joint as
shown in the bottom of the Figure 12A, although the error about
one time step was left only for the first joint. The angle error
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FIGURE 12 | Experimental data of the joint angle for negotiating a junction. (A) Time delay of the joint angle for the first joint (top) and the second joint (bottom). (B)

Angle error of the joint between the desired angle and the actual angle of the joint (top). and shifted angle error of the joint between the desired angle and the actual

angle moved forward 5 time steps (bottom). Angle error and shifted angle error of the 1–12th joints, the 13–24th joints, and the 25–36th joints are shown in the left,

center, and right panel of the figures, respectively.

between the desired and actual angle for each joint (θi(t)− θ
d
i (t))

is depicted in the top of the Figure 12B. To eliminate the effect
of the time delay, the angle error between the desired and shifted
actual angle for five time steps for each joint (θi(t)− θ

d
i (t+ 51t))

is depicted in the bottom of the Figure 12B. As shown in the
bottom of the Figure 12B, the comparatively large angle error of
the joint was moved from head to tail with the passage of time.
This indicates that the angle error was observed near the dodging
part as enclosed with dotted lines in Figure 12B and the dodging
part deviates from the appropriate position and direction to some
extent. In addition, the error of the last joint, 36th joint, is quite
large at t = 62 s. This is because the tail link is longer than the
other links and was caught by the pipe when it passed through the

junction. The error of the position and direction of the dodging
part is thought to be compensated by two factors caused by the
robot’s geometric constraints: the compliant adaptation to the
environment at the joint thanks to the position control of the
motor with the limitation of the torque, and the slippage between
the robot and the pipe.

Also, the robot was able to negotiate the change in diameter
with the proposed model considering the slip between the robot
and the pipe even when the radii of the head and tail winding
parts differed. Figure 10D shows only the result of the proposed
model (tvslip 6= 0, ωslip = 0), but the model (tvslip = 0, ωslip 6=

0) also worked successfully; see Supplementary Video 1. In
contrast, the robot failed to move from inside to outside the pipe
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using the proposed slip model (tvslip 6= 0, ωslip = 0), as in
Figure 10E, and succeeded to do so only with the proposed slip
model (tvslip = 0, ωslip 6= 0) Figure 10F. As shown in the middle
panel of Figure 10E, the robot was unable to support the part
of itself that was below the pipe due to the torque limitation of
the motor, and the head winding part did not contact the pipe
and receive the friction force, contrary to what we had expected.
Hence, the dodging part moved the right side of the image,
although in theory it was expected to move to the left side of
the image after ψ̇0 reached −ψ̇0,limit. This effect led the robot
to fall out of the pipe. On the other hand, since the experiment
shown in Figure 10F was conducted using the proposed slip
model (tvslip = 0, ωslip 6= 0), the dodging part did not deviate
from the proper position in the axial direction even though the
robot was not always able to press its body against the pipe.
Instead, the rotation of the robot around the axis was found to
be caused by the slip around the axis. In addition, due to the
torque limitation of the motor, the robot is likely to failed to
support the head winding part for both Figures 10E,F of the
revised paper depending on the initial orientation of the robot
and the protective function of the motor, which made the motor
output torque zero when the motor detects the persistent load
that exceeds maximum output.

7. CONCLUSION

A unified approach was proposed for designing the motion that
enables a snake robot to negotiate complicated pipe structures.
The proposed method enables the robot to overcome various
obstacles by designing the dodging part, which is part of the
target form, specifically for the obstacle. To realize this, both
ends of the dodging part are arranged on the axes of the pipes
with guiding parts. In addition, we developed a method of fixing
the dodging part to an obstacle during obstacle negotiation
that involved an appropriate combination of rolling motion
and shift control. Also, we constructed a model considering
slippage between robot and pipe, and expanded the proposed
method to make it applicable to motions that require two
helices having different radii, i.e., the motion for change in
diameter and the motion between inside and outside of a
pipe. We conducted experiments to verify the effectiveness
of these methods and demonstrated that the snake robot
successfully negotiated not only a junction, which was already
realized, but also a shear, a blockage, and a discontinuous
change in pipe diameter, which were impossible previously.
We also realized movement from inside to outside a pipe in
an experiment.

We shall in a future study consider a way to conduct
remote operations more easily. Currently, the operator has to
adjust appropriately the relative position of the dodging part
to the environment. Also, experiments are now conducted in
the ideal situation where the operator can recognize the state
of the robot by directly looking at the robot through the
transparent pipe. We also leave as a future task the realization
of autonomous movement by detecting a pipe structure using
sensors given no parameter values. Finally, another task for the
future is a kinematic/dynamic analysis of the motion to keep the
appropriate contact with the pipe.
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Despite the appealing concept of central pattern generator (CPG)-based control for

bipedal walking robots, there is currently no systematic methodology for designing a

CPG-based controller. To remedy this oversight, we attempted to apply the Tegotae

approach, a Japanese concept describing how well a perceived reaction, i.e., sensory

information, matches an expectation, i.e., an intended motor command, in designing

localised controllers in the CPG-based bipedal walking model. To this end, we

developed a Tegotae function that quantifies the Tegotae concept. This function

allowed incorporating decentralised controllers into the proposed bipedal walking model

systematically. We designed a two-dimensional bipedal walking model using Tegotae

functions and subsequently implemented it in simulations to validate the proposed design

scheme. We found that our model can walk on both flat and uneven terrains and

confirmed that the application of the Tegotae functions in all joint controllers results in

excellent adaptability to environmental changes.

Keywords: bipedal walking, central pattern generator, inter- and intra-limb coordination, Tegotae, adaptability

1. INTRODUCTION

The human body is capable of astoundingly adaptive and versatile locomotion when faced with
real-world constraints. For robots to possess similar capabilities, their bodies must have comparable
degrees of freedom (DOFs) more significant than those implemented in existing designs. Most
previously developed centralised approaches to improving humanoid locomotion (Hirai et al.,
1998; Sakagami et al., 2002; Hirukawa et al., 2004; Kaneko et al., 2004; Hirose and Ogawa, 2007),
where one centralised controller regulates each DOF to continually track the desired trajectory
of each point in the robot’s body. However, this centralised approach is not suitable for systems
with relatively large DOFs, leading to increased computational cost and reduced adaptability to
unpredictable environmental changes.

Alternatively, autonomous decentralised control has received considerable attention because it
offers the flexibility required for a robot with many DOFs to coordinate its movement successfully.
In fact, animals deftly coordinate the many DOFs of their bodies using distributed neural
networks called central pattern generators (CPGs), which are responsible for generating rhythmic
movements, particularly locomotion (Shik et al., 1966; Grillner, 1975, 1985). Such knowledge about
animal locomotion has been referenced by various researchers to incorporate artificial CPGs into
legged robots for generating highly adaptive locomotion (Taga et al., 1991; Taga, 1994, 1995; Kimura
et al., 1999, 2007; Fukuoka et al., 2003; Tsujita et al., 2003; Aoi and Tsuchiya, 2005, 2006; Buchli et al.,
2006; Ijspeert, 2008; Righetti and Ijspeert, 2008).

179

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.629595
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.629595&domain=pdf&date_stamp=2021-05-12
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:owaki@tohoku.ac.jp
https://doi.org/10.3389/fnbot.2021.629595
https://www.frontiersin.org/articles/10.3389/fnbot.2021.629595/full


Owaki et al. Tegotae-Based Control for Bipedal Walking

CPG-based bipedal walking control originated in the
pioneering work done by Taga et al. (1991) and Taga (1994, 1995).
In these studies, sensory information from the environment was
fed back to a nervous system model to generate walking from the
interaction between the nervous system model, musculoskeletal
model, and environment (“Global Entrainment”). Aoi and
Tsuchiya (2005) and Aoi and Tsuchiya (2006) focused on “phase
resetting” (Schomburg et al., 1998), a feedback mechanism
found in animals, to add gait stabilisation in CPG-based
control models. Furthermore, the feedback law based on phase
resetting is suitable for musculoskeletal models (Aoi et al.,
2010), which are more similar to humans. For generating stable
motion in a bipedal robot through entrainment between a
controller and robot motion, Morimoto et al. (2006) modelled
the controller of the robot as an oscillator and the motion
phase based on the position and velocity information of the
centre of pressure (CoP) in the lateral direction of the robot,
to achieve stepping and walking motions. Nassour et al. (2014)
developed a two-layer CPG model for walking control in a
humanoid robot: a rhythm generator layer and pattern formation
layer (Rybak et al., 2006; McCrea and Rybak, 2008). They
also attempted to generate non-periodic motions using neuron
models that generate various signals such as periodic and
non-periodic signals as components. Quadrupedal robots have
been studied more intensively due to their dynamic stability
and variety of walking patterns: Kimura et al. (1999) and
Fukuoka et al. (2003) proposed a model integrating CPG and
reflex mechanisms to realise uneven terrain walking; Tsujita
et al. (2003) implemented the phase resetting in a quadrupedal
walking model to actualise a stable walking pattern; Buchli et al.
(2006) proposed an adaptive frequency oscillator that learns
the motion frequency adaptively and verified the generation
of gait according to the body characteristics; In addition, a
model that employs load information as sensory information
and generates adaptive and diverse walking patterns has been
proposed thus far (Maufroy et al., 2010; Fukuoka et al., 2015;
Owaki and Ishiguro, 2017). However, there is currently no
systematic methodology for designing a CPG-based controller, as
each CPG-based model has been custom-designed for a specific
practical situation.

To address this oversight, we attempted to construct a CPG-
based bipedal walking model with a localised joint-controller
design based on the Tegotae approach (Owaki et al., 2017; Kano
et al., 2019), which is a Japanese concept that focuses on how
well a perceived reaction matches an expectation. We quantified
the Tegotae concept by creating the Tegotae function, which is
the quantified product of what a localised controller wants to
achieve and its resulting reaction. The Tegotae function allows
the systematic design of decentralised controllers with localised
sensory feedback. The feedback scheme allows the operation
of each localised controller based on consistency between the
generated action and perceived reaction. Specifically, the Tegotae
function increases in the case of consistency and decreases in
the case of inconsistency. Here, we show how the Tegotae
approach can be implemented in a decentralised control scheme
for bipedal walking robots and validates the system by evaluating
its adaptability to environmental changes.

2. BIPEDAL WALKING MODEL

2.1. Musculoskeletal Structure
To validate the Tegotae-based control scheme, we conducted
simulations using a two-dimensional bipedal walking model.
Figure 1A shows the musculoskeletal structure of the bipedal
walking model, the movements of which were constrained in the
sagittal plane for simplicity. The structure consists of 13 mass
points (i.e., the trunk, waist, hip, knees, ankles, heels, metatarsals,
and toes) and 14 rigid links that connect these mass points.
For simplicity and ease of modelling the musculoskeletal system,
we employed a model with masses located in the joints. The
body parameters, e.g., link length, mass distribution, were set to
approximately match the corresponding human body parameters
in Ogihara and Yamazaki (2001). The model includes seven
actuators at the waist, hip joints, knee joints, and ankle joints;
each actuator was designed to generate joint torque based on
proportional-derivative (PD) control, as explained in section 2.2.
Passive springs and dampers have been integrated into the toe
joints to passively generate an effective push-off force at the end
of the stance phase. Based on human and animal locomotion
research, that show the role of cutaneous receptors in the foot
in controlling the gait (Nurse and Nigg, 1999, 2001; Dietz and
Duysens, 2000; Duysens et al., 2000; Eils et al., 2002; Elis et al.,
2004), we modelled plantar sensation by incorporating sensors to
detect the vertical and horizontal ground reaction forces (GRFs)
(NV

x,i and NH
x,i, respectively) exerted at heel (x = h), metatarsal

(x = m), and toe (x = t) points. Here, the suffix i denotes
leg (i = 0: left and i = 1: right). In this study, the equations
of motion were constructed as dynamics of mass points. For
each mass point, the following forces were applied: force due to
gravity, force applied by the links modelled with a rigid spring
and damper, force applied by the actuators of each joint, and force
applied by the passive spring and damper at toe joints. The details
are described in the Supplementary Material.

2.2. Implementation of Tegotae Approach
in a Systematic CPG-Based Control
Scheme
The proposed control system for adaptive bipedal walking
consists of four components (Figure 1B): (1) hip controllers,
(2) knee controllers, (3) ankle controllers, and (4) a posture
controller. The first three components utilise Tegotae functions
to coordinate the inter- and intra-limb movements to enable
adaptive walking, whereas the fourth component stabilises the
upper body using the waist actuator and vestibular sensor.

The hip, knee, ankle, trunk joint torques τy,i in each ith leg
(y indicates one of the joints) are generated by the PD control
mechanism, which is dependent on the target angles determined
by the hip, knee, ankle, and posture controllers. These torques are
calculated as follows:

τhip,i = −Khip(θhip,i − θ̄hip,i)− Dhipθ̇hip,i, (1)

τknee,i = −Kknee,i(θknee,i − θ̄knee,i)− Dkneeθ̇knee,i, (2)

τankle,i = −Kankle(θankle,i − θ̄ankle,i)− Dankleθ̇ankle,i, (3)

τtrunk = −Ktrunk(θtrunk − θ̄trunk)− Dtrunkθ̇trunk, (4)
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FIGURE 1 | (A) Musculoskeletal structure of the bipedal walking model. For simplicity and ease of modelling, the masses are located in the joints and movements

constrained in the sagittal plane. The structure consists of 13 mass points (i.e., the trunk, waist, hip, knees, ankles, heels, metatarsals, and toes) and 14 rigid links that

connect these mass points. The plantar sensation is modelled by incorporating sensors to detect the vertical and horizontal ground reaction forces (GRFs) (NV
x,i and

NH
x,i , respectively) exerted at heel (x = h), metatarsal (x = m), and toe (x = t) points on the feet. (B) Control system overview. The proposed control system for adaptive

bipedal walking consists of four main components: (i) hip controllers, (ii) knee controllers, (iii) ankle controllers, and (iv) a posture controller.

where θy,i and θ̄y,i represent the actual and target angles,
respectively, for Joint y in the ith leg, and Ky and Dy represent
the proportional and derivative gains of the PD controller for
Joint y, respectively. The hip, knee, and ankle joint controllers
use the Tegotae function to modulate the target angles θ̄y,i or
proportional gains Ky for adaptive walking. The parameters
for PD gains are shown in Supplementary Tables 1, 2. The
remaining section describes the Tegotae function and concept of
Tegotae-based control, including a comprehensive explanation of
each controller.

2.2.1. Tegotae Functions
As explained in section 1, Tegotae is a Japanese concept centred
around the extent to which a generated action matches a
perceived reaction. In robotics, it is the consistency between the
intendedmotor command from a controller and received sensory
information based on the motion generated by the controller.
Thus, quantification of the Tegotae concept yielded a Tegotae
function that can be described as the product of the (i) intended
motor command of a controller f (x), where x denotes the control
variable, and (ii) resulting sensory information g(S) obtained in
the form of sensor values, S, as follows:

T(x, S) = f (x)g(S). (5)

The Tegotae function was created such that the positive/negative
values output by the function indicate consistency/inconsistency
between the intended motor command and resulting
sensory information.

2.2.2. Tegotae-Based Control
Using the Tegotae function T(x, S), we canmodulate the localised
control variable x as follows:

ẋ = h(x)+
∂T(x, S)

∂x
, (6)

where the first term on the right represents the intrinsic
dynamics of the localised controller, and second term represents
the Tegotae-based localised sensory feedback for the control
variable x. Using the sensory feedback determined by the partial
differential form of the Tegotae function, the controller can
modulate its control variable x such that it maximises the
Tegotae-based consistency with the expectation. Thus, we can
design a systematic control scheme for many components by
creating Tegotae functions for each controller. We next describe
the localised hip, knee, and ankle joint controllers with Tegotae
function-based designs.

2.3. Design of Joint Controllers
2.3.1. Hip Control
The role of the hip joints in human gait is to generate rhythmic
forward and backward leg-swinging movements (Perry and
Burnfield, 2010). To enable such rhythmic movements, we
incorporated phase oscillators as a component of the CPG-based
model to generate the target angle for the hip actuators (Equation
1) as follows:

θ̄hip,i = −C1,hip cosφi + C2,hip, (7)

where C1,hip and C2,hip [rad], respectively, represent the
amplitude and offset components of the hip target angle. When
implementing the oscillator phases, legs are controlled to remain
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FIGURE 2 | Generation of target angle in hip joint control: we incorporated a phase oscillator as a component of the CPG-based model to generate target angle for

the corresponding hip actuator. The target angle is described by θ̄hip,i = −C1,hip cosφi + C2,hip, where C1,hip, and C2,hip are amplitude and offset angles of the hip

target angle, respectively. According to the equation, posterior and anterior extreme positions (PEP and AEP, respectively) of the target angle result in

−C1,hip + C2,hip(φi = 0, 2π ) and C1,hip + C2,hip(φi = π ), respectively. Therefore, legs are controlled to be in the swing phase for 0 ≤ φi < π , and in the stance phase for

π ≤ φi < 2π .

in the swing phase for 0 ≤ φi < π , and stance phase for
π ≤ φi < 2π (Figure 2).

The dynamics of the phase oscillators with the localised
Tegotae function-based sensory feedback can be described
as follows:

φ̇i = ω +
∂Thip,i(φi,N)

∂φi
, (8)

where ω [rad/s] represents the intrinsic angular velocity of the
oscillators. The Tegotae function for hip control has been defined
as follows:

Thip,i(φi,N) = σhip,1{N
V
h,i(− sinφi)+ (NV

m,i + NV
t,i)(sinφi)}

+σhip,2{N
V
h,j(sinφi)+ (NV

m,j + NV
t,j)(− sinφi)}, (9)

where σhip,1 and σhip,2 [rad/Ns] represent the feedback gains.
The suffixes i and j denote the corresponding leg and other
leg, respectively.

The first term on the right describes how the Tegotae
function is applied in the case of sensory information for the
corresponding leg (Figure 3A). The value of NV

h,i(− sinφi) is
positive when the heel sensor on the corresponding leg detects
a large vertical GRF (NV

h,i > 0) with the oscillator in the stance
phase (π ≤ φi < 2π). Increasing this Tegotae term allows the leg
to remain in the stance phase as it supports the body (NV

h,i > 0).

In contrast, the value of (NV
m,i +NV

t,i) (sinφi) is positive when the
metatarsal and toe sensors on the corresponding leg detect a large

vertical GRF (NV
m,i + NV

t,i > 0) with the oscillator in the swing
phase (0 ≤ φi < π). In this case, increasing the Tegotae term
results in the leg transitioning from the stance to swing phase
(NV

m,i + NV
t,i > 0), propelling the body forward.

The second term describes how the Tegotae function is
applied in the case of sensory information for the opposite leg
(Figure 3B). The value of NV

h,j(sinφi) is positive when the heel

sensor on the opposite leg detects a large vertical GRF (NV
h,j > 0),

with the oscillator in the swing phase (0 ≤ φi < π). Increasing
this Tegotae term allows the corresponding leg to remain in
the swing phase as the opposite leg supports the body (NV

h,j >

0); this support allows the corresponding leg to complete the
swing phase successfully. In contrast, the value of (NV

m,j + NV
t,j)

(− sinφi) is positive when the metatarsal and toe sensors on
the opposite leg detect a large vertical GRF (NV

m,j + NV
t,j > 0)

with the oscillator in the stance phase (π ≤ φi < 2π). Under
these conditions, an increase in the Tegotae term results in the
corresponding leg initiating a smooth transition from the swing
to stance phase (NV

m,j+NV
t,j > 0). Here, we do not use any neural

synaptic connections between the hip oscillators; previous studies
achieved the desired rhythmic walking motion by manually
setting the neural synaptic connectivity parameters in advance
(e.g., Taga et al., 1991; Nassour et al., 2014). Implementation
of the Tegotae-based localised feedback scheme described by
Equation (8) allows the hip controllers to achieve interlimb
coordination in the absence of any neural communication
between oscillators.
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FIGURE 3 | Illustrated definition of the Tegotae function for the hip controller. For rhythmic movements, we incorporated phase oscillators as a component of the

CPG-based model to generate the target angle for the hip actuators (Equation 8). (A) Tegotae function for corresponding-leg sensory information. The value of

NV
h,i (− sinφi ) is positive when the heel sensor on the corresponding leg detects a large vertical GRF (NV

h,i > 0) with the oscillator in the stance phase (π ≤ φi < 2π ). In

contrast, the value of (NV
m,i + NV

t,i ) (sinφi ) is positive when the metatarsal and toe sensors on the corresponding leg detect a large vertical GRF (NV
m,i + NV

t,i > 0) with

oscillator in the swing phase (0 ≤ φi < π ). (B) Tegotae function for opposite-leg sensory information. The value of NV
h,j (sinφi ) is positive when the heel sensor on the

opposite leg detects a large vertical GRF (NV
h,j > 0), with the oscillator in the swing phase (0 ≤ φi < π ). In contrast, the value of (NV

m,j + NV
t,j ) (− sinφi ) is positive when

the metatarsal and toe sensors on the opposite leg detect a large vertical GRF (NV
m,j + NV

t,j > 0) with the oscillator in the stance phase (π ≤ φi < 2π ). The white circles

represent the corresponding oscillator phase φi . The orange and purple circles represent stable equilibrium points of Tegotae-based feedback, e.g.,
∂ (sinφi )
∂φi

= cosφi = 0 for the top of (A) (the first term in Equation 9).

2.3.2. Knee Control
The roles of a knee joint in human gait (Perry and Burnfield,
2010) are as follows: (1) support the body by increasing its
stiffness in the stance phase (2) increase the effective flexion by
reducing its stiffness in the swing phase. Thus, we established
the control variable χi, representing the control command that
increases/decreases the knee joint stiffness. To implement this
stiffness control mechanism, we use χi to adjust the gain Kknee,i

in the knee controllers, as follows:

τknee,i = −Kknee,i(θknee,i − θ̄knee,i)− Dkneeθ̇knee,i, (10)

Kknee,i = max[C1,knee tanhχi, 0]+ C2,knee, (11)

where C1,knee and C2,knee [Nm/rad] represent the variable range
and offset value of the gain Kknee,i, respectively. We used tanh
function to model continuous on/off-like function (scaled from
−1.0 to 1.0) according to the control variable χi. In Equation
(2), the target angle θ̄knee for the knee controllers was set to
0 [rad]; this angle indicates the degree of knee extension and
determines whether the stiffness should be increased/decreased
to extend/flex the knee joint.

The dynamics of the control variable χi for the localised
Tegotae function-based sensory feedback scheme can be
described as follows:

χ̇i = −ckneeχi +
∂Tknee,i(χi,N)

∂χi
, (12)

where cknee represents the parameter related to its response time
for the first-order dynamical model of the knee controller. The
reason for choosing a first-order model was its simplicity (only
one parameter cknee) and non-rhythmic behaviour, meaning that
it stays at a equilibrium point (χi = 0) without feedback. The
Tegotae function for knee control is defined as follows:

Tknee,i(χi,N) = σknee,1N
V
i χi + σknee,2N

V
j (−χi), (13)

NV
i = NV

h,i + NV
m,i + NV

t,i, (14)

NV
j = NV

h,j + NV
m,j + NV

t,j, (15)

where NV
i and NV

j [N] represent the sums of the vertical force

sensor values corresponding to the heel, metatarsal, and toe
joints of the corresponding and opposite legs, respectively. The
parameters σknee,1 and σknee,2 [1/N] represent the feedback gains.
The first term on the right represents the Tegotae function for
the corresponding leg (Figure 4A). The value of NV

i χi is positive
when the foot sensors on the corresponding leg detect a large
vertical GRF (NV

i > 0) and the control command for the knee is
to increase the stiffness (i.e., χi > 0). Increasing this Tegotae term
causes the knee stiffness to remain high to ensure that the body
is supported (NV

i > 0). The second term represents the Tegotae
function for the opposite leg (Figure 4B). The value of NV

j (−χi)

is positive when the foot sensors on the opposite leg detect a large
vertical GRF (NV

j > 0) and the control command for the knee
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FIGURE 4 | Illustrated definition of the Tegotae function for the knee controller.

The control variable χi represents the control command that increases or

decreases the knee joint stiffness (Equation 9). We use χi to adjust the P-gain

Kknee,i in the knee controllers for the implementation of stiffness control

mechanism, in Equation (10). NV
i and NV

j represent the sums of the vertical

force sensor values corresponding to the heel, metatarsal, and toe joints of the

corresponding (i) and opposite (j) legs, respectively. (A) Tegotae function for

corresponding-leg sensory information. The value of NV
i χi is positive when the

foot sensors on the corresponding leg detect a large vertical GRF (NV
i > 0)

and the control command for the knee is to increase the stiffness (i.e., χi > 0).

(B) Tegotae function for opposite-leg sensory information. The value of

NV
j (−χi ) is positive when the foot sensors on the opposite leg detect a large

vertical GRF (NV
j > 0) and the control command for the knee is to decrease

the stiffness (i.e., χi < 0).

is to decrease the stiffness (i.e., χi < 0). Increasing this Tegotae
term ensures that the knee stiffness remains low to allow the knee
to bend during the swing phase as the opposite leg supports the
body (NV

j > 0); this state allows the corresponding leg to swing

forward in the swing phase.

2.3.3. Ankle Control
The role of an ankle joint in human gait (Perry and Burnfield,
2010) is to generate the propulsive forces necessary for the leg
to transition from the stance to swing phase while avoiding a
collision between the foot and ground. Therefore, we established
the control variableψi for the ankle controllers, which represents
the control command that increases or decreases the target angle
of the ankle joints as follows:

θ̄ankle,i = C1,ankle tanhψi + C2,ankle, (16)

where C1,ankle and C2,ankle [rad] represent the variable range
and offset value of the ankle target angle, respectively. We
used tanh function to model continuous on/off-like function
(scaled from −1.0 to 1.0) according to the control variable ψi. A
positive/negative value ofψi represents the plantar/dorsal flexion
of an ankle joint.

The dynamics of the control variable ψi for the localised
Tegotae function-based sensory feedback method can be

FIGURE 5 | Illustrated definition of the Tegotae function for the ankle controller.

The control variable ψi represents the control command that increases or

decreases the target angle of the ankle joints. We use ψi to adjust the target

angle for the ankle controllers. NH
i represents the sum of the horizontal force

sensor values corresponding to the heel, metatarsal, and toe joints of the

corresponding leg. NV
j represents the sum of the vertical force sensor values

corresponding to the opposite leg. (A) Tegotae function for corresponding-leg

sensory information. The value of NH
i ψi is positive when the foot sensors on

the corresponding leg detect a large horizontal GRF (NH
i > 0) and the

command for the ankle is plantar flexion (i.e., ψi > 0). (B) Tegotae function for

opposite-leg sensory information. The value of NV
j (−ψi ) is positive when the

foot sensors on the opposite leg detect a large vertical GRF (NV
j > 0) and the

command for the ankle is dorsal flexion (ψi < 0).

described as follows:

ψ̇i = −cankleψi +
∂Tankle,i(ψi,N)

∂ψi
, (17)

where cankle represents the parameter related to its response time
for the first-order dynamical model of the ankle controller. The
Tegotae function for ankle control is defined as follows:

Tankle,i(ψi,N) = σankle,1N
H
i ψi + σankle,2N

V
j (−ψi), (18)

NH
i = NH

h,i + NH
m,i + NH

t,i , (19)

NV
j = NV

h,j + NV
m,j + NV

t,j, (20)

where NH
i [N] represents the sum of the horizontal force sensor

values corresponding to the heel, metatarsal, and toe joints of
the corresponding leg; Similarly, NV

j [N] represents the sum of

the vertical force sensor values corresponding to the opposite leg;
The parameters σankle,1 and σankle,2 [1/N] represent the feedback
gains. The first term on the right represents the Tegotae function
for the corresponding leg (Figure 5A). The value of NH

i ψi is
positive when the foot sensors on the corresponding leg detect
a large horizontal GRF (NH

i > 0) and the command for the
ankle is plantar flexion (i.e., ψi > 0). Increasing this Tegotae
term results in stronger plantar flexion at the end of the stance
phase (NH

i > 0), thus generating a larger propulsive force. The
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FIGURE 6 | Postural control for the trunk joint. The trunk joint was designed to

be controlled such that the angle θGtrunk (angle between the torso link and

direction of gravitational acceleration), which is detected by the vestibular

sensor, can be accurately represented by the fixed angle α for preventing

destabilising forward and backward upper-body movement.

second term represents the Tegotae function for the opposite
leg (Figure 5B). The value of NV

j (−ψi) is positive when the foot

sensors on the opposite leg detect a large vertical GRF (NV
j > 0)

and the command for the ankle is dorsal flexion (ψi < 0).
Increasing this Tegotae term allows the ankle joint controller
to effectively generate the dorsal flexion strength necessary for
ground clearance during the swing phase as the opposite leg
supports the body (NV

j > 0).

To reiterate, the dynamics of each of the joint controller
designs can be described as follows:

φ̇i = ω + σhip,1(−NV
h,i + NV

m,i + NV
t,i) cosφi

+ σhip,2(N
V
h,j − NV

m,j − NV
t,j) cosφi, (21)

χ̇i = −ckneeχi + σknee,1(N
V
h,i + NV

m,i + NV
t,i)

− σknee,2(N
V
h,j + NV

m,j + NV
t,j), (22)

ψ̇i = −cankleψi + σankle,1(N
H
h,i + NH

m,i + NH
t,i)

− σankle,2(N
V
h,j + NV

m,j + NV
t,j), (23)

The advantage of implementing the Tegotae functions is that
it allows us to systematically design controllers for various
joint types for the robot to perform the target movements.
Furthermore, we expect that the sensory information (i.e.,
GRFs) utilised by the Tegotae-based hip, knee, and ankle joint
controllers will enable spontaneous and adaptive inter- and intra-
limb coordination.

2.3.4. Postural Control for the Trunk
To prevent destabilising forward and backward upper-body
movement, the trunk joint was designed to be controlled such
that the angle θG

trunk
between the torso link and direction of

gravitational acceleration, which is detected by the vestibular
sensor, can be accurately represented by the fixed angle α

(Figure 6), as described by the following equations:

τtrunk = −Ktrunk(θtrunk − θ̄trunk)− Dtrunkθ̇trunk, (24)

θ̄trunk = α − θGtrunk, (25)

where θ̄trunk represents the target angle for the PD controller at
the trunk joint, and Ktrunk and Dtrunk are the proportional and
derivative gains of the PD controller, respectively.

3. SIMULATION RESULTS

3.1. Steady Walking
In this section, we present the results of the numerical
simulations performed in this study to validate our proposed
design scheme. We set the body and control parameters
in our bipedal model as shown in Supplementary Table
2 (Supplementary Material). In this study, we derived the
control parameters through the trial and error method.
Figure 7A is a screenshot of the steady-walking simulation
(Supplementary Movie 1), with Tegotae-based controls for the
hip, knee, and ankle joints and posture control for the trunk
joint. Figure 7B shows the body, trunk, and CoM (Center of
Mass) trajectories during the steady walking. Figure 7C presents
the steady-walking time-series data in Model 3 with PC for the
angle of each joint (including trunk angle), target angles of the
hip and ankle joints, knee joint gain, vertical and horizontal
GRFs, generated torque at each joint, and stance phase duration.
By adjusting the target angles of the hip and ankle joints and
the knee gain based on Tegotae control, the appropriate timing
and magnitude of torques were generated for steady walking.
Furthermore, the time-series pattern reproduced in the model
was remarkably similar to that of a human steady-state walking
time series (Supplementary Figure 3), except for the trunk angle,
demonstrating the ability of Tegotae control in extracting the
essential aspects of human walking control. We also compared
walking speed and Froude numbers with human and other robots
in Supplementary Table 3 (Supplementary Material).

3.2. Adaptability to Uneven Terrain
Here, we present examples of the simulated results that
were subsequently analysed to evaluate the adaptability of
the proposed model to environmental changes. To verify the
adaptability, we modelled uneven terrains in the simulations
by embedding circle obstacles into the ground, as shown in
Figure 8A. Here, we again used Tegotae-based controls for the
hip, knee, and ankle joints and posture control for the trunk
joint. The radii of the circle obstacles and distances between the
obstacles were randomly selected from values within the range
of 10–50% of the body height of the model. The height of each
obstacle was also randomly selected from values within the range
of 0.5–2.0% of the body height. Figure 8B shows a screenshot
of the uneven-terrain simulation. The results obtained via this
simulation indicate that the Tegotae-based control scheme can

Frontiers in Neurorobotics | www.frontiersin.org 7 May 2021 | Volume 15 | Article 629595185

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Owaki et al. Tegotae-Based Control for Bipedal Walking

FIGURE 7 | (A) Example of the model walking in steady-state (Model 3 with PC, Supplementary Movie 1). (B) Body, trunk (magenta), and CoM (Centre of Mass,

red) trajectories during the steady walking. Pink lines represent the torso link that connects the body and trunk mass. (C) Time series data of the steady walking in

Model 3 with PC. Left panels show the hip, knee, ankle, and trunk angle from top to bottom. The red and blue lines show the left and right legs, respectively. The

dotted magenta (left leg), cyan (right leg), and light green (trunk) lines represent the target angle of the hip, ankle and trunk, and the knee gain that determined by

Tegotae-based control. The centre panels show vertical (top, second) and horizontal (third, bottom) ground reaction forces (GRFs). The pink, magenta, and red

coloured regions represent the vertical forces applied to the heel, metatarsals, and toe masses on the left leg. The sky blue, cyan, and blue coloured regions represent

the horizontal forces applied to the heel, metatarsals, and toe masses on the right leg. The right panels represent the torque applied to the hip, knee, ankle, and trunk

joints by the PD control. The red, blue, and green colour regions represent the left, right legs, and trunk, respectively. For the left and right panels, the pink and sky

blue coloured regions represent the stance phase of the left and right legs, determined by the vertical GRFs (NV
i > 0), respectively.
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FIGURE 8 | (A) Example of simulated environment used to verify model adaptability to uneven terrain. (B) Example of stick model completing five walking periods on

uneven terrain (Model 3 with PC, Supplementary Movie 1).

be successfully implemented to allow a bipedal walking robot to
adapt to environmental changes.

To investigate the extent of the contributions of the joint
controllers to the observed adaptability, we tested the adaptability
of the walking model under the following conditions:

• Model 1: Tegotae-based knee controller (σknee,k 6= 0, σhip,k =

σankle,k = 0)
• Model 2: Tegotae-based knee and ankle controllers

(σknee,k, σankle,k 6= 0, σhip,k = 0)
• Model 3: Tegotae-based hip, knee, and ankle controllers

(σhip,k, σknee,k, σankle,k 6= 0)

All the models include posture control. We simulated a test
environment that consisted of 10 m of flat ground, followed by
20 m of uneven terrain (refer to the above-described method),
and another 10 m of flat ground (Supplementary Movie 1). We
verified the walking performance for 100 randomly generated
uneven-terrain patterns. Figure 9A presents a comparison of the
success rates of these three models for different oscillator angular
velocities. We judged the success case as the condition in which
the bipedal model successfully walked 40 m ground in total.
These results indicated that Model 3 showed higher adaptability
in a wide range of ω from low speed to high speed, whereas
Model 2 and Model 3 showed almost the same adaptability on
the uneven terrain in high speed walking (ω = 4.5 rad/s)
(Figures 9A,B). However, for ω exceeding 4.5, the walking speed
decreases along with the increase of ω. One possible reason
is that the model used in this study cannot reproduce the
running motion.

3.3. Effects of Postural Control
To investigate the extent of the contribution of the posture
controller to the observed adaptability, we conducted tests to
evaluate the adaptability of the walking model with and without
postural control explained in section 2.3.4. For the condition
without postural control, we set the target angle of the trunk to
be θ̄trunk = α. Figure 9B shows the effects of postural control
on the adaptability of Models 1, 2, and 3. The results shown in
this plot suggest that the posture controller implemented in this

study can improve the adaptability of any bipedal walking model.
Note that, under some of the simulated no-postural-control
conditions (Supplementary Movie 2), particularly for Models 1
and 2, steady walking could not be achieved.

3.4. Effect of Control Parameters on
Walking
Here, we verified the effect of the control parameters on
walking performance (adaptability to environmental changes)
when using the Tegotae-based control.

First, to verify the effect of the controller dynamics on walking,
we tested cknee and cankle, which define the dynamics of the
knee (Equation 12) and ankle control variables (Equation 17).
Figure 10A shows the effect of cknee on the knee gain Kknee,i and
walking adaptability (left), and the effect of cankle on the ankle
target angle and adaptability (right). The results showed that (i)
when cknee was 20 (reaction time is fast), the Tegotae feedback
(the 2nd term of Equation 12) weakened relative to the first
term, the gain Kknee,i was fastly modified toward 0 via −ckneeχi,
which improves gait adaptability. When cknee was small (cknee=5),
the effect of feedback was large and the gain Kknee was almost
constant in higher value. (ii) When cankle was 5 (reaction time
is slow), the target angle of the ankle joint changes significantly
due to the effect of the Tegotae feedback term (the 2nd term in
Equation 17), thus generating sufficient ankle joint torque and
improving walking adaptability. When the cankle was large, the
change in the target angle of the ankle joint was small, resulting in
in-sufficient ankle joint torque. In sum, the first order equations
exhibit non-rhythmic behaviour, where the control variable stays
at an equilibrium point without feedback: the parameters cknee
and cankle determine the strength of staying at the equilibrium
point (χi = 0,ψi = 0).

Next, we examined the effects of C1,hip, C1,knee, and C1,ankle,
the parameters that set amplitude in Equations (7), (11), and (16),
which determine the target angle θ̄hip,i, θ̄ankle,i and gain Kknee,i of
the PD control. The results are shown in Figure 10B; (i) Because
C1,hip is a parameter that determines the amplitude of the target

angle θ̄hip,i of the hip joint, setting C1,hip to a large value increased
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FIGURE 9 | Adaptability on uneven terrain. We simulated test environments that consisted of 10 m of flat ground, followed by 20 m of uneven terrain, and another 10

m of flat ground (Supplementary Movie 1). We verified the walking performance for 100 randomly generated uneven-terrain patterns for each model (1,2,3)

[with/without posture control (PC)], and for each control parameter. We judged the success case as the condition in which the bipedal model successfully walked 40

m ground. (A) Comparison of success rates for continuous walking on 100 uneven terrain patterns. All models included PC. (B) Effects of PC on adaptability. Model 3

with PC shows high environmental adaptability to a wide range of ω. Note that the same terrain patterns were applied in all cases.

the amplitude of the hip joint angle θhip,i (Figure 10B, lower left),
resulting in an increase in gait stability; (ii) C1,knee is a parameter
that sets the maximum value of the knee P-gain Kknee,i (middle
of Figure 10B); changes in the upper limit of the P-gain Kknee,i

resulted in an increase in the small oscillations of the knee joint,
but there was no significant difference in adaptability; and (iii)
C1,ankle is a parameter that determines the maximum amplitude
of the target angle θ̄ankle,i of the ankle joint. Therefore, increasing
this parameter increased the range of changes in the ankle joint
θankle,i, but had a negative effect on walking adaptability. The
reason for this may be that the larger the ankle joint change, the
easier it is to trip during walking, leading to falls.

3.5. Stability Analysis
To numerically verify the stability of the walking motion
generated by the Tegotae-based control, we plotted the phase
diagram consisting of the trunk angle θtrunk and angular velocity
θ̇trunk. For testing the adaptability to environmental changes,
mentioned in section 3.2 (ω = 4.5 rad/s), we compared the gait
that could (Figure 11A) and could not (Figure 11B) move over
uneven terrain. The lower graphs of Figures 11A,B show the time
evolution of the trunk angle θtrunk. In both cases (Figures 11A,B),
the walking quickly converges from the initial state to the steady
state (0 s to around 8 s). The red trajectories in the upper figures
show the limit cycle trajectory from 8 s to the beginning of uneven

terrain (pink area in the figure below), which is defined as the
steady-state trajectories. The black border points in the phase
diagrams indicate the minimum trunk angle (θ̇trunk = 0) during
each walking cycle. We defined this state (minimum angle θtrunnk
and θ̇trunnk = 0) as the Poincaré section 6 (Nassour et al., 2014),
then, we can confirm the convergence of the walking to the steady
state from the transition process (bottom of Figures 11A,B).

The grey areas in the lower figures of Figures 11A,B indicate
the period during uneven terrain walking. The upper right figures
in Figures 11A,B show the phase diagram during uneven terrain
walking. In case A, the trajectory was disturbed by the uneven
terrain, but the trajectory was within the basin of attraction of
walking, so the biped model can continue to walk on the uneven
terrain. In contrast, in case B, the trajectory goes out of the
basin of attraction due to uneven terrain, making it impossible
to converge to the limit cycle, and the model falls down. This
analysis confirms existence of the basin of attraction in walking
based on Tegotae control and the destabilisation that caused it to
fall over when walking on uneven terrain.

4. DISCUSSION

In this paper, we proposed a systematic CPG-based control
design scheme for bipedal walking robots based on the Japanese
concept of Tegotae in Owaki et al. (2017) and Kano et al.
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FIGURE 10 | (A): (Left) the effect of cknee on the knee gain Kknee,i , torque τknee,i , and walking adaptability. (Right) the effect of cankle on the ankle target angle θ̄ankle,i ,

torque τankle,i , and adaptability. (B): (Left) the effect of C1,hip on the hip joint angle θhip,i , torque τhip,i , and adaptability. (Center) the effect of C1,knee on knee gain, torque

τknee,i , and adaptability. (Right) the effect of C1,ankle on ankle joint angle θankle,i , torque τankle,i , and adaptability.
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FIGURE 11 | Phase diagram of the trunk angle θtrunk and angular velocity θ̇trunk for the results of section 3.2. (A) Gait over uneven terrain. (B) Gait that could not move

over uneven terrain. For A and B, the upper left and right panels show the period from initial to steady state and during uneven terrain walking. The colour legend for

each panel indicate the time [s]. The red trajectories show the limit cycles from 8 s to the beginning of uneven terrain (pink area in the lower panels), which is defined

as the steady-state trajectories. The black border points in the phase diagrams indicate the minimum trunk angle (θ̇trunk = 0) during each walking cycle. We defined

this point as the Poincaré section 6 (Nassour et al., 2014). We can then confirm the convergence of the walking to the steady state from the transition process. The

lower graphs show the time evolution of the trunk angle θtrunk . The pink and grey area show the steady-state and period during uneven terrain walking, and the other

areas show period during walking on flat terrain.

(2019). To validate the proposed method, we designed hip,
knee, and ankle joint controllers for a two-dimensional bipedal
walking model. The results of dynamic simulations with the

proposed bipedal walking model design have demonstrated that
steady walking, stability, and spontaneous inter- and intra-limb
coordination can be achieved. Furthermore, we found the model
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with three types of joint controllers to be highly adaptable to
environmental changes during walking tasks. These findings
imply that the systematic nature of the proposed control scheme
can improve the motor function, i.e., adaptability, of bipedal
walking robots.

We have previously shown the potential of the Tegotae
approach in reproducing animals’ locomotion and
understanding the underlying mechanism based on the
synthetic approaches. The Tegotae approach was first used by
Owaki et al. (2017) to develop a minimal model for interlimb
coordination on hexapod robot locomotion with CPG-based
control, where all controllers were uniform for all elements. Kano
et al. (2018) demonstrated gait transition between the concertina
and scaffold-based locomotion on snake model simulation
with reflex-like control, where all controllers were uniform,
but generated non-rhythmic control signals. Kano et al. (2019)
proposed detailed design of the Tegotae function, especially for
motor command, using genetic algorithm (GA) to simulate a
simple 1-D earthworm model with CPG-based control (uniform
controllers for all elements). Compared to these approaches,
here, we showed adaptive walking control on biped model with
CPG and reflex-based control (non-uniform controllers, i.e., hip
has CPG-based control, but the knee, and ankle have reflex-like
controllers with no rhythmic signals). The novel attempts of this
study can be summarised as follows: (i) First application of the
Tegotae approach for the non-homogeneous system of animals’
body, i.e., bipedal model with the hip, knee, and ankle joint,
which need individual controllers for the generation of walking
motion; (ii) combination between CPG-based rhythmic control
for the hip joint and reflex-like non-rhythmic control for knee
and ankle joints; finally, (iii) verification of adaptability against
unknown environmental changes during bipedal walking.

The detail design guidelines of the Tegotae function for a local
joint controller are as follows. The hips have periodic motions
in which the swing leg descends forward and the stance leg
kicks the ground alternately. For generating this motion, a phase
oscillator is used as a controller for the hip joint (Equation 8).
We used a heel load sensor, which reflects ground contact and
load information during walking, and metatarsal and toe load
sensors, for obtaining load information just before pushing-off
the ground, as sensory information for the hip controllers. The
feature of the Tegotae function of the hip joint is that we used
the sensory information of not only the corresponding leg but
also that of the other leg in designing the function. A mechanism
called “Crossed Inhibitory Response,” which contributes to inter-
limb coordination in bipedal walking, was reported in Stubbs
and Mrachacz-Kersting (2009) and Gervasio et al. (2017). We
also designed a Tegotae function using the load information of
neighbouring legs in our hexapod model (Owaki et al., 2017).
Based on the above considerations, we designed the Tegotae
function of hips in Equation (9); when an action, e.g., − sinφi >
0 for stance phase, and a reaction, e.g.,NV

h,i > 0 for heel feels load,
are highly consistent, the Tegotae function of the hip shows high
value. See more details for the other three cases in Table 1.

The role of the knee joint during walking is important for
stabilising the gait. During the stance phase, the knee joint
stiffness is increased to support the body. In the swing phase,

TABLE 1 | Design for Tegotae function.

Joint State Action f(x) Reaction g(S) T(x,S)

Hip Stance phase − sinφi > 0 NV
h,i > 0 (− sinφi )N

V
h,i

− sinφi > 0 NV
m,j + NV

t,j > 0 (− sinφi )(N
V
m,j + NV

t,j )

Swing phase sinφi > 0 NV
m,i + NV

t,i > 0 sinφi (N
V
m,i + NV

t,i )

sinφi > 0 NV
h,j > 0 sinφiN

V
h,j

Knee Stiff χi > 0 NV
i > 0 χiN

V
i

Soft −χi > 0 NV
j > 0 (−χi )N

V
j

Ankle Plantarflexion ψi > 0 NH
i > 0 ψiN

H
i

Dorsiflexion −ψi > 0 NV
j > 0 (−ψi )N

V
j

the knee joint stiffness must be dramatically reduced to realise
efficient swinging of the swing leg. Therefore, the knee joint
stiffness was adopted as a control variable. The sum of the heel,
metatarsal, and toe loads at planter sensation was used as sensory
information. The knee stiffness is switched ON and OFF to
switch between the stance and swing phases. The conversion
from the control variable to the joint stiffness was set up using
the tanh and max function (Equation 11). As the dynamics of
the control variable, a reflexive stiffness change based on non-
periodic dynamics was modelled by the first order equation
(Equation 12). The Tegotae function was designed as the product
of the knee stiffness control variable and load on foot (heel,
metatarsal, and toe). When the consistency between the action,
e.g., χi > 0 for stiff knee, and reaction, e.g.,NV

i > 0 for foot heels
load, is high, the Tegotae function of the knee joint also takes a
high value. The details for the other case are shown in Table 1.

The important functions of the ankle joint for gait stabilisation
are to “push-off” (Lipfert et al., 2014; Zelik and Adamczyk, 2016)
in the late stance phase and to suppress stumbling of the toe
during the swing phase. Therefore, the control variables were
set to indicate the non-periodic degree of plantar flexion and
dorsiflexion of the ankle joint using the first order equation of
Equation (17). The target angle of the ankle joint was set using
the tanh function for the control variables (Equation 16). The
horizontal GRFs of the footNH

i were used as sensory information
to generate propulsive force as the Tegotae function to express the
push-off function in the first right-hand term of Equation (18).
The Tegotae function for the dorsiflexion motion of the ankle
joint during the swing phase was designed to adjust the degree
of dorsiflexion according to the load of the foot of the other leg
NV
j (see the details in Table 1).

In this research, various Tegotae functions have been selected
and verified by trial and error in the design process. The Tegotae
function used in this study is one of the examples that realised
stable and adaptive walking. We can easily imagine that an
inappropriate Tegotae function clearly does not lead to gait
stabilisation. For example, consider a Tegotae function at the
hip joint, where f (x) = sinφi > 0, meaning swing phase, and
g(S) = NV

i > 0 (foot feels load). This Tegotae function does
not lead to a stable walking because of the inconsistency between
action f (x) and reaction g(S). Thus, the point of designing the
Tegotae function is to consider the physical consistency of the
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action and reaction for the desired motion, and to design the
Tegotae function so that its value becomes large in such cases.
Once such a Tegotae function is designed, it is possible to
modify the control variables in a situation-dependent manner
by modifying the control variables by increasing the Tegotae
function as a feedback term ∂T(x, S)/∂x. Thus, the Tegotae
approach enables the design of an autonomous decentralised
controller in a systematic manner, by designing Tegotae function
in line with the desired motions.

For the results of environmental adaptability on uneven
terrain, Model 3, which has hip, knee, and ankle control, showed
higher adaptability in a wide range of omega from low speed to
high speed. However, in high speed walking, such as ω = 4.5
rad/s, Model 2 and Model 3 showed almost the same adaptability
on the uneven terrain. The difference between Model 2 and
Model 3 is the presence or absence of the hip controller based on
Tegotae. In other words, Model 2 is a non-periodic reflex-based
walking model without feedback for hip CPG (only feedforward
CPG), whereas Model 3 implements Tegotae-based feedback for
periodic CPG. Thus, when ω is small, i.e., slow speed walking,
Tegotae feedback on CPG contributes to the adaptability of
walking, whereas when ω is large, i.e., fast speed walking, the
presence or absence of feedback to CPG does not affect the
adaptability of walking. Manoonpong et al. (2007) showed that
a walking controller based on a reflex model could achieve
stable and fast walking, suggesting that the role of reflex-based
control becomes salient in high-speed walking motions because
the response time of feedback to CPG is not fast enough for
the modification of the rhythmic control signals. In our model,
Tegotae-based feedback to CPG at the hip joint and Tegotae-
based feedback to reflex-based control at the knee and ankle
joints were implemented. Therefore, the role of the feedback
in the periodic and non-periodic controllers may have resulted
in a high degree of adaptability to a wide range of ω. As
shown in Figure 9B, Model 3 with PC shows high environmental
adaptability to a wide range of ω.

In this study, we used plantar sensation (i.e., GRFs) as
sensory information for feedback to CPG-based controllers.
Past studies with humans and animals have shown that
cutaneous receptors in the foot play an essential role in the
control of gait (Dietz and Duysens, 2000; Duysens et al.,
2000) and posture (Magnusson et al., 1990; Kavounoudias
et al., 1998). For example, the reported effects of reducing
plantar sensation by implementing an ice immersion technique
(Nurse and Nigg, 2001; Eils et al., 2002; Elis et al., 2004)
suggest that plantar sensation plays a critical role in gait
modification. Similarly, various researchers have reported on the
effects of impaired plantar sensation on gait plasticity due to
ageing (Sorock and Labiner, 1992), diseases, such as diabetes
mellitus (Cavanagh et al., 1993), or congenital insensitivity to
pain with anhidrosis (Zhang et al., 2013; Yozu et al., 2016).
Decreased tactile sensation, with ageing-related impaired sensory
function in limbs, has been reported to lead to elderly falling
accidents (Sorock and Labiner, 1992). Additionally, patients
with diabetic neuropathy, which is commonly associated with
damage to nerves in the feet, have been reported to have
significantly impaired control of gait and posture (Cavanagh

et al., 1993). Thus, our results, which demonstrate that
implementing a plantar sensory feedback mechanism in a
systematic control scheme improved adaptability and walking
stability, are consistent with the findings of previous human and
animal studies on the influence of plantar sensation on gait and
postural control.

The realisation of adaptive bipedal walking is known to
be dependent on the generation of a limit cycle in the state
space, which comprises a brain-nervous system (i.e., the control
system), musculoskeletal system (i.e., the mechanical system),
and environment (Taga et al., 1991; Taga, 1994, 1995). For robots,
the structural stability provided by a limit cycle affords robustness
against environmental perturbations. However, design principles
that can be applied to concretely establish a limit cycle with
a large basin of attraction have yet to be conceptualised. One
significant reason for this is that not enough sensory information
is fed back to the control system in a limit cycle. Thus,
sensory-motor coordination, which refers to the condition that
movement induces sensory stimulation, which in turn influences
the movement, must be considered to generate a more stable
limit cycle (Pfeifer and Bongard, 2006; Pfeifer et al., 2007).
Considering this, we must focus on the deformability of the
underlying soft body of a robot. A soft body allows a robot
to stabilise its motion as it extracts various types of sensory
information; this is possible because it is flexible enough to
deform to maintain stability during movement, resulting in
a close relationship between motion and perception. Human
soles are considered to be relatively soft. As a human walks,
their relatively soft feet come into direct contact with the
environment; the deformability of the feet, i.e., the softness of
the sole and mobility of the joints of the feet, allows them
to conform to the ground surface, enabling the extraction of
diverse sensory information. Thus, the soft deformability of
the foot of our bipedal walking model is also believed to have
contributed to the high adaptability and stability observed in
our results.

It should be noted that the phase-modulation mechanism
underlying the proposed model is significantly different from
that of any previous model, e.g., the previously reported phase-
reset scheme (Tsujita et al., 2003; Aoi and Tsuchiya, 2005, 2006;
Aoi et al., 2010). The phase-reset scheme, which entails resetting
the phase of the oscillator to zero once the foot makes contact
with the ground, only utilises qualitative information about
the status of contact between the foot and ground (i.e., on
or off). In contrast, our design methodology uses quantitative
information that describes the extent to which each foot
“feels” the GRF, representing the sensory information resulting
from the deformation of soft feet. This was possible because
highly adaptive behaviours emerge in response to environmental
changes, and we were able to exploit these behaviours in our
proposed design. Nevertheless, this study has several limitations.
First, we only modelled a two-dimensional walking robot in
the sagittal plane. This is because we wanted to focus on
evaluating and validating our control scheme. Secondly, we
utilised actuators, i.e., PD-based servo motors, as the model for
each joint. Humans have antagonistic muscles that generate joint
torques that allow us to exploit mono-articular and biarticular
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muscles for motion generation. This difference will be the
focus of future work as we plan to design a more complex
model. Lastly, the proposed model needs to be validated by
performing real-world experiments; this is also a focus of
future studies.
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The cockroach is an established model in the study of locomotion control. While previous

work has offered important insights into the interplay among brain commands, thoracic

central pattern generators, and the sensory feedback that shapes their motor output,

there remains a need for a detailed description of the central pattern generators’

motor output and their underlying connectivity scheme. To this end, we monitored

pilocarpine-induced activity of levator and depressor motoneurons in two types of novel

in-vitro cockroach preparations: isolated thoracic ganglia and a whole-chain preparation

comprising the thoracic ganglia and the subesophageal ganglion. Our data analyses

focused on the motoneuron firing patterns and the coordination among motoneuron

types in the network. The burstiness and rhythmicity of the motoneurons were

monitored, and phase relations, coherence, coupling strength, and frequency-dependent

variability were analyzed. These parameters were all measured and compared among

network units both within each preparation and among the preparations. Here, we

report differences among the isolated ganglia, including asymmetries in phase and

coupling strength, which indicate that they are wired to serve different functions.

We also describe the intrinsic default gait and a frequency-dependent coordination.

The depressor motoneurons showed mostly similar characteristics throughout the

network regardless of interganglia connectivity; whereas the characteristics of the levator

motoneurons activity were mostly ganglion-dependent, and influenced by the presence

of interganglia connectivity. Asymmetries were also found between the anterior and

posterior homolog parts of the thoracic network, as well as between ascending and

descending connections. Our analyses further discover a frequency-dependent inversion

of the interganglia coordination from alternations between ipsilateral homolog oscillators

to simultaneous activity. We present a detailed scheme of the network couplings,

formulate coupling rules, and review a previously suggested model of connectivity

in light of our new findings. Our data support the notion that the inter-hemiganglia

coordination derives from the levator networks and their coupling with local depressor

interneurons. Our findings also support a dominant role of the metathoracic ganglion and

its ascending output in governing the anterior ganglia motor output during locomotion in

the behaving animal.

