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Flag leaves, plant height (PH), and spike-related traits are key determinants contributing
to yield potential in wheat. In this study, we developed a recombinant inbred line (RIL)
population with 94 lines derived from the cross between ‘AS985472’ and ‘Sumai 3.’
A genetic map spanned 3553.69 cM in length were constructed using 1978 DArT
markers. Severn traits including flag leaf width (FLW), flag leaf length (FLL), PH, anthesis
date (AD), spike length (SL), spikelet number spike (SNS), and spike density (SD) were
evaluated against this RIL population under three different environments. Combined
phenotypic data and genetic map, we identified quantitative trait loci (QTL) for each trait.
A total of four major and stably expressed QTLs for FLW, PH, and SD were detected
on chromosomes 2D and 4B. Of them, the major QTLs individually explained 10.10 –
30.68% of the phenotypic variation. QTLs with pleiotropic effects were identified on
chromosomes 4A and 6D as well. Furthermore, the genetic relationships between seven
yield-related traits were detected and discussed. A few genes related to leaf growth
and development at the interval of a major locus for FLW on chromosome 2D were
predicated. Overall, the present study provided useful information for understanding the
genetic basis of yield-related traits and will be useful for marker-assisted selection in
wheat breeding.

Keywords: wheat, recombinant inbred line, yield-related traits, quantitative trait loci, candidate genes

INTRODUCTION

Ninety-five percent of the energy in nature comes from photosynthesis (Zhai et al., 2002) and
the leaves are the major photosynthetic organ in plants. Flag leaf, the first leaf under the spike
of wheat (Triticum aestivum L.), contributes to photosynthesis and provides water and nutrients to
the spikes for grain filling (Yang et al., 2016). Other agronomic traits like anthesis date (AD), spike
length (SL), spikelet number per spike (SNS), and spike density (SD) are also key determinants
of the plant architecture and yield potential. It is known that grain yield is closely correlated with
AD (Woodruff and Tonks, 1983), plant height (PH) (Hedden, 2003), SL (Liu et al., 2018b), SNS
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(Hai et al., 2008), and SD (Li et al., 2016). Thus, a comprehensive
understanding of the genetic mechanism for flag leaf width
(FLW), flag leaf length (FLL), PH and spike-related traits is
critical for increasing grain yield.

Agronomic traits are usually controlled by multiple genes
and numerous quantitative trait loci (QTL) for them have been
reported on A, B, and D genomes in wheat. For instance, in
hexaploid wheat, major QTLs for FLL, FLW, flag leaf area
(FLA), the ratio of length/width of flag leaf (FLR), flag leaf
angle (FLANG), fag leaf opening angle (FLOA) and fag leaf
bend angle (FLBA) were mapped to chromosomes 2D, 5B, 4B
(Ma et al., 2020). Liu et al. (2018c) detected QTLs for FLL,
FLW, FLA and FLANG on chromosomes 1B, 2B, 3A, 3D, 4B,
5A, 6B, 7B, and 7D using a recombinant inbred line (RIL)
population derived from ‘ND3331’ and ‘Zang1817.’ Hu et al.
(2020) identified 161 QTLs for yield-related traits including grain
yield per plant (GYP), spike number per plant (SN), kernel
number per spike (KPS), SL, SNS, FLL, FLW, FLA, PH, AD
and heading date (HD) on 21 chromosomes except 2D, 3D,
and 6D. Although studies on traits related to flag leaf and

spike have made great progress, there are still many novel loci
that can be excavated and utilized from different germplasm
resources.

Significant correlations between agronomic traits of wheat
were observed in numerous studies. For example, a study
of phenotypic correlations showed that SNS was significantly
and positively correlated with SL, AD, and KPS (Ma et al.,
2019a). Furthermore, QTLs or genes with pleiotropic effects
on agronomic traits in wheat have been previously verified.
For example, QTLs with pleiotropic effects to SN, SL, and
KPS were identified on chromosomes 1B, 4B, and 5A (Deng
et al., 2011). Similarly, Ma et al. (2020) detected two pleiotropic
QTLs associated with FLL and FLR on chromosomes 5B, two
pleiotropic QTLs for FLOA and FLBA on chromosomes 2D, and
three pleiotropic QTLs for FLL, FLW and FLA on chromosomes
2D, and they shared the same or overlapped physical intervals
on ‘Chinese Spring’ (CS) genomes. Additionally, these pleiotropic
QTLs exhibited significant associations in Pearson correlation
analysis. Thus, pleiotropic or linked loci could benefit improving
breeding efficiency for multiple elite traits.

TABLE 1 | Phenotypic variation and heritability (H2) for seven yield-related traits of the ‘AS985472’/ ‘Sumai 3’ (AS) population in different environments.

Trait Environment Parents AS985472/Sumai 3

AS985472 Sumai 3 Min-Max Mean STD H2

FLW (cm) 2019CZ 1.85 2.03* 1.59–2.38 1.93 0.18

2018CZ 1.70 1.88* 1.52–2.23 1.82 0.20

2017CZ 2.08 2.30** 1.70–2.90 2.11 0.24

BLUP 1.94 2.00 1.68–2.40 1.95 0.16 0.88

FLL (cm) 2019CZ 20.90 25.57** 19.41–31.05 24.05 2.43

2018CZ 22.89 30.25** 20.24–30.41 24.26 2.43

2017CZ 25.53 29.70** 20.00–30.40 24.62 2.63

BLUP 23.95 26.76 22.73–28.75 25.09 1.14 0.94

AD (d) 2019CZ 154.00 144.00 141.00–158.00 151.94 3.67

2018CZ 142.00 136.00 136.00–162.00 140.49 3.99

2017CZ 153.00 141.00 139.00–158.00 148.05 5.10

BLUP 149.11 141.76 140.27–157.83 145.21 3.02 0.75

PH (cm) 2019CZ 88.70 113.80** 62.10–129.90 96.46 15.94

2018CZ 85.33 109.67** 61.67–128.57 99.00 15.02

2017CZ 80.17 118.00** 70.33–131.17 104.34 14.56

BLUP 85.43 113.11 68.10–126.73 99.12 13.46 0.95

SL (cm) 2019CZ 9.67 13.99** 8.69–14.28 11.19 1.29

2018CZ 9.97 13.42** 8.40–14.60 11.13 1.22

2017CZ 10.77 15.63** 8.20–15.63 11.28 1.41

BLUP 10.16 14.26 8.51–14.44 11.17 1.18 0.97

SNS 2019CZ 19.20 21.40** 17.25–24.75 20.32 1.65

2018CZ 19.33 22.00* 17.00–25.00 20.39 1.61

2017CZ 19.67 22.00* 17.33–24.33 20.24 1.56

BLUP 19.44 21.51 17.42–24.49 20.27 1.43 0.92

SD 2019CZ 2.00** 1.54 1.49–2.15 1.83 0.16

2018CZ 1.94* 1.56 1.51–2.14 1.84 0.14

2017CZ 1.83** 1.37 1.37–2.15 1.81 0.17

BLUP 1.92 1.52 1.54–2.08 1.83 0.13 0.93

FLW, flag leaf width; FLL, flag leaf length; AD, anthesis date; PH, plant height; SL, spike length; SNS, spikelet number spike; SD, spike density; STD, standard deviation;
H2, the broad-sense heritability; BLUP, best linear unbiased prediction;**significance level at P = 0.01; *significance level at P = 0.05; CZ, Chongzhou.
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The present study focused on detecting QTLs controlling
flag leaf traits including FLL and FLW, and spike-related
traits including SNS, SL and SD, and AD and PH in
a RIL population developed from the cross between
‘AS985472’ and ‘Sumai 3,’ and evaluating their genetic
correlations. This study will provide valuable information
to understand the genetic basis of yield-related traits
and help to accelerate molecular assisted breeding in
wheat.

MATERIALS AND METHODS

Plant Materials
A total of 94 F8 RILs generated from the cross of
‘AS985472’/‘Sumai 3’ (AS) were used in the present study.

‘AS985472’ is an advance wheat line; ‘Sumai 3’ is an excellent
germplasm resource with high resistance to Fusarium head blight
(Xie et al., 2007).

Field Trials and Phenotypic Evaluation
From 2017 to 2019, 94 AS RILs and the two parents were
planted at Chongzhou (CZ, 103◦ 38′ E, 30◦ 32′ N) of
Sichuan Province with a random block design. Each line
was in a single 1.5-m row with 30-cm apart between rows,
and 15 seeds were planted in each row with 10-cm space
between individuals.

Anthesis date (d) was calculated from the sowing date to
date when more than 50% of the plants of a line flowered.
After anthesis, FLW (cm) was determined by the widest section
of the flag leaf, FLL (cm) was measured as the length from

FIGURE 1 | Morphology of the flag leaf (a), spike (b), and plant architecture (c) of ‘Sumai 3’ and ‘AS985472’. (Scale bar = 10.5, 5, and 20 cm, respectively).
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the base to the top of the flag leaf. The measurements of PH
(cm), SL (cm), SNS and SD were carried out as described by
Ma et al. (2019a). PH was obtained by measuring the height
from the base to the top of the main spike excluding the
awns. SL was the length of the main spike of an individual
plant (excluding awns). SNS was determined by the number
of spikelets of the spike for the main tiller and SD was SNS
divided by SL.

Statistical Analysis and QTLs Detection
Data obtained from 2017 to 2019 in CZ were subjected to
combined analysis. The mean values and the Student’s t-test
(P < 0.05) of the parental lines were calculated. For each RIL,
the maximum and minimum values, mean values and standard
deviation were analyzed using the SPSS Statistic 25 (IBM SPSS,
Armonk, NY, United States).

To estimate random effects in statistics, the best linear
unbiased prediction (BLUP) for seven yield-related traits in
different environments were calculated using SAS version 8.0
(SAS Institute, Cary, NC, United States). The BLUP for the

phenotypic values were calculated according to the model:
Y i = Xif+ ai + ei, where f = a vector of fixed effects,
Xi = an incidence vector, ei = the environmental deviation,
and ai = the phenotypic value (Goddard, 1992). The broad-
sense heritability (H2) was estimated using the following
formula: H2 = VG/(VG + VGE/r + VE). Where VG = genetic
variance, VGE = genotype × environment variance, r = the
number of replicates, and VE = environ mental variance
(Smith et al., 1998).

The genetic linkage map was constructed according to a
previous study (Liu et al., submitted). To retain high confidence
markers, minor allele frequency (<0.3) of the markers were
excluded using the BIN function of Icimapping 4.1 and the
linkage group for AS population was integrated using the
software Joinmap 4.0 according to Liu et al. (2018a). The
linkage map was 3553.69 cM in length containing 31 linkage
groups and 1978 DArT markers (Liu et al., submitted). Then,
the putative QTLs were detected with a minimum LOD (log-
of-odds) value of 2.5 by the BIP (Biparental Populations)
module (Lin et al., 1996) and ICIM (inclusive composite interval

FIGURE 2 | Phenotypic distribution of wheat flag leaf width (FLW), flag leaf length (FLL), anthesis date (AD), plant height (PH), spike length (SL), spikelet number per
spike (SNS) and spike density (SD) in the ‘AS985472’/‘Sumai 3’ or AS recombinant inbred population.
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mapping) method from Icimapping 4.1. Among the detected
QTLs, those with >10% of phenotypic variation and could
be detected in at least two tested environments as well as
the BLUP dataset were treated as major stable QTLs and
those with a common flanking marker were considered as a
single QTL.

Comparison of QTLs Related to FLW on
2D
The physical positions of the major QTLs on the genome
assembly of T. aestivum cv. Chinese Spring or CS
(IWGSC RefSeq v1.0)1 (The International Wheat Genome
Sequencing Consortium, 2018), Ae. tauschii (Aet V4.02)
(Luo et al., 2017), and T. turgidum3 (Avni et al., 2017)
and the analysis of candidate genes within the interval
between the flanking markers on CS genome were obtained
according to previous studies (Ma et al., 2020). Additionally,
the physical positions of the major loci detected in the
present study were compared with the reported QTLs or
genes.

RESULTS

Phenotypic Performance of the ES RILs
The analyses of phenotypic variation showed that significant
differences existed between ‘AS985472’ and ‘Sumai 3’ (P < 0.05,
Table 1 and Figure 1). ‘Sumai 3’ had wider FLW, longer FLL,
higher PH, more SNS, longer spike but lower SD, later AD
than ‘AS985472.’ In addition, the continuous distributions with
ranges from 1.52 to 2.90 cm in FLW, 19.41 to 31.05 cm for
FLL, 136 to 162 d for AD, 61.67 to 131.17 cm for PH, 8.2 to
15.63 cm for SL, 17 to 25 for SNS and 1.37 to 2.15 for SD
(Table 1) and transgressive segregation across all environments
as well as in the BLUP datasets (Figure 2) indicated that
the RILs were suitable for QTL analysis. The estimated H2

of FLW, FLL, AD, PH, SL, SNS, and SD for ES RILs were
ranged from 0.75 to 0.97, SL had the highest H2 (0.97),
followed by PH (0.95), and SD had the lowest H2 (0.75),
implicating that these traits were mainly controlled by genetic
factors.

Relationships Among Seven Agronomic
Traits
In the three environments as well as the BLUP dataset, for FLW,
AD, FLL, PH, SL, SNS, and SD, significant correlations with
coefficients ranging from 0.444 to 0.978 were detected (P < 0.05;
Table 2). Correlation coefficients between seven agronomic
traits using the BLUP dataset were presented in Table 3. FLW
was significantly correlated to SNS (r = 0.230, P < 0.05),
whereas there were no significant differences between FLW

1https://urgi.versailles.inra.fr/download/iwgsc/
2https://www.ncbi.nlm.nih.gov/assembly/GCA_002575655.1/#/def_asm_
Primary_Assembly
3https://www.dropbox.com/sh/3dm05grokhl0nbv/
AAC3wvlYmAher8fY0srX3gX9a?dl=0%2

TABLE 2 | Phenotypic correlations of seven yield-related traits in
different environments.

Trait Environment 2019CZ 2018CZ 2017CZ BLUP

FLW (cm) 2019CZ 1

2018CZ 0.744** 1

2017CZ 0.782** 0.676** 1

BLUP 0.921** 0.895** 0.923** 1

FLL (cm) 2019CZ 1

2018CZ 0.910** 1

2017CZ 0.897** 0.954** 1

BLUP 0.810** 0.819** 0.780** 1

AD (d) 2019CZ 1

2018CZ 0.444** 1

2017CZ 0.633** 0.654** 1

BLUP 0.659** 0.891** 0.950** 1

PH (cm) 2019CZ 1

2018CZ 0.852** 1

2017CZ 0.863** 0.887** 1

BLUP 0.956** 0.957** 0.958** 1

SL (cm) 2019CZ 1

2018CZ 0.921** 1

2017CZ 0.926** 0.934** 1

BLUP 0.973** 0.975** 0.978** 1

SNS 2019CZ 1

2018CZ 0.869** 1

2017CZ 0.863** 0.874** 1

BLUP 0.950** 0.960** 0.960** 1

SD 2019CZ 1

2018CZ 0.831** 1

2017CZ 0.591** 0.597** 1

BLUP 0.946** 0.938** 0.668** 1

FLW, flag leaf width; FLL, flag leaf length; AD, anthesis date; PH, plant height; SL,
spike length; SNS, spikelet number per spike; SD, spike density; **Significance level
at P = 0.01.

TABLE 3 | Phenotypic correlations between seven yield-related traits with BLUP
data in ‘AS985472’/‘Sumai 3’ (AS) population.

AD FLW FLL PH SL SNS SD

AD 1

FLW −0.144 1

FLL 0.269** 0.129 1

PH 0.198 −0.047 0.143 1

SL 0.446** 0.111 0.455** 0.466** 1

SNS 0.385** 0.230** 0.404** 0.237** 0.668** 1

SD −0.251** 0.072 −0.229** −0.409** -0.724** 0.019 1

AD, anthesis date; FLW, flag leaf width; FLL, flag leaf length; PH, plant height; SL,
spike length; SNS, spikelet number per spike; SD, spike density; **Significance level
at P = 0.01.

and other yield-related traits. For AD, positive and significant
relationships (0.269 ≤ r ≤ 0.446, P < 0.01) between AD and
FLL, SL and SNS were observed. FLL was significantly associated
with AD, SL, and SNS (0.269 ≤ r ≤ 0.455, P < 0.01). PH
was positively and significantly associated with SL and SNS
(0.237 ≤ r ≤ 0.446, P < 0.05). Regarding SL, positive and
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significant correlations between SL and AD, FLL, PH and
SNS were detected (0.446 ≤ r ≤ 0.668, P < 0.01). SNS was
positively and significantly correlated with AD, FLW, FLL, PH,

and SL (0.230 ≤ r ≤ 0.668, P < 0.05). For SD, SD was
negatively and significantly related to AD, FLL, PH and SL
(−0.724 ≤ r ≤−0.229, P < 0.05).

TABLE 4 | Quantitative trait loci (QTL) analysis for seven yield-related traits with single environment method and BLUP data.

Trait QTLs Environments Interval Flanking maker LOD PVE (%) Add

FLW (cm) QFlw.hebau-2D 2017CZ 14.39 – 17.20 1128324| F| 0 ∼ 100004655| F| 0 3.63 20.90 −0.11

2019CZ 17.20 – 18.84 100004655| F| 0 ∼ 1081989| F| 0 5.07 24.88 −0.09

2018CZ 17.20 - 18.84 100004655| F| 0 ∼ 1081989| F| 0 4.24 20.31 −0.09

BLUP 17.20 – 18.84 100004655| F| 0 ∼ 1081989| F| 0 4.16 19.30 −0.08

QFlw.hebau-3D 2017CZ 48.40 – 49.45 2323109| F| 0 ∼ 100005360| F| 0 2.65 15.58 −0.09

FLL (cm) QFll.hebau-5A BLUP 75.90 – 78.26 1136364| F| 0∼3028423| F| 0 6.54 0.67 0.62

PH (cm) QPh.hebau-2D.1 2019CZ 12.68 – 16.32 1116536| F| 0∼2247268| F| 0 3.86 12.69 5.45

2018CZ 12.68 – 16.32 1116536| F| 0∼2247268| F| 0 5.79 10.10 5.38

BLUP 12.68 – 16.32 1116536| F| 0∼2247268| F| 0 8.25 11.30 5.36

QPh.hebau-2D.2 2019CZ 7.82 – 12.03 3029203| F| 0∼1119134| F| 0 3.63 11.74 −5.40

QPh.hebau-4A.1 BLUP 76.74 – 77.42 2290028| F| 0∼1121845| F| 0 7.10 9.41 −4.94

QPh.hebau-4A.2 2018CZ 79.41 – 80.26 1372725| F| 0∼1115816| F| 0 7.38 13.26 −6.19

QPh.hebau-4B 2019CZ 82.24 – 85.62 1123959| F| 0∼1123635| F| 0 6.84 24.74 −7.68

2018CZ 82.24 – 85.62 1123959| F| 0∼1123635| F| 0 12.18 25.51 −8.67

2017CZ 82.24 – 85.62 1123959| F| 0∼1123635| F| 0 4.82 30.68 −8.16

BLUP 82.24 – 85.62 1123959| F| 0∼1123635| F| 0 17.10 29.85 −8.86

QPh.hebau-6A 2018CZ 60.43 – 64.22 1124209| F| 0∼1283575| F| 0 7.50 13.52 6.25

BLUP 60.43 – 64.22 1124209| F| 0∼1283575| F| 0 10.02 14.23 6.03

SL (cm) QSl.hebau-2A 2017CZ 110.73 – 113.18 2254084| F| 0∼3026394| F| 0 2.84 13.64 −0.54

QSl.hebau-2D 2019CZ 6.43 – 8.93 1090962| F| 0∼1064588| F| 0 3.33 10.83 0.45

QSl.hebau-4A 2019CZ 90.26 – 91.09 1115627| F| 0∼100035209| F| 0 4.18 13.89 −0.51

QSl.hebau-5A.1 2018CZ 20.01 – 21.26 3064643| F| 0∼3029299| F| 0 3.29 14.41 −0.46

QSl.hebau-5A.2 2019CZ 76.83 – 89.00 1664450| F| 0∼1142113| F| 0 3.96 13.53 −0.51

QSl.hebau-6D.1 2017CZ 9.46 – 13.31 100002192| F| 0∼1132651| F| 0 4.46 22.52 −0.70

QSl.hebau-6D.2 2018CZ 15.80 – 16.88 100007946| F| 0∼1096139| F| 0 2.65 11.55 −0.41

QSl.hebau-6D.3 BLUP 19.19 – 20.98 1138521| F| 0∼1127306| F| 0 3.35 12.59 −0.44

SNS QSns.hebau-2D 2019CZ 3.76 – 6.23 1101681| F| 0∼3033925| F| 0 3.99 16.53 −0.66

BLUP 3.76 – 6.23 1101681| F| 0∼3033925| F| 0 3.04 14.69 −0.56

QSns.hebau-3B 20118CZ 112.75 – 113.74 3034270| F| 0∼1769222| F| 0 3.37 8.58 0.51

2019CZ 112.75 – 113.74 3034270| F| 0∼1769222| F| 0 2.55 10.79 0.52

QSns.hebau-4A 2017CZ 90.26 – 91.09 1115627| F| 0∼100035209| F| 0 3.41 22.96 −0.72

2018CZ 90.26 – 91.09 1115627| F| 0∼100035209| F| 0 5.29 13.50 −0.63

QSns.hebau-5A 2019CZ 65.32 – 73.19 2275311| F| 0∼1110394| F| 0 3.47 14.14 −0.59

QSns.hebau-5D 2018CZ 0 – 3.55 2245326| F| 0∼1269099| F| 0 4.52 11.11 −0.57

QSns.hebau-7A 2018CZ 208.95 – 212.16 1067518| F| 0∼1115252| F| 0 3.08 7.55 −0.47

QSns.hebau-7B 2018CZ 96.84 – 97.69 1202000| F| 0∼1229729| F| 0 6.41 17.22 0.71

SD QSd.hebau-2D 2019CZ 3.95 – 5.17 1136748| F| 0∼1111273| F| 0 2.81 10.19 −0.05

2018CZ 3.95 – 5.17 1136748| F| 0∼1111273| F| 0 2.95 12.83 −0.05

BLUP 3.95 – 5.17 1136748| F| 0∼1111273| F| 0 3.74 14.91 −0.05

QSd.hebau-3D 2018CZ 33.84 – 46.08 100003200| F| 0∼1203665| F| 0 2.62 11.22 0.04

QSd.hebau-4B 2019CZ 60 – 80.99 1241081| F| 0∼100003066| F| 0 2.77 12.36 0.06

QSd.hebau-6D.1 BLUP 9.46 – 13.31 100002192| F| 0∼1132651| F| 0 3.67 14.58 0.05

QSd.hebau-6D.2 2019CZ 14.63 – 15.80 100035082| F| 0∼100007946| F| 0 3.43 12.71 0.06

2018CZ 14.63 – 15.80 100035082| F| 0∼100007946| F| 0 2.84 12.32 0.05

AD (d) QAd.hebau-2A 2018CZ 20.56 – 21.68 100004846| F| 0∼2361439| F| 0 3.29 16.07 1.58

BLUP 20.56 – 21.68 100004846| F| 0∼2361439| F| 0 2.81 11.07 0.88

QAd.hebau-2D.1 2017CZ 0 – 3.95 1084630| F| 0∼1136748| F| 0 3.54 21.70 2.47

QAd.hebau-2D.2 2019CZ 16.32 – 21.36 1020115| F| 0∼1115866| F| 0 3.76 18.59 1.59

BLUP 16.32 – 21.36 1020115| F| 0∼1115866| F| 0 3.63 15.23 1.03

QTL, quantitative trait loci; PVE, Phenotypic variance explained; LOD, logarithm of odds; Add, Additive effect of a QTL; positive values: alleles from ‘AS985472’ are
increasing the trait scores; negative values: alleles from ‘Sumai 3’ are increasing the scores; FLW, flag leaf width; FLL, flag leaf length; AD, anthesis date; PH, plant height;
SL, spike length; SNS, spikelet number spike; SD, spike density; CZ, Chongzhou; BLUP, best linear unbiased prediction.
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QTLs Analysis
QTLs conferring FLW, FLL, AD, PH, SL, SNS, and SD were
detected in the AS population (Table 4). A total of two
putative FLW QTLs (QFlw.hebau-2D and QFlw.hebau-3D) were
identified on chromosomes 2D and 3D which individually
explained 19.30 – 24.88% and 15.58% of the phenotypic variance,
respectively; and the positive alleles of both were contributed
by ‘Sumai 3’. Among them, QFlw.hebau-2D, a major stable QTL
flanked by 1128324| F| 0 and 1081989| F| 0 (Table 4 and Figure 3),
was detected in three environments and was confirmed by the
BLUP dataset. For FLL, only a minor QTL (QFll.hebau-5A-1)
was detected. With respect to AD, three QTLs with > 10% of
the phenotypic variance were identified on chromosomes 2A
and 2D, while they were detected in only one environment.
For PH, six putative QTLs were mapped to chromosomes 2D,
4A, 4B and 6A. Two major and stable QTLs (QPh.hebau-2D.1,
and QPh.hebau-4B) controlling PH accounted for the phenotypic
variance up to 12.69 and 30.68%, and they were flanked by
1116536| F| 0 – 2247268| F| 0, and 1123959| F| 0 - 1123635|
F| 0, respectively. ‘AS985472’ contributed the major alleles for
increased PH at QPh.hebau-2D.1, and ‘Sumai 3’ contributed
alleles for increased PH at QPh.hebau-4B. For SL, we detected
eight loci, and two of the QTLs were co-localized with the

major QTLs for SNS (QSns.hebau-4A) and for SD (QSd.hebau-
6D.1). For SNS, seven QTLs with the 7.55 – 20.96% of the
phenotypic variance were identified on chromosomes 2D, 3B,
4A, 5A, 5D, 7A, and 7B. Five QTLs for SD were mapped to
chromosomes 2D, 3D, 4B, and 6D, of these, the major and stably
expressed QTL QSd.hebau-2D accounted for 10.19–14.91% of
the phenotypic variance and ‘Sumai 3’ contributed the major
alleles at this locus.

The 94 AS RILs were divided into two groups according
to the genotypes of the two flanking markers for major
loci QFlw.hebau-2D, QPh.hebau-2D.1, QPh.hebau-4B, and
QSd.hebau-2D. Student’s t-test showed that RILs with the
increased alleles from ‘Sumai 3’ significantly increased
FLW in different environments as well as the BLUP dataset
(P < 0.01, Figure 4A); and the lines with the positive alleles
at QPh.hebau-2D from ‘AS985472’ were higher (P < 0.05,
Figure 4B) than those from ‘Sumai 3’ in all environments
except 2017CZ. In contrast, the lines with the increased
alleles at QPh.hebau-4B from ‘Sumai 3’ were significantly
(P < 0.01, Figure 4C) higher than those without major
alleles. However, there were no differences between the lines
with and without increasing alleles from QSd.hebau-2D
(Figure 4D).

FIGURE 3 | Distributions of QSd.hebau-2D, QPh.hebau-2D.1 (A), QFlw.hebau-2D (B), and QPh.hebau-4B (C) on the linkage map chromosome 2D and 4B,
respectively.
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DISCUSSION

Many QTL identified in this study were closely located to the
chromosome region of known QTL. For example, QPh.hebau-
2D.1 for PH in the present study were located at 19.04 –
20.35 Mbp on CS 2DS and 19.80 – 21.14 Mbp on Ae. tauschii
2DS (Figure 5A), whereas QPh.hebau-4B located within the
interval of 291.95 – 607.04 Mbp on CS 4BL and 276.11 –
586.46 Mbp on wild emmer 4BL (Figure 5B). The location
of QPh.hebau-4B (291.95 – 607.04 Mbp) is far from RhtB1
(30.861–30.863 Mbp). These two QTL were physically located at
the similar or overlapped positions as those reported previously
by Wu et al. (2010) and Zhai et al. (2016), respectively. It
is interesting that the height reducing allele of QPh.hebau-
2D.1 came from the tall parent Sumai 3. This result suggested
that genotypes with a relatively poorer performance on height
may still carry the beneficial allele that can be used for
genetic improvement of the trait. Similar results was obtained
in previous study. It has been shown that susceptible parent

contributed the resistance alleles to various wheat diseases
(Poole et al., 2012; Ma et al., 2019b). In addition to height QTL,
a major and stably expressed QTL conferring SD designated
as QSd.hebau-2D, which was located at 16.16 – 17.82 Mbp on
CS and 16.39 – 18.36 Mbp on Ae. tauschii 2DS (Figure 5A),
was in the overlapped physical region as the QTL reported
by Heidari et al. (2011). The stable expression of these
height and SD QTL under multiple genetic backgrounds in
different studies emphasized their value for further fine mapping
studies.

Two putative QTLs for FLW were detected on chromosomes
2D and 3D including QFlw.hebau-2D and QFlw.hebau-3D.
QFlw.hebau-2D, located in the interval of 1128324| F| 0 –
1081989| F| 0, was the major and stable locus identified in
the present study. For chromosome 2D, numerous putative
loci for flag-related traits and yield-related traits in wheat
were identified (Fan et al., 2015; Ma et al., 2019a, 2020). In
the present study, QFlw.hebau-2D was located in a 4.45 cM
interval and physically mapped between 588.35 and 630.74 Mbp

FIGURE 4 | The effects of the QTL QFlw.hebau-2D on flag leaf width (A), QPh.hebau-2D.1 on plant height (B), QPh.hebau-4B on plant height (C) and
QSd.hebau-2D on spike density (D). Box plots represent RILs with and without major alleles which are grouped according to the flanking markers of the major QTLs.
‘+’ indicates the homozygous lines from ‘AS985472’ and ‘–’ indicates the homozygous lines from ‘Sumai 3’. **Significant at P = 0.01, *Significant at P = 0.05.
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FIGURE 5 | The maps of QFlw.hebau-2D/QPh.hebau-2D.1/QSd.hebau-2D (A) and QPh.hebau-4B (B).

on CS 2DL and 234.38 and 629.40 Mbp on Ae. tauschii
2DL (Figure 5A). Combined with the results from Ma et al.
(2020), we reviewed the recently published articles related to
FLW loci and compared the major FLW QTL detected in
the present study with previous studies. Comparison analysis
showed that it was overlapped with qFlw-2D.2 (Fan et al., 2015)
that was detected in an individual environment with minor
effect. The large PVE (24.88) and LD (5.07) of QFlw.hebau-
2D in our study suggested that value of this locus for
FLW improvement.

Six hundred and eighty-nine putative candidate genes on
CS genome were predicted at the interval of QFlw.hebau-2D
(Supplementary Table S1). The results of the annotation
indicated that several genes associated with plant growth and
development. Additionally, there are numerous genes encoding
the same protein. For example, auxin response factors, encoded
by TraesCS2D01G491200 and TraesCS2D01G548900, bind
to TGTCTC auxin response elements in promoters of early
auxin response genes (Tiwari et al., 2003), and thus regulating
the development of plant tissues and organs. Twenty-two
candidate genes including TraesCS2D01G524300 encode
an F-box protein which regulates floral development and
the F-box protein TIR1 is an auxin receptor that mediates
Aux/IAA degradation and auxin-regulated transcription
(Dharmasiri et al., 2005). Flowering Locus T-like protein,
encoded by TraesCS2D01G538000 and TraesCS2D01G538100,

is involved in the switch to flowering and thus aiding in grain
set and dispersal.

MADS-box transcription factors are involved in various
processes of plant growth and development (Ma et al., 2017).
TraesCS2D01G529700 encodes MADS-box transcription factor
8. Twelve genes encode SAUR-like auxin-responsive family
proteins, which regulate cell expansion or division thus leading to
leaf growth (Ren and Gray, 2015). These results showed that some
of the putative candidate genes analyzed in the present study have
key importance in understanding the genetic mechanism of flag
leaf growth and development in wheat.

Significant genetic associations among seven yield-related
traits were detected. SD was determined by the SNS divided by
SL, thus SD was positively related with SNS and negatively related
with SL, which was consistent with the phenotypic correlations
in this study (Table 3). Significantly, several QTLs for SL with
pleiotropic effects to SNS and SD that are the key components
of grain yield in wheat were identified on chromosomes 4A
and 6D, indicating that these traits may be controlled by
the same locus. Major loci QSd.hebau-2D and QPh.hebau-
2D.1 were physically located at 16.16–17.82 Mbp and 19.04–
20.35 Mbp, respectively, suggesting the intrinsic correlations may
exist between SD and PH. Similarly, it is previously reported
that various yield-related traits like biomass and SD (Kirigwi
et al., 2007), SD and SL (Heidari et al., 2011), are controlled
by the same QTLs or genes. The pleiotropic effects of these
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loci further indicated their potential value for further researches
and application in wheat breeding programs.
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Phosphorus (P) deficiency in agricultural soil is a major constraint for crop production
and increasing P acquisition efficiency (PAE) of plants is considered as one of the most
cost-effective solutions for yield increase. The objective of this study was to detect
quantitative trait loci (QTL) controlling (PAE) and P utilization efficiency (PUE) in barley
under applied (+P) and non-applied P (−P) conditions. Based on the analysis of a
recombinant inbred lines (RILs) population derived from a cross between a malting barley
variety and a wild barley accession, 17 QTL controlling PAE, PUE and yield traits were
detected. The phenotypic variation explained by each of these QTL ranges from 11.0 to
24.7%. Significant correlation was detected between most of P-related traits and yield
traits. Five QTL clusters were identified on four different chromosomes (1H, 3H, 5H, and
7H). Two of the QTL clusters, located on chromosome 1H (for GPUP/PUP) and 7H (for
SPUE/SPC), respectively, are novel. Fourteen genes located in the interval harboring
the major QTL were identified as candidates associated with P efficiency. The stable
QTL for PAE, PUE and yield-related traits could be important for breeding P-efficient
barley varieties.

Keywords: barley, phosphorus deficiency, phosphorus acquisition, phosphorus utilization, quantitative trait loci

INTRODUCTION

Phosphorus (P) is one of the most important mineral nutrient elements for plant development and
it plays an irreplaceable role in agricultural productions (Su et al., 2006; Wang and Yan, 2010; Noack
et al., 2014). Although agronomic inputs of P fertilizer and manure collectively exceeded P removal
by harvested crops at the global scale, P deficits covered almost 30% of the global cropland area
(Macdonald et al., 2011). The application of P fertilizers is one of the most effective methods to
alleviate soil P deficiency (Shen et al., 2011). However, most of the applied P may be immobilized
by calcium (Ca) and magnesium (Mg) in alkaline soils or by ferrum (Fe) and aluminum (Al) in
acid soils (Holford, 1997; Yang et al., 2011). Thus only 10–20% P could be absorbed in the year of
application (Yang et al., 2011). The mineral phosphate is non-renewable (Sattari et al., 2012) and the
un-absorbed P will run-off into surface water to cause eutrophication (Carpenter, 2008). It is widely
believed that developing cultivars with high-efficiency P acquisition and utilization in P-deficient
soils is one of the most economical and sustainable solutions in crop breeding programs worldwide
(Yan et al., 2006; Liang et al., 2010).
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It has been reported that P efficiency in crops was affected
by a number of quantitative trait loci (QTL) (Yang et al., 2011).
Based on mechanisms developed by plants to acquire and utilize
P from the soils (Yang et al., 2011), the mapped QTL could be
classified into two major types: for P acquisition efficiency (PAE)
and for P utilization efficiency (PUE) (Yang et al., 2011). QTL
for P efficiency have been identified in several crops including
common wheat (Triticum aestivum) (Su et al., 2006), maize (Zea
mays) (Cai et al., 2012), and rice (Oryza sativa) (Nishida et al.,
2018). In wheat, a large number of P efficiency-related QTL have
been detected. For example, Su et al. (2006) detected several
QTL on seven different chromosomes (3B, 4B, 5A, 5D, 6A, 6B,
and 7A, respectively) for PUE under P deficient and sufficient
conditions. Four important QTL clusters controlling PAE and
PUE were found at both seedling and mature stages of plant
development (Yuan et al., 2017) (Six QTL for PAE were co-
located with the QTL for zinc concentration or content in wheat
grains (Shi et al., 2008). Therefore, genome-wide scanning for
QTL controlling PAE and PUE could be an important work in
crop breeding programs.

