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Editorial on the Research Topic

Alzheimer’s Dementia Recognition through Spontaneous Speech

The need for inexpensive, safe, accurate and non-invasive biomarkers for Alzheimer’s disease (AD)
has motivated much current research (Mandell and Green, 2011). While diagnosis and evaluation of
interventions are still primarily done through clinical assessment, “digital biomarkers” have attracted
increasing interest. AI-enabled speech and language analysis has emerged as promising such
biomarker for the assessment of disease status (de la Fuente Garcia et al., 2020).

While a number of studies have investigated speech and language features for the detection of AD
and mild cognitive impairment (Fraser et al., 2016), and proposed various signal processing and
machine learning methods for this task (Petti et al., 2020), the field still lacks balanced benchmark data
against which different approaches can be systematically compared. This Research Topic addresses this
issue by exploring the use of speech characteristics for AD recognition using balanced data and shared
tasks, such as those provided by the ADReSS Challenges (Luz et al., 2020, Luz et al., 2021). These tasks
have brought together groups working on this active area of research, providing the community with
benchmarks for comparison of speech and language approaches to cognitive assessment. Reflecting the
multidisciplinary character of the topic, the articles in this collection span three journals: Frontiers of
Aging Neuroscience, Frontiers of Computer Science and Frontiers in Psychology.

Most papers in this Reseach Topic target two main tasks: AD classification, for distinguishing
individuals with AD from healthy controls, and cognitive test score regression, to infer the patient’s Mini
Mental Status Examination (MMSE) score (Folstein et al., 1975). Of the twenty papers published in this
collection, 14 used the ADReSS dataset (Luz et al., 2020), by itself or in combination with other data. The
ADReSS dataset is a curated subset of DementiaBank’s Pitt Corpus, matched for age and gender so as to
minimise risk of bias in the prediction tasks. The data consist of audio recordings of picture descriptions
elicited from participants using the Cookie Theft picture from the Boston Diagnostic Aphasia
Examination (Becker et al., 1994; Goodglass et al., 2001), transcribed and annotated using the
CHAT coding system (MacWhinney, 2021). The papers covered a variety of approaches and models.

Antonsson et al. aimed to distinguish progressive cognitive decline from stable cognitive
impairment using semantic analysis of a discourse task. Support Vector Machine (SVM) models
performed best (AUC � 0.93) with both semantic verbal fluency scores and disfluency features from
the discourse task. Discourse analysis revealed significantly greater use of unrelated speech in the
progressive cognitive decline group compared with the stable group and healthy controls (HC).

Clarke et al. examined the impact of five different speech tasks (picture description, conversation,
overlearned narrative recall, procedural recall, novel narrative retelling) on classification of 50
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participants: 25 HC, 13 mild AD, 12 MCI. Linguistic features (n �
286) were automatically extracted from each task and used to
train SVMs. Classification accuracy varied across tasks (62–78%
for HC vs AD + MCI, 59–90% for HC vs AD, 50–78% for HC vs
MCI) as did which features were most important to the
classification.

Balagopalan et al. used linguistic and acoustic features derived
from ADReSS speech and transcripts. They tuned a pretrained
BERT model (Devlin et al., 2018) and compared its features to
clinically-interpretable language features. The BERT model
outperformed other features and achieved accuracy of 83.33%
for AD classification. A ridget regressor with 25 pre-engineered
features obtained root mean squared error (RMSE) of 4.56 in
MMSE prediction.

Chlasta and Wołk used VGGish, a pretrained a Tensorflow
model for audio feature extraction and a custom raw waveform
based convolutional neural (CNN), DemCNN, to model the
acoustic characteristics of AD speech on the ADreSS dataset.
DemCNN provided better results than VGGish (Hershey et al.,
2017) and achieved an accuracy of 62.5% using only the acoustic
information.

De Looze et al. combined structural MRI, neuropsychological
testing and conversational features to explore temporal
characteristics of speech in a collaborative referencing task.
They investigated associations with cognitive function and
volumetry in brain areas known to be affected by MCI and
AD. A linear mixed-effect model was built for data of 32
individuals to assess the predictive power of conversational
speech features to classify clinical groups. They found that
slower speech and slower turn-taking may provide useful
markers for early detection of cognitive decline.

Guo et al. emphasized the importance of large normative
datasets in training accurate and reliable machine learning
models for dementia detection. They incorporated a new
corpus of Cookie Theft picture descriptions (HC � 839, NC �
115) from theWisconsin Longitudinal Study (Herd et al., 2014) to
train a BERTmodel and demonstrated improved performance on
the detection task compared with results of the model trained on
the ADReSS data alone (82.1% vs 79.8, accuracy, and 92.3 vs 88.
3% AUC).

Haulcy and Glass investigated the use of i-vectors and
x-vectors (Snyder et al., 2018), which are acoustic features
originally devised for speaker identification, and linguistic
features to tackle AD detection and MMSE prediction. The
i-vectors and x-vectors were pre-trained on existing datasets
unrelated to AD as well as in-domain data. Several classification
and regression models were tested, yielding 85.4% accuracy in
AD detection with SVM and Random Forests, and 4.56 RMSE
with a gradient boosting regressor. Linguistic and acoustic
features were modelled separately. The former yielded better
performance. The authors speculate that the poor performance
of i-vectors and x-vectors was due to in- and out-of-domain
training data mismatch.

Jonell et al. proposed amultimodal analysis of patient behavior
to improve early detection of dementia. Their system captured
data from clinical interviews using nine different sensor devices
which recorded speech, language, facial gestures, motor signs,

gaze, pupil dilation, heart rate variability and thermal emission.
This information was gathered from 25 patients with AD and
later combined with brain scans, psychological tests, speech
therapist assessments and other clinical data. They found that
multimodality, in combination with the more established
biomarkers, improves clinical discrimination.

Laguarta and Subirana present an approach to the
identification of different diseases which combines multiple
biomarkers (features), including vocal cords, sentiment, lung
and respiratory tract, among others. The authors employed
transfer learning from other (non-AD) audio datasets to learn
these features. The resulting model achieved up to 93% accuracy
on the ADReSS dataset. Interestingly, the respiratory tract
features, which were previously used in the detection of
COVID-19 from a cough dataset, also proved helpful in AD
detection.

Lindsay et al. investigated spontaneous speech of 78 HC and
76 AD individuals in English and French, proposing a
multilingual model. Task-specific, semantic, syntactic and
paralinguistic features were analysed. They found that
language features, excluding task specific features, represent
“generalisable” signs for cognitive language impairment in AD,
outperforming all other feature sets. Semantic features were the
most generalizable, with paralinguistic features showing no
overlap between languages.

The work of Mahajan and Baths tested several acoustic and
linguistic models, comparing their performance on ADReSS and
a larger subset of DementiaBank. They employed a deep learning
bimodal model to combine these features. For linguistic models,
accuracy was lower on ADReSS than on DementiaBank (73 vs
88%). The authors attribute this to the smaller size of ADReSS
and to overfitting in DementiaBank due to repeated samples from
the same participant. Although the best linguistic model
performed similarly to the bimodal learner, the authors
suggest a number of possible improvements.

Martinc et al. presented a multimodal approach to AD
detection using ADreSS data. The Active Data Representation
method (Haider et al., 2020) was used for fusion of acoustic and
textual features at sentence and word level, along with temporal
aspects of linguistic features. They achieved an accuracy of 93.75%
through late fusion of acoustic, text and temporal models.

Meghanani et al. compared two approaches to the challenge
tasks based on use of the non-automatic, hand-created
transcripts. Both methods relied on the extraction of n-grams
of varying lengths (n � 2,3,4, and 5) from the transcripts. The first
method employed CNNs with a single convolutional layer in
which the kernel size was adapted to the n-gram size. The second
method used the fastText model with bigrams and trigrams. The
fastText models outperformed the CNNmodels, achieving 83.3%
accuracy for classification and RMSE of 4.87 for prediction of
MMSE scores.

Millington and Luz approached the data representation
problem in the ADReSS dataset by converting its text
transcriptions into word co-occurrence graphs and
computing several graph structure metrics. They found that
AD graphs have lower heterogeneity and centralization, but
higher edge density. These metrics were used as input features to
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standard machine learning classifiers and regressors. A graph
embedding metric was tested for comparison. Graph metrics
outperformed graph embedding, achieving 66.7% accuracy in
classification, and a 5.67 RMSE in MMSE regression.

Nasreen et al. investigated the role of conversational features
such as dysfluencies, pauses, overlaps and other interactional
elements in AD detection. They used the Carolinas Conversations
Collection (Pope and Davis, 2011) to create classification models
based on those features. The combination of dysfluency and
interactional features resulted in a classification accuracy of
90%. These findings in conversational speech seem to agree
with the findings from other papers in this Research Topic,
which highlighted the importance of pauses and dysfluency in
detecting AD in the ADReSS monologue data.

Parvin et al. performed a randomised controlled clinical trial to
investigate the effects of dual-task training on 26 patients with AD.
Patients performed physical, cognitive and mental assessments and
had their brain oscillations measured pre- and post-intervention,
which consisted of a 12-weeks visual training program. The trained
group showed significant improvements in cognitive function, mood
and fitness. This was associated with a significant positive change in
brain oscillation.

Sadeghian et al. examined the potential of an almost fully
automated system for AD detection. Rather than using
DementiaBank, they collected 72 new samples (26 AD, 46
HC) with higher quality audio. ASR was performed on data
with pauses removed using voice activity detection. From this,
they extracted 236 textual features and then used a genetic
algorithm as well as a Multi-Layer Perceptron to identify the
10 most useful features, achieving 94% accuracy in detection.

Shah et al. used speech samples from the DementiaBank
database for binary classification and MMSE regression.
Although they developed models that combined acoustic and
language-based features, their best performing model for binary
classification used language-based features only with a
regularized logistic regression, achieving 85.4% accuracy on a
hold-out test set. A more reduced set of language features was

their best performing model for the regression task, with an
RMSE of 5.62.

Yuan et al. presented a method for encoding filled and unfilled
pauses in transcripts to fine tune the training of language models
using BERT and ERNIE. The accuracy of dementia detection
improved to 89.6% (with ERNIE). Compared with controls, the
individuals with dementia vocalised filled pause um much less
frequently than uh, and their language samples included more
pauses.

Zhu et al. used a transfer learning technique to fine-tuning the
last layers of a pretrained model with customized layers for AD
detection. The MobileNet and YAMNet network architectures
were employed for this. They then used speech and text versions
of BERT, individually and in combination for the same task. The
text models outperformed the speech models, with the version
based on pre-training with the longest input frame achieving 89.
58% accuracy. The models which combined audio and speech
data generally performed better than the models separately.

The studies in this Research Topic represent the state of the art
in dementia detection, and contribute to the increasing body of
evidence supporting machine learning and spoken language for
detecting cognitive decline.
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This study aimed to investigate the effect of 12 weeks of dual-task training on cognitive
status, physical performance, and brain oscillation of patients with Alzheimer’s disease
(AD). Twenty-six AD patients were randomly assigned to two groups, the training group
(TG) and control group (CG). TG executed progressive combined exercises with visual
stimulation twice a week for 12 weeks. Training included muscle endurance, balance,
flexibility, and aerobic exercises with eyes closed and opened. Brain oscillation on
electroencephalography (EEG) and a series of physical, cognitive, and mental tests were
taken before and post-intervention. There was a significant improvement after training
protocol in cognitive function, particularly in short-term and working memory, attention,
and executive function (p < 0.01). Besides, there were substantial improvements in
depression status (GDS scale), aerobic fitness (6 min walking), flexibility (chair sit and
reach) functional ability (chair stand, timed up and go test), strength (knee extensions,
preacher biceps curl, handgrip) in TG compared to CG. These signs of progress were
associated with a significant increase (p < 0.05) in the frequency of brain oscillation
and a decrease in the theta/alpha ratio. In addition to physical performance, the regular
combined training with visual stimulation improves brain health as indicated by improving
cognitive function and reducing the theta/alpha ratio.

Clinical Trial Registration: Iranian Registry of Clinical Trials (IRCT) https://www.irct.ir/,
identifier IRCT20190504043468N1—August 5, 2020.

Keywords: aging, alpha wave, cognitive performance, dementia, electroencephalography, exercise, physical
activity, theta wave

Abbreviations: 1-RM, one-repetition maximum; 6MWT, six-minute walk test; AD, Alzheimer’s disease; ANOVA, analysis
of variance; BF, body fat; BMI, body mass index; CG, control group; CSR, chair sit and reach; CV, coefficient of variation;
EEG, electroencephalography; ES, effect size; GDS, geriatric depression scale; HR, heart rate; IC, internal consistency;
ICC, intra-class correlation coefficient; MCI, mild cognitive impairments; MoCA, montreal cognitive assessment; SD,
standard deviation; TG, training group; TUG, timed up and go.
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INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disease,
without any known treatment. This disease progressively
destroys brain structures, such as the hippocampus and
entorhinal cortex, due to the accumulation of pathological forms
of amyloid plaques and neurofibrillary tangles (Lane et al.,
2018). Consequently, mental functions, including memory and
cognition, are lost, leading to a decline in activities of daily
living (McGough et al., 2017). In this regard, Burns et al. (2010)
reported that reduced lean body mass in AD is associated with
brain atrophy and declined brain function, including cognitive
performance. In this regard, a positive correlation has been
reported between Montreal Cognitive Assessment (MoCA) test
and fitness parameters especially muscle strength (Tolea and
Galvin, 2016; Xiao et al., 2020).

The electrical activity of the cerebral cortex (brain oscillation)
can be recorded via electroencephalography (EEG) by placing
electrodes on the scalp. The frequency of resting brain oscillation
change in AD patients, compared to older individuals or those
with mild cognitive impairments (MCIs), considering a decrease
in alpha and beta power (Hsiao et al., 2013; Koelewijn et al., 2017)
and an increase in theta power (Moretti et al., 2004; Hsiao et al.,
2013). These changes are associated with altered cerebral blood
flow, cognitive function (Lizio et al., 2011), and occipital gray
matter density (Babiloni et al., 2015). Researchers demonstrate
that alpha activity is strongly associated with working memory
and probably with long-term memory (Bas̨ar, 2012; Bas̨ar and
Güntekin, 2012). It seems that the brain oscillations ratio is
important in relation to brain health. The theta/alpha ratio
(Fahimi et al., 2017), which is a marker of AD and cognitive
impairments, increases in patients with AD, compared to healthy
individuals. A study reported a negative correlation (r = −0.52)
between the theta/alpha ratio and the MoCA test in patients
with type 2 diabetes (Bian et al., 2014). In patients with MCI,
occipital alpha slowing may lead to AD (Babiloni et al., 2015).
Also, the degree of reduction in alpha and beta peak frequencies
is correlated with the stage of AD (Moretti et al., 2004;
Koelewijn et al., 2017).

Epidemiological evidence suggests exercise training as a
non-pharmacological approach to protect against AD (Rao
et al., 2014; Huang et al., 2016; Jia et al., 2019; De la Rosa
et al., 2020), increase the hippocampus size (Erickson et al.,
2011), and increase brain neurogenesis (Liu and Nusslock,
2018). These structural changes are associated with functional
improvements, such as improved independence and cognition of
AD patients (Jia et al., 2019). Moreover, these exercise-induced
brain changes are associated with alterations in the power
of brain oscillation. However, to the best of our knowledge,
no studies are investigating the effects of physical training
on the frequency of brain oscillation in AD. In this regard,
Jiang et al. (2019) reported that a 10-week limb exercise
training leads to a significant increase in the alpha and
beta wave power values in all brain areas of MCI patients
which is associated with psychomotor speed and decline in
cognitive function. Also, Gutmann et al. (2015) reported that
the individual alpha peak frequency remained unchanged after

4 weeks of moderate exercise training in healthy individuals.
Also, researchers have reported that acute bouts of exercise
increase the power of beta oscillation in the frontal and
central areas of the brain, which may indicate an increase
in cortical activation (Moraes et al., 2007; Hubner et al.,
2018); however, the long-term effects of physical training
are unclear.

Researchers have shown that brain activation during exercise
(a dual-task exercise) is beneficial for cognitive function (Brustio
et al., 2018; Techayusukcharoen et al., 2019). Generally, training
with eyes closed and remembering to do specific exercises with
several stations are simple mental activities. In this regard, Hutt
and Redding (2014) showed that an eyes-closed dance training
increased the dynamic balance of ballet dancers, as closing the
eyes led to a shift from visual to proprioceptive dependence for
balance control. Moreover, researchers have found that closing
the eyes activates different areas of the brain, especially the
amygdala, which is involved in memory and learning (Marx et al.,
2004; Lerner et al., 2009).

According to some researchers, unlike other oscillations, the
power of alpha oscillations increases in a resting state with
the eyes closed (Kan et al., 2017), whereas it differs when the
person focuses on performing activities with the eyes closed.
Dual-task exercises can be used to maintain the brain structure
and function and improve physical independence in AD patients.
Accordingly, eyes-closed exercises can activate the brain areas
involved in memory to focus on activities; they may also increase
alpha and beta oscillations (Barry et al., 2007).

Overall, AD causes impairments in different physical and
mental functions. To the best of our knowledge, this is the
first study to assess the effects of combined physical training
with visual stimulation on the physical and cognitive functions
of patients with AD. It is known that the power of brain
oscillation reflects brain changes and that AD increases the
theta/alpha ratio. Accordingly, we hypothesized that physical
training combined with mental challenge could modify the
power of brain oscillations. In this study, we aimed to investigate
the effects of combined training with visual stimulation on the
theta/alpha ratio, as well as the cognitive and physical health of
patients with AD. Also, we aimed to explore the correlations
between cognitive performance and fitness performance, as well
as brain oscillations.

MATERIALS AND METHODS

Study Design
This randomized clinical trial, with control and parallel
groups, phase 2, and single-blind design was conducted on
patients with AD. We aimed to investigate the effects of a
12-week dual-task training (low-intensity exercise with eyes
open and closed), on the brain oscillation (alpha, beta, and
theta), cognitive and physical performances of patients with
AD. One week before the study, the participants and their
caregivers attended three familiarization sessions, where they
were informed about the benefits and potential risks of the
study, signed a consent form, and participated in pretests.
The block randomization method was applied before the
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study, and the participants were assigned to two groups,
including the training group (TG) and the control group
(CG). Brain oscillation, psychological and cognitive status, and
physical fitness parameters, including body composition, aerobic
capacity, muscle strength, flexibility, and functional abilities,
were assessed in familiarization sessions.

Participants
Patients with AD, who were eligible to participate in this study,
were recruited from the memory clinic of Roozbeh Hospital
in Tehran, Iran. AD patients, with mild dementia and the
ability to walk and move independently, were included in this
study. A neurologist confirmed the diagnosis of dementia, based
on the Diagnostic and Statistical Manual of Mental Disorders
(DSM-5) criteria. Brain imaging and laboratory tests were
performed to exclude other causes of dementia. The AD severity
was determined, based on the Functional Assessment Staging
Test (FAST).

The patients’ medications, including choline esterase
inhibitors (rivastigmine and donepezil), memantine, and
selective serotonin reuptake inhibitors (SSRIs including
sertraline, citalopram, and trazodone), were reviewed before
recruiting the patients in the study. The medications were
not changed during the intervention in terms of type or
dosage. Before entering the study, all patients received cardiac
consultation to rule out possible cardiac diseases or ischemia.
Patients with serious cardiac diseases (e.g., unstable angina and
recent myocardial infarct) were excluded.

Thirty-two eligible subjects volunteered to participate in
the study, but the data of 26 patients (age: 67.4 ± 8.8 years;
height: 165.8 ± 7.8 cm, body mass: 72.7 ± 11.3 kg, BMI
26.5 ± 4.3 kg/m2), who completed the pre- and post-tests, were
finally analyzed. The participants were randomly assigned into
two groups, including the TG and the CG. A CONSORT flow
diagram of the present study is shown in Figure 1. On the other
hand, the exclusion criteria were as follows: (1) deterioration of
health condition; (2) inability to perform training; (3) lack of
interest in continuing training; (4) not completing the posttest;
and (5) the physician’s decision to exclude the participant from
the study. To estimate the number of participants in each group,
a sample size calculation was performed using G∗Power Software
version 3.1.9.6 (Faul et al., 2007) for repeated measure ANOVA,
using a rejection criterion of 0.05 and 0.8 (1-beta) power, and
large effect (f = 0.5), a minimum of 13 participants need to
each group. All research procedures were approved by the
Ethic committees for Sport Sciences Research Institute of Iran
(approval number: IR.SSRI.REC.1398.037) and were conducted
following the Declaration of Helsinki and reported according
to CONSORT guidelines (Schulz et al., 2010). The study has
been registered in the Iranian Registry of Clinical Trials (IRCT;
one of the Primary Registries in WHO Registry Network) with
registration number: IRCT20190504043468N1.

Measures
Before and after training, the participants underwent a series of
tests. All training sessions and tests were performed at Roozbeh

Hospital Medical Center under the supervision of a sports
medicine physician.

Cognitive Status
The Montreal Cognitive Assessment (MoCA) test, developed
by Nasreddine et al. (2005) for MCI and dementia, evaluates
different domains of cognitive functioning. The reliability
of this test was 92%, based on Cronbach’s alpha, and its
internal consistency (IC) was 83% (Sikaroodi et al., 2012).
The maximum score of the test is 30, with a score of 26 or
higher considered to be normal. This test, which is executed
within 10 min, includes different domains: short-term memory
(five points); executive function, including Trail Making Test
B, Clock Drawing Test, and visuospatial function test (cube
copying; five points); attention and working memory (six points);
language, including naming, repetition, and fluency (six points);
abstraction (similarity; two points); and orientation to time
and place (six points). Patients with scores of 26 or higher
did not have any cognitive impairments (normal MoCA),
whereas patients with scores lower than 26 probably had
cognitive impairments.

Depression Questionnaire
The Geriatric Depression Scale (GDS) was used to assess
depression in the participants. In this questionnaire, all questions
are of similar weight and have a yes/no response format. The
maximum score of GDS is 15, and the minimum score is zero,
with higher scores indicating more severe depression. This scale
is one of the best tools for measuring depression in the elderly
and patients with dementia. The sensitivity of 92% and specificity
of 89% have been reported for this questionnaire (Bakhtiyari
et al., 2014). The validity and reliability of 15-item GDS were
measured by Malakouti et al. (2006) in Iran, and the best
cut-off point was eight, with 90% sensitivity and 84% specificity
(Sikaroodi et al., 2012).

The 15-item GDS captures depressive symptoms over the
past week, using a yes/no response format. For 10 items, a
positive response (‘‘yes’’) is given a score of one, and for five
items, a negative response (‘‘no’’) is given a score of zero. Also,
five items are reverse-scored (one for ‘‘no’’ and zero for ‘‘yes’’).
The total score of the items ranges from 0 to 15, with higher
scores indicating more depressive symptoms. The GDS-15 score
has been used as both continuous and categorical variables
elsewhere. We used a cut-off score of ≥5 to indicate the presence
of clinical depression symptoms (0, GDS-15 score <5 and 1,
GDS-15 score ≥5). We also considered the continuous score of
GDS-15 as the outcome (Cron et al., 2016; Honjo et al., 2018;
Koohsari et al., 2019).

Anthropometric Indices
Body composition indices, including height (stadiometer,
Seca 213, Germany), body mass (digital weighing scales,
Seca 769, Germany), body mass index (BMI; kg/m2),
and body fat percentage (BF %; InBody S10, Biospace
Company Limited, Seoul, South Korea), were assessed in
this study.
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FIGURE 1 | CONSORT flow diagram of the study.

Maximum Strength
The maximum strengths of knee extensions, preacher
curls, and handgrips were measured for all participants.
One-repetition maximum (1-RM) for leg extensions and
preacher curls was also determined, based on the procedures
described by Sheppard and Triplett (Sheppard and Triplett,
2016). The participants performed a general warm-up,
consisting of 5-min pedaling on a stationary bicycle
(50–70 rotations per minute at a resistance level of 1–5),
followed by a specific warm-up of two sets (5–20 repetitions
at 40–50% of perceived maximal effort). Next, they

made 3–5 attempts to reach 1RM, with 3–5 min of rest
between attempts.

For knee extensions, the participants were asked to sit on
a machine (Impulse IT95 Leg Extension, Impulse Health Tech
Company Limited, Shandong, China). The researcher adjusted
the chair in a way that the subject’s legs were placed under
the pad, and his/her feet pointed to the pad while extending
the knees. In preacher biceps curls, the participant adjusted the
preacher bench, held a dumbbell with fully extended arms, and
curled it up to shoulder level. Also, a grip strength dynamometer
was used to measure the maximum isometric strength of the
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hand and forearm muscles. After adjusting the handle of the
dynamometer for the subjects, they were asked to hold it in their
hands, while keeping the arms at the right angles and the elbows
on two sides of the body. Participants pressed the dynamometer
with maximum isometric effort, which was maintained for about
5 s (Roberts et al., 2011). The best result of the three trials was
recorded for each participant.

Functional Tests
The timed up and go (TUG) and chair stand tests were used
to measure functional abilities. The TUG test requires the
participant to stand up from a chair without the use of arms, walk
2.4 m, turn, return to the chair, and sit (Bigdeli et al., 2020). Also,
the chair stand test requires the participant seated on a chair to
stand up as many times as possible within 30 s. The participants
were instructed to keep their arms crossed at the wrists and hold
them in front of the chest. The examiner counted the number of
stands performed correctly within 30 s (Rikli and Jones, 2013).
Chair ‘‘sit-and-reach’’: (CSR) test requires the participant to sit
on the edge of a chair, with one foot flat on the floor and the
other leg extended forward with the knee straight and heel on
the floor. By placing one hand on top of the other, the subject
stretched his/her hands toward the toes by bending at the hip.
Next, the distance between the tip of the fingertips and the toes
was recorded as a score. If the fingertips reached the toes, the
score would be zero; if the fingertips did not touch the toes,
the score would be negative; and if the fingertips overlapped,
the score would be positive. Overall, two trials were conducted
for each participant, and the best distance was recorded (Bigdeli
et al., 2020). The six-minute walk test (6MWT) was designed to
assess aerobic fitness. In this test, the participants walked at a
self-selected pace and were allowed to stop or change their pace
(Rikli and Jones, 2013). In the indoor setting, two cones were
placed 30 m apart, and the participants were asked to walk back
and forth. The walking path was marked every 1 m to determine
the distance accurately. For safety, a supervisor accompanied
the participants.

Brain Oscillation
Electroencephalography (EEG; SOMNO medics, SSP full EEG,
Germany) was used to evaluate the brain oscillation with high
sensitivity. The information related to beta, theta, and alpha
changes on the EEG test, investigated by a neurologist, was used
to determine the patient’s status. EEG was obtained over 10
min, and then, the percentage of each brain oscillation and the
brain oscillation index were extracted, based on the visual scale.
We also divided theta power by alpha power to calculate the
theta/alpha ratio.

The 10-20 System which was recommended by the
International Federation of Clinical Neurophysiology (IFCN;
Deuschl and Eisen, 1999), were used in our study. Also,
21 channels of simultaneous recording are used to obtain EEG
recording. In every case, an isolated ground electrode was placed
between Cz and Pz.

Interelectrode impedances be checked as a routine
prerecording procedure. In our study, impedances up to
10 kOhms are acceptable. Ten seconds of a square wave

calibration were made before initiation of the recording in every
patient. After that, a visual review of a 30-s run on the system
reference montage without the notch filter. The sensitivity of
our EEG system was set in 7 µV/mm of trace deflection. The
low-frequency filter set in 1 Hz and the high-frequency filter set
in 70 Hz to prevent artifacts or changes in electrode impedances
that will negatively impact the quality of the EEG.

We record EEG recording at rest in 20 min and then choose
10 min of our recording which has a lower percentage of the
artifacts (our patients due to background disease, dementia, had
limited and poor cooperation compare to other patients and
we should address this point in recording and analyze EEG
recording). We reviewed the EEG in at least three different
montages including two bipolar and one referential montage.
Our recordings included periods when the eyes are open and
when they are closed to review the effect of eye-opening
on the attenuation of the alpha rhythm. A single-channel
electrocardiogram (ECG) is included on one EEG channel.

All EEG recordings were performed in an awake state.
According to significant cardiovascular risk factors in
numerous dementia patients and patient inability to cooperate,
Hyperventilation and Photic stimulation were not performed in
patients with AD.

Visual EEG Assessment
The certified clinical neurophysiologists, assessed the entire
20-min EEG recording by visual rating scale and according to
a standardized visual rating scheme, which includes the severity
of EEG abnormalities and the presence of focal, diffuse, and
epileptiform abnormalities.

Source derivation was used as a reference (Hjorth, 1975), and
the data was band-pass filtered in four frequency bands: delta
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz).
Oscillations >30 Hz were excluded from further analyses because
of the expected artifacts from muscle and eye movement
(Hagemann and Naumann, 2001).

Training Protocol
The participants in the experimental group performed
24 workouts twice a week for 12 weeks. Each session lasted
about 40–60 min, including 10 min of warm-up, 20–40 min
of main exercises, and 10 min of cool down. The participants
adhered to a combined protocol, including simple brain
activities (eyes-closed training and cognitive activities) and
physical activities (muscle endurance, balance, and aerobic
capacity). The main training protocol consisted of five parts.

The first part of the training protocol included sitting and
standing on an armchair, accompanied by shoulder girdle
strengthening (three sets with 5–15 reps, followed by a gradual
increase in resistance and repetition, using dumbbells and
TheraBand). The second part included crossing over five sponge
obstacles (height: 15–20 cm) with eyes closed (two repetitions
in the first three sessions, gradually increasing to two reps
every three sessions); the distance between the obstacles was
variable. In the third part, the participants crossed over a safe
balance beam board (2 m) with eyes closed (two repetitions in
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the first three sessions, gradually increasing to two reps every
three sessions).

In the fourth part, six-vowel stations were placed in a
semicircular arrangement at a 4-m distance in front of the subject
with eyes closed. The subjects were asked to identify the sound
of each station, move toward it, perform the predetermined
exercises for 15 s (e.g., butterfly curls, Hercules curls, knee raises,
hand raises, and biceps curls), and return. There were only two
stations in the first session, which increased by one station every
three sessions to reach a total of six stations. In the last part,
there were four colored lights in front of the participants, each
indicating a predetermined exercise. As long as the light was
on (10–15 s), the subject was required to perform the relevant
exercise (e.g., red light: side-right lunge; blue light: side-left lunge;
green light: backward right lunge; and yellow light: backward
left lunge). This part lasted for 2 min in the first session, which
increased by 1 min every three sessions to reach 5 min by the end.

The exercises changed every three sessions and became
more intense. The workouts were performed individually,
and each individual attended the center at a certain time.
The researcher accompanied the participants throughout the
training. The intensity of training was difficult due to the variety
of exercises. To monitor the workout intensity, heart rate (HR)
was monitored by a smartwatch.

Statistical Methods
Data presented in mean ± standard deviation (SD). The
Statistical Package of Social Sciences (SPSS, IBM, v19) was
used to analyze data. A repeated measure analysis of variance
ANOVA with the time (T1 vs. T2) and protocol (TG vs.
CG) was performed to analyze data. To assess the magnitude
and direction of the linear correlations between the percentage
change of the performance parameters and perceptual indices
(MoCA and GDS), bivariate Pearson’s correlation coefficient (r)
was calculated. Effect size (ES) was also computed as the change
score divided by the SD of the change score to examine the
magnitude of differences while controlling for the influence of
the sample size (Dankel and Loenneke, 2018) with 0.2 considered
as a small ES, 0.5 as a moderate ES and >0.8 as a large ES
(Batterham and Hopkins, 2006). The significance level was set
at p ≤ 0.05 for all statistical analyses. To determine the test-retest
absolute and relative reliability, the coefficient of variation (CV)
and intra-class correlation coefficient (ICC) was calculated.
The ICC was calculated by a two-way single measure absolute
agreement model and the CV was calculated by the formula
(CV = [SD/mean] × 100). The CV for tests was <4.0% and ICC
was >0.98. Figures were prepared in GraphPad Prism (Version
7.03, GraphPad Software).

RESULTS

Cognitive Performance
The statistical analysis indicated there was a significant main
group (between group; F(1,12) = 13.5 p = 0.003, η2

p: 0.53), time
(within group; F(1,12) = 28.1 p = 0.001, η2

p: 0.70), and interaction
effect (group × time; F(1,12) = 40.5 p = 0.001, η2

p: 0.77) for MoCA.
In details, we observed a significant main group (F(1,12) = 7.9

p = 0.016, η2
p: 0.40), time (F(1,12) = 5.0 p = 0.044, η2

p: 0.30), and
interaction effect (F(1,12) = 13.6 p = 0.003, η2

p: 0.53) for attention
and working memory. We found no significant main group effect
for the short-term memory (F(1,12) = 3.2 p = 0.101, η2

p: 0.21),
through a significant time (F(1,12) = 12.9 p = 0.004, η2

p: 0.52)
and interaction effect observed (F(1,12) = 27.0 p = 0.001, η2

p:
0.69). Also, we observed no significant main group (F(1,12) = 0.1
p = 0.991, η2

p: 0.01) for the executive function and visuospatial
power, through a significant time (F(1,12) = 22.8 p = 0.001, η2

p:
0.66) and interaction effect existed (F(1,12) = 38.8 p = 0.001,
η2

p: 0.76). However, for orientation, there were no significant
main group (F(1,12) = 0.6 p = 0.468, η2

p: 0.05), time (F(1,12) = 0.7
p = 0.436, η2

p: 0.05), and interaction effect (F(1,12) = 2.2 p = 0.165,
η2

p: 0.15). In addition, we found no significant main group
(F(1,12) = 4.5 p = 0.055, η2

p: 0.27), time (F(1,12) = 0.23 p = 0.636,
η2

p: 0.02), and interaction effect (F(1,12) = 3.8 p = 0.075, η2
p: 0.24)

for language. Furthermore, there was no significant main group
(F(1,12) = 0.02 p = 0.901, η2

p: 0.01), time (F(1,12) = 3.3 p = 0.096, η2
p:

0.21), and interaction effect (F(1,12) = 1.9 p = 0.190, η2
p: 0.14) for

the abstraction (Figure 2).

Psychological Status
There was no significant main group (F(1,12) = 0.2 p = 0.631, η2

p:
0.02), but a significant main time (F(1,12) = 23.7 p = 0.001, η2

p:
0.66) and interaction effect existed (F(1,12) = 21.2, p = 0.001, η2

p:
0.64) for GDS.

Physical Performance
Descriptive statistics of performance and perceptual parameters
pre- and post-intervention are summarized in Table 1. In overall,
TG compare to CG demonstrated substantial improvements in
all performance indices following a 12-week intervention. We
found a significant main group (F(1,12) = 6.4 p = 0.026, η2

p:
0.35), time (F(1,12) = 40.0 p = 0.001, η2

p: 0.77), and interaction
effect (F(1,12) = 53.7 p = 0.001, η2

p: 0.82) for 6 min walking.
For chair sit and reach, there was no significant main group
(F(1,12) = 0.9 p = 0.342, η2

p: 0.07), though a significant time
(F(1,12) = 87.6 p = 0.001, η2

p: 0.88) and interaction effect existed
(F(1,12) = 135.9 p = 0.001, η2

p: 0.92). Furthermore, following
the 12-week intervention, we found a significant main group
(F(1,12) = 11.2 p = 0.006, η2

p: 0.48), time (F(1,12) = 80.2 p = 0.001, η2
p:

0.87), and interaction effect (F(1,12) = 61.3 p = 0.001, η2
p: 0.84) for

strength of preacher biceps curl. For strength of knee extensions,
there also was a significant main group (F(1,12) = 6.1 p = 0.030,
η2

p: 0.34), time (F(1,12) = 25.1 p = 0.001, η2
p: 0.68), and interaction

effect (F(1,12) = 38.2 p = 0.001, η2
p: 0.76). For strength of handgrip,

there was no significant main group (F(1,12) = 2.3 p = 0.152, η2
p:

0.16), but significant time (F(1,12) = 63.6 p = 0.001, η2
p: 0.84) and

interaction effect observed (F(1,12) = 74.2 p = 0.001, η2
p: 0.86).

For functional indices, we found a significant main group
(F(1,12) = 12.7 p = 0.004, η2

p: 0.52), time (F(1,12) = 90.9 p = 0.001,
η2

p: 0.88), and interaction effect (F(1,12) = 172.1 p = 0.001, η2
p:

0.94) for timed up and go test. In addition, there was a significant
main group (F(1,12) = 29.0 p = 0.001, η2

p: 0.71), time (F(1,12) = 54.6
p = 0.001, η2

p: 0.82), and interaction effect (F(1,12) = 41.1 p = 0.001,
η2

p: 0.77) for chair stand.
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TABLE 1 | Performance and psychological characteristics of participants pre- and post-intervention.

Variable Group Pre Post % change Cohen’s d p

6 min walking (m) TG 177.0 ± 81.5 318.9 ± 85.5 96.9 1.9 0.001
CG 180.0 ± 66.2 174.2 ± 62.9 −2.6 −0.5

Knee extension (kg) TG 10.8 ± 5.6 23.1 ± 10.6 134.6 1.6 0.001
CG 10.7 ± 4.9 10.0 ± 4.5 −4.5 −0.6

Biceps curl (kg) TG 6.4 ± 1.7 10.6 ± 2.5 70.2 2.6 0.001
CG 6.4 ± 1.6 6.1 ± 1.5 −3.1 −0.3

Handgrip (kg) TG 23.1 ± 9.1 31.6 ± 8.9 47.9 2.4 0.001
CG 22.61 ± 8.3 21.3 ± 8.1 −7.1 −1.4

30 s stand-up (N) TG 10.3 ± 3.4 18.5 ± 0.37 94.8 1.9 0.001
CG 9.7 ± 3.1 9.2 ± 2.3 −2.7 −0.5

Timed Up and Go test (s) TG 11.8 ± 2.5 6.4 ± 1.4 −45.6 −3.5 0.001
CG 11.8 ± 2.7 12.4 ± 2.9 5.7 0.8

Chair sit and reach (cm) TG 18.5 ± 8.1 26.9 ± 7.6 54.5 3.9 0.001
CG 19.8 ± 8.1 18.7 ± 7.1 −3.7 −0.5

MoCA TG 18.6 ± 3.5 23.9 ± 2.3 28.4 1.7 0.001
CG 19.0 ± 2.1 17.9 ± 2.2 −3.3 −0.5

GDS TG 5.4 ± 2.9 2.6 ± 1.9 −49.5 −1.4 0.001
CG 4.4 ± 2.5 4.5 ± 2.5 6.8 0.2

Alpha oscillation (%) TG 80.0 ± 5.5 83.2 ± 2.7 4.3 0.7 0.002
CG 78.8 ± 7.7 78.0 ± 7.6 −1.0 −0.6

Beta oscillation (%) TG 3.7 ± 3.1 8.9 ± 3.3 218.3 2.6 0.001
CG 3.1 ± 1.6 3.0 ± 1.1 5.0 −0.2

Theta oscillation (%) TG 16.2 ± 6.5 7.8 ± 3.7 −51.8 −1.9 0.001
CG 18.1 ± 6.9 19.0 ± 7.0 5.9 0.6

TG, training group; CG, control group; MoCA, the montreal cognitive assessment; GDS, geriatric depression scale.

Brain Oscillation
Following 12 weeks of combined training, the percentage of
resting average frequency of brain oscillation in occipital region
in the TG increased significantly by 14.5%; change from alpha
range to beta frequency (11.51 to 13.15 Hz), but there was no
significant change (−1.4%) in control group (11.13 to 10.95 Hz).
Descriptive statistics of the brain oscillation are presented in
Table 1. The results of repeated measure ANOVA showed there
was a significant main group (F(1,12) = 11.4 p = 0.005, η2

p: 0.48),
time (F(1,12) = 63.7 p = 0.001, η2

p: 0.84), and interaction effects
(F(1,12) = 39.7 p = 0.001, η2

p: 0.77) for resting average frequency
of brain oscillation (Figure 3). We found no significant main
group (F(1,12) = 3.2 p = 0.098, η2

p: 0.21) and time (F(1,12) = 3.6
p = 0.080, η2

p: 0.23) effect, though a significant interaction effect
existed (F(1,12) = 6.7 p = 0.024, η2

p: 0.36) for percentage of alpha
oscillation. While for percentage of beta oscillation, a significant
main group (F(1,12) = 19.2 p = 0.001, η2

p: 0.62), time (F(1,12) = 77.2
p = 0.001, η2

p: 0.86), and interaction effect (F(1,12) = 82.1 p = 0.001,
η2

p: 0.87) was observed. For percentage of theta oscillation, there
was a significant main group (F(1,12) = 14.7 p = 0.002, η2

p: 0.55),
time (F(1,12) = 39.5 p = 0.001, η2

p: 0.77), and interaction effect
(F(1,12) = 46.2 p = 0.001, η2

p: 0.79). There was a significant main
group (F(1,12) = 10.5 p = 0.007, η2

p: 0.47), time (F(1,12) = 29.1
p = 0.001, η2

p: 0.71) and interaction effect (F(1,12) = 33.7 p = 0.001,
η2

p: 0.74) for theta/alpha ratio (Figure 3).

Correlations
Table 2 presents the bivariate Pearson’s correlation coefficient
(r) between the percentage change of performance parameters
and MoCA and GDS. In general, there were moderate to large,
positive correlations between MoCA changes and performance

induces. Moderate, negative correlations were found between
changes in GDS and performance indices. Also, MoCA
correlated negatively with the theta/alpha ratio, while GDS
correlated positively.

Exercise Monitoring
The mean (SD) of HR during the intervention period was
presented in Figure 4. The training began at 50% of maximal
HR and reached 70% of maximal HR toward the end of the
intervention. The range of HR was 80–125 beat per minute.

DISCUSSION

This study aimed to evaluate the efficacy of a 12-week of
combined training intervention with visual stimulation on the
frequency of brain oscillation, cognitive status, and physical
performance of patients with AD. The results revealed that
following the intervention, patients in the TG group experienced
significant improvements in cognitive function, particularly
short-term and working memory, attention, and executive
function. We also found significant improvements in the
depression status of the TG group, compared to CG.

Moreover, significant improvements were observed in
the overall physical performance of the participants. These
improvements were paralleled with the reduction of the
theta/alpha ratio, suggesting that the intervention was effective
in involving and activating neurons. Also, moderate to relatively
strong correlations were observed between cognitive and
performance indices. The findings of our study revealed that the
combination of exercise training with mental challenges (such
as closing the eyes, attending to auditory stimuli, and trying to
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FIGURE 2 | The absolute changes in the scores of the Montreal Cognitive Assessment (MoCA) test following the 12-week intervention in both groups. TG, training
group; CG, control group. ∗The significant difference between groups.

control balance by relying on proprioceptive receptors) can be
used to improve the independence of patients with AD.

Cognitive impairments, including memory, speech,
attention, and executive function impairments, are among the
characteristics of AD, which can be measured with the MoCA
test in this population. In our study, after the intervention,
cognitive performance (the MoCA test) improved with a large
effect size (28.4%; η2

p = 1.7). Improvements were observed in
short-term memory, executive function, attention, and working
memory. Also, since closing eyes activate different areas of the
brain, in particular the hippocampus (Ben-Simon et al., 2008),
which plays roles in spatial memory, balance, and concentration
(Rubin et al., 2014), and since our subjects had to close their
eyes during the training protocol, our results might be related
to hippocampal activation. However, we have not demonstrated
this in our study and suggest it for further investigation in
this area. Our results are in agreement with previous research,
supporting the protective effects of physical training on cognitive
function (Burns et al., 2008; Morris et al., 2017).

Although the exact mechanisms of the protective effect of
exercise training on the mental health of AD patients are less
clear, several mechanisms have been proposed, including the
increase of blood supply to the brain, improvement of metabolic
health, production of neurotrophic factors (Gallaway et al., 2017),
increased size of the hippocampus (Erickson et al., 2011), and
increasing gray and white matter volumes in the inferior parietal
cortex and the hippocampus over a long period (Burns et al.,
2008; Voss et al., 2013). These alterations are associated with
memory and cognitive performance, as well as changes in the
power of brain oscillation. In this regard, a previous study
showed that even a 12-week period of aerobic training could
expedite neuroplasticity and promote brain health in sedentary
adults (Chapman et al., 2013); the observed improvements in

brain function were attributed to the increased physical activity
of the participants.

Depression is one of the most common symptoms
and consequences of AD, which exacerbates the negative
consequences of this disease. Research has shown that regular
exercise training in the short-term had obvious effects on
depression management (Craft and Perna, 2004). The results
of the present study also demonstrated the effectiveness of
combined training in reducing depression. Based on the
results, depression was inversely correlated with physical fitness
indices and positively correlated with the theta/alpha ratio.
Several mechanisms can justify the positive effects of exercise
training on depression. Improvement of independence, daily
life activities, and the mood is among the advantages of exercise
training for reducing depression. Also, social interaction between
participants in the TG during the training period was effective in
improving mood and managing depression.

Moreover, exercise-mediated production of
neurotransmitters, such as dopamine, serotonin (Paillard
et al., 2015), and brain-derived neurotrophic factor (Wang and
Holsinger, 2018), contributes to the treatment of depression.
Also, AD-induced high cortisol levels exert neurotoxic effects
on the hippocampus and promote oxidative stress, leading to
depression, neurodegeneration, and cognitive decline (Ouanes
and Popp, 2019). On the other hand, one of the protective
effects of regular exercise is lowering the serum cortisol level
(Corazza et al., 2014). Although these factors were not measured
in this study, the observed improvements can be explained by
these mechanisms.

Researches showed that the changes in the ratio of alpha,
beta, and theta oscillations are the AD markers, so we extracted
the data of these brain oscillations. On the other hand, we
did not consider the gamma and delta oscillations, because the
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FIGURE 3 | (A) Frequency of brain oscillation, (B) theta/alpha ratio in 10 min resting EEG. TG, training group; CG, control group. ∗The significant difference with
pre-test. #The significant difference between groups.

TABLE 2 | Pearson’s correlation coefficient between the variables.

Handgrip Knee Biceps 30 s Timed Up 6 min Chair sit Theta/alpha
extension curl stand-up and Go test walking and reach ratio

MoCA r 0.81 0.78 0.63 0.68 −0.68 0.36 0.74 −0.56
p 0.001 0.001 0.001 0.001 0.001 0.067 0.001 0.003

GDS r −0.50 −0.55 −0.61 −0.203 0.56 −0.57 −0.47 0.62
p 0.010 0.004 0.001 0.319 0.003 0.003 0.016 0.001

delta and gamma oscillations are activated during sleep and
cognitive learning activities, respectively (Abhang et al., 2016).
The resting alpha and beta oscillation indicate relaxed and alert
wakefulness (Abhang et al., 2016), and the theta/alpha ratio is
indicative of cognitive deficits (Fahimi et al., 2017). Decreased
alpha oscillation power has been reported in AD (Hsiao et al.,
2013; Koelewijn et al., 2017), which is associated with an increase
in the theta/alpha ratio. Therefore, the reduction of theta/alpha
ratio in our study suggests that a combined training period with

mental challenges for AD patients activates the mechanisms in
the brain, which improve cognitive processing. This finding is
in line with a previous study, which showed that 10 weeks of
limb exercise significantly increase the alpha and beta oscillation
power in all brain areas of older adults with MCI (Jiang et al.,
2019); however, this study did not report the theta/alpha ratio.

Although the exact mechanisms of change in the brain
oscillation ratio due to exercise training are unknown in
AD, the alpha oscillation power seems to be correlated with
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FIGURE 4 | The heart rate (beat/min) during the training sessions.

higher cerebral blood flow in the brain areas, involved in
attentional modulation (Jann et al., 2010). Alpha oscillations are
generated mainly in the occipital and parietal lobes, as well as
thalamocortical feedback loops, whereas beta oscillations mainly
originate from the frontal and temporal lobes (Abhang et al.,
2016). The eye-closing part of our training protocol forced the
individuals to focus on the auditory and proprioceptive data,
originating from beta and alpha oscillation.

Moreover, the sensory data are distributed in different areas of
the cortex through the thalamus. Therefore, our intervention was
highly effective in activating the brain parts involved in attention.
In contrast, Gutmann et al. (2015) were reported no changes
in alpha oscillation power after 4 weeks of moderate exercise
training. It seems that methodological differences can explain
these contradicting results. The subjects of the latter study were
healthy young men, while the populations of our study were older
AD adults. Overall, the findings demonstrated that 12 weeks of
training combined with mental challenge reduced the theta/alpha
ratio by improving the neurophysiological mechanisms.

AD is associated with the loss of muscle mass and strength,
reduced balance, and reduced cardiovascular fitness, leading
to inability to perform daily activities, loss of independence,
and poor quality of life (Santana-Sosa et al., 2008; Burns
et al., 2010; Lane et al., 2018) therefore, our subjects’ baseline
fitness level was very poor. Our findings showed that 3
months of combined training caused substantial improvements
in the performance indices. Resistance exercises (dumbbells,
TheraBand, and rubbers) led to increased strength and
maintenance of muscle mass, balance exercises (walking on a
beam board) and eyes-closed exercises improved proprioception,
and consecutive exercises led to increased cardiovascular fitness.

Improved balance in the present study is especially important,
as balance and mobility impairments in AD patients are
associated with the risk of falling and reduced quality of life. It is

worth mentioning that the observed improvements after exercise
training are not population-specific, as comparable increments
have been observed in the physical capacity of other populations
after a short-term training program (de Vreede et al., 2005).
Improved fitness components appear to be correlated with the
ability to perform daily tasks and quality of life. This finding
is in line with a previous study, which examined the effects of
exercise training on functional capacity in AD patients (Santana-
Sosa et al., 2008).

Santana-Sosa et al. (2008) demonstrated that a 12-week
combined training program led to significant improvements in
the upper and lower body muscle strength, endurance fitness,
balance, and ability to perform daily activities. Also, moderate-
to-large positive interactions were observed between changes
in physical parameters and cognitive function. Moreover, there
was a strong association between the change of muscle strength
(especially handgrip) and MoCA. This finding was supported by
a previous study, which showed a strong relationship between
muscle atrophy and declined cognitive function (Burns et al.,
2010). Kim et al. (2019) also reported a positive relationship
between the handgrip strength and cognitive function of elderly
Korean adults. Moreover, Burns et al. (2008) reported that
increased cardiorespiratory fitness is associated with reduced
brain atrophy in AD patients. Based on the findings, exercise
training can be an important adjunct to the pharmacological
treatment of AD.

We acknowledge that there are some limitations to this
study. First, the posttest date coincided with the pandemic
of COVID-19 in Iran, and we lost some of our participants.
Second, due to the lack of full-time caregivers, transportation
was difficult, and the workout time was not consistent; however,
all participants completed 24 workout sessions. Third, we did
not have access to quantitative EEG; therefore, we suggest using
structural and functional brain imaging to assess quantitative
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changes in the brain structure and function in the future.
Finally, we did not determine the period when these adaptations
remained constant, which indicates the importance of follow-up
after 3, 6, or even 12 months.

CONCLUSIONS

In conclusion, a 12-week combined training program, including
resistance, balance, and cardiovascular exercises with closed-eyes
stimulation, improved the performance capacity of patients
with AD. Also, this intervention improved brain health and
activated neurophysiological mechanisms, which are associated
with increased cognitive function and decreased theta/alpha
ratio. Moreover, our findings supported the hypothesis that
cognitive functions are correlated with muscle strength-related
physical fitness in patients with AD.
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Alzheimer’s Disease (AD) is a form of dementia that affects the memory, cognition,

and motor skills of patients. Extensive research has been done to develop accessible,

cost-effective, and non-invasive techniques for the automatic detection of AD. Previous

research has shown that speech can be used to distinguish between healthy patients

and afflicted patients. In this paper, the ADReSS dataset, a dataset balanced by

gender and age, was used to automatically classify AD from spontaneous speech.

The performance of five classifiers, as well as a convolutional neural network and long

short-term memory network, was compared when trained on audio features (i-vectors

and x-vectors) and text features (word vectors, BERT embeddings, LIWC features, and

CLAN features). The same audio and text features were used to train five regression

models to predict the Mini-Mental State Examination score for each patient, a score that

has a maximum value of 30. The top-performing classification models were the support

vector machine and random forest classifiers trained on BERT embeddings, which

both achieved an accuracy of 85.4% on the test set. The best-performing regression

model was the gradient boosting regression model trained on BERT embeddings and

CLAN features, which had a root mean squared error of 4.56 on the test set. The

performance on both tasks illustrates the feasibility of using speech to classify AD and

predict neuropsychological scores.

Keywords: Alzheimer’s disease, dementia detection, speech, BERT, i-vectors, x-vectors, word vectors, MMSE

prediction

1. INTRODUCTION

Alzheimer’s Disease (AD) is a progressive, neurodegenerative disease that affects the lives of more
than 5 million Americans every year. The number of Americans living with AD is expected to
be more than double that number by 2050. AD is a deadly and costly disease that has negative
emotional, mental, and physical implications for those afflicted with the disease and their loved
ones (Alzheimer’s Association, 2019).

There is currently no cure for AD (Yadav, 2019) and early detection is imperative for effective
intervention to occur (De Roeck et al., 2019). Currently, AD is diagnosed using PET imaging
and cerebrospinal fluid exams to measure the concentration of amyloid plaques in the brain, a
costly and invasive process (Land and Schaffer, 2020). A more cost-effective, non-invasive and
easily-accessible technique is needed for detecting AD.

Previous research has shown that speech can be used to distinguish between healthy and AD
patients (Pulido et al., 2020). Some researchers have focused on developing new machine learning
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model architectures to improve detection (Chen et al., 2019;
Chien et al., 2019; Liu et al., 2020), while others have used
language models (Guo et al., 2019) to classify AD. Others have
focused on trying to extract acoustic and text features that capture
information indicative of AD. These features include non-verbal
features, such as the length of segments and the amount of silence
(König et al., 2015). Other researchers have used linguistic and
audio features extracted from English speech (Fraser et al., 2016;
Gosztolya et al., 2019), as well as Turkish speech (Khodabakhsh
et al., 2015). Prosodic features have been extracted from English
speech (Ossewaarde et al., 2019; Nagumo et al., 2020; Qiao et al.,
2020) and German speech (Weiner et al., 2016) to classify AD,
and so have paralinguistic acoustic features (Haider et al., 2019).
Other researchers have chosen to focus on the type of speech
data that is used instead of the type of model or type of features
and have used speech from people performing multiple tasks to
improve generalizability (Balagopalan et al., 2018). This provides
a brief summary of the work that has been done in the past few
years. A more extensive review of the background literature can
be found in the review paper of de la Fuente Garcia et al. (2020).

Although promising research has been done, the datasets that
have been used are often imbalanced and vary across studies,
making it difficult to compare the effectiveness of different
modalities. Two recent review papers (Voleti et al., 2019; de la
Fuente Garcia et al., 2020) explain that an important future
direction for the detection of cognitive impairment is providing
a balanced, standardized dataset that will allow researchers to
compare the effectiveness of different classification techniques
and feature extraction methods. This is what the ADReSS
challenge attempted to do. The ADReSS challenge provided
an opportunity for different techniques to be performed on a
balanced dataset that alleviated the common biases associated
with other AD datasets and allowed those techniques to be
directly compared.

Previous work has been done using the ADReSS dataset.
Some researchers only participated in the AD classification task
(Edwards et al., 2020; Pompili et al., 2020; Yuan et al., 2020),
others only participated in the Mini-Mental State Examination
(MMSE) prediction task (Farzana and Parde, 2020), and others
participated in both tasks (Balagopalan et al., 2020; Cummins
et al., 2020; Koo et al., 2020; Luz et al., 2020; Martinc and
Pollak, 2020; Pappagari et al., 2020; Rohanian et al., 2020; Sarawgi
et al., 2020; Searle et al., 2020; Syed et al., 2020). The best
performance on the AD classification task was achieved by Yuan
et al. (2020), who obtained an accuracy of 89.6% on the test set
using linguistic features extracted from the transcripts, as well as
encoded pauses. The best performance on the MMSE prediction
task was achieved by Koo et al. (2020), who obtained a root mean
squared error (RMSE) of 3.747 using a combination of acoustic
and textual features.

In this paper, audio features (i-vectors and x-vectors) and
text features (word vectors, BERT embeddings, LIWC features,
and CLAN features) were extracted from the data and used to
train several classifiers, neural networks, and regression models
to detect AD and predict MMSE scores. I-vectors and x-vectors,
originally intended to be used for speaker verification, have been
shown to be effective for detecting AD (López et al., 2019) and

other neurodegenerative diseases, such as Parkinson’s Disease
(Botelho et al., 2020; Moro-Velazquez et al., 2020). Word vectors
have also been shown to be useful for detecting AD (Hong et al.,
2019). I-vectors, x-vectors, and BERT embeddings have been
used with the ADReSS dataset to classify AD (Pompili et al.,
2020; Yuan et al., 2020) and predict MMSE scores (Balagopalan
et al., 2020). Pompili et al. (2020) used the same audio features
that we used and also used BERT embeddings, but they did not
apply their techniques to theMMSE prediction task and their best
fusion model obtained lower performance on the classification
task than our best model. The difference between our work and
the work of Balagopalan et al. (2020) and Yuan et al. (2020) is that
they finetuned a pre-trained BERT model on the ADReSS data
and used that model for classification and regression, whereas
we used a pre-trained BERT model as a feature extractor and
then trained different classifiers and regressors on the extracted
BERT embeddings.

CLAN features were used in the baseline paper (Luz et al.,
2020) and were combined with BERT embeddings in this paper
to explore whether performance improved. Lastly, LIWC features
have been used to distinguish between AD patients and healthy
controls in the past (Shibata et al., 2016) but the dataset was very
small (nine AD patients and nine healthy controls), and to our
knowledge, literature using LIWC for Alzheimer’s detection is
limited. However, LIWC features have been used to analyze other
aspects of mental health (Tausczik and Pennebaker, 2010) and
may be useful in the field of AD. For these reasons, we wanted
to further explore whether LIWC features could be useful for
AD detection and MMSE prediction. Even though our results
do not out-perform the best performance on the classification
and MMSE prediction tasks, the approaches we employ are
different than previous approaches, which provides additional
insight into which techniques are best for AD classification and
MMSE prediction.

2. MATERIALS AND METHODS

2.1. ADReSS Dataset
The ADReSS challenge dataset consists of audio recordings,
transcripts, and metadata (age, gender, and MMSE score) for
non-AD and AD patients. The dataset is balanced by age, gender,
and number of non-AD vs. AD patients, with there being 78
patients for each class. The audio recordings are of each patient
completing the cookie theft picture description task, where each
participant describes what they see in the cookie theft image. This
task has been used for decades to diagnose and compare AD
and non-AD patients (Cooper, 1990;Mendez and Ashla-Mendez,
1991; Giles et al., 1996; Bschor et al., 2001; Mackenzie et al.,
2007; Choi, 2009; Hernández-Domínguez et al., 2018; Mueller
et al., 2018), as well as patients with other forms of cognitive
impairment, and was originally designed as part of an aphasia
examination (Goodglass and Kaplan, 1983).

Normalized audio chunks were provided for each speaker,
in which a voice activity detection (VAD) system was applied
to each patient’s recording to split it into several chunks. The
VAD system used a log energy threshold value to detect the
sections of the audio that contained speech by ignoring sounds
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TABLE 1 | Age and gender details for patients in the training set, as well as the average MMSE scores, average years of education, and corresponding standard

deviations (sd), for the patients in each age interval.

AD Non-AD

Age interval Male Female MMSE (sd) Educ. (sd) Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 30.0 (n/a) 12.0 (n/a) 1 0 29.0 (n/a) 12.0 (n/a)

[55, 60) 5 4 16.3 (4.9) 12.4 (1.7) 5 4 29.0 (1.3) 15.8 (2.8)

[60, 65) 3 6 18.3 (6.1) 12.5 (2.1) 3 6 29.3 (1.3) 13.1 (2.3)

[65, 70) 6 10 16.9 (5.8) 12.8 (2.0) 6 10 29.1 (0.9) 13.8 (3.1)

[70, 75) 6 8 15.8 (4.5) 10.4 (2.6) 6 8 29.1 (0.8) 14.9 (3.4)

[75, 80) 3 2 17.2 (5.4) 10.6 (2.7) 3 2 28.8 (0.4) 14.2 (3.7)

Full set 24 30 17.0 (5.5) 11.9 (2.4) 24 30 29.1 (1.0) 14.3 (3.1)

TABLE 2 | Age and gender details for patients in the test set, as well as the average MMSE scores, average years of education, and corresponding standard deviations

(sd), for the patients in each age interval.

AD Non-AD

Age interval Male Female MMSE (sd) Educ. (sd) Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 23.0 (n/a) 20.0 (n/a) 1 0 28.0 (n/a) 12.0 (n/a)

[55, 60) 2 2 18.7 (1.0) 12.5 (1.0) 2 2 28.5 (1.2) 13.7 (2.1)

[60, 65) 1 3 14.7 (3.7) 13.2 (2.2) 1 3 28.7 (0.9) 12.2 (0.5)

[65, 70) 3 4 23.2 (4.0) 11.7 (1.9) 3 4 29.4 (0.7) 13.3 (1.4)

[70, 75) 3 3 17.3 (6.9) 12.8 (3.6) 3 3 28.0 (2.4) 13.2 (1.8)

[75, 80) 1 1 21.5 (6.3) 13.0 (1.4) 1 1 30.0 (0.0) 14.0 (2.8)

Full set 11 13 19.5 (5.3) 12.8 (2.7) 11 13 28.8 (1.5) 13.2 (1.6)

below a certain threshold. A 65 dB log energy threshold value
was used, along with a maximum duration of 10 s per chunk.
Volume normalization involves changing the overall volume
of an audio file to reach a certain volume level. There was
some variation in the recording environment for each audio file,
such as microphone placement, which lead to variation in the
volume levels for different recordings. The volume of each chunk
was normalized relative to its largest value to remove as much
variation from the recordings as possible. Each patient had an
average of 25 normalized audio chunks, with a standard deviation
of 13 chunks. The CHAT coding system (MacWhinney, 2014)
was used to create the transcripts.

The ADReSS dataset is a subset of the Pitt corpus (Becker
et al., 1994), which is a dataset that contains 208 patients with
possible and probable AD, 104 healthy patients, and 85 patients
with an unknown diagnosis. The dataset consists of transcripts
and recorded responses from the participants for the cookie theft
picture description task, a word fluency task, and a story recall
task. In order to provide additional in-domain data for training
some of the feature extractors, the cookie theft data for patients
not included in the ADReSS dataset was separated from the Pitt
corpus and used for pre-training. Normalized audio chunks for
this data were created using the steps mentioned above. The
pre-training process is described in greater detail in section 2.2.2.

The age and gender distributions, along with the average
MMSE scores, average years of education, and corresponding
standard deviations, for the training and test sets, can be seen

in Tables 1, 2. Education information was not provided with the
ADReSS dataset. However, the Pitt corpus did have education
information and was cross-referenced with the ADReSS dataset
to determine which patients overlapped and to extract each
patient’s education information. A total of 108 patients (54 non-
AD and 54 AD) were selected from the full dataset to create the
training set, and the remaining 48 patients (24 non-AD and 24
AD) were used for the test set. For both the training and test sets,
an equal number of AD and non-AD patients were included for
each age group and the number of male and female AD and non-
AD patients was the same for each age group. For the training
set, the average MMSE score for the AD patients was 17.0 and
the average MMSE score for the non-AD patients was 29.1. The
average years of education were 11.9 and 14.3 for the AD and
non-AD patients, respectively. For the test set, the AD patients
had an averageMMSE score of 19.5 and the non-AD patients had
an average MMSE score of 28.8. The average years of education
were 12.8 and 13.2 for the AD and non-AD patients, respectively.

2.2. Feature Extraction
2.2.1. Text Features: fastText Word Vectors, BERT

Embeddings, LIWC, and CLAN Features
FastText is an open-source library that is used to classify text
and learn text representations. A fastText model pre-trained
on Common Crawl and Wikipedia was used to extract word
vectors (Grave et al., 2018) from the transcripts of each speaker.
PyLangAcq (Lee et al., 2016), a Python library designed to
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handle CHAT transcripts, was used to extract the sentences from
the CHAT transcript of each participant. A 100-dimensional
word vector was computed for each word in each sentence,
including punctuation. A dimension of 100 was chosen because
this was the value recommended on the fastText website and
100 was compatible with the size of the pre-trained model. The
longest sentence had a total of 47 words. For this reason, every
sentence was padded to a length of 47, resulting in a (47, 100)
representation for each utterance.

Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) models are text classification models
that have achieved state-of-the-art results on a wide variety of
natural language processing tasks and they provide high-level
language representations called embeddings. Embeddings are
vector representations of words or phrases and are useful for
representing language because the embeddings often capture
information that is universal across different tasks. Keras BERT
was used to load an official, pre-trained BERT model and that
model was used to extract embeddings of shape (x,768) for each
utterance in the transcript of each speaker, where x depends on
the length of the input. After embeddings were extracted for
each utterance, the largest embedding had an x value of 60. For
this reason, the remaining embeddings were padded to be the
same shape, resulting in a (60,768) embedding for each utterance.
For both the word vectors and the BERT embeddings, features
were extracted at the utterance level, resulting in a total of 1,492
embeddings in the training set and 590 embeddings in the test set.

Linguistic Inquiry and Word Count (LIWC) (Tausczik
and Pennebaker, 2010) features were also extracted from the
transcripts of each speaker. The LIWC program takes in a
transcript and outputs a 93-dimensional vector consisting of
word counts for different emotional and psychological categories,
such as emotional tone, authenticity, and clout, to name a few.
The Computerized Language Analysis (CLAN) program was
also used to extract linguistic features from the transcripts of
each speaker. The EVAL function was used to extract summary
data, including duration, percentage of word errors, number
of repetitions, etc. This extraction resulted in a 34-dimensional
vector for each speaker. The CLAN features were used as
linguistic features in the baseline paper (Luz et al., 2020). In
this paper, the CLAN features were combined with the BERT
embeddings to explore whether combining the features improved
performance. Both the LIWC and CLAN features were extracted
at the subject-level, resulting in 108 vectors in the training set and
54 vectors in the test set.

2.2.2. Audio Features: I-Vectors and X-Vectors
VoxCeleb 1 and 2 (Nagrani et al., 2017) are datasets consisting
of speech that was extracted from YouTube videos of interviews
with celebrities. I-vector and x-vector systems (Snyder et al.,
2017, 2018) pre-trained on VoxCeleb 1 and 2 were used to extract
i-vectors and x-vectors from the challenge data. The i-vector and
x-vector systems were built using Kaldi (Povey et al., 2011), which
is a toolkit that is used for speech recognition. The pre-trained
VoxCeleb models were also used to train additional extractors
using the original Kaldi recipes. The original VoxCeleb models
were used to initialize the i-vector and x-vector extractors and

then those extractors were trained on the remaining in-domain
Pitt data. I-vector and x-vector extractors were also trained on
only the in-domain Pitt data to explore whether a small amount
of in-domain data is better for performance than a large amount
of out-of-domain data. For each type of extractor, the normalized
audio chunks provided with the challenge dataset were first
resampled with a sampling rate of 16kHz, a single channel, and
16 bits, to match the configuration of the VoxCeleb data. The
Kaldi toolkit was then used to extract the Mel-frequency cepstral
coefficients (MFCCs), compute the voice activation detection
(VAD) decision, and extract the i-vectors and x-vectors. The x-
vectors had a length of 512, while the i-vectors had a length of
400. There were a total of 2,834 i-vectors and 2,834 x-vectors, one
i-vector and x-vector for each normalized audio chunk.

2.3. Experimental Approach
2.3.1. Classifiers
Five classifiers were trained on the text and audio features
explained in sections 2.2.1 and 2.2.2: linear discriminant analysis
(LDA), the decision tree (DT) classifier, the k-nearest neighbors
classifier with the number of neighbors set to 1 (1NN), a support
vector machine (SVM) with a linear kernel and regularization
parameter set to 0.1, and a random forest (RF) classifier. The
classifiers were implemented in Python using the scikit-learn
library. The word vectors and BERT embeddings were averaged
before being used to train the scikit-learn classifiers, resulting
in utterances represented by 100-dimensional vectors and 768-
dimensional vectors, respectively. When the LIWC and CLAN
features were combined with the averaged BERT embeddings,
the subject-level LIWC/CLAN vector was concatenated with
each utterance-level BERT embedding belonging to that subject.
Standard scaling is commonly applied to data before using
machine learning estimators to avoid the poor performance that
is sometimes seen when the features are not normally distributed
(i.e., Gaussian with a mean of 0 and unit variance). Because
we were combining different types of features with different
data distributions, standard scaling was applied to the features
after the LIWC/CLAN vectors were concatenated with the BERT
embeddings so that the data would be normally distributed before
training and testing.

2.3.2. Regressors
Five regression models were also trained on the text and
audio features explained in sections 2.2.1 and 2.2.2 for the
MMSE prediction task: linear regression (LR), decision tree
(DT) regressor, k-nearest neighbor regressor with the number
of neighbors set to 1 (1NN), support vector machine (SVM),
and a gradient-boosting regressor (grad-boost). The regression
models were implemented in Python using the scikit-learn
library. Just as with the classifiers, the word vectors and BERT
embeddings were averaged before being used to train the
scikit-learn regressors. When the LIWC and CLAN features
were combined with the BERT embeddings, the subject-level
LIWC/CLAN vector was concatenated with each utterance-level
BERT embedding belonging to that subject, and after the features
were concatenated, standard scaling was applied.
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2.3.3. Dimensionality Reduction
The classifiers and regressors mentioned in sections 2.3.1
and 2.3.2 were trained with different dimensionality reduction
techniques to see if applying dimensionality reduction improves
performance. Feature sets were created with no dimensionality
reduction, with LDA, and with principal component analysis
(PCA), and each classifier was trained on each feature set to
see what effect dimensionality reduction had on performance.
The dimensionality reduction techniques were applied to all
of the audio and text features. When LDA was applied, the
features were reduced to 1 dimension for the classification
task and 23 dimensions for the regression task. With PCA,
different dimension values were selected manually. The best
results and corresponding dimension values can be seen in the
Results section.

2.3.4. Neural Networks
A bidirectional long short-term memory (LSTM) network and
a convolutional neural network (CNN) were also trained on the
word vectors to see if the neural networks could extract some
temporal information that would lead to better performance
compared to the classifiers mentioned in section 2.3.1. The
topologies of the two networks are shown in Figure 1. The LSTM
model had one bidirectional LSTM layer with eight units, a
dropout rate of 0.2, and a recurrent dropout rate of 0.2. The CNN
model had the following layers: three 2D convolution layers with
32, 64, and 128 filters, respectively, rectified linear unit (ReLu)
activation and a kernel size of 3, one 2D max pooling layer with
a pool size of 3, one dropout layer with a rate of 0.5, and one
2D global max pooling layer. For both models, the output was
passed into a dense layer with sigmoid activation. Both models
were implemented in Python using Keras and were trained with
an Adam optimizer. The CNN was trained with a learning rate of
0.001, and the LSTM was trained with a learning rate of 0.01.

3. RESULTS

3.1. Classification
3.1.1. Cross-Validation
In order to stay consistent with the baseline paper, each of the
classifiers and neural networks were evaluated on the challenge
training set using leave-one-subject-out (LOSO) cross-validation,
where there was no speaker overlap between the training and
test sets for each split. Each model was trained and tested at the
utterance level, where each utterance was classified as belonging
to a patient with or without AD. Then majority vote (MV)
classification was used to assign a label to each speaker based on
the label that was assigned most to the speaker’s utterances.

The MV classification accuracy (the number of correctly
classified speakers divided by the total number of speakers), for
each feature type can be seen in Table 3. The accuracies are
presented as decimals and are rounded to 3 decimal places to
match the form of the accuracies in the baseline paper. For all of
the features, the LDA classifier trained on LDA-reduced features
performed the same as the LDA classifier trained on features with
no dimensionality reduction. Although there was no difference in
performance, results are included for completeness.

The LSTM model trained on word vectors had an average
accuracy of 0.787, while the CNN model had an average
accuracy of 0.704. The highest-performing classifier trained on
text features was the SVM classifier trained on a combination of
BERT embeddings and CLAN features with PCA dimensionality
reduction applied, which had an average accuracy of 0.898. The
highest-performing classifier trained on audio features was the
LDA classifier trained on x-vectors that were extracted using a
system that was pre-trained on VoxCeleb and in-domain Pitt
data. PCA dimensionality reduction was applied and the classifier
had an average accuracy of 0.657.

The highest-performing classifiers for each feature type,
except for the classifiers trained on x-vectors that were extracted
from a system trained on just Pitt data, performed better than the
highest-performing audio and text baseline classifiers that were
evaluated using LOSO on the training set, which had an average
accuracy of 0.565 and 0.768, respectively (Luz et al., 2020).

3.1.2. Held-Out Test Set
The MV classification accuracies on the test set for each of
the classifiers can be seen in Table 4. The highest-performing
text classifiers were the SVM classifier with no dimensionality
reduction and the RF classifier with PCA dimensionality
reduction, both trained on BERT embeddings. Both classifiers
had an average accuracy of 0.854. The highest-performing audio
classifier was the 1NN classifier trained on i-vectors that were
extracted using systems pre-trained on VoxCeleb with PCA
dimensionality reduction applied, which had an average accuracy
of 0.563.

The highest-performing text classifiers outperformed the
baseline text classifier, which was an LDA classifier trained
on CLAN features with an average accuracy of 0.75. The
highest-performing audio classifiers did not outperform the
baseline audio classifier, which was an LDA classifier trained
on ComParE openSMILE features with an average accuracy
of 0.625.

3.2. MMSE Prediction
3.2.1. Cross-Validation
For theMMSE prediction task, one of the speakers in the training
set did not have an MMSE score and was excluded from training.
Each of the regressors was evaluated on the challenge training
set using LOSO cross-validation, where there was no speaker
overlap between the training and test sets for each split. Each
model was trained and tested at the utterance level, where
an MMSE score was predicted for each utterance. Then the
predicted MMSE scores of the utterances belonging to a patient
were averaged to assign one MMSE score to that patient. Lastly,
the RMSE between the predicted and ground truth MMSE scores
was computed.

The average RMSE scores for each feature type can be seen
in Table 5. For all of the features, the LR regressor trained on
LDA-reduced features performed the same as the LR regressor
trained on features with no dimensionality reduction. Although
there was no difference in performance, results are included
for completeness.
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FIGURE 1 | Diagrams of the network topology for the LSTM model (left) and the CNN model (right).

The best-performing regressor trained on text features
was the LR regressor trained on BERT embeddings
combined with LIWC and CLAN features with PCA
dimensionality reduction applied, which had an RMSE
score of 3.774. The best-performing regressor trained on
audio features was the DT regressor trained on x-vectors
that were extracted using a system pre-trained on Pitt. LDA

dimensionality reduction was applied and the RMSE score
was 6.073.

The best-performing text regressors for every feature type,
except for BERT embeddings and word vectors, performed
better than the baseline text regressor that was evaluated using
LOSO on the training set, which had an RMSE score of 4.38.
The best-performing audio regressors for every feature type
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TABLE 3 | LOSO accuracies for each of the classifiers. The best-performing

models for each feature type are red.

Features Dim. Red.

(n_comp)

LDA DT 1NN SVM RF

LIWC

None 0.741 0.593 0.620 0.833 0.778

LDA (1) 0.741 0.750 0.750 0.731 0.750

PCA (20) 0.778 0.620 0.704 0.787 0.759

BERT

None 0.713 0.676 0.787 0.796 0.769

LDA (1) 0.713 0.657 0.667 0.713 0.657

PCA (2) 0.630 0.648 0.602 0.546 0.694

PCA (20) 0.750 0.713 0.722 0.769 0.796

BERT + LIWC

None 0.750 0.657 0.667 0.824 0.806

LDA (1) 0.750 0.731 0.731 0.741 0.731

PCA (20) 0.824 0.620 0.657 0.824 0.796

BERT + CLAN

None 0.778 0.657 0.759 0.824 0.750

LDA (1) 0.778 0.769 0.769 0.787 0.769

PCA (20) 0.824 0.630 0.657 0.898 0.778

BERT + LIWC + CLAN

None 0.593 0.731 0.713 0.815 0.806

LDA (1) 0.593 0.611 0.611 0.593 0.611

PCA (20) 0.833 0.731 0.713 0.815 0.787

word vectors

None 0.759 0.731 0.694 0.259 0.694

LDA (1) 0.759 0.741 0.731 0.759 0.759

PCA (2) 0.676 0.620 0.565 0.259 0.620

PCA (70) 0.796 0.648 0.759 0.796 0.787

i-vectors (VoxCeleb)

None 0.574 0.423 0.454 0.574 0.500

LDA (1) 0.574 0.500 0.500 0.574 0.500

PCA (2) 0.491 0.500 0.602 0.519 0.491

PCA (10) 0.528 0.556 0.546 0.491 0.528

i-vectors (Pitt)

None 0.528 0.491 0.500 0.509 0.593

LDA (1) 0.528 0.537 0.537 0.537 0.537

PCA (2) 0.463 0.500 0.528 0.343 0.546

PCA (20) 0.565 0.537 0.528 0.565 0.565

i-vectors (VoxCeleb + Pitt)

None 0.528 0.509 0.500 0.528 0.556

LDA (1) 0.528 0.519 0.519 0.528 0.519

PCA (20) 0.519 0.528 0.574 0.472 0.620

x-vectors (VoxCeleb)

None 0.583 0.620 0.509 0.546 0.574

LDA (1) 0.583 0.593 0.593 0.583 0.593

PCA (2) 0.472 0.537 0.491 0.454 0.491

PCA (40) 0.639 0.583 0.528 0.639 0.583

x-vectors (Pitt)

None 0.546 0.546 0.472 0.528 0.481

LDA (1) 0.546 0.500 0.500 0.537 0.500

PCA (40) 0.537 0.481 0.435 0.528 0.491

x-vectors (VoxCeleb + Pitt)

None 0.639 0.602 0.519 0.620 0.509

LDA (1) 0.639 0.509 0.509 0.630 0.509

PCA (40) 0.657 0.574 0.546 0.593 0.593

performed better than the baseline audio regressor that was
evaluated using LOSO on the training set, which had an RMSE
score of 7.28.

3.2.2. Held-Out Test Set
The RMSE scores on the test set for each of the regressors can
be seen in Table 6. The best-performing text regressor was the

TABLE 4 | Accuracies for classifiers evaluated on the test set. The test set results

for the best-performing models during cross-validation are red.

Features Dim. Red.

(n_comp)

LDA DT 1NN SVM RF

LIWC

None 0.583 0.708 0.583 0.688 0.812

LDA (1) 0.583 0.583 0.583 0.583 0.583

PCA (20) 0.771 0.646 0.583 0.792 0.667

BERT

None 0.604 0.708 0.771 0.854 0.750

LDA (1) 0.604 0.604 0.646 0.604 0.604

PCA (2) 0.688 0.562 0.542 0.729 0.625

PCA (20) 0.833 0.646 0.750 0.812 0.854

BERT + LIWC

None 0.583 0.667 0.688 0.729 0.812

LDA (1) 0.583 0.583 0.583 0.583 0.583

PCA (20) 0.792 0.708 0.771 0.771 0.792

BERT + CLAN

None 0.729 0.750 0.771 0.812 0.812

LDA (1) 0.729 0.708 0.708 0.708 0.708

PCA (20) 0.729 0.708 0.667 0.771 0.792

BERT + LIWC + CLAN

None 0.625 0.688 0.750 0.750 0.812

LDA (1) 0.625 0.667 0.667 0.625 0.667

PCA (20) 0.812 0.604 0.729 0.812 0.812

word vectors

None 0.813 0.688 0.667 0.500 0.833

LDA (1) 0.813 0.750 0.771 0.813 0.750

PCA (2) 0.729 0.542 0.500 0.500 0.667

PCA (70) 0.812 0.562 0.688 0.500 0.771

i-vectors (VoxCeleb)

None 0.542 0.563 0.521 0.625 0.625

LDA (1) 0.542 0.521 0.521 0.542 0.521

PCA (2) 0.750 0.625 0.563 0.708 0.729

PCA (10) 0.562 0.542 0.438 0.583 0.562

i-vectors (Pitt)

None 0.417 0.521 0.521 0.438 0.542

LDA (1) 0.417 0.542 0.542 0.417 0.542

PCA (2) 0.667 0.583 0.708 0.604 0.646

PCA (20) 0.583 0.542 0.583 0.521 0.479

i-vectors (VoxCeleb + Pitt)

None 0.458 0.521 0.500 0.500 0.563

LDA (1) 0.458 0.542 0.542 0.458 0.542

PCA (20) 0.458 0.563 0.604 0.458 0.479

x-vectors (VoxCeleb)

None 0.604 0.500 0.500 0.563 0.521

LDA (1) 0.604 0.604 0.604 0.604 0.604

PCA (2) 0.625 0.563 0.563 0.625 0.542

PCA (40) 0.479 0.417 0.562 0.458 0.479

x-vectors (Pitt)

None 0.500 0.479 0.417 0.563 0.583

LDA (1) 0.500 0.542 0.542 0.500 0.542

PCA (40) 0.521 0.563 0.521 0.458 0.542

x-vectors (VoxCeleb + Pitt)

None 0.563 0.604 0.479 0.521 0.583

LDA (1) 0.563 0.521 0.521 0.563 0.521

PCA (40) 0.500 0.458 0.646 0.479 0.563

grad-boost regressor trained on BERT embeddings combined
with CLAN features with PCA dimensionality reduction applied,
which had an RMSE score of 4.560. The best-performing audio
regressor was the 1NN regressor trained on i-vectors extracted
using a system pre-trained on VoxCeleb and Pitt with LDA
dimensionality reduction applied, which had an RMSE score
of 5.694.
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TABLE 5 | LOSO RMSE scores for each of the classifiers. The results for the

best-performing models for each feature type are red.

Features Dim. Red.

(n_comp)

LR DT 1NN SVM GradBoost

LIWC

None 10.067 5.766 5.626 6.083 4.014

LDA (23) 8.928 8.738 5.224 6.195 7.654

PCA (20) 4.436 5.383 5.364 6.057 4.640

BERT

None 5.111 5.984 4.953 6.111 5.407

LDA (23) 5.111 6.571 5.805 6.275 6.701

PCA (2) 6.304 5.628 5.851 6.187 6.034

BERT + LIWC

None 9.475 4.956 4.752 5.919 4.050

LDA (23) 8.515 8.038 5.285 6.821 7.234

PCA (20) 4.574 5.228 5.680 5.165 4.509

BERT + CLAN

None 4.810 6.265 4.728 6.009 4.100

LDA (23) 4.810 5.700 4.988 6.173 5.447

PCA (20) 3.991 5.459 4.842 5.254 3.969

BERT + LIWC + CLAN

None 13.877 5.533 4.420 5.846 4.190

LDA (23) 5.243 5.398 5.482 6.477 5.031

PCA (20) 3.774 5.701 5.023 4.966 4.201

word vectors

None 5.294 5.467 5.204 6.146 5.684

LDA (23) 5.294 5.158 4.967 5.936 5.228

PCA (2) 6.359 6.061 5.958 6.148 6.241

PCA (70) 5.419 5.561 4.981 6.177 5.516

i-vectors (VoxCeleb)

None 6.323 6.477 6.612 6.444 6.461

LDA (23) 6.323 6.366 6.384 6.279 6.443

PCA (2) 6.576 6.431 6.361 6.290 6.421

PCA (10) 6.412 6.507 6.524 6.265 6.264

i-vectors (Pitt)

None 6.545 6.850 6.239 6.281 6.513

LDA (23) 6.545 6.524 6.307 6.244 6.499

PCA (2) 6.624 6.606 6.484 6.323 6.598

PCA (20) 6.523 6.575 6.577 6.207 6.511

i-vectors (VoxCeleb + Pitt)

None 6.298 6.363 6.545 6.243 6.445

LDA (23) 6.298 6.399 6.110 6.231 6.459

PCA (20) 6.502 6.558 6.655 6.256 6.475

x-vectors (VoxCeleb)

None 6.424 6.400 6.208 6.400 6.369

LDA (23) 6.424 6.478 6.493 6.162 6.413

PCA (2) 6.618 6.767 6.531 6.381 6.634

PCA (40) 6.246 6.320 6.517 6.329 6.378

x-vectors (Pitt)

None 6.310 6.534 6.445 6.405 6.504

LDA (23) 6.310 6.073 6.403 6.245 6.318

PCA (40) 6.471 6.456 6.181 6.369 6.474

x-vectors (VoxCeleb + Pitt)

None 6.385 6.268 6.394 6.401 6.386

LDA (23) 6.385 6.379 6.230 6.170 6.442

PCA (40) 6.296 6.433 6.411 6.288 6.467

The highest-performing text regressor outperformed the
baseline text regressor, which was a DT regressor trained on
CLAN features with an RMSE score of 5.20. The highest-
performing audio regressor outperformed the baseline audio
regressor, which was a DT regressor trained on Multi-resolution
Cochleagram (MRCG) openSMILE features that had an RMSE
score of 6.14.

TABLE 6 | RMSE scores for classifiers evaluated on the test set. The results for

the best-performing models during cross-validation are red.

Features Dim. Red.

(n_comp)

LR DT 1NN SVM GradBoost

LIWC

None 36.974 7.303 6.403 6.465 4.862

LDA (23) 12.286 9.657 7.388 6.313 8.365

PCA (20) 4.422 5.967 5.990 6.431 4.383

BERT

None 5.365 5.640 4.923 6.169 4.883

LDA (23) 5.365 7.515 6.017 6.253 7.373

PCA (2) 5.661 5.858 6.287 6.067 5.691

BERT + LIWC

None 34.420 7.127 5.021 6.103 5.037

LDA (23) 14.905 8.624 5.742 7.189 6.561

PCA (20) 4.872 7.078 5.159 4.895 4.404

BERT + CLAN

None 4.991 7.218 4.515 6.097 4.901

LDA (23) 4.991 6.523 5.600 6.422 6.660

PCA (20) 4.764 7.577 6.413 5.218 4.560

BERT + LIWC + CLAN

None 15.465 6.112 4.811 6.023 4.724

LDA (23) 8.110 6.500 5.753 6.887 6.021

PCA (20) 4.800 6.196 5.532 4.794 5.087

word vectors

None 4.714 5.280 5.129 6.147 5.361

LDA (23) 4.714 5.111 5.344 6.063 4.955

PCA (2) 5.732 6.452 5.992 6.129 5.803

PCA (70) 4.785 5.700 5.237 6.169 5.271

i-vectors (VoxCeleb)

None 6.600 6.305 6.269 6.161 6.396

LDA (23) 6.600 7.056 6.360 6.461 6.820

PCA (2) 6.194 6.514 6.546 5.999 6.237

PCA (10) 6.335 6.840 6.298 6.110 6.386

i-vectors (Pitt)

None 6.530 6.622 6.758 6.142 6.170

LDA (23) 6.530 6.712 6.133 5.956 6.473

PCA (2) 6.225 6.827 6.370 6.151 6.342

PCA (20) 6.257 6.278 6.110 6.199 6.252

i-vectors (VoxCeleb + Pitt)

None 6.292 6.042 7.391 6.158 6.145

LDA (23) 6.292 6.567 5.694 5.905 6.407

PCA (20) 6.316 6.439 6.607 6.168 6.431

x-vectors (VoxCeleb)

None 6.559 6.665 6.401 6.094 6.309

LDA (23) 6.559 6.289 6.261 6.085 6.312

PCA (2) 6.167 6.669 6.566 6.089 6.164

PCA (40) 6.358 6.058 6.189 6.115 6.160

x-vectors (Pitt)

None 6.428 6.483 6.563 6.287 6.333

LDA (23) 6.428 6.462 6.314 6.097 6.423

PCA (40) 6.424 6.506 6.499 6.322 6.370

x-vectors (VoxCeleb + Pitt)

None 6.644 6.622 6.338 6.096 6.208

LDA (23) 6.644 6.450 6.188 6.059 6.466

PCA (40) 6.173 6.640 6.488 6.123 6.204

3.3. Effects of Education and the Severity
of Cognitive Impairment
In order to explore what effect the severity of cognitive
impairment and education level had on the classification and
MMSE prediction results, the best-performing text and audio
models from both tasks were evaluated on smaller subsets of the
test set that were split based on education level and MMSE score.
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TABLE 7 | Test set accuracies and RMSE scores for different levels of cognitive deficiency and education.

Text Audio

Classification MMSE prediction Classification MMSE prediction

Group (num. patients) SVM RF GradBoost 1NN 1NN

MMSE

Healthy (28) 0.857 0.714 3.234 0.500 4.679

Mild Dementia (8) 0.750 0.750 3.777 0.625 1.801

Moderate Dementia (8) 0.875 0.625 4.563 0.500 6.224

Severe Dementia (4) 1.000 0.500 10.241 0.750 12.323

Education

<12 years (5) 0.800 0.600 7.448 1.000 9.329

12 years (24) 0.792 0.833 4.128 0.458 5.080

>12 years (19) 0.947 0.684 3.885 0.474 5.138

According to the Alzheimer’s Association (2020), an MMSE
score of 20–24 corresponds to mild dementia, 13–20 corresponds
to moderate dementia, and a score <12 is severe dementia.
This information was used to create 4 groups of cognitive
severity: healthy (MMSE score ≥25), mild dementia (MMSE
score of 20–24), moderate dementia (MMSE score of 13–19),
and severe dementia (MMSE score ≤12). The ranges set by the
Alzheimer’s Association were slightly modified to have unique
boundary values.

For education level, the majority of patients had 12 years of
education (likely equivalent to completing high school). Because
the test set is small, we wanted to limit our experiments to a small
number of groups. For the reasons previously mentioned, one
education group was for patients that had 12 years of education,
another group was for patients with <12 years of education, and
the last group included patients that had more than 12 years
of education.

The text and audio models were trained on the full training
set and then evaluated on each MMSE and education group
separately by only testing on patients in the test set that belonged
to a particular group. The classification and MMSE prediction
results can be seen in Table 7. For the MMSE groups, the results
showed that the best classification accuracy achieved using a text
model was 1.000 and that accuracy was achieved when the SVM
classifier was evaluated on patients with severe dementia. The
best RMSE achieved using a text model was 3.234 and that RMSE
was achieved when the GradBoost regressor was evaluated on
healthy patients. For the audio models, the best classification
accuracy was 0.750 and was achieved when the 1NN classifier was
evaluated on patients with severe dementia. The best RMSE was
1.801 and was achieved when the 1NN was evaluated on patients
with mild dementia.

For the education groups, the best classification accuracy
achieved using a text model was 0.947, when the SVM classifier
was evaluated on patients with more than 12 years of education.
The best RMSE was 3.885 and was achieved when the GradBoost
model was evaluated on patients with>12 years of education. For
the audio models, the best classification accuracy is 1.000 and was
achieved when the 1NNwas evaluated on patients with<12 years
of education. The best RMSE was 5.080 and was achieved when
the 1NN was evaluated on patients with 12 years of education.

4. DISCUSSION

The held-out test set results for both tasks show that text
classifiers trained on BERT embeddings and text regressors
trained on BERT embeddings combined with CLAN features
perform better than text classifiers/regressors trained on only
CLAN features (baseline text feature set). The results also show
that audio classifiers trained on x-vectors and i-vectors, extracted
using systems that were pre-trained on VoxCeleb and Pitt data,
do not perform better than audio classifiers trained on ComParE
openSMILE features (baseline audio feature set). However, audio
regressors trained on x-vectors and i-vectors do perform better
than audio regressors trained on MRCG openSMILE features
when (1) the x-vectors are trained on only out-of-domain data
or a combination of in-domain data and out-of-domain data and
(2) when i-vectors are trained on a combination of in-domain
and out-of-domain data.

We also note that we achieved better test set results on
the classification task and equal test set results on the MMSE
prediction task using a pre-trained BERT model as a feature
extractor as opposed to using BERT as a classifier and regressor
as Balagopalan et al. (2020) did. We received classification test set
results equal to the BERT results of Yuan et al. (2020), who also
used a BERT model as a classifier and added encoded pauses to
their training regime. Our results show that BERT embeddings
can be used to achieve the BERT model performance of Yuan
et al. (2020) without using the BERT model itself as a classifier
and without using pause information. However, the results of
Yuan et al. (2020) suggest that we could achieve even greater
performance if we include pause information in our feature set.

4.1. I-Vector and X-Vector Systems
One possible explanation for the poor performance of the i-
vectors and x-vectors on the classification task is the domain-
mismatch between the VoxCeleb datasets and the ADReSS
dataset. While the pre-trained model may have learned some
general representations of speech from the VoxCeleb datasets, it
is possible that the type of representations that the model learned
were not helpful for distinguishing between the speech of AD
and non-AD patients. The VoxCeleb dataset consists of speech
extracted from YouTube videos of celebrities being interviewed.
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While there is variety in the age, race, and accent of the speakers
in the VoxCeleb dataset, which may help improve the ability
of a model to distinguish between speakers that differ in these
qualities, the nature of the recordings (i.e., background noise,
overlapping speech, etc.) varies significantly from the recording
environment of the ADReSS data. There is also less variety in
the types of speakers present in the ADReSS dataset: they are all
within a certain age range and do not seem to have significantly
different accents. Therefore, the benefits of the VoxCeleb datasets
are not likely to help with the AD classification task and
the difference in recording environments likely intensifies the
domain-mismatch problem, leading to lower performance. It is
possible that i-vectors and x-vectors pre-trained on a different
dataset with less of a domain-mismatch would perform better.

The i-vectors extracted from a system that was only trained
on Pitt data did not improve performance on the classification
task compared to the i-vectors extracted from a system that
was trained on VoxCeleb but did improve performance on the
MMSE prediction task. Conversely, the x-vectors extracted from
a system that was only trained on Pitt did improve performance
on the classification task but did not improve performance on
the MMSE prediction task. The i-vector and x-vector extractors
that we pre-trained on a combination of VoxCeleb and Pitt data
led to an improvement in performance on the MMSE prediction
task, compared to the performance for i-vectors and x-vectors
extracted from a system trained on VoxCeleb. The x-vector
performance also improved on the classification task. This shows
that a small amount of in-domain data can improve i-vector
and x-vector performance for the MMSE prediction task. When
choosing between training i-vector and x-vector extractors on
a large amount of out-of-domain data, a small amount of in-
domain data, or a combination of both, the results suggest that
it is best to train on a combination of both.

4.2. Pros and Cons of Linguistic Features
The highest-performing models for both tasks were trained on
linguistic features (BERT embeddings). One benefit of using
linguistic features is that punctuation can be included. This
allows the model to use semantic and syntactical information,
such as how often speakers are asking questions (“?” present
in the transcript). Also, because the BERT model was pre-
trained on BooksCorpus and EnglishWikipedia, the data that the
pre-trained model saw was likely much more general than the
VoxCeleb data and using text data meant that the model did not
face the issue of the recording-environment mismatch.

However, there are some disadvantages associated with
linguistic features. As discussed in the review paper of de la
Fuente Garcia et al. (2020), transcript-free approaches to AD
detection are better for generalizability and for protecting the
privacy of the participants. In order to use linguistic features,
the speech must be transcribed, meaning that linguistic features
are worse for model generalizability and patient privacy. Using
linguistic features depends on the use of automatic speech
recognition (ASR) methods, which often have a low level
of accuracy, or transcription methods, which can be costly
and time-consuming.

Some linguistic features are also content- and language-
dependent. There are linguistic features that are not content-
dependent, such as word frequency measures, but it is difficult
to automate the extraction of content-independent linguistic
features (de la Fuente Garcia et al., 2020). For these reasons, it
is important that future research explore using AD classification
techniques that only require acoustic features.

4.3. Dimensionality Reduction
For the classification task, none of the highest-performingmodels
had LDA dimensionality applied to the feature sets before
training. As previously mentioned, the features were reduced
to one dimension when LDA was applied. The results suggest
that this dimensionality reduction was too extreme for the
classification task and did not allow for enough information to
be retained in the feature set. Conversely, the majority of the
highest-performing classifiers had PCA dimensionality reduction
applied to the feature sets before training. This suggests that
applying PCA dimensionality reduction to the features before
training can be useful for AD classification.

For the MMSE prediction task, the features were reduced to
23 dimensions when LDA was applied. Because the dimension
was larger, LDA was more useful for this task. The best-
performing audio model had LDA dimensionality reduction
applied. PCA dimensionality reduction was also applied for some
of the best-performingmodels, including the top-performing text
model. This suggests that applying LDA and PCA dimensionality
reduction to the features before training can be useful for
MMSE prediction.

4.4. Group Evaluation
The evaluation results for different MMSE and education groups
showed that certain MMSE groups can be classified more
accurately (healthy, moderate dementia, and severe dementia)
while others (mild dementia) are more difficult to classify. This
seems very reasonable, as it is expected that more severe forms
of dementia would be more easily distinguishable from healthy
patients. Also, MMSE scores are predicted least accurately when
evaluated on patients with severe dementia, regardless of the type
of features used (text or audio).

The education results for the best-performing text-based
model showed that patients with more than 12 years of education
can be classified with high accuracy (0.947), while patients with
exactly 12 years (0.792) and <12 years (0.800) of education are
more difficult to classify and are classified with similar accuracy.
The MMSE scores of patients with >12 years of education were
predicted with the most accuracy.

These results provide some insight into which types of features
are best for different levels of dementia and education for
the classification and MMSE prediction tasks. However, it is
important to note that the evaluation set is small, with as little
as four speakers in certain groups (severe dementia). Therefore,
these findings may not translate well to larger datasets.

4.5. Conclusions
In this paper, audio and text-based representations of speech
were extracted from the ADReSS dataset for the AD classification
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and MMSE prediction tasks. Different dimensionality reduction
techniques were applied to the data before training and
testing the classification and regression models to explore
whether applying dimensionality reduction techniques improved
performance on those tasks. LOSO cross-validation was used to
evaluate each of the classifiers and regressors and themodels were
also evaluated on a held-out test set.

The best-performing text models in this paper outperform
the baseline text models on both tasks and the best-performing
audio models outperform the baseline on the MMSE prediction
task. The audio results suggest that, given access to a large
amount of out-of-domain data and a small amount of in-domain
data, it is best to use a combination of both to train i-vector
and x-vector extractors. The comparison of the dimensionality
reduction techniques shows that applying PCA dimensionality
reduction to the features before training a classifier can be
helpful for this particular AD classification task and possibly for
other similar health-related classification tasks. Also, applying
LDA and PCA dimensionality reduction to the features before
training a regressor can be helpful for MMSE prediction tasks.
Lastly, the evaluation results on different MMSE and education
groups show that patients with more severe forms of dementia
(moderate and severe) and healthy patients are easier to classify
than patients with mild dementia, whereas the MMSE scores of
severe dementia patients are the most difficult to predict. Patients
with more than 12 years of education are the easiest to classify
and the MMSE scores of patients with>12 years of education are
the easiest to predict.

For future work, it would be interesting to repeat the
experiments, particularly the evaluation of audio and text
models on MMSE and education groups, on a larger dataset to
see whether the findings translate. Another interesting future
direction would be relating our findings to apathetic symptoms.
Previous research has shown that patients with moderate or

severe forms of AD tend to be apathetic (Lueken et al., 2007).
Signs of apathy include slow speech, long pauses, and changes in
facial expressions (Seidl et al., 2012). These characteristics can be
measured using standardized ratings and we can explore whether
our findings are consistent with the findings related to other
forms of cognitive decline that affect speech.
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This paper uses a discourse task to explore aspects of semantic production in persons

with various degree of cognitive impairment and healthy controls. The purpose of the

study was to test if an in-depth semantic analysis of a cognitive-linguistic challenging

discourse task could differentiate persons with a cognitive decline from those with a

stable cognitive impairment. Both quantitative measures of semantic ability, using tests of

oral lexical retrieval, and qualitative analysis of a narrative were used to detect semantic

difficulties. Besides group comparisons a classification experiment was performed to

investigate if the discourse features could be used to improve classification of the

participants who had a stable cognitive impairment from those who had cognitively

declined. In sum, both types of assessment methods captured difficulties between

the groups, but tests of oral lexical retrieval most successfully differentiated between

the cognitively stable and the cognitively declined group. Discourse features improved

classification accuracy and the best combination of features discriminated between

participants with a stable cognitive impairment and those who had cognitively declined

with an area under the curve (AUC) of 0.93.

Keywords: discourse, mild cognitive impairment, language and aging, machine learning, semantic impairment

INTRODUCTION

Dementia disorders are neurodegenerative diseases that affect millions of people each year, and
the prevalence is still increasing (Scheltens et al., 2016).The most common type of dementia is
Alzheimer’s disease (AD), and despite extensive ongoing research, little is known about the cause.
The development of most dementia disorders is gradual, and cognitive changes are detectable
years, and sometimes decades, before dementia is diagnosed (Reisberg and Gauthier, 2008; Ritchie
et al., 2015). Subjective cognitive impairment (SCI) and mild cognitive impairment (MCI) are two
conditions that have been identified as states preceding dementia (Reisberg and Gauthier, 2008).
MCI is characterized as a condition where cognitive decline is observable in at least one cognitive
domain, but which does not have a significant interference with a person’s daily life (Gauthier et al.,
2006). In SCI, which is a common condition in the aging population and is characterized by mild
cognitive complaints, no objectively observable cognitive decline is seen (Mendonça et al., 2016).
However, previous longitudinal studies report that up to 44% of persons fulfilling the criteria for
MCI may return to normal within a year (Gauthier et al., 2006). It is of clinical importance to
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identify which persons are at risk of cognitive decline and which
are likely to remain cognitively stable. If differences in clinical
profiles exist between the groups, this could be of help for
clinicians diagnosing and planning the care for these groups. At
present, there is no gold standard regarding what tasks to use
to evaluate language function in persons at risk of developing
dementia. However, what is known is that language deficits in
general and specifically semantic difficulties are seen early on
McCullough et al. (2019), andmultiple evaluationmethodsmight
be needed to assess changes in language ability (Taler et al., 2020).

In this study we use a discourse task to explore aspects of
semantic production in persons with various degrees of cognitive
impairment and healthy controls. The purpose is to test if a
semantic analysis of a cognitively and linguistically challenging
discourse task can be used to differentiate persons with a
progressive cognitive decline from those with a stable cognitive
impairment. Both quantitative and qualitative measures of
semantic ability are used for the purpose of answering
this question.

BACKGROUND

Subtle changes in a person’s speech or language use may be
an early sign of cognitive decline. When a more pronounced
cognitive decline, such as dementia, has developed, alterations in
syntax, semantics and pragmatics are often present, whereas in
milder forms of cognitive decline such as in MCI, predominantly
semantic difficulties are seen (see e.g., Taler and Phillips, 2008).
Recent studies have also found discourse related features to
differentiate between persons with early cognitive impairments
and healthy ageing, such as differences in cohesion (Kim et al.,
2019) and global coherence (Mazzon et al., 2019). Substantial
efforts have been made to identify markers that can be used to
predict cognitive decline and that are associated with dementia.
Since language data is relatively easy to collect compared to e.g.,
blood samples and brain imaging, many studies have focused
on finding linguistic signs of early cognitive impairment using
both qualitative and quantitative measures (for a review see e.g.,
Mueller et al., 2016) and exploring data both from language tests
and continuous speech.

Tests of Semantic Ability
In semantic verbal fluency (SVF) tasks a person is asked to
produce as many items as one can from a certain category during
60 s. Although test of verbal fluency tests measure a combination
of various cognitive functions and are commonly used to assess
both verbal ability and executive control (Shao et al., 2014).
SVF are often used for investigating semantic processing and
production. Persons with MCI perform worse than healthy
controls on SVF tasks, and research suggests that semantic
retrieval is impaired (Demetriou and Holtzer, 2017; Linz et al.,
2019). A decline in verbal fluency can in fact be seen very early
as shown in a series of studies investigating late middle-aged
individuals at risk for MCI, where those having “early” MCI had
deficits in verbal fluency (Mueller et al., 2015, 2016; Johnson et al.,
2018). Furthermore, a decline in semantic fluency in participants
at the pre-MCI stage have been seen to predict later progression

to MCI and dementia (Loewenstein et al., 2012). Another aspect
of semantic ability is confrontation naming, often measured
using the Boston Naming Test (BNT; Kaplan and Weintraub,
1983), which consists of 60 images in decreasing order of word
frequency. In a recent meta-analysis, Belleville et al. (2017)
assessed the predictive accuracy of different cognitive domains
and found that in the language domain, confrontational naming
(Ahmed et al., 2008; Eckerström et al., 2013) and SVF (Ahmed
et al., 2008; Gallagher et al., 2010; Venneri et al., 2011) both
yielded high predictive accuracy. Furthermore, numerous studies
have shown a relationship between poor baseline performance
on semantic word fluency and later development of dementia
(Saxton et al., 2004; Auriacombe et al., 2006; Clark et al.,
2009). Naming tests are widely used both clinically and in
research and have been found to predict the speed of cognitive
decline in AD (Carswell, 1999). However, the diagnostic and
prognostic utility of these tests may be limited compared to other
neuropsychological tests (Taler and Phillips, 2008), and they may
not reflect actual ability to communicate and take active part in
conversations (Reppermund et al., 2011). Nevertheless, naming
tests have been found to correlate with lexical retrieval of nouns
in connected speech for persons with aphasia (Herbert et al.,
2008).

Quantitative and Qualitative Analyses of
Semantic Ability in Discourse
Whereas, quantitative ways of assessing language, such as
language tests, have the benefit of being easy to administer
and score, analysis of continuous speech, i.e., discourse, is
assumed to have a higher sensitivity for detecting subtle linguistic
impairments. Analysis of discourse not only allows for a detailed
analysis of lexical, semantic, syntactic, and pragmatic features,
but also for an analysis of temporal patterns of language
production. In previous research, disfluencies (such as pauses,
fillers, and false starts) have been studied as a proxy of word
finding difficulties, i.e., semantic impairment. In a review, Boschi
et al. (2017) conclude that speech in persons with AD is
characterized by low speech rate and numerous hesitations.
Further, Gayraud et al. (2011) showed that silent pauses,
lengthenings, and hesitations are more common in the speech
of persons with AD, but there is no increase in filled pauses,
which can be interpreted as a lack of signaling speech production
difficulties. While pauses may be seen as a symptom of semantic
and lexical impairments, Pistono et al. (2019) suggest that pauses
may indicate different types of difficulties, as they found that
pauses in persons with AD appeared to be predicted by different
cognitive functions, depending on the task, and the function of
pausesmay change as AD progresses (Davis andMaclagan, 2009).
In that sense it should be noted that disfluencies are not solely
indicative of word finding difficulties: individual differences may
be related to verbal intelligence andworkingmemory for example
(Engelhardt et al., 2019). Persons with MCI tend to produce
longer hesitations (Szatloczki et al., 2015), more pauses (Meilán
et al., 2020) and have a lower speech rate (Szatloczki et al.,
2015; Meilán et al., 2020). Although it is often concluded that
disfluencies are early signs of cognitive decline, Mueller et al.
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(2016) found no difference in disfluencies between participants
judged as having preclinical (early) MCI and participants who
were cognitively healthy. However, in a more recent study by
the same group involving more participants they could see that
disfluencies in spoken discourse predicted early MCI status and
that those with early MCI declined faster in measures of speech
fluency than participants who were cognitively stable (Mueller
et al., 2018).