Keywords: locomotion control, central pattern generator, cockroach, levator, depressor, pilocarpine,

intersegmental coordination, coupling strength
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INTRODUCTION

Insect hexapedal design is known to enable very stable and
highly adaptable locomotion (1–4). These abilities intrigue both
neuroethologists, who study the mechanisms underlying animal
behavior, and researchers of bioinspired locomotion systems and
their controllers (5–10). Functional coordination is achieved,
in all legged locomotion, through a dynamic interplay between
brain descending commands (11, 12), local central pattern
generator networks [CPGs; see reviews (13–15)], and sensory
feedback, which modify and adapt the endogenous motor-
pattern to suit the behavioral context and environment (16–
20). The convention states that slow-walking insects, or animals
navigating through a complex environment, mostly depend on
sensory feedback and weak central coupling to coordinate their
limbs; while fast-walking insects relay more on strong central
coupling and a feedforward control strategy (21). We note that
feedback and feedforward control refer to the extent to which the
endogenous oscillators’ (e.g., CPGs) frequencies are influenced
by those of the corresponding actuators, as manifests in the
proprioceptors’ afferents (21). In addition, central and local
control refer to the extent to which an hemiganglionic oscillator’s
activity is influenced by that of its neighbors. Central control
is mediated via central connectivity between hemiganglionic
networks, while local control is governed by sensory feedback
from the hemiganglionic proprioceptors, as well as sensory
feedback mediated inputs from other sensors. Although all
insects share the same basic architecture of their central nervous
system (22), the behavior it generates varies greatly within
and between species. Among the leading insect models for
locomotion control research, the slow-walking stick insect and
the remarkably fast American cockroach (Periplaneta americana)
present two extreme examples of these control strategies (23),
while a third common model, the locust, fits somewhere
in-between (24). Insects usually demonstrate one of three
prototypical inter-leg coordination patterns or gaits: metachronal
wave; tetrapod; or double-tripod (hereafter tripod), in which five,
four, or three legs, respectively, are simultaneously maintained
on the ground at any given time (25–27). Intermediate footfall
patterns that cannot be classified as one of the prototypical gaits
have been reported [cockroach (25, 27);Drosophila (28–30); stick
insect (31, 32)]. Insects alter their gait either in response to
changing circumstances (33, 34), or to adapt leg-coordination
in response to a change in as little as a single speed-related
parameter, like a load sensor (35, 36); as also seen in the
speed-dependent phase-shift toward ideal tripod phases in intact
and semi-intact deafferented cockroaches (37, 38). Most insects
increase their speed by increasing stride frequency up to a certain
speed, and then increase stride length to reach their maximum
speed (39). P. americana is unique in that it can increase both
stride frequency by 30% and stride length by up to 300%, due
to its extremely long hind legs and extraordinary ability to fast
cycle them, which enables it to reach a top speed of 1.5 m/s,
or 50 body length per second (1, 37). During fast locomotion
the hind legs extend farther to increase stride length and cover
greater distance, while hardly changing the duration of the swing
(the leg’s airborne phase), by increasing swing velocity, as also

found in flies (40, 41). The insect leg incorporates three main
leg-joints: the thorax-coxa, the coxa-trochanter, and the femur-
tibia. Studies of pilocarpine-stimulated preparations suggests that
each joint is controlled by a dedicated CPG (42, 43), which also
maintains the coordination with the neighboring joints’ CPGs
(44). Most research, from the early 1970s on [(45–49); review
(23, 43)], focused on the coxa-trochanter joint and its levator-
depressor control network, by monitoring the corresponding
MNs motor-output. This control network also underlies body
propulsion, which is almost exclusively generated by depression
torque at the coxa-trochanter joint (50). Recent work on locusts
and stick insects focused on the depressor side of the network,
following the assumption that the levator mirrors its conjugated
depressor activity (51–55). However, this narrative, although
useful, is incomplete. Pearson and Iles (1970) observed that in
a deafferented cockroach, levator MNs can fire independently
of depressor MNs, but never vice versa. This phenomenon was
also observed in-vitro in locusts (56). In addition, levator MNs,
but not depressor MNs, were found to fire in correlation with
intersegmental signals recorded from the thoracic connectives
of the deafferented cockroach, which led to the suggestion that
levator premotor networks are centrally controlled (47). Based
on these and other observations, including our own findings
[(38) and references within], we have previously suggested
a parsimonious connectivity model of the CPGs network in
which levator interneurons (INs) are centrally controlled (i.e.,
directly by the hemisegmental oscillator which shares a common
drive with homolog oscillators and is connected to neighboring
oscillators by mutual inhibition), while the output of depressor
INs is influenced by their neighboring levators and not directly
and exclusively by the hemisegmental oscillator (38). In the
current study we reexamine our and others’ previous findings
to fill in major gaps in the architecture of the parsimonious
connectivity model and the coupling scheme it is based upon
(38). This is crucial for uncovering the details of the central
control of insect locomotion and for designing models for CPG-
based artificial controllers (57). Here we study in depth the
relations between frequency and phase relations, as well as the
coupling between the cockroach thoracic CPGs. Throughout,
we directly monitored both the depressor and levator nerves
in order to study the neural control that underlie the coxa-
trochanter joint movements, and to obtain a broader description
of the network’s intra- and inter-hemisegmental connectivity.
We first examined each thoracic ganglion in complete isolation
from any sensory, descending, or central intersegmental inputs,
in order to identify their intrasegmental connectivity. We then
examined a novel whole-chain preparation, comprising the
thoracic ganglia connected to the subesophageal ganglion (SEG),
in order to investigate the intersegmental connectivity and its
effects. The whole-chain preparation was also established in order
to enable future research into insect locomotion control using a
preparation that generates stable prolonged fictive locomotion
rhythms, to which effectors and manipulations can be applied
and studied. We therefore included the SEG which is known
to generate a drive that sustains activation of the thoracic
motor networks and participates in intersegmental (but not
intrasegmental) coordination [(11, 52, 53) and ref ’s within]. Our
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findings present significant and detailed differences between the
thoracic ganglia motor-output, including a first description of
bi-phasic frequency-dependent endogenous prothoracic motor-
output, differences in the coordination and coupling strength
between homolog pairs of MNs, and between the anterior
and posterior sub-networks. Our findings of coupling strength
are summarized in a comprehensive coupling scheme, and we
revisit and update our connectivity model based on our new
findings. Finally, this work offers extensive data for a future
comprehensive comparative studies of the main insect models
used for electrophysiology-based locomotion control research in
recent years: the cockroach, the stick insect, and the desert locust.

MATERIALS AND METHODS

Experimental Animals
Experiments were conducted on 22 adult male Periplaneta
americana cockroaches obtained from our colony at the School
of Zoology, Tel-Aviv University. The insects were maintained in
a 60-liter plastic cage at a room temperature of 30◦C, under a
light:dark cycle of 12 h:12 h. Their diet comprised dry cat food
(La-Cat, BioPet, Israel) and water ad libitum.

Neurophysiological Procedure
Cockroaches were anesthetized with CO2 before being fixed to
a Sylgard-coated plate ventral side up (Dow Corning 184 Sylgard
Silicone Elastomer, Michigan, USA), usingminute pins. A ventral
longitudinal cut was made, and the entire digestive tract was then
gently removed. The head capsule was opened and the desired
parts of the central nervous system—isolated thoracic ganglia
or a ganglia chain comprising the SEG and the three thoracic
ganglia—were dissected out from the cockroach together with
their peripheral nerves and main trachea intact, and fixed in
a clean Sylgard-coated Petri dish, filled with cockroach saline
(58). Levator nerves (6Br4) and depressor nerves (51r) were
retained intact while all other peripheral nerves were cut close
to their origin (see illustration in Figure 1A). Air was supplied
to the ganglia by teasing open the tracheae at the surface of the
saline to prevent hypoxia, which is known to be detrimental to
thoracic MNs (59). Simultaneous extracellular recordings were
conducted using self-fabricated suction electrodes placed on
levator and depressor nerves—four for each isolated ganglion or
4–7 electrodes for the whole-chain preparation. The preparations
were stimulated by a final concentration of 1∗10−5M pilocarpine
(pilocarpine-HCl 99%, Sigma Aldrich, St Louis, MO, USA),
freshly prepared in cockroach saline, and bath applied 15min
before recording onset. Motoneuron (MN) activity was acquired
using two four-channel differential amplifiers (Model 1700, A-
M Systems, USA) and Axon Digidata 1440A digitizer, played
in real-time on a PC using Axo-Scope software (Molecular
Devices, Sunnyvale, CA, USA). Signals were processed with
DataView (W.J. Heitler, University of St. Andrews, Scotland)
and MATLAB R2017a (The MathWorks Inc., Massachusetts,
USA) with CircStat toolbox (60). For linear statistics and graphs
we used Prism 8 (GraphPad Software, San Diego, California
USA). Circular graphs were generated using Oriana 4 (Kovach

computing services). The preparation and experimental setup are
presented in Figures 1A,B.

Signal Processing and Data Analyses
Ten minute recording bouts were analyzed (see Figure 1C for
example of a short recording segment). Threshold spike detection
generated event traces of fast and slow depressor MNs, and of
levator MNs 5–12 (levator activity mostly comprised MNs 5 and
6). Data were analyzed for the MNs’ firing patterns and for the
coordination between MNs. Two parameters, Rhythmicity and
Burstiness, describe the dynamic firing pattern of the investigated
MNs: Rhythmicity is the consistency of the phase relations
between time points separated by an interval. Here we calculate
the lag coherence between two epochs of the analyzed signal as a
measure of rhythmicity, following Fransen et al. (61). In short, the
most prominent frequency in the Fourier transformed recording
bout was identified, and the original signal was fragmented into
adjacent, equal length, non-overlapping epochs of 5 cycles of
this frequency (e g., for 0.5Hz each epoch’s length was 10 s).
The Fourier coefficient of each epoch was calculated by Fourier
transforming the Hanning-tapered signal. Each coefficient is a
vector in the complex plain. The vector’s angle is the phase
relative to the positive horizontal axis and its length is the
amplitude. We then calculated for each pair of adjacent epochs
the product of F(xn)k F(xn+1)

H
k , where F(X) denotes the Fourier

transform of the signal X(n). The signals X(n) (for n = 1...N)
are ordered equal length epochs (5 cycles of the prominent
frequency) that were cut from the original 10min signal. k is the
kth Fourier coefficient. H denotes the Hermitian transpose. The
results were summed over all epoch pairs (equation 1 numerator).
The final sum was then averaged with the number of epochs, to
give the consistency of phase relations. Last, the outcome was
normalized by the average amplitude in all epochs, to eliminate
the dependency on amplitude in favor of the pure measure
of rhythmicity, which is valued between 0 (arhythmic) and 1
(perfect rhythmicity), as depicted by equation 1:
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Burstiness: bursts are short periods of intense activity followed by
periods of inactivity/lesser activity. Burstiness is calculated from
the distribution of interspike intervals, and is valued between−1
and 1 (62). B = 1 is a purely bursty signal, B = 0 is neutral
(Poisson distribution of interspike intervals), and B = −1 is a
completely regular (tonic) signal, as depicted by equation 2:

B = (σT −mT) / (σT + mT)

where B = burstiness, σ is the standard deviation of interspike
intervals and m is the mean interspike interval. Figure 2A

presents the burstiness of five MNs in a whole-chain preparation.
The coordination between MNs was analyzed by a way of cross-
spectrum analysis to assess the coherence and phase-relations
between two event traces (63, 64). Event traces were first
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FIGURE 1 | (A) Schematic illustration of the whole-chain preparation and the recording sites. Red and blue correspond to depressor and levator nerves, respectively.

Nerve nomenclature is presented as side of the body-thoracic ganglion-nerve function. E.g., L1Dep is left-prothoracic-depressor. Vacuum electrodes were used for

recording from the depressor nerve 5r1 and the levator nerve 6Br4. All other peripheral nerves were cut close to the ganglion neuropil to block sensory afferents. (B)

Left: A view from above of the whole-chain preparation during a recording session using seven suction electrodes, and the experimental setup. Right: A ventral view of

the whole-chain preparation (C) Simultaneous recording of pilocarpine-induced activity of seven motor nerves. The illustration beside each recording trace denotes

the identity of the recorded motor nerve: from top to bottom—prothoracic, mesothoracic, and metathoracic ganglion. Red and blue denote depressor and levator

MNs, respectively.

bandpass filtered for 0.05–10Hz, to exclude most of the non-
bursting activity. This bandpass is 20-fold wider than usually
seen and analyzed in similar in vitro insect preparations. This
relatively fast activity could be due to greater excitability of the
cockroach motor centers, which also manifests in the 10–50-fold

lower concentration of pilocarpine needed to induce long-lasting
rhythmic activity in the cockroach preparation in comparison
to locust (51, 65), stick insect (42), and moth (66). Additional
parameters comprised the Coherence and Phase-relations of two
signals. Coherence is defined by the IEEE Standard Dictionary
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(67) as “the correlation between electromagnetic fields at points
which are separated in space or in time, or both.” It is the
measure of the causal relationship between two signals in the
presence of other signals and will always satisfy 0≤Coherence≤1.
Coherence is used to measure mono-synaptic iso-frequency (i.e.,
“direct”) coupling between elements in a network (68); and is
used here to assess the association between activity recorded from
two MNs within an isolated ganglion, but not the whole-chain
preparation. Confidence intervals of coherence were calculated
following Rosenberg et al. (69). Here, the coherence is normalized
to the highest value we calculated from our analyzed data. Phase-
relations (phase) measures the relative timing of activity in one
MN with respect to the activity of another MN. Here, phases
were further processed for analysis only if their corresponding
coherence was statistically significant (i.e., significant phases).
The significant phases were averaged to give a single value of
phase for each pair of MNs in each experiment. The products
of different experiments were grouped to enable comparisons
between different pairs of MNs. Hereafter phase refers only
to significant phase. Two additional related parameters were
calculated. The first, Coupling strength (CS), was calculated
in order to also account for the variability of phase. CS is
calculated by multiplying the length of vector of the phase by
the mean coherence. Unlike the phase-independent coherence,
CS also considers the phase-lock to produce a measurement of
functional coupling. This distinction is important, since pairs
of network units can present high or low coherence, regardless
of the consistency of their phase. The second parameter is the
Synchronization index (SI), which is a combined measure of the
mean and variability of the phases. The linear SI (as opposed
to the circular phase) represents the type of coordination (in-
phase or antiphase) that a pair of MNs demonstrates, and the
phase-lock. In brief, SI is the product of projecting the mean
phase vector onto the 0–180 axis. The calculation is based on
Knebel et al. [(51) and references within] but differs in that SI
was calculated separately here for each experiment, to enable
statistics and comparisons. The use of the linear SI instead
of the circular phase also enabled the use of linear statistics
instead of the relatively limited circular statistics. SI is defined
between 1 (perfect in-phase) to−1 (perfect antiphase) with±5%
confidence intervals of ±0.081 (see Supplementary Figure 1 for
more details). All data are presented as Mean ± Confidence-
Intervals (CI) unless noted otherwise. Detailed data tables are
presented in the Supplementary Materials.

Terminology and Abbreviations
In order to correctly identify the MN pairs referred to here,
each MN is coded as followed: side of the body (right/left,
R/L)-thoracic segment (1,2,3 for pro-, meso-, and meta-
thorax, respectively)-function (levator/depressor, Lev/Dep). For
example: R2Dep-L2Lev represents the pair comprising the
right mesothoracic depressor and left mesothoracic levator (see
illustration in Figure 1A). In addition, pairs comprising twoMNs
performing the same function are referred to as “homogenous.”
Moreover, we use the terms “in-phase” and “antiphase,” which
correspond to phase relations of 0 and 180◦, to describe a range
of phase relations according to their proximity to the ideal

values noted above: in-phase between 270 and 90◦ and antiphase
between 90 and 270◦.

RESULTS

Before the application of pilocarpine, we observed either no
activity or a motor output characterized by low burstiness, which
usually did not persist for more than a few minutes before the
preparation became quiescent. The following results are all from
pilocarpine-stimulated preparations (see reference to this point
in the Discussion).

Isolated Ganglia Preparations
Each thoracic ganglion controls a pair of contralateral legs. The
pairs differ in their size, shape, and function. These differences
suggest that the underlying neural control also differ. To
investigate this, we characterized the burstiness and rhythmicity
of the motor output recorded from homolog depressor and
levator MNs in the three thoracic ganglia. In addition, we
performed a comparative analysis of the temporal relations
between motoneuron activity within the isolated ganglia:
frequency, coherence, phase, the type of coordination (in-phase
or antiphase), and the coupling strength. We further tested for
frequency-dependent differences in the calculated parameters.

Levators Burstiness, but Not Rhythmicity, Varies

Between Ganglia. Depressors Present the Opposite
The data presented in Figure 2 and in Supplementary Tables 1, 2
describe the burstiness (Figure 2B) and rhythmicity (Figure 2C)
of homolog MNs in the isolated pro-, meso-, and meta-thoracic
ganglion. Burstiness of the R2Dep was lower than that of
R1Dep (Welch’s t-test, p < 0.05), and more variable than in
both R1Dep and R3Dep (Brown-Forsythe, p < 0.05). Levator
burstiness satisfied prothoracic > mesothoracic > metathoracic
(Brown-Forsythe Anova, p < 0.05). Surprisingly, burstiness
was not correlated with rhythmicity (Spearman’s or Pearson’s
correlation, p > 0.05). R2Dep showed greater rhythmicity than
both R1Dep and, although not statistically significant, R3Dep
(Mann-Whitney, p < 0.05 and p = 0.1, respectively). Levator
MNs rhythmicity was similar in all the ganglia (p > 0.2).

Temporal Relations Between Motoneurons in the

Isolated Ganglia
Although similar studies of other insect in-vitro preparations
have shown findings that were obtained from low-frequency
motor activity of up to 0.5Hz (42, 51, 65, 66), our cockroach
in vitro preparation showed burst frequencies as high as
10Hz (although 9–10Hz activity was scarce and mostly
uncoordinated). Therefore, we first analyzed a wide range of
frequencies and then, following our findings, we limited the range
of frequencies for further investigation.

Coherence Is Frequency-Dependent Only in the

Contiguous Pairs
First, the coherence between paired MNs was calculated and
filtered to include frequencies between 0.05:10Hz and exclude
non-bursting activity (step = 0.0167Hz; coherence is presented
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FIGURE 2 | Burstiness and Rhythmicity of MNs in isolated ganglia. Gray and black illustrations represent depressor (red) or levator (blue) MNs from isolated and

whole-chain preparations, respectively. Horizontal lines in the violine plots indicate the median (solid) and interquartile range (dash). *,***p < 0.05, 0.001. (A) A

simultaneous recording of five depressor nerves. Burstiness calculated for each trace is presented next to the illustration of the MN identity. Negative and positive

burstiness represent tonic and bursting firing, respectively, while zero burstiness represent a poison distribution of interspike intervals. (B) Burstiness: Between isolated

ganglia: the mesothoracic depressor’s burstiness is lower and more variable than that of its prothoracic homolog; burstiness of levator MNs satisfies prothoracic >

mesothoracic > metathoracic. The metathoracic levator burstiness is also more variable than that of its homologs. Between connected ganglia: the mesothoracic

levator is less bursty than its neighboring levators. Between preparations: Intersegmental connectivity affects the burstiness of only the metathoracic levator, which

presents greater and less variable burstiness in the presence of intersegmental coupling. (C) Rhythmicity: Between isolated ganglia: The mesothoracic depressor

rhythmicity is greater than that of its homologs in neighboring ganglia. Between preparations: All the MNs showed greater rhythmicity in the isolated preparations,

although this was significant only for the depressor MNs.

in Supplementary Table 3). The coherence was then binned
in 10 frequency groups: 0.05–1, 1–2Hz,. . . 9–10Hz. The first
bin comprised two values less than the other bins (values
lower than 0.05Hz). Next, the relations between coherence and
frequency were characterized for all possible pairs of MNs in each
isolated thoracic ganglion: the contralateral pair of depressors,

the contralateral pair of levators, a pair of contralateral depressor
and levator, and the contiguous pair (within a hemiganglion)
of depressor and levator (hereafter, Dep-Dep, Lev-Lev, Dep-
Lev, and contiguous, respectively). The findings are illustrated
in Figure 3A. For an in-dept analysis we used two-way ANOVA
with repeated measures of the row factor (i.e., frequency)
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and a Tukey test for post-hoc. Our analysis revealed that the
contiguous pair had greater mean coherence than that of the
corresponding contralateral pairs at frequencies lower than 5Hz
in the metathorax (p < 0.01, Figure 3Aiii), and lower than
or equal to 7Hz in the mesothorax (p < 0.01, Figure 3Aii);
and this was also the case for the prothoracic pair throughout
the entire range of frequencies tested (p < 0.001, Figure 3Ai).
In addition, a Friedman’s test calculated based on the mean
coherence of each bin, and followed by Dunn’s post hoc test,
revealed that R3Dep-L3Lev had a greater mean coherence than
R3Dep-L3Dep and R3Lev-L3Lev; while in the mesothoracic
ganglion the coherence was similar for all three contralateral
pairs; and in the prothoracic ganglion R1Dep-L1Dep had greater
mean coherence than R1Dep-L1Lev (Dunn’s, p < 0.05). A
second two-way ANOVA was calculated in order to examine
the differences between pairs and between ganglia. R1Dep-
R1Lev and R1Dep-L1Dep mean coherence was found to be
greater than their homologs in the other ganglia (Tukey, p
< 0.01). In addition, R3Dep-L3Lev was found to be greater
than R2Dep-L2Lev. Moreover, the R1Dep-R1Lev and R1Lev-
L1Lev showed greater mean coherence than their homologs
in the other ganglia (Tukey, p < 0.05; data are presented in
Supplementary Figure 2 and Supplementary Table 3). Another
difference between the ganglia is seen in the way the coherence of
the contiguous pairs underwent change with frequency. R1Dep-
R1Lev showed relatively high coherence throughout most of the
investigated frequency band, with a wide parabolic distribution
that peaks at about 5Hz, while R2Dep-R2Lev peaks at about
0.5Hz and sharply decreases above 2Hz, and R3Dep-R3Lev
decreases from the first indexed frequency (0.05Hz) and onward.
These findings may indicate that a strong intra-hemiganglion
coherence is especially important for the appropriate function of
the prothoracic control network, at all frequencies.

Phase-Relations Are Frequency-Dependent for Homogenous

Prothoracic and Mesothoracic Pairs, and

Frequency-Independent for Heterogenous and All

Metathoracic Pairs
Frequency-dependent coherence suggested that phase might also
vary with frequency. This had implications for our choice of
the range of frequencies to be analyzed here, as well as for
the possible interpretations of (partial findings from) previous
studies. To investigate this, phase was calculated and binned in
ten frequency groups: 0.05–1, 1–2Hz,. . . 9–10Hz. Mean phase
was calculated for each preparation separately, for each of the
10 group of frequencies. Figure 3B and Supplementary Table 4

present the mean calculated for all 20 preparations (N = 20).
In general, the contiguous pairs displayed a consistent and
frequency-independent antiphase coordination throughout all
the bins, in all ganglia (Figure 3Biv,viii,xii). Moreover, the Dep-
Lev pairs displayed a frequency-independent phase with lower
variability than their corresponding Dep-Dep and Lev-Lev pairs
(Figure 3Biii,vii,xi). R1Dep-L1Dep and R1Lev-L1Lev presented
bi-phasic coordination: in-phase up to 2 and 3Hz (respectively),
and antiphase above it (Figure 3Bi,ii; Watson-Williams, p <

0.05). Likewise, R2Dep-L2Dep and R2Lev-L2Lev showed in-
phase coordination up to 2Hz, although weaker for R2Lev-
L2Lev (Figure 3Bv,vi). The coordination of both pairs became
inconsistent at higher frequencies. In contrast, R3Dep-L3Dep
and R3Lev-L3Lev presented an overall frequency-independent
antiphase coordination (Figure 3Bix,x). In addition, we found
a frequency-dependent variability in the number of significant
phases that were calculated for each of the frequency bins, mostly
in favor of the lower frequencies (Figure 3C). This phenomenon
is predominantly linear in the meso- and meta-thoracic ganglia
(Figure 3Cii,iii), and parabolic in the prothoracic ganglia
(Figure 3Ci), a pattern that corresponds to the frequency-
dependent variability of coherence of the different contiguous
pairs. The frequency-dependent decrease in coherence manifests
as fewer bursts and more transient spikes in the medium-to-high
range frequencies. At the highest investigated frequencies 9 and
10Hz, the simultaneous bursting of different MNs was scarce,
mostly with below-threshold coherence, and with an inconsistent
phase. Since the major share of significant phases (i.e., eligible
for analysis) was sampled between 0.05 and 3Hz, and includes
the changes we observed at 2Hz in some of the pairs, and
also to enable a better comparison with studies of other in-
vitro insect models, as noted above, we chose to focus on the
frequency band 0.05–3Hz for the further analyses of the isolated
ganglion preparations.

Contralateral Coordination Differs Between the Isolated

Ganglia, and Is Functional Only in the

Metathoracic Ganglion
After the data had been filtered for the appropriate frequency
band (0.05–3Hz), the intra-ganglionic coordination was
characterized. A synchronization index (SI) was calculated to
give a combined, linear, and comparable measure of coordination
and its strength, for the frequency range comprising most of
our data. Data are illustrated in Figure 4A and detailed
in Supplementary Table 5. Significance of differences was
calculated using a Mann-Whitney test with a Bonferroni
correction for two comparisons. Differences in SI were found
between contralateral pairs. For Dep-Dep pairs, R3Dep-L3Dep
antiphase coordination (Figure 4Aiii) significantly differed
from the in-phase coordination found in R1Dep-L1Dep,
R2Dep-L2Dep (Figure 4Ai,ii,iii. SI = −0.483 ± 0.34, 0.125 ±

0.36, and 0.097 ± 0.49, respectively; p < 0.025). For Dep-Lev
pairs, R1Dep-L1Lev showed neutral synchronization (i.e.,
between in-phase and antiphase: mean ± CI = 0 ± 0.08),
in contrast to in-phase coordination in R2Dep-L2Lev and
R3Dep-L3Lev (SI = −0.062 ± 0.1, 0.355 ± 0.16 and 0.396
± 0.21, respectively; p < 0.01, Figure 4A). These differences
are demonstrated in the recordings presented in Figure 4B.
R1Dep and L1Dep were in-phase coordinated, and R1Dep
and L1Lev coordination was inconsistent (Figure 4Bii), in
contrast to the antiphase coordination of R3Dep and L3Dep,
and the consistent in-phase coordination of R3Dep and
L3Lev (Figure 4Bii). Last, the prothoracic and mesothoracic
Lev-Lev synchronization was found to be in-phase and
neutral, respectively, unlike the significant difference in
the antiphase synchronization found in the metathoracic
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FIGURE 3 | (A) Frequency-dependent coherence in the isolated ganglion preparations. Scatter plots and overlying lines are colored by the type of connection: pink

for contiguous, red for dep-dep, green for dep-lev, and blue for lev-lev. Overlying lines present the mean ± CI of normalized coherence, at the middle of each bin (0.5,

1.5 Hz…9.5Hz), for 10 bins of frequencies (bin size = 1Hz, n = 60 samples). Data are normalized with the greatest value of coherence measured in this investigation.

The contiguous pairs differ between the ganglia in how their coherence changes with frequency. While the prothoracic contiguous pair maintains greater coherence

than the prothoracic contralateral pairs, those in the mesothoracic and metathoracic ganglia present a trend of decoupling toward the coherence of the contralateral

pairs. (B) Frequency-dependent phases in the isolated ganglia preparations. The circles illustrated beside each histogram are colored according to the motor nerves

function—red and blue for depressor and levator, respectively. Mixed colors denote a pair of levator and depressor within a hemiganglion. The circular-linear plots are

pale blue (270◦ 90◦) and red (90◦ 270◦) to represent in-phase and antiphase coordination, respectively. Each point in the plots represents the mean phase of a 1Hz

bin. Grid lines = 2Hz (detailed at i). Frequency increases with the distance of the point from the center of the plot. The black arrow is the vector of phase, calculated

for the entire 10Hz range of frequencies. The prothoracic homogenous pairs present a bi-phasic frequency-dependent coordination: in-phase at low frequency (<2Hz

and <3Hz for Dep-Dep and Lev-Lev) and antiphase at greater frequencies. Mesothoracic Dep-Dep and Lev-Lev present in-phase coordination at frequencies <2Hz

like their prothoracic homologs, and an inconsistent, highly variable coordination in greater frequencies. The metathoracic ganglion presents a relatively consistent

antiphase coordination in the homogenous pairs. The metathoracic ganglion is unique in that it presents a tripod gait coordination in all pairs throughout all the bins. (C)

Color-tables of significant coherence. Darker red indicates a greater fraction of significant values of coherence out of the total values calculated in each bin (60 per bin).

ganglion (SI = 0.122 ± 0.3, 0.046 ± 0.25 and −0.418 ±

0.38, respectively; p < 0.025, Figure 4Ax,xi,xii). Overall, only
the isolated metathoracic ganglion showed an intra-ganglion
coordination that corresponded to that expected for the tripod
gait (Figure 4Aiii,vi,xii).

Coupling of Dep-Lev and Lev-Lev Is Ganglion-Specific
Following establishment of the type of coordination, the strength
of the central coupling (CS) was examined (data are detailed in
Supplementary Table 6). As presented in Figure 4C, Dep-Dep
pairs were similarly coupled in all ganglia. This was also the case
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FIGURE 4 | Illustrations of circles are colored according to the motor nerves function—red and blue for depressor and levator, respectively. Mixed colors denote a pair

of levator and depressor within a hemiganglion. (A) Synchronization in the isolated ganglia: Phase histogram color represents the synchronization index, which is

defined between 1 (perfect in-phase, blue), 0 ± 0.08 (neutral, green) and −1 (perfect antiphase, red), as seen in the color bar. Grid lines = 2. *,**,***p < 0.05, 0.01,

0.001. In all ganglia the coordination between the coxa-trochanter joint antagonistic MNs is antiphase. In contrast, the coordination between contralateral MNs differs

between the ganglia, and shows tripod-like phases only in the metathoracic ganglion. (B) Rhythmic activity in the isolated prothoracic (i) and metathoracic (ii) ganglia.

Gray shade is used for emphasizing the following findings. The contralateral depressors (2nd and 3rd traces in each panel) present in-phase coordination in the

prothoracic ganglion, and antiphase coordination in the metathoracic ganglion. The contralateral Dep-Lev (1st and 3rd traces in each panel) present a mix, variable,

coordination in the prothoracic ganglion, and a tripod-appropriate in-phase coordination in the metathoracic ganglion. In contrast to these pairs, the contiguous pairs

(1st and 2nd traces in each panel) present antiphase coordination that corresponds to fictive stepping in both ganglia. (C) Coupling strength in the isolated ganglia

preparations. Data are presented as mean + CI. Sample sizes are the same for the corresponding histograms. Letters above the bars indicate for the significance of

the difference between the bars (majuscule, minuscule, and italic for pro-, meso- and meta-thoracic ganglia). Bars that share a letter are not significantly different (p >

0.05). The metathoracic contralateral levators are coupled stronger than their prothoracic and mesothoracic homologs, while the contralateral Dep-Lev pair in the

prothorax is weakly coupled in comparison to the mesothoracic and metathoracic homologs.

for the homolog contiguous pairs, which also had greater CS in
comparison to the other pairs of MNs in the prothoracic and
mesothoracic ganglia (t-test or Mann-Whitney with Bonferroni
correction, p < 0.017). In contrast, the comparison between
ganglia revealed two significant differences: Dep-Lev coupling
was weaker in the prothoracic ganglion and Lev-Lev coupling
was stronger in themetathoracic ganglion, in comparison to their
homologs in the other ganglia (Mann-Whitney with Bonferroni
correction p < 0.025). These findings provide further evidence
that the intrinsic local networks themselves are not identical and

that their endogenous connectivity and/or the synaptic strength
of the connections, are designed to enable different functionality.

The Whole-Chain Preparation
With the exception of coherence, the same set of parameters
and analyses used for the investigation of the single isolated
ganglion preparations was also used for characterization of
the activity and coordination of the depressor-levator network
in an intact chain of the thoracic and subesophageal ganglia.
The overall connectivity network of this preparation potentially
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comprises 36 different pairs of MNs, for which recording and
analyzing a reliable sample is an overwhelming task. A total
of seven intra-ganglion connections were investigated in the
whole-chain preparation: R1Dep-L1Dep, R2Dep-L2Dep, R3Dep-
L3Dep, R2Dep-L2Lev, R3Dep-L3Lev, R2Dep-R2Lev, and R3Dep-
R3Lev. We then focused on 16 interganglia connections: six Dep-
Dep, eight Dep-Lev, and two Lev-Lev, detailed in Figure 5C.
The network was divided into two sub-networks: anterior for
the prothoracic-mesothoracic connections and posterior for
the mesothoracic-metathoracic connections (see Figure 5B for
illustration). This was done in order to examine the differences
and similarities between homolog connections in the two sub-
networks. The calculated phases between MNs are referred
to as tripod-gait-appropriate if they corresponded to those
recorded (or could be recorded) in the intact walking insect.
Here we focused mostly on mesothoracic-metathoracic pairs
of MNs (8 pairs), rather than on prothoracic-mesothoracic or
prothoracic-metathoracic ones (4 pairs each), becausemost of the
previously published relevant research refers tomesothoracic and
metathoracic MNs (38, 48, 70–72). Moreover, we chose to focus
our investigation on connections between the depressor MNs (all
9 pairs), which again enabled comparison to the ample related
previous research (46, 51, 54, 55, 73).

Levators Burstiness, but Not Rhythmicity, Differ

Between Preparations and Between Ganglia, While

Depressors Present the Opposite
The effects of intersegmental connectivity on MNs burstiness
and rhythmicity were studied by comparing the isolated with
the whole-chain preparations. As can be seen in Figure 2B

and Supplementary Table 1, the intersegmental connectivity had
a statistically significant effect on the burstiness of only one
motor nerve—the metathoracic levator, which had twice the
mean burstiness, and half the variability, in the presence of
intersegmental connectivity (mean ± SD for isolated and whole-
chain preparations: 0.51 ± 0.18 > 0.25 ± 0.36, n = 18 and
10 accordingly; Welch’s t-test, p < 0.01). This was followed
by a comparison between homolog MNs in the whole-chain
preparation, which revealed that the mesothoracic levator was
less bursty than the other levators (Welch’s t-test, p < 0.05).
Figure 2C and Supplementary Table 2 present a similar analysis
of rhythmicity, demonstrating that it was consistently greater in
the isolated ganglion, although the differences were statistically
significant only for the depressor MNs (Mann-Whitney, p <

0.05). Moreover, the variability in rhythmicity of the prothoracic
depressor MN was found to be lower than that of its meso-
and meta-thoracic homologs; while for the levator the difference
was significant only in comparison to its mesothoracic homolog
(Brown-Forsythe, p < 0.05).

Temporal Relations Between MNs in the Whole-Chain

Preparation
The relations between phase and frequency were studied in
the whole-chain preparation for a frequency band of 0.05–
10Hz (data are given in Supplementary Table 7). First, the seven
intra-ganglion connections were studied and compared between
the isolated and whole-chain preparations. Overall, 6 out of 7

intra-ganglion connections showed similar phase relations in
both preparation types throughout the entire frequency range
(Supplementary Figure 3), suggesting that their coordination is
not significantly influenced by intersegmental or SEG inputs. In
contrast to the other pairs, R1Dep-L1Dep fired in-phase at low
frequencies and in antiphase at frequencies> 2Hz in the isolated
preparation, as opposed to the consistent in-phase coordination
it showed in the whole-chain preparation (Φisolated = 121.2 ±

77.8, Φwhole−chain = 306.7 ± 58.2, p < 0.001, Figure 5A). In
addition, although R2Dep-L2Dep had an overall similar mean
phase in both preparations, the vector length of the mean phases
was 3-fold greater in the whole-chain preparation (R= 0.185 and
0.563 for isolated and whole-chain preparations, respectively),
suggesting a stabilizing input to the mesothoracic ganglion.

Frequency-Dependent Phase-Relations Differ Substantially

Between the Anterior and Posterior Sub-networks
As noted above, the network was divided into two sub-networks:
anterior and posterior (Figure 5B). Frequency-dependent phase
data for four pairs recorded from the anterior sub-network
are presented in Figure 5C. R1Dep-R2Lev and R1Dep-L2Dep
maintained a tripod-gait-appropriate in-phase coordination
throughout the examined frequency range (Figure 5Cv,xiii,
respectively). The latter is in accordance with a finding from
locusts that a front leg and its diagonal middle leg are always
strictly coordinated in phase (74). In contrast, R1Dep-R2Dep and
R1Dep-L2Lev, which showed an antiphase coordination during
tripod locomotion, had in-phase coordination below 2Hz, and
a robust antiphase coordination only at greater frequencies
(Figure 5Ci,ix, respectively). This pattern corresponds to that
seen in the prothoracic and mesothoracic Dep-Dep and Lev-Lev
pairs in the isolated ganglion preparations (Figure 3Bi,ii,v,vi).
In addition, eight pairs were recorded from the posterior sub-
network. In contrast to their anterior sub-network homologs,
R3Dep-L3Dep and R3Lev-L3Lev showed a tripod-appropriate
antiphase coordination from the lowest end of the frequency
band, and roughly to its middle (5 and 4Hz for R2Dep-R3Dep
and R2Lev-R3Lev, Figure 5Cii,iii, accordingly). Similarly, the
ipsilateral mixed pair R2Lev-R3Dep had in-phase coordination
only at frequencies< 5Hz (Figure 5Cvii). These findings are also
demonstrated in the recording sample of mostly low-frequency
activity (<5Hz) in the posterior sub-network which is presented
in Figure 5D. A comparison between calculated phases from the
two halves of the frequency range (lower and higher, all phases
are given in Supplementary Figure 4) further support these
findings. R2Dep-R3Dep and R3Lev-L3Lev practically inverted
from predominantly antiphase to in-phase coordination with the
increase in frequency, while in R2Lev-R3Dep the change was the
opposite (R2Dep-R3Dep: Φ<5Hz = 202.8◦ ± 45.4, Φ5−10Hz =

307.1◦ ± 48.9, p < 0.05, Figure 5Ei; R2Lev-R3Lev: Φ<5Hz =211◦

± 54.2, Φ5−10Hz 62.1◦ ± 62.7, p = 0.01, Figure 5Eii; R2Lev-
R3Dep: Φ<5Hz = 6.5◦ ± 51.7, Φ5−10Hz = 173.9◦ ± 31.8, p <

0.001, Figure 5Eiii). This finding may suggest that the posterior
sub-network is wired to generate fast locomotion (faster than
that using the tripod gait) that shows at least a partial overlap
in the swing phases of the ipsilateral neighboring legs. Oddly,
unlike R2Lev-R3Dep, the reciprocal pair R2Dep-R3Lev showed
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in-phase coordination throughout the entire frequency band (Φ
= 52◦ ± 70.4, Figure 5Cvi). This asymmetry, along with others,
is addressed in the Discussion. Next, we studied the diagonal
pairs and found that the homogenous pairs R2Dep-L3Dep and
R2Lev-L3Lev were in-phase coordinated regardless of frequency
(Figure 5Cxiv,xv, respectively). However, as in the ipsilateral
pairs, the mixed diagonal pairs were asymmetrical: while R2Dep-
L3Lev had an overall in-phase coordination throughout the
frequency band (Φ = 315.2◦ ± 67, Figure 5Cx), R2Lev-L3Dep
had antiphase coordination (Φ = 227.3◦ ± 65.2, p < 0.001,
Figure 5Cxi). Finally, we examined the coordination between
the prothoracic and metathoracic ganglia. Only R1Dep-L3Dep
showed frequency-dependent phases (Φ<5Hz = 334.3◦ ± 21.3,
Φ5−10Hz = 182.8◦ ± 71.2, p < 0.01, Figure 5Cxvi). R1Dep-
R3Dep had a consistent in-phase coordination (Figure 5Civ),
while the two heterogeneous pairs had dysfunctional (i.e., not
corresponding to known insect gait) phases (Figure 5Cviii,xii).

Tripod-Appropriate Coordination Is Found Only in the

Posterior Sub-network
As in the case of the isolated ganglion preparations, and
for similar reasons, the following analyses of the whole-
chain preparation relate to data obtained within the frequency
band 0.05–3Hz. The SI was calculated for the 23 pairs
of MNs (data provided in Supplementary Table 8). First,
the seven intra-ganglion pairs were compared with their
parallels in the isolated preparations and found to not
significantly differ (Mann-Whitney, p > 0.1). This indicates
that intersegmental connectivity has an insignificant or weak
effect on the coordination type and consistency of intra-ganglion
connections of Dep-Dep, meso- and meta-thoracic Dep-Lev,
and the contiguous pairs, in the 0.05–3Hz frequency range.
Next, the 16 interganglia pairs were studied for their SI, as
presented in Figure 6A. In a comparison between homolog
connections in the anterior and posterior sub-networks we
found significant differences only in pairs that are expected
to fire in antiphase during tripod-gait locomotion (SI =

0.043 ± 0.24 and −0.25 ± 0.31 for R1Dep-R2Dep and
R2Dep-R3Dep, Figure 6Ai,ii, respectively; SI = 0.353 ± 0.23
and −0.121 ± 0.29 for R1Dep-L2Lev and R2Lev-L3Dep,
Figure 6Aix,xi, respectively. Mann-Whitney, p < 0.05). In-
phase pairs were similarly synchronized in both sub-networks.
Generally, as seen in the recording in Figure 6B, the anterior sub-
network was active in-phase, while the posterior sub-network
demonstrated tripod-like antiphase coordination, including
antiphase coordination in the appropriate pairs. Moreover, the
heterogenous prothoracic-metathoracic pairs: R1Dep-R3Lev and
R1Dep-L3Lev showed a dysfunctional neutral coordination (SI
= 0.05 ± 0.16 and 0.03 ± 0.36, Figure 6Aviii,xii, respectively),
while R1Dep-R3Dep demonstrated weak in-phase coordination
that approaches neutral coordination (Figures 6Aiv,B), and
R1Dep-L3Dep was distinctly in-phase, unlike during tripod
locomotion (Figure 6Axvi). This indicates that the prothoracic-
metathoracic pathway is indirect, supporting the nearest-
neighbor architecture which considers distant connections to be
indirect (see Discussion for more details).

Coupling Strength Varies Between and Within

the Sub-networks
Last, coupling strength (CS) between MNs in the whole-chain
preparation was examined in order to study the effect of
interganglia connectivity on intra-ganglion phase-lock, to enable
a comparison with the isolated ganglion preparations, and
also in order to reexamine and fill-in gaps in the coupling
scheme previously suggested by David et al. (38). Results
are presented in Figure 6C, Supplementary Figure 5, and in
Supplementary Table 9. This inquiry started with the intra-
ganglion pairs. Dep-Dep from different ganglia had similar
CS (One-way ANOVA, p > 0.1, Supplementary Figure 5).
In contrast, R3Dep-L3Lev and R3Dep-R3Lev were coupled
significantly more strongly than R2Dep-L2Lev and R2Dep-
R2Lev, respectively (t-test, p < 0.05, Figure 6Ci). A similar study
of the interganglia connections followed. Another asymmetry
of CS was found between reciprocal pairs (Figure 6Cii). CS of
R2Dep-R3Lev was greater than that of R2Lev-R3Dep (CS =

0.28 ± 0.07 and 0.11 ± 0.06, respectively, t-test, p < 0.01) and
R2Dep-L3Lev had greater CS than R2Lev-L3Dep (CS 0.22± 0.11
and 0.11 ± 0.06, respectively. p < 0.05). In addition, homolog
connections in the anterior and posterior sub-networks were
compared (Figure 6Ciii). Although all pairs from the posterior
sub-network exhibited greater CS than their anterior homologs,
the difference was significant only for the ipsilateral Dep-Lev pair
(CS = 0.14 ± 0.4 and 0.28 ± 0.07 for R1Dep-R2Lev and R2Dep-
R3Lev, respectively, t-test, p < 0.01). In a comparison between
the posterior sub-network pairs, R2Dep-R3Lev was coupledmore
strongly than R2Dep-R3Dep (CS = 0.28 ± 0.07 and 0.19 ± 0.05,
respectively, t-test, p < 0.05). CS was also compared between
the whole-chain and the isolated preparations (Figure 6Civ, data
from the isolated preparations are also presented in Figure 4C).
A significant difference was found only in R3Dep-L3Lev (0.18 ±
0.05 and 0.28 ± 0.15 for isolated and whole-chain, respectively,
t-test, p = 0.05), and a less significant one in R3Dep-R3Lev (0.3
± 0.1 and 0.43 ± 0.17 for isolated and whole-chain, respectively,
t-test, p= 0.069). This finding indicates that interganglion inputs
to the metathoracic ganglion strengthens the coupling between
depressor and levator premotor networks, while having no effect
on the contralateral depressors or on the mesothoracic pairs.

DISCUSSION

The controversy around the origin and control of the rhythmic
motor patterns for locomotion go back as far as Sherrington and
Brown that have suggested an instrumental role for feedback or
feedforward control, respectively (75, 76). While it is generally
accepted nowadays that central pattern generating circuits are
responsible for locomotion-related rhythms in practically all
studied organisms from humans to insects (19, 77, 78), there
are still well-established studies demonstrating, particularly for
insect walking, that the currently available experimental data
can be very well-explained without the need for postulating
central control (79). In the current study (as in most in
the field), we assume the presence of CPG circuits in the
thoracic CNS that comprise conditional oscillators, i.e., require
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FIGURE 5 | Illustrations of circles are colored according to the motor nerves function—red and blue for depressor and levator, respectively. Illustrations with gray

circles represent the isolated preparation and illustrations with black empty circles represent the whole-chain preparation. The circular-linear plots are pale blue (270◦

90◦) and red (90◦ 270◦) to represent in-phase and antiphase coordination, respectively. Grid lines = 2Hz (detailed at A, top plot). Arrow-vector of phases. *,**p <

(Continued)
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FIGURE 5 | 0.05, 0.01 (A) Interganglion connectivity affects the coordination of the prothoracic depressors. The prothoracic pair of depressors presents a similar

in-phase coordination at frequency <2Hz in both isolated (top) and whole-chain (bottom) preparations, and different types of coordination at greater frequencies. The

other six intraganglion pairs of MNs that were compared between the preparations were found to present non-significant differences in phases at the different

frequencies. (B) Illustration of the division of the whole-chain preparation into two sub-networks- anterior and posterior. (C) Frequency dependent interganglia phases.

Left column- anterior sub-network, middle columns- posterior sub-network, right column- between non-neighboring ganglia. Rows from top to bottom: ipsilateral

homogenous, ipsilateral mixed, diagonal mixed, and diagonal homogenous. Significant differences between the sub-networks were found only in the mixed Dep-Lev

ipsilateral and diagonal pairs, and not in the homogenous pairs. In the anterior sub-network, R1Dep-R2Dep (i) and R1Dep-L2Lev (ix) which alternate during tripod

locomotion changed from in-phase to antiphase coordination at frequencies > 2Hz, while R1Dep-L2Dep (xiii) and R1Dep-R2Lev (v), which fire in-phase during tripod

locomotion, demonstrated a frequency-independent coordination. In the posterior sub-network, asymmetries were found between reciprocal mixed pairs in the

ipsilateral [R2Dep-R3Lev (vi) and R2Lev-R3Dep (vii)], and the diagonal [R2Dep-L3Lev (x) and R2Lev-L3Dep (xi)] pathways. (D) Rhythmic activity in the posterior

sub-network. Both contiguous pairs show antiphase coordination (1st and 2nd traces, and 4th and 5th traces). The ipsilateral pairs R2Lev-R3Lev (3rd and 4th traces),

and L2Dep-L3Dep (1st and 6th traces) show weaker coupling strength and less rigid phase relations than the intraganglion pairs. (E) Frequency-dependent

coordination inversion of ipsilateral pairs in the posterior sub-network. Grid line = 1. The phase histograms illustrate three pairs switching from tripod-like coordination

at low frequencies into a faster gait at higher frequencies in which two ipsilateral legs can simultaneously perform the aerial phase.

the appropriate neuromodulatory environment for producing
their rhythmic output (80). Neuromodulation is known to
be essential for CPGs’ appropriate functioning (15, 81, 82).
Here, the required modulation is provided by pilocarpine, a
muscarinic agonist known to non-specifically activate premotor
networks of thoracic MNs in deafferented arthropod thoracic
ganglia (70, 83). Pilocarpine has been repeatedly used to induce
reliable long-lasting rhythmic activity in leg-motor neurons of
P. americana (17, 38, 71), Manduca sexta (66), C. morosus (42,
54), S. americana (56, 65), and S. gregaria (51, 52). Although
pilocarpine activates both flight- and walking-CPGs, at the low
concentration used here the two networks do not affect one
another’s output (84). In this study we analyzed the intra- and
inter-ganglionmotor patterns and interactions between the coxa-
trochanter CPGs that control the levator-depressor networks
in the American cockroach, by monitoring the pilocarpine-
induced motor-patterns of levator and depressor MNs in the
three isolated thoracic ganglia and in an interconnected thoracic-
subesophageal ganglia chain.

Unique Characteristics Found in Each of
the Thoracic Ganglia Correspond to Their
Roles in Locomotion
The cockroach’s three pairs of legs differ from each other
substantially in their overall size, length, foot trajectory, angle
with respect to the body and to the ground, andmusculature (85).
The general simplified notion is that during ‘normal walking’
[i.e., straight-walking on a smooth horizontal surface (86)] the
front legs steer the body, are used as probers and feelers, and
decelerate the body during the stance phase. The middle legs are
stabilizers, pivotal axis-leg during turning, first decelerate and
then accelerate the body during the stance phase, and support
some of the body load. Accordingly, the hind legs are the main
motor that accelerates the body forward and also support its
load (50, 55, 87–89). David et al. (38) found differences in
the intraganglion coordination and coupling between the meso-
and meta-thoracic ganglia, as well as differences in endogenous
spike frequency of depressor MNs in a semi-intact cockroach
preparation. Here we examined the Levator-Depressor network
in each of the three thoracic ganglia in isolation. We reveal
some common features as well as differences between the ganglia,

which are reflected in the nervous system connectivity and in
turn affect the insect’s behavior.

Central Control of Levator Premotor Networks
Previous studies have suggested that the levator premotor
networks are predominantly controlled centrally, while those
of the depressor are controlled locally (38, 45, 47, 49, 90). Our
following findings support this hypothesis and suggests that
interganglia coordination is best reflected in the activity of
levator, rather than depressor, MNs: (i) Dep-Dep pairs showed
common CS throughout the network, in both preparations, while
contralateral pairs comprising a levator MN differed in their
CS between ganglia. (ii) Descending inputs to the metathoracic
ganglion increases the burstiness of R3Lev, as well as the CS of
R3Dep-L3Lev and R3Dep-R3Lev, while not affecting R3Dep
burstiness, or R3Dep-L3Dep CS. (iii) Considering that tripod
gait is propagated back-to-front, and that the metathoracic
ganglion dominates the overall motor pattern of a walking
cockroach, our finding that in homolog and reciprocal pairs
the presence of metathoracic levator accompany greater CS
than when the levator is mesothoracic (Figure 6Ci,ii), also
strengthens this notion. (iv) levator MNs showed similar
rhythmicity between ganglia and between preparations,
which indicates their oscillations are independent of local
influences. In contrast, levators burstiness satisfies prothoracic
> mesothoracic > metathoracic (Figure 2B), like the coherence
of the contiguous pairs (i.e., Figure 3A). This suggests that
burstiness is mostly influenced locally and decreases followings,
or alongside, a decrease in the coherence of contiguous pairs.
These findings also highlight the importance of studying
levator activity.

Gait Transition Requires Modifications of Prothoracic

and Mesothoracic Contralateral Phases
Frequency-dependent variability in coupling and inter-leg
coordination have been mostly attributed to sensory-feedback
and to head ganglia descending inputs (24, 79, 91–94). Our
analyses, however, revealed solid evidence of endogenous
frequency-dependent mechanisms in the completely
isolated ganglia. Pro- and meso-thoracic homogenous
pairs demonstrated frequency-dependent phase relations,
indicating that gait transition is achieved also by modulating
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FIGURE 6 | Coordination and coupling in the whole-chain preparation. Illustrations of circles are colored according to the motor nerves function—red and blue for

depressor and levator, respectively. Mixed colors denote a pair of levator and depressor within a hemiganglion. Illustrations with gray circles represent the isolated

preparation and illustrations with black empty circles represent the whole-chain preparation. (A) Synchronization of interganglia connections. Grid lines = 2. *,** = p <

0.05. 0.01, accordingly. Circular histograms are ordered like the circular plots in Figure 5. The anterior sub-network is tuned to in-phase coordination, while the

posterior sub-network presents antiphase coordination in pairs that alternate during tripod locomotion, indicating the dominancy of the metathoracic ganglion in

dictating phases for the entire network during fast locomotion. (B) Simultaneous activity of the ipsilateral depressor MNs. Top to bottom: right pro-, meso-, and

meta-thoracic depressor. Mean phase is presented for the three pairs of MNs. As seen in the examples shaded in gray, R1Dep-R2Dep presents the in-phase

coordination that characterize the anterior sub-network, while R2Dep-R3Dep presents the posterior sub-network characteristic antiphase coordination. Although

R1Dep-R3Dep presents in-phase coordination, it is less distinct than that of R1Dep-R2Dep. (C) Coupling in the whole-chain preparation. Data are presented as mean

± CI. (i) Homolog intraganglion mixed pairs are coupled more strongly in the metathoracic ganglion. (ii) Reciprocal interganglia Dep-Lev pairs are coupled more

strongly if their levator MN is metathoracic. (iii) Stronger posterior sub-network coupling is consistent but significant only for the ipsilateral Dep-Lev pair (iv) A

comparison of coupling strength between pairs from isolated ganglia and their homologs in a whole-chain preparation. The metathoracic heterogenous pairs had

greater CS than their homologs from the isolated ganglion.
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intrasegmental coordination. In addition, we found frequency-
dependent coherence in the contiguous pairs. These two
findings may suggest that pairs that are coordinated in
antiphase during tripod locomotion, are those that are
susceptible to frequency-dependent modifications. This
latter finding supports Reches et al. (24), and studies of
stick insect [(79), and references within], who speculated
that the default coordination between all the network
units is in-phase, and that functional gaits result from
modifications of the default phase between some of the
network units.