Barley (Hordeum vulgare L.) is the fourth largest cereal crop
worldwide, and it is widely used as animal feed and in brewing
industry (Schulte et al., 2009). Numerous QTL or genes for
important traits of barley have been mapped, fine mapped or even
cloned, and they showed great potential in MAS (Peighambari
et al., 2005; Tavakol et al., 2015; Li et al., 2016). However, only a
limited number of QTL for P efficiency have been reported (Gong
et al., 2016; Guo et al., 2017), especially from mature plants. In the
present study, the whole genome linkage map of a recombinant
inbred lines (RIL) population derived from the cross between a
wild barley accession and a cultivar was used to detect QTL for
PAE, PUE and yield at maturity stage under both P applied and
non-applied soil conditions. Overall, the objective of our study
was to focus on excavating the major and stable QTL or QTL
clusters that could provide available information for the barley
breeding programs.

MATERIALS AND METHODS

Plant Materials
An RIL population consisting of 128 F7:9 lines derived from a
cross between Baudin, a high yielding malting variety adjust to
a longer season, higher rainfall cropping region and parts of the
medium rainfall cropping region of Western Australia and a wild
barley (H. spontaneum) accession, CN4027 was used in this study.

Experimental Design
The calcareous alluvial soil used in pot trials was collected
from Shuangbai village, Dujiangyan city in Sichuan, China. The
physicochemical properties of the soil were shown in Table 1.
Two pot trials were carried out (one from November 2016 to
June 2017 and the other from November 2017 to June 2018) in
the rainproof screenhouses of Sichuan Agricultural University.
Each of the trials consisted of two treatments [P deficiency (−P,
without P application) and P sufficiency (+P, 30 mg phytate P
was applied per kilogram soil)] with three replications. Split plot

TABLE 1 | Physicochemical property of the experimental soil.

Classification Values Units

Soil pH 6.89 –

Organic content 15.8 g kg−1

Total nitrogen (N) 0.4 g kg−1

Alkali-hydrolyzable N 44.68 mg kg−1

Available P 5.14 mg kg−1

Rapidly available kalium (K) 23.69 mg kg−1

Ca2−P 7.25 mg kg−1

Ca8−P 3.97 mg kg−1

Ca10−P 230.67 mg kg−1

Al−P 16.2 mg kg−1

Fe−P 76.85 mg kg−1

Organic−P 100.54 mg kg−1

Active phytate P 2.25 mg kg−1

Secondary active phytate P 145.12 mg kg−1

Secondary stable phytate P 39.75 mg kg−1

High stable phytate P 8.08 mg kg−1

TABLE 2 | The investigated traits and the measurements in this study.

Type Trait Abbreviation Method Unit

PAE Grain P concentration GPC Measure g plant−1GY

Straw P concentration SPC Measure g plant−1SY

Plant P concentration PC PUP/DM g plant−1DM

Grain P uptake GPUP GY × GPC g plant−1

Straw P uptake SPUP SY × SPC g plant−1

Plant P uptake PUP GPUP+SPUP g plant−1

PUE Grain P utilization efficiency GPUE GY/PUP g GY g−1P

Straw P utilization efficiency SPUE SY/PUP g SY g−1P

Plant P utilization efficiency PUE DM/PUP g DW g−1P

Yield trait Grain yield GY Measure g plant−1

Straw yield SY Measure g plant−1

Dry matter DM GY + SY g plant−1

PAE, P acquisition efficiency; PUE, P use efficiency.

arrangement was used in these trials. Twelve kg air-dried soil with
1.5 g N and 1.5 g K was crushed and uniformly mixed.

For each replication, 10 uniformly sized seeds of each of RILs
as well as the parents were surface-sterilized by soaking in a
10% solution of hydroperoxide (H2O2) for 30 min followed by
washing in deionized water. The disinfected seeds were placed
in a chamber with constant temperature humidity (20◦C, 60%
humidity) for germination. Five germinated seeds were planted
in each of the pots. Seedlings were thinned at 3-leaf stage
and three seedlings were retained in each pot and used for
further experiments.

Phenotypic Evaluation
Data for grain yield (GY), straw yield (SY), and dry matter
(DM) were collected at maturity (Table 2). Harvested kernels
and straws were placed in an over at 105◦C for 30 min
and then dried at 75◦C until constant weights were reached.
The dried materials were weighed and grounded to powder
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for determining phosphorus content with the H2SO4-H2O2-
molybdenum antimony colorimetric method (Guo et al., 2017).
The evaluated traits were listed in Table 2.

QTL Mapping
Means of the traits for each RIL from the three replications were
used to detect QTL. The genetic linkage map obtained from
this population in an earlier study (Guo et al., 2017) was used
for QTL mapping. Linkage analysis was carried out using the
computer package JoinMap R©4.0 (Van Ooijen, 2006). Segregation
ratios of assessed markers were tested by Chi-square goodness-
of-fit to a 1:1 ratio at the significance level of p = 0.01. LOD
thresholds from 3 to 10 were tested and an optimum threshold
was obtained. The Kosambi mapping function was used to
convert recombination ratios to map distances. MapQTL R© 5.0
(Van Ooijen, 2004) was used for QTL analysis. QTL were named
following recommendations from the International Rules of
Genetic Nomenclature1.

Identification of Candidate Genes
To identify candidate genes for P-related loci, sequences of
DArT markers linked closely to QTL were selected from the
DArT genotyping provided by the Triticarte Pty. Ltd2. The
database Ensembl Plants3 was exploited to determine the physical
positions and contigs of the P-related loci. Candidate genes were
then further retrieved using physical position and contigs by
database BARLEX searches (the Barley Draft Genome Explorer4).
Orthologous genes for the candidate genes in other cereals and
Arabidopsis were obtained from the PGSB database5.

RESULTS

Phenotypic Variation of Assessed Traits
Phenotype values for each trait were significantly influenced by
the application of P. GY, SY, and DM of the parents at −P
were significantly lower than those under +P (Table 3). At the
same P condition, significant differences between parents were
detected for GY, SY, and DM. The cultivated barley Baudin
exhibited higher values for each of the traits compared with those
for the wild barley genotype CN4027 (Table 3). The coefficient
of variation (CV) for the yield-related traits between the two
treatments ranged from 28.30 to 52.99% (Table 3). Transgressive
segregation in the RIL population was observed for all three traits
(Table 3). Continuous variations with approximately normal
distributions were detected for these traits.

Compared with those at −P, higher values were obtained
for grain P concentration (GPC), straw P concentration (SPC),
grain P uptake (GPUP), straw P uptake (SPUP) and plant P
uptake (PUP) at +P. However, the values for grain P utilization
efficiency (GPUE), straw P utilization efficiency (SPUG), and

1http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm
2https://www.diversityarrays.com/
3http://plants.ensembl.org/index.html
4https://apex.ipk-gatersleben.de/apex/f?p=284:10
5https://www.helmholtz-muenchen.de/pgsb

plant P utilization efficiency (PPUE) were higher at−P (Table 3).
There were significant differences in these traits between the
two parents under the two different treatments. Compared
with the wild barley genotype CN4027, Baudin showed higher
values for GPC, SPC, GPUP, SPUP, and PUP but lower values
for GPUE, SPUG, and PUE (Table 3). The CV of the seven
PAE- and PUE-related traits in the population between the two
treatments also showed a wide distribution ranging from 31.80
to 62.54%. The transgressive segregation and approximately
normal distributions could be also detected for the P-related
traits (Table 3).

Correlations Between P-Related and
Yield Traits
Phenotypic correlations between P-related and yield traits under
the two treatments were presented in Table 4. Significant
correlations were detected between each of the three yield traits
and most of the P-related traits under both P conditions (P< 0.01
or 0.05). P-concentrations related traits, including GPC, SPC, and
PC, were significantly and negatively correlated with the three
yield traits (GY, SY, and DM) under the −P treatment except
SPC, PC in trial 2. P-uptake related traits, including GPUP, SPUP
and PUP, were significantly and positively correlated with the
three yield-related traits (GY, SY, and DM) except GPUP in trial
1 and GPUP and PUP in trial 2 (Table 4). Traits associated with
PUE, including SPUE and PUE, showed a significantly positive
correlation with two of the yield-related traits (SY and DM) with
coefficients ranging from 0.205 to 0.508 (P < 0.05). PC was
significantly and negatively correlated with GY and SY under
+P treatment. Traits related with P-uptake, including GPUP,
SPUP, and PUP, were significantly and positively correlated with
DM in both trials with coefficients ranging from 0.362 to 0.748
(P < 0.01).

Detection of QTL
A total of 17 QTL for P- and yield-related traits were identified.
Phenotypic variations explained by these loci varied from 11.0
to 24.7% (Table 5 and Figure 1). LOD values for these loci
ranged from 3.03 to 7.31 (Table 5). The 17 QTL were distributed
on 4 chromosomes, including 1H (2 QTL), 3H (9 QTL), 5H
(2 QTL), and 7H (4 QTL). Positive alleles for eight of these
QTL were contributed by Baudin, while the remaining nine were
contributed by CN4027. In addition, nine of these 17 QTL were
detected in two trials, and three of them were detected at the
two P conditions.

One QTL (Qgpc.sau-3H) for GPC was detected on 3H, and its
positive allele was derived from Baudin (Figure 1 and Table 5).
Qgpc.sau-3H was detected under the two different P conditions
in Trial 1 but only under −P condition in Trial 2. Phenotypic
variations explained by this locus varied from 13.4 – 14.7 %.
Two QTL for SPC were detected and they were mapped on
chromosomes 2H and 7H, respectively. The positive alleles for
both loci were contributed by Baudin (Figure 1 and Table 5).
Qspc.sau-3H was detected at both +P and −P conditions in
Trial 1, explaining 17.9 and 11.0% of the phenotypic variation,
respectively. Qspc.sau-7H was detected at −P condition in
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TABLE 3 | Variations of evaluated traits for the RIL population and their parents at maturity.

Types Traits Treatments Trial 1 Trial 2

Parents RILs Parents RILs

Baudin CN4027 Mean + SD Min Max CV% Baudin CN4027 Mean + SD Min Max CV%

PAE GPC −P 2.108 1.620 2.835 ± 1.025 0.902 5.385 36.15 2.361 1.814 3.050 ± 1.182 0.876 6.031 38.75

+P 3.831 2.890 3.188 ± 1.019 1.459 6.104 31.96 3.534 3.054 3.308 ± 1.052 1.337 6.466 31.80

SPC −P 0.981 0.467 0.963 ± 0.296 0.568 1.756 30.73 1.100 0.610 0.901 ± 0.348 0.412 1.832 38.62

+P 1.521 0.820 1.145 ± 0.396 0.614 3.056 34.58 1.302 1.000 1.190 ± 0.430 0.529 2.678 36.13

PC −P 1.571 1.171 1.951 ± 0.671 0.866 3.706 34.39 1.747 1.211 2.033 ± 0.836 0.850 4.137 41.12

+P 2.697 1.991 2.201 ± 0.839 1.069 4.775 38.11 2.443 2.166 2.280 ± 0.895 1.026 4.919 39.25

GPUP −P 8.527 5.176 12.199 ± 4.821 2.813 28.472 39.51 8.786 5.333 12.464 ± 5.274 2.937 32.129 42.31

+P 18.508 11.387 16.341 ± 10.559 1.478 73.363 64.61 19.292 13.597 18.308 ± 11.451 5.119 78.005 62.54

SPUP −P 3.610 0.951 3.677 ± 1.119 1.845 6.535 30.43 3.886 1.803 3.482 ± 1.483 1.719 7.156 42.59

+P 7.086 2.481 5.136 ± 2.349 1.713 10.805 45.73 6.794 3.389 5.911 ± 2.720 1.777 11.709 46.01

PUP −P 12.137 6.127 15.877 ± 5.571 6.037 30.826 35.08 12.672 7.136 16.093 ± 6.763 6.608 34.861 42.02

+P 25.594 13.868 21.493 ± 11.306 4.700 79.112 52.60 26.086 16.986 24.273 ± 12.558 8.031 85.152 51.73

PUE GPUE −P 0.474 0.617 0.400 ± 0.189 0.186 1.109 47.25 0.424 0.551 0.381 ± 0.193 0.166 1.008 50.65

+P 0.261 0.346 0.331 ± 0.109 0.164 0.685 32.93 0.283 0.327 0.321 ± 0.115 0.155 0.692 35.82

SPUE −P 1.019 2.141 1.096 ± 0.327 0.569 1.762 29.83 0.909 1.639 1.175 ± 0.447 0.530 2.426 38.04

+P 0.657 1.220 0.938 ± 0.303 0.327 1.630 32.30 0.768 1.000 0.913 ± 0.323 0.373 1.892 35.37

PUE −P 0.636 0.854 0.559 ± 0.205 0.270 1.155 36.67 0.572 0.826 0.537 ± 0.230 0.242 1.176 42.83

+P 0.371 0.502 0.495 ± 0.181 0.209 0.936 36.56 0.409 0.462 0.474 ± 0.180 0.203 0.974 37.97

Yield trait GY −P 4.045 3.195 4.371 ± 1.327 2.013 7.913 30.35 3.721 2.939 4.140 ± 1.237 1.982 7.280 29.87

+P 4.831 3.940 5.086 ± 2.861 0.515 16.607 56.25 5.459 4.452 5.521 ± 2.926 1.140 16.766 52.99

SY −P 3.680 2.037 3.933 ± 1.197 1.378 6.663 30.43 3.533 2.956 3.929 ± 1.215 2.006 6.397 30.92

+P 4.659 3.026 4.544 ± 1.832 1.708 9.529 40.31 5.218 3.389 5.084 ± 2.079 1.913 10.672 40.89

DM −P 7.725 5.232 8.305 ± 2.384 4.277 13.087 28.70 7.254 5.895 8.070 ± 2.284 4.566 12.268 28.30

+P 9.490 6.966 9.651 ± 3.629 3.437 20.228 37.60 10.677 7.841 10.603 ± 4.008 3.862 20.742 37.80

PAE, P acquisition efficiency; PUE; for P use efficiency; GPC, Grain P concentration; SPC, Straw P concentration; PC, Plant P concentration; GPUP, Grain P uptake;
SPUP, Straw P uptake; PUP, Plant P uptake; GPUE, Grain P utilization efficiency; SPUE, Straw P utilization efficiency; PUE, Plant P utilization efficiency; GY, Grain yield;
SY, Straw yield; DM, Dry matter.

TABLE 4 | Correlations between P- and yield-related traits in the RIL population at maturity in barley.

Trial Traits Treatments GPC SPC PC GPUP SPUP PUP GPUE SPUE PUE

T1 GY −P −0.218* −0.432** −0.186* 0.528** 0.241** 0.523** 0.105 0.427** 0.150

+P 0.034 0.046 0.401** 0.882** −0.077 0.839** −0.032 −0.040 −0.436**

SY −P −0.309** −0.513** −0.423** 0.172 0.527** 0.253** 0.149 0.494** 0.337**

+P −0.246** −0.112 −0.436** −0.193* 0.783** −0.024 0.187* 0.037 0.421**

DM −P −0.288** −0.520** −0.330** 0.397** 0.417** 0.437** 0.139 0.508** 0.264**

+P −0.105 −0.020 0.123 0.693** 0.362** 0.748** 0.074 −0.016 −0.162

T2 GY −P −0.195** −0.134 −0.090 0.511** 0.296** 0.559** 0.079 0.148 0.069

+P 0.001 0.069 0.394** 0.857** −0.034 0.826** 0.017 −0.063 −0.378**

SY −P −0.354** −0.202* −0.449** 0.032 0.617** 0.618 0.268** 0.213* 0.391**

+P −0.250** −0.181 −0.493** −0.178 0.710** 0.016 0.170 0.173 0.510**

DM −P −0.313** −0.191* −0.307** 0.310** 0.519** 0.414** 0.197* 0.205* 0.262**

+P −0.149 −0.048 0.047 0.639** 0.396** 0.709** 0.117 0.049 −0.024

PAE, P acquisition efficiency; PUE, for P use efficiency; GPC, Grain P concentration; SPC, Straw P concentration; PC, Plant P concentration; GPUP, Grain P uptake;
SPUP, Straw P uptake; PUP, Plant P uptake; GPUE, Grain P utilization efficiency; SPUE, Straw P utilization efficiency; PUE, Plant P utilization efficiency; GY, Grain yield;
SY, Straw yield; DM, Dry matter; *Significant at P ≤ 0.05 level. **Significant at P ≤ 0.01 level.

Trial 1 and it explained 14.4% of the phenotypic variation.
One significant QTL (Qpc.sau-3H) for PC was detected on
chromosome 3H (Figure 1 and Table 5) under both P conditions

in both trials conducted. The phenotypic variation explained by
these QTL ranged from 17.0 to 21.0% (Table 5). The positive allele
of Qpc.sau-3H was contributed by Baudin.
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TABLE 5 | QTL for P- and yield traits at maturity in barley.

Traits QTL Ch.a Detection environment Marker interval LOD PVE(%)b Additivec

GPC Qgpc.sau-3H 3H T1−P 3264976–6283337 4.32 14.7 0.338

3H T2−P 3264976–3931069 3.90 13.4 0.380

3H T1+P 3433408–3264976 3.98 13.6 0.302

SPC Qspc.sau-3H 3H T1−P 4169758–4000155 5.01 17.9 0.100

3H T1+P 3264074–6248874 3.17 11.0 0.111

Qspc.sau-7H 7H T1−P 4186071–5241092 4.23 14.4 0.090

PC Qpc.sau-3H 3H T1−P 3264976–6283337 5.22 17.5 0.236

3H T2−P 3265461–4000155 5.98 21.0 0.272

3H T1+P 3264074–3264111 5.92 20.6 0.311

3H T2+P 3433483–4000155 4.67 17.0 0.277

GPUP Qgpup.sau-1H 1H T2+P 3272157–3395878 3.19 11.4 3.638

SPUP Qspup.sau-3H 3H T2+P 3257547–3926168 3.11 10.9 −0.811

PUP Qpup.sau-1H 1H T2+P 3272157–3395878 3.03 11.0 3.683

GPUE Qgpue.sau-3H 3H T1+P 3258653–3931069 4.82 16.5 −0.033

SPUE Qspue.sau-3H 3H T1−P 4006691–3266050 5.59 20.0 −0.120

Qspue.sau-7H 7H T1−P 3918068–5241092 3.98 13.6 −0.099

PUE Qpue.sau-3H 3H T1−P 3264976–3264111 3.68 12.7 −0.063

3H T2−P 3264976–3256099 4.22 15.3 −0.068

3H T1+P 3264074–6283337 7.31 24.7 −0.072

3H T2+P 3258653–3264111 4.88 17.9 −0.056

GY Qgy.sau-5H 5H T1−P 3266971–5241415 3.81 13.1 0.374

5H T2−P 3266971–3276370 3.54 12.6 0.338

Qgy.sau-7H 7H T1−P 3273337–4012713 3.55 12.3 −0.364

7H T2−P 3273337–3255382 3.28 11.4 −0.324

SY Qsy.sau-3H 3H T1−P 3264976–3263403 4.59 16.0 −0.378

3H T2−P 3264976–3263403 4.65 16.6 −0.390

3H T1+P 5250378–3257547 4.69 16.1 −0.651

3H T2+P 3433408–3257547 4.66 15.8 −0.735

DM Qdm.sau-3H 3H T1−P 4169758–4000155 3.95 14.3 −0.677

3H T2−P 3264976–4000155 3.64 13.7 −0.623

Qdm.sau-5H 5H T1−P 3266971–5241415 3.57 12.4 0.629

5H T2−P 3266971–5241415 3.74 13.0 0.608

Qdm.sau-7H 7H T1−P 3273337–4012713 3.57 12.6 −0.643

7H T2−P 3265420-3255382 3.41 11.8 −0.585

aChromosome. bPercentage of the phenotypic variation explained by the QTL. cAdditive effect of a QTL. Positive values of additive effect indicate that alleles from Baudin
are increasing the trait scores, and negative values indicate that alleles from CN4027 are increasing the score.

One QTL (Qgpup.sau-1H) for GPUP was detected on 1H
under the +P condition from Trial 2, and its positive allele was
derived from Baudin (Figure 1 and Table 5). This locus explained
11.4% of the phenotypic variation. One QTL (Qspup.sau-3H)
for SPUP was detected on 3H, and the positive allele of it was
derived from CN4027 (Figure 1 and Table 5). Qspup.sau-3H
was detected at +P condition in Trial 1, and it explained 10.9%
of the phenotypic variation. One QTL (Qpup.sau-1H) for PUP
was detected on 1H under the +P condition from Trial 2, and
its positive allele was also derived from Baudin (Figure 1 and
Table 5). This locus explained 11.0% of the phenotypic variation.

One QTL (Qgpue.sau-3H) for GPUE was located on 3H
under the +P condition from Trial 1 (Figure 1 and Table 5).
This locus explained 16.5% of the phenotypic variation and its
positive allele was derived from CN0427. Two QTL for SPUE
were located, on 3H and 7H chromosome, respectively. Positive

alleles for both QTL were derived from CN0427 (Figure 1 and
Table 5). They explained 20.0 and 13.6% of the phenotypic
variation, respectively. One stable QTL for PUE (Qpue.sau-3H)
was detected on 3H under both P conditions from both Trial 1
and Trial 2 (Figure 1 and Table 5). It explained 12.7 – 24.7%
of the phenotypic variation. The positive allele of this locus was
derived from CN0427.

Three QTL (Qdm.sau-3H, Qdm.sau-7H, and Qdm.sau-7H) for
DM were detected under the −P condition from the two trials.
They were mapped on chromosomes 3H, 5H and 7H, respectively
(Figure 1 and Table 5). The phenotypic variation explained by
these QTL ranged from 11.8 to 14.3% (Table 5). The positive
alleles of Qdm.sau-3H and Qdm.sau-7H were contributed by
CN4027 and that of Qdm.sau-5H was contributed by Baudin.
Two QTL (Qgy.sau-5H and Qgy.sau-7H) for GY were detected
and they were mapped on chromosomes 5H and 7H, respectively
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FIGURE 1 | QTL for P- and yield-related traits detected in the RIL population.

(Figure 1 and Table 5). Qgy.sau-5H explained 12.6 and 13.1%
of the phenotypic variation, respectively, and its positive alleles
were contributed by Baudin. Qgy.sau-7H explained 11.4 and
12.3% of the phenotypic variation, respectively, and its positive
allele was contributed by CN4027. A stable QTL (Qsy.sau-3H)
for SY was detected on chromosome 3H under both the −P
and +P conditions from both trials (Figure 1 and Table 5). It
was derived from CN4027, and explained 15.8 – 16.6% of the
phenotypic variation.

Candidate Genes for the P-Related Loci
A total of fourteen candidate genes located in intervals
harboring the P-related loci were detected by searching the
BARLEX database. These candidate genes could be divided
into four categories: acid phosphatase, phosphate transporter,
acid phosphatase/vanadium-dependent haloperoxidase-related

protein, and phospholipid metabolism (Table 6). The acid
phosphatase gene (AK354580) and phosphate transporter gene
(MLOC_61737.2) were identified in the intervals harboring
Qspue.sau-7H and Qspc.sau-7H for PUE and PC. The candidate
genes for the other two categories were located on three
chromosomes and they confer PUE, PUP, and PC, respectively.
One, one and two genes encoding acid phosphatase/vanadium-
dependent haloperoxidase-related proteins were identified on
1H, 3H, and 7H, respectively. Two, two, and three genes
associated with phospholipid metabolisms were identified on 1H,
3H, and 7H, respectively.

DISCUSSION

P is one of the macroelements for plants, and it was
non-substitutable in many physiological and biochemical
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TABLE 6 | Candidate genes or proteins in chromosomal intervals containing the various P-related loci at maturity in barley.

Stable QTL Chr Gene
Name

Functional
Annotation

Oryza sativa Zea mays Arabidopsis
thaliana

Functional
Annotation

Qpup.sau-1H
Qgpup.sau-1H

1H MLOC_69370.3 Acid phosphatase/
vanadium-dependent
haloperoxidase related

LOC_Os05g47530.1 GRMZM2G177617_T05 \

MLOC_16149.3 Digeranylgeranylglyceryl
phosphate synthase

LOC_Os07g38850.1 GRMZM2G113476_T03 AT3G11945.2 Homogentisate
prenyltransferase

AK356092 Putative
phosphatidylinositol
transfer protein

LOC_Os01g50616.1
LOC_Os05g46720.1
LOC_Os02g04020.1

GRMZM2G073571_T03
GRMZM2G171354_T01
GRMZM2G157043_T01
GRMZM2G174990_T03
GRMZM2G355610_T01

AT1G19650.1
AT1G75370.2
AT2G21520.2
AT4G39170.1

Phosphatidylinositol/
phosphatidylcholine
transfer protein SFH4
Sec14p-like
phosphatidylinositol
transfer family protein
Sec14p-like
phosphatidylinositol
transfer family protein
Phosphatidylinositol/
phosphatidylcholine
transfer protein SFH4

Qgpc.sau-3H
Qspc.sau-3H
Qpc.sau-3H
Qspup.sau-3H
Qgpue.sau-3H
Qspue.sau-3H
Qpue.sau-3H

3H MLOC_56200.1 Acid phosphatase/
vanadium-dependent
haloperoxidase related
protein

LOC_Os01g67560.1 GRMZM2G091435_T01 \

MLOC_53886.2 2-phosphoglycerate
kinase-related protein

LOC_Os02g57400.1
LOC_Os09g39870.1

GRMZM2G017334_T01
GRMZM2G342327_T03
GRMZM2G123544_T01

AT5G60760.1
AT3G45090.1

P-loop NTPase
domain-containing
protein LPA1 homolog 1

AK356601 Phosphatidylinositol
transfer protein SFH5

LOC_Os05g35460.1
LOC_Os01g65380.1

GRMZM2G033641_T01
GRMZM2G081652_T01
GRMZM2G033649_T01

AT4G09160.1
AT1G72160.1

Patellin-5
Patellin-3

MLOC_19234.6 Phosphatidylinositol-4-
phosphate 5-kinase

LOC_Os12g13440.1
LOC_Os09g10650.1
LOC_Os08g01390.1
LOC_Os04g59540.1

GRMZM2G343218_T01
GRMZM2G428386_T02
GRMZM2G059179_T01
GRMZM2G040296_T01

AT1G34260.1 Putative
1-phosphatidylinositol-
3-phosphate 5-kinase
FAB1D

Qspue.sau-7H
Qspc.sau-7H

7H AK354580 Acid phosphatase 1 LOC_Os06g36400.1 GRMZM2G103526_T01 AT4G29260.1
AT4G29270.1

Acid phosphatase-like
protein
Acid phosphatase-like
protein

MLOC_69490.1 Acid phosphatase/
vanadium-dependent
haloperoxidase related
protein

LOC_Os08g03370.1 GRMZM2G057258_T01 AT1G24350.3
AT1G67600.1

Acid phosphatase/
vanadium-dependent
haloperoxidase-related
protein

MLOC_38965.4 Acid phosphatase/
vanadium-dependent
haloperoxidase-related
protein

LOC_Os06g33930.1 GRMZM2G071638_T01 AT3G12685.1 Acid phosphatase/
vanadium-dependent
haloperoxidase-related
protein

MLOC_61737.2 Phosphate transporter
1;8

LOC_Os06g21950.1 \ AT1G20860.1
AT1G76430.1

phosphate transporter
1;8 Putative phosphate
transporter

AK362615 Phospholipase DDHD1 LOC_Os08g01920.1 GRMZM2G023335_T01
GRMZM2G318860_T02

AT1G31480.1 Phospholipase SGR2

MLOC_22194.1 1-phosphatidylinositol-
3-phosphate 5-kinase

LOC_Os04g59540.1
LOC_Os08g01390.1
LOC_Os09g10650.1
LOC_Os12g13440.1

GRMZM2G040296_T01
GRMZM2G059179_T01
GRMZM2G428386_T02
GRMZM2G343218_T01

AT1G34260.1 Putative
1-phosphatidylinositol-
3-phosphate 5-kinase
FAB1D

AK367170 1-phosphatidylinositol-
3-phosphate 5-kinase

LOC_Os03g28140.1
LOC_Os06g14750.1
LOC_Os08g34950.1
LOC_Os09g23740.1
LOC_Os08g33200.1

GRMZM2G066876_T01
GRMZM2G092595_T01
GRMZM2G111208_T01
GRMZM2G132373_T01
GRMZM2G153722_T01

AT1G71010.1
AT3G14270.1
AT4G33240.1

Putative
1-phosphatidylinositol-
3-phosphate 5-kinase
FAB1C
1-phosphatidylinositol-3-
phosphate 5-kinase
FAB1B
1-phosphatidylinositol-
3-phosphate 5-kinase
FAB1A
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metabolisms. Plant production could be reduced or even fail
completely when soil P is deficient. As most of the applied
P cannot be absorbed by plants, improving P uptake and
use could offer a better sustainable method than only relying
on fertilizer application (Gong et al., 2016). To explore
desirable genes for P efficiency in barley, we investigated
several P-related traits based on a RIL population derived
from a cross between the wild barley CN4027 and the barley
cultivar Baudin under −P and +P conditions. A total of 17
QTL, forming five clusters, were detected on chromosomes
1H, 3H, 5H, and 7H under the two different P conditions.
Two of the QTL clusters, located on 1H (for GPUP/PUP) and
on 7H (for SPUE/SPC), respectively, are novel as no other
QTL conferring P-relative traits has ever been reported on
these chromosomes.

How PAE and PUE Affect P Efficiency in
Barley
The two parents of the mapping population used in this study
showed relatively large differences in each of the investigated
traits at maturity under both P conditions studied. The wild
barley genotype CN4027 showed higher P utilization efficiency
(GPUE, SPUE, PUE), while Baudin showed higher values in P
acquisition efficiency traits (including GPC, SPC, PC, GPUP,
SPUP, and PUP). The results from the phenotypic analysis
were consistent with those from QTL identification in this
study. QTL mapping revealed that positive alleles for most
of the loci of PAE were derived from Baudin, indicating that
this genotype had higher P acquisition efficiency than that
of CN4027. Furthermore, positive alleles for QTL conferring
GPUE and PUE were contributed by CN4027, implying
that this genotype showed greater P utilization efficiency
than that of Baudin.

The yield traits including GY, SY, and DM were significantly
and positively correlated with PAE (GPUP, SPUP, and PUP) and
PUE (GPUE, SPUE, and PUE) at both the−P and+P conditions
(Table 4). This finding was highly consistent with those obtained
at seeding stage in this population (Guo et al., 2017). And a
similar result was observed in wheat (Su et al., 2009) and Brassica
napus (Yang et al., 2011). While P concentrations including GPC,
SPC, and PC were significantly and negatively correlated with
most of three yield traits (Table 4). Thus, we think it will be
challengeable to develop a cultivar with improved both PAE (PC
and PUP) and PUE.

The QTL for PAE and PUE
In this study, a total of 17 QTL for PAE, PUE, and yield
traits were detected on five QTL clusters under two P
conditions. A novel QTL cluster for SPUE/SPC was located
on 7H under −P condition. Various candidate genes located
in this QTL cluster were detected using database BARLEX
searching as described in sorghum (Mahmoud et al., 2018).
The acid phosphatase (AK354580) and phosphate transporter
(MLOC_61737.2) genes located in this QTL cluster were
identified in the interval of Qspue.sau-7H and Qspc.sau-7H
(Table 6). The phosphate transporter 1;8 was a high affinity

phosphate transporter which was reportedly a kind of phosphate
transporter induced by low phosphorus (Raghothama, 2000).
The acid phosphatase 1 was also induced by low phosphorus
(Baldwin et al., 2001; Zhang et al., 2014). Thus, these two
genes were likely important candidates for the QTL cluster
for SPUE/SPC on 7H.

Three QTL clusters containing seven QTL for PAE and four
QTL for PUE were identified on chromosomes 1H, 3H, and
7H. Candidate genes related to the acid phosphatase/vanadium-
dependent haloperoxidase-related protein and phospholipid
metabolism were located on these three QTL clusters. As an
important phosphorus component in plants, phospholipid played
a major role in phosphorus metabolic process. The expression
of phospholipid metabolism genes was significantly different
under the different P treatments (Pariascatanaka et al., 2009;
Ren et al., 2011). However, the mechanisms of PAE and PUE
regulated by phospholipid and acid phosphatase/vanadium-
dependent haloperoxidase-related protein have not yet been
reported, providing valuable clues for further dissecting their
molecular mechanisms for P efficiency in barley.

It was reported that high P efficiency in plants could be
achieved through improving PAE or PUE (Parentoni and Junior,
2008). Some scientists held the view that P efficiency was mainly
determined by PAE (Parentoni and Junior, 2008; Richardson
et al., 2009). While Veneklaas et al. (2012) hypothesized that
PUE might play a major role in P efficiency. And it was reported
that PUE and PAE were intrinsically linked (Su et al., 2006). The
identified QTL clusters for several different traits might explain
their significant correlations. For example, PAE and PUE showed
significant correlation to three yield traits, and the QTL for these
traits were all located in the same interval on 3H, indicating
that they were linked closely or even be controlled by a same
gene. Additionally, several QTL for PAE and PUE have been
detected in the same region on 3H at seeding stage in barley
(Guo et al., 2017). The QTL for PAE were also detected on
3A and 3B of bread wheat (Shi et al., 2008; Su et al., 2009).
Chromosome 3H of barley was homologous to 3A, 3B and
3D of wheat (Islam and Shepherd, 1992), and the genes were
highly conserved between wheat and barley (Devos, 2005). These
results further verified the existence of a QTL cluster for P
efficiency on 3H.

The Challenge to Improve P Efficiency
An ideal P efficient genotype is usually characterized by high
capacity to acquire more P in the P-deficient environment (i.e.,
PAE) and/or by high ratio of biomass and P content (i.e., PUE)
(Guo et al., 2012). Results from the correlation analysis and
QTL mapping indicated that enhancing PAE (including PUP,
GPUP, and SPUP) and PUE would improve yield of barley under
both +P and −P conditions. However, we observed that GPC
and SPC would reduce yield at both +P and −P conditions.
This means that it is not easy to simultaneously improve PAE
and PUE. This finding is consistent with the results from Su
et al. (2009) who reported that PAE and PUE were negatively
correlated in wheat. A large number of QTL for P-efficiency have
been reported in the last decade. However, few researches were
utilized in crop breeding. We thus need to accelerate identifying
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major and stable QTL for PAE or PUE and developing their
linked markers for MAS in barley breeding.
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Obtaining information on the genetic diversity and population structure of germplasm
facilitates its use in wheat breeding programs. Recently, with the development of
next-generation sequencing technology, genotyping-by-sequencing (GBS) has been
used as a high-throughput and cost-effective molecular tool for examination of the
genetic diversity of wheat breeding lines. In this study, GBS was used to characterize
a population of 180 accessions of common wheat originating from Asia and Europe
between the latitudes 30◦ and 45◦N. In total, 24,767 high-quality single-nucleotide
polymorphism (SNP) markers were used for analysis of genetic diversity and population
structure. The B genome contained the highest number of SNPs, followed by the A
and D genomes. The polymorphism information content was in the range of 0.1 to
0.4, with a mean of 0.26. The distribution of SNPs markers on the 21 chromosomes
ranged from 243 on chromosome 4D to 2,337 on chromosome 3B. Structure and
cluster analyses divided the panel of accessions into two subgroups (G1 and G2).
G1 principally consisted of European and partial Asian accessions, and G2 comprised
mainly accessions from the Middle East and partial Asia. Molecular analysis of variance
showed that the genetic variation was greater within groups (99%) than between groups
(1%). Comparison of the two subgroups indicated that G1 and G2 contained a high
level of genetic diversity. The genetic diversity of G2 was slightly higher as indicated by
the observed heterozygosity (Ho) = 0.23, and unbiased diversity index (uh) = 0.34. The
present results will not only help breeders to understand the genetic diversity of wheat
germplasm on the Eurasian continent between the latitudes of 30◦ and 45◦N, but also
provide valuable information for wheat genetic improvement through introgression of
novel genetic variation in this region.