Discourse is affected by semantic impairments, and
researchers have investigated how aspects of spoken or written
discourse are related to cognitive decline. A seminal study in the
field, the Nun study (Snowdon et al., 1996), explored narratives
in the form of autobiographical essays written by nuns joining a
convent. That study, as well as a few other longitudinal studies,
have through a prospective or a retrospective analysis linked
changes in semantic and lexical content to cognitive decline or
development of dementia later in life (Snowdon et al., 1996;
Garrard et al., 2004; Farias et al., 2012). However, most studies
rely on cross-sectional analysis to explore language features
connected to cognitive decline or carry out longitudinal analysis
of persons already diagnosed with some type of impairment.
A review found that fluency, semantic and speech production
outcome measures are most efficient when discriminating
persons with MCI from controls (Filiou et al., 2020). These
measures were also useful in discriminating MCI and mild AD
from controls, whereas syntactic outcome measures were found
to be efficient first at mild-moderate stages of the disease, which
is consistent with previous studies (Kemper et al., 1993; Ahmed
et al., 2013).

Despite the multiple benefits of using a more in-depth
qualitative analysis, this is often discarded in a clinical setting due
to time constraints. Hence, there is a need for assessment tools
for analysis of continuous speech that are easy to use clinically
and that can differentiate between persons with cognitive decline
and normal ageing. A protocol was developed by Harris et al.
(2008), also described in Kiran et al. (2005) and Fleming (2014)
to measure the quality of discourse in a task designed to
place high demands on executive functioning. They have also
developed a protocol for assessing differences in thematic content
and used it to differentiate between persons with MCI and
controls, with the intent to capture changes in communicative
effectiveness. It has been suggested that subtle changes in the
overall communicative effectiveness may be early markers of
communicative decline, and that the thematic analyses are more
efficient and clinically informative than an analysis of linguistic
features when evaluating communicative competence (Harris
et al., 2008). This type of analysis can be viewed as a pragmatic
approach, and includes an analysis of whether the produced
information is relevant to the current topic. The inclusion of
off-topic information indicates a disruption of discourse, and
has been found to have a higher occurrence in discourse of
persons with mild AD (Toledo et al., 2018). A higher occurrence
was found of a similar type of disruption of coherence, called
modalizations, that can be conceptualized as comments or
opinions about the speaker’s performance during the discourse
(Toledo et al., 2018). Whereas the first study using the complex
discourse task called the planning task could discriminate

between the groups with regards to the thematic analysis (Harris
et al., 2008), the more recent study could not (Fleming, 2014).
However, both studies could discriminate persons withMCI from
persons without cognitive impairment on some type of linguistic
analyses, which implies that the task used is complex enough to
be used in early stages of cognitive decline.

The purpose of this study is to explore how semantic
impairments associated with cognitive deterioration manifest
themselves in discourse, and to investigate if measures of
semantic content in discourse can be used to distinguish between
persons with a stable cognitive impairment (referred to as our
cognitively stable group, CS-group), ongoing cognitive decline
(referred to as the cognitively declined group, CD-group), and
healthy controls (HC-group). To be able to test our methods
used to explore semantic production in this type of task, we
first needed to know if our groups differ in term of semantic
ability. Hence, our first research question concerns this query.
Our research questions are:

Does semantic ability (in terms of oral lexical retrieval) as
measured on standardized tests differ between persons with
cognitive impairment who have cognitively declined, persons
with cognitive impairment who are cognitively stable, and a
control group?

Do discourse features, in terms of content and disfluencies,
differ between persons with cognitive impairment who have
cognitively declined, or are cognitively stable in comparisons
with a control group?

Can semantically related discourse features be used to
improve classification accuracy when combined with SVF results
in a machine learning experiment?

Our hypotheses are that:

• semantic ability as measured on standardized tests differ
between persons with cognitive impairment who have
cognitively declined, persons with cognitive impairment who
are cognitively stable, and a control group. We expect the
persons with cognitive impairment who have cognitively
declined to score lower on the tests than the persons with
cognitive impairment who are cognitively stable, and we
expect the control group to score the highest.

• discourse features differ between persons with cognitive
impairment who have cognitively declined, persons with
cognitive impairment who are cognitively stable, and a control
group. We expect the persons with cognitive impairment who
have cognitively declined to perform worse with regards to
discourse features than the persons with cognitive impairment
who are cognitively stable, and we expect the control group to
perform best.

• classification accuracy can be improved by adding discourse
features to SVF results in a machine learning experiment.

METHOD

Participants
The participants in the study consist of 40 persons with cognitive
impairment and 28 healthy controls (HC). The participants
with cognitive impairment were recruited from the Gothenburg
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TABLE 1 | Demographic data.

CD (n = 13)

mean (SD)

CS (n = 27)

mean (SD)

HC (n = 28)

mean (SD)

Comparison

Age 74.9 (3.6) 68.6 (6.8) 69.5 (7.3) p = 0.013*

Education 14.9 (3.9) 14.6 (3.0) 13.3 (3.4) p = 0.085

MMSE (max 30) 25.8 (3.3) 28.8 (1.9) 29.2 (1.0) p ≤ 0.001***

BNT (max 58) 44.3 (11.1) 53.8 (3.1) 52.9 (3.9) p = 0.002**

SVF 17.6 (4.6) 27.0 (6.2) 25.1 (6.2) p ≤ 0.001***

*sig. at p-level 0.05, **sig. at p-level 0.01, ***sig. at p-level 0.001. Note: Two persons

declined testing with BNT resulting in n 12 in the CD-group and n 26 in the CS-group in

this comparison.

MCI study, a longitudinal study investigating dementia disorders
in patients seeking medical care at a memory clinic (Wallin
et al., 2016). Inclusion criteria included age 50–79 years and
Swedish as their first and only language before the age of
5 years. Exclusion criteria were occurrence of other health
conditions that might affect cognitive functioning, such as stroke
or brain tumor, substance abuse, serious psychiatric impairment,
major depression, or neurological disease. Additional reasons for
exclusion were dyslexia and any uncorrected vision or hearing
difficulties. The control group was recruited primarily through
senior citizens’ organizations, using the same exclusion criteria.
They also underwent an assessment to rule out any subjective or
objective cognitive impairment, and were excluded if they had
a Mini Mental State Examination (MMSE; Folstein et al., 1975)
score below 26. An overview of the participants is presented in
Table 1, together with their scores on the MMSE, BNT (Kaplan
and Weintraub, 1983), and SVF.

Data Collection
The data collection was divided into two parts: the
neuropsychological testing and cognitive/functional assessments,
and the language tasks. The cognitive/functional assessment and
the neuropsychological testing was administered at the memory
clinic by a psychologist or a supervised research nurse. All testing
was then assessed by a psychologist (ME). The examination was
performed in two sessions of 1.5–2 h. Neuropsychological testing
and cognitive assessment was carried out before the collection of
language data and again after the language data collection had
been completed.

Participants took part in collection of language data at two
dates ∼18 months apart, and this study is based on data from
the second data collection. The administration of the language
tasks took place in a quiet lab environment at University of
Gothenburg. The participants completed a discourse task, the
SVF as well as some additional tasks not analyzed in the
present study.

The first collection of language data included 91 participants,
of which 55 persons were diagnosed with some type of cognitive
impairment (MCI or SCI) and 36 HC matched for age and
education. At the second collection of language data 21 persons
failed to return for various reasons. Additionally, one person
was excluded due to poor sound quality in the recordings of the

language tasks and HC person was excluded due to an MMSE
score below 26 at the renewed cognitive assessment.

Neuropsychological Testing and
Assessment of Cognitive Status
All participants underwent neuropsychological testing. The
participants with cognitive impairment also underwent
a cognitive/functional assessment to determine the
level of impairment. The tests were selected by clinical
neuropsychologists at the memory clinic based on the tests’
documented ability to predict subsequent dementia (Eckerström
et al., 2013), and with the aim to cover a broad cognitive
spectrum. The level of cognitive impairment was assessed with
the Global Deterioration Scale (GDS-scale; Auer and Reisberg,
1997) based on four instruments: MMSE (Folstein et al., 1975),
Clinical dementia rating (CDR), Stepwise comparative status
analysis (Wallin et al., 1996), and I-FLEX (short version of
Executive interview EXIT; Royall et al., 1992).

The neuropsychological test battery included tests of learning
and memory, language, attention, and executive function. For
learning and memory, Rey Auditory Verbal Learning Test
(Geffen et al., 1994), Rey Complex Figure (Meyers and Meyers,
1995), recalled after 3 and 20min, andWeschler Logical Memory
subtest (Wechsler, 2003) were used. For language, Boston
Naming Test (Kaplan and Weintraub, 1983), verbal fluency for
letters F-A-S (Lezak et al., 2012), similarities subtest from the
Wechsler Adult Intelligence Scale (WAIS; Wechsler, 2003) and
the Token Test, part 5 (De Renzi and Vignolo, 1962) were used.
For attention WAIS Digit Span test, WAIS Digit-Symbol test
(Wechsler, 2003), the Trail-Making Test forms A and B (Reitan
and Wolfson, 1985), for visuo-spatial ability WAIS Block Design
test (Wechsler, 2003), Rey Complex Figure copy, and Silhouettes
subtest from the Visual Object and Space Perception Battery
(Binetti et al., 1996) were used. Finally, for executive function
WAIS Letter-Number sequencing subtest, Parallel Serial Mental
Operations (Lezak et al., 2012), and the Stroop test (Regard, 1981)
were used. All testing was then assessed by a psychologist (ME).

After the second cognitive assessment, the participants
with cognitive impairment were divided into those who had
deteriorated since the first assessment, the cognitive decline
group (CD, n 13) and those who not had deteriorated, the
cognitively stable group (CS, n 27). This categorisation was based
both on the cognitive assessment and the neuropsychological
testing. Six patients converted from mild cognitive impairment
to dementia (i.e., scored GDS 3 at baseline and GDS 4/4+ at
follow-up). Another seven patients declined cognitively during
the study time, based on neuropsychological testing, but did not
fulfill criteria for dementia. When analysing neuropsychological
test scores, the cut-off for “cognitively impaired” was set at 1.5
standard deviations below the normal mean. Patients had to
score below cut-off on at least one out of the nine test variables.
The normal mean scores were calculated based on scores from
cognitively healthy volunteers included in the Gothenburg MCI
study (n = 117), and were controlled for significant differences
based on age and years of education. Cognitive decline was based
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on each patient’s number of test variables in the normal vs non-
normal range (i.e., using the 1.5 standard deviations cut-off).
Cognitive decline was defined as a decline (i.e., changed score
from normal to below-normal range) from baseline to follow-up
in two or more neuropsychological test variables.

Tests of Semantic Ability
The performance on the SVF with the category “animals” (part
of the language data collection) and the BNT (Kaplan and
Weintraub, 1983) (part of the neuropsychological tests) were
used as baselinemeasures of semantic ability. Administration and
scoring was done in accordance with (Tallberg et al., 2008) for
SVF and (Tallberg, 2005) for BNT. Due to inconsistent scoring
on two items in BNT, these two items were excluded resulting in
a maximum of 58 points instead of 60.

Discourse Task
The spontaneous language material analyzed in the present study
consists of a spoken discourse task, which was modeled on the
“Trip to New York” task developed and validated by Kiran et al.
(2005), and described in Harris et al. (2008). For the purposes of
this project, the task was changed to “Trip to Stockholm.” The
participants were asked to describe how they would prepare for
and execute a trip to Stockholm. The instructions were as follows:

Now you are going to do a task where you are asked to think
and plan aloud. Imagine that you are going on a vacation a week
from now. You are traveling to Stockholm for a 2-week stay.
Think about all you will have to do to get ready to go, such as
how you will get there, what you will bring, and what you will do.
I want you to tell me all of your plans until I ask you to stop after
about 5 min.

A few follow-up questions were posed if they had not
mentioned this information in their narratives, such as: Who
will take care of your mail? What will you bring on your trip?
The planning task was designed to elicit connected language,
that required the participant to supply conceptual and semantic
content related to the cognitive-linguistic schema for travel
(Harris et al., 2008). It is further suggested to be complex enough
to reveal subtle changes in persons with brain damage, due to
its demands on executive functions such as initiation, planning,
temporal organization and flexibility, and also semantic, episodic
and working memory processes.

Data Preparation
The recordings were transcribed orthographically by two
certified speech-language pathologists who transcribed
approximately half of the recordings each. The transcribers
were instructed to segment the discourse into sentences. A
clause was defined as having to contain one finite verb, and a
sentence defined as consisting of one or several clauses. Besides
considering the clauses, the segmentation was based on the
speakers’ prosodic markers that could indicate sentence breaks.
For example, falling intonation could indicate the end of an
utterance and thus marked a sentence break. The transcribers
trained together before transcribing the participants’ recordings
to ensure that they interpreted the transcription key correctly.

TABLE 2 | Comparison of basic narrative characteristics for the discourse task

per group.

CD mean

(SD)

CS mean

(SD)

HC mean

(SD)

Comparison

N words 334 (122.9) 439 (201.4) 412 (161.7) p = 0.187

N full sentences 22.4 (7.3) 28.7 (12.5) 29.8 (12.0) p = 0.1

N words per sentences 14.0 (4.3) 14.7 (4.1) 14.1 (5.0) p = 0.653

Total phonation duration 107.1 (36.2) 132.6 (61.8) 117.7 (46.7) p = 0.512

Note: *sig. at p-level 0.05, **sig. at p-level 0.01, ***sig. at p-level 0.001.

Additionally, each recording was checked twice by one of the
transcribers (the first author).

To make the linguistic analysis more efficient, methods from
the field of language technology were used. The transcriptions
were annotated with part-of-speech (POS) tags and each word
was lemmatized using Sparv (Borin et al., 2016). Alignment of the
audio recordings and transcriptions was made using Webmaus
(Kisler et al., 2017), with post-corrections done manually.

Linguistic Analyses of Discourse Task
The discourse task was analysed with regard to themes and
disfluencies, as described in the following sections. Furthermore,
some basic narrative characteristics are presented in Table 2.
Total phonation duration is the total time spent speaking
excluding silent pauses.

Semantic Content

To capture semantic aspects of discourse, we focused on thematic
content and modalizing language. Modalizations are sometimes
referred to as metadiscourse and can be described as remarks
on the content of the story e.g., “yeah I can’t think of anything
else at the moment that I want to do,”1 and/or concerns
about its production (Farias et al., 2012; Toledo et al., 2018)
e.g., “. . . but I always forget what it is called”1 or “no by the
way that’s not correct.”1 The thematic coding was based on
a previously validated protocol (Harris et al., 2008) used in
several studies on the same population (Kiran et al., 2005;
Harris et al., 2008; Fleming, 2014). The coding protocol consists
of 13 defined core elements i.e., different subtopics/themes:
temporal, transportation/ticket, work school/family, money/cost,
clothing/packing, lodging, medication/health, securing/housing,
activities, food, people, identification, and local cost/money.
These were rated 0 if not mentioned, 1 if mentioned briefly,
and 2 if elaborated upon. Verbosity or irrelevant comments
resulted in a deduction: −1 if minimally present and −2 if
significantly present. Minimally present was defined as one
irrelevant comment and significantly present was defined as
several irrelevant comments or a longer segment of irrelevant
information or verbosity. If a theme was mentioned only after
the participant was asked a question about that theme, no
point was given. Besides scoring the texts according to Fleming
(2014), additional analyses of the themes included analysing
the number and proportion of words coded as themes, words

1Examples taken from the data (translated from Swedish).
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coded as modalizations and words coded as unrelated speech
(i.e., irrelevant comments).

Disfluencies

Disfluencies are related to the process of planning and producing
language. Four types of disfluencies were annotated and analyzed:
silent pauses, fillers, false starts, and self-interrupted sentences.
Silent pauses were defined as an interval >120ms within the
discourse that is not filled with speech or other sounds produced
by the speakers, such as coughing or laughing. The 120ms cut-
off was chosen based on the detection threshold for acoustic
silences in speech (Heldner, 2011). Fillers were defined as sounds
that indicate e.g., hesitation or planning but that do not have
lexical content. Examples of fillers include “uh” and “um.” A false
start means that the person has started articulating a word, but
did not complete it; e.g., the persons says “I pa- pack shoes.”1

Self-interrupted sentences are sentences where the person started
producing a sentence but did not complete it; e.g., the person
says “and then you could take some—maybe there is some
sightseeing- e thing with bus or something like that.”1 If several
disfluencies occurred in a row, they were handled as separate
instances. The number of disfluencies present in the speech
of the participants were measured, as well as the duration of
pauses and fillers.

Classification Experiment
To evaluate the usefulness of the extracted features, we
tested whether adding them to the SVF score in a machine
learning model would improve classification of participants as
cognitively stable or cognitively deteriorating. The classification
experiment was implemented in Python and Scikit-learn
(Pedregosa et al., 2011). For the classification experiment,
three common machine learning models used for supervised
classification were used: Support Vector Machines (SVM),
Gaussian NaiveBayes (NB), and Logistic Regression (LR).
Feature selection was performed with SelectKBest, which keeps
the n highest scoring features based on an evaluation with
an ANOVA. Leave-one-out cross-validation was used for all
models. Features were standardized according to the training
set in each fold (except for NaiveBayes, since it is invariant
to feature scaling), and default hyper-parameters were used.
For evaluation, we use area under the receiver operating
characteristics curve (AUC). The AUC is calculated by plotting
sensitivity (true positive rate) against false positive rate (1 –
specificity), as the decision threshold of the classifier is varied.
The area under the resulting curve is the AUC, and the
better the model is at classifying the groups, the higher is the
resulting AUC.

Statistical Methods
Non-parametric tests were chosen as the groups were rather
small, and many of the variables were skewed. Kruskal-Wallis
were used to compare differences between the groups and
Mann-Whitney U-for independent samples were used for post-
hoc analyses. A more stringent significance level was adopted
due to multiple comparisons. After the Bonferroni corrections
the new alpha level was p = 0.01 for the comparisons

of the lexical features (the basic narrative characteristics
presented in Table 2), p = 0.006 for comparisons of thematic
content and modalizations and p = 0.006 for comparisons
of disfluencies. We chose to report both at a significance
level of p = 0.05 and at the Bonferroni-corrected level. Since
there was a significant difference between the groups in age,
where the CD group was significantly older than the other
two groups, age was added as a covariate in a univariate
linear model (ANCOVA) to explore the effect of age. This
was only done when there was a relationship between age
and the tested variable. Since ANCOVA is a parametric test
the dependent variables were logtransformed to meet the
assumption of normality. IBM SPSS Statistics version 25 and
26, and R version 3.6.1 (R Core Team, 2019) were used as
computational tools.

Ethical Considerations
The present study is covered by the ethical approval (reference
number: 206–16, 2016; T021-18) issued by the regional ethical
review board in Gothenburg for a larger project. The participants
were informed that they could withdraw their participation at any
time. All data was coded and made anonymous.

RESULTS

Tests of Semantic Ability
There were significant differences between the groups on both
BNT and SVF, see Table 1. Post-hoc analyses revealed that the
CD group had a significantly lower result than the other two
groups on both tests. An ANCOVA was performed to explore
the effect of age on the results. Both comparisons were still
significant after adjusting for age: BNT F(2,62) = 7.48, p = 0.002,
SVF F(2,64) = 8.21, p= 0.001.

Analysis of Discourse Task
Basic narrative characteristics of the discourse task are provided
for groups in Table 2. The groups did not differ significantly
on the number of words and sentences produced or on total
phonation duration.

Semantic Content
The difference between the groups in the thematic content score
was borderline significant (see Table 3 for an overview of all
comparisons related to the thematic analysis) A post-hoc analysis
revealed a difference between the CD group and HC group (U=

99.5, p= 0.019), but not between the CD group and the CS group
(U = 116, p = 0.08). Since the thematic content score correlated
with age, an ANCOVA was performed with the CD group and
the controls added as independent variables, to evaluate the effect
of age. Age had a significant effect whereas no effect was seen
on the group variable [F(1,38) = 2.20; p = 0.15], suggesting that
age and not group explained the difference in thematic content
score in this comparison. The number of words in themes were
significantly different between the groups (at level p < 0.05), but
not in the comparison of the proportion of words in themes,
indicating that when adjusting for the total number of words in
each narrative the proportion of how much they talked about
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TABLE 3 | Comparisons of thematic content and modalizations.

CD mean

(SD)

CS mean

(SD)

HC mean

(SD)

Comparison

Thematic content score 8.2 (2.5) 9.8 (2.8) 10.6 (2.9) p = 0.052

Words in themes (n) 192.8

(103.6)

179.3 (34.5) 290.1

(134.8)

p = 0.046*

Words in themes (%) 76.4 (23.0) 87.6 (12.8) 89.4 (10.4) p = 0.156

Modalizations (n) 0.8 (0.6) 1.0 (0.9) 1.1 (0.9) p = 0.642

Modalizations (n of words) 6.6 (8.2) 11.0 (13.2) 11.4 (14.1) p = 0.343

Modalizations (%) 3.1 (4.2) 3.9 (5.6) 4.1 (4.1) p = 0.501

Unrelated speech (n) 0.46 (0.66) 0.07 (0.39) 0.18 (0.61) p = 0.013*

Unrelated speech (n of

words)

30.3 (46.3) 1.6 (8.5) 9.9 (32.9) p = 0.009*

Unrelated speech (%) 13.0 (23.3) 0.4 (2.2) 2.0 (6.7) p = 0.006*

Note: *sig. at p-level 0.05, **sig. at p-level 0.01, ***sig. at p-level 0.001. Bold type numbers

are significant at the Bonferroni corrected alpha level p ≤ 0.006.

TABLE 4 | Analysis of disfluency features.

CD mean

(SD)

CS mean

(SD)

HC mean

(SD)

Comparison

Silent pauses per 100

words

18.8 (7.7) 14.8 (3.0) 12.5 (3.5) p = 0.01**

Fillers per 100 words 2.6 (1.6) 3.9 (2.3) 3.1 (2.0) p = 0.203

False starts per 100 words 0.54 (1.6) 0.70 (0.70) 1.0 (1.1) p = 0.220

Self-interrupted sentences

per total sentences

0.18 (0.12) 0.17 (0.10) 0.14 (0.10) p = 0.294

Disfluencies per 100 words 23.1 (8.3) 20.5 (3.9) 17.7 (5.1) p = 0.017*

Mean pause length

(>120ms)

0.78 (0.21) 0.74 (0.18) 0.71 (0.30) p = 0.138

Maximum pause length

(>120ms)

3.5 (1.7) 3.0 (1.5) 2.4 (1.3) p = 0.007**

Mean filler length 0.45 (0.16) 0.50 (0.15) 0.43 (0.1) p = 0.151

Note: *sig. at p-level 0.05, **sig. at p-level 0.01, ***sig. at p-level 0.001. Bold type numbers

are significant at the Bonferroni corrected alpha level p ≤ 0.006.

the trip planning was similar. None of the features measuring
modalizing speech differed between the groups. Unrelated speech
was used rarely, less than once per participant (CD M = 0.46,
CD M = 0.07, and HC M = 0.18), but most often for the CD
group. A post-hoc analysis revealed that the CD group produced
a higher proportion of unrelated speech than the CS group (U
= 112, p = 0.003), and the HC group (U = 129, p = 0.032).
Only the difference in proportion of unrelated speech survived
the Bonferroni corrected p-level.

Disfluencies
Disfluencies in the narratives of the participants were analyzed,
and results (see Table 4) showed that the groups differ
significantly with regard to the number of pauses used
(normalized by number of words), themaximum length of pauses
and on the total number of disfluencies, i.e., silent pauses, fillers,
false starts and self-interruptions, used (normalized by number
of words). However, none of the significant results survived a
Bonferroni correction.

TABLE 5 | Area under the curve results for the 3 machine learning algorithms with

different combinations of features.

SVM LR NB

SVF 0.86 0.82 0.78

SVF + lexical features 0.86 0.89 0.87

SVF + semantic features 0.87 0.89 0.87

SVF + disfluency features 0.93 0.91 0.90

SVF + all features 0.87 0.89 0.87

The boldfaced number indicates the best result. SVF, semantic verbal fluency; SVM,

Support Vector Machines; LR, Logistic Regression; NB, Gaussian NaiveBayes.

Post-hoc analyses show that persons with cognitive decline and
persons who were cognitively impaired but stable did not differ
from each other with regard to any of the significant disfluency
measures. However, both groups differed significantly from the
healthy controls.

Classification Experiment
We evaluated the predictive accuracy of different collections of
features by using them in a machine learning model. Since we
in this experiment were interested in separating the CS-group
from the CD-group) only features from these two groups were
applied in the model. The results are presented in Table 5. As a
baseline, we trained the model using only the results from the
SVF, as impairments on the SVF have been found to be predictive
of dementia (Taler and Phillips, 2008; Belleville et al., 2017). Using
only this feature, we achieved a best result of AUC = 0.86 with
SVM. We then added the lexical content features, the semantic
features and the fluency features separately to the SVF results,
and found that this led to improved results, except when training
on the SVF and the lexical features and using the SVM classifier,
which gave the same AUC as only training on the SVF. Finally, we
trained a model using all features combined. The features found
most useful were a combination of SVF results and the disfluency
features, and training on this data gave the best results for all three
classifiers, with the SVM achieving the highest AUC result of 0.93.

DISCUSSION

The present study aimed to investigate semantic aspects of
discourse produced by persons who declined cognitively, were
cognitively impaired but stable, and healthy controls. To further
capture their semantic production, quantitative measures of
semantic ability were assessed with tests of oral lexical retrieval.
These methods were used in order to explore which measures
that best could discriminate between the groups. In sum, both
types of assessment methods captured differences between the
groups, but the tests of oral lexical retrieval most successfully
differentiated between the cognitively stable and the cognitively
declined group. This supports previous research which has
shown that especially the SVF is a robust predictor of cognitive
decline (Taler and Phillips, 2008; Belleville et al., 2017).

To explore semantic aspects of discourse we used a thematic
analysis of content (including modalizations and unrelated
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speech) and an analysis of disfluencies. The elicitation task and
the analysis of thematic content were based on the same protocol
as Harris et al. (2008) and Fleming (2014). When comparing our
CD group with the participants with MCI in Harris et al. (2008)
and Fleming (2014), our results are similar to those of Harris et al.
(2008) who found that persons with MCI provided less thematic
information than the older healthy controls included in the study,
and had more irrelevant comments and verbosity. The presence
of content not related to the subject or modalizing speech have
been found in previous studies investigating discourse in persons
with MCI and mild AD (Duong et al., 2003; Drummond et al.,
2015; Pistono et al., 2018; Toledo et al., 2018), and is proposed
to be related to problems in the semantic-pragmatic component
of the language (Drummond et al., 2015). It is further suggested
to be a pragmatic ability in AD patients to be able to comment
on their communicative production and that it should be viewed
as a communicative strength (Duong et al., 2003, Pistono et al.,
2018). Why differences in modalizations are not seen in the
present study is not clear, but could perhaps be explained by
that the use of a more free discourse task did not evoke as many
modalizations as picture based task would do. Another possible
explanation could be that the present participants’ difficulties
were too subtle to reveal a difference in modalizing language
as seen in previous studies. The proportion of unrelated speech
was the only measure that could differentiate between the group
who had cognitively declined and the cognitively stable, however,
there was a very low occurrence of unrelated speech. The
analysis of disfluencies revealed the largest differences between
the groups, and we found that the healthy controls tended to
use fewer silent pauses, shorter maximum pause lengths and
fewer disfluencies in total compared to the cognitively impaired
groups. This result is in line with previous research showing that
disfluencies are more common in discourse produced by persons
with earlyMCI (Mueller et al., 2018) and in persons with a clinical
diagnosis of MCI (Fleming, 2014; Szatloczki et al., 2015; Meilán
et al., 2020).

The last research question concerned if the discourse features
could improve classification accuracy when combined with SVF
results in a machine learning experiment. Our focus here was
distinguishing between persons who are cognitively impaired
and showing progressive decline, as opposed to persons with
stable cognitive impairment. The best classification results were
attained by combining the SVF results with the disfluency
features, which had a higher AUC (0.93 using Support Vector
Machines) than using only SVF. Based on this, we draw the
conclusion that the analysis of disfluencies in connected speech
provide complementary information to the results on the SVF,
possibly because disfluency features do not solely depend on
semantic aspects of language but also executive functions which
are known to be impaired in MCI (Gauthier et al., 2006).

The task used in the present study was designed to be
more cognitively-linguistic challenging, and was added for the
second data collections, since previous experiences from using
the cookie theft picture as elicitation, suggested that a more
challenging task was needed (Lundholm et al., 2018). The
planning task was developed by Kiran et al. (2005) with the
intent to stimulate connected language instead of more list-like

labeling which sometimes can be the case in picture descriptions,
and be sensitive to differences in discourse production. Previous
studies suggest that task complexity is important when assessing
mild impairments as in the case of early AD (Forbes et al.,
2002). However, to our knowledge no study has compared the
planning task to another type of task, so we can only rely on
theoretical assumptions and previous studies concerning the
tasks suitability. The thematic analysis was based on the protocol
developed by Harris et al. (2008) and consisted of a scoring
system where points were given if a certain core element was
mentioned. The benefits of this scoring protocol are that it is
relatively easy and quick to analyse. A critique might be that it
is a bit crude. For that reason, we also chose to analyse howmuch
the participants talked about things related to the themes (or not
related to the themes), and how fluently they talked. This seems
to complement the scoring, but would be quite cumbersome
to implement in the clinic. For at least some of these findings,
such as the importance of temporal analysis (disfluencies), they
might be implemented in other tasks such as measuring latencies
in BNT, or temporally resolved measures on the SVF (Linz
et al., 2019). Another adjustment in the present study was the
addition of follow-up questions which were posed if certain
elements of the trip were not mentioned. Since the information
following these questions were prompted and not mentioned
spontaneously, we decided to disregard this information in the
scoring. This departure from the original protocol means that our
results are not completely comparable to previous studies, and
we suggest excluding follow-up questions in future studies if the
main outcome measure is the score of thematic content.

A drawback of this type of discourse task when used in the
clinic is that it requires manual transcription. In some languages
it might be possible to use automatic speech recognition, but
for Swedish we did not judge the currently available speech
recognition alternatives good enough for this purpose. To avoid
manual transcription, the test persons can be asked to describe
their trip in writing instead, which may be tested in future
studies. In the present study, we used methods from language
technology and computational linguistics in order to automate
some of the analysis and to test if the discourse measures
could improve the classification. Studies mixing manual and
automated methods seems to be more and more common in
this field and can hopefully complement each other (Boschi
et al., 2017). Although most studies use manual transcription
and segmentation, annotation with part-of-speech taggers and
linguistic analyses with for example parsers are often used to
make the analysis more efficient and consistent.

A question raised when using this discourse task may be
that, if the tests of lexical retrieval were better at discriminating
between the groups, then why not use them instead of a discourse
task. However, a task that assesses functional language has a
higher ecological validity than a psychometric language test
(Bastiaanse and Prins, 2004), and can be more challenging,
thus more suitable for subtle impairments. Related to that,
Drummond et al. (2015) argued that it is often in narrative
discourse elderly persons with cognitive deterioration first
experience language problems that they perceive as related to
impaired memory, such as repetitions or information gaps in
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their narratives. Furthermore, since tests such as naming and
SVF do not address such discourse, deficits occurring in narrative
discourse may go undetected. On the contrary, it is also possible
that persons withmild difficulties are able to compensate for their
problems with lexical retrieval, seen in naming or SVF tests, in a
discourse task. However, even if mild word retrieval difficulties
do not always lead to anomia, it might lead to an increase in
pauses and other types of disfluencies, which was also the case
in our data.

One limitation in the present study was the rather small
sample, especially in the group with persons who declined
cognitively. At the start of the longitudinal project that this study
is a part of, participants with either SCI or MCI were included,
but due to dropouts the groups ended up rather small at the
second point of data collection. The sample size may explain why
so few of the comparisons survived Bonferroni adjustments, even
though there was a difference in rank seen at alpha level 0.05.

We chose to categorize the participants with a cognitive
impairment, according to if they had declined or not from
the time when they were included in the project in order to
explore which aspects are related to cognitive deterioration.
A consequence of this categorisation was that the group with
persons who had cognitively declined had a higher age than
the persons who were stable and the controls. Since the
risk of cognitive impairment increases with age (Unverzagt
et al., 2001), it is not surprising that our groups have these
demographic characteristics. However, we decided to adjust
the comparisons for this factor in those comparisons were
there was a relationship between the dependent variable
and age. In the case of BNT and SVF, the difference
in results were still significant, but not for the difference
in thematic content score seen between the CD group
and controls.

In sum, the tasks complement each other where the
standardized tests provide easy administration and analysis while
the planning task offers a more ecologically valid evaluation
of spoken language. The tests will indicate which words the
persons struggle to find, whereas a discourse task may also
reveal what strategies the persons use when experiencing word
finding difficulties, and how they are able to compensate. With
a larger number of participants, differences between the groups

in the discourse task may become more distinct, but differences
in communicative efficacy (thematic content score) and fluency
seems the most promising variables for future work.

Although the project that this study is a part of is longitudinal,
data on the planning task is only available from the second data
collection, since it was included later in order to add tasks with
a higher complexity. Longitudinal data on this task is needed in
order to find out if discourse features such as the ones used in the
present study really are useful predictors of cognitive decline.
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Pauses for Detection of Alzheimer’s
Disease
Jiahong Yuan1*, Xingyu Cai1, Yuchen Bian1, Zheng Ye2 and Kenneth Church1

1Baidu Research, Sunnyvale, CA, United States, 2Institute of Neuroscience, Key Laboratory of Primate Neurobiology, Center for
Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China

Pauses, disfluencies and language problems in Alzheimer’s disease can be naturally
modeled by fine-tuning Transformer-based pre-trained language models such as BERT
and ERNIE. Using this method with pause-encoded transcripts, we achieved 89.6%
accuracy on the test set of the ADReSS (Alzheimer’s Dementia Recognition through
Spontaneous Speech) Challenge. The best accuracy was obtained with ERNIE, plus an
encoding of pauses. Robustness is a challenge for large models and small training sets.
Ensemble over many runs of BERT/ERNIE fine-tuning reduced variance and improved
accuracy. We found that um was used much less frequently in Alzheimer’s speech,
compared to uh. We discussed this interesting finding from linguistic and cognitive
perspectives.

Keywords: Alzheiemer’s disease, pause, BERT, ERNIE, ensemble

1 INTRODUCTION

Alzheimer’s disease (AD) involves a progressive degeneration of brain cells that is irreversible
(Mattson, 2004). One of the first signs of the disease is deterioration in language and speech
production (Mueller et al., 2017). It is desirable to use language and speech for AD detection (Laske
et al., 2015). In this paper, we investigate the use of pauses in speech (both unfilled and filled pauses
such as “uh” and “um”) for this task.

1.1 Pauses
Unfilled pauses play an important role in speech. The occurrence of pauses is subject to physiological,
linguistic, and cognitive constraints (Goldman-Eisler, 1961; Rochester, 1973; Butcher, 1981; Zellner,
1994; Clark, 2006; Ramanarayanan et al., 2013; Hawthorne and Gerken, 2014). How different
constraints interact in pause production has been an active research subject for decades. In normal
speech, the likelihood of pause occurrence and the duration of pauses are correlated with syntactic
and prosodic structure (Brown and Miron, 1971; Grosjean et al., 1971; Krivokapic, 2007). For
example, if a sentence has a syntactically complex subject and a syntactically complex object, speakers
tend to pause at the subject-verb phrase boundary, and pause duration increases with upcoming
complexity (Ferreira, 1991). It has been demonstrated that pauses in speech are used by listeners in
sentence parsing (Schepman and Rodway, 2000), and the pause information can benefit automatic
parsing (Tran et al., 2018).

Atypical pausing is characteristic of disordered speech such as in Alzheimer’s disease, and pauses
are often used to measure language and speech problems (Ramig et al., 1995; Yuan et al., 2016; Shea
and Leonard, 2019). The difference between typical and atypical pauses is not only on their frequency
and duration, but also on where they occur. In this study, we propose a method to encode pauses in
transcripts in order to capture the associations between pauses and words through fine-tuning pre-
trained language models such as BERT [19] and ERNIE [20], which we describe in Section 1.2.
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The use of filled pauses may also be different between AD and
normal speech. English has two common filled pauses, uh and
um. There is a debate in the literature as to whether uh and um are
intentionally produced by speakers (Clark and Fox Tree, 2002;
Corley and Stewart, 2008). From sociolinguistic point of view,
women and younger people tend to use more um vs. uh than men
and older people (Tottie, 2011; Wieling et al., 2016). It has also
been reported that autistic children use um less frequently than
normal children (Gorman et al., 2016; Irvine et al., 2016), and that
um occurs less frequently and is shorter during lying compared to
truth-telling (Arciuli et al., 2010).

1.2 Pre-trained LMs and Self-Attention
Modern pre-trained language models such as BERT (Devlin et al.,
2018) and ERNIE (Sun et al., 2019) were trained on extremely
large corpora. These models appear to capture a wide range of
linguistic facts including lexical knowledge, phonology, syntax,
semantics and pragmatics. Recent literature is reporting
considerable success on a variety of benchmark tasks with
BERT and BERT-like models.1 We expect that the language
characteristics of AD can also be captured by the pre-trained
language models when fine-tuned to the task of AD classification.

BERT and BERT-like models are based on the Transformer
architecture (Vaswani et al., 2017). These models use self-
attention to capture associations among words. Each attention
head operates on the elements in a sequence (e.g., words in the
transcript for a subject), and computes a new sequence of the
weighed sum of (transformed) input elements. There are various
versions of BERT and ERNIE. There is a base model with 12
layers and 12 attention heads for each layer, as well as a larger
model with 24 layers and 16 attention heads for each layer.
Conceptually the self-attention mechanism can naturally model
many language problems in AD, including repetitions of words
and phrases, use of particular words (and classes of words), as well
as pauses. By inserting pauses in word transcripts, we enable
BERT-like models to learn the language problems involving
pauses.

Previous studies have found that when fine-tuning BERT for
downstream tasks with a small data set, the model has a high
variance in performance. Even with the same hyperparameter
values, distinct random seeds can lead to substantially different
results. Dodge et al. (2020) conducted a large-scale study on this
issue. They fine-tuned BERT hundreds of times while varying
only the random seeds, and found that the best-found model
significantly outperformed previous reported results using the
same model. In this situation, using just one final model for
prediction is risky given the variance in performance during
training. We propose an ensemble method to address this
concern.

1.3 Automatic Detection of AD
There is a considerable literature on AD detection from
continuous speech (Filiou et al., 2019; Pulido et al., 2020).
This literature considers a wide variety of features and

machine learning techniques. Fraser et al. (2016) used 370
acoustic and linguistic features to train logistic regression
models for classifying AD and normal speech. Gosztolya et al.
(2019) found that acoustic and linguistic features were about
equally effective for AD classification, but the combination of the
two performed better than either by itself. Neural networkmodels
such as Convolutional Neural Networks and Long Short-Term
Memory (LSTM) have also been employed for the task (de Ipiña
et al., 2017; Fritsch et al., 2019; Palo and Parde, 2019), and very
promising results have been reported. However, it is difficult to
compare these different approaches, because of the lack of
standardized training and test data sets. The ADReSS
challenge of INTERSPEECH 2020 is “to define a shared task
through which different approaches to AD detection, based on
spontaneous speech, could be compared” (Luz et al., 2020). This
paper stems from our effort for the shared task.

2 DATA AND ANALYSIS

2.1 Data
The data consists of speech recordings and transcripts of
descriptions of the Cookie Theft picture from the Boston
Diagnostic Aphasia Exam (Goodglass et al., 2001). Transcripts
were annotated using the CHAT coding system (MacWhinney,
2000). We only used word transcripts, the morphological and
syntactic annotations in the transcripts were not used in our
experiments.

The training set contains 108 speakers, and the test set
contains 48 speakers. In each data set, half of the speakers are
people with AD and half are non-AD (healthy control subjects).
Both data sets were provided by the challenge. The organizers also
provided speech segments extracted from the recordings using a
simple voice detection algorithm, but no transcripts were
available for the speech segments. We didn’t use these speech
segments. Our experiments were based on the entire recordings
and transcripts.

2.2 Processing Transcripts and Forced
Alignment
The transcripts in the data sets were annotated in the CHAT
format, which can be conveniently created and analyzed using
CLAN (MacWhinney, 2000). For example: “the [x 3] bench [:
stool]”. In this example, [x 3] indicates that the word “the” was
repeated three times [: stool] indicates that the preceding word,
“bench” (which was actually produced), refers to stool. Details of
the transcription format can be found in (MacWhinney, 2000).

For the purpose of forced alignment and fine tuning, we
converted the transcripts into words and tokens that represent
what were actually produced in speech. “w [x n]”were replaced by
repetitions of w for n times, punctuation marks and various
comments annotated between “[]” were removed. Symbols such
as (.), (..), (. . .), < , > , / and xxx were also removed.

The processed transcripts were forced aligned with speech
recordings using the Penn Phonetics Lab Forced Aligner (Yuan
and Liberman, 2008). The aligner used a special model “sp” to1
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identify between-word pauses. After forced alignment, the speech
segments that belong to the interviewer were excluded. The
pauses at the beginning and the end of the recordings were
also excluded. Only the subjects’ speech, including pauses in turn-
taking between the interviewer and the subject, were used.

2.3 Word Frequency and Uh/Um
From the training data set, we calculated word frequencies for the
Control and AD groups respectively. Words that appear 10 or
more times in both groups are shown in the word clouds in
Figure 1. The following words are at least two times more
frequent in AD than in Control: oh (4.33), � laughs (laughter,
3.18), down (2.66), well (2.42), some (2.2), what (2.16), fall (2.15).
And the words that are at least two times more frequent in
Control than in AD are: window (4.4), are (3.83), has (3.0),
reaching (2.8), her (2.62), um (2.55), sink (2.3), be (2.21),
standing (2.06).

Compared to controls, subjects with AD used relatively more
laughter and semantically “empty” words such as oh, well, and
some, and fewer present particles (-ing verbs). This is consistent
with findings in the literature. Table 1 shows an interesting
difference for filled pauses. The subjects with AD used more
uh than the control subjects, but their use of um was much less
frequent.

2.4 Unfilled Pauses
Duration of pauses was calculated from forced alignment.
Pauses under 50 ms were excluded, as well as pauses in the

interviewer’s speech. We binned the remaining pauses by
duration as shown in Figure 2. Subjects with AD have more
pauses in every group, but the difference between subjects
with AD and non-AD is particularly noticeable for longer
pauses.

3 BERT AND ERNIE FINE-TUNING

3.1 Input and Hyperparameters
Pre-trained BERT and ERNIE models were fine-turned for
the AD classification task. Each of the N � 108 training
speakers is considered a data point. The input to the

FIGURE 1 | The word cloud on the left highlights words that are more common among control subjects than AD; the word cloud on the right highlights words that
are more common among AD than control.

TABLE 1 | Subjects with AD say uh more often, and um less often.

uh um

Control (non-AD) 130 51
Dementia (AD) 183 20

FIGURE 2 | Subjects with AD have more pauses (in all duration bins).
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model consists of a sequence of words from the processed
transcript for every speaker (as described in Section 2.2). The
output is the class of the speaker, 0 for Control and one
for AD.

We also encoded pauses in the input word sequence. We
grouped pauses into three bins: short (under 0.5 s); medium
(0.5–2 s); and long (over 2 s). The three bins of pauses are
coded using three punctuations “,”, “.”, and “. . .”, respectively.
Because all punctuations were removed from the processed
transcripts, these inserted punctuations only represent pauses.
The procedure is illustrated in Figure 3.

We used Bert-for-Sequence-Classification2 for fine-
tuning. We tried both “bert-base-uncased” and “bert-
large-uncased”, and found slightly better performance
with the larger model. The following hyperparameters
(slightly tuned) were chosen: learning rate � 2e-5, batch
size � 4, epochs � 8, max input length of 256 (sufficient to
cover most cases). The standard default tokenizer was used
(with an instruction not to split “. . .”). Two special tokens,
[CLS] and [SEP], were added to the beginning and the end of
each input.

ERNIE fine-tuning started with the “ERNIE-large” pre-trained
model (24 layers with 16 attention heads per layer). We used the
default tokenizer, and the following hyperparameters: learning
rate � 2e-5, batch size � 8, epochs � 20 and max input length
of 256.

The fine-tuning process is illustrated in Figure 4.

3.2 Ensemble Reduces Variance in LOO
Accuracy
When conducting LOO (leave-one-out) cross-validation on the
training set, large differences in accuracy across runs were
observed. We computed 50 runs of LOO cross-validation. The
hyperparameter setting was the same across runs except for
random seeds. The results are shown in the last row (N � 1)
of Tables 2 and 3. Over the 50 runs, LOO accuracy ranged from
0.75 to 0.86 for BERT with three pauses, from 0.78 to 0.87 for
ERNIE with three pauses, and from 0.77 to 0.85 for ERNIE with
no Pauses. The large variance suggests performance on unseen
data is likely to be brittle. Such brittleness is to be expected given
the large size of the BERT and ERNIEmodels and the small size of
the training set (108 subjects).

To address this brittleness, we introduced the following
ensemble procedure. From the results of LOO cross-validation,
we calculated the majority vote over N runs for each of the 108
subjects, and used the majority vote to return a single label for
each subject. To make sure that the ensemble estimates would
generalize to unseen data, we tested the method by selecting
N � 5, N � 15, . . ., runs from the 50 runs of LOO cross-
validation. The results are shown in Table 2 and 3. In the
tables, the first row summarizes 100 draws of N � 5 runs. The
second row is similar, except N � 15. All of the ensemble rows
have better means and less variance than the last row, which
summarizes the 50 individual runs of LOO cross-validation
without ensemble (N � 1). Figure 5 illustrates Table 2 and 3.
In Figure 5 the black lines represent accuracy of individual runs
whereas the purple lines represent ensemble accuracy of N � 35.
We can see that there is a wide variance in individual runs (black).

FIGURE 3 | Procedure for pause encoding.

2

https://github.com/huggingface/transformers
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The proposed ensemble method (purple) improves the mean and
reduces variance over estimates based on a single run.

4 EVALUATION

Under the rules of the challenge, each team is allowed to submit
results of five attempts for evaluation. Predictions on the test set

from the following five models were submitted for evaluation:
BERT0p, BERT3p, BERT6p, ERNIE0p, and ERNIE3p. 0p
indicates that no pause was encoded, and 3p and 6p indicate,
respectively, that three and six lengths of pauses were encoded. To
compare with three pauses, 6p represents six bins of pauses,
encoded as: “,” (under 0.5 s), “.” (0.5–1 s); “..” (1–2 s), “. . .”
(2–3 s), “. . . .” (3–4 s), “. . . . .” (over than 4 s). The dots are
separated from each other, as different tokens.

Following the method proposed in Section 3.2, we made 35
runs of training for each of the five models, with 35 random seeds.
The classification of each sample in the test set was based on the
majority vote of 35 predictions. Table 4 lists the evaluation scores
received from the organizers.

The best accuracy was 89.6%, obtained with ERNIE and three
pauses. It is a nearly 15% increase from the baseline of 75.0% (Luz
et al., 2020).

ERNIE outperformed BERT by 4% on input of both three
pauses and no pause. Encoding pauses improved the accuracy
for both BERT and ERNIE. There was no difference between
three pauses and six pauses in terms of improvement in
accuracy.

5 DISCUSSION

The group with AD used more uh but less um than the control
group. In speech production, disfluencies such as hesitations and
speech errors are correlated with cognitive functions such as
cognitive load, arousal, and working memory (Daneman, 1991;
Arciuli et al., 2010). Hesitations and disfluencies increase with
increased cognitive load and arousal as well as impaired working
memory. This may explain why the group with AD used more uh,
as a filled pause and hesitation marker. More interestingly, they

FIGURE 4 | Procedure for fine-tuning.

TABLE 2 | Ensemble improves LOO (leave-one-out) estimates of accuracy; better
means with less variance.

BERT with three pauses

N Mean ± sd min - max
5 0.837 ± 0.010 0.815–0.861
15 0.840 ± 0.011 0.815–0.861
25 0.839 ± 0.011 0.815–0.870
35 0.838 ± 0.010 0.824–0.861
45 0.839 ± 0.011 0.824–0.861
1 0.819 ± 0.023 0.750–0.861

TABLE 3 | Ensemble also improves LOO for ERNIE (with and without pauses).
LOO results are better with pauses than without, and better with ERNIE than
BERT.

ERNIE with three pauses ERNIE with No pauses

N Mean ± std Min - max Mean ± std Min - max
5 0.845 ± 0.013 0.806–0.880 0.828 ± 0.016 0.796–0.870
15 0.851 ± 0.008 0.833–0.870 0.831 ± 0.012 0.796–0.861
25 0.853 ± 0.007 0.833–0.870 0.833 ± 0.010 0.815–0.861
35 0.854 ± 0.007 0.824–0.861 0.836 ± 0.009 0.815–0.852
45 0.854 ± 0.007 0.833–0.861 0.834 ± 0.008 0.815–0.861
1 0.827 ± 0.020 0.778–0.870 0.816 ± 0.023 0.769–0.852
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used less um than the control group. This indicates that unlike
uh, um is more than a hesitation marker. Previous studies have
also reported that children with autism spectrum disorder
produced um less frequently than typically developed
children (Gorman et al., 2016; Irvine et al., 2016), and that
um was used less frequently during lying compared to truth-
telling (Benus et al., 2006; Arciuli et al., 2010). All these results
seem to suggest that um carries a lexical status and is retrieved in
speech production. One possibility is that people with AD or

autism have difficulty in retrieving the word um whereas people
who are lying try not to use this word. More research is needed
to test this hypothesis.

From our results, encoding pauses in the input was helpful for
both BERT and ERINE fine-tuning for the task of AD
classification. Pauses are ubiquitous in spoken language. They
are distributed differently in fluent, normally disfluent, and
abnormally disfluent speech. As we can see from Figure 2, the
group with AD usedmore pauses and especially more long pauses
than the control group. With pauses present in the text, the self-
attention mechanism in BERT and ERNIE may learn how the
pauses are correlated with other words, for example, whether
there is a long pause between the determiner the and the following
noun, which occurs more frequently in AD speech. We think this
is part of the reason why encoding pauses improved the accuracy.
There was no difference between three pauses and six pauses in
terms of improvement in accuracy. More studies are needed to
investigate the categories of pause length and determine the
optimal number of pauses to be encoded for AD classification.

ERNIE was designed to learn language representation
enhanced by knowledge masking strategies, including entity-
level masking and phrase-level masking. Through these

FIGURE 5 | Individual and ensemble Leave-one-out (LOO) accuracy for BERTwith pauses (top) and ERNIE with and without pauses (bottom). Black lines represent
accuracy of individual runs; purple lines represent ensemble accuracy of N � 35.

TABLE 4 | Evaluation results: Best accuracy (acc) with ERNIE and three pauses
(3p). Pauses are helpful: three pauses (3p) and six pauses (6p) have better
accuracy than no pauses (0p).

Precision Recall F1 Acc

Non-AD AD Non-AD AD Non-AD AD
Baseline () 0.700 0.830 0.870 0.620 0.780 0.710 0.750
BERT0p 0.742 0.941 0.958 0.667 0.836 0.781 0.813
BERT3p 0.793 0.947 0.958 0.750 0.868 0.837 0.854
BERT6p 0.793 0.947 0.958 0.750 0.868 0.837 0.854
ERNIE0p 0.793 0.947 0.958 0.750 0.868 0.837 0.854
ERNIE3p 0.852 0.952 0.958 0.833 0.902 0.889 0.896
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strategies, ERNIE “implicitly learned the information about
knowledge and longer semantic dependency, such as the
relationship between entities, the property of a entity and the
type of a event”. (Sun et al., 2019) We think this may be why
ERNIE performs better on recognition of Alzheimer’s speech, in
which memory loss causes not only language problems but also
difficulties of recognizing entities and events.

Both BERT and ERNIE were pre-trained on text corpora,
with no pause information. Our study suggests that it may be
useful to pre-train a language model using speech transcripts
(either solely or combined with text corpora) that include
pause information.

6 CONCLUSION

Accuracy of 89.6% was achieved on the test set of the ADReSS
(Alzheimer’s Dementia Recognition through Spontaneous
Speech) Challenge, with ERNIE fine-tuning, plus an
encoding of pauses. There is a high variance in BERT and
ERNIE fine-tuning on a small training set. Our proposed
ensemble method improves the accuracy and reduces
variance in model performance. Pauses are useful in BERT
and ERNIE fine-tuning for AD classification. um was used

much less frequently in AD, suggesting that it may have a
lexical status.
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Current methods for early diagnosis of Alzheimer’s Dementia include structured

questionnaires, structured interviews, and various cognitive tests. Language difficulties

are a major problem in dementia as linguistic skills break down. Current methods do

not provide robust tools to capture the true nature of language deficits in spontaneous

speech. Early detection of Alzheimer’s Dementia (AD) from spontaneous speech

overcomes the limitations of earlier approaches as it is less time consuming, can

be done at home, and is relatively inexpensive. In this work, we re-implement the

existing NLP methods, which used CNN-LSTM architectures and targeted features from

conversational transcripts. Our work sheds light on why the accuracy of these models

drops to 72.92% on the ADReSS dataset, whereas, they gave state of the art results on

the DementiaBank dataset. Further, we build upon these language input-based recurrent

neural networks by devising an end-to-end deep learning-based solution that performs

a binary classification of Alzheimer’s Dementia from the spontaneous speech of the

patients. We utilize the ADReSS dataset for all our implementations and explore the deep

learning-based methods of combining acoustic features into a common vector using

recurrent units. Our approach of combining acoustic features using the Speech-GRU

improves the accuracy by 2% in comparison to acoustic baselines.When further enriched

by targeted features, the Speech-GRU performs better than acoustic baselines by

6.25%. We propose a bi-modal approach for AD classification and discuss the merits

and opportunities of our approach.

Keywords: affective computing, cognitive decline detection, natural language processing, deep learning,

computational paralinguistics

1. INTRODUCTION

Alzheimer’s disease and related dementia disorders constitute a significant cause of disability and
dependency among older adults worldwide and are among the costliest diseases in society. By
2030, it is estimated that the global cost of dementia could grow to US$ 2 trillion, which could
overwhelm health and social care systems (Wimo et al., 2017). Alzheimer’s Dementia (AD) is an
irreversible brain disease that results in a gradual decrease in an individual’s cognitive functioning.
The main risk factor for AD is age, and therefore its highest incidence is amongst the elderly.
However, if detected early, we can slow down or halt the degeneration with appropriate medication.
Current methods of diagnosis usually involve lengthy medical evaluations, including lengthy

54

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2021.623607
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2021.623607&domain=pdf&date_stamp=2021-02-05
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:f20170277@goa.bits-pilani.ac.in
mailto:veeky@goa.bits-pilani.ac.in
https://doi.org/10.3389/fnagi.2021.623607
https://www.frontiersin.org/articles/10.3389/fnagi.2021.623607/full


Mahajan and Baths Deep Learning—AD Detection

questionnaires. There is an urgency for cost-efficient and scalable
methods that can identify AD from an early stage. Thus,
researchers worldwide are trying to find non-invasive early
detection methods and treatments for these disorders.

Early symptoms of dementia are characterized by difficulty
in word-finding, impaired reasoning, changes in language and
speech, etc. This makes current research methodologies in
speech and language processing suitable to be applied for early
detection of cognitive impairment and AD. AD detection from
spontaneous speech has been approached using speech input-
based methods, language-based (text input-based) methods, and
multi-modal approaches. Deep learning is a part of a broader
family of machine learning methods based on artificial neural
networks with representation learning. In prior work using
language-based methods, we observe that deep learning based
approaches (Orimaye et al., 2016; Karlekar et al., 2018; Di Palo
and Parde, 2019; Kong et al., 2019) outperform pre-deep learning
approaches (Orimaye et al., 2014; Fraser et al., 2016) on the
DementiaBank dataset (Becker et al., 1994). Motivated by the
shortcomings of manual feature-engineering for such a diverse
and complex task, Karlekar et al. (2018) propose deep learning
models—Convolutional neural network (CNN), Long short-
term memory network (LSTM), and CNN-LSTM, to detect AD
using just the conversational transcripts with minimal feature
engineering using just word embeddings and parts-of-speech
(POS) tags. Word embedding is any set of language modeling
where words from a vocabulary are mapped to a vector of real
numbers. POS-tagging is assigning a parts-of-speech tag to every
word in the corpus, depending on it’s context and definition. It
is a method of enriching the feature processing stream. CNN
layers are locally connected layers and pick up features in shorter
time windows, where as LSTM layer is a type of recurrent neural
network (RNN) layer which learns features and remembers
features over longer timesteps. Recurrent layer or recurrent unit
is any layer whose output not only depends on the input at
the current timestep but also it’s hidden state in the previous
timestep. Thus, a CNN-LSTM architecture uses convolutional
layers early on for feature extraction and then LSTM layers to
learn patterns in a sequence. Di Palo and Parde (2019) further
enrich the deep neural network models by Karlekar et al. (2018)
by using targetted psycholinguistic, sentiment, and demographic
features and also use class weight correction to handle class
imbalance in the DementiaBank dataset (Becker et al., 1994). We
build upon the work by Karlekar et al. (2018) and Di Palo and
Parde (2019) and extend to multi-modal inputs and address the
challenges that come with effectively combining features from
multiple modalities for AD detection.

Amongst speech input-based methods, prior work has been
more focused on using handcrafted acoustic features (Beltrami
et al., 2016; Ambrosini et al., 2019) such as pitch, unvoiced
duration, shimmer, pause duration, speech rate, or using feature
banks. Haider et al. (2019) and Luz et al. (2020) use feature
banks such as such as emobase, eGeMAPS (Eyben et al.,
2015), ComParE (Eyben et al., 2013), and MRCG functionals
(Chen et al., 2014) for feature extraction from speech segments.
These features are not necessarily designed specifically for AD
speech but capture various paralinguistic features relevant to

AD speech. Effectively combining these features from various
speech segments is an ongoing research problem that our work
addresses. Previously, Haider et al. (2019) address it by proposing
a new Active Data Representation method (ADR) to combine
the features from a variable number of recordings into a fixed
dimensional feature vector. They get the best results using the
eGeMAPS feature set and even better results using a hard fusion
of the feature sets. However, these methods fail to capture the
temporal dynamics across the segments to the full extent. In
this work, by using a recurrent unit, we combine the speech
segment features in a fixed dimension vector while learning the
features across the time span of the participant’s conversation
session. Chien et al. (2019) implement a bidirectional RNN
on speech features extracted using a feature bank and propose
an end-to-end method for automatic assessment of cognitive
decline, but are restricted to speech input and do not extend
to multi-modal inputs. Amongst multi-modal approaches using
spontaneous speech, Zargarbashi and Babaali (2019) propose
a model that extracts a perplexity score from the transcripts
using an N-gram model extract I-vectors and X-vectors from
the speech input. The concatenation of these feature vectors is
then passed on to an SVM for AD classification. X-vectors and
I-vectors are speech embeddings used in speaker recognition
tasks, especially with speech segments of variable lengths. They
use these embeddings even though AD diagnosis and speaker
recognition are different tasks, as the voice biometrics and
Alzheimer’s signs are similar to an extent as both need to
extract some specific patterns from captured signal contaminated
with variations from various irrelevant sources. This prior work
mentioned is relevant to our work because our work focuses
on some of the open research problems, such as—How to
capture complex patterns and temporal relations in speech and
language modalities? And more importantly are there temporal
patterns in the acoustic features extracted using the feature sets
mentioned above, which can prove to be useful early detection
of AD.

The majority of the previous results have been benchmarked
on subsets from the Cookie theft task from the DementiaBank
dataset (Becker et al., 1994) except the work by Chien et al.
(2019) where they use NTUH Dataset which is a combination
of multiple datasets such as Mandarin_Lu dataset (MacWhinney
et al., 2011), NTU dataset (Chien et al., 2019), and 20 more
participants from independently collected data. Dementia Bank
dataset includes multiple transcripts from the same participant
and has a significant imbalance in the age and gender distribution
of the participants. ADReSS dataset (Luz et al., 2020) tries to
mitigate these issues, and thus we use the ADReSS dataset in
our work.

In this work, we address this by proposing a network that
can train on speech segments using recurrent units and can be
integrated with existing language-based deep learning models,
which can also be enriched with targeted features.

Our contributions are as follows:

1. We re-implement the prior work by Karlekar et al. (2018) and
Di Palo and Parde (2019) and benchmark the results on the
new shared standardized ADReSS dataset.
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2. We explore the deep learning-based methods of combining
acoustic features into a common vector using recurrent units
and propose a bi-modal approach for both the tasks.

3. We discuss the possibilities of further enriching the acoustic
processing stream using features specific to AD speech and
propose a bi-modal model based on concatenation of latent
outputs of acoustic and language based models.

2. MATERIALS AND METHODS

2.1. ADReSS Dataset
Most earlier methods use a subset of the DementiaBank (Becker
et al., 1994). Cookie theft task provides the largest source of
unstructured speech and text data and thus has been used in
Karlekar et al. (2018), Di Palo and Parde (2019), and Kong et al.
(2019). The subset used in Di Palo and Parde (2019) includes
multiple transcripts from the same participants, thus comprises
a total of 243 transcripts from 104 non-AD participants and
1,049 transcripts from 208ADparticipants. It also has imbalances
in age and gender distribution. ADReSS Challenge dataset (Luz
et al., 2020) tries to mitigate these issues. ADReSS Challenge
dataset includes one full-wave audio (one session) per subject
with accompanying conversational transcript. It also has a
balanced distribution in terms of classes, age, and gender. As
a result, we notice more than ten times reduction in dataset
size in terms of the number of transcripts or full-wave session
audios when compared to the dataset used in Karlekar et al.
(2018), Di Palo and Parde (2019), and Kong et al. (2019). This
is important to us since deep learning methods proposed in the
previously mentioned approaches require larger amounts of data,
reduction in data size, and removal of imbalance in the dataset
can significantly affect replicability of results. ADReSS Challenge
dataset includes data from 82 AD and 82 non-AD participants,
of which 54 AD and 54 non-AD participants are included in the
train set. The full-wave audio from each participant is further
divided into an average of 24.86 (standard deviation sd =

12.84) normalized speech segments per participant using voice
activity detection.

2.2. Classification Models and Approach
In this section, we’ll briefly explain the language-based (transcript
text input), acoustic feature-based and bi-modal models that we
propose and progressively build on.

2.2.1. Language-Based Models

We first implement a CNN-LSTM model (Model A0) as
proposed in Karlekar et al. (2018), which takes word embeddings
(GloVe) as well as POS-tags as input, through two input streams,
finally concatenated in a dense layer before passing it to the
output layer. A dropout rate of 0.5 was used between the CNN
and LSTM layer to prevent overfitting. We then implement the
Model A1, as proposed by Di Palo and Parde (2019). It improves
upon Model A0 by replacing the unidirectional LSTM in Model
A0 with bidirectional LSTM layers with the insertion of attention
mechanism on the hidden states of the LSTM and by including
a dense neural network at the end of the LSTM layer to include
targeted psycholinguistic, sentiment, and demographic features

as described in Di Palo and Parde (2019). These targeted features
are further explained in section 2.3. For models A0 and A1, we
don’t need to implement class weighting as done in Di Palo and
Parde (2019) as ADReSS dataset doesn’t have a class imbalance.
Schematic representation of Models A0 and A1 can be found
in Figure 1i.

2.2.2. Acoustic-Feature Based Models

Similar to how previous models have proposed a recurrent
unit based language processing stream which is later further
enriched with targeted features, we propose a similar approach
of using speech input stream and taking acoustic features into
account, which is later enriched with relevant, targeted features.
These acoustic features are extracted from audio segments. The
Model B0 is comprised of a Speech-GRU, which is defined by
a recurrent layer (GRU) which takes in audio segment features
per from each speech segment while maintaining the temporal
structure across segments as in the full-wave audio session. The
goal of this GRU unit is to combine the features from the
speech segments into a common vector while maintaining the
temporal structure across segments. A schematic of the GRU cell
is included in Figure 1iii. We also briefly experimented with the
Model B0, by replacing the unidirectional GRUwith bidirectional
GRU layers with the insertion of attention mechanism on the
hidden states of the GRU. But, since they do not improve the
performance significantly, we continue with the Speech-GRU in
our further study. In Model B1, we progressively build upon
Model B0, by enriching the speech input processing stream
with various AD specific features extracted from lengths of
speech segments provided by voice activity detection (VAD) and
disfluency and interventional features as well as idea density-
based features from complete transcripts and full-wave audio.
Schematic representation of Models B0 and B1 can be found
in Figure 1ii.

2.2.3. Bi-Modal Model

The Model that we propose is a direct combination of Model A1
andModel B1. The dense outputs from these two input streams is
then concatenated and then connected to the output layer using
dense connections. We use all targeted features from both the
models in Model C. Schematic representation of Model C can be
found in Figure 1iv.

2.3. Feature Extraction
In this subsection, we’ll explain the targeted features used
in Model A1, the acoustic feature sets used in Model B0,
B1, C and the targeted features used in Model B1 and
C. The targeted features used in Model A1, are token-level
psycholinguistic features, token-level sentiment features and
demographic features as described in Di Palo and Parde
(2019). Each of the token-level features was averaged across
all tokens in the instance, allowing us to obtain a participant-
level feature vector to be coupled with the participant-level
demographic features. The psycholinguistic features include (1)
Age of acquisition of words which is the age at which a particular
word is usually learned by individuals, (2) Concreteness which
is a measure of word’s tangibility, (3) Familiarity which is a
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FIGURE 1 | (i) Language-based models, (ii) speech-based models, (iii) GRU cell schematic, and (iv) bi-modal model for AD detection.

measure of how often one might expect to encounter a word,
(4) Imageability which is a measure of how easily a word can
be visualized. Psycholinguistic features were obtained from an
open-source repository1 based on the work of Fraser et al.
(2016). Sentiment scores were based around measuring the
word’s sentiment polarity and were obtained using the NLTK’s
sentiment library. The demographic features include participants
age at the time of the visit and gender.

We compare the use of different feature banks for acoustic
feature extraction, namely emobase, eGeMAPS (Eyben et al.,
2015), and ComParE (Eyben et al., 2013) on Model B0 and then
use the best performing feature set in Model B1 and C. These
acoustic feature sets are described as follows.

emobase: This feature set (Schuller et al., 2010) contains
the mel-frequency cepstral coefficients (MFCC) voice quality,
fundamental frequency (F0), F0 envelope, line spectral pairs
(LSP), and intensity features with their first and second-order
derivatives. Several statistical functions are applied to these
features, resulting in a total of 1,582 features for every speech
segment. Haider et al. (2019) and Luz et al. (2020) use an older

1https://github.com/vmasrani/dementia_classifier.

emobase feature set of 988 features, whereas we use the newer
emobase2010 set from the INTERSPEECH 2010 Paralinguistics
Challenge (Schuller et al., 2010).

eGeMAPS: The eGeMAPS feature set (Eyben et al., 2015)
is a result of attempts to reduce other feature sets to a basic
set of 88 features with theoretical significance (Eyben et al.,
2015). The eGeMAPS features thus have the potential to detect
physiological changes in voice production. It contains the F0
semitone, loudness, spectral flux, MFCC, jitter, shimmer, F1, F2,
F3, alpha ratio, Hammarberg index, and slope V0 features, as well
as their most common statistical functional.

ComParE: The ComParE feature set (Eyben et al., 2013)
includes energy, spectral, MFCC, and voicing related low-
level descriptors (LLDs). LLDs include logarithmic harmonic-
to-noise ratio, voice quality features, Viterbi smoothing for F0,
spectral harmonicity, and psycho-acoustic spectral sharpness.
Statistical functionals are also computed, bringing the total to
6,373 features.

We used OpenSMILE2 library for feature extraction using
the emobase, eGeMAPS, ComParE feature bank. We performed

2https://www.audeering.com/opensmile/.
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a Pearson correlation test on the whole dataset to remove
acoustic features that were significantly correlated with the
segment duration (when R > 0.2). Hence, 72 eGeMAPS, 1,072
emobase, and 3,056 ComParE features were not correlated with
the duration of the speech chunks and were therefore selected for
the machine learning experiments. The purpose of this step is to
remove acoustic features correlated with the segment duration to
remove the “local” features which are independent of segment
duration while training the Model B0 purely on the low-level
acoustic features. We later add global features such as mean,
median, and standard deviation of all the segment lengths in
an interview while training Model B1. Local features which are
highly correlated with the segment duration can at times act as
unnecessary noise and lead the machine learning models to learn
spurious correlations. This preprocessing step is common with
the approach by Luz et al. (2020) and Haider et al. (2019).

Our Model B1 is an extension of our Model B0, enriched
with targetted features and our Model C is a combination of
Model A1 and B1 and thus Model C uses targetted features
from both models A1 and B1. The additional targetted features
used in Model B1 and then subsequently in Model C are
specific to AD speech and are obtained from a combination of
speech segments, full wave audio as well as manually generated
transcripts. These targetted features specific to AD speech can be
broadly split into three categories—speech segment length-based
features, disfluency, and interventional rate-based features and
the features based on the concept of idea density. It is important
to note that these features are not captured by our Model
B0. Segment length features include six statistics about speech
chunks segmented by the VAD. Disfluency and interventional
features include a set of six distinct features from the transcripts,
such word rate, intervention rate, and different kinds of pause
rates reflecting upon speech impediments like slurring and
stuttering, which show up in the transcripts in forms of “umm,”
“uhh” etc. Lastly, idea density based features comprise of the
DEPID and DEPID-R features (Sirts et al., 2017) were computed
as a measure of idea density. Idea density measures the rate
at which ideas or elementary predications are expressed in an
utterance or a text. Proportional idea density (PID) counts the
expressed ideas and can be applied to any text. DEPID is a
dependency-based method for computing PID and its version
DEPID-R that enables to exclude repeating ideas which is a
feature characteristic of AD speech.

2.4. Training and Validation Details
The following info is common to the training of all the models.
We implement the models using Tensorflow 2.0 (Abadi et al.,
2015). AdaGrad optimizer (Duchi et al., 2011) is used with a
learning rate of 0.001.We train all the models for 200 epochs with
early stopping as implemented in Di Palo and Parde (2019). All
classification metrics use a classification threshold of 0.5.

The total dataset is split into a train dataset of 108 participants
(54 AD and 54 non-AD participants) and test dataset of 48
participants (24 AD and 24 non-AD participants) as provided by
Luz et al. (2020). Thus the test set is 30% of the total ADReSS
dataset. K-fold cross validation (CV) is a useful CV strategy when
sample size is lower as it uses every sample in the dataset but

does not necessarily maintain balance in the labels (AD and
non-AD) in each fold while splitting the train dataset into “k”
folds. Performing a stratified k-fold CV assures this balance in
labels in each fold and thus increases the reliability of metrics
calculated on k-fold CV. We use 5-fold stratified cross-validation
for all our models with the same seed value. We chose this cross-
validation scheme over hold-out cross-validation schemes due
to the small size of the dataset and to use every sample in the
dataset. In Luz et al. (2020), the authors use leave one subject
out (LOSO) cross-validation scheme, we find it infeasible in
our case as training deep learning models are computationally
more demanding and LOSO cross-validation scheme won’t scale
with more data without necessary compute requirements. For
inference on test data, the models were trained on the complete
train set for both the tasks separately and then tested on the
test set.

3. RESULTS

The outputs of a binary classification algorithm fall into one
of the four categories—true positives tp, false positives fp, false
negatives fn and true negatives tn, depending on whether the
predicted label matches with the true label or not. Recall is also
known as Sensitivity or the true positive rate. Then classification
metrics are defined as follows,

Precision =
tp

tp+ fp
(1)

Recall =
tp

tp+ fn
(2)

F1 score = 2
(precision)(recall)

precision+ recall
(3)

In context of reproducing results by Karlekar et al. (2018) and
Di Palo and Parde (2019) on ADReSS dataset, the classification
task results (Precision, Recall, F1 score, and Accuracy) are
shown in Table 1 for 5-fold cross-validation and test setting,
respectively. The results show that Model A1 performs better
than Model A0 in all aspects of the classification task. We
notice the difference between AD classification accuracy (0.8384
and 0.8820, respectively) achieved in Karlekar et al. (2018) and
Di Palo and Parde (2019) on the complete Dementia Bank
dataset and the AD classification accuracy achieved (0.6875
and 0.7292, respectively) by re-implementing those methods on
ADReSS dataset.

In the context of the proposed acoustic feature processing
Speech-GRU, the classification task results with the use of
different acoustic feature set are shown in Table 2 for 5-fold
cross-validation and test sets, respectively. We observe that our
model B0 with use of emobase as the acoustic feature set performs
best followed by eGeMAPS and we observe that our recurrent
model with ComParE features as input fails to learn. Our model
B0 with the feature set emobase performs better than the acoustic
feature-based baseline accuracy of 0.62 set by Luz et al. (2020).
We use the best performing feature set (emobase) further, for our
models B1 and C. We further also experimented with Speech-
GRU in model B0 (emobase feature set) by replacing GRU layer

Frontiers in Aging Neuroscience | www.frontiersin.org 5 February 2021 | Volume 13 | Article 62360758

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Mahajan and Baths Deep Learning—AD Detection

TABLE 1 | Validation and Test results of the language based models on the classification task.

Model Val/Test Class Recall Precision F1 score Accuracy

A0 (Karlekar et al., 2018)

5-fold CV
Non-AD 0.811 ± 0.085 0.637 ± 0.071 0.710 ± 0.059

0.673 ± 0.065
AD 0.539 ± 0.121 0.752 ± 0.081 0.619 ± 0.090

Test set
Non-AD 0.8333 0.6451 0.7272

0.6875
AD 0.5416 0.7647 0.6341

A1 (Di Palo and Parde, 2019)

5-fold CV
Non-AD 0.836 ± 0.202 0.706 ± 0.152 0.735 ± 0.072

0.710 ± 0.067
AD 0.600 ± 0.241 0.866 ± 0.167 0.654 ± 0.113

Test set
Non-AD 0.9167 0.6667 0.7719

0.7292
AD 0.5416 0.8667 0.6667

Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.

TABLE 2 | Validation and Test results of the Model B0 with different feature sets on the classification task.

Feature set Val/Test Class Recall Precision F1 score Accuracy

eGeMAPS

5-fold CV
Non-AD 0.527 ± 0.120 0.710 ± 0.151 0.581 ± 0.058

0.635 ± 0.034
AD 0.745 ± 0.156 0.618 ± 0.029 0.667 ± 0.058

Test set
Non-AD 0.7500 0.5625 0.6428

0.5833
AD 0.4166 0.6250 0.5

emobase

5-fold CV
Non-AD 0.659 ± 0.094 0.704 ± 0.168 0.663 ± 0.057

0.665 ± 0.082
AD 0.673 ± 0.219 0.664 ± 0.049 0.652 ± 0.125

Test set
Non-AD 0.6667 0.6400 0.6530

0.6458
AD 0.6250 0.6521 0.6382

ComParE

5-fold CV
Non-AD 0.441 ± 0.176 0.534 ± 0.139 0.475 ± 0.148

0.533 ± 0.129
AD 0.625 ± 0.144 0.538 ± 0.132 0.573 ± 0.124

Test set
Non-AD 0.5833 0.5185 0.5490

0.5208
AD 0.4583 0.5238 0.4888

Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.

with a bidirectional GRU layer followed by the use of attention
mechanism, but it resulted in validation accuracy of 0.6632 ±

0.0368 which did not significantly better than our basic Speech-
GRU stream. Since we did not observe a significant improvement,
we use our plain GRU stream for acoustic feature processing in
models B1 and C.

The classification task results for the models B1 and C are
shown in Table 3. Our results show that model B1, enriched with
targeted features performs better thanmodel B0 with an accuracy
of 0.6875 on the test set.We further conduct ablation experiments
on model B1 to tease out which of these targeted features
contribute the most. The results of our ablation experiment in
Table 4 show that none of the targeted features (segment length
based, disfluency, and interventional rate based and idea-density
based) individually improve the test results of model B1, in
comparison to model B0. But all of these features combined
improve the classification accuracy of our model B1. Our model
C benefits from linguistic feature processing stream of model A1
but does not perform better than model A1 in terms of test or
validation accuracy. We notice a significant improvement in AD
class Recall and a reduction in AD class Precision frommodel A1
to model C.

Finally, we include the Area under the Receiver-Operator
characteristic curve for all the models in the Figure 2 for quick
comparison of the performance of all the models on the test set.

4. DISCUSSION

Amongst language-based models, the improvement in
performance from model A0 to A1 can be attributed to the
use of attention as well as the use of psycholinguistic and
sentiment features. As per our results, model A0 and A1
which have shown the state of the art results on the complete
Dementia bank dataset don’t perform better than the linguistic
feature baseline set by Luz et al. (2020) of accuracy 0.75 on the
ADReSS dataset. This is important to note because the primary
motivation of Karlekar et al. (2018) was to develop end to end
deep learning method for AD detection with minimal feature
engineering. Furthermore, noticing the difference in accuracy
and F1 scores, there could be multiple factors involved in the
success of Karlekar et al. (2018) and Di Palo and Parde (2019)
and those that hinder the replicability of results on ADReSS
dataset. The most prominent factor being, repeated occurrences
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TABLE 3 | Validation and Test results of the Model B1 and Model C on the classification task.

Model Val/Test Class Recall Precision F1 score Accuracy

B1

5-fold CV
Non-AD 0.662 ± 0.175 0.670 ± 0.101 0.652 ± 0.125

0.662 ± 0.109
AD 0.666 ± 0.170 0.675 ± 0.126 0.659 ± 0.139

Test set
Non-AD 0.8333 0.6452 0.7272

0.6875
AD 0.5416 0.7647 0.6341

C

5-fold CV
Non-AD 0.778 ± 0.104 0.673 ± 0.092 0.715 ± 0.070

0.693 ± 0.082
AD 0.615 ± 0.151 0.743 ± 0.097 0.659 ± 0.112

Test set
Non-AD 0.8333 0.6896 0.7547

0.7292
AD 0.6250 0.7894 0.6976

Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.

of samples from the same participant in the Dementia Bank
dataset. This could lead to significant overfitting to participant
dependent features in models trained the DementiaBank dataset.
As explained in section 2.1, DementiaBank has 243 transcripts
from 104 non-AD participants whereas 1,049 transcripts from
208 AD participants. In comparison to that, ADReSS dataset
includes only one transcript and full wave audio per participant,
with 54 AD and 54 non-AD participants in the train set and 24
AD and 24 non-AD participants in the test set. Thus the total
number of samples in DementiaBank is 1,292, which is around
8 times the dataset size of ADReSS. ADReSS dataset allows us
to test the speaker independent nature of previously proposed
models and our new model as there are no multiple sessions
per participant. It is evident from other success of deep learning
methods in other domains (not specific to AD speech) that such
methods do scale with data, but that need not necessarily apply
to tasks such as early detection of AD. Thus, we cannot take a
purely minimal feature engineering approach, and future work
should instead focus more on developing and utilizing features
relevant to AD speech. Benchmarking on a dataset with more
subjects in the future would help build a better understanding
of whether these methods perform better compared to complete
manual feature engineering-based solutions or not. Accuracy
comparison of all the models with baselines on ADReSS dataset
by Luz et al. (2020) as well as results on the DementiaBank
dataset by Karlekar et al. (2018) and Di Palo and Parde (2019)
can be found in Figure 3.

Our results from Table 2 help us answer the question whether
there exist temporal patterns relevant to AD detection in the
acoustic features extracted using these feature sets emobase,
eGeMAPs,ComParE etc. which are not explicitly designed for
AD speech. Amongst the three feature sets, we observe that our
Speech-GRU does pickup some relevant temporal patterns and
effectively combines these features into a common vector. Our
Speech-GRU with emobase feature set also performs better than
the baseline by Luz et al. (2020), which takes the maximum
vote of classification output of each of the speech segment. Still,
the improvement is relatively small (2%). Moreover, the use
of attention did improve the performance in language-based
model A1, suggesting that there are temporal patterns which
are relevant to AD speech in word vectors and POS-tags. But

TABLE 4 | Ablation experiments with Model B1 with different targeted features;

Test results on classification task.

Targeted features Class Recall Precision F1 score Accuracy

Seglen
Non-AD 0.5833 0.6363 0.6087

0.6250
AD 0.6667 0.6154 0.6400

Disf-inv
Non-AD 0.5000 0.6000 0.5454

0.5833
AD 0.6667 0.5714 0.6154

DEPID
non-AD 0.6250 0.6522 0.6383

0.6458
AD 0.6667 0.6400 0.6530

All combined
non-AD 0.8333 0.6452 0.7273

0.6875
AD 0.5416 0.7647 0.6341

Bold values represent the validation and test accuracies of best performing model

amongst the models under consideration in the respective table.

the same approach did not improve the performance in Speech-
GRU, suggesting a general lack of temporal patterns across
paralinguistic features of the speech segments. Future work could
benefit from the development of AD specific feature sets.

It is important to note that our performance of model B0 is
representative of the performance of AD detection without the
use of any manual transcription. All the transcripts in Dementia
Bank and ADReSS dataset are manually generated, and deploying
this service would instead require automated transcription.
Readers can refer to Zayats et al. (2019) for detailed analysis
of impact of transcription errors (manual and automated)
on automatic disfluency detection. Various disfluency and
interventional features in our approach, as well as other state of
the art approaches, rely on these manually generated transcripts
for feature extraction and their performance may vary depending
on whether the transcription is automated or not. In the
ablation experiments, the decrease in the test accuracy in case
of enrichment with disfluency and interventional features could
be as these word rates, interventional rates, pause rates were
extracted from manual transcripts. A better approach could be
using forced alignment tools to get precise disfluency features,
but since not all samples in the ADReSS dataset aligned with the
transcript text, we didn’t explore that idea further.
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FIGURE 2 | Receiver operating characteristics for all Models A0, A1, B0, B1, and C and the area under the curve (AUC). Results on test set.

We observe that the language-based models A0 and A1 are
characterized by higher non-AD class recall scores and higher AD
class precision scores which are further aggravated from model
A0 to A1. We observe that speech-based models were generally
characterized by nearly equal precision and recall scores in AD
and non-AD classes and we can also observe similar influence in
the model C.

There are two possible reasons for the bimodal model C not
performing significantly better than the language-based model
A1, which are explained as follows. The first is that, the inherent
representations learnt by the recurrent stream in Model A1
(trained on word embeddings and POS tags) and in Model
B1 (on acoustic features of each segment, in lieu of acoustic
embeddings) are quite different. And a mere concatenation of
the final layers, can be thought of as a linear combination
of the two representations and we observe that it does not
provide rich space for a variety of cross-dimensional and non-
linear combinations among the two representations. Because
of this, the outputs of a Model B1 (which is a relatively weak
learner in comparison to it’s language counterpart Model A1)
can act as noise in linear combination of these representations.

This problem has been addressed by a variety of trainable
feature aggregation methods, especially visual and language
based representations, in the context of multimodal emotion
detection or sentiment analysis. One of the most promising
solution, which has proven to be successful in the context
of multimodal sentiment analysis is focusing on word-level
fusion (Chen et al., 2017), where they align the words with the
speech segment of each word and generate combined Gated
Multimodal Embeddings (GME), rather than combine the two
representations in the final layers as we do in Model C. We
believe a similar approach to generating combined word-level
embeddings, where influence of each modality is also learnable
through gating, can also help in the context of AD speech.
Unfortunately, word-level fusion methods require alignment
of both the modalities, which is very expensive in terms of
reduction in data size as not all samples align even with the
state of the art methods. Though this is a feasible option for
other problems such as sentiment analysis, where data is in
abundance and where the study can be carried out with a fraction
of aligned data. But it’s not a feasible option in small sized
datasets like the ADReSS dataset as we observed while running
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the alignment tools (Montreal Forced Aligner3), <70% of the
full wave audio samples aligned with the manually generated
transcripts. The speech segment chunks provided by the ADReSS
dataset use voice activity detection (VAD) and often include
multiple words rather than providing a word-to-word alignment
thus cannot be used for creating multimodal word embeddings.
Readers can refer to Baltrušaitis et al. (2018) or a detailed survey
of approaches and challenges faced in multi-modal machine
learning in terms of representation, alignment, and fusion.

3https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner.

Future work, in availability of more data, can attempt similar
approaches to AD detection.

The second reason is that the idea density features used
in Model B1 and then subsequently in Model C, have
been computed using the transcripts. The disfluency and
interventional rates used are also obtained from transcripts
in lieu of aligning speech with transcripts. We compute the
similarity in predictions of two models as ratio of predictions
which match between two models upon total predictions in the
test set (i.e., 48). We find the similarity between predictions of
Model A1 and Model C to be 0.6667 whereas the similarity in

FIGURE 3 | Accuracy comparison of all Models A0, A1, B0, B1, and C with baselines on ADReSS dataset as well as referred state of the art approaches on

DementiaBank dataset.

FIGURE 4 | Confusion matrices of Test results of Model A1, B1, and C.

Frontiers in Aging Neuroscience | www.frontiersin.org 9 February 2021 | Volume 13 | Article 62360762

https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Mahajan and Baths Deep Learning—AD Detection

predictions of model B1 and model C to be 0.5416. Furthermore,
we also observe that the similarity between predictions of
Model A1 and B1 is 0.6667 and is greater than similarity
between predictions of Model A1 and Model B0 which is 0.5834,
suggesting that the additional targeted features obtained from
transcripts and used in Model B1 might have already been
captured in the Model A1 which trained only on the transcript
data. Apart from the similarities in predictions, we can observe
the confusion matrices of test predictions of Model A1, B1, and
C in Figure 4 which show the influence of Model A1 and B1 on
Model C.

5. CONCLUSIONS

We re-implement existing deep learning-based methods on
ADReSS dataset and discuss the challenges of the approach.
We also introduce a bi-modal deep learning approach to AD
classification from spontaneous speech and study in detail
the Speech-GRU stream, which is further enriched with AD
specific features through comprehensive comparisons of different
variants. An important finding of this study is that the
addition of targeted features increases the performance in AD
detection in both language-based and acoustic-based models.
Though the speech-GRU stream in our bi-modal approach is
a relatively weaker learner compared to the language-based
counterparts in the network, future work can aim at improving
the acoustic feature extraction as well as a better combination
of representations from different modalities. The Speech-GRU
without and with extra targeted features performs much better
than acoustic baselines and Model B0 is also representative
of the extent of performance of solutions which don’t rely
on manual transcription. Our results help us answer questions
regarding the existence of temporal patterns relevant to AD
detection in para-linguistic acoustic features often extracted

using common feature sets as well as also address the reasons
for a drop in accuracy of models on ADReSS dataset which were
previously state of the art approaches on the complete Dementia
Bank dataset.
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Alzheimer’s dementia (AD) is a chronic neurodegenerative illness that manifests in a
gradual decline of cognitive function. Early identification of AD is essential for managing the
ensuing cognitive deficits, which may lead to a better prognostic outcome. Speech data
can serve as a window into cognitive functioning and can be used to screen for early signs
of AD. This paper describes methods for learning models using speech samples from the
DementiaBank database, for identifying which subjects have Alzheimer’s dementia. We
consider two machine learning tasks: 1) binary classification to distinguish patients from
healthy controls, and 2) regression to estimate each subject’s Mini-Mental State
Examination (MMSE) score. To develop models that can use acoustic and/or language
features, we explore a variety of dimension reduction techniques, training algorithms, and
fusion strategies. Our best performing classification model, using language features with
dimension reduction and regularized logistic regression, achieves an accuracy of 85.4% on
a held-out test set. On the regression task, a linear regression model trained on a reduced
set of language features achieves a root mean square error (RMSE) of 5.62 on the test set.
These results demonstrate the promise of using machine learning for detecting cognitive
decline from speech in AD patients.

Keywords: speech and audio classification, pathological speech and language, automatic analysis of speaker states
and traits, machine learning, natural language proceeding (NLP)

1 INTRODUCTION

Alzheimer’s Dementia (AD) has recently become one of the leading causes of death in people over
70 years (Alzheimer’s Association (2019)). With life expectancy increasing, the prevalence of AD
among older adults is also rising. Currently, the number of cases among people over the age of 60 is
doubling every 4–5 years, and currently, one in every three individuals over the age of 80 is likely to
develop AD (Ritchie and Lovestone (2002)). AD is a progressive neurodegenerative disorder that is
characterized by the loss of subcortical neurons and synapses that begins in areas such as the
hippocampus and the entorhinal cortex (Braak and Braak (1991); Terry et al., (1991)). Over time,
more associative areas begin to show amyloid deposition and neurofibrillary tangles in addition to
neuronal and synaptic loss. As it spreads, patients develop additional cognitive and functional deficits
in domains such as attention, executive function, memory and language (Nestor et al., (2004)).
Current theories maintain that clinical symptoms are preceded by subtle cognitive deficits that
worsen over time. Early recognition of these deficits could prove valuable for treating pre-stage AD,
allowing for a better quality of life for the patient and their caregivers.
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Currently, clinical diagnostic methods for determining who
has AD include cognitive assessments (e.g., Mini-Mental State
Examination [MMSE]), self-report questionnaires and
neuroimaging (e.g., Positron Emission Tomography [PET])
(Weller and Budson (2018)). While these methods have proven
useful, they suffer from several shortcomings. Cognitive
assessments can be tedious and suffer from low test-retest
reliability based on practice effects; self-report questionnaires
also lack reliability and validity; and neuroimaging is an
expensive, invasive, and time-consuming procedure.

By contrast, speech analysis is a simple, non-invasive and
inexpensive approach. There are several reasons why it may be
useful for detecting AD. Early identification, especially in the
prodromal stages, can significantly reduce the progression of
various cognitive deficits (Dubois et al., (2009)). There is evidence
that therapeutic interventions are most efficacious before
neuronal degeneration occurs in the brain (Nestor et al.,
(2004)). Thus, an emphasis on early detection is imperative
for the prognosis of AD. As such, episodic memory,
visuospatial ability, and confusion are some of the first signs
of cognitive decline in AD patients (Arnáiz and Almkvist (2003);
Jacobs et al., (1995)). These deficits can be observed through
verbal communication in a structured task, motivating the recent
use of speech data for diagnostic screening of AD in elder patients
(Chien et al., (2019)). In our study, we used machine learning
(ML) approaches to distinguish between AD and control patients,
using acoustic and linguistic features from spontaneous speech
produced by a subject describing a picture.

The current literature on detecting AD from spontaneous
speech samples can be divided into twomain categories. One class
of systems analyzes linguistic features (lexicon, syntactic and
semantic information), while the other deals with acoustic-
dependent features. In the acoustic domain, AD patients
exhibit longer and more frequent hesitations, lower speech
and articulation rates, and longer pauses compared to control
participants in spontaneous speech tasks (Hoffmann et al.,
(2010); Szatloczki et al., (2015)). Some have attempted to
apply ML approaches to learn models that use acoustic
features to distinguish AD from control participants. Tóth
et al., (2018) learned a model for distinguishing early stage
AD patients from control patients using spontaneous speech
from a recall task. Their classification model found significant
differences in speech tempo, articulation rate, silent pause, and
length of utterance. Mirzaei et al., (2017) tried to improve on
previous models by examining temporal features (jitter, shimmer,
harmonics-to-noize ratio, Mel frequency cepstral coefficients
[MFCCs]).

Conversational transcripts contain rich information about
the speaker, such as the wealth of their vocabulary, the
complexity of their syntactic structures, and the information
and meanings they communicate. Previous research has shown
that language changes in patients who suffer from AD (Wankerl
et al., (2017); Kempler (1995))–e.g., these patients often have
difficulty naming objects within specific categories, replacing
forgotten words with pronouns and repeating certain words or

phrases (Kirshner (2012); Adlam et al., (2006); Nicholas et al.,
(1985)). This has motivated numerous research projects on
conversation samples in AD and control patients. Fraser
et al., (2016) examined picture description transcripts from
demented vs. control individuals. Subsequently, they also
analyzed acoustic features in addition to natural language,
and achieved an accuracy of 81%. They found that semantic
information was one of the best features (syntactic fluency,
MFCCs and phonation rate) for separating AD from control
participants.

Our paper is motivated by the Alzheimer’s Dementia
Recognition through Spontaneous Speech (ADReSS) challenge,
hosted by the INTERSPEECH 2020 conference (Luz et al., (2020)).
The data set provided in this challenge is a carefully curated subset
of the larger DementiaBank corpus (Becker et al., (1994)). Among
the various challenge submissions, the top-performing models
analyzed both linguistic and acoustic features, and many of
these top submissions used deep learning methods (including
some pre-trained models) to generate their results. For example,
Koo et al., (2020) used an ensemble approach with bi-modal
convolutional recurrent neural networks (cRNN), applied to a
variety of feature sets from pre-trained acoustic and linguistic
algorithms in addition to some hand-crafted features. They
achieved an accuracy of 81.25% on their classifier evaluation
and an RMSE score of 3.75. Another study by Balagopalan
et al., (2020) achieved an accuracy of 83.33% and an RMSE of
4.56 by adding a binary classification layer to a pre-trained
language algorithm developed by Google: Bidirectional Encoder
Representations from Transformers–BERT. The Sarawgi et al.,
(2020) submission applied RNNs and multi-layered perceptrons
(MLP) to various types of acoustic and linguistic features in an
ensemble approach. They also used transfer learning from the
classification models to the MMSE scores by modifying the last
layer structure, achieving an RMSE of 4.6 and an accuracy of
83.33%. Lastly, Searle et al., (2020) used linguistic features only,
with pre-trained Transformer based models, and achieved their
best performance using features computed from the full transcripts
(including both participant and interviewer speech). They obtained
a classification accuracy of 81% and an RMSE of 4.58. The
commonality among these top submissions was the use of
deep-learning methods, along with pre-trained acoustic and/or
language models.

Our study hopes to improve further by applying simple,
computationally inexpensive ML techniques to natural
language and acoustic information. In particular, we train
models that use both acoustic and language features to
distinguish AD from healthy age-matched elders and predict
their MMSE scores. Our system feeds the acoustic features into
one pipeline, and the linguistic ones in another. Each pipeline
preprocesses the features, then uses internal cross-validation to
tune the hyperparameters and select the relevant subset of
features. We use ensemble methods to combine the various
learned models, to produce models that can 1) label a speech
sample as either AD or non-AD, and 2) predict the associated
MMSE scores.
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2 METHOD

For this study, we were given a training set of 54 AD patients and
an age- and gender-matched set of 54 healthy controls (this is a
subset of the larger DementiaBank data set; see Becker et al.,
(1994)). This subset of DementiaBank contained spontaneous
speech samples of participants asked to describe the Cookie Theft
picture from the Boston Diagnostic Aphasia Exam (Goodglass
et al., (2001)). For each participant, we obtained 1) the original
recorded speech sample, 2) the normalized speech segments
extracted from the full audio sample after voice activity
detection, audio normalization and noise removal, as well as
3) the speech transcript files annotated using CHAT (Codes for
Human Analysis of Transcripts) transcription format
(MacWhinney (2017)). Additionally, some descriptive features
were given about these individuals, including age, gender, binary
class label (AD/non-AD; the target for the classification task), and
their MMSE score (which we try to predict in the regression task).
The MMSE has a maximum score of 30, and lower MMSE scores
are generally associated with progressively more severe dementia.
The challenge organizers withheld a test set containing data from
24 AD and 24 control participants for final evaluation. For further
details of this data set, we refer the reader to Luz et al., (2020).

We considered a set of possible base learners, each over a
subset of the features–the (1), (2), and (3) mentioned above. We
used internal 5-fold cross validation to identify which of these
base learners was best. Due to the size of our data, we chose to use
a 5-fold CV procedure. 10-fold CV or Leave-one-out CV
procedure would result in small partitions, leading to possible
overfitting (low bias, higher variance). To ensure consistent and
reliable comparison between our models, we defined and used a
common set of folds that were balanced in terms of class labels (or
MMSE scores) as well as gender. For each model, we evaluated
performance metrics (average accuracy for classification, and
average RMSE for regression) based on these test folds, as well
as on the final hold-out test set.

2.1 Language and Fluency Features
The organizers provided transcripts that were annotated using the
CHAT coding system (MacWhinney (2017)). First we extracted
only the participant’s speech from these transcripts (removing the
interviewer’s content). Then, using the CLAN (Computerized
Language Analysis) program for processing transcripts in the
CHAT format, we computed the following set of global syntactic
and semantic features for each transcript: type-token ratio
(TTR)–the number of unique words divided by total number of
words; mean length of utterance (MLU), where an utterance is a
speech fragment beginning and endingwith a clear pause; number of
verbs per utterance; percentage of occurrence of various parts of
speech (nouns, verbs, conjunctions, etc.); number of retracings (self-
corrections or changes); and number of repetitions. We also
computed a number of fluency features, including percent of
broken words, part-word and whole-word repetitions, sound
prolongations, abandoned word choices, word and phrase
repetitions, filled pauses, and non-filled pauses. In total, we
computed 62 such informative summary features for each
transcript.

2.2 N-Gram Features
We processed the raw (unannotated) transcripts to compute bag-
of-words and bigram features. First, we standardized the transcripts
by converting them into a list of word tokens. Next, we used the
WordNet lemmatizer (Miller (1998)) to find and replace each word
with the corresponding lemma; for example, words like “stands”,
“standing” and “stood”were all replaced by the common root word
“stand”. Finally, we removed stopwords from each transcript,
where stopwords are highly common (and presumably
uninformative) words that may add noise to the data (such as
“I”, “am”, “was”, etc.), using a predefined stopwords list from the
Python natural language toolkit (NLTK) package.

Next, we used the standardized transcripts to compute bag-of-
words vectors (using words seen in the training set only)–that is, a
vector of 514 integers for each transcript, where the kth value is
the number of times the kth word occurred–and normalized these
vectors with the Term Frequency-Inverse Document Frequency
(TF-IDF) function, which is a normalization procedure that
reflects how important a word is to a document in a
corpus–effectively penalizing words that occur frequently in
most of the documents in the corpus. For example, in our
case the word “boy” might occur frequently in all transcripts,
so it may not be very informative. Finally, we also computed
bigram vectors in a manner similar to bag-of-words–where each
bigram is a pair of words that appeared adjacent to one another.
We found a set of 2,810 bigrams.

2.3 Acoustic Features
Using the speaker timing information provided in the transcripts,
we extracted the participants’ utterances (removing the
interviewer’s voice) from the audio recordings, for a total of
1,501 participant utterances from the training set, and 592 from
the test set. We then normalized the audio volume across all
speech segments. We computed four different sets of features
from each audio segment using OpenSMILE v2.1 (Eyben et al.,
(2010)). Note that our overall learner will consider various base-
learners, each running on one of these feature sets.

(FeatureSet#1) The AVEC 2013 (Valstar et al., (2013)) feature
set includes 2,268 acoustic features including 76 low level descriptor
(LLD) features and their statistical, regression and local minima/
maxima related functionals. The LLD features include energy,
spectral and voicing related features; delta coefficients of the
energy/spectral features, delta coefficients of the voicing related
LLDs and voiced/unvoiced duration based features.

(FeatureSet#2) The ComParE 2013 (Schuller et al., (2013))
feature set includes energy, spectral, MFCC, and voicing related
features, logarithmic harmonic-to-noize ratio (HNR), voice quality
features, Viterbi smoothing for F0, spectral harmonicity and
psychoacoustic spectral sharpness. Statistical functionals are also
computed, leading to a total of 6,373 features.

(FeatureSet#3) Our third feature set consists of the following
three feature sets. The emo_large (Eyben et al., (2010)) feature set
consists of cepstral, spectral, energy and voicing related features,
their first and second order delta coefficients as LLDs; and their
39 statistical functionals. The functionals are computed over
20 ms frames in spoken utterances. This produced 6,552
acoustic features across the utterances. The Jitter-shimmer
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feature set is a subset of INTERSPEECH 2010 Paralinguistic
Challenge (Schuller et al., (2010)) feature set, consisting of three
pitch related LLDs and their delta coefficients. We also computed
19 statistical functionals of the LLDs on the voiced sections of the
utterances, resulting in 114 features. Finally, we extracted seven
speech and articulation rate features by automatically detecting
syllable nuclei (De Jong and Wempe (2009)), and used a script
from the software program Praat to detect peaks in intensities
(dB) followed by sharp dips. We also calculated other features,
such as words per minute, number of syllables, phonation time,
articulation rate, speech duration and number of pauses for each
speech sample (Chakraborty et al., (2020)).

(FeatureSet#4) We computed the MFCC 1–16 features and
their delta coefficients from 26 Mel-bands, which uses the fast
Fourier transform (FFT) power spectrum. The frequency range of
the Mel-spectrum is set from 0 to 8 kHz. Inclusion of statistical
functionals resulted in 592 features. This feature set is a subset of
AVEC 2013 feature set (Valstar et al., (2013)).

We also added age and gender of the participants to each set of
features.

2.4 Language-Based Models
Given our two sets of linguistic features above (Sections 2.1 and
2.2), we explored various dimension reduction techniques and base
learning algorithms to find the best performing pipeline. The
dimension reduction techniques include Principal Component
Analysis (PCA), Latent Semantic Analysis (LSA), and univariate
feature selection using ANOVA F-values. The base learning
algorithms explored for the classification task are logistic
regression (LR), random forest (RF), support vector machine
(SVM), and extreme gradient boosting (XGB). For the regression
task, the regression versions of the same algorithms are trained
(except logistic regression is replaced by linear regression). Internal
5-fold cross-validation was used to tune the hyperparameters for
eachmodel based on accuracy. The hyperparameters explored were:

Dimension reduction: For classification models, dimension
reduction with PCA using {10, 20, 30, 50} components, and LSA
using {100, 200, 500} components; for regression models,
dimension reduction with PCA using {20, 30, 50} components,
and LSA using {200, 500, 800} components.

Models: SVM (regularization parameter C: {0.1, 1, 10, 100,
1,000}, kernel: {linear, RBF, polynomial}); LR (regularization
parameter C: 20 values spaced evenly on a log scale in the
range [10− 4, 104], loss function: {L1, L2}); RF (number of
trees: {100, 300, 500, 700}, maximum features at each split: {5,
15, 25, 35, 45, 55}, minimum samples at leaf node: {1, 2, 3, 4}); and
XGB (maximum depth: {5, 6, 7, 8}, learning rate: {0.02, 0.05, 0.07,
0.1}, number of trees: {50, 100, 200, 500, 1,000}). The same
hyperparameters were explored for the regression models as
well (with the exception of replacing LR with linear regression).

Our internal cross-validation found the best-performing
language-based classification model, which consisted of the
following steps:

Step1: 5-component PCA transformation of the dense
language and fluency features described in Section 2.1 (after
standardizing using z-scores);

Step2: 50-component LSA transformation of the sparse
unigram and bigram features described in Section 2.2 (after
standardizing using TF-IDF transform); and
Step3: L1-regularized logistic regression.

The best language-based regression model involved the
following:

Step1: 30-component PCA transformation of the dense
language and fluency features described in Section 2.1 (after
standardizing using z-scores);
Step2: 100-component LSA transformation of the sparse
unigram and bigram features described in Section 2.2 (after
standardizing using TF-IDF transform); and
Step3: Random Forest Regressor, using 100 trees, minimum of
four instances at each leaf node, and 25 features considered for
each split.

2.5 Acoustic Models
All acoustic features were real values and were therefore
standardized using z-scores. We used PCA to reduce the
dimensionality of the features sets. For FeatureSet#1 and
FeatureSet#2, we used PCA, and kept the minimum number of
features capable of retaining 95% of the variance. In case of
FeatureSet#3 and FeatureSet#4, the number of principals were
determined through internal 5-fold cross-validation. Therefore, the
dimension of FeatureSet#1 is reduced from 2,268 to 700,
FeatureSet#2 from 6,373 to 1,100, FeatureSet#3 from 6,552 to
1,000 and FeatureSet#4 from 592 to 50. Next, we selected the best
50 principal components from FeatureSet#1, and the best 70 from
FeatureSet#3 applying univariate feature selection method based
on ANOVA F-value between the label and each feature. For
FeatureSet#2, we calculated feature importance weights using a
decision-tree regression model, and selected only the features with
importance weight higher than the mean.

After this pre-processing stage, our system fed these audio
features to various machine-learning algorithms, that each identify
patterns of features that can distinguish dementia patients from
healthy controls (the classification task), and can compute a subject’s
MMSE score (the regression task). We explored several learning
algorithms, including Adaboost, XGB, RF, gradient boosting (GBT),
decision trees (DT), hidden Markov model (HMM) and neural
network (NN). Internal 5-fold cross-validation was performed to
tune the hyperparameters of the classifiers and regressors. The
predictions were made in two steps. In the first step, the
classifiers and regressors were trained and tested with acoustic
features, age and gender to predict whether the speech segment
was uttered by a health control or an AD patient and to predict that
subject’s MMSE score. Next, weighted majority vote classification
was performed to assign each subject a label of health control or AD,
based on the majority labels of the segment level classification. The
predicted MMSE scores on all the segments of one subject were
averaged to calculate the final MMSE score of that subject. The best
performing classifiers on acoustic data are the following:

(1) Neural network with one hidden layer, trained on
FeatureSet#1.
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(2) AdaBoost Classifier with 50 estimator and logistic regression
as base estimator, trained on FeatureSet#4.

(3) Adaboost with 100 estimators and DT as the base estimator
trained on FeatureSet#3.

The three regressors with the lowest RMSE were:

(1) Gradient boosting regressor, trained on FeatureSet#4.
(2) Decision tree with number of leaves 20, trained on

FeatureSet#2.
(3) Adaboost regressor trained on FeatureSet#3 with 100

estimators.

2.6 Ensemble Methods
After obtaining our best-performing acoustic and language-based
models, we computed a weighted majority-vote ensemble meta-
algorithm for classification. We chose the three best-performing
acoustic models along with the best-performing language model,
and computed a final prediction by taking a linear weighted
combination of the individual model predictions. The weights
assigned to each model were proportional to that model’s mean
cross-validation accuracy, such that the best performing model is
given the highest weight in the final prediction. For regression, we
also computed an unweighted averaging of our best language and
acoustic model predictions for MMSE scores.

3 RESULTS

3.1 Classification
Table 1 presents the results for the classification task. The model
that obtained the highest average cross-validation accuracy
(81% ± 1.17%) is a weighted-majority-vote ensemble of the
best language-based model and three of the best acoustic-based
models. The second highest accuracy (80% ± 0.00%) was

obtained by the language-based logistic regression. However, a
McNemar test reveals that these two models do not exhibit a
statistically significant difference in performance (McNemar test
statistic � 4.0, p > 0.05). This is also evident by the performance
of these two models on the final held-out set, where the language-
based logistic regression gives the highest accuracy (85%) and the
weighted-majority-vote ensemble gives a slightly lower accuracy
(83%). Using McNemar’s test to compare these two models on
the held-out test set, we obtain a test statistic of 3.0, with p > 0.05,
indicating that the performance difference between these models
is not statistically significant.