Frequency-Dependent Coherence in the Contiguous

Pairs Suggests for a Mechanism of

Speed-Dependent Transition Into Central Control
Next, we examined the differences in frequency-dependent
variability of coherence in the contiguous pairs. Our data in
Figure 3A indicate three key frequencies: one around 2Hz,
another around 5Hz, and a third around 7Hz, that constitute
points of change in the coherence. Behavioral studies in freely-
walking cockroaches found that they walk in an undefined gait
at low speed, while displaying a gradual transition to tripod-
gait locomotion: slow unsteady gait at ∼2 steps/s, robust tripod-
gait at 5 steps/s, and fast and less variable gait, which is often
referred to as “running” or “trot,” above 7 step/s (27, 37, 47,
49, 95–97). Similarly, David et al. (38) reported frequency-
dependent inter-leg coordination in a semi-intact preparation,
gradually changing toward an ideal tripod phase, reached at
5Hz. Interestingly, although isolated and deafferented insect
preparations are known to generate much slower motor patterns
than those seen in intact animals, the reported endogenous
thresholds of 2, 5, and 7Hz correspond well to the threshold for
transitions into the slow, robust, and then fast tripod locomotion
that was measured in intact walking cockroaches. Our results
support the hypothesis that the frequency-dependent decoupling
of the meso- and meta-thoracic contiguous pairs underlies a
transition from the feedback to the feedforward control that
enables fast locomotion in insects. During slow walking, the
coupling of these contiguous pairs is strong, and local feedback
governs the hemiganglion motor output. As speed increases, the
general gradual decoupling allows the frequency-independent
weaker central contralateral coupling to exert greater influence
on the local CPG; and, if ipsilateral coupling is added, the
overall central coupling prevails to dominate the motor output
of the local CPG at high speed. At ∼5 Hz—the estimated stride
frequency limit for sensory feedback cycle-by-cycle modulation
(95, 97, 98)—the local and central coupling strengths are similar,
resulting in a greater central coupling influence underling the
inter-leg coordination during fast locomotion. Our hypothesis
is also in agreement with a report that faster cockroaches
recover from perturbation within a smaller fraction of their
step cycle and more uniformly than slower ones, and that
they display greater uniformity in intersegmental coupling
among all legs, compared to the slower cockroaches (99).
Furthermore, our finding of an antero-caudal gradient in
the coherence of contiguous pairs (Supplementary Figure 2)
agrees with the finding of a similar gradient in stick insect

(100). The strength of inter-leg coordination in the slow-
walking stick insect depends on local sensory inputs to the
local coxa-trochanter CPG. In the slow-walking stick insect,
as oppose to our cockroach preparation, this gradient in
coherence results in an antero-caudal gradient in coupling
strength. Berendes et al.’s (94) finding of a speed-dependent
increase in intersegmental cycle-to-cycle coupling in semi-
intact walking flies is also in accord with our hypothesis. The
endogenous frequency-dependent coherence of the contiguous
meso- and meta-thoracic pairs also explains a fundamental
characteristic of insect locomotion: the speed-dependent increase
in protraction/retraction or levator/depressor duration ratios,
mainly due to shortening of the stance phase duration (37,
38, 96). In a previous study we suggested a connectivity
model of the levator-depressor network (38). Here we present
this model with updates based on our new findings, and
also provide the empirical data to support those parts of the
model that were based on theoretical ideas and deductions
(hereafter, “our model”; Figure 8). In our model we posit
local hemiganglionic Lev-to-Dep inhibition and contralateral
and ipsilateral Lev-to-Dep excitatory connections. Lev-to-Dep
inhibition weakens toward the end of the levator burst to
enable the on-time onset of the depressor burst for leg
touch down. Decoupling of the contiguous pair weakens this
inhibition, allowing Lev-to-Dep inter-hemiganglia excitations
to induce an earlier and more intense depressor burst. This
enables the same propulsion to be generated within the much
shorter stance duration observed during fast running. Moreover,
our results are supported by the positive correlation between
burst frequency and spike frequency found in the deafferented
cockroach (38).

The Prothoracic Network Enables Independent

Activity of the Front Legs to Serve Their Unique

Functioning
The cockroach front legs play a minor role in carrying the
body load and in generating propulsion; however, they have
a unique role in grooming, probing, steering, and negotiating
obstacles. Insects turn by changing stride frequency or length
without changing contralateral phases (32). Reports from various
insects have shown turning also requires a change in the foot-
trajectory, especially in the front legs (30, 33, 101–106). During
curve walking the inner front leg performs a shorter swing, the
outer counterpart extends its swing, and often also generates
the perpendicular force necessary to deflect the body into
the turn, while both legs retain their antiphase relation as in
straight walking (102, 106), although not always (91, 103). These
maneuvers require each front leg both to act independently of
its counterpart leg, and to maintain an accurate coordination
between its step phases and corresponding muscles. A strong
coherence in the contiguous pairs enables these, first by ensuring
accurate coordination of the antagonistic muscles within each
leg; and second by prevailing over the central coupling that
can hinder the intra-leg coordination through influence from
the neighboring legs. Another mechanism that supports the
front leg independence from neighboring legs is R1Dep-L1Lev
weak coupling, as also found in locust (56), and the resultant
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FIGURE 7 | Coupling scheme. Intraganglion and interganglia values of CS

were obtained from the isolated and whole-chain preparations, respectively.

Where a significant difference between the preparations was found we present

two values as isolated/whole-chain. Following a nearest-neighbor architecture,

the diagonal connections (dashed lines) are considered functional and not

direct, and the prothoracic-metathoracic connections are absent (see text).

Red or blue indicate for depressor or levator efferent, respectively (e.g.,

red-blue connection represents a depressor-levator connection). Values of

contiguous pairs are presented within the corresponding circle. R1, R2, and

R3 indicate for the right prothoracic, mesothoracic, and metathoracic

ganglion, respectively. Pairs from the posterior sub-network present greater

coupling than their homolog pairs in the anterior sub-network. Interganglia

connectivity increases intraganglion coupling in the metathorax and decreases

it in the mesothorax. Intraganglion Dep-Dep coupling is unaffected by

interganglia connectivity.

endogenous neutral phase relations. Rigid contralateral Dep-Lev
in-phase coordination is crucial for maintaining static stability
during locomotion (2). This feature is compromised in the front
legs in favor of flexible functioning. Contralateral excitation
from stance- to swing-phase premotor networks have been
previously suggested as centrally mediated in the cockroach
(38), and sensory feedback mediated in the stick insect [rules 2

FIGURE 8 | Parsimonious connectivity model [modified from (38)]. Circles and

arrows indicate for inhibitory and excitatory connections, respectively. (A)

Reduced representation of the hemiganglionic CPG. 5’ and Ds are levator and

depressor interneuron pools that innervate the slow depressor MN (Ds) and

levator MN 5’. *correction of a typo in Figure 7A in David et al. (38), in which

the smaller-than sign (<) is mistakenly presented as larger-than (>). (B) Solid

line- between CPGs, dashed line- within CPG. Black and blue represent

strong and weak connections, respectively. P1, P2, and P3 indicates for pro-,

meso-, and meta-thoracic hemiganglionic pacemaker. The model incorporates

a descending excitatory drive from the SEG to the thoracic ganglia oscillators,

alongside mutual inhibition between CPGs and direct excitation of the

depressor interneuron pool by neighboring levators interneuron pools. In

addition, mesothoracic inputs are stronger than mesothoracic outputs, and

levator interneuron pools receives a single excitatory input, while the depressor

interneuron pools are innervated simultaneously by three excitatory inputs and

one inhibitory input.
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and 3 (107)], suggesting that R1Dep-L1Lev coupling is context-
dependent and decoupled at need. Interestingly, coupling and
decoupling of the front legs from the walking system, without
compromising the coordination of the other legs, have been
reported for stick insect (31). The independence of the front legs
may also serve a role in negotiating obstacles, or an unexpected
terrain irregularity, by adaptions of the legs’ kinematics (74, 89,
108–110). Here too, strong R1Dep-R1Lev coherence, throughout
the frequency range, ensures the tight intra-leg coordination that
enables the front legs’ unique maneuvers. Complementary to
the above, the relatively strong R1Dep-L1Dep coherence ensures
the contralateral legs’ functional antiphase coordination even
when their stepping kinematics during curve walking is far from
symmetrical. This finding is in contrast to the finding of a
weak R1Dep-L1Dep connection in isolated ganglion of locust,
and stick insect (51, 54), perhaps due to differences between
species, or quantification methods used. Moreover, the above
noted findings are also in contrast with a study in stick insects
(55), which have suggested that weak central coupling of R1Dep-
L1Dep underlies the front legs’ independent functions. Our
findings of a similar CS of Dep-Dep in all isolated ganglia,
alongside greater R1Dep-L1Dep coherence, and weaker R1Dep-
L1Lev CS, suggest that at least in the cockroach this flexibility
depends on weak Dep-Lev coupling. Last, R1Dep-L1Dep and
R1Lev-L1Lev had bi-phasic coordination, as also found, but not
studied further, in locust in-vitro preparations (51, 56), and found
here to be frequency-dependent. In-phase coordination between
contralateral depressor MNs was also reported for locusts (51)
and stick insects (54, 111, 112). However, these in-vitro studies
focused on burst frequencies lower than 0.5Hz, whereas we
identified a threshold for changing coordination around 2 Hz.

High Variability of Mesothoracic Coordination Is

Crucial for Its Appropriate Locomotive Functions
Cockroach mesothoracic legs move at a range directly below
the body’s center of mass (113), and were found to contribute
significantly more to the generation of functional and stable
coordination than the other legs (31, 114, 115). During
tripod locomotion, a miscalculated stance movement of the
middle leg is more likely to cause a catastrophic failure
than in other legs (116). Consequently, the mesothoracic
hemiganglionic premotor networks must be coordinated with
the neighboring hemiganglia in order to enable fast responses
to perturbations and quick adaptations to immediate and
unpredictable changes in velocity, direction, slope, body posture,
attack angle, etc., without compromising stability. This requires
a high susceptibility to modifications of the motor output.
In the walking animal, a mesothoracic hemiganglion receives
both central and sensory inputs from the anterior, posterior,
and contralateral hemiganglia, as well as from its own local
proprioceptors. These inputs modify and fine tune the motor
output between and within step cycles (92). However, in the
isolated ganglion these inputs are absent, and the resultant
endogenous motor-output is highly variable, as can be seen
in the high variability of R2Dep burstiness, and also in the
transition from in-phase to erratic coordination of R2Dep-
L2Dep and R2Lev-L2Lev above 2Hz, and the practically zero

synchronization index of R2Lev-L2Lev. Our data suggest that
the mesothoracic intraganglion connectivity is designed for
variability and susceptibility to modifications. A study on a
centipede-like robot has demonstrated that straight-walking
instability helps in turning maneuvers (117). This notion
is also supported by the finding of weaker mesothoracic
coupling in the semi-intact cockroach, and in the stick insect
(38, 54), as well as the finding of bi-phasic R2Lev-L2Lev
coordination in locust (56). Moreover, R2Dep-L2Dep default
dysfunctional in-phase coordination, found in stick insect and
locust, was suggested to be modified by sensory information
to generate behaviorally relevant coordination (24, 54). Overall,
these findings indicate that insects share similar principles
of mesothoracic intraganglion connectivity, and that their
locomotion behavior may be different due to the application of
different effectors (e.g., neuromodulators, sensory inputs, etc.) on
a similar default neuronal infrastructure.

The Metathoracic Network Presents Consistent

Tripod-Like Coordination
The hind legs are the main motor that propel the body forward
(1), and support much of the body load (88). The metathoracic
ganglion that controls the hind legs receives ascending inputs
from the abdominal ganglia and the cerci, including direct inputs
from the giant interneurons that mediate the cockroach escape
response (118). The isolated metathoracic network presents
the consistent tripod-like coordination that is expected from
the main motor during forward locomotion. R3Dep-L3Dep
and R3Lev-L3Lev persistent antiphase coordination suggests
the existence of a unique metathoracic central and frequency-
independent contralateral mutual inhibition mechanism, which
also explains the greater CS in comparison to the other ganglia,
and prevents co-swinging of the hind legs. Additional evidence
of such a mechanism is provided by the relatively high coherence
of R3Dep-L3Lev throughout most of the frequency range, which
alongside the consistent in-phase coordination is crucial for static
stability of the hind legs and, therefore, the whole-body (2).
The findings of a consistent antiphase coordination of R3Dep-
L3Dep and R3Lev-L3Lev in locust isolated ganglion, and of a
stronger coupling of the metathoracic Dep-Lev in comparison
to the other ganglia (51, 56, 65), alongside the contralateral
application of Cruse’s rules II and III (107, 119) and the finding
of a tendency to antiphase coordination of R3Dep-L3Dep in
stick insects (54), suggest that this feature is conserved at
least in hemimetabola insects. The extreme lower coherence of
R3Dep-R3Lev suggests that local influences and accurate intra-
hemiganglion coordination is less important in the hind legs.
This notion is supported by our findings of low andmore variable
levator burstiness than in the other ganglia, which indicate that in
the hind legs the accuracy of stepping is compromised in order to
enable the high frequency leg cycling necessary for cockroach fast
locomotion (1).

The Whole-Chain Preparation
Previous experimental research of deafferented locusts and stick
insects focused solely on depressor MNs and found that all six
of them are synchronized in-phase (51, 54), as also suggested
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in a recent modeling study (24). These and other experimental
studies of deafferented stick insects, and crustaceans have
found only in-phase coordination between ipsilateral homolog
MNs (42, 120–122). Our current cockroach preparation
motor-patterns were found to profoundly differ from the
above-noted findings.

The Effects of Intersegmental Connectivity on the

Intrasegmental Motor Patterns
By comparing between the same pairs of MNs in the isolated
and the whole-chain preparations, we examined the effect of the
centrally generated inter-ganglia inputs on the intra-ganglionic
motor outputs. Our finding of lower rhythmicity of depressor
MNs in the whole-chain preparation, indicates that they are more
susceptible than levator MNs to intersegmental interferences.
This agrees well with the model we present in Figure 8, in
which both levator and depressor premotor INs receive input
from an oscillator that in turn is influenced by the neighboring
oscillators. The depressors, however, also receive direct inputs
from levator premotor networks in the neighboring ganglia,
which increases their motor pattern variability in comparison
to that in the isolated preparations and to the levator networks.
For example, although mesothoracic Dep-Dep had a similar
mean phase in both our preparations, the phase was 3-fold
less variable in the whole-chain preparation. R1Dep-L1Dep
displayed different coordination in the two preparations:
frequency-dependent bi-phasic coordination in the isolated
preparation; and a consistent in-phase coordination in the
presence of intersegmental inputs. Descending inputs from
the SEG have been found to induce in-phase synchronization
between contralateral depressors in a locust in-vitro preparation,
with a stronger effect on the prothoracic pair (52). The
prothoracic MNs’ low variable rhythmicity can suggest that this
mechanism is common to locusts and cockroaches, although the
R3Dep-L3Dep antiphase coordination could indicate that in the
cockroach the metathoracic motor output is less influenced by
the SEG descending inputs than in the locust. An even greater
effect of intersegmental connectivity was that of stabilizing
the motor pattern of the metathoracic MNs by increasing the
CS of heterogeneous pairs and the levator MNs burstiness.
In contrast, R3Dep-L3Dep was unaffected by descending
inputs. These findings indicate that levator premotor networks
are the targets of intersegmental influence on the cockroach
metathoracic ganglion. In stick insects, mesothoracic inputs were
found to be necessary for regular stepping of the metathoracic
legs (31), as well as in strengthening intrasegmental coupling
in intact and isolated deafferented preparations (55, 100).
Moreover, mesothoracic-metathoracic connectivity was found
to increase R2Dep-L2Dep coupling in stick insects (55), and
decrease R2Dep-L2Dep phase variability in our cockroach
preparation (Supplementary Figure 3). More generally, with the
exception of R1Dep-L1Dep, intersegmental connectivity
did not affect synchronization of the pairs investigated
here, indicating that gait modifications are mostly executed
by altering the coordination between, and not within, the
ganglionic networks.

The Anterior Sub-network Transitions Into

Tripod-Appropriate Coordination While the Posterior

Sub-Network Presents Tripod-Appropriate

Coordination Throughout the Frequency Range
During ‘normal walking’ cockroaches have presented similar
phases of prothoracic-mesothoracic and mesothoracic-
metathoracic legs, e.g., R1–R2 and R2–R3 present a similar
mean phase (25, 37, 123). In contrast, our preparation
exhibited significant asymmetries between the phases of
homolog interganglia pairs. To investigate this, we divided the
network into anterior and posterior sub-networks (prothoracic-
mesothoracic and mesothoracic-metathoracic, respectively,
Figure 5B). The anterior sub-network’s coordination
transitioned into tripod gait phases at 2Hz (Figure 5Ci,ix),
along the beginning of a sharp change in coherence of R1Dep-
R1Lev and R2Dep-R2Lev. Considering R1Dep-L1Dep and
R1Lev-L1Lev phase inversion above 2–3Hz (Figure 3Bi,ii,
respectively), these findings indicate that the prothoracic
ganglion dominates this sub-network at low frequencies. In
the posterior sub-network, this transition occurred at 5Hz,
with one exception - R2Dep-R3Lev maintained a consistent
in-phase coordination, unlike its reciprocal pair R2Lev-R3Dep
(Figure 5Cvi,vii). The frequency-dependent transition of
R2Lev-R3Dep into antiphase coordination could indicate
that Lev-to-Dep ipsilateral excitation (38) is overridden at
high frequencies, which results in antiphase activity. The
finding of weaker descending than ascending mesothoracic-to-
metathoracic coupling in P. americana (38, 99) supports this
notion. In the heterogenous diagonal pairs, stronger coupling
accompanied the dysfunctional in-phase coordination of R2Dep-
L3Lev, while weaker coupling in R1Dep-L2Lev accompanied
the bi-phasic coordination, and the weakest coupling, of R2Lev-
L3Dep, accompanied a consistent tripod-appropriate antiphase
coordination. Overall, we conclude that Dep-Lev pairs which
are coordinated in-phase during tripod locomotion depend on
a stronger CS to generate tripod coordination while pairs that
are antiphase coordinated during tripod locomotion depend on
a weak CS to generate appropriate coordination.

Ipsilateral Coordination Overturn at 5Hz Suggests for

an Endogenous Coordination Which Comprises

Simultaneous Aerial Phases of the Ipsilateral Middle

and Hind Legs
Three out of four ipsilateral pairs in the posterior sub-network
inverted their coordination from tripod-appropriate asymmetry
into a different motor-pattern around 5Hz, which corresponds
to the frequency threshold for the transition from local feedback-
dominated control into central feedforward-dominated control.
This new distinctive state corresponds to overlapping aerial
phases of ipsilateral legs in an intact running cockroach, as also
found between R2Lev and R3Lev in 40% of the burst-cycles
in semi-intact cockroaches (38). Simultaneous swing phases of
contralateral legs were reported for insects using the uncommon
gallop, quadrupedal, or bipedal gaits (124, 125), and a faster-than-
tripod gait has been characterized in the cockroach N. cinereal
(123). However, we are unaware of evidence in the literature
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for ipsilateral mesothoracic-metathoracic synchronized swing
movements in intact walking insects. Following Weihmann et
al.’s (123) definition that tripod gait satisfies 282◦ ≤ Φ ≤

72◦ between the front and hind ipsilateral legs, our findings
indicate that P. americana still satisfies tripod coordination also
at frequencies > 5Hz. The differences in biomechanics between
P. americana and other insects (1, 37, 39), with the underlying
neural mechanism depicted here, may enable P. americana to
maintain tripod coordination and its benefits throughout its
speed range, by altering the ipsilateral coordination to include
aerial phases without altering the contralateral, diagonal and
even pro-to-meta thoracic phase relations. Slow and fast tripod
gaits have been previously distinguished in cockroaches (27, 96),
and a change from relying on the static stability of the tripod
footfall pattern to a dynamic stability during very fast running
was reported previously (2) and further support this notion.

The Mesothoracic Ganglion Serves as a Subordinate

Mediator Between the Dominant Pro- and

Meta-Thoracic Ganglia
Unlike the three other prothoracic-metathoracic pairs, R1Dep-
R3Dep showed a consistent tripod-appropriate phase. The
current lack of evidence for direct connectivity between the
prothoracic and metathoracic motor networks suggests that
this stable functional phase may be coordinated through the
mesothoracic ganglion. One way of achieving such coordination
is through a consistent in-phase coordination of diagonal Lev-
Lev and Dep-Dep pairs, as found here (Figure 5Cxiii,xiv,xv).
Furthermore, R1Dep-L3Dep, R1Dep-L3Lev, and R1Dep-R3Lev
showed a dysfunctional motor-pattern that is likely to have
resulted from the simultaneous activity of two different networks
with shared elements, rather than from the coupling between
distant parts of a single network. Hence, we suggest that the
anterior and posterior sub-networks are separate networks that
are connected and functionally coupled via a shared element- the
mesothoracic network- to form the thoracic locomotion control
network. The demonstrated ability of functionally specialized
legs to couple to, or decouple from, the other legs, supports
this notion (31, 74, 126). Moreover, although each ganglion can
dominate the overall behavior in different contexts (51), our
data suggests that the prothoracic ganglion dominates the overall
motor pattern at frequency < 2Hz, the metathoracic ganglion
dominates during faster locomotion, and the mesothoracic
ganglion mostly serve as a subordinate mediator connecting
the sub-networks and following the motor pattern of the
current dominant ganglion. This notion is supported by the
relatively weak coupling found in R2Dep-R2Lev, and R2Dep-
L2Lev (Figure 6Ci), which renders the mesothoracic network
components more susceptible to influences from neighboring
ganglia, since weak coupling is more easily overridden. R2Dep-
R2Lev weaker coupling in the whole-chain preparation in
comparison to the isolated preparation (Figure 6Civ) provides
additional support to this notion, as well as themixed prothoracic
and metathoracic characteristics presented by the isolated
mesothoracic ganglion. Last, in the posterior sub-network,
interganglion Dep-Lev had a weaker coupling if the levator was
mesothoracic than if it was metathoracic (Figure 6Cii). David et

al. (38) reported that meso-metathoracic descending coupling is
weaker than the parallel ascending coupling. These facts suggests
that Dep-Lev interganglia coupling between ganglia depends on
the levator premotor networks. Weaker mesothoracic levator’s
coupling, and its resultant more variable phases, further indicate
for the mesothoracic function as a subordinate mediator.

Rules for Couplings Between Cockroach

Levator-Depressor Motor Centers
Finally, we used our data to posit a new coupling scheme
(Figure 7), which updates and fills in gaps in the coupling
scheme published by David et al. (38), and the coupling rules it
offered. For intraganglion connections data were obtained from
our isolated preparations and for intersegmental connections
data were obtained from our whole-chain preparation. This
approach is supported by our finding of significant influence of
interganglion connectivity on intraganglion couplings only for
R3Dep-R3Lev and R3Dep-L3Lev (Figure 6Civ), for which we
denote both isolated and whole-chain couplings. Our scheme is
restricted due to a lack of sufficient data on the intraganglion
Lev-Lev pairs in the whole-chain preparation. The identified
coupling rules also manifest in our connectivity model (Figure 8)
which was thoroughly discussed in David et al. (38), and will
be discussed here only in light of the new findings which
modifies it. Therefore, Rule 1 “levator INs excite neighboring
depressor INs” and Rule 6 “meta-meso ascending coupling is
stronger than meso-meta descending coupling” are not discussed
here. Our recent findings (Figure 7) disagree with Rule 2
“Ipsilateral connections are coupled stronger than contralateral
ones.” Dep-Dep pairs which were not investigated by David et
al. (38), were found here to contradict this rule, as did Lev-
Lev and Dep-Lev pairs. We attribute the difference between
our current and previous findings to ascending sensory inputs
from the abdominal ganglia, which were the only inputs that
were not deafferented in David et al. (38). This also indicates
that abdominal sensory signals suffice to increase the ipsilateral
coupling strength, at least in the posterior sub-network. In
contrast, Rule 3 “Lev-Dep is stronger than the parallel Lev-
Lev” is supported by our new findings (Figure 7), except
for R1Dep-L1Lev. We further compared these couplings to
those of the parallel Dep-Dep pairs and found no consistent
difference, and that Dep-Dep pairs were generally similar in
their coupling strength. Our findings also support Rule 4
“Metathoracic coupling is stronger than mesothoracic coupling”
for Lev-Lev and Dep-Lev pairs, as in the semi-intact cockroach,
but not for Dep-Dep pairs. We therefore redefine Rule 4 as:
“Pairs comprising a metathoracic levator are coupled more
strongly than homolog pairs comprising mesothoracic levators.”
To this we add our findings from the whole-chain preparation
and note that pairs in the posterior sub-network are generally
coupled more strongly than their homolog pairs in the anterior
sub-network. Rule 5 “Diagonal coupling is functional and not
direct.” This assumption is derived from the nearest-neighbor
architecture inferred from Spirito and Mushrush (96), and
supported by Couzin-Fuchs et al. (99) and Aminzare et al. (127),
and by findings from crustaceans swimming control network
(128, 129). Diagonal intersegmental pathways were identified
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in the cockroach and locust (52, 130–132), but were described
as mediating sensory information or brain commands. Our
findings of highly variable and dysfunctional phases between
prothoracic and metathoracic MNs, in addition to the extremely
weak CS of R1Dep-L3Dep, as also predicted by a simulation
study in stick insects (79), all support this architecture at least
for these long-distance connections. We note, however, that a
different modeling effort of the stick insect locomotion control
network postulated a direct coupling between the prothoracic
and metathoracic ganglia (133).
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To obtain biologically inspired robotic control, the architecture of central pattern generators
(CPGs) has been extensively adopted to generate periodic patterns for locomotor control.
This is attributed to the interesting properties of nonlinear oscillators. Although sensory
feedback in CPGs is not necessary for the generation of patterns, it plays a central role in
guaranteeing adaptivity to environmental conditions. Nonetheless, its inclusion significantly
modifies the dynamics of the CPG architecture, which often leads to bifurcations. For
instance, the force feedback can be exploited to derive information regarding the state of
the system. In particular, the Tegotae approach can be adopted by coupling
proprioceptive information with the state of the oscillation itself in the CPG model. This
paper discusses this policy with respect to other types of feedback; it provides higher
adaptivity and an optimal energy efficiency for reflex-like actuation. We believe this is the
first attempt to analyse the optimal energy efficiency along with the adaptivity of the
Tegotae approach.

Keywords: central pattern generator, sensory feedback, tegotae approach, efficiency, optimal control, learning,
embodiment

1 INTRODUCTION

The ability to efficiently move in complex environments is a key property for animals and their
survival. This implies that many aspects of their morphology and central nervous system are shaped
by constraints related to their locomotor skills. Animal locomotion is not generated merely from
neural systems; instead, it is generated from the close interaction between neural systems,
musculoskeletal systems, and the real-world environment (Pfeifer and Bongard, 2006; Pfeifer
et al., 2007). Thus, it is essential to elucidate the locomotion generation mechanism by analysing
the interaction dynamics among these three systems and by analysing the neural systems themselves.
Understanding these mechanisms is expected to result in contributions to biology and robotics by
facilitating the design of durable and resilient robots that are energy-efficient.

Central pattern generators (CPGs) are neural circuits that are found in invertebrate (Pearson and
Iles, 1973; Bässler and Wegner, 1983; Bässler, 1986) and vertebrate animals (Shik et al., 1966;
Grillner, 1975; Grillner, 1985). CPGs can produce rhythmic patterns of neural activity without
receiving any rhythmic inputs. The term central indicates that the sensory feedback from the
peripheral nervous system is not needed for generating the rhythms (Marder and Bucher, 2001;
Ijspeert, 2008). Biological CPGs underlie many fundamental rhythmic activities such as chewing,
breathing, and digesting. In addition, they also serve as the fundamental building blocks for
locomotor neural circuits. From the perspective of control, they have several interesting
characteristics such as a distributed control, the ability to deal with redundancies, the presence
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of fast control loops, and the ability to modulate the locomotion
by using simple control signals. Owing to these properties, CPGs
are considered to be transferred mathematical models. In
addition, CPGs serve as the building blocks of robotic
locomotion controllers and are being increasingly used in the
robotics community (Ijspeert, 2008). To enable biologically
inspired robotic control, the architecture of CPGs has been
extensively adopted to generate periodic patterns for
locomotion control owing to the properties of nonlinear
oscillators (Kimura et al., 1999; Fukuoka et al., 2003; Tsujita
et al., 2003; Aoi and Tsuchiya, 2005; Buchli et al., 2006; Kimura
et al., 2007; Righetti and Ijspeert, 2008; Wang et al., 2011).

Although sensory feedback in CPGs is not necessary for
generating rhythmic patterns, it plays a central role in
guaranteeing adaptivity to the environmental conditions
(Ijspeert, 2008).

Sensory feedback in CPGs for animal locomotion was first
studied in the pioneering work on bipedal walking conducted by
Taga et al. (1991), Taga (1994), Taga (1995). In these studies,
sensory information from the environment was fed back into the
nervous system model to generate a walking pattern from the
interaction among the nervous system model, musculoskeletal
model, and environment (“Global Entrainment”). Kimura et al.
(1999); Fukuoka et al. (2003) proposed a model by integrating
CPG and reflex mechanisms to realise uneven terrain quadruped
walking. Aoi and Tsuchiya (2005), Aoi and Tsuchiya (2006)
focused on “phase resetting” (Schomburg et al., 1998), a
feedback mechanism found in animals, to include gait
stabilisation in CPG-based control models. Aoi’s group also
applied the phase resetting feedback in CPGs to human-like
musculoskeletal models of bipedal walking (Aoi et al., 2010),
quadrupedal gait transitions (Aoi et al., 2011; Aoi et al., 2013),
and a hexapod walking model (Ambe et al., 2018). Steingrube
et al. (2010); Manoonpong et al. (2010) proposed a modular
neural control with bio-inspired CPG-based network and sensory
feedback, demonstrating environmental adaptability, such as
walking on uneven terrain and avoiding unknown obstacles,
and then extended the models by introducing forward models
(Manoonpong et al., 2013; Dasgupta et al., 2015), visual feedback
(Goldschmidt et al., 2014; Grinke et al., 2015), muscle models
(Xiong et al., 2014; Xiong et al., 2015), and so on. Buchli et al.
(2006); Nachstedt et al. (2017) proposed an adaptive frequency
oscillator that could learn motion frequency adaptively and
verified the generation of gait according to body
characteristics. Furthermore, an interlimb coordination model
that employed load information as sensory information and
generated adaptive and diverse quadruped walking patterns
was proposed (Maufroy et al., 2010; Fukuoka et al., 2015;
Owaki and Ishiguro, 2017a). Sensory feedback inclusion
significantly modifies the dynamics of the CPG’s architecture,
which often leads to bifurcations and other dynamic phenomena
(Aoi et al., 2011; Wang et al., 2011; Aoi et al., 2013).

To establish a systematic design principle of the sensory
feedback in the CPGs to achieve biologically inspired robotic
locomotion, a novel concept called “Tegotae” is proposed.
Tegotae is a Japanese concept that describes the extent to
which a perceived reaction matches the intended motor

command. The potential of the Tegotae approach in
reproducing animals’ locomotion and understanding the
underlying mechanism has been previously demonstrated
based on synthetic approaches. The Tegotae approach was first
used by Owaki et al. (2017) to develop a minimal model for
interlimb coordination on hexapod robot locomotion with CPG-
based control. Kano et al. (2018) demonstrated gait transition
between the concertina and scaffold-based locomotion in a snake
model simulation with reflex-based control. Kano et al. (2019)
proposed the detailed design of the Tegotae function, particularly
for motor commands, using the genetic algorithm (GA) to
simulate a simple 1-D earthworm model with CPG-based
control. Owaki et al. (2021) demonstrated adaptive walking
control on a biped model with CPG and reflex-based controllers.

The main contribution of this study is the construction of a
specific proprioceptive feedback law through the so-called
Tegotae approach (Owaki et al., 2017). Together with a
specific control policy, i.e. reflex-like actuation, it exploits it
fruitfully based on the concept of embodied intelligence
(Pfeifer and Bongard, 2006; Pfeifer et al., 2007). Then, the
feedback is applied to certain mechanical systems, i.e. hopping
systems; is first considered for the simplest case of one leg, and is
then extended to two legs. In such circumstances, the sensory
feedback plays an important role in shaping the rhythmic
patterns and ensuring coordination between the CPGs and
body movements. This study demonstrates the adaptation
processes as well as the acquirement of the different gait. In
addition, it compares the analytical solution for the single-leg case
with an optimal controller solution that is based on direct
methods such as the multiple shooting methods (Bock and
Plitt, 1984; Diehl et al., 2005; Fagiano, 2019). This confirms
the intuitions for the energy efficiency of the control policy.
Finally, we extensively analyse the approach in relation with the
considerations for learning and energy efficiency (Hayashibe and
Shimoda, 2014).

The following section presents the materials andmethods used
in this study. First, we briefly describe the Tegotae approach.
Second, we present the mathematical model for the Tegotae-
based control. Third, we discuss the Tegotae approach based on
the learning framework by comparing it with tacit learning as
described in Hayashibe and Shimoda (2014). Then, we present
the simulation results to validate the Tegotae controller and then
evaluate the energy efficiency. Finally, in Section 5, we discuss the
results and future work.

2 METHODS

2.1 Tegotae Control
2.1.1 Theory
The inclusion of feedback in the architecture of the CPG is a
natural extension of these structures. However, any modification
to the canonical form leads to a modification in the main
dynamics, which may affect the effectiveness. This is achieved
by considering a particular family of feedback functions in terms
of the local effect of this inclusion on the dynamics of a neural
oscillator. The approach to define these feedback functions is
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called the Tegotae approach, as described in Owaki et al. (2017).
Tegotae is a novel concept that describes the extent to which a
perceived reaction matches an expectation, or intention, of a
controller. Tegotae stems not only from the reaction that is
received from the environment, but also from the consistency
between the perceived reaction and the intention or expectation
of the controller, i.e. what the controller intends to do. In the case
of matching, it is said that either “good” or “bad” Tegotae is
obtained. In this manner, a cognitive meaning is added to the
control framework, in which it denotes some actions as “positive”
and others as “negative”. The objective is to maximise the Tegotae
function. In this section, the Tegotae formalism is introduced. For
the initial step of the investigation, Tegotae is quantified in the
simplest mathematical form, i.e. a function that is based on the
separation of the variables as follows.

T(u, e) � C(u)S(e) (1)

Hereafter, the function T is referred to as the Tegotae function
(T-function), which is a function that quantitatively measures the
Tegotae. In Eq. (1), u represents a control variable and e
represents the sensory information obtained from multiple
sensors that are embedded in the body. The T-function is
expressed as the product between C(u) and S(e). The former
expresses the intention of the controller, while the latter denotes
the reaction obtained from the environment. T is designed such
that it becomes more positive when an enhanced Tegotae is
detected. Therefore, for a given T-function, the local sensory
feedback f is designed in such a way that the control system
modulates u to increase the amount of Tegotae received. Thus,
with regard to the continuous-time systems, f is expressed simply
as a mono-dimensional gradient system of the T-function T with
respect to the control variable u, as follows.

f � zT(u, e)
zu

(2)

With this formulation, it is possible to systematically design
the decentralised controllers by only designing the T-functions
that are required. When considering the CPGs’ framework, the
i-th controller can be first defined as a generic Kuramoto
oscillator (Kuramoto (1984)) of phase ϕi without the coupling
terms but with a specific external field fi that consists of the local
sensory feedback.

_ϕi � ωi + fi(ϕi, e) (3)

As a result, this equation leads to the following expression.

fi(ϕi, e) � zTi(ϕi, e)
zϕi

(4)

In Owaki et al. (2017), the T-function was expected to
reproduce the hexapedal inter-limb coordination that was
observed in insect locomotion by using the Kuramoto
oscillators. For this reason, it was generally defined in the first
case as follows.

Ti(ϕi,Ni) � (−sinϕi)NV
i , (5)

where the sensory information e consists of the vertical ground
reaction forces Ni

v that are acting on each leg. In the basic control
of the hexapod robot in Owaki et al. (2017), the leg was controlled
to be in the swing phase for ϕi � 0 to π and the stance phase for
ϕi � π to 2π based on the function C (ϕi) � −sinϕi In this
formulation, Ti quantifies the Tegotae on the basis of the
information that is only locally available at the
corresponding leg. When the local controller intends to be
in the stance phase (−sinϕi > 0) and receives a ground reaction
force (Ni

v > 0), Ti evaluates the situation as “good” Tegotae,
and vice versa. As stated above, the reaction in Eq. 1 is generic,
and other types of reactions may be taken into account. In our
study, the force passing through the body was taken into
account, i.e. an elastic force. This definition is inspired by
the Golgi tendon organ (Moore (1984)), which is a
proprioceptive sensory receptor organ that senses changes
in the muscle tension. The T-function is then defined for a
generic i-th phase oscillator and the feedback signal is
expressed as follows.

Ti(ϕi, F) b (−σ sinϕi)F (6)

fi(ϕi, F) � z

zϕi

T(ϕi, F) � −σ cosϕiF (7)

where σ denotes a proportionality factor and F represents the
force passing through the body. By the nature of Eq. (6), it follows
that this sensory feedback will be absent when there is no contact
with the ground.

2.1.2 Tegotae Control Policy: Preliminary Design and
Extensions for Reflex-like Actuation
In majority of the CPGs’ controllers, the actuator is driven by a
proportional-integral-derivative (PID) control scheme, which
compares the actual state of the physical system with the
reference signal that was originated by the CPGs’ network
(Ijspeert, 2008). One of our main contributions is to attempt
to maintain the model-free control approach while taking into
account some of the most recent considerations for the above
embodied intelligence (Pfeifer and Bongard, 2006; Pfeifer et al.,
2007) and control by using neural-like dynamic systems and
reflex-like motor control. Buchli et al. (2006) demonstrates the
manner in which the neuro-mechanical coupling provided by the
feedback forces the secondary dynamics in the phase oscillator;
our goal is to analyse and possibly exploit this effect. This study
aims to use a critical point for the feedback dynamics, which is a
minimum, or a specific section of it, to control the system. This
section briefly describes the evolution of the Tegotae control
policy towards its current form. In the former control policy law
established by Owaki et al. (2017), a constant actuation force with
the value A was used, and actuation was observed when the phase
of the oscillator ϕ was within a certain interval containing the
selected critical point of the dynamics ϕ0.

ϕi ∈ (ϕ0 − Δ/2, ϕ0 + Δ/2)0Fa(ϕi, ·) � A (8)

This implies that the force Fa � A is applied when the phase ϕi
ranges from ϕ0 − Δ/2 to ϕ0 + Δ/2. It is apparent that a critical
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factor of this preliminary policy is the on-line adaptation of the
values of ϕ0 and Δ according to the evolution of the dynamics
from the transient to the steady state (assuming it is reached),
which is non-trivial. In the first instance, these values are
considered to be a posteriori once the specific dynamic of the
oscillator has been studied andmaintained constantly throughout
the entire simulation. The results obtained with this simple
control policy are analysed in the monoped case study, which
demonstrates how even this simple policy can guarantee good
performance. Clearly, this policy can be made smoother by

substituting the square wave with other types of functions
such as bell-shaped trends.

Fa(ϕi, ·) � A����
2πΔ

√ e−
1
2
(ϕi−ϕ0)�

Δ
√

(9)

Although this leads to an easier actuation and solves the
numerical issues that are introduced by the switching
controller, this control policy does not simplify the method of
selection of the specific values of ϕ0 and Δ. In contrast, the entire

FIGURE 1 | Tegotae approach: (A) The reflex-like actuation is designed to be opposite in sign to that of the Tegotae feedback and disappear once the feedback is
positive, indicating an increasing Tegotae inEq. 11. (B,C)Neuro-mechanical structure of the mono-dimensional hoppers. (B)Monopod: a mass is connected to amass-
less spring and a damper system. A linear actuator is parallel to the spring and damper and it determines the vertical thrust. The Kuramoto model for the phase oscillators
was used as a model for the CPGs’ oscillator. (C) Biped: Two vertical hoppers are connected with a mechanical spring. Each hopper is controlled by using a
decoupled Kuramoto oscillator with Tegotae feedback.
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negative section that is centered around the minimum of the
Tegotae feedback can correspond to a critical phase of the entire
dynamics. The following expression can be considered.

fi(ϕi, F) � z

zϕi

T(ϕi, F)≤ 0 (10)

This specifically indicates that the Tegotae is decreasing. By
definition, the aim is to maximise it. It is clear how this area is the
designated area to inject a certain force. In particular, this force is
required to lead to the maximisation of the Tegotae, which is
dependent on the case study. In this study, a positive force leading
to a jump satisfies the requirements. Thus, following Eq. (6), the
final mathematical form for the reflex-like actuation that is newly
proposed in this study is defined as follows.

Fa(ϕi, F) � −min(0, fi) � −min(0,−σ cosϕiF). (11)

The reflex-like actuation is designed to be opposite in sign to
the Tegotae feedback and disappear once the feedback is positive,
indicating an increasing Tegotae (Figure 1A). Thus, the negative
sign can be attributed to fact that the force actuated in the
feedback should be in a direction opposite to that of the force
used as the feedback itself. This clearly reintroduces the numerical
issues of the switching controller. However, it directly links the
actuation and Tegotae feedback in a more biologically inspired
reflex-like manner. It also assures an online adaptation to the
variation of the dynamics since the Tegotae feedback corresponds
to this variation itself, as shown in Figure 1A.

2.2 Mechanical Model
2.2.1 Monopod Model
First, a one-dimensional (1-D) hopping system was considered,
which is characterised by a mass connected to a mass-less spring
and a damper system (Figure 1B). A linear actuator is parallel to
the spring and damper and determines the vertical thrust. The
Kuramoto model (Kuramoto, 1984) for the phase oscillators was
used as a model for the CPGs’ oscillator, simplifying the analysis
of the effects of the feedback. The integration of the ordinary
differential equations (ODEs) was performed using MATLAB,
which automatically stopped the integration when switching was
detected. The initial step of the integration was set to 1e−3, which
is equal to the maximum step of the integration. The evolution of
a single phase of the oscillator ϕ and the vertical height of the
mass y is described by an ODE as follows.

_ϕ � ω + f (ϕ, F), (12)

€y � 1
m
{Fc( _y) + Fk(y) −mg + Fa(ϕ, F)}, (13)

Fc( _y) � −c _y, (14)

Fk(y) � k(l0 − y), (15)

where f(ϕ,F) is the sensory feedback in the CPG oscillator, while
Fk(y), Fc( _y), and Fa(ϕ, ·) represent the spring, damper, and
actuator force, respectively. These three components are absent
during the flight phase, assuming that there no forces that act
from the environment.

As previously described, according to Owaki et al. (2017), the
Tegotae sensory feedback f(ϕ,F) is defined directly by the Tegotae
function T(ϕ,F), where we selected F � Fk(y).

T(ϕ, Fk)b(−σ sinϕ)Fk (16)

f (ϕ, Fk) � − z

zϕ
T(ϕ, Fk) � −σ cosϕFk (17)

with σ being a proportionality factor. From Eq. (11), Fa is
described as follows:

Fa(ϕ, F) � −min(0, f ) � −min(0,−σ cos ϕFk) (18)

Here, as a first step in the evaluation, we used the force passing
through the spring Fk. An advantage of the Tegotae-based
approach is that it can use different forces as sensory
feedback. Further extensions may be a combination of many
different forces. The novelty of this study lies in the reflex-like
actuation equation and the validation of energetic optimality.

2.2.2 Biped Model
The effects of the Tegotae approach on a more complex
mechanical and oscillatory system were also studied to prove
its effectiveness and ability to sustain different patterns, which
were also described by Owaki et al. (2017). The mechanical
system was extended to a 1-D bipedal hopping robot as
illustrated in Figure 1C. The system corresponds to a slight
modification of the previous case.

_ϕ1 � ω1 − σFk1cosϕ1 + ϵ12sin(ϕ1 − ϕ2) (19)

_ϕ2 � ω2 − σFk2cosϕ2 + ϵ21sin(ϕ2 − ϕ1) (20)

€y1 �
1
m1

{Fc1( _y1) + Fk1(y1) −m1g + Fa1(ϕ1, Fk1) + Fk12} (21)

€y2 �
1
m2

{Fc2( _y2) + Fk2(y2) −m2g + Fa2(ϕ2, Fk2) + Fk21} (22)

In Eqs (19, 20), the Tegotae feedback is already taken into
account, while the last term on the right-hand-side represents the
weak-coupling between the phase oscillators (Kuramoto, 2003).
In Eqs (21, 22) the components are the same as those that are
defined in Eq. (12), which is from a simple additional elastic force
that is introduced by the connecting spring Fkij � kc(yj−yi). In
contrast, the control policy was left unchanged with respect to the
monopod case Eq. (18).

3 TEGOTAE IN THE LEARNING
FRAMEWORK

The Tegotae approach has certain interesting similarities with
other learning frameworks, which motivates some of the
intuitions for its energy efficiency. The adaptivity in the
learning processes is typically defined for the parameters/
weights of the controller/learning agent. In the Tegotae
framework, although a further adaptation of the feedback
coefficients σ may be included, the main adaptation is induced
by modifying the dynamics of the oscillators. This factor is taken
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into account in the comparison, since the eventual adaptation of
the parameters is straightforward.

First, it is interesting to note how the Tegotae approach shares
some similarities with the tacit learning, which is a learning
framework that was introduced in Berenz et al. (2014); Berenz
et al. (2015). In tacit learning, the control law consists of an
extension for the PD controller with a tacit learner block with the
time frame (Lt). By using the scalar case for simplicity, the
following expression can be obtained.

u � kxTc + q

q � ∫ f (e)dt (Lt) (23)

where u, xc, k, and e are respectively the control, the state variable
that is expressed in the control space, the proportional and
derivative gain, and any type of quantity that needs to be
minimised. The learning process is obtained in the (Lt) block
by accumulating the integral over the time of the quantity that
needs to be minimised. On this basis, we neglect the proportional
and derivative terms in this study.

u � q

q � ∫ f (e)dt (Lt) (24)

The function f(e) is recommended to have the form f(e) � p(ξ)
a(e)T. In the one-dimensional case, a(e) can be a simple linear
transformation a(e) � ae and p(ξ) is a periodic function of ξ.
Both of these additional terms are selected to guarantee the
following.

p(ξ) xe∣∣∣∣∣∣∣∣p(ξ)∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣xe∣∣∣∣∣∣∣∣ � 1 if α � 0

p(ξ) xe∣∣∣∣∣∣∣∣p(ξ)∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣xe∣∣∣∣∣∣∣∣ � −1 if α � π

(25)

In Eq. (25), xe represents the state variable that is expressed in
the task space, in which the error e is minimized. In contrast, α is
generically defined as the angle between _e and D(e); the latter is
the direction toward which e is minimized. In the one-
dimensional case, α � 0∧ π. This formulation guarantees that
min (f(e)) �min(e). Now, let us consider the Tegotae framework.
The objective is to construct feedback and not a feedforward
controller. To do this, let us consider the factor that needs to be
minimized that corresponds to e � −Fk, the virtual variable ξ to
the physical variable ϕ, and the error function a(e) � σe. By
neglecting the constant terms due to the integration, the feedback
over the oscillator results in the following expressions.

u � q
e � −Fk

p(ϕ) � −sin(ϕ)
q � ∫ f (e)dϕ � ∫ σ sin(ϕ)Fkdϕ
� −σcos(ϕ(t))Fk (Lϕ)

(26)

In the Tegotae framework, xe � Δl represents the elongation
speed of the spring length. This variable points towards the

direction of the minimisation of the value of e � −Fk. Thus,
the following expression is obtained.

−sin(ϕ) xe∣∣∣∣∣∣∣∣sin(ϕ)∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣xe∣∣∣∣∣∣∣∣ � 1 if α � 0

−sin(ϕ) xe∣∣∣∣∣∣∣∣sin(ϕ)∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣xe∣∣∣∣∣∣∣∣ � −1 if α � π

(27)

This shows how the Tegotae approach is de facto obtaining a
tacit learning feedback (Lt) as previously described. Nevertheless,
this is achieved by accumulating the quantity that needs to be
minimised for the integral of the state space variable that is
directly from (Lϕ). The integration over the state space frame ϕ is
coherent with the CPGs’ framework. The role of the oscillators is
to provide a different time frame to the dynamics, which is
reproduced by the linear transformation ϕ � ωt. Thus, in the
CPGs’ framework, the integration/derivation over the state
variable of the oscillator ϕ is conceptually equivalent to the
integration over the time. Interestingly, it has been
demonstrated in Hayashibe and Shimoda (2014) that this
controller can guarantee energy efficiency during the task
realisation in case the quantity that needs to be minimised is
the actuation torque.

4 RESULTS

4.1 Case1: Monoped
4.1.1 Adaptation Transient and Energy Efficiency
The goal of the simulations is to analyse the effects of the different
feedback in terms of the stability, transient periods, and power
injection that is required from the actuator. Four different

FIGURE 2 | Feedback dynamics over the phase ϕ. The different lines
represent four different instances for the sensory feedback dynamics. f1:
Tegotae feedback, f2: height feedback, f3: feedback in Buchli et al. (2006), f4:
force feedback.
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instances were taken into account for the sensory feedback
dynamics, as illustrated in Figure 2. Although f2 corresponds
to the height of the jump, f4 is the force that passes through the
spring. Then, f1 and f3 respectively represent the Tegotae feedback
and the feedback that is proposed in Buchli et al. (2006).
Interestingly, both of these share a neuro-mechanical coupling.
It is evident that all of them introduce a strong polarisation with
the critical points, which is defined as ϕ0. The mechanical
parameters and the natural length of the spring are m �
0.1 kg, k � 5 N/m, c � 0.2 Ns/m, and l0 � 1 m, respectively.
The parameters of the oscillator are ω � 8 rad/s and σ � 2, whose
dimensionality is determined on the basis of the feedback law.
The initial conditions are respectively y1 � 0.7 m, the velocity is
null, and the angle of the oscillator is randomly selected to
guarantee a certain robustness with respect to the initial
conditions. The actuation parameters and the results of the
simulations were obtained from the oscillations in the steady
state and are reported in Table 1. The transient period Δt is
defined at the point at which the limit cycle is reached. The case f4
is unable to provide a stable orbit. Finally, it is evident that the
introduction of the Tegotae feedback is optimal in terms of the
synchronisation transient period. In addition, the energy
efficiency Ee is defined by the limit cycle of the period T+

with the actuation force Fact as follows.

Ee � hmax,T+ − hmin,T+

E
, (28)

E � ∫
T+

Fact(t) _h(t)dt, (29)

Interestingly, to obtain a similar hopping in terms of the
height, the cases f2 and f3 are required for a higher amplitude
of the actuation force.

4.1.2 Robustness and Adaptivity
Second, the case of the Tegotae approach f1 and the f3 case that is
presented in Buchli et al. (2006) were taken into account. In
addition, the adaptivity was evaluated based on the dynamical
change in the environment. In particular, at t � 5 s, the ground
level was lowered from 0 to −0.6 m. The results are depicted in
Figure 3. It is evident that our approach can cope with these
variations by performing a proper re-polarisation of the
oscillator, even without the adaptation of σ, ϕ0, or Δ. It is
possible to notice how the Tegotae approach can quickly react
to these variations, by modifying the force injection as shown in
Eq. (11).

4.2 Case2: Biped
4.2.1 Gait
The objective in the biped case is to first obtain two different gaits,
namely in-phase and anti-phase bipedal hopping. As already
stated in Owaki et al. (2017); Owaki and Ishiguro (2017b), for the
architecture of the CPGs, the frequency of the oscillation ω is a
useful control variable that can be exploited to introduce a gait
transition in the pattern generation. This frequency can be
observed as one of the few high-level control variables that are
required by CPG architectures, as already presented in Ijspeert
(2008). Interestingly, our Tegotae control policy can maintain
these properties, even without introducing any oscillator
couplings, i.e. ϵ12 � ϵ21 � 0.

Two distinct gaits, in-phase hopping and anti-phase hopping,
are reported in Figures 4 (Top and Bottom). The case of Figure 4
(Top) is obtained with a frequency ωin � 6 rad/s, while the second
case of Figure 4 (Bottom) is obtained with ωanti � 7.5 rad/s. At
first, we determined these parameters by trial and error. Then, we
performed a study on the attractors of the dynamics via Lyapunov
Exponents; however, this analysis is out of the scope of this article.
The values of the mechanical parameters are generally equal to
those in the monoped case, with the addition of a spring constant
kc � 1. The feedback strength was σ � 2.4 to guarantee a higher
vertical excursion. We considered a few σ values, and found that
the motion was stable for certain values, while it was unstable for
others, suggesting that the value of σ has an effect on the stability.
However, the effect of σ is not considered in this paper because it
out of the scope of this study. The initial conditions are y1 � 0.8 m,
y2 � 0.7 m, the velocities are null, and the angles of the oscillators
are selected randomly to guarantee a certain robustness with
respect to the initial conditions. These figures represent the
mechanical section of the system (heights and forces) and the

TABLE 1 | Comparison of performance index, transient period Δt, energy
efficiency Ee, and power injection J, for the feedback types on 1D hopping.

Feedback f1 f2 f3 f4

A [N] 4 12 12 4
ϕ0, Δ [rad] 1.75π0.1π 1.96π0.1π 1.96π0.1π 1.75π0.1π
Δt [s] 3 4 5 e

Ee [m/Ws] 1.50 1.16 1.15 1.25
J [W] 5.49 17.69 20.15 10.56

FIGURE 3 | Dynamic environment and adaptation process. The ground
level was lowered from 0 to −0.6 m at t � 5 s. The upper and lower graphs
depict the cases of f1: Tegotae feedback and f3: feedback in Buchli et al.
(2006). The black and red lines represent the trajectories and force
injected, respectively. The Tegotae approach can quickly react to these
variations, by modifying the force injection as shown in Eq. 11. The initial state
of the monopod robot was the equilibrium point of the spring-mass-damper
system. Thus, the height is unchanged while no force is applied.
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control section (phases and feedbacks), with the actuation force
and Tegotae feedback, respectively.

Finally, it was evident that by changing the control variable
from ωin to ωanti, it is possible to reproduce a gait transition, as
depicted in Figure 5. As demonstrated, the value is changed at t �
8 s and the trend of the actuation forces and feedback are hidden
for clarity reasons due to the presence of several transient
sections. The motivations for these specific gaits are shown for
the different values of ω that are still an open point thus far. This
also considers the fact that due to the random initialisation of the
phase angles, the other gates are seldomly shown. These cases can
be avoided by constructing a more robust architecture that can
integrate several types of sensory feedback.

4.2.2 Robustness and Adaptivity
Finally, in equivalence to the monoped case, the way in which the
control policy expressed in Eq. 11 can sustain a change in the
environmental conditions was also examined for the biped case.
As depicted in Figure 6A, the ground was first lowered to −0.6 m
for both the legs as demonstrated in the monoped case.

Meanwhile, the angular frequency was maintained equal to
ωin. Second, as depicted in Figure 6B, the ground was lowered
again to −0.6 m for both the legs. Meanwhile, the angular
frequency was equal to ωanti. The results confirm a good
robustness of the control policy to the environmental
conditions, which in this case is the ground level.

4.3 Optimal Control for the Monoped Case
The optimisation was run for several values of the mass to
validate the results for the different feedback dynamics.
Meanwhile, all the other parameters were the same as
described in the monoped case study. In contrast, the
Tegotae controller was applied in Eq. (11) to exploit the
adaptivity of the Tegotae feedback.

The values of the weights for the cost functions are reported in
Table 2 with respect to each simulation to determine the
effectiveness of the weights. It follows that the actual effect of
the weights is restricted to the power injection by the controller.
Meanwhile, the optimal controller does not have access to the
energy stored in the spring and the damping system or to the

FIGURE 4 | Hopping gait patterns (Top) in-phase hopping: ωin � 6 rad/s (Bottom) anti-phase hopping: ωanti � 7.5 rad/s. The upper and lower graphs show the
mechanical section (heights and forces) and control section (phases and feedbacks), respectively. The blue and red colors represent the left (1) and right legs (2),
respectively.
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FIGURE 5 |Hopping gait transition. The frequency ω is changed from ωin toωanti at t � 8 s. The upper and lower graphs depict the height of each leg and phase sinϕi
of each leg, respectively.

FIGURE 6 | Adaptation to a lower step (Top) In-phase hopping (Bottom) Anti-phase hopping. The ground level was lowered from 0 to −0.6 m at t � 10 s.
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vertical excursion, as shown in Supplementary Figures S1–S3 in
the Supplementary Material (SM). In contrast, the ability of
dynamically adapting to the mass changes of the Tegotae
controller is verified by the optimal controller as well, as
shown in Figures 7 (Top) to (Bottom). It is evident that the
effect of the first term Q2 is sufficient to reproduce, for three
different values of masses, to reproduce the effects of the Tegotae
control. This term corresponds to the energy consumption of the
controller. Therefore, the Tegotae control and an optimal control
that attempts to maximise the energy efficiency provide similar
results for different masses, thereby validating our hypothesis.
Further increments of the mass may require a change in the value
of σ or the use of a non-linear spring to avoid negative values of
vertical movements.