Keywords: genetic diversity, population structure, genotyping-by-sequencing, single nucleotide polymorphisms,
common wheat
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INTRODUCTION

Wheat (Triticum aestivum L.) is an important staple food crop
for more than one-third of the world’s population and provides
about 20% of calories consumed by humans (Marcussen et al.,
2014; Bhatta et al., 2017). As a result of ongoing population
growth and climate change, it has been estimated that wheat
production must increase by 50% by 2050 (Grassini et al., 2013;
Ray et al., 2013; Marcussen et al., 2014). Thus, it seems that
wheat production cannot meet demand. Therefore, a challenge
for wheat breeders is to improve the stability of grain production
and grain yield to meet the growing demand, and to improve
resistance and tolerance to biotic and abiotic stresses (Winfield
et al., 2018). Analysis of plant genetic diversity is an important
aspect of plant breeding, inheritance, conservation, and evolution
(Peterson et al., 2014). However, domestication and strong
selection pressure by humans, and the use of modern breeding
techniques, have increasingly narrowed the gene pool of wheat
(Tanksley and McCouch, 1997; Haudry et al., 2007). Therefore, it
is essential to enrich wheat germplasm resources by introducing
favorable mutations into the cultivated gene pool (Tanksley and
McCouch, 1997; Haudry et al., 2007; Zhang et al., 2017).

Morphological traits and molecular markers are two distinct
tools for assessment of genetic diversity. However, molecular
markers have gained substantial attention because morphological
traits are often influenced by the environment (Huang et al.,
2002). A variety of molecular markers have been used to study
the genetic diversity of wheat, such as randomly amplified
polymorphic DNA (Joshi and Nguyen, 1993), random fragment
length polymorphisms (Siedler et al., 1994; Kim and Ward,
2000), amplified fragment length polymorphisms (Barrett and
Kidwell, 1998; Burkhamer et al., 1998), sequence-tagged sites
(Chen et al., 1994) and inter-sequence simple repeats (Nagaoka
and Ogihara, 1997). Single-nucleotide polymorphisms (SNPs)
and simple sequence repeats (SSRs) are the most commonly
used molecular markers for evaluation of genetic diversity among
wheat accessions (Huang et al., 2002; Eltaher et al., 2018).
Furthermore, SNPs are not only the most abundant type of
polymorphism in animal genomes but also exhibit a large
number of sequence variants in plant genomes (Ganal et al.,
2009, 2012; Rimbert et al., 2018). At present, SNPs are the
marker of choice for plant research and plant breeding, such
as analyses of marker–trait association, population structure,
genomic selection, quantitative trait loci mapping, and research
on plant breeding that particularly requires numerous markers
(Kumar et al., 2012). Use of high-throughput sequencing
technology to discover a large number of SNPs has proved to
be not time-consuming and cost-effective (He et al., 2014). With
the rapid development of next-generation sequencing (NGS)
technologies, an approach for genotyping-by-sequencing (GBS)
have been widely used in plant breeding programs (Elshire
et al., 2011). GBS enormously reduces the complexity of a
large genomes of species by choosing appropriate restriction
enzymes (REs) (Poland et al., 2012a), such as wheat with large
and complex genomes. Poland et al. (2012b) developed a GBS
protocol using two REs (PstI/MspI), which can reduce complexity
to a greater extent and achieve a more unified sequencing

library than a one-enzyme protocol (Elshire et al., 2011). GBS
has been used for genotyping in an increasing number of
crops, such as maize, wheat, barley, rice, potato, and cassava.
Romay et al. (2013) genotyped a set of 2,815 maize inbred
accessions using 681,257 SNPs and observed that some SNPs
were related to known candidate genes, involving kernel color,
sweetness, and flowering time. Lam et al. (2010) obtained 205,614
SNPs by resequencing 31 soybean genotypes, which offered
a precious genomic resource for soybean breeding programs.
The GBS protocol was utilized to analyze genetic diversity of
369 Iranian hexaploid wheat accessions, in which a total of
566,439,207 sequence reads were generated and 133,039 SNPs
were identified (Alipour et al., 2017). A set of 38,412 GBS-
SNPs were identified after sequencing 365 soft winter wheat
varieties and F5-derived advanced breeding lines originating
from multiple crosses in the Cornell University Wheat Breeding
Program using a GBS procedure to analyze genetic diversity
(Heslot et al., 2013).

The principal region of common wheat cultivation is located
between the latitudes of 30◦–60◦N and 27◦–40◦S, mainly
concentrated in the 30◦–45◦N region (Nuttonson, 1955). The
180 common wheat accessions used in the present study were
collected from 16 countries between the latitudes of 30◦ and
45◦N. The germplasm in this region not only provides novel
sources of resistance to biotic and abiotic stresses, but also
can enhance the biodiversity of breeding materials. To allow
comparison between geographic origin and genotype data, the
accessions were grouped into three broad geographical regions,
namely Asia, the Middle East, and Europe. The main purpose
of this study was to use GBS to evaluate the genetic diversity of
the accessions from 16 countries between the latitudes of 30◦ and
45◦N and, in addition, to explore the genetic relationship and
population structure of these accessions from different regions.

MATERIALS AND METHODS

Plant Materials
A total of 180 common wheat accessions from 16 countries
situated between the latitudes of 30◦ and 45◦N were used in
this study (Supplementary Table 1). The seeds were kindly
provided by the Triticeae Research Institute, Sichuan Agricultural
University, Sichuan, China, the United States Department
of Agriculture–Agricultural Research Service (USDA-ARS)–
National Plant Germplasm System, United States, and the
Xinjiang Academy of Agricultural Sciences, Xinjiang, China.

Genotyping-By-Sequencing
Total genomic DNA was extracted from fresh young leaves of
approximately 2-week-old seedlings using the Hi-DNAsecure
Plant Kit DP350 (TIANGEN, Beijing, China). GBS libraries
were constructed following the protocol of Poland et al.
(2012b). A total of 180 samples were used for genome
sequencing on an Illumina HiSeq PE150 platform. SNP
calling was performed using TASSEL v. 5.2.40 (Glaubitz
et al., 2014). The GBS analysis pipeline used the default
parameters (Glaubitz et al., 2014). Paired-end reads were mapped
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to “Chinese Spring” reference genome with Burrows-Wheeler
Aligner (Version: 0.7.8) (Li and Durbin, 2009). The wheat
“Chinese Spring” reference genome assembly made available
by the International Wheat Genome Sequencing Consortium
(IWGSC; RefSeq V1.0) in 2017 was used. The SNPs were
filtered based on the criteria minor allele frequency (MAF)
threshold <5% and missing values >10 (Li et al., 2015; Saint
et al., 2016; Vikram et al., 2016). The detailed information
of SNP scores in each of the 180 accessions are available in
Supplementary Table 2.

Population Structure Analysis
Evolutionary relationships among the 180 wheat accessions
were determined using the unweighted pair group method
with arithmetic mean (UPGMA) based on genetic distances
computed with TASSEL. Dendrograms were constructed using
the dendrogram function, and then customized using the
dendextend package (Galili, 2015) and circlize package (Gu et al.,
2014) in R. Principal component analysis (PCA) was performed
based on genetic distances among the lines computed with
TASSEL (Bradbury et al., 2007). Principal components (PCs)
were generated using the covariance method. Eigenvalues were
generated to determine the proportion of variation explained by
each PC. The first and second PCs were plotted using R.

The population structure of all accessions was evaluated using
the Bayesian model-based clustering method in STRUCTURE
2.3.4 software (Pritchard et al., 2000). The STRUCTURE analysis
was run five times, with K ranging from 1 to 10, using the
admixture model, with burn-in of 100,000 generations and a
Markov chain Monte Carlo of 100,000 generations (Chen et al.,
2012; Zori´c et al., 2012). To identify the best fit for the number
of clusters (K), the Evanno method was utilized (Evanno et al.,
2005) using STRUCTURE HARVESTER software (Earl and
vonHoldt, 2012). After selection of the optimal K, membership
(the proportion of the population assigned to each cluster),
mean population differentiation (FST), and He (Nei, 1978) were
determined for each subpopulation identified. The FST value
(Nei, 1977) of each subpopulation provides an estimate of the
degree of fixation of alleles within the subpopulation. The He
(analogs to allelic variation in a random mating population) (Nei,
1978) describes the average distance between individuals within
the same population, where values close to 0 indicate that the
individuals within the population are genetically identical.

Statistical Analysis
Basic summary statistics were calculated using PowerMarker
3.25 software, comprising gene diversity (GD), polymorphism
information content (PIC), MAF, and observed heterozygosity
(Ho) (Liu and Muse, 2005). The SNP distribution on each
chromosome was counted with 5 Mb as a step, and all SNPs
were mapped to IWGSC RefSeq v1.0. The heat map of SNP
distribution was plotted using R. On each chromosome, the SNP
markers with a PIC value between 0.21 and 0.33 were selected
and a total of 7,461 SNPs were used for AMOVA. The number
of subpopulations determined on the basis of a STRUCTURE
analysis was used for AMOVA. Genetic indices, consisting of
number of alleles (Na), number of effective alleles (Ne), observed
heterozygosity (Ho), diversity index (h), unbiased diversity index
(uh), and Shannon’s information index (I) were calculated. The
AMOVA and estimation of genetic indices were performed using
GeneAlEx 6.41 (Peakall and Smouse, 2006).

RESULTS

Chromosome Distribution of SNPs
A total of 24,767 SNPs were identified in the A, B, and D
genomes. The highest number of SNPs were identified in the B
genome (12,028), followed by the A genome (9,741), and the D
genome had the lowest number of polymorphic markers with
2,998 (Figure 1A, Supplementary Table 3). In the A genome,
chromosome 2A had the highest number of SNPs (1,761), and
chromosome 6A harbored the lowest number (1,154); in the B
genome, the highest and lowest number of SNPs were detected
on chromosomes 3B and 4B (2,337 and 1,130, respectively); in
the D genome, chromosome 2D had the highest number of SNPs
(597), and chromosome 4D harbored the lowest number (243)
(Figure 1B, Supplementary Table 3). The lowest and highest
numbers of SNPs identified on an individual chromosome
were 243 and 2,337 on chromosomes 4D and 3B, respectively
(Figure 1B, Supplementary Table 3). The ratio of number of
SNPs in the B to A genomes was 1.23, and that in the B to D
and A to D genomes was 4.01 and 3.25, respectively. Thus, the
number of SNPs in the A and B genomes exceedingly the number
in the D genome, and the number of SNPs in the A genome was
only slightly lower than that in the B genome. To characterize
the distribution of SNPs in more detail, we used 5 Mb as a step

FIGURE 1 | (A, B) Chromosomal distribution of SNP markers on all chromosomes in the wheat genomes A, B, and D.
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to map all SNPs to the IWGSC RefSeq v1.0, and drew the heat
map of SNP distribution on each chromosome (Figure 2). For
example, on the 2D chromosome, the physical segment with the
highest number of SNPs was 520–525 Mb (Figure 2B). However,
the physical segment of 630–635 Mb on the 5B chromosome had
the highest number of SNPs (Figure 2E).

Population Structure
The 180 common wheat accessions were divided into three
broad geographical regions (Figure 3, Table 1). Using PCA,
the relationship between the wheat accessions based on the
broad geographical regions was determined. In the PCA plot the
accessions showed a loose distribution (Figure 4). The accessions
from Asia and the Middle East were distributed evenly on PC1
but were less evenly distributed on PC2. The majority of Asian
accessions were placed in the positive (upper) portion of the
plot. European accessions were mainly clustered towards the
right side (positive values) of PC1. And European accessions
were divided into two parts by PC2. STRUCTURE analysis was

used to study the population structure of the 180 accessions,
and delta K values obtained were used to determine the optimal
number of subpopulations. To determine the optimal k value,
the number of clusters (K) was plotted. At k = 2 (Figure 5),
a distinct peak was observed, indicating the presence of two
subpopulations (Figure 6). Group 1 contained 137 accessions;
Group 2 consisted of 43 accessions (Table 2). The degree
of genetic differentiation and average distance (He) in each
subpopulation (Table 2) suggested that the highest degree of
genetic differentiation was detected in Group 2 (Fst = 0.40),
whereas the lowest value was observed in Group 1 (Fst = 0.13).
On the other hand, the lowest He was observed in Group
2 and the highest He was detected in Group 1. The results
of STRUCTURE analyses (Figure 6), PCA, and the UPGMA
cluster analysis (Figure 7, Supplementary Figure 1) showed
a high degree of similarity. It was observed that individuals
in Group 2 in the STRUCTURE analysis were separated from
individuals in Group 1 on PC1. Individual accessions in Group
2 mainly originated from Asia and the Middle East; Group 1

FIGURE 2 | (A–G) Heat map of SNPs distribution on each chromosome.

Frontiers in Genetics | www.frontiersin.org 4 September 2020 | Volume 11 | Article 58078229

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-580782 September 22, 2020 Time: 19:59 # 5

Yang et al. Genetic Diversity of Wheat

FIGURE 3 | Distribution of common wheat accessions used in this study across Asia and Europe.

principally consisted of Asian and European accessions. To
further understand the clustering relationships among countries,
we took the country of origin into consideration. Accessions from
Spain were divided into two clusters: one portion was clustered
with European accessions, and the other portion clustered with
Asian/Middle Eastern accessions. Accessions from Kyrgyzstan,
Kazakhstan, China, and Japan tended to cluster with accessions
from Europe. Half of the accessions from Afghanistan were
clustered with European accessions, and half was grouped with
Asian/Middle Eastern accessions. The Middle Eastern accessions
originating in Armenia mainly clustered separate from the
European accessions.

The percentage apportioning to ancestral groups for each
country was determined to examine the geographic distribution
of the two STRUCTURE groups, which were projected onto
a world map (Figure 8). The accessions from Europe were

TABLE 1 | Provenance of the 180 common wheat accessions used in the study.

Region Country No. Acc.

Asia Afghanistan 12

Kyrgzstan 4

Kazakhstan 4

Tajikistan 4

China 12

Korea 15

Japan 10

Middle East Turkey 10

Syria 10

Georgia 14

Armenia 9

Europe Bulgaria 20

Greece 14

Italy 17

Spain 13

Portugal 12

predominantly assigned to Group 1 (blue segments in Figure 8),
and the accessions from Bulgaria (100%) and Portugal (100%)
were assigned to Group 1 (Figure 9). For the four countries in the
Middle East, except for accessions from Armenia (67% accessions
in Group 2), the majority of accessions were assigned to Group 1
(Figure 9). Half of the accessions from Afghanistan were assigned
to Group 1 and half were assigned to Group 2. In addition, 53%
lines from Korea were placed in Group 2 and 47% were placed in
Group 1 (Figure 9).

Genetic Diversity
The genetic diversity analysis of the 180 accessions revealed
that the mean GD and PIC were 0.32 and 0.26, respectively.
The GD ranged from 0.1 to 0.5 and PIC ranged from 0.1
to 0.4 (Figures 10A,B). The Ho values ranged from 0 to 0.9,
but for a considerable number of markers the Ho value was
0.1 (Figure 10C). The average MAF was 0.24 (Figure 10D).
Intra-population genetic diversity analysis revealed that mean
observed (Na) and effective (Ne) allele numbers were 2.00
and 1.52 for the two subpopulations, respectively. The value
of Ne in Group 2 (1.52) was higher than that in Group 1
(1.51). The mean values of I, Ho, h, and uh were 0.51, 0.23,
0.33, and 0.34, respectively. However, the Group 2 population
showed slightly higher genetic diversity (Ho = 0.23 and
uh = 0.34) (Table 3).

AMOVA and genetic diversity indices for the two
subpopulations were calculated based on the results of the
STRUCTURE analysis. The AMOVA revealed much greater
variation within populations (99%) than among the populations
(1%). High haploid Nm was observed (28.12), suggesting
extremely high gene flow among subpopulations (Table 4).
These results revealed low genetic differentiation among
the subpopulations, but high genetic differentiation within
subpopulations. The UPGMA cluster analysis based on 7,461
markers (Supplementary Figure 2) indicated two subgroups,
which was consistent with the population structure analysis
(based on 24,767 SNPs).
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FIGURE 4 | Principal coordinate analysis (PCA) based on genetic distances among the common wheat accessions for the SNP markers.

DISCUSSION

Wheat germplasm resources are extremely important for
breeders. One main wheat-producing area of the world is located
between 30◦ and 45◦N latitude, which is rich in wheat germplasm
resources. A prerequisite for making full use of these germplasm
resources is to assess their genetic diversity (Hawkes, 1981). We
used GBS technology to discover a large number of SNPs for
genotyping hexaploid wheat derived from diverse provenances

in this study. In the present study, we obtained 24,767 SNPs
markers and observed the lowest frequency of SNPs in the D
genome, whereas the B genome contained the highest frequency
of polymorphic markers, which is in agreement with the results
of previous studies (Chao et al., 2009; Akhunov et al., 2010;
Poland et al., 2012a; Berkman et al., 2013; Würschum et al.,
2013; Marcussen et al., 2014; Shavrukov et al., 2014; Edae
et al., 2015; Alipour et al., 2017; Eltaher et al., 2018; Rufo
et al., 2019). D genome is the youngest one among the three
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FIGURE 5 | Line graph of delta K over K from 1 to 10. The highest peak was observed at delta K = 2, which suggested the common wheat germplasm comprised
two subgroups.

genomes in wheat evolutionary history (Talbert et al., 1998;
Caldwell et al., 2004). It is likely that older genomes underwent
gene duplication and accumulated more mutations that led to
sequence polymorphism (Dvorak et al., 2006). Substantial early
gene flow could have occurred between T. aestivum and its
tetraploid progenitor T. turgidum (AABB) but not between the
hexaploid and Aegilops tauschii (DD) (Caldwell et al., 2004;
Dvorak et al., 2006). This could have resulted in greater sequence
diversity in the A and B genomes than in D genome (Talbert
et al., 1998; Caldwell et al., 2004; Dvorak et al., 2006; Berkman
et al., 2013). Furthermore, the fewest SNP markers were located
on chromosome 4D, whereas the highest number of SNP markers
were located on chromosome 3B, as reported by Saintenac
et al. (2013) and Alipour et al. (2017). Eltaher et al. (2018)
obtained 25,566 SNPs by GBS for 270 F3:6 Nebraska winter wheat
accessions, and observed that the highest number of SNPs were
located on chromosome 3B, whereas chromosome 3D carried
the lowest number of SNPs. Bhatta et al. (2017) reported that
chromosomes 2B and 4D had the highest and lowest numbers
of SNPs, respectively. Chromosome 4D had the lowest number

FIGURE 6 | Population structure of 180 common wheat accessions based on
24,767 SNPs markers. The population is divided into two color-coded
subgroups. Each bar represents a single accession, and the colored
segments within each bar reflect the proportional contributions of each
subgroup to that accession.

of markers and chromosome 1B had the highest number of
markers in the study by Sukumaran et al. (2015). Allen et al.
(2017) used 35,143 SNPs and reported that chromosome 2B
had the highest number of markers and chromosome 4D had
the lowest number of markers. In contrast, the present study
showed that chromosome 3B harbored the highest number of
SNPs and chromosome 4D had the lowest number. Meanwhile,
we found some SNP hot spot regions in heat map of each
chromosome harboring important QTLs. In the 160–170 Mb of
chromosome 2B (Figure 2B), Boukhatem et al. (2002) analyzed
a set of 98 F8 recombinant inbred (RI) lines and found a QTL
(QYR-2B.2) which was associated with yellow rust resistance.
Similarly, in the 680–690 Mb of chromosome 1B (Figure 2A),
a QTL (QTgw.ipk-1B-FS4) which was associated with TKW was
identified (Nezhad et al., 2012).

The PIC contributes to a detailed understanding of the level
of polymorphism between genotypes. On the basis of previous
reports, the PIC can be divided into three categories: (1) when
PIC > 0.5, the marker is considered to be highly polymorphic, (2)
when 0.25 < PIC < 0.5, the marker is a moderately informative,
and (3) when PIC < 0.25, the marker is a low-information
marker (Botstein et al., 1980). Lopes et al. (2015) observed a
PIC value of 0.27 using the 9K SNP array to genotype the
WAMI population, and showed that spring wheat contained
moderate levels of polymorphism. Novoselović et al. (2016)

TABLE 2 | Results of STRUCTURE analysis of 180 wheat accessions for the
fixation index (Fst; indicating significant divergence), average distances (expected
heterozygosity), and number of genotypes in each subpopulation.

Population Fst Exp. hetero No. of Genotypes

G1 0.13 0.31 137

G2 0.40 0.24 43
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FIGURE 7 | Principal coordinate analysis (PCA) of 180 common wheat accessions based on 24,767 SNP markers. Colors reflect groupings derived from structure
analysis.

genotyped a Croatian panel using a set of 1,229 Diversity
Arrays Technology (DArT) markers and obtained an average
PIC value of 0.30 among the populations, which indicated that
the accessions from Croatia exhibited moderate polymorphism.
Eltaher et al. (2018) analyzed 270 F3:6 Nebraska winter wheat
accessions, and observed a PIC value of 0.25, which indicated that
the population contained moderate genetic diversity. El-Esawi
et al. (2018) used 1,052 DArT markers to genotype Australian
and Belgian wheat accessions, and obtained PIC values of

0.33 and 0.29, respectively, which demonstrated that Australian
and Belgian wheat contained moderate genetic diversity. The
present results showed that the mean PIC value (0.27) was in
agreement with the above-mentioned studies, which indicated
that the 180 accessions contained moderate polymorphism. On
the other hand, Hao et al. (2011) genotyped 250 Chinese wheat
accessions with 512 SSR markers and observed a PIC value
of 0.65, which demonstrated that Chinese wheat showed high
genetic polymorphism. Zhang et al. (2010) analyzed 205 elite
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FIGURE 8 | Percentage of each subgroup resolved by STRUCTURE analysis for each country of origin for the common wheat accessions studied.

FIGURE 9 | Regions from which the common wheat accessions were collected.

wheat accessions in the United States, using 245 SSR markers,
and obtained a PIC value of 0.54, which indicated that the
accessions showed a high level of polymorphism. Relative to SSR
markers, the lower PIC value of the SNP and DArT markers may
be explained by their bi-allelic nature and slow mutation rate
(Thuillet et al., 2002; Chesnokov and Artemyeva, 2015).

In the present study, we obtained meaningful information on
genetic diversity indices in each subpopulation. High levels of
genetic diversity were detected in Groups 1 and 2. The results

of AMOVA showed that a high level of genetic diversity was
observed within subpopulations, whereas the variation among
subpopulations was extremely low (1%). This result may be
caused by breeders selecting for specific traits, such as yield,
stripe rust resistance, and herbicide tolerance. However, the low
genetic variability among subpopulations is explained by the
high gene flow (Arora et al., 2014). Wright (1965) showed that
when Nm (haploid) values are less than 1, gene exchange among
subpopulations is limited. In the present study we observed an
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FIGURE 10 | Distribution of genetic diversity (A), polymorphic information content (PIC) (B), percentage of heterozygosity (C), and minor allele frequency (D) for
24,767 SNP markers among the 180 common wheat accessions.

extremely high Nm value (28.12), indicating that high gene flow
led to low genetic differentiation among subpopulations. The
results of this study will not only help breeders to understand the
genetic diversity of wheat germplasm on the Eurasian continent
between the latitudes of 30◦ and 45◦N, but also provides valuable
information for genetic improvement of wheat through inclusion
of novel genetic variation from China and certain other countries.

TABLE 3 | Means of genetic parameters for each subpopulation of the 180 wheat
accessions. Number of alleles (Na), number of effective allele (Ne), Shannon’s
index (I), observed heterozygosity (Ho), diversity index (h), and unbiased diversity
index (uh).

Pop Na Ne I Ho h uh

G1 2.00 1.51 0.51 0.22 0.33 0.33

G2 2.00 1.52 0.51 0.23 0.33 0.34

Mean 2.00 1.52 0.51 0.23 0.33 0.34

TABLE 4 | Analysis of molecular variance using 7461 SNP markers of genetic
differentiation among and within two subpopulations of the 180 common
wheat accessions.

Source df SS MS Est. Var. % P value

Among Pops 1 5,599.57 5,599.57 31.47 1% 0.001

Within Pops 178 630,097.27 3,539.87 3,539.87 99% 0.001

Total 179 635,696.84 3,571.34 100% 0.001

Nm 28.12

The PCA revealed a degree of broad geographic partitioning
of the accessions. A previous study by Winfield et al. (2018)
used 32,443 polymorphic markers to genotype 804 hexaploid
wheat accessions originating from more than 30 countries
around the world, and observed that the majority of accessions
from Europe clustered together, separated from the majority of
Asian and Middle Eastern accessions. Similarly, in the study of
Cavanagh et al. (2013), the European winter wheat population
showed the strongest degree of genetic differentiation from
the remaining populations. Balfourier et al. (2007) used a set
of 38 SSR markers to analyze 3,942 accessions originating
from 73 countries, and observed that accessions from several
Near Eastern and Central Asian areas were grouped in the
same subcluster and those from Far Eastern countries clustered
together. Strelchenko et al. (2005) analyzed 78 wheat landraces
originating from 22 countries and reported that the landraces
were separated into European and Asian groups. Chen et al.
(2019) reported that West Asian landraces, the majority of
European landraces, several South and Central Asian landraces,
and the majority of East Asian cultivars clustered together,
whereas the majority of East Asian landraces were clustered
with several West Asian landraces and the majority of South
and Central Asian landraces. Lee et al. (2018) reported that
many accessions from Afghanistan, Japan, and Korea were
clustered in the same group, while germplasm from China, the
Middle East, and Caucasus clustered in a separate group, and
an intermediate group largely consisted mainly of accessions
from Afghanistan, Japan, and Korea. In the present study,
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although there was substantial overlap between clusters, the
majority of accessions from Europe clustered together, whereas
the accessions from Asia and the Middle East were distributed
evenly on PC1 (Figure 4). However, the relationships of three
overlapping subgroups was unclear, which raises the possibility of
exchanging adapted germplasm. To obtain useful information on
the genetic diversity and population structure of the accessions,
they were divided into two subgroups on the basis of the
population structure analysis (Figure 6). In the PCA (Figure 7),
genotypes clustered consistent with the subpopulations identified
in the STRUCTURE analysis. Moreover, the UPGMA cluster
analysis (Supplementary Figure 1) was consistent with the
results of the STRUCTURE analysis. The majority of European
accessions were divided into Group 1, especially accessions
from Bulgaria and Portugal (Figure 9), whereas portions of
the Asian and Middle Eastern accessions were distributed in
Groups 1 and 2, respectively. The accessions from Turkey,
Syria, Georgia, Armenia, Afghanistan, Kyrgyzstan, and Tajikistan
showed complex genetic backgrounds, which is not surprising.
The area between the Black Sea and the Caspian Sea, and just
south of this region (Iraq), is the assumed location of the center of
origin of wheat domestication and seems to be a site of population
consolidation. Chen et al. (2019) showed that Chinese wheat
accessions were mainly derived from European landraces. In the
present study, the accessions originating from China tended to
cluster with European accessions (Figure 9). The improvement
of Chinese wheat was based on hybridization programs, which
included well-adapted landraces and introduced accessions.
Furthermore, the introduction of foreign materials would
promote the genetic improvement of Chinese wheat. Italian
varieties including Villa Glori, Mentana, Funo, Abbondanza, St
2422/464, and Libellula were widely cultivated and utilized in the
Yellow and Huai River valley winter wheat region, lower and
middle Yangtze River valley winter wheat region, southwestern
winter wheat region, and northwestern spring wheat region
(Zhao et al., 2019). Varieties such as Ukraine 0246, New Ukraine,
Red Star, Kavkaz, and Aurora from the former USSR were
introduced and disseminated widely in Xinjiang (He et al., 2001).
Therefore, the exchange and utilization of germplasm worldwide
was an established way to expand the genetic basis of wheat
breeding (Zhao et al., 2019).

CONCLUSION

In this study, a GBS protocol was used to investigate the
population structure and genetic diversity of wheat accessions
originating from the Eurasian continent between the latitudes
of 30◦ and 45◦N. The panel of 180 accessions was divided into
two subgroups, which could be identified by their parentage
and selection history. Group 1 principally consisted of European
and a portion of Asian accessions, and Group 2 predominantly
comprised Middle East and a portion of Asian accessions. Groups
1 and 2 showed high values for genetic diversity indices, which
were higher for Group 2. The present results demonstrated
that the 180 accessions represent high genetic diversity and
can be used for future breeding programs to develop new

wheat cultivars with desirable characteristics such as high yield
potential, tolerance to biotic and abiotic stress, and good end-
use quality, while being well-adapted to diverse environments in
China and other countries.
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High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity.
Knowledge about the physiological and transcriptomic changes that regulate NUE, in
particular how plants cope with nitrogen (N) stress during flowering and the grain filling
period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in
different tissues and shows significant genetic variability. A comparative transcriptome
study was carried out using RNA-seq analysis to investigate the effect of nitrogen
levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second
leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were
known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs)
were identified under nitrogen stress where down-regulated DEGs were predominantly
associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and
defense response, whereas the up-regulated DEGs were associated with nucleotide
metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–
protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
analysis further revealed that highly interacted down-regulated DEGs were involved in
light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in
steroid biosynthesis under N stress. The common down-regulated genes across the
cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein
1589 of uncharacterized protein function, etc., whereas common up-regulated genes
included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein,
and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to
nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-
endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of
MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium
NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation
of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation
of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit
gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism
and proteolysis. The DEGs with high abundance in high NUE cultivar can be good
candidates to develop nitrogen stress-tolerant variety with improved NUE.

Keywords: transcriptomics, nitrogen use efficiency, Australian wheat cultivars, nitrogen stress, RNA-seq

Frontiers in Genetics | www.frontiersin.org 1 September 2020 | Volume 11 | Article 58378540

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.583785
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.583785
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.583785&domain=pdf&date_stamp=2020-09-30
https://www.frontiersin.org/articles/10.3389/fgene.2020.583785/full
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-583785 September 28, 2020 Time: 19:39 # 2

Sultana et al. Transcriptomic Study Wheat NUE Genes

INTRODUCTION

Over the past several decades, application of nitrogen fertilizer
has been a practiced way to gain optimal crop yield. N fertilizer
usage is predicted to reach 105 Tg N by 2030 and 135 Tg N by
2050 (Good et al., 2004). However, overuse of fertilizers can cause
significant environmental issues such as erosion, soil quality
depletion, and contamination of water supplies at local, regional,
and global scales (Ahmad et al., 2008; Guo et al., 2010). Thus,
it is important to develop new varieties with high nitrogen use
efficiency (NUE). A better understanding of gene expression and
regulation under nitrogen stressed conditions will help achieve
this goal. Response to nitrogen scarcity in plants is controlled
by changes in gene expression involved in different molecular
mechanisms that are mainly related to plant developmental
processes and yield (Zhang et al., 2006; Kant et al., 2011).

In particular, wheat grain production largely depends on the
provision of N fertilizer and cultivars with high N uptake and
utilization efficiency (Nyikako et al., 2014; Garnett et al., 2015;
Cormier et al., 2016; Hitz et al., 2017). The biological pathways
related to NUE are known to be strongly influenced by genetic
variation as well as environmental factors such as N availability
(Moll et al., 1982; Xu et al., 2012). Studies showed that N
limitation can negatively affect wheat growth, morphology, and
agronomic traits (Chandna and Ahmad, 2015; Curci et al., 2017;
Wen et al., 2018; Wang J. et al., 2019).

Identifying key genes to improve stress tolerance in low N
conditions is a feasible way to raise NUE. It is important to
select cultivars that have contrasting NUEs for a comparative
understanding of gene expression and regulation in response
to N stressed conditions (Hirel et al., 2007; Kant et al., 2010).
There are a number of approaches that have been undertaken
by researchers to unravel how plants adapt to stressed conditions
(Shrawat et al., 2008). In recent years, next-generation sequencing
techniques have provided opportunities to study the gene
expression and their regulations at the transcriptome level,
and they have significantly enhanced the success rate of gene
discovery (Diao et al., 2019). A number of studies also reported
on transcriptome profiling by using Illumina’s RNA-sequencing
(Dai et al., 2015). Most of the studies demonstrated how a
single genotype performed using contrasting environmental and
growth conditions. In Arabidopsis, N response-related genes
were identified using microarray analysis of gene expression
changes in response to short-term and long-term treatments for
nitrate with different concentrations (Wang et al., 2001; Price
et al., 2004). Likewise, transcriptome study on different tissues
with short-term N stress in rice also revealed a significant number
of N responsive genes (Lian et al., 2006). Transcriptome study
on long-term N stress was also reported in rice (Ym et al.,
2009). However, a comprehensive transcriptome investigation
by combining contrasting tissue, developmental stage, genotype,
and N treatment is still lacking.

Nitrogen stress has a significant impact on the overall plant
physiological process (Zhao et al., 2005) related to plant height,
dry matter, grain yield (GY), and grain protein content (GPC)
(Baligar et al., 2007; Wang W. et al., 2003). Nitrogen strongly
influences photosynthesis through a large deposition of leaf N

to ribulose bisphosphate carboxylase/oxygenase (Rubisco) and its
involvement in stomatal opening (Evans, 1989). Approximately
75% of leaf N is allocated to chloroplasts, with about 27% of this
utilized in Rubisco to ensure high photosynthetic activity (Evans,
1989; Makino, 2003). Nitrogen also influences photosynthesis via
its impact on CO2 assimilation and sugar partitioning (Drew
et al., 1989; Foyer et al., 2011; Ishikawa-Sakurai et al., 2014).
The decreased photosynthesis ultimately resulted in decreased
biomass production and yield (Poorter and Evans, 1998; Long
et al., 2006; Jin et al., 2015).

The regulation of plant photosynthetic activity is reported
to be associated with brassinosteroids (BRs), a class of steroid
hormones (Sakamoto et al., 2006; Komatsu et al., 2010). BRs are
known to regulate stress responses and play important roles in
regulating plant growth and development (Wang et al., 2012;
Zhao and Li, 2012; Hayes, 2019). Several studies in Arabidopsis
and rice showed involvement of BRs in controlling flowering,
leaf senescence, chloroplast development, plant height, tiller
numbers, and biomass, which are important agronomic traits
affecting GY (Chono et al., 2003; Mussig et al., 2003; Sakamoto
et al., 2006; Wu et al., 2008; Jeong et al., 2010). In wheat, BRs
were also reported to be involved in promoting root growth and
water stress tolerance (Hayes, 2019; Hou et al., 2019). However,
the correlation of N stress on steroid biosynthesis has not been
well studied. Thus, response to N stress is a rather complex
process, and a better understanding of genes involved in different
pathways is needed to develop stress-tolerant wheat varieties.