Note that our ensemble model, which uses only acoustic
features, performs significantly better than the “baseline model”
(provided by the organizers), which also uses acoustic features only.

3.2 MMSE Prediction
Table 2 shows the RMSE of various regression models; columns 2
and 3 show the average RMSE and R2 scores over the five cross-
validation folds, and columns 4 and 5, on the hold-out test set
(provided by the organizers of the challenge). These results show
that the language-based model obtains the best RMSE of 6.43 on
the cross-validation set and 5.62 on the hold-out set. The
combined language-acoustic model did not perform as well as
the standalone language-based model, with an average RMSE of
6.83 on the cross-validation set and 6.12 on the hold-out set.

Further, the Wilcoxon test between the RMSEs of the two
best models (best acoustic + best language-based combination
vs. best stand-alone language-based), returns a test statistic of
66.0 with p < 0.05 on the hold-out set, and a test statistic of
1,375.0 with p < 0.05 on the cross-validation set. This means we
cannot reject the claim that these two models are significantly
different in performance.

We also report the coefficient of determination (R2) for all our
models: the best R2 was 0.17 on the validation folds and 0.14 on the
held-out test set. These low numbers are expected, given the
relatively small size of this INTERSPEECH challenge data set and

TABLE 1 |Results of our best performing classification models distinguishing AD from non-AD subjects. The “Baseline (Acoustic)”model is described in Luz et al. (2020). The
right-most column shows accuracy on the held-out test set of 48 subjects (24 AD and 24 non-AD). The rest of the table lists model performance using 5-fold cross-
validation on the training set of 108 subjects (54 AD and 54 non-AD).

Classifiers Class Precision Recall F1 score Accuracy Accuracy (hold-out
set)

AD 1.0 0.60 0.75
Logistic regression (NLP) HC 0.71 1.00 0.83 80% ± 0.00% 85%

OVR 0.86 0.80 0.79
AD 0.68 0.84 0.75

SVM (NLP) HC 0.79 0.60 0.68 72% ± 1.85% 73%
OVR 0.73 0.72 0.72
AD 0.74 0.96 0.83

Majority vote (NLP + Acoustic) HC 0.94 0.66 0.78 81% ± 1.17% 83%
OVR 0.84 0.81 0.81
AD 0.71 0.78 0.74

Majority vote (Acoustic) HC 0.76 0.68 0.72 73% ± 1.36% 65%
OVR 0.73 0.73 0.73
AD 0.57 0.52 0.54

Baseline (Acoustic) HC 0.56 0.61 0.58 57% 63%
OVR 0.57 0.57 0.56

AD, Alzheimer’s dementia; HC, Healthy control; OVR, Overall rating.
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the complexity of the condition. Interpreting this statistic in an
absolute sense is problematic, especially as we did not find any other
study using the same data set that reported this metric. We note that
models based on language features achieved the bestR2 values, which
further supports our claim that language features are very important
for this task.

4 DISCUSSION

We investigated a variety of ML models, using language and/or
acoustic features, to identify models that performed well at using
speech information to distinguish AD from healthy subjects, and
to estimate the severity of AD. Our results, of over 85% accuracy
for classification and approximately 5.6 RMSE for regression,
demonstrate the promise of using ML for detecting cognitive
decline from speech. In our investigation, we explored multiple
different combinations of features and ML algorithms; in the
future, it would be interesting to delve deeper into the behavior of
our best models, to determine the contribution of individual (or
groups of) features to the model’s ability to distinguish AD
patients from healthy controls. Further, although we have
currently used the full set of standard stopwords for removing
noise in our language models, it may be worthwhile to see
whether using a reduced set of stopwords (for example,
preserving pronouns) might be more advantageous.

Our current best-performing models outperform recent results
reported in the literature and provide evidence that, for discriminating
between subjects with AD vs. healthy controls, features based on
language (semantics, fluency and n-grams) are very useful. Compared
to other top ranked results, our methods do not involve complex,
computationally expensive algorithms. Instead, we used an ensemble
approach with simple models to produce competitive results.
Furthermore, a weighted majority vote of acoustic and language
based models demonstrates competitive performance, implying that
a combination of acoustic and language features also holds potential.
Finally, comparing only acoustic models, we find that accuracy
improves significantly compared to the baseline model (Luz et al.,
(2020)) for both the classification and regression tasks.

Our competitive performance, obtained using simple feature
engineering along with classical machine learning algorithms,
indicates that putting together an efficient machine learning
pipeline from basic building blocks can achieve nearly state-of-
the-art results for the learning tasks explored in this study. This result
suggests that, for detecting AD from speech, it may be useful to
explore traditional feature engineering and machine learning tools,

especially in a limited data setting, as this will additionally provide for
better interpretability and reproducibility compared to more
complex deep learning based methods.
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TABLE 2 | Results of our best performing regression models predicting a subject’s MMSE score (ranging from 0 to 30, with lower values indicating more severe dementia).
The ‘Baseline (Acoustic)’model is described in Luz et al. (2020). As in Table 1, the columns on the right show RMSE and R2 on the held-out test set of 48 subjects (24 AD
and 24 non-AD). The middle columns list RMSE and R2 using 5-fold cross-validation on the training set of 108 subjects (54 AD and 54 non-AD).

Regressors RMSE R2 RMSE (hold-out set) R2

Random forest (NLP) 6.43 ± 0.18 0.17 5.62 0.14
Gradient boosting (acoustic) 6.89 ± 0.17 0.06 6.67 −0.21
Random forest (NLP) + gradient boosting (acoustic) 6.66 ± 0.18 0.13 6.01 0.02
Majority vote (all models) 6.85 ± 0.16 0.10 6.12 −0.02
Baseline (acoustic) 7.30 − 6.14 −
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Dementia, a prevalent disorder of the brain, has negative effects on individuals and

society. This paper concerns using Spontaneous Speech (ADReSS) Challenge of

Interspeech 2020 to classify Alzheimer’s dementia. We used (1) VGGish, a deep,

pretrained, Tensorflow model as an audio feature extractor, and Scikit-learn classifiers

to detect signs of dementia in speech. Three classifiers (LinearSVM, Perceptron, 1NN)

were 59.1% accurate, which was 3% above the best-performing baseline models

trained on the acoustic features used in the challenge. We also proposed (2) DemCNN,

a new PyTorch raw waveform-based convolutional neural network model that was

63.6% accurate, 7%more accurate then the best-performing baseline linear discriminant

analysis model. We discovered that audio transfer learning with a pretrained VGGish

feature extractor performs better than the baseline approach using automatically

extracted acoustic features. Our DepCNN exhibits good generalization capabilities. Both

methods presented in this paper offer progress toward new, innovative, and more

effective computer-based screening of dementia through spontaneous speech.

Keywords: dementia detection, prosodic analysis, affective computing, transfer learning, convolutional neural

network, machine learning, speech technology, mental health monitoring

1. INTRODUCTION

One of the most important social problems in developed countries is the constant rise of the
percentage of the elderly population. A major health issue affecting this segment of population
is the appearance Alzheimer’s dementia (AD), affecting around 50 million people worldwide and
expected to grow three times over the next 50 years (Baldas et al., 2010).

Dementia is estimated to be responsible for 11.2% of years lived with disability in people over 60
years of age, compared with 9.5% for stroke, 5.0% for cardiovascular disease, and 2.4% for cancer.
In Europe, the prevalence of AD increases exponentially with age. The incidence also increases with
age, although with a plateau in extreme old age (Todd and Passmore, 2009).

Comorbidity of several physical and mental health disorders was studied in relation to age
and socioeconomic deprivation. The presence of mental health disorders increased as the number
of physical morbidities increased, and was much greater in more deprived than in less deprived
people. Physical-mental health comorbidity is very common, with depression and painful disorders
as key comorbidities, and with dementia seen in a small reverse gradient (Barnett et al., 2012).

There is a significant relation between old-age depression and subsequent dementia in patients
over the age of 50. This supports the hypothesis of old-age depression being a predictor, and
possibly a causal factor of subsequent dementia (Buntinx et al., 1996).
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Speech is a well-established early indicator of cognitive deficits
including dementia (Bucks et al., 2000). Speech processing
methods offer great potential to fully automatically screen for
prototypic indicators in near real time, and they can be used as
an additional information source when diagnosing Alzheimer’s
disease (Weiner et al., 2016).

Dementia was detected in speech with voice activity detection
and speaker diarization followed by extraction of acoustic
features. The unsupervised system achieved up to 0.645
unweighted average recall (UAR). Authors detected dementia
using speech segments as short as 2.5 min, but achieved the
best results using segments in the range between 10 and 15 min
(Weiner et al., 2018).

Other AD detection approaches combined extraction of
acoustic and linguistic features (Speech to Text and Human
Transcriptionist), and applied a one-way ANOVA for feature
selection. The reported binary classification accuracy on brief
(less than 10 min) spontaneous speech samples reached 88%,
with recall of 0.920 (Jarrold et al., 2014).

We target the classification task of AD Recognition through
Spontaneous Speech (ADReSS Challenge 2020). The AD
classification task consists of creating binary classificationmodels
to distinguish between AD and non-AD patient speech on
the ADReSS dataset. The authors of that challenge prepared
the dataset and provided five baseline, machine learning
classification models, that used both acoustic and linguistic
features for the detection of AD in spontaneous speech. Their
acoustic approaches were based on emobase (Eyben et al.,
2010), ComParE 2013 (Eyben et al., 2013), Multi-resolution
Cochleagram features (MRCG) proposed by Chen et al. (2014),
the Geneva minimalistic acoustic parameter set (eGeMAPS) by
Eyben et al. (2015), and minimal feature set (Luz, 2017). The best
baseline accuracy was achieved by linear discriminant analysis
(LDA) model using ComParE features.

In this paper, we propose two methods for speech-based
screening of AD. Our models perform significantly better than
the ADReSS challenge baseline for classification task, as evaluated
on the same, official ADReSS challenge dataset.

2. METHODS

2.1. Dataset
The dataset for the 2020 ADReSS challenge consists of speech
recordings elicited for the Cookie Theft picture description task
from the Boston Diagnostic Aphasia Exam (Goodglass et al.,
2001). These data were balanced by the organizers in terms of
age, gender, and the distribution of labels between the training
and test partitions in order to minimize the risk of bias in
the prediction tasks. The dataset from 78 non-AD subjects,
and 78 AD subjects, was labeled for binary classification and
regression tasks. The labels for the binary classification include
Alzheimer’s dementia and healthy control, whereas the labels for
the regression task are Mini-Mental State Examination (MMSE)
scores (Folstein et al., 1975), which provide a means for dementia
diagnosis based on linguistic tests. For more details regarding the
dataset, including the segmentation and voice activity detection

algorithm, we refer the reader to the ADReSS challenge baseline
paper (Luz et al., 2020).

2.2. VGGish Model and Scikit-Learn
Classifiers
We extended the method of Pons Puig et al. (2018) and
conducted two-step classification experiments to detect cognitive
impairment due to AD (as shown in Figure 1). This consisted of
a two-stage classification process, where a classifier was trained
with features to predict whether a speech segment was uttered by
a non-AD or AD patient, and majority vote (MV) classification,
which assigned each subject an AD or non-AD label based on the
majority labels classification.

2.2.1. Feature Extraction

We used VGGish (Hershey et al., 2017), a deep, pretrained
Tensorflow (Abadi et al., 2016) model as a feature extractor.
VGGish is an audio embedding produced by training a modified
VGGNet model (Simonyan and Zisserman, 2014) to predict
video tags from the Youtube-8M dataset (Abu-El-Haija et al.,
2016). Principal component analysis (PCA) (Cao et al., 2003)
was used for dimensionality reduction, with PCA set to 128.
VGGish model converted audio input features into high-level
128-D embedding, which was fed as an input to a downstream
classification model. The features were extracted from non-
overlapping audio patches of 0.96 s, where each audio patch
covered 64 mel bands and 96 frames of 10ms each.

2.2.2. Classification Methods

We performed classification experiments using five different
methods, namely support vector machines (SVM, with a radial
basis function kernel and scaling gamm), linear support vector
machines (LSVM), perceptron, multi-layer perceptron classifier
(MLP, with 20 hidden layers, using a stochastic gradient descent
solver, 600 iterations, learning rate of 0.001), and nearest
neighbor (1NN, for KNN with K = 1 and cosine metric).

2.3. DemCNN—Custom Convolutional
Neural Network
Current deep convolutional neural network (CNN) performs
considerably better than the previous state-of-the-art
(Krizhevsky et al., 2012). Transfer learning was often used
in medical image analysis (Cheplygina et al., 2019). Applying
transfer learning on a wide range of tasks nearly always gave
better results (Kornblith et al., 2019). CNN-based methods
have been successfully employed to medical imaging tasks
and achieved human-level performance in classification tasks
(Esteva et al., 2019). CNNs have proven very effective in image
classification and show promise for audio (Hershey et al., 2017).
We extend the audio classification work presented in Wołk, K.,
and Wołk (2019) and Chlasta et al. (2019).

2.3.1. Classification Method

We introduce DemCNN, a custom PyTorch (Paszke et al.,
2019) CNN. We designed and implemented a custom sequential
architecture consisting of six Conv1D layers using ReLU
activation function, batch normalization and dropout, with
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FIGURE 1 | Two-stage architecture: VGGish model and Scikit-learn classifiers.

FIGURE 2 | Architecture diagram of DemCNN, a custom PyTorch convolutional neural network for speech classification.

the final (seventh) output layer being a dense layer. The
output layer had 2 nodes (num_labels), which matched the
number of possible classifications outputs. Figure 2 presents a
more detailed architecture diagram of our custom CNN for
speech classification.

We unpacked a byte-string for each file into a 1D numpy array
of numbers that could be analyzed by the CNN. Subsequently,
the dataset was downsampled with a low-pass filter (with
downsampling factors of 4, 4, 2).

We performed a two-step training of our CNN model using
a cross-entropy loss function. We fine-tuned learning rate, the
number of training cycles, and the number of training iterations
per cycle. We set the first (training) batch size to 32, and the
second (deployment) batch size to 2. The selection of the second
learning rate for each step of our method was automated using a
custom function operating on standard lr_finder. We trained the
classifier for 2 or 4 epochs.

3. EXPERIMENTS AND RESULTS

All experiments were implemented in Python using Scikit-
learn (Pedregosa et al., 2011), Tensorflow (Abadi et al.,
2016), and PyTorch (Paszke et al., 2019) on the Google
Colaboratory Platform (Bisong, 2019). The platform uses Jupyter
Notebook standard that facilitates exchange of source code and
reproducibility of results. The source code and accompanying
results are available on GitHub.1

The ADReSS development data were split into train and test
sets by randomly assigning 80% of the speakers to the train set

1Code: https://github.com/KarolChlasta/ADReSS-Challenge2020

and 20% to the test set. Results obtained for different classifier
setups are summarized in Table 1.

Three models we developed using the first approach (VGGish
+ 128 PCA + linearSVM/perceptron/1NN) achieved 59%
accuracy in our test set. Employing the same setup with SVN
model, we achieved 55% accuracy. The best-performing baseline
SVM models using MRCG features proposed by (Chen et al.,
2014) and the ComParE 2013 features (Eyben et al., 2013)
achieved lower accuracy of 53%. Interestingly, our 1NN model
achieved better results than the best-performing baseline 1NN
model using ComParE features (59% against 57%).

Our custom raw waveform DemCNN system achieved the
best classification accuracy of 63.6%. The model classified
14 speakers correctly, eight incorrectly, and proved the most
effective in distinguishing between AD and non-AD speech
samples on the full wave enhanced ADReSS audio dataset. This
result was 7% better then the best baseline classification accuracy
on the ADReSS training set (Luz et al., 2020).

The final results for our custom audio DemCNN model
were submitted to the 2020 ADReSS Challenge organizers after
retraining the classifier on the full ADReSS training set, and
predicting on the full ADReSS test set (see Table 2 for results
and the accompanying hyperparameters). Our model performed
slightly better (1%) on the test partition than the best baseline
LDA model trained on automatically extracted ComParE feature
set (Eyben et al., 2013).

4. DISCUSSION

The main limitations of the AD field are poor standardization,
limited comparability of results, and a degree of disconnect
between study aims and clinical applications (de la Fuente Garcia
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TABLE 1 | Summary of classification results on AD Recognition through Spontaneous Speech (ADReSS) training set.

Model type Precision Recall F1 score Accuracy Baseline accuracy

SVM 0.556 0.454 0.500 0.545 0.565 (SVM + Minimal)

LinearSVM 0.600 0.545 0.571 0.591 0.565 (SVM + Minimal)

Perceptron 0.600 0.545 0.571 0.591 0.565 (LDA + ComParE)

MLP 0.429 0.273 0.333 0.454 0.565 (LDA + ComParE)

1NN 0.600 0.545 0.571 0.591 0.574 (1NN + ComParE)

DemCNN 0.692 0.692 0.692 0.636 0.565 (LDA + ComParE)

Our approaches (VGGish + 128 Principal component analysis [PCA] and custom audio convolutional neural network [DemCNN]) vs. the best baseline accuracy on acoustic features.

The bold values indicate best results achieved on ADReSS training dataset.

TABLE 2 | The results of Alzheimer’s dementia (AD) classification task on AD Recognition through Spontaneous Speech (ADReSS) test set.

Approach Class Precision Recall F1 Score Accuracy

DemCNN (Learning rate = 0.2; Non-AD 0.528 0.792 0.633 0.542

Cycles = 4.4; Lengths = 8.8) AD 0.528 0.792 0.389 0.542

DemCNN (Learning rate = 0.1; Non-AD 0.625 0.625 0.625 0.625

Cycles = 2.2; Lengths = 8.8) AD 0.625 0.625 0.625 0.625

Baseline acoustic features Non-AD 0.670 0.500 0.570 0.620

(LDA + ComParE) AD 0.600 0.750 0.670 0.620

Our approach (custom audio convolutional neural network [DemCNN]) vs. the best baseline on acoustic features (linear discriminant analysis [LDA] + CompParE). The bold values

indicate best results achieved on ADReSS test dataset.

et al., 2020). Our two methods are attempting to close some of
these gaps.

Data scarcity has hindered research into the relationship
between speech and dementia. Recently, the community has
turned to transfer learning (Yosinski et al., 2014), as a
solution for a wide range of machine learning tasks for which
labeled data are scarce. Selecting the right pretrained model as
audio feature extractor allows to rapidly prototype competent
speech classifiers.

In our first approach, we used a standard VGGish (Hershey
et al., 2017), that is a popular deep audio embedding model
trained on Youtube-8M video dataset (Abu-El-Haija et al., 2016).
In our experiments to detect subtle changes in pathological
speech, we confirmed that automatic extraction of acoustic
features (Eyben et al., 2010) performs similarly to using a
pretrained deep audio embedding model for feature extraction.

Similarly to us, Syed et al. (2020) also used VGGish deep
acoustic embeddings in the ADReSS Challenge. They used
other types of feature aggregation methods: (a) Fisher Vector
encodings (FVs) and (b) Bag-of-Audio-Words (BoAW). Both
achieved satisfactory results. Their VGGish and FVs model
overperformed ours (59.1%) with 62.96% accuracy on the train
partition, whereas their VGGish and BoAWmodel achieved even
higher accuracy of 75%.

Our second method, the DemCNN model, for which we
only performed a basic hyperparameter tuning, improved the
classification results further. Moreover, the results achieved
by DemCNN were similar in training and testing (63.6 vs.
62.5%), which is a good indicator of the lack of overfitting

during the training process. This can be explained by a larger
dropout defined in layers 5 and 6 of the network. An expected
consequence of that is a good generalization capacity of our
DemCNN model, which would positively impact the overall
performance in clinical practice, when working with new data.

A similar approach to our DemCNN in the ADReSS Challenge
was proposed by Cummins et al. (2020). Their raw segment
based End-to-End CNN had four convolution layers, with
the first convolution layer used to model voice source-related
information or vocal tract information, such as formants. This
approach achieved 71.3% accuracy on the training partition,
but the reported result on the test partition was only 66.7%.
Although this result is 4% better than our DemCNN, an expected
consequence of a large difference between the results in training
and test partitions is possibly a worse generalization capability of
the network when working with new data.

An interesting opportunity for future research would be to
use a combination of acoustic and linguistic features in detecting
dementia. The latter approach, derived from automatic speech
recognition (ASR) output, or from manual transcripts, had
already been proven to detect dementia (Weiner et al., 2017),
but relatively small gains were found when fusing acoustics and
linguistics approaches (Cummins et al., 2020; Rohanian et al.,
2020).

ADReSS Challenge 2020 helped to establish that although
the linguistic systems outperforms the acoustic systems in
AD (Cummins et al., 2020; Yuan et al., 2020), this result
is unsurprising given that a human observer generated the
transcripts manually, and they contain considerably fewer
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sources of noise than the audio recordings. As a result, such
systems would be difficult to implement in clinical practice.

An option to overcome that would be to combine acoustic
information with linguistics systems based on transcripts
generated from ASR systems. This idea would introduce
automation, but also increase the complexity, and dependency on
errors rate for ASR in a given language.

It may also be useful for future work to gather a large dataset
combining spontaneous speech samples for several pathologies
(starting with depression and dementia, especially for old-age
patients) to train an improved DepCNN to distinguish different
types of disorders in pathological speech.

Finally, the DementiaBank’s Pitt corpus (Jost and Grossberg,
1995) is large enough for considering experiments with other,
custom, or off-the-shelf deep neural network architectures.

5. CONCLUSION

In this paper, we proposed and compared two acoustic-based
systems: VGGish, a pretrained Tensorflowmodel as audio feature
extractor and Scikit-learn classifiers with DemCNN, a custom
raw waveform based CNN.

In the first approach, we selected the VGGish model as feature
extractor and PCA for dimensionality reduction. This approach
achieved the accuracy of 59.1%, 3% better than the best baseline
accuracy achieved on the train partition with acoustic feature
extraction for the respective classification algorithms.

In the second approach, we presented DemCNN, our
custom PyTorch audio CNN to detect signs of dementia in
spoken language. According to the experiments, the proposed
architecture achieved promising performance and demonstrated
the effectiveness of our method, as well as good generalization
capabilities. DemCNN overperformed the best baseline accuracy
of LDA model (ComParE feature set) by 7% on the ADReSS
training set (accuracy of 63.6%), and 1% on the test ADReSS
test set (accuracy of 62.5%). Our DemCNN and End-to-End
Convolutional Neural Network (Cummins et al., 2020) produced
the strongest performance of the acoustic systems on the
ADReSS 2020 classification task, highlighting the benefits of
self-learning features.

To conclude, we demonstrated a proof-of-concept, and
applicability of (1) audio transfer learning for feature extraction,
(2) DemCNN, a custom raw waveform based CNN in detecting
dementia through spontaneous speech. We demonstrated that
(1) audio transfer learning with a pretrained VGGish feature
extractor performs better then the baseline approach (Luz
et al., 2020) using automatically extracted acoustic features, and
that these are relatively minor improvements. Our DemCNN
method (2) overperforms our VGGish method (1) by 4%
and the baseline on the test partition (Luz et al., 2020) by
roughly 1%.

Both approaches presented are active attempts to close
the gaps in standarization of automatic AD detection, and
to improve the overall comparability of results to better
embed computational speech technology into clinical practice.
They offer simplicity, easy deployment, and they are language
independent, which could result in a wide adoption and
improved accessibility in a short space of time.

This contribution is especially important now, in the time of
current COVID-19 pandemic, when the need for a remote digital
health assessment tool is greater than ever for the elderly and
other vulnerable populations.
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Recognition of Alzheimer’s Dementia
From the Transcriptions of
Spontaneous Speech Using fastText
and CNN Models
Amit Meghanani, C. S. Anoop* and Angarai Ganesan Ramakrishnan

MILE Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India

Alzheimer’s dementia (AD) is a type of neurodegenerative disease that is associated with a
decline in memory. However, speech and language impairments are also common in
Alzheimer’s dementia patients. This work is an extension of our previous work, where we
had used spontaneous speech for Alzheimer’s dementia recognition employing log-Mel
spectrogram and Mel-frequency cepstral coefficients (MFCC) as inputs to deep neural
networks (DNN). In this work, we explore the transcriptions of spontaneous speech for
dementia recognition and compare the results with several baseline results. We explore
two models for dementia recognition: 1) fastText and 2) convolutional neural network
(CNN) with a single convolutional layer, to capture the n-gram-based linguistic information
from the input sentence. The fastText model uses a bag of bigrams and trigrams along with
the input text to capture the local word orderings. In the CNN-based model, we try to
capture different n-grams (we use n � 2, 3, 4, 5) present in the text by adapting the kernel
sizes to n. In both fastText and CNN architectures, the word embeddings are initialized
using pretrained GloVe vectors. We use bagging of 21 models in each of these
architectures to arrive at the final model using which the performance on the test data
is assessed. The best accuracies achieved with CNN and fastText models on the text data
are 79.16 and 83.33%, respectively. The best root mean square errors (RMSE) on the
prediction of mini-mental state examination (MMSE) score are 4.38 and 4.28 for CNN and
fastText, respectively. The results suggest that the n-gram-based features are worth
pursuing, for the task of AD detection. fastText models have competitive results when
compared to several baseline methods. Also, fastText models are shallow in nature and
have the advantage of being faster in training and evaluation, by several orders of
magnitude, compared to deep models.

Keywords: fastText, convolutional neural network, Alzheimer’s, dementia, mini-mental state examination

1 INTRODUCTION

Dementia is a syndrome characterized by the decline in cognition that is significant enough to
interfere with one’s independent, daily functioning. Alzheimer’s disease contributes to around
60–70% of dementia cases. Toward the final stages of Alzheimer’s dementia (AD), the patients lose
control of their physical functions and depend on others for care. As there are no curative treatments
for dementia, the early detection is critical to delay or slow down the onset or progression of the
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disease. The mini-mental state examination (MMSE) is a widely
used test to screen for dementia and to estimate the severity and
progression of cognitive impairment.

AD affects the temporal characteristics of spontaneous speech.
Changes in the spoken language are evident even inmildADpatients.
Subtle language impairments such as difficulties in word finding and
comprehension, usage of incorrect words, ambiguous referents, loss
of verbal fluency, speaking too much at inappropriate times, talking
too loudly, repeating ideas, and digressing from the topic are
common in the early stages of AD (Savundranayagam et al.,
2005) and they turn extreme in the moderate and severe stages.
Szatlóczki et al. (2015) show that AD can be detected with the help of
a linguistic analysis more sensitively than with other cognitive
examinations. Mueller et al. (2018b) analyzed the connected
language samples obtained from simple picture description tasks
and found that the speech fluency and the semantic content features
declined faster in participants with early mild cognitive impairment.
The language profile of AD patients is characterized by “empty
speech,” devoid of content words (Nicholas et al., 1985). They tend to
use pronouns without proper noun references and indefinite terms
like “this,” “that,” and “thing” more often (Mueller et al., 2018a).
These results motivate us to believe that modeling the transcriptions
of the narrative speech in the cookie-theft picture description task
using n-gram language models can help in the detection of AD and
prediction of MMSE score.

In this work we address the AD detection and MMSE score
prediction problems using two natural language processing
(NLP)–based models: 1) fastText and 2) convolutional neural
network (CNN). These models have the advantage that they can
be easily structured to capture the linguistic cues in the form of
n-grams from the transcriptions of the picture description task,
provided with the Alzheimer’s Dementia Recognition through
Spontaneous Speech (ADReSS) dataset (Luz et al., 2020). CNNs,
though originated in computer vision, have become popular for NLP
tasks and have achieved great results in sentence classification (Kim,
2014), semantic parsing (tau Yih et al., 2014), search query retrieval
(Shen et al., 2014), and other traditional NLP tasks (Collober et al.,
2011). Our convolutional neural network model draws inspiration
from the work on sentence classification using CNNs (Kim, 2014).
The fastText (Joulin et al., 2017) is a simple and efficient model for
text classification (e.g., tag prediction and sentiment analysis). The
fundamental idea in the fastText classifier is to calculate the n-grams
of an input sentence and append them to the end of the sentence. Our
choice of fastText model is also motivated by its ability to often
outperform deep learning classifiers in terms of accuracy and
training/evaluation times (Joulin et al., 2017).

The rest of the paper is organized as follows. Section 2 discusses
the ADReSS dataset in detail. Section 3 discusses the baseline results
in AD detection. Section 4 discusses our proposed NLP-based
models followed by the listing of results in Section 5. Our results
and conclusions are discussed in Section 6.

2 ADRESS DATASET

The ADReSS dataset (Luz et al., 2020) is designed to provide
Alzheimer’s research community with a standard platform for

AD detection and MMSE score prediction. The dataset is
acoustically preprocessed and balanced in terms of age and
gender. It consists of audio recordings and transcriptions [in
CHAT format (Macwhinney, 2009)] of the cookie-theft picture
description task, elicited from subjects in the age group of 50–80
years. The training set consists of data from 108 subjects, 54 each
from AD and non-AD classes. The test set has data from 48
subjects, again balanced with respect to AD and non-AD classes.
More information on the ADReSS dataset can be found in the
ADReSS challenge baseline paper (Luz et al., 2020).

3 REVIEW OF BASELINE METHODS

This section provides a brief overview of the various approaches
for AD detection and MMSE score prediction on ADReSS
dataset. These approaches can be broadly classified into three
types based on the type of the features used in the problem: 1)
acoustic feature, 2) linguistic feature, and 3) a fusion of acoustic
and linguistic features. The performance of different approaches
on the AD detection and MMSE score prediction tasks are
compared using the accuracy and root mean square error
(RMSE) measures computed on the ADReSS test set.

Accuracy � TN + TP
N

(1)

RMSE �
�����������∑N

i�1(ŷi − yi)2
N

√
(2)

where N is the total number of subjects involved in the study, TP
the number of true positives, and TN the number of true
negatives. ŷi and yi are the estimated and target MMSE scores
for ith test sample. The results of different approaches on the
ADReSS dataset are summarized in Table 1.

3.1 Acoustic Feature-Based Methods
Luz et al. (2020) explore several acoustic features like extended
Geneva minimalistic acoustic parameter set (eGeMAPS) (Eyben
et al., 2016), emobase, ComParE-2013 (Eyben et al., 2013), and
multiresolution cochleagram (MRCG) (Chen et al., 2014), feeding
the traditional machine learning algorithms like linear
discriminant analysis, decision trees, nearest neighbor, random
forests, and support vector machines. In our previous work
(Meghanani et al., 2021), we have used CNN/ResNet + long
short-term memory (LSTM) networks and pyramidal
bidirectional LSTM + CNN networks trained on log-Mel
spectrogram and Mel-frequency cepstral coefficient (MFCC)
features extracted from the spontaneous speech. Pompili et al.
(2020) exploit the pretrained models to produce i-vector- and
x-vector-based acoustic feature embeddings. They evaluate
x-vector, i-vector, and statistical speech-based functional
features. Rhythmic features are proposed in Campbell et al.
(2020), as lower speaking fluency is a common pattern in
patients with AD. Koo et al. (2020) use VGGish (Hershey
et al., 2017) trained with Audio Set (Gemmeke et al., 2017) for
audio classification. They have proposed a modified version of
convolutional recurrent neural network (CRNN), where an
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attention layer is the forefront layer of the network, and fully
connected layers follow the recurrent layer.

3.2 Linguistic Feature-Based Methods
Recently, there have been multiple attempts on the AD detection
problem based on text-based features and models. Searle et al.
(2020) use traditional machine learning techniques like support
vector machines (SVMs), gradient boosting decision trees
(GBDT), and conditional random fields (CRFs). They also try
deep learning transformer-based models, specifically,
bidirectional encoder representations from transformers
(BERT) (Devlin et al., 2019), RoBERTa (Liu et al., 2019), and
DistilBERT/DistilRoBERTa (Sanh et al., 2019). Pompili et al.
(2020) encode each word of the clean transcriptions into 768-
dimensional context embedding vector using a frozen English
BERT model pretrained with 12 layers. Three different neural
models are trained on top of contextual word embeddings: 1)
global maximum pooling, 2) bidirectional long short-term
memory (BLSTM)–based recurrent neural networks (RNN)
provided with an attention module, and 3) the second model
augmented with part-of-speech (POS) embeddings. In the work
of Campbell et al. (2020), authors have used the manual
transcripts to extract linguistic information (interventions,
vocabulary richness, frequency of verbs, nouns, POS-tagging,
etc.) for creating the input features of the classifier. They use
another sequential deep learning-based classifier, which directly
classifies the sequence of Gobal Vectors (GloVe)–based word

embeddings. Koo et al. (2020) use transformer-based language
models (Vaswani et al., 2017), generative pretraining (GPT)
(Radford et al., 2018), RoBERTa (Liu et al., 2019), and
transformer-XL (Dai et al., 2020) to get textual features and
perform classification and regression tasks using a modified
convolutional recurrent neural network-based structure.

Graph-based representation of word features (Tomás and
Radev, 2012; Cong and Liu, 2014), which have shown promise
in classifying texts (De Arruda et al., 2016), is also employed for
detection of mild cognitive impairments. Santos et al. (2017)
model transcripts as complex networks and enrich them with
word embedding to better represent short texts produced in
neuropsychological assessments. They use metrics of
topological properties of complex networks in a machine
learning classification approach to distinguish between healthy
subjects and patients with mild cognitive impairments. Such
graph-based techniques have also been used in the word sense
disambiguation (WSD) tasks to identify the meaning of words in
a given context for specific words conveying multiple meanings.
Corra et al. (2018) suggest that a bipartite network model with
local features employed to characterize the context can be useful
in improving the semantic characterization of written texts
without the use of deep linguistic information.

3.3 Bimodal Methods
Methods with bimodal input features (both acoustic and
linguistic) are also used for AD recognition in various studies

TABLE 1 | Baseline methods on ADReSS test set.

Model Accuracy (%) RMSE

Searle et al. (2020), DistilBERT 81.25 4.58
Searle et al. (2020), SVM + CRF 81.25 5.22
Pompili et al. (2020), x-vectors SRE 54.17 —

Pompili et al. (2020), sentence embedding 72.92 —

Pompili et al. (2020), fusion of system 81.25 —

Luz et al. (2020), linguistic 75.00 5.20
Sarawgi et al. (2020b), ensemble 83.33 4.60
Koo et al. (2020), VGGish 72.92 5.07
Koo et al. (2020), Transformer-XL 81.25 4.01
Koo et al. (2020), VGGish + GloVe 77.08 4.33
Koo et al. (2020), VGGish + transformer-XL 75.00 3.74
Koo et al. (2020), ensembled output 81.25 3.77
Campbell et al. (2020), fusion II 75.00 —

Campbell et al. (2020), fusion I 72.92 —

Campbell et al. (2020), RNN model 75.00 —

Campbell et al. (2020), fluency 60.42 —

Campbell et al. (2020), x-vector 54.17 —

Sarawgi et al. (2020a), UA ensemble — 4.35
Sarawgi et al. (2020a), UA ensemble (weighted) — 3.93
Pappagari et al. (2020), acoustic and transcript 75.00 5.37
Rohanian et al. (2020), LSTM (Lexical + Dis) 72.92 4.88
Rohanian et al. (2020), LSTM with gating (Acoustic + Lexical) 77.08 4.57
Rohanian et al. (2020), LSTM with gating (Acoustic + Lexical + Dis) 79.17 4.54
Yuan et al. (2020), ERNIE3p 89.58 —

Syed et al. (2020) 85.42 4.30
Edwards et al. (2020), phonemes and audio 79.17 —

Meghanani et al. (2021), CNN-LSTM with MFCC 64..58 6.24
Meghanani et al. (2021), pBLSTM-CNN with log-Mel 52.08 5.90
Meghanani et al. (2021), ResNet-LSTM with log-Mel 62.50 5.98
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(Sarawgi et al., 2020a; Sarawgi et al., 2020b; Campbell et al., 2020;
Koo et al., 2020; Pompili et al., 2020; Rohanian et al., 2020).
However, in this work, we restrict ourselves to the NLP-based
approaches.

4 PROPOSED NLP-BASED METHODS

4.1 Data Preparation
In this work, we explore the linguistic features for AD detection
and hence only the textual transcripts in the ADReSS dataset are
used. The transcripts contain the conversational content between
the participant and the investigator. This includes pauses in
speech, laughter, and discourse markers such as “um” and
“uh.” Each transcript is considered as a single data point with
their corresponding AD label and MMSE score. We create two
transcription level datasets after preprocessing the transcripts as
in Searle et al. (2020)—1) PAR: containing the utterances of
participant alone, 2) PAR + INV: containing utterances from
both the participant and the investigator. In addition to the
preprocessing performed in Searle et al. (2020), we keep PAR
and INV tags as well in the data (which defines whether the
utterance is spoken by the participant or the investigator).

4.2 Convolutional Neural Network Model
Language impairments like difficulties in lexical retrieval, loss of
verbal fluency, and breakdown in comprehension of higher order
written and spoken languages are common in AD patients. Hence
the linguistic information, like the n-grams present in the input
sentence, may provide good cues for AD detection. Any n × d
CNN filter, where n is the number of sequential words looked
over by the filter and d is the dimension of word embedding, can
be viewed as a feature detector looking for a specific n-gram in the
input that can capture the language impairments associated
with AD.

We describe the details of the CNN model from the work
(Kim, 2014) as follows. Let zi ∈ Rd be a d-dimensional word
vector corresponding to the ith word in the sentence. A sentence
of length L is represented as {z1, z2, . . . , zL}. Let zi:i+j represent the

concatenation of the words zi, zi+1, . . . , zi+j. A convolution
operation involves a filter w ∈ Rnd, which is applied to a
window of n words to produce a new feature as shown in Eq.
3, where si is generated from a window of words zi:i+n−1 by

si � f (w · zi:i+n−1 + b). (3)

In Eq. 3, f is a nonlinear function and b is the bias term. A
feature map E is obtained by applying the filter to all possible
windows of words in the sentence [z1:n, z2:n+1, . . . , zL−n+1:L].

E � [s1, s2, . . . , sL−n+1]. (4)

A max-pool over time (Collober et al., 2011) is performed over
the feature map to get smax � maxE as the feature corresponding to
that filter. This corresponds to the n-gram that is “most relevant” in
the AD recognition task. The weights of the filters, which in turn
determine the “most relevant” feature, are learnt using
backpropagation. CNNs are trained with just one layer of
convolution. Variable length sentences are automatically
handled by the pooling scheme. We use pretrained 100-
dimensional GloVe word vectors (Pennington et al., 2014) for
word embedding. Multiple kernels of sizes 2 × 100, 3 × 100,
4 × 100, and 5 × 100 are employed to have a look at the
bigrams, trigrams, 4-grams, and 5-grams within the text. We
use 100 filters each with heights 2, 3, 4, and 5. Multiple
configurations with filter sizes [2,3,4], [3,4,5], and [2,3,4,5] are
applied which are referred to as CNN-bi+tri+4 gram, CNN-
tri+4+5 gram, and CNN-bi+tri+4+5 gram in our tables. The
outputs of the filter are concatenated together to form a single
vector. Dropout with probability p � 0.5 is applied on the
concatenated filter output and the results are passed through a
linear layer for the final prediction task. The linear layer weights up
the evidence from each of these n-grams and make a final decision.
Figure 1 shows the basic CNNoperation over an example sentence.

4.2.1 Training Details
For the classification task, training is performed for 100 epochs
with a batch size of 16. Adam optimizer is used with a learning
rate of 0.001. Model with the lowest validation loss is saved and

FIGURE 1 | Demonstration of CNN over text for an example sentence.

Frontiers in Computer Science | www.frontiersin.org March 2021 | Volume 3 | Article 6245584

Meghanani et al. fastText/CNN for AD Recognition

81

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


used for prediction. Since AD classification is a two-class
problem, binary cross-entropy with logits loss is used as the
loss function. For the MMSE score prediction task, the output
layer is a fully connected layer with linear activation function. In
the regression task the network is trained for 1,500 epochs with
the objective to minimize the mean squared error.

We use bootstrap aggregation of models known as bagging
(Breiman, 1996) to predict the final labels/MMSE scores for test
samples. Bootstrap aggregation is an ensemble technique to improve
the stability and accuracy of machine learning models. It combines
the prediction from multiple models. It also reduces variance and
helps to avoid overfitting. We fit 21 models and the outputs are
combined by a majority voting scheme for final classification. In the
regression task, the outputs of these bootstrap models are averaged to
arrive at the final MMSE score.

4.3 fastText
fastText-based classifiers calculate the n-grams of an input
sentence explicitly and append them to the end of the
sentence. In this work, we use bigrams and trigrams. We
conducted the experiments with 4-grams as well, but the
results did not show any improvement over the use of
trigrams. This bag of bigrams and trigrams acts as additional
features to capture some information about the local word order.

Figure 2 shows the architecture of fastText model. The
fastText model has two layers, an embedding layer and a
linear layer. The embedding layer calculates the word
embedding (100-dimensional) for each word. The average of
all these word embeddings is calculated and fed through the linear
layer for final prediction as described in Figure 2. fastText models
are faster for training and evaluation by many orders of
magnitude, compared to the “deep” models. As mentioned in
the work (Joulin et al., 2017), fastText can be trained on more
than one billion words in less than 10 min using a standard
multicore CPU and classify half a million sentences among 312 K
classes in less than a minute.

4.3.1 Training Details
All training details are the same as mentioned in Section 4.2.1.
The only difference is that dropout is not used in this model. Here

also we use 21 bootstrapping models and the outputs are
combined as described in Section 4.2.1.

5 RESULTS

We have performed 5-fold cross-validation, to estimate the
generalization error. One of the folds has 20 validation
samples and the remaining four have 22 validation samples.
The results of cross-validation on CNN and fastText models
trained on PAR and PAR + INV sets are listed in Table 2. The
best performing model for classification during the cross-
validation was fastText with bigrams on the PAR + INV set,
which yields an average cross-validation accuracy of 86.09%.
Among the CNN models, tri+4+5 grams give the best
accuracy in both PAR (77.54%) and INV + PAR (81.27%)
sets. As far as accuracy is concerned, both the CNN and
fastText models seem to benefit from the inclusion of
utterances from the investigator. For the prediction of MMSE
score, CNN with bi+tri+4+5 grams (RMSE of 4.38) was the best.
The fastText models seem to get a clear advantage in RMSE with
the addition of the utterances from the investigator. However
such a large difference in RMSE is not observable between the
CNN models using PAR and INV + PAR sets. The cross-
validation results confirmed our belief that the n-grams from
the transcriptions of the picture description task could be useful
in the detection of AD.

Table 3 lists the classification accuracy and RMSE in the
prediction of MMSE score on the test set of the ADReSS corpus.
The table also lists the precision, recall, and F1score for each class.
They are computed as precision π � (TP/(TP + FP)), recall
ρ � (TP/TP + FN), and F1score � (2πρ/(π + ρ)), where TP,
FP, TN , and FN are the number of true positives, false
positives, true negatives, and false negatives, respectively. The
listed results are obtained after bootstrapping with 21 samples.
The best classification accuracy is 83.33% which is achieved using
fastText model with appended bigrams and trigrams. The
accuracies are similar in both PAR and PAR + INV sets using
the fastText model. The maximum accuracy obtained with CNN
models is 79.16%, which is achieved on the INV + PAR set using
bi+tri+4 grams or tri+4+5 grams. In the detection task, the CNN
models seem to benefit from the addition of utterances from the
investigator. Also the accuracies seem to degrade when bigrams,

FIGURE 2 | fastText model (Joulin et al., 2017) with appended n-gram
features (X1 ,X2 ,X3 , . . . ,XK−1 ,XK ) as input.

TABLE 2 | Average 5-fold cross-validation results for AD classification and RMSE
values.

Dataset Model Accuracy RMSE

PAR CNN, bi+tri+4 gram 73.91 4.55
PAR CNN, tri+4+5 gram 77.54 4.41
PAR CNN, bi+tri+4+5 gram 76.54 4.65
PAR fastText, bigram 80.54 5.43
PAR fastText, bi + trigram 82.36 5.40
PAR + INV CNN, bi+tri+4 gram 80.18 4.63
PAR + INV CNN, tri+4+5 gram 81.27 4.53
PAR + INV CNN, bi+tri+4+5 gram 80.36 4.38
PAR + INV fastText, bigram 86.09 4.66
PAR + INV fastText, bi + trigram 85.90 4.81
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trigrams, 4-grams, and 5-grams are considered together. This
behavior is consistent across the PAR and PAR + INV sets. The
best RMSE in the prediction of MMSE score is 4.28 which is
obtained on the PAR + INV set using fastText model employing
only bigrams. In the regression task using fastText, the use of
bigrams achieves slightly better RMSE compared to the use of
both bigrams and trigrams. Also the fastText models seem to
benefit from the use of utterances from the investigator. In
contrast, CNN models do not seem to get any specific
advantage with the inclusion of investigator’s utterances. The
performance of the CNN models remains almost the same across
the use of bi+tri+4, tri+4+5, and bi+tri+4+5 grams.

6 DISCUSSION AND CONCLUSION

In this work, we explore two models, CNN with a single
convolution layer and fastText, to address the problem of AD
classification and prediction of MMSE score from the
transcriptions of the picture description task. The choice of
these models was based on our initial belief that modeling the
transcriptions of the narrative speech in the picture description
task using n-grams could give some indication on the status of
AD. The chosen models are also shallow. The number of
parameters is much less than the usual deep learning
architectures and hence they can be trained and evaluated
quite fast. Yet, the performance of these models is competitive
with the baseline results reported with complex models (refer to
Table 1). The results suggest that the n-gram-based features are
worth pursuing, for the task of AD detection.

Among the considered models, fastText model with bigrams
and trigrams appended to the input achieves the best
classification accuracy (83.33%). In the regression task, the
best results (RMSE of 4.28) are achieved using fastText model
with only the bigrams appended to the input. The fastText models
have a clear edge over CNN in the classification task. Empirical

evidence suggests that fastText models benefit from the inclusion
of utterances from the investigator in the regression task, though
they do not make much difference in the classification task. The
CNNmodels on the other hand perform better on the PAR + INV
sets in the classification task. In the regression task, their
performance is similar across the PAR and PAR + INV sets.
Bigrams have an edge over bi + tri grams in fastText, when used
for prediction of MMSE score. However, the performance of the
CNN models remains almost the same across the use of bi+tri+4,
tri+4+5, and bi+tri+4+5 grams, in the regression task.
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TABLE 3 | Results on ADReSS test set. The bold values represent the best results obtained by our models.

Dataset Model Class Precision Recall F1 score Accuracy (%) RMSE

PAR CNN, bi+tri+4 gram Non-AD 0.74 0.71 0.72
72.91 4.38

AD 0.72 0.75 0.73
PAR CNN, tri+4+5 gram Non-AD 0.76 0.67 0.71

72.91 4.46
AD 0.70 0.79 0.75

PAR CNN, bi+tri+4+5 gram Non-AD 0.71 0.71 0.71
70.83 4.42

AD 0.71 0.71 0.71
PAR fastText, bigram Non-AD 0.78 0.88 0.82

81.25 4.51
AD 0.86 0.75 0.80

PAR fastText, bi + trigram Non-AD 0.81 0.88 0.84
83.33 4.87

AD 0.86 0.79 0.83
PAR + INV CNN, bi+tri+4 gram Non-AD 0.77 0.83 0.80

79.16 4.48
AD 0.82 0.75 0.78

PAR + INV CNN, tri+4+5 gram Non-AD 0.77 0.83 0.80
79.16 4.47

AD 0.82 0.75 0.78
PAR + INV CNN, bi+tri+4+5 gram Non-AD 0.74 0.71 0.72

72.91 4.44
AD 0.72 0.75 0.73

PAR + INV fastText, bigram Non-AD 0.78 0.88 0.82
81.25 4.28

AD 0.86 0.75 0.80
PAR + INV fastText, bi + trigram Non-AD 0.79 0.92 0.85

83.33 4.47
AD 0.90 0.75 0.82
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Towards an Automatic Speech-Based
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Disease
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Automatic Speech Recognition (ASR) is widely used in many applications and tools.
Smartphones, video games, and cars are a few examples where people use ASR routinely
and often daily. A less commonly used, but potentially very important arena for using ASR,
is the health domain. For some people, the impact on life could be enormous. The goal of
this work is to develop an easy-to-use, non-invasive, inexpensive speech-based
diagnostic test for dementia that can easily be applied in a clinician’s office or even at
home. While considerable work has been published along these lines, increasing
dramatically recently, it is primarily of theoretical value and not yet practical to apply. A
large gap exists between current scientific understanding, and the creation of a diagnostic
test for dementia. The aim of this paper is to bridge this gap between theory and practice
by engineering a practical test. Experimental evidence suggests that strong discrimination
between subjects with a diagnosis of probable Alzheimer’s vs. matched normal controls
can be achieved with a combination of acoustic features from speech, linguistic features
extracted from a transcription of the speech, and results of a mini mental state exam. A fully
automatic speech recognition system tuned for the speech-to-text aspect of this
application, including automatic punctuation, is also described.

Keywords: speech processing, natural language processing, machine learning, alzheimer’s disease, dementia

INTRODUCTION

Dementia is broadly defined as deterioration in memory, thinking and behavior that decreases
a person’s ability to function independently in daily life (McKhann et al., 2011). The clinical
diagnosis of dementia, particularly Alzheimer’s disease (AD), is very challenging, especially in
its early stages (Dubois et al., 2015). It is widely believed to be underdiagnosed, even in
developed countries, and even more so in less developed countries. As people live longer, the
prevalence of AD is huge and growing, with more than five million AD sufferers estimated in
the US alone and an annual negative economic impact of over $200 billion (Association, 2019).
New diagnostics are appearing, but they are often costly (e.g. involving brain imaging or novel
lab tests), invasive (e.g. involving spinal taps, blood samples or the use of radioactive tracers),
or both. A simple quick non-invasive test would be very desirable. In addition, recruitment for
clinical trials of putative dementia therapies is hampered by lack of tests capable of yielding
cohorts with a high likelihood of having the condition the therapy is designed to effect. An
accurate diagnostic test would increase the feasibility and reliability of clinical outcome
monitoring.
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There are good indications that dementias can be
characterized by several aphasias (defects in the production
and use of speech) (Jacobs et al., 1995; Lowit et al., 2006;
Cuetos et al., 2007). This seems plausible since speech
production involves many brain regions, and thus a disease
that effects particular regions seems likely to leave detectable
“finger prints” in the speech of those with dementia. There are
many relevant background scientific studies reported in the
literature including those that attempt to establish specific
voice-based features whose distributions are statistically
different between those with dementia vs. normal controls
(Bucks et al., 2000; Pakhomov et al., 2010; Meilán et al., 2014;
König et al., 2015; López-de-Ipiña et al., 2015). Recently, a study
by Eyigoz et al. (Manera et al., 2020) has provided additional
evidence that the emergence of AD can be predicted using
linguistic features.

Using speech as a neuropsychological assessment tool is now
widely accepted. For example, the Boston Naming Test (BNT)
(König et al., 2015) asks patients to see a picture and respond to
questions within a short amount of time. Verbal fluency by
describing a picture (Hernández-Domínguez et al., 2018) is
another approach involved in diagnosing Alzheimer’s. In most
of these works, the features are manually extracted and their
correlation to psychological benchmarks such as MCI (Mild
Cognitive Impairment) or MMSE (Mini-Mental State Exam)
are analyzed. MMSE, is a neuropsychological test (pencil and
paper) which yields a score in the 0–30 range in about 10–15 min.
Scores above 25 usually are assumed to indicate normal
cognition. While not specifically designed for Alzheimer’s
diagnosis, it is often a first assessment applied by physicians,
and can provide a useful “first cut” assessment. In the current
work, we report on experimental results that combine MMSE test
scores, basic demographic features (age, gender, race, and years of
education) and a pool of features extracted from a voice sample.
Using pattern discovery algorithms to identify minimal size
feature sets, we provide evidence that combining selected
speech features with the MMSE can yield an improved
diagnostic test for detecting probable Alzheimer’s disease.
These results were obtained using features extracted
automatically by algorithms applied to the speech signal (wave
file) and either manually produced transcripts or fully automated
transcripts produced by a custom designed ASR and punctuation
system. The manually generated transcripts and automatically
generated transcripts achieve approximately the same level of
diagnostic precision, giving support to the hypothesis that current
speech recognition technology is capable of supporting a fully
automatic system.

The classical approaches to AD diagnosis (McKhann et al.,
2011) rely on clinical criteria, often using neuropsychological
tests, but require an autopsy for definitive diagnosis. Hence,
recently, there has been much effort devoted to more reliable
tests, seeking biomarkers in bodily fluids or imaging.
Unfortunately, such tests are usually costly in time and money
and bring their own risks (e.g. using radioactive tracers, or
punctures). It is widely believed that AD is underdiagnosed,
particularly in the undeveloped world, but also in the more
developed nations. It is also believed that the disease

pathology is at work years or decades before cognitive decline
becomes apparent. This inability to accurately detect the disease
early and accurately may have also contributed to the failures of
clinical trials of putative AD agents. Hence, we believe there is a
strong need for an accurate diagnostic test that is easy to execute,
non-invasive and inexpensive. Here, we present results of efforts
to produce such a test based on samples of human speech.

While there is yet no definitive evidence that such a test is
possible, we subscribe to the intuition that speech, unique to our
species, and requiring the coordinated activity of a number of
brain regions, may have the characteristic that a lesion in one or
more of these brain regions may well leave distinct finger prints in
the speech. Furthermore, it is known that some speech-based tests
have diagnostic utility (e.g. verbal fluency). Given recent advances
in computational linguistics, this intuition seems to have a
growing following based on the recent increase of research
publications aimed in this direction.

We perceive two major challenges: one scientific, and one
engineering. Can we provide convincing evidence that accurate
diagnosis is possible with speech-based features, and can such a
test be automated to the level that relatively untrained clinicians
can use it? We believe our results provide encouragement that
both challenges can be met.

This paper is organized as follows. In Speech Sample Collection
we review the collected dataset and give some analysis of the
dataset. In Using ASR to Obtain the Transcripts, the methodology
of speech-to-text analysis is described. In Classifier Design the
final machine learning model that we used is described.
Conclusions are given in Conclusions.

SPEECH SAMPLE COLLECTION

A popular protocol for collecting speech samples for aphasia
analysis work is to ask volunteers to describe what they see in a
picture. They are able to view the picture while they speak. This
protocol was used for all speech samples used in this work. There
are some speech samples available on the web from the Dementia
Bank audio database (Weiss and Bourgeois, 2012), but the audio
quality is quite low. For our earlier work (Schaffer et al., 2005), we
did exploit 140 of the Dementia Bank cases using manually
prepared transcripts. This significantly increased our sample
size. These samples were examined for use, but were generally
of too low quality to be used for the experimental work reported
in this study, especially the automatic speech recognition
component. Since our long range goal was a fully automatic
diagnostic tool, later work used our ASR system, which limited
our samples to our own with high audio quality.

TABLE 1 | Demographic Summary of dataset.

Grp n Age (sd) Years edu (sd) MMSE (sd)

NL 46 71.43 (12.6) 13.28(2.4) 28.7 (1.5)
AD 26 78.48 (10.9) 13.81 (2.3) 20.92 (6.6)
Total 72 74.04 (12.4) 13.48 (2.4) 25.89 (5.6)

NL � Normal, AD � Alzheimer’s disease; sd � Standard deviation, ed � education.
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Since we elected not to use the Dementia bank database, 72
new samples (summarized in Table 1) were collected using
modern digital recording equipment and a new picture
(Sadeghian et al., 2015; Sadeghian et al., 2017). Twenty-six of
these participants were AD (identified by measuring MMSE
score, and verified by physician assessments) while 46 of them
were normal. The average sample length was 75.1 s (sd 61.0 s) and
the average age was 73.8 years (sd 12.1 yrs). Some modest
preprocessing was performed on audio files, such as removing
the beginning and ending pauses, click removal and signal
strength normalization. These steps are straightforward to
automate. The resulting acoustic speech files were processed
directly for acoustic features such as pauses and pitch
contours. A manual transcript was generated for each of the
72 samples. The manual transcripts were used to extract linguistic
features (e.g. word counts, syntactic complexity, idea density). For
comparison, we also created transcripts using ASR (Automatic
Speech Recognition) and give diagnostic results based on the
automatic methods.

Features, Subset Selection and
Classification Approach
Each transcript was passed to the Charniak Parser (Charniak,
2000) trained with the Penn Treebank Switchboard corpus. The
raw text of the transcript, and the part-of-speech (POS) tagged
parser outputs were used to compute a number of linguistic
metrics. These metrics include (but not limited to): average
number of words per sentence, percentage of sentences that
are classified as being “short,” i.e. at most 5 words, length of
the shortest sentence, the fraction of the words in the transcript
that are auxiliary verbs or infinitives.

The syntactic complexity measures computed by Roark et al.
(2011)) were computed, including a re-implementation of idea
density (Snowdon et al., 1996). A number of metrics that capture
various aspects of vocabulary richness were also computed as well
as counts of words related to the picture content. The Linguistic
Inquiry Word Count (LIWC2015 (Pennebaker et al., 2015))
features were also computed. These and all the other features,
such as speech pauses and pitch features, were combined into a
single feature vector for each subject. These 231 features from the

speech samples were combined with four demographic
features and the MMSE score to give 236 total potential
features. This feature computational procedure is illustrated
in Figure 1.

USINGASR TOOBTAIN THE TRANSCRIPTS

In a fully automatic system, all the steps must be done
automatically, including the crucial step of speech-to-text.
There were about 72 min of data collected from participants.
All the ASR work was done with Kaldi software (Povey et al.,
2011). We made use of a combination of Hidden Markov Model
(HMM) and Deep Neural Network (DNN) methods. In the
beginning stages of this work we attempted to use a
commercial off the shelf system, but did not find it suitable to
be adapted for this application.

ASR Design
The first step for designing an ASR system is to prepare the
dictionary (lexicon), which is a listing of all the words used in the
language model, and the allowable pronunciations for each of
these words. For the ASR acoustic models, we first created simple
monophone models, then used those models to design triphone
models, and finally implemented a DNN-based recognizer using
the triphone models. All models were built using 39 Mel
Frequency Cepstral Coefficient (MFCC) features, computed
with 25 ms frames spaced apart by 10 ms. A Bigram language
model was developed based on the manual transcriptions. For
monophone models, 3-state HMMs with 64 mixtures were used
whereas for triphone models, 500 tied states were modeled with
8,000 Gaussian mixtures.

FIGURE 1 | Block diagram for creating database of features.

TABLE 2 | ASR Word Accuracy (%).

Model Train = Test Train ≠ Test Train ≠ Test and
VAD

Monophone 37.9 22.7 41.2
Triphone 85.2 27.6 48.2
DNN 89.2 42.7 65.7
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For the DNN part of the recognizer, a network with two
hidden layers was used in which each layer had 300 neurons. The
initial learning rate was α � 0.015 and it was decreased to α �
0.002 in the final step. The activation function was hyperbolic
tangent and the minibatch size was 128. To estimate the initial
parameters of the model, we tested using the training data (ten
different sets of test data were chosen with replacement from the
same training cohort). Results are given in Table 2. We refer to
cases where the train and test sets are the same as “cheating,” and
these cases are clearly not a true indication of performance on
unseen data. Such cases, however, are useful to estimate an upper
limit on accuracy possible with a given method.

When we used “honest” (completely separate training and test
data) with 10-fold cross validation (Bishop, 2006), the word
accuracy for test data was dramatically degraded to 47% from
the best DNN case (89.2%) given in Table 2. This extremely poor
generalization from training to test data led us to look for
problems by carefully examining the speech files. By listening
carefully to the files, we observed many silences (pauses) in the
files that could be removed with an algorithm.We speculated that
these silence intervals were severely degrading ASR accuracy. To
address this issue we used a VAD (Voice Activity Detector)
system.

A Voice Activity Detector (VAD) is a method for detecting the
presence of speech in an audio signal. Several VAD algorithms are
available (Savoji, 1989; Benyassine et al., 1997; Sohn et al., 1999).
The method which we chose for this work was based on Sohn
et al. (1999)). In this method, the unknown parameters are
estimated using maximum likelihood (ML) and a likelihood
Ratio Test (LRT). Further decision optimizations were
performed using the decision directed (DD) method (Ephraim
and Malah, 1984) and a hang-over scheme based on Hidden
Markov Models (HMMs) for estimation of the unknown
parameters. We describe and illustrate this method a little
more in the next paragraph.

Consider a speech signal which is degraded by uncorrelated
additive noise. In this case, for each frame we can define null and

alternative hypotheses as (where S is signal and N represents
noise):

H0 : No Speech available : X � N

H1 : Speech available : X � N + S

An overview of the method is depicted in Figure 2.
Applying VAD to the speech files removed an enormous
amount of silence within the speech files. Figure 3 shows
the effect of this VAD on one of the speech samples from the
database. As can be seen, most of the silence in the speech file is
removed using the VAD algorithm. VAD helps to improve
ASR accuracy. Although the average of the recognizer HMM +
DNN “honest” accuracy is increased to around 65.7%, in
comparison to state-of-the-art ASR methods, the accuracy
still seems low.

FIGURE 2 | Diagram of using VAD for speech Bishop, 2006.

FIGURE 3 | Plot of sample speech segment before (upper) and after
(lower) applying VAD.
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The accuracy highly depends on the number of speakers used
for training. Increasing the size of the training database improves
the acoustic model by using more samples which results in better
Gaussian Mixture Model (GMM) and other parameter estimates.
Additionally, the language model also highly depends on the
number of training speakers. Since the number of speakers in the
database was only 72, the best way to examine this effect was to
use the Leave one out (LOO) method where we used 71 speakers
for training and just one for testing, and then repeat for each
speaker. The minimum accuracy among all the speakers was
22.4% and the maximum accuracy was 93.9%; the average
accuracy was 68.7% with a standard deviation of 16. A closer
examination of the worst case speaker revealed that the speaker
still had a large number of pauses and OOV (Out of Vocabulary)
words. Although the improvement in accuracy from 68% to
68.7% is very modest, at least it is in the right direction and
also the LOOmethod allows us to look at the performance of each
speaker individually. Based on the assumption that a word
accuracy of 68.7% would be sufficient, and the fact that there
were no clear-cut ways to improve this accuracy for this very
difficult small database, we used the ASR method just described
for the remainder of this work.

Automatic Punctuation
As mentioned earlier, we wanted to make use of two type of
speech features, acoustic and linguistic features. For extracting
linguistic features, the main punctuation needed is the sentence
boundaries. The accuracy needed in the determination of
sentence boundaries, the accuracy of determining “.” vs. no
punctuation, and the benefit of determining other punctuation

is not clear. One method for automatic punctuation is to
determine the sentence boundaries using a Support Vector
Machine (SVM) and place the periods through a machine
learning method (Beeferman et al., 1998). One other method
which is popular is to use Conditional Random Fields (CRF) in
the lexicon and, based on pause information, detect the sentence
boundaries (Wei and Ng, 2010). Batista and Mamed (Batista and
Mamede, 2011) used a combination of these two methods in
Portuguese speech. The method that we used for this work was
based on the method of Tilk (Tilk and Alum, 2016). In this
method, a model based on a Recursive Neural Net (RNN) is
developed which is trained using provided transcriptions. The
structure of this model is depicted in Figure 4. The inputs of this
model are one-hot encoded sequences of words in sentences
where an end of sequence token is added to the list. The ultimate
output of the network at time t is the prediction of the probability
of punctuation yt which is used between word −1 and xt. The
Gated Recurrent Unit (GRU) approach was developed by Cho
et al. (2014)) whereby each recurrent neuron captures the
dependencies of different time scales adaptively. Using a GRU
activation function with a shared embedding layer weight of We,
the state ht for the forward recurrent layer is defined by:

h
→

t � GRU(xtWe, h
→

t−1).
Similarly, a reverse recurrent state can be defined with h

←
t

whereby the words in the sentence sequence are processed in
reverse. This type of configuration helps the model to identify if
the sentence is in a declarative or question context. This means we
assigned one layer of forward and one layer reverse recurrent
state. Additionally, this allows the model to identify if a new
sentence is started, considering the current word.

On top of this bidirectional state, there is a unidirectional
GRU which keeps the track of the position at time t (based on
the mechanism explained by Bahdanau et al. (2015)). There is a
late attention that can consider both bidirectional and
unidirectional outputs and creates an output to the late
fusion step. The output of this model is the probability of
using each punctuation at time t in the sequence of words.
For our project, since only the boundary of sentences was
important, we considered the “period” as the only
punctuation that is required to be predicted. For this whole
process of punctuation prediction, the effect of the acoustic part
of speech is not considered. Tilk and Alum (2016) described
another variation of this method in which another layer is added
to the model that uses the effect of the duration of the pause in
model design and it is considered part of the input training data.
Although it may improve the results, this method was not used
in this work, due to the added complexity.

For training the model, originally we used our own database
but, because of the low number of sentences, the model was not
accurate. Therefore, we used one of the available free databases,
“Europal v7” (Kohen, 2005). In the English version of this corpus,
2,218,201 sentences from more than 800 speakers, containing
more than 53million words, were used. Around 90% of these data
were used for training while 10% were used as a development
(validation) set. There are two classes--no punctuation and

FIGURE 4 | The structure of the punctuation detection model.
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period. The training and testing data is chosen based on the
sequence of the punctuations and their location in sentences.

The RNNmodel was trained using a learning rate of 0.02 while
an L-2 norm of the gradient was kept below the threshold of 2 by
renormalization whenever it exceeded the threshold. The
stopping criteria for training was whenever the perplexity of
the development set became worse for the first time during the
iterations. In the first step, the weights were initialized using the
normalization technique with zero bias. All the hidden layers
contained 256 neurons. For training the model the Theano
package (Bastien et al., 2012) with a GPU (Graphical
Processing Unit) was used. The sequence of input words was
chunked into 200 word long slices where each slice starts with the
first word of the relevant sentence and if the slice ends with an
unfinished sentence, the sentence is copied to the beginning of the
next slice. Clearly, the output sequence is one element shorter
since no punctuation is placed before the first word. Because of
the huge amount of training data, the slices were grouped tomini-
batches of 128 slices and were shuffled before each epoch. The
output vocabulary can predict any punctuation such as comma,
period, question mark and no punctuation. However, for this
project, we only predicted the period. The error rate of
punctuation prediction in this case is 15.3%. This error rate is
computed by comparing the predicted punctuation and the actual
one frommanual punctuation. The f1-score (test of accuracy) was
also obtained. This value is computed from the combination of
precision (correctly positive predictive values out of all the
predicted positive values) and recall (correctly positive
predictive values out of all the actual positive values). The f1-
score is below what we expected but this is mostly due to many
OOVs in transcription that the DNN is not capable of
punctuating accurately. The confusion matrix, cumulative over
all 72 subjects, is given in Table 3.

CLASSIFIER DESIGN

The end goal of this work, from a technical perspective, is a two-
way classifier to determine AD vs. NL (Normal) from a slate of
features selected from the very large group described above. This
problem is very challenging due to the very large number of
candidate features (236), and the small database (72 speakers).
We hypothesized that only 5–10 of these 236 features would be
needed and useful for the final decision making. The challenge
was to “discover” these “good” features using a small database,
and in a manner that these features and classifier would perform
well for data other than those used in this study. The two-way
classifier model and the feature subset selector are depicted in
Figure 5. All subjects were divided 90/10 into training and

validation sets and full 10-fold cross validation was
performed. For thoroughness, three approaches were used
to investigate this step—GA-SVM, Random Forest, and
Neural Network.

In our first approach, based on the diagram shown in Figure 5,
a genetic algorithm (GA) was used as the feature subset selector
while a Support Vector Machine (SVM) was the classifier which
was trained using the features selected by the GA. This GA-SVM
approach has been successfully applied to a number of
bioinformatics pattern discovery tasks (Schaffer et al., 2005).
This approach may generate and test more than a million
subsets before it halts. An array of top candidates usually
yields several alternative feature-set classifiers with differing
performance. Summarizing, the genetic algorithm strives to
locate feature sets of high accuracy and minimum size.

We used a 10-fold cross-validation approach. Each fold used
90% of subjects for feature subset identification and model
training. The remaining subjects were tested only once. The
different folds often found different feature sets to be best, but
there were many commonalities. In the end, we identified 12
different feature sets, all comprising combinations of only 10
features. The five most important features are listed in Table 4.
Each of these feature-sets (called classifiers) was then trained on
each fold’s training data and tested on the test cases only once.
Experiments showed that 12 different classifiers typically made
errors on different subjects, so their classification predictions
could profitably be combined with an ensemble method. A
Generalized Regression Neural Network (GRNN) (Specht,
1991) oracle is a maximum-likelihood, minimum variance
unbiased estimator that has been shown to give very robust
classification performance (Masters et al., 1998). Theoretically,
it is the best one can do with a fixed data set. Since each of the 12
classifiers made different errors, they were combined using the
GRNN oracle ensemble method yielding a single diagnosis
predictor.

Since we had so few cases, we did not try to locate new features
subsets that might have benefited from the automatic transcripts,
but simply applied the same classifiers found on the large dataset,
but tuned them separately for the manual and automatic
transcripts in the same 10-fold fashion. The MMSE alone, the
oracle using manual transcripts, and the oracle using automatic
transcripts all made eight errors (8/72 � 11.1%), with seven
subjects being misclassified on all. They made an error on one
unique subject each. These seven common erroneously classified
subjects were also errors of the oracle trained on the large dataset.
From these results, we draw confidence that the fully automatic
diagnostic test is likely to have the same success1.

Random Forest
Random forest (RF) is a machine learning technique in which a
decision tree is developed using the training data. RF was
introduced by Ho (1995). Generally, decision trees or recursive
partitioning models are a decision tool based on tree-like graphs

TABLE 3 | Confusion Matrix of Punctuation Detector.

Confusion Matrix Actual values

Punctuation No Punctuation

Predicted values Punctuation 319 554
No Punctuation 1048 8556

1The interested reader may find many more details on our analyses of these data in
Walker and Schaffer (2019)
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and their possible consequences. It creates a flow chart which
contains nodes (leaves) and decisions extracted from each node
(branches). These leaves and branches form a tree-shaped graph
which is referred to as decision tree. This model can yield high
accuracy, robust performance and ease of use. This method is,
however, highly sensitive to data. Hence, resampling is used to
mitigate this issue. Every node in a decision tree, represents a
decision (target) based on a single feature and a threshold which
splits the dataset into two so that similar response values are
collected in the same set. On this fully automated system, 90% of
the data (66 subjects) were used for training while the remaining
speakers were used just one time for testing. A 12-fold cross-
validation was used with the training data which means that 90%
of the data were used for training and the rest for a validation set.
The training data were processed by the RF model to determine
the best combination of the features. The total number of features
was experimentally found to be 25, with10 trees in the forest. The
function of the quality of split is called “Gini.”Gini impurity is the

factor showing how often a randomly selected label is incorrectly
assigned based on the actual target distribution. Mathematically,
it is the summation of the multiplication of the probability of the
properly chosen label (pi)) times the probability of the incorrectly
chosen label (1−pi) for all labels i ∈ {1, . . . ,K}. In equation form,
the Gini impurity IG(p) is defined as:

IG(p) � ∑K
i�1

pi(1 − pi).
The function is minimized when all the classes in the node lead

to a similar target. Nodes were expanded until all leaves are pure
or until all leaves contain fewer than two samples. Each node was
split until its impurity was higher than a threshold of 1e-7;
otherwise it was considered as a leaf. Due to the randomness
of the process, the experiments were repeated 100 times and the
most repeated features were considered as the desired ones. After
finding the best combination of 25 features, these features were

FIGURE 5 | Overview of classifier to determine AD/NL decision.

TABLE 4 | Selected Features By Classifier.

Feature subset (classifier) Feature long name

1 2 3 4 5 6 7 8 9 10 11 12

x X x x x X x x x x x x Mini-mental state exam score
X Fraction of the total utterance length that is speech (i.e. not pauses) (VAD based)

x X x x x X x x x x x Fraction of utterance in pauses < 0.5 s (energy based)
x x Words > 6 letters Pennebaker et al. (2015)
x X x x x Adjectives Pennebaker et al. (2015)
x X x x x x x x x Male reference words Pennebaker et al. (2015)

X x x Special email words (e.g. BTW, LOL, emogies) and convenience words (e.g. ha, hm, huh, kinda, ya, yah, yup)
x Content density, the ratio of open-class words to closed-class words Roark et al. (2011)

X Readability score that estimates the United States. grade level necessary to understand a text
X x x x Average syllables per word
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tested only one time on the test set. A diagram of this method is
depicted in Figure 6.

A 12-fold cross validation test was considered whereby
each speaker was used only one time as the test speaker. The
overall accuracy using this methodology was 84.00%. Using
LOO (Leave One Out) cross validation, improved the overall
accuracy to 87.5% which shows again how having more data
can improve the overall accuracy for this technique. In this
technique, all speakers except one were used for feature
selection and, after training the model using the most
frequently used features, the model is evaluated on only
one speaker. This procedure is repeated for all the subjects
individually.

Multi-Layer Perceptron
As yet another method, the feature selection was repeated using a
using a NN (Neural Network) - Multi-Layer Perceptron. For this
model, a NN with one hidden layer (containing 25 nodes) was
used as a two-way classifier. The activation functions were
sigmoid. The inputs were features to be evaluated (from
training data) and the outputs were assigned labels for each
subject. A greedy approach was used whereby initially each of
the 236 potential features was evaluated individually and the best
performing feature was found. Best performance was determined
by highest accuracy on a group of test speakers. After the best 1-
feature classifier was found, the best 2-feature classifier was found
by testing all 2-feature options, given that that one of these 2
features was the best feature for the 1-feature classifier. This
process was repeated until some termination point (explained
below) was reached.

The initial experiments “over fit” the training set due to
minimizing the expected loss instead of empirical loss defined
on the training set. To resolve this issue, a weight decay (Krogh
and Hertz, 1991) term was added to the loss function, i. e.

z2l
zW2 (W , b) � l(W , b) + λR(W),

where l(W,b) is the original loss function, λ is the weight decay
parameter and R(W) is defined by:

R(W) � ||vec(W)||.
The decay parameter (L1-regularization) for this experiments

was set to be 0.1 experimentally. Another popular approach for
preventing overfitting, which was also used in our work, was
dropout (Srivastava et al., 2014). The idea of dropout is that α
percent of neurons are omitted from hidden layers during the
training phase. This adds some random noise to the network
through some hidden layers whereas even with similar inputs,
there is no guarantee that higher layers will receive similar inputs.
This is achieved by forcing the activation nodes to zero while in
the test phase the average of the neurons are used. The rate of
dropout for this work was 0.02, again experimentally determined.

For inputting data to the model, the Stochastic Gradient
Descent (SGD) (Bottou, 1998) technique was used. This
method updates the parameters of the NN model from only a
single training sample. One main advantage of SGD is that,
despite batch learning, due to its noisy gradient estimation it
can easily jump out of the local minima in estimation
iterations.

For the first part of the experiments, 72 subjects (fully
automated system) were used where the data were
partitioned as explained previously. Ten-fold cross
validation was used to find the best combination of the
features through the greedy approach described above. The
best feature sets which were revealed by validation data were
later used on a test set to determine the accuracy of the model.
Using these features, the average accuracy of the testing set was
94.44%. As a comparison, the same model was created using

FIGURE 6 | Block diagram of random forest approach.
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manual transcripts, which increased the accuracy slightly to
95.83%. The top three features using this strategy were MMSE,
fraction of pauses greater than 1 s and fraction of total speech
recording that was silence.

As we mentioned earlier, the MMSE score is the most
important feature (best single feature) for an AD/NL classifier.
To see its strength, we tested this feature as the only feature for
the classifier. An accuracy of 70.83% was obtained. To see how
well the MMSE feature could be compensated for by other
features, we removed the MMSE feature and used the NN
feature selector/classifier as described above. This gave an
accuracy of 91.67% for manual transcripts and 93.05% for the
automatic one. The top three features using this strategy were
speech rate, idea density and fraction of pauses greater
than 1 s.

A summary of the key results for the random forest and neural
network two way classifiers (AD/NL) are given in Table 5, in
terms of accuracy, sensitivity, and specificity.

CONCLUSIONS

There do appear to be strong patterns among the speech features
that are able to discriminate the subjects with probable
Alzheimer’s disease from the normal controls. The GA-based
feature subset selection approach provides a powerful way to
locate multiple classifiers that contain many common features
combined with some less common ones, lending themselves to
being combined with ensemble methods (Masters et al., 1998).
We have shown this elsewhere (Land and Schaffer, 2015) along
with a method for enabling the classifier to know when it should
not be trusted. However, these results are likely to be sensitive to
small samples, suggesting larger samples should be used for future
research in this domain.

The greedy algorithm combined with the neural network
two-way classifier was very promising for both feature
selection and final recognizer. For feature selection, this
approach was at least two orders of magnitude faster than
the GA method. The limitation of the NN method is that the
search of the feature space is not nearly as exhaustive as for the
GA method. In future work, the NN method could be
improved in terms of more thorough searching by saving
the top N (where N is some small number such as 5–10)
choices at the end of each iteration, at the expense of some
slowdown in speed. The NN classifier, using common
features, was also as good as the SVM used as the final
classifier with the GA.

We believe this study provides encouragement to seek
speech patterns that could be diagnostic for dementia. The
weaknesses of this study, aside from the obviously very small
sample size, include the cross-sectional design that strives for
a single pattern that works over the whole variety of subjects
in each class. A longitudinal study would permit each subject
to serve as his own control, helping to mitigate the large
within-group variance in speaking patterns, as well as
introduce the possibility for predicting dementia that is
currently not manifest. The features used are by no means
all the speech features that have been associated with
dementia. The computational linguistics domain contains
several additional interesting speech features that, with
some effort, could be included in our basket of candidate
features.

The best accuracy of ∼ 96% achieved in this study for
diagnosing Alzheimer seems promising considering the small
number of samples used. Additionally, the results of manually
and automatically transcribed systems are similar, which shows
that the ASR system worked in an acceptable range and the
punctuator system was likely accurate enough. Summarizing
across all the Alzheimer’s experiments, we conclude the
following with respect to features (from possibilities
including MMSE score, demographics, and acoustic speech
features, linguistic speech features) and approximate
detection accuracy:

1) The most informative single parameter is the MMSE alone,
which results in a detection accuracy of about 71%.

2) If all possible features, includingMMSE scores, are considered,
a detection accuracy of approximately 94% is possible, using
fully automatic methods. Based on the features listed in
Table 4, MMSE is always chosen as one of the key features.
Three linguistic and one acoustic features are selected, which
are fraction of pauses more than 5 s in duration, speech and the
LIWC quantitative feature.

3) If all possible features, except MMSE scores, are considered, a
detection accuracy of approximately 92% is possible, based on
the features listed in Table 4.

4) If only demographic and acoustic features (the “easy” ones) are
considered, a detection accuracy of approximately 83.33% is
possible. However, for this case, there was low sensitivity. That
is, there was a high error rate for AD subjects (often diagnosed
as NL). The most important features for this case are speech
rate (using energy and VAD), fraction of speech length to the
length of whole audio and fraction of pause length to the whole
audio file.
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We introduce a novel audio processing architecture, the Open Voice Brain Model

(OVBM), improving detection accuracy for Alzheimer’s (AD) longitudinal discrimination

from spontaneous speech. We also outline the OVBM design methodology leading

us to such architecture, which in general can incorporate multimodal biomarkers and

target simultaneously several diseases and other AI tasks. Key in our methodology is the

use of multiple biomarkers complementing each other, and when two of them uniquely

identify different subjects in a target disease we say they are orthogonal. We illustrate

the OBVM design methodology by introducing sixteen biomarkers, three of which are

orthogonal, demonstrating simultaneous above state-of-the-art discrimination for two

apparently unrelated diseases such as AD and COVID-19. Depending on the context,

throughout the paper we use OVBM indistinctly to refer to the specific architecture or

to the broader design methodology. Inspired by research conducted at the MIT Center

for Brain Minds and Machines (CBMM), OVBM combines biomarker implementations of

the four modules of intelligence: The brain OS chunks and overlaps audio samples and

aggregates biomarker features from the sensory stream and cognitive core creating a

multi-modal graph neural network of symbolic compositional models for the target task.

In this paper we apply the OVBM design methodology to the automated diagnostic of

Alzheimer’s Dementia (AD) patients, achieving above state-of-the-art accuracy of 93.8%

using only raw audio, while extracting a personalized subject saliency map designed

to longitudinally track relative disease progression using multiple biomarkers, 16 in the

reported AD task. The ultimate aim is to help medical practice by detecting onset and

treatment impact so that intervention options can be longitudinally tested. Using the

OBVM design methodology, we introduce a novel lung and respiratory tract biomarker

created using 200,000+ cough samples to pre-train a model discriminating cough

cultural origin. Transfer Learning is subsequently used to incorporate features from this

model into various other biomarker-based OVBM architectures. This biomarker yields

consistent improvements in AD detection in all the starting OBVM biomarker architecture

combinations we tried. This cough dataset sets a new benchmark as the largest audio

health dataset with 30,000+ subjects participating in April 2020, demonstrating for the

first time cough cultural bias.

Keywords: multimodal deep learning, transfer learning, explainable speech recognition, brain model, graph

neural-networks, AI diagnostics
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1. INTRODUCTION

Since 2001, the overall mortality for Alzheimer’s Dementia (AD)
has been increasing year-on-year. Between 2000 and 2020 deaths
resulting from stroke, HIV and heart disease decreased while
reported deaths from AD increased by about 150% (Alzheimer’s
Association, 2020). Currently no treatments are available to cure
AD, however, if detected early on, treatments may greatly slow
and eventually possibly even halt further deterioration (Briggs
et al., 2016).

Currently, methods for diagnosing AD often include
neuroimaging such as MRI (Fuller et al., 2019), PET scans of
the brain (Ding et al., 2019), or invasive lumbar puncture to test
cerebrospinal fluid (Shaw et al., 2009). These diagnostics are far
too expensive for large-scale testing and are usually used once

family members or personal care detect late-stage symptoms,
when the disease is too advanced for onset treatment. On top
of the throughput limitations, recent studies on the success of
the most widely used form of diagnostic, PET amyloid brain
scans, have shown expert doctors in AD currently misdiagnose
patients in about 83% of cases and change their management and
treatment of patients nearly 70% of the time (James et al., 2020).
This is mainly caused by the lack of longitudinal explainability
of these scans. As a result it is hard to track effectiveness of
treatments and even more to evaluate personalized treatments
tailored to specific on-set populations of AD (Maclin et al.,
2019). AI in general suffers from similar issues and operates a bit
as a black-box, and does not offer explainable results linked to
specific causes of each individual subject (Holzinger et al., 2019).

Based on the above findings, our research aims to find AD
diagnostic methods achieving the following four warrants:

1. Onset Detection: detection needs to occur as soon as the
first signs emerge, or sooner even if only probabilistic metrics
can be provided. Preclinical AD diagnosis and subsequent
treatment may offer the best chances at delaying the effects
of dementia (Briggs et al., 2016). Therapeutic significance
may require establishing subclassifications within AD (Briggs
et al., 2016). Evidence that there are early signs of AD onset
in the human body come in the form of recent research
on blood plasma phosphorylated-tau isoforms diagnostic
biomarkers demonstrating chemical traces of dementia, and
of AD in particular, decades in advance of clinical diagnosis
(Barthélemy et al., 2020; Palmqvist et al., 2020). These are
encouraging findings, and hopefully there are also early onset
signs in free-speech audio signals. In fact, preclinical AD is
often linked tomood changes and in cognitively normal adults
onset AD includes depression (Babulal et al., 2016), while
apathy and anxiety have been linked to some cognitive decline
(Bidzan and Bidzan, 2014). Both of these may be detectable
in preclinical AD using existing sentiment analysis techniques
(Zunic et al., 2020).

2. Minimal Cost: we need a method that has very little side
effects, so that a person can perform the test periodically,
and at very low variable costs to allow broad pre-screening
possibilities. Our suggestion is to develop methods that
can run on smart speakers and mobile phones (Subirana

TABLE 1 | A review of other AD diagnostic algorithms on the same dataset from

Lyu (2018).

References Date Accuracy(%)

Syed et al. (2020) 2020 85.4

Haulcy and Glass (2021) 2021 85.4

Orimaye et al. (2014) 2016 87.5

Yuan et al. (2020) 2020 89.6

Karlekar et al. (2018) 2018 91.1

Laguarta and Subirana 2021 93.8

Our top performing model only uses audios while Orimaye et al. only used 35 patients

hence risking high variance. Karlekar et al. only used transcripts. The rest used the

transcripts from the ADreSS challenge Luz et al. (2020).

et al., 2017b) at essentially no cost while respecting user
privacy (Subirana et al., 2020a). There is no medically
approved system allowing preclinical AD diagnosis at scale.
There are different approaches to measure AD disease
onset and progression but all rely on expensive human
assessments and/or medical procedures. We demonstrate our
approach using only free speech but the approach can also
include multi-modal data if available including MRI images
(Altinkaya et al., 2020) and EEG recordings (Cassani et al.,
2018).

3. Longitudinal tracking: themethod should include some form
of AD degree metric, especially to evaluate improvements
resulting from medical interventions. The finer disease
progression increments can be measured, the more useful
they’ll be. Ideally, adaptive clinical trials would be supported
(Coffey and Kairalla, 2008).

4. Explainability: the results need to have some form of
explainability, if possible including the ability to diagnose
other types of dementia and health conditions. Most
importantly, the approach needs to be approved for broad use
by the medical community.

Our approach is enabled by and improves upon advances
in deep learning on acoustic signals to detect discriminating
features between AD and non-AD subjects—it aims to address
the warrants above, including explainability which has been
challenging for previous approaches. While research in AD
detection from speech has been ongoing for several years
most approaches did not surpass the 90% detection mark as
shown in Table 1. These approaches use black-box deep learning
algorithms providing little to no explainability as to what led
the model’s decision, making it hard for clinicians to use and
hence slowing adoption by the healthcare system. In Petti et al.
(2020), review of the literature onAD speech detection, about two
thirds of the papers reviewed use Neural Nets or Support Vector
Machines, while the rest focus on Decision Trees and Naïve
Bayes. Neural Nets seem to achieve the highest detection accuracy
on average. Previous work, instead, has very little inspiration on
the different stages of human intelligence and at most focuses
solely on modeling a small part of the brain as shown in Nassif
et al. (2019), de la Fuente Garcia et al. (2020), and Petti et al.
(2020).
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Combining independent biomarkers with recent advances in
our understanding of the four modules of the human brain
as researched at MIT’s Center for Brain Minds and Machines
(CBMM) (CBM, 2020), we introduce a novel multi-modal
processing framework, theMIT CBMMOpenVoice BrainModel
(OVBM). The approach described in this paper aims to overcome
limitations of previous approaches, firstly by training the model
on large speech datasets and using transfer learning so that the
accurate learned features improve AD detection accuracy even if
the sample of AD patients is not large. Secondly, by providing
an explainable output in the form of a saliency chart that may be
used to track the evolution of AD biomarkers.

The use of independent biomarkers in the CBMMOpenVoice
Brain Model enables researching what is the value of each of
them, simply by contrasting results with and without one of the
biomarkers—we illustrate this point with a biomarker focused on
cough discrimination (Subirana et al., 2020b) and one focused
on wake words (Subirana, 2020). We feel this is an original
contribution of our work grounded on the connection between
respiratory conditions and Alzheimer’s.

Furthermore, we also show that our framework lets apply the
same biomarker models for audio detection of multiple diseases,
and explore whether there may be common biomarkers between
AD and other diseases. To that end, the OVBM framework
we introduce may be extended to various other tasks such as
speech segmentation and transcription. It has already proven
to detect COVID-19 from a forced-cough recording with high
sensitivity including 100% asymptomatic detection (Laguarta
et al., 2020). Here we demonstrate it in the individualized and
explainable diagnostic of Alzheimer’s Dementia (AD) patients,
where, as shown in Table 1 we achieve above state-of-the-art
accuracy of 93.8% (Pulido et al., 2020), and using only raw audio
as input, while extracting for each subject a saliency map with
the relative disease progression of 16 biomarkers. Even with
expensive CT scans, to date experts can not create consistent
biomarkers as described in James et al. (2020), Henriksen et al.
(2014), and Morsy and Trippier (2019) even when including
emotional biomarkers, unlike our approach which automatically
develops them from free speech. Experts point at this lack of
biomarkers as the reason why no new drug has been introduced
in the last 16 years despite AD (Zetterberg, 2019) being the
sixth leading cause of death in the United States (Alzheimer’s
Association, 2019), and one of the leading unavoidable causes for
loss of healthy life.

We found that cough features, in particular, are very useful
biomarker enablers as shown in several experiments reported
in this paper and that the same biomarkers could be used
for COVID-19 and AD detection. Our emphasis on detecting
relevant biomarkers corresponding to the different stages of
disease onset, led us to build ten sub-models using four datasets.
To do so, over 200,000 cough samples were crowd sourced to
pre-train a model discriminating English from Catalan coughs,
and then transfer learning was leveraged to exploit resulting
features by integrating it into an OVBM brain model, showing
improvements in AD detection, no matter what transfer learning
strategy was used. This COVID-19 cough dataset we created
approved by MIT’s IRB 2004000133 sets a new benchmark

FIGURE 1 | Diagram of MIT CBMM open voice 4 module brain model with the

selected AD Biomarkers.

as the largest audio health dataset, with over 30,000 subjects
participating in less than four weeks in April 2020.

In the next section we present a literature reviewwith evidence
in favor of our choice of four biomarkers. In section 3, we present
the different components of the Open Voice Brain Model AD
detector, from sections 4 to 7 we introduce the 16 biomarkers
with results and a novel personalized AD biomarker comparative
saliency map.We conclude in section 8 with a brief summary and
implications for future research.

2. LITERATURE REVIEW SUPPORTING
OUR CHOICE OF FOUR SENSORY
STREAM AUDIO BIOMARKERS: COUGH,
WAKE WORD, SENTIMENT, AND MEMORY

Informed by a review of the literature, our choice of biomarkers
is consistent with the vast literature resulting from AD research
as we discuss next.
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FIGURE 2 | OVBM GNN architecture at a given Brain OS time.

2.1. Mood Biomarkers
Preclinical AD is often linked to mood changes. In
cognitively normal adults it include depression (Babulal
et al., 2016), while apathy and anxiety have been linked
to some cognitive decline (Bidzan and Bidzan, 2014).
Sentiment biomarker. Clinical evidence supports the
importance of sentiments in AD early-diagnosis (Costa
et al., 2017; Galvin et al., 2020), and different clinical settings
emphasize different sentiments, such as doubt, or frustration
(Baldwin and Farias, 2009).

2.2. Memory Biomarkers
One of the main early-stage AD biomarkers is memory
loss (Chertkow and Bub, 1990), which occurs both at a
conceptual level as well as at a muscular level (Wirths
and Bayer, 2008) and is different from memory forgetting
in healthy humans (Cano-Cordoba et al., 2017; Subirana
et al., 2017a). A prominent symptom of early stage AD is
malfunctioning of different parts of memory depending on
the particular patient (Small et al., 2000), possibly affecting
one or more of its subcomponents including primary or
working memory, remote memory, and semantic memory.
The underlying causes of these memory symptoms may be
linked to neuropathological changes, such as tangles and
plaques, initially affecting selected areas of the brain like
the hippocampi or the temporal and frontal lobes, and
gradually expanding beyond these (Morris and Kopelman, 1986).
Memory biomarker.

2.3. Respiratory Tract Biomarkers Cough
and Wake Word
The human cough is already used to diagnose several diseases
using audio recognition (Abeyratne et al., 2013; Pramono et al.,
2016) as it provides information corresponding to biomarkers in
the lungs and respiratory tract (Bennett et al., 2010). People with
chronic lung disorders are more than twice as likely to have AD
(Dodd, 2015), therefore we hypothesize features extracted from a
cough classifier could be valuable for AD diagnosis.

There is an extensive cough-based diagnosis research of
respiratory diseases but to our knowledge, no one had applied
it to discriminate other, apparently unrelated, diseases like
Alzheimer’s. Our findings are consistent with the notion that AD
patients cough differently and that cough-based features can help
AD diagnosis; they are also consistent with the notion that cough
features may help detect the onset of the disease. The lack of
longitudinal datasets prevents us from exploring this point but
do allow us to demonstrate the diagnostic power of cough-based
features, to the point where without these features we would not
have surpassed state-of-the-art performance.

The respiratory tract is often involved in the fatal outcome of
AD. We introduce two biomarkers focused on the respiratory
tract that may help discriminate between early and late stage
AD. We have not found research indicating how early changes
in the tract may be detected but given it’s importance in the
disease outcome it may be early on. This could also explain the
success of many speech-based AD discrimination approaches—
some of which have been applied to early stages of FTD.
Significant research in AD such as Heckman et al. (2017)
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TABLE 2 | Impact of Poisson mask on AD performance.

Model W/o Poisson(%) With Poisson(%)

Baseline 65.6 68.8

Cough 75.0 75.0

Intonation 68.8 75.0

Wake-Word “Them” 75.0 78.1

Multi-Modal 90.6 93.8

Avg improvement(%) 3.1

Baseline is a ResNet50 trained on the AD task without transfer learning.

TABLE 3 | To illustrate the complementary nature of the biomarkers we show the

unique AD patients detected by each individual biomarker model with only the

final classification layer fine-tuned on the target disease, Alzheimer’s and

COVID-19 in this case.

Biomarker Model Name Alzheimer’s(%) COVID-19(%)

Respiratory tract Cough 9 23

Sentiment Intonation 19 8

Vocal cords WW “THEM” 16 19

R. Tract and sentiment Cough and Tone. 0 0

R. Tract and vocal cords Cough and WW 6 1

Sentiment and vocal cords Tone. and WW 3 0

In all 3 41 34

In neither of the 3 6 15

Each transfer model detects unique patients reinforcing orthogonality of the biomarkers

and hence the potential of combining new ones. Note how exactly the same biomarker

models can detect Alzheimer’s and COVID-19 subjects, showing the transferable nature

for different diseases and how they behave “orthogonally” in both cases.

has proven that the disease impacts motor neurons. In other
diseases, like Parkinson’s, where motor neurons are affected,
vocal cords have proven to be one of the first muscles affected
(Holmes et al., 2000).

Dementia in general has been linked to increased deaths from
pneumonia (Wise, 2016; Manabe et al., 2019) and COVID-19
(Azarpazhooh et al., 2020; Hariyanto et al., 2020) possibly linked
to specific gens (Kuo et al., 2020). COVID-19 deaths are more
likely with Alzheimer’s than with Parkinson’s disease (Yu et al.,
2020). This different respiratory response depending on the type
of dementia suggests that related audio features, such as coughs,
may be useful not only to discriminate dementia subjects from
others but also to discriminate specific types of dementia.

We contend there is correlation, instead of causality, between
our two respiratory track biomarkers and Alzheimer’s but further
elucidation to this extent is necessary as there is in many other
areas with AD and more broadly in science in general (Pearl
and Mackenzie, 2018). Some causality link may exist due to the
simultaneous role of substance P in Alzheimer’s (Severini et al.,
2016) and in cough (Sekizawa et al., 1996). The existence of
spontaneous cough per semay not be enough to predict onset risk
but in combination with other health parameters may contribute
to an accurate risk predictor (Song et al., 2011). Our biomarker
suggestion is based on “forced coughs” which, to our knowledge,

has not been studied in connection with Alzheimer’s. We feel it
may be an early indication of future respiratory tract conditions
that will show in the form of spontaneous coughs. In patients
with late-onset Alzheimer’s Disease (LOAD) a unique delayed
cough response has been reported in COVID-19 infected subjects
(Isaia et al., 2020; Guinjoan, 2021). Dysphagia and aspiration
pneumonia continue to be the twomost serious conditions in late
stage ADwith the latter being themost common cause of death of
AD patients (Kalia, 2003), suggesting substance P induced early
signs in the respiratory tract may already be present in forced
coughs, perhaps even unavoidably.

What seems unquestionable is the connection between speech
and orofacial apraxia and Alzheimer’s, and it has been suggested
that it, alone, can be a good metric for longitudinal assessment
(Cera et al., 2013). Various forms of apraxia have been linked to
AD progression in different parts of the brain (Giannakopoulos
et al., 1998). Nevertheless, given the difficulty in estimating
speech and orofacial apraxia these figures are not part of common
Clinical Dementia Rating scales (Folstein et al., 1975; Hughes
et al., 1982; Clark and Ewbank, 1996; Lambon Ralph et al.,
2003). However, all these studies reveal difficulties in an objective,
accurate, and personalized scale that can track each patient
independently from the others (Olde Rikkert et al., 2011). The
lack of metrics also spans other related indicators such as quality
of life estimations (Bowling et al., 2015). There are no reliable
biomarkers for other neurogenerative disorders either (Johnen
and Bertoux, 2019).

Recent research has demonstrated that apraxia screening can
also predict dementia disease progression (Pawlowski et al.,
2019), especially as a way to predict AD in early stage FTD
subjects, a population that we are particularly interested in
targeting with our biomarkers. For the Behavioral Variant
of Fronto Temporal Dementia (bvFTD), in patients under
65 the second most common cognitive disorder caused by
neurodegeneration, little tonal modulation and buccofacial
apraxia, are targeted by our biomarkers and are established
diagnostic domains (Johnen and Bertoux, 2019). We hope that
our research can help establish reliable biomarkers for disease
progression that can also distinguish at onset between the
different possible diagnostics. The exact connection between
buccofacial apraxia and dementia has not been as well-
documented as that of other forms of apraxia. Recent results
show that there buccofacial apraxia may be present in up
to fifty percent of dementia patients with no association to
oropharyngeal dysphagia (Michel et al., 2020). Oropharyngeal
dysphagia, on the other hand, has been linked to dementia,
in some studies in over fifty percent of the cases, appearing,
in particular, in late stages of FTD and in early stages of AD
(Alagiakrishnan et al., 2013).

According to the NIH’s National Institute of Neurological
Disorders and Stroke information page on apraxia1, the
most common form of apraxia is orofacial apraxia which
causes the inability to carry out facial movements on request
such as coughing. Cough reflex sensitivity and urge-to-cough
deterioration has been shown to help distinguish AD from

1https://www.ninds.nih.gov/disorders/all-disorders/apraxia-information-page.
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FIGURE 3 | Impact of sensory stream biomarkers on OVBM performance by removing transferred knowledge one at a time. Top dotted sections of bars indicate

there is always performance gain from the cough biomarker. Baselines are the OVBM trained on AD without any transfer learning. In the other bars, a biomarker is

removed and replaced with an AD pre-trained ResNet50, hence removing the transferred knowledge but conserving computational power, showing

complementarities since all are needed for maximum results.

dementia with Lewy Bodies and control groups (Ebihara et al.,
2020). The impairment of cough in the elderly is linked to
dementia (Won et al., 2018).

3. OVERVIEW OF THE MIT OPEN VOICE
BRAIN MODEL (OVBM) FRAMEWORK

The OVBM architecture shown in Figure 1 frames a four-unit
system to test biomarker combinations and provides the basis
for an explainable diagnostic framework for a target task such as
AD discrimination. The Sensory Stream is responsible for pre-
training models on large speech datasets to extract features of
individual physical biomarkers. The Brain OS splits audio into
overlapping chunks and leverages transfer learning strategies to
fine-tune the biomarker models to the smaller target dataset.
For longitudinal diagnosis, it includes a round-robin five stage
graph neural network that marks salient events in continuous
speech. The Cognitive Core incorporates medical knowledge
specific to the target task to train cognitive biomarker feature
extractors. The Symbolic Compositional Models unit combines
fine-tuned biomarker models into a graph neural network.
Its predictions on individual audio chunks are fed into an
aggregating engine subsequently reaching a final diagnostic plus
a patient saliency map. To enable doctors to gain insight into the
specific condition of a given patient, one of the novelties of our

approach is that the outputs at each unique module are extracted
to create a visualization in the form of a health diagnostic
saliency map showing the impact of the selected biomarkers. This
saliency map may be used to longitudinally track and visualize
disease progression.

3.1. OVBM Applied to AD Detection
Next, we review each of the four OVBM modules in the context
of AD, introducing 16 biomarkers and gradually explaining
the partial GNN architecture shown in Figure 2. To be able
to compare models, our baselines and 8 of the biomarkers
are based on the ResNet50 CNN due to its state-of-the-art
performance on medical speech recognition tasks (Ghoniem,
2019). All audio samples are processed with the MFCC package
published by Lyons et al. (2020), and padded accordingly. We
operate onMel Frequency Cepstral Coefficients (MFCC), instead
of spectrograms (Lee et al., 2009), because of its resemblance to
how the human cochlea captures sound (Krijnders and t Holt,
2017). All audio data uses the same MFCC parameters (Window
Length: 20 ms, Window Step: 10 ms, Cepstrum Dimension: 200,
Number of Filters: 200, FFT Size: 2,048, Sample rate: 16,000). All
datasets follow a 70/30 train-test split andmodels are trained with
an Adam optimizer (Kingma and Ba, 2014).

The dataset from DementiaBank, ADrESS (Luz et al., 2020),
is used for training the OVBM framework and fine-tuning
all biomarker models on AD detection. This dataset is the
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FIGURE 4 | Sensory Stream Saliency Bar Chart: To illustrate the potential of our approach we show the strength of the simplest transfer models we tried. The

numbers 0-5-10-ALL on the x-axis labels refer to the number of convolution layers trained after transfer learning in addition to the final dense layer. We find the most

surprising, perhaps, is that the simple wakeword model to find the word “Them” is as powerful as the baseline. If we let the model fine-tune the last few (0-5-10) layers

then it goes well beyond it. Our novel Cough database, inspired in the effect of AD in the respiratory tract also shows surprising results, even without any adaptation at

all. If we let fine-tuning of the whole model, it’s validation accuracy improves ≈10% points with respect to the baseline. Baseline is the same OVBM architecture

trained on AD without any transfer learning of features.

largest publicly available, consisting of subject recordings in full
enhanced audio and short normalized sub-chunks, along with the
recording transcriptions from 78 AD and 78 non-AD patients.
The patient age and gender distribution is balanced and equal for
AD and non-AD patients. For the approach of this study focusing
purely on audio processing we only use the full enhanced audio
and patient metadata, excluding transcripts from any processing.
It is worth noting this given the poor audio quality of some of the
recordings.

4. OVBM AD SENSORY STREAM
BIOMARKERS

We have selected four biomarkers inspired by previous medical
community choices (Chertkow and Bub, 1990; Wirths and Bayer,
2008; Dodd, 2015; Heckman et al., 2017; Galvin et al., 2020), as
reviewed next.

4.1. Biomarker 1 (Muscular Degradation)
We follow memory decay models from Subirana et al. (2017a)
and Cano-Cordoba et al. (2017) to capture this muscular metric
by degrading input signals for all train and test sets with the
Poisson mask shown in Equation (1), a commonly occurring
distribution in nature (Reed and Hughes, 2002). We use as a
Possion function a mask with input MFCC image = Ix, output
mask =M(IX), λ = 1, and k = each value in Ix:

M(Ix) = Pr(λ)Ix (1)

FIGURE 5 | The two top lines illustrate the full OVBM performance, with its

biomarker feature models, as a function of chunk size. PT refers to individually

fine-tuning each biomarker model for AD before re-training the whole OVBM.

The middle line shows the OVBM without the cognitive core, illustrating how it

boosts performance by about 10% across the board. Baseline PT is the

OVBM architecture with each ResNet50 inside individually trained on AD

before retraining them together in the OVBM architecture.

Pr(X = k) =
λke−k

k!

As shown in Table 2, this Poisson biomarker brings a unique
improvement to each model except for Cough, consistent with
both inherently capturing similar features containing muscular
degradation.
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4.2. Biomarker 2 (Vocal Cords)
We have developed a vocal cord biomarker to incorporate in
OBVM architectures. We trained a Wake Word (WW) model to
learn vocal cord features on LibriSpeech—an audiobook dataset
with≈1,000 h of speech from Panayotov et al. (2015) by creating
a balanced sample set of 2 s audio chunks, half containing the
word “Them” and half without. A ResNet50 (He et al., 2016)
is trained for binary classification of “Them” on 3 s audio
chunks(lr:0.001, val_acc: 89%).

Illustrated in Table 3 and Figure 4, this vocal cords model
proves its contribution of unique features, which without fine-
tuning to the AD task performs as well as the baseline ResNet50
fully trained on AD, and significantly beats it when fully fine-
tuned.

4.3. Biomarker 3 (Sentiment)
We train a Sentiment Speech classifier model to learn
intonation features on RAVDESS—an emotional speech dataset

FIGURE 6 | Relation between chunk size and AD discrimination error, showing

increased importance of the latter chunks.

by Livingstone and Russo (2018) of actors speaking in eight
different emotional states. A ResNet50 (He et al., 2016) is
trained on categorical classification of eight corresponding
intonations such as calm, happy, or disgust(lr: 0.0001, val_acc on
8 classes: 71%).

As illustrated byTable 3 and Figure 4, this biomarker captures
unique features for AD detection, and when only fine-tuning
its final five layers outperforms a fully trained ResNet50 on AD
detection.

4.4. Biomarker 4 (Lungs and Respiratory
Tract)
We use the cough dataset collected through MIT Open Voice
for COVID-19 detection (Subirana et al., 2020b), strip all but
the spoken language of the person coughing (English, Catalan),
and split audios into 6 s chunks. A ResNet50 (He et al., 2016) is
trained on binary classification (Input: MFCC 6s Audio Chunks
(1 cough)—Output: English/Catalan, lr: 0.0001, val_acc: 86%).

Figure 4 and Table 3, justify the features extracted by this
coughmodel as valuable for the task of AD detection by capturing
a unique set of samples and improving performance. Further,
Figure 3 validates its impact on various OBVM architectures,
including the top performing multi-modal model, justifying the
relevance of this novel biomarker.

5. OVBM BRAIN OS BIOMARKERS

The Brain OS is responsible for capturing learned features
from the individual biomarker models in the Sensory Stream
and Cognitive Core, and for integrating them into an OVBM
architecture, with the aim of training the ensemble for a target
task, in this case AD detection.

To make the most out of the short patient recordings, we
split each patient recording into overlapping audio chunks (0–4,
2–6, 4–8 s). Once the best pre-trained biomarker models in

FIGURE 7 | (A) Saliency map to study the explainable AD evolution for all the patients in the study based on the predictions of individual biomarker models. BrainOS

(2, 8, 14, 20) show the model prediction at different chunk sizes. This map could be used to longitudinally monitor subjects where a lower score on the biomarkers

may indicate a more progressed AD subject. (B) Saliency map comparing AD+ subject S092 with a solid line and AD- subject S019 represented with a dashed line.
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the sensory stream and cognitive modules are selected, we first
concatenate them together and then pass their outputs through a
1,024 neuron deeply connected neural network layer with ReLU
activation. We also incorporate at this point metadata such as
gender. We test three Brain OS transfer learning strategies: (1)
CNNs are used as fixed feature extractors without any fine-
tuning; (2) CNNs are fine-tuned by training all layers; (3) only
the final layers of the CNN are fine-tuned.