Not only was the Tegotae control action extremely similar
to the MS optimal control (see the Supplementary Material)
in all the cases, but also the position and velocity profiles
demonstrated certain similarities. In all the MS cases, the root
mean squared errors (RMSE) were found to be similar, as
reported in Table 2, as expected from previous
considerations. Finally, for all the cases considered in the
MS examples, the energy efficiency of the optimal controller as
expressed in Eq. (29) converged to a value similar to that of
the Tegotae controller, whose value was determined
considering 1 m as the maximum height reached, for
comparison purposes. The convergence is reported in
Figure 8 for MS1 and leads to a final RMSE of 0.22. This
seems to limit to the efficiency given the physical constraints
of the system. Moreover, increasing the weight Q slightly
increases the efficiency.

These results represent the MS case alone. The SS (see the
Supplementary Material) has several practical drawbacks, which
motivates this choice. First, it requires extremely high weights for
the sensitivity function of the final conditions and the smoothness
of the control policy. The conditions are automatically satisfied by
the continuity constraints in the MS. Second, the convergence is
more difficult to obtain. The FHOC for the SS method is
formulated by using the norm notation and the additional
weights to guarantee a sensitivity to the final conditions and
control policy.

min
q

∫T

0

∣∣∣∣∣∣∣∣qi _y∣∣∣∣∣∣∣∣2Q2
+ ∣∣∣∣∣∣∣∣Fk _y∣∣∣∣∣∣∣∣2R2 + ∣∣∣∣∣∣∣∣(l − y)∣∣∣∣∣∣∣∣2L2 + ∣∣∣∣∣∣∣∣qi∣∣∣∣∣∣∣∣2S2

+ ∣∣∣∣∣∣∣∣qi − qi−1
∣∣∣∣∣∣∣∣2
c1
dt + yend − y(T)2F2 +

∣∣∣∣∣∣∣∣ _yend − _y(T)∣∣∣∣∣∣∣∣2F2 (30)

Subject to

[ y0 − yin
_y0 − vin

] � 0, (Initial Value Constraints)

m€y(t, q) − (Fc + Fk −mg + q) � 0,

t ∈ [0,T], (ODE Constraint)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y − 0 − ϵ
−y + l + ϵ
_y − vmin

− _y + vmax

qi − 0 − ϵ
−qi + Fmax

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0, i � 0, . . . ,N , (Inequality Constraints)

In our case, c1 � 1e4 and F2 � 1e10. As previously mentioned,
these values are extremely high in comparison with the remaining
weights in the cost function as presented in Table 2. Meanwhile, for
the MS case, the weights remain the same as MS five in Table 3.
Interestingly, it has not been a trivial fact to obtain similar results
between the two optimal controllers. It is possible to obtain similar
control trends with respect to the MS case, as shown in Figure 9.
(Top) and (Bottom) However, there are also cases that are similar to
the Tegotae controller, as shown in Supplementary Figures S5,S6 in
the SM; this is achieved by varying the values of the weights. For the
SS case, the cost function is sensitive to the terms that are proper to
the monopod cost function in Eq. 29 and the spring force.

The MS routine is solved by using the interior-point method
that is provided by theMATLAB built-in function FMINCON. In
contrast, the SS routine is solved by using the BFGS method and
the SQP that is designed on the material, provided by Fagiano
(2019). With regard to the integration of the dynamics, the time
interval was split into 40 nodes with 2 points per sub-interval for
the MS case. Meanwhile, a sampling time of 0.01 s was used for
the SS case. In both cases, the integration of the dynamics was
conducted using an explicit Runge-Kutta method with an order of
four since the restricted dynamics were non-stiff. The step size
was 0.01 s in both the methods.

5 DISCUSSION

The main contribution of this study is to propose a control policy
with a reflex-like actuation (Eq. (11)) for the Tegotae-based
feedback law in the CPG in such a way that the controller
fruitfully exploits the embodiment (Pfeifer and Bongard, 2006;
Pfeifer et al., 2007). For the validation of the proposed method, we
first demonstrated the energy efficiency of the monopod model as
well as its robustness and adaptability using the controller. Then,
we demonstrated the gait transition for the bipedal model with its
robustness and adaptability. Based on the optimal control theory,
we designed an optimal controller and then compared it with the
Tegotae-based control input. The results indicate the Tegotae-
based feedback with reflex-like actuation results for optimal and
energy-efficient motion. This suggests the first evidence concerning
the optimal energy efficiency for the Tegotae approach.

This study is the first attempt to analyse the optimal energy
efficiency along with the adaptivity of the Tegotae approach.
Previous studies (Owaki et al., 2017) have mainly focused on the
temporal (timing/phase) modulation in the oscillators by the

TABLE 2 | Weight values for the cost functions and RMSE y, _y, and, q for MS.

Simulation m Q1 R1 L1 RMSE y RMSE _y RMSE q

MS 1 0.1 1e1 −1e1 −1e1 0.03 0.34 0.58
MS 2 0.1 0 −1e1 −1e1 0.03 0.34 0.58
MS 3 0.1 1e1 0 −1e1 0.03 0.34 0.58
MS 4 0.1 1e1 −1e1 0 0.03 0.34 0.58
MS 5 0.3 1e1 0 0 0.03 0.34 0.58
MS 6 0.6 1e1 0 0 0.03 0.34 0.58
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Tegotae feedback on GPG-based models. The proposed reflex-
like actuation can modulate the “amplitude” of the actuation via
Fa function (Eq. (11)), depending on sensory feedback Fk. As
presented in Table 1, in comparison with the previous methods,
the introduction of the Tegotae feedback f1 was optimal in terms

of the transient period for synchronisation and energy efficiency.
The reflex-like pathway (Figure 1A) resulted in a rapid response
(fast control loop) on motion generation, leading to the first
convergent time in Table 1. Furthermore, the proposed reflex-
like actuation (Eq. (11)) induced by the Tegotae feedback in the

FIGURE 7 | Results of multiple shooting methods. The blue and solid red dotted lines represent the designed optimal controller (MS method) and Tegotae
controller, respectively Top caseMS1 in Table 2:m � 0.1 (Middle) caseMS5 in Table 2:m � 0.3 Bottom case MS6 in Table 2:m � 0.6. Not only was the Tegotae control
action extremely similar to the MS optimal control in all the cases, but also the position and velocity profiles demonstrated certain similarities.
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CPG could generate an input (Figures 7, 9) identical to that of the
optimally designed controller, resulting in energy-efficient
motion, as presented in Table 1. As discussed in Section. 3,
the Tegotae approach has similarities (Eq. (26)) with the tacit
learning frameworks in Hayashibe and Shimoda (2014). Energy
efficiency is also achieved by the accumulation of a quantity that
needs to be minimised when directly integrating the state
variable. These facts suggest that our control policy, i.e. reflex-
like actuation with the Tegotae-based proprioceptive feedback in
the CPG, accomplishes optimal energy-efficient motion through
the dynamical learning process along with the interaction
between the controller, body, and environments (Pfeifer and
Bongard, 2006; Pfeifer et al., 2007).

The reflex-based leg coordination models (Ekeberg and
Pearson, 2005; Manoonpong et al., 2007; Lewinger and Quinn,
2011; Schilling et al., 2013; Dürr et al., 2019) and reflex-like
feedback integration into CPG (Ajallooeian et al., 2013; Dzeladini
et al., 2014; Li et al., 2014) have been studied in the past
two decades. Pioneering research on “event-driven” reflex
models in cats (Ekeberg and Pearson, 2005) and insects
(Lewinger and Quinn, 2011; Schilling et al., 2013; Dürr et al.,
2019) has been conducted, successfully reproducing various
aspects of animal inter- and intra-leg coordination during
locomotion. Manoonpong et al. (2007) demonstrated that a
reflex-based neural controller could achieve stable and fast
bipedal walking. Following the pioneering work integrating a
CPG with reflex models (Kimura et al., 1999), similar approaches
have been proposed. Ajallooeian et al. (2013); Li et al. (2014) also
proposed to integrate a CPG with “event-driven” reflex models
for adaptability against perturbations and environmental
changes; One of characteristic approaches in this line,
Dzeladini et al. (2014) introduced CPG as feed-forward
components in reflex-based neuromuscular models for human
walking, confirming the idea of using CPGs as feedback
predictors (Kuo (2002)) from the viewpoint of gait
modulation. In our work, the CPG oscillator is not a feedback
predictor, but can be considered as a representation of the

movement (phase ϕi), that is, an internal model. In the
Tegotae approcah, the Tegotae function Ti(ϕi,Fk) is defined as
the product of the function of intended motor command C(ϕi)
and sensory information S(Fk); hence, our reflex-like actuation
always modulates the motion based on the Tegotae feedback fi,
which increases the value of the Tegotae function Ti(ϕi,Fk),
leading to its adaptability and optimal energy efficiency, as
mentioned in previous paragraph.

Past studies that have used the Tegotae approach (Owaki et al.,
2012; Owaki and Ishiguro, 2017b; Owaki et al., 2017) have
demonstrated adaptability and behavioural diversity for
reproducing animal-like legged locomotion. For quadruped
locomotion, the simple and local sensory feedback law in the
CPG reproduced the adaptability against the change in mass
distribution, which resulted in horse-like or primate-like walking
patterns, and a spontaneous gait transition, from walking to
trotting and galloping, in response to the locomotion speed.
These studies for quadruped robots provide a basis for
establishing a design scheme based on the Tegotae approach.
For hexapod locomotion, Owaki et al. (2017) designed a minimal
model for the inter-limb coordination in a systematic manner
based on the Tegotae concept, successfully reproducing the
various aspects of the insect locomotion patterns, which
includes adaptability to changes in the body properties, e.g. leg
amputation. In line with these studies, this investigation also
successfully reproduces the adaptability (Figures 3, 6), and
behavioural diversity (Figures 4, 5) as well as the energy
efficiency. As discussed in previous studies, in the Tegotae
approach, the main aim of designing the Tegotae function is
to consider the physical consistency of the action and reaction for
the desired motion, and to design the Tegotae function such that
its value increases in such cases. Once such a Tegotae function is
designed, it is possible to modify the control variables in a
situation-dependent manner by increasing the value of the
Tegotae function as a feedback term zT(x, S)/zx. Therefore,
the Tegotae approach enables the design of an autonomous
decentralised controller in a systematic manner, by designing
the Tegotae function in line with the desired motions.

This study proposes a reflex-like actuation for the Tegotae-
based feedback law in the CPG. This is a significant contribution
for the actuation and sensory feedback on the adaptation process
to the environment and the optimisation process for energy
efficiency. However, one of the limitations of this study is that
we did not test the applicability of the Tegotae approach to the
real-world environment with a physical robot. In addition, it is
extremely difficult to perfectly model the dynamics in the real-
world environment. One of the key aspects based on the Tegotae
approach is the verification in the real world as shown in Owaki

FIGURE 8 | Energy-efficiency convergence in the MS method through
comparison with the Tegotae feedback case.

TABLE 3 | Weights values for the cost functions for the MS-SS.

Simulation m Q2 R2 L2 S2

MS-SS 1 0.3 1e1 −1e1 −1e1 1e3
MS-SS 2 0.6 1e1 −1e1 −1e1 1e3
MS-SS 3 0.4 1e1 −1e2 −1e2 1e3
MS-SS 4 0.6 1e1 −1e2 −1e2 1e3
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et al. (2012); Owaki and Ishiguro (2017b); Owaki et al. (2017).
Instead, we analysed the Tegotae control by using the optimal
control theory and provided evidence concerning the optimal
control input. Regarding the energy efficiency of tacit learning in
the real-world environment, it has been verified by achieving a
task with a redundant arm in Hayashibe and Shimoda (2018).
One potential future direction is to apply our control policy to a
robot with more degrees of freedom that performs more
complicated tasks. Our control policy is compatible with the
force/torque-based control of a physical robot, which is a
promising direction of study for future research.
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Body and Tail Coordination in the
Bluespot Salamander (Ambystoma
laterale) During Limb Regeneration
Cassandra M. Donatelli *, Keegan Lutek, Keshav Gupta and Emily M. Standen

Department of Biology, University of Ottawa, Ottawa, ON, Canada

Animals are incredibly good at adapting to changes in their environment, a trait envied by
most roboticists. Many animals use different gaits to seamlessly transition between land
and water and move through non-uniform terrains. In addition to adjusting to changes in
their environment, animals can adjust their locomotion to deal with missing or regenerating
limbs. Salamanders are an amphibious group of animals that can regenerate limbs, tails,
and even parts of the spinal cord in some species. After the loss of a limb, the salamander
successfully adjusts to constantly changing morphology as it regenerates the missing part.
This quality is of particular interest to roboticists looking to design devices that can adapt to
missing or malfunctioning components. While walking, an intact salamander uses its limbs,
body, and tail to propel itself along the ground. Its body and tail are coordinated in a
distinctive wave-like pattern. Understanding how their bending kinematics change as they
regrow lost limbs would provide important information to roboticists designing amphibious
machines meant to navigate through unpredictable and diverse terrain. We amputated
both hindlimbs of blue-spotted salamanders (Ambystoma laterale) and measured their
body and tail kinematics as the limbs regenerated. We quantified the change in the body
wave over time and compared them to an amphibious fish species, Polypterus senegalus.
We found that salamanders in the early stages of regeneration shift their kinematics, mostly
around their pectoral girdle, where there is a local increase in undulation frequency.
Amputated salamanders also show a reduced range of preferred walking speeds and an
increase in the number of bendingwaves along the body. This work could assist roboticists
working on terrestrial locomotion and water to land transitions.

Keywords: coordination, gait transition, limb loss, locomotion, embodiment, bio-inspired robotics, robotics-inspired
biology

INTRODUCTION

In nature, animals must adapt to a wide variety of perturbations to effectively move through their
environments. Successful navigation of perturbations is necessary for finding food, escaping
predation, reproduction, and nearly every other biological function requiring movement,
meaning that animals have evolved to be behaviorally plastic (Beddard, 1902; Gillis and Blob,
2001; Dingemanse and Wolf, 2013; Touchon et al., 2013; Vega and Ashley-Ross, 2020). Even with
advances in computational modeling, control algorithms, and robotics, technology is unable to
match the behavioral flexibility of an animal in nature (Kim et al., 2013). This often results in models
displaying unrealistic kinematics and robots getting stuck or damaged. Developing a greater
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understanding of how animals overcome obstacles in nature
could provide useful data for roboticists to design more robust
machines.

Fewer perturbations are more severe than losing a limb, yet
salamanders are able to survive through the loss and
subsequent regeneration of limbs in nature (Arenas Gómez
et al., 2017; Dwaraka and Voss, 2021; Joven et al., 2019). After
limb loss, the animal must adapt its locomotion to this acute
perturbation and then continue to modify their behavior over
weeks and months as the limb grows back. In some cases, the
lost appendage never fully recovers (Dwaraka and Voss,
2021), which must then result in a permanent change in
behavior. Though the limb regeneration process has been
studied extensively in the context of cellular signaling,
development, and phylogenetics (Arenas Gómez et al.,
2017; Dwaraka and Voss, 2021; Joven et al., 2019), the
change in kinematics has not been well described. We
therefore chose to study how the kinematics of the Blue-
spotted Salamander (Ambystoma laterale) changes during the
limb regeneration process.

Salamander kinematics have been well studied in a wide range
of scenarios from forward and backwards walking to aquatic to
terrestrial transitions (Ashley-Ross, 1994; Azizi and Horton,
2004; Cabelguen et al., 2010; Sheffield and Blob, 2011;
Karakasiliotis et al., 2013). During walking, there are three
motions used for forward propulsion: 1) girdle rotation
(10–18%), 2) limb rotation (26–28%), and 3) limb retraction
(56–62%) where the percentages describe the amount each
motion contributes to forward movement (Karakasiliotis et al.,
2013). Girdle rotation is of particular interest as it is a result of
local lateral bending of the vertebral column. Modeling with
robots has confirmed that axial bending (i.e., girdle rotation)
indeed plays an important role in walking and found that higher
coordination between the limbs and vertebral column results in
an increase in stride length (Karakasiliotis and Ijspeert, 2009;
Crespi et al., 2013).

In water, salamanders change their gait entirely, moving
from a sprawled tetrapod gait with limbs moving in an
alternating stepping pattern to an undulatory swimming
gait with limbs tucked against the body (Frolich and
Biewener, 1992). This swimming mode is more like that of
a fish than other tetrapods, such as dogs, which tend to use
their limbs as paddles without whole body undulation (Rivera
et al., 2011). This pre-programmed tendency to switch to body
undulation when limb frictional or loading forces disappear,
suggests that, when limbs are removed a similar increase in
body undulation may occur. In addition, one might expect
that removing the hind limbs of a salamander might elicit a
terrestrial “walking” gait similar to that of amphibious fish
that use pectoral fins for support but lack substantial pelvic
fins such as the Senegal Bichir (Polypterus senegalus). We
include data from Polypterus walking and swimming in this
study for comparison.

Central pattern generators (CPGs) are neural circuits that can
produce a patterned output without top down control (Duysens
and Van de Crommert, 1998). CPGs control rhythmic
movements such as walking, running, and swimming in both

vertebrates and invertebrates and, along with local sensory
feedback, make these movements robust to perturbations such
as uneven terrain (Pfluger and Burrows, 1978; Kanou et al., 2007;
Tytell et al., 2010; Garcia-Saura, 2015; Bidaye et al., 2018; Yasui
et al., 2019). Local CPGs can be associated with axial and
appendicular motion and decerebration and spinal transection
studies have shown that CPGs with sensory feedback can remain
active, resulting in effective locomotor function in the absence of
signals from the brain (Zareen et al., 2016).

Since salamanders are one of the earliest diverging
terrestrial tetrapods (Gueldre, 1992), it is thought that
these axial CPGs are similar to those found in fish and
other swimming vertebrates and that limb control evolved
on top of the existing spinal CPGs (Chevallier et al., 2008).
Computational and physical models of salamander gait
transitions suggest that sensory feedback from the limbs
causes the change in gait from a standing wave used in
walking to an undulatory wave used in swimming (Ijspeert
et al., 2007; Chevallier et al., 2008). This could mean that,
without limbs, the salamander would return to a more fish-
like undulatory gait. There is evidence for this in the
kinematics of S. lacertina, a salamander species that does
not have hindlimbs at all. During aquatic walking, its front
limbs step in an alternating stepping pattern similar to the way
the front limbs move during a tetrapod gait. However, its body
moves in a traveling wave like swimming, as opposed to a
standing wave like walking (Azizi and Horton, 2004).
Amputation of limbs could have differing effects on an
animal’s ability to locomote depending on the level of
neuro-connection between body and limbs.

The field of robotics and control could learn a lot from
how animals control motion and adapt to extreme
perturbations such as the loss of one or more limbs
(Trimmer and Lin, 2014; Chattunyakit et al., 2019; Kano
et al., 2019). This is especially important for robots deployed
in the field for long term missions such as deep sea or space
exploration (Koos et al., 2013). There are existing algorithms
for investigating new gaits after damage to a limb, but these
are computationally expensive, require precise knowledge of
the damaged part, and may result in further damage to the
robot (Koos et al., 2013). Other options include pre-
programming of gaits for specific limb-loss (Mostafa
et al., 2010; Kano et al., 2019) but this may fail if the
robot is damaged in an unexpected way. If we develop a
deeper understanding of how animals use a combination of
top-down control (CPGs), sensory feedback, and
morphology to overcome extreme perturbations, this
could be incorporated into future robotic design.

In this work we aim to understand more about how
vertebrates change their locomotor patterns and possible
control schemes to deal with perturbations by: 1)
describing the change in body kinematics as the
salamander regrows its hindlimbs, 2) discussing the control
mechanisms that could drive these kinematic changes and 3)
comparing the changing kinematics to the Senegal Bichir
(Polypterus senegalus), an amphibious fish species in order
to place this change in an evolutionary context.
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MATERIALS AND METHODS

Animals
We collected adult, Blue-spotted Salamanders (Ambystoma
laterale) during their spring migration in the summers of 2018
and 2019. Though we cannot control for the exact age of wild
caught animals, we can be sure that all animals are adults
(Canadian Herpetological Society, 2021). All salamanders were
collected locally during spring thaw as they crossed roadways to
reach breeding ponds (Ottawa, Canada; collection permit
1092653). They were housed at the University of Ottawa
aquatic animal facility under Animal Care Protocol number
BL-1926.

Surgery
Three individuals were chosen to undergo hindlimb removal
surgery. We anesthetized them with a 0.1% ethyl 3-
aminobenzoate methanesulfonate salt (MS222) for roughly
15 min or until they did not respond to stimuli. Once
anesthetized, both hindlimbs were removed using a fresh
scalpel blade (size 22) and pressure was applied to the wound
to stop bleeding if required. Just after surgery, a lidocaine solution
was infiltrated at the incision site and an intercoelomic injection
of Buprenorphine (50 mg/kg) was administered for pain control.
After surgery (Figure 1, Day 0), animals were allowed to recover
for 1 month before trials. After 1 month, the wounds from
surgery were healed and we could see that the regeneration
process had begun (Figure 1, Early).

Walking Trials
We recorded bouts of walking for each salamander at 1- and 2-
week intervals until their limbs were almost fully regenerated.
When recording animal locomotion, we first transferred them in
their home tanks from the housing facility to the filming room.
Once in the filming room, we recorded salamanders walking,
from above using a GoPro Hero 4 (GoPro Inc., San Mateo, CA,

United States) at 120 frames per second resulting in a top-down
view of walking bouts (Figures 2A,B). We filmed either until the
salamander was no longer interested in walking or until we had

FIGURE 1 | (A) Diagram of recovery process and other species used. There are three main stages to the limb recovery process. During the Early stage (light blue),
limb buds have begun to grow back. During the Middle stage (medium blue), toes have re-grown. During the Late stage (dark blue), limbmorphology is almost identical to
pre-surgery, though, in this study, it never recovers its original length. We compared the kinematics of the salamander to P. senegalus (orange) swimming and walking
trials. The color scheme will be consistent throughout the paper. (B) Shows the rate of limb regrowth (Limb Length Ratio, LCurrent/LOriginal) over time (Days Post
Amputation). Different shades of grey represent different individuals.

FIGURE 2 | Filming setup. We used a GoPro to film salamanders from a
top down view (A). The resulting videos (B) were processed using DLTdv8
(Hedrick, 2008; Jackson et al., 2016) to track the nose and tail, and custom
Matlab (v2020b, Mathworks, Needham, MA, United States) software in
to produce midlines (C).
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five good runs. We considered a good run to have six full steps,
and we excluded any trials with fewer steps post-filming.

Kinematic Analysis
Wemeasuredmidline kinematics of the salamanders walking using
DLTdv8 (Hedrick, 2008) and our own custom software written in
Matlab (v2020b, Mathworks, Needham, MA, United States). We
first semi-automatically tracked the nose and tail using DLTdv8.
Once those points were digitized, we used our own software to
automatically trace the midlines. Our software requests user input
to threshold the videos, then it converts them to binary, and uses
the location of the nose and tail digitized in DLTdv8 to locate the
animal and trace the midline. The midline tracing primarily uses
the bwskel function from the Image Processing toolbox, which
extracts the centerline and branches of binary objects. Once
skeletonized, we use the nose and tail points to find the
endpoints of the branches, choose the shortest path between the
two, and smooth the resulting midline. Once we extracted the
midlines, we used another Matlab script to measure body bending
amplitudes (BL), and frequencies (Hz) of 21 evenly spaced points
along the body (Figure 3). We also measured speed (BL/s), body
waves (waves/s), and stride length (BL). Body waves is presented in
waves/s to normalize for swimming speed. Stride length is defined
as the distance the animal traveled during one tail beat cycle which
allowed us to compare across conditions and between species.
Polypterus walking and swimming data from a previous
experiment were processed through the same code and used to
compare with the salamander walking.

In addition to these kinematic variables, we also measured the
change in limb length over time. Values are reported as “limb
length ratio” and represent the current length of the limb (Lcurrent)
as percentage of the original limb length (Loriginal).

Statistics
Kinematics data were imported into R (version 3.6.1) for
statistics. We used the nlme and car packages to create linear
mixed effect models. We chose to use linear mixed effects models
since these models offer more flexibility when dealing with

unequal sample sizes than, for example, a standard ANOVA.
This flexibility allows us to use all data from each individual,
rather than being forced to compute averages in order to have the
same number of data points per sample. We created four mixed
effect models. Our dependent variables were frequency, bending
amplitude, speed, and stride length. All models included limb
length ratio as a fixed effect. Our frequency, amplitude, and stride
length models also included speed as a fixed effect. For all these
models we included a random slope, modeled as days post
amputation nested inside individual. These variables were
chosen as random effects since each individual was recorded
at similar time intervals and could be prone to random
fluctuations in behavior on a day-to-day basis simply due to
the variable nature of animal behavior. Individual must also be
included as a random effect because of the repeated measures
structure within our dataset. We also performed pairwise t-tests
to determine differences between regeneration phases.

RESULTS

Salamander Walking
Our first set of models looked at changes in kinematics as the
limbs grew back. Here, limb length was included as a continuous
variable (Table 1). Limb length ratio (LCurrent/LOriginal), walking
speed (BL/s), and body position (%BL) had significant effects on
body wave frequency (Hz) (p < 0.001 for all comparisons). Limb
length ratio was a significant predictor of amplitude (BL) (p <
0.001) but position and speed were not (p � 0.703, p � 0.082,
respectively). Limb length ratio was also a significant predictor of
both walking speed (p < 0.001) and stride length (BL) (p < 0.001).
Speed was also significantly affected by stride length (p < 0.001).

Our paired t-tests looked at differences between regeneration
stages (Figure 1A; Table 2). These tests showed that there is a
significant difference in mean bending frequency along the body
between the Early regeneration stage and all other stages (p < 0.01
for all three comparisons). There is also a difference in mean
stride length between the pre-amputation trials and the Early and

FIGURE 3 | Kinematic variables. Amplitude (BL) and frequency (Hz) were measured at 21 evenly spaced points along the body (1 being the nose, 21 being the tail).
Amp Peaks are the number of peaks in the amplitude wave, Time (s) is the length of time between the first and last peak, and Distance (BL) is the distance the nose of the
salamander travels between the first and last peak. Statistics were done on the whole dataset, but some figures show only anatomical points of interest: nose, pectoral
girdle, middle (halfway between the pectoral and pelvic girdles), pelvic girdle, and tip of tail. Stride length (BL) measurements were based on movement of the tail.
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Middle stages (p < 0.001 for both) but no difference between the
pre-amputation trials and the Late regeneration stage trials.

In the early stages of regeneration, salamanders walk using a
higher undulation frequency than salamanders in later stages
(Figure 4A). Stride length increases steadily throughout the
regeneration process (Figure 4C). As expected, as walking

speed increases body undulation frequency and stride length
also increase (Figures 4B,D).

Comparison with another species
During the early stages of salamander limb regeneration, there is a
change in the way their bodies move. For salamanders in the early

TABLE 1 | LMER results.

Predictors

y∼ Limb length
ratio

Days post
amputation

Position Speed Stride length

Frequency p < 0.001 p � 0.065 p < 0.001 p < 0.001 n/a
Amplitude p < 0.001 p = 0.002 p � 0.703 p � 0.082 n/a
Speed p < 0.001 p < 0.001 n/a n/a p < 0.001
Stride length p < 0.001 p = 0.023 n/a n/a n/a

Bold entries indicate values that are significant (ie p < 0.05)

TABLE 2 | Paired t-test results. p-value adjusted using a Bonferroni correction. SDs were pooled.

Frequency Stride length

Early Middle Late Early Middle Late

Middle p < 0.001 — — p � 1.00 — —

Late p = 0.011 p � 1.000 — p � 0.184 p � 0.247 —

PreAmp p = 0.001 p � 0.515 p � 0.317 p < 0.001 p < 0.001 p = 0.004

Bold entries indicate values that are significant (ie p < 0.05)

FIGURE 4 | Salamander Kinematics. We measured walking speed (BL/s), bending frequency (Hz), and stride length (BL) over the course of limb regeneration.
Significant differences between groups (p < 0.05) are represented by *. Boxplots show whole body medians, standard deviations, and minimum/maximum values. (A)
Median body bending frequencies at the three regeneration time points plus the pre-amputation trials show that frequency is highest when the limbs are shortest. (B)
Body frequency plotted against speed with fit lines show that frequency increases with walking speed. (C)Median stride length showing that stride length increases
as limb length increases. (D) Stride length plotted against speed showing that stride length increases as speed increases.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6297135

Donatelli et al. Body-Tail Coordination in Salamanders

237

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


stages of recovery, the frequency of the pelvic girdle is increased
compared to other parts of the body (Figure 5A). As they recover,
the frequencies of the pelvic and pectoral girdles begin to match

more closely. For amplitudes, the pattern of salamander walking
is consistent throughout recovery, with the highest amplitudes at
the head and tail, though the nodes about which the amplitudes
oscillate, change (Figures 5B, 6).

Overall, stride length increases as limbs regenerate with a significant
difference between the Early andMiddle stages of regeneration and the
Pre-Amputation trials. Although we predicted that salamanders
walking without hind limbs would resemble walking Polypterus, we
find the opposite. With their limbs removed, the body kinematics of
salamander walking is more like Polypterus or salamander swimming
in that the number of waves along the body is increased. As the limbs
regenerate, the kinematics shift and more closely resembles intact
salamander walking prior to limb amputation.

DISCUSSION

Salamander Kinematics Change During
Regeneration
The most notable change in kinematics after hindlimb
amputation in salamanders, is a shift in apparent undulation
frequency of the pelvic girdle, the region where the hindlimbs
articulate with the vertebra column. During the early stages of
regeneration, the pelvic girdle sways back and forth at a frequency
of 5 Hz while the rest of the body is swaying closer to 4 Hz
(Figure 5A). Two potential explanations exist for this increase in
frequency. First, without the sensory feedback associated with
limb to ground contact, it is possible that pelvic girdle CPG
modulation changes. Second, the increase in pelvic frequency
may be due to a simple mechanical constraint principle.

If pelvic girdle CPG modulation is responsible for our observed
change in kinematics, a change in local sensory feedback could be
acting in two ways. If local force feedback from limb to ground
contact inhibits axial (vertebral) CPGs in intact animals, the top-
down (from the brain) signal that drives body oscillation would be
uninhibited at the pelvis in amputated individuals, resulting in an
increase in the speed of rotation of the hip. In contrast, if an absent
or reduced sensory signal during regeneration is perceived as a
misstep, the top-down signal could be “actively” increased,
impacting local CPGs in the limbs and resulting in an increase
in the speed of rotation of the pelvic girdle and local bending of the
spine. Indeed, we observed that salamanders will occasionally take
two steps with their reduced hindlimbs during a single front limb
step, suggesting a perception of misstepmay be the case. One could
implant EMGs in the musculature along the body to investigate the
change in CPG rhythm. If pelvic girdle CPG modulation changes
are responsible for the increase in frequency, we would expect a
change in intensity of the muscle signal at the pelvic girdle and/or
an interruption in the standing wave of body muscle activation
traveling from head to tail when the hindlimbs fail to contact the
ground. If there is no change in axial muscle activation, the change
in frequency must be due to mechanics.

One could also do an electrophysiology prep rather than use
EMGs to measure the activation patterns of motor neurons
directly. This type of work has been done in cockroaches and
stick-insects using both in-vitro, fictive walking preps as well as
semi-intact preps (Borgmann et al., 2009; Fuchs et al., 2011). The

FIGURE 5 | Salamander kinematics during recovery compared with fish
kinematics. Kinematic patterns change as the salamander regenerates its
legs. Significant differences between means (p < 0.05) noted by *. (A) Bending
frequency (Hz) at five specific body points indicated by different shades
of grey. From lighter to darker the shades indicate nose, pectoral girdle,
middle, pelvic girdle, and tail. In our frequency plot (A.), we did not include the
nose and pectoral girdle points for Polypterus swimming, as the low amplitude
and flapping pectoral fins lead to noise in the frequency calculations. (B)
Bending amplitude (BL) at five body points shown on a log scale. General
trends show that portion(s) of the body used for propulsion have the lowest
frequencies and highest amplitudes. (C) Stride length (BL) of salamanders at
different time points compared with P. senegalus swimming and walking. The
salamander data here is the same date presented in Figure 4C.
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downsides of experiments like this are 1) for an in-vitro
experiment, one would have to eliminate the mechanical
perturbation of a limb hitting the ground. As a result, it would
be hard to eliminate mechanical constraints from one’s
conclusions. 2) The semi-intact prep procedure in vertebrates
is incredibly invasive. There are ethical concerns regarding this
type of procedure with vertebrates and the number of individuals
one would need to use may be too high.

If the mechanical constraint principle is causing changing
kinematics, we would expect the rhythm of the axial CPG to
remain constant post amputation, which we could infer from
axial EMGs. However, the mechanical constraint of the limb
contacting the ground would be absent, allowing for more
bending waves to be present along the body and an increase in
rotation frequency at the girdle. Because there is no increase in the
frequency of body sections not associated with lost limbs, mechanical
constraint alone seems an unlikely explanation for the changeswe see.
It does not rule out the possibility that independent limb and axial
CPGs at the girdles share in excitatory coupling, independent of
sensory feedback, which, when free of mechanical constraint,
increases the axial CPG oscillation signal locally at the limb
(Delvolvé et al., 1997). This type of coupling has been shown in
cockroaches, where an excitatory stimulation to one leg motor
neuron results in coordinated activity in the ganglia of
neighboring limbs (Fuchs et al., 2011). Other work on stick
insects showed that front leg movement alone could activate
descending pathways and coordinate the movement of the other
limbs (Borgmann et al., 2009).

Interaction of limb and axial CPGs has been used to explain
coordination between fore and hind limbs (Delvolvé et al., 1997).
In this case, limb CPGs oscillate between increasing and
decreasing the excitability of axial CPGs, resulting in the
formation of coordinated limb motion and a standing body

wave during walking. During the middle and late stages of
regeneration, when limbs are regaining contact with the
ground, the frequencies of both the pectoral and pelvic girdles
sync at 3.5 Hz (Figure 5). Because girdles become phase locked
regardless of the size of the regenerating limb, this data suggests a
threshold control mechanism where sensory feedback from the
limb is playing a role in helping to coordinate limb and body
oscillation frequencies independent from the strength of the
mechanical constraint on the system.

Although sensory feedback may have an essential role in
coordinating the walking cycle, mechanical constraint contributes
to overall animal performance. During early stages of regeneration,
the range of walking speeds is much lower than in the later stages
(Figure 4D). Salamanders with no or very short hindlimbs have
reduced stride lengths and a limited ability to raise their posterior
trunk off the substrate. A higher speedmay be necessary to overcome
frictional forces and move at all, while shorter stride length limits
distance per step cycle; both of thesemechanically reduce the range of
speeds that can be attained with reduced hind limbs (Figures 4B,D).
In addition, themechanical consequence of over rotation of the pelvic
girdle, shifts the center of mass causing the head of the salamander to
reflexively swing in the opposite direction correcting the overall path
of the center of mass (Figure 7A). The result is that animals in the
early stages of regeneration have a less optimal forwardmotion as the
mass of the animal shifts more from side to side compared with later
stage animals.

Salamander Kinematics Resemble a
Swimming Fish When Limbs Are Removed
Salamander swimming, like most undulatory fish swimming,
is characterized by a traveling wave passing from head to tail,
while walking is a standing wave with nodes at the pelvic and

FIGURE 6 | Change in kinematics between salamanders in the early and late stages of regeneration (blue) compared with Polypterus kinematics (orange). (A)
Number of waves present on the body of the salamander scaled by walking speed). (B) Representative midline trace of a salamander walking in the early stages of
regeneration. (C) Representative midline trace of a salamander walking in the late stages of regeneration. (D) Frequency (Hz) along the body of a salamander walking
during early and late stages. (E) Amplitude (BL) along the body of a salamander walking during early and late stages. For D and E the top of the plot corresponds to
the nose and the bottom to the tail. (F) Representative midline trace of a Polypterus swimming. (G) Representative midline trace of a Polypterus walking.
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pectoral girdles. The amphibious fish, Polypterus, uses
substantial pectoral fins to weight-bear when walking but
lacks hind fin support. Instead, it uses an exaggerated full
body and tail oscillation to push off the substrate (Figure 5B).
We predicted, based on their similar body morphologies, that
a salamander with its hind limbs removed might move like an
amphibious walking fish, such as Polypterus. Contrary to this
prediction, our data shows that, after leg amputation,
salamander walking kinematics more closely resembles
Polypterus swimming kinematics with an increase in the
number of waves along the body (Figure 6). As limbs are
more fully regenerated, there is a reduction in waves along the
body and the gait more closely resembles the familiar standing
wave associated with intact salamander walking as well as
Polypterus walking. This may be the result of a universal
control principle driving both salamander and Polypterus
locomotion.

Complexity in the Swimming to Walking
Model and What It Means for Overall
Vertebrate Motor Control
The CPG that controls undulatory swimming in the
salamander is similar to that found in more early derived
animals, such as the lamprey, suggesting that the activation
pattern is constrained evolutionarily (Chevallier et al., 2008;
Tytell et al., 2010). Even animals that predominantly use their
fins for swimming, like Polypterus (Standen et al., 2014) often
have accompanying, subtle asynchronous body and tail
undulations suggesting that the basal swimming CPG is
active in the background. When Polypterus swim faster,
they tuck their fins against the body, and the more basal
undulatory CPG appears to take over.

If the neural control scheme is similar between
salamanders and walking fishes, models that explain the
transition from swimming to walking in salamander
(Ijspeert et al., 2007) could also explain the speed
transition in swimming fish. When salamanders transition
from walking to swimming, they tuck their limbs against their
bodies and increase undulation frequency and amplitude just

like a Polypterus increasing swim speed. The transition in
Polypterus from swimming to walking, however, adds some
complexity to the system because body oscillations increase
and fin oscillation switches from synchronous oscillation to
contralateral “stepping” (Standen et al., 2014; Standen et al.,
2016). Similarly, salamanders switch from “synchronous”
(inactive) limbs during swimming to contralateral stepping.
If the underlying axial CPGs are always active, in both
animals, mechanical constraints such as changes in friction
and increased force regimes could be responsible for the
differences in kinematics between slow swimming and
walking.

Mechanical constraint may also influence the axial
waveform of both Polypterus and salamanders as they move
from an aquatic to terrestrial environment, or from having
four to two limbs. In a salamander, limbs are used to lift the
body away from ground frictional forces, focusing force
constraints at the girdles, and driving the standing wave
gait. In Polypterus, pectoral fins have limited ability to lift
the body, thus frictional forces are experienced strongly by
both fins and body, causing “stepping” in the pectoral fins and
an increased axial oscillation in the tail. Even if the base signal
from the brain to the axial CPGs remains a traveling wave,
mechanical constraints at the pectoral and pelvic girdles in a
salamander, and at the pectoral girdle and the tail in the fish,
could constrain the traveling wave and cause a shift to a more
standing form. In the salamander this becomes a true standing
wave, while in the Polypterus, the posterior force
concentration is more spread out and closer to the tail,
resulting in a hybrid body wave that has both standing and
traveling wave components. When the salamander lacks hind
limbs, it too has a less concentrated posterior constraint. The
elevation ability of the forelimbs reduces the impact of this
change and the result is an increase in body waves that
resemble the waves seen along the body during Polypterus
swimming rather than walking. Interestingly, underwater
walking in S. lacertina, a salamander that lacks hind legs,
also shows a traveling axial body wave that accompanies fore-
limb stepping (Azizi and Horton, 2004). All of this together
could mean that the axial CPG is always active as the base

FIGURE 7 | Salamanders use a different gait in early vs. late stages of limb regeneration. (A) During early stages of regeneration, salamanders shift their pelvic
girdles from side to side at a higher frequency than the rest of the body, resulting in a gait that looks like a hybrid between a standing and traveling wave. (B) During later
stages, they shift to a more typical standing wave.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6297138

Donatelli et al. Body-Tail Coordination in Salamanders

240

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


controller for locomotion in vertebrates. The changes we see
are only a result of changes in loading regimes which cause
spikes in sensory feedback from various appendages and
body parts.

Insights for the Control of Limbed Robots
In nature, salamanders deal with perturbations, including limb loss,
quickly and seamlessly enough to survive. Currently, there are few
robots that can deal with such an extreme perturbation as the loss of
two out of four limbs without pre-programmed or computationally
expensive control regimes. When a salamander loses its limbs, the
entire gait changes from a standing wave in intact salamanders, to a
hybrid traveling-standing wave in amputated animals. The addition
of these undulations at the nose and pectoral girdle seems to keep the
center of mass of the animal moving forward (Figure 7). So, rather
than focus on exact limb placement, the animal is prioritizing overall
forward movement.

Limbed robots could use the same strategy to deal with
damaged or lost limbs. Rather than pre-programming exact
leg placements, there could be a greater focus on center of mass
movement. Some robots, such as Salamander Robotica (Crespi
et al., 2013) already have the ability to transition to a new gait
when moving from land to water using sensory feedback and an
increase in axial CPG frequency. A similar control scheme could
be implemented when limbs are lost. Perhaps an inertial
measurement unit (IMU) placed at the center of mass could
drive rotations and undulations at key points, such as the nose,
pectoral, and pelvic regions. Feedback from these points in
conjunction with current advances in control algorithms
(Santos and Matos, 2012; Koos et al., 2013; Kano et al.,
2019) could allow the robot to tune a baseline axial CPG
into a hybrid gait suitable for whatever force environment
it’s in. Then, the robot could not only transition from
aquatic to terrestrial locomotion but also deal with a range
of perturbations from bumps in the road to loss of body parts. A
robot with such a controller could be deployed to a much larger
range of terrains, making it ideal for exploration of unknown
environments.
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Hybrid Parallel Compliance Allows
Robots to Operate With Sensorimotor
Delays and Low Control Frequencies
Milad Shafiee Ashtiani†, Alborz Aghamaleki Sarvestani† and Alexander Badri-Spröwitz*

Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany

Animals locomote robustly and agile, albeit significant sensorimotor delays of their nervous
system and the harsh loading conditions resulting from repeated, high-frequent impacts.
The engineered sensorimotor control in legged robots is implemented with high control
frequencies, often in the kilohertz range. Consequently, robot sensors and actuators can
be polled within a few milliseconds. However, especially at harsh impacts with unknown
touch-down timing, controllers of legged robots can become unstable, while animals are
seemingly not affected. We examine this discrepancy and suggest and implement a hybrid
system consisting of a parallel compliant leg joint with varying amounts of passive stiffness
and a virtual leg length controller. We present systematic experiments both in computer
simulation and robot hardware. Our system shows previously unseen robustness, in the
presence of sensorimotor delays up to 60 ms, or control frequencies as low as 20 Hz, for a
drop landing task from 1.3 leg lengths high and with a compliance ratio (fraction of physical
stiffness of the sum of virtual and physical stiffness) of 0.7. In computer simulations, we
report successful drop-landings from 3.8 leg lengths (1.2 m) for a 2 kg quadruped robot
with 100 Hz control frequency and a sensorimotor delay of 35ms.

Keywords: legged robots, parallel and passive compliance, hybrid actuation and leg design, sensorimotor delay,
Feedback, latency, parallel elastic actuation

1 INTRODUCTION

Animals use muscle-tendon networks, which they control by spinal circuits, the brainstem, and with
sensory feedback to produce joint torque and work for legged locomotion (Forssberg et al., 1977;
Grillner and Wallen, 1985; Biewener, 1989; Ijspeert, 2008; Takakusaki et al., 2016; Stratmann et al.,
2018). The response time for muscle action caused by an external stimulus is related to axonal
conduction velocity and animal body weight, and the resulting sensorimotor delay can be as slow as
41 ms in a 4 kg, cat-sized animal (More et al., 2010; Franklin and Wolpert, 2011; More and Donelan,
2018). House cats run with up to 5 Hz locomotion frequency (Bertram et al., 2014). At an assumed
duty cycle of 0.4 the stance phase lasts 80 ms, and the animal would be sensor-blind for half its stance
phase, i.e., during the entire force ramp-up time. We often assume feedback to be critical in
challenging conditions like in rough terrain locomotion. However, running birds and other animals
traverse hidden perturbations with ease, albeit limited sensorimotor capabilities (Daley et al., 2006;
Ernst et al., 2018).

Animal locomotion control is simplified by a morphology with tendons and muscles with
intrinsic physical stiffness (Alexander, 1990; Blickhan et al., 2007a). Physical elasticities mounted
serially like tendons can lead to under-actuation and reduced controllability. However, animals show
no obvious signs of decline in robustness, responsiveness, or agility. Manymuscle-tendons are part of
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more extensive networks with parallel muscle-tendon units,
requiring sensorimotor coordination (Lombard, 1903;
Hutchinson et al., 2005). This raises two questions: For
parallel mounted active and passive stiffness, how do animals
deal with significant sensorimotor delays (Figure 1A)? And how
are legged robots impacted (Figure 1B)? This section briefly
reviews concepts from biomechanics and legged robotics dealing
with sensorimotor delays, the control of leg forces, especially at
leg impacts, and active and passive joint stiffness. In the main part
of this work we present a robotic proof-of-concept characterizing
parallel active and passive stiffness as one source of robustness
against adverse conditions for feedback controllers.

Inspired by animal morphology and passive and active leg
stiffness, legged robot designs often include mechanical springs
(Nasiri et al., 2016; Ambrose and Ames, 2020). Series elastic
actuation (SEA) can simplify control, improve robustness and
interaction safety, and protect actuators from overloads (Raibert
et al., 1984; Robinson et al., 1999; Pratt and Krupp, 2004; Hutter
et al., 2011; Calanca et al., 2015; Hutter et al., 2016;
AhmadSharbafi et al., 2020). Designs with parallel mounted
springs and actuators (parallel elastic actuation, PEA) can
increase leg forces, improve locomotion energy efficiency, and
reduce actuator loading (Gunther et al., 2015; Niehues et al., 2015;
Plooij et al., 2016; Yesilevskiy et al., 2016; Liu et al., 2018; Toxiri
et al., 2018; Yesilevskiy et al., 2018; Roozing et al., 2019; Ambrose
and Ames, 2020). Combined parallel and serial elastic designs
have been proposed, leading to reduced peak torques and
improved locomotion applicability (Grimmer et al., 2012). Leg
stiffness is altered mechanically in several ways; decoupling
actuator and spring action during the locomotion cycle can
simplify control and improve energy efficiency (Wiggin et al.,
2011; Spröwitz et al., 2013). Variable elastic mechanisms augment
physical stiffness for efficient actuation (Choi et al., 2011;
Mathijssen et al., 2014; Braun et al., 2016). Until today, it
remains challenging to effectively alter and rapidly manipulate
compliance under high loads while keeping the mechanisms
compact, robust, and lightweight.

Serial and parallel elastic-legged robots can locomote by feed-
forward control and without system state knowledge from
feedback (Iida and Pfeifer, 2004; Narioka et al., 2012; Spröwitz
et al., 2018; Ruppert and Spröwitz, 2019). However, passive,
compliant designs are under-actuated and show limited
controllability. Parallel elastic designs can maintain good
control authority; when controllability is more needed than
spring-based natural dynamics, the actuator overrides the
spring’s action (Verstraten et al., 2016). Usually, parallel elastic
legs are designed with strong springs providing all essential
torques and forces. Consequently, strong, relatively heavy, and
fast actuators are required to override springs.

Legged robots with proprioceptive actuation and sensing and
quasi-direct drives feature the highest control authority,
compared to passive and partially actuated designs (Seok et al.,
2012; Ding and Park, 2017; Park et al., 2017). These legged
machines are agile and fast, they jump high, and land robustly
(Park et al., 2017; Grimminger et al., 2020). From a sensorimotor
perspective, proprioceptive actuators require 1) low
communication and control delays in the range of a few

milliseconds allowing 2) high-frequency control above 500 Hz,
3) accurate force and joint speed sensing, 4) and precise touch-
down sensing (Bledt et al., 2018; Grimminger et al., 2020; Li et al.,
2020). Not all conditions are always met, especially in unknown
terrain and during harsh touch-downs, when actuator gains are
changed, and when sensor noise indirectly causes feedback delays
(Hubicki et al., 2016; Hammoud et al., 2020).

Robot force sensors are affected by leg impacts loading legs
from zero to multiple body weights in a few ten milliseconds, and
leading to wobbling masses (Günther et al., 2003; Mo et al., 2020).
Impact vibrations transfer to the sensor’s mechanics and appear
as sensor noise requiring processing (Spröwitz et al., 2018;
Grimminger et al., 2020). Low-noise leg force sensors are
being developed, yet there remains a trade-off between
sensitivity and specificity, sensor noise from impacts, and
sensor weight and complexity (Ananthanarayanan et al., 2012;
Hutter et al., 2014; Grimminger et al., 2020; Ruppert and Badri-
Spröwitz, 2020). Noisy force data can be filtered to identify touch-
down and leg loading uniquely, but filtering adds to the overall
sensorimotor delay; for example, delays of 31 ms are documented
to uniquely identify touch down with proprioceptive sensing
(Grimminger et al., 2020). Monitoring the deflection of
physical joint elasticity provides alternative leg loading
information, for example, for virtual model control (Pratt
et al., 1997). Virtual damping assumes precise speed
estimation, but numerically differentiating noisy signals

FIGURE 1 | (A) Animal locomotion control is subject to sensorimotor
delays from sensing, communication, and actuation. The drawing is loosely
inspired by Figure 1 of More and Donelan (2018). (B) Robots typically have
lower intrinsic delays from electronic sensing and communication.
Instead, delays are caused, for example, by filtering noisy data. We
systematically tested robot controllers with varying sensorimotor delay and
control frequency. We hypothesized that a hybrid system comprised of
passive joint elasticity and parallel active joint stiffness can reject sensorimotor
delays robustly, for appropriate compliance ratios.
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requires filtering for sufficiently smooth signals, leading to
feedback delay (Flacco et al., 2012; Hammoud et al., 2020).

Robot-internal electrical communication is limited only by the
speed of light, and with relatively short wire lengths
communication delays are minimal. Contrary, teleoperation
between operator and legged robot over long-distance can lead
to significant feedback delays (Varkonyi et al., 2014). Dedicated
force feedback control can robustly deal with limited delays;
beyond that, control destabilizes (Lee and Spong, 2006;
Shafiee-Ashtiani et al., 2017; Shafiee et al., 2019). The
applicability of high-level locomotion planners is related to
control frequency and therefore also to sensorimotor delay;
current planners run on time for control frequencies above
100 Hz (Ponton et al., 2018; Mastalli et al., 2020). Legged
robots intrinsically tolerating low control frequencies are
therefore good candidates for complex online locomotion
planners.

Besides virtual and physical springs, both virtual and physical
damping have been applied to control legged locomotion, also as
part of impedance control (Seok et al., 2012; Boaventura et al.,
2013; Nagayama et al., 2016; Park et al., 2017; Heim et al., 2020;
Mo et al., 2020). By dissipating excess potential and kinetic energy
and producing damping forces, leg reaction forces are adapted,
and post-impact oscillations are reduced (Blickhan et al., 2007a;
Haeufle et al., 2014; Semini et al., 2015). Virtual damping control
requires precise speed estimation, whichmakes themethod brittle
in the presence of sensor noise (Bledt et al., 2018; Hammoud et al.,
2020). Mechanical leg dampers are immune to feedback delays
and sensor noise but must actively be switched off when not
required (Mo et al., 2020).

In animals, upper limb control is subject to sensorimotor
delays, like during manipulation tasks. Humans and other
animals manipulate objects by exploiting muscle-tendon
elasticities, effectively changing joint stiffness (Franklin et al.,
2004). Antagonistic pairs of muscle-tendons can be prestressed by
feed-forward (‘preflex’) control, leading to increased joint
stiffness for a given posture independent from feedback delay,
but with limited movement range (Hogan, 1984; Crevecoeur and
Scott, 2014). Alternatively, reflexes can alter joint stiffness. Mouel
and Brette (2019) show that increased joint stiffness should be
compensated for by reduced sensorimotor gains; otherwise,
delayed feedback leads to unstable behavior. Setting joint
impedance through feed-forward sensorimotor commands
might allow stable upper limb postures with noisy state
estimation (Berret and Jean, 2020). Upper limb manipulation
and lower limb locomotion tasks differ in their respective loading
scenarios. Most manipulation tasks are continuous, while legged
locomotion is always hybrid and non-continuous. Leg forces and
loading times depend on body weight and drop height. The leg
forces in this work ramp up from zero to body weights within
0.1 s and lead to joint angle changes above 45°. End-effector forces
during manipulation are typically within the range of the object’s
weight instead of the user’s body weight (Crevecoeur and Scott,
2014).

In this work, we aim to merge two diametrical principles while
maintaining their best properties; 1) Passive leg joint compliance
that works without feedback and at low control frequency, and 2)

active joint compliance providing control authority. We
hypothesize that, for a given robot design and locomotion
task, there exists a range of compliance ratios—a ‘hybrid’
range—that works best despite significant feedback delays and
low control frequencies.

This work uniquely contributes as follows; We systematically
characterized the full range of active-to-passive parallel
compliance ratios for a given total leg joint compliance. We
simulate adverse controller conditions in simulated and hardware
drop landings, including significant feedback delays, low control
frequencies, and varying duty cycles. Previous work in parallel-
elastic legged robotics typically investigated parallel compliance
with high-frequency and low delay actuation (Mazumdar et al.,
2016).

In Section 2, we present a stability analysis of a simplified
model in the presence of sensorimotor delays, for two ratios of
parallel compliance. We then present computer simulations
and hardware experiments and investigate the effect of control
frequencies, sensorimotor delays, and duty cycles on a robot
leg with varying ratios of parallel compliance, for drop-
landings (Section 3). We also characterize a simulated
quadruped robot made of four of these legs, for multiple
drop-landing heights. We discuss the work in Section 4,
and conclude in Section 5.

2 MATERIALS AND METHODS

We quantify the total (sum of) system compliance as active
compliance in parallel to passive (spring-based) compliance,
acting at the knee joint (Figure 1B):

Ktotal � Kactive + Kpassive (1)

where Kpassive [Nm/rad] is the joint’s passive rotational stiffness,
Kactive [Nm/rad] is the joint’s active, virtual, rotational stiffness
produced by the actuator. Ktotal [Nm/rad] is the summed up
rotational joint stiffness. We define a ‘compliance ratio’ λpassive as
the ratio of passive stiffness and total stiffness:

λpassive � Kpassive/Ktotal (2)

Hence, for a compliance ratio λpassive � 0.1 the knee spring
supplies 10% of the knee torque to carry the robot, and the knee
actuator supplies the remaining 90%. A λpassive of 1.0 indicates a
knee joint with a physical spring and no motor.