This study investigated three Australian bread wheat varieties,
Mace, Spitfire, and Volcani, which are known to have high,
medium, and low NUEs, respectively (Alhabbar et al., 2018b).
Since gene expression in plants is controlled in a temporal and
tissue-specific manner (Koltunow et al., 1990; Maizel and Weigel,
2004) and the N demand is subject to plant developmental
stages, the current study used different tissues at different growth
stages to unravel the broad picture of transcriptome profile with
the objectives of identifying novel genes that are differentially
expressed under long-term N stress compared to high N
treatment, and by characterizing the underlying physiological
and molecular mechanisms of tolerance to N stress.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and
Sample Collection
Three Australian wheat cultivars, Mace, Spitfire, and Volcani,
were used in this study. Plants were grown in a glasshouse
with a complete randomized block design (RCBD) including
three replicates and using pots (190 mm height × 200 mm
top diameter × 180 mm bottom diameter) without holes to
avoid leaching. Plants were grown under controlled temperature
and sunlight conditions [20/11◦C (day/night)] for an 8 h light
and 16 h dark photoperiod. The pots were watered manually
based on soil water capacity. All plants were supplied with a
basal nitrogen dose of 25 kg N ha−1 after 1 week of sowing.
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Nitrogen-free Hoagland solution1 was applied to all plants once
every 2 weeks to meet the nutrient demand of plants except N.
Two N rates—low (LN)/0 kg N ha−1 and high (HN)/100 kg N
ha−1—were applied at mid-tillering (Zadoks scale 22–25) and
booting (Z43–Z45) stages for plants considered as low and high N
treated, respectively. The timing for N applications was adjusted
according to Zadoks (Z) decimal growth stage for wheat. Flexi-
N (containing 50% urea, 25% nitrate, and 25% ammonium) was
used as a source of N because of its high N content (42.2% N).
Flexi-N was used since it contains nitrate that is directly available
to plants while the urea and the ammonium become available
more slowly, enabling a controlled release of N over an extended
period (CSBP, 2012). Times for N application, recording of
flowering time, measurement of chlorophyll content, and tissue
collection were adjusted according to each cultivar’s growth stage.
For RNA extraction, the whole flag and second leaf samples
were collected at the start of the flowering [0 days post anthesis
(DPA)], 10, 20, and 30 DPA, while the developing grains were
collected at 10, 20, and 30 DPA from the middle section of
the main head, then snap-frozen in liquid nitrogen, and then
stored at −80◦C for later RNA extraction. Anthesis dates were
estimated by the appearance of anthers on approximately 50%
of all heads. Plant height was measured from soil surface to
the top of the plant, and peduncle length was measured from
the peduncle bottom to the joint with the stem. Chlorophyll
content was measured using a handheld chlorophyll meter (IC-
CCM-200—Chlorophyll Concentration Meter CCM-200 plus).
One value per plant was taken from the flag leaf and second
leaf on the main stem at four different growth stages: flowering
(0 DPA), 10, 20, and 30 DPA. Each value was the average of
three measurements recorded from the middle of the leaves. The
main stem of each plant was individually labeled to ensure the
same leaves were always measured. All plants in a pot (main stem
plus tillers) were hand-harvested to measure yield components
and the head number per plant counted. The heads were cut off
and the seed number per head was counted. Grain samples were
oven-dried in a forced-air circulating dryer at 60◦C for 72 h. GPC
was measured by near-infrared reflectance (NIR) spectroscopy
using a FOSS NIR Systems model 5000 spinning cup. NIR data
collection used DPIRD wheat calibrations developed over many
years with the WinISI software (FOSS NIR Systems Inc., Laurel,
MD, United States).

RNA Isolation, Library Construction, and
Sequencing
Leaf and grain samples from three biological replicates were
ground in liquid nitrogen, and the total RNA was extracted using
a pre-chilled Trizol reagent (Invitrogen, Carlsbad, CA) following
the manufacturer’s directions, with some modifications. Proteins
were removed with a protein extraction buffer (1 M Tris–HCl,
5 M NaCl, 10% SDS, 0.125 M EDTA, and 1 M DTT). After
the protein removal, the acid phenol/chloroform/isopropanol
(49:49:2), Trizol, and chloroform were added sequentially for
the extraction of total RNA. Isopropanol was used for the

1https://www.bioworld.com/productinfo/3_43_288_690/126289/Hoagland-
Medium-Nitrogen-Free.html

precipitation of total RNA, which was subsequently treated
with the Qiagen DNase kit to remove potential genomic DNA
contamination. Concentration and purity were checked by
Nanodrop, with 260/280 absorbance ratios of approximately 2.0,
and the degradation and potential contamination was tested
by agarose gel electrophoresis. RNA integrity was confirmed
with an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA). The mRNA was enriched using oligo (dT) beads
and then fragmented randomly in a fragmentation buffer,
followed by cDNA synthesis using random hexamers and
reverse transcriptase. After first-strand synthesis, a custom
second-strand synthesis buffer (Illumina) was added together
with dNTPs, RNase H, and Escherichia coli polymerase I to
generate the second strand by nick-translation. The final cDNA
library was ready after a round of purification, terminal repair,
A-tailing, ligation of sequencing adapters, size selection, and PCR
enrichment. Library concentration was first estimated using a
Qubit 2.0 fluorometer (Life Technologies) and then diluted to
1 ng µl−1 before checking the insert size on an Agilent 2100
Bioanalyzer. The concentration was then quantified at greater
accuracy by quantitative PCR (Q-PCR) (library activity >2 nM).
Each library with an individual barcode was sequenced by
Illumina HiSeqTM PE125/PE150 (Illumina Inc., United States).

Transcriptome Analysis
A total of 90 different samples, including 30 each from three
cultivars, Mace, Spitfire, and Volcani, were used for RNA-
seq analysis. The samples were subjected to low and high
nitrogen treatments to study a broad range of cell responses
under nitrogen stress. For both treatment conditions, the
replicates showed a high correlation coefficient (r > 0.8) between
samples. For the RNA-seq downstream analysis, three samples
(VAScLNR3, VEScHNR1, and SEScLNR2) were excluded due
to sample quality. A total of 2070.85 million raw reads were
filtered. A total of 1963.99 million clean reads were aligned
against IWGSC RefSeq v1.0 gene models that produce 1750.09
million total mapped reads (TMRs), of which 128.89 million
were mapped to multiple sites (MMR) and 1621.21 million
were uniquely mapped. Among the TMRs, 810.66 million were
mapped with a positive strand and 810.55 million were mapped
with a negative strand (Supplementary Table 1). The average
leaf Q20, Q30, and GC (Base G + Base C) contents were 96.93,
92.31, and 57.21%, respectively. Similarly, the average grain Q20,
Q30, and GC (Base G + Base C) contents were 96.78, 92.16,
and 57.79%, respectively. For both tissues, 95% of the total reads
were filtered as cleaned reads, which confirms the fine quality
of the sequencing results. Approximately, an average of 89% of
clean reads were mapped for N-treated leaf samples, whereas
86% were mapped for grain tissue (Supplementary Table 2). For
each sample, the percent of reads mapped to exon regions was
above 90%, intron reads less than 5%, and intergenic reads less
than 3%. The distribution of mapped reads of each sample in
chromosome 3B was the highest, while the lowest reads were
mapped in chromosome 6A. The gene expression level was
measured by calculating the reads mapped to exons. Read count
was proportional to the actual expression level as well as to
the gene length and the sequencing depth. In order to make
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comparable gene expression levels estimated from different genes
and experiments, fragment per kilobase of transcript per million
mapped reads (FPKM) was used for normalization. Considering
the influence of various gene lengths and sequencing intensity,
FPKM is commonly used to make comparison of gene expression
levels among different samples.

Analysis of Differentially Expressed
Genes
For the FPKM, a value of 1.0 was set as the threshold for
determining whether a gene was expressed or not. HiSeq v0.6.1
(a Python package for high-throughput sequencing data analysis)
was used to analyze gene expression levels in this experiment
using the union mode. The correlation between samples was
justified by the square of the Pearson correlation coefficient.
The DESeq (version 1.10.1, R Bioconductor package) was used
to conduct the differential expression analysis. The normalized
data were fitted to a negative binomial generalized linear model.
The threshold of the p-value after normalization (padj, q-value)
was set as ≤0.05 for filtering accurate differentially expressed
genes (DEGs). The clustering of DEGs was analyzed based
on the FPKM value with the use of ggplot2 (version 2.1.0)
and pheatmap (version 1.0.8) (Anders and Huber, 2010, 2012;
Robinson et al., 2010; Trapnell et al., 2012). The DEGs were
identified using the functional annotations of the IWGSC RefSeq
v1.0 gene annotation.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis of DEGs
Gene ontology (GO) analysis was performed using ShinyGO
v0.612. GO with a false discovery rate (FDR) corrected at
p ≤ 0.05 was regarded as significant enrichment (Young et al.,
2010). KOBAS (version 2.03, a web server for annotation and
identification of enriched pathways and diseases, was applied for
Kyoto Encyclopedia of Genes and Genomes (KEGG4) pathway
enrichment analysis. Pathways with an FDR corrected at p≤ 0.05
were considered as significant enrichment (Mao et al., 2005;
Kanehisa et al., 2007).

Protein–Protein Interaction Analysis
To predict the interaction of DEGs at the protein level under
N stress and further confirmation of association of DEGs with
biological pathways at the protein level, deduced amino acid
sequences of DEGs were used to make a protein–protein network
using the STRING (version 11.0) tool5, a database for known
and predicted protein interactions and functional associations
predicted in common pathways. Due to the lack of detailed
annotation of the wheat protein data available in STRING, we
used two well-annotated species, rice, and Arabidopsis, as the
reference to get protein–protein interaction information of the

2http://bioinformatics.sdstate.edu/go/
3http://kobas.cbi.pku.edu.cn/
4http://www.genome.jp/kegg/
5https://string-db.org/

homologous wheat proteins. The global network graph of these
interactions was constructed using the experimentally evident
interacted proteins, and disconnected nodes (proteins) were
removed to show the advanced view of highly connected proteins.
MCL clustering using the inflation parameter 1.70 was used to
show the association of clusters in KEGG pathways.

Hierarchical Cluster Analysis
Hierarchical cluster analysis was performed using the Morpheus
package6 Complete linkage analysis was performed using the
Spearman rank correlation values.

Statistical Analysis
All data generated from the glasshouse experiments were
analyzed by SPSS (version 24). Univariate analysis of variance
(UNIANOVA) was used to determine the significance of different
factors on each agronomic trait and protein parameter. The
significant statistical difference was judged at p ≤ 0.05.

RESULTS

Agronomic Performance of Wheat
Cultivars Under Low and High Nitrogen
Conditions
Under N stress (0 Kg N/ha), most of the agronomic traits were
affected negatively in all three cultivars. In general, tiller number,
GY, and chlorophyll content were mostly affected by N stress,
whereas flowering days and GPC were less affected. A strong
variation in grain weight per plant has been observed, which
is considered as a yield component for small-scale glasshouse
experiments. Grain weight per plant was dropped by 78% in
Mace, 81% in Spitfire, and 80% in Volcani (Figure 1A) due to N
stress. Similarly, under N stress, the tiller number (Figure 1B) was
decreased by 72.4, 84.2, and 81.2%, and the chlorophyll content
of both flag leaf and leaf 2 (Figures 1C,D) were decreased by
approximately 85, 80, and 68% for Mace, Spitfire, and Volcani,
respectively. In addition, a significant reduction in plant height
(Figure 1E), main head length (Figure 1F), and spikelet number
per head (Figure 1G) has also been observed under N stress.
Flowering days (Figure 1H) were decreased by 3.2, 4.9, and 7.9%,
and the GPC (Figure 1I) decreased by 4.1, 9.3, and 29.5% in Mace,
Spitfire, and Volcani, respectively. A significant negative impact
of low N on leaf area and peduncle length has also been noticed
(Figures 1J–L). Overall, the influence of N stress on growth and
agronomic traits was variable across the cultivars, where Spitfire
and Volcani were more affected compared to Mace.

Overview of RNA-Seq Transcriptome
Profile in Response to Nitrogen Stress
A total of 12,108 DEGs in leaf tissue and 276 DEGs in grain tissue
were identified under the N stressed condition. Mace, Spitfire,
and Volcani had 699, 10,535, and 1671 DEGs in second leaf and
another 25, 252, and 16 DEGs in grain tissue, respectively. In

6https://software.broadinstitute.org/morpheus/
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FIGURE 1 | Growth and agronomic traits of Triticum aestivum cultivars (Mace, Spitfire and Volcani) under low (0N) and high (100 N) treatments. (A) grain
weight/plant (B) tiller numbers/plant (C) flag leaf chlorophyll content (D) leaf 2 chlorophyll content (E) plant height (F) main head length (G) spikelet number/head (H)
flowering days (I) grain protein percentage (J) flag leaf area (K) leaf 2 area (L) peduncle length. The values are presented as means ± standard deviation (SD) of
three independent biological repeats. Error bars were calculated from three biological replicates and one-way ANOVA was used to test for significance of nitrogen
treatment effects on different parameters at P ≤ 0.05 level. ∗, ∗∗, ∗∗∗ Significant at the 0.05, 0.01 and 0.001 probability level, respectively.

the second leaf tissue, under N stress, the total up- and down-
regulated DEGs at two different time points were variable across
the cultivars. In Mace, at 0 DPA, the down-regulated and up-
regulated DEGs were 434 and 102, respectively. At 10 DPA,
the up-regulated and down-regulated DEGs were 109 and 74,
respectively. Similarly, in Volcani, the down-regulated DEGs at
0 and 10 DPA were counted as 753 and 430, respectively, whereas
the up-regulated DEGs were 354 at 0 DPA and 261 at 10 DPA.
Cultivar Spitfire showed 536 up-regulated and 39 down-regulated
DEGs at 0 DPA, whereas it showed 6624 up-regulated and 3830
down-regulated DEGs at 10 DPA. On the other hand, in grain
tissue at 10 DPA, the down-regulated DEGs were 5, 237, and
8, while the up-regulated DEGs were 0, 15, and 8 identified in
Mace, Spitfire, and Volcani, respectively. Variation in up- and
down-regulated genes across the cultivars can be related to the
difference in their response to N stress (Figure 2).

Common DEGs Between Leaf and Grain
A total of 50 common DEGs were identified between the
second leaf and grain tissue under the N stressed condition,
of which 30 were down-regulated and 7 were up-regulated
in both tissues. Thirteen DEGs showed inconsistent up- and
down-regulation (Supplementary Table 3). Several stress-related
genes have been identified among those common DEGs with
>log2 fold change, including plasma membrane ATPase, Serine
protease HtrA-like, transcription factor AS2/LOB, etc. Several

transmembrane transport-related proteins including sulfate
transporter, glycosyltransferase, and WAT1-related protein were
also common in second leaf and grain tissues. On the
other hand, NUE-related glutamine synthetase and glutamine
dumper were significantly up-regulated in second leaf tissues
but down-regulated in the grain tissue of Volcani, indicating
their tissue-specific expression. Another gene related to amino
acid metabolism, isoaspartyl peptidase/L-asparaginase, was up-
regulated in the second leaf and grain tissue of Spitfire and
Mace, indicating non-specific tissue expression. In general,
the common down-regulating DEGs were largely involved
in carbohydrate metabolic process (chitinase, trehalose-6-
phosphate synthase) and oxidation–reduction process (aldehyde
dehydrogenase, peroxidase, methyl sterol monooxygenase 1-
2, gibberellin 20 oxidase 2, catalase). The up-regulating
common DEGs are involved in N compound metabolic process
(glutamine synthetase), sulfate transmembrane transport (sulfate
transporter), and amino acid metabolism (aminotransferase like
protein, isoaspartyl peptidase/L-asparaginase).

Common DEGs Between 0 and 10 DPA
Under N stress, some DEGs showed consistent up- or down-
regulation at both 0 and 10 DPA (Figure 3) despite the fact
that they were variable between the cultivars. For example,
in Mace, a total of 28 DEGs were commonly expressed at
both 0 and 10 DPA, and of them, 23 were down-regulated
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FIGURE 2 | Number of up- and down-regulated expressed at 0 and 10 DPA DEGs in wheat cultivars (A) Mace, (B) Spitfire, and (C) Volcani. Differentially expressed
genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

FIGURE 3 | Consistently expressed DEGs at two time points in the leaf tissue of wheat cultivars (A) Spitfire, (B) Mace, and (C) Volcani. Differentially expressed genes
(DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

and 5 were upregulated under N stress. Some of those
DEGs showed high fold change (> +2 or < −2) including
plant protein DUF1589 of uncharacterized protein function,
gibberellin receptor GID1A, catalase, a two-component response
regulator, and cytochrome P450 was down-regulated, whereas
RADIALIS-like TF, glycosyltransferase, and receptor-like protein
kinase were up-regulated. In contrast, in Spitfire, among the 310
commonly expressed DEGs at 0 and 10 DPA, 16 showed down-
regulation and 294 showed up-regulation under N stress. Among
the DEGs in Spitfire, the Dof zinc finger protein, two-component
response regulator, glycine-rich protein-A3, and calcium-
dependent protein kinase 15 were down-regulated (log2 fold
change < −4.0), and the cinnamoyl CoA reductase, receptor-
like kinase, protein kinase-like, translation initiation factor IF-2,
aspartate-tRNA ligase, and a beta-glucosidase were up-regulated
under N stress. In Volcani, a total of 127 DEGs were found to be
expressed both at 0 and 10 DPA under N stress. Of them, 86 were
down-regulated and 38 were up-regulated commonly at both

DPA, whereas three DEGs were down-regulated at 0 DPA but
up-regulated at 10 DPA. The top down-regulated DEGs included
a chlorophyll a-b binding protein, methyltransferase, endo-1,3
beta-glucanase, and plant protein DUF1589 of uncharacterized
protein function, whereas the top up-regulated DEGs included
cinnamoyl CoA reductase, MYB TF, glycosyltransferase, and
beta-glucosidase (Supplementary Table 4).

Common DEGs Among Cultivars
Venn diagram analysis was used to identify the number of
common DEGs among the cultivars (Hulsen et al., 2008). In the
second leaf tissue, down-regulated 4 DEGs at 0 and 10 DEGs
at 10 DPA whereas only 3 up-regulated DEGs at 10 DPA were
found in common. The common down-regulated DEGs were
identified as glycine-rich protein A3, calcium-dependent protein
kinase 15, etc. The common up-regulated DEGs were identified as
sulfate transporter and L-allo-threonine aldolase, which is related
to amino acid metabolism. However, in grain tissue, only two
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TABLE 1 | List of DEGs common among wheat cultivars: Mace, Spitfire, and Volcani.

Tissue Up-/down-regulation Stage Gene_id Annotation Log2 fold change

Volcani Spitfire Mace

Leaf Down 0 DPA TraesCS3A02G439500LC Glycine-rich protein A3 −5.816 −4.5188 −5.5826

TraesCS3D02G150400LC Glycine-rich protein A3 −5.4414 −3.2827 −4.9171

TraesCS4A02G245300 Protein DETOXIFICATION −6.9194 −2.5502 −4.1621

TraesCS3D02G150300LC Calcium-dependent protein kinase 15 −4.3632 −4.3883 −5.9832

Down 10 DPA TraesCS2D02G555300 ARM repeat superfamily protein −2.7152 −3.2171 −3.3102

TraesCS2D02G259200 Two-component response regulator −1.9826 −2.7094 −2.2783

TraesCS1B02G388700 Methyltransferase −6.0313 −7.4915 −4.9876

TraesCS6B02G051800 Glycerol-3-phosphate acyltransferase −2.6867 −2.1339 −2.0549

TraesCS7D02G516800 Chaperone protein dnaJ −1.8551 −3.0128 −2.0382

TraesCS3D02G144900 Protein DJ-1 −3.295 −5.0529 −3.237

TraesCS5A02G472500 Amino acid transporter, putative −4.416 −2.385 −2.4211

TraesCS2B02G277300 Two-component response regulator −2.7784 −3.5708 −2.8394

TraesCS3D02G316900LC Nucleoside triphosphatase I −4.4166 HN −4.1874

TraesCS7D02G388400 Tryptophan synthase beta chain −2.9456 −1.4694 −1.9753

Up 10 DPA TraesCS7D02G084100 Sulfate transporter 2.0942 3.4823 2.2596

TraesCS7B02G128800 Epoxide hydrolase 2 4.7394 1.3931 2.5759

TraesCS2D02G379000 L-allo-threonine aldolase 3.7648 2.4275 2.1093

Grain Down 10 DPA TraesCS2A02G194500 LOB domain-containing protein, putative −1.3364 −2.2599 −1.6826

TraesCS2D02G193400 LOB domain-containing protein −1.5747 −2.1909 −1.8922

Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

down-regulated DEGs identified across the three cultivars were
annotated as LOB-domain containing proteins (Table 1).

While considering the common DEGs between two cultivars,
in most cases, the highest number of DEGs was common
between Spitfire and Volcani among all combinations (Figure 4).
The major common down-regulated DEGs between Spitfire
and Volcani in second leaf were identified as methyltransferase,
chlorophyll a-b binding protein, methyltransferase, and
aquaporin, whereas the common up-regulated DEGs were
identified as aminotransferase, early light-induced protein, F-box
domain-containing protein, and glycosyltransferase. In grain
tissues, among the four common down-regulated DEGs between
Spitfire and Volcani, cysteine proteinase inhibitor and Ureide
permease-like protein are related to N metabolism. The top
down-regulated DEGs common between Mace and Volcani
were identified as photosystem II 10 kDa polypeptide family
proteins, chlorophyll a-b binding protein, and plant protein
DUF1589 of uncharacterized protein function, whereas plasma
membrane ATPase and glycosyltransferase were found as the
common top up-regulated DEGs. Similarly, the common top
up-regulated DEGs between Mace and Spitfire were identified as
a vacuolar-processing enzyme, a boron transporter, a nuclease S1,
and cytochrome P450 family protein, whereas down-regulated
DEGs were identified as haloacid dehalogenase-like hydrolase
(HAD) superfamily protein and thaumatin-like protein.

Gene Ontology Reflects the Function of
DEGs in Response to Nitrogen Stress
The top 10 biological process GO terms characteristic to the
DEGs are presented in Figure 5. The frequency of the GO term

is shown as percentage of the genes compared to the total gene
number related to the GO term.

In the case of the second leaf tissue, transmembrane transport
GO term appeared as the top group within up-regulated DEGs
in all three cultivars. Notably, another three top GO terms were
common in Spitfire and Volcani, which were ion transport,
lipid metabolic process, and metal ion transport, indicating
that these two cultivars have some common physiological
response mechanisms to N stress. In contrast, Mace did not
have any other top 10 GO common with either cultivar.
DNA metabolic process and organelle organization are the
next top GO terms for cultivar Mace. On the other hand,
genes showing decreased expression under N stress in Mace
second leaf tissue were mostly involved in defense response
and carbohydrate metabolic process. In Spitfire, decreasing
gene expression was largely related to photosynthesis and
light harvesting, organonitrogen compound biosynthesis process,
and small molecule biosynthetic process. Similarly, in Volcani,
genes with decreased expression patterns were also related to
photosynthesis, carbohydrate metabolic process, and response to
external stimulus.

In the grain tissue, the transmembrane transport process
GO term was the top enriched group among the up-regulated
DEGs in Mace and Spitfire. Mace also showed enrichment in
carbohydrate metabolic process and ion transport. However,
proteolysis and negative regulation of catalytic activity were
common in Spitfire and Volcani among the top 10 enriched GO
terms. Nitrogen compound transport appeared as the common
GO term in all three cultivars among the down-regulated
DEGs. Mace did not show enrichment for negative regulation of
endopeptidase activity and proteolysis like Spitfire and Volcani.
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FIGURE 4 | Venn diagrams of DEGs shared among Mace, Spitfire, and Volcani in leaf and grain tissues at two development stages. (A) The number of
down-regulated genes in leaf. (B) The number of down-regulated genes in grain. (C) The number of up-regulated genes in leaf. (D) The number of up-regulated
genes in grain. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

However, in Mace and Spitfire, glycolysis process was the top
enriched down-regulated GO term.

KEGG Analysis Spanned Function of
DEGs in Response to Nitrogen Stress
Using the well-annotated rice genome as a reference, KEGG
pathway enrichment analysis identified significantly enriched
metabolic pathways and signal transduction pathways associated
with DEGs. The top 20 most significantly enriched pathways
were selected to produce the KEGG scatter plot (Supplementary
Figure 1). Results for the KEGG pathway terms that were
significant at adjusted p-value q-≤0.5 are shown in Tables 2, 3
for second leaf and grain, respectively. Under N stress, a total
of 41 KEGG pathway terms were significantly associated with
12,108 DEGs in the second leaf, and 14 KEGG pathway terms
were associated with 276 DEGs in the grain tissue. Among
the 41 significant KEGG terms for the second leaf tissue, 3,
15, and 6 KEGG terms were specific to Mace, Spitfire, and
Volcani, respectively, whereas one KEGG term was common
between Mace and Spitfire, six KEGG terms between Mace and
Volcani, and five KEGG terms between Spitfire and Volcani
(Table 2). There were five KEGG terms common in all three
cultivars under N stress, namely, phenylpropanoid biosynthesis,

biosynthesis of secondary metabolites, flavonoid biosynthesis,
metabolic pathways, and starch and sucrose metabolism. Among
the 14 significant KEGG terms associated with DEGs in grain,
eight, four, and one KEGG terms were specific to Mace, Spitfire,
and Volcani, respectively (Table 3). The DEGs in the grain of
all three cultivars were commonly associated with the KEGG
pathway term glycolysis/gluconeogenesis. Among the significant
KEGG terms for DEGs in the second leaf, zeatin biosynthesis,
arginine and proline metabolism, and sulfur metabolism were
specific to Mace, with terms like plant–pathogen interaction,
photosynthesis, pentose phosphate pathway, porphyrin, and
chlorophyll metabolism specific to Spitfire and beta-alanine
metabolism, tryptophan metabolism, ubiquinone, and other
terpenoid-quinone biosynthesis pathways found only in
DEGs of Volcani. In the grain tissue, the KEGG pathways
specific to Mace were glycerolipid metabolism, sphingolipid
metabolism, porphyrin and chlorophyll metabolism, and
galactose metabolism, whereas the pathways specific to Spitfire
were alanine, aspartate and glutamate metabolism, glycine,
serine, and threonine metabolism, and ribosome biogenesis in
eukaryotes. The pathways specific to Volcani were cysteine and
methionine metabolism. In addition, some KEGG pathways
were common between two cultivars only, e.g., Mace and Spitfire
had a MAPK signaling pathway common in the second leaf
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FIGURE 5 | Top biological process GO terms in leaf and grain tissue of wheat cultivars (A) Mace, (B) Spitfire, and (C) Volcani. The frequency of the GO term is
shown as percentage of the genes related to the GO term. GO, gene ontology.

and glycolysis/gluconeogenesis common in the grain tissue. The
KEGG terms common in Mace and Volcani included glutathione
metabolism, galactose metabolism, and ABC transporters,
whereas biosynthesis of amino acids, photosynthesis–antenna
proteins, and circadian rhythm–plant pathways were common
between Spitfire and Volcani.

Protein–Protein Interaction Network
Analysis of DEGs
MCL clustering using the inflation parameter 1.70 was used to
show the association of clusters in KEGG pathways (Figures 6, 7).
Networks showed that a large number of proteins were involved
in multiple interactions and grouped into seven major clusters.

Among the seven clusters, two large clusters were enriched
in photosynthesis and steroid biosynthesis. All the interacting
DEGs identified as photosynthesis-related, and photosynthesis
antenna proteins were down-regulated while some DEGs
related to steroid biosynthesis were up- or down-regulated.
Among the other clusters, the majority of down-regulated
DEGs were involved in carbohydrate metabolism, amino sugar,
and nucleotide metabolism, whereas up-regulated DEGs were
mostly related to amino acid metabolism and signaling. In
the biosynthesis of secondary metabolites, both the up- and
down-regulated DEGs were involved. Overall, the number of
down-regulated DEGs was higher in the network and was mainly
involved in photosynthesis and photosynthesis-antenna proteins.
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TABLE 2 | Significantly (adjusted p-value ≤ 0.5) enriched KEGG pathways in
Mace, Spitfire, and Volcani under nitrogen stress in second leaf tissue.

Cultivar KEGG pathway KEGG id

Mace Zeatin biosynthesis osa00908

Arginine and proline metabolism osa00330

Sulfur metabolism osa00920

Spitfire Plant–pathogen interaction osa04626

Carbon metabolism osa01200

Glyoxylate and dicarboxylate metabolism osa00630

Photosynthesis osa00195

Glycine, serine, and threonine metabolism osa00260

Carbon fixation in photosynthetic organisms osa00710

Glycolysis/gluconeogenesis osa00010

Fructose and mannose metabolism osa00051

Alanine, aspartate, and glutamate
metabolism

osa00250

Taurine and hypotaurine metabolism osa00430

Pentose phosphate pathway osa00030

One carbon pool by folate osa00670

Porphyrin and chlorophyll metabolism osa00860

Histidine metabolism osa00340

Ascorbate and aldarate metabolism osa00053

Volcani Beta-alanine metabolism osa00410

Terpenoid backbone biosynthesis osa00900

Ubiquinone and other terpenoid-quinone
biosynthesis

osa00130

Tryptophan metabolism osa00380

Butanoate metabolism osa00400

Phenylalanine, tyrosine, and tryptophan
biosynthesis

osa00651

Mace–Spitfire MAPK signaling pathway—plant osa4016

Mace–Volcani Stilbenoid, diarylheptanoid, and gingerol
biosynthesis

osa00945

Plant hormone signal transduction osa04075

Phenylalanine metabolism osa00360

Galactose metabolism osa00052

ABC transporters osa02010

Glutathione metabolism osa00480

Spitfire–Volcani Biosynthesis of amino acids osa01230

Photosynthesis-antenna proteins osa00196

Circadian rhythm—plant osa04712

Cyanoamino acid metabolism osa00460

Cysteine and methionine metabolism osa00270

Mace–Spitfire–Volcani Phenylpropanoid biosynthesis osa00940

Biosynthesis of secondary metabolites osa01110

Flavonoid biosynthesis osa00941

Metabolic pathways osa01100

Starch and sucrose metabolism osa00500

Identification of Nitrogen
Metabolism-Related Genes in Response
to Nitrogen Stress
N metabolism is a vital biological process in plants that
determines crop productivity and yield (Stitt et al., 2002; Cai
et al., 2009). The DEGs involved in N uptake, transport, and

TABLE 3 | Significantly (adjusted p-value ≤ 0.5) enriched KEGG pathway in Mace,
Spitfire, and Volcani under nitrogen stress in grain tissue.

Cultivar KEGG pathway KEGG id

Mace Galactose metabolism osa00052

Oxidative phosphorylation osa00190

Glycerolipid metabolism osa00561

Sphingolipid metabolism osa00600

Glycosphingolipid biosynthesis—globo series osa00603

Porphyrin and chlorophyll metabolism osa00860

Biosynthesis of secondary metabolites osa01110

RNA degradation osa03018

Spitfire Alanine, aspartate, and glutamate metabolism osa00250

Alanine, aspartate, and glutamate metabolism osa00250

Glycine, serine, and threonine metabolism osa00260

Ribosome biogenesis in eukaryotes osa03008

Volcani Cysteine and methionine metabolism osa00270

Mace–Spitfire Glycolysis/gluconeogenesis osa00010

assimilation were listed separately and are presented in Table 4.
Most of the N metabolism-related DEGs showed up-regulation
under N stress. Among the most significant DEGs (fold change
>2.0), 65% were up-regulated and 35% were down-regulated
(Table 5). Spitfire showed abundancy for N metabolism-related
DEGs compared to Mace and Volcani. The top up-regulated
N metabolism-related DEGs included amino acid permease,
glutamate dehydrogenase, low-affinity nitrate transporter protein
NRT1/PTR family 1.1, tyrosine aminotransferase, and high-
affinity nitrate transporter, whereas the top down-regulated
DEGs included amino acid transporter family protein, nitrate
transporter 1.1, nitrate transporter 1.2, nitrate reductase, and
tryptophan aminotransferase. Spitfire showed the most induction
ratio for protein NRT1/PTR FAMILY 1.1 (log2 fold change
6.4) and tyrosine aminotransferase (log2 fold change 5.74).
Mace showed up-regulation of cationic amino acid transporter
and down-regulation of amino acid transporter family proteins,
amino acid permease, and protein NRT1/PTR FAMILY 1.1.
Volcani showed up-regulation of amino acid permease, nitrate
transporter protein NRT1/PTR FAMILY 5.5, and ammonium
transporter and down-regulation of isoaspartyl peptidase/L-
asparaginase, nitrate transporter 1.1 and 1.2, and tryptophan
aminotransferase.

Identification of Common Nitrogen
Stress-Responsive Genes Across the
Cultivars
Identification of the common DEGs between two N treatments
included genes from 6 pair comparisons (2 developmental
stages × 3 cultivars) for leaf and 3 pair comparisons (1
developmental stage × 3 cultivars) for grain tissue. In
the second leaf, a total of 14 up-regulated and 42 down-
regulated DEGs were identified that were common in all three
cultivars (Tables 6, 7). Among the 14 up-regulated common
DEGs, aldo/keto reductase family protein, nuclease S1, alcohol
dehydrogenase, putative, placenta-specific8 (PLAC8) family
protein, and sulfate transporter showed relatively high (log2) fold
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FIGURE 6 | Protein–protein interaction network analysis of DEGs under N stress using Oryza sativa as reference. The different highlighted color indicates the
different clusters of DEGs involved in different KEGG pathways. Differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG).

FIGURE 7 | Protein–protein interaction network analysis of DEGs under N stress using Arabidopsis thaliana as reference. The different highlighted color indicates the
different clusters of DEGs involved in different KEGG pathways. Differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG).
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TABLE 4 | Differentially expressed genes (DEGs) involved in nitrogen uptake, transport, and assimilation.

Name NUE class DEG count (current study) NUE related effect Host References

AAT Amino acid transporter 57 Important for early seed development Arabidopsis Schmidt et al., 2007

AMT Ammonium transporter 5 Enhanced ammonium permeability
improves growth and yield

Rice Ranathunge et al., 2014

CAT Cationic amino acid transporter 12 Involved in intracellular amino acid
storage and mobilization

Arabidopsis Yang H. et al., 2015

CLC Chloride channel protein 14 Enhanced N assimilation and
tolerance to stress

Oilseed rape Liao et al., 2018

LHT Lysine/histidine transporter 1 Disruption of LHT lead to growth
inhibition and low yield

Rice Wang X. et al., 2019

NRT Nitrate transporter 36 Suppression of
NO−3 -starvation-induced leaf
senescence

Arabidopsis Meng et al., 2016

OPT Oligopeptide transporter 5 Essential for embryo development Arabidopsis Stacey et al., 2002

AGT Alanine: glyoxylate aminotransferase 2 Catalyze transamination reaction in
peroxisome

Arabidopsis Liepman and Olsen, 2001

ASN Asparagine synthetase 1 Regulation of plant development and
tiller outgrowth

Rice Lu et al., 2018

AspAT Aspartate aminotransferase 5 Overexpression related to increase
amino acid content in seed

Rice Zhou et al., 2009

GDH Glutamate dehydrogenase 3 Played important role in nitrogen
metabolism and plant growth, and
grain yield

Rice Abiko et al., 2010

GOGAT Glutamate synthase 3 Increased ammonium assimilation in
root

Arabidopsis Konishi et al., 2014

GS Glutamine synthetase 7 Knockdown negatively affect plant
growth, spikelet no., grain weight

Rice Tabuchi et al., 2005

NR Nitrate reductase 2 Increase lateral root formation under
partial nitrate nutrition

Rice Sun et al., 2015

NiR Nitrite reductase 3 Increased nitrite assimilation Arabidopsis Takahashi et al., 2001

TS Threonine synthase 3 Inhibition related to high methionine
biosynthesis

Potato Zeh et al., 2001

TrP Tryptophan aminotransferase 3 Improved grain yield Wheat Shao et al., 2017

TAT Tyrosine aminotransferase 1 Differentially expressed between low
and high nitrogen treatments

Wheat Current study

GDU Glutamine dumper 2 Involved in export of amino acids Arabidopsis Pilot et al., 2004

change. Eight of the 42 down-regulated DEGs in the leaf tissue
showed high log2 fold change, including 3 photosystem II 10 kDa
polypeptide family protein, 2 methyltransferases, chlorophyll a-b
binding protein, cytoplasmic dynein 2 heavy chain 1, and plant
protein 1589 of uncharacterized protein function. However, the
only two down-regulated DEGs were commonly expressed in
the grain tissue involved LOB domain-containing proteins. These
common genes can be considered important N responsive genes.