From Figure 5, it is evident AD detection improves as
chunk length increases consistent with the fact that attention-
marking has more per-chunk information to formulate a better
AD prediction. From this attention-marking index (quantity of
information required in a chunk for a confident diagnosis) we
select chunk sizes 2, 8, 14, and 20 s, shown in Figure 7, as the
Brain OS biomarkers, establishing individual AD progression. In
terms of transfer learning strategies, Figure 4 shows that fine-
tuning all layers always leads to better results, however for most
models almost no fine-tuning is required to beat the baseline.

6. OVBM COGNITIVE CORE BIOMARKERS

Neuropsychological tests are a common screening tool for AD
(Baldwin and Farias, 2009). These tests, among others, evaluate
a patient’s ability to remember uncommon words, contextualize,
infer actions, and detect saliency (Baldwin and Farias, 2009; Costa
et al., 2017). In the case of this AD dataset, all patients are
asked to describe the Cookie Theft picture created by Goodglass
et al. (1983), where a set of words such as “kitchen” (context),
“tipping” (unique), “jar” (inferred), and “overflow” (salient), are
used to capture four cognitive biomarkers. To keep the richness
of speech, we train four wake word models from LibriSpeech
(Panayotov et al., 2015) with ResNet50s following the same
approach as Biomarker 2. The four chosen cognitive biomarkers
aim to detect patients’ ability on: context, uniqueness, inference,
and saliency.

We could show the same saliency bar chart in Figure 4 and a
uniqueness table such as Table 3 to illustrate the impact of each
cognitive biomarker. Instead in Figure 5, we show the impact
of removing the cognitive core on the top OVBM performance
which drops≈10%, validating the relevance of the cognitive core
biomarkers.

7. OVBM SYMBOLIC COMP. M.
BIOMARKERS

This module fine-tunes previous modules’ outputs into a graph
neural network. Predictions on individual audio chunks for
one subject are aggregated and fed into competing models to
reach a final diagnostic. We tested the model with various
BERT configurations and found no improvement in detection
accuracy. In the AD implementation, given we had at most
39 overlapping chunks, three simple aggregation metrics are
compared: averaging, linear positive (more weight given to
later chunks), and linear negative (more weight given to earlier
chunks).

In Figure 6, averaging proves to be the most effective, while
positive linear over performing the negative linear indicates
the latter audio chunks are more informative than front ones.
Figure 7 includes four biomarkers derived from combining
chunk predictions from biomarker models of the three other
modules (Cummings, 2019). With more data and longitudinal
recordings, the OVBM GNNmay incorporate other biomarkers.

8. DISCUSSION

We conclude by providing a few insights further supporting
our OVBM brain-inspired model for audio health diagnostics
as presented above. We have proven the success of the OVBM
framework, setting the new benchmark for state-of-the-art
accuracy of AD classification, despite only incorporating audio
signals—one that can incorporate GNNs (Wu et al., 2020).
Future work may improve this benchmark by also incorporating
into OVBM longitudinal GNN’s natural language biomarkers
using NLP classifiers or multi-modal graph neural networks
incorporating non-audio diagnostic tools (Parisot et al., 2018).

One of the most promising insights of all is the discovery of
cough as a new biomarker (Figure 3), one that improves any of
the intermediate models tested and that validates OVBM as a
framework on which medical experts can hypothesize and test
out existing and novel biomarkers. We are the first to report
that cough biomarkers have information related to gender and
culture, and are also the first to demonstrate how they improve
simultaneous AD classification as illustrated in the saliency
charts (Figure 4) as well as that of other apparently unrelated
conditions.

Another promising finding is the model’s explainability,
introducing the biomarker AD saliency map tool, offering
novel methods to evaluate patients longitudinally on a set
of physical and neuropsychological biomarkers as shown in
Figure 7. In future research, longitudinal data may be collected to
properly test the onset potential of OVBM GNN discrimination
in continuous speech. We hope our approach brings the AI
health diagnostic experts closer to the medical community and
accelerates research for treatments by providing longitudinal
and explainable tracking metrics that can help succeed adaptive
clinical trials of urgently needed innovative interventions.
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Large amounts of labeled data are a prerequisite to training accurate and reliable machine

learning models. However, in the medical domain in particular, this is also a stumbling

block as accurately labeled data are hard to obtain. DementiaBank, a publicly available

corpus of spontaneous speech samples from a picture description task widely used

to study Alzheimer’s disease (AD) patients’ language characteristics and for training

classification models to distinguish patients with AD from healthy controls, is relatively

small—a limitation that is further exacerbated when restricting to the balanced subset

used in the Alzheimer’s Dementia Recognition through Spontaneous Speech (ADReSS)

challenge. We build on previous work showing that the performance of traditional

machine learningmodels on DementiaBank can be improved by the addition of normative

data from other sources, evaluating the utility of such extrinsic data to further improve the

performance of state-of-the-art deep learning based methods on the ADReSS challenge

dementia detection task. To this end, we developed a new corpus of professionally

transcribed recordings from the Wisconsin Longitudinal Study (WLS), resulting in 1366

additional Cookie Theft Task transcripts, increasing the available training data by an

order of magnitude. Using these data in conjunction with DementiaBank is challenging

because the WLS metadata corresponding to these transcripts do not contain dementia

diagnoses. However, cognitive status of WLS participants can be inferred from results

of several cognitive tests including semantic verbal fluency available in WLS data. In this

work, we evaluate the utility of using the WLS ‘controls’ (participants without indications

of abnormal cognitive status), and these data in conjunction with inferred ‘cases’

(participants with such indications) for training deep learning models to discriminate

between language produced by patients with dementia and healthy controls. We find

that incorporating WLS data during training a BERT model on ADReSS data improves

its performance on the ADReSS dementia detection task, supporting the hypothesis that

incorporating WLS data adds value in this context. We also demonstrate that weighted

cost functions and additional prediction targets may be effective ways to address issues

arising from class imbalance and confounding effects due to data provenance.

Keywords: dementia diagnosis, Alzheimer’s disease, natural language processing, BERT, machine learning
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1. INTRODUCTION

Alzheimer’s Dementia (AD) is a debilitating condition with
few symptomatic treatments and no known cure. According to
the Alzheimer’s Association, in 2018 an estimated 5.8 million
Americans were living with AD (Association, 2019). By 2050,
these numbers are projected to increase to 14 million people
with AD at a cost of $1.1 trillion per year (Association, 2019).
Diagnosis of this condition is often missed or delayed (Bradford
et al., 2009), and delays may occur over an extended period
with cognitive changes anticipating future dementia preceding
clinical diagnosis by as many as 18 years (Rajan et al., 2015;
Aguirre-Acevedo et al., 2016). Earlier diagnosis of AD has the
potential to ease the burden of disease on patients and caregivers
by reducing family conflict and providing more time for financial
and care planning (Boise et al., 1999; Bond et al., 2005; Stokes
et al., 2015). Delayed diagnosis of this condition also contributes
substantively to the cost of care of this disease on account of a
high utilization of emergency rather than routine care, amongst
other factors—it is estimated that early and accurate diagnosis
can help save an estimated $7.9 trillion in medical and care
costs (Association, 2018). Furthermore, survey findings show the
vast majority (∼80%) would prefer to know if their unexplained
symptoms of confusion ormemory loss were due to AD dementia
in a formal clinical evaluation (Blendon et al., 2011).

One path to earlier diagnosis of AD involves the application
of machine learning methods to transcribed speech, with the
publicly available DementiaBank corpus (Becker et al., 1994)
providing a focal point for research in this area. The majority
of this prior work has involved the application of supervised
machine learning methods (see e.g., Orimaye et al., 2014, 2017,
2018; Fraser et al., 2016; Yancheva and Rudzicz, 2016; Karlekar
et al., 2018; Cohen and Pakhomov, 2020) to classify groups
of transcripts, specific transcripts or even individual utterances
as to whether or not the participants producing them were
clinically diagnosed with dementia. While many of the methods
developed during the course of this research exhibited promising
performance, their performance is not strictly comparable on
account of differences in units of analysis, restrictions on
the inclusion of participants, evaluation metrics and cross-
validation strategies. Furthermore, the DementiaBank dataset
was constructed without case/control matching, resulting in
statistically significant differences in age and level of education
across the AD and control groups. Consequently there is a danger
that diagnostic performance of classifiers trained and evaluated
on this set may be overestimated on account of their ability
to learn to recognize these differences, rather than linguistic
indicators of AD.

2. BACKGROUND

The ADReSS challenge reference set was deliberately constructed
to remediate some of these issues with the original data (Luz
et al., 2020). This dataset represents a subset of the DementiaBank
data, matched for age and gender, with enhancement of the
accompanying audio data, and containing only a single transcript
for each participant (as opposed to the multiple transcripts
corresponding to multiple study visits per participant available

in the original set). As has been noted by the developers of
the ADReSS dataset, it has the potential to advance the field by
providing a standardized set for comparison between methods,
which is a welcome advance on account of previously published
work in this area often using different subsets of DementiaBank,
as well as different cross-validation strategies and performance
metrics. The ADReSS set and the accompanying challenge task
present a standardized approach to evaluation on two tasks—AD
recognition and Mini-mental State Exam (MMSE) prediction—
for comparative evaluation moving forward. However, it is also
true that this subset is even smaller in size than the original
DementiaBank set, with only 108 training examples and 54
test examples, both split equally between healthy controls and
participants with AD dementia.

In previous work, Noorian et al. (2017) demonstrated that the
performance of machine learning approaches in the context of
the DementiaBank set can be improved by providing the models
concerned with additional “Cookie Theft” transcripts derived
from other datasets. In this work, the authors introduced two
additional sets of transcripts: Talk2Me andWLS. The former is an
internal collection, while the latter is drawn from the Wisconsin
Longitudinal Study (Herd et al., 2014), an extended study of a
sample of students graduating from high school in Wisconsin
1957 born between 1938 and 1940 (initial n = 10,317), with some
participants performing the “Cookie Theft” picture description
task in a subsequent 2011 survey, aged in their early seventies.
The authors report the availability of an additional 305 and
1,366 transcripts from participants without AD in the Talk2Me
and WLS sets, respectively. In both cases, only recordings
were available for analysis—text features were extracted using
the Kaldi open source Automated Speech Recognition (ASR)
engine (Povey et al., 2011), with an estimated word error rate
of ∼12.5% on the Talk2Me data, and none provided for the
WLS set. As the additional data were considered as controls,
the ADASYN (He et al., 2008) synthetic sampling method
was used to oversample the minority “dementia” class. On a
random 80/20 train/test split of the DementiaBank data, the
authors report a considerable advantage in performance with the
addition of the WLS controls in particular, with improvements
of over 10% (absolute) in macro-averaged F-measure across a
range of machine learning methods trained on a set of 567
manually engineered features, with oversampling offering an
advantage over training without balancing the set in some but not
all methods.

In this paper we evaluate the extent to which the performance
of contemporary deep learning architectures can benefit from the
addition of data from the WLS set. After attaining the relevant
institutional approvals, we obtained all available “Cookie Theft”
recordings from the WLS collection, as well as professional
transcriptions of these recordings, to obviate the need to
consider ASR error in our subsequent analyses. We evaluate
the utility of the resulting transcripts as a means to improve
performance of transfer learning using pre-trained Transformer-
based architectures (Vaswani et al., 2017), focusing on the widely-
used Bidirectional Encoder Representations from Transformers
(BERT) model (Devlin et al., 2018) that has been shown to
outperform other machine learning methods on the ADReSS
challenge in recent work (Balagopalan et al., 2020).
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Combining text corpora drawn from different sources to
train NLP models should be approached with caution. Recent
NLP research has identified and attempted to address the
potentially deleterious role of confounding variables in text
classification (Landeiro and Culotta, 2018). A confounding
variable is a variable that can influence both a predictor and
an outcome of a predictive model. One manifestation of the
issue of confounding in NLP concerns a scenario in which
data are drawn from different sources (Howell et al., 2020),
each with different underlying class distributions. The WLS
and ADReSS sets exemplify this problem. The ADReSS set
is balanced by design, with an equal number of case and
control transcripts. However, while some indication of cognitive
impairment can be inferred from the metadata that accompanied
the WLS recordings, the control transcripts vastly outnumber
the cases in which data from cognitive tasks indicates such
impairment. Consequently, if differences in language use across
the populations from which these datasets are drawn were
to permit a machine learning model to distinguish between
the two sets, such a model may approach its optimization
objective of accurate classification by simply learning to label
all WLS examples as controls. In this context, the provenance
of a transcript serves as a confounding variable, because it
influences both the intended predictors (words in the transcript)
and the outcome of interest (whether or not the transcript
was produced by a healthy control). In the context of deep
neural networks for image recognition, it has been proposed that
the problem of confounding can be addressed by introducing
confounding variables of interest as additional model outputs
(Zhong and Ettinger, 2017). The authors of this work argue
that including confounding variables as secondary prediction
objectives will influence model weights via backpropagation,
resulting in models with better generalizability and overall
performance. This argument is supported by empirical results
demonstrating improved performance on an image classification
task when potential confounding variables indicating position
and orientation are incorporated as secondary targets for
prediction. Motivated by this argument, we evaluate the utility
of treating the provenance of a transcript (ADReSS vs. WLS) as a
secondary target for prediction on overall model performance,
with the secondary objective of determining the extent to
which deep neural networks can learn to distinguish between
unseen transcripts from each of these corpora. This secondary
objective is of interest because accurate classification of unseen
transcripts would confirm that there is systematic difference
between transcripts from each corpus that has the potential to
bias machine learningmodels, despite this not being immediately
apparent upon qualitative evaluation of randomly selected
transcripts during the process of data preparation.

A second concern with combining transcripts in this manner
is that it introduces a class imbalance, where transcripts from
healthy “controls” greatly outnumber those from patients with
dementia. Previous work with WLS data used oversampling of
the minority class to address this imbalance, which was effective
with some but not all models (Noorian et al., 2017). As recent
work with BERT suggests cost-sensitive learning is an effective
alternative to address class imbalance (Madabushi et al., 2019),

we evaluate the utility of this method also. Cost-sensitive learning
involves adjusting the loss function of a model such that changes
in performance on one class are weighted more heavily. In this
case this involves proportionally weighting the loss function as
an inverse function of the class distribution, such that the model
learns to avoid misclassifying transcripts from dementia patients
more assiduously than it learns not to misclassify those from
healthy controls. Finally, we note that unlike the ADReSS set, the
WLS transcripts do not come with diagnostic labels. However,
the metadata accompanying these transcripts do include results
of verbal fluency tests, as well as metadata indicative of clinical
diagnoses other than dementia. A straightforward way to use
these metadata involves developing an exclusion criterion, such
that transcripts from participants with verbal fluency scores
suggestive of diminished cognitive function are not treated as
controls. In an additional effort to address the class imbalance
introduced by the WLS data, we also experiment with treating
the below-threshold fluency scores appended to these excluded
transcripts as “noisy labels” (Natarajan et al., 2013) for the
presence of dementia.

Thus, our research aims to answer the following
key questions:

1. Does the performance of contemporary deep learning models
on the ADReSS challenge diagnosis task benefit from the
introduction of additional normative data comprising of
“Cookie Theft” recordings from outside the ADReSS (or
DementiaBank) set?

2. Does the addition of auxiliary outputs, or the incorporation of
a cost-sensitive weight function, provide a way to compensate
for the potential confounding effects and class imbalance
introduced by these additional normative data, respectively?

3. Can verbal fluency scores be used to derive “noisy labels” to
produce additional “case” training examples that are of value
for performance on this task?

4. Are the two corpora sufficiently different that a deep learning
model might learn to distinguish between them, during the
course of the classification procedure?

Our main contributions can be summarized as follows:

1. We introduce a new professionally transcribed data set of
1,366 transcripts of the “Cookie Theft” task

2. We use associated metadata to infer noisy “case” and “control”
labels for each transcript

3. We evaluate the utility of these additional data with and
without inferred labels to improve the performance of
transfer learning approaches on the ADReSS challenge
classification task

4. We compare a set of loss function alternatives as a means to
further improve performance.

3. MATERIALS AND METHODS

3.1. Dataset
3.1.1. ADReSS

The ADReSS dataset, derived from the DementiaBank dataset,
consists of 156 speech transcriptions from AD and non-AD
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patients which are matched for age and gender. Transcripts
are English language responses to the “Cookie Theft” task of
the Boston Diagnostic Aphasia Exam, and are classified as
“AD” or “control” on the basis of clinical and/or pathological
examination. We downloaded the ADReSS dataset from the
Alzheimer’s Dementia Recognition through Spontaneous Speech:
The ADReSS Challenge website1.

3.1.2. Wisconsin Longitudinal Study

TheWisconsin Longitudinal Study (WLS) is a longitudinal study
of a random sample of 10,317 graduates from Wisconsin high
schools in 1957. The study also includes a randomly selected
sibling of graduates, and spouses of graduates and siblings. WLS
participants were interviewed up to six times across 60-years
between 1957 and 2011. Beginning in 1993, during the fourth
round of interviews, theWLS included cognitive evaluations. The
“Cookie Theft” task was administered in the sixth-round of the
survey in 2011 survey (see Herd et al., 2014 for details). In July of
2019 the ongoing seventh round of data collection began.

3.2. Experiments
3.2.1. Dataset Construction

All audio samples in the WLS dataset were transcribed near-
verbatim by a professional service. The resulting near-verbatim
transcripts include filled pauses (um’s and ah’s) and tags for
unintelligible speech. The transcriptionists also separated the
speech of the examiner (containing task instructions and task-
final comments) from the participant’s response to the task. For
the purposes of the current study, we removed filled pauses and
unintelligible speech segments as well as the text corresponding
to the examiner’s speech.

The metadata of WLS do not currently provide dementia-
related diagnoses; however, they do provide a limited set of
cognitive test scores, and answers to questions about some
health conditions. Of relevance to the current research, WLS
participants underwent two category verbal fluency cognitive
tests in which they were asked to name all words that belonged
to a category (animals, food) in 1 min. The semantic (category)
verbal fluency task has been previously shown to be highly
sensitive (albeit not specific) to manifestations of AD dementia
(Henry et al., 2004) with an unadjusted for age and education
cutoff of 15 on the animal category recommended for use as a
screening instrument in a clinical setting (Duff-Canning et al.,
2004).

In order to identify a subgroup of healthy controls in the
WLS dataset comparable to controls in the ADReSS dataset we
used the verbal fluency scores and an answer of “yes” to the
question “Have you ever been diagnosed with mental illness?” as
inclusion/exclusion criteria as follows. We classified transcripts
of participants as cases (as opposed to healthy controls) if (1)
the participants had evidence of impairment in semantic verbal
fluency, or (2) have been diagnosed with a mental illness2.

1http://www.homepages.ed.ac.uk/sluzfil/ADReSS/
2We use a generic term “cases” for participants with potential cognitive
impairment and mental illness only as a way to distinguish them from controls,
as we expect their language production on the picture description task to differ
from that of controls. We do not in any way imply that a mental illness diagnosis

Prior work on verbal fluency performance in participants with
AD established that animal fluency scores <15 are 20 times
more likely in a patient with AD than in an healthy individual
and were found to discriminate between these two groups with
sensitivity of 0.88 and specificity of 0.96 (Duff-Canning et al.,
2004). Recognizing the fact that verbal fluency performance
does vary slightly by age and education (Tombaugh et al., 1999;
Marceaux et al., 2019), we used statistically determined age and
education-adjusted thresholds of 16, 14, and 12 for participants
in<60, 60–79, and>79 age ranges, respectively. We did not have
normative data available for the food category; however, since the
distributions of semantic verbal fluency scores on the “animal”
category and “food” category were very similar, we applied the
same cutoffs for the food category as for the animal category.

The initial set of 1,366 WLS participants was reduced to 1,165
by removing those with extremely long and short transcripts
whose length was beyond one standard deviation around the
mean length of a WLS transcript. Of the remaining WLS
participants with a “Cookie Theft” picture description task
transcription, 954 participants also had a category semantic
verbal fluency score or indicated a mental illness diagnosis.
Of these participants, 839 had a verbal fluency score above
the normative threshold and did not have a mental illness
diagnosis. These were labeled as “controls.” Of the remaining 115
participants, 98 had a verbal fluency score below the threshold
and 20 had amental illness diagnosis. These 115 participants were
labeled as “cases.”

Descriptive statistics for the ADReSS and WLS datasets are
shown in Table 1. The mean ages of WLS controls and cases at
the point of data collection are lower than those of participants
whose transcripts make up the ADReSS dataset. Upon analysis of
the differences in age of participants between the two corpora, we
found that while there was no statistically significant difference
[t(1108) = 4.3, p = 1.96] in the overall age of ADReSS (M =

65.6, SD = 6.6) and WLS participants (M = 63.9, SD = 4.1),
nor in the age of controls [t(915) = 1.3, p = 0.19]3, there was a
significant difference between the ages of AD cases in the ADReSS
set and inferred WLS “cases” [t(191) = 4.6, p < 0.001]. While
statistically significant, this difference in mean ages is relatively
small (2.3 years) and may be of limited practical significance.
Gender distributions among these two datasets are similar. In
both theWLS andADReSS sets, a larger proportion of the control
group attained post-high-school education.

3.2.2. Model

Bidirectional Encoder Representations from Transformers
(BERT Devlin et al., 2018) provides a pretrained deep neural
network for researchers and practitioners to fine tune on specific
tasks by adding just one additional output layer (Liu and Lapata,
2019). BERT exemplifies the “transfer learning” approach
that has been used to improve performance across a range

is related to cognitive impairment. However, in the absence of specific metadata
related to the presence of dementia, we decided it would be better to exclude these
participants from the control set also.
3T-test results are reported in APA style: t(degrees of freedom) = the t statistic,
p = p-value. The abbreviations M and SD stand for mean and standard
deviation, respectively.

Frontiers in Computer Science | www.frontiersin.org 4 April 2021 | Volume 3 | Article 642517112

http://www.homepages.ed.ac.uk/sluzfil/ADReSS/
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


Guo et al. Crossing the Corpus Chasm

TABLE 1 | Dataset description.

ADReSS WLS

Control Case P-value Control Case P-value

n 78 78 839 115

Age, mean (SD) 65.0 (7) 66.3 (7) 0.226 63.9 (5) 63.9 (4) 0.902

Gender, n (%) Female 43 (55) 43 (55) 1 295 (35) 32 (28) 0.995

Male 35 (45) 35 (45) 213 (25) 23 (20)

Refused/Missing 0 0 331 (40) 60(52)

Education, n (%) ≤12 years 34 (44) 52 (67) 0.002 401 (48) 78 (68) <0.001

>12 years 43 (55) 22 (28) 438 (52) 37 (32)

Refused/Missing 1 (1) 4 (5) 0 0

Two-sample t-tests were used to evaluate the p-value for continuous variables, and Chi-squared was used for categorical variables.

of classification tasks in image and text processing in recent
years. Essentially, transfer learning allows for the application of
information learned while training a model on one task, to a
different one. In the case of BERT for text classification, the initial
task involves predicting held out (“masked”) words or sentences
in a large corpus of otherwise unlabeled text. The general
information about word distribution and relative position
learned in this manner can then be applied to a downstream
classification task, with or without fine-tuning the weights of
BERT in addition to a classification layer that is appended to
this pretrained deep neural network model. Unlike previous
recurrent neural network approaches, BERT allows the model
to process words in relation to all other words in a passage in
parallel rather than sequentially, enhancing the scalability of
the pre-training procedure. An important feature of BERT is
its use of attention modules (Vaswani et al., 2017), which take
into account other words in a unit of text when generating
a word representation during pre-training and subsequent
tasks. BERT can therefore take the broader context of a word
into consideration, with the capacity to resolve ambiguities in
contextual word meaning. Most importantly, the information
acquired during the pre-training process enables BERT to
perform well even when only small amounts of annotated
data are available for fine tuning. Following previous work,
we modified BERT by adding a classification layer, to obtain
binary class labels corresponding to “cases” and “controls” in the
ADReSS dataset.

3.2.3. Loss Functions

We evaluated the utility of several variants of the BERT loss
function as a means to compensate for class imbalance, and
potential confounding effects. The standard loss function for
categorization with BERT (as implemented in the widely used
Hugginface Transformers library4) is the CrossEntropy loss,
which combines a softmax function with the standard Cross
Entropy loss. This encourages a model to choose one of a set of
possible classes in a text categorization class, by convertingmodel
outputs into a series of probabilities across classes, which sum to
one across all classes, before calculating the loss. For multi-label

4https://github.com/huggingface/transformers

classification, where more than one label can be assigned (in
our case, diagnosis = [case|control], source = [WLS|ADRess]),
a reasonable alternative is to use the BCEwithLogits (BCE)
loss function, which does not require probabilities as inputs. As
this loss function also provides a convenient means to weight
classes, we retained it for our experiments with cost-weighting as
a means to compensate for class imbalance by applying a weight
of n

c for each class, where n is the number of transcripts in the
set, and c is the number of transcripts of the class of interest.
Less frequent classes (the “dementia” class when WLS is used)
will have more influence on the cost function, as they will have
a smaller denominator. In order to isolate the effects of this
loss function from the multilabel and weighted configurations
of it, we also report results with an unweighted edition of the
BCEwithLogits loss, as well as the standard loss function.

3.2.4. Methods and Evaluation

To evaluate the effect of adding more data, the WLS control and
WLS total sets (case and control) were added to the ADReSS
training set separately. We used the single unique ADReSS test
set as the testing set for all models, and evaluated the models by
accuracy and area under the receiver-operator curve (AUC). We
also performed cross-validation (CV) on the training set.

We report evaluation metrics with 5-fold CV (rather than the
leave-one-subject-out protocol used in some prior work) due to
memory and time constraints. In this case, values of evaluation
metrics were averaged across CV folds. To evaluate performance
on the test set, we generated 10 instantiations of eachmodel using
different random seeds to determine the initialization of classifier
weights for each instantiation. We trained each of these models
on the training set (± the WLS components) and reported the
mean and standard error across these ten runs. For two class
label prediction, we evaluated models with the standard loss
function, a weighted BCE loss function, and an unweighted BCE
loss function. Finally, we evaluated a multi-label classification
model (AD, not AD, ADReSS, WLS), using an unweighted BCE
loss function.

3.2.5. Training Details

All experiments were conducted with the 12-layer
bert-base-uncased model. Experiments using cross-
validation on the training set were run on a single NVIDIA Tesla
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P-40 GPU, while experiments with evaluation on the test set
were run on a single NVIDIA Tesla V-100 GPU. All models were
developed using Python 3.7 and PyTorch 1.2.0. We used the
Transformers library to implement BERT in PyTorch (Wolf
et al., 2019), permitting fine-tuning of BERT model weights in
addition to tuning of the classification layer. The maximum
sentence length was set to the maximum length of the current
training set, and the batch size was set to 8. The learning rate
was set to 1 × 10−5. All models were run for 20 epochs. We
adopted the Adam optimizer (Kingma and Ba, 2014) with linear
scheduling (Paszke et al., 2019) of the learning rate. For the BCE
loss function, nn.BCEWithLogitsLoss was used. Other
hyper-parameters were set to their default values.

4. RESULTS

The results of our 5-fold cross-validation experiments are shown
in Table 2. When interpreting this table it is important to bear
in mind that the cross-validation splits in the WLS control and
WLS total scenarios include examples from the respective WLS
sets also. Thus, they are not comparable to one another, nor are
they comparable to the results shown with the ADReSS set only.
However, it is informative to compare the results within each
panel in turn (aside from the ADReSS-only result, which provides
an indication of the robustness of the results from the train-test
split used in the challenge). It is also important to note that the
standard error of the mean (indicated with±) is calculated across
the five cross-validation folds, and consequently are indicative of
the differences between the validation sets in these folds, rather
than differences emerging from stochastic initialization of the
classification layer of the BERT models concerned (these were
initialized with the same random seed).

Both the WLS control and WLS total results suggest a
trend toward an advantage for the loss function variants under
consideration, as compared with the standard loss function, with
unweighted and weighted variants of the BCE loss function
generally outperforming the standard loss function. In addition,
the best results in most cases are attained by themultilabel model.
This suggests that augmentation of the model with additional
targets for prediction may be helpful to reduce the confounding
effect of the provenance of the transcripts concerned, when
transcripts from both sources are included in the validation set.
However, we note that one exception to this finding is the AUC
in the WLS total set—in this configuration, the standard loss
function performs best. The relatively poor performance with
the addition of the “WLS total” set in 5-fold CV may result
from discrepancies between the noisily labeledWLS cases and the
clinically determined ADReSS AD dementia cases.

Results on the held-out ADReSS challenge test set are shown
in Table 3, with the model trained on the ADReSS training set
only and using the standard loss function taken as a baseline
(these baseline results are largely consistent with the 5-fold
cross-validation results on this set, suggesting the test set is
representative of the data set as a whole). When comparing
results from the three models trained with a standard loss
function to evaluate the impact of the WLS data on a standard

TABLE 2 | Five-fold cross-validation results on training set.

Data Loss function % Accuracy % AUC

ADReSS Standard 80.5 ± 4.0 88.2 ± 3.1

ADReSS + WLS control Standard 96.5 ± 0.3 98.7 ± 0.3

Weighted BCE 97.4 ± 0.3 98.9 ± 0.2

Unweighted BCE 97.4 ± 0.3 98.8 ± 0.4

Multilabel BCE 97.9 ± 0.5 99.2 ± 0.1

ADReSS + WLS total Standard 83.3 ± 1.2 68.8 ± 0.6

Weighted BCE 83.7 ± 1.4 61.2 ± 2.8

Unweighted BCE 83.7 ± 1.4 65.7 ± 2.8

Multilabel BCE 84.8 ± 1.3 66.1 ± 1.6

Results shown are the mean across the 5-folds± the standard error. Best results in panels

showing multiple models are in boldface.

TABLE 3 | Results on ADReSS test set.

Data Loss function % Accuracy % AUC

ADReSS Standard 79.8 ± 0.9 88.3 ± 0.5

ADReSS + WLS control Standard 81.2 ± 1.1 90.6 ± 0.9

Weighted BCE 82.1 ± 1.0 92.3 ± 0.4*

Unweighted BCE 80.8 ± 1.1 91.6 ± 0.3*

Multilabel BCE 81.2 ± 0.5 90.6 ± 0.5*

ADReSS + WLS total Standard 81.9 ± 1.1 91.2 ± 0.9*

Weighted BCE 80.8 ± 0.6 89.3 ± 0.9

Unweighted BCE 80.8 ± 1.1 88.9 ± 0.5

Multilabel BCE 80.4 ± 0.9 91.2 ± 0.4*

Results shown are the mean across ten iterations ± the standard error. *Indicates

statistically significant difference from the baseline, as estimated by a paired t-test (as

each repeated train/test evaluation was initialized with the same random seed across

models). Best results in panels showing multiple models are in boldface.

BERT classifier, we find both incorporating additional WLS
controls, and the WLS total data (with controls and noisy labels
for cases) leads to improvements over the baseline model. On
account of the small number of test cases, only the advantages
in AUC are statistically significant—presumably on account of
accuracy generally having higher variance across runs than the
AUC (as a small change in the predicted probability of an
example may lead to a larger change in accuracy if this crosses
the classification boundary and leads to error). Nonetheless,
the general trend supports the hypothesis that the additional
normative data will improve the performance of BERT on the
ADReSS challenge diagnosis task.

When comparing the loss function variants, we observe that
those models trained on the ADReSS set with the addition of
WLS controls only using the weighted BCE function achieves the
best AUC and accuracy amongst all the models, suggesting that
weighting the loss function is an effective way of compensating
for the class imbalance that results from these additional
“control” data points. More importantly, this model significantly
improves AUC compared to the baseline model in the test set.
Unlike the 5-fold CV scenario, the multi-label loss function does
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not lead to better performance than the standard loss function—
which is perhaps unsurprising given the total absence of WLS
data in the test set, obviating the need to resolve confounding
effects emerging from data provenance. That the unweighted
BCE function also does not improve performance over the
standard function supports the hypotheses that it is indeed the
weighting of this function that is responsible for its advantages
in performance.

An additional finding from these experiments is that the
multilabel models correctly identified the provenance of the
ADReSS-derived examples in the test set with perfect accuracy
in nine of 10 runs, and ∼98% accuracy on the remaining
run. These results strongly support the hypothesis that a deep
learning model trained on data from both corpora would learn
to distinguish between them. This finding is further supported
by a perfect accuracy in distinguishing between these corpora in
the held-out validation split (including both WLS- and ADReSS-
derived examples) demonstrated in a subsequent run.

The results with the inclusion of “noisy” WLS cases differ
from those with controls alone. With the standard loss function,
the addition of these data improves performance beyond that
attained by adding WLS controls alone. However, performance
does not match the best of the “control only” models, and
is not improved further with the addition of variant loss
functions. One explanation for the latter finding may be that class
imbalance effects are already obviated through the introduction
of additional cases, increasing the positively labeled training
examples from∼5 to∼16% of the data available for training.

5. DISCUSSION

In this paper, we evaluated the utility of the incorporation of
additional “Cookie Theft” transcripts drawn from the Wisconsin
Longitudinal Study as a means to improve the performance of a
BERT-based classifier on the ADReSS challenge diagnosis task.
Our aims in doing so were primarily to evaluate whether or
not these data would improve performance, but also to establish
the extent to which weighting the cost function of the model
and representing corpus provenance as additional targets for
prediction could compensate for the issues of class imbalance
and corpus-specific confounding effects, respectively. Finally, we
wished to determine whether or not a model could learn to
distinguish between the two corpora, to determine if our concern
about such corpus-specific confounding effects was justified.

We found that incorporation of WLS data improved
performance over that of a model trained on ADReSS data
alone, and that these improvements were present both when
only WLS “controls” (transcripts from participants with verbal
fluency scores in the normal range for their age) were added,
and when these were combined with noisily-labeled WLS “cases”
(transcripts from participants with low verbal fluency scores,
or reported diagnoses related to mental illness). When only
controls were added, further improvements in performance were
obtained when weighting the cost function to compensate for
class imbalance, resulting in the best-performing models on the
ADReSS challenge test set, with a mean accuracy of 82.1% and

mean AUC of 92.3% across ten repeated instantiations of the
model, as opposed to a mean accuracy and AUC of 79.8 and
88.3%, respectively, without the addition of WLS data.

While we note that Balagopalan et al. (2020) report an
accuracy of 83.3% with a BERT-based classifier on this task
when trained on the AD set alone, these experiments did not
include repeated model instantiations to determine the effects
of stochastic initialization of classifier weights on performance,
that our baseline AD-only BERT model attained an accuracy
of 83.3 or higher on two of ten such iterations, and that the
best performance of the cost-weighted model across iterations
resulted in an accuracy of 89.6% (with an AUC of 94.8%).
This difference in baseline performance may be attributable
to differences in stochastic initialization, or an unspecified
difference in model architecture (e.g., BERT-base vs. BERT-large)
or hyperparameter settings, and we do not believe it detracts from
the strength of our conclusions.

While most of the work with the ADReSS challenge data
has focused on multimodal analyses of acoustic and transcript
data simultaneously, the paper introducing this data set provides
some baseline results with language-only models, which were
trained on a set of thirty-four linguistic outcome measures (such
as total number of utterances, and part-of-speech percentage)
(Luz et al., 2020). Test set classification accuracy is generally
lower than results attained using BERT trained on raw text
(even without the addition of WLS data), ranging from 0.625 to
0.792 across algorithms. Best performance was attained using a
Support Vector Machine, though this configuration performed
worse than other algorithms in cross-validation experiments.
This suggests that BERT is able to automatically extract predictive
features that outperform handcrafted features. However, it
should be noted that BERT has considerably more trainable
parameters than the models evaluated in this prior work, and
that a fair comparison between BERT-based and engineered
features would require the ascertainment of BERT’s performance
with freezing of all layers aside from the classification layer.
Other work focusing on linguistic features explores the utility of
using terms as features directly. Searle et al. (2020) compared
machine learning models applied to word-level features to
the DistilBERT architecture, reporting tied best accuracies of
81% with DistilBERT and an utterance-level combination of
a Support Vector Machine and Conditional Random Field
classifier. Additional work suggests that incorporation of acoustic
features may offer further advantages in performance. Syed et al.
(2020) demonstrated an accuracy of 85.4% with a multimodal
learning system that incorporated both audio signals and
transcripts. BERT and RoBERTa were included in themultimodal
framework. These results suggest that incorporating additional
information from auditory features may suggest a path toward
further improving the performance of ourmodels, although there
are technical challenges concerning the differences in recording
instruments across data sets that would need to be addressed in
order to explore this.

In the context of 5-fold cross-validation experiments, where
both WLS- and ADReSS-derived examples were present in the
validation splits, adding transcript provenance as an additional
target for prediction in a multi-label setting resulted in best
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performance, supporting the hypotheses that this may be an
effective way to address corpus-specific confounding effects,
which are an important concern in biomedical machine learning
when there is a need to assemble a data set from smaller
constituents thatmay have been collected at different institutions.
Of particular interest for future work, these models also
learned to classify the provenance of the data sets concerned
with perfect or near-perfect accuracy, suggesting systematic
differences between the source corpora that were not apparent
upon informal inspection of word usage and lexical patterns.
Further research is required to determine the cues used by the
models to make these distinctions.

The results presented in this paper should be interpreted in
light of several limitations. First, the ADReSS dataset is relatively
small. The results reported here need to be replicated on larger
datasets to determine their generalizability. Second, while the
WLS dataset contains a very rich set of participant characteristics,
these characteristics do not include those that can be used
directly for characterization of AD dementia. Thus, the results
pertaining to WLS cases should be interpreted with caution.
In particular, while utilization of mental health diagnoses to
exclude transcripts from the analysis is readily justifiable, using
these diagnoses to derive noisy labels for cases may exceed the
bounds of noise that our models can tolerate. In future work we
will evaluate the extent to which using verbal fluency derived
criterion only leads to noisy labels with greater downstream
utility. We note also that efforts are currently underway to
interview WLS participants in order to obtain clinical diagnoses
of dementia. We anticipate this measure will be available for
all eligible participants within a few years of the time of this
writing, which will further enhance the utility of our transcripts
for future research on the linguistic manifestations of dementia.
Third, cases in both datasets are significantly less educated
than the controls which may result in language use artifacts
that have not been accounted for. These potential differences
in language use should be further investigated. There are also
some methodological alternatives that we did not fully consider
in the current work. Our study did not consider the acoustic
components of the available data, and depended upon manual
transcriptions of speech data. Further research is needed to
determine the utility of incorporating acoustic features, as well as
the model’s robustness to errors that may be introduced during
the process of automated speech recognition. Furthermore, we
did not formally evaluate oversampling strategies. Preliminary
experiments with random oversampling suggested this would not
be a fruitful strategy, and to our knowledge BERT-based strategies
for similarity-based oversampling have yet to be developed. In
addition we have yet to evaluate the combination of auxiliary
prediction targets with weighting of the cost function, which
may be a productive direction to pursue in future work on
account of their individual utility when transcripts from both
corpora are present at the point of validation. Finally, the utility
of auxiliary targets as a means to obviate for confounding effects
may be more readily apparent when the distribution of positive
cases across corpora is different at test time than at training
time (Landeiro and Culotta, 2018). Establishing whether or not
this is the case would require additional evaluation involving

validation sets in which these distributions are artificially
modified.

6. CONCLUSION

In this paper, we evaluated the utility of using additional “Cookie
Theft” picture description transcripts from the Wisconsin
Longitudinal Study, as a means to improve the performance of
a BERT-based classification approach on the dementia detection
task of the ADReSS challenge. Our results indicate that training
on these additional data leads to improved performance on this
task, both when using all available transcripts as normative data
regardless of cognitive status and subsets of the data extracted
based on cognitive status inferred from available metadata (i.e.,
verbal fluency and mental health status). In the former case in
particular, we find that weighted cost functions are an effective
way to compensate for the class imbalance introduced by the
addition of more “control” transcripts. Furthermore, results from
our cross-validation studies suggest that introducing dataset
provenance as an auxiliary target for prediction shows potential
as a means to address different case/control distributions when
combining datasets drawn from different sources. As such, our
results suggest that our professionally transcribed WLS “Cookie
Theft” transcripts are a valuable resource for the development
of models to detect linguistic anomalies in dementia. These
transcriptions are available upon request from wls@ssc.wisc.edu.
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Multimodal Capture of Patient
Behaviour for Improved Detection of
Early Dementia: Clinical Feasibility and
Preliminary Results
Patrik Jonell 1†*, Birger Moëll 1†*, Krister Håkansson2,3†, Gustav Eje Henter1,
Taras Kucherenko4, OlgaMikheeva4, Göran Hagman2,3, Jasper Holleman2,3, Miia Kivipelto2,3,
Hedvig Kjellström4, Joakim Gustafson1 and Jonas Beskow1

1Division of Speech, Music and Hearing, School of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm, Sweden, 2Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm,
Sweden, 3Karolinska University Hospital, Stockholm, Sweden, 4Division of Robotics, Perception and Learning, School of
Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden

Non-invasive automatic screening for Alzheimer’s disease has the potential to improve
diagnostic accuracy while lowering healthcare costs. Previous research has shown that
patterns in speech, language, gaze, and drawing can help detect early signs of cognitive
decline. In this paper, we describe a highly multimodal system for unobtrusively capturing
data during real clinical interviews conducted as part of cognitive assessments for
Alzheimer’s disease. The system uses nine different sensor devices (smartphones, a
tablet, an eye tracker, a microphone array, and a wristband) to record interaction data
during a specialist’s first clinical interview with a patient, and is currently in use at Karolinska
University Hospital in Stockholm, Sweden. Furthermore, complementary information in the
form of brain imaging, psychological tests, speech therapist assessment, and clinical
meta-data is also available for each patient. We detail our data-collection and analysis
procedure and present preliminary findings that relate measures extracted from the
multimodal recordings to clinical assessments and established biomarkers, based on
data from 25 patients gathered thus far. Our findings demonstrate feasibility for our
proposedmethodology and indicate that the collected data can be used to improve clinical
assessments of early dementia.

Keywords: Alzheimer, mild cognitive impairment, multimodal prediction, speech, gaze, pupil dilation, thermal
camera, pen motion

INTRODUCTION

Alzheimer’s disease and other neurocognitive disorders with a neuropathological origin develop
gradually over many years before existing criteria of a clinical diagnosis are fulfilled (Blennow et al.,
2006; Jack et al., 2018). The irreversible nature of these diseases and the long preclinical phase could
make effective preventive non-pharmacological approaches especially appropriate, e.g., life-style
changes that promote brain health and that have no negative side-effects (Kivipelto et al., 2017).
Making a correct diagnosis is a challenging task, especially in early stages of these diseases
(Håkansson et al., 2018); it has been estimated that more than 50% of cases of dementia are
undetected (Lang et al., 2017), and that the diagnostic accuracy is only between 70 and 90%,
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compared to what is revealed in post-mortem neuropathology
(Villemagne et al., 2018; Gauthreaux et al., 2020).

The diagnostic uncertainty in neurocognitive disorders
incurs great human and monetary costs to patients and
society. For the patient, a false diagnosis inflicts unnecessary
trauma with devastating consequences on quality of life, in
addition to medication with likely negative side-effects. For
society, large cost savings are possible if only persons with a
high probability of neuropathology are referred to more
detailed examinations. In addition, if an underlying
pathology can be correctly identified at an earlier stage, this
will probably improve the efficacy of pharmacological as well as
non-pharmacological counteractive measures. It is therefore of
high priority to develop diagnostic tools for these diseases that
are more sensitive, less invasive, more cost-effective, and easier
to administer. Approaches based on machine learning have
proved successful for processing complex information and
assisting in medical decisions in several diseases (Hamet and
Tremblay, 2017). In recent years, such methods have been
developed also for neurocognitive disorders (Bruun et al., 2019;
Koikkalainen et al., 2019; Lee et al., 2019a). Typically, clinical
information collected through established diagnostic routines
is automatically analysed, e.g., via automatic analysis of brain
images. But machine learning has also been used to combine
many types of clinical data to further aid in the diagnosis of
neurocognitive disorders (Bruun et al., 2019; Koikkalainen
et al., 2019; Lee et al., 2019a). Another potential application
of machine learning for neurocognitive disorders could be the
automatic capture and analysis of behavioural signals of
potential clinical relevance, both for reducing the risk that
such signals are missed by the clinician and for adding new and
complementary information beyond what normally is collected
in the medical examination. Such applications have been tested
and evaluated for single digital biomarkers, such as speech or
gaze, and the results have been promising in several cases, as
further described in Related Work.

In this study we describe the first comprehensive and highly
multimodal approach where signals from numerous behavioural
and physiological channels are captured and analysed in parallel
in real patients, as an integrated part of the regular clinical
examinations at a major regional hospital. To offer a rationale
for this multimodal approach, we first (in Medical Background)
give a short medical background to neurocognitive disorders and
diagnostic challenges, including neuropathological characteristics
and behavioural manifestations. In Related Work we then
describe recent developments in digital biomarkers of special
relevance for this project, including speech patterns, gaze, non-
verbal behaviours, and physiological signals. Data Collection then
details our comprehensive, multimodal approach for gathering
patient behaviour data during clinical interviews. This is followed
byData Analysis, which describes how the data can be analysed to
extract digital biomarkers, and Preliminary Findings, which
illustrates how the diagnostic relevance of the extracted
biomarkers can be analysed. The implications of our
preliminary findings and of our data gathering in general are
discussed in Discussion, while Conclusion concludes.

MEDICAL BACKGROUND

Neurocognitive Disorders
Due to continued global increase in life expectancy, the number
of persons with chronic diseases is expected to grow dramatically.
As for many of these chronic diseases, age is the most important
risk factor for getting a neurocognitive disorder (NCD) with a
doubled risk for every 5 years of life. At the age of 90, around 50%
of the population carries a dementia diagnosis, and the prevalence
is around 20% higher for women than for men (Cao et al., 2020).
In the case of major neurocognitive disorders (NCD), previously
named dementia, no pharmacological treatment exists that can
cure or halt the disease process. Approximately 50 million
persons today carry some form of NCD, a number that is
expected to grow to around 150 million in 2050 if no cure will
be been found (Prince, 2015). Due to high-intensive need of care
in later phases, these diseases put a high burden on limited care
resources and societal economies. Combating these disorders has
been declared a priority by the World Health Organization
(World Health Organization and Alzheimer’s Disease
International, 2012). Neurocognitive disorders exist in various
forms, where Alzheimers disease (AD) is the most common
globally, accounting for approximately 60% of all cases, but
limitations in vascular function to provide sufficient oxygen
and nutrients to nerve cells often contribute to cognitive
impairments, either alone (vascular dementia), or in parallel
with e.g. AD. Cognitive disorders in older age may also derive
from other neuropathological conditions such as Lewy-Body
Dementia (LDB), Fronto-temporal Dementia (FTD) and
Parkinson Dementia (PD), accounting in total for around 30%
of all NCD cases (Cao et al., 2020). These neuropathologies are all
progressive and ultimately lethal, and they typically develop
during a long pre-clinical phase that, in the case of AD, may
have been initiated at least a decade before diagnostic criteria are
fulfilled (Jack et al., 2018). With more refined measurement
techniques, including determination of various protein levels
in cerebrospinal fluid and high-resolution brain imaging, it is
often possible to determine which of these pathologies may lie
behind also a minor NCD, previously globally referred to as “mild
cognitive impairment” (MCI).

Neuropathological Characteristics and
Processes
There may be several reasons for the failure to find a cure against
these disorders, in spite of massive research investments across
the world. The dominating disease model, on which hundreds of
failed clinical trials have been based, states that AD develops
through a cascade of events that are triggered by formation of beta
amyloid (Aβ) protein plaques, as originally suggested by Hardy
and Higgins (Hardy and Higgins, 1992). More recently, the
upstream formation of neurotoxic Aβ oligomers have become
more in focus than the plaques, oligomers that may later
contribute to plaque formation (McGirr et al., 2020). Even if
pharmacological success has been made Alzheimer’s disease in
terms of targeting amyloid proteins with an assumed toxicity, and
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even dissolving amyloid plaques, patients in these trials have not
benefitted symptomatically in any of these trials (Kepp, 2017).
One reason for appointing special variants of betamyloid
proteins, especially the Aβ 1–42 peptide, as the culprit, is the
early appearance of level increases in the brain during early
phases of the neuropathological development (Long and
Holtzman, 2019). But association does not prove causation,
and one troubling fact for adherents of this hypothesis, besides
the failures of all amyloid-based drug trials until now, is that
many elderly persons have amyloid plaques, but without any
clinical signs of Alzheimer’s disease (Lane et al., 2018). The fact
that betaamyloid accumulation does not continue to increase
after the initial phase of disease development, seems to suggest
that it is not directly related to the disease itself, but possibly a
trigger—or even an early protective reaction against the disease
(Castellani et al., 2009; Kumar et al., 2016; Li et al., 2018). As a
result, doubts have been voiced against the dominating Aβ
paradigm (Kepp, 2017) and other disease-related events in the
brain have received increasing attention. A major alternative
mechanism is related to changes in the tau protein, a building
block for microtubuli, the tiny pipelines that transport substances
between the soma and the synapses inside the nerve cell, but that
also serve as a skeleton to maintain the structure of the cell.
Degradation of the tau protein during the progression of the
disease, through dysregulated phosphorylation and
transformation into hyperphosphorylated proteins, makes
microtubuli axonal transport progressively less efficient, leads
to synapse loss, to formation of neurofibrillary tangles (NFT) and
ultimately cell death. Some findings indicate that these changes
start in very early stages of disease development, even before
changes in Ab (Insel et al., 2020). In contrast to Aβ changes,
degradation of tau progresses further in parallel with the disease
(Long and Holtzman, 2019) and may therefore be a better
indicator of disease stage, compared to measures of Aβ (Lane
et al., 2018). Changes in Ab and tau proteins are often seen as
related, and, according to advocates of the betaamyloid cascade
hypothesis, changes in extracellular Aβ precede and trigger tau
hyperphosphorylation inside the neuron (Phillips et al., 2020); a
detailed diagnostic evaluation typically involves measurement of
both these proteins in cerebrospinal fluid, especially levels of the
Aβ 1–42 molecule and levels of total tau and phosphorylated tau
(p-tau). The coexistence of extracellular accumulation of beta-
amyloid and the development of neurofibrillary tangles (NFT) are
still considered as the main pathological markers of AD, but no
drug trials based on either of these targets have so far been
successful (Long and Holtzman, 2019). Other suggested
mechanisms include cholinergic deficits, evidenced by the
relative efficacy of cholinesterase inhibitors to hamper
cognitive decline in AD (Sharma, 2019), and inflammation,
indicated by microglia and astrocyte activation in AD.

Behavioural Manifestations
Whatever the mechanisms behind, established effects on
cognition (Henneges et al., 2016) and on behaviour seem
logical from what we know about the underlying pathology
and its progression. Usually these pathological changes in AD
start in the medial temporal part of the brain, from where it

propagates to neighbouring areas, and to areas with projections
from already affected areas. As this part of the brain, including the
hippocampus and entorhinal cortex, has a central role for
especially working memory and episodic memory, these
functions are typically affected in early phases, albeit subtly at
first. The olfactory bulbs are close neighbours, and impaired
olfaction is also a typical early sign (Phillips et al., 2020).

Both the ability to understand language and to speak have
important centres in the parieto-temporal and the temporal lobe,
and are also typically affected relatively early, and could lead to
slower and less articulated speech, difficulty in finding words, and
difficulties to understand language. These functions are normally
controlled from the left hemisphere, while the right parieto-
temporal hemisphere is relatively more important for spatial
functions and orientation. Difficulty in drawing figures and
navigation are common behavioural manifestations that most
probably are related to impaired function in this part of the brain,
in combination with impairments in especially the enthorhinal
cortex. Decreasing efficiency of neural functional (e.g. in axonal
transport, transmitter substance deficits, and an impoverished
synaptic network and neural interconnectivity) will also have a
number of more general effects that in a progressive manners will
affect associative ability, reaction time, balance and motor
coordination. When the neuropathology spreads further,
impulse control, attention, and the ability to focus are affected,
mainly regulated by the fronto-temporal lobes (Migliaccio et al.,
2020).

Long-termmemory, especially procedural memory, are spared
until late in the pathological development, indicating less
importance of parieto-temporal regions for these functions.
The different effects on short term vs. long term memory is
often illustrated by the ability to detail events that happened
decades ago, while the person may have no recollection of what
happened earlier the same day or week. For example, patient with
clinical AD may not remember that he or she can play the piano,
but positioned in front of one, could still start to play it. Recently
it has been suggested that the typical AD phenotype is not the
only one, and what we call Alzheimer’s disease should be
considered as a family of related diseases, but with important
differences in neuropathology, e.g., in terms of primarily affected
areas and thereby also in cognitive and behavioural
manifestations and the sequence of their appearance (Ferreira
et al., 2017). The progressive nature of AD and other
neuropathological diseases means that eventually the whole
brain will be severely affected and thereby all cognitive and
behavioural functions. As a result, dementia care in late stages
is resource demanding and, in combination with increasing
longevity and the high prevalence in old age, presents a large
and growing economic burden for societies worldwide (Wimo
et al., 2017).

Assumptions and Rationale for This Project
It seems plausible that odds would improve with earlier
intervention for any strategy against any disease, including
both pharmacological and non-pharmacological strategies, as
long as it is based on an adequate assumption of the
underlying disease mechanism. There are however special

Frontiers in Computer Science | www.frontiersin.org April 2021 | Volume 3 | Article 6426333

Jonell et al. Multimodal Detection of Early Dementia

121

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


challenges with AD and other neuropathologies leading to NCD,
due to a very long progressive disease development with subtle
symptoms in the earliest stages. The limited therapeutic success
against AD and other neuropathological diseases indicates that
the underlying mechanisms are not yet fully understood, which
could justify a broad, open and non-biased approach. A
fundamental starting point for such a non-biased and
exploratory approach is the assumption of a link between
brain and behaviour; we know for sure that these diseases are
diseases of the brain, and this means that aspects of behaviour
related to affected brain areas also should be affected, albeit subtly
in early stages. To exemplify, episodic memory is typically
affected in AD, most probably due to early damages to
hippocampal and entorhinal regions. It could be assumed that
this cognitive domain is also subtly affected in very early stages,
but may not easily be captured by test scores in existing cognitive
tests. But even if actual test scores should appear non-indicative of
an existing neuropathology, the subtly affected person may still
feel more anxious and need to make more of an effort to perform
at this level, which should reflect in various ways in the behaviour
of the person, not easily detected by the naked eye. The same
principle should apply to any other cognitive domain that has
been subtly affected, whether it be reading ability, executive
functioning, word finding, or processing speed, depending on
the type of neuropathology and which brain areas are affected by
it. Another example is autonomic function that typically has a
lower range of variability, being “flatter”, if a person is carrying a
neuropathological disease (Algotsson et al., 1995). Autonomic
function should reflect in degrees of heart rate variability,
variability in emotional expressions, skin temperature
fluctuations, speech volume variation, and in pupil size
variations. Could any or several of these indicators be
identified in early stages and will they differ between different
types of NCD?

In this project we use a broad approach to automatically and
continuously capture a large number of potential digital
biomarkers with high precision, by using different sensors. We
then subject the collected data to machine learning to identify
signals and patterns of signals that could indicate an underlying
neuropathology. In the following we will in greater detail describe
the rationale behind each type of potential digital biomarker that
we capture.

RELATED WORK

This section explores how related sensor data, and digital
biomarkers extracted from such data, across different
modalities have previously been considered for clinical
assessment of Alzheimer’s disease.

Digital Biomarkers
The term digital biomarkers is used here to specify metrics
extracted from sensor data and differentiate them from
biological biomarkers extracted from biological measurements.
A digital biomarker reflects the underlying state of the biological
system (the human brain) and a good candidate for a digital

biomarker is one that shows promise in identifying both
diagnostic criteria of AD and correlates with established
biomarkers used in AD examination. This section outlines
what digital biomarkers have been used in previous research.
All digital biomarkers used throughout this article are written in
italics.

Speech and Language
Alzheimer’s disease leads to a decline in cognitive and
functional abilities, such as memory loss and language
impairments. There have been numerous review studies on
linguistic biomarkers that have been used for detecting the
progression of AD (Mueller et al., 2018; Slegers et al., 2018;
Voleti et al., 2019; de la Fuente Garcia et al., 2020; Calzà et al.,
2020). These include both acoustic features (prosodic, spectral,
vocal and fluency), and textual features (lexical, syntactic,
semantic, and pragmatic). Vocal features such as speaking
rate, fluency and voice quality could be useful as biomarkers
for early detection of AD, since they stem from atrophy in the
medial temporal lobe (König et al., 2015). In a longitudinal
study Ahmed et al. (2013) found that lexical, syntactic and
semantic complexity changed significantly as the the disease
progressed, but not voice quality or fluency. Speaking rate have
been found to be the earliest measurable linguistic feature for
AD detection (Szatloczki et al., 2015). MCI patients have been
found to have a more breathy (H1-A3) and weaker voice (CPP)
than NC (Themistocleous et al., 2020). Number of silent pauses
(especially those longer than 2 s) have proven to be useful for
AD detection (Yuan et al., 2020), as has the average length of
silent pauses (Roark et al., 2011; Tóth et al., 2018). The increase
in pause frequencies has been attributed to struggles with
lexical retrieval, but might also reflect other cognitive
impairments as pauses increases with cognitive load (Pistono
et al., 2016). In a study on language use in unstructured
interviews, AD subjects were found to use fewer Nouns,
while more Adjectives, Verbs and Pronouns than healthy
older participants. They also used a smaller vocabulary size
(Bucks et al., 2000). The lexico-semantic variables appear to be
the most useful for the diagnosis of later stages of AD (Boschi
et al., 2017). These results suggest that the occurrence of
dementia is associated to reduced syntactic complexity,
difficulty in connecting one event to the next, in
maintaining the theme, and in understanding the story.
Furthermore, grammatical errors have mainly been observed
in severe AD groups (Jarrold et al., 2014). Some semantic
features seem to be relevant for MCI though. Asgari et al.
(2017) tagged transcription of patient doctor interviews using
the Linguistic Inquiry and Word Count (LIWC). Using this,
they divided the words into five broad categories: Linguistic
processes; Personal concerns, Psychological processes;
Relativity and Spoken categories. The category that was
most significant for MCI was the relativity category that
included words dealing with time and space. Haider et al.
(2019) demonstrated the usefulness of purely acoustic
features, e.g. eGeMAPS (Eyben et al., 2015), openSmile
(Eyben et al., 2010), and ComParE (Eyben et al., 2013), that
has proven useful for other paralinguistic detection tasks.
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Facial Gestures
The effects of AD on facial gesture and expressiveness can be
significant, but it is a complex relationship. Overall facial
biomarkers are most related to the later stages of AD with
the MCI group having different facial expression in relation to
the AD group. On the one hand, apathy is one of the most
common behavioural symptoms of AD and is linked to deficits
in goal-directed behaviour, decreased goal-related thought
content and emotional indifference with flat affect (Cai et al.,
2020), which in turn leads to overall reduced facial expressivity
(Seidl et al., 2012). Asplund et al. (1991) found that patients in
the later stages of AD struggled to show facial emotional
reactions when experiencing emotional stimuli. Burton and
Kaszniak (2006) found reduced correlation between
emotional state (valence) and zygomatic activity (smiling) for
patients with AD. The AD patients experience the emotion
(happiness) but are less likely to do the linked zygomatic activity
(smile). On the other hand, dementia is also generally linked to
reduced control over facial expression, in many cases leading to
increased facial expressiveness. Smith (1995) found that people
with mild dementia exhibited reduced control of negative
expression during a picture stimuli experiment. The
relationship between stimuli and facial muscle expression of
emotion is complicated since deficit in emotional facial
expression can be caused by several factors. Seidl et al.
(2012) concluded that cognitive deficits are associated with
increased rate of total facial expression after controlling for
apathy. In addition, Matsushita et al. (2018) found that AD
patients had an increased tendency to use smile as a “save
appearance response” when they fail to provide the correct
answer to questions.

Motor Signs (Hand and pen Motion)
Even though cognitive impairments are the most common signs
of dementia, motor functions are also affected by the disease.
Motor signs like speech/facial expression, rigidity, posture, gait
and bradykinesia have been found to increase in frequency and
severity over time in AD patients (Scarmeas et al., 2004). Chung
et al. (2012) has developed an inertial-sensor-based wearable and
a stride detection algorithm for analysis of Alzheimer patients’
gait behaviour. In a user study they were able to show difference
in gait profiles between the AD patients and the healthy controls.
The finger tapping test is used as a neuropsychological assessment
of fine motor skills (Reitan andWolfson, 1985). It has been found
useful for AD assessment, where AD patients produced a finger
tapping pattern that was lower in frequency with slower, more
variable inter-tap interval than the health control group (Roalf
et al., 2018). Previous studies show that MCI and AD patient have
a lower drawing speed when performing handwriting tasks with
lower pen pressure with the differences corresponding to the
groups with more deteriorated groups showing larger differences.
Only using these kinematic measures, a classification accuracy of
69–72% was achieved. (Werner et al., 2006). Gatouillat et al.
(2017) propose some novel measurements/features: pen-tip
normal force, total grip force, and an objective writing quality
assessment. They do not correlate with cognitive aspects per se,
but measure trade-offs between timing and accuracy in the

writing and such things. Garre-Olmo et al. (2017) used a
digital pen in a number of tasks (Clock test, copying two and-
three dimensions drawings, copying one sentence, writing
dictated sentence). Apart from speed and pressure, they found
that the time the pen was in the air was a discriminant feature
between AD, MCI and NC.

Gaze and Pupil Dilation
There has been research on understanding cognitive
deterioration and dementia from eye movements (Zhang
et al., 2016). For different tasks, the eye movements of people
with AD differs from control subjects (Beltrán et al., 2018). Gaze
patterns of patients with AD show greater variance in all
directions. This is linked to cognitive decline and deficits in
attention which leads to more frequent eye and facial movement
(Nam et al., 2020). AD patients have also been found to have
problems following a moving target (Molitor et al., 2015). These
variations in gaze in AD patients are likely due to damage to
frontal and parietal lobe regions related to attention (Garbutt
et al., 2008). When comparing facial muscles and eye
movement, less variability is seen for AD patients compared
to healthy controls (Nam et al., 2020). Pupil dilation is a robust
predictor of cognitive load, the working memory demands of
performing a certain task (Gavas et al., 2017). Pupillary response,
mainly in terms of changes in reaction to light, has been
proposed as a biomarker of early stages for Alzheimer’s
disease (Granholm et al., 2017), However, a longitudinal
study with AD biomarkers is needed to confirm whether
pupillary responses can provide a predictive biomarker of
risk specific to AD-related declines.

Autonomic Nervous System
Heart rate variability (HRV) has been used extensively to
predict dementia (Allan et al., 2005; Zulli et al., 2005;
Negami et al., 2013) as was recently reviewed in da Silva
et al. (2018). There is no consensus in the field, as some
studies found that HRV time and domain parameters were
lower in patients with AD than in patients with MCI and
controls (Zulli et al., 2005; de Vilhena Toledo and Junqueira,
2010), while others found no difference (Wang et al., 1994;
Allan et al., 2005). In general, there is no strong evidence to use
of the HRV alone as biomarkers to diagnose dementia (da Silva
et al., 2018). The sympathetic nervous system can also be
probed using a Galvanic Skin Response sensor, such as the
Empatica wrtistband, has been found to be useful in
determining stress during activities (Schlink et al., 2017).
Sympathetic skin response (SSR) and HRV together were
used to detect an abnormality of autonomic function in
patients with AD (Negami et al., 2013).

Thermal Emission
Experiments on using Thermal imaging for inferring stress
indicate a relationship between an increase of workload and
thermal emissions (Anzengruber and Riener, 2012). Zhou
et al. (2019) used a wearable thermal sensor and found that it
can be possible to use such a system for estimating mental
workload. Ruminski and Kwasniewska (2017) presents a
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review of thermal imaging in mobile conditions together with a
proposed prototype. Furthermore, sleep-disordered breathing is
associated with a higher risk of AD onset after matching and
adjusting for other risk factors (Lee et al., 2019b). Recent pilot
study, Tiele et al. (2020) confirms the potential utility of
analysing breath volatile organic compounds to distinguish
between MCI, AD and controls. Respiration rate has
successfully been extracted from thermal imaging by
automatically analysing the thermal fluctuations in the nostril
area (Lewis et al., 2011). Cho (2018) used a mobile thermal
imaging device in order to infer “stress” levels by extracting
respiration rate.

Automatic Capture and Analysis of
Cognitive Assessment Tests
Recently, there have been large efforts in automating the
screening of Alzheimer’s disease. Tóth et al. (2015) report a
completely automated speech-based screening pipeline that
yielded significant discrimination results. König et al. (2018)
has developed an iPad application that can perform a
semantic verbal fluency test and automatically perform a fine-
grained analysis of the spoken input. ICAT is an internet-based
cognitive assessment tool that uses speech recognition for a
delayed list learning task and drag and drop GUI input for a
number sorting task (Hafiz et al., 2019). In the Talk2Me project
anonymous people can contribute with both speech and text via a
web interface (Komeili et al., 2019). The speech tasks include
describing a picture and retelling a story that is displayed on the
screen for a short while. The text-input tasks include image
naming, word naming and providing word definitions. The
authors have also developed a linguistic analysis package called
COVFEFE that they have made available as open source.
Intelligent Virtual Agents have also been used to collect
spoken interactions, for example to automate parts of the
initial interview at a memory clinic Mirheidari et al. (2017). In
a series of studies the team has used a mix of automatically
generated acoustic and lexical features with manually acquired
conversational analysis inspired features to predict AD
(Mirheidari et al., 2019; Walker et al., 2020). Today’s smart
phones and wearables have a large number of sensors that
could be used in data collection for dementia detection. This
includes camera, microphone, accelerometer/gyryscope, touch,
geoposition, ECG and IR cameras (Kourtis et al., 2019). Using
wearable consumer products have been used for continuous
monitoring of symptoms related to cognitive impairment
(Chen et al., 2019). As an example, UbiCAT is a ubiquitous
cognitive assessment tool for smart watches, that includes three
cognitive tests: the Arrow two-choice reaction-time test, the
N-back letter test, and the Stroop color-word test (Hafiz and
Bardram, 2020).

In the current study we present a multimodal capture and
analysis framework that makes use of non-obtrusive and
affordable sensors in capturing the human behaviour during
memory tests. It has been integrated into the fast-track
cognitive assessment procedure that is used at the memory
clinic of a major regional hospital in Sweden.

DATA COLLECTION

We now describe the setup and procedures we used for gathering
our multimodal behavioural and phsyiological data. All
recordings were performed during clinical examinations at the
Memory Clinic at Karolinska Hospital in Stockholm, Sweden.
The examinations are part of an established fast-track analysis
where a multi-disciplinary team assess the patient within one
week. The complete examination includes brain scanning (MRI),
neuropsychological assessment, speech and language assessment,
assessment of motor skills, physical examination, and a 1-h
clinical interview. Our recordings took place during the
clinical-interview portion of the examinations, the procedure
of which was minimally modified and standardised to
accommodate the recordings, as described in Procedure.

During most of the clinical assessments at the clinic the patient
and the clinician are sitting on opposite sides of a table. In some
cases, including some of our recordings, a partner or relative of
the patient may be present and sitting beside the patient. For our
study, these assessments took place in a particular room at the
clinic, where the room and the table had been instrumented for
multimodal data capture. Figure 1 shows the custom-built,
instrumented “recording table” used. The entire setup
encompasses sensors for recording, interfaces for controlling,
monitoring, and performing data gathering, along with
miscellaneous other equipment, e.g., for storing the data, and a
recording software infrastructure that coordinates the different
devices and ties everything together. The remainder of this
section describes the various components in more detail, along
with the procedures for conducting the clinical sessions and
exporting the data. For an overview of what modalities each
sensor captured, please see Table 1. Figure 1 shows the data
collection setup from the clinical environment. The clinical
assessments at the hospital conclude with a physical
examination in a different part of the room, but this part of
the assessment procedure was not recorded, since the potential
added benefits of such data was not considered commensurate to
the privacy intrusion it would entail.

Design Considerations
A key consideration when designing the data-collection
methodology was to create a setup with a minimal impact on
the clinical assessment, in order to maintain the ecological
validity of the collected corpus. For example, eye movements
and pupil dilation can be collected either using a display-mounted
eye tracker or by having the user wear eye-tracking glasses.
Although the glasses are much more effective, they are
cumbersome to wear, distractive, and also increase the sense
of being monitored. We therefore opted for a display-mounted
eye tracker instead. The case of audio recording is similar: a head-
mounted microphone provides better quality than microphones
fixed to the table generally do, but again, requires equipping the
patient with hardware. Considering these facts, we settled on
using a setup with mobile phones (Apple iPhones) mounted to
the table, which are less associated with looking like cameras than
other types of “normal” cameras, for capturing video and facial
data. We also use an array microphone integrated into the table
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which is able to capture speech from both the clinician and the
patient. For eye-tracking we opted to use a Tobii Nano which is
able to capture eye movement and pupil dilation at a distance,
attached to the bottom of the tablet. The only device which the
patient is carrying is a health wristband, which was considered to
not be as invasive, since it is not uncommon to wear a watch on
the wrist.

Sensors
Below we introduce the various sensors and equipment used for
the data collection procedure (Table 2).

Cameras
Similar to Malisz et al. (2019) a pair of Apple iPhones X (from
here on referred to as “Patient camera” and “Clinician camera”)
were used in order to record both the patient and the clinician. An
additional, third iPhone X was used for capturing thermal data
[“Patient camera (thermal)”] from the patient, and a fourth
capturing the whole interaction from a distance (“Overview

camera”). Please see Figure 2 to see how the iPhones were
connected with the system, and Figure 1 to see how the
cameras were placed and mounted. For the three iPhones
capturing close-ups of the patient and clinician (“Patient
iPhone”, “Patient camera (thermal)”, and “Clinician camera”),
a mount from JOBY was modified and attached to the table.
Furthermore a holder was 3D-printed in order to attach the
“Patient camera” with the “Patient camera (thermal)” (see
Figure 1). As can be seen in Figure 1 the “Patient camera
(thermal)” had a FLIR One thermal camera attached to it,
together with a charging cable. These iPhones used a software
developed specifically for these data recordings, and synchronised
their time with the FARMI server. When starting the application
all the recording options were presented, and which data streams
that should be captured could be selected. Those were; RGB video,
facial gestures (parametrised facial expressions and head
movement), depth data, 3D-mesh data, thermal video, RGB
reference video for the thermal video, and thermal data. As
can be seen in Figure 3, the various data streams can be

FIGURE 1 | The data collection setup. At the top an overview of the room is given, showing both the instrumented recording table and the position of the “overview
camera”. In the middle the various devices on the instrumented recording table are shown and at the bottom a close-up of the patient facing cameras.
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turned on or off. The iPhones were configured to send out an
image every 3 s which the status page could display, in order for
the technician to act in case there were issues with the video.

Health Wristband
Originally an Apple Watch was used in order to capture heart
rate and accelerometer data for the patients. The apple watch
was later replaced with an Empatica E4 wristband that
captures heart rate, accelerometer data, and electrodermal
activity.

Microphone Array
A microphone array (ReSpeaker Mic Array v2.0) was installed
into the table in an approximately 10 cm round hole in the center
of the table. The microphone array was covered with a mesh cloth
(see Figure 1). The microphone array was connected using a USB
cable to the central computer. The default LED lights indicating
the direction of speech were disabled, as they were deemed
distracting.

Eye Tracker
A Tobii Nano was used in order to capture eye movement and
pupil dilation of the patient while interacting with the Tablet.
Figure 1 shows how the eye tracker was placed. A custom
mount for the tablet was 3D-printed in order to place the eye
tracker at an appropriate height and angle with respect to how
the patient sits. A manual calibration procedure was required
before each session, where the patient was asked to focus their
gaze at circles displayed on the tablet. The calibration was
initiated from the status page and performed together with a
technician. The eye tracker was connected to the central
computer. The eye tracker collected data throughout the
whole assessment but was meant primarily for when the
patient interacted with the tabled.

Tablet
A tablet was used (Apple iPad) together with a touch enabled pen
(Apple Pencil) which hosted the clinician interface (described in
Clinician Interface). The tablet was placed in a stand with some
inclination (see Figure 1) such that it would be easily operated for
the patient without the need of moving the tablet.

Interfaces
There were three user interfaces, one for the patient, one for the
clinician, and a monitoring tool for monitoring the session. All of
the user interfaces were web applications which were hosted on
the central computer. Each of them are described below.

Patient Interface
A tablet interface was developed to replace certain parts of the
MOCA test. The tablet interface was a web interface controlled by
the clinicians interface (described below) and was black when
nothing was displayed in order to not to be distracting. The tablet
was used for six tasks:

• Cookie theft test, where the participant was presented an
image and asked to describe what they see.

• Cube drawing, where the participant is asked to draw a copy
of a three-dimensional cube which is presented to them.

• Three images, where the participant is presented with three
images, and asked to describe them

• Trail making test (TMT), where the participant is presented
with a number of letters and numbers, and asked to trace a
line between them in ascending order alternating between
letter and number each time (1, A, 2, B . . . ).

• Clock drawing, where the participant is asked to draw a
clock, with the time set to ten after eleven.

For the tasks were the patient had to input something (Cube
drawing, TMT, and Clock test) the interactions were performed
using an Apple Pencil, and all movements together with the
pressure applied when drawing was recorded.

Clinician Interface
The clinician interface (see Figure 4) was a web application
displayed through a touch-enabled laptop (Microsoft Surface).
The clinician was able to choose what was displayed on the tablet
interface for the patient, or just to make the patient screen go
blank. It was also possible for the clinician to end the recording
from this interface. The clinician also received the results from the
drawing tasks through this interface, as the tablet was positioned
toward the patient. These drawings could then be printed and
added to the patients medical journal.

TABLE 1 | A summary table of what modalities each sensor captures.

Sensor Modality Captures

Eye tracker (tobii nano) Gaze Patient
Pupil dilation Patient

Health wristband (empatica E4) Heart rate Patient
Galvanic skin response Patient
Accelorometer Patient

Cameras (4 apple iPhone +1 FLIR one) Video Patient, clinician, and overview
Facial gestures Patient, clinician
Thermal emission Patient
Voice Patient, clinician

Microphone Array (ReSpeaker mic array v2.0) Voice Patient, clinician
Language Patient, clinician

Tablet (Apple iPad) Pen movement Patient
Pen pressure Patient
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Monitoring Tool
A monitoring tool in the form of a web application was
created in order to be able to monitor the recordings (see
Figure 5). Each sensor except the wristband sent a
“heartbeat” signal with an interval of 5 s to the recording
server (described below). This heartbeat was used in order to
determine whether a device was connected to the recording
setup or not, and displayed as a red or green indicator on the
status page. Furthermore a still image captured by the
iPhones every 3 s was also shown on the status page in
order to see that data is being collected accordingly.
Statistics about memory and processing usages, and
battery information for the FLIR One camera was also
presented. The status page was used to start and stop the
recordings, and also initiated the eye-tracking calibration on
the patient interface.

Recording Software Infrastructure
Since the aim was to have a recording setup with a large number of
sensors, computers, mobile devices and wearables working
together, it was of central importance to have a communication
framework that would allow for a finely controlled synchronisation
of all data streams and remote access to start and stop recordings
across the various devices involved. To accomplish this, we used a
modified version of the open-source FARMI framework1 for
recording multimodal interactions (Jonell et al., 2018).

The different devices used for the recordings provide data
streams of different frame rates, and each device has its own
internal system time that is likely to differ between devices.
FARMI was designed to synchronise such streams in a robust

TABLE 2 | A summary table of what physiological and behavioural measures can be extracted from each modality, an indication of which ones are used in the correlation
analysis and an indication if the measure is task independent.

Modality Measure Part
of preliminary analysis

Task independent

Facial gestures Mean face velocity ✓ ✓
Mean smile ✓ ✓
Mean brow ✓ ✓
Mean jaw ✓ ✓
Head motion ✓ ✓
Facial gaze measurements ✓ ✓
Facial patterns 7 ✓
Emotion expression 7 ✓

Gaze Number of fixations ✓ 7

Mean fixation duration ✓ 7

Number of reading fixations ✓ 7

Number of reading backtrack ✓ 7

Percent backtrack ✓ 7

Hand motion Gait 7 ✓
Hand movement 7 7

Heart rate Heart rate variability ✓ ✓
Heart rate change over time 7 ✓

Language Average word length ✓ ✓
Unique words ✓ ✓
Part-of-speech-tagging ✓ ✓
Word complexity 7 ✓
TFIDF-vectors 7 ✓

Pen motion & pressure Drawing speed ✓ 7

Pen pressure ✓ 7

Pupil dilation Pupil change ✓ 7

Pupil diameter ✓ 7

Galvanic skin response Electro-dermal activity 7 ✓
Thermal emission Head temperature change ✓ ✓

Breathing 7 ✓
Video Skin color changes over time 7 ✓

Posture 7 ✓
Body movement 7 ✓

Voice h1h2 (voice quality) ✓ ✓
h1h3 (voice quality) ✓ ✓
h1a1 (voice quality) ✓ ✓
h1a2 (voice quality) ✓ ✓
h1a3 (voice quality) ✓ ✓
Average pause length ✓ ✓
Mean long pause length ✓ ✓
Pause count ✓ ✓

1https://github.com/kth-social-robotics/multisensoryprocessing

Frontiers in Computer Science | www.frontiersin.org April 2021 | Volume 3 | Article 6426339

Jonell et al. Multimodal Detection of Early Dementia

127

%20https://github.com/kth-social-robotics/multisensoryprocessing
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


manner. It acts like a publish–subscribe framework, meaning that
components in the system can either publish data at a certain topic or
subscribe to receive data from a certain topic, and ensures that each
device always has a known time offset relative to a central server, and
that each data packet which is stored or sent out is timestampedwith a
timestamp synchronised with that central server. The overall software
architecture is illustrated in Figure 2. It is a decentralised system
where each component works independently of the other. Three
publish-subscribe topics were used, one named “Start-Stop”, which
was used for sending out a signal to all devices to start recording, one
named “Status image/info”, which the cameras used to send a an
image every 3 s to the monitoring tool along with various usage
statistics, and lastly a heartbeat topic which was used by all devices to
signal to FARMI that the devices were still operational.

Besides being a framework, FARMI also provides a server.
Specifically, each sensor or interface would start a ZeroMQ2

server, and send their IP addresses together with a topic name

to the central FARMI server. This server would then be used as a
directory service by other parts of the network for knowing which IP
address a certain type of data was being published at. When a new
sensor connected to the framework, this information was sent to all
other connected devices so that they could connect to the new
device if needed and subscribe to its data stream(s). To verify that
they were still operating correctly, all sensors also published a so-
called “heartbeat” signal at 5 s intervals that the FARMI server
subscribed to. This was used to remove entries in the directory that
had not properly sent an explicit shutdown signal to the server.

The different interfaces used to control, monitor, and carry out
recording also leveraged FARMI. Specifically, each of the the
patient interface, clinician interface, and monitoring tool was a
web interfaces hosted on the central computer named “Web
server” in Figure 2. The clinician interface could control what was
shown on the patient interface, through communication via
websockets3. Both the clinician interface and the monitoring

FIGURE 2 | Diagram showing each sensor component and how they are linked together with the data capturing framework.

FIGURE 3 | The interface used to set up the iPhones before a data capturing session. Here one can set the IP address and an identifying name of the phone.
Furthermore one can select which data streams to capture.

2https://zeromq.org/ 3https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
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tool could send out a start or stop signal via the FARMI Start-Stop topic.
Furthermore, the monitoring tool could instantiate calibration of the eye
tracker, and would at the same send a signal via websockets to the patient
interface to show the eye-tracker calibration screen.

Most of the software connecting the sensors with the central
computer was written using Python and the FARMI framework,
however the code for the cameras, which were Apple iPhones, was
written in Swift, utilising the FLIR framework4 for thermal
images, the ARKit framework5 for capturing facial gestures
and video, and the FARMI framework for communication
with other devices. Sound was also recorded. This data was
then stored locally on the phone, but timestamped using
synchronised timestamps from the FARMI framework. Images
and phone health statistics were published using FARMI every
third second in order to be displayed on the monitoring interface.
All sensors subscribed to the Start-Stop topic in order to receive a
signal when to start and stop recordings. The gaze recorder used
the Tobii SDK6 to communicate with the Tobii Nano device,

while the audio recorder used a Python library from ReSpeaker7

to communicate with the microphone array.

Other Equipment
A printer was used for the clinicians to print out the results from
the MOCA test for purposes of medical record keeping. The
printer was connected via WiFi to the router, and could be
accessed from the clinician’s computer. A router (Asus RT-
AC66U) was used to connect all the devices. For data security,
this router was not connected to the Internet, meaning that the
entire data-collection setup was isolated from the Internet. A
Bluetooth-connected button was initially used for capturing
points of interests deemed by the clinician during the
recording sessions. This turned out to be difficult to maintain,
and is thus not part of the final dataset.

Procedure
In this section we describe the procedure of the data capture from
selection of patients to recordings during clinical assessments,
data export and collection of biomarkers.

FIGURE4 | The clinician interface (in Swedish). The patient has just performed the TMT test, and drawn the connecting lines. The clinician has thenmade the screen
blank. The interface is designed to be operated through a touch screen.

4https://developer.flir.com/mobile/flironesdk/
5https://developer.apple.com
6http://developer.tobiipro.com/python.html 7https://github.com/respeaker/respeaker_python_library
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Selection and Recruitment of Participants
The participants in this study are recruited among patients at
the Memory Clinic at Karolinska University Hospital in
Solna, Sweden. The clinic specialises in relatively young
patients with cognitive complaints, and many the patients
are referred from other clinics to receive a thorough and
advanced evaluation. The prevalence of dementia is below 1%
for persons between 60 and 65 in all parts of the world (Ferri
et al., 2005) and a dementia diagnosis below the age of 55 is
very rare. Persons below 55 years of age were therefore excluded
for reasons of clinical relevance and generalisability. To avoid
expectation effects on patient behaviour in the interview situation,
patients with an obvious or very probable neurocognitive disorder, as
revealed by referral medical documentation, were also excluded. To
reduce variability from interviewer behaviour, almost all interviews are
carried out by one of two physicians who were trained to perform the
examination to fit the requirements of the study (including use of
tablets instead of paper and pen in some tasks, positioning of chairs for
optimal video capture, and administration of additional tasks, as
described above).

At this point, we have recorded 25 patients before the outbreak
of the COVID-19 pandemic suspended the data gathering, with
our aim being to recruit and record 100 patients in total. Based on
previous data from the clinic, we expect that approximately 50%
of these will be diagnosed with a neurocognitive disorder, a
prognosis that seems adequate based on the diagnostic
outcomes so far.

In this project each patient has given consent to use their
medical record information for research purposes, information
that is used to evaluate the clinical relevance of recorded
behavioural signals in the interview situation, and that will be
used for development and refinement of algorithms to optimise
prognostic validity of our system. Ethical approval for the study
was obtained from the Stockholm Ethical Board in decision dnr.
2018/1962-31.

Recordings During the Clinical Assessment
Each patient who fulfils the criteria for participation receives
written information beforehand about the study, along with the
summons for the examination. A week later a nurse calls the
patient to ask if they want to participate in the study. After arrival
to the clinic, the patient is asked again if they are still willing to
participate and, if so, to sign the written consent form. The
wristband is mounted and calibrated and the patient then walks
with a physician to the examination room. Once the patient is
seated, the eye tracker on the lower part of the tablet is calibrated.
The researchers then leave the room and the multimodal
recording starts. One technician continually monitors the
recording a screen outside the room, as described in more
detail below. The recording is terminated when the physical
examination part starts, usually after 45–60 min of
interviewing and testing. The examination is performed
according to the normal clinical procedure at the clinic, but
with some adaptations and additions to fit the purpose of our
study: The first part of the interview is about the patient’s
background; living conditions, current and previous
occupations, family situation, interests, memory problems or
other cognitive problems, changes in personality, medication,
sleep, medical history, and orientation in time and space (date,
day of week, the location they are in). This part can be described
as a conversation between the physician and the patient, and was
carried out according to normal routine.

The second part includes a number of tasks that the patient
performs to evaluate cognitive status, including the Montreal
Cognitive Assessment (MoCA) (Nasreddine et al., 2005). This
screening instrument includes various tasks to test performance
in different cognitive domains, including drawing a line between
letters and numbers (trail making), copying a figure, naming
animals, drawing a clock that shows a certain time, immediate
and delayed recall of words, generation of words, backwards
counting, finger tapping, and abstract thinking. The figure

FIGURE 5 | Interface of the monitoring tool used by the technician. The images from the cameras have been cropped out for privacy reasons.
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copying and clock tests in particular are made to measure
visuospatial constructional abilities and executive functioning
(Charernboon, 2017). MoCA is a standard part of the
examination protocol at the clinic, but for the patients who
participate in the study it is adapted to be performed on a
tablet, thereby allowing for detailed registration of pen
movements and eye movements while the tasks are being
performed, including trail making, the clock test, figure
copying, and presentation of animals that the patient should
name. For the tasks that involve drawing on the tablet, these
drawings are mirrored in real time on a separate screen that the
physician can see. The Boston Cookie Theft test (Giles et al.,
1996) was added to the protocol for the purpose of this study, but
is commonly used for screening. In this task the patient is asked to
describe what is happening in a picture, a kitchen scene with a
woman and two children. This picture is also shown on the tablet,
allowing to sync eye movements and pupil changes with audio
and video. When this part of the examination is over, the
recording stops, and the wrist band is removed.

Export of Data
An export tool chain was created to export all of the files collected
during the session in a standardised way, producing a set of CSV
files. This step was performed by the clinician. The data was then
stored on small hard drives in safety vaults. The data from the
computers and phones was removed.

Further Tests and Collection of Other Biomarkers
After this first interview and examination of the patient, further
data are collected to evaluate the cognitive status during the same
and consecutive days, including more advanced cognitive testing,
evaluation of mood and depressive symptoms, blood sample
analysis, brain imaging (MRI, sometimes with the addition of
PET if needed), and collection of CSF for analysis of biomarkers
(levels of β-amyloid (Ab 40 and 42), tau, p-tau, and
neurofilaments). The diagnostic decision is normally made
within a week from the first interview, supported by the
Combinosticsâ“¢ (Bruun et al., 2019) AI tool to combine
results from the different sources of clinical information.

DATA ANALYSIS

In order to verify the validity of the data collected to date and to
be able to compare against available measurements from each
of the recorded patients, we perform a series of analyses and
extract several descriptive physiological and behavioural
metrics based on our captured modalities with a potential to
serve as digital biomarkers. The extracted measures are
summarised in Table 3. In most cases these metrics are
calculated using basic statistics directly or indirectly over the
collected data streams. For each of the extracted markers, we
then calculate the correlation against a subset of clinical
assessment metrics and biomarkers available as part of the
regular memory clinic examination procedure. These are
indicated in Table 4. A high correlation between one of our
metrics and a clinical assessment variable indicates a potential

suitability for that metric as a digital biomarker for AD. Below
we describe how we extracted and analysed the various metrics
from the captured modalities. As there is a large number of
possible analysis that can be made, some have not been
analysed in the scope of this work, and are instead
suggestions for what can be analysed in the future. The
modalities that were not analysed in this work were heart
rate, skin conductivity, hand motion, and video. The others
are described below.

Facial Gestures
The blendshape face data, including information on head motion
and gaze, was captured from the “patient camera” sensor. From
this data the following low level statistics were extracted: smile
mean, smile stdev, eyebrow stdev, head yaw/pitch/roll stdev,
vertical/horizontal gaze shifts stdev and vertical/horizontal gaze
shifts absolute mean.

In addition we calculated the correlation between vertical gaze
shifts and vertical head movement as well as the correlation
between horizontal gaze shifts and horizontal head movement.

Gaze
From the gaze data we extracted the following digital biomarkers:
number of fixations, mean fixation duration, number of reading
fixations, number of reading backtracks (how many times during
reading a fixation occurs to the left and above the previous
fixation) and percentage of reading backtracks.

Language
The patient-clinician pairs of audio files were transcribed using
Google Cloud Speech To Text in Swedish. The transcribed text
was available as words with a start and end time and a confidence
score for the translations. The transcribed patient text was used
for language analysis. We extracted the following high-level
metrics from the transcriptions: Total number of words and
total number of utterances (during interview), Average turn
length (Average number of words in a passage of patient
speech with no in-between clinician speech) and Percentage
unique words (number of unique words divided by total
number of words). The ASR output was POS tagged with
Universal-Dependencies formalism using the Stanford-NLP
python package. These were used to develop 35 language
features related to word type, open or closeness of word
categories and average for all word categories. Examples of
features are Relative occurrence of adjectives, adverbials, verbs
and nouns.

Pen
The pen data from the parts of the clinical assessment where the
patient was expected to draw something on the tablet was used to
extract several different metrics, both independently for each part
of the three drawing exercises in the MOCA test (trail, cube and
clock) and for all of them taken together. The following metrics
were calculated: number of gaps (how many times pen was lifted),
gap length, mean and standard deviation (for how long was pen
lifted), drawing speed, mean and standard deviation (how fast was
the pen moving) and pen pressure, mean and standard deviation.
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Pupil Dilation
From the gaze sensor data, we extracted pupil dilation
measurements recorded together with the gaze tracking data,
in order to study at pupil diameter across the each sessions.
Measurements for left and right pupil were averaged, and rate-of-
change was calculated by taking the difference between each
consecutive reading. A median filter of length nine was applied to
the rate-of-change signal to remove outliers due to sensor noise.
We then extracted following metrics: pupil maximum positive
rate-of-change (how fast can the pupil expand) and pupil
maximum negative rate-of-change (how fast can the pupil
contract), pupil maximum rate-of-change (how fast can the
pupil change, regardless of direction), pupil mean absolute
rate-of-change (how fast does pupil change on average) as well
as pupil diameter standard deviation. All metrics were extracted
independently for each of the exercises on the patient interface.

Thermal Emission
The “Patient camera (thermal)” sensor produces a thermal video,
a thermal data file with temperatures given in Kelvin, and a RGB
reference video. The RGB reference video is aligned to match the
thermal video and thermal data file. Images from the RGB
reference video and thermal video were extracted at one frame
per second. Using the RGB reference frames it was then possible
to apply the openpose pose extraction framework, Cao et al.
(2021), to extract the pose of the patient. This was then used to
determine a bounding box around the head, and the 10 highest
values were then extracted from the corresponding region in the
thermal images. The values were then aggregated and averaged
for each minute of the interaction, and converted into
percentages. Given the sequences of temperature readings with
one value per minute, we extracted four metrics: temp mean, temp
stdev, temp rate-of-change mean and temp rate-of-change stdev.

TABLE 3 | A demographic table with age, gender and education level for participants based on diagnostic group.

Demographic variable Healthy MCI Alzheimer

Diagnostic group 14 (56%) 7 (28%) 4 (16%)
Age 60 (avg) 64.57 (avg) 64 (avg)

3.39 (std) 4.11 (std) 3.9 (std)
Gender 11 females (78.5%) 1 female (14%) 4 females (100%)

3 males (21.5%) 6 males (86%) 0 males (0%)
Education level 15.07 (avg) 14.14 (avg) 10.25 (avg)

3.25 (std) 3.57 (std) 1.5 (std)

TABLE 4 | Summary table of clinical assessment metrics available, and an indication of which ones are used in the correlation analysis. From the MRI we have relative volume
measurements for 248 brain regions; the table lists regions whose absolute Pearson correlation with diagnosis exceeds 0.7.

Modality Assessment Part
of preliminary analysis

Medical assessment Diagnosis ✓
Moca-mis ✓
MOCA 7

PHQ9 7

Background variables 7

Spinal tap Phosphorus tau ✓
Ab42 ✓
Tau 7

Ab42Ab40 7

Ab42Ptau 7

NFL 7

Neuropsychological tests MMSE 7

RAVLT delayed recall 7

Rey complex figure 7

WAIS digit Symbolâ€“Coding 7

MRI Hippocampus total volume ✓
Hippocampus (left, right) 7

Lateral ventricle (left, right) 7

Cerebellar vermal lobules (left, right) 7

Cerebrospinal fluid 7

Medial temporal lobe atrophy (left, right) 7

Cerebral cortex left GCA 7

Frontal lobe (left, right) GCA 7

Temporal lobe left GCA 7

Parietal lobe left GCA 7
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Voice
The recordings from the Microphone Array were split into
patient and clinician audio files based on the angle of the
sound source as reported by the microphone. The patient
audio was used for voice analysis. In this preliminary analysis,
minor irregularities were present in the voice splitting due to
inaccuracy of direction of arrival (DoA) estimation, resulting in
small segments of patient audio being labelled as clinician audio
and vice versa, in particular in sections where there are
overlapping speech (typically quite rate). More accurate
methods can be applied by combining the four raw mic
signals from the mic array.

Pauses and Speech Rate
All gaps in the patient’s speech of a duration longer than 200ms,
with no intermediate speech from the clinician, were regarded as
pauses. Start and end times for each word were retrieved from the
output of the automatic speech recognition. We extracted several
pause related metrics, such as pause count (total number of pauses),
average pause length as well as percentage pauses that are longer than
1, two or 3 s. Furthermore, we extracted speech rate in syllables/
second by counting number of syllables (approximated by number
of vowels in the transcription) and divided by the total speech time.

Voice Quality Measures
In order to quantify vocal strength and breathiness, we calculated
several acoustic measures of voice quality. All of the measures
below are based on the relative amplitudes of the harmonics of
the voice, where h1, h2 and h3 refers to the amplitude (in dB) of
the first three harmonics, respectively, and a1, a2 and a3 denote
the amplitude of the harmonic closest to the peak of the first,
second and third formant, respectively. We extracted five metrics:
h1h2 (h2−h1), h1h3, h1h3, h1a1, h1a2 and h1a3. We used
REAPER8 to extract fundamental frequency from all patient
speech and SNACK9 to extract formant trajectories. We
measured the amplitudes of the harmonics in corresponding
STFT spectrograms extracted using librosa10 in Python. All
measures were averaged over all voiced frames in the recording.

PRELIMINARY FINDINGS

In this section, we give some example analyses that illustrate how
the digital biomarkers in the previous section may be connected
to other diagnostic criteria. As our data gathering is far from
complete, it is not possible to draw reliable conclusions about the
diagnostic relevance from the material available thus far.
Consequently, the analysis and results presented here are
highly preliminary, and primarily serve to sketch the processes
by which the digital biomarkers may be validated against other
data available through the study. We deliberately omit p-values
from the analyses so that readers are not tempted to treat the

example analysis findings as statistically or scientifically
significant.

At the time of writing 25 of 100 patients have been recorded.
Our patients had a mean age of 61.92 years in the range 58–70
(standard deviation (4.16). 16 were females (64%) and 9 males
(36%). Average length of education in years was 14.5 (standard
deviation 3.55). From the 25 patients 4 patients were diagnosed
with Alzheimer’s disease, 7 with mild cognitive impairment and
14 received a diagnosis of subjective cognitive impairment,
meaning the clinical examination found no clinical signs of
impairment. Further demographic data is shown in Table 3.

Below we report how our extracted behavioural and
physiological measures correlate to the following five biological
biomarkers and clinical diagnostic measures:

These measures were chosen since they are relatively
independent variables within our dataset with a strong
correlation to AD diagnosis (Moca-MIS 0.70, p-tau 0,65, Ab42
-0.647, Hippocampus, -0.766).

Moca Memory Index Score (MoCA-MIS) is a sub-scoring of
MOCA that focus on memory tasks. The MoCA-MIS is calculated
by adding the number of words remembered in free delayed recall,
category-cued recall, andmultiple choice–cued recall multiplied by
3, 2 and 1, respectively, with a score ranging from 0 to
15 Julayanont et al. (2014). MOCA-MIS was chosen over full
scale MOCA since it has a stronger correlation to diagnostic then
the full MOCA test. Ab42 and p-tau are both linked to AD
pathology. The scientific debate regarding the relationship and
validity of Ab42 and p-tau as diagnostic criteria in AD is ongoing.
We chose to present Ab42 and p-tau independently although they
have good diagnostic validity as a single biomarker in our dataset
(Ab42/p-tau, −0.7179). Hippocampus was chosen since it is a well
studied brain region closely tied to AD pathology. In our
preliminary analysis of the data collected to date, we found
many correlations between our extracted metrics and the above
measures (please see 8). Below we report the most prominent ones
(Figure 6). We used Pearson correlations for all our correlation
measurements. We made a comparison between Pearson and
Spearman correlations but no major differences were found
(mean average difference −0.01 ± 0.17). In our current
situation, where the amount of data is very small, we believe
that making distributional assumptions (i.e., the Pearson
correlation) offers the most appropriate bias-variance trade-off,
especially since the analysis is only intended to be preliminary.

Facial Gestures
We found that the Moca-MIS score correlated negatively with
smile mean (-0.62) and smile standard deviation (-0.68). For the
gaze data captured by the iphone during the interview part, we
found a negative correlation of horizontal gaze (sideways gaze
movements) and diagnosis of -0.54 for horizontal gaze absolute
mean and -0.5 for horizontal gaze standard deviation. These
statistics also correlated positively with hippocampus total
volume (0.57 and 0.54 respectively).

Gaze
From the data captured by the gaze tracker during
interactions with the ipad, we found that the total number

8https://github.com/google/REAPER
9http://www.speech.kth.se/snack/
10https://librosa.org/doc/latest/index.html
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of fixations correlated with diagnosis (−0.32) and with
hippocampus total volume (0.67). Further, mean fixation
duration correlated with diagnosis (0.45) and hippocampus
total volume (−0.78).

Language
Total word count correlated with Moca-MIS (0.36), Ab42 (0.51)
hippocampus total volume (0.45), while Percentage unique
words correlated with Moca-MIS (0.37), Ab42 (0.54) and
hippocampus total volume (0.44). For the word type
metrics, relative occurance of Adjectives was the most
relevant feature with a correlation with Moca-MIS (0.44),
Ab42 (0.61) hippocampus total volume (0.54).

Pupil dilation
The metric pupil maximal absolute rate-of-change generally
correlated well with several of the biomarkers, but correlations
varied across the different sub tasks. Highest correlations was
achieved for tasks that involved drawing (path, cube and clock
tests): for clock drawing test and cube test, correlation with
diagnosis was −0.47 and −0.56 respectively, Moca-MIS (0.6
and 0.54), p-tau (0.8 and 0.75) and Ab42 (0.9 and 0.77).

Thermal Emissions
For face temperature measurements captured with the “Patient
camera (thermal)” sensor we found that temp mean correlated
with diagnosis (−0.41) and hippocampus total volume (0.65)
while temp rate-of-change mean correlated with diagnosis (0.37)
and hippocampus total volume (−0.63).

Pen Motion and Pressure
Figures 7 and 8 show typical output from two of the drawing tasks
for sample subjects of each of the diagnosis categories. Looking at
the statistics of pen motion and pen pressure, we found that two
features were particularly interesting: mean drawing gap length
correlated with diagnosis (0.62), Moca-MIS (−0.61) and
Hippocampus total volume (−0.58), and mean pen pressure
correlated with p-tau (−0.88) andHippocampus total volume (0.86).

Voice
Two classes of voice related features are included in this analysis:
voice source metrics and pause/speech rate features. Several of the
extracted voice quality metrics (breathiness/vocal strength)
showed correlation to diagnosis and biomarkers. The most
relevant were h1h3 that correlated with diagnosis (0.68) and

FIGURE 6 | Summary of correlations between selected digital biomarker candidate metrics and clinical assessment measures.

FIGURE 7 | Cube drawing based on category. From left to right: Healthy, MCI, Alzheimer.
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p-tau (0.62) and h1a3 that correlated with diagnosis (0,51) and
Moca-MIS (−0.64). Percentage pauses longer than 1 s correlated
with diagnosis (0.62) and p-tau (0.77) while speech rate correlated
with p-tau (−0.48) and hippocampus total volume (0.44).

DISCUSSION

Our study describes how to design and implement a multimodal
sensor recording system in a clinical setting. Furthermore we
report our preliminary findings from our sensor data capture.
Several of the digital biomarkers abstracted from sensor data were
highly correlated to both the diagnostic outcome and to
biomarkers of Alzheimer’s disease, suggesting that a multimodal
approach has the potential to complement and improve current
diagnostic processes. In the remainder of this section, we discuss
the results of the preliminary analysis of the digital biomarkers we
studied, and consider the implications of our data capture and its
findings for dementia detection and treatment.

Discussion of Analysis Findings
For the purposes of this article, a digital biomarker is useful if it is
sensitive to early signs of AD, or informative about the current
stage of the patient’s disorder, or both. At present, three
biomarkers are considered to be central for a state-of-the-art
evaluation of a possible neurocognitive disorder:

• levels of β-amyloid (levels of Ab 42, and/or the ratio between
Ab42/Ab40);

• levels of Tau (Both Total Tau and P-tau); and
• cerebral atrophy (including both in specific regions, such as

the entorhinal region and hippocampus, and general
atrophy (including enlarged ventricles).

A high-quality and detailed examination will include all
three biomarkers, and their coexistence, which was performed
for all patients included in our study (along with other in-
depth assessments, as described earlier). Due to costs, limited
resources, and the invasive nature of these measurements, it is
important to identify for which patients this extensive
examination is needed and for which patients it is not. It is
obviously advantageous if this can be done in a non-invasive
and non-intrusive way. With the assumption that the above
biomarkers in combination adequately reflect the underlying
neuropathology with a high level of sensitivity and specificity,
digital biomarkers of clinical utility will need to demonstrate
a high correlation with these existing biomarkers.

Our data analysis covered both established and novel digital
biomarkers. For the former, our findings were in line with
previous AD research. Pause length and vocal strength metrics
h1h3, specifically, correlated with AD diagnosis, β amyloid-42
protein, and p-tau. Overall, we also found that voice measures
correlated more strongly with clinical assessment metrics than
language measures did. Voice features may generally be more
useful than language measures for early dementia detection, since
the semantic features of language are more obviously disrupted in
the later stages of AD. As our dataset contains only 3 individuals
diagnosed with AD, our findings are likely more informative for
indicating utility in early diagnostics, than for the ability of
different biomarkers to distinguish AD patients from the two
less-affected patient groups we considered.

Another promising digital biomarker we studied that has been
previously proposed for AD assessment was pupil change. We
found that maximum change during cognitively taxing tasks
strongly correlated with both diagnosis, moca-mis, p-tau, Ab42,
and hippocampal volume. The fact that a difference was noticeable
between non-taxing (cookie test) and taxing (clock, cube, path
drawing) tasks shows that this might potentially be a useful
biomarker in combination with a cognitive test. Unlike voice and
language, this digital biomarker quantifies physiological responses
in the patient that clinicians cannot feasibly detect, which increases
its potential to complement existing diagnostic procedures.

We also identified several promising new digital biomarkers.
In particular, the mean head temperature rate of change
correlated strongly with diagnosis, p-tau, Ab42, and
hippocampal volume. The pen-drawing gap length correlated
strongly with diagnosis, moca-mis, Ab42 and hippocampus.
Furthermore it was highly correlated to vocal pause length
measurements (correlation coefficient 0.72). Both pause length
and pen-drawing gap length are likely related to sympathetic
nervous system responses, which differ for patients with AD or
MCI, compared to those with no objective impairment (Borson
et al., 1989). This potential utility in early detection can be
contrasted against assessments of the drawings themselves,
where only 53.3% of normal elderly can copy the cube
correctly, although most are able to correctly draw the clock
(Charernboon, 2017). Without pen data, drawing tests in general
are thus sensitive detectors of AD but not MCI.

Tasks and Sensors
When considering different digital biomarkers and their capture,
it is worth distinguishing between task-dependent and task-
independent digital biomarkers. A task-independent digital
biomarker is one that can be gathered at any (or all) point in

FIGURE 8 | Clock drawing based on category. From left to right: Healthy, MCI, Alzheimer.
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the interaction. As such, these are arguably more valuable since
they are much easier to capture, and do not put constraints on the
specifics of the clinical interview. Among the different measures
in our study, voice and language features can be seen as mostly
task-independent while quantities extracted from gaze, pupil, and
drawing depend on a task. Although task-dependent digital
biomarkers are more specific and targeted, which might increase
accuracy and specificity, that has to be weighted against the relative
increase in complexity of the associated data capture. A microphone
can simply record a person’s voice while gaze, pupil and drawing
sensors all depend on a well-designed task for gathering data that
enables accurate diagnosis.

All things considered,microphones are arguably themost useful
among those we considered for dementia detection and diagnostics.
The relative ease of unobtrusive audio capture and the ability to
extract powerful features (e.g., pause length, voice source h1a3)
makes it a cheap and useful diagnostic tool. Furthermore,
automatic transcripts of the gathered interview audio can also
be used to extract linguistic digital biomarkers via text processing,
although this may be less relevant for early diagnosis and the digital
tools and their maturity will differ across languages, whereas the
tools used to extract voice measures do not.

Because of the notable correlation of pupilary data with AD
diagnosis, p-tau, Ab42, and hippocampal volume, device-mounted
eye-trackers capable of accurately measuring pupil size also have
shown potential for augmenting and improving diagnostic
procedures, and there might be promise in building an
application that combines pupilary measurements with a
cognitive test to build more accurate automatic screening tests for
dementia. Measures based on drawing and pen pressure have the
drawback that they mainly appeared useful for diagnosing between
healthy control and AD, a result that should be interpreted with
caution since only three individuals with AD were included in the
preliminary analysis. That said, various associated digital biomarkers
such as gap length show potential and merit more study.

Broader Implications
The non-invasive and non-intrusive nature of our data-capture
setup brings several benefits. Non-invasive procedures generally
have lower cost and complexity than invasive ones, and also limit
the need for health-care personnel since the risk of adverse effects
and reactions is much lower. Our non-intrusive data capture does
not alter the diagnostic interview in a meaningful way. This is
helpful both for obtaining ecologically valid data and in building
trust for data-driven diagnostics among both clinicians and
patients. By basing the data gathering on affordable and
widely-available consumer electronics we hope to demonstrate
how to the access to sensor-based diagnostic tools for dementia
detection and monitoring can be democratised.

A key strength of using a multimodal approach as described in
this article is that the different measurements can reinforce each
others’ predictive power while limiting risks from data loss and
inaccuracies in the data pipeline. Our in-depth descriptions of our
technical setup, data capture procedure, and data processing should
enable independent replication of our findings using similar
sensors. To further simplify such replication, we will release the
the code used for the data capture and processing as open source.