2.1 Theoretical Analysis of a Simplified,
Reduced Model of an Actuated Pendulum
We analyzed a simplified system with parallel compliance, to
analytically quantify the effects of sensorimotor delays. The
reduced order model consists of a strut-like leg mounted as a
single degree-of-freedom pendulum and represents a simplified
robot lower leg (Figure 4A). The equations governing the
pendulum motion are:

I€θ + mgL · sin(θ − θ0) + Kpassive(θ − θ0) + D _θ � τm (3)
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where D � 0.14Nms/rad is the system damping, Kpassive is the
stiffness of the parallel compliant element, L � 0.16m is the
center of mass distance to the pivot point, m � 0.5 kg is the
mass, I � mL2 is the moment of inertia, g is the standard gravity,
and θ0 is the equilibrium joint angle of the relaxed spring. We set
a total stiffness of Ktotal � 1.15Nm/rad. The instantaneous joint
angle is θ, and τknee is the knee joint control torque input,
implemented as active compliance:

I€θ +mgL · sin(θ − θ0) + Kpassive(θ − θ0) + D _θ
� −Kactive(θfeedback − θ0) (4)

where Kactive is the active motor compliance. The sensor reads the
joint angle θfeedback. We assume a small enough angular deviation
of the pendulum around the equilibrium point:
sin(θ − θ0)x(θ − θ0), which allows to write Eq. 4 as a linear
differential equation. We converted Equation 4 to the Laplace
domain and incorporated a fixed feedback time delay td of the
control input (active compliance). The resulting closed-loop
system transfer function can be presented in the frequency
domain as:

Θs

Θds
� Kactivee−td s +mgL + Kpassive

s2I + Ds + Kactivee− td s + Kpassive +mgL
(5)

We linearized the system’s exponential time delay term
with a third-order Padé approximation. A system pole
analysis of this simple system provides an intuitive
understanding of the effects of two compliance ratios for a
given total joint stiffness on closed-loop stability, and for
given sensorimotor delays.

2.2 Computer Simulation of Articulated
Robot Legs
We characterized a single, articulated robot leg with hybrid
joint compliance. Drop landings are one of the most
challenging tasks due to high, impulse-like ground
reaction forces, and nonlinear and hybrid leg loading.
Drop landing is similar to a step response perturbation,
which is a conventional control theory tool to characterize
black box systems. We computer simulated the robot leg in
PyBullet (Coumans and Bai, 2019), and performed extensive
drop-landing simulations for a broad range of sensorimotor
delays, duty cycle frequencies, and λpassive. We simulated a
single leg and a quadruped robot, both modified from the
open-source quadruped robot Solo (Grimminger et al.,
2020).

In Figure 2, we show the control and sensorimotor strategies
tested. The black curve is the schematic, desired knee motor
torque trajectory. The control frequency (step-like, brown line) is
measured in commands per second. For reference, the control
frequency of proprioceptive actuation in legged robots is often
around 1 kHz, i.e., a cycle period takes dtcontrol � 1

f � 1ms. We are
especially interested in investigating scenarios with control
frequencies well below 1 kHz.

Torque is applied with three strategies; First, the activation
duration dtactivation is defined as the time period between control

commands, i.e., dtactivation � DC × dtcontrol. The activation
duration lasts at least 1 ms and at most 1

f . For dtactivation,min,
the control command is applied for a period of 1 ms and then
reset to zero. For dtactivation,max, the actuator will maintain its
value until the control command is updated (Figure 2A, brown
line). Second, we applied a sensorimotor delay to the control
command (Figure 2B). Third, the force-activity relationship of
muscles is not fully understood (Roberts and Gabaldón, 2008),
and we included tests with varying duty cycles, defined as the
fraction of dtcontrol with a non-zero actuator torque
(Figure 2C).

The active compliance controller knee joint input is:

τknee,motor � Ktotal(1 − λpassive)(θfeedback,knee − θ0,knee) (6)

To simulate the spring in PyBullet, we implemented a knee
joint spring torque:

τknee,spring � Ktotal(λpassive)(θknee − θ0,knee) (7)

2.3 Setup Hardware Experiments
We modified a single leg of the eight degree-of-freedom (8-
DOF), open-source, quadruped robot ‘Solo’ (Grimminger
et al., 2020). The leg has two active degrees of freedom, one
at the hip and one at the knee. Both leg segments are 0.16 m
long, the lower leg mounts a semi-circular foot of 15 mm
radius. A brushless motor (Antigravity MN4004-kv380,
T-Motor) drives a two-stage belt transmission with an
overall 9 : 1 gear ratio for each active joint. An optical
encoder (AEDT-9810-T00, Avago) measures the motor’s
rotor position, which is recalculated into joint angles. We
mounted physical springs in parallel to the knee joint (SWY
16.5–30 for λpassive � 1.0, SWY 16.5–45 for λpassive � 0.67, SWY
16.5–80 for λpassive � 0.37, Misumi). The spring’s tendon
inserts into a knee joint pulley with radius 18.9 mm
(Figure 3B). The spring mount allows rapid exchange of
springs between experiments.

To simplify the touch-down scenario, the robot leg was
dropped guided by a vertical rail (Figure 3A). The hip joint
was constrained to follow half of the knee joint angle at all times,
controlled by a position controller creating foot contact
vertically below the hip joint. We recorded the vertical hip
position with two draw-wire sensors (LX-PA-40, WayCon)
mounted above and below the robot, to cancel out single
sensor force bias. The hip position allows quantifying the
robot’s landing behavior and characterizing hybrid
compliance. The hip position was sampled by an analog-to-
digital (A/D) converter on the brushless motor driver board.
The motor board sends motor position and vertical position
data to the PC communication board, via a serial peripheral
interface (SPI). The PC communication board connects the
motor driver board via EtherCAT to a PC (Intel Xeon(R) W-
2145 CPU, 3.7 GHz, 16 cores, 64 bit, 62.5 GB Ram, Ubuntu
18.04). We wrote a Python wrapper to control the robot. The
Python wrapper timestamps and saves joint angles, motor
currents, and hip height into a text file. We analyzed and
plotted data in Matlab.
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FIGURE 3 | Experimental setup. (A) The 2-DOF hybrid compliant leg. The one-directional spring (passive compliance) extends the knee joint via a knee tendon and
a knee pulley. Knee springs with varying stiffness were mounted during the experiments, supporting between 0 and 100% robot’s weight. A rail guides the robot’s
vertical drop, and a pair of potentiometers measures the robot’s height. The knee motor produces torques in parallel to mounted knee spring. (B) Setup details,
computer aided drawing. (C) The Unified Robot Description Format (URDF)-based model of the hybrid compliant robot leg, simulated in PyBullet.

FIGURE 2 | Knee motor command for different combinations of control frequency, duty cycle, and sensorimotor delay. (A) A 100% duty cycle at low control
frequency. (B) A set sensorimotor delay between the desired knee output torque, and the commanded output torque. (C) A 50% duty cycle. (D) An example for a
compliance ratio of λpassive ≈ 0.75 is shown. The mechanical knee spring produces three quarter of the total knee torque (green). The knee actuator is programmed as a
virtual spring producing the remaining torque (brown).
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3 RESULT

This section initially presents results from the pendulum task. We
then show computer simulation results with a single robot leg and
hybrid joint compliance. We simulated quadruped-robot drops
from multiple heights, and we present hardware experiment
results with a single leg mounted to a vertical slider.

3.1 Hanging Pendulum Analysis, Simplified
Model
The pendulum pole analysis shows that for λpassive � 0 and with
increasing feedback delay, the dominant system poles move from
their stable region toward the unstable region at the imaginary
axis (Figure 4B). For medium compliance ratios, the rate of
divergence is lower. The step response indicates that increasing
the sensorimotor delay with active control (λpassive � 0.0) leads to
continuous oscillations, and resonance eventually destabilizes the
system (Figure 4C). For hybrid passive compliance and a
feedback delay of 20 ms, the closed-loop response is stable and
smooth (Figure 4D).

The pendulum example is a simplification allowing a pole
analysis with few parameters, but with an intuitive interpretation;
Figure 4B shows when parameters lead to destabilization, with a
clear cross-over into the unstable regime. The robot leg computer
simulations in the following sections require more elaborate
interpretation, but are more precise in terms of mechanics,
and less simplified. Instead of continuous time analyses, time-
discrete analyses are also applied for simplified systems, and we
briefly provide results of a time-discrete analysis of the pendulum
example in the Supplementary Material section for the
interested reader.

3.2 Single-Leg Computer Simulation
We studied the effects of varying combinations of sensorimotor
delay, control frequency, and compliance ratio λpassive on
controller performance during landing. We initially recorded a
reference hip height trajectory dropping the robot leg with
λpassive � 1.0, which settled after 0.35 s at a hip height of 33 cm
(Figure 5).

We then performed computer simulations to quantify the
viability of the landing task, varying λpassive from 0.0 to 1.0 in steps
of 0.05, the sensorimotor delay from 0 to 60 ms in steps of 5 ms,
and sensorimotor control frequencies of 20, 50, 100, 250, and
1,000 Hz. We tested duty cycles of 25, 50, and 100%.

In PyBullet, we set joint damping values of 0.01 Nms/rad and
0.05 Nms/rad for hip and knee, respectively. A single leg weighs
0.6 kg, and the quadruped robot 2.0 kg. We chose the total knee
joint stiffness so that leg length changed by 10% during the first
mid-stance, after dropping it from 42.5 cm. We implemented a
λpassive � 1.0 with a spring of stiffnessK � 4680N/macting on the
knee pulley of radius r � 18.9mm, leading to a rotational stiffness
of Kr2 � 1.67Nm/rad. We defined settling time as the difference
between the initiated drop time and the hip position stabilizing
within a ±1%margin of the settling hip height after 3 s simulation
time. We applied the Matlab function stepinfo for this analysis.
We used twice the λpassive � 1.0 value as the global settling time

(0.7 s) and defined 90% of the passive compliant λpassive � 1.0
settling hip height as minimum final hip height (30 cm).

In Figure 5, the results of 273 drop-landing simulations are
shown, with varying sensorimotor delays and λpassive settings, a
100% duty cycle, and a control frequency of 1 kHz. Grey data
points represent failed landings with a settling time higher than
0.7 s or too low settling hip heights. For full active actuation
(λpassive � 0.0), and when increasing the sensorimotor delay above
25 ms, all landings fail. For λpassive > 0.4, the leg lands successfully
in the presence of 40 ms delays. Results show that the hybrid
compliant leg has successful intermediate regimes allowing for
relatively large sensorimotor delays, with an appropriate
combination of passive and active compliance.

We then investigated the effect of varying control frequency
(20, 50, 100, 250, and 1,000 Hz) and duty cycle (25, 50, and 100%,
Figure 6). Most visible is a decreasing feasible area for all three
duty cycles at reduced control frequencies. Comparing duty
cycles of 25 and 100% (Figures 6A,C) shows that the feasible
area did change with reduced duty cycles. Low compliance ratios
(λpassive ≈ 0.2) lead to successful landings combined with a duty
cycle of 50% or the highest control frequency (1 kHz). Figure 6C
shows that duty cycles of 100% at control frequencies of 100, 250,
and 1,000 Hz have a similar-sized feasible region. When
switching to a low control frequency (20 Hz, black line) the
feasible area reduces much. For a 50% duty cycle, the feasible
area changes slightly when switching between 50 and 250 Hz
control frequency (Figure 6B). The biggest changes are visible
when changing from 1,000 Hz to 250 Hz, and from 50 to 20 Hz.
Typically, higher duty cycle values led to better results, for
otherwise identical parameters. An exception is found when
comparing duty cycles of 25 and 100%. The hatched area in
Figure 7A indicates successful landings at low duty cycles, where
high duty cycle landings failed because of hip height oscillations
beyond the settling time limit (Figure 7B). For most compliance
ratios above 0.6, we observe successful landings, including critical
combinations of 60 ms delay and 20 Hz control frequency. All
results indicate successful landing for compliance ratios equal and
higher than 0.7.

3.3 Quadruped Computer Simulation
The previous single leg simulation results indicate that with high
compliance ratio, robot performance becomes largely
independent of sensorimotor delay, and control frequency. But
fully passive compliance reduces control authority. In seven drop-
landing scenarios, we altered drop height and passive and active
stiffness of a quadruped robot, to characterize system and
controller performance, but also to emphasize the importance
of control authority (Figure 8). The duty cycle was set to 100% in
all quadruped robot simulations. The simulation parameters are
provided in Table 1.

The case-1 robot simulated a compliance ratio of 1.0, i.e., fully
passive elastic knee joints. The robot was dropped from a height
of 0.7 m and landed successfully. The case-2 robot used identical
control parameters, was dropped from 1.0 m height, and failed to
land successfully. At close observation it becomes visible that its
knee joints inverted after the first landing rebound, and the robot
landed with inverted knee angles and without spring support.
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FIGURE 5 |Computer simulation results: 273 drops were simulated, for the robot leg controlled with a control frequency of 1,000 Hz and a duty cycle of 100%. The
compliance ratio λpassive was varied between 0 and 1 in steps of 0.05, and the sensorimotor delay between 0 and 60 ms in steps of 5 ms. The grey data points and the
grey hip height trajectory show failed landings with too large settling times. All colored data points and trajectories show successful landings. Successful landings are
visible for sensorimotor delays up to 60 ms, in combination with compliance ratios of λpassive � 0.6 and above.

FIGURE4 | Simulation results of a simplified, single-link pendulummounted to a parallel motor-spring combination (A). Parameters are provided inSection 2.1. (B)
Graphical pole analysis of the actuated pendulum. The effects of varying delay and compliance ratios on the system stability are shown. (C) The system’s step response
for varying delays with λpassive � 0.0, and (D) λpassive � 0.7. The hybrid parallel compliance controller (λpassive � 0.7) is stable for all tested delays, and performs better
compared to fully active actuation (λpassive � 0.0).
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Case-2 emphasizes the drawback of passive compliance; without
control, the knee joint orientation cannot be adjusted prior to
rebounding. The case-3 configuration featured a controller with
full, bi-directionally active compliance (no passive compliance),
and without sensorimotor delay. The controller ran at 1 kHz and
successfully guided the landing. In case-4, a fully active compliant
robot with 17 ms sensorimotor delay failed to land properly,
which shows the vulnerability of active compliance in the
presence of sensorimotor delay. Case-5 shows a successful
landing scenario by combining passive and active compliance
(λpassive � 0.67), with 27 ms sensorimotor delay, and reduced
control frequency (200 Hz). Case-6 was also configured with a
λpassive � 0.67, a control frequency of 100 Hz, and failed landing
the robot. For case-7, we decreased the compliance ratio to

λpassive � 0.59, and the robot landed successfully from a height
of 1.2 m, and with a sensorimotor delay of 35 ms at a control
frequency of 100 Hz. Case-7 shows how an appropriate
combination of active and passive compliance at low control
frequency maintains good control authority and robustness in the
presence of sensorimotor delay.

3.4 Hardware Experiments
We validated the previous single-leg simulations with hardware
experiments. We chose compliance ratios of λpassive �
[0 , 0.37 , 0.67 , 1] and a total rotational knee stiffness of
Ktotal � 1.67Nm/rad. We then varied control frequencies
([1000, 100, 10]Hz) and sensorimotor delays
([0, 10, 20, 30, 50]ms). The duty cycle was set to 50% for 10

FIGURE 6 | Simulation results: Dropping the hybrid actuated robot leg from a height of 42.5 cm. Parameters varied are duty cycle (DC), control frequency, system
delay, and compliance ratio (λpassive). The reference landing performance is the top left data point in each plot. It presents the behavior of the fully passive leg
(λpassive � 1.0). Plots for DC � 25% and DC � 50% show no data for 1,000 Hz; with a step time of 1 ms partial duty cycles are not possible.

FIGURE 7 | For simulations with a 25% duty cycle and 60 ms feedback delay feasible solutions are visible for compliance ratios of λ � 0.5 (B, solid black). In the
indicated overlapping parameter area (A), the 100% duty cycle simulation fails with insufficient settling time (B, dashed orange).
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and 100 Hz control frequency, and 100% for 1,000 Hz control
frequency.

In Figure 9, we assess the difference esim2real between computer
simulations and hardware experiments, as the root-mean-square
error (RMSE) between two resulting hip trajectories, normalized
by the maximum leg length, measured during the settling
duration of 0.7 s. The criteria for successful drop landings in
hardware and computer simulation are identical (Section 3.2).
Grey colored data shows failure cases in both experiments and
simulations. Viable cases with an RMSE of less than 6%
(Figure 9) indicate good consistency between hardware
experiment and computer simulation. We show four
exemplary hip trajectories for varying compliance ratios

(Figure 9, I–IV). The first two cases are feasible landings with
good consistency between simulation and experiments. In case
III, the hardware experiment stabilized at a lower-than-
simulation hip height but still within the required margin.
Case IV is a failed drop, and neither the hardware experiment
nor the simulated robot leg showed the necessary settling
behavior.

4 DISCUSSION

The single-leg drop results in Figure 5 show a continuous and
gentle decrease of system robustness with increasing feedback

FIGURE 8 | Computer simulated quadruped robots landing, in seven different scenarios, controlled with a duty cycle of 100%. (A) The robot’s initial drop heights
are indicated with red arrows. (B) An intermediate robot state at 4 s simulation time. The panels also provide controller parameters. (C)Converged robot state after 10 s.
Cases 1, 3, 5, and 7 landed successfully.

TABLE 1 | Simulation parameters of the quadrupedal robot, with a duty cycle of 100%.

Case Total compliance (Nm/rad) λpassive (%) Control frequency (Hz) Delay (ms)

1 1.6717 100 1,000 0
2 1.6717 100 1,000 0
3 1.6717 0 1,000 0
4 1.6717 0 1,000 17
5 2.5076 67 200 27
6 2.5076 67 100 27
7 2.8419 59 100 35
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delay when transitioning from a fully physically springy leg
toward a fully actuated leg controlled by a virtual-spring
controller. Hence, parallel structures of active compliance with
the correct amount of passive compliance offer one possible
answer to the question of how animals counteract
perturbations in the presence of large sensorimotor delays.
The ratio of passive to active compliance could be
permanently set genetically, formed over a lifetime by training
(Fouré et al., 2012), or set when required by partial or full
recruitment of slacked muscle-tendon structures (Hogan,
1984). Legged robots equally benefit from intrinsic robustness
against feedback delay. We believe that compliance ratios for
other designs will depend on the specific leg and controller design
parameters, the locomotion task, and the required controllability.
If the available control frequency is limited or high delays are
expected, a higher compliance ratio can be used. In the future, we
are especially interested in exploring compliance rations of
λpassive > 0.5. One early design choice to consider is the
effective spring deflection. Typically, stiffer springs feature a
smaller deflection range possibly leading to limited joint
movement range, compared to softer springs. We used springs
designed for large deflections. One can also balance the knee cam
radius with the spring’s movement range and stiffness. We
suggest the following, general procedure to establish a
compliance ratio for a given task and robot:

1. Select a total joint stiffness based on the required steady state
leg length, the maximum leg deflection, and the leg geometry
(segment lengths, robot mass, cam radius). This step can be
executed by test-mounting a λ � 1 spring (no actuator) with

given stiffness and spring slack position, dropping the robot
leg, and observing its joint angles.

2. Alternatively, a simplified kinematic model can provide an
estimate of the steady-state leg length (Supplementary
Material Section 3).

3. Select a desired compliance ratio. In the examples shown,
compliance ratios between 0.5 and 0.7 worked well. Low
compliance ratios provide higher controllability, as long as
control frequencies are high and feedback delays are low, and
vice versa. Duty cycles should be set to maximum (100%),
unless they are specifically exploited.

4. Check that the parallel mounted actuator has the capacity to
supply the required torque and speed. Low compliance ratios
( ≈ 0.5) require an actuator providing a higher work and
power output throughout the task. With higher compliance
ratios (> 0.7) the parallel spring carries more base load. When
spring dynamics must be overwritten, high actuator torques
are required but typically for shorter time. For a motor-
gearbox design methodology we refer to Roos et al. (2006).

This work centers around adjusting the ratio of physical,
passive compliance for a given total joint compliance. Online-
adjustable spring stiffness mechanisms have been proposed,
but many are still bulky and heavy (Yamaguchi and Takanishi,
1997; Vanderborght et al., 2013; Wolf et al., 2015). If a
locomotion task requires large changes of total joint
stiffness with a constant ratio of passive compliance (Ferris
et al., 1998), robust and light-weight adjustable stiffness
designs will be needed. For versatile locomotion sequences
like jumping, landing and fast running, learning-based

FIGURE 9 | Results comparing computer simulations and hardware experiments, as root-mean-square error of the instantaneous hip height normalized by the
initial leg length. (A)Good similarities are shown as colored data patches. Grey data patches indicate unsuccessful drop experiments, violating settling time or final height
criteria. (B) Hip trajectories. (I–III) Successful landings with short settling times and sufficient settling hip heights. (IV) An example of an unsuccessful landing in simulation
and hardware.
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methods could extract a ‘best’ range of compliance ratios from
large locomotion data sets.

We see at least three applications for hybrid compliance ratios
in legged robots; 1) For legged robots which exploit natural
dynamics of mechanical springs but require intermittent, high
controllability for tasks like jumping or acceleration (Spröwitz
et al., 2013; Lakatos et al., 2017). 2) For legged robots without
access to high-frequency control or low-noise and low-latency
sensors, which are expensive and time-consuming to develop
(Nam et al., 2020). 3) For motion planners featuring update
frequencies in the low sub-kilohertz range, in need of a legged
robot with intrinsic robustness when controlled at these
frequencies (Ponton et al., 2018).

5 CONCLUSION AND SUMMARY

We systematically characterized combinations of parallel
mounted passive and active joint compliance for their ability
to control the robot’s leg length after landing. We tested against
detrimental effects of significant feedback delays, low control
frequencies, and low duty cycles in the full range of compliance
ratios. Our goal was to find a compliance ratio for one given total
knee compliance that works well with the above controller
limitations. In comparison, previous work in parallel-elastic
legged robotics typically investigated parallel compliance with
high-frequency and low delay actuation (Batts et al., 2016;
Mazumdar et al., 2016).

Our computer simulations show successful single-leg drop-
landings for sensorimotor delays up to 60 ms, and control
frequencies as low as 20 Hz in combination with a compliance
ratio of λpassive � 0.7. For a ‘hybrid’ setting between λpassive 0.4 and
0.7; the partially active compliance ensures good control
authority, and the remaining passive, spring-based compliance
reacts immediately and independently from the controller. We
verified single-leg computer simulations with hardware
experiments for a range of parameters and showed good
agreement between both.

We ran computer simulations of quadruped robots with
varying total leg stiffness values when landing from multiple

drop heights. Compliance ratios in the hybrid range (around 0.5)
worked better in the presence of adverse controller settings
(delays, control frequency) than active compliance, and
allowed for the necessary amount of controllability compared
to pure passive compliance. We finally note that the engineered
compliance ratios were robustly handling feedback delays similar
to the neuromuscular sensorimotor delays reported of running
animals of equal size to the presented hybrid robot leg.
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Deciphering how quadrupeds coordinate their legs and other body parts, such as the

trunk, head, and tail (i.e., body–limb coordination), can provide informative insights

to improve legged robot mobility. In this study, we focused on sprawling locomotion

of the salamander and aimed to understand the body–limb coordination mechanisms

through mathematical modeling and simulations. The salamander is an amphibian that

moves on the ground by coordinating the four legs with lateral body bending. It uses

standing and traveling waves of lateral bending that depend on the velocity and stepping

gait. However, the body–limb coordination mechanisms responsible for this flexible

gait transition remain elusive. This paper presents a central-pattern-generator-based

model to reproduce spontaneous gait transitions, including changes in bending patterns.

The proposed model implements four feedback rules (feedback from limb-to-limb,

limb-to-body, body-to-limb, and body-to-body) without assuming any inter-oscillator

coupling. The interplay of the feedback rules establishes a self-organized body–limb

coordination that enables the reproduction of the speed-dependent gait transitions

of salamanders, as well as various gait patterns observed in sprawling quadruped

animals. This suggests that sensory feedback plays an essential role in flexible body–limb

coordination during sprawling quadruped locomotion.

Keywords: salamander locomotion, body-limb coordination, gait transition, decentralized control, sensory

feedback control

1. INTRODUCTION

Quadruped animals exhibit a high agility and adaptability to terrestrial environments. These
locomotor abilities are achieved by coordinating their legs and other body parts, such as the trunk,
head, and tail (i.e., through body–limb coordination). For instance, the bending of a cheetah’s body
improves its speed (Hildebrand, 1959), a horse’s nodding reduces metabolic costs (Loscher et al.,
2016), and the undulation of a salamander’s tail facilitates dynamic balance (Bicanski et al., 2013b).
These examples suggest that the body–limb coordination mechanisms play an essential role in
animal locomotor skills. Decoding the body–limb coordination mechanisms will contribute to the
design of highly functional legged robots and help understand the motor control of legged animals.

The salamander is an amphibian and is well-suited for investigating the body–limb coordination
mechanisms because it exhibits a flexible body–limb coordination dependent on locomotion speed
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(Ashley-Ross, 1994). At slow speeds, salamanders show lateral-
sequence walking gait (L-S walk) with standing waves of lateral
body undulation in which the body oscillates synchronously
while some points act as “nodes” and do not move. At higher
speeds, they exhibit a walking trot gait with first standing
waves (at medium speeds) and then traveling waves (at high
speeds) of lateral undulation in which all body parts oscillate
laterally, propagating the waves rostrocaudally. Despite this
flexible body–limb coordination, the locomotor nervous systems
of salamanders are simpler than those of mammals in that they
have fewer neurons and less differentiated structures (Chevallier
et al., 2008; Bicanski et al., 2013b). Therefore, salamanders likely
possess flexible and simple body–limb coordinationmechanisms.

The locomotion of salamanders and other vertebrate animals
is controlled by distributed neural networks, called central
pattern generators (CPGs), and sensory feedback from peripheral
nerves (Cabelguen et al., 2003; Ryczko et al., 2020). In particular,
decerebrate salamander experiments showed that neural
communication between CPGs is responsible for coordinating
axial and limb movements. Base on these finding, CPG networks
have been modeled, and salamander locomotion investigated
through numerical simulations and robot experiments (Ijspeert,
2001, 2020; Ijspeert et al., 2007; Harischandra et al., 2010,
2011; Bicanski et al., 2013a; Crespi et al., 2013; Liu et al.,
2018). Most previous studies used an oscillator model with
inter-oscillator couplings in which oscillators represent CPGs
and inter-oscillator couplings represent neural communications
between CPGs. These studies designed inter-oscillator couplings
to coordinate axial and limb movements and reproduced various
behaviors, such as walking, swimming, and turning (Ijspeert,
2001; Ijspeert et al., 2007; Bicanski et al., 2013a; Crespi et al.,
2013; Liu et al., 2018). These studies intensively investigated the
body–limb coordination mechanisms based on inter-oscillator
couplings, and less attention was paid to the role of sensory
feedback in body–limb coordination. Harischandra et al. (2011)
proposed a CPG model with stretch sensory feedback and
showed that sensory feedback contributes to gait generation and
transition. However, the main focus of this study is interlimb
coordination, as opposed to body–limb coordination. The role
of sensory feedback in body–limb coordination remains elusive.

We aim to understand the contribution of sensory feedback
to body–limb coordination. We previously proposed a
decentralized control model with cross-coupled sensory
feedback from the body to limb, and vice versa, in simulated
and real sprawling quadruped robots (Suzuki et al., 2019, 2021).
Body–limb coordination was successfully established by sensory
couplings without inter-oscillator couplings. These studies also
suggested that sensory feedback provides rapid convergence to a
stable gait, easy parameter tuning, and high robustness against leg
failure and morphological changes. However, the results cannot
explain the body–limb coordination mechanisms responsible for
gait transition because of the simplified body structure in which
the body trunk had only one degree of freedom.

In this study, we investigate the mechanisms for coordination
between the legs and a flexible elongated trunk and aim to
reproduce the speed-dependent gait transition of salamanders.
To this end, we extend our previous model to simulate a

salamander robot with a multi-segmented trunk. The simulation
results show that the proposed model can reproduce the
gait transition between a standing wave pattern at low speed
and a traveling wave pattern at high speed, by changing
only one parameter related to the command from the brain.
The model also reproduces several gait patterns observed in
other sprawling quadruped animals by changing the sensory
feedback strength. These results suggest that, in addition to
inter-oscillator couplings (which are known to exist in the
salamander spinal cord), sensory feedback could play an essential
role in flexible body–limb coordination underlying sprawling
quadruped locomotion.

The remainder of this paper is structured as follows. Section 2
contains a description of a decentralized control for body–limb
coordination and details the effects of sensory feedback rules.
Section 3 contains an outline of the simulation experiments and
the results. In section 4, the potential role of sensory feedback in
body–limb coordination is discussed, and recommendations for
future studies are presented.

2. MODEL

2.1. Body
The body consists of n trunk segments and four legs, as shown
in Figure 1. The segments are concatenated via yaw hinge joints
with a parallel combination of a rotary actuator, passive spring,
and passive damper. The fore- and hind-legs are attached on both
sides of the k-th and l-th segments, respectively. Each leg has
two rotary actuators in the yaw and roll directions, controlled by
phase oscillators.

Each foot tip has a force sensor that detects the normal force
from the ground, and each trunk joint has angle and torque
sensors. The angle sensors detect the angle θbj of the j-th trunk

joint from the head. Here, the j-th trunk joint connects the j-th
and j + 1-th segments from the head. The variable θbj is positive

when the trunk joint bends to the right, as shown in Figure 1. The
torque sensors detect the torque generated by the rotary actuators
at the trunk joint.

2.2. Control Algorithm
The proposed decentralized control algorithm is an extension
of our previous study (Suzuki et al., 2019). The controller is
composed of oscillators, which represent CPGs. In order to focus
on the potential role of sensory feedback as synchronization
mechanism, inter-oscillator couplings are not modeled here;
instead, nearby body parts are coupled through sensory feedback
(Figure 2). The sensory feedback consists of the following four
feedback rules:

1. Force feedback from limb to limb
2. Torque feedback from body to limb
3. Force feedback from limb to body
4. Angle feedback from body to body

The first rule is responsible for coordinating the four legs as they
move forward while supporting the body. The second and third
rules comprise the cross-coupled feedback that establishes self-
organized body–limb coordination. The fourth rule coordinates
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FIGURE 1 | Body model. The trunk has n− 1 actuated degrees of freedom (DoFs), and θbj denotes the angle of the j-th DoF from the head. The fore- and hind-legs

are attached on both sides of the k-th and l-th segments, respectively (in the figure, n = 11, k = 3, and l = 7). Each leg has two DoFs controlled by phase oscillators.

The subscript i denotes the leg identifier: (1, left fore; 2, right fore; 3, left hind; and 4, right hind), and θ
y
i and θ ri are the angles of the leg joints in the yaw and roll

directions, respectively. The circle around the right foreleg shows the leg trajectory based on the oscillator phase φi . Variables mJ, mL, and mF are the masses of each

joint, link, and foot, respectively.

the lateral undulations of the multi-segmented body trunk.
Through the interplay of these rules, it is expected that the model
will generate flexible locomotion patterns. The following section
describes each sensory feedback control in detail.

2.2.1. Leg Control
A phase oscillator is implemented in each leg, and its phase
determines the target angle of the rotary actuators in the yaw and
roll directions as follows:

θ̄
y
i = C

y
0 − C

y
amp cosφi,

θ̄ ri = Cr
0 − Cr

amp sinφi,
(1)

where θ̄
y
i and θ̄ ri denote the target angles, C

y
0 and C

r
0 represent the

neutral angles, C
y
amp and Cr

amp represent the amplitudes of the
yaw and roll actuators, respectively (Figure 1); φi is the oscillator
phase and the subscript i denotes the leg identifier (1: left fore, 2:
right fore, 3: left hind, and 4: right hind). When 0 < φi < π ,
the leg tends to be in the swing phase; otherwise, it tends to be
in the stance phase. The time evolution of the phase is described
as follows:

φ̇i = ω + fLL,i + fBL,i, (2)

fLL,i = −σLL tanh(ρLLNi) cosφi, (3)

fBL,i =



























+σBL tanh(ρBLτ
b
k
) cosφi (i = 1)

−σBL tanh(ρBLτ
b
k
) cosφi (i = 2)

+σBL tanh(ρBLτ
b
l
) cosφi (i = 3)

−σBL tanh(ρBLτ
b
l
) cosφi (i = 4),

(4)

where ω [rad/s] denotes the intrinsic angular velocity of the
phase oscillators; and σLL [rad/s], ρLL [1/N], σBL [rad/s], and ρBL

FIGURE 2 | Configuration of the feedback network. The circles and triangles

represent the controllers and sensors, respectively. Each leg controller has one

phase oscillator. The arrows show the four types of sensory feedback; blue

indicate the force feedback from limb to limb and limb to body, orange

indicates the torque feedback from body to limb, and gray indicates the angle

feedback from body to body.

[1/(N·m)] are the weights of the sensory feedback terms; and Ni

[N] represents the normal force detected at the foot tip. Further,
τ b
k
and τ b

l
[N·m] represent the torque generated by the k-th and

l-th trunk actuators, respectively.
Equation (3) relates to the limb-to-limb feedback. The local

feedback rule was proposed by Owaki et al. (2013). It generates
adaptive interlimb coordination in response to the speed and
physical properties of the robot (Owaki et al., 2013; Owaki
and Ishiguro, 2017). Based on the sensory feedback effect, the
oscillator phase is modulated to 3π/2 when Ni > 0. When the
leg supports the body, the foot obtains a higher ground reaction
force, that is, a higher Ni. Thus, this feedback implies that the
leg remains on the ground when it supports the body. The local
sensory information, denoted byNi, describes the extent to which
a specific leg provides support to the body, and it also indicates
howmuch other legs are currently contributing to supporting the
body. Using such sensory information, this feedback can generate
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FIGURE 3 | Schematic of body-limb sensory feedback. (A) Schematic of the salamander robot model from the top view. The squared region around the forelegs

indicates the body part illustrated by (B,C) to explain the feedback effect. (B) Body-to-limb sensory feedback mechanism: (i) the k-th trunk actuator bends the body to

the right (τbk > 0) and (ii) the k-th trunk actuator bends the body to the left (τbk < 0). When the k-th trunk actuator bends the body to the right, the left foreleg oscillator

phase is modulated toward π/2 (to swing), and the right foreleg oscillator phase is modulated toward 3π/2 (to stance), and vice versa. (C) Limb-to-body sensory

feedback mechanism: (i) the right foreleg is on the ground (N2 > 0) and (ii) the left foreleg is on the ground (N1 > 0).

adaptive interlimb coordination without neural communication
between the legs.

Equation (4) relates to the body-to-limb feedback
(Figures 3A, B). When the k-th trunk actuator bends the
body to the right (τ b

k
> 0), the oscillator phase of the left foreleg

is modulated to π/2 to lift the legs, and the oscillator phase of
the right foreleg is modulated to 3π/2 to place the legs on the
ground. By phase modification, the left foreleg lifts from the
ground, and the right foreleg is anchored to the ground. This
facilitates the k-th trunk actuator to bend the body to the right
(θb

k
> 0), and the robot moves forward when the anchored legs

serve as a pivot. Similarly, the oscillator phases of the hind legs
are modulated by the torque of the l-th trunk actuator.

2.2.2. Body Control
The torques at the trunk actuators are described as follows:

τ bj = fLB,j + fBB,j, (5)

fLB,j =











σLB tanh{ρLB(N2 − N1)} (j = k)

σLB tanh{ρLB(N4 − N3)} (j = l)

0 otherwise,

(6)

fBB,j = −σBB tanh{ρBB(θ
b
j − θbj−1)}, (7)

where θbj is the actual angle of the trunk actuator. The variables

σLB [N·m] and ρLB [1/N], σBB [N·m], and ρBB [1/rad] represent
the weights of the sensory feedback.

Equation (6) relates to the limb-to-body feedback. The sensory
feedback effect is such that the k-th and l-th trunk segments
bend in response to ground contacts, as shown in Figures 3A, C.
When the left foreleg is on the ground (N1 > 0), the k-th
actuator bends the body to the left (τ b

k
< 0). Similarly, when

the right foreleg is on the ground (N2 > 0), the k-th trunk
actuator bends the body to the right (τ b

k
> 0). The interactions

of the sensory feedback from body to limb and limb to body
establish the relationship between the legs and trunk, providing
longer strides andmore powerful pushing-off against the ground.
The interactions of the body-to-limb and limb-to-body feedback
establish the relationship between the legs and trunk, providing
longer strides and more powerful pushing-off against the ground
(Suzuki et al., 2019, 2021).

Equation (7) relates to the body-to-body feedback. The local
feedback rule is based on the curvature derivative control
proposed in a previous study for snake-like locomotion (Date
and Takita, 2007). It generates a torque proportional to the
curvature derivative of the body curve such that the lateral body
undulation propagates posteriorly. As reported in a previous
study (Kano and Ishiguro, 2020), the control with additional
sensory feedback can generate versatile undulation patterns.
Therefore, it can potentially generate flexible, sensory-driven,
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FIGURE 4 | Spontaneous gait transition from L-S walk with standing waves to walking trot with traveling wave and vice versa. The upper graph represents the lateral

flexion of the trunk joint, wherein the colored region denotes the period when the trunk joint bends to the right (θbj > 0). The lower graph represents the gait diagram,

wherein the colored region denotes the period when the foot is in contact with the ground (Ni > 0). We set the parameter ω from 1.8 π to 3.8 π [rad/s] at period 16 [s],

and from 3.8 π to 1.8 π [rad/s] at period 22 [s]. We confirmed that the gait transition was observed for any initial oscillator phase (for all 10 trials).

intersegmental coordination, as an alternative to inter-oscillator
couplings (as modeled in Ijspeert et al. (2007) for instance).
The interplay between limb-to-body and body-to-body feedback
arranges the waveform of the lateral body undulations.

3. SIMULATION RESULTS

We conducted simulation experiments using the OpenDynamics
Engine, which is an open-source library for simulating rigid
body dynamics (Smith, 2005). Each trial was conducted on flat
terrain for 60 s, with the oscillator phases initially set to random.
The body size and weight were determined by considering
those of a salamander robot developed as a prototype in our
previous study (Suzuki et al. 2019b). The angular frequency
and amplitude of the legs were chosen with physically plausible
values. The other parameters were determined by trial and
error, referring to the parameter sets of our previous simulation
study [Suzuki et al., 2019]. The simulation time step was set
to 0.01 s, and the control commands were updated at each
time step. The results are provided in the following sections.
We first show that the speed-dependent gait transition of
salamanders can be successfully reproduced (section 3.1). Next,
we demonstrate that two other gait patterns observed in other
sprawling quadruped animals can be reproduced (section 3.2).
Finally, we clarify which parameters affect the exhibited gait
pattern by changing the feedback strength (section 3.3) and body
parameters (section 3.4).

3.1. Speed-Dependent Gait Transition of
Salamanders
To investigate whether the proposed model can reproduce the
speed-dependent gait transition of salamanders, we performed
a simulation by changing the parameter ω from 1.8 π to 3.8 π

[rad/s] at period 16 [s] and from 3.8 π to 1.8 π [rad/s] at period
22 [s]. Figure 4 and Supplementary Video 1 show the results.
The upper graph represents the lateral flexion of the trunk joint,
wherein the colored region denotes the period when the trunk
joint bends to the right (θbj > 0). The lower graph represents

the gait diagram, wherein the colored region denotes the period
when the foot is in contact with the ground (Ni > 0).

For ω = 1.8π , the bending of the body trunk (j = 3 − 6) is
antiphase to that of the tail (j = 7 − 10), as shown in Figure 4.
This pattern is a standing wave with nodes at the shoulder and
the hip, similar to that of a salamander walking (Ashley-Ross,
1994). Next, the feet touched down in the following order: right
hind (RH), right fore (RF), left hind (LH), and left fore (LF).
The mean and standard deviation (SD) of the duty factor were
69.3 and 0.55%, respectively. The mean and SD of the diagonality
were 21.9 and 1.26%, respectively. These values were calculated
within 10–16 [s] for each of the 10 trials. The duty factor is the
time percentage at which one foot spends in the stance phase
during a gait cycle, and diagonality is the percentage of the
cycle period by which the left/right hind footfall precedes the
left/right fore-footfall. Thus, the gait was classified as a lateral-
sequence (L-S) walk, according to Hildebrand’s gait classification
(Hildebrand, 1965; Cartmill et al., 2002). This gait was observed
in salamander’s slow-speed walking (Ashley-Ross, 1994). In
conclusion, for ω = 1.8π , the model reproduced the bending
and footfall patterns of a salamander’s slow-speed walking.

For ω = 3.8π , the flexion duration moved posteriorly
and continuously (Figure 4), indicating a traveling wave. The
footfall pattern is such that the diagonally opposite feet were
nearly synchronized. The mean and SD of the duty factor were
64.5% and 9.74×10−2, respectively. The mean and SD of the
diagonality were 48.0 and 1.97%, respectively. These values are
calculated within 18–22 [s] for each of the 10 trials. Thus, the
gait was classified as a walking trot according to Hildebrand’s
gait classification (Hildebrand, 1965; Cartmill et al., 2002). The
bending and footfall patterns were observed in a salamander’s
high-speed walking (Ashley-Ross, 1994). Therefore, the model
also reproduced the gait pattern of a salamander’s high-speed
walking for ω = 3.8π .

When changing ω from 1.8 π to 3.8 π at period 16 [s], the gait
pattern spontaneously and smoothly changed from a L-S walk
with standing waves to a walking trot with traveling waves, as
shown in Figure 4. Similarly, the reverse gait transition (from
walking trot to L-S walk) was observed when changing ω from
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3.8 π to 1.8 π at period 22 [s]. We confirmed that the gait
transition was observed for any initial oscillator phase (for all
10 trials). Thus, the proposed model successfully reproduced
the speed-dependent gait transition of salamanders, by simply
changing the ω parameter.

We then analyzed the lateral bending waveform of each gait
pattern and compared it with that of salamanders. Figure 5 shows
the comparison of the body waveform between the simulated
robot and the salamander, Dicamptodon teneborosus (Ashley-
Ross, 1994). In Figures 5A,B, the stick figures were made by
connecting the lateral positions of the body segments from the
shoulder (j = 3) to the hip (j = 7) in the simulated robot for
ω = 1.8π (Figure 5A) and ω = 3.8π (Figure 5B), respectively.
All stick figures throughout one gait cycle were superimposed
by lining them up on the shoulder segment. This analysis refers
to Ashley-Ross’s study (Ashley-Ross, 1994), and Figures 5C,D

were adapted from the analysis of a salamander walking and
trotting conducted in this study. These stick figures were made by
connecting the marker point over the midline from the pectoral
girdle to the pelvic girdle while walking (Figure 5C) and trotting
(Figure 5D). All stick figures throughout one gait cycle were
superimposed by lining them up on the anteriormost midline
marker dot.

Figure 5A shows the body waveform alternate between two
stable curve configurations; the curve features a half-wavelength
from the shoulder and hip. This pattern is a standing wave
with nodes at the shoulder and the hip, and is similar to that
of a salamander’s walking, as shown in Figure 5C. Figure 5B
shows that the body waveform has no nodes; the trunk does
not follow a simple side-to-side bending pattern (such as in
Figure 5A). This pattern is a traveling wave, and is also similar
to that of a salamander’s trotting, as shown in Figure 5D.
These results suggest that the model certainly generates two
types of body waveforms, namely, standing and traveling waves;
these waveforms are qualitatively similar to those exhibited by
a salamander.

3.2. Reproduction of Gait Patterns
Observed in Other Species
While salamanders exhibit a L-S walk with standing waves of
lateral body undulation and walking trot gait with standing or
traveling waves of, different gait patterns have been observed in
other species that exhibit sprawling locomotion (Ritter, 1992).
In this subsection, we demonstrate that the proposed model can
reproduce such patterns by changing the control parameters.

L-S Walk With Intermediate Waves
Some species of lizards, such as Dipsosaurus dorsalis, also
show speed-dependent gait transitions (Ritter, 1992). They use
standing waves at lower speeds and traveling waves at higher
speeds, similar to the salamander’s gait. Interestingly, they also
use “intermediate” waves at intermediate speeds in between the
speeds for standing and traveling waves. The waveform has
attributes of both standing and traveling waves. To investigate
whether the proposed model can reproduce these gait patterns,
we performed a simulation by setting the parameter ω to
2.3π , that is, in between standing and traveling waves; and the

FIGURE 5 | Simulated robot (left) and salamander D. teneborosus (right) during

locomotion. The stick figures were made by connecting the positions of the

body parts over the midline. All stick figures throughout one gait cycle were

superimposed by lining them up on the anteriormost part of the body trunk.

(A) Simulated robot for ω = 1.8π , (B) simulated robot for ω = 3.8π , (C)

D. teneborosus while walking, (D) D. teneborosus while trotting. (C,D) Adapted

from the Ashley-Ross’s study (Ashley-Ross, 1994), with permission.

remaining parameters were the same as those used in section
3.1. Figure 6 and Supplementary Video 2 present the results.
Figure 6A shows the diagram for lateral bending and the gait
diagram. The footfall pattern was a L-S walk; the mean and SD
of the duty factor were 66.8 and 0.23%, respectively; the mean
and SD of the diagonality were 29.0 and 0.35%, respectively.
These values were calculated from the 10 trials. The body
flexion duration moves posteriorly but not continuously. The
wave propagation has an irregular point at the hip (j = 7).
Figures 6B,C show the lateral displacement of each body part
toward the moving direction of the simulated robot and the
lizard, D. dorsalis, respectively. In Figure 6B, the minimal lateral
displacement point moves posteriorly, similar to traveling waves.
However, there are several points at the same position (posterior
to the shoulder) as if the nodes were present, similar to standing
waves. Therefore, the waveform has attributes of both standing
and traveling waves; thus, intermediate waves emerge. Figure 6C
shows the waveform when the lizard exhibits intermediate waves.
The numbered lines indicate the minimal lateral displacement
points. The points moved posteriorly, and some of them were
within a restricted portion of the mid-trunk. The tendency is
qualitatively similar to that of the simulation results. Therefore,
the proposed model without any modified parameter except for
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FIGURE 6 | Lateral-sequence walking with intermediate waves of lateral

bending. The proposed model without any modified parameter except for the

control parameter ω reproduced the gait pattern, as listed in Table 1. (A) The

upper graph represents the lateral flexion of the trunk joint, wherein the colored

region denotes the period when the trunk joint bends to the right (θbj > 0). The

lower graph represents the gait diagram, wherein the colored region denotes

the period when the foot is in contact with the ground (Ni > 0). (B) Waveform

of lateral bending of the simulated robot. The superimposed figure was made

from 12 stick figures. The stick figures were produced by connecting the

lateral displacement of body segments from the center of mass (CoM). The

moment of each stick figure is time-shifted every 1/12 gait cycle, and the line

colors show the order of the stick figures (red: 1st and 7th; orange: 2nd and

8th; green: 3rd and 9th; cyan: 4th and 10th; blue: 5th and 11th; and violet: 6th

and 12th). Note that the 1st and 7th stick figures are time-shifted by a half

period of the gait cycle, thereby being mirror images of one another (the mirror

images are in the same line color). (C) Waveform of lateral bending when

Dipsosaurus dorsalis exhibits intermediate waves, adapted from Ritter (1992),

with permission. The figure was made by a similar method to that applied for

(B). The numbered lines indicate points of minimal lateral displacement in each

stick figure.

the control parameter ω reproduced gait patterns exhibited by
the D. dorsalis.

L-S Walk With Traveling Waves
The salamander uses a traveling wave when performing a
walking trot, but they have not been found to use traveling
waves when using other slower walking gaits (Edwards, 1977).
However, some lizards such as G. kingii, exhibit traveling
waves, even at the lowest speed (Ritter, 1992). To investigate
whether the proposed model can reproduce such gait patterns,

FIGURE 7 | Lateral-sequence walking gait with traveling waves of lateral

bending. The proposed model (with modified feedback gain parameters)

reproduced the gait pattern, as listed in Table 1. (A) The upper graph

represents the lateral flexion of the trunk joint, wherein the colored region

denotes the period when the trunk joint bends to the right (θbj > 0). The lower

graph represents the gait diagram, wherein the colored region denotes the

period when the foot is in contact with the ground (Ni > 0). (B) Waveform of

lateral bending of the simulated robot. The superimposed figure was made

from 12 stick figures. The stick figures were produced by connecting the

lateral displacement of body segments from the center of mass (CoM). The

moment of each stick figure is time-shifted every 1/12 gait cycle, and the line

colors show the order of the stick figure (red: 1st and 7th; orange: 2nd and

8th; green: 3rd and 9th; cyan: 4th and 10th; blue: 5th and 11th; violet: 6th and

12th). Note that the 1st and 7th stick figures are time-shifted by a half period of

the gait cycle, thereby being mirror images of one another (the mirror images

are in the same line color). (C) Waveform of lateral bending when Gerrhonotus

kingii exhibits traveling waves, adapted from Ritter (1992), with permission.

The figure was made by a similar method to that applied for (B). The numbered

lines indicate points of minimal lateral displacement in each stick figure.

we performed a simulation by setting the parameter ω to
2.3π , and the feedback gain from limb-to-body σLB and body-
to-body σBB to lower values than those used in section 3.1
(σLB = 4.5 and σBB = 5.0, respectively). Figure 7 and
Supplementary Video 3 show the results. Figure 7A shows the
diagram for lateral bending and the gait diagram. The footfall
pattern was a L-S walk; the mean and SD of the duty factor were
64.2% and 5.28×10−2, respectively. The mean and SD of the
diagonality were 38.7 and 0.13%, respectively. These values were
calculated from the 10 trials. The body flexion duration moves
posteriorly and continuously. Figures 7B,C show the lateral
displacement of each body part toward the moving direction

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2021 | Volume 15 | Article 645731262

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Suzuki et al. Gait Transitions of Sprawling Locomotion

FIGURE 8 | Color maps showing the two indices; diagonality and the waveform index, when the intrinsic angular velocity ω is between 1.5π and 4.0π , and the

feedback gain from limb-to-limb σLL is between 0.00 and 7.50. (A) diagonality (σLB = 7.0, σBB = 7.7), (B) waveform index (σLB = 7.0, σBB = 7.7), (C) diagonality

(σLB = 4.5, σBB = 5.0), (D) waveform index (σLB = 4.5, σBB = 5.0). In (A,C), the brighter region indicates a higher diagonality. In (B,D), the brighter region shows that a

traveling wave emerges. The fluctuation in the upper left part of (C,D) indicates that an unstable locomotion emerged, and the gait was not evaluated correctly. The

squared regions indicate the parameter sets used in the other experiments (red: Figure 4 for ω = 1.8π described in section 3.1; blue: Figure 4 for ω = 3.8π

described in section 3.1; yellow: Figure 6 described in section 3.2; and purple: Figure 7 described in section 3.2).

of the simulated robot and the lizard, G. kingii, respectively.
In Figure 6B, the minimal lateral displacement point moves
posteriorly and continuously. The waveform is a traveling wave
in which no node is present. Figure 6C shows the waveform
when the lizard exhibits a traveling wave. The numbered lines
indicate the minimal lateral displacement points. The figure
shows that the points move posteriorly and continuously. The
tendency is qualitatively similar to that of the simulation
results. Therefore, the proposed model (with modified feedback
gain parameters) reproduced the gait patterns exhibited by
the G. kingii.

3.3. Effect of Sensory Feedback Strength
on Gait Patterns
We performed simulations by changing various parameter sets,
particularly, the feedback strengths, to specify the determinants
of the gait patterns. For a quantitative gait evaluation, we used
the two indices: diagonality and waveform index. The waveform
index W was derived based on the gait evaluation method
proposed by Kano et al. (2014) as follows:

W = Dstd − Dtrv, (8)

Dx = min
2∈[0,2π]

|r− ei2rx|, (9)

r = {ei83 , ei84 , ei85 , ei86 , ei87 , ei88 , ei89 , ei810}, (10)

rstd = {0, 0, 0, 0, eiπ , eiπ , eiπ , eiπ }, (11)

rtrv = {0, e−i π4 , e−i 2π4 , e−i 3π4 , e−i 4π4 , e−i 5π4 , e−i 6π4 , e−i 7π4 }, (12)

where W denotes the waveform index. Dstd and Dtrv are the
intergait distances of standing and traveling waves, respectively.
r, rstd, and rtrv are the phase relationships between the trunk-
joint angles (j = 3−10) of the exhibited wave, the standing wave,
and the traveling wave, respectively. The phase of the trunk joint
8j can be defined by the timing of lateral flexion of the trunk
joint; for example, 8j = 0 is the timing when the trunk joint

bends to the right from the neutral angle (θbj = 0). Intergait

distance is a measure for gait evaluation proposed by Kano
et al. (2014). The distance shows the similarity of the specific
gaits. For example, when a standing wave emerges, Dstd is lower
and Dtrv is higher. Conversely, when a traveling wave emerges,
Dstd is higher and Dtrv is lower. Therefore, when the waveform
indexW is positive, traveling waves emerge, whenW is negative,
standing waves emerge; and when W = 0, intermediate waves
emerge. For further details of the derivation process, please refer
to Kano et al. (2014).

The color maps in Figure 8 show the two indices when
the intrinsic angular velocity ω is between 1.5π and 4.0π
and the feedback gain from limb-to-limb σLL is between 0.00
and 7.50. In Figures 8B,D, the control parameters σLB and
σBB are 7.0 and 7.7, respectively. In Figures 8C,D, the control
parameters σLB and σBB are 4.5 and 5.0, respectively. The
fluctuation in the upper left part of Figures 8C,D indicates
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FIGURE 9 | Color maps showing the two indices; diagonality and the waveform index, when the body size and mass are between 50 and 150%, (A) diagonality, (B)

waveform index. In (A), the brighter region indicates a higher diagonality. In (B), the brighter region shows that the waveform is relatively similar to the traveling waves.

The control parameter set was used in Figure 6 is described in section 3.2; for the L-S walk with intermediate waves.

TABLE 1 | Parameter values of employed in the simulations.

Common parameters Body length [m] 0.60

Shoulder/hip length [m] 0.06

Leg length [m] 0.06

Body mass [kg] 2.85

Joint mass [kg] mJ 0.10

Link mass [kg] mL 0.05

Foot mass [kg] mF 1.0 ×10−5

Spring coefficient of trunk actuators [N/m] 1.5

Damper coefficient of trunk actuators [(N·s)/m] 0.5

Leg amplitude in yaw direction [rad] C
y
0 π/9

Leg amplitude in roll direction [rad] Cr
0 π/9

Gain for limb-to-limb feedback [rad/s] σLL 3.30

Gain for limb-to-limb feedback [1/N] ρLL 0.10

Gain for body-to-limb feedback [rad/s] σBL 4.00

Gain for body-to-limb feedback [1/(N · m)] ρBL 0.20

Gain for limb-to-body feedback [1/N] ρLB 0.20

Gain for body-to-body feedback [1/rad] ρBB 1.00

Section 3.1 Intrinsic angular velocity [rad/s] ω 1.8π → 3.8π at 16 s

3.8π → 1.8π at 22 s

Gain for limb-to-body feedback [N·m] σLB 7.00

Gain for body-to-body feedback [N·m] σBB 7.70

Section 3.2

Lateral-sequence walk Intrinsic angular velocity [rad/s] ω 2.3π

with intermediate wave Gain for limb-to-body feedback [N·m] σLB 7.00

Gain for body-to-body feedback [N·m] σBB 7.70

Lateral-sequence walk Intrinsic angular velocity [rad/s] ω 2.3π

with traveling wave Gain for limb-to-body feedback [N·m] σLB 4.50

Gain for body-to-body feedback [N·m] σBB 5.00

that an unstable locomotion emerged, and the gait was
not evaluated correctly. The squared regions indicate the
parameter sets used in the other experiments (red: Figure 4
for ω = 1.8π described in section 3.1; blue: Figure 4

for ω = 3.8π described in section 3.1; yellow: Figure 6

described in section 3.2; and purple: Figure 7 described in
section 3.2).

According to Figures 8A,B, both the diagonality and the index
W increases as ω increases. Therefore, a walking trot with a
traveling wave emerges for large values of ω. Conversely, both
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indices decrease as σLL increases, and a L-S walk with a standing
wave emerges for large values of σLL. Intermediate waves emerge
for intermediate values of ω. Meanwhile, the values of both the
diagonality and index W in Figures 8C,D are generally larger
than those in Figures 8A,B. Therefore, for small σLB and σBB, a
walking trot with a traveling wave emerges even at a relatively
small value of ω. This tendency is qualitatively consistent with
the behavior of G. kingii using traveling waves exclusively, even
at extremely slow speeds (Ritter, 1992).