To reveal the high N responsive genes, the top 10 up-
regulated and top 10 down-regulated DEGs were selected in
three cultivars. The log2 fold change value of each group is
shown in Supplementary Tables 5, 6 for the second leaf and
Supplementary Tables 7, 8 for grain. In the second leaf tissue, the
stress-associated glutathione S-transferase (GST), RADIALIS-
like TF, and plasma membrane ATPase were the most N
responsive up-regulated DEGs in Mace. In Spitfire, the top N
responsive up-regulated DEGs were isocitrate lyase, laccase, and
11S globulin seed storage protein 2 related to carbon metabolism,
lignin metabolism, and nutrient reservoir, respectively, whereas
in Volcani, 1-phosphatidylinositol-3-phosphate 5-kinase,

caleosin, protein transport protein Sec61 subunit gamma, and
elongation factor G have appeared on top. In the grain tissue, the
top up-regulated DEGs in Mace were isoaspartyl peptidase/L-
asparaginase, plasma membrane ATPase, and trypsin family
protein. The up-regulated DEGs in Spitfire showing high
responsiveness to N stress were mainly N metabolism-related
and aminotransferase like protein and aspartic proteinase
nepenthesin, whereas in Volcani, invertase/pectin methyl
esterase inhibitor family protein, cysteine proteinase inhibitor,
and glycosyltransferase that is mainly associated with proteolysis
and negative regulation of proton export across plasma
membrane were found more prominent. There was a prevalence
of defense-related down-regulated DEGs detected in the second
leaf tissue of Mace, whereas photosynthesis-related DEGs were
abundant in both Spitfire and Volcani. In the grain tissue of
Mace, Spitfire, and Volcani, the down-regulated DEGs were
predominantly related to proteolysis and N metabolism.

To select the genes that can be related to the tolerance to
N starvation in high NUE cultivars, further analysis was done
for the top genes using hierarchical clustering (see footnote 6).
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TABLE 5 | Up- and down-regulated nitrogen metabolism-related DEGs identified under nitrogen stress in three wheat cultivars (Mace, Spitfire, and Volcani).

Gene id Annotation Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

TraesCS3D02G402300 Amino acid permease 2.1348

TraesCS3D02G219200 Amino acid permease 2.1584 2.4518

TraesCS3A02G407000 Amino acid permease 2.2959

TraesCS7B02G093200 Amino acid permease 2.4131

TraesCS6B02G314200 Amino acid permease 2.4322 2.662

TraesCS7A02G188200 Amino acid permease 2.9323

TraesCS6A02G285300 Amino acid permease 3.162 3.1234

TraesCS3B02G441100 Amino acid permease 4.0062 3.2429

TraesCS7D02G189000 Amino acid permease 3.4394

TraesCS2D02G304300 Amino acid permease 4.126

TraesCS2A02G305900 Amino acid permease 4.4484

TraesCS3A02G406800 Amino acid permease 4.9359

TraesCS3A02G388000 Amino acid permease 2.535 3.2765

TraesCS3D02G381500 Amino acid permease 2.2199

TraesCS1D02G264700 Amino acid permease −2.9099

TraesCS3D02G479700 Amino acid permease −2.5016

TraesCS3D02G381400 Amino acid permease −2.0337

TraesCS3D02G229500 Amino acid transporter family protein 3.5398

TraesCSU02G023100 Amino acid transporter family protein −4.7472 −5.0356

TraesCS6B02G382000 Amino acid transporter family protein −1.6934 −2.0961

TraesCS6D02G331400 Amino acid transporter family protein −4.2987 1.4516

TraesCS2B02G065200 Amino acid transporter family protein −4.3865

TraesCS7A02G312800 Amino acid transporter, putative 2.4193 1.9703

TraesCS7D02G309200 Amino acid transporter, putative 2.4433

TraesCS3D02G363200 Amino acid transporter, putative 2.849

TraesCS7B02G212500 Amino acid transporter, putative 2.9047

TraesCS7D02G309400 Amino acid transporter, putative 2.9901

TraesCS7B02G213000 Amino acid transporter, putative 2.9956

TraesCS5A02G472600 Amino acid transporter, putative 3.2717 2.3759

TraesCS3A02G370300 Amino acid transporter, putative 3.3707

TraesCS2D02G595500 Amino acid transporter, putative Inf

TraesCS5A02G472500 Amino acid transporter, putative −2.7256 −2.4211 −2.385 −4.416

TraesCS5D02G485100 Amino acid transporter, putative −2.8538

TraesCS3B02G031700 Amino acid transporter, putative −2.6345

TraesCS5D02G180000 Amino acid transporter, putative −4.5107

TraesCS4A02G352900 Ammonium transporter 2.7949 2.1202

TraesCS5D02G519400 Ammonium transporter 3.0723 2.6766

TraesCS5B02G520200 Ammonium transporter 3.4314

TraesCS2A02G035700 Arginase 2.4832

TraesCS5D02G134500 Cationic amino acid transporter 2.7066 2.1466

TraesCS5A02G126900 Cationic amino acid transporter 2.3413 3.0414

TraesCS5B02G126000 Cationic amino acid transporter 2.7743 3.1056

TraesCS5D02G031800 Cationic amino acid transporter, putative 2.0679

TraesCS5A02G025400 Cationic amino acid transporter, putative 2.3862

TraesCS5A02G375600 Cationic amino acid transporter, putative 3.2084

TraesCS2A02G389900 Glutamate dehydrogenase 3.1899

TraesCS2D02G388800 Glutamate dehydrogenase 3.7682

TraesCS2B02G409300 Glutamate dehydrogenase 4.1625

TraesCS4A02G063800 Glutamine synthetase 2.0725

TraesCS4B02G240900 Glutamine synthetase 2.2295

TraesCS6D02G065600 Glutamine synthetase, putative, expressed −2.0463

(Continued)
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TABLE 5 | Continued

Gene id Annotation Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

TraesCS2A02G186400 GMP synthase (glutamine-hydrolyzing) 2.7531

TraesCS6D02G193200 High affinity nitrate transporter 3.0699

TraesCS3D02G067500 Isoaspartyl peptidase/L-asparaginase 2.3634 −1.7908

TraesCS3B02G088700LC Nitrate reductase (NADH) 1 −3.1147

TraesCS3B02G218400LC Nitrate transporter 1 −2.3208

TraesCS7B02G201900 Nitrate transporter 1.1 2.3595

TraesCS1D02G032700 Nitrate transporter 1.1 −2.9002 −2.8223

TraesCS1D02G214300 Nitrate transporter 1.1 −2.4916 −2.4339

TraesCS1A02G211000 Nitrate transporter 1.1 −3.7814 −2.7462

TraesCS1B02G225000 Nitrate transporter 1.1 −2.4696 −2.9974

TraesCS7D02G357300 Nitrate transporter 1.2 2.3233

TraesCS5D02G067100 Nitrate transporter 1.2 −3.2591 −3.852

TraesCS6B02G364600 Nitrite reductase −2.0746

TraesCS5D02G012500 NRT1/PTR family protein 2.2 2.2733

TraesCS4A02G283900 NRT1/PTR family protein 2.2 2.2821

TraesCS5B02G039100 NRT1/PTR family protein 2.2 −2.6357

TraesCS1D02G256700 Protein NRT1/PTR FAMILY 1.1 6.4103

TraesCS7A02G206400 Protein NRT1/PTR FAMILY 1.1 −2.8104 1.0641

TraesCS6D02G260500 Protein NRT1/PTR FAMILY 5.1 2.4435

TraesCS3D02G375800 Protein NRT1/PTR FAMILY 5.5 2.8288 3.6607

TraesCS3A02G382400 Protein NRT1/PTR FAMILY 5.5 −2.735

TraesCS3D02G375200 Protein NRT1/PTR FAMILY 5.5 −2.3129

TraesCS3D02G375500 Protein NRT1/PTR FAMILY 5.5 −2.2639

TraesCS5D02G498700 Protein NRT1/PTR FAMILY 5.5 −2.2198

TraesCS3A02G382900 Protein NRT1/PTR FAMILY 5.5 −2.3531

TraesCS3D02G093300 Tryptophan aminotransferase −3.4654 −2.4512

TraesCS3A02G093000 Tryptophan aminotransferase −3.1087 −3.515

TraesCS3D02G246700 Tryptophan aminotransferase 2.0486

TraesCS6D02G512700LC Tyrosine aminotransferase 5.7401

The green highlighted values stand for expressional change strength when log2 fold change >2.0 whereas brown when log2 fold change < −2.0. The intensity of color
increases with the increase in degree strength. Inf is an indication of differential up-regulation strength when the respective gene only expressed at low N condition.
Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

The top genes that showed high read count at low N in a high
NUE cultivar (Mace) can be related to its tolerance to N stress.
In the second leaf tissue, the top up-regulated DEGs with high
abundance were principally identified as RADIALIS-like TFs,
GST, and PLAC8 family protein (Figure 8). Similarly, in the
grain tissue, plasma membrane ATPase, isoaspartyl peptidase/L-
asparaginase, and alpha-galactosidase were identified as the top
up-regulated DEGs expressed abundantly in high NUE cultivar
Mace (Figure 9).

DISCUSSION

To improve NUE, it is important to understand the plant
response to N treatments, especially to N limitation at both
physiological and transcriptome levels. Targeting improved GPC
and GY, the present study aimed to explore the transcriptome
response of wheat to long-term N stress and identify potential
candidate genes that are differentially expressed with high relative

abundance across different genotypes in common. According to
previous study, the GY of Mace is higher than those of Spitfire
and Volcani, whereas the GPC of Mace is relatively lower than
those of Spitfire and Volcani. It was also reported that the GY
and GPC of Spitfire are affected more negatively under N-limiting
conditions (Alhabbar et al., 2018a). Thus, it is important to
unravel the underlying genes that can contribute to N stress
tolerance for further genetic manipulation study.

Inadequate supply of N negatively affects plant morphology,
limits growth, and decreases biomass in wheat (van der Werf
et al., 1993). Most plants exhibit prominent changes in their
growth and development under N-stressed conditions. Previous
studies reported that adaptations of plants with nutrient-stressed
conditions are mainly dependent on morphological changes
(Wang J. et al., 2019; Zhao et al., 2005). The results of this study
also confirmed that low N stress inhibited wheat growth, with
significant negative impact on different phenotypes (Figure 1).
These results were consistent with the N stress studies in
wheat (Curci et al., 2017), sorghum (Gelli et al., 2014), corn
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TABLE 6 | Top common up-regulated DEGs identified among wheat cultivars Mace, Spitfire, and Volcani under nitrogen stress.

Tissue Gene ID Gene description Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

Leaf TraesCS2B02G356100 Aldo/keto reductase family protein 3.6628 6.9364 3.5198

TraesCS2D02G507800 Nuclease S1 3.4537 5.5328 5.7459 5.7088

TraesCS6A02G369800 Alcohol dehydrogenase, putative 2.7501 2.5822 2.9478

TraesCS6B02G406000 Alcohol dehydrogenase, putative 1.6613 2.579 2.2855

TraesCS6B02G406300 Alcohol dehydrogenase, putative 3.37 3.7911 4.8851

TraesCS6D02G353300 Alcohol dehydrogenase, putative 2.2798 1.7571 3.9739

TraesCS7B02G128800 Epoxide hydrolase 2 2.5759 1.3931 4.7394

TraesCS7D02G488800 Fatty acid hydroxylase superfamily 1.998 2.1748 3.9123

TraesCS3A02G276800 Glutamate carboxypeptidase 2 2.2004 2.5489 1.6163 4.0203

TraesCS3B02G311000 Glutamate carboxypeptidase 2 2.1156 3.2494 1.6598 4.6158

TraesCS2D02G379000 L-allo-threonine aldolase 2.1093 2.4275 3.7648

TraesCS3D02G496500 PLAC8 family protein 3.5915 2.1039 3.3148

TraesCS7D02G084100 Sulfate transporter 2.2596 3.4823 2.0942

TraesCSU02G455900LC Zinc finger CCCH domain-containing protein 8 1.9752 2.731 2.0028

The green highlighted values stand for expressional change in strength when log2 fold change >2.0. The intensity of color increases with an increase in the degree of
strength. No common up-regulated DEGs among the three cultivars were found in grain tissue. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA),
10 days post anthesis (10 DPA).

(Jin et al., 2015), and rice (Sinha et al., 2018). In Mace, GY and
GPC were less affected by N stress compared to those in Spitfire
and Volcani in glasshouse conditions, although under high N
conditions, the GPC of Spitfire and Volcani was higher than
that of Mace. In agreement with the previous study (Alhabbar
et al., 2018b), this study further confirms that Mace is more
tolerant of N stress. It was reported that the GY in maize
was decreased by 38% with the change in N treatment from
high to low (Gallais and Hirel, 2004), which can be associated
with the interrupted synthesis of chlorophyll and photosynthesis
performance (McCullough et al., 1994). Many studies also
reported the influence of hormones and N metabolism- and
nutrient stress-related genes on agronomic traits (Singh et al.,
1973; Cai et al., 2009). Thus, it is predicted that under a N stress
condition, many genes involved in different biological pathways
are cross-talking in mitigating the adverse effect of stress instead
of a single factor. However, the GPC and the number of days to
flower were less affected by N stress, which explains that these
parameters can be rather controlled by genotype.

Under N stress, the genes that expressed differentially were
mostly leaf specific compared to grain. Also, the DEGs in the
leaf were related to versatile functions, whereas a significant
percentage of DEGs in the grain were related to transport and
N metabolism. The 50 common DEGs between the second
leaf and grain identified were mostly related to defense, amino
acid metabolism, N metabolism, carbohydrate metabolism, and
sulfate transport. It is known that in the plastid of the leaf,
sulfate is converted to sulfide using the reducing power of
photosynthesis and incorporated into amino acids that later
remobilize to developing seeds (Gallardo et al., 2014; Jobe et al.,
2019). Developing seeds requires sulfur amino acids to synthesize
storage protein to secure germination for the next generation
(Leustek et al., 2000; Saito, 2000). DEG analysis also showed a
higher number of DEGs in Spitfire (10,535 in the second leaf

and 252 in grain) in comparison to Volcani (1671 in the second
leaf and 16 in grain) and Mace (699 in the second leaf and 25
in grain), which indicates that under N stress, Spitfire responds
more actively, and that involves more signaling pathways than
Volcani and Mace. Spitfire responded to N stress mostly by
up-regulating, whereas Mace and Volcani responded by down-
regulating the DEGs.

Precedence of any biological processes at a particular
developmental stage is correlated with the changes in the
expression pattern of corresponding genes involved. GO
enrichment analysis is an effective method to understand the
key biological processes participating in adapting stress. For
instance, a N starvation study in durum wheat reported N
compound metabolism, carbon metabolism, and photosynthesis
as the top enriched biological processes (Curci et al., 2017).
The oxidation–reduction process and metabolic process were top
enriched biological processes in wheat seedlings in response to
N limitation (Wang J. et al., 2019). The top enriched biological
processes in rice have been reported to be associated with
metabolic processes, cellular processes, and transport under
N-starved conditions (Yang S. Y. et al., 2015). This study
showed that the up-regulated DEGs were mainly associated
with transmembrane transport, whereas the down-regulated
DEGs were mainly associated with metabolic process and stress
response, which supports that during grain filling, the plant
increases its overall remobilization through protein degradation
and transport (McCullough et al., 1994; Masclaux-Daubresse
et al., 2008). Significant up-regulation of transmembrane
transport, nitrogenous compound transport, and proteolysis was
common in all three cultivars (Figure 5). However, in Mace,
a greater percentage of up-regulated DEGs were related to
DNA conformation change and sulfate assimilation, whereas
in Spitfire and Volcani, DEGs were highly significant in the
lipid metabolic process. The up-regulation of DNA metabolic
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TABLE 7 | Top common down-regulated DEGs identified among wheat cultivars Mace, Spitfire, and Volcani under nitrogen stress.

Tissue Gene ID Gene description Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

Leaf TraesCS5A02G472500 Amino acid transporter, putative −2.7256 −2.4211 −2.385 −4.416

TraesCS4B02G363700 Apyrase −2.0965 −2.7293 −4.2829 −2.2361

TraesCS2D02G555300 ARM repeat superfamily protein −3.0653 −3.3102 −3.2171 −3.5676 −2.7152

TraesCS3B02G191100 Branched-chain amino acid
aminotransferase-like

−3.3945 −2.6334 −5.7474

TraesCS7A02G068600 Caffeoyl-CoA O-methyltransferase −3.0217 −4.6356 −2.7735

TraesCS3D02G150300LC calcium-dependent protein kinase 15 −5.9832 −4.3883 −4.219 −4.3632

TraesCS7D02G450300LC CASP-like protein −2.5774 −2.4122 −3.3004

TraesCS6D02G048300 Catalase −3.7606 −1.9888 −2.5888

TraesCS6B02G056800 Catalase −5.2287 −2.4917 −2.5875

TraesCS7D02G516800 Chaperone protein dnaJ −2.0382 −3.0128 −1.8551

TraesCS5D02G464800 Chlorophyll a-b binding protein, chloroplastic −7.1186 −6.6902 −7.2124 −5.7018

TraesCS5A02G350600 Chlorophyll a-b binding protein, chloroplastic −2.0693 −3.4473 −2.5948 −2.6866

TraesCS5B02G353200 Chlorophyll a-b binding protein, chloroplastic −1.7397 −4.9486 −4.2498

TraesCS5D02G357600 Chlorophyll a-b binding protein, chloroplastic −2.4064 −3.6449 −2.6951 −3.6498

TraesCS4A02G099000 Cysteine-rich receptor-kinase-like protein −2.7975 −2.3484 −5.2356

TraesCS7A02G271200 Cytochrome P450 family protein −1.6183 −2.1064 −1.9589

TraesCS7B02G455000 Cytokinin oxidase/dehydrogenase −2.4797 −3.452 −2.9646

TraesCS2B02G336700 Cytoplasmic dynein 2 heavy chain 1 −5.165 HN HN

TraesCS2A02G143200 Gibberellin receptor GID1A −5.7235 −4.3087 −2.9138 −5.0713

TraesCS2D02G146500 Gibberellin receptor GID1A −2.5369 −1.8515 −2.4214 −3.4673

TraesCS3B02G022900 Glutamate decarboxylase −2.0427 −2.9517 −2.1619

TraesCS6B02G051800 Glycerol-3-phosphate acyltransferase −2.0549 −2.1339 −3.2053 −2.6867

TraesCS3A02G439500LC Glycine-rich protein A3 −5.5826 −4.5188 −5.2864 −5.816 −3.8105

TraesCS3D02G150400LC Glycine-rich protein A3 −4.9171 −3.2827 −5.2365 −5.4414 −4.3841

TraesCS1D02G375700 Methyltransferase −3.0195 −6.6682 −7.8387 −6.7881

TraesCS1B02G388700 Methyltransferase −4.9876 −7.4915 −8.3664 −6.0313

TraesCS2D02G258800 N-succinylglutamate 5-semialdehyde
dehydrogenase

−2.3577 −2.3847 −2.5793

TraesCS3D02G316900LC Nucleoside triphosphatase I −4.1874 HN −4.6189 −4.4166

TraesCS6B02G412100 Photosystem II 10 kDa polypeptide family
protein

−8.0008 −8.3988 −11.599

TraesCS6D02G358900 Photosystem II 10 kDa polypeptide family
protein

−7.9982 −8.6648 −10.592

TraesCS6A02G374400 Photosystem II 10 kDa polypeptide family
protein

−8.3938 −7.2319 −8.4213

TraesCS4D02G203800 Plant protein 1589 of uncharacterized protein
function

−6.9524 HN HN HN

TraesCS1D02G286100 Plant protein 1589 of uncharacterized protein
function

−4.1266 −3.3077 −4.1694 −4.9212

TraesCS1A02G287200 Plant protein 1589 of uncharacterized protein
function

−2.8192 −2.7703 −3.9601 −4.9727

TraesCS4A02G245300 Protein DETOXIFICATION −4.1621 −2.5502 −6.7866 −6.9194

TraesCS3D02G144900 Protein DJ-1 −3.237 −5.0529 −3.295

TraesCS7B02G454000 RNAse THREE-like protein 3 −2.1126 −2.2225 −1.9664

TraesCS5A02G018000 Thaumatin-like protein −2.6156 −2.7996 −4.5464 −4.4694

TraesCS7D02G388400 Tryptophan synthase beta chain −2.7685 −1.9753 −1.4694 −3.3613 −2.9456

TraesCS2B02G277300 Two-component response regulator −2.8394 −3.5708 −2.7784

TraesCS2D02G259200 Two-component response regulator −2.4252 −2.2783 −2.7094 −1.9826

TraesCS1B02G196200 U-box domain-containing protein 4 −1.8516 −1.8029 −3.0021

Grain TraesCS2D02G193400 LOB domain-containing protein −1.8922 −2.1909 −1.5747

TraesCS2A02G194500 LOB domain-containing protein, putative −1.6826 −2.2599 −1.3364

The brown highlighted values stand for expressional change in strength when log2 fold change < −2.0. The intensity of color increases with an increase in the degree of
strength. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).
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FIGURE 8 | Hierarchical clustering of top up-regulated DEGs in leaf tissue. The green bracketed genes are the highly expressed up-regulated genes in high NUE
wheat cultivar Mace. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

process in Mace can be related to epigenetic change, which
underlies its stability under N stress conditions. A long-
term primed state of the epigenetic mechanism involves DNA
conformation change such as change in chromatin structure,
variation in composition and position of the nucleosome, and
post-transcriptional modification to cope more efficiently with

the subsequent stress (Chinnusamy and Zhu, 2009). Also, the
increase in sulfate assimilation in Mace can be related to the
synthesis of proteins rich in S-containing amino acids such as
glutathione, which is a major component of the stress response
(Yamaguchi et al., 1999; Kopriva and Rennenberg, 2004). In
Spitfire and Volcani, the increase in lipid metabolism can be
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FIGURE 9 | Hierarchical clustering of top up-regulated DEGs in grain tissue. The green bracketed genes are the highly expressed down-regulated genes in high NUE
wheat cultivar Mace. Differentially expressed genes (DEGs).

related to senescence (Xiao and Chye, 2011). It was reported
that, during senescence, synthesis of phytyl-ester synthase is
induced, which is associated with the synthesis of triglycerol
and phytyl-esters of plastid fatty acids (Xiao and Chye, 2011;
Troncoso-Ponce et al., 2013). In contrast to the up-regulated
DEGs, a higher percentage of down-regulated DEGs in Mace
were significantly related to the cellular catabolic process, which
is known to be related to plant biotic and abiotic stress response
(Tavladoraki et al., 2012), whereas in Spitfire and Volcani, the
DEGs were more abundant in photosynthesis. The significantly
decreased expression of photosynthesis-related DEGs can be
related to decreased grain weight per plant in Spitfire and Volcani
(Zhao et al., 2005; Boussadia et al., 2010). However, in all three
cultivars, the down-regulated DEGs were more prominent in the
carbohydrate metabolic process, which indicated that, regardless
of genotypes, N stress can negatively affect plant carbohydrate

metabolism (Rufty et al., 1988) and plants adapted to N stress by
down-regulating the expression of many genes of this kind.

Kyoto Encyclopedia of Genes and Genomes analysis results
also revealed that in all three cultivars, DEGs were involved
in phenylpropanoid biosynthesis, biosynthesis of secondary
metabolites, flavonoid biosynthesis, and sucrose and starch
metabolism. The regulation of these genes in stress adaptation
has been reported in several studies (Dixon and Paiva,
1995; Huang et al., 2010; Akula and Ravishankar, 2011;
Petrussa et al., 2013). However, some cultivar-specific differences
highlighted the importance of genetic variability in stress
response (Tables 2, 3). For example, DEGs were more
abundantly related to MAPK signaling in Mace and Spitfire, plant
hormone signal transduction, glutathione metabolism in Mace
and Volcani, photosynthesis-antenna proteins, and circadian
rhythm in Spitfire and Volcani. Also, some DEGs that were
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significantly abundant in pathways related to zeatin biosynthesis
in Mace, terpenoid biosynthesis in Volcani, and plant–pathogen
interaction in Spitfire are important to identify the underlying
genes related to biological pathways to develop stress-tolerant
cultivars (Cheong et al., 2002; Vickers et al., 2009).

Protein–protein interaction analysis has been used to identify
DEGs that are interacting in different biological processes
such as photosynthesis, photosynthesis-antenna proteins, and
steroid biosynthesis. Photosynthesis is the vital biological process
by which plants absorb light energy and assimilate CO2 to
produce dry matter and comprises reactions that are regulated
by proteins in the chloroplast (Chandna and Ahmad, 2015).
Within this highly interactive and regulated system, change
in one component can cause changes to other components.
The strength of photosynthesis capacity is mainly dependent
on the N content of chloroplasts in the leaf (Evans, 1989;
Evans and Poorter, 2001; Ripullone et al., 2003). Numerous
studies have reported that N significantly affects photosynthesis
(Wei et al., 2016; Lin et al., 2017) through its association
with the light reaction in the chloroplast and/or the dark
reaction (Sage et al., 1988; Von Caemmerer, 2000). The light-
harvesting complex (LHC) comprises chlorophylls a and b and
the chlorophyll a-b binding protein and is closely associated with
photosystem I and II. LHC plays an important role as a light
receptor that captures and delivers the excitation energy between
two photosystems and adjusts the distribution of excitation
energy by being phosphorylated reversely under changing light
conditions (Sage et al., 1988). The PSII outer antenna LHCB
proteins are important components of the major LHC, and they
consist of minor antenna complexes LHCB4 (CP29), LHCB5
(CP26), and LHCB6 (CP24) and major antenna complexes that
comprise homo- and heterotrimers of LHCB1, LHCB2, and
LHCB3 (Jansson, 1994, 1999). In the present study, all the
chlorophyll a-b binding proteins that interacted with each other
in adjusting N stress were down-regulated. In agreement with the
study in rice seedlings in a water-stressed environment (Dalal
and Tripathy, 2018), the current study identified significantly
decreased expression of components of LHCs of both PSII and
PSI (Figure 10 and Supplementary Table 9). Moreover, the
decreased photosynthesis rate and chlorophyll content under
N-stressed condition (Figure 1) can be related to the differential
expression of chlorophyll a-b binding proteins.

The rate of photosynthesis has an intense positive correlation
with N status in soil (Makino et al., 2003; Nunes-Nesi et al.,
2010). Under N stress, a plant might adapt by reduced chloroplast
surface area and a decreased light energy absorption, which can
affect photosynthesis negatively (Li et al., 2009, 2013; Muller
et al., 2009; Georgieva et al., 2010). In the present study, many
PSII and PSI subunits showed a decreased expression in low
NUE cultivars Spitfire and Volcani under N-stressed condition
(Figure 11 and Supplementary Table 10), which can impede
photosystem repair and photosynthetic electron transport chain
function (Foyer and Shigeoka, 2011). Also, the expression of
cyt559 had decreased, which binds most of the cofactors in
the photocatalytic activity of photosystem II. Among the down-
regulated DEGs of PSII components, the core components PsbO,
PsbP, and PsbQ are known to be involved in the water oxidation

and its optimization process (Bricker et al., 2012). PsaK is
associated with the LHCI antenna system, and PsaO plays a
role in the formation of the docking site for LHCII binding
to PSI (Jensen et al., 2007). The down-regulated PetC provides
resistance to photo-oxidative damages by contributing to the
thermal intemperance of light energy and lumenal acidification
and mediates electron transfer between PSII and PSI (Munekage
et al., 2001). The photosynthetic electron transport component
showed down-regulation for PetE that participates in electron
transfer between P700 and the cytochrome b6-f complex in
photosystem I and PetF (ferredoxins are iron–sulfur proteins)
transfer electrons in a wide variety of metabolic reactions (Achard
et al., 2008). PetH plays a significant role in balancing cyclic and
noncyclic electron flow to supply the ATP and reducing power
required by the plant (Claeys et al., 2012). Moreover, F-type
ATPase gamma and a c subunit aid electron transport in both
photosystems I and II were also significantly down-regulated.
Significantly down-regulated DEGs in low NUE cultivars Spitfire
and Volcani were found as the components of the LHC system
and PSI and PSII, underlying their molecular basis of low
GY mechanisms. Therefore, understanding N stress-responsive
DEGs that participated in photosynthesis might provide a base to
improve the photoprotection capacity to sustain photosynthesis
as well as improving plant N-stress tolerance.

The up- and down-regulated DEGs in relation to steroid
hormone biosynthesis, specifically the BR biosynthesis, in low
NUE cultivars also lead to understanding the role of this hormone
in N stress adaptation (Figure 12 and Supplementary Table 11).
Down-regulated DEGs were more prominent compared to
up-regulated DEGs in this pathway, which indicates the
declined BR hormone biosynthesis. Previous studies showed
exogenous application of BR enhanced photosynthesis under
stress conditions (Niu et al., 2016; Shu et al., 2016). Chlorophyll
is an important parameter and is commonly used to measure
photosynthetic activity. However, chlorophyll is highly sensitive
and responds to stress by decreasing the chlorophyll a, b content
in leaves (Rehman et al., 2016). In low NUE cultivar Spitfire
and medium NUE cultivar Volcani, significantly decreased level
of chlorophyll a-b binding protein can be associated with their
reduced chlorophyll content compared to high NUE cultivar
Mace (Figure 1). Previous studies also reported that BR can
reducing the harmful effect of stress by activating the synthesis of
antioxidants like glutathione reductase, catalase, peroxidase, etc.,
contributing to increase in yield and yield components (Hayat
et al., 2000; Vardhini and Anjum, 2015; Anwar et al., 2018).
In high NUE cultivar Mace, the absence of significant DEGs
related to BR biosynthesis that are interacted at the protein level
can be related to its increased tolerance to N stress, relatively
high chlorophyll content, tiller number, and grain weight per
plant (Figure 1). So far, no previous study has been reported on
the putative role of BRs in wheat under N-stressed conditions.
Thus, identifying the involvement of BR biosynthesis provides
a suitable platform to explore the essential role of BR in N
stress tolerance and further application of BRs to improve
wheat production.

Through annotation of the transcriptome, several known
and putatively N-metabolism-related genes were identified
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FIGURE 10 | Down-regulated protein orthologous (Arabidopsis thaliana) of differentially expressed genes in photosynthesis-antenna proteins pathways. The proteins
in red are down-regulated. The pathway map was generated using KEGG (Kanehisa et al., 2016, 2017).

FIGURE 11 | Down-regulated protein orthologous (Arabidopsis thaliana) of differentially expressed genes in photosynthesis pathways. The proteins in red are
down-regulated. The pathway map was generated using KEGG (Kanehisa et al., 2016, 2017).

both to be up- and down-regulated. Usually, N stress increases
the expression of high-affinity transport systems for nitrate
and ammonium (Crawford and Glass, 1998). Previous reports

showed that high-affinity nitrate transporters were expressed
in N-starved seedlings of Arabidopsis (Wang R. et al., 2003).
In rice, the nitrate transporter (OsNRT2.2) in association
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FIGURE 12 | Up- and down-regulated protein orthologous (Arabidopsis thaliana) of differentially expressed genes in steroid biosynthesis. The protein names
bordered in yellow are up-regulated and red are down-regulated. The pathway map was generated using KEGG (Kanehisa et al., 2016, 2017).

with OsNAR2.1 transports nitrate, which can promote the
elongation of lateral roots (Feng et al., 2011; Li et al., 2007).
In the current study, the expression of high-affinity nitrate
transporters (NRT1/PTR family protein 2.2) was up-regulated
under N stress. This indicates a more efficient N uptake under
N-limited condition. On the other hand, the expression of most
of the dual affinity nitrate transporters (like nitrate transporter

1.1) was decreased under N stress, which is known to regulate
root and shoot growth (Mounier et al., 2014). The down-
regulation of Protein NRT1/PTR FAMILY 5.5 and tryptophan
aminotransferase can be related to the retarded growth and low
GPC and GY of low N-treated plants (Won et al., 2011; Léran
et al., 2015). Also, a decreased expression of nitrite reductase
was observed, which is related to nitric oxide (NO) homeostasis
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(Chamizo-Ampudia et al., 2017). NO can act as a signaling
molecule in plant immune response, defense-related gene
expression, and the hypersensitive response mechanism (Mur
et al., 2012). Conversely, most of the N metabolism-related DEGs
of the known and putative amino acid permease, amino acid
transporter, ammonium transporter, glutamate dehydrogenase,
glutamine synthase family and tyrosine aminotransferase, and
tryptophan aminotransferase were up-regulated. Glutamine
synthetase is a key enzyme (Cai et al., 2009) that catalyzes the
conversion of glutamate (Glu) to glutamine (Gln). GOGAT
is involved in the transfer of the amide group of Gln to
a-ketoglutarate (2-OG) to subsequently produce Glu (Cren
and Hirel, 1999). Gln is involved in the biosynthesis of organic
nitrogenous compounds, such as amino acids, nucleotides,
and chlorophyll, and plays a major role in regulating plant N
assimilation in grain production (Martin et al., 2006; Gadaleta
et al., 2011). In this study, most of the significant DEGs related
to N metabolism were found in Spitfire, and the lowest number
of DEGs with a significant change in expression was identified
in Mace. The high abundance of a nitrate transporter and
ammonium assimilatory gene abundance in low NUE cultivars
Spitfire and Volcani can be related to adapt the N-stressed
condition. Similar results were observed in a transcriptome study
with sorghum, where N assimilator genes were abundant in
sensitive and low NUE cultivars (Singh et al., 1973). The smaller
number of N metabolism-related DEGs can be related to a better
tolerance of Mace to low N conditions. These findings are also
supported by similar outcomes in rice (Lian et al., 2006).