An important consideration in the bigger picture is the temporal
and neuronal aspect of AD.Although the diagnostic criteria is limited
to healthy, MCI or AD, beneath the diagnosis lies a progressive
disorder with a unique pattern of brain functioning for each patient.
Assessment of AD is an assessment of the individual’s cognitive
functions and their deficits. Streamlined diagnostics offer the
potential of continuous assessment of cognitive functions for
individuals in the MCI/AD group. For patients with MCI, deficits
are specific to certain areas of functioning and continuous assessment
enables adaptive care with limited restrictions. This is likely to
improve the daily life of the patient, which in turn might help the
patient not progress to AD (through better quality of life and reduced
life stressors). Continuous screening as part of behavioural
interventions might help furthermore develop a virtuous cycle of
improved understanding of the disorder, through data capture that
leads to better targeted interventions.

If non-invasive measurements can accurately predict
underlying brain atrophy in different areas, that also opens the
door to a future where quick tests can quantify disease progress.
This could help in the quest to find a cure, since behavioural
interventions and targeted pharmaceutical drugs might be used to
target specific brain atrophies caused by the disorder.

CONCLUSION

We have described a non-invasive and non-intrusive system for
collecting synchronous behavioural and physiological data in order
to facilitate detection of early signs of Alzheimer’s disease, based on a
large and diverse set of modalities including speech, gaze,
pupillometry, facial motion capture, drawing, heart rate and
thermal data in existing clinical assessments of dementia, and
also used the initial data thus gathered for a preliminary analysis
of selected digital biomarkers available through our approach, and
their diagnostic value.

Themodalitieswe capture allowboth behavioural and physiological
measurements in an objective and quantitative manner, and thus
complementing the intuitive and qualitative observations made by the
assessing clinician. The studied modalities may not only quantify the
observations and “gut feeling” of the clinician, but can also measure
aspects of the patient and interaction that are inaccessible to human
perception. Our work demonstrates that the proposed approach is
feasible with commodity hardware and open-source software that we
are preparing for public release.

Our multimodal approach to digital biomarkers has the
potential to improve precision in patient selection for further
and more invasive examinations, thereby saving personnel-time
and financial resources for society, and avoiding unnecessary
delays, suffering, and discomfort for patients. While existing
full-fledged diagnostic procedures are advanced, they still result
in a troubling amount of misdiagnoses (Villemagne et al., 2018;
Gauthreaux et al., 2020). To the extent that systems and
measurements of the kind described in this article also can
contribute to diagnostic accuracy, that should benefit patients
and their families in several ways, including reducing exposure
to unnecessary medication with negative side-effects and avoiding
life-quality losses associated with a false positive diagnosis.
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Our analysis finds that single modalities can be used for AD
prediction in isolation. Some of these have not been reported
previously: Our preliminary results indicate that head temperature
change and drawing gap length are two new digital biomarkers that
correlated with AD diagnosis and biological biomarkers. Pupillary
response has been used for AD prediction but to our knowledge
not in the context of cognitively demanding tasks. Other
preliminary results confirm what is known from previous work,
such as the correlation of pause length, vocal strength and gaze
patterns with a dementia diagnosis. This demonstrates that a broad
and inclusive data-gathering approach has the potential to discover
new digital biomarkers of clinical utility, which in turn can serve as
further clues to understand underlying mechanisms of AD and
other neurocognitive disorders. The fact that isolated modalities
correlate well with established biomarkers and the clinical
diagnosis also suggests the potential of combining different
modalities and measures for further improved diagnostic
accuracy. It should be noted that all of the metrics explored in
the current study are manually crafted features. As is well known
from machine learning e.g. in speech and image processing,
automatically learned features generally outperform hand
crafted features when sufficient amounts of data are available.
Machine learning based feature extraction, prediction and
classification methods will be a central area of exploration as
these data collection efforts continue.

As it stands, a limitation of the results presented in this paper
is the relatively small number of patients, which does not allow
statistically rigorous conclusions nor discriminating between
different types of neurocognitive disorders. Our preliminary
results therefore mainly pertain to patients with AD, the most
common dementia diagnosis. Another limitations is that, also for
reasons of statistical power, we have only focused on measures
relevant to atrophy in brain regions known to be especially
affected by AD. In future studies with more patients, we
intend to explore measures and modalities that associate with
changes in a broader range of brain regions.
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Background: Increasing efforts have focused on the establishment of novel biomarkers
for the early detection of Alzheimer’s disease (AD) and prediction of Mild Cognitive
Impairment (MCI)-to-AD conversion. Behavioral changes over the course of healthy
ageing, at disease onset and during disease progression, have been recently put forward
as promising markers for the detection of MCI and AD. The present study examines
whether the temporal characteristics of speech in a collaborative referencing task are
associated with cognitive function and the volumes of brain regions involved in speech
production and known to be reduced in MCI and AD pathology. We then explore the
discriminative ability of the temporal speech measures for the classification of MCI
and AD.

Method: Individuals with MCI, mild-to-moderate AD and healthy controls (HCs)
underwent a structural MRI scan and a battery of neuropsychological tests. They
also engaged in a collaborative referencing task with a caregiver. The associations
between the conversational speech timing features, cognitive function (domain-specific)
and regional brain volumes were examined by means of linear mixed-effect modeling.
Genetic programming was used to explore the discriminative ability of the conversational
speech features.

Results: MCI and mild-to-moderate AD are characterized by a general slowness of
speech, attributed to slower speech rate and slower turn-taking in conversational

Abbreviations: AD, Alzheimer’s disease; Cereb, cerebellum; CGP, cartesian genetic programming; EAs, evolutionary
algorithms; FFG, fusiform gyrus; HC, healthy controls; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; ITG,
inferior temporal gyrus; L, left; MFG, middle frontal gyrus; MTG, middle temporal gyrus; MCI, mild cognitive impairment;
Prec, precuneus; R, right; ROI, region-of-interest; STG, superior temporal gyrus.
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settings. The speech characteristics appear to be reflective of episodic, lexico-semantic,
executive functioning and visuospatial deficits and underlying volume reductions in
frontal, temporal and cerebellar areas.

Conclusion: The implementation of conversational speech timing-based technologies
in clinical and community settings may provide additional markers for the early detection
of cognitive deficits and structural changes associated with MCI and AD.

Keywords: speech timing, conversation, cognitive function, brain volumes, Alzheimer

INTRODUCTION

Rationale and Research Goals
Progressive loss of cognitive function and progressive
cerebral atrophy are characteristic features of Mild Cognitive
Impairment (MCI) and Alzheimer’s disease (AD; Dubois
et al., 2007; McKhann et al., 2011; Kirova et al., 2015;
König et al., 2015; Szatloczki et al., 2015). Early and
cost-effective diagnosis is crucial for the development and
establishment of early interventions and to make effective
treatment decisions.

Increasing efforts have focused on the establishment of novel
biomarkers for the early detection of AD and prediction of
MCI-to-AD conversion, including clinical, brain, genetic, and
neuropsychological data. Behavioral changes over the course of
healthy ageing, at disease onset and during disease progression,
have been recently put forward as promising markers for the
detection of MCI and AD. Repeated behavioral measures taken
from everyday situations (e.g., walking speed) and/or extracted
from tests that can be easily implemented outside clinical settings
may offer the opportunity to increase timely detection and
represent additional sources to the standard brain imaging
and clinical neuropsychological assessments (e.g., MMSE—Mini
Mental State Examination).

Speech-based approaches have proved to perform well
in the discrimination of MCI and AD (König et al., 2015;
López-de-Ipiña et al., 2015; Weiner et al., 2016; De Looze
et al., 2018; Mirheidari et al., 2020). Speech and language
impairments are indeed salient characteristics of MCI and
early AD (Ripich et al., 1991; Caramelli et al., 1998; Chapman
et al., 2002; Carlomagno et al., 2005; Taler and Phillips,
2008; Laws et al., 2010; Gayraud et al., 2011; Ahmed et al.,
2013). However, the cognitive and structural underpinnings
of these speech-based measures in classification approaches
have not been systematically investigated and are not fully
established. Understanding these underpinnings could add
significant clinical value and further support the potential
use and implementation of speech-based technologies
in and outside clinical settings for the monitoring of
cognitive trajectories.

One candidate tool is the analysis of spontaneous speech
in conversational interactions. Engaging in a conversation is
a complex skill which requires the integration of multiple
independent cognitive subsystems, themselves supported by
extensive networks of several brain regions. If one of these
subsystems or networks is impaired, conversational speech

difficulties may arise. Conversational speech characteristics may
therefore be sensitive markers of underlying cognitive and
structural impairments. The present study examines whether the
temporal organization of speech in a collaborative referencing
task is associated with cognitive function and the volumes of
brain regions involved in speech production and known to
be reduced in MCI and AD pathology. We then explore the
discriminative ability of the temporal speech measures for the
classification of MCI and AD.

Speech-Based Approaches for the Early
Detection of MCI and AD
The potential use of speech-based approaches for the early
detection of MCI and AD represents an important line of
research in AD speech pathology. Deficits in the lexical, semantic,
executive, discourse and pragmatic domains of language are
commonly observed in MCI and early AD (Ripich et al., 1991;
Caramelli et al., 1998; Chapman et al., 2002; Carlomagno et al.,
2005; Feyereisen et al., 2007; Taler and Phillips, 2008; Laws et al.,
2010; Gayraud et al., 2011; Ahmed et al., 2013; Drummond
et al., 2015; Mueller et al., 2018). Symptoms include word-finding
difficulties, decreased semantic and phonemic fluency, lexical
richness, syntactic complexity and topic coherence. They often
occur before clinical diagnosis and progress over the course of
the disease (Ahmed et al., 2017). The articulatory aspects of
language production are generally preserved until the late stages
of the disease (Croot et al., 2000). Several speech and language
tests and measures have been employed for the classification
of MCI and AD, with accuracy rates spanning from 0.71 to
0.80 for the discrimination ofMCI vs. healthy controls (HCs) and
0.80–0.98 for the AD vs. HC contrast (Roark et al., 2011; Jarrold
et al., 2014; Meilán et al., 2014; König et al., 2015; López-de-Ipiña
et al., 2015; Dodge et al., 2015; Asgari et al., 2017; Tóth et al., 2018;
Gosztolya et al., 2019; O’Malley et al., 2020).

Speech Timing in Conversational Speech:
Cognitive Underpinnings
Engaging in a conversation is a complex skill which
requires the integration and coordination of multiple
independent cognitive processes as speakers perform a
number of tasks simultaneously. They must comprehend
their interlocutor’s utterances while, at the same time,
prepare their response, keep track of the conversation topic,
of the interlocutor’s intent, and anticipate turns ending
(Sacks et al., 1978; Riest et al., 2015). Smoothed exchanges
of turns rely on the good functioning of a number of
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different cognitive abilities, including lexical and semantic
retrieval, episodic memory, sustained attention, working
memory, executive function, and language comprehension
(Mueller et al., 2018).

Deficits in every one of these domains and conversational
speech and language difficulties have been documented
in adults with MCI and AD (Carlomagno et al., 2005;
Feyereisen et al., 2007; Taler and Phillips, 2008; Rousseaux
et al., 2010; Forbes-McKay et al., 2013; Drummond et al.,
2015; Fraser et al., 2016). Difficulties in understanding words
and sentences and producing words have been attributed
to impairments in lexical and semantic retrieval (Murdoch
et al., 1987; Forbes-McKay et al., 2013). Difficulties in
discourse organization and turn-taking management are
thought to stem from deficits in executive functioning
(Rousseaux et al., 2010; Ash et al., 2012).

The temporal aspects of conversational speech within
the frame of turn-taking organization may be a particularly
sensitive marker of an individual’s cognitive capacity.
Analyses of connected speech revealed that AD speech
is characterized by slower speech rate (global speed of
speech including pauses), a higher number of silent
pauses, longer pauses and shorter interpausal units (or
chunks of speech bounded by silent pauses; Weiner et al.,
2008; Davis and Maclagan, 2009; Rousseaux et al., 2010;
Hoffmann et al., 2010; Gayraud et al., 2011; Pistono
et al., 2016; De Looze et al., 2018). Slower speech
rate, a higher number of silent pauses, a reduction in
phrase length and an increase in speech turns frequency
were also observed in MCI and AD conversational
speech (Carlomagno et al., 2005; Hoffmann et al., 2010;
Sajjadi et al., 2012).

Slower speech rate, larger pause frequency, and longer pause
duration have been mainly attributed to lexico-semantic deficits
in MCI and AD (Goldman Eisler, 1968; Hoffmann et al.,
2010; Forbes-McKay et al., 2013; Pistono et al., 2016). Other
studies have also pointed towards further deficits in working
memory, attention, and executive function (Ash et al., 2012;
Pistono et al., 2016; De Looze et al., 2018). Longer pauses
between clauses have been associated with speech planning
difficulties (Matsumoto et al., 2013). In addition, the manner
in which readers chunks their speech stream into units of
different sizes was shown to be dependent on their working
memory (WM) capacity. In healthy older adults, readers with
low WM capacity were more likely to chunk their speech
into smaller units than those with high WM, indicating a
narrower scope of planning (Ferreira and Swets, 2002; Swets
et al., 2014). In a previous study, we found that, in overt
sentence reading, a higher number of pauses, shorter interpausal
units and slower speech rate were associated with reduced
language and working memory/attention scores and that these
temporal speech characteristics were reflective of difficulties
in planning longer and more syntactically complex utterances
in healthy older adults and individuals with MCI and AD
(De Looze et al., 2018).

Together these separate findings suggest that the temporal
organisation of speech in MCI and AD may be indicative

of a number of underlying cognitive deficits, e.g., deficits in
episodic memory, lexical retrieval, executive functions, working
memory and attention. However, these associations are not well
established within the frame of conversational interactions.

Speech Timing in Conversational Speech:
Structural Correlates
During conversational interactions, several brain regions are
recruited and formed into extensive networks to support visual,
phonological, lexical, semantic, syntactic, pragmatic, discourse,
and attentional processes.

Besides a limited number of studies describing the neural
correlates of conversational speech production, a number
of regions are thought to be involved in these cognitive
processes. A widespread distribution of language areas in
the temporal, parietal, and frontal lobes have been associated
with lexical-semantic memory and retrieval (Binder et al.,
2009). Naming performance has been associated with the
left anterior temporal lobe, including the left temporal pole,
the left inferior temporal gyrus (ITG), the left middle
temporal gyrus (MTG), the left superior temporal gyrus (STG),
and the left fusiform gyrus (L FFG; Kircher et al., 2004;
Brambati et al., 2006; Binder et al., 2009; Baldo et al.,
2013; Pravatà et al., 2016; Leyton et al., 2019). Involvement
of the left inferior parietal gyrus (Kircher et al., 2004;
Baldo and Dronkers, 2006) and the left inferior frontal
gyrus (IFG; Binder et al., 2009; Hurley et al., 2015) has
also been reported. The temporal regions are thought to be
related to the activation and storage of lexical representations
while the frontal areas have been linked specifically to the
retrieval aspect of lexico-semantic processing (Hagoort, 2005;
Binder et al., 2009).

Language areas associated with speech planning, executive
functions and, more specifically, the monitoring of turn-taking
organization, include the motor cortex, the middle and inferior
frontal gyri, the inferior parietal lobule (IPL), and the STG
(Hagoort, 2005; Matsumoto et al., 2013; Magyari et al.,
2014; Foti and Roberts, 2016; Nissim et al., 2017). The
left IFG is thought to support the parsing and planning of
sentence and discourse-level linguistic information (Matsumoto
et al., 2013; Magyari et al., 2014). The midfrontal areas
have been related to verbal action planning and attentional
control (Hagoort, 2005) and the IPL has been linked to
verbal working memory capacity (Deschamps et al., 2014).
These regions together are thought to play a central role
in sentence and discourse level comprehension processes and
control, particularly in turn-ending anticipation (Magyari et al.,
2014). Other regions reported to be associated with working
memory and executive function in speech processing and
production include the precuneus/posterior cingulate cortex
and the cerebellum (Cereb; Xu et al., 2005; Hampson et al.,
2006; Newman et al., 2013; Bourguignon, 2014; Christodoulou
et al., 2014; Hirshorn et al., 2014; Helder et al., 2017).
Increased activation of these two regions together with
the IFG, MTG, and IPL have been related to working
memory capacity in sentence reading and comprehension,
potentially reflecting the additional working memory demand
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that emerges at the sentential/discourse level (Xu et al., 2005;
Prat et al., 2007; Newman et al., 2013; Helder et al., 2017;
De Looze et al., 2018).

Pauses within clauses, reflective of lexico-semantic processes,
have been associated with activation in the superior and middle
temporal gyri bilaterally (Kircher et al., 2004). Between-clause
pauses, reflective of speech planning and monitoring, have been
related to the left STG, the left insula, and the right IFG
(Kircher et al., 2004; Matsumoto et al., 2013). Inter-speaker
gaps (i.e., the silence between two speakers’ turns), underlying
the anticipation of a speaker’s response, have been associated
with the posterior temporal gyrus, the supramarginal gyrus, the
premotor cortex and middle prefrontal cortex (Bögels et al.,
2015; Foti and Roberts, 2016). Speech rate, reflective of speech
motor control and planning, has been related to the STG
bilaterally, the left MTG, the right ITG, the right fusiform
gyrus (R FFG), the left and right IPL, and the precuneus
(Ash et al., 2012).

Widespread changes in the structure, function, and
organization of a multitude of brain regions have been reported
in MCI and AD. Beyond a typical atrophy of the medial temporal
lobe (Lehéricy et al., 1994; Chan et al., 2001; Dickerson et al.,
2001; Killiany et al., 2002), volume reductions in the fusiform
gyrus (FFG), posterior cingulate/precuneus, superior temporal,
inferior parietal, and orbito-frontal cortices were also observed in
MCI and AD (Tondelli et al., 2012; Wang et al., 2015; Dicks et al.,
2018; Verfaillie et al., 2018). Given the overlap of regions engaged
in speech processing and production and reduced in MCI and
AD pathology, it may be hypothesized that conversational speech
timing characteristics may be reflective of underlying regional
volume reductions. Evidence in the context of conversational
interactions is however limited.

Objectives and Hypotheses
In this study, we first examine whether the temporal organization
of conversational speech in a collaborative referencing task
is associated with cognitive function in individuals with
MCI and AD. In a second analysis, we investigate whether
conversational speech timing is reflective of the underlying
volume of brain regions involved in speech production and
known to be reduced in MCI and AD pathology. We consider
an extensive ensemble of conversational speech timing measures,
cognitive domains and brain regions. We expected shorter
interpausal units, shorter turns, longer pauses, longer gaps,
shorter transition overlaps, a higher number of pauses and
gaps and slower speech rate to be associated with lower
cognitive function and reduced regional brain volumes. These
analyses aim to establish which conversational speech measures
reflect underlying cognitive deficits and regional brain volume
reductions in order to estimate their clinical relevance for
the implementation of speech-based technologies for the
monitoring of speech changes in healthy ageing, MCI and AD.
Finally, we explore the discriminative ability of these temporal
speech measures for the classification of MCI and AD using
Cartesian genetic programming (CGP). Although our analyses
are exploratory due to the sample size under investigation,
to our knowledge, this is the first attempt to examine the

discriminative ability of conversational speech measures while
also investigating their cognitive and structural underpinnings
using the same cohort.

MATERIALS AND METHODS

Ethics Statement
Ethical approval for the study was obtained from the St.
James’s Hospital Ethics and Medical Research Committee.
Signed informed consent was obtained from all respondents
prior to participation.

Participants
Twenty older adults with MCI and 20 older adults with mild-
to-moderate AD were recruited from the Memory Clinic of the
Mercers Institute for Successful Ageing (MISA) in St. James’s
Hospital, Dublin, Ireland. Forty healthy volunteers (HC) were
recruited from the Memory Research Unit in Trinity College
Dublin. Participants included in this study were over 50 years
of age, fluent in English and literate, to ensure that they could
complete all assessments and tasks (N = 80). MCI and mild-to-
moderate AD diagnoses were based on NIA-AA criteria (Albert
et al., 2011; Sperling et al., 2011). Exclusion criteria for healthy
participants included history of neurological disorders and/or
history of major psychiatric disorders or depression. Thirteen
participants with MCI, 13 with AD and 16 HC, without prior
MRI contraindications, e.g., pacemakers, cerebral aneurysm
clips or other, were randomly selected to undergo brain MRI
(N = 42). Three participants with MCI, three with AD and
four HC were excluded from analysis due to incomplete MRI
scans, technical issues with the MRI data (e.g., motion artefact,
volume segmentation errors), technical issues with the speech
data (e.g., recording issues) and/or abnormal scans or cognitive
scores for the HC. Participants with AD, MCI and HC who had
reliable cognitive, speech and MRI volumetric measures were
included for analysis, resulting in a final sample of 32 individuals.

Neuropsychological Tests
All participants underwent two neuropsychological tests,
which were administered and assessed by an experienced
nurse. The RBANS (Repeatable Battery for the Assessment
of Neuropsychological Status; Randolph et al., 1998) includes
five cognitive domains: verbal memory (immediate and
delayed recall), visuospatial/constructional abilities (figure
copy and orientation), attention (symbol and digit coding),
working memory (forward and backward digit span) and
language (naming and semantic fluency). The MoCA (Montreal
Cognitive Assessment; Nasreddine et al., 2005) is composed of
14 tests subsumed under six different cognitive domains which
include visuoconstructional/executive function skills (figure
copy, clock drawing, and trail test), verbal memory (delayed
recall), attention/working memory (sustained attention, serial
7s, forward and backward digit span), language (naming,
sentence repetition and phonemic fluency), conceptual
thinking (verbal abstraction), and orientation (time and
place). Composite scores of five different cognitive domains
were computed from age, gender, and education-corrected
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RBANS and MOCA raw scores, by averaging them for
each specific cognitive domain as previously described (De
Looze et al., 2018): Memory was generated from RBANS and
MOCA immediate and delayed recall scores; Language from
RBANS/MOCA Language and MOCA naming scores; Working
Memory/Attention from RBANS/MOCA working memory and
attention scores; Visuoconstructional/Executive function from
the RBANS Visuospatial/Constructional scores and MOCA
Visuoconstructional/Executive function scores; Orientation
from MOCA orientation index. All cognitive tests took place in
the Memory Clinic of the MISA in St. James’s Hospital. The tests
took on an average 35–55 min to complete.

Collaborative Referential Task
Participants were asked to engage in a collaborative referential
task (Feyereisen et al., 2007; Duff et al., 2013) with a
communication partner. The communication partner was the
caregiver of the participants with MCI/AD. Each caregiver
engaged twice in the referential task, once with the participants
with MCI/AD and once with a matched HC. Each pair of
individuals engaged in three trials.

In the first trial (Describe-Trial), individuals with AD, MCI or
the HCs were the directors and the caregivers were the matchers.
The directors were given a board with 10 numbered spaces
and a set of 10 cards displaying Chinese tangrams arranged
on the board in a unique sequence. The matchers were given
an identical board with 10 numbered spaces and an identical
set of cards which were randomly displayed around the board.
The tangrams were black and white geometric shapes which
could resemble human beings, animals, or objects but which
had no established names. The directors were asked to describe
the shapes and tell the matcher where to place them on their
board so that, at the end of the trial, the director’s and the
matcher’s boards looked alike. In the second trial (Match-Trial),
the roles were inversed. In the third trial (Describe and Match-
Trial 3), the pair had to discuss together the identical shapes
that they were given and agree on where to place them on
their respective boards, so that at the end of the trial their
boards matched.

The sets of Chinese tangrams were different for each trial,
but the same sets were used across pairs of individuals. During
the task, the pairs were seating at a table facing each other. A
partial barrier or stand up obscured the view of the other’s board,
facial expressions and gestures to rely on speech communication
only. The task was presented as a game and the participants
were told to have fun. The experimenter was siting aside in the
room working on a computer while the pairs played the game.
Feedback about the total number of correct card placements was
provided after each trial.

All sessions took place in a clinical room located in the
Memory Clinic and were audio-recorded. H4n Zoom recorders
were used for the recordings. The audio signal was recorded at
44 kHz/16 Bit resolution. The collaborative referential task (three
trials) took on average 12 min.

Speech Annotation and Measure Extraction
The conversational speech data was annotated using the Praat
software (Boersma and Weenink, 2016). Speech units and

silences were first automatically determined, using a binary voice
activity detection (VAD) algorithm proposed in Sohn et al.
(1999). Turns, interpausal units, pauses, gaps, and transition
overlaps were then automatically derived from the binary
VAD using Praat scripts. Interpausal units are speech units
separated by a pause. A turn is defined herein as a unit of
speech composed of one or several consecutive interpausal
units produced by the same speaker. Pauses are silences within
a speaker’s turn. The pause threshold used in the automatic
procedure was set at 100 ms to ensure its distinction with silent
plosives (Sanderman and Collier, 1995). Gaps are silences at turn
boundaries, that is when there is a change in speaker. Transition
overlaps denote chunks of speech when two speakers speak
simultaneously at turn boundaries. Syllables were automatically
aligned to the signal using a modified version of de Jong
and Wempe’s (2009) Praat script. The acoustic annotation
was manually checked by a speech expert and corrected
where needed.

Speech timing measures were automatically extracted using
Praat scripts and included each participant (AD/MCI/HC)’s
total number of pauses; gap/transition overlap ratio; duration
of pauses, gaps, transition overlaps, interpausal units, and turns;
and speech rate (number of syllables per second including
pauses). The number of pauses were normalized to the speaker’s
turn. The gap/transition overlap ratio was calculated as the
number of gaps divided by the number of overlaps. The higher
the ratio, the higher the tendency for an individual to use a gap
(rather than a transition overlap) when taking a turn.

MRI Protocol and T1w Acquisition
Participants were scanned at the National Centre for Advanced
Medical Imaging (CAMI), St. James’ Hospital, Dublin,
using a 3T Philip’s Achieva system and 32-channel head
coil. A 3D Magnetization Prepared Rapid Gradient Echo
(MP-RAGE) sequence was used to acquire various scans
in addition to a T1-weighted MR image. Scans included
the subsequent parameters: FOV (mm): 240 × 218 × 162;
0.9 mm isotropic resolution; SENSE factor: 2; TR:
2 ms; TE: 2.8 ms; flip angle: 8◦. The MRI data was
obtained within one to 3 weeks after the cognitive and
speech assessments.

MRI Data Inspection
FreeSurfer software version 6.0 (Dale et al., 1999) was used
to analyze the T1w images with the associated cross-sectional
pipeline to derive Regions of Interest (ROIs) in each subject’s
native space, using the Destrieux atlas (Destrieux et al., 2010).
The technical details of FreeSurfer procedures have been
described elsewhere (Dale et al., 1999; Fischl et al., 2002;
Han et al., 2006; Jovicich et al., 2006). All unprocessed input
volumes were inspected for evidence of motion artefact. Surface
segmentation failures were identified using Freeview.

Feature Extraction
We selected nine regions of interest (ROIs) which were found to
be involved in speech production (Xu et al., 2005; Hampson et al.,
2006; Newman et al., 2013; Bourguignon, 2014; Christodoulou
et al., 2014; Hirshorn et al., 2014; Helder et al., 2017) and
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reduced in MCI and AD pathology (Tondelli et al., 2012;
Wang et al., 2015; Dicks et al., 2018; Verfaillie et al., 2018):
the IFG (the sum of the pars opercularis, pars triangularis
and pars orbitalis), the Middle Frontal Gyrus (MFG), the
Precuneus (Prec), the IPL (the sum of the Angular Gyrus
and the Supra Marginal Gyrus), the ITG, the MTG, the
planum temporale in the STG, the FFG, and the Cereb.
The volumes of these regions were extracted from FreeSurfer
cortical segmentation statistical output. Measures were obtained
separately for each hemisphere, which resulted in a total
of 18 ROIs. Total Gray Matter volume was extracted to
assess Group differences. Estimated Total Intracranial Volume
served to control for individual differences in head size in
regression analyses.

Statistical Analyses
All statistical analyses were performed using R software version
3.6.0 (R Foundation for Statistical Computing, Vienna, Austria;
R Core Team, 2015).

Data Descriptives
The observed sample was first characterized per Group (HC,
MCI, and AD). Continuous variables were described as the
mean with standard deviation; categorical variables were given
as percentage. Ordinary least square and generalized models,
when appropriate, were used for comparison of demographics,
neuropsychological scores and speech task competence. HC was
set as the reference level.

Speech Timing by Group
The effects of Group on the temporal characteristics of speech
were assessed through a mixed model approach (Bates et al.,
2014). Linear mixed effects models are an extension of simpler
linear models. They include both fixed and random effects as
predictor variables. They are robust for the analysis of repeated
measures designs and can account for both within- and between-
subject factors (Littell et al., 1996).

Ten temporal characteristics of speech (i.e., the number of
pauses, gap/transition overlap ratio, the duration of pauses, gaps,
transition overlaps, interpausal units, and turns, and speech
rate) were entered as dependent variables (repeated measures)
in separate linear mixed-effect models. The dependent variables
were log-transformed when appropriate. For all models, fixed
effects were the Group (AD, MCI, and HC) and Trial (Describe-
Trial, Match-Trial, and Describe and Match-Trial), with an
interaction term. HC Group and Describe and Match -Trial were
set as the reference levels. Trial was included as a fixed effect to
reflect the participant’s role, hence the different cognitive load
and speech task involved in each trial. Speakers constituted the
random intercepts. All our models were adjusted for age, sex,
and education.

The significance of interaction terms was assessed through
likelihood ratio tests comparing additive models with models
with an interaction term. The significance level was set at
α = 0.006 to correct for multiple comparison (α = 0.05/8 models).
Following standard procedures formixedmodels (Nakagawa and
Schielzeth, 2013), both marginal (R2m, describing the proportion
of variance explained by the fixed factors alone) and conditional

(R2c, describing the proportion of variance explained by both the
fixed and random factors) R2 were computed to assess effect size.

Association Between Speech Timing and Composite Scores
The association between the temporal characteristics of speech
and the composite scores were assessed using linear mixed effects
models. As per above, the number of pauses, gaps and transition
overlaps (normalized), the gap/transition overlap ratio, the
duration of pauses, gaps, transition overlaps, interpausal units,
and turns and speech rate were entered as dependent variables
(repeated measures) in separate models. The dependent variables
were log-transformed when appropriate.

In each model, the five composite scores
Working Memory/Attention, Language, Memory,
Visuoconstructional/Executive Function and Orientation
(continuous variables) and Trial (three levels: Describe-Trial,
Match-Trial and Describe and Match-Trial) were entered as
fixed effects, with an interaction term. Describe and Match-Trial
was set as the reference level. A stepwise procedure (backward
and forward) was employed to assess the significance of the
predictors. The composite scores were centered around their
mean to reduce multicollinearity.

In all models, speakers constituted the random intercepts.
All our models were adjusted for age, sex, and education. The
significance level in the full models was set at α = 0.006 to correct
for multiple comparison (α = 0.05/8 models). Marginal (R2m)
and conditional (R2c) R2 were used to estimate effect size.

Association Between Speech Time and Regional Volumes
A biologically informed ROI-based approach was chosen to
explore the association between the temporal characteristics
of speech and regional volumes through linear mixed-effect
modelling (Bates et al., 2014). The number of pauses,
gaps and transition overlaps (normalized), the gap/transition
overlap ratio, the duration of pauses, gaps, transition overlaps,
interpausal units, and turns and speech rate were entered as
dependent variables (repeated measures) in separate models. The
dependent variables were log-transformed when appropriate.

In each model, the ROIs (z-score transformed) and Trial were
entered as fixed effects, with an interaction term. ROIs of the
left and the right hemispheres were run separately. Describe and
Match-Trial was set as the reference level. A stepwise procedure
(backward and forward) was employed to assess the significance
of the predictors. Speakers constituted the random intercepts.
All our models were adjusted for age, sex, and education. The
significance level in the full models was set at α = 0.003 to correct
for multiple comparison (α = 0.05/16 models). Marginal (R2m)
and conditional (R2c) R2 were used to estimate effect size.

Classification of MCI and AD Based on Speech Features
Finally, we explored the discriminative ability of temporal speech
characteristics and the use of CGP, a subtype of Evolutionary
Algorithms (EAs), for the classification of MCI and AD.
Rationale for Using Cartesian Genetic Programming. EAs
are learning algorithms derived from Darwinian evolutionary
theory. CGP is a subtype of EAs, which generates directed
acyclic computational configurations of nodes. Like other
types of EAs, it uses trees as its solution representation
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(Miller, 2020). CGP can evolve symbolic expressions, Boolean
logic circuits, and artificial neural networks. The algorithms
generate a population of classifiers through a repeated process
of variation and selection. Selection is based on improving
fitness criteria when categorizing the participant groups from
each other. EAs are stochastic (i.e., different solutions are
found each time the algorithms are executed), hence, in order
to address this, the best performing classifier was selected
from numerous repeated runs of the algorithms. Unlike
other standard mathematical approaches and most machine
learning algorithms, CGP, like other EAs, makes very few
assumptions about the function that generated the data, which
allows a wide exploration of the space possible solutions to
the problem. The general scheme of an EA is presented in
Figure 1.

Computational methods, such as EAs, have been recently used
for the measurement and analysis of clinical data (e.g., patient
movements data and neuroimaging, among others; Dehsarvi and
Smith, 2018). A core advantage when applying EAs with an
expressive dynamical representation is that multiple classifiers
can be examined. In addition, EAs offer a white-box solution
for the classification, which is not the case for most (black-
box) machine learning algorithms. With white-box models, the
classification process is transparent; it is possible to retrieve how
predictions were produced and which variables influenced the
population and selection of classifiers. Upon the completion
of the classification process, EAs allows for looking into the
classification graphs generated by the algorithm and, for instance,
exploring how specific features have been chosen to evolve the
models. Finally, EAs have proved to perform well with relatively
small datasets (Picardi et al., 2017; Dehsarvi and Smith, 2018;
Muhamed et al., 2018). To our knowledge, our study is the
first to investigate whether the use of EAs and conversational
speech may enhance the classification of MCI and/or AD.

Classification. Classification analyses were performed using a
novel open source cross platform CGP library (version 2.4;
Turner and Miller, 2015). The number of pauses, gaps and
transition overlaps, the gap/transition overlap ratio, the duration
of pauses, gaps, transition overlaps, interpausal units and turns,
and speech rate were used as input features. Per-speaker
means and standard deviations of each normalized feature were
computed for the three trials separately. Two-class (binary)
classification was performed for the AD-HC and MCI-HC
contrasts as well as multi-class classification of the three groups.
To have equal class representation, the data from each class
was randomly divided into subsets of 60% (training), 20%
(validation), and 20% (test). The geometry of the programs in
the population (referred to as chromosomes) has fifty nodes
with a function set of four mathematical operations (+, −,
×, /), multiple inputs (according to the dataset), and one
(either class 1 or class 0 for each binary combination of
speaker groups) or multiple (one combination per speaker
group) outputs. At each generation of classification, the fittest
chromosome is selected, and the next generation is formed
with its mutated versions (mutation rate = 0.1). Evolution
stops when 15,000 iterations are reached. To obtain statistical

FIGURE 1 | General diagram of the classification process in Evolutionary
Algorithms (EAs). In order to find the optimal model (or candidate), a set of
working models are randomly generated (Step 1: initialize population). The
models (or candidates) are then evaluated to assess their accuracy rate (Step
2: evaluate). In order to achieve the maximum accuracy rate, certain models
(or candidates) are selected for use in the subsequent generation of models
(Step 3: select) via recombination (also known as sexual reproduction or
crossover) and/or mutation. Recombination is an operator that is applied to
two or more selected models (the so-called parents or genotype or
chromosomes), by mixing their genetic material (genes), to create one or
more new models (the children or new chromosomes or offspring). Mutation
is applied to one model (asexual reproduction) or two models (sexual
reproduction) and results in one new model. This procedure is repeated for
many iterations and the resulting model is evaluated each time (Step 4:
evaluate) or until the desired accuracy rate is achieved at which stage a final
optimal model is selected and the process is terminated (Step 5: termination).
Adapted from Figure 4.5 of Dehsarvi (2018).

significance, we completed the analysis for 10 runs for each
combination of inputs and the result was calculated as the
average of the accuracy rates over the runs. The results (the
winning chromosome—an example is provided in Figure 2,
the networks, and the accuracy values) were stored for each
run individually.

Five-fold Cross-validation. A 5-fold cross-validation was then
performed in 10 runs for each combination of inputs to
evaluate accuracy and obtain statistical significance. The
accuracy was averaged over the runs. An advantage of cross-
validation is the production of independent test sets that
increases reliability. With 5-fold cross-validation, one (of 5)
subset is the test set, one subset is the validation set, and
the other three subsets are training sets. These sets are
alternated, so every set is used once for testing the data.
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FIGURE 2 | Example of a generation of classification with the optimal model (best fitted chromosome) selected (in black). This model has used a certain number/set
of inputs or speech features (inputs 0, 13, 6, 16, 11, 3, and 1) and a combination of different functions to form the best model (or fittest chromosome). Other models
with lower accuracy rates are depicted in light gray in the figure. The selected model (or chromosome) is the fittest one of a certain run and is stored as an output,
along with all the other runs, upon completion of 5-fold cross-validation.

One cycle of the 5-fold cross-validation does not generate
enough classification accuracies to enable comparison, hence,
in 5-fold cross-validation, this is repeated 10 independent times

and mean accuracy across all the trials is calculated (with
the data samples being randomly allocated in different sets).
The results (the winning chromosome, the networks, and the
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accuracy values) were stored for each run individually and the
test results over all the iterations were averaged and reported
(Table 6).

RESULTS

Sample Characteristics
Table 1 provides descriptive statistics per group and the results
from the least-square and generalized regressions. There was no
statistical difference in age, gender or education level between
the HC and the MCI or AD groups. Individuals with MCI and
AD had lower RBANS and MOCA global scores compared to
the HC (reference level). The Memory, Language, Working
Memory/Attention, Visuoconstructional/Executive Function
and Orientation composite scores were significantly lower for
the AD group. MCI participants had lower Memory, Working
Memory/Attention and Visuoconstructional/Executive Function
composite scores. The AD group also had reduced Total Gray
Matter volume.

Speech Timing by Group
Table 2 provides the mean and standard deviation of the speech
characteristics per Group × Trial. Significant results (p < 0.006,
i.e., after Bonferroni correction) and tendencies or marginally
significant results (p < 0.01, i.e., after Bonferroni correction)
are reported herein. Significant coefficients, 95% confidence
intervals and R2 are given for the three trials and per Trial when
the interaction Group × Trial was significant (p < 0.006) in
Table 3.

The interaction Group × Trial was significant for speech
rate (χ2

(14) = 19.15, p < 0.006), interpausal unit duration
(χ2
(14) = 21.38, p < 0.006) and turn duration (χ2

(14) = 17.69,
p< 0.006).

Individuals with AD had significant slower speech rate in the
Describe-Trial compared to HC (p < 0.006). They also produced
shorter interpausal units (p = 0.003) across the three trials.
Their transition overlaps tended to be shorter in the Describe-
Trial (p = 0.008). MCI participants tended to produce longer
turns in the Describe-Trial (p = 0.01). The gap/transition ratio
tended to be larger for the MCI groups (p = 0.009) compared
to the HC across the three trials, i.e., individuals with MCI
used more often a gap than a transition overlap when taking
a turn. There was no significant (or marginally significant)
difference in the number of pauses between the AC or MCI and
HC groups.

Together, these results suggest that AD participants speak
more slowly and take a longer time to respond when engaged in a
collaborative referential task compared to HC. Our findings also
suggest thatMCI participants tend to produce longer turns. Their
response times to take turns also tended to be longer than HC.

Speech Timing—Domain-Specific
Cognitive Function Association
Significant results (p < 0.006, i.e., after Bonferroni correction)
and tendencies or marginally significant results (p < 0.01,
i.e., after Bonferroni correction) are reported herein. Significant
coefficients, 95% confidence intervals and R2 are given for the

three trials and per Trial when the interaction Group × Trial was
significant (p< 0.006) in Table 4.

Speech Rate
The interaction Group × Trial was significant
for the Memory (χ2

(11) = 18.53; p < 0.006) and
Visuoconstructional/Executive function (χ2

(11) = 19.22;
p < 0.006) components. Slower speech rate was
significantly associated with lower Memory scores
in the Describe-Trial (p = 0.001) and with lower
Visuoconstructional/Executive function scores in the Match-
Trial (p = 0.004).

Turn Duration
The interaction Group × Trial was significant for the Working
Memory/Attention (χ2

(11) = 19.22; p < 0.006), Memory
(χ2
(11) = 18.53; p < 0.006) and Visuoconstructional/Executive

function components (χ2
(11) = 14.57; p < 0.006). Shorter

turns were associated with lower Working Memory/Attention
scores across the three trials (p < 0.006), with weaker
associations for the Describe-Trial (p < 0.006) and in the
Match-Trial (p < 0.006). Positive associations were also
found with Memory scores in the Match-Trial (p < 0.006)
and with Visuoconstructional/Executive function scores in the
Describe-Trial (p < 0.006) and the Match-Trial (marginal,
p = 0.01).

Interpausal Unit Duration
The interaction Group × Trial was significant for Memory
(χ2
(11) = 11.13; p = 0.003) and marginally significant for

Orientation (χ2
(11) = 7.97; p = 0.01). Shorter interpausal units

tended to be associated with lower Memory scores (p = 0.008)
and with lower Orientation scores (p = 0.004) in the Describe-
Trial. Interpausal units also tended to be shorter with lower
Working Memory/Attention scores across the three trials
(p = 0.009). See Figure 3.

Pause Duration
The interaction Group × Trial was marginally significant for the
Orientation component (χ2

(11) = 9.83, p = 0.007). Longer pauses
tended to be associated with lower Orientation scores in the
Describe-Trial (p = 0.01) and with lower Memory scores across
the three trials (p = 0.004).

Gap/Transition Overlap Ratio
The interaction Group × Trial was marginally significant for the
Language component (χ2

(11) = 8.15; p = 0.01). A larger ratio (i.e., a
higher occurrence of gaps as compared to transition overlaps)
tended to be associated with lower Language scores in theMatch-
Trial (p = 0.006).

Gap duration, transition overlap duration and the number of
pauses were not associated with any of the cognitive domains.

To summarize, slower speech rate and shorter turns
were significantly associated with lower Memory and
Visuoconstructional/Executive Function scores, with
shorter turns being further associated with lower Working
Memory/Attention scores. Marginal associations suggest similar
trends. Shorter interpausal units tended to be associated
with lower Memory and Working Memory/Attention
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scores as well as with lower Orientation scores. Lower
Memory and Orientation scores tended to be associated
with longer pauses.

The Structural Correlates of Speech
Timing
Significant results (p < 0.003, i.e., after Bonferroni correction)
and tendencies or marginally significant results (p < 0.006,
i.e., after Bonferroni correction) are reported herein. Significant
coefficients, 95% confidence intervals and R2 are given for the
three trials and per Trial when the interaction Group × Trial was
significant (p< 0.003) in Table 5.

FIGURE 3 | Marginal estimates of Interpausal Unit (IPU) duration
(log-transformed) as a function of Working Memory/Attention scores
(log-transformed) in the Describe, Match, and Describe and Match trials.
Describe-Trial: individuals with AD/MCI and HC are the directors, i.e., they
describe the shapes and instruct where to place them; Match-Trial:
individuals with AD/MCI and HC are the matchers, i.e., they place the pictures
on their board following the caregiver’s instructions; Describe and Match-Trial:
both interlocutors describe the shapes and agree on where to place them.

Speech Rate
The interaction ROI*Trial was significant for the L MTG
(χ2
(12) = 13.54; p < 0.003), R MTG (χ2

(12) = 24.02; p < 0.003) and
R STG (χ2

(12) = 12.84; p < 0.003). In particular, slower speech
rate was associated with smaller volume of L MTG and R MTG
(p < 0.003) except in the Match-Trial; with smaller volume of R
STG in theMatch-Trial (p< 0.003).

Turn Duration
The interaction ROI*Trial was significant for the R MFG
(χ2
(12) = 10.36; p< 0.003), and the R STG (χ2

(12) = 9.57; p = 0.003).
Shorter turns were associated with smaller volumes of L MTG
(p < 0.003) across the three trials. Shorter turns were also
associated with smaller volume of R MFG (p = 0.003) in the
Match-Trial and R STG (p = 0.003) in the Describe-Trial.

Interpausal Unit Duration
The interaction ROI*Trial was marginally significant for the L
MTG (χ2

(12) = 10.63; p = 0.004), L ITG (χ2
(12) = 10.22; p = 0.006),

and L Cereb (χ2
(12) = 10.22; p = 0.007). Shorter interpausal units

were associated with smaller volume of L MTG in the Describe-
andMatchTrials (p< 0.003), with smaller volume of L ITG in the
Describe-Trial (p < 0.003) and with smaller volume of L Cereb
in the Describe-Trial (p = 0.004). The R IFG volume was also
positively associated with interpausal unit duration, with weaker
association in the Describe-Trial (p = 0.003) and Match-Trials
(p< 0.003). See Figure 4.

Gap Duration
Gap duration was positively associated with the R ITG volume
except in the Describe andMatch-Trials (p< 0.003).

No association between pause duration, transition overlap
duration, number of pauses, gap/transition overlap ratio and the
ROIs volumes were found.

To summarize, slower speech rate, shorter turns and shorter
interpausal units were significantly associated with smaller
volumes of L MTG. Speech rate was also positively associated
with the R MTG and R STG volumes; turn duration with the

TABLE 1 | Comparison of demographic and neuropsychological characteristics of participants with mild cognitive impairment (MCI), participants with mild-to-moderate
Alzheimer’s disease (AD) and healthy controls (HCs).

AD (N = 10) MCI (N = 10) HC (N = 12) AD vs. HC MCI vs. HC
(p-value) (p-value)

Demographics
Female, % 50 30 42 0.6 0.6
Age, mean (sd) 71.8 (6.9) 74.0 (8.1) 69.8 (6.5) 0.50 0.20
Education, mean (sd) 13.3 (2.5) 13.4 (1.6) 13.2 (1.9) 0.90 0.90
Clinical characteristics
RBANS.T, mean (sd) 64.3 (11.8) 84.9 (10.1) 107.6 (12.7) 0.00 0.00
MOCA.T, mean (sd) 16.8 (4.3) 22.7 (2.5) 27.0 (1.7) 0.00 0.04
Memory, mean (sd) 14.3 (7.7) 29.3 (6.7) 52.3 (6.9) 0.00 0.00
Language, mean (sd) 33.8 (15.0) 43.0 (13.1) 51.0 (6.1) 0.00 0.12
WM/Attention, mean (sd) 23.8 (18.6) 38.5 (11.5) 50.4 (8.1) 0.00 0.00
Visuoconstructional/EF, mean (sd) 18.3 (26.0) 43.3 (19.3) 49.1 (8.0) 0.00 0.04
Orientation, mean (sd) −20.0 (51.1) 39.0 (17.1) 47.7 (16.4) 0.00 0.41
Structural characteristics
Total gray matter (cm3), mean (sd) 554.3 (55.5) 587.6 (37.2) 581.0 (59.2) 0.05 0.34

Significant differences (p < 0.05) between groups are highlighted in bold. RBANS.T, RBANS total score; MOCA.T, MOCA total score; WM, working memory; EF, executive function.
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TABLE 2 | Mean and standard deviation of the speech characteristics per group and trial.

Speech measures Describe-trial Match-trial Describe and match-trial

Mean (sd) AD MCI HC AD MCI HC AD MCI HC

N pauses 0.48 (0.17) 0.50 (0.14) 0.42 (0.17) 0.35 (0.10) 0.27 (0.12) 0.33 (0.14) 0.36 (0.16) 0.44 (0.11) 0.37 (0.08)
Gap/overlap ratio 10.35 (7.17) 8.88 (2.85) 6.30 (4.16) 10.43 (7.02) 9.42 (6.67) 5.25 (2.98) 6.12 (3.36) 8.95 (4.94) 5.43 (2.29)
Pause duration 0.94 (1.38) 0.82 (1.28) 0.60 (0.85) 0.85 (1.30) 1.01 (1.53) 0.78 (1.34) 0.64 (0.98) 0.92 (1.38) 0.66 (0.96)
Gap duration 1.13 (1.45) 1.04 (1.55) 0.69 (0.96) 1.36 (2.07) 1.18 (1.83) 0.78 (1.43) 1.23 (1.96) 1.00 (1.67) 0.69 (1.31)
Tov duration 0.17 (0.12) 0.24 (0.18) 0.34 (0.28) 0.22 (0.17) 0.25 (0.20) 0.29 (0.18 0.27 (0.23) 0.23 (0.20) 0.25 (0.19)
IPU duration 0.75 (0.56) 1.05 (0.76) 1.03 (0.80) 0.65 (0.52) 0.71 (0.54) 0.89 (0.67) 0.81 (0.65) 0.97 (0.74) 0.97 (0.68)
Turn duration 3.01 (3.78) 5.20 (5.96) 3.12 (3.68) 1.41 (1.82) 1.48 (2.16) 1.89 (3.04) 2.74 (4.44) 3.19 (4.77) 2.63 (4.31)
Speech rate 3.88 (1.76) 3.81 (1.61) 4.27 (1.93) 4.28 (2.07) 4.16 (2.03) 3.84 (2.09) 4.42 (1.73) 3.99 (1.51) 3.99 (2.03)

MCI, mild cognitive impairment; AD, Alzheimer’s disease; HC, healthy controls; Describe-Trial: individuals with AD/MCI and HC are the directors, i.e., they describe the shapes and
instruct where to place them; Match-Trial: individuals with AD/MCI and HC are the matchers, i.e., they place the pictures on their board following the caregiver’s instructions; Describe
and Match-Trial: both interlocutors describe the shapes and agree on where to place them. N, number of; tov, transition overlaps; IPU, interpausal unit.

TABLE 3 | Coefficients and 95% confidence intervals with marginal and conditional R2 for the observed significant differences in speech features between groups
(p < 0.006).

Groups Speech features Speech features * trials R2m; R2c

Speech rate Speech rate * trial

Describe vs. REF trial Match vs. REF trial

AD vs. HC − −0.70 (1.05, −0.34) − 0.04; 0.21
MCI vs. HC − − −

Turn duration Turn duration * trial

Describe vs. REF Trial Match vs. REF Trial

AD vs. HC − − − 0.07; 0.12
MCI vs. HC − 0.33 (0.05, 0.61) −0.27 (−0.53, −0.01)

IPU duration IPU duration * trial

Describe vs. REF Trial Match vs. REF Trial

AD vs. HC −0.28 (−0.38, −0.06) − − 0.04; 0.10
MCI vs. HC − − −

Tov duration Tov duration * trial

Describe vs. REF Trial Match vs. REF Trial

AD vs. HC − −0.96 (−1.63, −0.24) − 0.04; 0.10
MCI vs. HC − − −

Gap/Overlap ratio Gap/Overlap ratio * trial

Describe vs. REF Trial Match vs. REF Trial

AD vs. HC − − − 0.18; 0.42
MCI vs. HC 0.54 (0.19, 0.89) − −

The exact p-value is given in the text. AD, Alzheimer’s disease; MCI, mild cognitive impairment; HC, healthy controls; Describe-Trial, individuals with AD/MCI and HC are the directors,
i.e., they describe the shapes and instruct where to place them; Match-Trial, individuals with AD/MCI and HC are the matchers, i.e., they place the pictures on their board following
the caregiver’s instructions; REF-Trial (Describe and Match-Trial), both interlocutors describe the shapes and agree on where to place them; N, number of; tov, transition overlaps; IPU,
interpausal unit.

R STG and R MFG; and interpausal unit with the L ITG,
L IFG and L cereb. With regard to turn-taking organization,
individuals with smaller R ITG volumes tended to produce
longer gaps.

MCI and AD Classification Based on
Temporal Speech Measures
Table 6 presents the cross-validated accuracy rates of the
evolved classifiers for the test set based on the temporal
speech features for the MCI-HC and AD-HC contrasts and
for the multi-class classification of the three groups for the
three trials separately. Best performances were achieved for the
classifiers that were based on the speech measures extracted

from Trial 1 and Trial 3 for the AD-HC contrast. Accuracy
rates were moderate in the pairwise contrasts and slightly better
for the AD-HC contrasts compared to the MCI-HC contrasts
(e.g., 73.77 vs. 62.71 in Trial 1). Accuracy rates were similar
across trials for the multi-class classification of the three groups
(82.47% to 84.17%).

DISCUSSION

In this preliminary study exploring the cognitive and structural
underpinnings of temporal speech characteristics in a
collaborative referential task, we first show that MCI and
mild-to-moderate AD are characterized by a general slowness of
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TABLE 4 | Coefficients and 95% confidence intervals with marginal and conditional R2 for the observed significant associations between the speech features and the
cognitive domains (composite scores; p < 0.006).

Groups Speech features Speech features * trials R2m; R2c

Speech rate Speech rate * trial

Describe vs. REF trial Match vs. REF trial

Memory − 0.26 (0.05, 0.47) − 0.04; 0.21
Visuoconst./EF − − 0.28 (0.08, 0.48)

Turn duration Turn duration * trial

Describe vs. REF trial Match vs. REF trial

Memory − − 0.35 (0.16, 0.53) 0.06; 0.16
Visuoconst./EF − 0.33 (0.17, 0.49) 0.18 (0.09, 0.14)
WM/Attention 0.40 (0.20, 0.59) −0.36 (−0.56, −0.16) −0.40 (−0.59, −0.21)
Orientation − −0.11 (−0.19, −0.02) −

The exact p-value is given in the text. Describe-Trial, individuals with AD/MCI and HC are the directors, i.e., they describe the shapes and instruct where to place them; Match-
Trial, individuals with AD/MCI and HC are the matchers, i.e., they place the pictures on their board following the caregiver’s instructions; REF-Trial (Describe and Match-Trial), both
interlocutors describe the shapes and agree on where to place them; Visuoconst./EF, visuoconstruction/executive function; WM/Attention, working memory/attention; N, number of;
tov, transition overlaps; IPU, interpausal unit.

TABLE 5 | Coefficients and 95% confidence intervals with marginal and conditional R2 for the observed significant associations between the speech features and
regional volumes in the fully adjusted models (per hemisphere; p < 0.003).

ROIs Speech features Speech features * trial R2m; R2c

Speech rate Speech rate * trial

Describe vs. REF trial Match vs. REF trial

L MTG − − −0.32 (−0.51, −0.14) 0.04; 0.22
R STG − − 0.30 (0.13, 0.47) 0.04; 0.22
R MTG − − −0.43 (−0.60, −0.25)

Turn duration Turn duration * trial

Describe vs. REF trial Match vs. REF trial

L MTG −0.37 (−0.54, −0.20) − 0.55 (0.39, 0.70) 0.09; 0.13
R MFG − 0.14 (0.02, 0.25) 0.16 (0.05, 0.28) 0.07; 0.13
R STG − −0.17 (−0.29, −0.05) −0.13 (−0.23, −0.01)

Interpausal unit duration Interpausal unit duration * trial

Describe vs. REF trial Match vs. REF trial

L MTG − 0.16 (0.00, 0.23) 0.28 (0.21, 0.36) 0.04; 0.12
L ITG 0.15 (0.03, 0.27) −0.11 (−0.16, −0.04) −0.23 (−0.30, −0.16)
R IFG − −0.07 (−0.13, −0.02) −0.10 (−0.16, −0.00) 0.04; 0.11

Gap duration Gap duration * trial

Describe vs. REF trial Match vs. REF trial

R ITG − −0.02 (−0.3, −0.00) −0.02 (−0.03, −0.00) 0.05; 0.18

The exact p-value is given in the text. L, left; R, right; Cereb, cerebellum; FFG, fusiform gyrus; IFG, inferior frontal gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gyrus;
MFG, middle frontal gyrus; MTG, middle temporal gyrus; Prec, precuneus; STG, superior temporal gyrus; Describe-Trial, individuals with AD/MCI and HC are the directors, i.e., they
describe the shapes and instruct where to place them; Match-Trial, individuals with AD/MCI and HC are the matchers, i.e., they place the pictures on their board following the
caregiver’s instructions; REF-Trial (Describe and Match-Trial), both interlocutors describe the shapes and agree on where to place them; N, number of; tov, transition overlaps; IPU,
interpausal unit.

TABLE 6 | Cross-validated accuracy rates of the evolved classifiers for the test set based on temporal speech features for the MCI-HC and AD-HC contrasts and for
the multi-class classification of the three groups for the three trials separately.

AD/HC % (SD) MC/HC % (SD) Multi-class % (SD)

Describe-trial 73.77 (9.65) 62.71 (4.78) 83.95 (3.32)
Match-trial 63.67 (3.43) 63.41 (5.91) 82.47 (2.20)
Describe and match-trial 70.79 (9.50) 62.50 (7.67) 84.17 (2.72)

AD, Alzheimer’s disease; MCI, mild cognitive impairment; HC, healthy controls; Describe-Trial, individuals with AD/MCI and HC are the directors, i.e., they describe the shapes
and instruct where to place them; Match-Trial, individuals with AD/MCI and HC are the matchers, i.e., they place the pictures on their board following the caregiver’s instructions;
Describe-Match-Trial, both interlocutors describe the shapes and agree on where to place them.

speech, attributed to slower speech rate and slower turn-taking,
with shorter transition overlaps and a larger number of gaps

than transition overlap at speaker changes. Individuals with
AD also had shorter interpausal units and individuals with
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MCI had longer turns. Our findings on speech rate, pauses
and interpausal units corroborate other analyses of connected
speech in MCI and AD (Singh et al., 2001; Hoffmann et al.,
2010; Rousseaux et al., 2010; Gayraud et al., 2011; Ahmed
et al., 2013; Pistono et al., 2016; De Looze et al., 2018). The
temporal characteristics of turn-taking organization, with slower
exchanges for MCI and AD, support the potential existence
of underlying cognitive deficits related to speech planning
difficulties. Gap durations were almost doubled in the AD
group compared to the HC (1,230 vs. 690 ms). Given that
it takes about 1,500 ms to plan a simple sentence (Griffin
and Bock, 2000), it may be postulated that individuals with
AD needed more time to simultaneously comprehend their
interlocutor’s utterances, plan their answers and anticipate
turn-endings.

More specifically, our analyses revealed that slower speech
rate and longer pause duration were indicative of lower verbal
memory scores and lower volumes of superior and middle
temporal gyri. Slower speech rate was also associated with lower
visuoconstructional/executive function scores and longer pauses
with lower orientation scores.

Our findings suggest that slower speech rate and longer
pause duration may be indicative of underlying deficits in
episodic memory, lexical, semantic and executive functioning
processes. Within the frame of the referential task, they may
reflect difficulties with picture naming and remembering
the sequence in which the pictures are described or
remembering preceding exchanges (Feyereisen et al., 2007;
Ash et al., 2011). Longer pauses may also reflect the time
needed for the speaker to organize their thoughts and to
construct a sentence. The associations observed with the
superior and middle temporal gyri further support this

FIGURE 4 | Marginal estimates of Interpausal Unit (IPU) duration
(log-transformed) as a function of the Left Fusiform Gyrus (L FFG) in the
Describe, Match, and Describe and Match trials. Describe-Trial: individuals
with AD/MCI and HC are the directors, i.e., they describe the shapes and
instruct where to place them; Match-Trial: individuals with AD/MCI and HC
are the matchers, i.e., they place the pictures on their board following the
caregiver’s instructions; Describe and Match-Trial: both interlocutors describe
the shapes and agree on where to place them.

interpretation. These regions have been linked to semantic
memory and retrieval (Pravatà et al., 2016; Leyton et al.,
2019) and to be dependent on an individual’s verbal
working memory capacity (Deschamps et al., 2014). Our
findings corroborate the associations observed in other
studies between within-clause pauses and activation in
the superior and middle temporal gyri bilaterally (Kircher
et al., 2004) as well as between speech rate and the STG and
the MTG.

In addition, shorter interpausal units and shorter turns were
associated with lower memory and working memory/attention
scores. Shorter interpausal units were further related to lower
orientation scores. Within the frame of the referential task,
it may be hypothesized that these characteristics may reflect
the production of shorter sentences of simpler syntactic and
discourse structure and/or may be indicative of a narrower scope
of speech planning (Swets et al., 2013; De Looze et al., 2018).
With regards to the structural correlates, shorter interpausal
units were associated with volume reductions in the right IFG,
the left middle and inferior temporal gyri and left cerebellum.
Associations were also observed between shorter turns and lower
volumes of left and right middle MTG and right STG. The IFG
is thought to support lexico-semantic retrieval processes and the
parsing and planning of sentence and discourse-level linguistic
information (Hagoort, 2005; Binder et al., 2009; Matsumoto
et al., 2013; Hurley et al., 2015; Foti and Roberts, 2016). More
generally, it has been linked to executive function, working
memory and attention (Tops and Boksem, 2011; Zheng et al.,
2014; Nissim et al., 2017). The inferior and middle frontal
regions and the STG have been linked to speech planning
processes and timing control. Furthermore, the cerebellum
has been associated with speech and language control, timing,
anticipation/prediction during language comprehension, verbal
working memory and mental manipulation (Stoodley and
Schmahmann, 2009; Marvel and Desmond, 2010; Murdoch,
2010; Mariën et al., 2014). In a previous study (De Looze
et al., 2018), using data from the whole cohort (N = 80), we
showed that the same temporal speech features in overt sentence
reading were associated with reduced workingmemory/attention
and language scores. We suggested that the temporal speech
features may not only be reflective of lexico-semantic deficits
but also of speech production planning difficulties, potentially
stemming from reduced working memory capacity and attention
deficits, specifically in the context of increased cognitive-
linguistic demand. Several studies have provided evidence that
the scope of speech production planning (i.e., how far ahead
speakers plan an upcoming utterance) varies both as a function of
speaker-specific verbal working memory capacity and cognitive-
linguistic demands (Rochon et al., 2000; Swets et al., 2007;
Petrone et al., 2011). We postulate that the size of interpausal
units and turns may result from reduced working memory
capacity in a highly cognitively demanding task, underlying
speech production planning difficulties with reduced scope of
planning (De Looze et al., 2018). The associations observed
with the right hemisphere for several of these regions may be
reflective of the nature of the referential task, also relying on
visuoconstructional and visuospatial skills when describing the
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geometrical shapes and when ordering and placing the pictures
on the board (Baddeley, 2000).

Finally, our exploratory analyses showed moderate accuracy
rates for the speech-based classifiers in the pairwise contrasts,
with higher performance for the AD-HC contrast (74%)
compared to the MCI-HC contrast (63%). The accuracy rates
for the multi-class classification of the three groups (84%) were
in line with other studies also using ensembles of acoustic
features derived from picture-description tasks, interviews or
a combination of different speech tasks (Singh et al., 2001;
Roark et al., 2011; Jarrold et al., 2014; Meilán et al., 2014;
Dodge et al., 2015; König et al., 2015; López-de-Ipiña et al.,
2015; Asgari et al., 2017; Tóth et al., 2018; Gosztolya et al.,
2019; O’Malley et al., 2020). Using a combination of linear and
nonlinear acoustic features extracted from spontaneous speech
samples, López-de-Ipiña et al. (2015) reported 87% accuracy
for the discrimination of AD. Similar features extracted from
several short cognitive tasks were also used for the classification
of MCI and AD, reaching accuracies of 79% and 87% for the
MCI-HC and AD-HC contrasts respectively (König et al., 2015).
Using a set of acoustic features extracted from longitudinally
collected biographic interviews and cognitive tests, Weiner
et al. (2016) achieved a classification accuracy of 86% between
HCs, individuals with aging-associated cognitive decline and
individuals with AD. Other studies (Jarrold et al., 2014; Gosztolya
et al., 2019) have combined acoustic and lexical or linguistic
features derived from spontaneous speech and reported an
accuracy of 86–88% for the AD-HC contrast and 80% for the
MCI-HC contrast.

These findings together support the discriminative power
of speech-based approaches and their clinical relevance as a
diagnostic tool component for the assessment and monitoring
of cognitive deficits in ageing. The advantage with speech-based
approaches is that they are less computationally demanding,
they can be fully automated, they are non-invasive, time
and cost-effective and are easy to administer. For example,
speech changes could be recorded and monitored using a
mobile phone. Anonymized data could be sent and processed
to the cloud and feedback about an individual’s cognitive
functioning based on their speech characteristics, could be
displayed and easily interpreted by a health professional via
a web interface. Combining automated speech/language-based
metrics with neuroimaging markers, neuropsychological scores
and other behavioral measures, may assist health professionals
in detecting and characterizing the course of cognitive decline
in ageing and in defining an effective course of treatment
and setting in place pertinent intervention strategies. These
technologies may be of particular relevance in the context of
stratification and screening procedures in overcrowded health
services by providing some early insights (pendingmore in-depth
clinical assessments) of an individual’s cognitive function and
potential underlying structural changes.

A number of limitations need to be highlighted. First the
sample size of this study was small, and restricted to a specific
age, education and cognitive functioning groups, which limits
the generalizability of our results. Second, we opted for a Region-
of-interest (ROI) based approach which may have left out some

existing associations not investigated in this study. This approach
was chosen to exploit the richness of the repeated measures
collected per individual through linear mixed-effect modelling.
Finally, it is not possible from the present observational study
to infer any direction of causality and the interpretations in
this manuscript provided can but only be speculative, although
supported by accumulated evidence stemming from an extensive
literature review.

The novelty of this study lies in the investigation of the
association between temporal speech parameters, cognitive
domains and brain regional volumes in a collaborative referential
task. Our study explores for the first time the use of automatically
extracted conversational-based features as input of EAs for the
classification of MCI and AD while, at the same time, provides
a thorough description of the cognitive and structural correlates
of these features, with the modest intention of bringing clinical
evidence of the relevance of these behavioral measures for the
assessment and monitoring of MCI and AD.

CONCLUSION

Our study suggests that the temporal characteristics of speech in
a collaborative referential task may reflect underlying cognitive
deficits and structural volume reductions in healthy ageing,
MCI and AD. The implementation of conversational speech-
based technologies in clinical and community settings may
represent a sensitive measure for the early assessment and
longitudinal monitoring of cognitive-linguistic deficits and
underlying structural changes in ageing.

DATA AVAILABILITY STATEMENT

The datasets presented in this article are not publicly available
(following GPDR guidelines). Requests from research groups to
access the datasets should be directed to deloozec@tcd.ie.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the St. James’s Hospital Ethics andMedical Research
Committee. Signed informed consent was obtained from all
respondents prior to participation. The patients/participants
provided their written informed consent to participate in
this study.

AUTHOR CONTRIBUTIONS

CD: drafting and stat analyses. AD: stat analyses and review. LC:
data collection. AV: data annotation and review. RC, BL, and
RR: input for data collection/analyses and review. All authors
contributed to the article and approved the submitted version.

FUNDING

This study was supported by a Centre for Ageing Research and
Development in Ireland (CARDI) Leadership Fellowship (grant
number 13533).

Frontiers in Aging Neuroscience | www.frontiersin.org 14 April 2021 | Volume 13 | Article 637404154

mailto:deloozec@tcd.ie
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


De Looze et al. Cognitive and Brain Correlates of Speech Timing

REFERENCES

Ahmed, O., Benois-Pineau, J., Allard, M., Catheline, G., and Amar, C. B.
(2017). Recognition of Alzheimer’s disease and mild cognitive impairment
with multimodal image-derived biomarkers and multiple kernel learning.
Neurocomputing 220, 98–110. doi: 10.1016/j.neucom.2016.08.041

Ahmed, S., Haigh, A.-M. F., de Jager, C. A., and Garrard, P. (2013). Connected
speech as a marker of disease progression in autopsy-proven Alzheimer’s
disease. Brain Lang. 136, 3727–3737. doi: 10.1093/brain/awt269

Albert, M. S., Steven, T. D., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C.,
et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s
disease: recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 7, 270–279. doi: 10.1016/j.jalz.2011.03.008

Asgari, M., Kaye, J., and Dodge, H. (2017). Predicting mild cognitive impairment
from spontaneous spoken utterances. Alzheimers Dement. 3, 219–228.
doi: 10.1016/j.trci.2017.01.006

Ash, S., McMillan, C., Gross, R. G., Cook, P., Morgan, B., Boller, A., et al. (2011).
The organization of narrative discourse in Lewy body spectrum disorder. Brain
Lang. 119, 30–41. doi: 10.1016/j.bandl.2011.05.006

Ash, S., Xie, S. X., Gross, R. G., Dreyfuss, M., Boller, A., Camp, E., et al. (2012). The
organization and anatomy of narrative comprehension and expression in Lewy
body spectrum disorders.Neuropsychology 26, 368–384. doi: 10.1037/a0027115

Bögels, S., Magyari, L., and Levinson, S. C. (2015). Neural signatures of response
planning occur midway through an incoming question in conversation. Sci.
Rep. 5:12881. doi: 10.1038/srep12881

Baddeley, A. (2000). The episodic buffer: a new component of working memory?
Trends Cogn. Sci. 4, 417–423. doi: 10.1016/s1364-6613(00)01538-2

Baldo, J. V., Arévalo, A., Patterson, J. P., and Dronkers, N. F. (2013). Gray and
white matter correlates of picture naming: evidence from a voxel-based lesion
analysis of the Boston Naming Test. Cortex 49, 658–667. doi: 10.1016/j.cortex.
2012.03.001

Baldo, J. V., and Dronkers, N. F. (2006). The role of inferior parietal and
inferior frontal cortex in working memory. Neuropsychology 20, 529–538.
doi: 10.1037/0894-4105.20.5.529

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting linear mixed-
effects models using lme4. arXiv [Preprint]. doi: 10.18637/jss.v067.i01

Binder, J. R., Desai, R. H., Graves, W. W., and Conant, L. L. (2009).
Where is the semantic system? A critical review and meta-analysis
of 120 functional neuroimaging studies. Cereb. Cortex 19, 2767–2796.
doi: 10.1093/cercor/bhp055

Boersma, P., and Weenink, D. (2016). Praat: Doing Phonetics by Computer
[Computer program]. (Version 6.0. 23). The Netherlands: Amsterdam.

Bourguignon, N. J. (2014). A rostro-caudal axis for language in the frontal lobe:
the role of executive control in speech production. Neurosci. Biobehav. Rev. 47,
431–444. doi: 10.1016/j.neubiorev.2014.09.008

Brambati, S. M., Myers, D., Wilson, A., Rankin, K., Allison, S. C., Rosen, H. J., et al.
(2006). The anatomy of categoryspecific object naming in neurodegenerative
diseases. J. Cogn. Neurosci. 18, 1644–1653. doi: 10.1162/jocn.2006.18.
10.1644

Caramelli, P., Lessa Mansur, L., and Nitrini, R. (1998). ‘‘Language and
communication disorders in dementia of the Alzheimer type’’, Handbook
of Neurolinguistics, eds B. Stemmer and H. A. Whitaker (San Diego, CA:
Academic Press), 463–473.

Carlomagno, S., Santoro, A., Menditti, A., Pandolfi, M., and Marini, A. (2005).
Referential communication in Alzheimer’s type dementia. Cortex 41, 520–534.
doi: 10.1016/s0010-9452(08)70192-8

Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G.,
et al. (2001). Patterns of temporal lobe atrophy in semantic dementia and
Alzheimer’s disease. Ann. Neurol. 49, 433–442. doi: 10.1002/ana.92

Chapman, S. B., Zientz, J., Weiner, M., Rosenberg, R., Frawley, W., and
Burns, M. H. (2002). Discourse changes in early Alzheimer disease, mild
cognitive impairment, and normal aging. Alzheimers Dis. Assoc. Disord. 16,
177–186. doi: 10.1097/00002093-200207000-00008

Christodoulou, J. A., Del Tufo, S. N., Lymberis, J., Saxler, P. K., Ghosh, S. S.,
Triantafyllou, C., et al. (2014). Brain bases of reading fluency in typical reading
and impaired fluency in dyslexia. PLoS One 9:e100552. doi: 10.1371/journal.
pone.0100552

Croot, K., Hodges, J. R., Xuereb, J., and Patterson, K. (2000). Phonological and
articulatory impairment in Alzheimer’s disease: a case series. Brain Lang. 75,
277–309. doi: 10.1006/brln.2000.2357

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based
analysis: I. Segmentation and surface reconstruction. NeuroImage 9, 179–194.
doi: 10.1006/nimg.1998.0395

Davis, B. H., and Maclagan, M. (2009). Examining pauses in Alzheimer’s
discourse. Am. J. Alzheimers Dis. Other Dement. 24, 141–154.
doi: 10.1177/1533317508328138

de Jong, N. H., and Wempe, T. (2009). Praat script to detect syllable nuclei
and measure speech rate automatically. Behav. Res. Methods 41, 385–390.
doi: 10.3758/BRM.41.2.385

De Looze, C., Kelly, F., Crosby, L., Vourdanou, A., Coen, R. F., Walsh, C.,
et al. (2018). Changes in speech chunking in reading aloud is a marker
of mild cognitive impairment and mild-to-moderate Alzheimer’s disease.
Curr. Alzheimer Res. 15, 828–847. doi: 10.2174/15672050156661804041
65017

Dehsarvi, A. (2018). Classification of resting-state fMRI using evolutionary
algorithms: towards a brain imaging biomarker for Parkinson’s
disease. PhD Thesis. University of York. Available online at:
http://etheses.whiterose.ac.uk/20884.

Dehsarvi, A., and Smith, S. L. (2018). ‘‘Classification of resting-state fMRI for
olfactory dysfunction in Parkinson’s disease using evolutionary algorithms,’’
in Proceedings of the Genetic and Evolutionary Computation Conference
Companion, Kyoto, Japan, 264–265.

Deschamps, I., Baum, S. R., and Gracco, V. L. (2014). On the role of the
supramarginal gyrus in phonological processing and verbal working memory:
evidence from rTMS studies. Neuropsychologia 53, 39–46. doi: 10.1016/j.
neuropsychologia.2013.10.015

Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic parcellation
of human cortical gyri and sulci using standard anatomical nomenclature.
NeuroImage 53, 1–15. doi: 10.1016/j.neuroimage.2010.06.010

Dickerson, B. C., Goncharova, I., Sullivan, M. P., Forchetti, C., Wilson, R. S.,
Bennett, D. A., et al. (2001). MRI-derived entorhinal and hippocampal atrophy
in incipient and very mild Alzheimer’s disease. Neurobiol. Aging 22, 747–754.
doi: 10.1016/s0197-4580(01)00271-8

Dicks, E., Tijms, B. M., Ten Kate, M., Gouw, A. A., Benedictus, M. R.,
Teunissen, C. E., et al. (2018). Gray matter network measures are associated
with cognitive decline in mild cognitive impairment. Neurobiol. Aging 61,
198–206. doi: 10.1016/j.neurobiolaging.2017.09.029

Dodge, H., Mattek, N., Gregor, M., Bowman, M., Seelye, A., Ybarra, O., et al.
(2015). Social markers of mild cognitive impairment: proportion of word
counts in free conversational speech. Curr. Alzheimer Res. 12, 513–519.
doi: 10.2174/1567205012666150530201917

Drummond, C., Coutinho, G., Fonseca, R. P., Assunção, N., Teldeschi, A., de
Oliveira-Souza, R., et al. (2015). Fernanda Tovar-Moll and Paulo Mattos
deficits in narrative discourse elicited by visual stimuli are already present
in patients with mild cognitive impairment. Front. Aging Neurosci. 7:96.
doi: 10.3389/fnagi.2015.00096

Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P.,
Cummings, J., et al. (2007). Research criteria for the diagnosis of Alzheimer’s
disease: revising the NINCDS-ADRDA criteria. Lancet Neurol. 6, 734–746.
doi: 10.1016/S1474-4422(07)70178-3

Duff, M. C., Gallegos, D. R., Cohen, N. J., and Tranel, D. (2013). Learning in
Alzheimer’s disease is facilitated by social interaction. J. Comp. Neurol. 521,
4356–4369. doi: 10.1002/cne.23433

Ferreira, F., and Swets, B. (2002). How incremental is language production?
Evidence from the production of utterances requiring the computation
of arithmetic sums. J. Mem. Lang. 46, 57–84. doi: 10.1006/jmla.
2001.2797

Feyereisen, P., Berrewaerts, J., and Hupet, M. (2007). Pragmatic skills in
the early stages of Alzheimer’s disease: an analysis by means of a
referential communication task. Int. J. Lang. Commun. Disord. 42, 1–17.
doi: 10.1080/13682820600624216

Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al.
(2002). Whole brain segmentation: automated labeling of neuroanatomical
structures in the human brain. Neuron 33, 341–355. doi: 10.1016/s0896-
6273(02)00569-x

Frontiers in Aging Neuroscience | www.frontiersin.org 15 April 2021 | Volume 13 | Article 637404155

https://doi.org/10.1016/j.neucom.2016.08.041
https://doi.org/10.1093/brain/awt269
https://doi.org/10.1016/j.jalz.2011.03.008
https://doi.org/10.1016/j.trci.2017.01.006
https://doi.org/10.1016/j.bandl.2011.05.006
https://doi.org/10.1037/a0027115
https://doi.org/10.1038/srep12881
https://doi.org/10.1016/s1364-6613(00)01538-2
https://doi.org/10.1016/j.cortex.2012.03.001
https://doi.org/10.1016/j.cortex.2012.03.001
https://doi.org/10.1037/0894-4105.20.5.529
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1093/cercor/bhp055
https://doi.org/10.1016/j.neubiorev.2014.09.008
https://doi.org/10.1162/jocn.2006.18.10.1644
https://doi.org/10.1162/jocn.2006.18.10.1644
https://doi.org/10.1016/s0010-9452(08)70192-8
https://doi.org/10.1002/ana.92
https://doi.org/10.1097/00002093-200207000-00008
https://doi.org/10.1371/journal.pone.0100552
https://doi.org/10.1371/journal.pone.0100552
https://doi.org/10.1006/brln.2000.2357
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1177/1533317508328138
https://doi.org/10.3758/BRM.41.2.385
https://doi.org/10.2174/1567205015666180404165017
https://doi.org/10.2174/1567205015666180404165017
http://etheses.whiterose.ac.uk/20884
https://doi.org/10.1016/j.neuropsychologia.2013.10.015
https://doi.org/10.1016/j.neuropsychologia.2013.10.015
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1016/s0197-4580(01)00271-8
https://doi.org/10.1016/j.neurobiolaging.2017.09.029
https://doi.org/10.2174/1567205012666150530201917
https://doi.org/10.3389/fnagi.2015.00096
https://doi.org/10.1016/S1474-4422(07)70178-3
https://doi.org/10.1002/cne.23433
https://doi.org/10.1006/jmla.2001.2797
https://doi.org/10.1006/jmla.2001.2797
https://doi.org/10.1080/13682820600624216
https://doi.org/10.1016/s0896-6273(02)00569-x
https://doi.org/10.1016/s0896-6273(02)00569-x
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


De Looze et al. Cognitive and Brain Correlates of Speech Timing

Forbes-McKay, K., Shanks, M. F., and Venneri, A. (2013). Profiling
spontaneous speech decline in Alzheimer’s disease: a longitudinal study.
Acta Neuropsychiatr. 25, 320–327. doi: 10.1017/neu.2013.16

Foti, D., and Roberts, F. (2016). The neural dynamics of speech perception:
dissociable networks for processing linguistic content and monitoring speaker
turn-taking. Brain Lang. 157, 63–71. doi: 10.1016/j.bandl.2016.05.001

Fraser, K. C., Meltzer, J. A., and Rudzicz, F. (2016). Linguistic features identify
Alzheimer’s disease in narrative speech. J. Alzheimers Dis. 49, 407–422.
doi: 10.3233/JAD-150520

Gayraud, F., Lee, H.-R., and Barkat-Defradas, M. (2011). Syntactic and
lexical context of pauses and hesitations in the discourse of Alzheimer
patients and healthy elderly subjects. Clin. Linguist. Phon. 25, 198–209.
doi: 10.3109/02699206.2010.521612

Goldman Eisler, F. (1968). Psycholinguistics: Experiments in Spontaneous Speech.
London: Academic Press.

Gosztolya, G., Vincze, V., Tóth, L., Pákáski, M., Kálmán, J., and Hoffmann, I.
(2019). Identifying mild cognitive impairment and mild Alzheimer’s disease
based on spontaneous speech using ASR and linguistic features. Comput.
Speech Lang. 53, 181–197. doi: 10.1016/j.csl.2018.07.007

Griffin, Z. M., and Bock, K. (2000). What the eyes say about speaking. Psychol. Sci.
11, 274–279. doi: 10.1111/1467-9280.00255

Hagoort, P. (2005). On Broca, brain, and binding: a new framework. Trends Cogn.
Sci. 9, 416–423. doi: 10.1016/j.tics.2005.07.004

Hampson, M., Tokoglu, F., Sun, Z., Schafer, R. J., Skudlarski, P., Gore, J. C.,
et al. (2006). Connectivity-behavior analysis reveals that functional connectivity
between left BA39 and Broca’s area varies with reading ability. NeuroImage 31,
513–519. doi: 10.1016/j.neuroimage.2005.12.040

Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al.
(2006). Reliability of MRI-derived measurements of human cerebral cortical
thickness: the effects of field strength, scanner upgrade and manufacturer.
NeuroImage 32, 180–194. doi: 10.1016/j.neuroimage.2006.02.051

Helder, A., van den Broek, P., Karlsson, J., and Van Leijenhorst, L. (2017). Neural
correlates of coherence-break detection during reading of narratives. Sci. Stud.
Reading 21, 463–479. doi: 10.1080/10888438.2017.1332065

Hirshorn, E. A., Dye, M. W. G., Hauser, P. C., Supalla, T. R., and Bavelier, D.
(2014). Neural networks mediating sentence reading in the deaf. Front. Hum.
Neurosci. 8:394. doi: 10.3389/fnhum.2014.00394

Hoffmann, I., Nemeth, D., Dye, C. D., Pákáski, M., Irinyi, T., and Kálmán, J.
(2010). Temporal parameters of spontaneous speech in Alzheimer’s disease.
Int. J. Speech Lang. Pathol. 12, 29–34. doi: 10.3109/17549500903137256

Hurley, R. S., Bonakdarpour, B., Wang, X., and Mesulam, M. M. (2015).
Asymmetric connectivity between the anterior temporal lobe and the language
network. J. Cogn. Neurosci. 27, 464–473. doi: 10.1162/jocn_a_00722

Jarrold, W., Peintner, B., Wilkins, D., Vergryi, D., Richey, C., Gorno-
Tempini, M. L., et al. (2014). ‘‘Aided diagnosis of dementia type through
computer-based analysis of spontaneous speech,’’ in Proceedings of the
Workshop on Computational Linguistics and Clinical Psychology: From
Linguistic Signal to Clinical Reality (Baltimore, MD), 27–37.

Jovicich, J., Czanner, S., Greve, D., Haley, E., van Der Kouwe, A., Gollub, R.,
et al. (2006). Reliability in multi-site structural MRI studies: effects of gradient
non-linearity correction on phantom and human data. NeuroImage 30,
436–443. doi: 10.1016/j.neuroimage.2005.09.046

König, A., Satt, A., Sorin, A., Hoory, R., Toledo-Ronen, O., Derreumaux, A.,
et al. (2015). Automatic speech analysis for the assessment of patients
with predementia and Alzheimer’s disease. Alzheimers Dement. 1, 112–124.
doi: 10.1016/j.dadm.2014.11.012

Killiany, R. J., Hyman, B. T., Gomez-Isla, T., Moss, M. B., Kikinis, R., Jolesz, F.,
et al. (2002). MRI measures of entorhinal cortex vs. hippocampus in preclinical
AD. Neurology 58, 1188–1196. doi: 10.1212/wnl.58.8.1188

Kircher, T. T., Brammer, M. J., Levelt, W., Bartels, M., and McGuire, P. K. (2004).
Pausing for thought: engagement of left temporal cortex during pauses in
speech. NeuroImage 21, 84–90. doi: 10.1016/j.neuroimage.2003.09.041

Kirova, A.-M., Bays, R. B., and Lagalwar, S. (2015). Working memory
and executive function decline across normal aging, mild cognitive
impairment, and Alzheimer’s disease. Biomed Res. Int. 2015:748212.
doi: 10.1155/2015/748212

López-de-Ipiña, K., Solé-Casals, J., Eguiraun, H., Alonso, J. B., Travieso, C. M.,
Ezeiza, A., et al. (2015). Feature selection for spontaneous speech analysis to

aid in Alzheimer’s disease diagnosis: a fractal dimension approach. Comput.
Speech Lang. 30, 43–60. doi: 10.1016/j.csl.2014.08.002

Laws, K. R., Duncan, A., and Gale, T. M. (2010). ‘Normal’ semantic-phonemic
fluency discrepancy in Alzheimer’s disease? A meta-analytic study. Cortex 46,
595–601. doi: 10.1016/j.cortex.2009.04.009

Lehéricy, S., Baulac, M., Chiras, J., Piérot, L., Martin, N., Pillon, B., et al.
(1994). Amygdalohippocampal MR volume measurements in the early stages
of Alzheimer disease. Am. J. Neuroradiol. 15, 929–937.

Leyton, C. E., Landin-Romero, R., Liang, C. T., Burrell, J. R., Kumfor, F.,
Hodges, J. R., et al. (2019). Correlates of anomia in non-semantic variants
of primary progressive aphasia converge over time. Cortex 120, 201–211.
doi: 10.1016/j.cortex.2019.06.008

Littell, R. C., Milliken, G. A., Stroup, W. W., and Wolfinger, R. D. (1996). SAS
System for Mixed Models. Cary, NC: SAS Institute, Inc.

Magyari, L., Bastiaansen, M. C., de Ruiter, J. P., and Levinson, S. C. (2014).
Early anticipation lies behind the speed of response in conversation. J. Cogn.
Neurosci. 26, 2530–2539. doi: 10.1162/jocn_a_00673

Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C. H. S., Beaton, A.,
Desmond, J., et al. (2014). Consensus paper: language and the cerebellum: an
ongoing enigma. Cerebellum 13, 386–410. doi: 10.1007/s12311-013-0540-5

Marvel, C. L., and Desmond, J. E. (2010). Functional topography of the
cerebellum in verbal working memory. Neuropsychol. Rev. 20, 271–279.
doi: 10.1007/s11065-010-9137-7

Matsumoto, K., Kircher, T., Stokes, P., Brammer, M. J., LIddle, P., and
McGuire, P. K. (2013). Frequency and neural correlates of pauses in patients
with formal thought disorder. Front. Psychiatry 4:127. doi: 10.3389/fpsyt.2013.
00127

McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R. Jr.,
Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s
disease: recommendations from the National Institute on Aging-Alzheimer’s
Association workgroups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement. 7, 263–269. doi: 10.1016/j.jalz.2011.03.005

Meilán, J. J. G., Martínez-Sánchez, F., Carro, J., López, D. E., Millian-Morell, L.,
and Arana, J. M. (2014). Speech in Alzheimer’s disease: can temporal and
acoustic parameters discriminate dementia?Dement. Geriatr. Cogn. Disord. 37,
327–334. doi: 10.1159/000356726

Miller, J. F. (2020). Cartesian genetic programming: its status and future. Genet.
Prog. Evolvable Mach. 21, 129–168. doi: 10.1007/s10710-019-09360-6

Mirheidari, B., Blackburn, D., O’Malley, R., Venneri, A., Walker, T., Reuber, M.,
et al. (2020). ‘‘Improving cognitive impairment classification by generative
neural network-based feature augmentation,’’ in Proceedings of the Interspeech,
Shanghai, China, 2527–2531.

Mueller, K. D., Hermann, B., Mecollari, J., and Turkstra, L. S. (2018). Connected
speech and language in mild cognitive impairment and Alzheimer’s disease:
a review of picture description tasks. J. Clin. Exp. Neuropsychol. 40, 917–939.
doi: 10.1080/13803395.2018.1446513

Muhamed, S. A., Newby, R., Smith, S. L., Alty, J. E., Jamieson, S., and Kempster, P.
(2018). ‘‘Objective evaluation of bradykinesia in Parkinson’s disease using
evolutionary algorithms,’’ in Proceedings of the 11th International Joint
Conference on Biomedical Engineering Systems and Technologies—Volume 4:
BIOSIGNALS (Funchal, Madeira, Portugal), 63–69.

Murdoch, B. E. (2010). The cerebellum and language: historical perspective and
review. Cortex 46, 858–868. doi: 10.1016/j.cortex.2009.07.018

Murdoch, B. E., Chenery, H. J., Wilks, V., and Boyle, R. S. (1987). Language
disorders in dementia of the Alzheimer type. Brain Lang. 31, 122–137.
doi: 10.1016/0093-934x(87)90064-2

Nakagawa, S., and Schielzeth, H. (2013). A general and simple method for
obtaining R2 from generalized linear mixed-effects models.Methods Ecol. Evol.
4, 133–142. doi: 10.1111/j.2041-210x.2012.00261.x

Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V.,
Collin, I., et al. (2005). The Montreal Cognitive Assessment, MoCA: a brief
screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699.
doi: 10.1111/j.1532-5415.2005.53221.x

Newman, S. D., Malaia, E., Seo, R., and Cheng, H. (2013). The effect of individual
differences in working memory capacity on sentence comprehension: an fMRI
study. Brain Topogr. 26, 458–467. doi: 10.1007/s10548-012-0264-8

Nissim, N. R., O’Shea, A. M., Bryant, V., Porges, E. C., Cohen, R., andWoods, A. J.
(2017). Frontal structural neural correlates of working memory performance in
older adults. Front. Aging Neurosci. 8:328. doi: 10.3389/fnagi.2016.00328

Frontiers in Aging Neuroscience | www.frontiersin.org 16 April 2021 | Volume 13 | Article 637404156

https://doi.org/10.1017/neu.2013.16
https://doi.org/10.1016/j.bandl.2016.05.001
https://doi.org/10.3233/JAD-150520
https://doi.org/10.3109/02699206.2010.521612
https://doi.org/10.1016/j.csl.2018.07.007
https://doi.org/10.1111/1467-9280.00255
https://doi.org/10.1016/j.tics.2005.07.004
https://doi.org/10.1016/j.neuroimage.2005.12.040
https://doi.org/10.1016/j.neuroimage.2006.02.051
https://doi.org/10.1080/10888438.2017.1332065
https://doi.org/10.3389/fnhum.2014.00394
https://doi.org/10.3109/17549500903137256
https://doi.org/10.1162/jocn_a_00722
https://doi.org/10.1016/j.neuroimage.2005.09.046
https://doi.org/10.1016/j.dadm.2014.11.012
https://doi.org/10.1212/wnl.58.8.1188
https://doi.org/10.1016/j.neuroimage.2003.09.041
https://doi.org/10.1155/2015/748212
https://doi.org/10.1016/j.csl.2014.08.002
https://doi.org/10.1016/j.cortex.2009.04.009
https://doi.org/10.1016/j.cortex.2019.06.008
https://doi.org/10.1162/jocn_a_00673
https://doi.org/10.1007/s12311-013-0540-5
https://doi.org/10.1007/s11065-010-9137-7
https://doi.org/10.3389/fpsyt.2013.00127
https://doi.org/10.3389/fpsyt.2013.00127
https://doi.org/10.1016/j.jalz.2011.03.005
https://doi.org/10.1159/000356726
https://doi.org/10.1007/s10710-019-09360-6
https://doi.org/10.1080/13803395.2018.1446513
https://doi.org/10.1016/j.cortex.2009.07.018
https://doi.org/10.1016/0093-934x(87)90064-2
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.1532-5415.2005.53221.x
https://doi.org/10.1007/s10548-012-0264-8
https://doi.org/10.3389/fnagi.2016.00328
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


De Looze et al. Cognitive and Brain Correlates of Speech Timing

O’Malley, R. P. D., Mirheidari, B., Harkness, K., Reuber, M., Venneri, A.,
Walker, T., et al. (2020). A fully automated cognitive screening tool based on
assessment of speech and language. J. Neurol. Neurosurg. Psychiatry 92, 12–15.
doi: 10.1136/jnnp-2019-322517

Petrone, C., Fuchs, S., and Krivokapić, J. (2011). ‘‘Consequences of working
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Introduction: Research related to the automatic detection of Alzheimer’s disease

(AD) is important, given the high prevalence of AD and the high cost of traditional

diagnostic methods. Since AD significantly affects the content and acoustics of

spontaneous speech, natural language processing, and machine learning provide

promising techniques for reliably detecting AD. There has been a recent proliferation

of classification models for AD, but these vary in the datasets used, model types and

training and testing paradigms. In this study, we compare and contrast the performance

of two common approaches for automatic AD detection from speech on the same,

well-matched dataset, to determine the advantages of using domain knowledge vs.

pre-trained transfer models.

Methods: Audio recordings and corresponding manually-transcribed speech

transcripts of a picture description task administered to 156 demographically matched

older adults, 78 with Alzheimer’s Disease (AD) and 78 cognitively intact (healthy) were

classified using machine learning and natural language processing as “AD” or “non-AD.”

The audio was acoustically-enhanced, and post-processed to improve quality of the

speech recording as well control for variation caused by recording conditions. Two

approaches were used for classification of these speech samples: (1) using domain

knowledge: extracting an extensive set of clinically relevant linguistic and acoustic

features derived from speech and transcripts based on prior literature, and (2) using

transfer-learning and leveraging large pre-trained machine learning models: using

transcript-representations that are automatically derived from state-of-the-art pre-trained

languagemodels, by fine-tuning Bidirectional Encoder Representations from Transformer

(BERT)-based sequence classification models.

Results: We compared the utility of speech transcript representations obtained from

recent natural language processing models (i.e., BERT) to more clinically-interpretable

language feature-based methods. Both the feature-based approaches and fine-tuned

BERT models significantly outperformed the baseline linguistic model using a small set

of linguistic features, demonstrating the importance of extensive linguistic information

for detecting cognitive impairments relating to AD. We observed that fine-tuned BERT
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models numerically outperformed feature-based approaches on the AD detection

task, but the difference was not statistically significant. Our main contribution is the

observation that when tested on the same, demographically balanced dataset and

tested on independent, unseen data, both domain knowledge and pretrained linguistic

models have good predictive performance for detecting AD based on speech. It is

notable that linguistic information alone is capable of achieving comparable, and even

numerically better, performance than models including both acoustic and linguistic

features here. We also try to shed light on the inner workings of the more black-box

natural language processing model by performing an interpretability analysis, and find

that attention weights reveal interesting patterns such as higher attribution to more

important information content units in the picture description task, as well as pauses

and filler words.

Conclusion: This approach supports the value of well-performing machine learning

and linguistically-focussed processing techniques to detect AD from speech and

highlights the need to compare model performance on carefully balanced datasets, using

consistent same training parameters and independent test datasets in order to determine

the best performing predictive model.

Keywords: Alzheimer’s disease, dementia detection, MMSE regression, BERT, feature engineering, transfer

learning

1. INTRODUCTION

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease that causes problems with memory, thinking, and
behavior. AD affects over 40 million people worldwide with
high costs of acute and long-term care (Prince et al., 2016).
Current forms of diagnosis are both time consuming and
expensive (Prabhakaran et al., 2018), which might explain why
almost half of those living with AD do not receive a timely
diagnosis (Jammeh et al., 2018).

Studies have shown that valuable clinical information
indicative of cognition can be obtained from spontaneous speech
elicited using pictures (Goodglass et al., 2001). Studies have
capitalized on this clinical observation, using speech analysis,
natural language processing (NLP), and machine learning (ML)
to distinguish between speech from healthy and cognitively
impaired participants in datasets including semi-structured
speech tasks such as picture description. Some of the first papers
on this topic reported ML methods for automatic AD-detection
using speech datasets achieving high classification performance
(between 82 and 93% accuracy) (König et al., 2015; Fraser
et al., 2016; Noorian et al., 2017; Karlekar et al., 2018; Zhu
et al., 2018; Gosztolya et al., 2019). These models serve as
quick, objective, and non-invasive assessments of an individual’s
cognitive status which could be developed into more accessible
tools to facilitate clinical screening and diagnosis. Since these
initial reports, there has been a proliferation of studies reporting
classification models for AD based on speech, as described by
recent reviews and meta-analyses (Slegers et al., 2018; de la
Fuente Garcia et al., 2020; Petti et al., 2020; Pulido et al.,
2020), but the field still lacks validation of predictive models

on publicly-available, balanced, and standardized benchmark
datasets.

The existing studies that have addressed differences between
AD and non-AD speech and worked on developing speech-based
AD biomarkers, are often descriptive rather than predictive.
Thus, they often overlook common biases in evaluations of
AD detection methods, such as repeated occurrences of speech
from the same participant, variations in audio quality of speech
samples, and imbalances of gender and age distribution in the
used datasets, as noted in the systematic reviews and meta-
analyses published on this topic (Slegers et al., 2018; Chen
et al., 2020; Petti et al., 2020). As such, the existing ML models
may be prone to the biases introduced in available data. In
addition, the performance of the previously developed predictive
AD-detection models has been evaluated using either random
train/test split or a cross-validation technique, which may result
in artificially increased reported performance of ML models (i.e.,
overfitting) as compared to their evaluation on a held out unseen
dataset (more details on evaluation techniques are provided in
the section 2.3.1.2), especially when it comes to smaller and
unbalanced datasets (Johnson et al., 2018). Due to these reasons,
it’s difficult to compare model performance across papers and
datasets, since they are rarely matched in terms of data and
model characteristics.

To overcome the problem of bias and overfitting and
introduce a common dataset to compare model performance,
the ADReSS challenge (Luz et al., 2020) was introduced in 2020,
in which the organizers provided an age/sex-matched balanced
speech dataset, which consisted of speech from AD and non-
AD participants describing a picture. The challenge consisted of
two key tasks: (1) Speech classification task: classifying speech as
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AD or non-AD. (2) Neuropsychological score regression task:
predicting Mini-Mental State Examination (MMSE) (Cockrell
and Folstein, 2002) scores from speech. The organizers restricted
access to the test dataset to make it completely unseen for
participants to ensure the fair evaluation of models’ performance.
The work presented in this paper is focused entirely on this new
balanced dataset and follows the ADReSS challenge’s evaluation
process. As such, the models presented in this paper are
more generalizable to unseen data than those developed in the
previously discussed studies.

In this work, we developMLmodels to detect AD from speech
using picture description data of the demographically-matched
ADReSS Challenge speech dataset (Luz et al., 2020), and compare
the following training regimes and input representations to detect
AD:

1. Using domain knowledge: with this approach, we extract
clinically relevant linguistic features from transcripts of
speech, and acoustic features from corresponding audio files
for binary AD vs. non-AD classification and MMSE score
regression. The features extracted are informed by previous
clinical and ML research in the space of cognitive impairment
detection (Fraser et al., 2016).

2. Using transfer learning: with this approach, we fine-tune pre-
trained BERT (Devlin et al., 2019) text classification models at
transcript-level.

We describe below the details of each approach.

1.1. Domain Knowledge-Based Approach
The overwhelming majority of NLP and ML approaches on
AD detection from speech are still based on hand-crafted
engineering of clinically-relevant features (de la Fuente Garcia
et al., 2020). Previous work that focused on automatic AD
detection from speech uses certain acoustic features (such as
zero-crossing rate, Mel-frequency cepstral coefficients etc.) and
linguistic features (such as proportions of various parts-of-speech
(POS) tags (Orimaye et al., 2015; Fraser et al., 2016; Noorian et al.,
2017), etc.) from speech transcripts. Fraser et al. (2016) extracted
370 linguistic and acoustic features from picture descriptions
in the DementiaBank dataset, and obtained an AD detection
accuracy of 82% at transcript-level. Fraser et al.’s model was
evaluated using cross-validation. More recent studies showed the
addition of normative data helped increase accuracy up to 93%,
when evaluated using a random train/test split (Noorian et al.,
2017; Balagopalan et al., 2018). Yancheva et al. (2015) showedML
models are capable of predicting the MMSE scores from features
of speech elicited via picture descriptions, with mean absolute
error of 2.91-3.83.

Detecting AD or predicting MMSE scores with pre-
engineered features of speech and thereby infusing domain
knowledge into the task has several advantages, such as more
interpretable model decisions, the possibility to represent speech
in different modalities (both acoustic and linguistic), and
potentially lower computational resource requirements when
paired with conventional ML models. However, there are also
a few disadvantages, e.g., a feature engineering process is very
expensive and time-consuming, it requires clinical expertise, is

prone to biases in data, and carries the risk of missing highly
relevant features.

1.2. Transfer Learning-Based Approach
In the recent years, transfer learning, or in other words,
utilizing language representations from huge pre-trained neural
models that learn robust representations for text, has become
ubiquitous in NLP (Young et al., 2018). One of the most
popular transfer learning models is BERT (Devlin et al., 2019),
which trains “contextual embeddings” wherein a representation
of a sentence (or transcript) is influenced by the context in
which the words occur in sentences. This model offers enhanced
parallelization and better modeling of long-range dependencies
in text and as such, has achieved state-of-the-art performance
on a variety of tasks in NLP. Previous research (Jawahar et al.,
2019; Rogers et al., 2021) has suggested that it encodes language
information (lexical, syntactic etc.) that is known to be important
for performing complex natural language tasks, including AD
detection from speech.

BERT uses powerful attention mechanisms to encode global
dependencies between the input and output. This allows it to
achieve state-of-the-art results on a suite of benchmarks (Devlin
et al., 2019). Fine-tuning BERT for a few epochs can potentially
attain good performance even on small datasets.

The transfer learning technique in general and BERT model
specifically are promising approaches to apply to the task of
AD detection from speech because such a technique eliminates
the need of expensive and time-consuming feature engineering,
mitigates the need of big training datasets, and potentially results
in more generalizable models. However, the common critique
is that BERT is pre-trained on the corpus of healthy language
and as such is not usable for detecting AD. In addition, BERT is
not directly interpretable, unlike feature-based models. Finally,
the original version of the BERT model is only able to use
text as input, thus eliminating the possibility to employ the
acoustic modality of speech, when detecting AD. All these may
be the reasons why BERT was not previously used for developing
predictive models for AD detection, even though its performance
on many other NLP tasks is exceptional.

1.3. Motivation and Contributions
Our motivation in this work is to benchmark a BERT training
procedure on transcripts from a pathological speech dataset, and
evaluate the effectiveness of high-level language representations
from BERT in detecting AD. We are specifically interested in
understanding whether BERT has a potential to outperform
traditional widely used domain-knowledge based approaches
given that it does not include acoustic features, and at the same
time increase the generalizability of the predictive models.

To eliminate the biases of unbalanced data, we perform all our
experiments on the carefully demographically-matched ADReSS
dataset. To understand how well the presented models generalize
to unseen data, we evaluate performance of themodels using both
cross-validation and testing on unseen held out dataset.

We find that the feature-based SVM model with RBF
kernel outperforms all the other models, and performs on
par with BERT, when evaluated using cross-validation. When
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TABLE 1 | Basic characteristics of the patients in each group in the ADReSS

challenge dataset are more balanced in comparison to DementiaBank.

Dataset Class

AD Non-AD

ADReSS Train Male 24 24

Female 30 30

ADReSS Test Male 11 11

Female 13 13

DementiaBank (Becker

et al., 1994)

– Male 125 83

Female 197 146

evaluation is performed on the unseen held out test data, the
fine-tuned BERT text sequence classification models achieve
the highest AD detection accuracy of 83.3%. This BERT
model numerically, though not significantly, outperforms the
SVM model that achieves 81.3% accuracy on the unseen test
set. These results show that: (1) Extensive feature-based—i.e.,
containing linguistic information for various aspects of language
such as semantics, syntax, and lexicon—classification models
significantly outperforms the linguistic baseline provided in the
challenge showing that feature engineering to capture various
aspects of language such as semantics and syntax helps with
reliable detection of AD from speech, (2) BERT proved to be a
generalizable model comparable to feature-based ones that make
use of domain knowledge via hand-crafted feature engineering
as shown by its higher performance on the independent test set
in our case, (3) linguistic-only information encoded in BERT
is sufficient for the strong predictive performance of the AD
detection models.

2. MATERIALS AND METHODS

2.1. ADReSS Dataset
Our data are derived from the ADReSS Challenge dataset (Luz
et al., 2020), which consists of 156 speech recordings and
associated transcripts from non-AD (N = 78) and AD (N
= 78) English-speaking participants. Speech is elicited from
participants through the Cookie Theft picture from the Boston
Diagnostic Aphasia exam (Goodglass et al., 2001). Transcripts
were annotated using the CHAT coding system (MacWhinney,
2000). In contrast to other speech datasets for AD detection
such as DementiaBank’s English Pitt Corpus (Becker et al., 1994),
the ADReSS challenge dataset is carefully matched for age and
gender in order to minimize risk of bias in the prediction
tasks (Tables 1–3). Recordings were acoustically enhanced by the
challenge organizers with stationary noise removal and audio
volume normalization was applied across all speech segments
to control for variation caused by recording conditions such as
microphone placement (Luz et al., 2020). The speech dataset
is divided into the train set and the unseen held out test set.
MMSE (Cockrell and Folstein, 2002) scores are available for all
but one of the participants in the train set.

TABLE 2 | ADReSS Training set from Luz et al. (2020): basic characteristics of the

patients in each group (M, male; F, female).

AD Non-AD

Age M F MMSE (sd) M F MMSE (sd)

[50, 55) 1 0 30.0 (n/a) 1 0 29.0 (n/a)

[55, 60) 5 4 16.3 (4.9) 5 4 29.0 (1.3)

[60, 65) 3 6 18.3 (6.1) 3 6 29.3 (1.3)

[65, 70) 6 10 16.9 (5.8) 6 10 29.1 (0.9)

[70, 75) 6 8 15.8 (4.5) 6 8 29.1 (0.8)

[75, 80) 3 2 17.2 (5.4) 3 2 28.8 (0.4)

Total 24 30 17.0 (5.5) 24 30 29.1 (1.0)

TABLE 3 | ADReSS test set from Luz et al. (2020): basic characteristics of the

patients in each group (M, male; F, female).

AD Non-AD

Age M F MMSE (sd) M F MMSE (sd)

[50, 55) 1 0 23.0 (n.a) 1 0 28.0 (n.a)

[55, 60) 2 2 18.7 (1.0) 2 2 28.5 (1.2)

[60, 65) 1 3 14.7 (3.7) 1 3 28.7 (0.9)

[65, 70) 3 4 23.2 (4.0) 3 4 29.4 (0.7)

[70, 75) 3 3 17.3 (6.9) 3 3 28.0 (2.4)

[75, 80) 1 1 21.5 (6.3) 1 1 30.0 (0.0)

Total 11 13 19.5 (5.3) 11 13 28.8 (1.5)

2.2. Feature Extraction
The speech transcripts in the dataset are manually transcribed
as per the CHAT protocol (MacWhinney, 2000), and include
speech segments from both the participant and an investigator.
We only use the portion of the transcripts corresponding to
the participant. Additionally, we combine all participant speech
segments corresponding to a single picture description for
extracting acoustic features.

We extract 509 manually-engineered features from transcripts
and associated audio files (see Tables 4–6). These features are
identified as indicators of cognitive impairment in previous
literature, and hence encode domain knowledge.

All the features are divided into three higher-level
categories:

1. Lexico-syntactic features (297): Frequencies of various
production rules from the constituency parsing tree of the
transcripts (Chae and Nenkova, 2009), speech-graph based
features (Mota et al., 2012), lexical norm-based features (e.g.,
average sentiment valence of all words in a transcript, average
imageability of all words in a transcript; Warriner et al., 2013),
features indicative of lexical richness.We also extract syntactic
features (Ai and Lu, 2010) such as the proportion of various
POS-tags, and similarity between consecutive utterances.