3.4. Effect of Body Size and Mass on Gait
Patterns
We performed simulations by changing the body size and weight,
and investigated the effect of these parameters on the exhibited
gait patterns. This experiment used the same parameter set used
in Figure 6 which is described in section 3.2 (i.e., for the L-S walk
with intermediate waves). The color maps in Figure 9 show the
two indices; diagonality and waveform index, when the body size
and weight are between 50 and 150% of those, as listed in Table 1.
Figure 9A shows that the diagonality tends to be higher for a
larger body size and be lower for a heavier body. Figure 9B shows
that the waveform index tends to be higher; that is, the waveform
is relatively similar to traveling waves, for a larger body size.

4. DISCUSSION

To the best of our knowledge, this is the first study to demonstrate
the spontaneous gait transition from lateral sequence walking
with standing body waves, to walking trot with traveling body
waves, in sprawling quadruped locomotion. The gait transition
was achieved by changing only one parameter ω, which is related
to a command from the brain. In the previous studies, Ijspeert
et al. (2007) reproduced the salamander gait transitions from
walking to swimming. This study also reproduced the standing-
and traveling-wave patterns by modulating the strength of the
descending command. However, the traveling waves were used
for swimming but not for walking, and the walking pattern was
uniquely determined by inter-oscillator couplings between the
limbs and body CPGs. Harischandra et al. (2011) proposed a
CPG model utilizing sensory feedback based on the Ijspeert’s
model and showed the gait transition from walk to trot. That
study suggested that sensory modulation has an essential role
for gait transition. However, because the body–limb coordination
patterns were predetermined by inter-oscillator couplings, the
transition of the bending patterns of the body trunk was not
reproduced. In contrast, we designed a CPG controller based
on sensory couplings through bidirectional feedback between
the limbs and body without inter-oscillator couplings, and we
demonstrated that the controller can reproduce flexible body–
limb coordination patterns. This result suggests that the proposed
sensory feedback mechanisms could play an important role in
sprawling quadruped locomotion.

The proposed model changes the footfall pattern in response
to the control and body parameters. Specifically, diagonality
tends to be higher when the leg phase oscillator has a higher
frequency. For example, the higher the intrinsic angular velocity

of the oscillator ω, the higher the diagonality (Figures 8A,C).
Meanwhile, the higher feedback gain of limb-to-limb σLL and
body-to-limb σBL tend to have lower diagonality owing to
the effect of the phase modification that decreases the phase
frequency. Similarly, a heavier body tends to have a lower
diagonality because a heavier body can obtain a higher reaction
force Ni that enhances the limb-to-limb feedback. Furthermore,
the higher feedback gain of limb-to-body σLB and body-to-body
σBB tend to have lower diagonality because the feedback gain is
related to the generated torque at the trunk, which enhances the
body-to-limb feedback. Owing to the close interactions between
the sensory feedback mechanisms, the proposed model generates
flexible footfall patterns.

Sprawling quadruped animals use various body bending
patterns. However, the mechanisms responsible for generating
flexible bending patterns remain unclear. In this article, we
presented a potential solution to generate various bending
patterns. Our proposed model coordinates axial movements
using curvature derivative control and sensory feedback from the
legs. Curvature derivative control causes the angle of the trunk
joint to follow that of the anterior trunk joint. Therefore, the
control shapes a traveling wave of axial movements. Because the
control gain (here is σBB) is related to the follow-up speed, the
higher the feedback gain, the faster the wave speed of the traveling
waves. Meanwhile, the feedback from the legs imposes bending
of the trunk joint at the shoulder (j = 3) and hip (j = 7) in
response to the ground contacts. Given that the footfall timings of
diagonally opposite feet are roughly synchronized, the feedback
tends to cause the bending of the shoulder antiphase with respect
to that of the hip. As a result, a standing wave with nodes at the
shoulder and hip emerges for a large feedback gain of curvature
derivative control σBB, that is, when the wave speed is higher.
When the σBB is lower, the wave speed is lower, and a traveling
wave emerges. The intermediate wave emerges in the condition
between those of the standing wave and traveling waves. Based
on these mechanisms, the proposed model generates flexible
bending patterns. Furthermore, increasing the body size has
a similar effect of reducing the body-to-body feedback gain
(Figure 9B) because a larger body size has a higher inertia that
delays the wave speed of the body bending.

We hypothesized that a salamander possesses load and
stretch sensors at each body part and that sensory information
is transmitted to nearby body parts. At present, there is no
definitive neurophysiological evidence for the proposed sensory
feedback mechanism. However, several biological findings
suggest that the proposed mechanism possibly exists. First, it
has been reported that the salamander’s body and limbs have
mechanoreceptors (Chevallier et al., 2008; Ryczko et al., 2020).
Second, similar feedback mechanisms were reported for other
vertebrates. Specifically, cats utilize signals related to the force
in leg muscles to initiate the transition from the stance to
swing phase in each leg (Pearson et al., 2006), while lampreys
utilize stretch receptors along the trunk to coordinate axial
movements (Grillner, 1996). Third, the neural circuits for limb
movements are located in particular vertebrae above and below
the axial trunk network (Bicanski et al., 2013b). Therefore,
sharing sensory signals among nearby body parts is feasible.
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Further biological studies are required to prove the validity of
the proposed mechanisms. In addition, direct inter-oscillator
couplings are known to exist within the salamander spinal cord,
in particular in the axial networks (Ryczko et al., 2010), whereas
in this study we purposely removed them in order to focus
on sensory-driven synchronization mechanisms. Future studies
should investigate this further once the actual neural circuits of
the salamander spinal cord are better known. The finding of this
study suggests that the role of inter-oscillator coupling in shaping
the locomotor patterns might be less important than previously
thought, compared to sensory-driven mechanisms.

In the future, we aim to develop a salamander robot and
verify the proposed model in the real world. We will investigate
the locomotion speed and cost efficiency for various gait
patterns and contribution of the proposed sensory feedback
mechanisms. This will contribute to an understanding of the
merits of gait transitions in sprawling locomotion. Furthermore,
we will investigate the robustness of ground property changes.
Although this study used flat terrain as the experimental
environment, we expect that the proposed sensory feedback
mechanisms have some adaptability toward various ground
properties, such as a granular surface and gravel road, owing
to the body–limb sensory feedback mechanisms. Finally, we
would like to elucidate a common principle underlying body–
limb coordination by studying other animals. We have already
proposed models for body–limb coordination of sea roaches
(Kano et al., 2019) and quadrupeds that exhibit cheetah-like
galloping (Fukuhara et al., 2020). Based on these studies, we aim
to find commonalities to various legged animals, and establish
a universal control framework for legged robots with high
robustness and adaptability.
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Fast and SlowAdaptations of Interlimb
Coordination via Reflex and Learning
During Split-Belt Treadmill Walking of
a Quadruped Robot
Shinya Aoi1*, Takashi Amano1, Soichiro Fujiki 2, Kei Senda1 and Kazuo Tsuchiya1

1Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto, Japan, 2Department of
Physiology, School of Medicine, Dokkyo Medical University, Tochigi, Japan

Interlimb coordination plays an important role in adaptive locomotion of humans and
animals. This has been investigated using a split-belt treadmill, which imposes different
speeds on the two sides of the body. Two types of adaptation have been identified, namely
fast and slow adaptations. Fast adaptation induces asymmetric interlimb coordination
soon after a change of the treadmill speed condition from same speed for both belts to
different speeds. In contrast, slow adaptation slowly reduces the asymmetry after fast
adaptation. It has been suggested that these adaptations are primarily achieved by the
spinal reflex and cerebellar learning. However, these adaptation mechanisms remain
unclear due to the complicated dynamics of locomotion. In our previous work, we
developed a locomotion control system for a biped robot based on the spinal reflex
and cerebellar learning. We reproduced the fast and slow adaptations observed in humans
during split-belt treadmill walking of the biped robot and clarified the adaptation
mechanisms from a dynamic viewpoint by focusing on the changes in the relative
positions between the center of mass and foot stance induced by reflex and learning.
In this study, we modified the control system for application to a quadruped robot. We
demonstrate that even though the basic gait pattern of our robot is different from that of
general quadrupeds (due to limitations of the robot experiment), fast and slow adaptations
that are similar to those of quadrupeds appear during split-belt treadmill walking of the
quadruped robot. Furthermore, we clarify these adaptation mechanisms from a dynamic
viewpoint, as done in our previous work. These results will increase the understanding of
how fast and slow adaptations are generated in quadrupedal locomotion on a split-belt
treadmill through body dynamics and sensorimotor integration via the spinal reflex and
cerebellar learning and help the development of control strategies for adaptive locomotion
of quadruped robots.

Keywords: split-belt treadmill walking, quadruped robot, interlimb coordination, spinal reflex, cerebellar learning,
central pattern generator
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1 INTRODUCTION

Humans and animals change their locomotor behaviors
depending on the environment and situation. Interlimb
coordination plays an important role in such adaptive
locomotion. For example, to walk along a curved path, the
outer legs have a longer stride and higher speed than those of
the inner legs (Courtine and Schieppati, 2003; Gruntman et al.,
2007). Split-belt treadmills, which impose different speeds on the
two sides of the body (Yanagihara and Udo, 1994; Prokop et al.,
1995; Reisman et al., 2005; Morton and Bastian, 2006; Choi and
Bastian, 2007; Frigon et al., 2013), have been used to investigate
the mechanisms that control interlimb coordination. Adaptive
behaviors induced by changes in the treadmill speed condition
have been investigated. During the split-belt treadmill walking of
humans, when the treadmill speed condition is changed from the
tied configuration (belts move at the same speed) to the split-belt
configuration (belts move at different speeds), the relative phase
between the leg movements rapidly changes to break the
antiphase relationship (i.e., asymmetric interlimb coordination
appears) and the stride length and duty factor differ between the
two legs (Reisman et al., 2005). However, the relative phase slowly
returns to regain the antiphase relationship and to reduce the
asymmetric interlimb coordination in the split-belt configuration.
The stride length and duty factor remain almost unchanged and
different between the two legs. Furthermore, when the treadmill
speed condition is returned to the tied configuration, the stride
length and duty factor quickly return, whereas the relative phase
rapidly diverges from antiphase (i.e., asymmetric interlimb
coordination appears even in the tied configuration) and then
slowly returns to antiphase to reduce the asymmetry. Because the
spinal cord and reflex contribute to rapid changes in locomotor
behavior due to environmental changes (Grillner, 1975), it has
been suggested that the fast adaptations in split-belt treadmill
walking are induced by sensorimotor integration in the spinal
cord. The slow changes in the relative phase and the quick
divergence of the relative phase from antiphase upon return to
the tied configuration do not appear during split-belt treadmill
walking of subjects with cerebellar damage (Morton and Bastian,
2006), which suggests that these changes are induced by learning
in the cerebellum. In particular, the quick divergence of the
relative phase upon return to the tied configuration has been
suggested to be the after-effect of learning.

Although these adaptive behaviors are observed in walking
on a split-belt treadmill, locomotion is a complicated dynamical
phenomenon generated through interactions between the
central nervous system, the body’s musculoskeletal system,
and the environment, and thus it is difficult to fully
understand the locomotion mechanism based on only
observations and measurements of the locomotor system. To
overcome this limitation, mathematical models and legged
robots have been applied to study locomotion (Aoi et al.,
2011, 2017; Fukui et al., 2019; Fukuoka et al., 2015; Ijspeert,
2014; Masuda et al., 2021; Otoda et al., 2009; Owaki et al., 2013;
Owaki and Ishiguro, 2017; Spröwitz et al., 2013). In our previous
works (Fujiki et al., 2013, 2015), we developed a locomotion
control system for a biped robot based on the spinal reflex and

cerebellar learning. We reproduced the fast and slow adaptive
behaviors observed in humans during split-belt treadmill
walking of the robot. These behaviors were not the result of
specifically designed features in our control system, but emerged
through the body dynamics and sensorimotor integration via
the spinal reflex and cerebellar learning. We clarified these
adaptation mechanisms from a dynamic viewpoint by
focusing on the changes in the relative positions between
the center of mass and foot stance induced by reflex and
learning.

Quadrupeds such as cats and mice also exhibit fast and slow
changes in interlimb coordination during split-belt treadmill
walking (D’Angelo et al., 2014; Darmohray et al., 2019; Frigon
et al., 2013; Yanagihara and Udo, 1994). Interlimb coordination
in quadrupedal locomotion is more complicated than that in
human locomotion due to the increased number of legs. Rapid
changes have been observed in spinal cats (Forssberg et al., 1980;
Frigon et al., 2013) and slow changes and the after-effect do not
appear in mice with cerebellar dysfunction (Darmohray et al.,
2019), which suggest that the spinal reflex and cerebellar
learning contribute to fast and slow adaptations, respectively,
during split-belt treadmill walking of quadrupeds, as is the case
for humans. Although previous works (Ito et al., 1998; Kodono
and Kimura, 2020; Latash et al., 2020) have investigated adaptive
quadrupedal locomotion on a split-belt treadmill using
mathematical models and legged robots, they considered
specific conditions [e.g., only one of the four legs moved at a
different speed (Ito et al., 1998; Kodono and Kimura, 2020) and
only the center of mass dynamics in the frontal plane were
considered (Latash et al., 2020)]. The gait adaptation
mechanism in quadrupedal locomotion through whole-body
dynamics and sensorimotor integration for different left- and
right-side speeds remains unclear.

In this study, we improve our locomotion control system for a
biped robot and apply it to a quadruped robot. We demonstrate
that although the basic gait pattern of our robot is different from
that of general quadrupeds (due to limitations of the robot
experiment), fast and slow adaptations similar to those of
quadrupeds appear during split-belt treadmill walking of the
quadruped robot. Furthermore, we clarify the adaptation
mechanisms from a dynamic viewpoint, as done in our
previous work (Fujiki et al., 2015). These results will increase
the understanding of how fast and slow adaptations are generated
in quadrupedal locomotion on a split-belt treadmill through body
dynamics and sensorimotor integration via the spinal reflex and
cerebellar learning and help the development of control strategies
for adaptive locomotion of quadruped robots.

2 MATERIALS AND METHODS

2.1 Quadruped Robot
In this study, we used the quadruped robot (Figure 1) developed
in our previous work (Aoi et al., 2013a). It consists of a body and
four legs (Legs 1–4). Each leg consists of two links connected by
pitch joints (Joints 1 and 2), with each joint manipulated by a
motor. A touch sensor is attached to the tip of each leg.
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Electric power is externally supplied and the robot is
controlled by an external host computer (Intel Pentium
4 2.8 GHz, RT-Linux), which calculates the desired joint
motions and solves the oscillator phase dynamics in the
control system (see Section 2.3). The robot receives command
signals at intervals of 1 ms. It is connected to the electric power

unit and the host computer by cables, which are slack and
suspended during the experiment to avoid influencing the
robot’s locomotor behavior.

2.2 Split-Belt Treadmill
The robot walked on the split-belt treadmill (Figure 1) developed
in our previous works (Fujiki et al., 2013, 2015). The treadmill has
two parallel belts, each of which is equipped with a motor and an
encoder to control the individual belt speed. The width of each
belt is 15 cm and the distance between rotation axes is 64 cm.

2.3 Locomotion Control System
In our previous work (Fujiki et al., 2015), we developed a
locomotion control system for a biped robot based on the
spinal and cerebellum functions. In this study, we improved
the control system and applied it to the quadruped robot
(Figure 2). The control system consists of spinal and
cerebellum models. The spinal model produces motor
commands to manipulate the robot based on a central pattern
generator (CPG) and the sensory reflex, and the cerebellum
model modulates motor commands through learning.

2.3.1 Spinal CPG Model
Our spinal CPG model is based on a physiological two-layer
network model composed of rhythm generator (RG) and pattern
formation (PF) networks (Burke et al., 2001; Rybak et al., 2006).
The RG network creates the basic rhythm. It alters the rhythm by
producing phase shifts and by performing rhythm resetting in
response to sensory feedback (phase resetting). The PF network
shapes the rhythm into spatiotemporal motor command patterns.
Based on this physiological finding, we developed the spinal CPG
model using the following RG and PF models.

For the RG model, we used four simple phase oscillators (Leg
1–4 oscillators), whose phases are denoted by ϕi (i � 1, . . . , 4,
0≤ ϕi < 2π). Because the oscillator phase determines the desired
movement of the corresponding leg, as explained below, the
relative phases between the oscillators Δij � ϕi − ϕj
(i, j � 1, . . . , 4, 0≤Δij < 2π) determine the gait. The oscillator
phases follow the dynamics

FIGURE 1 | Experimental setup. (A) Photograph of quadrupedal robot on split-belt treadmill. The robot body consists of two sections that are mechanically
attached to each other. (B) Schematic model of quadrupedal robot.

FIGURE 2 | Locomotion control model composed of spinal CPG and
cerebellar learning models. Spinal model consists of four phase oscillators
(Leg 1–4 oscillators). Blue arrows indicate relative phase Δij between
oscillators. Oscillator phases aremodulated by phase resetting based on
touch sensor signals (green arrows) and desired (predicted) touchdown timing
(red arrows). Oscillator phases determine leg kinematics (black arrows).
Cerebellar model receives touchdown phase (green arrows) and modifies
desired (predicted) touchdown phase using evaluation function, which is sent
to spinal model (red arrows).
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_ϕi � ω −∑4
j�1

Kij sin(Δij − Δ̂ij) + (ϕ̂TD

i − ϕTD
i )δ(t − tTDi ) (1)

where ω is the basic oscillator frequency,Kij is the gain parameter,
and δ(·) is the Dirac delta function. The second term on
the right-hand side represents the interactions among
oscillators to move the relative phase Δij to the desired
value Δ̂ij, which is determined by the desired gait pattern.
The third term on the right-hand side represents phase
resetting. Taking inspiration from spinal cats walking on a
treadmill, which show how touchdown information
influences the locomotion phase and rhythm generated by
a CPG (Duysens et al., 2000), we modulate the oscillator phase
so that it responds to touch sensor signals based on phase
resetting. Specifically, when the touchdown of Leg i occurs at
time tTDi (ϕi � ϕTDi at tTDi ), the phase of Leg i oscillator ϕi is
reset from ϕTDi to ϕ̂

TD
i (superscript TD refers to touchdown).

This ϕ̂
TD
i corresponds to the desired (predicted) touchdown

phase, as explained in Section 2.3.2.
For the PF model, taking inspiration from the physiological

finding that spinocerebellar neurons encode the global
information of limb kinematics, such as the length and
orientation of the limb axis (Bosco and Poppele, 2001;
Poppele et al., 2002; Poppele and Bosco, 2003), we produced
the motor commands to achieve the desired leg kinematics of
the robot based on the oscillator phases obtained from the RG
model. We use simple leg kinematics, which consist of the swing
and stance phases (Figure 3), in reference to the length and
orientation of the limb axis in the pitch plane. The swing phase
uses a simple closed curve for the leg tip that includes the
anterior extreme position (AEP) and the posterior extreme
position (PEP). It starts from the PEP and continues until
touchdown. The AEP corresponds to the desired position of
touchdown. The stance phase uses a straight line from the
touchdown position (TDP) to the PEP. The trajectories for
the swing and stance phases are given as functions of the
corresponding oscillator phase, where ϕi � 0 at the PEP and ϕi �
ϕ̂
TD
i at the AEP. We denote the distance between the AEP and

PEP as D and the gait cycle as T (ω � 2π/T). The desired duty

factor β̂i, stride length Ŝi, and locomotion speed V̂i of Leg i are
then given by

β̂i � 1 − ϕ̂
TD

i

2π
, Ŝi � D

β̂i
, V̂ i � D

β̂iT
(2)

To generate the desired kinematics, the desired joint trajectories
are calculated based on the inverse kinematics and each joint is
controlled by the joint torque based on proportional-derivative
feedback control.

2.3.2 Cerebellar Learning Model
The cerebellum predicts the sensory consequences of movement
based on the efference copy, and modifies motor commands to
reduce errors between the predicted and actual sensory
information through learning. Furthermore, it predicts the
timing of sensory events (Nixon and Passingham 2001;
O’Reilly et al. 2008) and contributes to achieving tasks that
require accurate temporal control (Ivry et al., 2012; Ivry and
Keele, 1989; Spencer et al., 2005). During walking on a surface
with an unexpected hole, the absence of touchdown sensory
feedback at the predicted timing triggers reflex-like reaction
behavior (Hiebert et al., 1994; van der Linden et al., 2007),
which suggests that the prediction of touchdown timing is
important for motor learning in walking.

We focused on touchdown timing for the cerebellar model. In
particular, we modulate the desired (predicted) touchdown timing
ϕ̂
TD
i based on the error between the predicted and actual

touchdown timings. For this purpose, we define an evaluation
function Ei,n for the nth step of Leg i using the error between the
predicted touchdown phase ϕ̂

TD
i,n and the actual touchdown phase

ϕTDi,n for the nth step of Leg i, which is given by

Ei,n � 1
2
(ϕ̂TD

i,n − ϕTD
i,n )2

(3)

Based on this evaluation function, we predict the next touchdown
timing. Specifically, from the gradient direction of the evaluation
function, ϕ̂

TD
i is modulated by

ϕ̂TD
i,n+1 � ϕ̂TD

i,n − α
zEi,n

zϕ̂
TD

i,n

(4)

where α is the learning rate. Because ϕ̂
TD
i is the desired timing of

the corresponding leg to switch from the swing phase to the
stance phase, this temporal modulation changes the desired duty
factor of the corresponding leg (Eq. 2). Therefore, if the
touchdown arrives earlier than predicted, the robot increases
the swing leg speed in the next step (ϕ̂

TD
i decreases and β̂i

increases while D remains unchanged). In addition, the TDP
gravitates to alignment with the AEP (Figure 3) through this
modulation.

2.4 Robot Experiment
To clarify the functional roles of the spinal and cerebellar models
in gait adaptation during split-belt treadmill walking of the
quadruped robot, we considered the following two cases in the
robot experiment: 1) with the spinal model but without the

FIGURE 3 | Desired leg kinematics composed of swing and stance
phases. At touchdown position (TDP), trajectory changes from swing to
stance phase. When leg tip reaches posterior extreme position (PEP),
trajectory moves into swing phase. Anterior extreme position (AEP) is
desired position of touchdown.
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cerebellar model, that is, the desired (predicted) touchdown
timing ϕ̂

TD
i (i � 1, . . . , 4) was fixed, and 2) with both the

spinal and cerebellar models. For both cases, we suddenly
changed the treadmill speed condition during walking and
investigated how the locomotor behavior changed. In
particular, when we used only the spinal model, we
investigated fast adaptation via the sensory reflex using various
treadmill speed conditions. In contrast, when we used both the
spinal and cerebellar models, we examined slow adaptation via
learning as well as fast adaptation.

For the quadruped robot, we used the following control
parameters: D � 1.5 cm, T � 0.33 s, and α � 0.25. For the initial
value of ϕ̂

TD
i , we used π, which gives β̂i � 0.5, Ŝi � 3 cm, and

V̂ i � 9.1 cm/s. For the desired value of the relative phases, we used
Δ̂12 � Δ̂34 � π and Δ̂13 � Δ̂24 � 0. This means that the desired gait
pattern was the pace pattern, which is different from the walk
pattern (Δ̂13 � Δ̂24 � −π/2) and trot pattern (Δ̂13 � Δ̂24 � π) of
general quadrupeds. This was done because the robot with the walk
or trot pattern could not continue walking straight on the split-belt
treadmill. Specifically, it easily changed walking direction (yaw
motion was induced) due to changes in the treadmill speed
condition because the fore and hind legs were in contact with
different belts. Instead, we used small values for Kij

(K12 � K21 � K34 � K43 � K13 � K31 � K24 � K42 � 2, with other
Kij set to zero) so that the relative phases could be shifted from the
desired value by phase resetting and learning through locomotion
dynamics [we used 20 for Kij to fix the relative phase to the desired
value in our previous work (Aoi et al., 2013a)]. The same control
parameters and initial conditions were used irrespective of the use
of the cerebellar model and treadmill speed condition.

For the split-belt treadmill, we used the tied configuration at the
beginning of the robot walk with v1 � v2 � 6.5 cm/s, where v1 and
v2 are the speeds of the right belt (Legs 1and 3) and left belt (Legs 2
and 4), respectively. After the robot had established a steady gait,
we suddenly changed the speed condition from the tied
configuration to the split-belt configuration, but did not change
the control strategy and parameters. When we used only the spinal
model, we used the following three speed conditions for the split-
belt configuration: 3x: v1 � 9.8 and v2 � 3.3 cm/s (v1/v2 � 3), 4x:
v1 � 10.8 and v2 � 2.7 cm/s (v1/v2 � 4), 5x: v1 � 13.5 and
v2 � 2.7 cm/s (v1/v2 � 5). Therefore, we consider Legs 1 and 3
as the fast side and Legs 2 and 4 as the slow side (Figure 1B). When
we incorporated the cerebellar model, we used the 5x condition for
the split-belt configuration. In addition, we returned the speed
condition to the tied configuration from the split-belt configuration
without changing the control strategy and parameters.

We performed these robot trials five times for each speed
condition and investigated the robot’s behavior from the averages
of the results for six steps in each configuration period. When we
incorporated the cerebellar model, we separated the periods of the
split-belt configuration and the second tied configuration into
two halves to clarify early and late stages of adaptation in each
period. We used one-way repeated-measures analysis of variance
(ANOVA) to compare the differences between the periods and to
clarify the significance of the locomotor behavior changes. When
the ANOVA results showed a significant difference, we
conducted post hoc analysis using Tukey’s honestly significant

difference test, where we considered that p< 0.05 indicates a
significant difference.

3 RESULTS

3.1 Fast Adaptation by Reflex
We first used only the spinal model for the robot experiment. At
the beginning, the robot walked on the treadmill in the tied
configuration with the fore and hind legs in contact with the
ipsilateral belt. It continued walking after the treadmill speed
condition changed to the 3x, 4x, and 5x conditions of the split-
belt configuration. Note that when we did not use phase resetting
in Eq. 1, the robot could not walk on the treadmill even in the tied
configuration.

Figure 4A shows the relative phases Δ12, Δ13, Δ24, and Δ34 for
one representative trial of the 5x condition using the average
value for one gait cycle obtained using 1

T ∫
T

Δijdt (see

supplementary movie). Δ12 and Δ34 were almost π and Δ13

and Δ24 were almost 0 in the tied configuration. Δ12 and Δ13

decreased and Δ24 increased in the split-belt configuration.
Figure 4B shows their averages in the tied configuration and
the split-belt configuration in the 5x condition for five trials,
where we used six steps for each configuration period in one trial.
Δ13 and Δ24 showed significant differences between the belt speed
conditions (p< 0.01 and p< 0.05, respectively) and Δ12 showed
the most significant difference (p< 0.001). In contrast, Δ34

showed no significant difference.

Figure 5A shows the duty factors of Legs 1–4 for one
representative trial of the 5x condition. The duty factors of
Legs 1 and 2 were around 0.6 in the tied configuration. That
of Leg 1 decreased and that of Leg 2 increased in the split-belt
configuration. In contrast, those of Legs 3 and 4 slightly fluctuated
around 0.6 and did not show clear trends. Figure 5B shows their
averages in the tied configuration and the split-belt configuration
in the 5x condition for five trials. The duty factors of Legs 1 and 2
showed significant differences between the belt speed conditions
(both p< 0.01), whereas those of Legs 3 and 4 showed no
significant difference.

Figures 6A, B show the changes in the average relative phases
and duty factors, respectively, between the tied configuration and the
split-belt configuration for three speed conditions (3x, 4x, and 5x).
The changes in the relative phases Δ13 and Δ34 showed no clear
dependence on the speed condition, whereas those in Δ12 and Δ24

increased as the speed discrepancy between the left and right belts
increased. In particular, the change in Δ12 showed a significant
difference between the 3x and 5x conditions (p< 0.05). The changes
in the duty f\actors for Legs 3 and 4 showed no clear dependence on
the speed condition, whereas those for Legs 1 and 2 increased as the
speed discrepancy between the left and right belts increased.
However, they showed no significant difference.

3.2 Slow Adaptation by Learning
We next used both the spinal and cerebellar models for the robot
experiment. At the beginning, the robot walked on the treadmill
in the tied configuration. It continued walking when the treadmill
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speed condition changed to the 5x condition of the split-belt
configuration. Furthermore, the robot continued walking after
the treadmill speed condition returned to the tied configuration.

The relative phase Δ12 clearly changed depending on the
treadmill speed condition, similar to previous results, whereas
the other relative phases did not. Figure 7A shows Δ12 for one
representative trial, where the left and right figures show the
results from the first tied configuration to the split-belt
configuration and from the split-belt configuration to the
second tied configuration, respectively. Δ12 was almost π in
the first tied configuration. It quickly decreased at the early
stage (first half) of the split-belt configuration and slowly
returned to π at the late stage (last half). In addition, it
quickly decreased at the early stage of the second tied
configuration, which suggests the after-effect of learning.
Finally, it slowly returned to π at the late stage of the second
tied configuration. Figure 7B shows the average in the first tied
configuration and early and late stages of the split-belt and second
tied configurations. Significant differences appear between the
first tied configuration and early stage of the split-belt
configuration (p< 0.01), between the early and late stages of

the split-belt configuration (p< 0.01), between the split-belt
configuration and the early stage of the second tied
configuration (p< 0.05), and between the early and late stages
of the second tied configuration (p< 0.05).

In this experiment, the duty factors for Legs 1 and 2 clearly
changed depending on the treadmill speed condition, whereas the
other duty factors did not, similar to previous results. Figure 8A
shows the duty factors for Legs 1 and 2 for one representative trial,
where the left and right figures show the results from the first tied
configuration to the split-belt configuration and from the split-belt
configuration to the second tied configuration, respectively. The duty
factors for Legs 1 and 2were almost 0.6 in the first tied configuration.
The duty factor for Leg 1 quickly decreased and that for Leg 2
increased at the early stage of the split-belt configuration. However,
they had almost no change at the late stage, unlike the relative phases
(Figure 7). They quickly returned to almost 0.6 at the early stage of
the second tied configuration and did not change at the late stage.
Figure 8B shows their averages for the first tied configuration and
the early and late stages for the split-belt and second tied
configurations. The duty factor for Leg 1 showed significant
differences between the first tied configuration and early stage of

FIGURE 4 | Relative phases between leg oscillators with use of only spinal model. (A) Δ12, Δ13, Δ24, and Δ34 for one representative trial of 5x condition. (B) Their
averages for tied and split-belt configurations. Data points and error bars are the mean and standard error results of five experiments, respectively. † : p<0.05,
†† : p< 0.01, and ††† : p< 0.001.
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the split-belt configuration (p< 0.05) and between the first tied
configuration and late stage of the split-belt configuration (p< 0.01).
However, it showed no significant difference between the split-belt
configuration and early and late stages of the second tied
configuration. The duty factor for Leg 2 also showed significant
differences between the first tied configuration and early stage of the
split-belt configuration (p< 0.01) and between the first tied
configuration and late stage of the split-belt configuration
(p< 0.01). In addition, it showed significant differences between
the split-belt configuration and early stage of the second tied
configuration (p< 0.05) and between the split-belt configuration
and early stage of the second tied configuration (p< 0.05).

4 DISCUSSION

4.1 Fast Adaptation Mechanism Upon
Change to Split-Belt Configuration
When we used only the spinal model, the relative phase Δ34

exhibited almost no change, whereas Δ12 decreased from π, Δ13

decreased from 0, and Δ24 increased from 0 due to the change in

the treadmill speed condition from the tied configuration to the
split-belt configuration (Figure 4). The duty factor for Leg 1
increased, that for Leg 2 decreased, and those for Legs 3 and 4
exhibited almost no change (Figure 5). The asymmetric interlimb
coordination and duty factors allow the robot to walk in the
asymmetric speed condition. Furthermore, these asymmetries
increased as the belt speed discrepancy increased (Figure 6).
Such asymmetric locomotion parameters and increase in
asymmetries induced by the speed condition have been
observed in cats and mice (D’Angelo et al., 2014; Darmohray
et al., 2019). Our results are consistent with these observations.
Note that the fast changes in our robot were not the result of
specifically designed features in our control system, but emerged
through the body dynamics and sensorimotor integration via the
spinal reflex. We discuss the mechanism of these gait adaptations
from a dynamic viewpoint by focusing on changes in the foot
contact timing because the locomotor behavior is modulated by
phase resetting in Eq. 1 based on foot contact timing in the spinal
model, where we assume that the forward/backward movements
and pitch rotation are dominant, as assumed in our previous work
on a biped robot (Fujiki et al., 2015), because the backward speed of
the treadmill belts changes.

FIGURE 5 | Duty factors with use of only spinal model. (A) Duty factors for Legs 1–4 for one representative trial of 5x condition. (B) Their averages for tied and
split-belt configurations. Data points and error bars are the mean and standard error results of five experiments, respectively. †† : p<0.01.
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In the tied configuration, the stance legs on both the fast and
slow sides are pulled at the same speed. The fore and hind legs on
the ipsilateral side contact the belt simultaneously (Figure 9A). In
contrast, the stance legs on the fast side (Legs 1 and 3) are strongly
pulled in the split-belt configuration, which accelerates the body
and tilts it forward (Figure 9B). As a result, the fore leg on the
slow side (Leg 2) touches the belt earlier than in the tied
configuration. However, the foot contact timing of the hind
leg on the slow side (Leg 4) shows almost no change because
the swing leg trajectory moves upward due to the body tilt while
the anterior part of the trajectory moves downward due the
trajectory tilt. The stance legs on the slow side (Legs 2 and
4) are weakly pulled in the split-belt configuration, which

decelerates the body and tilts it backward. As a result, the fore
leg on the fast side (Leg 1) touches the belt later than in the
tied configuration. However, the foot contact timing of the hind
leg on the fast side (Leg 3) shows almost no change because the
swing leg trajectory moves downward due to the body tilt while
the anterior part of the trajectory moves upward due the
trajectory tilt. These changes in the foot contact timings
change the relative phases Δ12, Δ13, and Δ24, and the duty
factors for Legs 1 and 2, without changing the relative phase
Δ34 and the duty factors for Legs 3 and 4. As the speed
discrepancy between the belts increases, changes in the body
tilt and foot contact timings increase. As a result, the changes in
the relative phases and duty factors increase.

FIGURE 6 |Changes in average (A) relative phases and (B) duty factors between tied and split-belt configurations for 3x, 4x, and 5x conditions (v1/v2 � 3, 4, and 5).
Data points and error bars are the mean and standard error results of five experiments, respectively. † : p<0.05.
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4.2 Slow Adaptation Mechanism in
Split-Belt Configuration
When we incorporated the cerebellar model as well as the spinal
model, adaptive changes in locomotor behaviors similar to those
observed with the use of only the spinal model appeared at the
early stage of the split-belt configuration. However, different
adaptive behavior appeared in the late stage of the split-belt
configuration due to the learning by the cerebellar model. In
particular, after the relative phase Δ12 quickly decreased from π
at the early stage, it slowly returned to π at the late stage; that is, the
asymmetry in the interlimb coordination was slowly reduced
(Figure 7). In contrast, although the duty factors for Legs 1
and 2 quickly decreased and increased, respectively, at the early
stage, they remained almost unchanged at the late stage (Figure 8).
Such a slow reduction of the asymmetry in interlimb coordination
has been observed in cats and mice (Darmohray et al., 2019;
Yanagihara and Udo, 1994). Our results are consistent with these
observations. Note that the changes in the locomotor behavior at
the late stage for our robot were not characteristics that we
specifically designed into our control model, but were generated
through the body dynamics and sensorimotor integration via the
spinal reflex and cerebellar learning. We discuss the mechanism of
these gait adaptations from a dynamic viewpoint, as done in the
previous section, by focusing on changes in foot contact timings
because the locomotor behavior is also modulated by the cerebellar
learning model Eq. 4 based on foot contact timing through phase
resetting in Eq. 1.

Because the touchdown of the fore leg on the slow side (Leg 2)
is advanced at the early stage (Figure 9B), the swing leg speed

slowly increases due to learning. As a result, the stance legs on
the fast side (Legs 1 and 3) are delayed relative to the slow side at
the late stage, which reduces the pitching moment to tilt the
body forward and induces simultaneous foot contact between
the fore and hind legs on the slow side (Legs 2 and 4), as shown
in Figure 9C. Similarly, because the touchdown of the fore leg
on the fast side (Leg 1) is delayed at the early stage (Figure 9B),
the swing leg speed slowly decreases due to learning. As a result,
the stance legs on the slow side (Legs 2 and 4) are advanced
relative to the fast side at the late stage, which reduces the
pitching moment to tilt the body backward and induces
simultaneous foot contact between the fore and hind legs on
the fast side (Legs one and 3), as shown in Figure 9C. These slow
changes in the foot contact timings change the relative phase Δ12

without changing the duty factors at the late stage. Note that
although this mechanism suggests that Δ13 and Δ24 also show
further changes at the late stage, we did not clearly observe such
changes because they are smaller than those for Δ12, as shown in
Figure 9C.

4.3 After-Effect Mechanism due to Fast and
Slow Adaptations Upon Return to Tied
Configuration
When the treadmill speed condition was returned to the tied
configuration, locomotor behaviors different from those in the
first tied configuration appeared. In particular, the relative
phase Δ12 quickly diverged from π; that is, the asymmetry
in interlimb coordination appeared again (Figure 7). Although

FIGURE 7 | Relative phase Δ12 with use of both spinal and cerebellar models. (A) One representative trial with moving average [five-period linear weighted moving
average (LWMA)]. (B) Average for each period. Data points and error bars are the mean and standard error results of five experiments, respectively. † : p<0.05 and
†† : p< 0.01.
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this quick change is due to the spinal reflex, the divergence
from π is due to learning in the previous split-belt
configuration. This suggests the after-effect of learning. In
contrast, the duty factors for Legs 1 and 2 returned to the
values in the first tied configuration (Figure 8). Such
asymmetry in the interlimb coordination due to the after-
effect has been observed in cats and mice (Darmohray et al.,
2019; Yanagihara and Udo, 1994). Our results are consistent
with these observations. Note that these changes in our robot
were not the result of specifically designed features in our
control system, but emerged through the body dynamics and
sensorimotor integration via the spinal reflex and cerebellar
learning. We discuss the mechanism of these gait adaptations
from a dynamic viewpoint, as done in previous sections.

In the late stage of the split-belt configuration, the stance legs
on the fast side (Legs 1 and 3) are delayed relative to the slow
side due to the learning effect, which reduces the pitching
moment to tilt the body forward by the strong pulling
(Figure 9C). When the treadmill speed condition is returned
to the tied configuration, the strong pulling also returns, which
induces the pitching moment to tilt the body backward
(Figure 9D). As a result, the fore leg on the slow side (Leg

2) touches the belt later than in the late stage of the split-belt
configuration. The foot contact timing of the hind leg on the
slow side (Leg 4) shows almost no change for the same reason as
that for the foot contact timing of the hind leg on the fast side
(Leg 3) in the early stage of the split-belt configuration
(Figure 9B). Similarly, in the late stage of the split-belt
configuration, the stance legs of the slow side (Legs 2 and 4)
are advanced relative to the fast side due to the learning effect,
which reduces the pitching moment to tilt the body backward by
the weak pulling (Figure 9C). When the treadmill speed
condition is returned to the tied configuration, the weak
pulling also returns, which induces the pitching moment to
tilt the body forward (Figure 9D). As a result, the fore leg on the
fast side (Leg 1) touches the belt earlier than in the late stage of
the split-belt configuration. The foot contact timing of the hind
leg on the fast side (Leg 3) shows almost no change for the same
reason as that for the foot contact timing of the hind leg on the
slow side (Leg 4) in the early stage of the split-belt configuration
(Figure 9B). These changes in the foot contact timings induce a
different behavior of Δ12 from that in the first tied configuration
and the same behaviors of the duty factors for Legs 1 and 2 as
those in the first tied configuration.

FIGURE 8 | Duty factors for Legs 1 and 2 with use of both spinal and cerebellar models. (A)One representative trial. (B) Averages for each period. Data points and
error bars are the mean and standard error results of five experiments, respectively. † : p<0.05 and †† : p <0.01.
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4.4 Slow Adaptation Mechanism After
Return to Tied Configuration
Although the relative phase Δ12 showed behavior at the early
stage of the second tied configuration different from that in the
first tied configuration due to the after-effect, it slowly returned
at the late stage through learning (Figure 7). That is, the
asymmetry in interlimb coordination appeared at the early
stage and slowly reduced at the late stage. The slow reduction
of the asymmetry in interlimb coordination induced by the
after-effect has been observed in cats and mice (Darmohray

et al., 2019; Yanagihara and Udo, 1994). Our results are
consistent with these observations. Note that these changes in
our robot were not characteristics that we specifically designed
into our control model, but were generated through the body
dynamics and sensorimotor integration via the spinal reflex and
cerebellar learning. We discuss the mechanism of this gait
adaptation from a dynamic viewpoint, as done in previous
sections.

Because the touchdown of the fore leg on the slow side (Leg 2)
is delayed at the early stage (Figure 9D), the swing leg speed
slowly decreases due to learning. As a result, the stance legs on

FIGURE 9 | Gait adaptation mechanism through reflex and learning based on foot contact timing in (A) first tied, (B) early stage of split-belt, (C) late stage of
split-belt, (D) early stage of second tied, and (E) late stage of second tied configurations. Right figures show foot diagrams.
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the fast side (Legs 1 and 3) are advanced relative to the slow side
at the late stage, which reduces the pitching moment to tilt the
body backward and induces simultaneous foot contact between
the fore and hind legs on the slow side (Legs 2 and 4), as shown
in Figure 9E. Similarly, because the touchdown of the fore leg on
the fast side (Leg 1) is advanced at the early stage (Figure 9D),
the swing leg speed slowly increases due to learning. As a result,
the stance legs on the slow side (Legs 2 and 4) are delayed
relative to the fast side at the late stage, which reduces the
pitching moment to tilt the body forward and induces
simultaneous foot contact between the fore and hind legs on
the fast side (Legs 1 and 3), as shown in Figure 9E. These slow
changes in the foot contact timings change the relative phase Δ12

at the late stage.

4.5 Contributions of Spinal Cord and
Cerebellum to Locomotor Adaptation
A split-belt treadmill imposes different speeds on the two sides
of the body and highlights the functional role of interlimb
coordination in adaptive locomotion. In particular, the
adaptive behavior in interlimb coordination can be classified
into two types, namely fast and slow adaptations. That is, the
locomotion control system has two different time scales. These
adaptations are primarily achieved by the contributions of
different layers in the neural system, namely the spinal cord
and cerebellum. The spinal cord provides motor commands
through the RG and PF networks (Burke et al., 2001; Rybak
et al., 2006) and modulates the commands immediately
responding to sensory feedback (Grillner, 1975). This
immediate modulation contributes to fast adaptation, as
suggested by the fact that spinal cats walking on a split-belt
treadmill show rapid adaptive behavior (Forssberg et al., 1980;
Frigon et al., 2013). The cerebellum receives the efference copy
from the spinal cord via the ventral spinocerebellar tract and
sensory information via the dorsal spinocerebellar tract
(Arshavsky et al., 1983; Fedirchuk et al., 2013). Purkinje
cells provide the output from the cerebellar cortex to
modulate motor commands based on error information
between the sensory information predicted via the efference
copy and the actual sensory information. This modification
contributes to slow adaptation, as suggested from the fact that
mice with Purkinje cell degeneration walking on a split-belt
treadmill do not exhibit slow adaptive behavior and after-effect
(Darmohray et al., 2019). The reflexive response in the spinal
cord secures the ability to continue walking as the environment
changes, which quickly induces asymmetric interlimb
coordination. The cerebellum slowly modulates the
movements under the secured condition to make walking
smoother and more efficient, which slowly reduces
asymmetric interlimb coordination.

Animals make predictions by evaluating various parameters
to enhance their movements through learning in motor control.
The cerebellum contributes to this prediction and learning.
However, because it remains unclear what is predicted and how
to use it in learning, modeling studies have attracted attention.

In particular, learning models of human arm movements have
been proposed to minimize jerk and torque change (Flash and
Hogan, 1985; Uno et al., 1989). Although learning techniques,
such as deep reinforcement learning, have been used to control
legged robots (Hwangbo et al., 2019; Lee et al., 2020; Lillicrap
et al., 2016), cerebellar learning models for locomotion remain
largely unestablished. This is partly because locomotion is a
whole-body movement through leg movement and posture
controls and is governed by complicated dynamics,
including foot contact and lift off, which change the physical
constraints. In this study, we focused on the foot contact timing
for prediction and learning in the cerebellar model. This is because
phase modulation in response to the stimulation of nerves in the legs
(Conway et al., 1987; Duysens, 1977; Frigon et al., 2010; Fujiki et al.,
2019; Schomburg et al., 1998) and reflexive reaction in the absence of
foot contact sensory information (Hiebert et al., 1994; van der
Linden et al., 2007) suggest that sensory information related to
foot contact timing play important roles in modulating locomotor
behavior. In addition, ankle stiffness is predictively modulated
at foot contact in split-belt treadmill walking (Ogawa et al.,
2014). Moreover, climbing fiber responses of Purkinje cells,
which provide error information for motor control, increase
around foot contact (Yanagihara and Udo, 1994). However, the
prediction and learning of foot contact timing do not
necessarily lead to the adaptations observed during split-belt
treadmill walking of animals. Our previous works (Fujiki et al.,
2013, 2015) showed that a biped robot with our control system
exhibits the fast and slow adaptations observed in humans.
Furthermore, this study showed that a quadruped robot with
our control system exhibits fast and slow adaptations similar to
those of quadrupeds. Our results clarify the importance of foot
contact timing modification through sensorimotor integration
for adaptive locomotion in animals.

4.6 Limitations of Our Study and Future
Work
In this study, we used a robotic platform to investigate the gait
adaptation mechanism during quadrupedal locomotion on a split-
belt treadmill. The robot mechanical system is much simpler than an
animal musculoskeletal system. Furthermore, the robot body is rigid
and the joints are strictly controlled by motors, whereas an animal
body and joints are flexible due to control by muscles. In addition, we
used a much simpler locomotion control system than the neural
system used by animals. These simplifications in the robotmechanical
and locomotion control systems facilitated the capture of the essential
aspects of adaptive locomotion. However, they caused quantitative
differences in locomotor behavior. In particular, these simplifications
forced our robot to use a pace pattern, unlike the walk and trot
patterns of general quadrupeds. For intact cats walking on a
split-belt treadmill using a walk pattern, when the left and right
belt speeds are changed, the relative phases are altered on both
the contralateral and ipsilateral sides to induce asymmetric
interlimb coordination, where the contralateral sides for the
fore and hind legs change most significantly (D’Angelo et al.,
2014). These results are not necessarily the same as our results,
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where the contralateral side for the fore legs showed significant
changes whereas that for the hind legs showed no significant
changes (Figure 4). Although some quadrupeds such as giraffes
and camels use a pace pattern (Muybridge, 1957), there are no
experimental data regarding how their interlimb coordination
changes when they walk on a split-belt treadmill, which prevents
us from verifying our results from a biological viewpoint and
requires further biological studies. To overcome these
limitations, musculoskeletal models, which can use similar
walk and trot patterns to those used by general quadrupeds,
would be useful (Fujiki et al., 2018; Toeda et al., 2020) in future
studies.

Although this study focused on split-belt treadmill walking to
investigate the contribution of interlimb coordination to adaptive
quadrupedal locomotion, interlimb coordination plays an
important role in numerous other locomotor tasks. For example,
the gait transition between walk, trot, and gallop changes the phase
relationship between the movements of four legs while creating and
breaking the synchronization between the leg movements (Aoi et al.,
2013a; Aoi et al., 2011; Fukui et al., 2019; Fukuoka et al., 2015; Masuda
et al., 2021; Owaki et al., 2013; Owaki and Ishiguro, 2017). When
crossing an obstacle during walking, the leading limb, which steps over
the obstacle first, and the trailing limb, which steps over the obstacle
after the leading limb, have different distances from the obstacle and
these legmovements differ (Aoi et al., 2013b; Aoki et al., 2013). During
walking along a curved path, the inner and outer limbs show different
speeds (Gruntman et al., 2007). We would like to investigate the
contributions of interlimb coordination to these locomotor tasks using
our legged robots and mathematical models in the future.
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We propose a methodology based on reservoir computing for mapping local

proprioceptive information acquired at the level of the leg joints of a simulated quadruped

robot into exteroceptive and global information, including both the ground reaction forces

at the level of the different legs and information about the type of terrain traversed

by the robot. Both dynamic estimation and terrain classification can be achieved

concurrently with the same reservoir computing structure, which serves as a soft sensor

device. Simulation results are presented together with preliminary experiments on a real

quadruped robot. They demonstrate the suitability of the proposed approach for various

terrains and sensory system fault conditions. The strategy, which belongs to the class of

data-driven models, is independent of the robotic mechanical design and can easily be

generalized to different robotic structures.

Keywords: legged robot, echo state network, ground reaction forces, terrain classification, neural reuse

1. INTRODUCTION

Legged robots complement wheeled machines because of the potential capability of the former to
explore complex unstructured terrains. However, their effective use in practical environments has
not become common because of several problems that are yet to be addressed. One primary issue
is locomotion. Although several efficient control strategies have already been introduced in the
literature (He et al., 2019), their main drawbacks are the lack of efficient high-performance sensing
devices and processing techniques for obtaining the terrain characteristics in real-time. From this
perspective, haptic feedback is a primary information source for achieving reliable locomotion in
legged robots, especially in uneven terrains where real-time gait adaptation and attitude control are
needed. The interaction with the terrain is commonly sensed through force sensors that estimate
the ground reaction forces (GRFs) acting on the individual legs. Since the first reliable applications
of locomotion control strategies in legged robots (Righetti and Ijspeert, 2008), multidimensional
force sensors have been installed on robot feet to sense the ground reaction forces for closing the
loop with neighboring ground locations. In Montes and Armada (2016), several strategies for force
control were discussed. These strategies rely on signal acquisition from force sensors integrated
within themechanical structure of the robot feet without the use of expensive and bulky commercial
sensors. In Bledt et al. (2018), a combination of impedance control and model predictive control
was used to perform impressive tasks such as back-flips in a quadruped robot. These control
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methods require an accurate model of the terrain-leg interactions
through contact force sensing or reliable estimation. In legged
locomotion, ground reaction sensing at the individual foot level
involves repetitive impacts with the terrain, which can easily
affect and degrade the reliability of the device. Moreover, force
signals detected by GRF sensors often suffer from multiple false
detections, especially on uneven terrain.

For these reasons, researchers are increasingly studying
reliable sensorless techniques to estimate the ground-foot contact
information. In Karatsidis et al. (2016), a method to predict
the GRFs in humanoid walking was presented. The method
uses only kinematic information from a fully ambulatory inertial
motion capture (IMC) system based on a large number of
inertial motion units distributed over the body of the humanoid
structure. Therefore, the enhanced accuracy of the force sensors
comes at the expense of having many alternative sensor units.
The force information can be obtained directly or indirectly
from signals already available in the structure. The GRFs can
be indirectly estimated from their inertial effects on the robotic
structure, for example, from the torques or currents of the
motors actuating the robot legs. In Bosworth et al. (2015),
a classical approach involving the robot Jacobian matrix was
used to estimate the foot force from the joint torques, which
were in turn estimated from the leg actuator currents. Other
approaches are based on Kalman filtering techniques or other
methodologies derived from observations (Chan et al., 2013; Hu
and Xiong, 2018). In Chenkun et al. (2015), a dynamic model
of the leg structure was used for sensor estimation. The authors
were aware that accurate parameter estimation is difficult to
achieve. To match the actual robot results with the simulations,
the unknown parametric uncertainties were identified through
a learning process based on the actual data. In particular, radial
basis function networks were used. Recently, a new method
to estimate the force at the foot contacts was presented in
Hu and Xiong (2018). The method is based on designing a
generalized momentum observer for the robot force disturbances
caused by the foot contacts on the ground. This method requires
information on the joint positions and the applied control
torques. The method is used to implement impedance control,
in which the accuracy of the ground contact force is essential,
especially soon after contact events, where the signals show
large impulse-like variations. The methodology applied requires
accurate knowledge of the system parameters, the most critical
of which are concentrated on the robot structure and mass
distribution. These parameters affect the estimation of the center
of gravity motion. A deviation from the nominal parameter
values can thus affect the overall performance of the method.
For this reason, an additional neural network approach was used
to compensate for errors due to inaccurate parametric modeling
and dynamic effects. GRF estimation in legged machines has
also attracted interest because of its potential applications in
designing efficient prosthetic devices. In Fakoorian et al. (2016),
the GRF was estimated on a leg prosthetic system using a
Kalman filtering approach. Impedance control methods are
often adopted to estimate the contact forces from trajectory
tracking errors. In Xin et al. (2020), this strategy was applied
as haptic feedback for teleoperation. The main hypothesis is

to assume that the model error is much smaller than the
disturbances.

All these approaches show that legged machines are
complicated structures involving the concurrent motion of
multiple bodies, each of which has its own inertial effects
on the overall structure. Traditional approaches based on
dynamic equations are thus not completely sufficient for accurate
modeling. Moreover, in general, the classical approach is
dependent on the particular robot structure used. Because of the
extremely large variety of different legged machines described
in the literature, tailored for specific tasks and applications,
extracting accurate dynamic models for sensor estimation is
a time-consuming and often complex task that is further
complicated by the difficulty of accurately identifying the relevant
parameters. Therefore, it is useful to employ a data-driven, neural
network-based learning approach that accurately estimates the
GRF sensor signals independently of the particular dynamic
robot structure and acts as a reliable soft sensor device that can
also cope with leg malfunctions. In Hwangbo et al. (2019), a
strategy to train a neural network policy in simulation and then
transferring it to a legged robot is presented. Specific attention
was devoted to model the robot actuators. They are modeled
through a data-driven approach, mapping the joint state and
position error history into the torque signals provided to the
simulated robot.

In our work, we explore the application of a family of
recurrent networks to estimate the GRFs using proprioceptive
local information acquired at the level of the leg joints.
The underlining nonlinear dynamical model is defined after
a learning process by extracting the temporal dependencies
between the input data. The input data are projected into
a pool of interconnected neurons called reservoirs in which
both space and time-relevant information can be stored in an
internal memory generated through recurrent connections. This
methodology, usually referred to as reservoir computing (RC),
represents an interesting approach for designing data-driven
models in robotic applications involving nonlinear dynamic
behaviors. Among the different architectures in the RC field,
we selected the echo state network (ESN), which is commonly
employed in various applications ranging from handwriting
recognition (Bunke and Varga, 2007) to time series forecasting
(Wang et al., 2019).

The concept of reservoir computing has been further extended
in literature, from a pure algorithmic solution to include the
physical device in the computational effort, realizing a physical
reservoir computing system (Tanaka et al., 2019; Nakajima,
2020). An interesting demonstration was provided in Nakajima
et al. (2015) where a soft silicone arm was adopted for real-
time computation exploiting the intrinsic characteristics of the
system including nonlinearity, memory, and potentially infinitely
many degrees of freedom. Similarly, in Caluwaerts et al. (2014) a
Reservoir Compliant Tensegrity Robot hardware prototype was
presented; it was considered as a part of the computational system
used to generate a set of desired oscillatory motor signals starting
from a Matsuoka oscillator. The idea to use the robot dynamics
to generate an embodied control system has been applied to a
quadruped robot in Degrave et al. (2015). The main result of that
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work was to demonstrate that a memoryless feedback controller
can generate a stable trot by learning the desired nonlinear
relation between the input and the output signals.