The common DEGs that were simultaneously induced or
repressed under N stress across the three cultivars are also
potentially important for N stress response. Among the common
down-regulated DEGs (Table 7), photosystem II 10 kDa
polypeptide family protein and chlorophyll a-b binding protein
are related to photosynthesis and light harvesting, which are
sensitive to stress (Rehman et al., 2016; Nowicka et al., 2018).
The chlorophyll content was significantly decreased under the
N-stressed condition in all three cultivars compared to high
N. Down-regulation of stress-responsive DEGs like catalase,
thaumatin-like protein, and cytochrome P450 family protein is
also known to be related to stress adaptation (Cai et al., 2013;
Alam and Ghosh, 2018). Also, the expression of phytohormone-
related DEGs such as gibberellin receptor GID1A and cytokinin
oxidase/dehydrogenase showed down-regulation common in all
three cultivars. Reduced GA levels and signaling are known to
be associated with restrained growth and development of plant
by inducing accumulation of DELLA (Colebrook et al., 2014),
known as positive regulators of N stress-induced anthocyanin
accumulation (Zhang et al., 2017). Under salt stress, the DELLA
mutant has been reported to be strongly correlated with plant
growth, height, time to flowering, and stress tolerance (Achard
et al., 2008). Other studies also showed that GA-induced DELLA
has a positive effect on stress tolerance (Claeys et al., 2012). In
this study, the reduced plant height and growth can be related to
a reduction in GA. Other phytohormone cytokinins (CKs) can
regulate plant developmental processes under stressed conditions
(Rubio-Wilhelmi et al., 2011). Recent studies reported that CKs
act as a long-distance messenger that signals the N status of the

plant in regulating the nutrient uptake system (Rubio-Wilhelmi
et al., 2011). Overexpression of CK degradation enzyme-CKX
has been known to exhibit an increased drought and salinity
tolerance (Schmülling et al., 2003; Nishiyama et al., 2012). In
addition, cytokinin and gibberellin also influence photosynthesis
under stressed conditions (Caers et al., 1985; Biemelt et al.,
2004). Some other common down-regulated genes involved
glycine-rich protein A3, which binds and stabilizes the stress-
inducible transcripts (Sahi et al., 2007), methyltransferase related
to epigenetic tolerance to stress through DNA methylation
(Boyko and Kovalchuk, 2008), calcium-dependent protein
kinase 15, which functions in long-term adaptive processes or
plant development by facilitating cross-talk between different
Ca2+-mediated stress signaling pathways (Lee and Rudd,
2002; Schulz et al., 2013), and a two-component response
regulator that plays a role in stress response by transducing
extracellular signals to the cytoplasm through phosphotransfer
between the two components (Urao et al., 1998). Amino acid
metabolism-related genes like putative amino acid transporters
and branched-chain amino acid aminotransferase-like proteins
are common in the three cultivars and can also contribute to
stress tolerance by down-regulating their expression (Good et al.,
2007). Interestingly, three DEGs annotated as plant protein
1589 with uncharacterized function were all down-regulated,
which are potentially important candidates for further study.
The down-regulation of LOB domain-containing proteins that
were common in the grain of the three cultivars was reported to
be involved in lateral root formation (Liu et al., 2005; Yang W.
et al., 2015). LOB domain-containing proteins are also known to
control the BR hormone negatively in N metabolism as well as
plant growth and development (Bell et al., 2012; Ma et al., 2017).

Some genes common in the second leaf of the three cultivars
showed up-regulation (Table 6) that can facilitate tolerance to
N stress to survive. Among the 14 up-regulated DEGs, 4 were
annotated as putative alcohol dehydrogenase family proteins that
were also reported to accumulate at an increased level under
low-temperature stress in maize and rice (Christie et al., 1991).
Two glutamate carboxypeptidase 2 were up-regulated that are
known to negatively regulate drought and freezing stress and
play a role in carbon and amino acid metabolism (Shi et al.,
2013). Another up-regulated DEG annotated as PLAC8 family
protein was reported to be involved in cadmium tolerance and
accumulation, which can also be a good candidate to increase N
stress tolerance (Wang F. et al., 2019). Also, a sulfate transporter
was found to be up-regulated and has been previously reported as
affected by N deficiency (Yu et al., 2018). As sulfur assimilation is
important for the biosynthesis of S-containing amino acids that
remobilize to develop seeds for storage protein synthesis, a sulfate
transporter is worth further study under the context of NUE.

The DEGs that demonstrated a high expressional change due
to N stress can be an important candidate for N stress response.
Analyzing the expressional variation of genes across the cultivars
with different NUE, this study proposed that the highly up-
regulated genes expressed in high NUE cultivar Mace with high
abundance can contribute to N stress tolerance. In the second
leaf of Mace, the top abundantly expressed up-regulated DEGs
(Supplementary Table 9) in Mace involved RADIALIS-like
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(RADL) TFs, GST, and PLAC8 family protein. GST was
reported to catalyze the glutathione-dependent detoxification
reactions and the reduction of hydroperoxides. It also plays
a role in protection against environmental stresses by binding
and sequestrating secondary metabolites like flavonoids and
phenolics (Tahkokorpi et al., 2007). In maize, ZmGSTU1 can
protect plant cells from oxidative stress damage through binding
and conjugating porphyrinogens. Under stress conditions and
during senescence, porphyrinogens leak from chloroplast to the
cytosol and become oxidized to the lipophilic and phytotoxic
protoporphyrin (Dixon et al., 2010; Lederer and Böger, 2005).
Binding of GST to leaked porphyrinogens can prevent their
auto-oxidation, protecting plant cells from oxidative stress
(Lederer and Böger, 2003). RADL TFs are a subfamily of
MYB-related genes containing a single SANT (SWI3/ADA2/N-
CoR/TFIIIB)/MYB DNA-binding domain, which is highly
homologous to the RADIALIS gene product of Antirrhinum
majus. The Antirrhinum RADIALIS gene is involved in the
regulation of floral asymmetry, and mutation of this gene
results in a symmetrical (or radial) floral morphology (Baxter
et al., 2007). In Arabidopsis, a RADL TF (RSM1) is implicated
in controlling early photomorphogenesis (Hamaguchi et al.,
2008). In rice, overexpression of RADL3 TF (OsRL3) exhibits
a stay-green phenotype during dark-induced senescence in an
ABA-dependent pathway (Park et al., 2018). A study in lady’s
bedstraw (Galium verum) to understand the genetic basis of
morphological difference of its two variants showed that two
short insertions in the promoter region of RADL1 in one variant
can be related with its nonfunctionality and dwarfism (Jeong
et al., 2014). In Barley, the effect of CENTRORADIALIS (CEN)
on developmental timing and shoot and spike morphologies
has been reported (Bi et al., 2019). No previous study has
been conducted for the function of RADL TFs in wheat. In
the current study, the expression of RADL TFs was different
across the cultivars, and future study is necessary to reveal
whether any genetic variation is present at the cultivar level of
this gene family. Another top up-regulated abundantly expressed
PLAC8 family protein can have conserved biochemical function
due to its conserved core domain; however, specific functions
of these family proteins are still unclear. In Arabidopsis, only
PLAC8 domain-containing protein AtPCR and similar proteins
in rice and other organisms (Song et al., 2011) are implicated in
cadmium resistance. PLAC8-containing proteins can also control
cell size and number (Frary et al., 2000) in plant. It is reported in
yeast that cadmium tolerance can involve DNA repair (Di Vietro
et al., 2014). In this study, as the PLAC8 family gene was up-
regulated under N stress and high abundance was detected in a
high NUE cultivar, it can be predicted that this gene may play an
important role in N stress tolerance. Similarly, in the grain tissue
of Mace, plasma membrane ATPase was identified as one of the
top up-regulated DEGs (Supplementary Table 7), known to be
induced in a condition that requires a greater transport activity
and plays an important role in nutrient uptake (Janicka-Russak,
2011). Overexpression of plasma membrane ATPase is also
associated with cadmium stress tolerance (Di Vietro et al., 2014).
Another top up-regulated abundantly expressed DEG in Mace
is a homolog of Arabidopsis (AT3G16150) K+-dependent

L-asparaginase, which is associated with efficient metabolism of
L-Asn under high metabolic demand of N (Bruneau et al., 2006).
Its homolog in model legume Lotus japonicus has been reported
to be involved in N remobilization and seed production (Credali
et al., 2013). Alpha-galactosidase that highly up-regulated under
N stress is a homolog of Arabidopsis AT5G08370, which plays an
important role in leaf development by loosening and expanding
cell wall (Chrost et al., 2007). It is also reported that alpha-
galactosidase can contribute in completing energy-dependent
senescence process and stress response in spite of severe decline
in photosynthesis by maintaining the steady state of sugar supply
through breakdown of wall polysaccharide (Pandey et al., 2017).
To conclude, the above-mentioned genes, notably RADIALIS-
like TFs, PLAC8 family proteins that are not characterized in
wheat yet can be potential candidates to improve NUE and
tolerance to N stress.

CONCLUSION

Identification of DEGs across bread wheat genotypes with
contrasting stress tolerance facilitates a better understanding of
the genetic bases of N stress tolerance. Here, the RNA-seq analysis
using second leaf and grain tissues of low and high N treated
wheat plants demonstrated that gene transcripts involved in lipid
biosynthesis, transmembrane transport, cell communication,
and small molecule biosynthesis were abundantly expressed in
low NUE cultivars under N stress. Higher expression of these
genes will enable low-NUE genotypes to thrive under stress
conditions. The abundance of N metabolism-related genes in
low NUE cultivars also contributes to N stress adaptation.
The DEGs among the three cultivars showed variation in
the magnitude of change in the expression, which indicates
varying degrees of tolerance to N stress. Genes that were
differentially expressed between low and high N treatments
can also be indirectly involved in N metabolism. The DEGs
across genotypes provide an understanding of how differently
wheat genotypes encounter the N stress and how they adapt.
Common N responsive genes across cultivars indicated that
these genes are involved in common pathways under N stress.
Moreover, the top DEGs with high expression in a high NUE
cultivar would be the potential candidates to be explored for
improving wheat NUE.
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Radix Bupleuri (roots of Bupleurum spp.) is an important medicinal herb. Triterpenoid
saponins of saikosaponins generally constitute the main class of secondary metabolites
of plants in the Bupleurum genus. However, the molecular regulatory mechanism
underlying their biosynthesis remains elusive. In this study, we observed significantly
different saikosaponin biosynthesis between Bupleurum chinense and Bupleurum
scorzonerifolium at the seedling stage. The sequential and expression characterization
of 232 genes in the triterpenoid saponin biosynthetic pathway, which includes the
mevalonate (MVA) pathway and methylerythritol phosphate (MEP) pathway, between
B. chinense and B. scorzonerifolium was also investigated. Sixty of these genes may be
involved in saikosaponin biosynthesis. Manipulation of these genes, especially those of
the β-AS, P450, and UGT families, may improve saikosaponin production.

Keywords: Bupleurum, saikosaponin biosynthesis, transcriptome analysis, gene expression, P450

INTRODUCTION

Radix Bupleuri (roots of Bupleurum spp.) is one of the most important medicinal herbs in
Eurasia and North Africa used as a treatment for fever, chronic hepatitis, nephrotic syndrome,
inflammatory diseases, menstrual disorders, and digestive ulcers (Pistelli et al., 1996; Guo et al.,
2000; Ikegami et al., 2006; Mabberley, 2008). In addition, this herb has been used for more than
2,000 years in China (Tan et al., 2008). In the Chinese Pharmacopoeia, the official botanical
origin of Bupleuri Radix is the roots of Bupleurum chinense DC. or Bupleurum scorzonerifolium
Willd. (Chinese Pharmacopoeia Commission, 2015). Several groups of secondary metabolites
have been isolated from Bupleurum species, including triterpenoid saponins (saikosaponins),
steroidal saponins, lignans, essential oils, and polysaccharides (Ashour and Wink, 2011). Among
these, saikosaponins generally represent the main class of secondary metabolites and constitute
to up to 7% of the total dry weight of roots of plants in the Bupleurum genus (Ashour
and Wink, 2011). Owing to their wide range of pharmacological activities, including their
immunomodulatory activity, anti-inflammatory activity, antioxidant and hepatoprotective activity,
cytotoxicity, antitumor activity, and antiviral activity, these triterpenoid saponins, especially
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saikosaponins a and d, are the most important pharmacological
constituent in Bupleurum root extracts (Zhao and Xiao, 2007; Lin
et al., 2013; Liang et al., 2014).

To date, more than 130 glycosylated oleanane-type and
ursane-type saponins have been isolated from the genus
Bupleurum L. (Ashour and Wink, 2011; Wang et al., 2017b;
Chelghoum et al., 2018). A previous study on the species
B. chinense, B. scorzonerifolium, and Bupleurum falcatum L.
demonstrated that saikosaponins are mainly distributed in the
tissues of the cork and cortex of roots (Liang et al., 2014).
Similar results were reported based on histochemical studies
(Tan et al., 2008). In addition, the synthesis and accumulation
of saikosaponins is strongly influenced by intrinsic factors,
including growth stage, developmental phase, and root structure,
and by environmental conditions, such as drought, fertility, and
light deficiency (Tan et al., 2008; Zhu et al., 2009a,b; Gong
et al., 2017). The combination of cultural practices together with
manipulation of the expression of genes involved in triterpenoid
saponin biosynthesis may be a more effective way to improve the
total yield of saikosaponins.

In the biosynthetic pathway of triterpenoid saponins in
higher plants, the mevalonate (MVA) pathway in the cytosol
and the methylerythritol phosphate (MEP) pathway in the
plastids are essential biosynthetic processes for formation of
the triterpenoid backbone of the five-carbon intermediates
isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP). In transcriptome studies, genes involved in the
biosynthetic pathway of saikosaponins were identified in
Bupleurum kaoi, B. chinense, and B. scorzonerifolium (Chen
et al., 2007; Sui et al., 2011; Sui et al., 2015). Moreover,
genes involved in the biosynthesis of saikosaponins such as
squalene epoxidase, β-amylase, cytochrome P450, and uridine
diphosphate glycosyl transferases have been cloned in B. kaoi,
B. falcatum, and B. chinense, and their expression profiles have
been identified (Lin et al., 2006; Kim et al., 2011; Gao et al., 2016).
Overexpression of the BcbZIP134 gene in B. chinense and BfSS1
in B. falcatum has been reported (Kim et al., 2011; Xu et al.,
2019). Additionally, cytochrome P450 monooxygenase (P450) of
CYP716Y1 from B. falcatum was combined with oxidosqualene
cyclase, P450, and glycosyltransferase genes to construct a
synthetic biological platform for the production of bioactive
triterpene sapo(ge)nins in yeast (Moses et al., 2014). However,
the molecular regulatory mechanism underlying triterpenoid
saponin biosynthesis remains elusive.

In this study, we investigated the sequential and expression
characterization of 232 genes in the MVA pathway and MEP
pathway in B. chinense and B. scorzonerifolium to identify
putative genes involved in the biosynthesis of saikosaponins in
Bupleurum L.

MATERIALS AND METHODS

Plant Materials
The two experimental materials, the commercial varieties
Chuanbeichai No. 1 (CBC1) and Chuanhongchai No. 1 (CHC1),
which are varieties of B. chinense and B. scorzonerifolium,

respectively, were used. All of the plants were bred via systemic
selection and purifying selection from farmholding populations
by Dr. Jianhe Wei from the Institute of Medicinal Plant
Development (IMPLAD), Chinese Academy of Medical Sciences
and Peking Union Medical College, and Dr. Da-bin Hou from
Southwest University of Science and Technology.

For each genotype, seeds were placed on moist filter paper
before germination. Germinated seedlings were then grown in
modified Hoagland’s nutrient solution. Five-day-old and 15-day-
old CBC1 and CHC1 plants were utilized for isoform sequencing
(iso-seq) analysis, transcriptome analysis, and saikosaponin a (SS
a) and d (SS d) content assays. For 5-day-old seedlings, whole
fresh roots were harvested (S1). For 15-day-old seedlings, 5 mm
of the root tip without the region of differentiation (S2) and with
the region of differentiation (S3) were harvested separately.

Extraction of Saikosaponins and HPLC
Analysis
Samples S1, S2, and S3 (three replications each) were dried
for 72 h using a freeze-drier (LGJ-18, Beijing Songyuan
Huaxing Technology Development Co., Ltd., China). The SS
a and SS d content was determined using a Waters HPLC
(high-performance liquid chromatography) system (Waters 1525
Binary HPLC Pump, United States) and an ASB-vensil C18
column (250 mm × 4.6 mm, 5 µm). Reference standards of SS
a and SS d were purchased from the National Institutes for Food
and Drug Control, Beijing, China. The methods and conditions
for determination have been reported previously (Xu et al., 2019).

Iso-seq and Transcriptome Analyses
The leaf and root samples were mixed and utilized for iso-seq
library construction. The iso-seq analysis followed the method
published by Wang et al. (2017a). Transcriptome analyses of
samples S1, S2, and S3 were performed on an Illumina HiSeq 2500
platform (Illumina, San Diego, CA, United States) as previously
described (Yang et al., 2018). Both iso-seq and transcriptome
analyses were performed at the Novogene Bioinformatics
Institute (Novogene, Beijing, China). Three replications were
included in this study.

Candidate Gene Selection
Gene sequences of 20 families involved in the MVA pathway
and MEP pathway were selected from iso-seq and transcriptome
data with annotated gene names. These genes include
glycosyltransferases (UGT), P450, β-amyrin synthase (β-AS),
squalene synthase (SS), squalene epoxidase (SE), farnesyl
diphosphate synthase (FPS), mevalonate-5-pyrophosphate
decarboxylase (MVD), phosphomevalonate kinase (PMK),
mevalonate kinase (MK), 3-hydroxy-3-methylglutaryl-CoA
reductase (HMGCR), 3-hydroxy-3-methylglutaryl-CoA
synthase (HMGS), acetyl-CoA C-acetyltransferase (AACT),
1-deoxy-D-xylulose-5-phosphate synthase (DXS), 1-deoxy-D-
xylulose-5-phosphate reductoisomerase (DXR), 2-C-methyl-D-
erythritol 4-phosphate cytidylyl transferase (CMS), 4-(cytidine
5′-diphospho)-2-C-methyl-D-erythritol kinase (CMK), 2-C-
methyl-D-erythritol-2,4-cyclodiphosphate synthase (MCS),
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4-hydroxy-3-methyl but-2-(E)-enyl diphosphate synthase
(HDS), 4-hydroxy-3-methyl but-2-(E)-enyl diphosphate
reductase (IDS), isopentenyl diphosphate isomerase (IDI), and
geranyl diphosphate synthase (GPS). CAP3 software was used
to identify overlaps between different sequences and to remove
redundant fragments1. The conserved domains of each family
were analyzed by using SMART online software2 and used as
a query to search the NCBI non-redundant protein database
via BLASTX to further validate the potential candidate genes3.
The isoelectric points (PIs) and molecular weights (MWs) of
deduced proteins were calculated using the ExPASy Compute
pI/Mw tool4, and the subcellular localizations were predicted
using Cell-PLoc 2.05. Differential expression analyses were
performed by the DESeq2 R package (Anders and Huber, 2010)
to identify differentially expressed genes (DEGs) among S1, S2,
and S3 within each species and between the two species. The
differentially expressed unigenes were further filtered based on
their count number (at least one stage was greater than 1) and
the log2(fold change) [the log2(fold change) between two stages
was greater than 2].

RESULTS

SS a and SS d were detected in the roots of B. chinense plants
at the 1-day-old stage, whereas they significantly accumulated in
the region of differentiation at the 15-day-old stage (Table 1). In
B. scorzonerifolium, no peaks of SS a and SS d were identified
in any of the samples during the HPLC analysis. Therefore,
the genes showed significantly different expression in S3 in
B. chinense, but insignificant or the opposite expression in
B. scorzonerifolium would be interesting.

A total of 223 genes with complete open reading frames
(ORFs) were identified from the transcriptome database of
B. chinense and B. scorzonerifolium (Supplementary Table S1).
One to 96 genes were identified for a single gene family whose
members are involved in triterpenoid saponin biosynthesis,
although the MCS family had zero genes. In the differential
expression analysis of B. chinense, 86 genes showed significantly

1http://doua.prabi.fr/software/cap3
2http://smart.embl-heidelberg.de/
3http://www.ncbi.nlm.nih.gov/
4http://web.expasy.org/compute_pi/
5http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/

TABLE 1 | Contents of saikosaponin a and saikosaponin d in the roots of
B. chinense and B. scorzonerifolium.

SS a SS d
content content

Species Sample (µg/g) SD (µg/g) SD

B. chinense S1 0 0 0 0

S2 0 0 0 0

S3 479.77 154.95 270.64 154.34

B. scorzonerifolium S1 0 0 0 0

S2 0 0 0 0

S3 0 0 0 0

different expression in the S3 sample (Figures 1, 2). Among these
genes, 1 to 36 genes were identified for gene families including
UGT, P450, β-AS, SS, FPS, GPS, PMK, HMGCR, HMGS, AACT,
IDS, HDS, CMS, DXR, and DXS. No gene with significantly
different expression was detected for SE, MVD, IDI, MK, and
CMK. Five genes involved the gene families β-AS, SS, CMS, HDS,
and IDS; these genes exhibited significantly similar expression
in B. scorzonerifolium. Seven genes in the FPS, HMGCR, DXS,
and P450 gene families showed significantly reversed expression.
The BcDXS15975 gene in the DXS family was identified only
in B. chinense and was not detected in any of the samples of
B. scorzonerifolium.

DISCUSSION

Triterpenoids are derived from C5 isoprene units of IPP and
DMAPP through a “head-to-tail” connection (Hillier and Lathe,
2019). Both of these triterpenoid backbones can be synthesized
through the MVA pathway in the cytoplasm or the MEP pathway
in the plastids. For the MVA pathway, three HMGS genes
and one HMGCR gene (BcHMDH15256) showed significantly
upregulated expression in S3 of the B. chinense transcriptome,
whereas one AACT gene, seven HMGCR genes, and one PMK
gene showed significantly downregulated expression. For these
genes, the expression differences among S1, S2, and S3 were
insignificant in B. scorzonerifolium, with the exception of the
BcHMDH1723 gene (Figure 1). In addition, BcHMDH1723
showed the opposite expression trend between B. chinense and
B. scorzonerifolium. We did not detect genes with significantly
different expression in the MK family or the MVD family.

For the MEP pathway, 12 unigenes encoding enzymes (five
DXS genes, three CMS genes, two HDS genes, and two IDS
genes) showed significantly downregulated expression in S3
of the B. chinense transcriptome, whereas the expression of
two DXS genes, one DXR gene, one CMS gene, one HDS
gene, and six IDS genes significantly increased. The CMS gene
BcISPD108768, the HDS gene BcISPG26774, and the IDS gene
BcISPH33774 showed similar trends in the B. scorzonerifolium
transcriptome, whereas the DXS gene BcDXS14138 showed the
opposite trend. The DXS gene BcDXS15975 was detected only in
the B. chinense transcriptome.

Both the MVA and MEP pathways produce the C5 unit IPP,
which can be transformed into its isomer DMAPP by IDI (Xue
et al., 2019). In the present study, we did not find that the IDI
gene showed significant expression differences among S1, S2, and
S3. IPP and DMAPP are assembled into GPP and FPP by GPS and
FPS prenyltransferases, respectively. Expression of the GPS gene
BcGGPPS5581 increased in S3 of the B. chinense transcriptome,
and expression of the FPS gene BcFPPS50324 decreased. SS
catalyzes the joining of two units of FPP in a “tail-to-tail” fashion
of SQ. Kim et al. (2011) found that overexpression of BfSS1 in
B. falcatum more powerfully regulates downstream genes than
does MeJA treatment in triterpene and phytosterol biosynthesis.
In the present study, three candidate genes in the SS family
showed significant expression differences in S3 of the B. chinense
transcriptome, and the expression of all these candidate genes
among the three samples in the B. scorzonerifolium transcriptome
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FIGURE 1 | Putative triterpenoid backbone biosynthesis pathway (MVA and MEP) in Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. and gene
expression profiles of the key enzymes. All genes outside of these pathways showed significantly differential expression in S3 of B. chinense. The genes with
asterisks also showed significantly differential expression in S3 of B. scorzonerifolium. The genes with solid dots indicate those detected only in B. chinense DC. The
samples include S1 (F), S2 (T), and S3 (M) in B. chinense (CBC) and B. scorzonerifolium (CHC).

was not significant. SQ is oxidized by SE to give rise to
2,3-oxidosqualene. We cloned the full-length SE gene in

B. chinense (Gao et al., 2016). However, no candidate gene was
identified in the differential expression analysis.
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FIGURE 2 | Gene expression profiles of candidate P450s involved in the biosynthesis of triterpenoid saponins. All these genes showed significantly differential
expression in S3 of Bupleurum chinense DC. The genes with asterisks also showed significantly differential expression in S3 of Bupleurum scorzonerifolium Willd.
The sample information is listed in Figure 1.

In Bupleurum, the first committed step in the synthesis
of triterpenoid saponins involves the cyclization of 2,3-
oxidosqualene by β-AS. Therefore, β-AS is presumed to be the
enzyme that catalyzes the first committed step in saikosaponin
biosynthesis. A previous study indicated that β-AS in B. kaoi
and B. chinense exhibits tissue-specific responses to both MeJA
and PEG (Lin et al., 2013; Zhang et al., 2016). We have also
cloned the promoter of β-AS in B. chinense and evaluated
its activity previously (Gao et al., 2015). We found three
β-AS genes (BcBAMS98705, BcBAMS12370, and BcBAMS21523)
with significantly increased expression in S3 of B. chinense.
The BcBAMS12370 gene showed a similar expression trend in
B. scorzonerifolium, whereas the expression of the other two genes
was non-significant.

For the production of saikosaponins in Bupleurum, P450
enzymes catalyze the oxidation of β-amyrin to form 13,28-
epoxy and the C11/C12 double-bond structure or two double
bonds at C11/C12 and C13/C18 together with hydroxylation at

C16 and C23. Previous studies have indicated that the CYP90,
CYP72, CYP710, and CYP711 subfamilies of the P450 family may
involve triterpenoid-metabolizing enzymes (Ohnishi et al., 2006;
Hamberger and Bak, 2013; Yu et al., 2017). We found that 37
P450 genes showed significant expression in the three samples
of B. chinense, and four of these genes exhibited a significant
opposite trend in B. scorzonerifolium (Figure 2). These genes are
members of 13 families of 7 clans in the P450 family. Among
these genes, two unigenes belong to the CYP90 family, five
unigenes belong to the CYP72 family, two unigenes belong to
the CYP710 family, and the unigene BcCYP17256 belongs to the
CYP711 family. Members of the CYP716 family contribute to
the diversification of eudicot triterpenoid biosynthesis (Miettinen
et al., 2017). Moses et al. (2014) found that the CYP716Y1
gene from B. falcatum catalyzes the C-16α hydroxylation of
triterpenes in yeast. However, we did not identify any CYP716
gene that showed significantly different expression in S3 of
B. chinense.
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At the last step of saikosaponin biosynthesis, UGT catalyzes
the glycosylation of hydroxylated β-amyrin at C3. Glycosylation
contributes to the highly diverse nature of terpenoids in plants
(Field and Osbourn, 2008). Therefore, UGT is presumed to be
the key enzyme involved in the modification of saikosaponins.
A transcriptome analysis of B. chinense revealed that, among 196
UGT genes, three were the most likely candidates involved in
saikosaponin biosynthesis (Sui et al., 2011). Three BkUGT85A
proteins that contain a highly conserved region of a motif of
glycosyltransferases, which are involved in the production of
secondary metabolites in plants, were identified in B. kaoi by
Lin et al. (2013). In the present study, four UGT genes showed
significantly increased expression in S3 of B. chinense, whereas
four genes showed the opposite expression trend. The expression
differences among all genes in B. scorzonerifolium were non-
significant.

CONCLUSION

In this study, unigenes showed significantly different expression
in the S3 sample in B. chinense, while insignificant or the
opposite expression in B. scorzonerifolium may be involved
in saikosaponin biosynthesis. Manipulation of these genes,
especially those of the β-AS, P450, and UGT families, may
improve saikosaponin production. The combined expression of
these genes and reconstituting the synthesis of monoglycosylated
saponins in yeast may provide a platform for the production of
bioactive saikosaponins.
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Plant height (PH) plays a pivotal role in plant morphological architecture and is
associated with yield potential in wheat. For the quantitative trait locus (QTL) analysis,
a recombinant inbred line population was developed between varieties differing
significantly in PH. Two major QTL were identified on chromosomes 4B (QPh.sicau-
4B) and 6D (QPh.sicau-6D) in multiple environments, which were then validated in two
different backgrounds by using closely linked markers. QPh.sicau-4B explained 10.1–
21.3% of the phenotypic variance, and the location corresponded to the dwarfing gene
Rht-B1. QPh.sicau-6D might be a novel QTL for PH, explaining 6.6–13.6% of the
phenotypic variance and affecting spike length, thousand-kernel weight, and spikelet
compactness. Three candidate genes associated with plant growth and development
were identified in the physical interval of QPh.sicau-6D. Collectively, we identified a novel
stable and major PH QTL, QPh.sicau-6D, which could aid in the development of closely
linked markers for marker-assisted breeding and cloning genes underlying this QTL.

Keywords: wheat, plant height, quantitative trait locus, validation, candidate gene

INTRODUCTION

Bread wheat (Triticum aestivum L.) is an important staple crop, ranking the third after maize and
rice in terms of yield in China (Edae et al., 2014; Liu et al., 2018). According to the Food and
Agriculture Organization of the United Nations1, the global wheat grain yield in 2017 was 771.7
million tons, contributing to approximately 20% of the calories consumed by humans. Plant height
(PH) is an important yield component trait associated with plant morphological architecture and
other yield-related traits, such as spike length, spikelet number per spike, spikelet compactness (SC),
and thousand-kernel weight (TKW), thus affecting the yield potential (Sakamoto and Matsuoka,
2004; Gao et al., 2015; Kowalsk et al., 2016; Guan et al., 2018). To develop high grain yield lines,
Donald (1968) proposed the idea of breeding crop ideotypes with a relatively short PH, single culm,
strong stem, and large and erect ear.

1http://www.fao.org/faostat/en/#data
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In view of the importance of PH in wheat yield, it is imperative
to identify more candidate genes responsible for PH from wheat
germplasm resources. In the past two decades, numerous major
and minor QTL influencing PH have been identified on 21
chromosomes in wheat, and some of them have been applied
in wheat breeding (Peng et al., 1999; Liu et al., 2002; Griffiths
et al., 2012; Würschum et al., 2015; Tian et al., 2017; Hassan
et al., 2019). Additionally, several PH genes have been cloned,
such as Rht-B1 and Rht-D1 (located on chromosome 4B and 4D,
respectively), and highly adopted in breeding practices during the
green revolution; they encode the DELLA proteins, participating
in gibberellin signaling, and thereby affecting PH (Peng et al.,
1999; Pearce et al., 2011). Rht18 encodes a gibberellic acid (GA) 2-
oxidase protein, which regulates the balance of GA intermediates
and inactive GA, leading to a semi-dwarf phenotype in wheat
(Ford et al., 2018). In Arabidopsis, extensively studied dwarf
mutants such as the yda and pat10mutants, which are defective in
growth and development, have been shown to significantly differ
from the wild-type plants in terms of PH (Lukowitz et al., 2004;
Zhou et al., 2013).

In this study, a recombinant inbred lines (RILs)
population was used for QTL mapping of PH with a
genetic map using the 90K SNP array and phenotyping in
six environments to identify major QTL for PH. The effects
of the major QTL for PH were further assessed in different
genetic backgrounds.

MATERIALS AND METHODS

Plant Materials
Three populations of RILs were generated by single-seed descent
in the field in Sichuan Agricultural University, Wenjiang
(103◦51′E, 30◦43′N), with H461 as a common parent. These three
populations were as follows: H461/CN16 (HCN; 249 F8 lines),
H461/CM107 (HCM; 200 F7 lines), and H461/MM37 (HMM;
142 F6 lines).

The HCN population was used for QTL mapping, whereas the
other populations (HCM and HMM) were used for validating the
major QTL identified in the HCN population.

Phenotypic Evaluation
The three populations were planted in six different environments
for phenotypic evaluation: Wenjiang in 2015 and 2019 (2015WJ
and 2019WJ); Chongzhou (103◦38′E, 30◦32′N) in 2015, 2017,
and 2019 (2015CZ, 2017CZ, and 2019CZ); and Ya’an (103◦0′E,
29◦58′N) in 2015 (2015YA). Each plot consisted of three rows,
with a length of 1.5 m and an inter-row spacing of 30 cm; the
sowing density was 15 seeds per row. For each plot, five plants
were randomly chosen to measure PH, from the plant base to
the tip of the spike, and calculate the mean PH. The main spike
of five plants were selected to measure the spikelet number per
spike (SN) and spike length (SL). The TKW was measured using
an electronic balance with three replications. Flowering time
(FT) was recorded as the date when half of the plants in each
plot flowered after sowing. The SC was calculated by dividing
the SL by the SN.

Analysis of variance (ANOVA) and calculation of Pearson’s
correlation coefficients among different environments
were performed using SPSS 22 (IBM SPSS, Armonk, NY,
United States). Frequency distribution was processed using MS
Excel, and the best linear unbiased prediction (BLUP) for target
traits was calculated using R version 3.5.2 (Team, 2013). Broad-
sense heritability (h2) was calculated across environments as
described by Smith et al. (1998). The correlations between PH and
the factors SN, SL, SC, TKW, and FT were calculated based on
the BLUP values, and Student’s t-test was performed to determine
significant differences between two groups using SPSS 22.

QTL Mapping
The HCN population was used for constructing a whole-genome
genetic linkage map using the 90K SNP array (Wang et al.,
2016) for QTL mapping, consisting of 7808 SNP polymorphic
markers in parents distributed in 50 linkage groups and covers
a total genetic distance of 3486.44 cM, with an average distance
of 0.45 cM between the adjacent markers.

MapQTL 6.0 (Van Ooijen and Kyazma, 2009) was used for the
QTL analysis. Kruskal–Wallis test was used to evaluate the degree
of association between markers and PH. Interval mapping (IM)
was then used to identify major QTL and markers significantly
associated with PH. For each trial, a test of 1000 permutations
was performed to identify the LOD threshold corresponding
to a genome-wide false discovery rate of 1%. Based on the
permutation test, threshold LOD values between 2.4 and 3.3 were
used to confirm the presence of a QTL. The QTL were named
based on the International Rules of Genetic Nomenclature2. “Ph”
and “sicau” stand for “plant height” and “Sichuan Agricultural
University,” respectively.

Validation of the Major QTL
The flanking markers of the major QTL were mapped to the
physical map of the wheat cultivar Chinese Spring (IWGSC
RefSeq v1.0), and the sequence information in the QTL interval
was obtained. To develop Kompetitive allele specific PCR
(KASP) markers closely linked to the QTL, the partial sequence
information of the QTL interval was amplified in CN16 and H461
by PCR to search for polymorphic sites. The newly developed
KASP markers were remapped into the genetic map.

The markers closely linked to the QTL were used for
identifying alleles in different genetic backgrounds (populations
HCM and CMM). The lines were classified into two groups:
genotypes with homozygous alleles from H461 (designated AA)
and those with homozygous alleles from alternative parents
(designated BB). The mean PH from homozygotes was used
for measuring the QTL effects, and Student’s t-test was used to
determine the significance of differences between the two groups
in each population.

Predicted Candidate Genes
The gene information of the QTL interval was obtained from
IWGSC RefSeq v1.1 annotation. Expression values as transcripts
per million (TPM) were obtained from the expVIP Wheat

2http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm

Frontiers in Genetics | www.frontiersin.org 2 October 2020 | Volume 11 | Article 60249577

http://wheat.pw.usda.gov/ggpages/wgc/98/Intro.htm
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-602495 October 19, 2020 Time: 16:55 # 3

Wang et al. Plant Height QTL in Wheat

TABLE 1 | Phenotypic variation of the mapping population H461 × CN16 and parental lines in different environments.