2. Acoustic and temporal features (187): Mel-frequency
cepstral coefficients (MFCCs), fundamental frequency,
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TABLE 4 | Summary of all lexico-syntactic features extracted.

Feature type #Features Brief Description

Syntactic

complexity

36 L2 Analyzer features; utterance length, depth of

syntactic parse tree

Production rules 104 Proportion of production type

Phrasal type ratios 13 Proportion, average length and rate of phrase types

Lexical

norm-based

12 Average lexical norms across words for (e.g.,

imageability)

Lexical richness 6 Type-token ratios; brunet; Honor’s statistic

Word category 5 Proportion of demonstratives, function words,

Light verbs and inflected verbs, and propositions

Noun ratio 3 Ratios nouns:(nouns+verbs); nouns:verbs;

pronouns:(nouns+pronouns)

Length measures 1 Average word length

Universal POS

proportions

18 Proportions of Spacy universal POS tags

POS tag

proportions

53 Proportions of Penn Treebank POS tags

Local coherence 15 Similarity between word2vec representations of

utterances

Utterance

distances

5 Fraction of pairs of utterances below a similarity

threshold (0.5, 0.3, 0); avg/min distance

Speech-graph

features

13 Representing words as nodes in a graph and

computing density, number of loops, etc.

Utterance

cohesion

1 Number of switches in verb tense across utterances

divided by total number of utterances

Rate 2 Ratios—number of words: duration of audio;

number of syllables: duration of speech,

Invalid words 1 Proportion of words not in the English dictionary

Sentiment

norm-based

9 Average sentiment norms across all words, noun,

and verbs

The number of features in each subtype is shown in the second column (titled

“#Features”).

TABLE 5 | Summary of all acoustic/temporal features extracted.

Feature type #Features Brief description

Pauses and fillers 9 Total and mean duration of pauses; long

and short pause counts;

pause to word ratio; fillers (um, uh);

duration of pauses to word durations

Fundamental frequency 4 Avg/min/max/median fundamental

frequency of audio

Duration-related 2 Duration of audio and spoken segment of

audio

Zero-crossing rate 4 Avg/variance/skewness/kurtosis of

zero-crossing rate

MFCC 168 Avg/variance/skewness/kurtosis of 42

MFCC coefficients

The number of features in each subtype is shown in the second column (titled

“#Features”).

statistics related to zero-crossing rate, as well as proportion of
various pauses (for example, filled and unfilled pauses, ratio
of a number of pauses to a number of words etc.; Davis and
Maclagan, 2009).

TABLE 6 | Summary of all semantic features extracted.

Feature type #Features Brief description

Word frequency 10 Proportion of lemmatized words

occurrences

Global coherence 15 Cosine distances between word2vec

utterances and content units

The number of features in each subtype is shown in the second column (titled

“#Features”).

3. Semantic features based on picture description content

(25): Proportions of various information content units used
in the picture, identified as being relevant to memory
impairment in prior literature (Croisile et al., 1996).

2.3. Experiments
2.3.1. AD vs. Non-AD Classification

2.3.1.1. Training Regimes
We benchmark the following training regimes for classification:
classifying features extracted at transcript-level and a BERT
model fine-tuned on transcripts.

Domain knowledge-based approach: We classify
lexicosyntactic, semantic, and acoustic features extracted at
transcript-level with four conventional ML models (SVM),
neural network (NN), random forest (RF), naïve Bayes (NB)1.

Hyperparameter tuning: All parameters in classification
models were tuned to the best possible setting by searching within
a grid of possible parameter values using 10-fold cross validation
on the ADReSS challenge “train” set.

The random forest classifier fits 200 decision trees and
considers

√

features when looking for the best split. The
minimum number of samples required to split an internal node
is 2, and the minimum number of samples required to be at a leaf
node is 2. Bootstrap samples are used when building trees. All
other parameters are set to the default value.

The Gaussian Naive Bayes classifier is fit with balanced priors
and variance smoothing coefficient set to 1e − 10 and all other
parameters default in each case.

The SVM is trained with a radial basis function kernel with
kernel coefficient(γ ) 0.001, and regularization parameter set
to 100.

The NN used consists of two layers of 10 units each (note
we varied both the number of units and number of layers
while tuning for the optimal hyperparameter setting). The ReLU
activation function is used at each hidden layer. The model is
trained using Adam (Kingma and Ba, 2014) for 200 epochs and
with a batch size of number of samples in train set in each fold.
All other parameters are default.

We perform feature selection by choosing top-k number of
features, based on ANOVA F-value between label/features. The
number of features is jointly optimized with the classification
model parameters.

1https://scikit-learn.org/stable/.
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Transfer learning-based approach: In order to leverage the
language information encoded by BERT (Devlin et al., 2019),
we use pre-trained model weights to initialize our classification
model. All our experiments are based on the bert-base-uncased
variant (Devlin et al., 2019), which consists of 12 layers, each
having a hidden size of 768 and 12 attention heads. Maximum
input length is 512 tokens. Initial learning rate is set to 2e−5, and
Adam optimizer (Kingma and Ba, 2014) is used. Cross-entropy
loss is used while fine-tuning for AD detection.

While the base BERT model is pre-trained with sentence
pairs, our input to the model consists of speech transcripts
with several transcribed utterances with start and separator
special tokens from the BERT vocabulary at the beginning and
end of each utterance respectively, following Liu and Lapata
(2019). This is performed to ensure that utterance boundaries
are easily encoded, since cross-utterance information such as
coherence and utterance transitions is important for reliable
AD detection (Fraser et al., 2016). An embedding, following
Devlin et al. (2019), pooling information across all tokenized
units in the transcript is extracted as the aggregate transcript
representation from the BERT base for each transcript. This is
then passed to the classification layer, and the combined model is
fine-tuned on the AD detection task—all using an open-source
PyTorch (Paszke et al., 2019) implementation of BERT-based
text sequence classification models and tokenizers (Wolf et al.,
2019). As noted by Devlin et al. (2019), this pooled embedding
representation heavily depends on the fine-tuning task—in our
case, AD detection at transcript level.

The transcript input to the classification model consists of
several transcribed utterances with corresponding start and end
tokens for each utterance, following (Liu and Lapata, 2019). The
final hidden state corresponding to the first start ([CLS]) token
in the transcript which summarizes the information across all
tokens in the transcript using the self-attention mechanism in
BERT is used as the aggregate representation, and passed to the
classification layer (Devlin et al., 2019; Wolf et al., 2019). This
model is then fine-tuned on training data.

Hyperparameter tuning: We optimize the number of epochs
to 10 by varying it from 1 to 12 during CV. Adam
optimizer (Kingma and Ba, 2014) and linear scheduling for the
learning rate (Paszke et al., 2019) are used. Learning rate and
other parameters are set based on prior work on fine-tuning
BERT (Devlin et al., 2019; Wolf et al., 2019).

2.3.1.2. Evaluation
Cross-validation on ADReSS train set: We use two CV
strategies in our work—leave-one-subject-out CV (LOSO CV)
and 10-fold CV at transcript level. We report evaluation metrics
with LOSO CV for all models except fine-tuned BERT for
direct comparison to challenge baselines. Due to computational
constraints of GPUmemory, we are unable to perform LOSOCV
for the BERT model. Hence, we perform 10-fold CV to compare
feature-based classification models with fine-tuned BERT. Values
of performance metrics for each model are averaged across three
runs with different random seeds in all cases.
Predictions on ADReSS test set: We generate three predictions
with different seeds from each hyperparameter-optimized

classifier trained on the complete train set, and then produce a
majority prediction to avoid overfitting. We report performance
on the challenge test set, as obtained from the challenge
organizers. We evaluate task performance primarily using
accuracy scores, since all train/test sets are known to be balanced.
We also report precision, recall, specificity, and F1 with respect
to the positive class (AD).

2.3.2. MMSE Score Regression

2.3.2.1. Training regimes
Domain knowledge-based approach: For this task, we
benchmark two kinds of regression models, linear, and ridge,
using pre-engineered features as input. MMSE scores are always
within the range of 0–30, and so predictions are clipped to a
range between 0 and 30.
Hyperparameter tuning: Each model’s performance is optimized
using hyperparameters selected via grid-search LOSO CV. We
perform feature selection by choosing top-k number of features,
based on an F-Score computed from the correlation of each
feature with MMSE score. The number of features is optimized
for all models. For ridge regression, the number of features is
jointly optimized with the coefficient for L2 regularization, α.

2.3.2.2. Evaluation
We report root mean squared error (RMSE) and mean absolute
error (MAE) for the predictions produced by each of the
models on the training set with LOSO CV. In addition, we
include the RMSE for two models’ predictions on the ADReSS
test set. Hyperparameters for these models were selected based
on performance in grid-search 10-fold cross validation on the
training set, motivated by the thought that 10-fold CV better
demonstrates how well a model will generalize to the test set.

3. RESULTS

3.1. AD vs. Non-AD Classification
In Table 7, the classification performance with all the models
evaluated on the train set via 10-fold CV is displayed.We observe
that BERT numerically outperforms all domain knowledge-based
ML models with respect to all metrics, with an average accuracy
of 81.8%. SVM is the best-performing domain knowledge-based
model. However, accuracy of the fine-tuned BERT model is not
significantly higher than that of the SVM classifier based on an
Kruskal-WallisH-test (H = 0.4838, p > 0.05). Note that we used
a Kruskal-Wallis H-test here, and in performance-comparisons
in sections below since we observe that accuracy is not normally
distributed on varying the random seed while training/inference.

We also report the performance of all our classificationmodels
with LOSO CV (Table 9). Each of our classification models
significantly outperform the challenge baseline, which is uses
34 simple language summary statistic measures (e.g., duration,
total utterances, MLU, type-token ratio, percentages of nine parts
of speech) on the CHAT transcripts by a large margin (+10%
accuracy for the best performing model, p = 0.036 with Kruskal-
Wallis H = 4.35 test). Feature selection results in accuracy
increase of about 13% for the SVM classifier.
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Performance results on the unseen, held out challenge test set
are shown in Table 8 and follow the trend of the cross-validated
performance in terms of accuracy, with BERT outperforming the
best feature-based classification model SVM with an accuracy
of 83.33%, but not significantly so (H = 2.4, p > 0.05). The
accuracy with a BERT-based classification model ranges between
85.14 and 81.25%.

3.2. MMSE Score Regression
Performance of regression models evaluated on both train
and test sets is shown in Table 9. Ridge regression with 25
features selected attains the lowest RMSE of 4.56 (with a
corresponding MAE of 3.50, or 11.67% error) during LOSO-
CV on the training set. The results show that feature selection
is impactful for performance and helps achieve a decrease of
up to 1.5 RMSE points (and up to 0.86 of MAE) for a ridge
regressor. Furthermore, a ridge regressor is able to achieve an
RMSE of 4.56 on the ADReSS test set, a decrease of 0.64 from
the baseline. We also experimented with different non-linear
regression methods—however, given the small dataset size and
the difficulty of the task, the linear regression models highlighted
in Table 9 performed the best.

4. DISCUSSION

4.1. Feature Differentiation Analysis
While we extracted a large number of linguistic and acoustic
features to capture a wide range of linguistic and acoustic
changes in speech associated with AD, based on a survey
of prior literature (Yancheva et al., 2015; Fraser et al., 2016;

TABLE 7 | Ten-fold CV results averaged across three runs with different random

seeds on the ADReSS train set.

Model #Features Accuracy Precision Recall Specificity F1

SVM 10 0.796 0.81 0.78 0.82 0.79

NN 10 0.762 0.77 0.75 0.77 0.76

RF 50 0.738 0.73 0.76 0.72 0.74

NB 80 0.750 0.76 0.74 0.76 0.75

BERT – 0.818 0.84 0.79 0.85 0.81

Accuracy for BERT is higher, but not significantly so from SVM (H = 0.4838,p > 0.05

Kruskal-Wallis H-test). Bold indicates the best result.

Pou-Prom and Rudzicz, 2018; Zhu et al., 2019), we are
also interested in identifying the most differentiating features
between AD and non-AD speech. In order to study statistically
significant differences in linguistic/acoustic phenomena, we
perform independent t-tests between feature means for each
class in the ADReSS training set, following the methodology
followed by Eyre et al. (2020). 87 features are significantly
different between the two groups at p < 0.05. Seventy-
nine of these are text-based lexicosyntactic and semantic
features, while eight are acoustic. These eight acoustic features
include the number of long pauses, pause duration, and
mean/skewness/variance-statistics of various MFCC coefficients.
However, after Bonferroni correction for multiple testing, we
identify that only 13 features are significantly different between
AD and non-AD speech at p < 9e − 5, and none of these
features are acoustic (Table 10). This implies that linguistic
features are particularly differentiating between the AD/non-AD
classes here, which explains whymodels trained only on linguistic
features (i.e., BERT models) attain performance well above
random chance.

The features that differentiate the AD and non-AD groups
largely indicate semantic impairments in AD, reflected in
the types of words used and the content of their picture
descriptions. Importantly, many of the differentiating features
replicate findings from Fraser et al. (2016), suggesting that despite
the present dataset being more demographically balanced, many
of the previous findings maintain. In addition, the differentiating
features are consistent with other previous clinical literature

TABLE 9 | LOSO-CV MMSE regression results on the ADReSS train and test sets.

Model #Features α RMSE MAE RMSE

Train set Test set

Baseline (Luz

et al., 2020)

– – 4.38 5.20

LR 15 – 5.37 4.18 4.94

LR 20 – 4.94 3.72 –

Ridge 509 12 6.06 4.36 –

Ridge 35 12 4.87 3.79 4.56

Ridge 25 10 4.56 3.50 –

Bold indicates the best result.

TABLE 8 | AD detection results on unseen, held out ADReSS test set averaged over three runs with different random seeds.

Model #Features Accuracy Precision Recall Specificity F1 AUROC

Baseline (Luz et al., 2020) – 0.7500 – – – 0.7800 –

SVM 10 0.8125 0.8000 0.8333 0.7917 0.8124 0.8125

NN 10 0.7708 0.7671 0.7778 0.7639 0.7708 0.7708

RF 50 0.7569 0.8033 0.6806 0.8333 0.7555 0.7500

NB 80 0.7292 0.7895 0.6250 0.8333 0.7262 0.7292

BERT – 0.8332 0.8389 0.8333 0.8333 0.8327 0.8333

Bold indicates the best result.
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TABLE 10 | Feature differentiation analysis results for the most important features, based on ADReSS train set.

Feature Feature type µAD µnon−AD Correlation Weight

Average cosine distance between utterances Semantic 0.91 0.94 – –

Fraction of pairs of utterances below a similarity threshold (0.5) Semantic 0.03 0.01 – –

Cosine distance between word2vec utterances and content units Semantic 0.46 0.38 −0.54* −1.01

Distinct content units mentioned: total content units Semantic 0.27 0.45 0.63* 1.78

Distinct action content units mentioned: total content units Semantic 0.15 0.30 0.49* 1.04

Distinct object content units mentioned: total content units Semantic 0.28 0.47 0.59* 1.72

Cosine distance between GloVe utterances and content units Semantic – – −0.42* −0.03

Average word length (in letters) Lexico-syntactic 3.57 3.78 0.45* 1.07

Proportion of pronouns Lexico-syntactic 0.09 0.06 – –

Ratio (pronouns):(pronouns+nouns) Lexico-syntactic 0.35 0.23 – –

Proportion of personal pronouns Lexico-syntactic 0.09 0.06 – –

Proportion of adverbs Lexico-syntactic 0.06 0.04 −0.41* −0.41

Proportion of adverbial phrases amongst all rules Lexico-syntactic 0.02 0.01 −0.37 −0.74

Proportion of non-dictionary words Lexico-syntactic 0.11 0.08 – –

Proportion of gerund verbs Lexico-syntactic – – 0.37 1.08

Proportion of words in adverb category Lexico-syntactic – – −0.4* −0.49

µAD and µnon−AD show the means of the 13 significantly different features at p < 9e-5 (after Bonferroni correction) for the AD and non-AD group, respectively. We also show Spearman

correlation between MMSE score and features, and regression weights of the features associated with the five greatest and five lowest regression weights from our regression

experiments. *Next to correlation indicates significance at p < 9e-5.

documenting decreased specificity and information content in
AD. For example, the features relating to the content units in the
picture and the cosine similarity between utterances and picture
content units show that the picture descriptions produced in
AD have fewer relevant content words and that the words used
are less semantically related to the themes of the picture. Lower
average cosine distance in AD signifies more repetition in speech.
These findings are consistent with previous studies reporting
reduced information content and coherence in AD (Croisile et al.,
1996; Snowdon et al., 1996; Dijkstra et al., 2004; Forbes-McKay
and Venneri, 2005; Riley et al., 2005; Le et al., 2011; Ahmed et al.,
2013; Boschi et al., 2017). Other differentiating features related
to the use of shorter words, and increased use of pronouns,
adverbs, and words not found in the dictionary. These features
may all reflect the use of less specific and simpler language, and
replicate previous findings of decreased specificity of language
in AD (Le et al., 2011; Ahmed et al., 2013; Szatloczki et al.,
2015; Fraser et al., 2016). Interestingly, while Fraser et al. (2016)
found differences in acoustic features, none of those findings
survived Bonferroni correction in the present study, which may
indicate that this age/sex-balanced dataset reduced the acoustic
differences between groups.

In order to visualize the class-separability of the feature-based
representations, we visualize (t-SNE) t-Distributed Stochastic
Neighbor Embedding (Maaten and Hinton, 2008) plots in
Figure 1. t-SNE is a non-linear dimensionality reduction
algorithm used for exploring high-dimensional data. It maps
multi-dimensional data to two or more dimensions suitable
for human observation. We observe strong class-separation
between the two classes, indicating that a non-linear model
would be capable of good AD detection performance with
these representations.

FIGURE 1 | A t-SNE plot showing class separation. Note we only use the 13

features significantly different between classes (see Table 10) in feature

representation for this plot.

4.2. Interpreting Attention Patterns in
BERT-Based Models
We look at multi-scale attention visualizations of BERT fine-
tuned for the AD detection task, using the BertViz library (Vig,
2019) (Figure 2). Self-attention is an important component
of BERT-based models, and looking at attention patterns can
help us interpret model decisions. We used the BERT-base
model which consists of 12 layers, and 12 attention heads
in each layer. We visualize, for both AD and healthy speech
transcripts, the attention weights for the final “[CLS]” token,
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FIGURE 2 | An attention visualization plot showing attention contributions of

embeddings corresponding to each word to the “pooled” representation. This

example is a sub-sample (first two utterances) of a speech transcript from a

healthy person.

whose representation is passed to the fully-connected layer for
classification. On analyzing the attention weights attributed to
words in both healthy and AD transcripts, we find that:

1. attention weights are often attributed to a few important
“information content units.” which have been identified to be
important speech indicators of AD in prior work (Fraser et al.,
2016) such as “water,” “boy,” etc.

2. attention weights are also sometimes attributed to pauses and
fillers, such as “uh” and “um.”

TABLE 11 | LOSO-CV results averaged across three runs with different random

seeds on the ADReSS train set.

Model #Features Accuracy Precision Recall Specificity F1

Baseline (Luz

et al., 2020)

– 0.768 0.77 0.76 – 0.77

SVM 509 0.741 0.75 0.72 0.76 0.74

SVM 10 0.870 0.90 0.83 0.91 0.87

NN 10 0.836 0.86 0.81 0.86 0.83

RF 50 0.778 0.79 0.77 0.79 0.78

NB 80 0.787 0.80 0.76 0.82 0.78

Accuracy for SVM is significantly higher than NN (H = 4.50,p = 0.034 Kruskal-Wallis

H-test). Bold indicates the best result.

3. attention weights are also attributed to the sentence separator
tokens, and we think this approximates to roughly counting
the number of utterances in the transcript.

Hence, as seen in sections 4.1 and 4.2, we observe that for both
the feature-based classification models and BERT-based models,
information units and fillers such as “uh” and “um” seem to be
important predictors, similar to findings observed by Yuan et al.
(2020).

4.3. Analysing AD Detection Performance
Differences
We observe that both feature-based and BERT-based
classification models are significantly better than the linguistic
baseline, showing the importance of an extensive amount of
linguistic features for detecting AD-related differences. When
compared on this well-matched dataset, BERT tended to have
higher performance, but the difference was not significant.
Based on feature differentiation analysis, we hypothesize
that good performance with a text-focused BERT model on
this speech classification task is due to the strong utility of
linguistic features on this dataset. BERT captures a wide range
of linguistic phenomena due to its training methodology,
potentially encapsulating most of the important lexico-syntactic
and semantic features. It is thus able to use information present
in the lexicon, syntax, and semantics of the transcribed speech
after fine-tuning (Jawahar et al., 2019).
We also see a trend of better performance when increasing the
number of folds (see SVM in Tables 7, 11) in cross-validation.
We postulate that this is due to the small size of the dataset, and
hence differences in training set size in each fold (Ntrain = 107
with LOSO, Ntrain = 98 with 10-fold CV). Note that, in this
dataset, both feature-based and BERT-based classification
methods rely on linguistic features to achieve better classification
than baseline. This implies that the linguistic features from
speech transcripts are quite informative for the AD detection
task. Hence, an interesting direction of future research is
expanding our current set of features to incorporate more
discourse-related features (which could be getting captured to
some degree in fine-tuned BERT models).
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4.4. Regression Weights for MMSE
Prediction
To assess the relative importance of individual input features
for MMSE prediction, we report features with the five highest
and five lowest regression weights reflecting the five strongest
positive and negative relationships withMMSE scores (Table 10).
Each presented value is the average weight assigned to that
feature across each of the LOSO CV folds. We also present the
correlation with MMSE score coefficients for those 10 features,
as well as their significance, in Table 10. We observe that for
each of these highly weighted features, a positive or negative
correlation coefficient is accompanied by a positive or negative
regression weight, respectively. This demonstrates that these
10 features are so distinguishing that, even in the presence of
other regressors, their relationship withMMSE score remains the
same. We also note that all 10 of these are linguistic features,
further demonstrating that linguistic information is particularly
distinguishing when it comes to predicting the severity of a
patient’s AD. Notably, seven of the ten features were among
those that differentiated between AD and non-AD groups,
demonstrating that there is high overlap between the features
relevant to group differentiation and MMSE score prediction.
These features included those relating to the information content
and the coherence of picture descriptions, reflected by content
unit and cosine distance features.Word length and use of adverbs
were also relevant to MMSE prediction, with longer words and
fewer adverbs correlating with higher MMSE scores. The use of
gerund verbs was found to have a high regression weight for
MMSE prediction and positively correlated with MMSE scores,
despite not being significantly different between AD and non-
AD groups after Bonferroni correction. Reduced use of inflected
verbs has been found in some previous research (Ahmed et al.,
2013; Fraser et al., 2016), and is thought to reflect an grammatic
impairment.

5. CONCLUSIONS

In this paper, we rigorously compare two widely used
approaches—linguistic and acoustic feature engineering based on
domain knowledge, and text-only transfer learning using fine-
tuned BERT classification model. Our results show that pre-
trained models that are fine-tuned for the AD classification
task are capable of performing well on AD detection, achieving
comparable, or even slightly improved performance compared
to hand-crafted feature engineering. We observe that linguistic
features are capable of attaining predictive performance well
above chance on this acoustically and demographically balanced
speech dataset, and posit this to be the reason why a text-
only approach with BERT numerically outperforms a multi-
modal feature-engineering based approach. The present findings
highlight the importance of measuring the linguistic, and
especially semantic content of speech, in addition to acoustic
analyses. In future work, it would be interesting to study methods

that combine feature-based and pre-trained neural LM-based
prediction models to optimize AD detection from speech—
this could potentially help harness complementary benefits of
both approaches. It is interesting to note that the winners
of the ADReSS challenge also used a pre-trained language
model, augmented with additional information about speech
disfluencies (Yuan et al., 2020), which outperforms our best
model by 6% in accuracy and F1-score, further indicating the
degree of promise in such an approach. These results build on
previous work to demonstrate how automated speech analysis
can be used to help characterize AD. Speech samples can be
collected quickly and non-invasively, and as demonstrated in
the present results, yield measures relating to the presence and
severity of AD.

Further work will build on these results to develop improved
tools for disease screening and monitoring in AD, improving the
efficiency of clinical research and treatment. In the future, we will
experiment with different neural models such as XLNet (Yang
et al., 2019), and with different tokenization and encoding
strategies for transcript representations. A direction for future
work is developing ML models that combine representations
from BERT and hand-crafted features (Yu et al., 2015). Such
feature-fusion approaches could potentially boost performance
on the cognitive impairment detection task.
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Analysis and Classification of Word
Co-Occurrence Networks From
Alzheimer’s Patients and Controls
Tristan Millington* and Saturnino Luz

Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom

In this paper we construct word co-occurrence networks from transcript data of controls
and patients with potential Alzheimer’s disease using the ADReSS challenge dataset of
spontaneous speech. We examine measures of the structure of these networks for
significant differences, finding that networks from Alzheimer’s patients have a lower
heterogeneity and centralization, but a higher edge density. We then use these
measures, a network embedding method and some measures from the word
frequency distribution to classify the transcripts into control or Alzheimer’s, and to
estimate the cognitive test score of a participant based on the transcript. We find it is
possible to distinguish between the AD and control networks on structure alone, achieving
66.7% accuracy on the test set, and to predict cognitive scores with a root mean squared
error of 5.675. Using the network measures is more successful than using the network
embedding method. However, if the networks are shuffled we find relatively few of the
measures are different, indicating that word frequency drives many of the network
properties. This observation is borne out by the classification experiments, where word
frequency measures perform similarly to the network measures.

Keywords: machine learning, natural language processing, Alzheimer’s disease, network analysis, network
embedding, graph measures

1 INTRODUCTION

As populations continue to age, the development of automated methods to help reduce the amount
of in person care required is becoming an important research topic. Dementia is a particular issue,
where the cognitive function of a person declines as they age, with symptoms including memory loss,
motor problems, deterioration of visuospatial function, language impairment and emotional distress.
These issues tend to reduce the ability of a person to care for themselves, placing an added burden on
their carers and/or relatives. Early diagnosis of dementia is desirable as it is amenable to treatment,
and this can help the patient live a longer, more independent life. Dementia shows various linguistic
effects, with patients tending to produce sentences with less information, less syntactic complexity
(Pakhomov et al., 2011), fewer unique words and more meaningless sentences (Fraser et al., 2016).
These effects can be used for non-invasive diagnosis and analysis of dementia, and so in this paper we
look at using text classification methods to this end.

The common approach in text classification is to use a bag of words model. This assumes that
word order does not matter, and either counts the number of occurrences of each word in a
document, or uses some information based measures such as term-frequency inverse document
frequency (TF-IDF). Various authors have taken this approach, and demonstrated good results on
classifying participants as AD or controls (Orimaye et al., 2017;Wankerl et al., 2017). However, word
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order does in fact matter, and we can try to capture this using
graph based methods. The approach used here is to construct a
graph where the words in the document are nodes, and if two
words co-occur within a certain window (a set of words occurring
around a given word) an edge is drawn between them.
Furthermore, these co-occurrence networks are an
approximation of syntactic networks, as most syntactic
relationships occur between words that are close together
(Cancho and Solé, 2001). Various syntactic measures have
been previously used to distinguish between AD patients and
controls (Pakhomov et al., 2011; Fraser et al., 2016), and we
hypothesize that these co-occurrence networks can capture these
syntactic relations without the use of a syntactic parser.

Therefore, in this paper we investigate the properties of word
co-occurrence networks using a variety of co-occurrence
windows from transcripts of controls and patients diagnosed
with potential Alzheimer’s disease (AD) on a picture description
task. We analyze these networks for potential differences between
the controls and AD patients using various network measures,
and then look at classifying the networks using a set of network
measures, a graph embedding method and a baseline method
using word frequency statistics. Each transcript is also annotated
with the mini-mental state examination (MMSE) result. This is a
test of cognitive function, and can be used to help diagnose
dementia. The test scores ranges from 0–30, and a score below 24
is usually taken to indicate cognitive impairment. We are also
interested in predicting the value of the MMSE score from a
transcript by using this co-occurrence network model and the
graph measures/network embedding method. To the best of our
knowledge, such an approach has not been taken before. We use
the terms graph and network interchangeably in this paper, and
we emphasize these networks we refer to are different to neural
networks.

2 RELATED WORK

The structure of word co-occurrence networks has been studied
by many authors, along with which parameters can be used for
classification. For instance Liu and Cong (2013) study the use of
various network measures for distinguishing between the same
text written in a set of different languages. Focusing mostly on
Slavic languages (although they do also use English) they use
hierarchical clustering to show which languages are more similar.
By trying many different combinations of the network measures,
they discover that it is possible to show the Slavic languages are
more similar to each other than they are to English or Chinese,
and inside the Slavic group the languages that are generally
regarded as more similar (e.g. Belorussian and Russian) are
more closely clustered than less similar languages (e.g. Russian
and Slovakian). Other authors have applied similar methods for
author attribution (Antiqueira et al., 2007; Mehri et al., 2012;
Akimushkin et al., 2017), distinguishing between automatically
generated and human written text (Amancio et al., 2008;
Amancio, 2015) and for keyphrase extraction (Mihalcea and
Tarau, 2004; Bougouin et al., 2013; Florescu and Caragea,
2017). A detailed review of the literature so far on the

construction and applications of word co-occurrence networks
is provided by Cong and Liu (2014).

Graphs can also be used to augment n-gram classification.
For instance, we can gain the centrality of a term from a graph,
which can then be used as input into a text classification
algorithm (Hassan et al., 2007), and this has been shown to
improve classification accuracy compared to just using
n-grams. Alternatively we can use the structure of the
graph as input into the classification algorithm. This has
the advantage of ensuring that new documents can have
unknown words, which is advantageous if the system must
be deployed for a period of time, as it is unlikely that every
word that could ever be encountered is present in the training
set. Rousseau et al. (2015) use the subgraph mining method
gSpan (Yan and Han, 2002) to mine frequent subgraphs from
a set of graphs extracted from text documents. The presence of
these subgraphs is then used as input into the classification
method. The disadvantage of this method is that it is
computationally expensive to mine for all possible
subgraphs of non-trivial size.

A similar approach to the one we take in this paper is proposed
by Santos et al. (2017). In their paper the authors apply a word co-
occurrence network model to the DementiaBank and a
Portuguese dataset. However, unlike us they enrich their
model using word embeddings to produce weighted edges
between words that do not co-occur. They calculate node level
statistics for each graph and use this as input into a classification
procedure. With their enriched networks they achieve an increase
in classification accuracy, achieving 62% on the DementiaBank
dataset.

There have been many more approaches taken to identify
Alzheimer’s using machine learning techniques and linguistic
features. One of the first examples in the literature is the analysis
of the books of an author who was diagnosed with Alzheimer’s by
Garrard et al. (2005). A combination of lexical, syntactic and
vocabulary based features is used to compare the books. This is
further extended by Pakhomov et al. (2011). Using the Stanford
parser, the authors take three measures of syntactic complexity,
Yngve depth, Frazier depth and the length between grammatical
dependencies. There is a clear decline over time in the syntactic
complexity of the authors writing, particularly with the books at
the end of her career.

Many authors have used the DementiaBank corpus for their
studies. For instance, Fraser et al. (2016) apply machine learning
methods to the DementiaBank corpus, using both transcripts and
speech data. Firstly they used logistic regression to evaluate the
contribute of each feature to successful classification of a
participant as having Alzheimer’s or being a control. Ranking
the features using Pearson correlation, they firstly investigate how
including more features affects the classification accuracy. The
maximum classification accuracy is achieved when the 35 most
correlated features are used (at 81.92%), and beyond this it tends
to remain roughly constant until 50 features are reached
(dropping slightly to 78.72%, after which the classification
accuracy decreases significantly. Of relevance to this paper,
they find that AD patients produce more pronouns, fewer
nouns, have a smaller vocabulary and repeat themselves more.
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Interestingly though, measures such as the depth of the parse tree
do not seem significantly correlated with an AD diagnosis.

Orimaye et al. (2017) further explore which features can be used to
distinguish betweenAD and controls from transcripts. A combination
of n-grams, lexical and syntactic features to this end. Since this is a
large feature set, they perform some univariate screening using t-tests
to remove variables which have little ability to distinguish between
classes. Of particular interest to us, they find that the number of
repetitions, reduced sentences, predicates and mean length of
utterances are different between the classes, but that many other
syntactic measures, such as the dependency distance, are not. They
then select the top 1,000 features for input into the SVM classifier.
Comparing the syntactic and lexical features only, to the n-gram only,
to the combination of the two, they find that the combination
performs the best, with an AUC of 0.93, compared to 0.80 for the
lexical-syntactic features and 0.91 for the n-gram features.

Authors have also disregarded syntactic features and used only
n-grams for classification. For instance, Garrard et al. (2014) use
n-grams to distinguish between AD patients and controls on a
picture description task. They find that the transcripts from the
controls contain more content words (e.g. picnic, blanket) while
the AD patients tend to produce more generic terms (e.g.
something, thing). They use only a small subset of the total
word set to classify, as there are a large number of possible
n-grams. This indicates that a small number of features can be
used to distinguish between AD patients and controls.

Larger n-grams can also be used. Orimaye et al. (2018) use a
deep neural network and large n-grams (n> 3) to classify the
participants into control or AD. Since the occurrence matrix of
these n-grams will be very sparse, they firstly reduce the
dimensionality using SVD (selecting 19 features in the end),
before inputting this smaller matrix into the neural network.
Experimenting with a variety of n-gram sizes, they find using 4 g
achieves the lowest error (11.1%) on the test set in their deep
neural networks. It is also possible to use the distribution of
n-grams to differentiate between AD and controls. Wankerl et al.
(2017) create probability distributions of the trigrams in
transcripts from the cookie detection task from
DementiaBank. The perplexity of a new sample is used to
classify it as AD or control.

While transcripts are convenient to analyze, transcription can be
challenging, either noisy if done automatically or slow and expensive if
done by humans. Using purely audio is attractive if we wish to apply
these methods on non curated datasets. Haider et al. (2019) study the
same corpus, but instead focus their efforts on purely acoustic features.
Here they use a fusion of acoustic feature sets (namely emobase,
ComParE, eGeMaps and MRCG) on the DementiaBank dataset,
achieving a maximum accuracy of 78.8%. A challenge with many
of these approaches is that they are dependent on language and
context. To solve these issues, Luz et al. (2018) instead propose to
extract vocalization graphs from patient dialogue. Using features from
these vocalization graphs, they achieve a classification accuracy of
86.5%, though on a different dataset.

Aside from speech data, other approaches have included the
use of smart home data (Alberdi et al., 2018). This particular
example involves using activity recognition to establish routines,
and then these routines can be compared between healthy

participants and those with AD. If the reader is curious for
more details, comprehensive reviews on the topic of
Alzheimer’s detection are provided by de la Fuente Garcia
et al. (2020) and Slegers et al. (2018).

3 SOFTWARE AND DATA

Our dataset is made up of transcripts from the DementiaBank
corpus. The DementiaBank corpus is a set of recordings of cognitive
tests, which forms part of the larger TalkBank project (MacWhinney,
2019). The subset of DementiaBank used in this study encompasses
recordings and their corresponding transcriptions, where patients
with Alzheimer’s and controls describe a picture known as the
“Cookie Theft” scene, taken from the Boston Diagnostic Aphasia
Examination (Becker et al. (1994)). This dataset is known as the Pitt
corpus. Participants were required to:

• be above 44 years of age,
• have at least 7 years of education,
• have no history of nervous system disorders,
• not be taking neuroleptic medication,
• have an MMSE score of above 10.
• be able to give informed consent, and
• have a caregiver or relative to act as an informant if they had
dementia.

To avoid possible biases due to age and gender which might
have affected some of the above mentioned machine learning
studies (de la Fuente Garcia et al., 2020), we use the ADReSS
challenge dataset (Luz et al., 2020). The age and gender
distributions of participants in DementiaBank’s Pitt Corpus
tend to reflect the fact that age and gender are major risk
factors in AD. Therefore, AD participants will tend to be older
and more likely to be female than control participants. The
ADReSS dataset removes this source of bias as it consists of a
subset of the Pitt corpus, sampled so as to be balanced with
respect to gender and age. This dataset is divided into two halves,
a training set and a test set. The training set contains 108
transcripts, evenly split between the AD and controls. The test
set contains 48 transcripts, again evenly balanced between AD
and controls. We perform our analysis on the training set, and
keep the test set as an unseen dataset for evaluating the classifiers.
The source code for the experiments described in this paper is
available at our Gitlab repository.1 Instructions on how to acquire
the dataset are available at the ADReSS website.2

The networks are built using word co-occurrence windows of
2, 3 and 5, and are weighted and undirected. The weight on an
edge is the number of times the two words occur together within a
window in the same sentence. We remove any characters that are
not in the Latin alphabet (i.e. numbers and punctuation are
removed), but do not perform any stop word removal or

1https://git.ecdf.ed.ac.uk/tmilling/analysis-and-classification-of-word-co-
occurrence-networks
2https://edin.ac/375QRNI
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lemmatization. We do not remove stop words as we hope that the
networks capture differences in their usage between the AD
patients and controls. Pauses and other “non word” utterances
are retained.

We make use of Python, NumPy and SciPy (Oliphant, 2006) for
general scripting, pandas (McKinney, 2010) for handing the data,
matplotlib (Hunter, 2007) for plotting, Networkx (Hagberg et al.,
2008) for the network analysis, Cytoscape (Shannon et al., 2003) for
the graph visualization, powerlaw (Alstott et al., 2014) for fitting
power laws to the degree distributions, scikit-learn (Pedregosa et al.,
2011) for implementation of the classifiers, NLTK (Loper and Bird,
2002) for some of the natural language processing, PyLangAcq (Lee
et al., 2016) for parsing the transcriptions and Karate Club
(Rozemberczki et al., 2020) for the graph embeddings.

4 NETWORK ANALYSIS

4.1 Method
To start with, we show example networks from the control and
AD patients in Figure 1. Next we look at the values of various
network measures for the co-occurrence networks constructed
from the patients and controls. We only use the training set for
this analysis. We focus on similar measures to previous work (Liu
and Cong (2013)), in this case choosing.

• Number of nodes (N)
• Number of edges (E)
• Edge density (ED)

• Fraction of self links (SL)
• Average Clustering Coefficient (〈CC〉)
• Diameter (D)
•Heterogeneity (how similar the nodes are to each other)–this
is defined as (Estrada, 2010).

H � ∑i,j ∈ Γ(k−1/2i − k−1/2j )
N − 2

�����
N − 1

√ ,

where ki is the degree of node i, Γ is the edge set.

• Degree Network Centralization (NC) (how much the
network is centered around a small number of highly
central nodes) as defined by Freeman (1979).

NC � ∑N
i�1(kmax − ki)
N2 − 2N + 2

,

where ki is the degree of node i, kmax is the maximum node degree
in the graph.

• Average Shortest Path Length (〈AV〉)
• Exponent when fitting the degree distribution to a power
law (α)

• xmin when fitting the degree distribution to a power law (xmin)
• Assortativity (A) (Pearson correlation between the rows of
the adjacency matrix)

FIGURE 1 | Example graphs.
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• Exponent when fitting a power law to the average neighbor
degree distribution (knnα)

These networks are not connected, and measures that rely on
path lengths require modification to be used. In our case the
measures that need modifying are the average shortest length
path and the diameter. For the average shortest length path, we
take the average of all the shortest paths lengths that do exist in
the network, discarding those that have infinite length. For the
diameter, we take the diameter of the largest component in
the graph.

4.2 Results
We show the means of these for each group for a variety of co-
occurrence windows (o) in Table 1, where bold font indicates the
mean difference is significant according to a Mann-Whitley test at
p< 0.05 for that co-occurrence window. Perhaps unsurprisingly, the
measures are affected by the size of the co-occurrence window.
Increasing the window size increases the number of edges, and by
proxy the edge density. As the network becomesmore connected, this
increases the average clustering coefficient, network centralization and
xmin while decreasing the diameter, heterogeneity, average path length
and α. We find that there are six measures with significantly different
means for all co-occurrence windows, number of nodes (note this is
the same for all window sizes), number of edges, edge density,
heterogeneity, network centralization and assortativity. There are
three other measures that are significant for one window, fraction
of self links and xmin for o � 3 and knnα for o � 2.

Next we look to explain why these measures might be
different. Alzheimer’s patients tend to use fewer unique words
than controls (Fraser et al., 2016; Orimaye et al., 2018), and tend
to repeat words and phrases more frequently than healthy
controls. Since unique words correspond to nodes in the
graphs, this would explain why controls have a higher number
of nodes that those from AD patients, and why the edge density is
higher for the AD patients (more edges between a smaller number
of nodes). The number of self links should capture word

repetitions, and it is higher in the AD networks, but it is
notable that it is only significant with a co-occurrence window
of 3. For the larger windows there will be more self links overall
and proportionally fewer that are due to repetitions, so this could
explain why it is not significant for a window of 5.

The AD networks have a lower heterogeneity and a lower
network centralization. A lower heterogeneity shows that the
degree of the nodes is more equal, while a lower network
centralization indicates the network is less orientated around a
small number of highly centralized nodes. Furthermore the AD
networks are less disassortative than the control networks. A
disassortative network is where high degree nodes are connected
to low degree nodes, while in an assortative network high degree
nodes are connected to other high degree nodes. In general word
co-occurrence networks tend to be disassortative (Masucci and
Rodgers, 2006; Krishna et al., 2011). We would expect the
networks from the AD patients to be smaller, more densely
connected and to have a more uniform degree distribution
than those from controls, and this seems to be reflected in the
graph measures. This would also affect the assortativity of the
network–nodes would be less likely to be connected to other
nodes of higher degrees, which might indicate greater use of
circumlocution in AD networks where disassortativity is reduced.

The average clustering coefficient, diameter and average path
length were not significantly different between the AD and controls.
We found this surprising as we expected that the average path length
and diameter would be shorter for the AD networks as AD patients
tend to produce shorter sentences with shorter dependency
distances, and the average clustering coefficient larger due to the
smaller network size and larger edge density. In fact this is evenmore
surprising as the control networks are larger than the AD
networks–so we would expect the diameter and average shortest
length path of the control networks to be larger. However, there are
disagreements in the literature on whether dependency distance is
actually shorter linguistic AD patients’ linguistic output (Pakhomov
et al., 2011; Fraser et al., 2016; Orimaye et al., 2017), and average path
length is not an exact measure of dependency distance. Furthermore,
the transcripts of spontaneous speech used in our experiments are
quite short, whichmight have an effect when comparing these results
to results from written text, in the context of which the initial claim
wasmade. It should be noted, however, that recent evidence seems to
suggest that dependency lengths in spoken language do not differ
significantly to those in written language (Kramer, 2021). Other
syntax differences discovered were more node level than global (for
instance the number of times the participant utters a pronoun and
then an auxiliary verb phase) which cannot be picked up by our
measures. The other measures which were not significantly different
were xmin and α. These describe the degree distribution of the
networks. The lack of significant difference in these measures for the
majority of the co-occurrence windows indicates that the networks
have a similar degree distribution.

Each transcript is also annotated with an MMSE score, and we
look at how this is correlated with the network measures using
Spearman correlation. A larger MMSE score indicates the
participant is less likely to be in the AD group, so we would
expect that graph measures which are larger in the controls to be
positively correlated with the MMSE score, and those which are

TABLE 1 |Means for the network measures for each dataset. Bold font indicates
the mean difference is significant between the AD and controls for that co-
occurrence window at p< 0.05 level. The parameter o refers to the size of the co-
occurrence window.

Measure o = 2 o = 3 o = 5

Control AD Control AD Control AD

<N > 64.185 53.204 64.185 53.204 64.185 53.204
<E > 151.648 124.130 206.222 168.519 281.500 226.759
ED 0.039 0.049 0.053 0.065 0.071 0.084
SL 0.005 0.009 0.016 0.023 0.040 0.039
<CC> 0.612 0.601 0.710 0.707 0.792 0.793
D 6.574 6.259 5.037 4.926 4.037 4.167
H 0.135 0.107 0.123 0.100 0.112 0.093
NC 0.348 0.284 0.438 0.364 0.522 0.433
〈AV〉 2.724 2.691 2.353 2.305 2.138 2.075
α 5.069 5.477 4.740 4.827 4.171 4.349
xmin 4.870 4.815 6.389 5.648 7.630 7.056
A −0.159 −0.095 −0.141 −0.075 −0.131 −0.044
knnα 11.614 15.575 13.981 16.409 13.834 18.456
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smaller in the controls to be negatively correlation with the
MMSE score. The results are shown in Table 2, with
significant correlations marked using bold font.

There are five measures with significant correlations with the
MMSE score, edge density, heterogeneity, network centralization
and assortativity. Edge density and assortativity show a negative
relationship with the MMSE score, while heterogeneity and
network centralization show a positive relationship. Controls
have higher MMSE scores than those with AD, so these
results mostly reflect the control/AD differences seen above.
There are two measures which have a significant difference in
means, but do not have significant correlations, the number of
nodes and number of edges. This is quite surprising, as these have
been shown to be very good predictors of AD. There is a large
amount of variance in the MMSE for both classes, so this could be
the reason why the mean difference is significant while the
correlation is not.

4.3 Comparison to Shuffled Networks
To understand how successful these networks are in capturing the
dynamics of word usage we must compare them to a null model.
In this section we create null models by shuffling the order of the
words for each transcript and constructing networks from these
shuffled transcripts. Previous work comparing shuffled networks
to their originals has shown that many of the properties of word
networks occur to due the frequency of word use rather than due
to word order (Caldeira et al., 2006; Krishna et al., 2011).

We create the shuffled networks by randomizing the order of
the words in the document. The end of the sentence marker
(usually a full-stop) is treated as a word, so sentence structure is
not maintained, but the shuffled documents still have sentences.
This is done 50 times for each network and then the mean value
for each measure is calculated. These are compared to the
originals. This allows us to see which structures of the
network are due to the frequency of word occurrence and
which are due to the specific word order. We show the results
of this in Table 3. Again we use a Mann-Whitley test at p< 0.05 to
test for means that are significantly different.

Some of the measures are obviously more influenced by the
number of words than their order - for instance the number of

nodes, number of edges and edge density, and we can see these are
not significantly different between the real and shuffled networks
for any value. Only the average clustering coefficient, the number
of self links and xmin are significantly different between the real
and shuffled for all the networks. Assortativity is also different for
all the control networks, but only for the co-occurrence window
of two for the AD networks.

TABLE 2 | Spearman Correlation between network measures and MMSE score.
Significant correlations are marked with bold font.

Measure o = 2 o = 3 o = 5

〈N〉 0.187 0.187 0.187
〈E〉 0.153 0.154 0.158
ED −0.239 −0.228 −0.203
SL −0.228 −0.143 0.049
〈CC〉 0.185 0.129 0.066
D 0.048 −0.018 −0.155
H 0.336 0.265 0.211
NC 0.307 0.303 0.319
<AV > -0.121 -0.108 -0.085
α -0.058 -0.075 0.058
xmin 0.046 0.249 0.117
A −0.381 −0.421 −0.355
knnα −0.187 −0.101 −0.117

TABLE 3 |Comparison of the network measures for the shuffled networks and the
real ones. Significant differences are marked with bold font.

o = 2

Measure Control AD

Real Shuffled Real Shuffled

<N > 64.185 64.006 53.204 53.259
<E > 151.648 156.699 124.130 136.437
ED 0.039 0.041 0.049 0.052
SL 0.005 0.035 0.009 0.041
<CC> 0.612 0.583 0.601 0.571
D 6.574 6.316 6.259 6.052
H 0.135 0.134 0.107 0.121
NC 0.348 0.359 0.284 0.306
<AV > 2.724 2.855 2.691 2.699
α 5.069 4.983 5.477 5.629
xmin 4.870 5.429 4.815 5.253
A −0.159 −0.108 −0.095 −0.088
knnα 11.614 11.090 15.575 13.362

o = 3

Measure Control AD

Real Shuffled Real Shuffled

〈N〉 64.185 63.983 53.204 53.220
<E > 206.222 212.448 168.519 183.404
ED 0.053 0.055 0.065 0.069
SL 0.016 0.045 0.023 0.051

〈CC〉 0.710 0.679 0.707 0.669
D 5.037 5.029 4.926 4.852
H 0.123 0.124 0.100 0.113
NC 0.438 0.436 0.364 0.373

〈AV〉 2.353 2.505 2.305 2.349
α 4.740 4.616 4.827 5.276

xmin 6.389 7.111 5.648 6.822
A −0.141 −0.110 −0.075 −0.082

knnα 13.981 12.655 16.409 16.283

o = 5

Measure Control AD

Real Shuffled Real Shuffled

<N > 64.185 64.005 53.204 53.206
<E > 281.500 297.417 226.759 252.929
ED 0.071 0.076 0.084 0.093
SL 0.040 0.056 0.039 0.065

〈CC〉 0.792 0.759 0.793 0.752
D 4.037 4.083 4.167 4.067
H 0.112 0.112 0.093 0.104
NC 0.522 0.522 0.433 0.445

<AV > 2.138 2.257 2.075 2.132
α 4.171 4.403 4.349 5.113

xmin 7.630 8.929 7.056 8.975
A −0.131 −0.105 −0.044 −0.064

knnα 13.834 14.539 18.456 19.742
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For the average clustering coefficient, this significant
difference is explained by the fact that words co-occur more
than would be expected due to random chance. Shuffling destroys
this structure, and therefore reduces the clustering coefficient in
all of the networks. The difference in self links should also be
caused by a similar situation–this measure is clearly influenced by
word order, and so should change when this is destroyed.
Shuffling also changes the degree structure of the networks,
causing changes in the value calculated for xmin.

In the previous section we found that there are six network
measures that differ between the AD and controls for all co-
occurrence windows: number of edges, number of nodes, edge
density, heterogeneity, network centralization and assortativity.
However out of all of these only assortativity differs between the
shuffled and original networks. From a purely network based
perspective, it would seem reasonable that assortativity would
change between the shuffled and original networks–again we are
destroying the co-occurrence structure. Previous work (Krishna
et al., 2011) has also confirmed this. However what is surprising is
that the difference is significant for controls for all co-occurrence
windows, but only for o � 2 for AD patients. This indicates the
AD networks look more random than those from controls.

Previous work has shown that AD patients tend to use more
generic terms on picture description tasks than healthy controls,
and that the healthy controls use more low frequency content
bearing words (Garrard et al., 2014). These two factors help to
explain why both heterogeneity and network centralization differ
between the AD and controls, but not between the shuffled
networks–AD patients will tend to use a smaller set of words,
but use each of these words more frequently compared to healthy
controls. This indicates that word frequency has the largest
impact on the structure of the networks, and we would
therefore conclude that word frequency statistics alone would
still provide a good feature set to distinguish between the two
classes of networks.

5 TRANSCRIPT CLASSIFICATION

5.1 Method
We are interested in methods for automatic classification of
networks into control or AD. This can be done in a variety of
ways, with previous work on work co-occurrence networks often
using the network measures above as input into a classifier.
However there has been a great deal of work in the area of
graph classification in the past few years, with many methods
being proposed. Generally these methods fall into one of two
broad categories: embedding or kernel methods. An embedding
method reduces a graph to a vector, while a kernel method learns
some kind of similarity measure between graphs and calculates
the Gram matrix from this (Kriege et al., 2020). In addition to
using the network measures mentioned in the previous section,
we also use the spectral features (SF) embedding method created
by de Lara and Pineau (2018). This method is based on analyzing
the spectrum of the graph’s Laplacian in order to extract a feature
vector for the classification algorithm. Firstly we calculate the
normalized graph Laplacian

L � I − D−1/2AD−1/2, (1)

where D is the degree matrix, A is the adjacency matrix of the
graph and I is the identity matrix. The input into the classifier is
then the k smallest eigenvalues of the Laplacian in ascending
order

X � (λ1, λ2, . . . λk). (2)

The authors claim that this is similar to classifying a melody by
its lowest fundamental frequencies. A deeper explanation of the
method is undertaken by Pineau (2019). A larger vector will
capture more of the dynamics of the graph, but will also be more
prone to overfitting. Since we are not aware of an objective
method of selecting k, we experiment with the size of the
vector, running for 5, 10, 15, 20 and 50.

A particular emphasis here is that we are not using the word
labels in this classification task, but purely the structure of the
networks. As mentioned in the previous section, many of the
network measures that differ between the AD and controls do not
vary between the shuffled and original networks, indicating that
many of the differences are due to word frequency usage alone.
With this in mind, we use a unigram based method to provide a
baseline comparison as to how much word frequency alone can
be used to differentiate between the two classes. Here we take the
number of different words used and total number of words in the
transcript, and then the mean, standard deviation, skew and
kurtosis of the distribution of unigrams in the transcript. When
creating the distributions of unigrams we only consider the
unigrams in the specific transcript. This ensures that we do
not leak information across transcripts, and to provide a fairer
comparison to the graph measures, as one of the advantages of
these graph approaches is that we do not need to consider which
words occur in other transcripts.

We use logistic regression (LR), a linear kernel (LSVM), a
radial basis function (RBF) kernel (RSVM), and a random forest
(RF) to classify the networks. The input variables are standardized
to have a mean of 0 and a standard deviation of 1. C for the SVMs
is set to 1, and the logistic regression is L2 regularized, with a
regularization parameter of 0.5. γ for the RBF kernel is set to 1/p.

5.2 Results
Firstly we evaluate our approach using leave one out cross-
validation (LOOCV) on the training set, and the results are
shown in Figure 2. From this we can see that it is possible to
distinguish between the co-occurrence networks. We have the
highest success at the smallest co-occurrence window of o � 2
using a linear SVM, with a classification accuracy of 71.3% using
the graph measures. Using the graph measures has a higher
overall success rate than using the embedding method for every
size of co-occurrence window. However the unigram method
actually outperforms the network based methods, achieving a
maximum accuracy of 73.1% using a linear SVM.

There is not one particular classification algorithm that
consistently outperforms the other, with the logistic regression,
random forest and linear SVM all having the highest classification
accuracy for different co-occurrence window sizes. The co-
occurrence window size obviously does not affect the unigram

Frontiers in Computer Science | www.frontiersin.org April 2021 | Volume 3 | Article 6495087

Millington and Luz Alzheimer’s Classification Through Co-Occurrence Networks

176

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


methods. To further evaluate this we use a Wilcoxon signed-rank
test to look if the differences in classification accuracy are
significant. Again we take p< 0.05 as a significant difference.
To start with we compare the unigram and graph measure feature
sets. The only significant difference between them is for the
LSVM classifier at o � 5 (which is the best performing
unigram combination against the worst performing graph
measures combination), indicating their performance is
broadly similar.

Next we compare how the choice of k affects the results for SF.
There are some significant differences with the RSVM for k � 5
with a co-occurrence window of three performing significantly
worse than the same classifier for the rest of the values of k, and
the different between the RSVM for k � 50, o � 5 performing
significantly better than k � 20, o � 5. The rest are not significant,
indicating that in general, the choice of k is not particularly
important. Comparing the results between the different co-
occurrence windows, we find no significant differences for the
graph measures. This implies that the choice of co-occurrence
window is not particularly important. This again confirms that
word frequency seems more important than word co-occurrence.

Looking at the same comparison for SF, there are three
classifier/feature sets with a significant difference, logistic
regression with k � 10 between o � 2 and o � 3, logistic
regression with k � 15 between o � 3 and o � 5 and RSVM
with k � 15 between o � 3 and o � 5. Again with the small
number of significant differences, we would conclude than the
co-occurrence window choice does not particularly affect the SF
method.

As previously mentioned, the ADReSS dataset contains a pre-
tagged test set. Next we look at our success in distinguishing
between the AD and control transcripts in the test set. We choose
the three best performing classifier/co-occurrence window
combinations on the training set for the graph measures, and
the two best performing SF methods, in the manner of the
ADReSS challenge. The results are shown in Table 4 and
confusion matrices in Figure 3. For the combinations that
perform the best on the training set, the maximum accuracy
achieved is 66.7% using a RSVM classifier with graph measures
with graphs that have a co-occurrence window of 2. Bar this
outlier though, the accuracy in general has dropped when
compared to the results of the leave one out cross-validation
on the training set. However, as the test set consists of a very small

FIGURE 2 | Classification accuracy of the unigram, graph measures and SF feature extraction methods on the training set using leave one out cross validation,
grouped by co-occurrence window size (o ∈ {2,3, 5}). The best result of 71.3% is achieved using a linear SVM on the graph measures with a co-occurrence window of
2 (o � 2).

TABLE 4 | Classification accuracy of the best performing embedding/classifier
combination from the training set on the test set. We choose the three best
performing graph measure approaches, the two best SF approaches and the best
unigram approach for comparison. There is a decrease in performance in general
compared to the training set, but the best performing approach (graph
measures with a RSVM classifier) achieves a classification accuracy of 66.7%.

Method o Accuracy

GM + RF 3 0.583
GM + LSVM 2 0.625
GM + RSVM 2 0.667
SF k � 5 + RF 5 0.583
SF k � 10 + RSVM 5 0.542
Unigram + RF 0.646
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sample, it is likely that the reported LOOCV accuracy gives a
more realistic assessment of the methods we compared.

Ignoring performance on the training set and purely taking the
classifier/feature combination that has the highest performance,
we can achieve an accuracy of 75% using a random forest with a
co-occurrence window of 2. However since this method did not
perform so well on the training set, it is difficult to claim that this
is an accurate and reportable classification accuracy.

6 MMSE PREDICTION

In this section we focus on using the co-occurrence networks to
predict the MMSE score for a participant. As with the
classification in Section 5, we use the network measures, the
SF graph embedding method and the unigram method as
features. We choose a set of regression methods analogous to
the classification methods chosen above, in this case Linear
Regression, Random Forest Regression, and Support Vector

Regression with two kernels, a linear kernel and RBF kernel.
The input into the regression methods is again standardized so
each feature has a mean of 0 and a standard deviation of 1. The
predictions are evaluated using root mean squared error (RMSE).
C for the SVMs is set to 1, and the linear regression is L2
regularized, with a regularization parameter of 0.5. γ for the
RBF kernel is set to 1/p.

As before, we firstly evaluate the method using LOOCV on the
training set. The results are shown in Figure 4. Using a linear
regression method with the graph measures appears to obtain the
best result (i.e. lowest RMSE), with a RMSE of 4.799 for a co-
occurrence window of 2. Again the graph measures seem to give
the best results. Following LOOCV, we predict the MMSE of the
test set transcripts. As before we take the five embedding/
regression combinations that perform the best on the training
set and evaluate their performance on the test set. The results are
shown in Table 5. Again we do see a decrease in the success of the
methods compared to the leave one out evaluation on the training
set, with an increase in the RMSE. This time the unigram
measures actually give the lowest RMSE, at 5.468, by using
linear regression. The best performing graph method uses the
graph measures and a random forest regressor with a co-
occurrence window of 3, achieving an RMSE of 5.675.

As RMSE values can be difficult to interpret in isolation, we also
use the predicted MMSE value to assign the participant as AD or
control (a value above 23 indicates a control). The results of this are
shown in Table 6. This approach achieves a maximum accuracy of
75% for the graph measures, 64.6% for the unigram methods, and
58.3% for the SF methods. To give a reference, if we use the actual
MMSE values for AD prediction, we get an accuracy of 87.5%.

7 DISCUSSION AND CONCLUSION

In this paper we have constructed word co-occurrence networks
using transcript data from both controls and Alzheimer’s patients
on a picture description task. With these networks we have
analyzed some measures of their structure, and used some
embedding methods to enable classification of the networks
and to predict the MMSE score from the transcript.

Using aMann-Whitney test we find that there are sixmeasures that
have significantly different means between the networks, number of
nodes, number of edges, edge density, heterogeneity, network
centralization and assortativity. Some of this difference can be
explained by previous work in the literature, for instance that AD
patients tend to produce fewer unique words and repeat themselves
more.Most of thesemeasures also show significant correlationwith the
MMSE score of the participant. However, many of the measures that
differ between the AD and control networks do not differ between the
shuffled and original networks. This is unfortunately one of the
challenges of using global measures on co-occurrence networks,
that in fact many of their properties come from word frequency
rather than co-occurrence.

We then looked at classifying the graphs into control or AD
using the set of graphmeasures, and the graph embedding method,
SF. Since many of the graph properties come from word frequency
and not co-occurrence, we create a baseline feature set using the

FIGURE 3 | Confusion matrices for the test set.
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first four moments of the unigram distribution, plus the total
number of unigrams and the number of unique unigrams. We
evaluate our success in this firstly by using leave one out cross
validation on the training set, and then by using the held back test
set from the ADReSS challenge.

In general we find it is possible to classify the networks into
control or AD, and that the highest accuracy on the training set is
achieved using graphmeasures and a Linear SVM at 71.3%. For the
test set, the highest accuracy achieved is 66.7%, using a RSVM
classifier with a co-occurrence window of 2. Using the graph
measures gives a higher accuracy than using the SF method, but
out of the four classifiers we use, three (Logistic Regression,
Random Forest and Linear SVM) have the highest performance
at one particular point, making it difficult to recommend the use of
one in particular. The same applies to the choice of co-occurrence
window. We also find that using the unigram gives fairly
comparable results to the graph measures, further indicating
that global measures on these word co-occurrence networks
mostly reflect word frequency rather than word co-occurrence.

In a similar manner to the graph classification, we also look at
predicting the MMSE score from the transcripts. We use the same
evaluation methods, leave one out cross validation on the training set,
and using the held back test set. On the training set we achieve a
minimum RMSE of 4.799 using linear regression and the graph
measures with a co-occurrence window of 2, and on the test set we
achieve aminimumRMSEof 5.675using linear regression and the graph
measures with a co-occurrence window of 3. Here the unigrammethods
perform notably better, achieving an RMSE of 5.468 using linear
regression. Again the SF method performed poorly compared to the
other methods, achieving a maximum accuracy of 6.535 on the test set.

In our work, we have found that using simple unigram
measures outperforms using more complex graph based
measures which should take co-occurrence into account.
However, looking at the features that previous work has

found to be useful in distinguishing between AD and
control patients, it could be that the measures we have
chosen cannot capture these differences with a great deal
with success. Combined with previous work showing that
global network measures on word co-occurrence networks
struggle to capture word order, we would suggest that future
work either relies node level measures, or devises novel global
measures that can capture word order. We also note that our
network-based approach performed comparably to the

FIGURE 4 | RMSE of the unigram, graph measures and SF methods for leave one out cross validation on the training set, grouped by co-occurrence window
size (o ∈ {2, 3, 5}).

TABLE 5 |MMSE of the best performing embedding/regression combination from
the training set on the test set. We choose the three best performing graph
measure approaches, the two best SF approaches and the best unigrammethod.

Method o RMSE

GM + LR 2 6.154
GM + LSVM 2 6.159
GM + RF 2 5.675
SF k � 10 + RF 3 6.535
SF k � 10 + RSVM 5 6.535
Unigram + LR 5.468

TABLE 6 | Accuracy of the best performing regression classifier/embedding
methods if we use the predicted MMSE score to predict a transcript as AD or
control.

Method o RMSE

GM + LR 2 0.667
GM + LSVM 2 0.667
GM + RF 2 0.750
SF k � 10 + RF 3 0.542
SF k � 10 + RSVM 5 0.521
Unigram + LR 0.583
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ADReSS baseline, with scores of 5.68 vs 5.20 RMSE for
regression, and 66.7% vs 75.0% for classification (Luz et al.,
2020). However, none of the participants employed a network
based approach.
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Examination of speech datasets for detecting dementia, collected via various speech

tasks, has revealed links between speech and cognitive abilities. However, the speech

dataset available for this research is extremely limited because the collection process of

speech and baseline data from patients with dementia in clinical settings is expensive. In

this paper, we study the spontaneous speech dataset from a recent ADReSS challenge,

a Cookie Theft Picture (CTP) dataset with balanced groups of participants in age, gender,

and cognitive status. We explore state-of-the-art deep transfer learning techniques from

image, audio, speech, and language domains. We envision that one advantage of

transfer learning is to eliminate the design of handcrafted features based on the tasks and

datasets. Transfer learning further mitigates the limited dementia-relevant speech data

problem by inheriting knowledge from similar but much larger datasets. Specifically, we

built a variety of transfer learning models using commonly employed MobileNet (image),

YAMNet (audio), Mockingjay (speech), and BERT (text) models. Results indicated that the

transfer learning models of text data showed significantly better performance than those

of audio data. Performance gains of the text models may be due to the high similarity

between the pre-training text dataset and the CTP text dataset. Our multi-modal transfer

learning introduced a slight improvement in accuracy, demonstrating that audio and text

data provide limited complementary information. Multi-task transfer learning resulted in

limited improvements in classification and a negative impact in regression. By analyzing

the meaning behind the Alzheimer’s disease (AD)/non-AD labels and Mini-Mental State

Examination (MMSE) scores, we observed that the inconsistency between labels and

scores could limit the performance of the multi-task learning, especially when the outputs

of the single-task models are highly consistent with the corresponding labels/scores. In

sum, we conducted a large comparative analysis of varying transfer learning models

focusing less on model customization but more on pre-trained models and pre-training

datasets. We revealed insightful relations among models, data types, and data labels in

this research area.

Keywords: Alzheimer’s disease, early detection, spontaneous speech, deep learning, transfer learning
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1. INTRODUCTION

The number of patients with Alzheimer’s Disease (AD) over the
age of 65 is expected to reach 13.8 million by 2050, leading
to a huge demand on the public health system (Alzheimer’s
Association, 2020). While there is no proven effective treatment
on AD, considerable effort has been put forth into early detection
of AD, such that interventions can be implemented at that
stage. Screening measures, neuropsychological assessments, and
neuroimaging scans are not pragmatic, cost-, or time-efficient
approaches for widespread use.

Expressive language impairment is common in AD, such
as reduced verbal fluency and syntactic complexity, increased
semantic and lexical errors, generating more high-frequency
words and shorter utterances, and abnormalities in semantic
content (Sajjadi et al., 2012; Fraser et al., 2016; Boschi et al.,
2017; Mueller et al., 2018a). Expressive language impairment has
also been observed in patients with Mild Cognitive Impairment
(MCI), a population at high risk for the development of
AD (Mueller et al., 2018b; Kim et al., 2019; Themistocleous et al.,
2020). Furthermore, recent meta-analytic and systematic reviews
have found thatmeasures of expressive language contribute to the
prediction of progression fromMCI to AD (Belleville et al., 2017;
Prado et al., 2019).

Researchers have explored spontaneous speech as a means of
practical and low-cost early detection of dementia symptoms. Pitt
Corpus (Becker et al., 1994), one of the large speech datasets,
includes spontaneous speech obtained from a Cookie Theft
Picture (CTP) description task. Since then, the CTP task has
become popular in dementia research and it has been further
explored with computerized agents to automate and mobilize the
speech collection process (Mirheidari et al., 2017, 2019b) and in
other languages including Mandarin (Chien et al., 2019; Wang
et al., 2019a), German (Sattler et al., 2015), and Swedish (Fraser
et al., 2019b). Other spontaneous speech datasets for dementia
research include those collected from film-recall tasks (Tóth
et al., 2018), story-retelling tasks (Fraser et al., 2013), map-
based tasks (de la Fuente Garcia et al., 2019), and human
conversations (Mirheidari et al., 2019a). While a number of
studies have investigated speech and language features and
machine learning techniques for the detection of AD and MCI,
this research field still lacks balanced and standardized datasets

Abbreviations: ADRD, Alzheimer’s Disease and Related Dementias; AD,
Alzheimer’s Disease; MCI, Mild Cognitive Impairment; HC, Health Control;
WLS,Wisconsin Longitudinal Study; CTP, Cookie Theft Picture; IVA, Intelligent
Virtual Agent; IU, Information Units; MFCC, Mel Frequency Cepstral Coefficient;
LLDs, Low-Level Descriptors; LSP, Line Spectral Pair; AOI, Area of Interest; ASR,
Automatic Speech Recognition; ML,Machine Learning; MMSE,Mini-Mental State
Examination; MoCA, Montreal Cognitive Assessment; GDS, Geriatric Depression
Scale; GAI, Geriatric Anxiety Inventory; SVM, Support Vector Machine; PCA,
Principal Component Analysis; DNN, Deep Neural Network; MECSD, Mandarin
Elderly Cognitive Speech Database; LM, Language Model; DNN, Deep Neural
Network; FCN, Fully Convolutional Network; CNN, Convolutional Neural
Network; GAP, Global Average Pooling; FC, Fully Connected; OARS, Older
Americans Resources and Services; LDA, Latent Dirichlet Allocation; ADReSS,
Alzheimer’s Dementia Recognition through Spontaneous Speech; SVF, Semantic
Verbal Fluency; NLP, Natural Language Processing; RMSE, Root-Mean-Square
Error; IR, Image Recognition; GPU, Graphics Processing Unit; LSTM, Long
Short-Term Memory.

on which these different approaches can be systematically and
fairly evaluated.

Speech datasets available for dementia research are often
small. As shown in Table 1, if we consider AD and non-
AD as two classes, the numbers of user-samples in each class
are in the hundreds. In the past few years, researchers have
explored handcrafted features and machine learning algorithms
with these datasets for building classification and regression
models. Mueller et al. (2018a) published a survey to show
effective linguistic features including semantic content, syntax
and morphology, pragmatic language, discourse fluency, speech
rate, and speech monitoring. The linguistic features were often
identified manually, and the analysis methods were complex
and highly task and data dependent. Croisile et al. (1996)
manually extracted 23 information units from the picture
using language knowledge that were effective in dementia
detection. Fraser et al. (2019a) developed an auto-generation
process of information units for the analysis. Yancheva and
Rudzicz (2016) and Fraser et al. (2019b) further proposed
to auto-generate topic models that can recall 97% of the
human-annotated information units. Similarly, the acoustic-
based analysis was started with pre-defined features and recently
automated with computational models. Hoffmann et al. (2010)
considered acoustic features for each utterance. Fraser et al.
(2013) evaluated the statistical significance of pause and word
acoustic features. Tóth et al. (2015) considered four descriptors
for silent/filled pauses and phonemes. Gosztolya et al. (2016) and
Tóth et al. (2018) implemented a customized automatic speech
recognition (ASR) and automatic feature selection for phones,
boundaries, and filled pauses. Haider et al. (2019), Luz et al.
(2020) proposed an automatic acoustic analysis approach using
the paralinguistic acoustic features of audio segments. However,
the performance results of handcrafted features and customized
machine learning algorithms are highly dependent on the tasks
and datasets. In 2020, the Alzheimer’s Dementia Recognition
through Spontaneous Speech (ADReSS) Challenge became the
first shared-task event focused on AD detection (Luz et al., 2020).
The ADReSS organizers pre-processed the CTP dataset of the
Pitt Corpus and provided the same dataset to the challenge
participants, enabling a fair competition. The techniques and
results in this paper will strictly follow the guideline of the
ADReSS Challenge.

In recent years, transfer learning techniques have significantly
advanced the research on Image Recognition (IR), Automatic
Speech Recognition (ASR), and Natural Language Processing
(NLP). Transfer learning focuses on storing knowledge gained
from an easy-to-obtain large-sized dataset from a general task
and applying the knowledge to a downstream task where the
downstream data is limited. A typical transfer learning model
incorporates a pre-trained model as its backbone and is later
customized for the downstream task. The pre-training process is
computationally intensive and requires a dataset of sufficient size.
Different pre-trained models result in different performances as
they inherit different knowledge from the pre-training datasets. It
is commonly believed that the higher similarity between the pre-
training and downstream datasets results in better performance
of the downstream task. In addition to the selection of an
effective pre-trained model, the customization of the transfer
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TABLE 1 | Cookie Theft Picture datasets.

Dataset Language Total HC MCI AD

ADReSS Luz et al., 2020 English 156 78 78

Pitt Corpus Becker et al., 1994 English 312 104 208

WLS Herd et al., 2014 English 1366

IVA Mirheidari et al., 2019b English 33 16 17

Hebrew CTP Kavé and Dassa,

2018

Hebrew 70 35 35

MECSD Wang et al., 2019a Mandarin 85 65 20

NTU Chien et al., 2019 Mandarin 50 40 10

Swedish CTP Wallin et al., 2016 Swedish 67 36 31

French CTP Fraser et al., 2019b French 58 25 33

learning model is critically important to the downstream task.
This customization is often based on two strategies.

• Fixed feature extractor: Remove the last one or several layers
from the pre-trained model, and treat the rest of the pre-
trained model as a fixed feature extractor for the downstream
dataset. Then, apply a simple classification model over the
features from the fixed feature extractor. The training process
will only modify the weights of the classification model.
The fixed feature extractor strategy can avoid the overfitting
problem when the downstream dataset is small.

• Fine-tuning: Replace the last one or several layers of the pre-
trainedmodel with customized layers for the downstream task.
In the training process, the weights of the pre-trained model
are fine-tuned by continuing the back-propagation. In this
strategy, the pre-trained model produces generic features, and
the fine-tuning process modifies the model to be more specific
to the details of the downstream task. The fine-tuning strategy
often requires the downstream dataset to be sufficiently large
to avoid the overfitting problem.

We explored transfer learning with a fine-tuning strategy for the
following reasons: (i) the fine-tuning strategy relies more on the
data and less on the customization of the network architecture.
Specifically, for each pre-trained model, we adopted the same
modification strategy, i.e., replacing the last layer with a standard
fully connected (FC) layer and fine-tuning the weights of all
layers with the training dataset of the downstream task. (ii)
We envisioned the downstream dataset is a special task, which
requires a different knowledge set from the tasks corresponding
to the pre-training dataset. The fine-tuning strategy enables the
training using a downstream dataset to customize the model
using back-propagation, which puts more emphasis on the newly
acquired knowledge. (iii) The fixed feature extractor strategies
have been explored in literature (Balagopalan et al., 2020; Koo
et al., 2020; Pompili et al., 2020).

Koo et al. (2020) and Pompili et al. (2020) employed transfer
learning techniques to extract both acoustic and linguistic
features from pre-trained models, combined these features
with handcrafted features, and customized a convolutional
recurrent neural network to perform the downstream tasks. Their
customized network architectures, though different in detail,
produced similar results and conclusions. In comparison, we

did not use pre-trained models as a fixed feature extractor,
but followed the fine-tuning strategy to train an end-to-end
network model. Balagopalan et al. (2020) compared handcrafted
features including lexico-syntactic features, acoustic features,
and semantic features, with pre-trained automatic features using
BERT (Devlin et al., 2018), and concluded that automatic features
(83.3% accuracy) outperform the handcrafted features (75.0%
accuracy). Edwards et al. (2020) explored multi-scale (word and
phoneme level) audio models and their models achieved 79.2%
accuracy at best, which is higher than the models using text
features (i.e., Word2Vec) and multi-modal fusion. Rohanian
et al. (2020) proposed a multi-modal gating mechanism to fusion
audio and text features in a Long Short-Term Memory (LSTM)
model and achieved a better accuracy of 79.2% compared to the
LSTM model with either audio or text features (highest accuracy
73.0%). Yuan et al. (2020) explored disfluencies and fine-tuning
pre-trained language models, aligned audio and text using forced
alignment, and re-created the punctuationmarks in the text using
manually defined thresholds to identify pauses. It achieved an
accuracy of 85.4% using BERT and 89.6% using ERNIE (Sun et al.,
2020). We consider the thresholds used to identify pauses (Yuan
et al., 2020) is still a handcrafted feature. In comparison with
the above works, we avoid the complex design and evaluation
of handcrafted features and the heavy network architecture.
We built an end-to-end network model using the pre-trained
networks and a fine-tuning strategy. In addition, Pappagari
et al. (2020) employed speaker recognition and natural language
processing methods. Specifically, it explored the x-vector (Snyder
et al., 2018) and BERT for extracting acoustic and linguistic
features, fusioned them with Gradient Boosting Regressor, and
achieved 75.0% accuracy using the ADReSS training/test dataset.
We considered that our selected pre-training tasks are more
representative and similar to the AD classification task, compared
to the speaker recognition task (Snyder et al., 2018; Pappagari
et al., 2020).

In this paper, we explored a variety of transfer learning
techniques and compared several transfer learning models. Note
that our training and testing processes strictly followed the
ADReSS challenge, i.e., we only used the ADReSS training dataset
for training and reported the classification/regression results
over the ADReSS testing dataset. Specifically, we investigated
the following:

• Evaluation of transfer learning: We studied four types
of pre-trained models, and customized and fine-tuned our
transfer learning models based on the downstream tasks and
datasets. We evaluated the impact of the similarity between
the pre-training datasets and the downstream datasets on
the performance.

• Multi-modal transfer learning: We applied a multi-modal
transfer learning to incorporate inputs of both audio and
text. We investigated whether the audio and text data
share complementary information to further improve the
performance of the downstream tasks.

• Multi-task transfer learning: We applied a multi-task
transfer learning to output both the AD/non-AD labels
and the Mini-Mental State Examination (MMSE) scores (a
test assessing global cognitive functioning). We investigated
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whether two downstream tasks are highly correlated and
whether integrated training can reinforce the performance of
the two tasks.

2. SPEECH DATASET FOR DEMENTIA
RESEARCH

In the ADReSS challenge (Luz et al., 2020), a pre-processed CTP
dataset from the Pitt Corpus (Becker et al., 1994) is created
with the balanced groups of participants in age, gender, and
cognitive status. The ADReSS training dataset includes speech
data from 24 male participants with AD, 30 female with AD, 24
male non-AD participants, and 30 female non-AD participants.
The ADReSS testing dataset includes speech data from 11 male
participants with AD, 13 female with AD, 11 male non-AD
participants, and 13 female non-AD participants. The complete
dataset information can be found in Luz et al. (2020). In
this paper, we studied the ADReSS dataset, i.e., we trained
our models with the ADReSS training dataset and reported
the performance of classification and regression tasks over the
ADReSS testing dataset.

3. PRE-TRAINING DATASETS

In this section, we describe datasets in four domains, i.e., image,
audio, speech, and text. These datasets have been successfully
explored in their domains for enhanced performance of transfer
learning models.

3.1. Image Dataset
The most commonly used large-scale image classification
dataset for pre-training is ImageNet (Deng et al., 2009).
ImageNet (http://image-net.org/) is an image dataset organized
according to the WordNet hierarchy. Each meaningful concept
in WordNet, possibly described by multiple words or word
phrases, is called a “synset.” There are more than 100,000
synsets in WordNet, the majority of which are nouns (80,000+).
ImageNet provides, on average, 1,000 images to illustrate each
synset. Images of each concept are quality-controlled and
human-annotated. ImageNet pre-training has been widely used
in various computer vision tasks, such as fine-grained image
classification (Russakovsky et al., 2015; Fu et al., 2017; Cui et al.,
2018), object detection (Redmon et al., 2016; He et al., 2017), and
sense text detection (Zhou et al., 2017; Wang et al., 2019b).

3.2. Audio Dataset
AudioSet (https://research.google.com/audioset/) (Gemmeke
et al., 2017) is extracted from YouTube videos. It consists of
10-s segments, and each segment is labeled by human effort. All
segments are organized in 632 classes, organized in a hierarchical
structure with a max depth of 6 levels. AudioSet is considered
as a general audio dataset, e.g., the top-level classes include
“Human sound,” “Animal sounds,” “Natural sounds,” “Music,”
“Sounds of things,” “Source-ambiguous sounds,” and “Channel,
environment and background.” The dataset contains 1,789,621
segments (4,971 h) in total. AudioSet is commonly used for

the pre-training of acoustic event detection (Arora and Haeb-
Umbach, 2017) and sound event tagging (Diment and Virtanen,
2017).

3.3. Speech Dataset
LibriSpeech (http://www.openslr.org/12/) (Panayotov et al.,
2015) is a corpus of approximately 1,000 h of 16 kHz read
English speech, prepared by Vassil Panayotov with the assistance
of Daniel Povey. The data are derived from reading audiobooks
from the LibriVox project and has been carefully segmented and
aligned. The typical usage of this dataset is for ASR (Huang
et al., 2020; Zhang et al., 2020). It could also be used for self-
supervised training (Chi et al., 2020; Liu et al., 2020), and transfer
to the downstream task like phoneme classification, speaker
recognition, and sentiment classification.

3.4. Text Dataset
BERT (https://github.com/google-research/bert) dominates NLP
research by learning powerful and universal representation
and utilizing self-supervised learning at the pre-training stage
to encode the contextual information. The representation is
beneficial to performance, especially when the data of the
downstream task is limited. The pre-training datasets for
BERT include the BooksCorpus (Zhu et al., 2015) (800M
words) derived from textbooks and Wikipedia (2500M words)
derived from Wikipedia websites. BERT (Devlin et al., 2018)
and its variants (Lan et al., 2019; Liu et al., 2019; Beltagy
et al., 2020) have been developed using self-supervised training
for downstream tasks, e.g., text classification and question
answering. Longformer (Beltagy et al., 2020) is a variant of
BERT to allow the model to learn long dependencies in pre-
training, and its pre-training databases additionally include one-
third of a subset of the Realnews dataset (Zellers et al., 2020) with
documents longer than 1,200 tokens as well as one-third of the
StoryCorpus (Trinh and Le, 2018).

4. DEEP TRANSFER LEARNING MODEL

Our transfer learning models were built within three steps:
(1) pre-training, (2) fine-tuning, and (3) testing. In the
pre-training step, a model was trained with a large-sized
dataset. In the fine-tuning step, we tuned the model with the
ADReSS training dataset. In the testing step, we evaluated the
model using the ADReSS testing dataset. In the following,
we introduce the transfer learning models based on two pre-
training approaches: a supervised classification approach and a
self-supervised learning approach.

4.1. Supervised Classification Approach:
MobileNet and YAMNet
For this approach, we explored the audio part of the ADReSS
datasets. We observed the ADReSS organizers segmented the
audio data into small pieces by setting the log energy threshold
parameter to 65 dB with a maximum duration of 10 s from
(Haider et al., 2019; Luz et al., 2020). However, there was a
concern that the segmentation may cause critical time-series
information loss. Any smaller speech segments hardly represent
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the overall speech sample. In addition, the speech continuity
is removed by segmentation, making the model inaccurately
capture the time-series characteristics. Thus, our approaches
aimed to accommodate an entire speech sample of each
participant as input and preserve the time-series characteristics
of the speech, similar to works (Hershey et al., 2017; Zhang et al.,
2018).

MobileNet is a lightweight network architecture that
significantly reduces the computational overhead as well as
parameter size by replacing the standard convolution filters
with the depth-wise convolutional filters and the point-wise
convolutional filters, as proposed by Howard et al. (2017). The
total parameters of the MobileNet backbone are of a size 17.2
MB, significantly less than other convolutional neural networks.
Considering the limited size of the speech dataset, we considered
a smaller model with less complexity, such as MobileNet, which
may worth being tested. MobileNet is pre-trained with the
ImageNet dataset for an image classification task. The MobileNet
architecture is shown at the above layer, as shown in Figure 1.
With an RGB image as input, the output is the probability that
the image belongs to each of the 1,000 classes.

MobileNet architecture: The core of MobileNet architecture
is a backbone Convolutional Neural Network (CNN), which
consists of a set of convolution, pooling, and activation
operations. The detailed architecture can be found in the
paper (Howard et al., 2017). We used the full width (1.0)
MobileNet backbone pre-trained on a resolution of 128*128
images. The backbone takes an image as an input, which is 3-
dimensional (h,w, 3)-matrix where h is height, w is width, and
3 represents the RGB channel. The backbone converts an input
of (h,w, 3)-matrix to an output of (h′,w′, 1024)-matrix where
(h′,w′) are functionally related to (h,w), and 1024 represents the
feature channel number, i.e., the depth of the backbone CNN.
The output (h′,w′, 1024)-matrix is then fed to a Global Average
Pooling (GAP) layer for reducing the dimensions of h′ and w′

and obtaining a 1024-dimension feature. A Fully Connected (FC)
layer with 1,000 neurons produces the output according to the
wanted 1,000 classes. Finally, a softmax activation layer is added
to produce the classification results as the probabilities for 1,000
classes that add up to 1.

Transfer learning via MobileNet: MobileNet is pre-trained for
an image classification task where its input is an image, and its
output is probabilities of the classes. To apply transfer learning of
MobileNet to our AD classification task, in the fine-tuning and
testing steps, we need to convert an audio sample to an image
sample and customize the model for the AD/non-AD outputs.

1. Extracting Mel Frequency Cepstral Coefficient (MFCC)
feature maps from audio samples: Mel-frequency cepstral
coefficients have been widely used in speech recognition
research (Muda et al., 2010). Yancheva and Rudzicz (2016) and
Fraser et al. (2016) carried out an acoustic-prosodic analysis
on the Pitt Corpus using 42 MFCC features. We extracted an
MFCC feature map for each participant’s entire speech sample.
The MFCC feature map is denoted as a (p, t)-matrix where the
hyper-parameter p (64) is the MFCC order, and t is related to
the duration of the speech sample. We used the librosa function
with a sampling rate of 22,050, a window size of 2,048, and

a step size of 512. By extracting the MFCC feature maps, we
converted the speech dataset to an image dataset. The advantages
of MFCC feature maps include conversion from speech toMFCC
feature maps can be done automatically; the silent pauses in
the audio data were preserved as a distinctive feature in MFCC
feature maps; and speech from the investigator and filled pauses
from the participant were preserved in MFCC feature maps and
shown to be important (Tóth et al., 2018).While identifying these
audio segments requires expensive human efforts or customized
ASR, we envision the classification model with the input of the
MFCC feature maps may learn and understand the patterns of
the information.

2. Customizing model for the downstream task: Our proposed
model is shown at the bottom layer of Figure 1. Our architecture
employs the pre-trained backbone CNN module from the
MobileNet. Denote the MFCC feature map of the audio sample
as a (p, t, 1)-matrix. To match with the module input, i.e., an RGB
image, we duplicated the MFCC feature map twice and made
the MFCC feature map as a (p, t, 3)-matrix. In this way, we can
feed the MFCC feature map into the backbone CNN module of
the MobileNet in the same way as an RGB image. The output
of the backbone CNN is denoted as a (p′, t′, 1024)-matrix where
(p′, t′) are functionally related to (p, t). We employed a GAP-
2D (two-dimensional) to reduce p′ dimension and t′ dimension
of the matrix. We then employed a fully connected layer and a
softmax activation layer to produce the classification results as
two probabilities for the two classes AD/non-AD that add up to 1.

Transfer learning via YAMNet: While the MobileNet
architecture is pre-trained with the ImageNet dataset, Gemmeke
et al. (2017) pre-trained a similar architecture using the
AudioSet dataset, called YAMNet. The input of YAMNet is
the Mel spectrogram from audio data with dimensions of
(p, t, 1). Compared to MobileNet, YAMNet might better apply
to our downstream task because the pre-training dataset and
the downstream dataset are both audio datasets, and the
input formats to the Backbone CNN in the pre-training/fine-
tuning/testing phase are kept the same, i.e., a feature vector of
(p, t, 1).

4.2. Self-Supervised Learning Approach:
BERT
While the supervised classification approach utilizes labeled
datasets, self-supervised learning approaches take advantage of
unlabeled datasets for pre-training. The removal of the labeling
requirement enables the model to extract knowledge from an
extended range of data sources, e.g., digital books,Wikipedia, and
online news. We propose a Text BERTmodel and a Speech BERT
model for AD classification, as shown in Figure 2.

Transfer learning via Text BERT: BERT (Devlin et al., 2018) is
a milestone in the natural language processing domain. BERT is
pre-trained with BooksCorpus (Zhu et al., 2015) (800M words)
and Wikipedia (2500M words). It adopts two self-supervised
tasks in the pre-training step: Masked Language Model (MLM)
and Next Sentence Prediction (NSP). Specifically, given a pair of
sentences, we first put a special [CLS] token at the beginning
of the first sentence and a special [SEP] token between two
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FIGURE 1 | Supervised classification approach.

sentences. Second, random masking is applied to mask a set
of words with a special [MASK] token. Then the pre-processed
input is fed into the BERT model, which then outputs an
embedding corresponding to each input token. The pre-training
is performed via the two self-supervised tasks: theMLM task aims
to predict the masked words with the context; the NSP task aims
to predict whether the second sentence is followed by the first
sentence in the original dataset. In the fine-tuning and testing

steps, the output embedding of the [CLS] token is used. To apply
BERT to our AD classification task, we added a fully connected
(FC) layer and a softmax activation layer to the output of the
BERT model. The FC layer has two neurons, which stands for
the AD and no-AD classes, respectively.

Transfer learning via Speech BERT: The Speech BERT, named
Mockingjay (Liu et al., 2020), is similar to the Text BERT
except for some differences: The input is the Mel spectrogram
of speech data instead of the word embeddings. The pre-
training task contains only the Masked Acoustic Model (MAM)
task. The input does not have the [CLS] and other special
tokens. Thus, instead of using output embedding of the [CLS]
token for classification, we used output embeddings of all the
tokens. To apply Speech BERT to our AD classification task,
the output of the Speech BERT is fed into a 1D convolutional
layer that convolutes through time dimension, then fed into
a global average pooling layer to obtain the average through
time dimension, and finally fed into an FC layer and a softmax
activation layer.

5. MULTI-MODAL TRANSFER LEARNING

While Text BERT and Speech BERT models analyze text and
audio datasets separately, we explored a multi-modal transfer
learning via a Dual-BERT model, using both text and audio as
inputs.We envision that the text and audio data of a given patient
are highly related, and the outputs could reinforce each other
during the training process. Dual-BERT incorporates two pre-
trained BERT models, one is Text BERT and the other is the

Speech BERT. As shown in Figure 3, the architectures of the
Speech BERT and the Text BERT models remain the same as
in the previous section. We further designed two types of fusion
methods: Add fusion and Concat fusion.We used term “training”
instead of “fine-tuning” in the following, as wemainly considered
the new multi-modal transfer learning. For each fusion method,
we also considered two types of training strategies, separate
training and joint training.

Add fusion model: The outputs of our previous models are
probabilities from the last softmax activation layer. Thus, we
considered an Add fusion that adds up the outputs of the FC
layers of two models, as shown in the upper part of Figure 3.
If the Text BERT and Speech BERT models have consistent
classification results, the Add fusion model outputs the result
with more confidence compared to any of the two single
models. On the other hand, if the two models have inconsistent
classification results, the Add fusion model outputs the result
that receives higher confidence from any of the two models. We
considered two training strategies. (1) (Separate) We train the
Text BERT and Speech BERT with text and audio, respectively.
Then, the Add fusion layer will only be considered during
the testing process. (2) (Joint) We train the Text BERT and
Speech BERT jointly using the joint output from the Add fusion
layer. The difference between these two training strategies is
that the first strategy considers the confidence of the models,
while the second one further considers the complementary
information between text and audio data. The Add fusion part
has no trainable parameters. In the separate training strategy,
the training does not apply to the Add fusion part; in the joint
training strategy, the Add fusion part is involved in the training
process but has no parameters to be learned.

Concat fusion model: Another way to explore the multi-modal
transfer learning is to concatenate the tensors of the Text BERT
and Speech BERT models before the FC layer. As shown in the
bottom part of Figure 3, after the concatenation, the Concat
fusion model has an FC layer with two neurons for classification
of AD/non-AD. In this model, features from text and audio
are better integrated for the classification task. The Concat
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FIGURE 2 | Text BERT and Speech BERT.

fusion model always requires joint training for the additional
FC layer. We have two training strategies. (1) (Separate) We
train the Concat fusion model using three outputs separately.
(2) (Joint) We train the Concat fusion model using the joint
output only.

6. MULTI-TASK TRANSFER LEARNING

Multi-task transfer learning aims to solve multiple learning tasks
at the same time while exploiting commonalities and differences
across tasks. This can result in improved learning efficiency
and enhanced performance for the task-specific models when
compared to training the models separately.

The ADReSS challenge provides both AD/non-AD labels and
MMSE scores for each data sample. In this section, we focused
on the Text BERT as it produces significantly better results than
the Speech BERT. As shown in the upper part of Figure 4, we
first applied transfer learning from the Text BERT to an MMSE
regression task; we placed an FC layer with a single neuron to
the output of the Text BERT, and then added a Leaky ReLU
layer to output the MMSE score. Since the MMSE scores are
non-negative values, we adopted the Leaky Rectified Linear Unit
(ReLU) activation and the mean squared error loss. The bottom
part in Figure 4 shows a multi-task transfer learning where we
put an FC layer with a single neuron for the regression task and
an FC layer with two neurons for the classification task. The
classification task employs the softmax activation layer, and the
regression task employs the Leaky ReLU activation layer. For loss
functions, the classification task uses the cross-entropy loss, and

the regression task uses the mean squared error loss. For training,
we jointly optimized the cross-entropy loss and themean squared
error loss with the corresponding labels.

7. PERFORMANCE EVALUATION

In this section, we provide a comprehensive evaluation of the
proposed deep transfer learning models. We strictly followed the
ADReSS challenge (Luz et al., 2020) using the ADReSS training
and testing datasets.

7.1. Implementation Details
We followed the original implementation of the pre-trained
models. Specifically, the speech BERT and text BERT were
implemented with PyTorch. The MobileNet and YAMNet were
implemented with Tensorflow. We downloaded the pre-trained
parameters of these models from online sources. For the
classification task (AD/non-AD), we used the cross-entropy loss,
and for the regression task (MMSE), we used the mean squared
error loss. We trained our models using the Adam algorithm as
optimizer (Kingma and Ba, 2014) with batch size 8 and a small
learning rate of 1e-6 for models that do not use Speech BERT. For
models that use Speech BERT, as our Graphics Processing Unit
(GPU) resource has 32 GB memory (NVIDIA TESLA V100), we
used batch size 1 to adapt our training process to the limited
memory resources. We employed a fine-tuning strategy and
trained all layers, including those in the pre-trained models.
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FIGURE 3 | Multi-modal transfer learning using Text/Speech BERT (Dual BERT).

FIGURE 4 | Multi-task learning using Text BERT.

7.2. Training Strategy
Our training strategy for all models had five rounds. In
each round, we used the ADReSS training dataset to train
a model with a maximum of 2,000 epochs. The training
stopped before reaching 2000 epochs only if the training
loss was less than a pre-defined threshold of 1e-6. After the

training, we selected the epoch with the smallest training
loss and obtained the performance result over the ADReSS
testing dataset using the selected epoch. We repeated the
above process for five rounds, obtained five results, and
reported their mean and standard deviation. We consider that
the mean and standard deviation represent the effectiveness
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of the model. We also reported the best result among all
epochs in five rounds to reveal the maximum potential of
the models.

7.3. Evaluation Metrics
For the classification task, we employed evaluation metrics of
accuracy TN+TP

N , precision π =
TP

TP+FP , recall ρ =
TP

TP+FN , and

F1 score 2πρ
π+ρ

, where N is the number of participants, TP, FP,
and FN are the numbers of true positives, false positives, and
false negatives, respectively. For the regression task, we employed
Root-Mean-Square Error (RMSE), the same metric used in the
baseline paper provided by the ADReSS challenge.

7.4. Evaluation of Deep Transfer Learning
Models
In this section, we reported the performance results of our
transfer learning models with an input of audio data or text
data. MobileNet, YAMNet, and Speech BERT were pre-trained
with ImageNet, AudioSet, and LibriSpeech datasets, respectively,
and were used to analyze CTP audio data. BERT base and
BERT large were pre-trained with BooksCorpus, Wikipedia,
and Longformer were pre-trained with additional Realnews and
StoryCorpus. They were used to analyze CTP text data. To
show the advantage of transfer learning, we also reported the
performance results of the models without pre-training. The
performance results are shown in Table 2.

MobileNet: The classification accuracy of MobileNet is 59.00
± 5.66% without pre-training or 58.8 ± 3.49% with pre-
training. Both MobileNet models achieved low accuracy, and the
pre-training process surprisingly lowered the performance. We
concluded the main reason is the knowledge difference between
the pre-training image dataset and the CTP audio dataset.
However, we found that the pre-training helped produce stable
results with a lower standard deviation (from 5.66 to 3.49%).
In addition, we found that Best accuracy reaches 77.08% with
pre-training, much higher than 72.91% without pre-training. In
other words, the model with pre-training has the potential to
achieve higher accuracy, but the model cannot be fine-tuned to
the optimal status due to the limited downstream dataset.

YAMNet: In general, YAMNet would be more effective than
the MobileNet for our downstream task because the pre-training
dataset in YAMNet is AudioSet, which is more similar to the
CTP audio dataset. We confirmed this conjecture with our
evaluation results of YAMNet. The classification accuracy of
YAMNet without pre-training is 53.8 ± 6.88%, and the accuracy
of YAMNet with pre-training is increased to 66.2 ± 4.79%. The
YAMNet with pre-training resulted in a significant improvement
of 12.4% compared to the same model without pre-training,
which demonstrates the similarity between the AudioSet and
the CTP audio dataset. In addition, the pre-training enabled the
YAMNet to produce more stable outputs (from 6.88 to 4.79%)
and higher Best accuracy (from 79.17 to 83.33%).

Speech BERT: Speech BERT, similar to Text BERT, employs
a self-supervised learning approach. The pre-training process
employs the MAM task. Speech BERT has a length restriction
problem of max positional encoding in pre-training of 5,000
tokens (about 1 min). To solve this problem, in training, if the

audio sample produces more than 5,000 tokens, we randomly
choose a window to sample the audio for 5,000 tokens. And in
the testing, we used a non-overlapped sliding window technique
to sample the whole audio and averages the classification
probabilities corresponding to all windows. We further filtered
the audio data of the investigator to reduce the audio length,
while forMobileNet/YAMNet, both audio data of the investigator
and participant were kept as input.

We observed that the Speech BERT model with pre-training
resulted in less accuracy 63.33%, compared to 66.67% from the
model without pre-training. This finding may have been due to
the Speech BERTmodels employing a self-supervisedMAM task,
which is significantly different from our downstream task (i.e.,
classification). Alternatively, the self-supervised MAM task aims
to explore the strong correlation between the audio segments.
While such a correlation in the transcript is explicit due to the
language model, the correlation among audio segments might
be more complicated and more challenging to be learned. In
addition, the pre-training process helps to increase the potential
of the model by providing a higher Best accuracy of 79.17% (>
77.08% without pre-training).

Text BERT: We considered three Text BERT models,
i.e., BERT base and BERT large (Devlin et al., 2018), and
Longformer (Beltagy et al., 2020). The BERT base model has
12 Transformer encoders, and the BERT large model has
24 Transformer encoders. While the BERT base and BERT
large were pre-trained with a max length of 512 tokens, the
Longformer were pre-trained with a max length of 4,096 tokens.
Therefore, when our text sample from ADReSS datasets is
converted to be larger than 512 tokens, truncation is required in
the BERT base and large models. In the Longformer model, all
text samples from ADReSS datasets can be encoded within 4,096
tokens, and thus truncation is not needed. In addition, the pre-
training databases of Longformer additionally include longer text
samples from Realnews and StoryCorpus. To adapt the ADReSS
text dataset to the Text BERT models, we removed the symbols
that do not appear in the pre-training dataset but appear in the
ADReSS text dataset.

We found the performance results of all Text BERT models
are better than the previous models on audio data. Without
pre-training, BERT base achieved 76.67%. With pre-training,
BERT base achieved 80.83%, BERT large achieves 81.67%,
and Longformer achieves 82.08%. The corresponding Best
accuracy increased from 81.25% (BERT base without pre-
training) to 85.42% (BERT base), 87.50% (BERT large), and
89.58% (Longformer). These findings suggest that the Text
BERT models show significantly better performance because
of the similarity of the pre-training text dataset and the CTP
text dataset. In addition, the Longformer resulted in improved
performance because it supports the input of longer text samples
without truncation and has been pre-trained with additional
similar datasets.

7.5. Evaluation of Multi-Modal Transfer
Learning
Focusing on evaluating multi-modal transfer learning, we
expected the joint training using both audio data and text data to
improve the performance results of previous models. In Table 3,
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TABLE 2 | AD Classification results using audio or text and with or without pre-training.

Model Pre-training dataset Classes Precision % Recall % F1 % Accuracy % Best %

Audio Luz et al., 2020 –
non-AD 67 50 57

62 –
AD 60 75 67

MobileNet

–
non-AD 60.40 ± 7.86 58.40 ± 22.76 56.20 ± 13.79

59.00 ± 5.66 72.91
AD 61.40 ± 6.89 59.80 ± 21.07 57.60 ± 10.54

ImageNet
non-AD 72.80 ± 6.97 28.00 ± 8.15 40.40 ± 9.85

58.80 ± 3.49 77.08
AD 55.80 ± 2.48 90.40 ± 1.96 69.00 ± 1.67

YAMNet

–
non-AD 52.20 ± 11.74 19.80 ± 22.61 24.60 ± 22.81

53.80 ± 6.88 79.17
AD 53.40 ± 5.95 87.60 ± 9.56 65.80 ± 1.33

AudioSet
non-AD 69.60 ± 6.80 59.20 ± 7.73 63.40 ± 5.57

66.20 ± 4.79 83.33
AD 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84

Speech BERT

–
non-AD 67.74 ± 3.69 64.17 ± 3.34 65.82 ± 2.68

66.67 ± 2.95 77.08
AD 65.84 ± 2.43 69.16 ± 5.65 67.39 ± 3.71

LibriSpeech
non-AD 66.13 ± 4.12 55.00 ± 4.86 59.94 ± 3.78

63.33 ± 3.12 79.17
AD 61.48 ± 2.76 71.67 ± 4.86 66.12 ± 3.08

Text Luz et al., 2020 –
non-AD 70 87 78

75 –
AD 83 62 71

BERT base

–
non-AD 78.12 ± 1.98 74.17 ± 3.12 76.05 ± 1.82

76.67 ± 1.56 81.25
AD 75.47 ± 2.08 79.17 ± 2.63 77.23 ± 1.50

BooksCorpus/Wiki
non-AD 78.46 ± 1.89 85.00 ± 2.04 81.60 ± 1.96

80.83 ± 2.04 85.42
AD 83.64 ± 2.22 76.67 ± 2.04 80.00 ± 2.13

BERT large BooksCorpus/Wiki
non-AD 83.05 ± 5.12 80.00 ± 3.12 81.40 ± 3.09

81.67 ± 3.34 87.50
AD 80.65 ± 2.66 83.33 ± 5.89 81.89 ± 3.64

Longformer
BooksCorpus/Wiki/

Realnews/Stories

non-AD 77.87 ± 3.75 90.00 ± 2.04 83.44 ± 2.33
82.08 ± 2.83 89.58

AD 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55

AD, Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.

TABLE 3 | AD Classification results of multi-modal learning using both audio and text.

Model Fusion / Training Classes Precision % Recall % F1 % Accuracy % Best %

Speech BERT –
non-AD 66.13 ± 4.12 55.00 ± 4.86 59.94 ± 3.78

63.33 ± 3.12 79.17
AD 61.48 ± 2.76 71.67 ± 4.86 66.12 ± 3.08

BERT base –
non-AD 78.46 ± 1.89 85.00 ± 2.04 81.60 ± 1.96

80.83 ± 2.04 85.42
AD 83.64 ± 2.22 76.67 ± 2.04 80.00 ± 2.13

Dual BERT

Add/Joint
non-AD 78.63 ± 1.77 85.83 ± 2.04 82.07 ± 1.79

81.25 ± 1.86 85.42
AD 84.41 ± 2.13 76.67 ± 2.04 80.35 ± 1.95

Add/Separate
non-AD 78.96 ± 1.57 87.50 ± 2.64 82.99 ± 1.68

82.08 ± 1.66 85.42
AD 86.05 ± 2.60 76.67 ± 2.04 81.06 ± 1.69

Concat/Separate
non-AD 80.39 ± 1.56 85.00 ± 3.33 82.57 ± 1.26

82.08 ± 1.02 85.42
AD 84.21 ± 2.52 79.17 ± 2.63 81.54 ± 1.01

Concat/ Joint

(No pre-train speech)

non-AD 80.36 ± 2.06 85.00 ± 2.04 82.59 ± 1.56
82.08 ± 1.66 87.50

AD 84.10 ± 1.91 79.17 ± 2.63 81.53 ± 1.83

Concat/Joint

(Longformer)

non-AD 78.83 ± 4.18 88.33 ± 4.09 83.15 ± 1.79
82.08 ± 2.12 89.58

AD 86.95 ± 3.38 75.83 ± 6.12 80.79 ± 2.74

Concat/Joint
non-AD 80.02 ± 1.16 86.67 ± 1.67 83.20 ± 1.01

82.50 ± 1.02 85.42
AD 85.48 ± 1.46 78.34 ± 1.67 81.74 ± 1.10

Concat/Joint

(BERT large)

non-AD 83.62 ± 4.25 82.50 ± 5.53 82.80 ± 1.76
82.92 ± 1.56 87.50

AD 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86

YAMNet +

BERT base
Concat/Joint

non-AD 78.06 ± 2.53 85.83 ± 2.04 81.76 ± 2.22
80.83 ± 2.43 89.58

AD 82.70 ± 3.65 82.50 ± 5.53 82.45 ± 3.07

AD, Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.
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we list the performance results of 10 models. The first one is
BERT base, and the second one is Speech BERT, which was
evaluated in the previous section. Their performance results will
serve as a baseline. The next sevenmodels are variants of the Dual
BERT models. Their architectures are a combination of a Speech
BERT model and a Text BERT model. As discussed in section 5,
Dual BERT can employ the Add fusion or the Concat fusion to
combine the Speech BERT and the Text BERT, and can be trained
with a separate training strategy or a joint training strategy. The
last multi-modal transfer learning replaced Speech BERT with
YAMNet as YAMNet achieves an accuracy (66.2%) higher than
Speech BERT (63.33%).

The following observations were made:

• All seven Dual BERT models achieved higher classification
accuracy than the two baseline models, confirming that the
text data and audio data have complementary information that
can be jointly learned by themodel for improved performance.

• Concat fusion achieved higher classification accuracy than
Add fusion. While the Add fusion picks one model with
higher confidence in the classification results, the Concat
fusion aims to merge the features of both text data and
audio data for a hybrid representation. The performance gain
of the Concat fusion further confirms the complementary
information between the text data and audio data.

• From the previous analysis, we found the Speech BERT
without pre-training achieved a higher accuracy (66.67%)
than the Speech BERT with pre-training (63.33%). Thus, we
evaluate a multi-modal transfer learning model using the
Speech BERT without pre-training and BERT base with pre-
training. As shown inTable 3, we confirm that the pre-training
of Speech BERT helps the multi-modal transfer learning to
achieve a higher accuracy (82.50%), compared to the Dual
BERT without pre-training on speech model (82.08%).

• From the previous analysis, we found BERT large (81.67%)
and Longformer (82.08%) outperformed BERT base (80.83%).
Thus, we replaced BERT base with BERT large and
Longformer in the Dual BERT.While themulti-modal transfer
learning using BERT large achieved the highest accuracy
(82.92%), the multi-modal transfer learning using Longformer
achieves the highest Best accuracy (89.58%).