A key advantage of ESNs compared with other neural
structures is the simplicity of the learning process. The limitation
of the learning process to only the output weights, called
the readout map, significantly reduces the learning time. The
increase in dimensionality due to the information transfer from
the input to the hidden neurons, which present recurrent
connections, produces multiple combinations of dynamics that
can be exploited through the readout map depending on the
task to be fulfilled. Moreover, the ESN approach is particularly
advantageous over the other approaches mentioned above
because it is a black-box identification model that avoids the
need to implement model-based strategies that, in any case,
would need to be refined with data-based learning algorithms.
Our approach has additional advantages when dealing with joint
faults. Adapting classical methods to handle such occurrences
would be extremely complicated, whereas a learning-based
technique based on recurrent ESNs allows the faults to be handled
efficiently and provides information on the estimated GRF even
when there is serious damage in the sensory system at the
level of the joint legs. Similar capabilities were demonstrated in
Antonelo et al. (2007) where a reservoir network was applied to
a problem of robot localization and map creation, showing good
performance also in presence of limited sensory information.

The use of ESNs also contributes to building an internal
memory that is particularly useful for handling time-varying
signals. An additional important issue typical in reservoir
computing networks results from the characteristics of the
dynamics processing in the reservoir layer. The latter utilizes a
sparse representation of the input signals in a high-dimension
dynamical projection space, whereas the readout maps constitute
only a low-dimension projection space, defined after the learning
phase, that maps specific aspects of the input features. In
principle, any set of information consistent with a given input
signal can be extracted from a given reservoir lattice in parallel
through the addition of other readout maps. This is a typical
example of neural reuse (Anderson, 2010; Arena et al., 2013). In
this work, a clear application of these characteristics is presented,
and another readout neuron is added to the same neural lattice
used for GRF estimation to classify the type of terrain traversed
by the robot (i.e., flat, downhill, uphill).

There are different approaches in the literature related to the
design of solutions for terrain classification in legged robots in
particular, in relation to the material type. In Hoffmann et al.
(2012), a sensory-motor classification of different terrains was
presented for a quadruped robot. The role of the action context
to further improves the discrimination capabilities was also
demonstrated. Techniques based on extreme learning machines
and reservoir computing were analyzed in Degrave et al. (2013) to
demonstrate the effectiveness of a limited combination of tactile
and proprioceptive joint sensors for terrain classification. These
studies can be framed within the embodied cognition framework:
the idea is to find the emergence of proto-cognitive behaviors
letting the robot extracting regularities in the sensory-motor
space and exploit them for action generation (Hoffmann, 2014).

To analyse the flow of information in sensorimotor networks,
tools from information theory were adopted in Schmidt et al.
(2013). The results demonstrate the possibility to create a
primitive body schema identifying structures in the sensorimotor
space.

In our work we are presenting a unique network able to
provide both the GRF distribution on the legs and the terrain
slope with high classification accuracy. This information could
be used, for example, to select the most appropriate locomotion
gait for the application. Preliminary experimental results, carried
out on a real quadruped robot, demonstrate the effectiveness of
the proposed approach. Furthermore, although the embedded
hardware implementation is not within the scope of this work,
the authors identified potential solutions to develop embedded
ESN structures.

A first attempt is reported in Huang et al. (2019) where a
scalable RC-ESNs hardware generator for embedded computing
is presented. The strategy consists of a high-level synthesis in
conjunction with design automation to automatically transform
an offline-trained ESN algorithm into an embedded hardware
accelerator for FPGA applications. Problems related to efficiency
in terms of power, performance, and occupied area were also
considered and addressed. This approach is in line with another
recent example that follows this hardware-oriented strategy
(Huang et al., 2020): here an automatic holistic energy-aware
design methodology is proposed and applied to a multilayer
perceptron designed to be embedded in proactive brain-machine
interface edge devices based on FPGA. Another interesting
direction for hardware implementation is related to the open-
source Neural Network framework called Neural Network
on Microcontroller (NNoM)1, for implementing (recurrent)
neural networks on a microcontroller. It provides a user-
friendly interface and supports state-of-the-art neural model
structures. However, the chip market is rapidly changing and
new opportunities (e.g., System-on-a-chip, tensor computers,
and neuromorphic hardware) will be more and more available
in the next years.

The remainder of this paper is organized as follows: The
methodology employed in the paper is introduced in section 2,
in which the robotic structure and the ESN structure used for the
sensor signal estimation are also presented. Simulation results for
both the GRF estimation and terrain classification are reported in
section 3. The application of the ESN for GRF estimation to a real
robot is discussed in section 4. The work is concluded and some
perspectives are provided in section 5.

2. METHODOLOGY

The aim of this study is to employ reservoir computing structures
to predict external signals, such as the leg ground reaction forces,
using internal data such as the joint torques in a quadrupedal
robot structure. All the data to be analyzed were acquired on
a simulated robot moving in a dynamic simulation framework
named CoppeliaSim, which has been duly extended in Rohmer
et al. (2013). The framework provides an accurate dynamic

1https://github.com/majianjia/nnom.
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simulation environment that is particularly useful for complex
robotic structures. The simulation approach becomes essential
when sophisticated learning-based control techniques, which
involve time-consuming runs, have to be applied to the structure
before obtaining reliable results. To achieve the aim of the study,
the training phase of the methodology introduced here was first
performed in the dynamic simulation before implementation
on the actual robot prototype. The simplified foot structures in
several-legged robots do not allow the inclusion of GRF sensors,
which are useful for developing adaptive locomotion control
strategies. One example is the Lilibot robot, which is a small-
sized robot developed for research and education purposes (Sun
et al., 2020). The first attempt to solve the GRF acquisition
problem adopted a simple parametric model utilizing the current
through the servo motors at the knee joints as the input signal;
the current was found to be positively correlated with the GRF.
Our work extends this approach, which is based on a static
model, by developing a dynamic structure that can utilize the
time evolution of signals relevant to the joints, in particular the
torque signal of a subset of joints, to estimate the GRF. The
linear relationship between the joint torques and motor currents
ensures that the proposed model can be applied in the robot
to easily acquire information on the currents absorbed by each
motor. Moreover, a significant improvement over the model in
Sun et al. (2020) is the development of a unique network that
utilizes the information coming from all four legs to estimate
the GRF signals. This approach allows local faults within the
joint sensory acquisition system to be handled and provides a
good reconstruction of the GRF associated with a leg even if
the corresponding joint signals are not available. The additional
update is made possible by using the same reservoir lattice to

provide information about the type of terrain the robot is actually
walking on.

2.1. Lilibot Robot
Lilibot is a small, lightweight, robust, open-source, and sensor-
rich quadruped robot (Sun et al., 2020) (Figure 1). Each leg is
characterized by three joints comprising two hips and a knee, as
shown in Figure 1. The flexible configuration of the robot leg
allows extensive rotation at the level of the joints and results
in large workspaces due to the small dimensions of the robot.
This makes the structure an ideal platform for studying adaptive
locomotion strategies. An algorithm capable of estimating the
GRF for each leg of the actual robot through the knee currents
was also provided in the paper referenced above. In the present
study, torques were used instead of currents for GRF estimation
because of the lack of information on the actuator currents in
the robot simulator. To demonstrate the reliability of the results
obtained, different simulations were performed with varying
characteristics of the ground the simulated robot walked on. Data
were acquired not only for a flat surface but also for an uphill
surface and a downhill surface. We focused on measuring the
joint torques and the leg GRFs.

The robot operating system (ROS) was used to create
a communication channel between the controller and the
simulated robot. The locomotion controller is an adaptive neural
controller written separately from the simulation environment.
It communicates with the simulated robot through specific
channels called topics which are provided by the ROS.
CoppeliaSim allows some robot parameters such as the leg joint
torques and the leg GRFs to be monitored. The simulation was
constructed such that it almost perfectly reflected the behavior

FIGURE 1 | Overview of the 12 DoF quadruped Lilibot. Lilibot has a software framework with a modular design. The framework is based on the robot operating

system (ROS) and can be connected to a joystick and a remote computer for manual control and robot state monitoring/recording. The simulated and physical

versions of Lilibot are identical. A control mechanism can be first tested on the simulated robot and then directly transferred to the actual robot. Further details are

reported in Sun et al. (2020).
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of a real robot (Sun et al., 2020). The adopted locomotion
control system is a central pattern generator (CPG) which can be
adapted to generate different locomotion gaits through a series
of parameters. In the following simulations, the robot walked at
a fixed speed with a trot gait in which two opposite legs were in
phase at each moment while the other two legs were 180◦ out of
phase.

The CPG was devoted to low-level locomotion control,
whereas the high-level ESN structure was implemented for
GRF estimation and terrain classification. Therefore, the next
step consisted of configuring the ESN where a different set of
parameters was used to find themost reliablemodel that provided
the best results. Different architectures were used based on the
number of legs and type of joints tested during the analysis. In
the following step, the robustness against faults was analyzed to
train a model that can reliably react to sudden faults affecting the
leg joint sensory system.

2.2. Echo State Network Overview
An echo state network proposed in the early 2000s (Jaeger, 2001)
was used to predict the GRF of each leg joint torque reading.
This specific neural architecture falls within the field of reservoir
computing, which is a collection of methodologies useful for
training recurrent neural networks. A reservoir computing
system consists of a reservoir that maps input signals into a high-
dimensional space and a readout map for pattern matching from
the high-dimensional states in the reservoir to an output target.
A simple scheme for this architecture is presented in Figure 2.

The advantage of reservoir computing ESNs is that, whereas
the reservoir layer (which corresponds to the hidden layer
in feedforward networks) has random fixed weights, only the
readout is trained with simple methods consisting of, for
example, the recursive least square (RLS) algorithm. Thus, the
major advantage of reservoir computing compared to other
recurrent neural networks is fast learning, which results in low
training costs (Tanaka et al., 2019; Patanè and Xibilia, 2021). This
study aims to show how powerful and lightweight an ESN can
be in the development of a soft sensor for robotic applications.
The reservoir can be conceived as a bucket of neurons, each
of which is sparsely connected to other internal neurons. The

output neurons are all connected to individual reservoir neurons,
whereas the input neurons are sparsely connected to the reservoir
neurons. Each connection is described by a uniformly sampled
random weight value. However, during the training phase, only
the readout weights are trained to improve the model accuracy
(Lukoševičius and Jaeger, 2009). This is the main characteristic
that allows the ESN to be lightweight. In the absence of feedback
from the output to the reservoir, the time evolution of the
neuronal states in the reservoir is given by Jaeger (2001).

xxx(n) = λfff (Winuuu(n)+Wresxxx(n− 1))+ (1− λ)xxx(n− 1) (1)

where n denotes the discrete time, xxx(n) the state vector of the
reservoir units, uuu(n) the input vector, Win the weight matrix for
the input-reservoir connections, and Wres the weight matrix for
the recurrent connections in the reservoir. Function f represents
the element-wise activation function of the reservoir units and λ

∈ [0, 1] is the leak term, adopted when leaky integrator neurons
are considered. In our case study, we chose the hyperbolic
tangent as the activation function. The output is given by a linear
combination of neuronal states:

yyy(n) = Woutxxx(n) (2)

where yyy(n) is the output vector, andWout is the weight matrix in
the readout. In supervised learning, this weight matrix is trained
to minimize the difference between the network output and the
desired output for a certain time period (Lukoševičius and Jaeger,
2009).

An ESN is characterized by a set of parameters that
are directly connected to its behavior. We tested different
parameters to determine the model with the best accuracy.
We provide the values of the key network parameters in
Table 1 that summarizes the relevant characteristics of the
proposed architecture and the hyperparameters adopted. The
selection of these hyperparameters was driven by the indications
available in literature (Bengio, 2012; Dasgupta, 2015; Dasgupta
et al., 2015) and by preliminary experiments. Therefore, it
was performed through a trial-and-error procedure based on a

FIGURE 2 | Echo state network structure comprising an input layer, a reservoir layer, and an output layer. Only the W res weights are subject to learning.
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TABLE 1 | Echo State Network parameters which provided the best accuracy.

Parameter Value

Reservoir neurons 100

Learning method RLS

Leak 0.3

Learning rate 1.0

Input sparsity 20%

Network sparsity 50%

Spectral radius 0.95

Reservoir function Tanh

Readout function Linear

Washout 100

Noise bias 0.001

combination of expert knowledge to identify a searching domain,
and a grid search performed on the reduced subspace of the
hyperparameters to identify the best configuration in terms of
prediction accuracy on the validation dataset. As a result, the
reservoir neurons were set to 100 based on our previous analysis
(Dasgupta et al., 2015) and grid search. The leak parameter,
defining how much a single neuron in the network depends
on the actual net input it receives, was analyzed in Dasgupta
(2015) and Dasgupta et al. (2013) and here set to 0.3 based
on the analysis. Note that a smaller value will lead to less leak
of the information, i.e., larger temporal memory storage while
a larger value will lead to high leak of the information, i.e.,
smaller temporal memory storage. The input sparsity defines
the probability of connections from the input to the network
which was empirically set to 20%. This provides robustness to
the network and less input dependent compared to a higher
sparsity value (Dasgupta, 2015). The network sparsity defines the
connection probability between reservoir neurons. It is typically
set to 10–50% (Dasgupta, 2015). Here it was empirically set to
50%. The spectral radius parameter (or network scaling factor)
was analyzed in Dasgupta et al. (2015) and Dasgupta et al. (2013).
Based on the spectral radius analysis, the parameter was set here
to 0.95 such that the spontaneous network dynamics is in a
stable regime and achieves the best performance of the chosen
network size. The constant noise bias (i.e., 0.001) is applied to
the hidden recurrent neurons of the network. The bias term is
set based on Rungruangsak-Torrissen and Manoonpong (2019)
and used in order to provide a small input for the hidden
neurons to constantly activate them, thereby maintaining the
neurodynamics. The other parameters, like learning rate and
washout, were set with respect to the standard setup of the ESN
learning (Bengio, 2012; Dasgupta et al., 2013, 2015).

Other hyperparameter optimization methods, based on
genetic algorithms and different bio-inspired approaches, have
been applied in recent works and can be considered as further
searching strategies (Tian, 2020).

A particular point of interest is the choice of the learning
method (here, the RLS) and the spectral radius. The spectral
radius is related to the Echo State Property, an important

property that guarantees the stability of the network that is able to
forget its inputs after a given time behaving as a fading memory.
The spectral radius is usually kept below 1 to maintain the echo
properties for zero input reservoirs. This constraint is usually
enough for a large reservoir (Caluwaerts et al., 2013), although,
in some application, the possibility to explore the range above
1 could be useful to improve the network generation capability
of chaotic signals (Sussillo and Abbott, 2009). In presence of
input-driven reservoirs, temporal and statistical properties of the
driving input can be related to the spectral radius that may exceed
the previous mentioned limit by continuing to hold the echo
state property (Manjunath and Jaeger, 2013). As stated above,
the training of an ESN is relatively faster than that of standard
recurrent neural networks (Hochreiter and Schmidhuber, 1997;
Mandic and Chamber, 2002).

We considered a standard ESN architecture to demonstrate
the effectiveness of our strategy. However, further investigations
to improve the proposed model performance could consider the
introduction of the intrinsic plasticity rule to adapt the reservoir
internal parameters using an unsupervised mechanism based on
the maximization of the transferred information (Dasgupta et al.,
2013, 2015; Dasgupta, 2015; Patanè and Xibilia, 2021).

3. SIMULATIONS AND EXPERIMENTAL
RESULTS

The first step consists of data acquisition. The simulation was run
for several minutes on perfectly flat ground. The robot walked
at a fixed speed and gait. Both joint torques and the GRF of
each leg were recorded with a sampling interval of 50 ms. The
same operations were performed on both downhill and uphill
ground with slopes of ±5◦ to verify the ability of the network
to generalize the GRF prediction independently of the ground
shape. After collecting all the data, a pre-processing stage was
implemented. The final step was to train and test the model,
followed by data analysis, which led to the results reported below.
Because the focus was to obtain a good estimation of the leg GRF,
we analyzed what proprioceptive information should be used to
achieve the most reliable results. The analysis was performed
systematically by using different sets of joint torques in the input
layer. Each round of analysis was performed by first training the
model on 80% of samples measured on flat ground and then
testing the model on the remaining 20% of the flat ground dataset
together with the complete uphill and downhill datasets, which
were not shown to the model during the learning phase. The size
of the entire dataset was∼25, 000 samples when the sampling rate
was 20 Hz. The variables were normalized into the range [0, 1].
We measured the mean squared error (MSE) and its normalized
version (NMSE), according to the set of joints provided to the
model and the different tested surfaces. Figure 3 depicts the ESN
performance in the two cases when all 12 joint torque signals were
provided in the input, and when the input layer was reduced to
only 8 signals (i.e., only the Hip 2 and Knee joints). The statistical
results obtained indicate that the information from the Hip 1
joint is not relevant to the analysis. This result can be explained
by the leg kinematics shown in Figure 1. Here, the Hip 1 joint
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FIGURE 3 | NMSE obtained from the ESN for different terrain types. The role of the input signals was investigated considering four different cases: all (three torque

signals for each leg for a total of 12 inputs), Hip 2 and Knee (8 inputs), Knee (4 inputs), and Hip 2 (4 inputs).

FIGURE 4 | Predicted GRFs of front right leg when the model learnt to predict all GRFs and a fault was introduced over 200 samples (gray area from 300 to 500) in

both of the front right leg joints. The training set consisted of data measured using perfectly working sensors.

is required only for steering or attitude controlling maneuvers,
whereas the other two joints are involved in generating the stance
and the swing trajectory on the sagittal plane during forward
walking. A further reduction of the input signals to only one
single-joint signal for each leg produces a drastic increase in
the reconstruction error. This indicates that the optimal network

configuration should include a total of 8 inputs consisting of the
torque signals for the Knee and Hip 2 joints of all the legs. The
outcomes of the test phase are very similar for all the terrain
configurations, even when the model was trained using only data
acquired on the flat surface. Thus, our model can be generalized
to generate predictions for different terrain characteristics.
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Another relevant characteristic of the proposed architecture
that we investigated is its robustness against random faults in
the torque sensors. The idea is to verify whether the model can
handle the partial omission of some input signals and show a
gradual performance degradation instead of an abrupt drop. The
acceptability of the predicted quantities depends on the predicted
error.

We first introduced faults during the test phase. The faults
affected both the Knee and the Hip 2 sensors in the front right
leg for 200 consecutive samples, which corresponds to ∼6 steps.
A comparison between the actual and predicted GFR for the front
right leg subjected to the fault is shown in Figure 4.

As can be seen, the test performance in the presence of the
sensor faults is very poor; therefore, our next step consisted of
finding a solution to avoid or at least limit the performance
degradation. We thus evaluated the behavior of our final model
trained in the presence of faults to find a good strategy to improve

TABLE 2 | Mean and standard deviation of MSE in testing evaluated on all legs

when the training and testing phase is performed in presence of faults as

discussed in the text.

Trained with fault Tested with fault MSE R

No No 0.0036 ± 0.0015 0.98

No Yes 0.0175 ± 0.0229 0.67

Yes No 0.0056 ± 0.0004 0.96

Yes Yes 0.0074 ± 0.0031 0.93

The Pearson correlation coefficient (R) is also reported.

the accuracy of the predictions. One of the functions of the
reservoir layer is to create hidden time correlations between
the input joint signals, which can then be exploited by forcing
the net to estimate the GRF of a leg even in the absence of
torque signals from that leg. This can be achieved if the network
learns the correlation between the corresponding leg joints and
their involvement in the output prediction. The presence of a
correlation between the joint torques of a leg and the GRFs of
the other legs is reasonable because the robot is moving with a
fixed gait. Therefore, we introduced artificial faults in each leg
during the training phase. Each fault lasted for 100 samples and
occurred in the Knee and the Hip 2 signals of each leg once every
500 samples. Situations involving faults in two or more legs at the
same time were not considered.

Table 2 summarizes a statistical analysis of the prediction
performance of the ESN-based model when the training and
test phases were carried out with and without faults. The
network can be forced to create cross relations between
sensory information by introducing faults during training to
significantly improve its fault-handling performance through
the support of the available sensory signals coming from the
other legs. This effect is obtained at the cost of a slight
degradation of the prediction performance in the absence of
faults.

Figure 5 shows the improvement obtained for the GRF
prediction of the faulty leg with the new training compared with
the results previously reported in Figure 4.

These results can be analyzed in detail by considering the
prediction error obtained for each output variable (i.e., each
leg). Figure 6A shows the effect of a fault on both joints of the
front right leg compared with the MSE obtained when all the

FIGURE 5 | Predicted GRFs of front right leg when a fault was introduced in both front right leg joints over 200 samples (gray area from 300 to 500). The training set

consisted of data that included the faults.
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FIGURE 6 | Comparison of prediction errors between samples with and without faults for the four GRF signals predicted as output of the ESN. The model was trained

using only data from normal working conditions (A), and using data in which artificial faults were introduced in all the legs during the training phase (B).

sensory information was provided in the input. The degradation
is evident and concentrated on the corresponding leg. The effect
of the same fault on the model trained with faulty signals is
shown in Figure 6B. Here, all the legs cooperated in predicting
the four outputs, improving the robustness in the presence
of faults.

Similar conclusions can be drawn when a fault occurs on
only one joint of a leg, given that the model was trained
against faults occurring in the Hip 2 and Knee of each leg.
Figure 7 shows how the NMSE behaves differently when the
faults occur on Hip 2, Knee, and on both front right leg joints

during the test over 200 consecutive samples. The error was
computed as the average of all four legs. The brighter bar
shows the measured error when the model was trained without
artificial faults, whereas the darker one was obtained from a
model trained with artificial faults. It is clear that the mean
error is generally much lower if the model has learnt how to
deal with faults. Figure 8 also shows how the error behaves
over time when the faults occur on a specific joint. This result,
combined with the previously analyzed results, suggests that
there is a weak relationship between the leg knee torque and
its GRF.
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FIGURE 7 | Behavior of GRF prediction NMSE when the fault occurred on Hip 2, Knee, or both front right leg joints. The error was computed as the average of all four

legs. The brighter bar shows the measured error when the model was trained without artificial faults, whereas the darker one was obtained from a model trained with

artificial faults.

3.1. Terrain Classification
The results reported in this section show one of the most
intriguing features of ESNs. As described above, the dynamics
that emerge within the reservoir lattice do not depend on the
target to be mapped; rather, they spontaneously arise as a result
of the input signals and the random sparse arrangements of
the connections and weights. Once these factors are fixed, the
high-dimensional dynamics within the neuron lattice can be
mapped according to an arbitrary assignment imposed by the
target signals. This feature can be exploited to allow the use of a
given dynamical arrangement to create many arbitrary mappings
of the same input space for the realization of other readout
maps. The example reported here uses the same dynamical
input signals to obtain, in addition to the time-dependent GRF
signals, a classification of the type of terrain traversed by the
robot (i.e., flat, uphill, or downhill). This application exploits the
relationship between the average slope of the climbed terrain
and the interplay between the complex inertial effects caused
by multibody motion and the motor torque distribution among
the robot legs. Once the former ESN is trained, it is no longer
necessary to run the entire network again. It is sufficient to add
another readout map and exploit the output of the reservoir
lattice to perform the desired mapping by training only the added
map. Therefore, the terrain classification step was performed
using the same network configuration and parameters used in the
previous task. The new readout is extremely simple: it comprises
only one output neuron that provides, as output, the three terrain
types considered. This approach falls within the psychological
paradigm of neural reuse (Anderson, 2010) recently adopted for

neuro-inspired structures (Arena et al., 2013): neurons, because
of their interconnectivity, organize in networks that can cope
with different tasks concurrently. In our case, the same ESN
network can generate multiple parallel signals from a single set of
input signals previously adopted for robotic applications ranging
from time-dependent GRF estimation signals to static labels
that account for the type of terrain currently being traversed
Figure 9 depicts the augmented ESN structure, which includes
the terrain classifier. The reservoir layer is the same layer as that
for the GRF estimation, and only the additional readout map is
trained.

The target for each class is a constant value: 0 for
downhill terrain, 0.5 for flat terrain, and 1 for uphill
terrain. In the last case, a low-pass filter was adopted at
the output stage to provide a smooth signal. In particular,
the output of the ESN was processed using a 5th-order
Butterworth filter with a cutoff frequency of 0.5 Hz. The
introduction of nonlinearities in the output layer will be
investigated in future works to avoid the presence of an
external filter.

The classification was performed by considering the average
output over a time window of 100 samples. The average error
between the network output and the three target signals was
computed, and the class with the smallest error was selected
for the current window. As stated above, the ESN with the
same topology as that in Table 1 was considered. In addition,
different datasets were considered in evaluating the capability
of the network to classify the terrain when there was missing
information in the input signals. When all the input information
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FIGURE 8 | Absolute error between actual and predicted GRF of the front right leg over time when a fault occurred on a specific joint (gray area) and the learning was

performed without (A) and with faults (B). The error signal was filtered using a sliding window of 20 samples to facilitate comparison.

is available the classification accuracy is 100%. However, the
classification solution cannot easily handle sensory fault events.
In fact, if the torque signals of one leg are missing, the
performance decreases, and the accuracy is reduced to 76.6%.
Similar to the GRF estimation discussed above, to improve the
network prediction performance in the presence of faults, the
learning dataset was modified to include faults. The resulting
accuracy of the network when faults were present on both the
Hip 2 and Knee joints of a single leg reached the high value
of 97.6%.

The confusion matrices obtained during the testing phase
for the three different cases considered here are reported in
Figure 10. A total of 124 time windows were analyzed. The
filtered output of the network is compared with the actual
class in Figure 11. The classification accuracy is considerably
reduced when the presence of faults results in multiple
incorrect predictions. The addition of faulty conditions in
the training dataset for the learning procedure improves the
network performance and drastically reduces the number of
incorrect predictions.
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FIGURE 9 | Echo state network structure extended to include the terrain classification task. The input layer includes eight torque signals coming from the Hip 2 and

the Knee joints for all the legs, and the output layer contains two readout maps which are respectively dedicated to estimating the GRF in the four legs and classifying

the terrain type into three categories (flat ground, uphill, and downhill). In this last case, a low-pass filter was adopted.

FIGURE 10 | Confusion matrices obtained for different data configurations: (A) learning without faults and testing without faults, (B) learning without faults and testing

with faults, and (C) learning with faults and testing with faults. The configuration learning with faults and testing without faults was characterized by a perfect

classification and is equivalent to the confusion matrix in (A).

3.2. Real Robot Experiments
The proposed approach for GRF estimation was particularly
effective on the simulated quadruped robot. To further assess
the ESN-based strategy, an experimental set-up was considered
to properly acquire the needed data from the Lilibot robot,
as the current robot setup does not include GRF sensors
(Sun et al., 2020). The experimental setup adopted consists
of a custom-designed force plate platform for legged robots
(see Supplementary Material). The Lilibot quadruped robot
was monitored on the platform while moving forward using
a trot gait. Data coming from the force plate platform were
acquired at 20 Hz and synchronized with those ones acquired
from the robot, in particular the joint motor currents, used as
inputs for the network. The whole dataset acquired through
a series of experimental trials on the robot is composed of
3,000 patterns properly divided between learning (80%) and
test (20%). The idea to directly use the network previously
trained in simulation with the newly acquired robot data was
not pursued due to the differences in terms of input variables
(i.e., motor currents instead of joint torques) and the actual set-
up of the robot that has some differences if compared with the
dynamic model from several aspects, for instance, the stepping
frequency and the weight. Therefore, a new ESN was trained
to design a soft sensor for GRF estimation. We considered a

reduced network with 15 neurons in the reservoir to estimate the
GRF associated to the front right leg, starting from the motor
currents acquired from the Knee and Hip 2 joint motors of the
same leg. The other hyperparameters adopted have remained
unchanged from the Table 1. To filter out high-frequency noise
in the motor currents, a 5th-order Butterworth filter with a
cutoff frequency of 1.5 Hz was adopted. Figure 12 shows the
normalized motor currents provided as input to the ESN, and
the obtained GRF compared with the signals acquired from
the force plate platform, applying a Z-score normalization. The
GRF estimation for the first three steps is quite satisfactory, in
fact, the testing performance obtained reports an MSE equal to
0.5 and a Pearson correlation coefficient (R) equal to 0.72. The
behavior highlighted in the last step needs a brief explanation.
The experiment here considered, as illustrated in the video
of the robot walking on the sensorized platform included as
Supplementary Material, reveals that the robot makes a slight
turning to the right toward the end of the experimental trial.
This change of direction affects the positioning of the legs as
demonstrated in Figure 13 where a series of snapshots extracted
from the robot experiment is reported. In the last picture of
the sequence, the front right leg tip is placed on the boundary
of two measurement units in which the force plate could not
properly identify the GRF. The effect of this event is the
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FIGURE 11 | Comparison between the filtered predicted output and the target signal obtained for different data configurations: learning without faults and testing

without faults (A), learning without faults and testing with faults (B), and learning with faults and testing with faults (C). The fault consists of the unavailability of the

sensory signals coming from the front right leg (Hip2 and Knee joints) for 2,000 samples (gray area).
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FIGURE 12 | Input and output signals for the ESN trained to predict the GRF of the front right leg of the Lilibot quadruped robot: (A) the trend of the filtered motor

currents on the Hip 2 and Knee robot joints; (B) the comparison between the estimated and actual GRF acquired from the real robot during the testing phase; (C) the

prediction error where the presence of an unexpected situation is highlighted by the increased values in the error signal.

missing of the GRF information as shown in Figure 12 after
the time sample 80. In this case, the ESN network is still
able to predict the GRF and the increment of the prediction
error can be used as an indicator of a possible anomaly in

either the sensing system or the robot behavior. This effect can
be exploited thinking to a robot equipped with GRF sensors.
The ESN model would represent an internal model capable of
producing an efferent copy on which to evaluate the discrepancy
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FIGURE 13 | Snapshot of the Lilibot walking on the force plate. The blue circles indicate the stance feet touching on a single measurement unit while the red circle

indicate the feet (i.e., right front foot) touching on the boundary of two measurement units in which the force plate could not identify the GRF acted on the foot (i.e.,

right front foot).

between expectations and real conditions to identify anomalous
situations.

Legged structures are good testbed to evaluate performance
of neural models trying to estimate relevant information also
acting as afference copy to be used to identify unforeseen
situations like faults. A methodology for mapping local
proprioceptive information (e.g., joint torque) into exteroceptive
global information (e.g., GRFs) has been here presented.
This methodology is based on reafference principle (Latash,
2021). The possibility to use recurrent neural networks
(e.g., ESNs) to exploit their neurodynamics as well as
embedded internal memory for robust state estimation (e.g.,
when missing input information) is another relevant aspect
here addressed.

The obtained results demonstrate that the proposed approach
is suitable to estimate the GRF in real quadruped robots
walking on flat terrains. The differences between the real and
simulated setups allow to conclude that the approach can
be easily applied to different robot parametric configurations
when input and output data can be acquired for the network
training.

4. CONCLUSIONS

The methodology presented in this paper demonstrates the
versatility of reservoir computing networks and exploits the
ability of the reservoir to concurrently provide different analyses
of the same input data and perform different static and dynamic
mappings. This allows a dynamical layer constituting a high-
dimensional sparse coding of the input features to be provided
independently of the target output. The dynamical layer can
be read out in many different ways concurrently. Moreover,
the approach presented here is a clear example of a virtual
sensor design. In fact, one of the functions of the ESN is
to substitute actual force sensors with their estimated values
using soft sensors. In addition, the structure does not use
models that require analytical models of the robot, which
can sometimes be complicated owing to the complexity of
legged machines. In any case, the analytical representations
can seldom take into account all the nonlinearities arising

from the dynamic interplay between the different bodies in
motion. The data-driven approach here is easy to implement
and requires only data that can be acquired easily either
in simulations or in simple experimental setups with the
actual robot. Preliminary experiments carried out with the
Lilibot quadruped demonstrate the effectiveness of the proposed
approach in estimating the GRF of a leg starting from joint
motor signals.

The possibility of adding multiple readout maps to extract
the required information from the reservoir with simple
and effective learning strategies demonstrated by the GRF
and terrain classification is of great interest. It opens the
way to the implementation of the proposed networks on
dedicated hardware where high-level synthesis techniques, in
conjunction with design automation allow the transformation of
an offline-trained ESN algorithm into an embedded hardware
accelerator. The next step in the further development of
the proposed approach would be to evaluate the ESN
for the estimation of the actual GRF signals and terrain
classification recorded on the actual Lilibot robot in more
complex scenarios.
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In myo-control, for computational and setup constraints, the measurement of a high

number of muscles is not always possible: the choice of the muscle set to use in

a myo-control strategy depends on the desired application scope and a search for

a reduced muscle set, tailored to the application, has never been performed. The

identification of such set would involve finding the minimum set of muscles whose

difference in terms of intention detection performance is not statistically significant when

compared to the original set. Also, given the intrinsic sensitivity of muscle synergies

to variations of EMG signals matrix, the reduced set should not alter synergies that

come from the initial input, since they provide physiological information on motor

coordination. The advantages of such reduced set, in a rehabilitation context, would

be the reduction of the inputs processing time, the reduction of the setup bulk and

a higher sensitivity to synergy changes after training, which can eventually lead to

modifications of the ongoing therapy. In this work, the existence of aminimummuscle set,

called optimal set, for an upper-limb myoelectric application, that preserves performance

of motor activity prediction and the physiological meaning of synergies, has been

investigated. Analyzing isometric contractions during planar reaching tasks, two types

of optimal muscle sets were examined: a subject-specific one and a global one. The

former relies on the subject-specific movement strategy, the latter is composed by the

most recurrent muscles among subjects specific optimal sets and shared by all the

subjects. Results confirmed that the muscle set can be reduced to achieve comparable

hand force estimation performances. Moreover, two types of muscle synergies namely

“Pose-Shared” (extracted from a single multi-arm-poses dataset) and “Pose-Related”

(clustering pose-specific synergies), extracted from the global optimal muscle set, have

shown a significant similarity with full-set related ones meaning a high consistency of the

motor primitives. Pearson correlation coefficients assessed the similarity of each synergy.

The discovering of dominant muscles by means of the optimization of both muscle set

size and force estimation error may reveal a clue on the link between synergistic patterns

and the force task.

Keywords: myocontrol, synergies, muscles, optimization, rehabilitation, EMG, robotics, electrodes
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1. INTRODUCTION

Myoelectric control or myo-control is an advanced human-
machine interface technique to control robots and devices
in rehabilitative and assistive applications. Myo-control
decodes human motor intention in the form of analyzed
electromyographic (EMG) signals into a computed control
signal that drives robots or machines. The rise of myo-control
was initially started by the need to drive prosthetic devices,
reproducing a set of distinct muscle activity patterns after
performing certain contractions of the residual limb (Lowery
et al., 2003; Hargrove et al., 2007). Facing the challenge of
controlling multiple degrees of freedom (DoFs), the application
of pattern recognition of spatio-temporal patterns of muscle
activities for prostheses control significantly increased user
performance in 3D movements making it more comfortable
and intuitive than direct control (Hargrove et al., 2017). As
a result, the classification of movements associated to daily
activities reached high performance (Sensinger et al., 2009;
Young et al., 2011; Adewuyi et al., 2015). Nevertheless, the
intrinsic on-off and sequential nature of this control strategy
determined a gradual growing interest toward simultaneous and
proportional control (SPC) or simply proportional control. In
the context of myoelectrical controls, a proportional control
theoretically allows for a continuous support of limb or hand
movements, continuously producing a control signal to an
external device (e.g., robotic device) based on user’s residual
muscular activity. Fougner et al. defined the proportional
control as a strategy with which “the user can control at least
one mechanical output variable of the prosthesis within a
finite and essentially continuous interval by varying his/her
control input within a corresponding continuous interval”
(Fougner et al., 2012). The “essentially continuous” term
refers to a digital sampling interval, small enough to not affect
human perception thus being negligible. The SPC paradigm
opened new possibilities to design prostheses control strategies
following the way human neuromuscular system activates
DoFs simultaneously and proportionally (Battye et al., 1955;
Bottomley, 1965; Jiang et al., 2013). In the last decade several
studies have been conducted on the proportional control of
robotic devices and prostheses, using linear or non-linear
regression algorithms, within isometric or dynamic setups
(Cheung et al., 2012; Jiang et al., 2013; Berger and d’Avella,
2014; Roh et al., 2015; Buongiorno et al., 2018). Here, muscle
activations have been used for continuously estimating either
articulation torques or hand force during planar reaching tasks.
Also, following the trail of bio-inspired strategy development,
dimensionality-reduction algorithms have been used to extract
motor primitives, aiming at explaining how the human brain
produces low-dimensional perceptual representations of a high
number of sensory information distributed in the whole body
(Hayward, 2011; Beckerle et al., 2017). These primitives, called
muscle synergies or synergies, have been theorized as a way to
explain motor control and learning by the central nervous system
(CNS), given the abundant number of motor units in human
beings and animals (d’Avella et al., 2003; Bizzi and Cheung,
2013; d’Avella, 2016). Muscle synergies have applications in a

variety of fields, for example clinical assessments (Cheung et al.,
2012; Roh et al., 2015) and control in robotics (Jiang et al., 2009;
Berger and d’Avella, 2014): in the latter context, synergy-based
myo-control was designed to exploit muscle activation patterns
during task-related movements, reflecting the concept of CNS
motor control. Synergy-based myo-controls have been tested
in the hand force or articulation torques prediction, with
linear-regression models, in a fixed (Berger and d’Avella, 2014)
or multiple configurations of the limb (Buongiorno et al., 2017;
Camardella et al., 2020a) with different synergies extraction
algorithms. Most of the experiments in the literature exploited
either isometric (in a virtual environment) or dynamic reaching
tasks. In a work by Lunardini et al., synergy-based torque
estimation algorithms revealed to be less sensitive to signal noise
and no differences were found between isometric and dynamic
protocols (Lunardini et al., 2015). They, thus, suggested that
synergy-based estimations perform better than muscles-pair
in a dynamic protocol in which signals are more likely to be
corrupted by artifacts. In another work, Roh et al. found that
synergy composition was conserved across isometric tasks with
different bio-mechanical constraints (Roh et al., 2012). Similarly
Muceli et al. found that synergies extracted from dynamic
tasks were robust against electrode shifts, being suitable for
an intensive clinical usage (Muceli et al., 2013). In both cases,
synergies were useful to identify muscle activation patterns when
extracted from reaching-movements EMG.

In both robotics and clinical assessment contexts, synergies
extracted with the non-negative matrix factorization have always
shown a physiological meaning, giving important insights on
human motor control strategies (Dipietro et al., 2007; Cheung
et al., 2009, 2012; Safavynia et al., 2011). As an example, in
the cited works of Tropea et al. and Camardella et al., stroke
survivors’ synergies were compared to healthy subjects’ ones
to investigate whether the patterns similarity reflect patients’
cerebrovascular injuries and consequent functional recovery
(Tropea et al., 2013; Camardella et al., 2020b). In another work
of Steele et al., the authors checked how the choice of muscles
can influence the synergy analysis by computing the similarity
of synergies among different sets (Steele et al., 2013). In all
these works, physiological meaning of altered synergies was
assessed through the comparison with reference ones (healthy
or unaltered).

For better accuracy and sensitivity in force estimation,
featuring reaching tasks with either the whole upper limb or
the wrist, simultaneous and proportional myo-control studies
typically include 8–14 muscles, mainly large accessible muscles
for surface EMGs. In the previous studies mentioned above, the
rationale behind the number of chosenmuscles was mainly based
on human bio-mechanics. Attaching several EMG electrodes to
the subject may be feasible in an experimental setting, but not
comfortable for the subject. The absence of time constraints also
makes such a set-up acceptable in an experimental environment.
In rehabilitation robotics applications, the use of a large muscle
set is not practical both for the subject and the therapist given the
limited amount of time and resources.

The hypothesis of this study is that, given a specific
myo-control application, the number of muscles to record
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can be reduced to a minimum set, concurrently preserving
the performance of motor activity prediction and the
physiological meaning of synergies. This will lead to three
main achievements: (1) the reduction of inputs in a myo-control
strategy and, consequently, a lower control processing time
(i.e., computational cost), (2) the reduction in the number
of EMG electrodes to apply on the subject, improving the
comfort and ease of the setup, and (3) a higher sensitivity
to changes of synergies, which could lead to a more evident
motor function evolution and, if applied, to an ongoing
modification of rehabilitation therapies. Nevertheless, the
reduction in the muscle set size may affect the prediction
capabilities of linear/non-linear models, and information on
motor coordination that synergies provide. This last aspect
comes from the fact that non-negative matrix factorization,
used for synergies extraction, operates on the minimization of
the root mean square residuals, between the input matrix and
the product of output matrices, without any constraint on how
muscle activities will be arranged in synergies: this means that
any modification to the input matrix leads to different output
patterns whose information on motor coordination may be
altered. Thus, the objective of this study is to demonstrate that a
minimum set of muscles, called optimal set, can be found, and
that this set preserves performance of force/torque prediction
and motor coordination information contained in synergies. The
optimality is evaluated through the comparison between optimal
and initial (namely full set) sets with two indexes: the difference
in the prediction error (e.g., root mean square error, RMSE) and
the correlation of synergies.

To do so, isometric contractions of nine healthy subjects,
toward four directions in the horizontal plane, have been used to
train a linear EMG-to-forcemodel, for each possible combination
of muscles in a total of 15, decreasing the size of the muscle set
at each iteration. The authors searched for the optimal muscle
set based on the RMSE of the EMG-to-force estimation in
global and subject-specific conditions. These conditions depict
how much a certain muscle is relevant for both all subjects
(global condition) and for a specific subject (subject-specific
condition), relying on a RMSE-based score. The preservation of
force prediction performance has been evaluated through non-
parametric statistical tools, assessing the absence of differences
on the RMSE, between optimal and full set groups in both
conditions. After that, the authors extracted muscle synergies
from optimal and full sets and compared them through the
Pearson correlation coefficient: the role of muscle synergies
in this study has the aim of confirming the consistency of
motor patterns generated by the optimal set. Moreover, two
types of synergies have been tested for this purpose, in order
to understand if the extraction process may influence the
consistency of optimal set synergistic patterns.

2. MATERIALS AND METHODS

2.1. Participants
Nine healthy individuals (age 24.9± 1.3 years, weight 73.4± 14.0
kg and height 177.1 ± 5.7 cm, all males) participated in the
study. All subjects were self-reported right hand dominant and

at the moment of the experiment had no neurological, muscular,
and orthopedic impairments. The experiment was their first
experience with a setup that included EMG recording sessions.
All subjects gave an informed consent prior to the study. The
study has been approved by the Joint Chinese University of Hong
Kong—New Territories East Cluster Research Ethics Committee
and conducted in accordance with Declaration of Helsinki.

2.2. Experimental Setup
The experimental setup was comprised of: (a) A 3D-printed
cylindrical stationary joystick with ATI Gamma IP65 six-axis
force/torque sensor (ATI Industrial Automation, Apex, NC,
USA) with 65 N maximum load, that recorded forces generated
at the hand and sampled at 125 Hz, fixed on a height-adjustable
table, (b) an Ergorest elbow rest device for anti-gravity support
(Ergorest Oy, Siilinjarvi, Finland) to lift tonic EMG signals
resulted from sitting up with the arm raised to a table level,
(c) a 16-channels surface EMG acquisition system with built-
in band-pass and notch filters using two g.USBamp Biosignal
Amplifiers (g.tec Medical Engineering GmbH, Austria), (d) a
game environment shown on a monitor screen with a small
golden ball representing the force generated cursor and a large
white sphere representing the task target force (see Figure 1).
The cylindrical stationary joystick was securely fixed in a certain
position of the table. The central position (Position 5, in Figure 1)
distance from the subject was calculated to be reachable with the
subject’s elbow at a 90 degree position. Surface EMG electrodes
were placed after a thorough skin preparation based on the
Surface Electromyography for the Non-Invasive Assessment
of Muscles-European Community Project recommendations.
Fifteen muscles from the dominant arm and torso were recorded
for analyzing contralateral and ipsilateral contractions, as well
as pushing and pulling actions, often related to reach-and-
grasp movements. The full muscle set included: flexor digitorum
(HAND FLEX), extensor digitorum (HAND EXT), biceps long
head and short head (BI LO and BI SH), brachialis (BRACH),
triceps lateral head and long head (TRI LAT and TRI LON),
anterior deltoid (DELT A), medial deltoid (DELT M), posterior
deltoid (DELT P), pectoralis major (PECT M), infraspinatus
(INFRASP), upper trapezius (TRAP), latissimus dorsi (LAT
DORSI), and teres major (TER MAJ). Ground electrodes were
placed on the clavicle and the scapular acromion. Maximum
voluntary contractions (MVC) for all muscles were observed
at the beginning of the data collection for the EMG signals
normalization. Each MVC was performed with a 1-min rest in
between to avoid the effects of fatigue. EMG signals were acquired
at a 1,200 Hz sampling frequency, as well as band-pass (5–
500 Hz) and notch (50 Hz) filtered. The EMG acquisition PC
was synchronized with the game environment and the PC that
recorded the force/torque sensor using a User Datagram Protocol
(UDP) connection between the two PCs.

2.3. Study Protocol
Subjects had to perform isometric contractions with the upper-
limb in position, grabbing the handle in 5 sites of the horizontal
workspace (see Figure 1). Subjects were seated on a stationary
chair that was positioned to align the sternum with test positions
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FIGURE 1 | The experimental setup. Subject is seated in front of the workspace table, with the force sensor handle fixed in position. The bottom-right figure shows

the five experimental sites. The subject shoulder joint is aligned with the central workspace position so the points are symmetrically placed with respect to the

dominant arm. The workspace size is adapted on subject biometrics, having the width equal to the double of the neck-to-shoulder measure and the height such that

the arm is never fully extended when reaching the furthest position.

2 and 3, having the center of the shoulder joint approximately
aligned with position 5. Subjects’ neck-to-shoulder, arm and
forearm measures were acquired to create a feasible workspace,
symmetrical with respect to the dominant hand. Subjects grabbed
the joystick, after placing their elbow on the anti-gravity support
attached to an height-adjustable table. All subjects maintained
their elbow at height with the help of the arm support and
their distance from the workspace was computed using arm
and forearm measures, in such a way that the furthest position
was always reachable without the arm being in singularity. In
each test position, subjects had to move the small golden ball
cursor by generating force at the hand toward the target force
(indicated by a large white sphere) in 4 different directions
(forward, backward, right, and left). Each direction was repeated
two times making a total of 8 trials. Subjects performed isometric
muscle contractions to generate the force on the joystick. Target
reach was deemed successful if the subjects could maintain the
center of the ball cursor in the white sphere for 2 s.When subjects
relaxed, meaning zero force input on the joystick, the small
golden ball cursor returned to its original rest position. The start
of the trial was indicated by the white sphere target appearing
and the end was indicated by the white sphere disappearing. The
white sphere target area is larger than the small golden ball cursor,
indicating a tolerance of 5 N on the force target. A spring model
PC = K ∗ FJ has been used to compute the position of the cursor
(PC) using the measurements from isometric force exerted on the
joystick (FJ) with K as the elastic constant of the virtual spring
(Berger and d’Avella, 2014).

2.4. Signal Processing and Dataset
Splitting
Before training and testing the model, raw EMG signals were
rectified and filtered using a 4Hz 2nd order Butterworth low-pass
filter and then normalized using the MVC. Then, the processed
EMG dataset was split in training and test sets. Since each subject

performed two contractions for each direction (see section 2.3),
in every test of this study, one was randomly selected to be part
of the training set and the other one to be part of the test set. For
each subject, a datetime-dependent seed was used to determine
a random sequence of numbers, as wide as the total number
of combinations of muscle sets. Each value of this sequence
uniquely selected a specific combination of contractions, to be
used in the training set, taken as a 4-digits binary combination
(one digit for each direction): if 0 the first contraction was used,
otherwise the second one was included. The complementary
sequence was used for building the test set. The training set
was used for training the linear regressor only (see section 2.5)
while the test set was used to build force estimations and extract
performance indexes (see section 2.6.1): these indexes were used
for the selection of optimal sets (sections 2.6.2 and 2.6.3) and the
statistical analysis (section 2.6.4).

2.5. Model Building and Force Estimation
Muscle activations were always lower than the MVC value
and in each workspace position the arm pose was fixed.
Following this, the relation between the force exerted at the hand
and the aforementioned filtered and normalized EMG signals,
measured from elbow and shoulder muscles, was approximately
linear (Buchanan et al., 2004; Berger and d’Avella, 2014;
Buongiorno et al., 2018). The multi-variate linear regression
algorithm (MVLR), that assumes a direct relation between
muscle activations and hand-force exertion, has been used as the
EMG-to-force model, currently being the most used in the state
of art. Thus, the evaluation of performance of eachmuscle set was
achieved comparing the forcemeasurements with the estimations
that resulted from the linear model, trained as following:

H = argmin
H∈Rn

‖ Hmt(t)− Ft(t) ‖2 (1)
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where mt is the training EMG data matrix (M × N where N is
the number of samples) and Ft is the training forces data matrix
(2 × N matrix): thus, H will be a 2 × M matrix. In the case of a
full muscle set M was equal to 15, otherwise it was equal to the
chosen optimal muscles number. The subscript “t” in Equation
(1) means that training set signals only should be used as the
regressor training process relies on the training set only. Under
the linear force-EMG relationship, the force estimation can be
computed using the following equation:

Fest(t) = H ·m(t), (2)

where Fest(t) is the estimated 2-dimensional force, m(t) is
the processed test EMG signal and H is the aforementioned
regression matrix. Force prediction (i.e., Fest) could be potentially
computed for both training and test sets, for example for RMSE
computation on the training set, if needed.

2.6. Data Analysis
2.6.1. Performance Indexes
Two different indexes have been used for assessing the force
estimation performance of each method in each condition: Root
Mean Square Error and Coefficient of Determination.

• Root Mean Square Error (RMSE)
This index is used to measure the difference between

the measured and the estimated forces and it is calculated
as follows:

RMSE =

√

∑N
i=1(x

2
x,i−x̂2x,i)
N +

√

∑N
i=1(x

2
y,i−x̂2y,i)

N

2
(3)

The xx,i and xy,i are the x and y components of the xi 2D
measured force sample, respectively. The x̂x,i and x̂y,i are the
x and y components of the x̂i 2D estimated force sample,
respectively. N stands for the number of samples. The lower
the value of the RMSE the closer the estimated force matches
the measured force signal amplitude.

• The Coefficient of Determination (R2)
The R2 index is used to highlight a signal total variation

explained by the estimates. The R2 is computed as follows:

R2 = 1−
SSres

SStot
= 1−

∑N
i=1(xi − x̂i)2

∑N
i=1(xi − xi)2

, (4)

where xi is the original signal and x̂i is the estimated output
sample. N stands for the number of samples. The index ranges
from minus infinite to 1 (equal to 1 in case of a perfect
estimation with an error equal to zero).

2.6.2. Muscle Scores
It was necessary to evaluate the performance of all muscle set
combinations given the initial full set. To do so a loop was
implemented defining the muscle set size at each iteration and
then cycling on all combinations of muscles: the number of
muscles was iteratively decreased from 15 to a minimum set of
4. For each muscle set a linear model was trained (see section

2.5) and tested on a different set of contractions (see section 2.4).
Then a force estimation was built, according to 2, using test set
signals, and compared to the measured ones through the RMSE
index. Each time a performance index was computed, themuscles
involved got a score equal to the RMSE value (averaged on the
two force components) and summed to the previous score value.
At the end of this loop, muscles with the lowest score were the
most significant for that subject as they were always included in
the sets that achieved the lowest estimation RMSE. A “ranking”
of muscles was created, following the ascending order of RMSE
scores and assigning to each muscle a rank equal to the ranking
position: the first muscle in the ranking got a rank equal to 1, the
second one a rank equal to 2 etc. This loop was repeated for all
the participants. At the end of this analysis, all the muscles scores
and ranks, for all the participants, were available to be used. A
step-by-step procedure is shown below in the Algorithm 1.

2.6.3. Selection of Optimal Sets
Once the ranks of muscles have been obtained for all the subjects,
actual performance of muscle sets could be computed without
considering all of their combinations. This next step is divided
in two analyses: a subject-specific one and a global one. In this
step, RMSE of force estimation is computed iterating on all
combinations of train/test datasets and on the number of muscles
from 15 (full) to 4 (minimum).

• Subject-specific: At each iteration, the muscles to be used in
the set were chosen by first discardingmuscles with the highest
rank (i.e., highest RMSE) in the subject-specific ranking.

• Global: This analysis differed from the previous one by the
muscles choice criterion. In this case, a single global ranking
was created summing all subject-specific rankings. The same
loop as the previous point (i.e., subject-specific) was then
performed: this time, at each iteration, the muscles to be used
in the set were chosen by first discarding muscles with the
highest rank (i.e., the highest RMSE) in the global ranking.

Eventually, from 15 to 4 muscles, a complete picture of the
force estimation performance, for all the participants in both
conditions, was depicted. The minimum number of muscles that
showed a comparable amount of error (in terms of mean and
standard deviation of the RMSE) w.r.t the full set, was chosen
to be the optimal set. This optimal set then underwent both
synergies computation process and statistical analysis, to assess
its usability in a myo-control application.

2.6.4. Statistics
The aim of the statistical study was to assess the expected
similarity between optimal and full muscle sets force estimation
performance. Thus, after choosing the optimal set to be analyzed,
an ANOVA 1-way test was performed on the two populations:
the acceptance of the null hypothesis would have confirmed the
absence of significant differences among the two groups. Before
launching the ANOVA test, Shapiro-Wilk normality test and χ2

homogeneity of variance test were performed on the two datasets,
fulfilling parametric-test requirements. The analysis was repeated
for both subject-specific and global optimal sets, compared to the
full set.
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Algorithm 1: Set of operations for evaluating muscle scores
and ranks (i.e., importance) for a given subject. A “for” loop
was implemented decreasing the i-th muscle set size from
15 to a minimum set of 4 at each iteration and then cycling
on all combinations of muscles of the i-th set size. First
operations concern the signal processing: envelope() refers
to the low-pass filter used to extract the signal envelope
and linreg() refers to the linear regressor training function.
comb() function selects the j-th combination of muscles
with i elements, while datasplit() randomly divides the
dataset into training and test set. rmse() computes the RMSE
index from measured and estimated forces. sort() function
extracts the sorting indexes of the input, following either
the ascending or descending option: for example, with the
ascending option, if the forth muscle got the lowest score,
the first element of ranks was equal to 4. This algorithm is
repeated for all the participants. Ranks variable refers to the
subject-specific rank values.