Trait Environment Parents Population

H461 CN16 Range Mean SD h2

2015WJ 79.00** 61.60 64.32–115.84 84.72 8.08

2015YA 82.80** 74.02 62.47–114.44 83.25 8.87

PH 2015CZ 85.76** 75.20 64.42–124.20 87.45 8.89

2017CZ 85.13** 76.75 55.33–111.17 79.73 9.14

2019WJ 86.94** 70.61 51.50–109.00 78.60 8.36

2019CZ 88.22** 76.17 58.10–110.78 81.10 7.80

BLUP 82.33 73.75 63.01–105.93 80.53 5.71 0.83

SN BLUP 22.50 19.71 19.75–23.55 21.30 0.55 0.65

SL BLUP 14.06 10.92 10.41–13.95 12.13 0.56 0.72

SC BLUP 1.60 1.80 1.51–1.99 1.77 0.09 0.80

TKW BLUP 52.49 44.66 38.99–58.31 49.41 3.35 0.81

FT BLUP 142.06 141.10 137.78–149.16 141.75 2.12 0.84

SD, standard deviation; h2, broad-sense heritability; BLUP, phenotype values based on BLUP. **indicates significant differences at P < 0.01.

Expression Browser3 (Borrill et al., 2016), genes with a low
expression (TPM < 0.5) in various tissues were excluded and
the mean expression values were visualized by TBtools (Chen
et al., 2020). The remaining genes were annotated by KOBAS v3.0
(Ai and Kong, 2018) BLAST against the corresponding protein
sequences in rice and Arabidopsis thaliana. The genomic DNA
of parents was extracted from the leaf samples using the Plant
Genomic DNA kit (Biotechnologies, CA) and used to amplify
candidate genes for sequence analysis.

RESULTS

Phenotyping of the HCN Population
In different environments, the PH of H461 ranged from 79.00
to 88.22 cm, and that of CN16 ranged from 61.60 to 76.75 cm.
Moreover, significant differences in PH were observed between
H461 and CN16 (Table 1). The frequency of PH in the HCN
population showed continuous distribution, ranging from 51.50
to 124.2 cm (Table 1 and Supplementary Figure S1); this
implied that PH was affected by multiple loci. The h2 of PH was
0.83, and Pearson’s correlation coefficients between the different
environments ranged from 0.232 to 0.872 (P < 0.01; Table 2).

3http://www.wheat-expression.com/

TABLE 2 | Correlation coefficients for plant height (PH) in the HCN population
evaluated in different environments.

2015WJ 2015YA 2015CZ 2017CZ 2019WJ

2015YA 0.334**

2015CZ 0.549** 0.661**

2017CZ 0.613** 0.242** 0.444**

2019WJ 0.570** 0.232** 0.405** 0.633**

2019CZ 0.632** 0.314** 0.477** 0.644** 0.872**

**indicates significant differences at P < 0.01.

The BLUP values of PH, SN, SL, SC, TKW, and FT are shown
in Table 1. Phenotypic correlation coefficients between PH and
other spike-related traits were obtained based on the BLUP values
(Table 3). PH was highly significantly correlated with the TKW
(P < 0.01) and significantly correlated with the SN and SL
(P < 0.05). No significant correlation was observed between PH
and SC or FT (Table 3).

Identification of QTL for PH
Three QTL for PH were identified using the IM analysis
(Table 4). The first QTL (QPh.sicau-4B) was located on
the short arm of chromosome 4B, between the markers
Tdurum_contig64772_417 and Excalibur_rep_c113261_400.
QPh.sicau-4B was a stable major QTL with the additive effects
from H461, and it explained 10.1–21.3% of the phenotypic
variance, with LOD values ranging from 4.15 to 9.39. It was
identified in five environments and the combined analysis
(BLUP). The second QTL (QPh.sicau-6D) was located on the
short arm of chromosome 6D, between the markers IACX10982
and BS00063175_51. QPh.sicau-6D was a stable major QTL with
the additive effects from H461; it explained 6.6%–13.6% of the
phenotypic variance, with LOD values ranging from 2.67 to 5.80,
identified in all environments and using BLUP. The third QTL

TABLE 3 | Correlation coefficients among the BLUP value for plant height (PH)
with spikelet number per spike (SN), spike length (SL), spikelet compactness (SC),
thousand kernel weight (TKW) and flowering time (FT).

Trait PH

SN 0.180*

SL 0.182*

SC −0.075

TKW 0.249**

FT 0.073

**and *indicate significant correlations at P < 0.05 and P < 0.01, respectively.
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TABLE 4 | Quantitative trait loci (QTL) for plant height identified in the H461 × CN16 recombinant inbred line population evaluated in different environments.

QTL Environment Interval (cM) Flanking markers LOD PVE (%)a Addb

QPh.sicau-4B 2015WJ 94.00∼102.26 Tdurum_contig64772_417 and BS00023766_51 9.39 21.3 3.79

2015CZ 94.00∼101.67 Tdurum_contig64772_417 and Excalibur_rep_c113261_400 7.76 17.9 3.97

2015YA 94.00∼101.67 Tdurum_contig64772_417 and Excalibur_rep_c113261_400 5.19 12.7 3.35

2019WJ 94.00∼102.26 Tdurum_contig64772_417 and BS00023766_51 4.15 10.1 2.70

2019CZ 94.00∼102.26 Tdurum_contig64772_417 and BS00023766_51 4.84 11.6 2.70

BLUP 94.00∼101.67 Tdurum_contig64772_417 and Excalibur_rep_c113261_400 6.19 14.4 2.28

QPh.sicau-6D 2015WJ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 3.97 9.6 2.54

2015CZ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 3.49 8.5 2.64

2015YA 28.53∼31.43 IACX10982 and BS00063175_51 3.30 8.3 2.58

2017CZ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 5.71 13.4 3.37

2019WJ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 2.84 7.0 2.24

2019CZ 25.02∼31.43 Kukri_c34967_226 and BS00063175_51 2.67 6.6 2.03

BLUP 28.53∼31.43 IACX10982 and BS00063175_51 5.80 13.6 2.13

QPh.sicau-3B 2017CZ 96.74∼98.46 BS00099633_51 and Kukri_c6907_80 3.27 7.9 2.65

a Percentage of the phenotypic variation explained. b Additive effect.

FIGURE 1 | Effects of the QPh.sicau-4B and QPh.sicau-6D on PH in HCN population (A: carrying both the additive alleles of the two major QTL; B: only carrying the
additive allele of QPh.sicau-4B; C: only carrying the additive allele of QPh.sicau-6D; and D: not carrying the additive alleles of the two major QTL). **indicates
significant differences at P < 0.01.

(QPh.sicau-3B) was located on 3B, identified only in 2017CZ,
and it explained 7.9% of the phenotypic variance.

Effects of the Two Major PH QTL on PH
and Other Panicle Traits
To identify the effect of the two major PH QTL (QPh.sicau-
4B and QPh.sicau-6D) for other panicle traits, the BLUP values
across six environments were used. For QPh.sicau-4B, lines with
homozygous alleles from H461 and lines with homozygous alleles
from CN16, classified into two groups, showed a significant
difference (P < 0.05) for FT (Supplementary Figure S2). For
QPh.sicau-6D, lines with homozygous alleles from H461 and
those with homozygous alleles from CN16, classified into two

groups, showed significant differences (P < 0.05) for SL, SC, and
TKW (Supplementary Figure S3).

For PH, the HCN population could be divided into the
following four groups based on markers: (A) carrying both
the additive alleles of two major QTL, (B) only carrying the
additive allele of QPh.sicau-4B, (C) only carrying the additive
allele of QPh.sicau-6D, and (D) not carrying the additive alleles
of QPh.sicau-4B and QPh.sicau-6D. Comparative analyses among
the four groups showed that the group A had the highest effect
on PH, which was significantly higher than that of the groups
B, C, and D. Furthermore, the groups B and C had significantly
higher effects than that of the group D. Thus, QPh.sicau-4B and
QPh.sicau-6D might significantly affect PH, with both having a
significant effects on PH (Figure 1).
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FIGURE 2 | Genetic map of the major QTL QPh.sicau-4B with the marker KASP-4B.

Validation of QTL in Different Genetic
Backgrounds
Based on the QTL mapping results and Sanger sequencing of the
PCR products of H461 and CN16, two KASP markers (KASP-
4B and KASP-6D, Supplementary Table S1) were developed and
used to reconstruct the genetic map. The KASP-4B marker was
found to be closely linked to QPh.sicau-4B, whereas the KASP-6D
marker was closely linked to QPh.sicau-6D (Figures 2, 3).

Two populations (HCM and HMM) were used for evaluating
the effects of the two major QTL in different genetic backgrounds,
and the KASP markers were used to identify the genotype. For

QPh.sicau-4B, KASP-4B was used to identify the alleles in the
HCM and HMM populations and were classified into two groups.
Significant differences (P < 0.05) were detected between “AA”
and “BB” genotypes in three environments for HCM and four
environments for HMM (Table 5). The differences in PH ranged
from 2.56 to 9.24% in the HCM and HMM populations. For
QPh.sicau-6D, KASP-6D was used to identify the alleles in the
HCM and HMM populations and were classified into two groups.
Significant differences (P < 0.05) were detected between “AA”
and “BB” genotypes in four environments for HCM and four
environments for HMM (Table 6). The differences in PH ranged
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FIGURE 3 | Genetic map of the major QTL QPh.sicau-6D with the marker
KASP-6D.

from 3.77 to 12.41% in the HCM and HMM populations. And
the effects of Qph.sicau-6D was higher than Qph.sicau-4B in the
validation populations, which may be responsible by different
genetic backgrounds.

Potential Candidate Genes
A total of 224 high-confidence (HC) genes were selected from
the QPh.sicau-4B and QPh.sicau-6D intervals, and 62 HC genes
with low expression in various tissues were excluded (Figure 4).

Finally, 47 HC genes from QPh.sicau-4B were selected for
gene annotation, including Rht-B1. And 115 HC genes from
QPh.sicau-6D were selected for gene annotation, including YDA,
BUB1, and PAT10 (Supplementary Table S2 and Table 7).

Sequence analysis of the four candidate genes, revealed 2 SNPs
and 1 insertion/deletion (indel) between H461 and CN16 for
Rht-B1, one T for C substitution (C(190)T) converts the codon
(CGA) to a translational stop codon (TGA) in CN16 (Figure 5A).
For TraesCS6D02G227300, 1 SNP in the intron region between
H461 and CN16 was found (Figure 5B). Five SNPs in the coding
sequence, 4 SNPs in the intron region, and 1 SNP in the promoter
region for TraesCS6D02G233000 were detected between H461
and CN16 (Figure 5C). However, no sequence variation between
H461 and CN16 was identified for TraesCS6D02G234900.

DISCUSSION

Plant height is a critical trait that influences plant architecture
and grain yield potential in wheat, and it is controlled by multiple
genes functioning together (Spielmeyer et al., 2007; Singh et al.,
2016). Exploring PH QTL and genes is essential for wheat
breeding, and the identification of QTL associated with PH on
different chromosomes has been widely reported (Zhang et al.,
2010; Liu et al., 2014; Gao et al., 2015; Chai et al., 2018). In
this study, two stable and major QTL for PH were identified in
different environments and were validated in different genetic
backgrounds. QPh.sicau-4B was located in a 7.67-cM interval and
mapped between 26.49 and 31.88 Mb on the physical map of
chromosome 4B (Figures 2, 4). QPh.sicau-6D was located in a
2.9-cM interval and mapped between 315.06 and 339.69 Mb on
the physical map of chromosome 6D (Figures 3, 4).

QPh.sicau-6D Is a Novel QTL for PH
QPh.sicau-6D was physically mapped between 315.06 and
339.69 Mb of chromosome 6D. Several known QTL responsible
for PH have been mapped on chromosome 6D, including
QPh.spa-6D, and QPh.cau-6D (Supplementary Table S3). We

TABLE 5 | Effects of QPh.sicau-4B in two validation populations.

Population Environment Parenta AAb BBc Difference P-value

Parent1 Parent2

HCM 2015YA 82.80 76.25 92.50 89.43 3.43%* <0.05

HCM 2015WJ 79.00 71.19 93.07 90.22 3.16%* <0.05

HCM 2015CZ 85.76 73.22 94.63 90.61 4.44%** <0.01

HCM 2017CZ 85.13 84.44 86.25 84.03 2.64% 0.09

HCM BLUP 82.33 72.3 89.58 87.34 2.56%* <0.05

HMM 2015WJ 79.00 58.36 84.29 77.42 8.87%** <0.01

HMM 2017CZ 85.13 80.33 86.80 79.46 9.24%** <0.01

HMM 2019WJ 86.94 70.83 75.82 70.79 7.11%* <0.05

HMM 2019CZ 88.22 56.25 82.67 76.21 8.48%** <0.01

HMM BLUP 82.33 70.53 82.09 76.14 7.81%** <0.01

**and *indicate extremely significant difference and significant difference, respectively. a“Parent1” represents H461, “Parent2” represents CM107 or MM37. b“AA”
represents homozygous alleles from H461. c“BB” represents homozygous alleles from non-H461 parents.
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TABLE 6 | Effects of QPh.sicau-6D in two validation populations.

Population Environment Parenta AAb BBc Difference P-value

Parent1 Parent2

HCM 2015YA 82.80 76.25 93.92 89.27 5.21%** <0.01

HCM 2015WJ 79.00 71.19 93.19 88.45 5.36%** <0.01

HCM 2015CZ 85.76 73.22 94.76 89.61 5.75%** <0.01

HCM 2017CZ 85.13 84.44 86.78 83.56 3.85%** 0.01

HCM BLUP 82.33 72.3 90.01 86.74 3.77%** <0.01

HMM 2015WJ 79.00 58.36 85.95 77.25 11.26%** <0.01

HMM 2017CZ 85.13 80.33 89.50 79.62 12.41%** <0.01

HMM 2019WJ 86.94 70.83 76.25 71.29 6.96%* <0.05

HMM 2019CZ 88.22 56.25 83.02 76.70 8.24%** <0.01

HMM BLUP 82.33 70.53 82.96 76.36 8.64%** <0.01

**and *indicate extremely significant difference and significant difference, respectively. a“Parent1” represents H461, “Parent2” represents CM107 or MM37. b“AA”
represents homozygous alleles from H461. c“BB” represents homozygous alleles from non-H461 parents.

tried to compare the physical positions of these QTL to assess
their relationship with QPh.sicau-6D. Physical mapping showed
that QPh.spa-6D (Singh et al., 2016) was mapped to intervals 3.6–
5.8 Mb of the chromosome 6D, was far away from QPh.sicau-6D,
indicating that they were different loci. The confidence interval
of QPh.cau-6D (Guan et al., 2018) was mapped between 283.97
and 292.07 Mb on the physical map. No physical interval of
QPh.cau-6D overlapped with QPh.sicau-6D, verifying that they
were different loci. These comparisons implied thatQPh.sicau-6D
was likely a novel QTL for PH.

QPh.cau-4B.2 (Guan et al., 2018) and QPH.caas-4BS.2 (Gao
et al., 2015) were mapped to intervals 29.0–35.5 Mb and
21.4–46.6 Mb, respectively, in the 4B chromosome physical
map (Supplementary Table S3). Furthermore, the two QTL
overlapped with QPh.sicau-4B, implying that QPh.sicau-4B
was likely the same locus as QPh.cau-4B.2 and QPH.caas-
4BS.2.

Correlations Between the Major PH QTL
and Other Spike-Related Traits
Gao et al. (2015) and Guan et al. (2018) reported that PH was
significantly positively correlated with the TKW but not with
the other spike-related traits. Zhai et al. (2016) reported that PH
was positively correlated with the SL but negatively correlated
with the SN and SC. In this study, Pearson’s correlation analysis
showed that PH was positively correlated with the SL, SN, and
TKW (Table 3). This might be because of lines carrying different
PH QTL that affect the correlation of PH with other traits.
Further analysis of QTL responsible for significant differences

TABLE 7 | The information of the candidate genes.

Gene ID Gene name

TraesCS4B02G043100 Rht1b

TraesCS6D02G227300 YDA

TraesCS6D02G233000 HUB1

TraesCS6D02G234900 PAT10

in the SL, SC, and TKW between lines with different alleles
at QPh.sicau-6D (Supplementary Figure S3) suggested that
QPh.sicau-6D confers pleiotropic effects on the SL, TKW, and
SC. This interesting perspective warrants further investigation.
Additionally, QPh.sicau-4B and QPh.sicau-6D demonstrated
superimposed effects on PH (Figure 1), which will allow these
two QTL to be simultaneously applied for modifying plant
morphological architecture.

Candidate Genes for QPh.sicau-4B and
QPh.sicau-6D
In wheat, several reduced height (Rht) genes have been cloned,
e.g., Rht-b1, Rht-d1 (Peng et al., 1999), and Rht18 (Ford et al.,
2018). Rht-B1 encodes a DELLA transcription factor protein,
which participates in gibberellin signaling and thus confers the
dwarfing trait to the plant (Peng et al., 1999; Sun, 2010). In
the QPh.sicau-4B interval, 24 genes with low expression were
removed (Figure 4), and 47 genes were further annotated using
KOBAS 3.0 (Supplementary Table S2), which included Rht-
B1. The sequence analysis of the Rht-B1 region revealed that a
T for C substitution (C(190)T) converts the codon (CGA) to
a translational stop codon (TGA) in CN16 (Figure 5), which
corresponded to dwarfing gene Rht-B1b (Pearce et al., 2011).
Thus, QPh.sicau-4B possibly corresponded to dwarfing gene
Rht-B1.

In the QPh.sicau-6D interval, 38 genes with low expression
were removed (Figure 4), and 115 genes were further annotated
using KOBAS 3.0 (Supplementary Table S2). Among these
genes, three have been reported to be involved in plant
growth and development and to affect PH in Arabidopsis and
rice. YDA encodes a ubiquitously expressed MAPKK kinase
and is sensitive to the hormone signal transduction pathway
in dwarf phenotype mutants (Lukowitz et al., 2004). PAT10
encodes an S-acyltransferase protein, which is critical for
development, and the pat10 mutant demonstrates characteristics
such as slow cell expansion and cell division and dwarfism
(Zhou et al., 2013). HUB1 is an important regulatory gene
for normal plant development as it is involved in histone
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FIGURE 4 | The genes expression of in various tissues in the QPh.sicau-4B interval and QPh.sicau-6D interval from the expVIP Wheat Expression Brower (A:
physical map of chromosome 4B and chromosome 6D, B: root, C: leaf, D: spike, E: grain).

FIGURE 5 | Sequence analysis of the candidate genes showing the SNPs and Indels between H461 and CN16. The nucleotide of H461 and CN16 are shown in red
and black, respectively (A: Rht-1B, B: TraesCS6D02G227300, C: TraesCS6D02G233000).
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H2B monoubiquitination; the hub1 mutants showed a dwarf
phenotype compared with the wild type in Arabidopsis and rice
(Fleury et al., 2007; Cao et al., 2015). Of these three candidate
genes (TraesCS6D02G227300, TraesCS6D02G233000, and
TraesCS6D02G234900) for QPh.sicau-6D, TraesCS6D02G233000
has five SNPs in the coding sequence and five SNPs in the non-
coding sequence between H461 and CN16 (Figure 5), which led
to the substitution of three amino acids (V/A, R/G, T/N). Thus,
the gene TraesCS6D02G233000 might be the candidate gene for
further research on QPh.sicau-6D.

CONCLUSION

In conclusion, two major stable QTL controlling PH
were identified in the HCN population across different
environments and were validated in the HCM and HMM
populations. QPh.sicau-4B possibly corresponded to dwarfing
gene Rht-B1. QPh.sicau-6D appears to be a novel QTL
for PH, with pleiotropic effects on the SL, TKW, and
SC, and thus, QPh.sicau-6D is a potential locus worth
exploring further for genetic improvement in wheat
breeding programs.
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Miaomiao Wang, Xianbo Zheng* and Tuanhui Bai*

College of Horticulture, Henan Agricultural University, Zhengzhou, China

Apple (Malus domestica Borkh.), an economically important tree fruit worldwide,
frequently suffers from temperature stress during growth and development, which
strongly affects the yield and quality. Heat shock protein 20 (HSP20) genes play
crucial roles in protecting plants against abiotic stresses. However, they have not been
systematically investigated in apple. In this study, we identified 41 HSP20 genes in
the apple ‘Golden Delicious’ genome. These genes were unequally distributed on 15
different chromosomes and were classified into 10 subfamilies based on phylogenetic
analysis and predicted subcellular localization. Chromosome mapping and synteny
analysis indicated that three pairs of apple HSP20 genes were tandemly duplicated.
Sequence analysis revealed that all apple HSP20 proteins reflected high structure
conservation and most apple HSP20 genes (92.6%) possessed no introns, or only
one intron. Numerous apple HSP20 gene promoter sequences contained stress and
hormone response cis-elements. Transcriptome analysis revealed that 35 of 41 apple
HSP20 genes were nearly unchanged or downregulated under normal temperature and
cold stress, whereas these genes exhibited high-expression levels under heat stress.
Subsequent qRT-PCR results showed that 12 of 29 selected apple HSP20 genes were
extremely up-regulated (more than 1,000-fold) after 4 h of heat stress. However, the
heat-upregulated genes were barely expressed or downregulated in response to cold
stress, which indicated their potential function in mediating the response of apple to
heat stress. Taken together, these findings lay the foundation to functionally characterize
HSP20 genes to unravel their exact role in heat defense response in apple.

Keywords: apple, HSP20 family, heat stress, genome-wide analysis, gene expression

INTRODUCTION

Temperature is an important factor affecting plant growth and geographical distribution (Wang
et al., 2016). Most plants undergo optimal growth and development within a narrow temperature
range and can only tolerate minor fluctuations. Fluctuations beyond optimal range result in
temperature stress, which is one of the most severe environmental stresses affecting plant growth,
development and survival worldwide (Peleg and Blumwald, 2011). High and low temperature
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stresses have rapid and severe effects on plant cell physiology,
altering gene expression, protein levels, and energy consumption
(Wang et al., 2017; Shen et al., 2019; Suzuki, 2019). Plants have
developed a series of physiological and molecular strategies to
overcome temperature stress over evolutionary time (Asea et al.,
2016; Huo et al., 2020). Heat shock proteins (HSPs) are one
of the strategies, and HSPs are essential in regulating growth,
development and stress response in plants (Waters et al., 1996;
Wang et al., 2004; Asea et al., 2016; He et al., 2019).

HSPs can be divided into five categories according to their
molecular weight: HSP100s, HSP90s, HSP70s, HSP60s, and
HSP20s (Waters, 2013; Zhao et al., 2018). Of these groups,
HSP20 is commonly associated with temperature stress in plants
(Waters, 2013). As genomes for more species are sequenced,
the HSP20 gene family has been identified in various plants.
NineteenHSP20 genes have been identified inArabidopsis (Scharf
et al., 2001), 39 in rice (Ouyang et al., 2009), 42 in tomato
(Yu et al., 2016), 44 in watermelon (He et al., 2019), and
48 in grape (Ji et al., 2019). Previous studies have suggested
that HSP20 genes are involved in regulating a diverse array
of developmental processes and responses to abiotic stresses,
especially in heat stress (Guo et al., 2015; He et al., 2019;
Ji et al., 2019). Yu et al. (2016) identified tomato HSP20
family genes and analyzed their functions in abiotic-stress
responses. Most pepper HSP20 genes were highly induced by
heat stress (Guo et al., 2015). Among the GmHSP20 genes,
five were shown to be involved in the soybean response to
cold stress (Lopes-Caitar et al., 2013). Interestingly, the same
HSP20 genes exhibited a different expression pattern in the heat
tolerant and sensitive plants. These differences in expression
pattern indicate the roles of HSP20 in heat tolerance. In
addition, some studies have further verified the role of HSP20s
in stress tolerance using transgenic methods. For example,
overexpressing with WsHSP26 in Arabidopsis showed improved
heat tolerance (Mu et al., 2013). Similarly, transgenic rice over-
expressing OsHSP17.7 conferred enhanced tolerance to heat
stress (Murakami et al., 2004). Together, these studies reveal
the crucial role of HSP20 genes in mediating temperature
stress tolerance.

Apple (Malus domestica Borkh.), an economically important
fruit crop, is widely planted in temperate zones (Dobránszki and
Teixeira da Silva, 2010). However, apple trees frequently suffer
from both high and low temperature stresses during their life
cycle, which strongly affect apple quality and yield. After suffering
continuous heat stress in summer, the leaf and fruit of apple
can be severely damaged; resulting in tissue discoloration and
sunburn of the fruit surface (Torres et al., 2017). It is reported
that fruit sunburn causes 10–40% yield losses in all major apple
growing regions around the world (Wang et al., 2020). After
suffering cold stress in early spring, the pollination, new leaves
and shoots of apple can be severely damaged, thereby greatly
reducing the yield and quality of apple. The entire genome of
apple has been sequenced, providing powerful resource for the
mining and identification of HSP20 gene family members at the
whole genome level.

In the present study, we identified HSP20 genes from the
apple genome using bioinformatics methods, and determined

their chromosomal locations, gene duplication, phylogenetic
relationships, gene structures, and conserved domains, as
well as cis-elements. Furthermore, we analyzed the expression
patterns of the apple HSP20 genes using qRT-PCR in order to
determine their roles in response to heat and cold stresses. Our
findings provide valuable information for subsequent research
on the functions and regulatory mechanisms of potentially
important HSP20 genes that are crucial in modulating heat stress
tolerance in apple.

MATERIALS AND METHODS

Plant Materials and Stress Treatments
Seeds of M. hupehensis were stratified using sand at 4◦C for
40 days, as previously described (Bai et al., 2013). Then, one
germinated seed was planted in one plastic pot (6 cm × 6 cm)
filled with soil/organic substrate (1:5, v: v) in a greenhouse
under natural light, 22–28◦C (day) and 5–10◦C (night), and
a relative humidity of 60–70%. After growing for 70 days,
uniform seedlings were randomly divided into three groups
and transferred to different chambers for temperature stress: (1)
control (CK), growth chamber were maintained at 25 ± 1◦C,
16-h photoperiod (160 µmol m−2 s−1) and relative humidity
of 60–70%; (2) heat stress (HS), growth chamber maintained at
40 ± 1◦C; (3) cold stress (CS), growth chamber maintained at
4 ± 1◦C, 16-h photoperiod (160 µmol m−2 s−1) and relative
humidity of 60–70%. Each treatment contained three biological
replicates and 30 plants for each replicate. At 0, 4, 8, 12, and
24 h after treatments, the samples were rapidly frozen in liquid
nitrogen and stored at −80◦C until RNA extraction.

Genome-Wide Identification of the
HSP20 Genes in Apple
The reference apple genome and protein sequences were
downloaded from the Genome Database for Rosaceae (GDR1).
The apple HSP20 candidates with an e-value ≤ 0.001 were
identified based on the Hidden Markov Model (HMM) profile
(PF00011) downloaded from Pfam protein family database2. The
SMART database3 was used to further confirm the conserved
HSP20 gene domain. ProtParam4 was used to predict the
potential chemical characteristics of theHSP20 genes. ProtComp5

was used to predict the subcellular localization.

Phylogenetic Analysis and Classification
of Apple HSP20 Genes
The full-length amino acid sequences of HSP20 genes derived
from Arabidopsis and rice downloaded from the Ensembl Plants
Database6 were combined with newly identified HSP20 genes in

1https://www.rosaceae.org/
2http://pfam.xfam.org
3http://smart.embl-heidelberg.de/
4https://web.expasy.org/protparam/
5http://linux1.softberry.com/
6http://plants.ensembl.org/index.html
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apple and used for phylogenetic analysis. The phylogenetic tree
was constructed using MEGA 6.07.

Structure and Domain Analysis of Apple
HSP20 Genes
The structures of HSP20 genes were identified using TBtools
software (Chen et al., 2018). The conserved motifs of HSP20

7http://www.megasoftware.net/

genes were identified using MEME Suite 5.1.18, and the
parameters were as follows: optimum motif width ranges from
6 to 200 amino acid residues and maximum of 10 misfits. The
upstream 2.0 kb promoter sequence of the apple HSP20 genes
was downloaded from the GDR and submitted to PlantCARE9

to identify the cis-elements (Lescot et al., 2002).

8http://meme-suite.org/tools/meme
9http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

TABLE 1 | Characteristics of HSP20 genes identified in apple.

Gene name Sequence ID Chr Genomic location ORF (bp) AA MW (kDa) pI Subcellular localization

HSP20-1 MD00G1181700 0 42820094-42820435 342 113 12.93 9.49 Cytoplasm

HSP20-2 MD01G1144400 1 25475100-25479690 810 269 30.82 9.38 Chloroplast

HSP20-3 MD01G1227600 1 31728955-31730100 480 159 18.05 5.94 Chloroplast

HSP20-4 MD02G1259500 2 31287370-31288929 1092 363 39.47 9.53 Chloroplast

HSP20-5 MD03G1081800 3 6580874-6581326 453 150 16.75 4.60 Chloroplast

HSP20-6 MD04G1140600 4 22893411-22893881 471 156 18.17 6.87 Cytoplasm

HSP20-7 MD05G1183400 5 31196823-31197443 621 206 23.14 6.46 Chloroplast

HSP20-8 MD05G1240300 5 37103604-37104083 480 159 18.32 5.72 Cytoplasm

HSP20-9 MD05G1343700 5 46361886-46362915 414 137 16.11 5.86 Chloroplast

HSP20-10 MD06G1060300 6 9340096-9341581 789 262 29.46 9.85 Nucleus

HSP20-11 MD06G1188500 6 32557693-32558803 717 238 26.43 5.82 Chloroplast

HSP20-12 MD07G1210400 7 28942672-28943139 468 155 17.53 5.99 Cytoplasm

HSP20-13 MD07G1210700 7 28969132-28969626 468 155 17.55 5.39 Cytoplasm

HSP20-14 MD07G1210800 7 28970024-28970494 471 156 17.86 7.08 Cytoplasm

HSP20-15 MD07G1253800 7 32097833-32098492 660 219 24.43 6.99 Chloroplast

HSP20-16 MD07G1298000 7 35766162-35768343 672 223 24.68 7.87 Chloroplast

HSP20-17 MD08G1068000 8 5407860-5408476 465 154 17.10 6.61 Cytoplasm

HSP20-18 MD08G1068200 8 5414896-5415389 471 156 17.41 5.93 Cytoplasm

HSP20-19 MD08G1068300 8 5433838-5434323 486 161 17.84 4.77 Cytoplasm

HSP20-20 MD08G1068500 8 5449001-5449663 663 220 24.25 5.66 Chloroplast

HSP20-21 MD08G1068700 8 5470111-5470842 732 243 26.17 6.24 Chloroplast

HSP20-22 MD08G1068800 8 5474013-5474495 483 160 17.90 6.41 Cytoplasm

HSP20-23 MD08G1249100 8 31349994-31350611 618 205 22.94 7.08 Chloroplast

HSP20-24 MD09G1271100 9 34531591-34533232 438 145 16.36 6.92 Cytoplasm

HSP20-25 MD10G1171200 10 26409043-26409660 618 205 23.37 6.93 Endoplasmic reticulum

HSP20-26 MD10G1218300 10 31639809-31640195 387 128 14.87 5.94 Chloroplast

HSP20-27 MD10G1319400 10 40169759-40170934 411 136 15.88 5.39 Chloroplast

HSP20-28 MD11G1087100 11 7308309-7308791 483 160 18.21 5.81 Cytoplasm

HSP20-29 MD11G1088300 11 7365514-7366036 483 160 17.98 5.34 Cytoplasm

HSP20-30 MD11G1089300 11 7421465-7421947 483 160 18.22 5.39 Cytoplasm

HSP20-31 MD13G1108500 13 7793385-7800082 723 240 26.81 9.16 Chloroplast

HSP20-32 MD13G1120200 13 8835673-8835939 267 88 9.98 4.86 Cytoplasm

HSP20-33 MD15G1053500 15 3658892-3659347 456 151 16.79 9.09 Cytoplasm

HSP20-34 MD15G1053600 15 3662890-3663356 402 133 15.14 6.15 Chloroplast

HSP20-35 MD15G1053800 15 3675367-3676018 471 156 17.44 5.57 Cytoplasm

HSP20-36 MD15G1443700 15 54408605-54409228 624 207 23.17 6.31 Chloroplast

HSP20-37 MD16G1108600 16 7581626-7584321 711 236 26.71 9.36 Nucleus

HSP20-38 MD17G1020300 17 1535600-1536025 426 141 16.40 7.83 Cytoplasm

HSP20-39 MD17G1151000 17 13922992-13924497 471 156 17.36 7.72 Chloroplast

HSP20-40 MD17G1209800 17 25460073-25461508 732 243 27.26 8.45 Chloroplast

HSP20-41 MD17G1269200 17 32927931-32928852 339 112 12.53 6.30 Cytoplasm

ORF, open reading frame; AA, amino acid; MW, molecular weight; pI, isoelectric point.

Frontiers in Genetics | www.frontiersin.org 3 November 2020 | Volume 11 | Article 60918488

http://www.megasoftware.net/
http://meme-suite.org/tools/meme
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-609184 November 6, 2020 Time: 16:28 # 4

Yao et al. HSP20 Genes Involved in Heat Stress Tolerance of Apple

Chromosomal Location and Synteny
Analysis
All identified HSP20 genes were mapped to apple chromosomes
using TBtools software based on the information available at
GDR. Synteny analysis of HSP20 genes was conducted using
Circos v. 0.6310.

RNA Extraction, cDNA Library
Construction, and Sequencing
Total RNA was extracted from the leaf tissues according to the
CTAB method (Chang et al., 1993). Each sample was 0.5 g and
three biological replicates were performed. RNA concentrations

10http://circos.ca/

were determined using a NanoDrop 1000 (Thermo Fisher
Scientific, Waltham, MA, United States) and quality was assayed
on a 1% agarose gel. The sample libraries were prepared
according to the RNA-Seq library constructed flow path and
sequenced on an Illumina HiSeq 4000 system. The raw sequence
data from the sequence was used for analysis. After filtering the
low quality reads and contaminant sequences, the clean reads
were aligned to the apple genome (GDDH13 Version 1.111)
(Daccord et al., 2017) using HISAT2 (Kim et al., 2015). Stringtie
software was used to assemble the transcript (Pertea et al., 2016).
Gene expression was calculated using the fragments per kilobase
of transcript per million (FPKM) fragments mapped Reads

11https://iris.angers.inra.fr/gddh13/the-apple-genome-downloads.html

FIGURE 1 | Phylogenetic analysis of HSP20 proteins from Arabidopsis, rice and apple. The phylogenetic tree was constructed using MEGA 6.0 based on the
neighbor joining method with 1000 bootstrap replicates. The 12 subfamilies were distinguished with different colored arcs.
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method (Mortazavi et al., 2008). TBtools was used to generate the
heatmap. The RNA-seq data were available at NCBI12.

qRT-PCR Analysis
Quantitative real-time PCR (qRT-PCR) was used to analyze
the gene expression. Primers (Supplementary Table S1) were
designed to amplify products of 150–250 bp using Primer 5.0
software. qRT-PCR was performed using ABI-7500 Connect
Real-Time PCR Detection System. cDNAs were diluted to 200 ng
and run in three technical replicates, with 1 µL template in a
reaction volume of 20 µL. PCR amplification conditions were
as follows: 95◦C for 5 min for initial denaturation, then 45
cycles of 94◦C for 20 s, 55◦C for 20 s, and 72◦C for 10 s.
Fluorescence was measured at the end of each cycle. A melting
curve analysis was performed to determine whether a single
product was amplified. The apple Actin gene was used as an
internal standard in the analysis. The relative expression level of

12https://www.ncbi.nlm.nih.gov/sra/PRJNA665791

each gene was calculated according to the 2−11CT method (Livak
and Schmittgen, 2001). Values for mean expression and standard
error (SE) were calculated from the results of three independent
biological replicates.