• From the previous analysis, we found the YAMNet yielded the
highest accuracy result (66.20%) among all the models using
audio data. Thus, we evaluated amulti-modal transfer learning
using the YAMNet and BERT base. However, this model did
not outperform any of the Dual BERT models.

7.6. Evaluation of Multi-Task Transfer
Learning
Relation between MMSE regression and AD classification: Given
the ADReSS dataset, we explored a threshold-based strategy to
understand the relation between the MMSE scores and AD/non-
AD labels. We set a threshold T on MMSE scores to infer
AD/non-AD status. If a patient’s MMSE score is less than T,
the patient’s data are labeled with AD; if a patient’s MMSE score
is larger or equal to T, the patient’s data are labeled with non-
AD. We reported the performance result of the threshold-based

FIGURE 5 | Threshold-based strategy (0–30).

TABLE 4 | Threshold-based strategy (20–30).

T Accuracy (Training) Accuracy (Testing) %

20 86.92 75.00

21 88.79 79.17

22 89.72 81.25

23 90.65 83.33

24 92.52 87.50

25 95.33 87.50

26 97.20 89.58

27 96.26 89.58

28 95.33 91.67

29 87.85 83.33

30 71.03 70.83

The highest accuracy in training, the highest accuracy in testing, and the testing accuracy

corresponding to the highest accuracy in training are in bold.

strategy over the ADReSS training/testing dataset separately in
Figure 5 and Table 4. We found that for the ADReSS training
dataset, the highest accuracy is 97.2% at a threshold of 26, and
for the ADReSS testing dataset, the highest accuracy is 91.67%
at a threshold of 28. If we adopt the threshold of 26 from the
training dataset and apply it to the testing dataset, the threshold-
based strategy results in an accuracy of 89.58%, which is the
upper bound that multi-task transfer learning theoretically can
achieve. According to the CTP dataset description (Becker et al.,
1994), the patients with AD have an MMSE score in the range
of 8–30, while the patients with non-AD have an MMSE score
in the range of 26–30. The AD labels are determined from seven
cognitive domains, including memory, construction, perception,
attention, language, orientation, and executive functions. In
comparison, the MMSE is a 30-point widely used cognitive
screening measure, taking about 10 min to administer. In our
evaluation, given the limited number of data samples, a small
number of inconsistent cases might produce a negative impact on
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TABLE 5 | Classification and regression results of multi-task transfer learning using CTP text.

Model Pre-training Settings Accuracy % Best % RMSE Best RMSE

Text Luz et al., 2020
– Classification 75 –

– Regression 5.20 –

BERT base

No

Classification 76.67 ± 1.56 81.25 – –

Regression – – 5.18 ± 0.04 4.65

Multi-task 78.75 ± 1.56 83.33 4.70 ± 0.02 4.39

Yes

Classification 80.83 ± 2.04 85.42 – –

Regression – – 4.15 ± 0.01 4.06

Multi-task 80.83 ± 1.56 87.50 4.96 ± 0.01 4.20

AD, Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds. RMSE: mean and standard deviation of

root-mean-square errors of 5 rounds. Best RMSE: lowest RMSE of all epochs in 5 rounds.

the joint training process when the outputs of single-task models
are highly consistent with the corresponding labels/scores.

We focused on evaluating the proposed multi-task transfer
learning, which is built on the BERT base model with an input
of the CTP text data. One challenge of the multi-task transfer
learning model is the imbalanced loss from the AD classification
task and the MMSE regression task. Denote the regression loss
(mean squared error) as lmse and the classification loss (cross-
entropy) as lce. We define the total loss of the multi-task transfer
learning model as l = λlmse + lce, where λ is a balance factor to
avoid the unbalanced impact between the classification loss and
regression loss. In our experiment, we set λ = 0.01.

We evaluated a regression model and a multi-task transfer
learning model using BERT base. As shown in Table 5, when
using BERT base without pre-training, the multi-task transfer
learning model outperformed the single-task models, i.e., the
classification accuracy is increased from 76.67 to 78.75%, and
the RMSE decreased from 5.18 to 4.70. The evaluation results
confirmed that the two tasks help each other to achieve a better
performance, especially when both single-task models have room
to be improved. In comparison, when using BERT base with
pre-training, the multi-task transfer learning model introduced
limited performance gain in classification and introduced a
negative impact in the regression model. Specifically, the average
classification accuracy remained the same at 80.83%, the standard
deviation decreased from 2.04 to 1.56%, and Best accuracy is
increased from 85.42 to 87.50%, close to the accuracy of 89.58%
from the threshold-based strategy. For classification, multi-task
learning kept the training more stable and increased the maximal
potential of the model, and the MMSE scores provide a limited
positive impact on the AD classification task. For regression,
RMSE increased from 4.15 to 4.96, which reveals a negative
impact of the joint training. This may have been due to the
inconsistent cases of MMSE scores and AD/non-AD labels,
and the MMSE regression task is more fined-grained and thus
received a stronger impact from the inconsistent cases.

7.7. Summary of Best Cases Using Transfer
Learning
Table 6 shows the best cases of our experiments of text-based,
audio-based, and multi-modal transfer learning models. The
best case of the audio model achieved 66.20%, while the best
case of the text model achieved 82.08%. We consider that the
performance gain of the text model may be due to the high

similarity between the pre-training text dataset and the CTP
text dataset. In addition, the multi-modal model using both
audio and text achieved the highest accuracy of 82.92% in its
best case, demonstrating that audio and text data provided
complementary information. Our multi-task model achieved
an accuracy of 80.83%, lower than the accuracy of the text-
based model and the multi-modal model. We consider that the
performance degradation of the multi-task model may be due
to the inconsistency between labels and scores that were used in
multiple tasks.

8. CONCLUSIONS

We explored transfer learning techniques for an AD classification
task and an MMSE regression task. The transfer learning models
were pre-trained with general large-sized datasets, and fine-tuned
and tested using the ADReSS datasets. Our models had minimal
customization and mostly relied on the training data and fine-
tuning process to incorporate the knowledge of the downstream
task into the pre-trained model. From our comprehensive
evaluation, we drew the following three conclusions.

8.1. Transfer Learning on Text Data Results
in High Accuracy, but Transfer Learning on
Audio Data Might Have More Potential
Our findings showed that the transfer learning on text data
achieved high accuracy in the downstream tasks and always
outperformed the transfer learning on audio data. This suggests
that the transfer learning model understands the text better
than the audio. We considered the text data are generated from
the audio data through human transcribing effort. Thus, the
additional information that the text data contain, but not the
audio data contain, might be the transcriber’s knowledge in
the transcribing process. The transcriber extracts task-specific
information, such as the CTP and information units in the
photo. However, while the text data implicitly contain the
transcriber’s knowledge, the audio data do not contain. And
our training process of the transfer learning models on audio
data does not take advantage of the transcriber’s knowledge.
We expect that the task-specific information is highly useful,
and our transfer learning models on audio data can be further
improved by integrating such information. In addition, different
parts of the text might be highly relevant, but the relevance
of different audio segments might be unclear and difficult to
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TABLE 6 | The best classification cases of the audio-based, text-based, and multi-modal models.

Input Model (with pre-training) Classes Precision % Recall % F1 % Accuracy % Best %

Audio YAMNet
non-AD 69.60 ± 6.80 59.20 ± 7.73 63.40 ± 5.57

66.20 ± 4.79 83.33
AD 64.40 ± 3.93 73.40 ± 8.82 68.60 ± 4.84

Text Longformer
non-AD 77.87 ± 3.75 90.00 ± 2.04 83.44 ± 2.33

82.08 ± 2.83 89.58
AD 88.14 ± 2.09 74.17 ± 5.53 80.44 ± 3.55

Audio + Text Dual BERT Concat / Joint (BERT large)
non-AD 83.62 ± 4.25 82.50 ± 5.53 82.80 ± 1.76

82.92 ± 1.56 87.50
AD 83.04 ± 3.97 83.33 ± 5.89 82.92 ± 1.86

AD: Alzheimer’s disease. Accuracy: mean and standard deviation of results of 5 rounds. Best: highest accuracy of all epochs in 5 rounds.

be learned by the proposed models. Thus, we concluded that
the low accuracy of the transfer learning on audio data was
likely observed because the introduced pre-trained models did
not extract good representation from the audio data from the
downstream perspective. However, we envision that the future
large-sized speech datasets might contain audio data and auto-
translated text data via ASR. For example, the larger CTP dataset
WLS (Herd et al., 2014) contains text data from Kaldi ASR.
Thus, our future work on transfer learning aims to explore a
better pre-trained model, including supervised ASR models and
self-supervised audio models.

8.2. Multi-Modal Transfer Learning Reveals
Complementary Information of Text and
Audio
Our multi-modal transfer learning introduced a slight but not
significant improvement in terms of accuracy, demonstrating
that the audio and text data provide complementary information.
Specifically, while the text model alone already achieved high
accuracy, adding the analysis of audio data can improve
performance results almost in every case. More importantly, if we
consider that the text data contain semantic information only, the
complementary information that the audio data contain, but not
the text data contain, might be the non-semantic information,
such as filled pause, silent pause, and other implicit features. The
non-semantic information may or may not be used to implement
effective classification alone, but they should be useful if they are
jointly analyzed with the semantic information. We envision that
the model can be improved if it learns the positional information
of both semantic and non-semantic features, e.g., the pause
information between words or between sentences.

8.3. Multi-Task Transfer Learning Reveals
Positive and Negative Impacts on AD
Classification and MMSE Regression
Our multi-task transfer learning of the classification and
regression tasks yielded significantly better performance when

both single-task models did not perform well. The performance
gain is obtained due to the consistency between most MMSE
scores and the AD/non-AD labels. However, when the outputs
of the single-task models are highly consistent with the
corresponding labels/scores, the performance of multi-task
learning declined due to a small number of samples with
inconsistent scores and labels. This suggests the need to
investigate the meaning behind the AD classification task and
the MMSE regression task. The AD/non-AD labels seem coarse-
grained, but they are generated by evaluating patients on several
cognitive domains. The MMSE is less accurate and considered a
screeningmeasure of global cognitive functioning.We confirmed
that such inconsistency existed by exploring a threshold-based
strategy on the ADReSS training and testing datasets. Thus, we
considered that multi-task transfer learning produces a limited
impact on accuracy improvement due to the inconsistency
between labels and scores. In conclusion, we believe that the
deep transfer learning techniques need to be simple, comparable,
and applicable to newer tasks, larger datasets, and heterogeneous
labels to produce a long-lasting impact in dementia research.
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Alzheimer’s disease (AD) is a pervasive neurodegenerative disease that affects millions
worldwide and is most prominently associated with broad cognitive decline, including
language impairment. Picture description tasks are routinely used to monitor language
impairment in AD. Due to the high amount of manual resources needed for an
in-depth analysis of thereby-produced spontaneous speech, advanced natural language
processing (NLP) combined with machine learning (ML) represents a promising
opportunity. In this applied research field though, NLP and ML methodology do
not necessarily ensure robust clinically actionable insights into cognitive language
impairment in AD and additional precautions must be taken to ensure clinical-validity and
generalizability of results. In this study, we add generalizability through multilingual feature
statistics to computational approaches for the detection of language impairment in AD.
We include 154 participants (78 healthy subjects, 76 patients with AD) from two different
languages (106 English speaking and 47 French speaking). Each participant completed
a picture description task, in addition to a battery of neuropsychological tests. Each
response was recorded and manually transcribed. From this, task-specific, semantic,
syntactic and paralinguistic features are extracted using NLP resources. Using inferential
statistics, we determined language features, excluding task specific features, that are
significant in both languages and therefore represent “generalizable” signs for cognitive
language impairment in AD. In a second step, we evaluated all features as well as the
generalizable ones for English, French and both languages in a binary discrimination
ML scenario (AD vs. healthy) using a variety of classifiers. The generalizable language
feature set outperforms the all language feature set in English, French and the multilingual
scenarios. Semantic features are the most generalizable while paralinguistic features
show no overlap between languages. The multilingual model shows an equal distribution
of error in both English and French. By leveraging multilingual statistics combined with
a theory-driven approach, we identify AD-related language impairment that generalizes
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beyond a single corpus or language to model language impairment as a clinically-relevant
cognitive symptom. We find a primary impairment in semantics in addition to mild
syntactic impairment, possibly confounded by additional impaired cognitive functions.

Keywords: Alzheimer’s disease, dementia, spontaneous speech, language impairment, picture description,
natural language processing, explainability, multilingual machine learning

INTRODUCTION

Alzheimer’s disease (AD) is a pervasive neurodegenerative
disease that affect millions worldwide and is the
most recognizable through its primarily cognitive
syndrome—dementia. From 2008 to 2018, over 200 medical
trials failed to develop a cure for AD dementia (Ferreira et al.,
2018) emphasizing that early detection and intervention is still
the best course for managing AD.

AD dementia is most prominently associated with
heterogeneous and broad cognitive impairment; the typical
and earliest-observable hallmarks are impaired memory and
executive functions (Buckner, 2004). However, language
impairments have been reported occurring in preclinical AD
as well as mild, moderate, and severe AD dementia (Kempler,
1995; Klimova et al., 2015) possibly providing a window for
screening, continuous monitoring and disease management
that can help improve quality of life (Taler and Phillips, 2008;
Le et al., 2011; Berisha et al., 2015; Klimova et al., 2015). As
language is a pervasive aspect of daily living, language-based
AD dementia assessment is ecologically valid and, from the
patient perspective, one of the least intrusive ways to assess
symptoms of AD dementia. This situates language impairment
as an interesting behavioral biomarker from both a clinical and
patient perspective (Ferris and Farlow, 2013).

Evidence for language impairment in AD dementia
stems from studies using a variety of assessments ranging
from structured, clinically-validated tasks to unstructured
conversation (for an overview, see Szatloczki et al., 2015). An
example of a structured task would be a naming task where a
person is shown images on cards and asked to name the object.
However, naming tasks do not represent the structure or nuance
of natural language. In comparison, an unstructured clinical
interview between a clinician and patient produces spontaneous
speech in its full variance but is difficult and costly to compare
and evaluate for minimal changes in cognition, including
language, on a qualitative level. Therefore, many reported studies
use a standardized experimental setup to elicit spontaneous
speech from subjects; often, this is done by picture description
tasks (for an overview, see Mueller et al., 2018). In the middle of
this spectrum, the picture description task is a clinically-validated
task where a patient is asked to describe a standardized picture.
This produces spontaneous speech about an anticipated set of
topics that is comparable among populations.

With an emphasis on available picture description data, AD
detection has been a popular field for applied automatic speech
processing and advanced natural language processing (NLP).
The goal of such studies is to ultimately discriminate between
a form of dementia and healthy control subjects (HC). In a

fully automatic system, an audio recording is automatically
transcribed with automatic speech recognition (ASR; König et al.,
2015). This creates two sources of information from the file:
(1) the sound recording; and (2) the text transcription. To
model these sources of information, features are either implicitly
represented (Orimaye et al., 2014) or explicitly engineered to
automate clinical qualitative analysis (Fraser et al., 2016) and
extracted from both components of the task. These features are
then used to train supervised machine learning (ML) classifiers
to discriminated conditions between a pathological patient group
and healthy subjects (Yancheva et al., 2015; Yancheva and
Rudzicz, 2016; Fraser et al., 2019).

These recent computational approaches represent significant
advances for a better understanding of the AD dementia-related
language impairment and including the technical challenge
to efficiently assess spontaneous speech, but we argue that
there are still multiple caveats. With advanced computational
techniques and ML methods, there is an increased complexity
added to understand the classifiers’ decisions and the entailed
clinical assumptions. In other words, good ML performance
alone does not necessarily entail clinical evidence for language
impairment as a cognitive symptom in AD dementia. Additional
methodological precautions must be taken to ensure that
findings are clinically-valid, generalizable and do not over
fit to a single corpus or language. Hence, limitations in
current research have been attributed to lacking standardization
and comparability between diagnostic settings as well as a
growing gulf between how computational features actually model
clinically-observable change (de la Fuente Garcia et al., 2020).
The result being a lack of translation between NLP research and
clinical application.

We state, that a major research gap is present between
the clinical understanding of language impairment (as a
neurocognitive function impairment) apparent in everyday
spontaneous speech and recent NLP techniques used together
with ML for speech-based classification of AD. To overcome
this, we will: (1) investigate automatically extracted NLP features
from spontaneous picture descriptions with respect to their
ability in robustly capturing clinically valid AD-related language
impairment; and (2) train robust ML models capturing cognitive
language impairment in AD with afore-identified generalizable
and explainable NLP features.

BACKGROUND

In order to model language impairment in AD, we first
investigate which subprocess of language are impaired as
defined by clinical literature. Language impairment in AD
dementia is characterized by declining semantic and pragmatic
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processes and reduced syntactic complexity. Semantic processes
refer to the meaning of language. A reduction in semantic
processes is often indicated by difficulty finding a specific
word, loss of comprehension, finding the incorrect word, using
ambiguous referents, creating new words, and loss of verbal
fluency. Pragmatic processes refer to adapting language to a
specific situation. Pragmatic deficits can result in a person
with AD dementia language impairment speaking too loudly,
speaking at in appropriate times, repeating themselves or
digressing from the topic. Syntactic processes are associated
with the underlying structure of language and sometimes
grouped together with grammaticality. In early stages,
syntactic processes and speech processes remain preserved
(Savundranayagam et al., 2005; Ferris and Farlow, 2013;
Klimova et al., 2015). However, complexity of syntax in written
language has been shown to be significantly associated with
cognitive impairment (Aronsson et al., 2020). In addition, ML
classification experiments have identified syntactic impairment
in the AD Dementia groups (Fraser et al., 2016). Beyond
identifying known language impairment, it is crucial to
consider that speech and language processes do not occur
in isolation and are intertwined with other cognitive and
physical processes.

Impaired Language vs. Impaired Speech
Impaired speech is the physical process of speaking involving
the lungs, trachea, vocal chords and mouth whereas impaired
language refers to deficits in the cognitive process of forming
language with structure and meaning. While ML approaches
are a powerful tool to estimate the utility of spontaneous
speech features, interpreting them in a neuropsychological sense
remains challenging. Although speech features are extracted
from spoken language, this does not necessarily entail that
they reflect language as a neurocognitive function as speech is
confounded with multiple neurocognitive processes as well as
gender, age and culture. As a result, not all well discriminating
speech features can be assumed as evidence for the cognitive
aspects of language deficits in AD dementia.

Compound Cognitive Processes and the
Picture Description Task
Cognitive, language, and speech processes are interdependent
employing multiple aspects of cognition: retrieval from semantic
and episodic memory, sustaining and dividing attention for error
monitoring, as well as working memory for syntax production
(Mueller et al., 2018). For instance, inability to recall a specific
word—a semantic deficit—can result in a person with AD not
being able to maintain concentration on the task—a pragmatic
issue (Ferris and Farlow, 2013).

Since spontaneous descriptions of pictures are a compound
cognitive performance of multiple neurocognitive functions and
do not purely represent language impairment, when modeling
impaired language processes embedded in speech, additional
theoretical guidance and architecture within the ML experiments
are needed to interpret speech-based features. It is not safe to
assume that all well-discriminatingML features (in an AD vs. HC
setup) are intuitively explainable, or even relevant, with respect

to underlying cognitive processes. Spontaneous speech from the
picture descriptions task is a compound of cognitive functions
including language. Therefore, careful feature curation is needed
to ensure that features are truly measuring language impairment
and not just task performance.

Natural Language Processing and the
Picture Description Task
Most qualitative analyses of spontaneous speech picture
descriptions try to model cognitive impairment by leveraging
a variety of computationally extracted features. Calz et al.
(2021) reviewed 51 studies for dementia detection from
the very common Cookie Theft Picture Description Task
(CTP; Goodglass et al., 2001), collected and split 87 features
into: rhythmic, acoustic, lexical, morpho-syntactic, and
syntactic subgroups. Fraser et al. (2016) engineered features
and categorized them into: part of speech, syntactic,
grammatical constituency, psycholinguistics, vocabulary
richness, information content, repetitiveness, and acoustic
subgroups. Using factor analysis, they conclude on findings
of semantic impairment, syntactic impairment, information
impairment, and acoustic abnormality. For our analysis, we
build off this finding to create four feature subsets: task-specific,
semantic, syntactic and paralinguistic features (see also Figure 1).
While it is arguably impossible to fully disambiguate each feature
into a single category (Savundranayagam et al., 2005; Ferris
and Farlow, 2013), we argue to evaluate features based on the
following structure.

Task-Specific Features
In clinical practice, the CTP task is scored by counting the
number of unique entities that a person mentions in the picture,
referred to as information units (IUs). The individual counts of
IUs in the CTP task (e.g., the number of times someone says
cookie) are often used in automatic classification scenarios for
cognitive impairment (Zraick et al., 2011; Fraser et al., 2016, 2019;
Eyigoz et al., 2020). However, we argued that these individual
counts are not indicative of semantically-motivated language
impairment but rather represent task-specific performance or
task completion. This is underpinned by the finding that most
of the individual IU count features are not correlated with other
classic psychometric language function assessments (Kavé and
Goral, 2016). Fraser et al. (2016) found that including these
features in ML experiment could be explained by information
impairment as well as semantic impairment and represents a
joint effort of multiple neurocognitive functions. In addition,
IU count-based features are currently recognized as being
task-specific also in state-of-the-art work on this topic (Robin
et al., 2020). Thus, these features are treated as a measurement
of general task performance in this study and not as indications
of language impairment.

Semantic Features
It is generally accepted that one of the earliest characterizable
impairments caused by AD dementia are semantic processes
(Appell et al., 1982; Martin and Fedio, 1983; Bucks et al., 2000;
Savundranayagam et al., 2005; Ferris and Farlow, 2013; Klimova
et al., 2015). When modeling semantics, features are engineered
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FIGURE 1 | A schematic overview of feature kinds that are typically extracted from spontaneous speech picture descriptions. Some of them involve extensive
pre-processing steps such as automatic speech recognition (ASR), part of speech tagging or sentence parsing and additional linguistic resources for calibration,
others not.

to capture what is being said. In the CTP task, the semantics
are constrained to what is happening in the image, allowing
features to be extracted in an automatic and anticipated fashion.
Here, semantic features are defined in the CTP as the high-level
grouping of named IUs, commonly used by clinicians use to
evaluate the task, and not the individual count of each IU. As
an example, the number of times the patient says ‘‘girl’’ is not a
generalizable representation of semantics but the total number of
named IUs in the image can be used to measure ability to explore
the semantic space. It has been shown that semantic measures,
usually implemented in predefined IUs that represent the content
of the to-describe picture, yield across the board good results
in classifying between AD dementia and HC (for a review, see
Mueller et al., 2018). Previous studies have reported that the AD
group reports generic IU features (e.g., girl) without exploring
more specific terms (e.g., sister, daughter; Eyigoz et al., 2020).We
expect semantic impairment to be prevalent and evident between
corpora and languages.

Syntactic Features
In this automatic scenario, syntactic features are engineered
to represent the structure of language. This can manifest in
a quantifiable way such as differences of sentence complexity
or increased use of certain parts of speech. Other studies have
reported significant AD dementia-related language impairments
from picture descriptions as measured by syntactic features
(Lyons et al., 1994; Kempler et al., 1998; Ahmed et al.,
2013; Fraser et al., 2016; Yancheva and Rudzicz, 2016). This
representation of language requires language specific resources
in order to be calculated. We hypothesize these features to be
moderately language dependent but some features to represent
syntactic impairment that overlaps between languages.

Paralinguistic Features
Paralinguistic features—sometimes also referred to as acoustic,
audio or speech features—are specifically appealing for
automated speech analysis as they require minimal to no
pre-processing and in theory capture the full variance of the
acoustic signal and therefore the pathological speech behavior.
The calculation of the features is often borrowed and repurposed
from ASR systems, where the measures are done on the
physical representation of the speech signal. There are multiple
examples that successfully use paralinguistic features extracted
from spontaneous speech picture descriptions to effectively
discriminate between dementia and HC (Pakhomov et al., 2010;
Satt et al., 2014; König et al., 2015; Fraser et al., 2016, 2019;
Yancheva and Rudzicz, 2016). Due to the limited involvement of
error-prone pre-processing steps (e.g., ASR to derive transcripts
for further linguistic analysis) the use of paralinguistic features
is often regarded as particularly robust and generalizable (Satt
et al., 2014). In contrast, other studies found that paralinguistic
features are particularly bad at modeling longitudinal trajectory
of dementia or predict established clinical staging scores
(Yancheva et al., 2015). From a theoretical point of view, we
argue that paralinguistic features have great potential to model
differences between AD dementia and HC within a certain data
set but at the same time bear an equally great risk of over fitting
to the particular language or data set. In terms of monitoring
language impairment, it is very unlikely a clean proxy for
language impairment in AD dementia can be obtained from
speech features but at most for other cognitive (attention or
executive functions), physical (lung capacity, vocal tract length)
or pathological correlates (affective symptoms) associated with
AD dementia (Alario et al., 2006; Baese-Berk and Goldrick, 2009;
König et al., 2019).
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MATERIALS AND METHODS

To investigate explainable and generalizable NLP approaches
for automatically classifying between AD related language
impairment and healthy controls, implemented the following
three-step methodology:

1. First, a multilingual corpus of English and French
spontaneous speech picture descriptions is introduced.
Then, features are engineered and sorted into subgroups
(task-specific, semantic, syntactic, paralinguistic) based on
the aforementioned theoretical considerations. For each
corpus, an identical set of features are extracted.

2. In a second step, taking advantage of the multilingual
corpora, an inspection of cross-language correlations and
statistical significance testing is done. Following the idea
that well-differentiating features that model generalizable
language impairment as a neurocognitive construct should be
significant in both languages.

3. To arrive at explainable and generalizable classification
results, ML experiments are conducted separately in the two
different languages and in a multilingual setting. For each
setting, a classification is done among all semantic, syntactic
and paralinguistic features. This is compared to classification
results where only ‘‘generalizable language’’ features are used.
Generalizable language features are defined as semantic,
syntactic and paralinguistics features that are significant in
both languages.

By leveraging a multilingual approach, we aim to identify
AD related language impairment that generalizes beyond a
single corpus or language and models the processes of clinically
observable language impairment.

Participants
In this article we include 154 participants (78 healthy subjects)
from two different languages (106 English speaking and
47 French speaking) drawn from two different available corpora
(English, 2020 ADReSS INTERSPEECH challenge and French,
EIT-Digital ELEMENT project); for a comprehensive overview
of all demographics see Table 1.

The English ADReSS sample (Luz et al., 2020) is a balanced
(age- and gender-matched) subset of English DementiaBank
(Macwhinney et al., 2011) of 53 HC and 54 confirmed
AD patients. There are a total of 106 normalized recording
and manually annotated transcripts of the cookie theft
picture description task. This subset is derived from the
DementiaBank corpus, which is part of the larger TalkBank
project (Macwhinney et al., 2011). Patients were assessed between
1983 and 1988 as part of the Alzheimer Research Program at the
University of Pittsburgh (for a detailed description of the cohort
see Becker et al., 1994). Participants were referred directly from
the Benedum Geriatric Center at the University of Pittsburgh
Medical Center, and others were recruited through the Allegheny
County Medical Society, local neurologists and psychiatrists, and
public service messages on local media. Inclusion criteria were
as follows: above 44 years of age, at least 7 years of education,
no history of nervous system disorders or be taking neuroleptic

medication, initial Mini-Mental State Exam (MMSE) score of
10 or greater and had to be able to give informed consent.
Participants with dementia had a relative or caregiver acting
as an informant. Participants received neuropsychological and
physical assessment and were assigned to the ‘‘patient’’ group
primarily based on a history of cognitive and functional decline,
and the results of a mental status examination. In 1992—after the
end of the study—the diagnosis of each patient was confirmed
through clinical record and if available autopsy.

The French ELEMENT sample (König et al., 2018) contains
47 participants that completed the cookie theft picture
description task. The initial participant pool was 179 subjects
but only 47 participants were given the CPT task while
the others were given a different spontaneous speech picture
description and therefore are not considered in this study.
Participants were recruited within the framework of a clinical
study carried out for the EIT-Digital project ELEMENT, speech
recordings were conducted at the Memory Clinic located at
the Institut Claude Pompidou and the University Hospital
in Nice, France. The Nice Ethics Committee approved the
study. Each participant gave informed consent before the
assessment. Speech recordings of participants were collected
using an automated recording app which was installed on an
iPad. The application was provided by researchers from the
University of Toronto, Canada, and the company Winterlight
Labs. Each participant underwent the standardized process in
FrenchMemory clinics. After an initial medical consultation with
a geriatrician, neurologist or psychiatrist, a neuropsychological
assessment was performed. Following this, participants were
categorized into different groups: control participants (HC)
that were diagnosed as cognitively healthy after the clinical
consultation and patients that were diagnosed as suffering from
Alzheimer’s disease and related disorders (AD). For the AD,
the diagnosis was determined using the ICD-10 classification of
mental and behavioral disorders (World Health Organization,
1992). Participants were excluded if they were not native
speakers or had any major hearing or language problems, history
of head trauma, loss of consciousness, addiction including
alcoholism, psychotic or aberrant motor behavior or were
prescribed medication influencing psychomotor skills. Among
the 47 participants that performed the CPT, 22 participants were
diagnosed with Alzheimer’s disease or related dementias (AD)
and 25 participants with subjective memory complaints but no
detectable dementia. A Kruskal–Wallis H test revealed significant
age differences (χ2

(1) = 9.79, p< 0.01) but no significant difference
for education level.

Spontaneous Speech Procedure
In both samples (DementiaBank subset and Dem@Care subset)
participants completed a comprehensive protocol of assessments
of which for this research only the recordings of the Cookie Theft
Picture description task are relevant. In both samples, subjects
provided informed consent to be recorded while describing the
‘‘Cookie Theft’’ picture from the Boston Diagnostic Aphasia
Examination (Goodglass and Kaplan, 1983).

In this task, participants are shown a black and white image
of a kitchen with multiple on-going antics while being instructed
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TABLE 1 | Sample characteristics for English and French samples.

Language Diagnosis N (M/F) Age Education MMSE

English N = 106 HC 52 (23/29) 66.13 (6.52) - 29.10 (1.00)
AD 54 (24/30) 66.76 (6.61) - 11.06 (5.49)

French N = 47 HC 25 (6/19) 75.40 (7.00) 12.80 (2.08) 28.56 (1.42)
AD 22 (9/13) 81.59 (4.52) 10.91 (3.94) 18.36 (4.29)

Age in years (SD), Education in years (SD) and score on MMSE cognitive screening with a max score of 30 (SD). Abbreviations: HC, Healthy Controls; AD, Alzheimer’s disease; MMSE,
Mini Mental State Examination.

to ‘‘Tell me everything you see going on in this picture.’’ Testing
personnel generally is not meant to provide any feedback during
the descriptions of the participants. However, in some cases
there is interaction recorded if for example the initial response
of the patient is unreasonably brief, such as only a single
sentence. Recordings had amean duration of 62.63 s (SD = 35.83)
sometimes including prompts from the examiner. The English
corpus has an average duration of 70.92 s (SD = 36.92) and the
French corpus has an average duration of 43.95 s (SD = 24.82).
All recordings are transcribed according to CHAT protocol
(Macwhinney, 1991).

Feature Engineering
For each of the four categories defined previously (semantics,
syntax, task-specific, and paralinguistic) features were engineered
and then calculated using a program written in the Python
programming language (Van Rossum and Drake, 2009; Version
3.7). The following section describes the computation of the
features by sub-group. If a language-specific resource is used, the
equivalent resource is used for each language in the data.

Task-Specific Features (N = 107)
Croisile et al. (1996) defined a set of general IUs that appear in
the CTP task (e.g., girl, boy) and these IUs are mapped to a larger
set of synonymous keywords (e.g., brother, girl). For instance, the
boy in the picture may also be referred to as brother or son. This
is done for the following IUs: boy, girl, woman, kitchen, exterior,
cookie, jar, stool, sink, plate, dishcloth, water, window, cupboard,
dish, curtain. A table of the mappings for each IU category to its
keywords is provided in the Supplementary Materials for both
French and English. For each IU, three features are computed:
a binary value to see if the IU is mentioned, the count of times
the IU is mentioned, and the ratio of the IU to all mentioned
IUs. For spatial features, the CTP image is divided into different
subgroups1. Three divisions of the image are considered: halves,
quadrants and vertical stripes. Halves is where IUs are defined as
being on the left side or right side. Quadrants breaks the image
into four equal squares, north-east, north-west, south-east and
south-west. Vertical stripes cut the image vertically into most-
left, center-left, center-right and most-right (Goodglass and
Kaplan, 1972). For each of the subsections the following features
are calculated: word count, type-to-token ratio, keyword-to-
word ratio, and percent uttered. For the division in halves, the
number of switches between the sides is considered.

1Implementation based on https://github.com/vmasrani/dementia_classifier

Semantic Features (N = 20)
Some semantic features utilize task specific resources, but model
semantics by combining the defined IUs—and their mapped
keywords—into refined, global semantic features rather than
counting individual IUs. A table with the mappings between
the IU and the keywords that make up the IU are provided
in the Supplementary Materials for both English and French.
Semantic features calculated with the IUs and keywordmappings
are defined in Table 2. In addition to the features in the table,
semantic features that do not rely on the IU definitions are
also calculated. The Word Frequency package for python (Speer
et al., 2018) is used to determine the mean, median, and max
word frequency of all words as well as mentioned keywords. In
addition, the mean, median and max word length is calculated
for all words as well as the keywords. To gauge lexical richness
of the responses, the type-to-token ratio (TTR) is calculated
by dividing all unique words said by the total word count.
The Moving-Average-Type-Token Ratio (MATTR) is calculated
using a fixed window size of 10. For this measurement, a ratio of
the number of distinct words in the sliding window is divided
by the total count of words. For example, the TTR for words
1–10 is estimated followed by the TTR for words 2–11, then 3–12,
and so on. The resulting TTRs are averaged, the estimated TTRs
are averaged. Conceptually, the moving-average type–token ratio
MATTR (Covington and Mcfall, 2010) calculates the TTR while
reducing the influence that the length of the text has on
the measure.

Syntactic Features (N = 41)
To evaluate syntax, the mean words per sentence, word count
and number of sentences are calculated. In addition, Spacy
models are used to calculate the mean dependency length,
median dependency length, max dependency length (Honnibal
and Montani, 2017)2. Using Spacy language models, each
participant’s response is part-of-speech tagged. The count of
each tag, as well as the ratio of the POS tag count to total
word count are computed. The following tags are considered:
Adjective (ADJ), Adposition (ADP), Adverb (ADV), Auxiliary
(AUX), Coordination Conjunction (CCONJ), Determiner
(DET), Interjection (INTJ), Noun (NOUN), Numeral (NUM),
Particle (PART), Pronoun (PRON), Proper Noun (PROPN),
Punctuation (PUNCT), Subordinating Conjunction (SCONJ),
Symbol (SYM), Verb (VERB, and Other (X). Specific ratios are
calculated between nouns (NOUN) and verbs (VERB), pronouns
(PRON) and nouns (NOUN), and determiners (DET) and nouns

2https://universaldependencies.org/u/pos/
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TABLE 2 | Explanation of semantic features.

Example: There is a boy. The boy is a brother. He is stealing a cookie. The sister is watching.

Feature name Explanation Example

Number of Unique IU (num_unique_IU) The number of unique IU mentioned
Higher means they mentioned more IU in the picture

3, boy and cookie, sister

Number of Unique Keywords
(num_unique_keywords)

The number of unique keywords mention
Higher means they either used more IU and/or used more lexical
variety to describe the IU.

4, boy, brother, sister and cookie

Number of Total keywords
(num_total_keywords)

Counts all mentions of the IU from the mapped keywords.
Higher means they said more overall about the image.

5, boy, boy, brother, cookie, sister

Unique IU Density (unique_IU_density) The number of unique IU (num_unique_IU) mentioned divided by the
word count

num_unique_IU = 3;
Word count = 18
3/18 = 0.1667

Total IU Density (total_IU_density) Number of total IU (num_total_IU) divided by the word count. num_total_IU = 5;
Word count = 18
5/18 = 0.2778

Keyword to non-keyword ratio
(keyword_to_non_keyword_ratio)

num total keywords
word count − num total keywords

num_total_keywords = 5;
Word count = 18
5/(18–5) = 0.3846

Unique IU efficiency
(unique_IU_efficiency)

The number of unique keywords (num_unique_keywords) divided
by the word count.

num_unique_keywords = 4;
Word count = 18
4/18 = 0.22

percentage of IU mentioned
(percentage_of_keywords_mentioned)

The number of unique IU (num_unique_IU) mentioned divided by the
total count of all IU words available in the image.

num_unique_IU = 3, all_IU_words = 16
3/16 = 0.1875

Keyword Type Token Ratio (keyword_TTR) The number of unique keywords (num_unique_keywords) divided
by the number of total IU (num_total_IU) mentioned.

num_unique_keywords = 4;
num_total_IU = 5
4/5 = 0.8

total IU efficiency
(total_IU_efficiency)

Number of total IU (num_total_IU) divided by the duration in
seconds of the participant’s response.

num_total_IU = 5; duration = 15 s
5/15 = 0.33

unique IU efficiency
(unique_IU_efficiency)

The number of unique IU (num_unique_IU) divided by the duration in
seconds of the participant’s response.

num_unique_IU = 3; duration = 15 s
3/15 = 0.2

Feature name contains the name of the feature in the text and the name of each feature use in images in parentheses. The explanation column explains how the feature is calculated.
At the top of the table there is an example which is used in the example column to explain how each feature is calculated.

(NOUN). The open (ADJ, ADV, INTJ, NOUN, PROPN, VERB)
to closed (ADP, AUX, CON, DET, NUM, PART, PRON) class
ratio is also computed.

Paralinguistic Features (N = 208)
To extract paralinguistic features from the normalized wav files
free, open-source python libraries, and praat (Boersma and
Weenink, 2009) are used.

To characterize the temporal and content features of speech,
the My Voice Analysis package3 is used. This package is
developed by the Sab-AI lab in Japan to develop acoustic models
of linguistics. This package interfaces the speech analysis research
tool praat (Boersma and Weenink, 2009) with python, allowing
the following features to be extracted from the wav recording:
speech rate, syllable count, rate of articulation, speaking duration,
total duration, pronunciation posteriori probability percentage
score, and ratio of speaking to non-speaking. This package is
also used to extract some prosodic features, specifically the
mean, standard deviation, minimum, maximum, upper and
lower quartile of the F0 value, or what is sometimes referred to
as the pitch, in Hertz (Hz).

To represent the sound wave itself, features are borrowed
from the ASR community using the Python Speech Features

3https://pypi.org/project/my-voice-analysis/

library. The original sound recording undergoes a series of
transformations that yield a representation of the sound called
the Mel Frequency Cepstrum (MFC). The MFC describes two
crucial points of information from the voice to human anatomy;
the first is the source (e.g., the lungs) and the second is the filter
(e.g., place of articulation). The first transformation separates
the source and filter from the signal and then maps this to the
Mel scale which approximates the sensitivity of the human ear
(Fraser et al., 2018). Typically, up to the first 14 coefficients
are used as they represent the lower range frequencies of the
vocal tract and yield most of the information (Hernández-
Domínguez et al., 2018). This has been shown to be effective at
identifying AD patients in previous literature (Dessouky et al.,
2014; Rudzicz et al., 2014; Satt et al., 2014; Fraser et al., 2018;
Panyavaraporn and Paramate, 2018; de la Fuente Garcia et al.,
2020; Meghanani and Ramakrishnan, 2021). From this new
representation, the first 14 coefficients of the MFC are extracted
and the mean, variance, skewness and kurtosis are calculated
for the energy (static coefficient), velocity (first differential), and
acceleration (second differential). These are also calculated for
the velocity and acceleration, where velocity is the difference
between consecutive time steps, and acceleration is the difference
between consecutive time steps for each velocity. Additionally,
the mean, maximum, minimum and standard deviation of the
root mean square value (RMS), centroid, bandwidth, flatness,
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zero crossing rate (ZCR), flatness, loudness, and flux of the
spectrogram are calculated with the Librosa4 package.

Inferential Statistical Analysis
After extracting identical feature sets from both corpora, features
are evaluated with regard to their significance in differentiating
between the two groups (AD and HC) using non-parametric
group comparison and correlation analysis.

Significance Testing
For group comparisons, a non-parametric Kruskal–WallisH-test
for significance is done for each feature to test for significant
group differences between the HC and AD samples. Due to
the number of performed significance tests, we also report a
Bonferroni adjusted probability. This is done separately for each
language, meaning each feature has four significance values:
English p-value, English adjusted p-value, French p-value, and
French adjusted p-value. Significance was set at p< 0.05.

Correlation Analysis
Correlation analysis was used to arrive at a continuous numeric
variable describing the ability of a feature in discriminating
between AD and HC (AD/HC × feature value) which is at the
same time comparable between both languages/samples; this is
mainly relevant for plotting the discriminative power of feature
in both languages and better visualizing the generalizability of
the extracted features. For correlation values, a point-biserial
correlation is calculated between each feature and the nominal
group condition.

Machine Learning Experiments
For all ML experiments, we investigate three classifiers: a classic
logistic regression (LR) with an L2 regularization, a Support
Vector Machine Classifier (SVM), and a simple neural approach
with a multilayer Perceptron (MLP) using a logistic activation
function and the regularization term (alpha) set to 0.01. All
other parameters are left at their default setting. Due to the
small size of the data sets in this article, we opted to maximize
the available data using leave one out cross validation. For
this method, one sample is held for testing and all other data
points are used for training. This is repeated so that every
sample in the data has been held out one time. While leave-
pair-out cross validation is considered to be a less biased
approach for binary classification because it exhaustively tries
every possible combination, leave-one-out cross validation is a
common training-testing split in this line of research (Cohen and
Pakhomov, 2020; de la Fuente Garcia et al., 2020; Luz et al., 2020).
Even on very small datasets, leave-pair-out cross validation is
computationally expensive (Maleki et al., 2020). In order to keep
our work comparable with prior and future studies, we opted
to use leave one out cross validation as the best method for
maximizing the available data while reducing training bias and
maintaining reproducibility (Pahikkala et al., 2008; Fraser et al.,
2019; Maleki et al., 2020).

4https://github.com/librosa/librosa

Reported scores are the average across all iterations of the
classification experiment. All ML experiments are implemented
using the python library, scikit-learn5 (Pedregosa et al., 2011).

Selecting Generalizable Features
To determine which features capture language impairment that is
not corpus-specific, the uncorrected Kruskal–Wallis significance
testing described previously in statistical analysis (‘‘Significance
Testing’’ section) is used. Features are selected from each
subgroup if they were found to be significant (p < 0.05)
in both French and English and added to the ‘‘generalizable
language’’ feature set. Task-specific features are excluded. The
‘‘generalizable language’’ features are listed in Table 3.

Experiment Scenarios
Thus far, we have presented two datasets, French and English
(‘‘Participants’’ section, Table 1). By concatenating these
two datasets, we generate a third multilingual dataset. In
addition, two feature groupings have been proposed; Language
features defined as all features in the semantic, syntactic and
paralinguistic features [for reference see ‘‘Semantic Features
(N = 20),’’ ‘‘Syntactic Features (N = 41)’’ and ‘‘Paralinguistic
Features (N = 208)’’ sections, and Figure 1] and a subset of
these features that are considered to be the generalizable language
feature set (‘‘Selecting Generalizable Features’’ section).

To investigate the performance of the generalizable language
feature set, six experimental scenarios are conducted in a
binary classification scenario (HC vs. AD). For the first
three experiments, English, French and multilingual models
are trained using all language features. For the next three
experiments, English, French and multilingual models are
trained using the generalizable language features. We then
compare the performance of the language feature set and the
generalizable language feature set to see if the generalizable
features help or hurt classification performance.

Establishing a Baseline
To relate these experiments to previous work, we train a baseline
model that uses all feature subgroups (semantic, syntactic,
task-specific and paralinguistic) in a classification with the
previously described English dataset. This situates our methods
and results in comparison to the recent ADReSS challenge
at Interspeech 2020. The goal of this challenge was to use
spontaneous speech picture descriptions to differentiate between
AD and HC.

In addition to the experimental scenarios and baseline, we
create a baseline classification experiment using only age to
consider the affects that the unmatched French population has
on the multilingual ML experiment.

Evaluation
For classification performance, Area Under the Receiver
Operator Curve (AUC) is reported for each experiment
scenario described in ‘‘Experiment Scenarios’’ section. Confusion
matrices (Bateman et al., 2012; König et al., 2018) are reported for
the multilingual model with the generalizable language feature
set. A matrix is reported for the overall classification and then

5scikit-learn version 0.23.2
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TABLE 3 | Statistics as per feature set and language.

Semantic features

English French

Feature rPB mHC mAD χ2 p pcorr. rPB mHC mAD χ2 p pcorr.

keyword_to_non_keyword_ratio −0.43 0.16 0.11 19.3 ∗∗∗ ∗∗∗
−0.42 0.15 0.11 8.1 ∗∗ 0.10

max_word_frequency_IU −0.27 0.0003 0.0003 7.5 ∗∗∗ 0.13 −0.34 0.0003 0.0002 5.3 ∗ 0.47
mean_word_frequency_all −0.37 0.0089 0.0072 14.7 ∗∗∗ ∗∗∗

−0.38 0.0075 0.0066 6.8 ∗∗ 0.20
num_unique_IU −0.60 10.94 6.87 37.8 ∗∗∗ ∗∗∗

−0.64 10.24 5.50 18.6 ∗∗∗ ∗∗∗

num_unique_keywords −0.60 11.83 7.26 37.3 ∗∗∗ ∗∗∗
−0.60 11.40 5.73 16.6 ∗∗∗ ∗∗

percentage_of_keywords_mentioned −0.60 0.10 0.06 37.3 ∗∗∗ ∗∗∗
−0.60 0.07 0.04 16.6 ∗∗∗ ∗∗

total_IU_density −0.42 0.14 0.10 18.7 ∗∗∗ ∗∗∗
−0.36 0.14 0.11 5.9 ∗∗ 0.34

total_IU_efficiency −0.54 0.26 0.16 30.2 ∗∗∗ ∗∗∗
−0.46 0.34 0.21 9.8 ∗∗ ∗

num_total_keywords −0.43 15.42 10.46 19.3 ∗∗∗ ∗∗∗
−0.57 13.44 6.41 15.1 ∗∗∗ ∗∗

unique_IU efficiency −0.56 0.18 0.10 32.4 ∗∗∗ ∗∗∗
−0.40 0.27 0.17 7.2 ∗∗ 0.16

unique_IU ratio −0.45 0.10 0.07 21.2 ∗∗∗ ∗∗∗
−0.34 0.11 0.09 5.5 ∗ 0.43

Syntactic features

English French

Feature rPB mHC mAD χ2 p pcorr. rPB mHC mAD χ2 p pcorr.

ADP_count −0.28 7.83 5.39 8.0 ∗∗ 0.20 −0.50 14.44 6.95 11.4 ∗∗∗ ∗

ADP_ratio −0.34 0.06 0.05 12.3 ∗∗∗ ∗
−0.51 0.13 0.09 11.9 ∗∗∗ ∗

AUX_ratio −0.35 0.10 0.09 12.7 ∗∗∗ ∗ 0.30 0.04 0.06 4.1 ∗ 1.00
DET_count −0.26 17.35 13.52 7.3 ∗∗ 0.31 −0.45 17.72 9.95 9.4 ∗∗ 0.09
DET_ratio −0.43 0.15 0.12 19.3 ∗∗∗ ∗∗∗

−0.32 0.17 0.14 4.7 ∗ 1.00
NOUN_count −0.34 21.12 15.59 11.9 ∗∗∗ ∗

−0.49 20.76 11.09 11.0 ∗∗∗ ∗

NOUN_ratio −0.48 0.18 0.14 23.8 ∗∗∗ ∗∗∗
−0.38 0.19 0.15 6.7 ∗∗ 0.42

PRON_ratio 0.25 0.07 0.09 6.4 ∗ 0.51 0.51 0.11 0.18 12.1 ∗∗∗ ∗

PUNCT_count 0.21 15.15 20.69 4.7 ∗ 1.00 −0.38 1.06 0.32 6.5 ∗ 0.47
PUNCT_ratio 0.36 0.13 0.18 13.8 ∗∗∗ ∗∗

−0.34 0.01 0.00 5.4 ∗ 0.91

Paralinguistic features

English French

Feature rPB mHC mAD χ2 p pcorr. rPB mHC mAD χ2 p pcorr.

bandwidth_mean 0.22 2,022.85 2,153.46 5.0 ∗ 1.00 0.32 2,176.25 2,323.75 4.8 ∗ 1.00
energy_skewness 0.23 0.17 0.32 5.4 ∗ 1.00 0.47 −0.26 0.49 10.4 ∗∗ 0.26
mfcc1_mean −0.20 −1.87 −4.43 4.4 ∗ 1.00 −0.36 −5.14 −7.87 6.0 ∗ 1.00
mfcc1_skewness 0.23 0.19 0.48 5.8 ∗ 1.00 0.44 −0.31 0.12 8.8 ∗∗ 0.63
mfcc10_kurtosis 0.23 0.73 1.00 5.5 ∗ 1.00 0.37 0.40 0.67 6.4 ∗ 1.00
mfcc4_kurtosis 0.22 0.92 1.47 4.9 ∗ 1.00 0.41 0.51 1.02 7.7 ∗∗ 1.00
normalized_loudness_std −0.34 0.20 0.18 11.8 ∗∗∗ 0.12 −0.56 0.23 0.20 14.4 ∗∗∗ ∗

ratio_speaking −0.27 0.46 0.37 7.6 ∗∗ 1.00 −0.57 0.64 0.48 15.2 ∗∗∗ ∗

speech_rate −0.28 1.92 1.41 8.5 ∗∗ 0.73 −0.47 3.12 2.32 10.2 ∗∗∗ 0.28

Point-biserial correlation coefficient rPB, correlating each feature with the nominal group variable (AD, HC), feature means for HC and AD, χ2 value of the non-parametric Kruskal–Wallis
H-test for group differences between AD and HC, p-value and Bonferroni-corrected p-value. Significances: ∗∗∗ <0.001, ∗∗ <0.01, ∗ <0.05. Feature names in Bold indicate that they
are significant after Bonferroni-correction in both languages.

the error is broken down by individual language to investigate
if the multilingually trained classifier performs equally in
both languages.

RESULTS

Results are reported from the two methodological scenarios:
inferential statistical analysis and ML experiments.

Inferential Statistical Analysis
Comparing the overall correlation and significance trends in
Figures 2, 3, semantic and task-specific features display similar
patterns. In general, these features are negatively correlated in
both French and English where AD has lower averages than

healthy controls. For syntactic and paralinguistic features, both
negative and positive correlations are observed. Paralinguistic
features show the most language-specific behaviors, where a
mild language preference can also be seen in syntactic features,
indicated by points that are far from the dashed line.

Following our above-introduced feature categories, we
evaluated statistical significance in differentiating between both
groups, AD and HC. Of all features calculated, 30% of task-
specific, 28% semantic, 39% syntactic features and 65% of
paralinguistics features are not significant in either French or
English before significance correction. Before correction, 43%
of task-specific, 52% of semantic, 24% of syntactic, and 4%
of paralinguistic features of the initially extracted features are
significant in both French and English (see also Table 3).
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FIGURE 2 | Points are plotted by correlation values (point-biserial correlation coefficient rPB, correlating the feature with the group AD vs. HC) with French on the
Y-axis and English on the X-axis for each feature subgroup. The significance value (as by Kruskal–Wallis non-corrected significance test p < 0.05) is visualized by
point color for French and point size for English. Points closer to the dashed line perform equally well in both languages. This figure contains all features that are
significant in EITHER French or English, not necessarily both.

However, due to the large amount features tested (Ntotal = 377),
after Bonferroni correction only a fraction of the features remain
significant in both languages; 9% task-specific, 24% of semantic,
5% syntactic, and 0% paralinguistic.

Task-Specific Features
Among 107 calculated task-specific features, 32 features are
not significant in either French or English, roughly 30%. With
significance correction, 75 features are significant in either
French or English; 46 features in Both, 20 features in French-
only, and nine features in English-only. After significance
correction, 10 features remain significant for both languages,
approximately 9% of all task-specific features.

Semantic Features
Among 21 calculated features, 15 features are significant in either
French or English; two features in French-only, two features
in English-only and 11 features in both. While the semantic
subgroup has the least calculated features, it has the highest
percentage of significant features (approximately 24%) after
Bonferroni correction: number of unique IU, number of unique
keywords, percentage of keywordsmentioned, total IU efficiency,

and number of total keywords. For all the significant features in
English and French, the AD condition shows lower averages in
comparison to the control group (HC).

Syntactic Features
In either language, 25 of the 41 syntactic features are significant
in either French or English; 10 features in both, two features in
French-only, and 13 features in English-only. After significance
correction, noun count and adposition ratio are significant in
both languages. For both features, the AD group shows lower
averages than healthy controls.

Paralinguistic Features
In either French or English, 72 features among 208 calculated
paralinguistic features are significant: nine features in both,
45 features in French-only, 18 features in English-only After
significance correction, no features are significant in English and
two features are significant in French; ratio of speaking to the
full sample duration and the standard deviation of normalized
loudness. In both cases, the AD group shows lower averages in
comparison to the control averages.
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FIGURE 3 | Points are plotted by correlation values (point-biserial correlation coefficient rPB, correlating the feature with the group AD vs. HC) with French on the
Y-axis and English on the X-axis for each feature subgroup. The significance value (as by Kruskal–Wallis non-corrected significance test p < 0.05) is visualized by
point color for French and point size for English. Points closer to the dashed line perform equally well in both languages. This figure contains all features that are
significant in BOTH French AND English. Feature labels are added to each point.

In the paralinguistic subplot of Figure 2, features are highly
polarized as shown by the clustering of points on either
side of the dashed line, indicating very little feature overlap
between the languages with weaker correlations—especially for
English—in comparison to the other feature subsets. By looking
at Figure 3 where features are significant in English and French,
lower correlations and the features that are highly polarizes
towards one language do not appear in the sub-graph. Among
208 features, only nine features are significant, before correction,
and the remaining features are more highly correlated with
French than English.

Machine Learning Experiments
Machine learning model performances are visualized for the
baseline and experimental scenarios in Figure 4. Not included in
the graph is the addition classifier for age. All the multilingual
experiments were below chance (AUC = 0.5) for age: LR had
an AUC of 0.49, SVM had an AUC of 0.38, and the MLP
had an AUC of 0.40. This leads us to believe that age is
not a good distinguisher between the HC and AD groups for

the generalizable experiments. However, it does not eliminate
age as a factor from this research and future experiments
studies should replicate these findings with age, gender and
education balanced data sets to control for possible external
conflicting factors.

For the experiments with the LR, all of themodels trained with
generalizable language features outperform both their respective
All language feature models and the English all features baseline.
The baseline scenario, the English model with all features, is
shown in a solid gray and performs with an AUC of 0.7. English
gains 18 points, French gains 23 points, multilingual gains
14 points of AUC over their ALL models. The highest AUC score
is nearly tied for the English selected with an AUC of 0.87 and
both selected model with an AUC of 0.86. The French select is
close in performance with an AUC of 0.85.

For experiments using the SVM, the multilingual
generalizable model out-performs all other models reaching
an AUC of 0.86. This model improves 10% over the all language
feature model. In both English and French, the single language
generalizable models outperform their respective all language
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FIGURE 4 | Area Under Curve (AUC) performance results of the machine
learning (ML) experiments. English and French for the respective samples
separately, multilingual is for the joint classification, multilingual significance
testing for feature selection (Generalizable) or using all features (ALL) and
using only semantic, syntactic, and paralinguistic features (Language
Features). The gray dashed line indicates chance performance of the models.
The English (blue), French (orange), and Both (green) models trained with
semantic, syntactic, and paralinguistic features are shown with a dashed line.
The English, French and Multilingual models trained with the significant,
generalizable features in English and French are indicated by the solid lines in
the same color, respectively.

feature models. This is more so the case for French where there
is an improvement of 15 points, whereas English only improves
by 1 point.

For the experiments using the MLP, we see a minor
performance drop between the model with ALL baseline features
and only generalizable language features. However, in both
English and French we see a large performance increase when
using only the generalizable features, with both the French and
English models reaching an AUC of 0.85. For the multilingual
MLP model, we see a mirrored pattern with the LR but

slightly lower performance. Overall, we see a 23-point AUC
increase when using the generalizable language features in the
multilingual scenario, yielding a 0.84 AUC.

We see a similar pattern of error for both the LR, SVM,
and MLP models. For the multilingual LR model trained
with generalizable language features, the overall error rate is
22.22% and English (22.64%) and French (21.28%) exhibit
roughly the same level of error. For the SVM, a slightly
lower error of 20.26% is found with a similar split of
error between English (20.75%) and French (19.15%). The
same result is achieved using the MLP, with a 21.56%
overall error and a slightly high, although still comparable,
level of the error in both languages (20.75%) English and
(23.40%) French.

For both model types, the number of false positives—the case
of classifying a control as AD—by language in the multilingual
select model make up roughly 30% for French error (27%
for the MLP) and 54% for English (59% for the MLP) error.
In both models, the English samples have a balanced split of
error, but the French model suffers from elevated false positive
error. However, this is not the case for the SVM where French
(43%) and English (47%) are more balanced in their false
positive rate.

DISCUSSION

This article addresses the research gap between the clinical
understanding of language impairment (as a neurocognitive
functions impairment) apparent in everyday spontaneous speech
and recent NLP techniques used together with ML for speech-
based classification of AD against healthy control subjects.
We propose to: (1) gain insights into AD-related language
impairment and its cognitive sub-processes through multilingual
NLP feature statistics (generalizing beyond one single language
as a cultural phenomenon); and (2) train robust ML models
capturing cognitive language impairment in AD with these
generalizable features and compare to other methods on the
same dataset.

Generalizable NLP Features of Language
Impairment in AD
Semantic Features
While the semantic subgroup consists of the lowest number of
features, it has the largest number of significant features after
Bonferroni correction: number of unique IU, number of unique
keywords, percentage of keywordsmentioned, total IU efficiency,
and number of total keywords. For all the significant features in
English and French, the AD condition shows lower averages in
comparison to the control group (HC).

Lower averages in number of unique IU, number of unique
keywords, number of total keywords, and percentage of keywords
mentioned indicates reduced lexical variety and exploration of
the available semantic space by the AD group, which is indicative
of impaired semantic processes. In addition, there is a reduced
semantic efficiency where the AD group is exploring fewer
IUs in the same amount of time as controls. For AD patients
we found lower overall information efficiency of the uttered
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descriptions (e.g., total IU density) as well as lower lexical variety
with which AD patients described and referred to different
IUs in the picture (ratio of unique keywords to all keywords
mentioned) in both languages. This is in line with earlier
work that finds a decreased semantic efficiency (semantically
empty speech) in AD patients’ spontaneous speech from picture
descriptions (Ahmed et al., 2013; Fraser et al., 2016) but also
from other language production tasks (Snowdon et al., 1996;
Le et al., 2011).

Overall, semantic features indicate generalizable semantic
impairment in AD. Of the feature subgroups, semantic
featuresgeneralize the best between the languages, supporting the
argument that these features or not task-specific but measure
more general semantic abilities. The AD populations, regardless
of language, show deficits in semantic scores compare to the
health control group.

Syntactic Features
Syntactic features show generally weaker correlations with the
pathological state (AD vs. HC) than semantic features. In
comparison to the semantic features, syntactic features display
a trend of mild language specific behavior (compare also the
distance from the dashed line as well as the color/French or
size/English of points in Figure 2). An interesting finding is
the opposing correlation trends for punctuation count and ratio
(positive for English and negative for French) and auxiliary
ratio (negative for English, positive for French) continuing to
indicate that there are syntactic features that are not generalizable
for clinical populations because of language. Previous work
has shown deficits in determiners, auxiliaries and reduced
grammatical structure (Eyigoz et al., 2020). However, the
remaining significant syntactic features after correction are
adposition ratio and noun count. On average, the AD dementia
group use less nouns and adpositions6.

Adpositions, specifically prepositions, are words used before
a noun or pronoun to show time or spatial relationships. For
example, in the sentence the boy is reaching into the cookie
jar, into is a preposition showing the spatial relationship of the
boy to the cookie jar. Preposition deficits for AD have been
found in Brazilian Portuguese (Alegria et al., 2013). Another
study—arguing that spontaneous speech mirroring the decline
of effective spatial reasoning in language production—found
that AD and HC used the same number of locative/stative
prepositions (e.g., in, on, and at) but found significant differences
for directional/dynamic prepositions (e.g., into, onto, from, and
to; Bosse, 2019).

Although pronoun ratio is only significant in French after the
correction, combining this finding with the significant difference
in noun count could produce interesting deductions. Between the
groups, AD dementia group has a lower average noun count but
a greater average pronoun count. Grossman et al. (2007) used
new verb acquisition to show that, in comparison to controls,
AD dementia patients had fragmented knowledge acquisition.
The AD group was able to grammatically use the verb but did

6A combination of prepositions and postpositions. Postpositions in French seldom
occur in spoken language and the only accepted postposition in English is ago.
Therefore, adpositions, in this application, are assumed to be prepositions.

not retain its semantic meaning. This could lend insights into
the increased pronoun ratio and decrease noun count, where the
AD group is not able to recall the semantic names of the IUs in
the picture (e.g., boy, brother) and compensates using pronouns
(e.g., he). This may be directly related to semantic AD-related
language impairment (as described above), where a person uses
ambiguous terms (pronouns) instead of specific lexicals (nouns;
Savundranayagam et al., 2005; Ferris and Farlow, 2013; Klimova
et al., 2015).

While some studies report reduced syntactic complexity in
AD patients in earlier detection ML scenarios for the CTP
(Fraser et al., 2016), others show contrary findings showing
no association between syntactic complexity and cognitive
pathology at early stages (Mueller et al., 2018). Evidence
from other cognitive tasks show impaired syntax early in
disease progression from free spontaneous speech as elicited by
questions (Croisile et al., 1996) or written picture descriptions
(Kemper et al., 2001).

These findings lead us to believe that syntactic impairment
is present but could be confounded as compensation for the
profound semantic deficits or other cognitive processes in AD
dementia related language impairment.

Paralinguistic Features
For the group of paralinguistic features only around 10% of
the initially extracted features were kept after multilingual
significance check. Although paralinguistic features are typically
reported as important well-classifying features in almost all
AD language investigations using computer-aided automatic
speech analysis in combination with ML (Pakhomov et al.,
2010; Satt et al., 2014; König et al., 2015; Fraser et al., 2016,
2019; Yancheva and Rudzicz, 2016) and explicitly mentioned
as robust solutions to the problem (Satt et al., 2014), we
find the contrary: the majority of state-of-the-art paralinguistic
features do not generalize between languages and therefore
are probably not modeling language impairment in AD as a
neurocognitive function. Therefore, we argue that they need
further clinical investigation to be used as an argument about
language impairment in AD.

On the other hand, the question remains why paralinguistic
features model differences between healthy and pathological
spontaneous speech so well in ML classification scenarios. It
could be that they represent variance from other factors such
as affective correlates like apathy, which has been shown to
affect paralinguistic properties of speech and is a common
comorbidity in AD (König et al., 2019), or other non-language
neurocognitive functions such as executive functions. For
example, we found a lower speech rate in AD patients in both
languages which can be interpreted as evidence for a generally
impaired psychomotor speed which is highly related with
additional factors such as age and executive functions (Keys and
White, 2000). However, it is also very likely that from the large
amount of extracted paralinguistic features, the ‘‘significant’’
ones just represent statistical artifacts. This can be argued as
after Bonferroni correction none of the paralinguistic features
yields significance in both languages. This result illustrates
well the paradox of paralinguistic features that are highly
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discriminative in AD vs. healthy control ML experiments but
according to traditional interference statistics standards would be
considered an artifact suffering from alpha error accumulation.
Even without the multilingual generalizability consideration, this
methodological paradox typically is disregard in state-of-the-art
research combining NLP features for AD classification with ML.

After correction, no features were significant in both
languages for English and only two features were significant in
French: the ratio of speaking to the full sample duration and the
standard deviation of normalized loudness. In both cases, the
AD dementia group shows lower average scores than controls.
The AD group speaks less overall which can be interpreted as
a proxy for overall amount of language production in this task.
This possibly reflects semantic, but also multiple other cognitive
processes, as previously stated. A lower standard deviation of
normalized loudness for the AD group indicates less change in
speaking volume as compared to the control group. This could be
indicative of common AD-related affective comorbidities such as
apathy (König et al., 2019) which result in a less expression and
variation in speech patterns.

Overall Findings
Overall, our investigation of generalizable NLP features for
language impairment in AD robustly confirms AD patients’
semantic impairment in terms of low information efficiency and
therefore semantically empty language. This cardinal semantic
syndrome can be also additionally confirmed by increased
syntactic compensation (using ambiguous terms instead of
precise lexical-semantic terminology). Beyond this, we find
reduced usage of prepositions, independent of the language,
which could be indicative of the earlier-reported decreased
complexity in AD language production but more research needs
to be done to determine if this is syntactic impairment or
confounded by other cognitive processes. Finally, we found
almost no paralinguistic features that are indicative of a robust
global hence cognitive language impairment in AD except
for those who proxy either semantic deficits or affective
comorbidities—the latter one indicating a non-causal correlation
rather than a robust signal on language impairment in AD.

Machine Learning Models With
Generalizable and Explainable Features
Comparison to Baseline
The English baseline classifier with all features (on the same data
set as Cummins et al., 2020; Farrús and Codina-Filbà, 2020)
achieved an AUC of 0.72 and accuracy of 69.7% using a LR
classifier. In comparison, the English classifier with generalizable
language features achieved an AUC of 0.87 and an accuracy of
76.4% using a LR model.

On the balanced DementiaBank dataset using both linguistic
and paralinguistic features, an 87.5% classification accuracy was
achieved using a Random Forest classifier (Farrús and Codina-
Filbà, 2020) and an 85.2% using a fusion deep learning approach
(Cummins et al., 2020). On a different subset of 167 samples from
DementiaBank, combining linguistic and paralinguistic features
yielded an 81% accuracy (Fraser et al., 2016).

For multilingual approaches, only semantic word embeddings
based on IU features were used to classify in a Swedish and
English early detection setting with an 72% accuracy in Swedish
and 63% accuracy in English (Fraser et al., 2018). French and
English were used to train IU-level language models. The authors
report a 0.89 AUC between AD and HC, the best model being
trained on both languages (Fraser et al., 2019). The authors could
not find any studies where a multilingual approach combined
linguistic and paralinguistic features.

Other approaches, not explicitly extracting features,
have been used for high performance classifiers on other
subsets of the DementiaBank data. Namely, modeling the
language of each population and then using perplexity
scores (Fraser et al., 2018; Cohen and Pakhomov, 2020) has
shown promising results producing interpretable models and
reporting AUC scores of 0.93 (Cohen and Pakhomov, 2020).
For a more in-depth overview of other methods used for
automatic classification used for DementiaBank, please see
de la Fuente Garcia et al. (2020).

Model Discussions
Looking at the ML experiments, the multilingual method of
feature selection to identify generalizable language features
drastically improved every ML performance.

For English, between the baseline with all features and using
only language features, there is a small dip in performance
when the task-specific features are removed. However, the
best English, French and multilingual model performances is
with the generalizable language features. More importantly, the
performance increase is not only in the multilingual classifier,
but a similar level of error is maintained between both languages
separately (see Table 4). This finding is backed up by the
confusion matrices that show a similar distribution of error
types across the board. In both languages, as well as in the
overall classifier, a comparable number of AD patients were
wrongly classified as healthy (false negatives) and a comparable
number of healthy subjects got wrongly classified as AD patients
(false positives).

It has been shown early on that ML classification of AD and
healthy subjects can benefit from a transfer learning approach
betweenmultiple languages (Fraser et al., 2019). However, we can
show that in spontaneous speech picture descriptions a theory
driven and generalizable approach to underlying features not
only show good classification results between AD and healthy
subjects but at the same time provides clinically-supported
evidence of language impairment from spontaneous speech
in AD.

Therefore, we conclude that there is evidence of language
impairment in AD in everyday spontaneous speech and that
this impairment could be driven by a language impairment
in the neurocognitive sense. Evidence for this claim is
provided by language-independent language impairments as
robustly measured by linguistic (semantic and syntactic) and
marginally also paralinguistic properties. This is in line with
previous research on AD language impairments from traditional
clinical research (Kempler, 1995; Taler and Phillips, 2008;
Szatloczki et al., 2015).
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TABLE 4 | Confusion matrices for the final robust classifier without task-specific features using multilingual significance feature selection.

LR Results

English and French without task-specific features and feature selection (Error Rate = 22.22%)

Ground Truth (Diagnosis)

True False

Classification Prediction AD (positive) 58 (AD/AD) 16 (AD/HC)
HC (negative) 61 (HC/HC) 18 (HC/AD)

English classifications from the above joint ML scenario (Error Rate = 22.64%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 43 (AD/AD) 13 (AD/HC)
HC (Negative) 39 (HC/HC) 11 (HC/AD)

French classifications from the above joint ML scenario (Error Rate = 21.28%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 15 (AD/AD) 3 (AD/HC)
HC (Negative) 22 (HC/HC) 7 (HC/AD)

SVM Results

English and French without task-specific features and feature selection (Error Rate = 20.26%)

Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 59 (AD/AD) 14 (AD/HC)
HC (Negative) 63 (HC/HC) 17 (HC/AD)

English classifications from the above joint ML scenario (Error Rate = 20.75%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 42 (AD/AD) 10 (AD/HC)
HC (Negative) 42 (HC/HC) 12 (HC/AD)

French classifications from the above joint ML scenario (Error Rate = 19.15%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 17 (AD/AD) 4 (AD/HC)
HC (Negative) 21 (HC/HC) 5 (HC/AD)

MLP Results

English and French without task-specific features and feature selection (Error Rate = 21.56%)

Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 59 (AD/AD) 16 (AD/HC)
HC (Negative) 61 (HC/HC) 17 (HC/AD)

English classifications from the above joint ML scenario (Error Rate = 20.75%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 41 (AD/AD) 13 (AD/HC)
HC (Negative) 39 (HC/HC) 13 (HC/AD)

French classifications from the above joint ML scenario (Error Rate = 23.40%)

Match to Ground Truth (Diagnosis)

True False

Classification Prediction AD (Positive) 14 (AD/AD) 3 (AD/HC)
HC (Negative) 22 (HC/HC) 8 (HC/AD)

The first matrix shows the overall classification result of the model trained on the multilingual data. To ensure this model is not favoring one language, results are further broken down
by language in the following matrices. Error is indicated by the false column where a false positive (AD/HC) is the case where a healthy control is classified as having AD and the False
negative (HC/AD) is classifying a person with AD as a healthy control. The error rate is reported as all falsely classified participants divided by all participants.
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CONCLUSION

This study set out to investigate the robust, generalizable
detection of language impairment from spontaneous speech
in AD dementia through multilingual ML, with the goal of
generating insights between both clinical and NLP researchers.

Based on the proposed methodology, we show possible
language impairment in AD in a neurocognitive sense of
language that is observable in everyday spontaneous speech.
Our approach shows that task-independent language features of
AD deteriorated speech point towards neurocognitive language
impairments. The primary insights are situated in current clinical
understanding of AD dementia related language impairments;
There is a theorized primary semantic deterioration but
also evidence of a milder syntactic impairment that is
confounded by multiple other cognitive processes. In addition,
the results support that language impairment could be measured
by clinically-motivated NLP techniques without sacrificing
overall performance.

The adjacent multilingual feature inspection shows that the
feature categories correlate differently between both languages
with regard to the significance of their features. This observation
is of relevance for the research community interested in detecting
language impairment in AD from spontaneous speech picture
descriptions because language as a neurocognitive symptom
has been found to be impaired in AD for different languages
(Ahmed et al., 2013; Szatloczki et al., 2015; Mueller et al., 2018)
even though AD itself is heterogeneous in the way it effects
individuals (Lam et al., 2013; Ferreira et al., 2018). Hence, we
highlight that by catering for explainability and generalizability
by design of the ML experiments, research can not only
generate efficient clinical applications of NLP methods for AD
detection from spontaneous speech but also result in clinically
actionable insights.

LIMITATIONS AND FUTURE WORK

The authors would like to acknowledge two main limitations
in this study. First, A small clinical data set comes with many
challenges. Ideally, to evaluate theMLmodels, we would use both
a training dataset and held-out test set. Unfortunately, this is not
available for the French data. Due to the lack of a held-out test
set, ML scores could be artificially inflated.

Second, it is possible that poor performance by the
paralinguistic features could be confounded by multiple factors:
such as gender, the significant difference in age for the
French population, and the audio quality of the recordings in
DementiaBank. Age and gender have been shown to influence

speech patterns and pitch range due to anatomical differences.
Future work should investigate what impact these factors has on
the explainability and generalizability of paralinguistic features.
To support the results in this article, future work should try
to replicate this study with more data as well as populations
matched by age, gender, and education.

To validate the results presented in this study, future work
should investigate this methodology on other clinical tasks
that produce spontaneous speech to see if finds hold in
more scenarios.

While we used ML to demonstrate that application of
generalizable language features, we did not try any optimization
techniques to boost results. Future work could look at other
classifiers or tuning techniques to improve classification results.
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A Comparison of Connected Speech
Tasks for Detecting Early Alzheimer’s
Disease and Mild Cognitive
Impairment Using Natural Language
Processing and Machine Learning
Natasha Clarke*, Thomas R. Barrick and Peter Garrard

Neurosciences Research Centre, Molecular and Clinical Sciences Research Institute, St George’s University of London, London,
United Kingdom

Alzheimer’s disease (AD) has a long pre-clinical period, and so there is a crucial need for early
detection, including of Mild Cognitive Impairment (MCI). Computational analysis of connected
speech using Natural Language Processing and machine learning has been found to indicate
disease and could be utilized as a rapid, scalable test for early diagnosis. However, there has
been a focus on the Cookie Theft picture description task, which has been criticized. Fifty
participantswere recruited – 25 healthy controls (HC), 25mild ADorMCI (AD+MCI) – and these
completed five connected speech tasks: picture description, a conversational map reading
task, recall of an overlearned narrative, procedural recall and narration of a wordless picture
book. A high-dimensional set of linguistic features were automatically extracted from each
transcript and used to train Support Vector Machines to classify groups. Performance varied,
with accuracy for HC vs. AD+MCI classification ranging from 62% using picture book narration
to 78% using overlearned narrative features. This study shows that, importantly, the conditions
of the speech task have an impact on the discourse produced, which influences accuracy in
detection of AD beyond the length of the sample. Further, we report the features important for
classification using different tasks, showing that a focus on the Cookie Theft picture description
task may narrow the understanding of how early AD pathology impacts speech.

Keywords: machine learning, natural language processing, dementia, connected speech, alzheimer’s disease, mild
cognitive impairment, discourse, spontaneous speech

INTRODUCTION

Alzheimer’s disease (AD) includes a long “pre-clinical” period, during which pathological change
accumulates in a patient’s brain with no apparent effect on their behavior or performance (Jack et al.,
2010). Memory decline often emerges during a period of subtle cognitive alteration known as Mild
Cognitive Impairment (Albert et al., 2011), however, disease modifying compounds tested in this
prodromal stage have failed to show a treatment effect. Thus, there is a need to identify signs of
pathology even earlier (Cummings et al., 2016).

There are two broad approaches to detecting pathology: brief cognitive screening tests and
biological markers (biomarkers) of disease. Of the former, the Mini Mental State Examination
(MMSE) and Montreal Cognitive Assessment can be administered rapidly (Folstein et al., 1975;
Nasreddine et al., 2005), and have reasonably good diagnostic accuracy (AUCs of 85% and 74% for

Edited by:
Fasih Haider,

University of Edinburgh,
United Kingdom

Reviewed by:
Mohammad Soleymani,

University of Southern California,
United States

Loredana Sundberg Cerrato,
Nuance Communications,

United States

*Correspondence:
Natasha Clarke

p1607544@sgul.ac.uk

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal

Frontiers in Computer Science

Received: 27 November 2020
Accepted: 04 May 2021
Published: 31 May 2021

Citation:
Clarke N, Barrick TR and Garrard P
(2021) A Comparison of Connected

Speech Tasks for Detecting Early
Alzheimer’s Disease and Mild

Cognitive Impairment Using Natural
Language Processing and

Machine Learning.
Front. Comput. Sci. 3:634360.

doi: 10.3389/fcomp.2021.634360

Frontiers in Computer Science | www.frontiersin.org May 2021 | Volume 3 | Article 6343601

ORIGINAL RESEARCH
published: 31 May 2021

doi: 10.3389/fcomp.2021.634360

215

http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2021.634360&domain=pdf&date_stamp=2021-05-31
https://www.frontiersin.org/articles/10.3389/fcomp.2021.634360/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.634360/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.634360/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.634360/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.634360/full
http://creativecommons.org/licenses/by/4.0/
mailto:p1607544@sgul.ac.uk
https://doi.org/10.3389/fcomp.2021.634360
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2021.634360


distinguishing MCI from controls (Carnero-Pardo, 2014;
Ciesielska et al., 2016)). The detailed Addenbrooke’s Cognitive
Examination (Hsieh et al., 2013) is more accurate (91% AUC
(Matias-Guiu et al., 2016)), but takes longer to administer.

Biomarkers include Magnetic Resonance Imaging (MRI),
cerebrospinal fluid (CSF) analysis and Positron Emission
Tomography (PET). All three approaches can distinguish AD
from controls with accuracies of over 90% (Bloudek et al., 2011),
but are less accurate for MCI (Mitchell, 2009; Lombardi et al.,
2020). Moreover, they are costly to the healthcare provider and
inconvenient for patients, limiting widespread use (Lovestone,
2014; Laske et al., 2015). At the time of writing Amyloid PET is
restricted to research use (McKhann et al., 2011).

There is evidence that connected spoken or written language
(discourse) begins to change early in the course of AD, possibly
prior to MCI (Forbes-McKay and Venneri, 2005; Garrard et al.,
2005; Ahmed et al., 2013). Improvements in automated Natural
Language Processing have led to the suggestion that
computational analysis of connected speech could act as a
rapid, low-cost, scalable, and non-invasive assay for early
stages of AD (Clarke et al., 2020; de la Fuente Garcia et al., 2020).

A common approach to obtaining a sample of discourse
involves the patient describing a scene, such as that depicted
in the “Cookie Theft” picture (Goodglass et al., 1983). Standard
machine learning algorithms using features automatically
extracted from transcripts of the resulting descriptions can
classify patients with AD vs. controls with 81% accuracy, while
a deep learning approach has achieved similar accuracy in
classifying MCI vs. controls (Fraser et al., 2016; Orimaye et al.,
2018). Alternative methods of sampling discourse, such as
recording unstructured or semi-structured spontaneous speech,
have been found to be similarly distinguishable (Garrard, 2009;
Berisha et al., 2015; Asgari et al., 2017; Mirheidari et al., 2019).

Another approach involves narration of a learned story (either
well-known, such as Cinderella, or a novel narrative presented in
pictures)-a cognitively complex task that entails the integration of
a story’s characters and events within a temporal framework (Ash
et al., 2007; Drummond et al., 2015; Toledo et al., 2017). Less well
studied is the task of describing a process (such as how to change a
tyre). For a review of relevant studies see Petti et al. (2020) and de
la Fuente Garcia et al. (2020).

For reasons related to its simplicity, standardization and task
constraints, and existence of large volumes of data (particularly
the DementiaBank (MacWhinney, 2019)), picture description
appears to have largely captured the field of discourse analysis
(de la Fuente Garcia et al., 2020). There are, however, significant
drawbacks to relying on picture descriptions, including limited
richness and length (Ash et al., 2006), the somewhat unnatural
nature of the task, and (in the case of the Cookie Theft picture)
an outdated depiction of domestic life (Berube et al., 2019).
Similarly, procedural recall places constraints on discourse but
rarely occurs in everyday conversation and so can result in
overly simplified speech (Sherratt and Bryan, 2019). By contrast,
conversational speech is instinctive and naturalistic, though
without constraints, samples can vary widely in length and
content (Boschi et al., 2017). Recall of both overlearned and
novel narratives have the potential to produce acceptably long

and complex discourse samples, but recollection and
engagement may vary.

There have been few formal comparisons of the sensitivities of
different speech sampling approaches to early AD. Sajjadi et al.
(2012) reported that conversation elicited using semi-structured
interviews contained more fillers, (e.g. “er” and “um”), abandoned
units (elements of speech that are started but not completed) and
grammatical function words than picture descriptions. Conversely,
picture descriptions gave rise to more semantic errors, such as
substituting the word “dog” for “cat” (Sajjadi et al., 2012). Beltrami
et al. (2016) found that a logistic regression classifier showed
marginally superior accuracy when trained using acoustic,
rhythmic, lexical and syntactic features derived from descriptive
discourse compared to two personal narrative tasks (recalling a
dream and describing a working day) in an Italian-speaking
population of patients with MCI (F1 � 0.78 vs. 0.70 and 0.76). It
seems likely, therefore, that the task used to elicit spoken discourse
affects not only the accuracy of machine learning classification but
also the nature of the features that distinguish patients’ discourse
from that of controls. Here, we report the accuracy of a series of
classifiers using input features automatically extracted from five
different speech tasks. We report the features found to be important
for classification using the two tasks with the highest
accuracy—overlearned narrative recall, and picture description.

MATERIALS AND METHODS

Participants
Fifty participants (see Table 1) were recruited from the St
George’s University Hospitals NHS Cognitive Disorders Clinic:
25 healthy controls (HC) and 25 patients with mild AD (n � 13)
or MCI (n � 12) (Petersen criteria (Petersen, 2004)). Diagnoses
had been made within two years prior to recruitment using
imaging, neuropsychological and/or CSF biomarkers as well as
clinical information. HC were either friends and family of
patients attending clinic or recruited through the Join
Dementia Research system (www.joindementiaresearch.nihr.ac.
uk). None of the participants gave a history of other conditions
which may affect cognition or language such as stroke, epilepsy or
chronic mental health conditions, and all provided informed
consent. All spoke English as first language. Ethical approval was
granted by the Research Ethics Service Committee
London–Dulwich, on November 25, 2016 (ref 16/LO/1990).

Procedures
Global cognition was assessed with the Addenbrooke’s Cognitive
Examination Third Edition (ACE-III) (Hsieh et al., 2013), a
widely used measure scored from 0 – 100, with lower scores
representing worse functioning.

Connected Speech Tasks
All tasks were administered by the same individual (NC). Only words
spoken by the participant were analyzed. We refer to these different
approaches as: Picture Description (PD); Conversational Speech
(CS); Overlearned Narrative Recall (ONR); Procedural Recall
(PR); and Novel Narrative Retelling (NNR).
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Picture Description
PDs were elicited using a novel version of the Cookie Theft
stimulus, consisting of an updated and colored adaptation the
original (Berube et al., 2019). Participants were given the
instruction “Tell me everything you see going on in this
picture.” No time-constraints were imposed.

Conversational Speech
CS was generated using the Map Task (Thompson et al., 1993), in
which the participant and the researcher have an A4 map with
landmarks depicted, (e.g. “fast flowing river”). The participant’s
map depicts a route traversing the landmarks with a start and finish
point. Acting as “Instruction Giver,” they must describe the route to
the “Instruction Follower” (the researcher), who recreates the route
as faithfully as possible by drawing onto their copy of the map.

Overlearned Narrative Recall
Participants were asked to recall the story of Cinderella from
memory. They were given the instruction “I’d like you to tell me,
with as much detail as you can, the story of Cinderella.”

Procedural Recall
Participants were asked to recount the procedure for making a
cup of tea. They were given the instruction “I’d like you to tell me,
in as much detail as you can, how you would make a cup of tea.”

Novel Narrative Retelling
The wordless picture book “Frog, Where Are You?” (by Mercer
Mayer) was used as a stimulus for the generation of a novel
narrative. Participants looked through the book once, before
describing the story based on the pictures.

Transcription
The resulting sample from each connected speech task was
transcribed according to conventions detailed in Garrard et al.
(2011). Transcription was completed by a single researcher with a
subset of 10% re-transcribed by an independent researcher who
was blind to participant diagnosis. The inter-rater reliability for
transcription of this sample was 84% based on the Levenshtein
distance (Navarro, 2001).

Data Analysis
Linguistic Feature Extraction
Two hundred and eighty-six linguistic features, consisting of fine-
grained indices reflecting a range of linguistic and para-linguistic
phenomena, were extracted from each connected speech task
transcript (Table 2). See Supplementary Material for full
descriptions of features and extraction methods.

Feature Selection
Sparse features (defined as those with > 50% zero values for either
class) were removed. To render feature scales invariant values
were transformed to a scale between 0 and 1 using the MinMax
method. To minimize the danger of overfitting, feature selection
was applied in each training fold, using i) feature ranking on
mutual information with the class, selecting the top 5, 10, 20, and
40; or ii) logistic regression combined with recursive feature
elimination (RFE; Guyon et al., 2002), in which each feature is
recursively removed from the set and the regression re-trained to
classify groups until the optimal subset of 10 features is found1.

Machine Learning
Four participant groups were considered: i) those with clinical evidence
to suggest the presence of AD pathology, i.e., mild AD plus those with
MCI (AD+MCI); ii) MCI alone, iii) AD alone, and iv) healthy controls
(HC). Each vector of selected featureswas used to train a series of linear
support vector machines (SVM) to output three binary classifications:
HC vs. AD+MCI, HC vs. AD; and HC vs. MCI. SVM have previously
been used to achieve good results with similar data (de la FuenteGarcia
et al., 2020), and a linear kernel was chosen to enable extraction of
coefficients. The value of C was set to 100 (as in Fraser et al., 2019).

We calculated accuracy and balanced accuracy, due to class
imbalance for subgroup classifications. The latter (Equation 1) is
similar to conventional accuracy when the classifier performs equally
well on either class (or when classes are balanced) but is lower if
conventional accuracy is high only due to superior performance on
the majority class (Brodersen et al., 2010). TP � true positives, TN �
true negatives, FN � false negatives, FP � false positives.

BalancedAccuracy � 1
2
( TP
TP + FN

+ TN
TN + FP

). (1)

We also report sensitivity [TP/(TP + FN)], specificity [TN/(TN
+ FP)], and the AUC.K-fold cross-validation was carried out using
an 80:20 training:test split; the value of k � 5 was chosen to ensure a
reasonable sized test set, given the small dataset. Feature scaling
and selection was calculated on each training fold and applied to
the test fold. The reported performance is an average across the five
folds, with standard deviation reported to indicate variability.

Extraction of Important Features
To identify features important for group classification the learnt
coefficients, corresponding to weights associated with each

TABLE 1 | Participant demographics.

HC median (IQR) AD+MCI Median (IQR) Test p value

Age (yrs) 63 (12) 71 (13) Mann Whitney U 0.018*
Sex (% f) 72% 24% Chi square 0.001**
Education (yrs) 16 (3.8) 12 (4) Mann Whitney U 0.007*
MMSE (30) 29 (0.70) 24 (2.99) Mann Whitney U <0.001**

IQR � interquartile range, MMSE � mini mental state examination, converted from total ACE-III score (Matías-Guiu et al., 2018).* � p < 0.05,** � p < 0.001.

1The feature set size of 10 was pre-determined according to the highest average
accuracy when using the filter approach: taking the mean accuracy across all five
tasks for each threshold of k, 10 was the highest.
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feature during training, were extracted from each fold and ranked
by absolute value. Features selected in only one fold were
excluded from further analysis. This method uses information
from both the feature selection step and the final training step as
an indication of importance and aims to find features that are
most stable across the model, thus potentially more generalizable.

Between group analyses were conducted for important features
using the non-parametric Mann Whitney U test, due to non-
Gaussian distribution of features in at least one group. Results were
Bonferroni adjusted for multiple comparisons and all p-values are
reported in their corrected form (significance threshold (α) � 0.05).

Demographic Variables
HC and AD+MCI groups were not balanced for age, sex and years in
education (Table 1). To explore potential confounding on classification
results, important linguistic features from the highest accuracy HC vs.
AD+MCI classification were used as input in a linear regression to
predict age and education, and a linear SVM to classify sex.

RESULTS

Accuracy of Speech Tasks for Classifying
Healthy Controls vs. Alzheimer’s disease +
Mild Cognitive Impairment
Table 3 shows the classification performance achieved on
discourse samples derived from each of the five tasks. ONR,

PD and PR produced similar average accuracies and AUCs, but
overall sensitivities and specificities varied, with the highest
accuracy (0.78) and specificity (0.82) associated with samples
generated under the ONR condition.

PD achieved the second highest accuracy (0.76), with
similar specificity (0.81) and the same AUC (0.84) as ONR
but a lower sensitivity (0.69 compared to 0.75). The condition
with the third highest accuracy (PR) achieved the highest
sensitivity of all tasks (0.78) but second lowest specificity
(0.74). The lowest accuracies and AUCs were obtained
using CS and NNR. The s.d. of the mean accuracy and
AUC for ONR is smaller than for the remaining tasks (0.08
and 0.05, compared to 0.18 and 0.11 for the second most
accurate task, PD) indicating less variability given different
training and test data.

Important Features for Classification of
Healthy Controls vs. Alzheimer’s disease +
Mild Cognitive Impairment
In the interests of brevity, we focused on the features important
for the two most accurate tasks – ONR and PD – which both
utilized multivariate feature selection.

Overlearned Narrative Recall Features
Table 4 shows 12 features, ranked by number of folds and mean
rank across all folds, that were selected in at least two cross-

TABLE 2 | Linguistic domains covered by features extracted from each task transcript (number of features in brackets).

Type Linguistic feature Example features

Lexico-
syntactic (275)

Word production and complexity (11) e.g., Mean syllables per word, repeated words
Parts-of-speech (POS) (18) % Of POS (e.g., nouns, verbs, coordinates) and ratios (e.g., noun:verb ratio)
Lexical richness (8) e.g., Type-token-ratio (TTR; types:tokens), moving average TTR with a window size of 10, 20, 30, 40, and/or

50 if the sample was of sufficient length
Psycholinguistics (34) Average normative ratings for e.g., familiarity, concreteness, age-of-acquisition of words
Psychological processes (50) % Of words relating to individual psychological processes e.g., anger, time, work
Syntactic structures and
complexity (32)

e.g., mean length of sentence, verb phrases per T-unit (VP/T), complex nominals per clause (CN/C)

Syntactic parse tree features (4) e.g., maximum depth, mean depth
Grammatical constituents (111) Grammatical constituents of syntax tree e.g., NP—> DT NN, a noun phrase composed of a determiner and a

noun
Shannon entropy (1) Entropy for letters in the sample (Shannon, 1951)
Fluency (3) e.g., false start ratio, filler ratio
Non-verbal (3) e.g., pauses, laughter

Semantic (11) Semantic content (3) e.g., idea density
Semantic coherence (9) e.g., Mean cosine similarity between adjacent sentences utilizing google news word2vec model (Mikolov

et al., 2013)

TABLE 3 | HC vs. AD+MCI mean (s.d) SVM classification performance across five-fold cross validation for five connected speech tasks, ranked by accuracy.

Discourse-generating task Accuracy AUC Sensitivity Specificity

ONR 0.78 (0.08) 0.84 (0.05) 0.75 (0.23) 0.82 (0.21)
PD 0.76 (0.18) 0.84 (0.11) 0.69 (0.30) 0.81 (0.12)
PR 0.74 (0.15) 0.85 (0.19) 0.78 (0.15) 0.74 (0.25)
CS 0.66 (0.11) 0.74 (0.10) 0.62 (0.10) 0.78 (0.31)
NNR 0.62 (0.16) 0.62 (0.10) 0.53 (0.21) 0.72 (0.11)
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TABLE 4 | Important features of overlearned narrative recall for classifying HC vs. AD+MCI. Ordered by number of folds and then mean rank. Mann Whitney U tests
Bonferroni adjusted for multiple comparisons and reported in corrected form.

Feature Linguistic domain No.
folds

Mean
rank

Between group comparison Description

HC
median (IQR)

AD+MCI
median (IQR)

p value

BNC
spoken
freq CW

Psycholinguistics 5 6.4 1.32 (0.28) 1.70 (0.51) 0.001** Mean frequency rating for content words based on British
National Corpus. Higher values � higher frequency

NP –> DT Grammatical
constituents

5 3.2 0.00 (0.00) 0.01 (0.01) 0.294 Noun phrase with a bare determiner e.g., “this,” “those”

Entropy Shannon entropy 5 2.4 4.11 (0.04) 4.07 (0.06) 0.037* Entropy calculated for letters (Shannon, 1951). Higher values
�more information, and less certainty in sequence predictions

PP type rate Grammatical
constituents

4 6.8 0.08 (0.01) 0.05 (0.02) <0.001** Rate of prepositional phrases

False starts
ratio

Fluency 3 8.7 0.00 (0.00) 0.01 (0.01) 4.605 Ratio of incomplete words

S –> CC
NP VP

Grammatical
constituents

2 7.5 0.000 (0.00) 0.002 (0.01) 1.173 Sentence with a coordinating conjunction, noun phrase and a
verb phrase e.g., “But Cinderella smiled.”

Idea density Semantic content 2 7 0.57 (0.02) 0.54 (0.06) 0.064 Mean propositional idea density per word

Ingest Psychological
processes

2 6 0.13 (0.37) 0.00 (0.00) 0.053 % words that correspond to concept of “ingestion” e.g.,
hungry, dish

DESWLsy Word production
and complexity

2 5 1.32 (0.04) 1.26 (0.11) 0.043* Mean number of syllables per word

Health Psychological
processes

2 3.5 0.7 (0.68) 0.00 (0.54) 0.031* % words that correspond to concept of “health” e.g., clinic, flu

Sixltr Word production
and complexity

2 3.5 14.34 (2.09) 11.76 (5.88) 0.012* % words longer than six letters

Mean WMD Semantic coherence 2 2.5 0.88 (0.17) 1.17 (0.49) 0.001** Meanwordmoversdistance (Kusner et al., 2015)betweenadjacent
sentences, using word2vec (Mikolov et al., 2013). Lower values �
greater semantic similarity, and therefore coherence

* � p < 0.05. Features in bold appear important for classification using both picture description and overlearned narrative recall (see Table 5).

FIGURE 1 |Radar plot showing features important for HC vs. AD+MCI classification using overlearned narrative recall. HC � healthy control, AD+MCI � Alzheimer’s
disease and Mild Cognitive Impairment group. Features have been scaled to between 0 and 1 using MinMax scaling and medians plotted. * � p < 0.05, ** � p < 0.001.
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validation folds for ONR samples. A further 14 features were
selected only in one fold and were not considered for further
analysis.

Between-group comparisons of the values of the features
selected in the HC vs. AD+MCI classification using the ONR
sample are displayed in Table 4. Seven of these features differed
significantly: the mean frequency for content words measured
according to the British National Corpus (BNC); Shannon
entropy for letters; rate of prepositional phrases; percentage of
words relating to health; number of syllables per word; the
percentage of words longer than six letters; and coherence
between adjacent sentences. Comparative scaled values are
displayed in Figure 1.

Picture Description Features
Eleven features were selected in at least two folds using PD
samples to classify HC vs. AD+MCI (Table 5). A further 11
features were selected only in one fold and eliminated from
further analysis.

Group comparisons showed significant differences between
the values of three features: noun phrases consisting of a bare
determiner, emotional tone and sentences composed of an
adverbial phrase, noun phrase and verb phrase. Comparative
scaled values are plotted in Figure 2.

Comparisons of the selected features between the two discourse
types reveal that both classifiers learned class membership from
grammatical constituents, psycholinguistics and psychological
processes (Tables 4 and 5). Two individual features (noun
phrases consisting of bare determiners, and entropy) were
important to both tasks. By contrast, features relating to semantic
richness (Idea Density) and coherence (Mean WMD), as well as
word complexity (DESWLsy and Sixltr) were important only for
classification in ONR, while lexical richness (MATTR_30) was
important only in PD. Moreover, a greater number of features
important to the classification of ONR than to the classification of
PD showed differences in values between groups.

Accuracies in Subgroup Classifications
MCI and AD subgroups were explored, as important clinically
distinctive groups that may differ in management and disease
course.

Healthy Controls Versus Alzheimer’s disease
Table 6 reports classification performance for HC vs. AD alone. The
highest mean balanced accuracy was achieved with ONR samples
(0.90), higher than accuracy classifying the mixed AD+MCI group
and balanced accuracy for the MCI alone group (both 0.78). AUC,
sensitivity and specificity were also highest of all tasks (0.94, 0.83, and

TABLE 5 | Important features of picture description for classifying of HC vs. AD + MCI. Mann Whitney U tests Bonferroni adjusted for multiple comparisons and reported in
corrected form.

Feature Linguistic domain No.
folds

Mean
rank

Between group comparison Description

HC
median
(IQR)

AD + MCI
median (IQR)

p
value

NP –> DT Grammatical
constituents

5 8.6 0.00 (0.01) 0.01 (0.01) 0.008* See Table 4

Tone Psychological
processes

5 8.4 50.32 (30.84) 32.45 (23.87) 0.021* Measures overall emotional tone of sample. Higher values
� more positive

S – > ADVP NP VP Grammatical
constituents

5 7.2 0.002 (0.01) 0.000 (0.00) 0.042* Sentence with an adverb phrase, noun phrase and verb
phrase e.g., “Hardly anyone noticed.”

SUBTLEXus
Range FW

Psycholinguistics 4 6.5 8,189.19
(163.97)

8,273.81
(124.38)

0.32 Measures frequency of function words according to their
range, (i.e. across documents as opposed to within) using
the SUBTL corpus of television and film subtitles

Demonstratives Parts-of-speech 4 5 0.01 (0.00) 0.01 (0.01) 1.127 Use of demonstratives (this, that, these, those)

Entropy Shannon entropy 3 6.3 4.14 (0.06) 4.12 (0.07) 0.447 See Table 4

FocusPast Psychological
processes

3 4 1.23 (1.43) 2.14 (2.07) 0.334 % words that are focused on the past e.g., ago, did

PosEmo Psychological
processes

3 3 2.19 (1.99) 1.19 (1.67) 0.248 % words that reflect positive emotion e.g., love, nice

S –> S CC S Grammatical
constituents

3 2.3 0.00 (0.01) 0.01 (0.01) 0.239 Two sentences joined by a coordinating conjunction e.g.,
“She runs but he walks.”

MRC
Imageability AW

Psycholinguistics 2 5.5 359.80
(13.58)

343.57 (20.67) 0.084 Mean ease of imageability of a word according to the Medical
research council database. Higher values � easier imagery.

MATTR_30 Lexical richness 2 3.5 0.77 (0.04) 0.76 (0.05) 0.703 Moving average type-token-ratiowith awindowof 30words

* � p < 0.05,** � p < 0.001. Features in bold appear important for classification using both overlearned narrative recall and picture description (see Table 4).
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0.96 respectively). PD produced the lowest balanced accuracy (0.59)
and sensitivity (0.50), but third highest AUC (0.75).

Healthy Controls Versus Mild Cognitive Impairment
Table 7 reports classification performance for HC vs. MCI alone.
The pattern of speech task performance more closely resembles
that of HC vs. AD+MCI (Table 3); ONR achieved the highest
balanced accuracy (0.78), AUC (0.82), sensitivity (0.67) and
specificity (0.90) and NNR produced the lowest balanced
accuracy (0.50), AUC (0.50) and sensitivity (0.27). Only the
two top performing tasks (ONR and CS) reached sensitivity
above chance level.

Comparing the three classifications, performance was higher
in all four metrics for HC vs. AD compared to HC vs. MCI, and
HC vs. AD+MCI (Figure 3). Accuracy/balanced accuracy was
equal for both HC vs. MCI and HC vs AD+MCI classifications
(0.78); AUC and sensitivity were higher for HC vs. AD+MCI but

FIGURE 2 |Radar plot showing features important for HC vs. AD+MCI classification using picture description. HC � healthy control, AD+MCI � Alzheimer’s disease
and Mild Cognitive Impairment group. Features have been scaled to between 0 and 1 using MinMax scaling and medians plotted. * � p < 0.05.

TABLE 6 | HC vs. AD mean (s.d) SVM classification performance across five-fold cross-validation for five connected speech tasks, ranked by accuracy.

Discourse-generating task Balanced accuracy AUC Sensitivity Specificity

ONR 0.90 (0.11) 0.94 (0.06) 0.83 (0.24) 0.96 (0.09)
CS 0.75 (0.15) 0.80 (0.23) 0.62 (0.26) 0.88 (0.12)
NNR 0.71 (0.18) 0.73 (0.26) 0.65 (0.34) 0.76 (0.22)
PR 0.68 (0.24) 0.65 (0.25) 0.52 (0.46) 0.84 (0.15)
PD 0.59 (0.30) 0.75 (0.26) 0.50 (0.35) 0.68 (0.32)

TABLE 7 | HC vs. MCI mean (s.d) SVM classification performance across five-fold cross-validation for five connected speech tasks, ranked by accuracy.

Discourse-generating task Balanced accuracy AUC Sensitivity Specificity

ONR 0.78 (0.13) 0.82 (0.22) 0.67 (0.31) 0.90 (0.10)
CS 0.70 (0.20) 0.75 (0.10) 0.58 (0.37) 0.82 (0.19)
PD 0.62 (0.26) 0.77 (0.28) 0.40 (0.42) 0.84 (0.15)
PR 0.52 (0.12) 0.62 (0.21) 0.43 (0.25) 0.60 (0.19)
NNR 0.50 (0.23) 0.45 (0.30) 0.27 (0.43) 0.73 (0.18)

FIGURE 3 |Classification performance for groups and subgroups. HC �
healthy control, MCI � Mild Cognitive Impairment, AD � Alzheimer’s disease,
AD+MCI � Alzheimer’s disease and Mild Cognitive Impairment group. All
classifications used linguistic features from the overlearned narrative
recall task. Error bars + 1 sd.
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specificity was lower, suggesting poorer correct classification of
HC given a mixed patient group, compared to MCI only.

Demographic Variables
A linear regression with the twelve important features from ONR
(Table 4) as input failed to predict age (whole sample r2 � −0.14,
HC alone r2 � −11.9, AD+MCI alone r2 � −1.33) or years in
education (whole sample r2 � −0.30, HC alone r2 � −11.83,
AD+MCI alone r2 � −5.60)2. Balanced accuracy for classification
of sex was greater than chance (0.55), however the male/female
split included both HC and AD+MCI participants in both groups.

DISCUSSION
The accuracy of linguistic features automatically extracted from
five connected speech tasks for classifying mild AD and MCI was
compared. Differences were observed in classification
performance using SVM, which, although small for the top
performing tasks, indicated differential clinical utility for
classifying mild AD and MCI based on task choice.

When comparing cognitively healthy controls with those
judged likely on clinical grounds to harbor AD pathology, (i.e.
diagnosed with either MCI or AD) the highest accuracy (78%)
was achieved using data obtained using ONR. The same data also
yielded the highest accuracy in smaller, but clinically relevant,
subgroup classifications (mild AD alone or MCI alone compared
to HC (90% and 78% respectively)). These results suggest that an
overlearned narrative recall task may be the best approach to
obtaining discourse samples for detecting early or pre-
symptomatic cases of AD, a goal that has become central to
successful clinical trial outcomes.

PD achieved the second highest accuracy (76%) supporting
the role of a new, updated version of this commonly used task.
Sensitivity was lower (69% compared to 75% for ONR), and the
task performed poorly for classification of AD only. The accuracy
of features probably increases with sample length (Fraser et al.,
2016), so the shorter samples obtained from the AD group may
have hindered classification. PR, which is also a short task,
achieved the third highest accuracy (74%) and was ranked
third for detecting mild AD and fourth for MCI.

Although conversational discourse elicited using a map
reading task achieved only 66% accuracy to detect AD+MCI,
accuracy improved in the subgroup analyses: CS gave the second
highest accuracy for mild AD and MCI groups alone, suggesting
that critical differences in CS may develop between the MCI and
mild dementia stages.

NNR with a picture-book stimulus produced the worst
performance for AD+MCI and the MCI subgroup
classification. In a previous study in which retellings of the
same task were scored by a linguist, only 15% of AD patients
grasped the overall theme of the story (Ash et al., 2007). Fine-
grained linguistic features alone are unlikely to capture this

deficiency and global scoring has not yet been adequately
automatized (though see Dunn et al. (2002) for a potential
approach based on Latent Semantic Analysis).

The minimum sample length required for meaningful
analysis has been subject to debate (Sajjadi et al., 2012). Our
main results (AD+MCI classification) suggest that little
accuracy is lost when classifying shorter samples (PD and
PR), and the lowest accuracy was achieved using the longest
samples (NNR). Conditions of the task may therefore be of more
importance than resulting sample length, useful for clinical
adoption. However, when little data is available, and samples
are short (such as in the AD alone classification), classification
performance may suffer.

Features Important for Classification
Although the advantage of ONR may simply be task-related,
(i.e. due to the involvement of memory as well as language), it
is also instructive to examine features that were robustly
selected and the overlap with those selected from PD
samples. As in Sajjadi et al. (2012) and Beltrami et al.
(2016) a multi-domain linguistic impairment was detected
in the patient group, with changes evident in lexical,
semantic and syntactic features, and speech tasks showing
varying sensitivity to these changes.

Word Frequency
In keeping with the findings of Garrard et al. (2005) and those of
Masrani et al. (2017) participants in the AD+MCI group used
words with higher lexical frequency. Studies of patients with
isolated degradation of semantic knowledge due to focal left
anterior temporal atrophy semantic dementia (SD) have found
that specific terms are replaced with higher frequency generic
usages (Bird et al., 2000; Fraser et al., 2014; Meteyard et al., 2014).
Word frequency can therefore be seen as reflecting the integrity of
the brain’s store of world knowledge, a deficit that is seen in a high
proportion of patients with early AD (Hodges et al., 1992).

Entropy
Entropy was retained in five folds using ONR, and three for PD.
Entropy quantifies the information content contained in a string
of letters (Shannon, 1951): the more predictable a letter is on the
basis of those that come before it, the lower its entropy. Averaged
over letters, entropy was significantly lower in the AD+MCI
group using ONR, suggesting greater predictability in these
samples. Entropy in discourse samples elicited using PD
correlates with global cognition (Hernández-Domínguez et al.,
2018), and the findings of the current study also suggest that
lower values are indicative of early AD, and that this is constant
across tasks. Lower levels of entropy may inherently vary between
tasks Chen et al. (2017); the current study found lower values in
ONR than in PD discourse, with between-group differences
significant in the former. The value of entropy may therefore
be greater when considering more cognitively demanding tasks.

Emotional Tone
The overall emotional tone (a “summary variable” calculated by
LIWC2015 (Pennebaker et al., 2015)) of the sample was an

2Negative r2 values indicate that predicting the mean dependent variable for each
instance would explain more variance than a model based on the input feature.
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important feature in PD, with the tone adopted by the AD+MCI
group significantly more negative than HC. The same did not
apply in ONR samples, for which the emotional tone is more
tightly constrained by the story itself. Use of positive words was
also lower in the AD+MCI group. Individuals with depression use
more negative words in their writing (Rude et al., 2004), and
depression commonly coexists with AD, for which it may also be
a risk factor in older adults (Kitching, 2015; Herbert and
Lucassen, 2016).