% scores initialized as an array of 15 elements;
% muscles initialized as an array of 15 elements with
indexes of amplifier channels (from 1 to 15);
for i=15:4 do

for j-th combination of i muscles in a group of 15 do
musclesset = comb(muscles,i,j);
% Selecting EMG of j-th combination of muscles;
rawEMG= rawEMG(musclesset);
% Processing for both train/test data;
mr = rawEMG;
mf = bandpassfilter(mr);

ma = rectification(mf );

m= envelope(ma);
[mtrain,mtest]= datasplit(m);
% Training phase;
H = linreg(F,mtrain);
% Estimation phase;
Fest = H*mtest ;
RMSE= rmse(Fmeas,Fest);
% All muscles included in the j-th combination get a
score equal to RMSE;
for k=1:15 do

if k is in musclesset then
scores(k)=scores(k)+mean(RMSE);

else

scores(k)=scores(k)+0;
end

end

end

end

ranks= sort(scores,′ascending′);

2.7. Synergies
2.7.1. Synergies Extraction
As done in previous works, muscle synergies could be extracted
from electromyographical signals using the Non-NegativeMatrix

Factorization (NNMF) algorithm (Lee and Seung, 1999). This
has been often chosen to separate the fundamental components
from the input, assuming that negative muscle activations
could not be physiologically obtained. In previous works, the
NNMF identified the correct muscle synergies and activation
coefficients in simulated data, combined with their consistency
when applied to physiological data sets. Also NNMF was able to
reconstruct the original signal in a similar way with reference
to other more complex algorithms (Tresch et al., 2006). As
noted in the literature four synergies were enough to describe
electromyographical signals total variance in planar reaching
tasks (Roh et al., 2012; Steele et al., 2013; Berger and d’Avella,
2014) with both isometric and dynamic setups. Thus, always
four were the synergies extracted from optimal and full sets.
As specified in the introduction the only role of synergies was
to assess the coherence of optimal set patterns. NNMF was
launched using the alternating least squares algorithm option in
MATLAB “nnmf” function, with a maximum of 100 iterations
and a tolerance of 10−7. According to the NNMF algorithm,
muscle synergies can be computed as following:

m = W · c+ em, (5)

wherem is the input signal (M × N matrix, beingM the number
of muscles and N the number of samples), W is the synergy
matrix (M × s matrix, being s the number of synergies), c is
the synergy activations matrix (s × N matrix) and em is the
muscle activation factorization residuals, dimensionally equal to
the input. Having multiple upper limb poses in the experimental
protocol, muscle synergies could be extracted either in each of
them or merging the information of all poses in a single synergies
set. The latter has shown to be the most feasible one in synergy-
based myo-control contexts, and it can be obtained in many ways
(Buongiorno et al., 2017, 2019, 2020). “Pose-Shared” and “Pose-
Related,” have been extensively detailed in a previous work and
compared in this study, since they showed different adherence
to the input dataset (Camardella et al., 2019). Briefly, the “Pose-
Shared” synergies (herein called Wg) are extracted running the
NNMF once on a single EMG dataset using the Equation (5), in
whichm has been taken as the result of the union of the signals of
each upper limb pose (m = [m1 ∪m2 ∪m3 ∪m4 ∪m5]). Instead,
the “Pose-Related” synergies resulted from clustering P (i.e.,
number of poses) synergies sets, using the k-means algorithm,
independently extracted from each arm pose and ordered with a
minimum cosine distance criterion:

Wc(i) = kmeans(
P

⋃

p=1

Wp(i)), i ∈ [1, s], (6)

where the output Wc(i) corresponds to the i-th element of
the “Pose-Related” synergies matrix Wc, as the i-th centroid of
the clustered synergy vectors. Wp(i) is the i-th synergy of Wp

synergies matrix extracted in the point p (i.e., an upper limb
pose): P, thus, is the total number of points (i.e., 5). The “Pose-
Related” synergies matrix, Wc, can be computed as the union of
all the s centroids, given s the number of synergies:
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Wc =

s
⋃

i=1

Wc(i). (7)

2.7.2. Synergy-Based Model Building and Force

Estimation
The synergy-based models followed the same concepts showed
in section 2.5, thus, they were based on a linear relationship
between the force at the hand and muscle activations, mapped
in the synergy space using the synergies matrix (i.e., W). EMG
signals were processed in the same way as done in section 2.5.
The model was trained as following:

H = argmin
H∈Rn

‖ Hct(t)− Ft(t) ‖2,

ct(t) = W+mt(t)
(8)

where ct is the training synergy activations data matrix (s × N
where s is the synergies number andN is the number of samples),
mt is the training EMG data matrix (M × N withM defining the
number of muscles), W+ is the pseudo-inverse of the W matrix
(s × M matrix), and Ft is the training force data matrix (2 × N
matrix): thus, H is a 2 × s matrix. In the case of a full muscle
set, M was equal to 15, otherwise it was equal to the chosen
optimal muscle number. Moreover, the synergy matrix W was
chosen as Wg when using “Pose-Shared” synergies (PSS model)
and Wc when using “Pose-Related” synergies (PRS model). Also
in this case, the subscript “t” in Equation (8) means that training
set signals only should be used as the regressor training process
relies on the training set only. Finally, the force estimation could
be obtained using the following formula:

Fest(t) = H · c(t), (9)

where Fest(t) is the estimated 2-dimensional force, c(t) is the
synergy activation signal (built using either training or test
EMG signals), and H is the aforementioned regression matrix
computed using 8. Also in this case, force prediction (i.e., Fest)
could be potentially computed for both training and test sets, for
example for RMSE computation on the training set, if needed.

2.7.3. Synergy Similarities
After accomplishing the analysis described in section 2.6.3,
synergies extracted from the optimal and the full muscle sets have
been compared for evaluating the consistency of each synergy.
The Pearson correlation coefficient (r) was used for evaluating the
total similarity, as the average of coefficients of each optimal-full
set pair of synergies. Given two sets (from optimal and full muscle
sets) with four synergies each, 16 different correlation coefficients
were computed. The highest calculated coefficient identified
the best match between synergy pairs. After each calculation,
the previously chosen synergies from both sets were excluded
to avoid double-counting. In each synergy, only the muscular
contributions from the same muscles of both sets were used. As
a result, 4 correlation values were obtained, indicating the best
matching synergies among the extracted ones. This process was
repeated for both global and subject-specific sets.

3. RESULTS

The main outcome of this study is that an optimal muscles set
for the analyzed myo-control application does exist. Referring
to Figure 2, global and subject-specific conditions are shown,
regarding the RMSE performance analysis. In the global
condition (Figure 2A), it was observed the RMSE value not to
suffer from strong variations, both in variance and mean when
varying the number of muscles from the full set (i.e., 15 muscles)
to 8 muscles. Thus, the 8-muscles set has been taken as the
global optimal muscle set, reporting 3.93 ± 1.10 N as its value.
Both full and optimal set observations passed the Shapiro-Wilk
normality test. The chi-squared homogeneity of variance test
was performed giving χ2 = 114.74 and p = 0.231 as values,
confirming the homogeneity of variance null hypothesis (1.40 N
full set variance, 1.20 N optimal set variance). According to 1-
way ANOVA results, there was not a statistical difference between
optimal and full muscle set performances giving F(1, 13) = 0.02
with p = 0.886 as results. Figure 2C instead shows the variation
in force estimation performance in the subject-specific condition.
In this case the RMSE does not highlight any significant variation
until it reaches 6 muscles. Reducing the muscles number from
6 to 4 brings to an increase of the RMSE mean by 0.10 N at
5 muscles and by 0.73 N at 4 muscles. It has to be noted that
reducing the muscle set from 6 to 5 elements increases the total
variance, bringing the minimum RMSE value from 1.67 to 2.05
N. According to this, the 6-muscle set has been taken as the
subject-specific optimal muscle set, reporting 3.99 ± 1.11 N as
the force estimation RMSE. Also in this case full and optimal
set observations passed the Shapiro-Wilk normality test and the
chi-squared homogeneity of variance test with χ2 = 121.34 and
p = 0.452 (1.40 N full set variance, 1.24 N optimal set variance).
The 1-way ANOVA test did not show any statistical difference
between optimal and full sets, with F(1, 13) = 0.35 and p = 0.561.

Concerning synergy similarities, both global and subject-
specific optimal sets were analyzed, comparing synergies
extracted from these sets to the full set ones. In the former
case, synergies showed a mean correlation value of r(6) = 0.74,
p = 0.035 for the “Pose-Shared” synergies and r(6) = 0.71, p = 0.048
for the “Pose-Related.” In the latter case, a mean correlation
value of r(4) = 0.78, p = 0.067 with “Pose-Shared” synergies and
r(4) = 0.71, p = 0.113 for “Pose-Related” synergies was found.
Figure 3 depicts the comparison of synergistic patterns between
full and global optimal muscle sets. All the values represent the
average across subjects. R2 values for “Pose-Shared” synergies
generally advantaged the subject-specific condition in almost
all cases (see Figure 4). Excluding the 4-muscles case, which
matched the number of synergies, synergies that exploited the
global sets achieved an EMG reconstruction rate ranging from a
minimum of 0.878±0.028 to a maximum of 0.972±0.016. In the
subject-specific case the R2 scored 0.880± 0.031 with 15 muscles
up to 0.982± 0.009 with 5 muscles.

The last result regards linear regression coefficients that
constitute the actual link between muscle/synergy activations
and the amplitude and direction of the generated force vectors.
With the aforementioned 8-muscles global optimal muscle set,
the mean Pearson correlations value of regression coefficients,
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FIGURE 2 | Force estimation RMSE, average of the x and y component and on the analyzed models (MVLR, PSS, and PRS), on the signals test set. Panels (A,B) are

related to the global optimal set analysis while panels (C,D) are related to the subject-specific analysis, with increasing muscle set size. Figures on the left show all the

RMSE box-plots, averaging all subjects performances on all the upper limb poses. Each box-plot show the errors quartiles with the horizontal red line representing the

group median value. The red vertical dashed line show the stop criterion of the optimal muscle set search, indicating an increasing of either the median value or the

total variance (indicated by the whiskers). Figures on the right show the 1-way ANOVA results for the 8 muscles global optimal set and the 6 muscles subject-specific

optimal set, respectively, on panels (B,C).

between the full muscle set and the optimal set, scored r(6) = 0.93,
p < 0.001 for MVLR, r(6) = 0.88, p = 0.004 for “Pose-Shared” and
r(6) = 0.89, p = 0.003 for “Pose-Related.” Instead, exploiting the 6-
muscles subject-specific optimal muscle set, the mean correlation
of regression coefficients was r(4) = 0.87, p = 0.024 for MVLR,
r(4) = 0.85, p = 0.032 for “Pose-Shared” and r(4) = 0.89, p = 0.021
for “Pose-Related.”

4. DISCUSSIONS

The search for an optimal muscle set, in the planar myo-
control application, gave a positive answer. The analysis on a

pool of 9 healthy subjects led to two different optimal muscle
sets, depending on the selected muscles choice criteria. If a
subject-specific optimal muscle set was chosen, muscles could
be reduced up to a minimum of 6, resulting in a loss of
correlation significance with full set synergies while keeping
similar estimation performance, and significant muscles-to-
force and synergies-to-force coefficients coherence. This comes
from the statistical analysis results from which no statistical
significance was found between 6-muscles and 15-muscles
groups (p= 0.350), regarding force estimation RMSE, while force
fields showed a statistically significant correlation (p = 0.024
for MVLR, p = 0.032 for Pose-Shared, and p = 0.021 for
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FIGURE 3 | Synergies composition for “Pose-Shared” and “Pose-Related” extraction methods for both full and global optimal sets. Subject-specific synergy patterns

could not be compared since subjects’ muscle scores are generally different leading to different compositions of sets. Figures on the left (A,B) show the full set

synergies composition, figures on the right (C,D) the global optimal sets composition. Each row (i.e., synergy) contains all muscle contributions, showing all the

subjects’ coefficients of that muscle in that synergy, previously ordered, as a gray bar. The light green bars represent the mean contribution values. Whiskers represent

their total variance.

Pose-Related). The global optimal muscle set, i.e., 8 muscles
shared across all the subjects, revealed to be a reliable subset on
all analyzed indexes. This means having a similar force estimation
error (no statistically significant differences between groups with
p = 0.886) and significant synergy similarities with respect to
the full set ones (Pearson correlation between synergies scoring
p = 0.035 for “Pose-Shared” and p = 0.048 for “Pose-Related”).
Also a statistical significance on the muscle-to-force and synergy-
to-force mapping coefficients was found, enforcing the coherence

of the optimal set composition. The global set, thus, counted
two more muscles with respect to the subject-specific one
but synergy similarities were comparable, reaching a statistical
significance. Nevertheless, the force estimation performance
given by the two optimal sets were comparable both in mean
and standard deviation. This result suggests that although a
subject-specific optimal set is functional in estimating the force
in a certain application, synergies change their composition (i.e.,
the contribution of each muscle) when lowering the number of
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FIGURE 4 | R2 ongoing mean and standard deviation values for increasing muscle set size, on “Pose-Shared” and “Pose-Related” synergies. Each value is computed

by reconstructing training EMG signals using NMF outputs (see Equation 5) without residuals. The R2-value is computed on EMG signals merged from all the

experimental workspace sites. The smaller the muscle size is, the higher the difference is in the EMG variance explained between Global and Subject-Specific

conditions: for a lower number of muscles the choice of the muscle set, for each subject, that achieves the lowest estimation error, determines a higher reconstruction

rate in terms of R2. This behavior is more evident when the number of muscles is lower than 8.

muscles under a certain threshold. In any case the global optimal
set does not seem an obstacle to a fully working myo-control
application, rather reducing the computational cost of the overall
force estimation process when synergies are not used.

In the R2 graph shown in Figure 4, global and subject-
specific optimal set synergies generally explain the original signal
total variance in a comparable way, for both “Pose-Shared”
and “Pose-Related,” until the 8-muscles set is reached. Below
this threshold, as expected, synergies in the subject-specific set
achieve a higher R2 value, since every subject could exploit a
slightly different movement strategy that led to optimal sets that
are different from the most shared one. This aspect leads to
important implications in the rehabilitation context if synergies
are used as an assessment tool. Without exploiting an optimal
set, synergies already have shown to be important markers for
detecting cortical damages or new skills acquisitions (Safavynia
et al., 2011; Cheung et al., 2012; Tropea et al., 2013). The optimal
muscle set, specifically selected for a stroke individual, could
better highlight abrupt variations in synergy correlation with
respect to initial patterns, after rehabilitation, meaning a change
in movement strategy. As explained before, this is given by
the computation of a similarity index of synergies that involves
sub-computations on each muscle. Moreover, this specific set
could better reflect how motor units in muscles are recruited
for that specific subject, differently from the global set that
may depict a generalized behavior. These suggestions will be
deeply investigated in future studies, involving rehabilitation
training in the analysis. Moreover, no strong differences have
been found between “Pose-Shared” and “Pose-Related” synergies,
with Shared synergies slightly outperforming the Related ones.
In a previous work, with a larger workspace and a similar setup,

the ability of “Pose-Related” synergies to reconstruct the initial
EMG dataset was higher than “Pose-Shared” ones (Camardella
et al., 2020a). This discrepancy in results may confirm the ability
of “Pose-Related” synergies to better explain datasets that include
limb poses that are very different, since synergies are extracted
independently on each pose and clustered together.

The subject discomfort deriving from bulky setups and long-
lasting preparations with a high number of electrodes could be
alleviated thanks to reduced sets. Although subjects benefit from
a subject-specific set, this would inevitably require at least one
training session with a full set, to find his/her specific movement
strategy and, thus, his/her optimal set. In the case of altered
motor patterns, subjects would require multiple training sessions
each time an abrupt drop in correlation with the initial patterns
is detected. Moreover a global optimal set could be of difficult
usage in this context, since stroke generally induces unpredictable
alterations and a priori muscle set does not seem suitable
(Dipietro et al., 2007; Roh et al., 2013, 2015; Camardella et al.,
2020b). Nevertheless, a representative healthy global optimal set
could be helpful as a comparison with physiological patterns.

Regarding differences between “Pose-Shared” and “Pose-
Related” synergies, the former achieved a higher correlation
on both subject-specific and global optimal sets. “Pose-Related”
synergies keep a comparable correlation value between subject-
specific and global optimal set. This suggests that “Pose-Shared”
may suffer the changing of muscles in the set, instead of
the “Pose-Related” ones that seemed more robust to those
variations. In a previous work by Camardella et al. (2019),
synergy-based myo-control strategies, with “Pose-Shared” and
“Pose-Related” synergies, were compared on the test set on both
RMSE of force estimation and EMG reconstruction performance.
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FIGURE 5 | Amplitude and direction of pulling vectors of recorded muscles and extracted synergies (force fields), in the global optimal muscle set. Each force field

interpolates the information of the columns of the H matrix (see sections 2.5, 2.7.1). Each red sphere represents the action of a muscle/synergy in one experimental

point. Arrows are then interpolated in a 6 by 6 grid. The section (A) shows the force field of each muscle in the full and optimal set: muscle force fields are taken from

columns of H matrix trained with Equation (1). The background tile of each muscle explains the synergy of influence: multiple tiles refer to as many synergies of the

same color in the section (B,C). The section (B) shows the force field of each synergy in the full and optimal set: synergy force fields are taken from columns of H

matrix trained with Equation (9). The right panel illustrates the “Pose-Related” synergies force fields while the left one the “Pose-Shared” ones. The section (C)

summarizes force fields and involved muscles, depicting the frame color and the muscle ellipses as the synergy color of the section (B).

Frontiers in Computational Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 668579310

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Camardella et al. Optimal Muscles Set Search

In this instance “Pose-Related” seemed to better trace upper
limb features on different workspace sites, when using a full
muscle set, as well as to better estimate the force at the
hand. In another work (Camardella et al., 2020a), “Pose-Related”
synergies were used in a synergy-based myo-control during an
online virtual session, suggesting the feasibility of such method
in estimating the hand force in real-time. In this study, the
coherence of “Pose-Shared” and “Pose-Related” synergies have
been investigated in the case of a reduced muscle set, under
similar protocol and signal processing conditions. “Pose-Shared”
synergies revealed to be more similar to the full set ones, with
correlation values always higher than “Pose-Related” ones. Also,
referring to Figure 4, they better reconstruct the original EMG
signals, mostly having higher values of R2 with smaller muscle
set size. This outcome may suggest that “Pose-Related” could
be preferable in the case of a large muscle set, when directly
involved in a synergy-based myo-control application trying to
exploit the modular organization of the musculoskeletal system
and projecting it onto the force task, rather than using it as an
assessment tool.

As proposed by Steele et al. (2013), it is possible to label
as dominant those muscles that have the highest contribution
in a specific synergy. Looking at the Figure 3, synergies do
not show a big difference in the correspondence of dominant
muscles between full and optimal sets, at a glance. In particular,
as showed in Figure 5, it is important to associate muscle pulling
vectors to synergies that group them and, eventually, to have a
quick overview of how a specific synergy act in task-oriented
movements such as reaching motions. When dominant muscles
are included, a good variance accounted for can be achieved
even with a low number of muscles, better than choosing
them randomly. Although the task, from which the EMGs were
recorded, was different, the optimal sets that have been found
include most of the muscles showed to be important in the
work of Steele et al. (2013) (TER MAJ, LAT DORSI, TRI LAT,
and BRACH). Moreover the number of muscles found to be
the most representative in the muscle set, corresponds to the
minimal one found, which includes 5/6 muscles. According to
this outcome, force estimation performance revealed to be a
good muscles choice criterion, highlighting the link between
synergies and force task. The global optimal set information
showed in Figure 5 reveal the field of action of each muscle and
synergy in the experimental workspace. Both the composition
of synergies and their field of influence, in the global optimal
set, trace common features already stated in the state-of-art. In a
previous work by Cheung et al. (2009), synergies extracted from
more than 12 muscles, during dynamic tasks, on a pool of seven
out of eight total stroke subjects, revealed a strong similarity
between affected arm and unaffected arm patterns. Among those
patterns, there were synergies including co-activations of the
brachialis and the triceps lateral head, the pectoralis major
and the deltoid anterior, and the infraspinatus with the deltoid
posterior and the teres major, as stated previously. Another
work by Berger and d’Avella (2014), showed similar synergy
compositions coming from eight healthy subjects, extracted
from 13 muscles during isometric contractions, keeping a fixed
pose of the upper limb. In all the cases, it is interesting to

notice how some muscles (e.g., the pectoralis major or the
infraspinatus) are not fully included in a single synergy but
participate in multiple synergies (for example acting as rotator
or stabilizer of the shoulder joint) with different contributions.
Moreover, muscle and synergy force fields did not show strong
differences between full and optimal sets, confirming that the
global optimal set owned the most important features of the
full set, concurrently bringing the aforementioned advantages.
Also “Pose-Shared” and “Pose-Related” synergy differences did
not seem remarkable, suggesting that both extraction methods
may present consistent outcomes and be used wisely judging the
right application field.

5. CONCLUSIONS

In this work, the existence and feasibility of an optimal muscle
set to be used in a myo-control application has been investigated.
An 8-muscles global optimal set, the best trade-off in terms
of myo-control performance and the muscle set size, shared
among the analyzed pool of subjects, has been found. The
optimal set has shown no statistical differences in terms of
force estimation performance and a high correlation with
the initial (full muscle set) synergistic patterns. Also muscle
and synergy force fields in the optimal set resulted to be
coherent with the full counterpart. Tailoring the muscle choice
to the specific subject, the optimal set could get to include
up to 6 muscles, nevertheless loosing statistical similarity on
synergies but retaining the ability to explain a higher variance
of EMG signals, with respect to the global one, with the same
number of muscles and synergies. A link between synergies
and force task was identified, thus, dominant muscles that
cover an important role in the chosen protocol can be found
through the minimization of the force estimation error. Future
studies will involve an actual usage of optimal sets in either
a real-time myo-control application or an assessment tool
for rehabilitation.
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Insects can flexibly coordinate their limbs to adapt to various locomotor conditions, e.g.,

complex environments, changes in locomotion speed, and leg amputation. An interesting

aspect of insect locomotion is that the gait patterns are not necessarily stereotypical

but are often highly variable, e.g., searching behavior to obtain stable footholds in

complex environments. Several previous studies have focused on the mechanism for the

emergence of variable limb coordination patterns. However, the proposed mechanisms

are complicated and the essential mechanism underlying insect locomotion remains

elusive. To address this issue, we proposed a simple mathematical model for the

mechanism of variable interlimb coordination in insect locomotion. The key idea of the

proposed model is “decentralized active load sensing,” wherein each limb actively moves

and detects the reaction force from the ground to judge whether it plays a pivotal role

in maintaining the steady support polygon. Based on active load sensing, each limb

stays in the stance phase when the limb is necessary for body support. To evaluate

the proposed model, we conducted simulation experiments using a hexapod robot. The

results showed that the proposed simple mechanism allows the hexapod robot to exhibit

typical gait patterns in response to the locomotion speed. Furthermore, the proposed

mechanism improves the adaptability of the hexapod robot for leg amputations and lack

of footholds by changing each limb’s walking and searching behavior in a decentralized

manner based on the physical interaction between the body and the environment.

Keywords: hexapod locomotion, inter-limb coordination, decentralized control algorithm, active load sensing,

chains of reflex

1. INTRODUCTION

Insects exhibit versatile interlimb coordination patterns to move around adaptively. For example,
some insects possess various gait patterns (e.g., wave gait, tetrapod gait, and tripod gait) that change
in response to changes in locomotion speed and loads applied to the body (Wilson, 1966; Dean,
1991; Zollikofer, 1994; Wosnitza et al., 2013). Furthermore, they can generate feasible locomotor
patterns in response to leg amputation (Hughes, 1957; Delcomyn, 1991; Grabowska et al., 2012).
In addition to steady walking, they flexibly change limb motion between walking and searching
steps when they walk on uneven terrain with some gaps in the foothold (Pearson and Franklin,
1984; Theunissen and Dürr, 2013; Theunissen et al., 2014, 2015). While insects exhibit long stride
steps during steady walking (i.e., walking) on uneven terrain, they exhibit short searching steps
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where the limb repeats a retracting and protracting motion in a
short stride distance to obtain secure footholds. Understanding
these flexible interlimb coordination mechanisms underlying
insect adaptive walking sheds new light on developing adaptive
legged robots that can move around stably through rough
environments (e.g., disaster sites).

Biological and modeling studies have investigated
decentralized control mechanisms underlying adaptive insect
locomotion through comparative studies focusing on distinct
insect species, e.g., stick insects and cockroaches (Ayali et al.,
2015a). Stick insects (e.g., Phasmida) can climb unpredictable
environments, and their relatively slow locomotor patterns allow
researchers to address underlying sensory-motor mechanisms.
Biological studies have elucidated that thoracic neural circuits
generate rhythmic locomotor patterns neither sensory input
from the leg nor the descending command from the brain
(Mantziaris et al., 2020). Furthermore, sensory input in the limbs
contributes to modifying intra- and interlimb coordination for
adaptive stick insect locomotion. In contrast to stick insects,
cockroaches (e.g., Blattaria) exhibit fast and stable locomotion
and are ideal insects to address the interaction between neural
control and body dynamics. While their conservative tripod
gait patterns are generated by CPG, their flexible body can
negotiate uneven terrains (Full et al., 1998; Watson et al., 2002;
Weihmann et al., 2017). Furthermore, recent studies elucidate
the sensory feedback mechanism underlying cockroach‘s
locomotion in which signals from mechanoreceptors modulate
muscle contractions to establish interlimb coordination (Ayali
et al., 2015b; Weihmann et al., 2017). Although the mathematical
models for insect‘s interlimb coordination have been developed
differently depending on the focusing insect animals (e.g., stick
insects and cockroaches), the common distributed control
mechanisms in distinct insect animals have induced to unify
them into common limb coordination model (Koditschek et al.,
2004; Büschges et al., 2008; Daun-Gruhn, 2011; Toth et al., 2013).
However, these unified models are too complex to analyze and
apply to legged robots in simple manners.

In contrast to complex models describing the insect‘s sensory-
motor system with large numbers of differential equations,
redacted models significantly help us test hypotheses and
interpret the substantial interlimb coordination mechanism
underlying insect locomotion (Kimura et al., 1993; Dürr
et al., 2004; Kukillaya et al., 2009; Owaki et al., 2017).
The simple models reduced dimensions by using simple
elementary processes, e.g., phase oscillators and reflexes, to
generate interlimb coordination. For example, Cruse et al.
proposed a series of reflex rules based on the behaviors of
stick insects (Dürr et al., 2004). They predicted the pathway
of sensory-motor modulation for interlimb coordination in
the insect animal’s thoracic nervous system. For another
example, Owaki et al. proposed a simple CPG model where
one phase oscillator controls each limb’s stride motion and
demonstrated that phase modulations depending on loads of
limbs contribute to generating various gaits locomotion speed
and leg amputation (Owaki et al., 2017). Regarding adaption
to uneven environments, however, previous models still require
recruiting a large number of neural components for modulating

interlimb coordination depending on situations (Durr, 2001;
Bläsing, 2006; Schilling et al., 2013a,b; Ngamkajornwiwat
et al., 2020). This is because the limb without a stable
foothold should adaptively change its foot trajectory and
frequency comparing other limbs to search steady footholds.
Therefore, the development of a simple interlimb coordination
mechanism involving searching behavior will contribute to
deeply understanding the essential mechanism underlying
flexible insect locomotion.

To this end, this study develops a simple interlimb
coordination model to extract substantial mechanisms
underlying adaptive hexapod locomotion, including searching
behavior on uneven terrain. We hypothesize that a simple
local sensory feedback mechanism, “active load sensing,” plays
an essential role in generating flexible hexapod interlimb
coordination patterns in flat and uneven environments. In
this scheme, each limb actively moves and detects the reaction
force from the ground to judge whether it plays a pivotal
role in maintaining the steady support polygon. As a result
of the simulation experiments, a hexapod robot that could
generate flexible gait patterns in response to locomotor speed
and leg amputation was developed. Furthermore, the robot
flexibly changed its limb behaviors between the walking step in
steady walking and the searching step depending on the lack
of the foothold. During particular limb searching, other limbs
flexibly modulate their interlimb coordination through the same
mechanism in walking in flat terrain. These results suggest that
a simple decentralized control mechanism exploiting physical
interaction between body and environment (e.g., the proposed
active load sensing) allows insects to generate flexible interlimb
coordination for flat terrain and unpredictable environments.

The remainder of this paper is organized as follows: Section 2
exploits the proposed simple interlimb coordination mechanism;
Section 3 presents the results of the 3D simulation; Sections 4 and
5 present the discussion and conclusion.

2. MODEL

According to insect behaviors, the insects adaptively generate
long limb strides for walking and short limb strides for
searching. Besides, the periods of one limb stride locally and
drastically change during a pass through uneven terrains.
Therefore, modeling based on phase oscillators is required to
discontinuously modulate the phase (e.g., phase reset) and also
modulate limb trajectories, resulting in a complex interlimb
coordination mechanism. To develop a simple model, this
study employs two feedforward limb control modes and four
fundamental transition rules that induce a hexapod robot to
generate walking and searching behaviors. In the following
modeling section, we first explain a robot model in the simulation
environments. Then, we illustrated two basic limb control
modes “swing mode” and “stance mode” and fundamental
transition rules.

Regarding the mechanical structure, a robot consists of six
identical limb units and a rigid trunk unit, as shown in Figure 1.
Each limb has three degrees of freedom: joint α connects the
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FIGURE 1 | The mechanical structure of the hexapod robot. Each limb has

three degrees of freedom. Joint α generates retracting and protracting

motions. Joints β and γ generate elevating motions. Each limb has a controller

to generate limb motion in a decentralized manner.

trunk unit and limb unit and generates the protraction and
retraction motion by changing the angle of the joint θα

i,j (i =

R, L and j = 1, 2, 3). The other two joints β and γ generate
flexing/extending and elevating motions by changing the angles

of the joints θ
β
i,j and θ

γ
i,j .

Regarding the basic components of a limb controller, each
limb has a controller with two control modes, that is, stance
modes and swing mode to generate limb stride motions, as shown
in Figure 2A. The controller state is described with the symbol
Mi,j. WhenMi,j = Swing mode, the limb controller is in the swing
mode, and the limb generates protracting motion. Furthermore,
the proposed model has two stance modes: early stance mode
and late stance mode. In both stance modes, the limb generates
retracting motion for kicking the ground.

In the proposed robot mode, we simplify the coordination
between the joints (i.e., intralimb coordination) to realize a
specific foot trajectory. In all control modes, the joint α is

controlled to achieve the target joint angular velocity ¯̇θα
i,j. In the

swing mode (Mi,j = Swing mode), ¯̇θα
i,j is set to a positive constant

value ωsw to generate the protracting motion, whereas in the
stance modes (Mi,j = Early stance mode, Late stance mode),
¯̇θα
i,j is a negative constant value ωst to generate the retracting

motion. The joints β and γ are controlled to achieve a joint

target angle θ̄
β
i,j and θ̄

γ
i,j , respectively, so that the foot moves

along a specific trajectory, as shown in Figure 2B. Details of
the foot trajectory design are described in Appendix A. Note
that there is no additional control mode to stand stably (not
walk) in the proposed mode. To realize a transition between
walking and standing, the target angular velocity of alpha joint θ̄α

i,j

will change between negative for walking and zero for standing.
However, in the present study, we focus on flexible changes
walking and searching and set the parameter θ̄α

i,j constant value

for limb stride motion.
To generate adaptive interlimb coordination patterns, each

controller should switch the control modes depending on the
situation. The present study proposes four simple transition rules
between the swing and stance modes, as shown in the overview

control scheme (Figure 2C). Note that most rules conduct in a
decentralizedmanner by exploiting physical interactions between
the whole body and the environment. The details of the four
simple rules are explained in the following sections.

Rule (i): Stretch Reflex
In the first rule, the limb changes its control modes between the
swing and stance mode at the anterior extreme position (AEP)
and posterior extreme position (PEP) of the foot to generate
periodic limb stride motion (Figure 3). If the angle of joint α in
the swing mode reaches a positive threshold angle θAEP (θα

i,j ≧

θAEP), then the limb controller changes its mode from swing
mode to early stance mode. In contrast, if the joint angle α in the
stance mode reaches a negative threshold angle θPEP (θα

i,j ≦ θPEP),

then the limb controller changes its mode from stance to swing.
The above transitions are described as follows:

{

if θα
i,j ≧ θAEP thenMi,j = Swing mode → Early stance mode,

if θα
i,j ≦ θPEP thenMi,j = Late stance mode → Swing mode.

(1)

Note that after mode transition from the swing to stance at
the AEP point, the limb first becomes the early stance mode
(Mi,j = Early stance mode), not the late stance mode (Mi,j =

Late stance mode).

Rule (ii): Searching Reflex
The second rule realizes adaptive switching between stepping and
searching behavior depending on the lack of footholds. Although
insects usually exhibit long retracting and protracting motions
to generate stride lengths, the insect repeats short retracting and
protractingmotions to search for the next foothold in response to
the foothold gaps (Pearson and Franklin, 1984; Theunissen and
Dürr, 2013; Theunissen et al., 2014).

To implement the flexible changes between the stepping
and searching behaviors, the present study assumes a simple
transition rule for the transition from the stance mode to the
swing mode as follows:

if (Nh
i,j < Nh

SRH) ∧ (θα
i,j < θα

SRH)thenMi,j

= Early stance mode → Swing mode, (2)

where Nh
i,j is a horizontal component of ground reaction force

(GRF) applied at the i, j limb (driving force is positive), Nh
SRH is a

threshold value for detecting where the limb obtains the foothold,
and θα

SRH is a constant value describing a range of joints α for
the searching behavior. According to rule (i), the protracted limb
changes the control mode from swing to stance and starts to
retract. If the limb has no propulsive force after the retraction
motion, then the limb changes to the swing mode immediately,
resulting in the protracting motion (Figure 4).

Rule (iii): Active Load Sensing at the
Beginning of the Swing Phase
The third rule is attempted to secure a support polygon at the
beginning of the swing phase in a decentralized manner. The
support polygon is a convex horizontal region whose vertices

Frontiers in Neurorobotics | www.frontiersin.org 3 February 2022 | Volume 16 | Article 645683316

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Fukuhara et al. Active Load Sensing in Hexapods

FIGURE 2 | Overview of an interlimb coordination mechanism for hexapod locomotion. (A) Two control modes(swing mode and stance mode) and transition conditions.

(B) Schematics of threshold values in limb trajectory. (C) Neural connectivity between the limbs in the proposed model.

FIGURE 3 | Transition mechanism based on α joint angle, θα
i,j . (A) Top view of the robot and threshold joint angles, θAEP and θPEP for the anterior extreme position

(AEP) and posterior extreme position (PEP) transitions, respectively. (B) Example of changes in the control mode via transition rule (i).

correspond to the support limbs. For example, in Figure 5A, the
support polygon comprises the contact points R1, R2, L2, and
L3. When the center of mass (COM) lies in the support polygon,
static stability is achieved during locomotion.

To achieve static stability during locomotion through a
decentralized control manner, this study classifies the stance
limbs into two types: “free limb” and “responsible limb.” The free
limb is a stance limb in which the robot maintains static stability
when the concerned limb lifts off the ground. For example,
consider the support polygon shown in Figure 5A, where the
R1, R2, L2, and L3 limbs are in the stance phase. When the R2

limb lifts off, the new support polygons with R1, L2, and L3
still contain the COM of the insect, maintaining static stability.
Therefore, the R2 limb can be classified as a free limb. In contrast
to the free limb, the responsible limb is a stance limb in which
the robot cannot keep the static polygon when the concerned
limb lifts off the ground. For example, in Figure 5B, when
the L2 limb lifts off, the COM of the insect is located outside
the new support polygon with R1, R2, and L3, resulting in a
lack of static stability. Consequently, the L2 limb in Figure 5B

can be classified as a responsible limb. For stable and adaptive
locomotion, the challenge is to instantly detect the free and
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FIGURE 4 | Transition rule (ii) to secure foothold. (A) Top view of the body and a range of α joint angles, θα
SRH. (B) Example of changes in control mode via transition

rule (ii). When θAEP > θα
i,j > θα

SRH after the transition in AEP, the robot protracts the limb and tends to kick the ground. (C1) If the limb cannot perceive the ground

reaction force (GRF), the limb controller changes to the swing mode, resulting in a short step. (C2) If the limb successfully kicks the ground, the limb remains in the

stance mode, resulting in a long step.

responsible limbs and accordingly modulate the limbmovements
to maintain static stability.

The proposed study distinguishes between free and
responsible limbs and modulates the limb control mode
adaptively in a simple, decentralized manner. For detection of
the limb state, the stance limb close to the PEP first attempts to
lift off the ground. If the concerned limb perceives no GRF, then
it can be interpreted as a free limb, and it changes the stance
mode to swing mode. In contrast, if the concerned limb still
perceives GRF, then it can be interpreted as a responsible limb
and should be maintained in the stance mode. We describe these
sequences of action and detection as “active load sensing.”

In the proposed model, we implement active load sensing
around the PEP as follows. The lifting action is realized by other
transition rules. Then, the sensory feedback mechanism based on
active load sensing is described as follows:

if (Nv
i,j ≧ Nv

ALS) ∧ (θα
i,j > θα

ALS)

thenMi,j → Late stance mode. (3)

where Nv
i,j is a vertical component of GRF applied at the i, j limb,

Nv
ALS is a positive constant value for a threshold whether the limb

is loaded or unloaded, and and θα
ALS is a constant value to describe

a blind-sector angle for active load sensing (Figure 5C). When
θα
ALS > θα

i,j > θPEP during the swing mode, the limb maintains

the protracting motion for lifting. After the lifting motion, if

the protracting limb perceives GRF, it changes the control mode
from swing to stance immediately like Figure 5D to achieve static
stability.

Rule (iv): Sensory Feedback From Next
Anterior Limb
In slow insect walking gaits (e.g., tetrapod gait and wave gait),
the limbs of the ipsilateral side exhibit a metachronal wave from
the tail to the head (i.e., wave gait; Wilson, 1966). Based on the
insect walking trend, we assume the fourth transition rule in
which each limb tends to switch its control mode from the stance
mode to the swing mode when the anterior next limb reaches the
PEP (Figure 6). More specifically, the enforcing early protraction
refers to whether the angle of the next anterior joint α, θα

i,j−1,

achieves a threshold angle θα
DRT using the following equation:

if θα
i,j−1 ≦ θα

DRT

thenMi,j = Late stance mode → Swing mode (for j 6= 1). (4)

where θα
DRT is the threshold angle in the joint α that detects the

limb closer to the PEP. Note that rule (iv) is the only transition
rule that assumes the neural coupling between limbs in the
proposed model.
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FIGURE 5 | Active load sensing scheme for detecting free and responsible limbs in hexapod locomotion. (A) Free limb situation. After the R2 limb lifts, the center of

mass (COM) is still in the supporting polygon. (B) Responsible limb situation. After the L2 limb lifts, the COM moves outside the support polygon. By exploiting the

physical interaction between the body and the environment, each limb can simply modulate its control mode for the steady support polygon. (C) Top view of the body

and a range of α joint angles, θα
ALS. (D) Example of changes in control mode via transition rule (iii).

3. RESULTS

To evaluate the proposed interlimb coordinationmechanism, the
present study conducts three kinds of simulation experiments:
the emergence of typical hexapod locomotion, adaptation to leg
amputation, and adaptation to gap environment. We use an
open dynamics engine (ODE) to calculate the hexapod robot’s
three-dimensional physical dynamics in all experiments. The
parameters in the simulation are heuristically determined as
shown in Table 1 so that the robot can generate a typical tripod
gait when the target angular velocities in the stance mode ωst are
the same as that in the swing mode ωsw.

3.1. Emergence of Typical Hexapod Gait
Patterns
The first simulation experiment aims to evaluate how the
proposed rules affect the locomotion patterns of the robot
in response to various locomotion speeds. Regarding the
experimental setup, the robot with an intact body (i.e., no leg
amputation) walks on flat terrain. To address the flexibility of
the locomotor patterns in response to locomotor speed, we
conducted walking experiments with various swing-stance ratios.
More specifically, we set constant values of ωsw and ωst , as
shown in Table 1 for various locomotion frequencies. This setup
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FIGURE 6 | Transition to swing phase depending on the position of next anterior limb. (A) Top view of the robot and threshold joint angle θα
DRT for the effect from

anterior to posterior limbs. (B) Changes in joint α of the anterior limb. When θα
i,j−1 < θα

DRT, the limb sends a signal for the posterior limb to transition from the stance to

swing mode. (C) Changes in joint α of the posterior limb. The posterior limbs move to the swing mode before reaching the PEP angle θPEP.

TABLE 1 | Parameters in simulation experiments.

Body Control

Parameters Unit Values Parameters Unit Values

total mass [kg] 0.92 W [m] 0.12

width [m] 0.24 H [m] 0.07

length [m] 0.18 θAEP [rad] π/6

height [m] 0.1 θPEP [rad] π/6

LUPR [m] 0.12 θα
DRT [rad] π/8

LBTM [m] 0.12 θα
ALS [rad] 7π/60

θα
SRH [rad] 13π/80

Nv
ALS [N] 0.3

Nh
SRH [N] 0.01

ωsw [rad/s] π/3

ωst [rad/s] π/3, π/6, π/15

is according that various insects likely maintain duration in the
swing phase while they change the various durations in the stance
phase (Wosnitza et al., 2013; Reinhardt and Blickhan, 2014;
Weihmann et al., 2017; Dürr et al., 2018). As the phase oscillator
based CPG models set the intrinsic frequency of periodic limb
motion (Owaki et al., 2017), this study simply set limb swing
speed of joint α to generate protract and retract motions in the
swing and stance modes.

The results of the simulation experiments showed that the
robot exhibited various gait patterns depending on the locomotor
speed. When (ωsw,ωst) = (π/3,π/3), the robot exhibited

synchronous coordination in two groups: L1 and R2 are L3
moves in phase, and R1 and L2 are R3 moves in phase as shown
in Figure 7A. The interlimb coordination patterns correspond
to the tripod gait. The locomotion speed is 10.7 [cm/s].
Additionally, when the target angular velocity in the stance mode
ωst decreases to π/6, the robot exhibits different coordination
patterns: L1 and R3 synchronize, L2 and R1 synchronize, and L3
and R2 synchronize. These coordination patterns correspond to
the typical tetrapod gait, where the two limbs are in the swing
phase and the other four limbs support the body weight. The
locomotion speed is 8.8 [cm/s]. Furthermore, the parameter ωst

decreases to π/15, and the robot exhibits a typical wave gait, as
shown in Figure 7C where the ipsilateral anterior limbs move
to the swing phase after the next posterior limb. These speed-
dependent gait patterns of the robot correspond to the trends of
insect locomotor patterns (Wilson, 1966). The locomotion speed
is 2.4 [cm/s].

For each locomotor condition, the proposed reflex rules
modulate the interlimb coordination patterns as shown in
Figures 7D,E. At the beginning of walk, the limb motions are
frequently modulated by the reflex rules, for example, active load
sensing (rule iii) in Figure 7D. As each interlimb coordination
pattern converges, the reflex rules rarely modulate the limb’s
motion. This is because the locomotor patterns that emerge
establish support polygons. With low stance speed (e.g., ωst =

π/15), the searching reflex (rule ii) and active load sensing (rule
iii) rarely occurs, as shown in Figure 7F, because the long stance
period contributes to maintaining the support polygons.

Although the robot exhibits speed dependent interlimb
coordination patterns, several limbs show vague takeoff and
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FIGURE 7 | Various insect-like walking patterns depend on the speed ratio during the swing phase. Emerging gait patterns: (A) Tripod gait at (ωsw,ωst) = (π/3,π/3),

(B) Tetrapod gait at (ωsw,ωst) = (π/3,π/6), and (C) Wave gait at (ωsw,ωst) = (π/3,π/15). The colored region represents the stance phase where the limb contacts the

ground, while the white region represents the swing phase, where the limb has no ground contact. (D–F) show changes in the joint angle α from the beginning of the

tripod, tetrapod, and wave gaits simulations, respectively.

touchdown, resulting in chattering in the gait diagram in
the border between the swing phase and stance phase. This
chattering is more conspicuous in a fast walking pattern
like tripod gait (Figure 7A) than slow walking gait like
metachronal wave gait (Figure 7B). This is because the low

duty ratio in fast walking induces difficulty for limbs to
translate next supporting polygon. In contrast, the large
support polygon in the high duty ratio like Figure 7C

facilitates the free limb to translate from the stance mode to
the swing mode.
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FIGURE 8 | Results of adaptation to leg amputations. (A) Gait diagram of the walking robot with amputated L2 and R2 limbs. Regarding the target angular velocity,

(ωsw,ωst) = (π/3,π/15). The robot exhibited a lateral sequence gait. (B) The history of each joint angle α from the beginning of walking with the leg amputation. (C)

Robot trajectories with various combinations of leg amputation. The robot can move despite the leg amputations, whereas the robot stacks when the L1 and R1 limbs

are amputated. Note that there is no direction control mechanism and the direction of robot movement changes depending on the physical interaction between the

robot and the environment.
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FIGURE 9 | Experimental setup for locomotion on uneven terrain with gaps.

3.2. Adaptation to Leg Amputation
The second simulation experiment aims to evaluate the
adaptability of the proposed model to leg amputation. In this
simulation, we removed the middle limbs (L2 and R2), and the
robot walked on leveled ground. We assume that the amputated
limb does not induce the next posterior limb to change early
from the stance to swing mode, and consequently, rule (iv) is
invalidated. Additionally, the control parameters are the same
as in the first simulation experiment, as shown in Table 1.
Regarding angular velocities, we set (ωsw,ωst) = (π/3,π/15),
referring to the low locomotion speed.

Figure 8 shows the results of the amputation. When L2 and
R2 limbs are amputated, the robot generates feasible locomotor
patterns that differ from the locomotor patterns by the intact
robot. As shown in Figure 8A, the posterior limb on the
ipsilateral side (e.g., L3 limb) moves before the anterior limb
(e.g., L1 limb) despite no neural communication by the transition
rule (iv). Figure 8B shows that the active load sensing (rule
(iii)) modulates the responsible limb motions so as to generate
feasible interlimb coordination at the beginning of walking.
The emerging interlimb coordination well reproduces the actual
amputated insect (Hughes, 1957; Graham, 1977; Dean, 1991;
Grabowska et al., 2012). Furthermore, Figure 8C shows the
trajectory of the walking robot with various combinations of leg
amputation at specific periods. The robot can adapt to various
combinations of leg amputations (e.g., middle limbs and hind
limbs). However, when the L1 and R1 limbs are amputated, the
robot falls forward, and it cannot generate feasible locomotor
patterns. In the falling case, the COM moves the outside of the
support polygon during the stance phase of the middle limbs.
Although the proposed model still has room for improvement, it
well reproduces parts of the insects’ adaptive behavior (e.g., lateral
sequence gait with L2R2 amputation) as well as the previous
model (Owaki et al., 2017).

3.3. Adaptation to Gap Environment
The third experiment addresses the flexible transition between
the stepping and searching behaviors in response to the lack of
footholds. In this experiment, the robot walked on the ground
with gaps and footholds of a specific width, as shown in Figure 9.
To evaluate the effect of transition rule (ii), we compare the
robot with and without transition rule (ii) and measure the
success ratio over 30 trials for the two control conditions. In each
trial, the initial joint α angles θα

i,j are randomly set. When the

transition rule (ii) is eliminated, the transition rule (i) at the AEP

in Equation (1) is modulated as follows:

if θα
i,j ≧ θAEP thenMi,j = Swing mode → Late stance mode. (5)

Because of this modulation, the controller has two states:Mi,j = 0
for the swing mode andMi,j = 1 for the stance mode.

During gap crossing, the proposed model modulates the
interlimb coordination and resulting in adaptive changes
between walking and searching behaviors. At the beginning of
the walk with the random, the active load sensing (reflex rule iii)
and the effect from the posterior limb (reflex rule iv) modulates
the interlimb coordination from the random initial condition to
tetrapod gaits as shown in Figure 10. During the gap crossing,
several limbs generate searching behaviors depending on the lack
of foothold. Note that other limbs adaptively keep their control
modes of stance mode by using to secure the support polygon
by the feedback from the active load sensing. Then, after the
gap crossing, all limbs modulate their interlimb coordination for
stable locomotor patterns by the fundamental reflex rules. The
robot with the searching reflex achieves 60% success ratio, while
the robot without the searching reflex achieves a success ratio of
under 30% (Figure 10B).

Figure 10C shows snapshots of the successful trial in the
gap crossing by the robot with reflex rule (ii). The L1 limb
retracts over the gap and does not obtain the foothold. Then,
the L1 controller switches the control mode from the stance
mode to the swing mode via the searching reflex. During the L1
limb’s protraction, the robot body moves forward by other limbs’
retractions, and consequently, L1 overcomes the gap and obtains
a new foothold.

The robot with the searching reflex, however, fails to cross
the gap due to stacking behaviors as shown in the snapshots of
the failed trial (Figure 10D). In these snapshots, when the L1
and R1 limbs lift, the robot maintains the static support polygon
with the L2, L3, R2, and R3 limbs. However, as the supporting
limbs retract, the COM moves outside the support polygon, and
consequently, the robot loses body balance during searching.
Although the proposed model sometimes fails the crossing gap
because of no sensory modulation during the stance phase, these
results show that the proposed simple interlimb coordination
mechanism play a pivotal role for the robot to change its limb
behavior between walking step and searching step in response to
the lack of footholds around AEP.

4. DISCUSSION

The significance of the present study is to demonstrate that
insect-like adaptive locomotor patterns (e.g., adaptation to
locomotion speed, leg amputation, and gap crossing) can emerge
via a simple chain of reflex mechanisms. Owing to the simplicity
of the proposed model, the series of transition rules can be
interpreted as a simple control strategy: each limb tries to create
a static support polygon in a decentralized manner. This simple
control strategy seems to be reasonable in insect locomotion
because the insect’s morphology (e.g., low COM due to the
sprawled posture and a redundant number of limbs) has great
advantages in securing support polygons. While complex neural
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FIGURE 10 | Results of walking experiments on uneven terrain. (A) Each history of α joint’s angle during crossing gap sections. (B) Comparison of success ratios with

and without the transition rule (ii). For each control condition, we conducted 30 trials with random initial angles for each limb’s α joint. (C) Snapshots of successful gap

crossing in the trial with transition rule (ii). (D) Snapshots of gap crossing failure during walking with transition rule (ii).

network models help us to clarify the correspondence between
the neural networks in the insect and the structure of neural
modules in the modeling studies, the simple model allows us to
understand the essences of the underlying control mechanism as
well as introduce them to adaptive robot control.

While our model is abstracted, each reflex mechanism is
similar to the biological findings. Rule (i) follows the reflex

mechanism based on joint angles (Akay et al., 2004; Ekeberg
et al., 2004). Rule (ii) and rule (iii) satisfy the physiological
findings that sensory input signaling ground contact takes over
the effects of command neurons for searching behaviors (Berg
et al., 2015). Rule (iv) is similar to the effects from the posterior
to the anterior limbs (Borgmann et al., 2009). Although our
proposedmodel does not describe the details of the above sensory
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feedback mechanisms with interactions among sensor organs
(e.g., mechanoreceptors), motor- and intern-neurons, the simple
model integrates substantial sensory feedback mechanisms for
adaptive interlimb coordination in response to locomotor
frequency, leg amputation, and a gap of foothold.

Furthermore, the structure of the proposed model could shed
new light on the control mechanism underlying insect adaptive
searching behaviors. According to biological experiments, two
control schemes, the “two motor patterns hypothesis” and
“two control modes hypothesis,” have been proposed (Dürr
et al., 2018). In the two motor patterns hypothesis, the control
system has two distinct motor patterns for the long step of the
walking limb and the short step of the searching limb. Walking
and searching behaviors are realized by switching these motor
patterns depending on the sensory information. In contrast, the
two control modes hypothesis assumes a control mechanism
for each swing phase and stance phase, and adaptive walking
and searching steps emerge from reasonable switching between
the control mechanisms. In this sense, our proposed model
agrees with the two control modes hypothesis. Note that our
simple model shows the significance of physical interaction in
the two control modes hypothesis. Although each limb locally
implements two control modes (namely, swing mode and stance
mode) and simple reflex rules, the physical interaction with the
environment globally affects among limbs and makes each limb
free or responsible to support body weight. These interactions
should be important for each limb to flexibly generate walking
and searching steps as well as secure support polygon when an
other limb is searching the foothold.

The failure case in the simulation experiments suggests
that flexible coordination between the joints of one limb (e.g.,
intralimb coordination) is required to improve the adaptability
of the proposed model. In the amputated experiments, the
robot with amputated L1, R1 limbs cannot secure the support
polygon by other limbs, and it tumbles. The simulated robot
body model has COM at the middle of the trunk, the PEP
limb position of the middle limbs induces the projected COM
on the ground to go outside of the support polygon. These
failure cases suggest that limbs should change the AEP and
PEP position for a stable support polygon. According to
insect behaviors, the actual insects modulate the AEP and PEP
positions depending on the limb amputation and carrying loads
(Delcomyn, 1991; Zollikofer, 1994).

Besides, in the gap crossing experiments, the COM also goes
outside of the support polygon during the responsible limb’s
stance phase, whereas the anterior limbs searching footholds.
This is because the target angular velocities of the α joints
are set as constant values ωsw and ωst, and the supporting
limb keeps retracting regardless of the projected COM going
outside the support polygon, as shown in Figure 10C. In contrast,
actual insect animals modulate their joint angular velocity
depending on the situation (Watson et al., 2002). Furthermore,
the searching behavior of each limb in simulation moves around
the predesigned AEP in the sagittal plane whereas the insects
(e.g., stick insect) spread the AEP of the forelimb forward
and lateral (Theunissen and Dürr, 2013). These gaps in limb
behaviors between the simulation and insect animals suggest that

intra-limb coordination should be considered to generate flexible
limb motion in both swing and stance modes.

Although we simplified the robot structure, a more insect-
like limb structure may induce the robot to exploit physical
interaction with the environment. The proposed model exhibits
various insect-like gait patterns as shown in Figure 7; however,
each limb shows a chattering step at the PEP position. This
is because active load sensing is conducted by the limb lifting
off the ground. Therefore, if the limb is responsible for the
static supporting polygon, once the limb lifts off the ground, the
responsible limb touches the ground again, resulting in chattering
behaviors. Introducing a flexible foot segment like an insect’s
tarsus makes it possible to detect the limb’s responsibility by
sensing the strain of the flexible tip of the foot segment before
the limb lifts off completely.

5. CONCLUSION

To elucidate the essential interlimb coordination mechanism
underlying adaptive insect’s walking and searching behaviors,
we developed the simple model that consists of two control
models (i.e., swing and stance modes) and four substantial
reflex rules. Although the results of the simulation experiments
suggest the requirement of additional control mechanisms for
flexible intralimb coordination, the robot with the proposed
simple interlimb coordination mechanism exhibits various
speed-dependent gait patterns, adaptation to leg amputation,
and flexible switching between the walking step and searching
step during the gap crossing. These results show that simple
decentralized control mechanism, e.g., active load sensing,
and physical interaction with the environment generate
the flexible changes between walking and searching limb
behaviors with interlimb coordination for secure support
polygons.

For further study, we will develop a physical robot considering
the flexibility of the foot segment and evaluate the proposed
model in a real-world environment. Furthermore, the intralimb
coordination mechanism will be introduced in the proposed
model so that each limb can adaptively change its stride speed
and foot trajectory depending on the robot morphology and
locomotor environments.
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APPENDIX A: FOOT TRAJECTORY

In the stance mode, the limb generates retracting motion to kick

the ground with a target angular velocity in the α joint, ¯̇θα
i,j.

More specifically, the target values for each joint are described
to generate a specific state foot trajectory as follows:

¯̇θα
i,j = ωst, (6)

θ̄
β
i,j =

π − θ̄
γ
i,j

2
+ tan−1

(

H cos θα
i,j

W

)

−
π

2
, (7)

θ̄
γ
i,j = cos−1

(

L2UPR + L2BTM − L2st
2LUPRLBTM

)

, (8)

where LUPR and LUPR are the lengths of the upper and bottom
links of the limb, respectively, and Lst is a parameter that
reflects the target foot trajectory. The parameter Lst is calculated
as follows:

Lst = H2
+ (W/ cos θα

i,j)
2. (9)

where H and W are the target height of the body unit and width
of the target foot trajectory, respectively.

In the swing mode, the limb generates a protracting motion
along a round trajectory for ground clearance. As in the stance

mode, the joint α is controlled to achieve the target angular
velocity, where the joints β and β are controlled to achieve target
angles. The target values are described as follows:

¯̇θα
i,j = ωsw, (10)

θ̄
β
i,j =

π − θ̄
γ
i,j

2
−

π

2
, (11)

θ̄
γ
i,j = cos−1

(

L2UPR + L2BTM − L2sw
2LUPRLBTM

)

, (12)

where Lsw is a parameter that reflects the target foot trajectory.
The parameter Lsw is calculated as follows:

Lsw = (H − h(θα
i,j))

2
+ (W/ cos θα

i,j)
2, (13)

h(θα
i,j) = H cos

(

π

θAEP − θPEP
(θα

i,j −
θAEP + θPEP

2
)

)

. (14)

where h(θα
i,j) is a function of θα

i,j for the calculation of the

target height of the foot. θAEP and θPEP are positive and
negative constant values for the angular limitation of joint α

at the AEP and PEP, respectively. By switching between the
two control modes, the limb generates stride motion along the
semicircular trajectory.
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