Grammatical Constituents
Classifications based on both ONR and PD retained in all folds
the increased frequency with which participants in the AD +MCI
group formed a noun phrase using a bare determiner (NP – >
DT), e.g. “look at this” as opposed to “look at this jar”.
Determiners can serve a deictic purporse, so speech tasks with
a pictorial stimulus may be more sensitive to their use; Sajjadi
et al. (2012) reported a greater proportion of function words,
including determiners, in PD than CS, and the difference between
groups in the current study was significant for PD only. Greater
numbers of determiners (Petti et al., 2020) and fewer nouns
(Bucks et al., 2000; Jarrold et al., 2014) have been independently
reported as features of AD discourse, but it is likely that specifying
the role of the determiner in the sentence (as in NP –> DT) adds
discriminatory power. A similar interpretation may obtain in the
case of sentences consisting of an adverbial phrase, noun phrase
and verb phrase (S –> ADVP NP V), which were also more
frequent in HC discourse and may either denote richer
descriptions of the picture, or a greater tendency to relate
utterances to one another, e.g. by using “then”.

Remaining Features
We make note of two remaining features: imageability (MRC
Imageability AW) and word-movers distance (WMD). Although
selected in fewer than five folds, median imageability measured in
PD was numerically lower in the AD+MCI group. This “reverse
imageability effect” has also been observed in speech of SD
patients (Bird et al., 2000; Hoffman et al., 2014), and can be
explained as a consequence of reliance on a more generic, and
thus higher frequency, vocabulary: consider the less imageable
“place” and the more imageable “cathedral” (Bird et al., 2000;
Hoffman et al., 2014).

The mean WMD, although retained in only two folds of the
ONR classifier, was significantly different between groups.
Using word2vec embeddings, WMD measures the minimum
cumulative distance required to travel between collections of
word vectors in a high-dimensional semantic space, analogous
with coherence (Mikolov et al., 2013; Kusner et al., 2015). Other
measures of coherence, however, are based on the cosine of the
angle between the vectors of consecutive sentences, which
requires multiple word vectors to be combined into a
sentence vector (Dunn et al., 2002; Holshausen et al., 2014;
Mirheidari et al., 2018). This step is obviated by WMD. To the
best of the author’s knowledge this is the first study to show
WMD as a discriminatory feature of AD and MCI speech. The
measure may show differences in ONR alone because the
presence of the stimulus in PD acts as a continuous

referential prompt, facilitating the coherent connection of
sequential utterances.

Strengths and Limitations
Demographic variables were not balanced across groups,
unfortunately a common issue (de la Fuente Garcia et al.,
2020). Given that the linguistic function of participants pre-
diagnosis is not known, conclusions regarding between-group
differences are drawn with caution. We have explored
demographic variables and find little evidence of mediation,
although they may still act as moderators. The population
studied is small, which may account for small differences in
accuracy observed for the three highest scoring tasks classifying
AD+MCI. Subgroup sizes are further reduced, and these results are
therefore less reliable. We have attempted to improve reliability by
reporting results of cross-validation. Hyper-parameters were not
tuned, e.g. via a grid search, which may improve results.

Acoustic features were not studied as extraction was beyond
the scope of the study—their inclusion may have improved
performance, seen in previous research such as Fraser et al.
(2016) and Beltrami et al. (2016). One strength is that our
AD+MCI group (and AD subgroup) were more mildly
affected than those classified in Fraser et al. (2016) (mean
MMSE 18.5, compared to AD+MCI mean of 24 and AD
subgroup mean of 22.5), and so likely represent a more
challenging classification task.

Compared to current tests, the reported AUC for detecting
MCI is higher than the MMSE (82% compared to 74% (Ciesielska
et al., 2016)) with similar sensitivity but better specificity (67%
and 90% compared to 66% and 73%). Compared to FDG-PET for
AD detection sensitivity is slightly lower with better specificity
(83% and 96% compared to 86% for both (Patwardhan et al.,
2004)).

Conclusion and Future Work
The results of the current study indicate that linguistic analysis
could be used to detect mild AD and MCI, as well as these
subgroups compared to healthy controls - an important clinical
task – in a novel dataset. Computational analysis of language
would offer a rapid, scalable and low-cost assessment of
individuals, that could be built in to remote assessment, such
as via a smartphone app, less obtrusive and anxiety provoking
than current biomarker tests. We have shown, in a direct
comparison of the same participants, that the choice of speech
task impacts subsequent performance of classifiers trained to
recognize mild AD and MCI based on linguistic features. Tasks
that probe memory and language may be optimal. Although some
features appear important for classification independent of
discourse type, tasks may be sensitive to different linguistic
features in early AD; due to the reliance on PD in previous
studies, some features susceptible to disease may have garnered
less attention. This has implications for future work seeking to
characterize AD and MCI based on speech, and clinical adoption
of computational approaches. Future work could look to explore
use of different tasks in larger samples, and include novel features
found here important in classifying groups to improve sensitivity
to disease, such as the WMD and analysis of emotional tone.
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Longitudinal assessment of healthy individuals prior to a possible
later diagnosis of AD is needed, in order to identify very early
linguistic changes and delineate the impact of Alzheimer
pathology on language from other factors. Such studies are
underway and beginning to provide important insights
(Mueller et al., 2018).
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Background: Advances in machine learning (ML) technology have opened new avenues

for detection and monitoring of cognitive decline. In this study, a multimodal approach to

Alzheimer’s dementia detection based on the patient’s spontaneous speech is presented.

This approach was tested on a standard, publicly available Alzheimer’s speech dataset

for comparability. The data comprise voice samples from 156 participants (1:1 ratio of

Alzheimer’s to control), matched by age and gender.

Materials and Methods: A recently developed Active Data Representation (ADR)

technique for voice processing was employed as a framework for fusion of acoustic

and textual features at sentence and word level. Temporal aspects of textual features

were investigated in conjunction with acoustic features in order to shed light on the

temporal interplay between paralinguistic (acoustic) and linguistic (textual) aspects of

Alzheimer’s speech. Combinations between several configurations of ADR features and

more traditional bag-of-n-grams approaches were used in an ensemble of classifiers

built and evaluated on a standardised dataset containing recorded speech of scene

descriptions and textual transcripts.

Results: Employing only semantic bag-of-n-grams features, an accuracy of 89.58%

was achieved in distinguishing between Alzheimer’s patients and healthy controls. Adding

temporal and structural information by combining bag-of-n-grams features with ADR

audio/textual features, the accuracy could be improved to 91.67% on the test set.

An accuracy of 93.75% was achieved through late fusion of the three best feature

configurations, which corresponds to a 4.7% improvement over the best result reported

in the literature for this dataset.

Conclusion: The proposed combination of ADR audio and textual features is capable

of successfully modelling temporal aspects of the data. The machine learning approach

toward dementia detection achieves best performance when ADR features are combined

with strong semantic bag-of-n-grams features. This combination leads to state-of-the-art

performance on the AD classification task.

Keywords: Alzheimer’s dementia detection, speech, language, acoustic features, lexical features, natural language

processing, speech processing, machine learning
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1. INTRODUCTION

While the natural history of Alzheimer’s Disease (AD) and the
form of dementia it causes are mainly characterised by memory
impairment, a wide range of cognitive functions are known
to be affected by the process of neurodegeneration triggered
by the disease. Several standardised neuropsychological tests
are currently employed to detect such impairments for the
purposes of diagnosis and assessment of disease progression.
However, these tests often take place in clinics and consist of
constrained cognitive tasks, where the patient’s performance may
be affected by extraneous factors such as variations in mood,
poor sleep the night before the test, etc. Recent progress in
artificial intelligence (AI) and machine learning (ML) technology
has opened new avenues for more comprehensive monitoring
of cognitive function, and tests based on spontaneous speech
and language data have emerged as possible tools for diagnostic
and prognostic assessment (de la Fuente Garcia et al., 2020;
Petti et al., 2020). In this paper we investigate the hypothesis
that integration of acoustic and textual data into a unified ML
model enhances the accuracy of AD detection. Specifically, we
present a model that integrates acoustic and textual modalities
on a temporal (i.e., time-based) dimension. The motivation for
doing so arises from the nature of the task used to elicit the
speech data used in this study. These data consist of spontaneous
speech elicited through the Cookie Theft description task from
the Boston Diagnostic Aphasia Exam (Goodglass et al., 2001),
which involves visuospatial as well as verbal ability.

Along with language, visuospatial function is affected early
in AD. This is manifested in the form of non-salience of visual
input stimulus, and degraded attentional focus and visual search,
among other disturbances (Cronin-Golomb, 2011). Using a
similar picture description task, Meguro et al. (2001) observed
hemispatial visual searching impairment in some participants
with AD, in correlation with decreased contralateral parietal
blood flow. Other studies involving picture descriptions have
associated AD with simultanagnosia, a disorder of attentive
exploration of the spatial field (Vighetto, 2013). They found
that persons with AD tended to produce “slow and partial
[descriptions], one detail after the other, without ability to
capture a global perception of the drawing.” Our assumption is
that such disturbances of visuospatial function will be reflected in
differences in temporal order between the descriptions produced
by participants with AD and those produced by non-AD
participants. As Cummings (2019) observed, while the Cookie
Theft picture is a static scene, causal and temporal relations can
be inferred from the various elements depicted in it. Capturing
these relations is necessary to give a complete description of the
picture, as “certain events in the scene must take place before
other events in order for a description of the picture to make
sense.” If, as seems likely, degraded attention focus hinders the
participant’s ability to identify such events, one should expect the
temporal organisation of events in the scene description to differ
in AD.

We therefore propose an approach to speech and language
which incorporates temporal information. Unlike most other
approaches, where content is represented as order-agnostic

features with at most short distance dependencies, our model
accounts for temporal aspects of both linguistic and acoustic
features. We employ our recently developed Active Data
Representation (ADR) processing technique (Haider et al., 2020)
and present a novel way of fusing acoustic and text features
at sentence and word level. We show that these features are
capable of modelling temporal aspects of text and audio, but fall
short of semantic modelling. To address this shortcoming, we
propose combining ADR features with term frequency-inverse
document frequency weighted bag-of-n-grams features, which
proved effective in modelling semantics in previous studies
(Martinc and Pollak, 2020). The final combination of ADR and
bag-of-n-grams features leads to state-of-the-art performance on
the AD classification task1.

2. RELATED WORK

The complex multimodal ways in which AD symptoms
may appear calls for increasingly interdisciplinary research
(Turner et al., 2020). Current research on AD involves not
only biomedicine, neuroscience, and cognitive psychology, but
also increasingly AI and machine learning methods. Studies
connecting language and AD have focused mostly on formal
aspects of language (i.e., lexicon, syntax and semantics), but the
analysis of continuous speech has been progressively seen by
researchers as a source of information that may support diagnosis
of dementia and related conditions (Lopez-de Ipiña et al., 2015,
2016; Luz et al., 2018; Toth et al., 2018; Haulcy and Glass, 2021;
Mahajan and Baths, 2021).

Language research into AD has employed high-level features
such as information content, comprehension of complexity,
picture naming and word-list generation as predictors of disease
progression (Reilly et al., 2010). A study by Roark et al.
(2011) used natural language processing (NLP) and automatic
speech recognition (ASR) to automatically annotate and time-
align a few spoken language features (pause frequency and
duration), and compared these methods to manual analysis.
They analysed audio recordings of 74 neuropsychological
assessments to classify mild cognitive impairment (MCI) and
healthy elderly participants. Their best classifier obtained an
area under the receiver operating curve (AUC) of 86% by
including a combination of automated speech and language
features and cognitive tests scores. Jarrold et al. (2014) worked
with a dataset consisting of semi-structured interviews from 9
healthy participants, 9 with AD, 9 with frontotemporal dementia,
13 with semantic dementia, and 8 with progressive nonfluent
aphasia. With an automatic speech recognition (ASR) system,
they extracted 41 features, including speech rate, and the mean
and standard deviation of the duration of pauses, vowels,
and consonants. They used a multilayered perceptron network,
achieving an accuracy of 88% for AD vs. healthy subjects
based on lexical and acoustic features. A more recent study
by Luz et al. (2018) extracted graph-based features encoding

1The source code for the experiments and methods described in this paper is
available under the terms of the MIT free software license at https://github.com/
matejMartinc/alzheimer_diagnosis.
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turn-taking patterns and speech rate (Luz, 2009) from the
Carolina Conversations Collection (Pope and Davis, 2011) of
spontaneous interviews of AD patients and healthy controls.
Their additive logistic regressionmodel obtained 85% accuracy in
distinguishing dialogues involving an AD speaker from controls.

More recently, multimodal representations have been
explored, combining linguistic and paralinguistic aspects of
communication (Haider et al., 2020; Mahajan and Baths, 2021),
as well as eye-tracking and other sensor modalities (Jonell et al.,
2021). Those studies combined signal processing and machine
learning to detect subtle acoustic signs of neurodegeneration
which may be imperceptible to human diagnosticians. Toth
et al. (2018), for instance, found that filled pauses (sounds
like “hmmm,” etc.) could not be reliably detected by human
annotators, and that detection improved by using ASR-generated
transcriptions. Using ASR features with a random forest
classifier, Toth et al. (2018) reported an improvement over
manually generated features (75 vs. 69.1% accuracy) for AD
detection. Similar machine learning methods were used by
König et al. (2015), who reported an accuracy of 79% when
distinguishing MCI participants from healthy controls; 94%
for AD vs. healthy; and 80% for MCI vs. AD. However, their
tests involved different data collection procedures, including
semantic fluency and sentence repetition tasks, in addition to
a picture description task, with most features extracted from
non-spontaneous, non-connected speech data. Motivated by
the prospect of comprehensive cognitive status monitoring
(Luz, 2017), studies in this field have moved toward analysis of
spontaneous speech, and toward languages other than English.
Weiner et al. (2016) analysed semi-structured German dialogues
employing linear discriminant analysis to classify participants
as healthy controls, Alzheimer’s or age-associated cognitive
decline, obtaining a mean accuracy score of 85.7%. This work has
later been extended for prediction of development of dementia
within 5 and 12 years in participants of the Interdisciplinary
Longitudinal Study on Adult Development And Aging (ILSE),
using a combination of acoustic and linguistic features (Weiner
et al., 2019). Others have investigated the use of virtual agents as
a data collection strategy for AD detection. Tanaka et al. (2017)
collected dialogue, eye-tracking and video data from 29 Japanese
participants who conducted structured dialogues with a virtual
agent. They obtained 83% accuracy in classifying AD and control
participants, using combined acoustic and textual modalities
on a support vector machine (SVM) classifier. Mirheidari et al.
(2019a) compared the accuracy of automated conversational
analysis (ML with a combination of acoustic and linguistic
features) for detection of AD on recorded doctor-patient
consultations and on dialogues recorded through human-robot
interaction. They reported similar accuracy for both settings
using manual transcriptions (≈ 90%), suggesting that automated
dialogue collection could be useful in mental health monitoring.

These studies evidence the heterogeneity with which language
and speech impairments are displayed in AD and related diseases.
Duong et al. (2005) ran a cluster analysis with data from picture
narratives and concluded that, rather than a common profile,
there were several discourse patterns that could be indicative of
differences between healthy ageing and AD. This heterogeneity

seems to be more evident in AD than in specific disorders such
as primary progressive aphasia (Ahmed et al., 2013), especially
in early stages of AD (Hodges and Patterson, 1995). Therefore,
we hypothesise that a comprehensive analysis of state-of-the-art
paralinguistic feature sets which have been successfully used in
different prediction tasks may help identify such patterns and
enhance accuracy of early AD detection.

The Pitt Corpus (Becker et al., 1994), which forms
part of the DementiaBank (MacWhinney, 2019), and more
specifically its Cookie Theft test sub-corpus, remains one of
the very few available datasets to link spontaneous speech
from dementia patients and healthy controls (recordings and
transcriptions) with clinical information. Therefore, this dataset
has been used in several studies, including the studies by
Fraser et al. (2016), Hernández-Domínguez et al. (2018), and
others (Yancheva and Rudzicz, 2016; Luz, 2017; Orimaye
et al., 2017; Guo et al., 2019; Mirheidari et al., 2019b;
Haider et al., 2020). These studies used different combinations
of information coverage measures, linguistic features and
acoustic features for automatic classification of dementia
under different representation methods, ranging from simple
descriptive statistics to more complex feature embedding
representations. Among these studies, only Mirheidari et al.
(2019b) investigated the possible relation, which we discussed
above, between the temporal organisation of picture descriptions
and cognitive impairment. In that work, verbal references were
used to simulate the participants gaze and extract features
corresponding to “areas of interest.” By combining such features
with timing and pause information, and GloVe word vectors
(Pennington et al., 2014) they were able to achieve 80% F1 score
on manually transcribed data, and F1 = 72% on ASR outputs.

Speech research aiming at dementia detection is
heterogeneous and comparisons are difficult to draw.
Heterogeneity of dataset hinders comparison among the
various studies on spontaneous speech for AD detection. The
ADReSS challenge dataset (Luz et al., 2020) was created to
mitigate this problem. In the shared task posed by ADReSS, all
participants used the same dataset, which was balanced for age
and gender and acoustically normalised. This is the dataset used
in the present study. The various approaches proposed to tackle
the ADReSS challenge included state-of-the-art deep learning
and word embedding methods, and focused mainly on linguistic
features extracted from the manually generated transcripts. The
winning team (Yuan et al., 2020) leveraged audio recordings
to obtain information about pauses in speech, encoding them
as punctuation. The modified transcripts with encoded pauses
were fed into an ensemble of 50 BERT (Devlin et al., 2019) and
50 ERNIE (Zhang et al., 2019) models, and majority voting was
employed to derive the final predictions on the test set. They
reported best accuracy (89.58%) when an ensemble of 50 ERNIE
models was applied.

3. DATASET

This study uses the ADReSS subset of the Pitt Corpus, derived
from a dataset gathered longitudinally between 1983 and 1988
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on a yearly basis as part of the Alzheimer Research Program at
the University of Pittsburgh (Becker et al., 1994; Corey Bloom
and Fleisher, 2000), and made available through DementiaBank
(MacWhinney, 2019). Participants are categorised into three
groups: dementia, control (non-AD), and unknown status. All
participants were required to be above 44 years of age, have
at least 7 years of education, have no history of nervous
system disorders or be taking neuroleptic medication, have an
initial Mini-Mental State Examination (MMSE) score of 10
or more and be able to provide informed consent. Extensive
neuropsychological and physical assessments conducted on the
participants are also included (Becker et al., 1994).

While the Pitt Corpus contains data elicited through several
tasks, our selected subset exclusively used the Cookie Theft
description task subset, where participants were asked to describe
the Cookie Theft picture from the Boston Diagnostic Aphasia
Examination (Becker et al., 1994; Goodglass et al., 2001). This
study specifically uses a subset of AD and control data matched
for age and gender provided by the ADReSS challenge (Luz
et al., 2020) to avoid bias, guarantee repeatability, and allow
direct comparison with other ML approaches. In the following
section, we provide a brief description of the methods used in
the generation of the ADReSS dataset. The dataset and baseline
results for the AD detection challenge are presented in detail by
Luz et al. (2020).

3.1. The ADReSS Dataset
The pipeline employed in the preprocessing of the audio files is
shown on the top part of Supplementary Figure 1. Initially, noise
was sampled from short intervals from each audio recording,
and subsequently spectral subtraction was applied to eliminate
any noise matching those samples. Other non-target sounds
such as background talk, ambulance sirens and door slamming,
were minimised through selection of audio files with signal-
to-noise ratio (SNR) ≥ −17 dB. Where multiple audio files
existed per participant, the ADReSS organisers chose a subset
that maximised audio quality and the number of samples in the
matched dataset by selecting the latest recording, subjected to age
and gender matching constraints. This resulted in a selection of
62 (≈ 40%) recordings taken on baseline visits, 57 (≈ 37%) on
first visits, 19 (≈ 12%) on second visits, 17 (≈ 11%) on third
visits and one (< 1%) on the fourth visit.

As age and gender are considered major risk factors for
dementia (Dukart et al., 2011), these variables are possible
confounders between the AD and non-AD groups. To eliminate
this possible confounding, these groups are matched for age and
gender in the ADReSS dataset. For age, 5-year ranges were chosen
empirically to optimise the number of recordings included in the
final dataset. As a result, 156 participants matched the inclusion
criteria. Of these, 78 were healthy and 78 were diagnosed with
probable AD. Supplementary Table 1 presents the demographics
of the data used for training and testing. We note that the only
patient in the [50, 55) age interval in the AD training set had
an MMSE of 30, which would not normally match the diagnosis
criterion for AD. Upon detailed inspection of the Pitt metadata
we found that this patient in fact had an MCI diagnosis (memory
only) and therefore should not have been included in the dataset.

However, we decided to keep this data point in our training set for
comparability with other models trained on the ADReSS dataset.

4. TEMPORAL ANALYSIS

As discussed in section 1, temporal aspects of the descriptions
might provide important predictors in distinguishing between
AD and non-AD speech. In this section, we present a
temporal analysis of the transcripts, investigating the underlying
assumption that the order in which specific situations in
the cookie theft picture (see Figure 1) are described differs.
More specifically, we investigate if there is enough information
available for the models to detect the temporal discrepancies
between the two diagnosis groups.

4.1. Training Set Analysis
In order to gain insight into whether the above hypothesis of
temporal contrast between AD and non-AD patients is plausible,
we conducted a statistical analysis on the training set, focusing
on nouns, due to their function of denoting objects that can
be easily connected to specific events in the image. Using the
Stanza library (Qi et al., 2020) for assigning part-of-speech tags
and lemmatisation, we extracted lemmas of nouns that appear
at least 20 times in the test set. A threshold of 20 was used to
filter out words used by a small minority of patients, which do not
necessarily describe the events depicted in the picture. Since we
are only interested in the differences between the target groups
in regards to temporal aspect of the patient’s description of the
image, we also removed nouns that appear only in transcripts
belonging to a certain group. This way we obtain a list of 20 nouns
presented in Figure 1, which correspond to the constituents of
the picture description task.

We determine a transcript position for each appearance of
each noun (e.g., if the noun appears as the first word in the
corpus, the position is one) and calculate an average noun
position for each class, that is, the average of all positions of a
specific noun in each class. The nouns in Figure 1 are sorted
according to the difference between the average positions in
each class.

One can see that the noun plate, for instance, has very different
positions in descriptions produced by the distinct groups. It
appears in sentences such as “Two cups and a plate are on the
counter there.” and “The lady is wiping a plate while the sink
overflows”., which are sentences describing details most likely
not noticed by all participants (Cummings, 2019). Another noun
with different positions is thing, which appears in sentences such
as “And the whole thing is going to collapse.”, describing more
than just one specific element or an action concerning several
constituents in the picture. Floor, the noun with the third biggest
difference between the average positions in each class on the other
hand appears in sentences such as “There’s water on the floor.” and
“And the stool is going to knock him on the floor.”, and is related
to more central parts of the action seen in the picture. While
both AD patients and non-AD control group use these nouns to
describe the picture and the actions related to these nouns, they
appear to focus on them at different times in their descriptions.
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FIGURE 1 | Average position of nouns that appear at least 20 times in the training set. AD and non-AD stand for average position in the speech transcripts of patients

with AD and control group patients, respectively. Difference denotes the absolute difference between these averages, and Freq denotes the frequency of the noun in

the corpus. The nouns are sorted according to the difference column.

The nouns at the end of the list are also interesting, since
they denote situations in the picture described synchronously by
both AD and non-AD patients. Noun hand is mostly related to a
situation of the boy grabbing a cookie (e.g., “He’s grabbing a cookie
in his hand.”) or to a situation of the girl reaching for a cookie
(e.g., “And the girl’s trying to help and she’s reaching her hand
up.”). The noun kitchen appears in sentences such as “Uh there’s
a set of kitchen cabinets.”, mostly describing static elements in the
image. Similarly can be said for the noun curtain, which mostly
appears in sentences describing static elements (e.g., Curtains
at the window.) but can nevertheless also appear in sentences
describing some rather detailed observations (e.g., “Curtains are
blowing I think.”).

4.2. Modelling Temporal Differences With
Temporal Bag-of-Words
While the statistical analysis above offers some evidence of
temporal differences in transcripts of AD and non-AD patients,
a question remains as to whether classification models can detect
these subtle differences. While assuming that they can is in our
opinion a reasonable hypothesis, there is at least one reason
to doubt this hypothesis. The presence of stronger features
(i.e., semantic features, such as unigrams appearing only in one
class) might cause the classifier to ascribe low importance to
less subtle temporal aspects. Since in this section our focus is
on ascertaining whether modelling of temporal aspects of the
transcripts is possible rather than obtaining optimal accuracy
(which is addressed in section 5.1), we can easily avoid this

problem by restricting the classifier’s model to contain only
temporal features.

Therefore, we employed a simple bag-of-words model (Baeza-
Yates and Ribeiro-Neto, 1999) to confirm or reject the hypothesis
that the temporal differences between the non-AD and AD
groups observed in the training set (see section 4.1) are relevant
to the classification model. To track temporal order each
transcript is divided into three sequential chunks of the same
word length2. Words in each transcript belonging to the first
chunk are given a suffix of _1, words belonging to the second
chunk are given a suffix of _2, and words belonging to the third
chunk are given a suffix of _3. This way the same words appearing
in different sections of the transcript are distinguished by the
bag-of-words model and we therefore obtain three features for
each word, since in this bag-of-words model the same word
with a different suffix is treated as a different word. Thus, we
build a classifier that, rather than simply focusing on semantic
differences (i.e., how many times a specific word appears in a
specific transcript belonging to a specific group) also focuses on
temporal differences (i.e., whether a specific word appears in a
specific temporal chunk of a transcript belonging to a specific
group). As we limited the word features in this model to the
nouns appearing in Figure 1, the classifier is learnt to predict AD
only on the basis of 60 features (i.e., 20 words from a list, each of

2The number of chunks was determined by finding the largest possible number of
chunks where each set of chunks containing words from distinct positions in the
text would contain at least one instance of each noun presented in Figure 1.
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them with three distinct suffixes according to the position in the
text) derived from 20 nouns, which appear in transcripts of both
AD and non-AD patients.

We used the same classification approach as in our
classification experiments described in detail in section 5.1, that
is, we trained and tested 50 random forest classifiers (Breiman,
2001) with 50 trees of maximum depth 5 by employing leave-
one-out cross validation (LOOCV) on the training set, each time
using a different random seed. The predictions of these models
on the training set were then used for majority voting in order to
derive final predictions3.

We measured the performance of the model by calculating
accuracy according to the following equation:

accuracy =
TP + TN

TP + FP + TN + FN
, (1)

where TP stands for true positive examples (i.e., examples that
the classifier correctly assigned to the AD class), TN stands for
true negative examples (i.e., examples that the classifier correctly
assigned to the non-AD class), FP stands for false positive
examples (i.e., examples that the classifier incorrectly assigned
to the AD class) and FN for false negative examples, which the
classifier incorrectly assigned to the non-AD class.

The final majority voting accuracy for LOOCV is 77.78%,
which indicates that the model is capable of successfully
leveraging temporal differences. The Scikit-learn library
(Pedregosa et al., 2011) implementation of the algorithm used
in this experiment allows to extract the importance of features
based on a measure of “impurity.” That is, when training a
single decision tree, we can compute how much each feature
contributes to decreasing the weighted impurity, in our case
measured with Gini impurity (Breiman, 2001). In the case of
random forests, we measured the averaged decrease in impurity
over trees to derive a feature importance score for each feature.
To increase reliability we averaged these scores for each feature
across the ensemble of 50 random forest classifiers in order to
obtain the final scores for each word.

The scores for the nouns analysed in section 4.1 are presented
in Table 1. The hypothesis is that nouns exhibiting the most
temporal dissimilarities between the AD and non-AD classes
identified in section 4.1 will also be used by the classifier
to distinguish between the classes, resulting in larger feature
importance scores. In this case, the sum of all three scores for
each noun would give indication that the specific word appears
in different sections of the transcript depending on the class to
which the transcript belongs.

By measuring the Pearson correlation between the sums of
scores (see column labelled “Sum” in Table 1) and differences
in average position (column labelled “Difference” in Figure 1),
we however obtain a weak non-significant negative correlation
of –0.15 with a p-value of 0.53, indicating a possibility that

3Note that in this experiment we did not use term frequency-inverse document
frequency (TF-IDF) weighting (Baeza-Yates and Ribeiro-Neto, 1999), as we did
in the experiments in section 5.1 since we simply wanted the classifier to focus
on binary differences between features (i.e., whether a specific temporal unigram
appears in a transcript of a specific class or not).

TABLE 1 | Feature importance of nouns in a random forest classifier according to

its position in 1st, 2nd, or 3rd chunk of each transcript.

Noun 1st chunk 2nd chunk 3rd chunk Sum

Window 0.09904 0.02905 0.01041 0.13849

Sink 0.06526 0.03472 0.01101 0.11099

Stool 0.06090 0.02709 0.01988 0.10787

Action 0.07408 0.00796 0.00591 0.08795

Curtain 0.03686 0.02560 0.01131 0.07377

Mother 0.02548 0.01984 0.01852 0.06384

Dish 0.02689 0.01874 0.00951 0.05514

Cookie 0.03305 0.01190 0.00929 0.05424

Water 0.03082 0.01380 0.00704 0.05167

Hand 0.02241 0.01573 0.00780 0.04594

Girl 0.01303 0.01129 0.00828 0.03260

Boy 0.01023 0.00914 0.00903 0.02840

Jar 0.01080 0.00957 0.00724 0.02762

Plate 0.01398 0.00489 0.00475 0.02362

Floor 0.00970 0.00700 0.00651 0.02322

Kid 0.00787 0.00773 0.00566 0.02126

Thing 0.00657 0.00624 0.00424 0.01705

Sister 0.00870 0.00484 0.00112 0.01465

Lady 0.00482 0.00364 0.00264 0.01110

Kitchen 0.00578 0.00263 0.00217 0.01057

Sum is the sum of all three scores.

the classifier considers more fine-grained temporal information,
which is not visible by just averaging words’ positions in the
text. For example, the noun window, which was identified by
the classifier as the most important feature out of all nouns in
the list, does show a considerate difference in average position
between AD and non-AD classes, but nevertheless still appears
somewhere in the middle of the list in Figure 1. The same is
true of the noun sink, which was identified as the second most
important feature. Slightly more consistency between rankings
can be observed at the bottom of both lists, for example when
observing the ranking for nouns kitchen and sister.

5. AD DETECTION

The results of the temporal analysis in section 4 suggest that
temporal differences in the descriptions can be detected in the
transcripts and can also be successfully leveraged for detection
of dementia by ML. Although it is doubtful that a classifier
relying solely on temporal features would be able to achieve
good performance, these features might improve AD detection
when combined with other features. For this reason, in this
section we explore a less specialised approach toward AD
detection, which attempts to incorporate as many modalities
and aspects of these modalities as possible. First, instead of
focusing only on the textual information, we also incorporate
several features extracted from audio modality, which are
naturally time-based. As with audio, many aspects of the text
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modality are incorporated, including temporal, structural and
semantic aspects.

5.1. Methodology
The main methodological steps of the proposed approach are
described below, namely preprocessing, feature engineering and
classification.

5.1.1. Preprocessing
For audio preprocessing, speech segmentation was performed on
the audio files that met the above described selection criteria.
The study only focuses on the participants’ speech; therefore,
the investigators’ speech was excluded from further processing.
We extracted the participants’ speech utterances using the
timestamps obtained through DementiaBank.

Themanual transcripts in CHAT format (MacWhinney, 2019)
were first converted into word and token sequences which
represent what was actually produced in speech. For instance,
the annotations ‘w [x n]’, which indicate that the word ‘w’
was repeated n times were replaced by n repetitions of w,
punctuation marks and various comments annotated between‘[]’
were removed. Also removed were symbols such as (.), (..), (...),<,
<, / and xxx, as well as all punctuation.

Next, the processed transcripts were force-aligned with the
speech recordings using the Penn Phonetics Lab Forced Aligner
(Yuan and Liberman, 2008), which labels the pauses between
words with ‘sp’ and produces time stamps for each word and
for each pause. The word time stamps allowed us to split
audio recordings at the level of words/pauses and conduct
acoustic feature extraction for each word. The volume of each
word was normalised to the range [−1 :+1] dBFS. Volume
normalisation helps in smoothing over different recording
conditions, particularly variations in microphone placement in
relation to the participant.

5.1.2. Feature Engineering
The main steps of the feature engineering procedure are
presented in Figure 2 and described below. The entire
procedure can be divided into four main phases, generation
and concatenation of audio and textual feature vectors,
generation of six ADR features and selection of five distinct
feature configurations.

The audio feature extraction was performed using the
openSMILE v2.1 toolkit, which is an open-source software suite
for automatic extraction of features from speech, widely used for
emotion and affect recognition in speech (Eyben et al., 2010).
In this research we opted to employ only the eGeMAPS (Eyben
et al., 2016) feature set, which exhibited good performance in
previous research (Haider et al., 2020). The eGeMAPS feature
set corresponds to a basic set of acoustic features based on their
potential to detect physiological changes in voice production, as
well as theoretical significance and proven usefulness in previous
studies (Eyben et al., 2016). It contains the F0 semitone, loudness,
spectral flux, MFCC, jitter, shimmer, F1, F2, F3, alpha ratio,
Hammarberg index and slope V0 features, as well as their most
common statistical functionals, for a total of 88 features per
speech segment. Pearson’s correlation test was performed to

remove acoustic features that were significantly correlated with
duration (|R| > 0.2) to remove any bias toward the duration of
words formachine learning. A total of 72 eGeMAPS features were
therefore selected.

Following voice feature extraction we generated text features
corresponding to the same words using GloVe embeddings
(Pennington et al., 2014) of size 50 (for pauses, we generate a
vector of 50 zeros). The audio and text features were normalised
separately to the [0, 1] interval and concatenated to derive
vectors of 122 features (72 audio features and 50 text features)
corresponding to an audio-textual embedding for each word or
pause. These vectors were then used in the ADR procedure for
aggregation of words/pauses on the speaker level (Haider et al.,
2020).

Note that in our implementation of ADR, we only loosely
followed the original ADR algorithm, introducing several
modifications. The procedure consists of the following steps:

1. Clustering of feature vectors: All word level feature vectors
were aggregated into clusters using k-means clustering4.
This is in contrast with the original implementation (Haider
et al., 2020), which employed self-organising maps (SOM)
clustering (Kohonen, 1990) but in line with the work done by
Martinc and Pollak (2020).

2. Generation of the ADR features: The ADR feature vector
is composed of several features, namely cluster counts,

duration, audio-textual word/pause embeddings, audio-

textual centroid embeddings, audio-textual embedding

velocity and audio-textual centroid velocity. Note that the
last four features were not employed in the original ADR
(Haider et al., 2020) and are meant to also model the semantic
aspects of the text input besides the temporal and structural
properties of text and audio. Since the original ADR only
modelled audio recordings, these features have not been used
before. The following is a brief description of each of these
features:

• Cluster counts: Number of feature vectors in each cluster
for each participant’s audio recording, that is, a histogram
of the number of words/pauses present in each cluster.

• Duration: A histogram representation of word/pause
utterance duration for each participant’s audio recording.
As the number and duration of segments varies for each
audio recording, we normalised the feature vector by
dividing it by the total duration of segments present in each
audio recording.

• Audio-textual word/pause embeddings: The audio-textual
embeddings obtained for each participant were aggregated
into a sequence. Principal component analysis (PCA)5 was
conducted on the embedding sequence in order to reduce
the dimensionality of each embedding to 1. Finally the
sequence is truncated to the length of 128 if the sequence is
too long, or padded with zeros if the sequence is too short.

4Weuse the Scikit library (Pedregosa et al., 2011) implementation of the algorithm:
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
5Using the Scikit library implementation of the algorithm: https://scikit-learn.org/
stable/modules/generated/sklearn.decomposition.PCA.html
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FIGURE 2 | Main feature engineering steps presented on the example preprocessed input sentence “There are tie back curtains at the window”. Audio and word

feature vectors (i.e., embeddings) are combined (Symbol “⌢” symbol denotes concatenations) and fed into an ADR feature generation procedure. The six resulting

features are used in five distinct feature configurations.

At the end of this procedure, we obtained a vector of 128
features for each participant.

• Audio-textual centroid embeddings: Instead of
employing PCA dimensionality reduction on audio-
textual embeddings for each word, here we employed the
procedure on the centroids of the clusters to which two
consecutive word/pause utterances belong. At the end of
this procedure, we obtained a vector of k features for each
participant, where k is the number of clusters.

• Audio-textual embedding velocity: In order to model
temporal aspects of speech and transcripts, we measured
the change between consecutive audio-textual embeddings
in the sequence. This is measured with cosine similarity
between consecutive vectors t and e:

cos(t, e) =
te

‖t‖‖e‖
=

∑n
i=1 tiei

√

∑n
i=1 (ti)

2
√

∑n
i=1 (ei)

2
(2)

The output of this procedure is a sequence of cosine
distances between consecutive embeddings for each
participant. The sequence was truncated (or padded with
zeros) in order to obtain a vector of 128 features for each
participant.

• Audio-textual centroid velocity: Similarly, change is
measured with cosine similarity between cluster centroids
to which two consecutive word/pause utterances belong.
The resulting sequence of cosine similarities was again
truncated (or padded with zeros) to the length of 128.

To establish the contribution of specific features and to gain
a better sense of what type of information results in the best
performance, we tested several feature configurations:

• Temporal: Includes only four ADR features that model only
temporo-structural aspects of the audio and transcript data,
namely cluster counts, duration, audio-textual embedding
velocity and audio-textual centroid velocity.

• Embedding: Includes four ADR features that model structural
and semantic aspects of the data, namely cluster counts,
duration, audio-textual word/pause embeddings and audio-
textual centroid embeddings.

• Centroid: Includes four ADR features that model structural,
semantic and temporal aspects of the data, namely cluster
counts, duration, audio-textual centroid embeddings and
audio-textual centroid velocity.

• New: Includes only the four new ADR features which have not
been used in the previous studies where ADR was employed
(Haider et al., 2020; Martinc and Pollak, 2020), namely
audio-textual centroid embeddings, audio-textual centroid
velocity, audio-textual word/pause embeddings and audio-
textual centroid embeddings.

• All: Includes all 6 ADR features described in
section 5.1.2.

In addition, we investigated the impact of specific input
modalities on the overall performance, or to be more
specific, we employed three versions for each of the
configurations above:
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• Audio: Only audio input is used, consisting of a feature vector
for each word/pause containing only 72 eGeMAPS features.

• Text: Only text input is used, that is, a feature vector for each
word/pause containing only 50 GloVe embeddings features.
Here, there are also no Duration features, which require audio
recordings for its generation.

• Text+audio: Combination of text and audio features,
consisting of a feature vector for each word/pause containing
122 eGeMAPS and GloVe embeddings features.

Finally, we investigated if performance could be improved by
adding sub-word units consisting of four-character sequences
(char4grams) into the model. Even with the additional ADR
features for modelling semantic aspects of the text, the initial
experiments still suggested that semantic modelling might be
the biggest shortcoming of ADR. It is indeed possible that
the compressed semantic information obtained from word
embeddings by employing clustering, PCA or cosine similarity
is not comprehensive enough, since it models semantics (or
semantic change) only indirectly. To compensate for this and
model semantics more directly, in some experiments we employ
term frequency-inverse document frequency (TF-IDF) weighted
word bound character char4gram features, which proved very
successful at modelling semantics in the study by Martinc and
Pollak (2020). Character n-grams are created only from text
inside word boundaries and n-grams at the edges of words are
padded with space6.

5.1.3. Classification
To determine the best classifier for the task at hand and the
best number of clusters (k), we first conducted a preliminary
grid search across several classifiers and k ∈ 10, 20, ..., 80
values, in which we employed 5 classifiers from the Scikit library
(Pedregosa et al., 2011), namely Xgboost (Chen and Guestrin,
2016) (with 50 gradient boosted trees with max depth of 10),
random forest (with 50 trees of max depth of 5), SVM (with
linear kernel and a box constraint configurations of 10), logistic
regression (LogR, with a regularisation configuration of 10) and
a linear discriminant analysis classifier. Only the All feature
configuration was used during this preliminary experiment. Grid
search was conducted on the training set, using LOOCV. Each
classifier and k-value combination was run in the grid search
five times, with five different random seeds for each classifier,
in order to obtain more reliable results and to compensate for
the observed variance in accuracy across different runs. The
average accuracy across these five runs was used as a performance
score for each combination of the classifier and k-value. Based
on this score, the combination of k-means clustering with
k = 30 and a random forest classifier was chosen for use in
further experiments.

The large variance in accuracy (Equation 1) observed in these
preliminary experiments is consistent with the observations of
Yuan et al. (2020), where large variance in performance in the
cross-validation setting was observed when employing BERT

6For example, for the sentence It is sunny today, the following set of char4grams
would be generated: {“It,” “is,” “sun,” “sunn,” “unny,” “nny,” “tod,” “toda,” “oday,”
and “day.”}.

and ERNIE (Zhang et al., 2019) models. To solve this problem,
they proposed a majority voting setting, in which the label
assigned to an instance of the test set is the label assigned by the
majority of the 50 models trained during cross-validation. We
followed the same procedure and trained 50 models employing
the same classifier and feature configuration on the training
set, each time using a different random seed. These models
were then used for majority voting on the test set to derive
final predictions. The same procedure was employed to obtain
comparable performance scores on the training set in LOOCV.

5.1.4. Baseline BERT Implementation
In order to conduct the temporal experiments reported in section
6.1 and obtain a strong baseline, we also leverage the BERT
model (Devlin et al., 2019). The preprocessing employed here
was as described above, treating pauses as a form of punctuation,
following Yuan et al. (2020). The transcripts were then force-
aligned with the speech signal, labelling pauses between words
with “sp’, excluding pauses under 50 ms, and encoding short
pauses (0.05–0.5 s) as ’,’, medium pauses (0.5–2 s) as ‘.’, and long
pauses (over 2 s) as ’...’.

In contrast to Yuan et al. (2020), we fed the processed
transcripts to the pretrained ’bert-base-uncased’ language model
with an additional linear sequence classification layer rather than
the ’bert-large-uncased’ model. This was done so as to reduce the
amount of computational resources required. We did not employ
the ERNIE (Zhang et al., 2019) languagemodel, since the publicly
available implementation of the model7 does not return the
attention matrices required for the temporal analysis (see section
6.1). For fine-tuning, we employ the same hyperparameters as in
the study by Yuan et al. (2020): learning rate = 2e-5, batch size
= 4, epochs = 8, and maximum input length of 256. We set the
standard BERT tokeniser not to split ’...’.

Finally, we once again employed majority voting both in the
LOOCV setting and on the test set. Due to limited computational
resources, we only conducted the LOOCV procedure five times,
with five different seeds, therefore obtaining five predictions for
each example in the training set. The majority vote of these five
predictions is used as a final prediction. On the other hand, for
the test set setting, we randomly choose 50 models out of 540
models generated during LOOCV and conduct majority voting
on the predictions of these models to obtain the final predictions.

6. RESULTS

The results for the best feature combinations and input
modalities are presented inTable 2. See Supplementary Material

for a full table of results for all feature combinations
(Supplementary Table 2), and for confusion matrices of the top
3 results and their late fusion (Supplementary Figure 2). For all
results, we use k-means clustering with k = 30 and the random
forest classifier, which yielded the best results in the preliminary
grid search (see section 5.1.3).

Without late/decision fusion of the best three methods,
the best result on the test set was achieved when Temporal

7https://github.com/PaddlePaddle/ERNIE
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TABLE 2 | Results of the three best feature configurations in the LOOCV setting

and on the test set in terms of accuracy.

Feature configurations Input

modality

LOOCV

accuracy

Test set

accuracy

Temporal + char4grams audio + text 0.8611 0.9167

New + char4grams audio + text 0.8889 0.8750

char4grams text 0.8611 0.8958

top three late fusion / 0.8796 0.9375

BERT—reimplementation

of Yuan et al. (2020)

/ 0.8426 0.8333

ERNIE best related

work (Yuan et al., 2020)

/ / 0.8958

The feature configurations column indicates which feature configuration has been used

and whether char4grams have been added, and column Input modality shows the

modality on which ADR features have been generated. The best individual methods’

results in LOOCV and on the test set, as well as the late fusion of all three methods, are

shown in bold. The row labelled top three late fusion presents the results of employing

late/decision fusion (i.e., the use of majority voting) over the three best approaches.

features generated on audio and text input were combined with
char4grams (accuracy of 91.67%), and the best result in the cross-
validation was achieved when New features generated on text
and audio input were combined with char4grams (accuracy of
88.89%). Char4grams features by themselves also work very well,
achieving an accuracy of 89.58% on the test set and accuracy
of 86.11% in LOOCV. This indicates that semantic features and
pause information contribute the most in terms of performance.
Nevertheless, the results also indicate that we can improve the
overall performance by including the temporal and structural
aspects of audio and text.

Our reimplementation of BERT is noncompetitive in relation
to the best approaches, reaching accuracy of 83.33% on the test
set, which is in line with the results obtained by Yuan et al. (2020)
who report accuracy of 85.4%. They however employ a larger
BERT model with 24 layers and 16 attention heads for each layer.

The observations from the error analysis (see
Supplementary Material) suggest that employing late fusion can
be beneficial. In our experiments it improved the best achieved
test set accuracy of 91.67% by about 2.3% (to 93.75%) despite a
slight decrease in accuracy in the LOOCV setting (from 88.89%
to 87.96%). Another beneficial improvement is due to the use
of majority voting, which reduces the variability of the test set
predictions of single classifiers, shown in Figure 3. Figure 3

shows results of the accuracy distribution of 50 classifiers
(employing temporal features and char4grams) used in the
majority voting, when employed on the test set. It should be
noted that the accuracy of 91.67% obtained by majority voting
was obtained by <15% of classifiers in the ensemble, for the
temporal text+audio+char4grams configuration. The other 85%
of classifiers in the ensemble reach accuracy between 75 and
89%. Figure 3 also shows that the spread is largest when only the
audio modality is used, ranging from about 48% to almost 70%.

The approach presented in this paper outperformed all
previous approaches to AD detection performed on this and
similar spontaneous speech datasets, as shown in Table 3. All
accuracy figures for text correspond to accuracy on manual

transcripts. Of the studies shown in Table 3, only Mirheidari
et al. (2018) report results for embeddings derived from ASR
transcription (62.5% accuracy), in contrast to the 75.6% they
obtained from manual transcription. As noted, comparisons of
studies done on different subsets and training/test splits of the
Pitt corpus are problematic. The best previous result on the same
dataset (ADReSS) used in our study was achieved by Yuan et al.
(2020), who reported 89.58% test-set accuracy obtained with an
ensemble of ERNIE models. Our late fusion method yielded an
improvement of about 4.7% over the best reported result on the
ADReSS dataset, and an improvement of 25% over the ADReSS
challenge baseline (Luz et al., 2020).

6.1. Dissecting the BERT Attention Space
Another way to gain insight into how temporal information
can be leveraged for AD detection, is through the use of neural
networks, which model temporal and structural dependencies by
default. The baseline BERT implementation described in section
5.1.4 is based on the transformer architecture, which employs the
attention mechanism. The attention mechanism can be analysed
and visualised, offering insights into the inner workings of the
system. BERT’s attention mechanism consists of 12 attention
heads (Vaswani et al., 2017)—square matrices linking pairs of
tokens within a given text. We explored how this (activated)
weight space can be further inspected to establish to what extend
BERT models temporal information.

While square attention matrices show the importance
of the correlations between all tokens in the transcript,
we focused only on the diagonals of the matrices, which
indicate how much attention the model pays to a specific
word in relation to itself, giving a measure of how
important a specific word is for the classification of a
specific description as belonging to either the AD or the
non-AD class.

As explained in section 5.1.4, the BERT model was fine-
tuned through LOOCV on the training set, and the fine-
tuning procedure resulted in 50 BERT models, which were
used for prediction on the test set. We extracted diagonal
attention scores for 12 attention heads for each of the 20
nouns presented in Figure 1 appearing in different positions
in different transcripts in the test set and averaged the scores
across all 50 models. If a specific noun appeared in the
same position in two or more different transcripts, scores
belonging to the same position in each head were averaged.
Finally, we also averaged the 12 attention heads scores for
each position for each word so as to derive a sequence of
attention scores for each noun. Figure 4 presents these sequences
of attention scores for each of the 20 nouns appearing in
different positions in the transcript. The height of each column
indicates the attention given to a specific noun at position in
the transcript, and the colour of the column labels the class of
the transcript, blue denoting the non-AD class and red denoting
the AD class.

Figure 4 shows that BERT generally tends to focus more
attention to nouns appearing at the beginning of the transcript
and less attention to nouns appearing at the end of the transcript.
For example, for the noun curtain, attention scores are skewed
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FIGURE 3 | Boxplot summarizing the accuracy distributions for 50 classifiers on the test set for the Temporal feature configuration (text, audio, and text+audio),

char4grams and char4grams combined with text and audio (text+audio+char4grams).

TABLE 3 | Comparison with state-of-the-art studies conducted on subsets of the

Pitt dataset.

Study Accuracy Modality

Haider et al. (2020) 78.7% Acoustic

Luz (2017) 68.0% Acoustic

Fraser et al. (2016) 81.9% Text/acoustic

Yancheva and Rudzicz (2016) 80.0% Text/acoustic

Hernández-Domínguez et al. (2018) 68.0% Text

Mirheidari et al. (2018) 75.6% Text

Studies based on the ADReSS dataset

ADReSS challenge baseline 62.5% Acoustic

ADReSS challenge baseline 75.00% Text

Yuan et al. (2020) ERNIE 89.58% Text

Yuan et al. (2020) BERT 85.40% Text

Syed et al. (2020) 85.42% Text

Balagopalan et al. (2020) 83.33% Text

Sarawgi et al. (2020) 83.33% Text/acoustic

Pompili et al. (2020) 81.25% Text/acoustic

Koo et al. (2020) 81.25% Text/acoustic

Cummins et al. (2020) 81.25% Text/acoustic

Searle et al. (2020) 81.25% Text/acoustic

Edwards et al. (2020) 79.17% Text/acoustic

Rohanian et al. (2020) 79.17% Text/acoustic

Martinc and Pollak (2020) 77.08% Text

Pappagari et al. (2020) 75.00% Text/acoustic

This study (best single model) 91.67% Acoustic/text/temporal

This study (late fusion) 93.75% Acoustic/text/temporal

The top three results are shown in bold. Results of this study are presented in Italics.

toward the first few appearances of the word, dropping drastically
afterwards. This suggests that the appearance of the word curtain
in the last part of the transcript is not important for classification.

A similar pattern can be discerned for the nouns sister and
window. It can also be observed that some words (e.g., hand,
floor, kitchen and plate) are not given as much attention as others,
regardless of the position at which they appear.

While the attention scores derived from BERT suggest that the
position of the word in the AD classification task does matter,
there is no clear correlation between the attention scores given
by BERT and the difference in average position for specific words
identified in section 4.1. This might indicate that identification of
temporal aspects is somewhat more involved than hypothesised,
depending not only on the words’ position but also on the context
in which it appears.

7. CONCLUSIONS

We presented a study of automatic detection of AD in
spontaneous speech using state-of-the-art ML methods. We
conducted a temporal analysis of the descriptions of the Cookie
Theft scene of the Boston Diagnostic Aphasia Exam (Goodglass
et al., 2001) in order to investigate putative temporal differences
between descriptions produced by AD and non-AD patients,
and to explore the modelling of these differences by ML. We
then proposed a new AD detection approach, in which ADR is
employed as a framework for multimodal feature extraction and
fusion. Through this approach our model was able to surpass
the best state-of-the-art results reported in the literature for the
task of distinguishing between transcripts and audio recordings
belonging to AD and non-AD participants in the ADReSS subset
of the Pitt Corpus.

While our models were able to distinguish between AD
and healthy controls with relatively high accuracy using
spontaneous speech data, further validation on larger and
more diverse datasets is warranted. As pointed out by de la
Fuente Garcia et al. (2020), datasets suitable for AI studies of
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FIGURE 4 | Test set attention scores prescribed by the BERT model for 16 nouns presented in Figure 1. The height of each column indicates the attention given to a

specific noun in a specific position in the transcript. A blue coloured column indicates that a specific noun appeared in the transcript belonging to the non-AD class,

while a red coloured column indicates that a noun at this position appeared in a transcript belonging to the AD class. The positions (x-axis) range from 1 (i.e., first word

in the transcript) to 256 (i.e., last word in the corpus).

the effects of neurodegeneration on spontaneously produced
speech are relatively scarce at present. While this situation
is changing, we hope our study will provide further impetus
for research focused on elicitation and gathering of speech
data from Alzheimer’s cohort studies. An example of such
studies is the PREVENT-ED spontaneous speech task, which
has collected spontaneous dialogical speech from a group of
healthy participants which includes participants genetically at-
risk of AD, due to family history and apolipoprotein E (APOE)
gene status (de la Fuente et al., 2019). Once the PREVENT-ED
dataset has been fully collected, we aim to apply the methods
presented in this article to investigate possible associations
between speech features and the biomarkers available for the
PREVENT cohort, including plasma and CSF Aβ42 amyloid,
Tau and pTau, proinflammatory cytokines, acute-phase proteins,
medial temporal-lobe atrophy and white matter lesion volume,
as well as risk level (high, medium or low) and cognitive
performance scores.

The results of the temporal bag-of-words model proved
inconclusive in relation to the results of the analysis conducted
in section 4.1. On the other hand, BERT results, while exhibiting
sensitivity to temporal order, as words in different positions
have different attention scores, are somewhat hard to interpret.
These scores not only depend on temporal information but also
indicate other differences between AD and non-AD patients
related to semantic and grammatical contexts.We plan to address
deficiencies of the temporal analysis and modelling in future
work by investigating new temporal models and improving on
our existing techniques for distillation of temporal information
from the text.

Classification results indicate that accuracy gains can be
achieved by adding temporal and structural information to
semantic features. For example, the results show that the accuracy
using only char4grams features (89.58%) can be improved to
91.67% when a combination of temporal audio textual features
and char4grams features is employed, and up to 93.75% when
late fusion of three best models is applied. These results compare
favourably to the state-of-the-art. While these figures must be
approached with caution given the relatively small size of the
dataset, they provide motivation for further research into more
challenging problems, such as earlier detection and prediction
of AD progression, when suitable data become available in
future.

Although the use of acoustic features on their own proved
less successful than when combined with text, extraction
of acoustic features can be fully automated, unlike textual
features which if extracted through ASR would likely degrade
classification accuracy. Therefore, while the multimodal
approaches commonly employed in the recent ADReSS
challenge (see Table 3) and extensively investigated in our study
tend to benefit only marginally from the addition of acoustic
information, processing and use of acoustic features is likely to
remain an important topic of research in AD modelling, as will
temporal aspects of spontaneous speech production.

As regards the use of transformer based embeddings,
we believe they remain promising, despite their somewhat
underwhelming contribution to classification performance in
this study. Among other things, along with acoustic features,
transformer based embeddings may play a role in the creation
of language independent models for AD detection. Currently,
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multilingual BERT is being used in a variety of tasks
allowing for classification to be performed on a language other
than the language on which the model was trained (“zero-
shot” transfer), and leveraging this possibility for cognitive
decline detection would represent a valuable contribution to
this field given that existing datasets are limited to only a
few languages.
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Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder mainly
characterized by memory loss with deficits in other cognitive domains, including
language, visuospatial abilities, and changes in behavior. Detecting diagnostic
biomarkers that are noninvasive and cost-effective is of great value not only for clinical
assessments and diagnostics but also for research purposes. Several previous studies
have investigated AD diagnosis via the acoustic, lexical, syntactic, and semantic aspects of
speech and language. Other studies include approaches from conversation analysis that
look at more interactional aspects, showing that disfluencies such as fillers and repairs, and
purely nonverbal features such as inter-speaker silence, can be key features of AD
conversations. These kinds of features, if useful for diagnosis, may have many
advantages: They are simple to extract and relatively language-, topic-, and task-
independent. This study aims to quantify the role and contribution of these features of
interaction structure in predicting whether a dialogue participant has AD.We used a subset
of the Carolinas Conversation Collection dataset of patients with AD at moderate stage
within the age range 60–89 and similar-aged non-AD patients with other health conditions.
Our feature analysis comprised two sets: disfluency features, including indicators such as
self-repairs and fillers, and interactional features, including overlaps, turn-taking behavior,
and distributions of different types of silence both within patient speech and between
patient and interviewer speech. Statistical analysis showed significant differences between
AD and non-AD groups for several disfluency features (edit terms, verbatim repeats, and
substitutions) and interactional features (lapses, gaps, attributable silences, turn switches
per minute, standardized phonation time, and turn length). For the classification of AD
patient conversations vs. non-AD patient conversations, we achieved 83% accuracy with
disfluency features, 83% accuracy with interactional features, and an overall accuracy of
90% when combining both feature sets using support vector machine classifiers. The
discriminative power of these features, perhaps combined with more conventional
linguistic features, therefore shows potential for integration into noninvasive clinical
assessments for AD at advanced stages.

Keywords: Alzheimer’s disease, spontaneous speech, disfluency, interaction, natural language processing, mental
health monitoring

Edited by:
Fasih Haider,

University of Edinburgh,
United Kingdom

Reviewed by:
Peter Garrard,

St George’s, University of London,
United Kingdom
Daniel Blackburn,

Sheffield Teaching Hospitals NHS
Foundation Trust, United Kingdom

Anna Pompili,
Other, Portugal

*Correspondence:
Shamila Nasreen

shamila.nasreen@qmul.ac.uk

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal

Frontiers in Computer Science

Received: 11 December 2020
Accepted: 12 May 2021
Published: 18 June 2021

Citation:
Nasreen S, Rohanian M, Hough J and
Purver M (2021) Alzheimer’s Dementia

Recognition From Spontaneous
Speech Using Disfluency and

Interactional Features.
Front. Comput. Sci. 3:640669.

doi: 10.3389/fcomp.2021.640669

Frontiers in Computer Science | www.frontiersin.org June 2021 | Volume 3 | Article 6406691

ORIGINAL RESEARCH
published: 18 June 2021

doi: 10.3389/fcomp.2021.640669

242

http://crossmark.crossref.org/dialog/?doi=10.3389/fcomp.2021.640669&domain=pdf&date_stamp=2021-06-18
https://www.frontiersin.org/articles/10.3389/fcomp.2021.640669/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.640669/full
https://www.frontiersin.org/articles/10.3389/fcomp.2021.640669/full
http://creativecommons.org/licenses/by/4.0/
mailto:shamila.nasreen@qmul.ac.uk
https://doi.org/10.3389/fcomp.2021.640669
https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles
https://www.frontiersin.org/journals/computer-science
https://www.frontiersin.org/journals/computer-science#editorial-board
https://doi.org/10.3389/fcomp.2021.640669


INTRODUCTION

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder
of the brain and the most prevalent form of dementia. According
to the National Institute of Neurological and Communicative
Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and
Related Disorders Association (ADRDA), the most common
symptoms include an inability to function at work or to
perform usual activities, reduced cognitive capabilities
(including impaired reasoning and visuospatial abilities,
impaired ability to acquire and remember new information,
impaired language function), and changes in behavior.
Language deficit primarily occurs through a decline in lexical
semantic abilities with anomia and word comprehension, object
naming, semantic paraphasias, and a decrease in vocabulary and
verbal fluency throughout the entire span of the disease (Bayles
and Boone, 1982; Forbes-McKay and Venneri, 2005). Effects are
also seen at the pragmatic level, including problems with
maintaining and alteration in discourse planning (Chapman
et al., 2002). At the phonetic and phonological level, speech in
patients with AD is principally characterized by a low speech rate
and by frequent hesitations (Hoffmann et al., 2010); however,
syntactic processing is relatively preserved at the early stages of
the disease (Kavé and Levy, 2003; Forbes-McKay and Venneri,
2005).

There is no single universally accepted medical test for the
diagnosis of AD; instead, physicians typically use a variety of
methods with the help of specialists (including neurologists) to
make a diagnosis. This includes a combination of taking feedback
from family members and carers asking about changed patterns
in behaviors and thinking, getting family history, and mental
status examination. NINCDS established the criteria for AD
diagnosis and requires that the presence of cognitive
impairment needs to be confirmed by neuropsychological
testing for a clinical diagnosis of possible or probable AD
(McKhann et al., 1984). Neuropsychological testing should be
performed when the routine history and bedside mental status
examination cannot provide a confident diagnosis (McKhann
et al., 2011). Suitable neuropsychological tests include the Mini-
Mental Status Examination (Folstein et al., 1975), Mini-Cog
(Rosen et al., 1984), Addenbrooke’s Cognitive
Examination–Revised (ACE-R) (Noone, 2015), Hopkins Verbal
Learning Test (HVLT) (Brandt, 1991), and DemTect (Kalbe et al.,
2004). Other routes include the use of blood tests and/or brain
imaging (MRI) to check for high levels of beta-amyloid, an
accumulation of protein fragments outside neurons, and one
of the several brain changes associated with AD (Straiton, 2019).

Medical diagnoses based on the clinical interpretation of
patients’ history, complemented by brain scanning (MRI), are
time-consuming, stressful, costly, and often cannot be offered to
all patients complaining about functional memory. The other
alternatives are extensive neurological screening tests that are
used for the early diagnosis of AD and dementia. These tests
require experts to interpret the results, strongly relying on brief
cognitive tests, and are performed inmedical clinics, with patients
required to visit the clinics for diagnosis. There is a need for new,
less invasive approaches that improve and speed up the process of

early diagnosis, reduce distress to patients, and place less
emphasis on extensive and expensive formal testing. Currently,
researchers are therefore investigating the impact of
neurodegenerative impairment on patients’ speech and
language, with the hope of deriving tests that are easier to
administer and automate via natural language processing
techniques (see, e.g., Fraser KC. et al., 2016).

Conversational dialogue is the primary means of human
natural language use, so dialogue, and open domain dialogue
in particular, might provide more generally applicable insights in
studying the effects of AD on dialogue (Nasreen et al., 2019).
Conversational analysis (CA) studies have traditionally looked in
more detail at what characteristics of dialogue with dementia
might be important (Jones et al., 2016; Elsey et al., 2015;
Hamilton, 2005; Davis and Maclagan, 2010; Mirheidari et al.,
2019; Perkins et al., 1998; Varela Suárez, 2018). Although some
computational works explore the detection of dementia from
speech and interaction (e.g. Luz et al., 2018; Broderick et al., 2018;
Mirheidari et al., 2019), it is so far relatively limited, and there is
little work on how dementia might affect interactional patterns in
natural conversations (Addlesee et al., 2019).

AD is associated with many characteristic changes in language
and speech not only with individual capabilities but also
consequently in the interactive patterns observed in
conversations. However, most language-based approaches so
far use picture description or narrative tasks, or analyze
individual speech, and thus miss conversational clues. This
article examines the function of combining single-speaker
disfluency features with interactional (dialogue) features to
analyze the predictive power of these features in the diagnosis
of AD. Extracts from the spontaneous speech of 15 AD and
15 non-AD patients from a conversational dataset, the Carolinas
Conversation Collection (CCC), are analyzed to highlight the
function of these interactional patterns, particularly pauses within
a patient’s utterances and during turn changes with a
conversation partner in natural conversation. As will be
described, we show the value of both disfluency and
interactional information in conversation, combining them to
achieve an overall accuracy of 90% in the recognition of AD from
dialogue data.

PREVIOUS WORK

Much of the work to date in AD diagnosis has focused on
properties of individual language, using various kinds of
linguistic and acoustic features (Jarrold et al., 2014), or
fluency, information content, and syntactic complexity (Fraser
et al., 2016b; Fraser et al., a; de Lira et al., 2011). However, this is
often studied within particular individual language tasks, usually
within specific domains including picture description [the
commonly used Cookie Theft picture description task from
the Boston Diagnostic Aphasia Examination (Goodglass et al.,
2001)], story narration task [e.g. The Dog story (Le Boeuf, 1976)],
and semi-structured interviews [e.g. Autobiographical Memory
Interview (Kopelman et al., 1990)]. Approaches to analysis and
diagnosis therefore usually focus on aspects of individual
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language such as lexical, grammatical, and semantic features.
Kavé and Dassa (2018), for example, examined dementia via a
picture description task in the Hebrew language, using ten
linguistic features, and showed that the AD group produced a
smaller percentage of content words, more pronouns relative to
nouns and pronouns, a lower type-token ratio, and more frequent
words as compared with cognitively intact participants. Orimaye
et al. (2017) built an automated diagnosis model using low-level
linguistic features including lexical, syntactic, and semantic
features (NGrams) from verbal utterances of Probable AD and
control participants. In another line of research, Ahmed et al.
(2013) argued that speech production, syntactic complexity,
lexical content, semantic content, idea efficiency, and idea
density are important features of connected speech that are
used to examine longitudinal profiles of impairment in AD.

Fluency has also been shown to be indicative of AD. Patients
with AD have difficulty performing tasks that leverage semantic
information, and exhibit problems with verbal fluency and
identification of objects (Pasquier et al., 1995; López-de Ipiña
et al., 2013). The semantics and pragmatics of their language
appear affected throughout the entire span of the disease more
than syntax (Bayles and Boone, 1982). Patients with AD talk more
gradually with longer pauses and invest extra time seeking the
right word, which contributes to disfluency of speech (López-de
Ipi et al., 2013). Abel et al. (2009) modeled patient speech errors
(naming and repetition disorders) to the problem of AD
diagnosis. Rohanian et al. (2020) used a deep multi-modal
fusion model to show the predictive power of disfluency
features in the identification of AD.

Pausing behavior is often associated with a lack of fluency, and
several studies have suggested various temporal forms of speech
analysis to identify AD. During speech production, pauses are
often considered a hallmark of a patient’s lexical-semantic
decline, one of the earliest symptoms of AD (Pistono et al.,
2019b). Davis and Maclagan (2010) examined the silent pauses
in a story retelling task with an older woman on two different
occasions and found changes in pauses function signaling
difficulty in word finding to difficulty in finding key
component in the thread of a story. Forbes-McKay and
Venneri (2005) compared the word-finding difficulties during
the discourse in a picture description task among AD and healthy
elderly subjects and stressed the fact that pauses, use of indefinite
terms, and repetition are significantly more frequent in the AD
group. According to Gayraud et al. (2011), AD patients produce
more silence pauses than healthy controls but they found no
significant difference in the duration of pauses. This study was
performed on spontaneous speech data of an autobiographical
task of AD and healthy persons and also identified that silent
pauses occur more often outside syntactic boundaries and are
followed by more frequent words. Singh et al. (2001) utilized
different temporal measures including frequency of pauses, total
pause time, mean duration of pause (MDP), standardized pause
rate (SPR), standardized phonation time (SPT), and a fewmore to
distinguish between AD and healthy control group by performing
statistical analysis and discriminant analysis.

From a more linguistic perspective, silences in conversation
have been analyzed in terms of distinct categories, with several

terms coined to distinguish these, especially pauses at speaker
changes or turn changes. Sacks et al. (1978) distinguished three
kinds of silences in speech: pause (silence within the same
speaker), gap (shorter silence at speaker change), and lapse
(longer pause at speaker change). A normal gap duration is
200–1000 ms, as reported in the literature (Heldner and
Edlund, 2010). Levinson (1983) employed a turn-taking
system by integrating its forms and functions and categorized
silence into three categories: within-turn silence (pause), inter-
turn silence (gap or lapse), and turn silence (attributable silence).
Researchers investigated turn silences within the framework of
conversational analysis (CA) and Relevance Theory (RT) by
taking into account the communicators’ psychological factors,
i.e. why they resort to silence rather than other means of
communication to avoid giving a dis-preferred response
(Wang, 2019). Applying these ideas to Alzheimer’s discourse,
Davis and Maclagan (2009) showed that both filled and silent
pauses are keyed to functions within narration and within a
conversation. They demonstrated that filled pauses (e.g. “uh” and
“um”) serve as placeholders and hesitation markers while silent
pauses serve as a function for word finding, planning a word, and
narrative level as well as an indicator of decreases in other
interactional and narrative skills. They utilized the convention
of Crystal and Davy (2016) to distinguish between micro-pause
(less than a second), average pause (less than 2 s), and long pause
(longer than 2 s) with elderly people (speech rate decreases
with age).

CA’s emphasis on conversation as a collaborative achievement
demonstrates that examining interaction can provide more
insight than separate analysis of the contributions of the two
halves: each contribution to the conversation is built upon and
responds to the partner’s previous contribution. Perkins et al.
(1998) explored turn-taking behavior, repairs, and topic
management in conversations with dementia, and
demonstrated that cognitive deficits may compromise the
ability to secure the conversational floor or hold onto it and
that failure to maintain topics often leads to topic changes by the
conversational partner. Jones et al. (2016) presented a CA study
of dyadic communication between clinicians and patients during
initial specialist clinic visits, while Elsey et al. (2015) highlighted
the role of carer, looking at triadic interactions among a clinician,
a patient, and a carer. They established differential conversational
profiles that distinguish between nonprogressive functional
memory disorder (FMD) and progressive neurodegenerative
disorder (ND), based on the interactional behavior of patients
responding to neurologists’ questions about their memory
problems. Davis et al. (2014) examined how effective
communication can be with the usage of strategies such as
quilting, go ahead, and indirect questions between residents
with dementia and their conversation partners, exploring
various aspects including the impact of different types of
questions, delayed responses, and the number of ideas in
response using idea density.

Interactional features, therefore, promise one way to help
alleviate the problems discussed in Section 1, by contributing
to general, noninvasive methods of diagnosis that can be applied
in natural everyday conversation, and some recent work has
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therefore investigated computational models using machine
learning techniques. In a recent study, Mirheidari et al. (2019)
performed an automated analysis for dementia detection with
CA-inspired features, together with some language and acoustic
features, achieving a classification accuracy of 90%. Luz et al.
(2018) built a predictive model based on content-free features
extracted from dialogue interactions from spontaneous speech in
more natural settings using the CCC corpus of patient interview
dialogues (Pope and Davis, 2011). They achieved promising
results with an accuracy of 86% with only dialogue
interaction-based features with less reliance on the content of
task/dialogue. In a study building on the PREVENT Dementia
project, de la Fuente Garcia et al. (2019) built a protocol for a
conversation-based analysis study to investigate whether early
behavioral signs of AD may be detected through dialogue
interactions. Interactional patterns are considered among the
current challenges to be addressed to make the spoken dialogue
systems usable by older adults or frail patients (Addlesee et al., 2019).
The purpose of this study is to investigate a new set of interactional
features in AD conversations and evaluate their use in a
computational model for AD classification.

DATASET AND FEATURES

Dataset and Participants
This study aims to investigate the behavior of AD patients based
on the interaction patterns, including repairs and pauses within
utterances and between turns, observed in a corpus of dialogue.
This is a post hoc study based on an existing dataset, the CCC
corpus, collected and distributed by the Medical University of
South Carolina (MUSC) (Pope and Davis, 2011). The CCC
corpus is a digital collection of semi-structured interviews
including time-aligned transcripts with audio and video for
some of the samples. These conversations are not based on a
fixed task like picture description, but rather are based on the
general discussion on daily routine, health, and different
occasions like Christmas. AD subjects were aged 65 years and
older with their AD at relatively moderate stages, while non-AD
subjects include unimpaired persons with 12 chronic diseases of
similar age. Each patient is interviewed by a different interviewer,
either a linguistics student or a person from the community
center involved. The demographic and clinical variables available
include age range, gender, occupation prior to retirement,
diseases diagnosed, and level of education (in years). Patients
and interviewers are anonymized for security and privacy
reasons. Access to the data was granted after ethical review by
the both Queen Mary University of London (via QMERC 2019/
04 dated April 25, 2019) and MUSC. As this dataset includes only
elder patients, with diagnosed dementia of Alzheimer’s type at
moderate stage, it can only allow us to observe patterns associated
with AD at a relatively advanced stage. This does not directly tell
us whether these extend to early-stage diagnosis. However, it has
the advantage of containing relatively free conversational
interaction, compared to the more formulaic tasks and one-
sided interaction available in corpora more commonly used in
AD research, e.g. DementiaBank (Becker et al., 1994).

For this particular study, we use the transcript and audio
recording from one dialogue conversation chosen randomly
from each of a total of 30 patients: 15 AD diagnosed
patients (4 male, 11 female) and 15 patients (4 male, 11
female) with other chronic diseases including diabetes, heart
problems, arthritis, high cholesterol, cancer, leukemia but
not AD; no patients were diagnosed as having breathing
problems. These groups are selected to match the age
range, to compare the different patterns of interaction, and
to avoid bias. The demographic data of the participants are
given in Table 1.

Disfluency Features
Detailed language use research helps us to find the indications of
language impairment in AD and is a step toward the design of
future clinical diagnostic tools. Disfluencies like self-repairs,
pauses, and fillers are widespread in everyday speech
(Schegloff et al., 1977). Disfluencies are usually seen as
indicative of communication problems, caused by production
or self-monitoring issues (Levelt, 1983). Individuals with AD are
likely to deal with troubles in language and cognitive skills.
Patients with AD speak more slowly and with longer breaks,
and invest extra time seeking the right word, which in effect
contributes to disfluency (López-de Ipi et al., 2013). The present
research explores the disfluencies present in the speech of AD
patients as they contribute to the severity of symptoms.

Self-repair disfluencies are typically assumed to have a
reparandum–interregnum–repair structure, in their fullest
form as speech repairs (Shriberg, 1994). A reparandum is a
speech error subsequently fixed by the speaker; the corrected
expression is a repair. An interregnum word is a filler or a
reference expression between the words of repair and
reparandum, often a halting step as the speaker produces the
repair, giving the structure as in (1)

John [ likes︸��︷︷��︸
reparandum

+ { uh }︸��︷︷��︸
interregnum

loves ]︸��︷︷��︸
repair

Mary (1)

In the absence of reparandum and repair, the disfluency
reduces to an isolated edit term. A marked, lexicalized edit
term such as a filled pause (“uh” or “um”) or more phrasal
terms like “I mean” and “you know” can occur. Recognizing these
elements and their structure is then the task of disfluency
detection.

TABLE 1 | Demographic data for AD and non-AD patients, with dialogue duration
in minutes.

AD Non-AD

(N = 15) (N = 15)

Age range 60–89 60–79
Years of education 9–16 8–16
Gender M:4 M:4
– F:11 F:11
Total duration of dialogues 152 179.7
Average dialogue duration 10.13 11.97
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Here, each word is either tagged as a repair onset tag (marking the
first word of the repair phase), edit term (edit_terms), or fluent word
by the disfluency detector. To get themost information fromdifferent
types of disfluency, we split repairs between the broad classes of
verbatim repeats (Rpt), substitutions (Sub), and deletes (Del):

1) “So (he + he) brings the fresh flowers . . .”
Repeats

2) “(Someone said that + I heard someone out here say) it is
getting quite cool outside, is it?”
Substitution

3) “. . .and I looked [at + (uh)] and answered her question. . .”
Deletes

We automatically annotated self-repairs using a deep-learning-
driven model of incremental detection of disfluency developed by
Rohanian and Hough (2020) and Hough and Schlangen (2017).1 It
consists of a deep learning sequence model, a long short-term
memory (LSTM) network, which uses word embeddings of
incoming words, part-of-speech annotations, and other features
in a left-to-right, word-by-word manner to learn a sequence model
of, and predict, disfluency tags according to the structure in (1) and
any other edit term words. The model is trained on the disfluency
detection training section of the Switchboard corpus (Godfrey
et al., 1992), a sizablemultispeaker corpus of conversational speech.
Rohanian and Hough (2020) reported the automatic disfluency
detector achieves an F1-score accuracy on detecting the first word
of the repair phase at 0.743 and an F1-score accuracy of 0.922 on
detecting all edit term words on the Switchboard disfluency
detection test data. We considered its accuracy adequate for our
purposes. Automatically deriving the types of interest from the
tagger’s output, we use four disfluency tags for patients (P) and four
for interviewers (I) resulting in a total of eight disfluency features
(details in Table 2).

Interactional Features
Annotation Protocol
We consider any silence of at least 0.5 s length for this particular
study. To categorize the silences, we employed Levinson (1983)’s

definitions: pauses (silences within a single speaker’s turn), gaps
and lapses (silences between speaker turns), and attributable
silences (silences where speaker changes were expected but did
not occur). We further categorized pauses into short pause (SP)
and long pause (LP). An SP is a silence that occurs inside a
single speaker turn, which we advised in the annotation
protocol for average speech rates is greater than 0.5 s and
less than 1.5 s; an LP is a longer pause within a single speaker
turn, normally at least 1.5 s. We used guidelines for these
thresholds rather than strict rules, because of different speech
rates, and the judgment was left to annotators as to which
category the pause fell into based on their perception. Both
SPs and LPs may occur either at a transition relevance place
(TRP) or not at a TRP, but no speaker change occurred. TRPs
are junctures at which the turn could pass from one speaker
to another.

For inter-turn silences and attributable silences, we did not
use explicit time thresholds—annotators used their judgment
when listening to the silences in the context of the conversation
closely and categorized them according to the following
definitions. We define a gap (GA) as a silence at a speaker
change (i.e. turn boundary, with speaker change from I-P or
vice versa P-I) which is not perceived as unusually long.
Following Sacks et al. (1978), a lapse (LA) is then
distinguished from a gap by not only being longer by
“rounds of possible self-selection” but also involving a
discontinuity in the flow of conversation. More precisely,
annotators were told to annotate a silence as a lapse for
unusually long silences in communication between two
individuals, at TRPs, and after which one participant (usually
the interviewer in this dataset) initiates a new topic (topic shift).
The final category, attributable silence (AS), occurs when the

TABLE 2 | The proposed disfluency feature set.

Feature Description

Patient features
# edit_terms Number of # edit_terms within P utterances normalized by the total # of words spoken by P
# Rpt Number of verbatim repeats within P utterances normalized by the total # of words spoken by P
# Sub Number of substitutions within P utterances normalized by the total # of words spoken by P
# Del Number of deletes within P utterances normalized by the total # of words spoken by P

Interviewer features
# edit_terms Number of # edit_terms within I utterances normalized by the total # of words spoken by I
# Rpt Number of verbatim repeats within I utterances normalized by the total # of words spoken by I
# Sub Number of substitutions within I utterances normalized by the total # of words spoken by I
# Del Number of deletes within I utterances normalized by the total # of words spoken by I

TABLE 3 | Inter-annotator agreement: Cohen’s kappa (κ) and observed
agreement (Ao )

Feature name Acronym κ Ao

Short pause SP 0.55 0.83
Long pause LP 0.46 0.79
Gap GA 0.88 0.94
Lapse LA 0.75 0.96
Attributable silence AS 0.66 0.98
Overall – 0.66 0.75

1The python implementation used is at https://github.com/clp-research/deep_
disfluency
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current speaker selects another next speaker (by asking a
question, by naming, or by looking at them), thereby putting
the selected speaker under the obligation to speak next, but for
one reason or another, that selected speaker does not respond;
after the silence, the current speaker, therefore, continues the
conversation (Elouakili, 2017). We define attributable silence as
a longer silence after a question is asked from one party, no
response from the other, and the first party then continues.
Examples of these pause types with conversation samples are
given in the Supplementary Materials. We also differentiated
between speakers (patient P and interviewer I) by assigning
speaker ID (SP_ID) to each labeled pause.

These annotations were performed using both transcripts
and audio files using ELAN software (Sloetjes and Wittenburg,
2008).2 To check the inter-rater agreement, two annotators
annotated the silences of at least 0.5 s in one randomly
selected AD patient dialogue; both had a good knowledge of

linguistics and were familiar with the annotation rules. We use a
multi-rater version of Cohen’s κ (Cohen, 1960) as described by
Siegel and Castellan (1988) to establish the agreement of
annotators in terms of the overall agreement on all pause
types, and also in terms of each pause type individually—see
Table 3. We got an overall substantial agreement of κ � 0.66 for
all categories of pauses. We got lower, though still moderately
strong, κ values for LP and SP as these are pauses within the
same speaker utterances and patients are older people with
lower speech rates, making it more difficult to decide
whether there is a relatively shorter or longer pause at certain
lengths around the recommended boundary of 1.5 s.

Temporal Measures of Dialogue Interactions
Table 4 presents the extracted set of high-level interactional
features to quantify the P–I interactions. There are 14 features
for P and 12 features for Iwithin the conversation and six features
for overall conversation. This results in a set of 32 features
representing the interaction within the natural dialogue
conversations. We normalize the number of pauses within P

TABLE 4 | The proposed interactional feature set.

Feature Description

# LA Total number of LA is sum of normalized no. of LA from P–I and I-I
Dur_LA Sum of average LA duration from P–I and I–I
# GA Total number of GA is the sum of normalized no. of GA from P–I and I–P
Dur_GA Sum of average GA duration from P–I and I–P
# overlaps No. of segments spoken simultaneously by both P and I. This feature indicates frequency of occurrence that may be

attributed to speech initiation difficulties. (Young et al., 2016)
#Turn_switches per Minute This is calculated by the number of turns per 60 s
Patient features
# SP Number of SP within P utterances normalized by the total # of words spoken by P
Dur_SP Total duration of SP normalized by the total duration of speech by P without pauses
# LP Number of LP within P utterances normalized by the total number of words spoken by P
Dur_LP Total duration of LP normalized by the total duration of speech by P without pauses
# GA(P–I) Number of GA at turn transition from P–I normalized by the total number of turns in the conversation
Dur_GA(P–I) Average duration by considering the total duration of GA (P–I) divided by # GA(P–I)
# AS Normalised number of attributable silence AS after posing the question from I–P
Dur_ AS Average duration of AS from I–P with no response
Standardized pause rate (SPR) SPR is obtained by the total number of words spoken by P divided by the sum of SP and LP.
Standardized phonation time (SPT) SPT is the total number of words spoken by P to the total speech time of the patient excluding SP and LP.
Transformed phonation rate TPR “The arcsine of the square root of the phonation rate (PR)” (Beltrami et al., 2018). PR is the speech time of P to the total

speech time of P including SP and LP
Floor control ratio This featuremeasures the relative amount of time (quantify dominance) the P spends speaking to the total speech time of the

conversation (Aldeneh et al., 2019)
turn_length This feature measures the number of words per turn spoken by P
speech_rate Speech rate is the number of syllables per minute produced by P. It is calculated as the total numbers of syllables produced

by P to the total speech time (in minutes)
Interviewers features
# SP Number of SP within I utterances normalized by the total # of words spoken by I
Dur_SP Total duration of SP normalized by the total duration of speech by I without pauses
# LP Number of LP within I utterances normalized by the # of words spoken by I
Dur_LP Normalized duration of LP
# GA(I-P) Number of GA at turn transition from I–P normalized by the total number of turns
Dur_GA(I–P) Average duration of GA (P–I)
# LA(I–I) Total # of LA is sum of all LA (I–I) normalized by # of turns
Dur_LA(I–I) Average LA duration from I–I with the topic shift
# LA(P–I) Normalized # of LA from P–I with a topic shift
Dur_LA(P–I) Average LA duration from P–I with the topic shift
turn_length This feature measures the # of words per turn spoken by I
speech_rate This feature measures the number of syllable per minute during speech by I

2https://archive.mpi.nl/tla/elan
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or I by the number of words spoken by each respectively instead
of normalizing by the number of utterances because it may be
possible that when P speaks, they use a smaller number of words
per utterance.

ANALYSIS AND EXPERIMENTS

Statistical Analysis
To investigate the importance of each feature, we calculated the
mean and standard deviation (SD) for each group (AD and non-
AD).We chose a nonparametric independent sample test (Mann-
Whitney U) on disfluency and interactional features due to the
small sample size.We applied a nonparametric test as a two-tailed
test for unpaired samples and unequal variances. The value
p< 0.05 was chosen for statistical significance. IBM SPSS
version 26.0 was used for the statistical analysis.

Disfluency Features Analysis
Patient Features
Table 5 shows the results of our analysis indicating a significant
difference between AD and non-AD patient groups in terms of
the rate of patient edit terms, repeats, and substitution per word.
The rate of edit terms is significantly higher (p � 0.001) for AD
patients with amean of 0.029 (SD � 0.009) compared to 0.017 (SD
� 0.006) for non-AD patients. Furthermore, the rate of verbatim
repeat disfluencies is significant (p � 0.011) with a higher mean
value for AD patients than non-AD patients (0.027 vs. 0.011). The
findings also indicate a significant correlation between conditions
and substitution disfluencies (p � 0.045), again with higher rates
for AD patients vs. non-AD patients (0.012 vs. 0.008).
Disfluencies are known to be symptomatic of communication
difficulties. People who suffer from AD typically experience
communication problems through weak conversation flow; it
is reasonable that this will be observable through increased
disfluencies in dialogue. The rate of delete disfluencies is,
however, not found to be significantly different between AD
and non-AD patients, possibly due to lack of data as they are
very rare.

Interviewer Features
As with patient features, we found that there is a significantly
greater rate of edit terms in conversations with AD patients (p �
0.013) with a mean value of 0.009 (SD � 0.011) compared to 0.004
(SD � 0.004) for those with non-AD patients. The rate of repeat
disfluencies (p � 0.048) is also significantly greater with a mean
value of 0.010 (SD � 0.008) in interviewer speech with AD
patients and a mean value of 0.007 (SD � 0.006) in
interviewer speech with non-AD individuals. The rate of delete
and substitution disfluencies are not found to be significantly
different in interviewer speech with AD and non-AD patients.
The fact that there are more disfluencies in the interviewer’s
speech suggests that trouble with communication is shared
between both participants, in line with the Conversation
Analytic emphasis on collaborative achievement.

Interactional Features Analysis
Table 6 presents the mean, SD, the p-values, and test statistic U
(for Mann-Whitney U test) for each of the interactional features
reported in Table 4. Significant differences between the AD and
non-AD groups are marked in bold. Overall, the total number of
GA and the total number of LA are found to be significantly
higher in the AD group. There were fewer turn switches in AD
dialogues with a mean of 2.544 compared to non-AD dialogues
with a higher mean of 3.510. Figure 1 shows the distributions of
three significant features with Figure 1A–C and Figure 1D
representing the distribution of a nonsignificant feature, i.e.
average duration of LA (P–I) between AD and non-AD
groups. There is a great number of AS shown in Figure 1A
with longer silences in the AD group than the non-AD group. The
Y-axis shows the normalized duration while the X-axis shows the
frequency of duration of the AS in each group.

Patient Features
Our analysis found that the patient’s long pauses, duration of long
pause, number of gaps from P–I, and duration of AS exhibit
significant differences between AD and non-AD patient groups.
Standardized phonation time of patients is significantly lower for
AD patients, with a mean of 2.113 and variability of 0.531 for AD
patients, and a mean of 2.839 for non-AD patients. Mean turn
length is significantly higher at 22.52 s for non-AD patients
compared to 12.142 for AD patients. These results suggest AD
patients produce a greater number of pauses with a longer
duration (>1.5 s), with slower speech rates than non-AD
patients. These longer pauses within the patients’ utterances
signal the difficulty in lexical search and semantic processing
problems of finding key components related to events, places, etc.
Additionally, the results suggest that AD patients exhibit higher
variability in the time they either respond to questions by
clinicians (resulting in high values for the number of gaps
from I–P with larger delays) or they preferred attributable
silences (mean duration of 2.468 for AD patients as compared
to 0.414 for non-AD patients) instead of response. Notably, the
floor control ratio is higher for non-AD patients, suggesting that
AD patients hold the floor for less time compared to non-AD
patients. The number of short pauses and duration of short

TABLE 5 | Descriptive statistics (mean, SD) and statistical significance of the
disfluency feature set. ** denotes highly significant at p <0.01; * denotes
significance at p<0.05

Features AD Non-AD Mann-Whitney U
test

Mean SD Mean SD P U

Patient features
# edit_terms 0.029 0.009 0.017 0.006 0.001** 183.5
# Rpt 0.027 0.015 0.011 0.13 0.011* 172.0
# Sub 0.012 0.007 0.008 0.008 0.045* 161.0
# Del 0.005 0.005 0.003 0.005 0.256 137.0

Interviewer features
# edit_terms 0.009 0.011 0.004 0.004 0.013* 170.5
# Rpt 0.010 0.008 0.007 0.006 0.048* 157.0
# Sub 0.05 0.006 0.004 0.004 0.743 145.0
# Del 0.002 0.003 0.001 0.001 0.154 153.0

The boldfaced numbers indicate the best results.

Frontiers in Computer Science | www.frontiersin.org June 2021 | Volume 3 | Article 6406697

Nasreen et al. AD Detection from Spontaneous Speech

248

https://www.frontiersin.org/journals/computer-science
www.frontiersin.org
https://www.frontiersin.org/journals/computer-science#articles


pauses were not found to be significant between AD and non-AD
patients, suggesting that short pauses are present naturally for
breathing and for planning at the word or phrase level.

Interviewer Features
We found that the duration of LP is approaching significance
with the mean 0.033 (SD � 0.023) for interviewers with an AD
patient being higher than 0.021 (SD � 0.037) for those with non-
AD patients. While only a tendency, we can tentatively conclude
interviewers tend to insert longer silences while interacting with
AD patients. The number of GA at I–P turn changes is
significantly greater at turn exchanges with AD patients, with
an average of 0.103 with a longer duration of 1.515 compared to
the mean of 0.052 with a relatively shorter duration on average of
1.011 at turn exchanges with non-AD patients. The number of LA
is also highly predictive among the two groups in the P–I turn
changes. This means that the frequency of initiating a new topic
by the interviewer after a considerable amount of silence after the
patient has stopped speaking is higher in the AD group with a

mean of 0.031, compared to 0.002 for non-AD patients. Finally,
we found that the average turn length of interviewers interacting
with AD patients is 9.155 s (SD � 4.320) compared to 23.31 s (SD
� 22.31) with non-AD interactions, the mirror image of the case
with patient turn length, where AD patients have far longer turns.
This reveals that although the interviewers paused for longer
periods within their turns while interacting with AD patients they
also tend to speak for a shorter period of time.

Our study provides strong evidence that these interactional
features including pause duration, gaps, lapse duration, presence
of attributable silences, phonation time, and turn length seem to
be sensitive markers of cognitive decline and also distinguish the
AD group from the non-AD group.

Classification Experiments
Our final goal is to perform a classification task to assess whether
AD prediction can be improved by integrating these inter-speaker
interactional features with the intra-speaker disfluency features.
We study the influence of these features using three machine

TABLE 6 | Descriptive statistics (mean, SD) and statistical significance for our interactional feature set. We report p values obtained fromMann-Whitney U tests against a null
hypothesis with no differences in distributions of these interactions on AD. ** denotes highly significant at p< 0.01; * denotes significance at; - shows a trend toward
significance at p<0.1.

Features AD Non-AD Mann-Whitney U test

Mean SD Mean SD p U

#LA 0.051 0.053 0.011 0.020 0.013* 171.5
Dur_LA 3.195 2.592 1.041 1.927 0.026* 166.0
# GA 0.228 0.121 0.104 0.071 0.010* 174.0
Dur_GA 1.400 0.464 1.100 0.245 0.067- 156.0
# overlaps 0.073 0.029 0.109 0.082 0.595 99.0
#Turn_switches per Minute 2.544 0.835 3.510 1.447 0.026* 59.5
Patient features
# SP 0.034 0.013 0.032 0.018 0.455 130.5
Dur_SP 0.064 0.022 0.082 0.06 0.254 85.0
# LP 0.022 0.016 0.012 0.017 0.013* 171.5
Dur_LP 0.106 0.078 0.054 0.065 0.016* 169.5
# GA(P–I) 0.103 0.067 0.052 0.054 0.015* 170.5
Dur_GA(P–I) 1.515 0.820 1.000 0.368 0.098- 152.5
# AS 0.010 0.013 0.002 0.002 0.067- 157.0
Dur_ AS 2.468 3.243 0.414 0.724 0.037* 163.0
(SPR) 22.158 12.54 36.40 28.19 0.137 76.0
(SPT) 2.113 0.531 2.839 0.060 0.002** 41.0
TPR 1.041 0.115 1.114 0.157 0.081- 70.0
Floor control ratio 0.596 0.172 0.712 0.183 0.098- 72.5
turn_length 12.142 6.59 22.52 20.34 0.007** 168.5
speech_rate 164.91 35.74 180.1 37.82 0.345 89.0

Interviewer features
# SP 0.013 0.009 0.017 0.02 0.935 110.0
Dur_SP 0.029 0.020 0.034 0.036 0.902 109.0
# LP 0.006 0.006 0.005 0.007 0.126 149.5
Dur_LP 0.033 0.023 0.021 0.037 0.061- 157.5
# GA(I–P) 0.125 0.068 0.052 0.033 0.002** 184.5
Dur_GA(I–P) 1.363 0.365 1.011 0.301 0.041* 161.5
# LA(I–I) 0.020 0.023 0.027 0.068 0.305 137.5
Dur_LA(I–I) 3.291 3.696 1.316 1.951 0.106 151.5
# LA(P–I) 0.031 0.037 0.002 0.003 0.009** 175.0
Dur_LA(P–I) 2.552 2.161 1.163 2.317 0.081- 155.0
turn_length 9.155 4.320 23.31 22.31 0.001* 34.0
speech_rate 195.49 32.89 183.05 43.09 0.325 137.0

The boldfaced numbers indicate the best results.
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learning classifiers: logistic regression (LR), support vector
machines (SVM), and multilayer perceptron (MLP). We train
each classifier using disfluency features, interactional features,
and then by combining both. As the dataset is fairly small, we
did not use separate splits of data for train and test, but rather
follow a leave-one-out cross validation (LOOCV) scheme to get a
better estimation of generalization accuracy. This process
involves selecting one participant as a test and training the
classifier on the remaining instances. This process is repeated
until all instances have been selected for testing. The
resulting accuracies on all folds are then aggregated into a
final score. We build our models using the Scikit-Learn library
(Pedregosa et al., 2011). We optimize our models with the

following hyper-parameters: logistic regression with
C ∈ {0.001,0.01,0.1,1,10,100,1000} using the “liblinear” solver;
SVM with C ∈ { 0.1, 1, 10, 100, 1000}, c ∈ {1, 0.1, 0.01, 0.001,
0.0001}, using the kernels “rbf” and “poly”; and MLP with the
“relu” activation function, hidden layer sizes of (2,3), and (3,4)
and an initial learning rate of 0.01. We also performed a recursive
feature elimination (RFE) method on both interactional and
disfluency feature set to eliminate the weakest features with
the purpose of removing any dependencies and colinearity.
RFE is a feature selection method that removes a certain
number of weak features per iteration and fits the model with
the remaining features. We then train each classifier with the top
15 ranked features based on RFE.

FIGURE 1 | Feature value histograms for a selection of different pause types, showing differences in distributions between AD and non-AD dialogues. (A) Average
duration of patient attributable silences AS; (B) duration of patient long pauses LP; (C) frequency distribution of interviewer-to-patient gaps GA(I–P); (D) duration of
patient-to-interviewer lapses LA(P–I). (A), (B), (C) show distributions that are significant at p<0.05, while for (D) 0.05<p< 0.1.
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Because our dataset is balanced, we reported our results in
terms of accuracy, precision, recall, F1 score, and area under the
ROC curve (AUC) as evaluation metrics. Precision measures
what percentage of AD predictions correspond to real cases of AD
(i.e. true positive divided by true positive and false positive).
Recall measures the percentage of the actual AD occurrences that
were detected (i.e. true positives divided by false negative plus true
positive). F1 is the harmonic mean of precision and recall. AUC is
commonly used for evaluating the performance of clinical
diagnostic and predictive models (Zou et al., 2007). The ROC
curve is used to show the trade-off between true positive rate
(TPR, recall of the AD class) and false positive rate (FPR, one-
recall of the non-AD class). Different clinical diagnostic scenarios
may call for different TPR/FPR trade-offs, so the area under the
curve (AUC) is used to express the overall level of diagnostic
power; AUC greater than 0.75 is usually recommended for
clinical purposes (Orimaye et al., 2017).

Classification Results and Discussion
Table 7 provides the classification accuracymeasures obtained using
an individual group of features for combining both sets of features
and when applying RFE top 15 selected features against all three
classifier algorithms—LR, SVM, and MLP. It can be seen that the
SVM outperformed both LR and MLP using disfluency features,
interactional features, the combination of both, and with RFE-based
top 15 features. Comparing the two feature sets, the best scores
attained (with the SVM) are in fact identical with accuracies of 83%.
However, by combining the two feature sets we achieved the highest
accuracy of 90% with an F1 score of 0.90 with the SVM classifier.
With LR, we achieved an accuracy of 77% with disfluency features,
80% with interactional features, and an increase in accuracy of
roughly 7% when combining both feature sets with 87%.

MLP performed similarly to LR for disfluency features, with
the same accuracy and F1 score; however, it performs slightly
worse with the interactional features with an F1 score of 0.76
compared to LR and SVM. The combination of both feature
sets showed an increase in the F1 score to 0.80. From the
overall accuracy results with MLP, we can draw the conclusion
that as MLP is a feed-forward neural network with more
parameters and is a more data-hungry algorithm, the small

number of samples and small feature space available for
training is suboptimal.

Luz et al. (2018) used a probabilistic graphical model to classify
AD patients in the CCC, using a slightly bigger dataset but with
shorter dialogue conversations. They used only interactional
features, and achieved comparable accuracies of 0.757 with LR
and 0.837 with SVM classifiers; but did not investigate the role of
different pause types, or the combination with fluency.
Interestingly, they found that AD patients produce longer
turns with more words and a higher speech rate; this contrasts
with our results, in which AD patients produce fewer words than
non-AD patients, with lower speech rates. We note that our
findings align better with other research (Martínez-Sánchez et al.,
2013; Kavé and Dassa, 2018; Pistono et al., 2019a; Themistocleous
et al., 2020). Mirheidari et al. (2019) went a step further,
combining CA-inspired interaction features including turn-
taking behavior with some acoustic and language features, to
achieve a classification accuracy of 90% similar to this study.
However their approach is based on structured interviews
with chosen topics and question types, in more clinical
settings, and the use of features that directly target
particular aspects of this structure (e.g. responses to
particular setting-specific questions).

Effect of Disfluency Features
We found that disfluency tags help as features in AD detection.
With these disfluency features, we got the highest accuracy of 83%
with the SVM classifier, an identical accuracy to using
interactional features. It is also worth examining the ROC
AUC as it evaluates the different classifiers at different true
positive rates and false positive rates. Figure 2A shows the
ROC curve for the disfluency features with the SVM, with
AUC 0.85, and with TPR 0.87 and FPR 0.20 at the chosen
trade-off point. We have chosen this trade-off point as it gives
maximum accuracy.

Effect of Interactional Features
Our interactional features produced promising results in
distinguishing AD from non-AD with overall accuracy
reaching 83% with the SVM classifier, showing that
interactional patterns can provide salient cues to the detection
of AD in dialogues. The results are further enhanced when
adding with disfluency language feature reaching an accuracy
of 90% and F1 score of 0.90. These results suggest that different
pauses behavior not only indicate word-finding difficulties as
AD progresses but also mark disfluency—in certain situations
showing these were used to sustain social interaction as part of
compensatory language (e.g. in the case of attributable
silences). The corresponding ROC curve is shown in
Figure 2B with AUC 0.87, and the chosen trade-off
between TPR and FPR (0.80 vs 0.13). It can also be seen in
Figure 2C that combining these interactional features with
language features over dialogues had the effect of improving
classification performance overall to AUC � 0.89, and
improving trade-offs between true positive (0.93) and false
positive rates (0.13), reducing the false positives while
increasing the true positives.

TABLE 7 |Comparison of results for the AD classification with three classifiers with
LOOCV.

Model Feature set Accuracy Precision Recall F1 score AUC

LR Language 0.77 0.75 0.80 0.77 0.74
Dialogue 0.80 0.81 0.80 0.80 0.80
Both 0.87 0.87 0.87 0.87 0.84
RFE (15) 0.83 0.86 0.80 0.83 0.81

SVM Language 0.83 0.83 0.83 0.83 0.85
Dialogue 0.83 0.83 0.83 0.83 0.87
Both 0.90 0.90 0.90 0.90 0.89
RFE (15) 0.87 0.87 0.87 0.87 0.85

MLP Language 0.77 0.75 0.80 0.77 0.75
Dialogue 0.80 0.77 0.76 0.76 0.79
Both 0.80 0.80 0.80 0.80 0.81
RFE (15) 0.80 0.80 0.80 0.80 0.80

The boldfaced numbers indicate the best results.
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We also reported the top 15 ranked features based on RFE as
shown in Table 8. These features were also found to be significant
in our statistical analysis (see Table 6). As with the statistical test-
based features, Dur_AS has been picked and is ranked first as the
most significant. This confirms the findings of Levinson (1983)
concerning attributable silences and aligns with conversation
analysis studies showing that individuals with cognitive decline

resort to silence rather than other means of communication to
avoid giving a dispreferred response. Among the other useful
features, not only the number of gaps and lapses are found to be
important but also the duration of gaps and lapses are observed
differently in both groups. Turn switches per minute, patient turn
lengths, and standardized phonation time are negatively
correlated with AD patients with higher mean values for non-
AD. That means turn switches happen more frequently, with
longer turn lengths, in conversations with non-AD patients
compared to AD individuals.

Error Analysis
The results in Table 9 show that the SVM model with disfluency
and interactional features attained the highest F1 score, precision,
and recall for both AD and non-AD classes; we show both classes
to provide a measure of both sensitivity (recall of the positive AD
class) and specificity (recall of the non-AD class), standard
measures for diagnostic tests. Note that due to the small
dataset, differences between modes are indicative rather than
statistically significant—see the confidence intervals in Table 9.
The model achieves F1 scores of 0.90 for both the AD and the
non-AD classes. Combining the disfluency features with
interactional features particularly improves the recall of the
AD class (i.e. improves the sensitivity of the classifier): the
SVM model with both feature sets has a recall of 0.93,
improving overused disfluency features alone at 0.87 and over

FIGURE 2 | ROC curves for SVM classification experiments with (A) disfluency features, (B) interactional features, (C) the combined feature set. The red bubble
shows the chosen trade-off point for the classification experiment results in Table 7.

TABLE 8 | Top 15 ranked features including disfluency and interactional features
by RFE.

Features Type Ranking

Dur_AS Interactional 1
turn_switches_per_minute Interactional 2
Dur_LA Interactional 3
Dur_LA (P-I) Interactional 4
#GA Interactional 5
TPR Interactional 6
P_RPT Language 7
I_turn_length Interactional 8
Dur_LA (I-I) Interactional 9
# LA Interactional 10
I_edit_terms Language 11
P_edit_terms Language 12
SPT Interactional 13
P_Turn_Length Interactional 14
I_Speech_rate Interactional 15
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the 0.80 achieved with interactional features. The specificity
(recall for the non-AD class) was lowest when using language
features only at 0.80, significantly lower than the 0.87 achieved
by both using dialogue features alone and combining both
feature sets. A balanced F1 score for both the AD and non-
AD classes with all three combinations was achieved overall
with our chosen threshold (0.84 vs 0.83 for disfluency features,
0.83 vs 0.84 with interactional features, and 0.90 for the
combined feature sets). Depending on the application the
model is used for, higher sensitivity or higher specificity for
AD detection will be more or less desirable and this can be
achieved in line with the AUC results shown in Figure 2, but as
it stands using the combined feature set considerably increases
the sensitivity of AD diagnosis over the most sensitive single
feature set classifier (language features) while maintaining a
high specificity on par with that achieved using dialogue
features. We can observe the confusion matrices of
predictions of the SVM Model with language, interactional,
and combining both in Figure 3which show the influence of (A)
and (B) on (C).

CONCLUSION

This study investigated techniques for the diagnosis of dementia
using features of disfluency and interaction in natural dialogue
conversation, rather than relying on linguistic features alone, or
either structured interviews or picture description tasks. We first
performed a statistical analysis on the disfluency and
interactional features. This analysis indicates that the relative

frequency of edit terms, verbatim repeats, and substitution
disfluencies are derived measures of disfluency in natural
conversations that have different distributions in interviews
with AD patients and those with non-AD patients. We also
found that most of the interactional features, including
attributable silences, gaps, lapses, turn lengths, and turn
switches per minute, are sensitive cues in discriminating AD
patients from non-AD patients. We also observed that in natural
conversation not only are patients’ conversation characteristics
affected but also distinctive patterns can be observed in
interviewers’ or carers’ conversational behavior when talking
to AD patients.

Our results showed the efficacy of detecting AD from dialogue
using machine learning classifiers with different feature sets,
which involved using them separately and then combining
them. We obtained identical overall accuracy scores when
both using disfluency features and interactional features
separately at 83%. Disfluency features hold predictive power
for the identification of AD, giving rise to a classifier with
higher sensitivity (recall on AD � 0.87 vs 0.80), while the
interactional dialogue features allow a higher specificity of AD
detection (recall of non-AD � 0.87 vs 0.80). However combining
the linguistic and interactional features obtained the most
sensitive and specific automatic diagnostic classifier (recall on
AD � 0.93, recall on non-AD � 0.87) with an overall accuracy of
90% on a balanced dataset, suggesting the potential benefits of
integrating these features into clinical assessments via natural
conversation as diagnostics.

We further plan to extend this study by introducing language
markers associated with AD severity beyond disfluencies, as well as

TABLE 9 | Results of AD classification task with SVM classifiers with different feature sets, using LOOCV, with 95% confidence intervals (CI).

Model Class Precision Recall F1 score Accuracy 95% CI

SVM AD 0.81 0.87 0.84 0.83 0.70–0.96
(Language) Non-AD 0.86 0.80 0.83 – –

SVM AD 0.86 0.80 0.83 0.83 0.70–0.96
(Dialogue) Non-AD 0.81 0.87 0.84 – –

SVM AD 0.87 0.93 0.90 0.90 0.79–0.99
(Both) Non-AD 0.93 0.87 0.90 – –

FIGURE 3 | Confusion matrices for AD classification task with different feature sets.
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interactions between them. In particular, we want to use a more
principled approach to lexical markers andmeasures of grammatical
fluency. We also plan to use acoustic features, including prosodic,
voice quality, and spectral features, which contribute to AD
recognition and have higher correlations and interact with
linguistic information. At the interactional feature level, we plan
to include dialogue act (DA) tags that provide more of the speaker’s
illocutionary content at the utterance level, including different tags
for questions, answers types, clarification requests, signals of
misunderstanding, and then use sequences of these DA tags to
predict the disrupted communication patterns in natural
conversations with AD patients.

While the results are promising, there are limitations to the
data used in this study. The CCC only contains older patients
with diagnosed dementia at moderate stages, so it can only
allow us to observe the patterns associated with AD at a
relatively advanced stage, and not whether these extend to
early-stage diagnosis. To overcome this, we need to collect
new datasets that contain spontaneous speech conversations
with patients at different stages of dementia to analyze
disfluencies and interactional features shown in early
cognitive decline.
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