RESULTS

Genome-Wide Identification of HSP20
Genes in Apple
A total of 45 HSP20 protein sequences were found in
the apple cultivar “Golden Delicious” genome. Among 45
HSP20 sequences, four sequences lacked the conserved domain.
Ultimately, 41 sequences were identified as genes in the apple
HSP20 family and named HSP20-1 to HSP20-41 based on the
position of the genes on the chromosomes (Supplementary
Table S2). Gene name, gene ID, chromosomal location, open
reading frame (ORF), amino acid (AA), molecular weight (MW)
and isoelectric point (pI) for each gene are in Table 1. Sequence

FIGURE 2 | Phylogenetic tree, gene structure and domain analyses of HSP20s. (a) Phylogenetic tree of HSP20s. (b) Domain analyses of HSP20 proteins. (c) Gene
structure of HSP20 genes. CDS sequences are represented with yellow round-corner rectangles and introns with gray lines, UTRs are shown with green boxes.
Different colored boxes represent the different types of motifs.
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analysis showed that these HSP20 proteins vary widely in length,
from 88 (HSP20-32) to 363 (HSP20-4) AAs, and predicted MWs
from 9.98 kDa (HSP20-32) to 39.47 kDa (HSP20-4). The ORF
lengths of the HSP20 genes ranged from 267 bp (HSP20-32)
to 1,092 bp (HSP20-4), and the predicted pI-values of HSP20
proteins ranged from 4.60 (HSP20-5) to 9.85 (HSP20-10).

Phylogenetic Relationships of Plant
HSP20 Genes
A phylogenetic tree was constructed based on the amino acid
sequences of HSP20 genes (Figure 1), 19 from Arabidopsis, 22
from rice (Oryza sativa) and 41 from apple (M. domestica)
(Supplementary Table S3). The 82 HSP20s were divided into
12 subfamilies, 25 cytosol Is (CIs), 14 CIIs, 4 CIIIs, 2 CIVs, 4
CVs, 1 CVI, 1 CVII, five mitochondria Is (MIs), three MIIs,
four peroxisomes (Pos), 9 from the endoplasmic reticulum (ER),
and 8 plastids (Ps) based on the phylogeny and the subcellular
localization. However, two apple HSP20 genes (HSP20-4 and
HSP20-11) failed to cluster into any subfamily and were thus
unclassified. Of the 12 subfamilies, 10 (CIs, CIIs, CIIIs, CIVs,
CVs, MIs, MIIs, Pos, ER, and Ps) contained apple HSP20
proteins. Except for the two unclassified HSP20s, 23 (59%)
HSP20s were classified into CI-CVI, indicating that cytoplasm
could be the primary functional area of theHSP20 family in apple.

Conserved Motifs and Gene Structure of
HSP20 Genes
The conserved motifs of apple HSP20 gene family were identified
and divided into 10 motifs (Figure 2b). The lengths of the 10
motifs ranged from 6 to 50 AAs, with the longest motif (9)

containing 50 AAs and the shortest motif (8) containing six AAs;
motifs 4, motifs 5, and motifs 6 have 15 AAs (Supplementary
Table S4). The number of the conserved motifs for each HSP20
gene ranged from 2 to 7. Most apple HSP20 genes had two to
seven conserved motifs, however, HSP20-32 only contained two
conserved motifs. The results suggested that the HSP20 genes
exhibited extreme divergence during the evolutionary process.

To gain insight into the evolutionary relationships of apple
HSP20 genes, the exon–intron structure of the HSP20 genes
was analyzed (Figure 2c). Among the HSP20s, 25 (60.9%)
were intronless, 13 (31.7%) possessed one intron, and three
genes (7.3%) – HSP20-31, HSP20-37, and HSP20-38 – possessed
two introns. Most HSP20 genes thus have no introns or only
one intron, suggesting relatively simple gene structures. Gene
structure analysis showed that the genes with similar exon–intron
patterns were grouped in the same cluster (Figure 2a).

Chromosomal Location, Gene
Duplication, and Synteny Analysis
A total of 41 apple HSP20 genes were mapped on 15
chromosomes (Chr), except Chr 12 and 14, with an obviously
non-uniform distribution (Figure 3). One HSP20 gene (HSP20-
1) could not be mapped on any of the apple chromosomes,
so we mapped it on a pseudo-chromosome, named Chr00. In
addition, most of the apple HSP20 genes were located on the
distal ends of the chromosomes. The biggest cluster was seven
HSP20 genes together on Chr 8, whereas the fewest HSP20s were
found on Chrs 0, 2, 3, 4, 9, and 12 (one per Chr). Moreover, we
analyzed the duplication events of apple HSP20 genes (Figure 4).
In total, 37 (90.2%) HSP20 genes in apple exhibited segmental

FIGURE 3 | Distribution of HSP20 genes in apple chromosomes. Forty-one HSP20 genes was mapped to the 16 linkage groups (Chr 01 through Chr 17, except
Chr 12 and Chr 14), whereas one HSP20 gene were mapped on apseudo-chromosome, designated as Chr00.
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or tandem duplication. Twenty were segmentally duplicated and
three pairs of genes (HSP20-13 and HSP20-14, HSP20-18 and
HSP20-19,HSP20-21, andHSP20-22) were regarded as tandemly-
duplicated genes (Supplementary Table S5). Chr 7 had the most
duplication events, which could partly explain the larger numbers
of HSP20 genes on Chr 7, while Chr 0 and 12 did not contain any
duplicated genes.

Analysis of Cis-Element in Apple HSP20
Gene Promoters
To further investigate the potential regulatory mechanisms
of the apple HSP20 genes in response to temperature stress,
the promoter in the upstream 2 kb region of 41 HSP20
genes was analyzed to detect the cis-regulatory element. The
results showed that three categories of cis-elements, including
stress-related (heat, defense and stress, low-temperature and

light), hormone-related (abscisic acid, auxin, gibberellin, MeJa,
and salicylic acid), and plant development-related cis-elements
(meristem expression and circadian control), were identified
(Figure 5a). Among the stress-related cis-elements, 13 apple
HSP20 genes had the heat response elements (HRE) in their
promoter regions, 26 apple HSP20 genes had the low temperature
response elements (LTR), which suggests a potential stress
response under temperature conditions (Figure 5b). Among the
hormone-related cis-elements, abscisic acid responsive (ABRE),
salicylic acid responsiveness (TCA-element), auxin responsive
(AUXRR-core), and MeJA-responsiveness (CGTCA-motif) were
identified in the promoters of apple HSP20 genes. All HSP20
genes contained light signal response elements, which indicate
that HSP20s are essential in plant growth. The results indicate
that the HSP20 gene family is not only involved in the
stress response, but is also involved in other physiological
response processes.

FIGURE 4 | Syntenic relationships and gene duplications of the apple HSP20 genes. The segmental duplicated genes are indicated by differently colored lines and
tandem duplicated genes are indicated by red gene names.
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FIGURE 5 | Cis-Element analysis of apple HSP20 gene promoters. (a) The different colored blocks represent the different types of cis-acting elements and their
locations in each HSP20 gene. (b) The number of each cis-acting element in the promoter region of each apple HSP20 gene.

Expression Patterns of HSP20s in
Response to Cold and Heat Stress
For a preliminary investigation of the functions of apple HSP20
genes in response to heat and cold stress, nine RNA-seq libraries,
including three independent biological replicates for the control,
cold-treated and heat-treated, were constructed and sequenced.
A heatmap of 41 apple HSP20 genes was constructed using FPKM
values from RNA-Seq data to estimate the expression levels of
these genes (Figure 6). The heat map showed that the 41 HSP20
genes clustered in three groups. Cluster A contains one member
(HSP20-33) of 41 detectable HSP20 genes, which was barely
expressed after heat and cold stress treatment compared with the
control. We found HSP20-33 has no HREs in promoter region.
This may be why the gene does not respond to heat stress. All
35 members from cluster B were mainly upregulated after 4 h
of heat stress. However, these genes were nearly unchanged or
downregulated under cold treatment. Cluster C contains five
members, which had similar expression with cluster A, which was
barely expressed after heat and cold stress treatment compared
with the control.

To further identify which of these HSP20 genes are
most important in mediating heat and cold stress tolerances,

29 differentially expressed HSP20 genes were selected to be
further validated by qRT-PCR based RNA-Seq analysis (Figure 7
and Supplementary Table S6). Consistent with the RNA-Seq
data, all 29 selected HSP20 genes were up-regulated under heat
stress. The expression levels of 12 HSP20 genes (HSP20-8, 13,
16, 17, 18, 19, 23, 29, 35, 36, 37, and 38) were extremely up-
regulated (more than 1,000-fold) after 4 h of heat stress. Under
heat stress, 29 HSP20 genes were similarly expressed over time,
with peak expression levels at 4 h, except for HSP20-40, with peak
expression levels at 24 h, while most HSP20 (HSP20-2, 5, 7, 13,
17, 18, 19, 22, 23, 25, 28, 29, 30, 31, 35, 36, 37, and 38) genes
were barely expressed in response to cold stress. However, eight
apple HSP20 genes (HSP20-3, 10, 12, 14, 15, 16, 27, and 40) were
up-regulated under cold stress.

DISCUSSION

HSP20s are considered to be the most abundant plant stress
responsive class among HSPs (Waters, 2013). They have been
identified in potato, pepper, tomato, and soybean in responding
to temperature stress (Lopes-Caitar et al., 2013; Guo et al., 2015;
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FIGURE 6 | Heat map of the expression profiles of 41 apple HSP20 genes in response to heat and cold stresses based on RNA-Seq data. Log2 based FPKM value
was used to create the heat map with clustering. The color scale representing the relative expression values is shown on the left. CK, control, plants were maintained
at 25 ± 1◦C; HS, heat stress, plants were maintained at 40 ± 1◦C; CS, cold stress, plants were maintained at 4 ± 1◦C.

Yu et al., 2016; Zhao et al., 2018). But not studies have conducted
an overall identification and characterization of the apple HSP20
genes. Completion of high-quality apple genome sequencing has
provided an opportunity to identify and characterize HSP20
genes at the whole-genome level.

In the present study, we identified 41 HSP20 genes and
investigated their characteristics from the apple genome database.
The number of apple HSP20 genes was higher than that of
Arabidopsis (19) (Scharf et al., 2001), slightly higher than rice
(39) (Ouyang et al., 2009) but lower than that of watermelon
(44) (He et al., 2019), potato (48) (Zhao et al., 2018), and
grape (48) (Ji et al., 2019). This difference is most likely due
to the fact that apple had gene duplications during evolution
(Velasco et al., 2010; Ma et al., 2018). Gene duplication was
reported to play an important role in the expansion of the
number of gene families in plants (Blanc and Wolfe, 2004;
Han et al., 2011). In the current study, 41 apple HSP20 genes
were unevenly mapped on 15 Chrs and most of the HSP20

genes were located on the distal ends of the Chrs, which might
contribute to the occurrence of duplication events in the apple
HSP20 gene family. We confirmed many tandem and segmental
duplications in apple HSP20 genes: 37 of 41 HSP20 genes
were affected by gene duplication, 20 of which were segmental
duplication and 17 gene clusters were from tandem duplication.
Ma et al. (2018) and Zuo et al. (2018) also found many tandem
and segmental duplications in apple receptor-like kinase1-like
kinase (CrRLK1L) genes and malate dehydrogenase (MDH)
genes, respectively.

To determine the evolutionary relationships of HSP20 genes,
a phylogenetic tree was constructed based on the amino acid
sequences of apple, Arabidopsis and rice HSP20 genes. The
phylogenetic analysis indicated that the appleHSP20 family could
be divided into 10 subfamilies (CIs, CIIs, CIIIs, CIVs, CVs,
MIs, MIIs, Pos, ER, and Ps), which is in line with previous
evolutionary classification of HSP20 genes in Arabidopsis and
rice (Scharf et al., 2001; Ouyang et al., 2009), indicating a close
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FIGURE 7 | The relative expression levels of apple HSP20 genes under heat and cold stresses. Mean expression value was calculated from three independent
replicates. Vertical bars indicate standard deviation from three independent technical replicates.

relationship among HSP20 genes from apple, Arabidopsis and
rice. In addition, most apple HSP20 genes were classified into CI-
CVI, indicating that cytoplasm could be the primary functional
area of the HSP20 family in apple. Gene structure has been
documented to function directly in the evolution of multiple gene
families (Ji et al., 2019). Gene structure analysis indicated that
most apple HSP20 genes have no introns (60.9%) or one intron
(31.7%), suggesting relatively simple gene structures. Similarly,
most (93.8%) grape HSP20 genes have no introns or one short
intron (Ji et al., 2019).

Genes with few or no introns are considered to be rapidly
activated in response to various stresses (Jeffares et al., 2008). In
our study, most apple HSP20 genes were rapidly induced after 4 h
of heat stress, which may support the rapid response. To more
comprehensively investigate the evolution of HSP20 genes, the
encoded conserved motifs were also studied. Our results showed
that most of the apple HSP20 genes had five to seven conserved
motifs and almost all the HSP20 genes contained motif 1. This
indicates a slow evolutionary rate. Furthermore, we found that
most HSP20 genes in the same subfamilies showed conserved
motifs and similar exon/intron structures, supporting their close
evolutionary relationship and the classification of subfamilies.

Genes in the same subfamily tends to share similar motif and
exon–intron organization, which was also reported in tomato
(Yu et al., 2016).

Cis-elements in the promoters of genes have been documented
as essential in plant physiological response and environmental
stress (Yamaguchi-Shinozaki and Shinozaki, 2005). We identified
cis-elements in the putative promoter regions of apple HSP20
genes. Numerous hormone responsive, stress-responsive and
plant development-related cis-elements were found. Among
these cis-elements, the hormone responsive elements accounted
for the highest proportion. Most HSP20 genes contained stress-
related response elements. The present results suggest that
most apple HSP20 genes might be significantly related to stress
response. Similar regulatory patterns of HSP20 genes were also
found in pepper and grape (Guo et al., 2015; Ji et al., 2019).
In addition, all apple HSP20 genes contain light signal response
elements, which indicate that HSP20s were essential in plant
growth and development.

Previous studies have revealed that HSP20s function directly
in plant responses to various stresses (Waters et al., 1996; Guo
et al., 2015; Zhao et al., 2018; He et al., 2019; Ji et al., 2019). In
this study, the expression profiles of apple HSP20 genes under
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heat stress revealed that the apple HSP20 genes are involved
in heat response. qRT-PCR analysis indicated that most apple
HSP20 genes were up-regulated under heat stress. It is interesting
to note that the relative expression levels of 12 HSP20 genes
(HSP20-8, 13, 16, 17, 18, 19, 23, 29, 35, 36, 37, and 38) were
extremely up-regulated after 4 h of heat stress. The results from
this study suggest that these genes might be mainly involved in
the heat stress biological pathway. Similarly, most of the pepper
and potato HSP20s were also up-regulated in response to heat
stress (Guo et al., 2015; Zhao et al., 2018).

Transgenic research has demonstrated the positive role of
HSP20 genes in responding to heat, such as WsHSP26 in
Arabidopsis (Mu et al., 2013), and OsHsp17.7 and OsHSP20
in rice (Murakami et al., 2004; Guo et al., 2020). In addition,
some HSP20s showed the same expression profile in response
to heat stress, being upregulated with peak expression levels
at 4 h, suggesting that these HSP20s were co-expressed in
response to heat stress. Furthermore, Guo et al. (2015) found
that the inducibilities of HSP20 genes in response to heat stress
were obviously different in pepper with different tolerance.
Collectively, these results indicate that HSP20 genes may be
positively involved in heat stress responses in plants. Induction
of HSP20 genes by heat stress is well-known (Waters et al.,
1996). However, some heat-regulated genes were barely expressed
or downregulated in response to cold stress, which indicated
that HSP20 genes were negatively or only slightly involved
in the response to cold stress. These results imply that the
signaling pathways in plant response to heat and cold stress
might be different.

CONCLUSION

This study identified 41 HSP20 genes in apple. These genes are
unequally distributed on 15 chromosomes and were classified
into 10 subfamilies based on the phylogenetic tree and subcellular
localization. The basic classification, genome distribution, gene
structures, conserved motifs, and cis acting elements of these
genes were analyzed, which will be helpful for a better
understanding of the evolutionary relationships of the HSP20
gene family. Transcriptome analysis revealed that most apple
HSP20 genes were highly induced by heat stress, whereas these
genes were nearly unchanged or downregulated under cold
stress, indicating that HSP20 genes were positively involved
in heat stress responses in apple. Additionally, we identified
several HSP20 genes that may be utilized as candidates for
improving heat stress tolerance. The results presented here
will lay a solid foundation for functional characterization of
HSP20 genes through gene-transfer techniques to improve heat
tolerance of apple.
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Kernel size is an important agronomic trait for grain yield in maize. The purpose of this
study is to map QTLs and predict candidate genes for kernel size in maize. A total of 199
F2 and its F2:3 lines from the cross between SG5/SG7 were developed. A composite
interval mapping (CIM) method was used to detect QTLs in three environments of
F2 and F2:3 populations. The result showed that a total of 10 QTLs for kernel size
were detected, among which were five QTLs for kernel length (KL) and five QTLs for
kernel width (KW). Two stable QTLs, qKW-1, and qKL-2, were mapped in all three
environments. Three QTLs, qKL-1, qKW-1, and qKW-2, were overlapped with the QTLs
identified from previous studies. In order to validate and fine map qKL-2, near-isogenic
lines (NILs) were developed by continuous backcrossing between SG5 as the donor
parent and SG7 as the recurrent parent. Marker-assisted selection was conducted
from BC2F1 generation with molecular markers near qKL-2. A secondary linkage map
with six markers around the qKL-2 region was developed and used for fine mapping
of qKL-2. Finally, qKL-2 was confirmed in a 1.95 Mb physical interval with selected
overlapping recombinant chromosomes on maize chromosome 9 by blasting with the
Zea_Mays_B73 v4 genome. Transcriptome analysis showed that a total of 11 out of 40
protein-coding genes differently expressed between the two parents were detected in
the identified qKL-2 interval. GRMZM2G006080 encoding a receptor-like protein kinase
FERONIA, was predicted as a candidate gene to control kernel size. The work will not
only help to understand the genetic mechanisms of kernel size of maize but also lay a
foundation for further fine mapping and even cloning of the promising loci.

Keywords: candidate gene, maize, fine mapping, kernel size, NILs

INTRODUCTION

Maize is an important agricultural crop. It can be served as food, animal feed, and industrial
materials (Li et al., 2017) and plays a special role in food security (Liu et al., 2014). High grain yield
has always been the most important goal of maize breeding. But most yield traits are quantitative
traits controlled by multiple genes (Lynch and Walsh, 1998; Xu, 2010). KL and KW are both
considered to be important yield traits (Doebley et al., 2006). Kernel size traits, especially KW,
has been revealed to be significantly correlated with grain yield of maize (Li et al., 2013). The
improvement of kernel size is therefore of great significance in maize breeding.
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To date, numerous studies on maize grain yield traits have
been reported at phenotypic levels (Rafiq et al., 2010; Nzuve
et al., 2014). However, the genetic architecture and molecular
mechanisms underlying natural quantitative variation in kernel
yield have not been completely elucidated (Chen et al., 2016).
Along with the first genetic linkage map of maize, published
in 1986 (Helentjaris et al., 1986), molecular markers based
on polymerase chain reaction (PCR) technology have greatly
developed and applied for constructing genetic maps. Then,
increasing QTLs controlling important agronomic traits in
maize were detected by analyzing phenotypic value based on
constructed genetic maps. These identified QTLs were distributed
on all 10 maize chromosomes (Qiu et al., 2011). Many QTL
mapping or fine mapping works for kernel size or weight have
been carried out in recent years (Liu et al., 2014; Zhang et al.,
2014; Chen et al., 2016). Till now, more than 150 QTLs for
kernel size or weight have been identified by using different
maize populations (Gramene QTL database). Liu et al. (2020)
detected 50 QTLs for kernel size traits in the intermated
B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population,
of which eight were repetitively identified in at least three
environments. A total 55 and 28 QTL for kernel traits were
identified by using composite interval mapping (CIM) for single-
environment analysis and mixed linear model-based CIM for
joint analysis, respectively, with 270 F2:3 families derived from
the cross between V671 (large kernel) × Mc (small kernel)in
five environments (Liu et al., 2014). It is critically important
that QTLs should be validated and fine mapped for applying in
further marker assisted breeding process. The near-isogenic line
(NIL) is one of the most widely accepted populations commonly
used for QTL fine mapping. NILs have been successfully used in
confirming and fine-mapping QTLs in many species, such as rice
(Lin et al., 2003; Li et al., 2004; Xie et al., 2006) and wheat (Xue
et al., 2013; Zheng et al., 2015). In maize, a major QTL qkrnw4
associated with kernel row number was mapped by using a NIL
population (Nie et al., 2019). Gao et al. (2019) mapped qLRI4,
which conferred leaf rolling index by using NIL populations. Yang
et al. (2018) mapped a major QTL qkc7.03 to a 416.27 kb physical
interval for kernel cracking with NILs developed.

Great achievements in QTL mapping or isolating underlying
genes for kernel size have been made in many species such as rice
(Wan et al., 2006; Song et al., 2007; Li et al., 2011; Qiu et al.,
2012; Kang et al., 2018), Arabidopsis thaliana (Xia et al., 2013;
Du et al., 2014), soybean (Xu et al., 2011; Han et al., 2012), and
wheat (Sun et al., 2009; Ramya et al., 2010). In particular, genes
controlling rice kernel size or weight, such as GS3 (Fan et al.,
2006), GS5 (Li et al., 2011), qGL3 (Zhang et al., 2012), GW2 (Song
et al., 2007), GW8 (Wang et al., 2012), GS2 (Hu et al., 2015),
qGW7/GL7 (Wang et al., 2015), have been successfully cloned.
The study of identifying and cloning kernel-size-related genes has
lagged in maize. To a certain extent, the reason for this might be
due to the genome of maize is large and complicated for many
transposable elements and repetitive sequences exist (Gaut et al.,
2000; Feuillet and Eversole, 2009). In addition, most complex
traits, such as kernel yield and kernel size, are controlled by many
genes with small effects (Edwards et al., 1987; Tian et al., 2011).
QTLs identified in different genetic backgrounds across multiple

environments have a higher chance of being positionally cloned
(Chen et al., 2016).

Based on previous studies, the purposes of this study were as
follows: (1) to map QTLs for kernel size in three environments by
using F2 and F2:3 populations from the same cross SG5/SG7; (2)
to validate and fine map the identified major QTL qKL-2 by using
BC3F1NILs; and (3) to reveal differently expressed genes (DEGs)
between SG5 and SG7 by RNA-seq technology and predict
candidate genes responsible for KL. In the study, we constructed
an F2 and an F2:3 populations using two maize inbred lines
SG5 and SG7 and evaluated them in three environments for
mapping QTLs for kernel size. Furthermore, we finely mapped
a major QTL by using the NILs from the cross of SG5 and
SG7 and used RNA-seq technology to reveal the DEGs between
parental lines SG5 and SG7. Finally, the candidate genes for
qKL-2 were predicted.

RESULTS

Phenotype Evaluation for Segregation
Populations
Two kernel size traits, i.e., KL and KW were estimated. The
trait values of F2 population were investigated in 2016, while
the phenotypic values of F2:3 populations were collected in 2018
and 2019, and these were recorded as F2:3-2018 and F2:3-2019,
respectively. Table 1 presents the mean values of KL and KW
investigated from F2 and F2:3 populations. The two inbred lines
SG5 and SG7 were significantly different in both KL and KW
traits. KL showed extremely significantly different between SG5
and SG7 (P < 0.01, Figures 3A,B). The data of two kernel
size traits both emerged on normal distribution (Supplementary
Figure 1). The two traits correlated positively with each other,
with Pearson’s correlation coefficient being 0.20, 0.25, and 0.24 in
F2-2016, F2:3-2018, and F2:3-2019, respectively.

QTL Mapping
CIM procedure was applied to map QTLs conferring KL and
KW. Manhattan plots were shown in Figure 1. A total of 10
QTLs were mapped in total for KL and KW from F2 and F2:3
populations. The information is summarized in Table 2. For KL,
two major QTLs were mapped on maize chromosome 9 in F2
population. A total four QTLs were mapped on chromosomes 3,
7, and 9 in F2:3-2018 population while three QTLs were mapped

TABLE 1 | Descriptive statistics of KL and KW traits in the F2 and F2 :3 mapping
populations of maize derived from the cross between SG5 and SG7.

Generations Trait SG5
(mm)

SG7
(mm)

Min
(mm)

Max
(mm)

Mean
(mm)

SD (mm)

F2 KL 9.93 8.99 8.07 12.87 10.42 0.85

KW 8.07 11.17 8.03 11.80 9.98 0.78

F2:3-2018 KL 9.93 8.99 8.49 13.21 10.34 0.74

KW 8.07 11.17 8.24 12.12 10.07 0.74

F2:3-2019 KL 9.93 8.99 8.40 13.35 10.34 0.75

KW 8.07 11.17 8.28 12.22 10.08 0.73
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A KL-F2-2016

E KW-F2:3-2018B KL-F2:3-2018

D KW-F2-2016

C KL-F2:3-2019 F KW-F2:3-2019

FIGURE 1 | Plots of test statistic−Log10(p) against genome location for KL and KW traits in maize using the CIM method. The horizontal blue line of each panel is
the critical value of the test statistic generated from 1,000 permuted samples. (A–C) Indicate KL mapping results in three environments while (D–F) indicate KW
mapping results in three environments. Dotted rectangles with orange color indicate these QTLs were mapped repeatedly in all three environments.

on chromosomes 7 and 9 in F2:3-2019 population. For KW, three
QTLs were mapped on maize chromosomes 3 and 8. A total three
QTLs were mapped on maize chromosomes 3 and 8 in both F2:3-
2018 and F2:3-2019 populations, respectively. The phenotypic
variation explained by these QTLs ranged from 8.4 to 23.0%, with
a mean value of 14.25 and 14.46%, 14.03 and 12.97%, and 10.83
and 13.67% for KL and KW in F2-2016, F2:3-2018, and F2:3-
2019, respectively. The LOD score ranges from 4.0 for qKL-7 to
9.5 for qKW-1. Among the 10 QTLs, qKL-2 for KL, and qKW-1
for KW were detected in all the three environments (Figure 2,
highlighted in green color circle). That is, they were stable QTLs
in the study. Four QTLs (qKW-2, qKL-7, qKW-3, and qKL-10)
were detected in two environments, highlighted in blue color
circle in Figure 2. In addition, three QTLs, qKL-1, qKW-1, and
qKW-2, overlapped with the QTLs identified from the metaQTL
analysis (Chen et al., 2017).

Fine Mapping qKL-2 With NILs
From 2017 to 2019, a NIL population, consisting of 998 BC3F1
lines, was developed by introgressing the qKL-2 genomic region
of SG5 into the SG7 genetic background. A secondary linkage
map with six markers (Supplementary Table 1) around qKL-2
was generated. The six markers were located at 115.23, 130.51,
133.34, 135.29, 139.75, and 153.88 Mb on chromosome 9 by

blasting maize B73 RefGen_v4 (Figure 3C). The secondary
linkage map was 43.35 cM in length, and the genetic distances
between every two adjacent markers were 16.75, 8.39, 0.80,
5.67, and 11.74 cM.

Then the major QTL qKL-2 was detected with the secondary
linkage map of NILs by CIM method in QTL Cartographer v2.5.
The qKL-2 had an additive effect of 0.97 mm and explained
16% of phenotypic variation. The LOD peak indicated that qKL-
2 was most likely located between SSR3 and SSR5, the LOD
peak position was located between SSR3 and SSR4 (Figure 3C).
To confirm the narrowed qKL-2 interval, five recombinant
types, namely, Class 1–Class 5, were selected from 998 NILs.
Class 1 indicates that 28 recombinants with SSR1 and SSR2
homozygous and SSR3–SSR6 heterozygous. Class 2 indicates
33 recombinants with SSR1 and SSR2 heterozygous and SSR3–
SSR6 homozygous. Class 3 indicates three recombinants with
SSR1–SSR3 heterozygous and SSR4–SSR6 homozygous. Class 4
indicates 20 recombinants with SSR1–SSR4 heterozygous and
SSR5–SSR6 homozygous. Class 5 indicates 47 recombinants with
SSR1–SSR5 heterozygous and SSR6 homozygous. At SSR3 and
SSR4 loci, Classes 2 and 3 were homozygous while Classes 1, 4,
and 5 were heterozygous. There was significantly difference in
phenotypic values between the two set of recombinants Classes
2 and 3 and Classes 1, 4, and 5 (Figure 3D). The progeny test
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TABLE 2 | QTL identified for KL and KW traits of maize using high-density SNP bin-map from composite interval mapping (CIM).

Environments QTL Chr Flanking markers Positions (Mb) Interval (Mb) Physical length (Mb) LODc ADDa DOMb R2 (%)

Kernel length (KL) trait

F2-2016 qKL-1 9 mk3093–mk3100 126.05 124.90–127.55 2.65 8.4 0.34 0.18 14.8

qKL-2 9 mk3106–mk3114 134.65 133.20–135.75 2.55 7.7 0.26 0.24 13.7

qKL-3 3 mk1343–mk1350 217.85 215.90–218.1 2.20 2.9 −0.13 −0.17 4.7

qKL-4 2 mk624–mk638 2.75 0.10–3.55 3.45 2.5 0.06 0.254 4.2

qKL-5 10 mk3228–mk3236 105.05 96.45–109.2 12.75 3.8 −0.19 −0.14 6.4

F2 :3-2018 qKL-2 9 mk3105–mk3110 134.65 131.55–134.75 3.20 8.1 0.23 0.25 15.3

qKL-4 2 Mk624–mk634 2.85 0.10–3.00 2.90 3.1 −0.02 0.31 5.4

qKL-6 3 mk1145–mk1167 115.20 103.65–117.85 14.2 4.2 −0.38 0.17 12.1

qKL-7 7 mk2510–mk2525 143.00 137.30–145.70 8.40 5.1 −0.40 0.32 13.4

qKL-8 7 mk2618–mk2622 174.6. 174.35–174.90 0.55 3.5 −0.28 0.04 6.5

qKL-9 8 mk2689–mk2701 21.85 21.60–33.80 12.20 3.1 −0.30 0.20 8.0

qKL-10 9 mk3077–mk3084 115.15 113.65–120.70 7.05 8.1 0.30 0.19 15.3

F2 :3-2019 qKL-2 9 mk3100–mk3104 128.0. 127.55–130.05 2.50 6.9 0.27 0.17 13.4

qKL-4 2 mk624–mk637 2.85 0.10–3.45 3.35 2.6 0.00 0.27 4.5

qKL-6 3 mk1158–mk1167 115.2. 114.80–117.85 3.05 3.9 −0.37 0.19 11.3

qKL-7 7 mk2517–mk2525 143.00 141.25–145.70 4.45 4.0 0.40 0.34 13.0

qKL-8 7 mk2617–mk2622 174.60 174.05–174.90 0.85 3.7 −0.26 -0.01 5.9

qKL-10 9 mk3077–mk3084 115.15 113.65–120.70 7.05 7.6 0.28 0.20 14.6

qKL-11 5 mk2183–mk2188 215.30 214.55–215.55 1.00 2.6 0.25 −0.26 5.9

qKL-12 6 mk2298–mk2303 149.80 143.05–157.50 14.45 2.5 0.09 0.24 4.4

Kernel width (KW) trait

F2-2016 qKW-1 3 mk1042–mk1060 30.85 30.20–44.55 14.35 9.5 −0.54 0.17 23.0

qKW-2 8 mk2806–mk2814 148.95 144.55–151.00 6.45 5.8 −0.34 −0.02 10.0

qKW-3 8 mk2814–mk2820 152.25 151.00–157.95 6.95 5.9 −0.35 0.00 10.9

qKW-4 1 mk577–mk603 292.20 288.45–295.55 7.10 3.1 −0.29 0.09 7.2

qKW-5 2 mk667–mk673 17.05 13.60–17.55 3.95 3.4 −0.23 −0.07 4.5

qKW-6 2 mk676–mk686 24.05 19.55–24.35 4.80 3.7 −0.19 −0.13 6.1

qKW-7 10 mk3284–mk3294 145.50 144.70–146.95 2.25 3.0 −0.15 0.33 4.9

F2 :3-2018 qKW-1 3 mk1040–mk1047 30.85 29.30–32.75 3.45 5.8 −0.37 −0.04 9.9

qKW-2 8 mk2811–mk2814 148.95 147.80–151.00 3.20 5.8 −0.43 0.13 14.5

qKW-5 2 mk667–mk676 16.70 13.60–19.55 5.95 3.2 −0.12 −0.20 5.3

qKW-8 8 mk2799–2808 141.80 140.30–145.60 5.30 6.2 −0.43 0.11 14.5

qKW-9 2 mk657–mk662 9.70 9.30–11.30 2.00 3.8 −0.06 −0.29 6.2

F2 :3-2019 qKW-1 3 mk1035–mk1042 28.95 27.10–30.20 3.10 5.5 −0.47 0.19 14.5

qKW-3 8 mk2814–mk2817 152.25 151.00–153.30 2.30 5.5 −0.33 −0.01 9.6

qKW-4 1 mk579–mk591 292.55 289.45–293.25 3.80 2.5 −0.23 0.05 5.0

qKW-6 2 mk676–mk686 23.75 19.55–24.35 4.80 3.8 −0.17 −0.14 6.2

qKW-10 8 mk2826–mk2835 163.25 160.70–164.95 4.25 5.0 −0.24 −0.14 8.4

aEstimated additive effect.
bEstimated dominance effect.
cThe logarithm of odds (LOD) value 3.86 for detected traits was set up by 1,000 times permutations results (in bold). QTL statistics were also reported for those in which
the LOD score exceeded 2.5 but was less than 3.86 (in no bold).

of homozygous segregants indicated that qKL-2 was located in
an interval of 1.95 Mb (133.34–135.29) and flanked by SSR3
and SSR4 physical interval (Table 3). The selected overlapping
recombinant chromosomes also supported the location of qKL-2.

Candidate Genes for qKL-2 Prediction
RNA-seq procedure was conducted for 18 RNA grain samples
at different developmental stages. Results showed that the 1.95

Mb physical intervals of qKL-2 encompassed 40 protein coding
genes (Figure 3E). After DEGs analysis, a total of 11 protein
coding genes differently expressed and left in the qKL-2 physical
intervals (Table 4). Previous studies indicated that FERONIA
receptor kinase controls seed size in Arabidopsis thaliana (Yu
et al., 2014). GRMZM2G006080 encodes receptor-like protein
kinase FERONIA and was predicted as a candidate gene of qKL-2,
which is most likely responsible for KL.
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FIGURE 2 | QTL locations for KL and KW traits studied in the F2 and F2:3 populations from cross SG5/SG7. QTLs were represented in different colors for kernel size
traits including red for KW (kernel width, mm), black for KL (kernel length, mm) on maize chromosomes 3, 7, 8, and 9. QTLs represented by bars are shown on the
right of the linkage groups close to their corresponding markers. Supported intervals for each QTL are indicated by the length of vertical bars. The QTLs circled in
green were stably detected in three environments while QTLs circled in blue were repeatedly detected in two environments.

DISCUSSION

Kernel size controlled by multiple genes is an important
component of grain yield in maize. Grain yield was influenced
significantly by kernel size, especially KL (Li et al., 2009,
2013). Stable QTLs are of great significance for marker-
assisted breeding, while false positive QTLs are of no use.
Normally, two steps, i.e., primary mapping and fine mapping,
are needed for QTL analysis unless experiments were conducted
in multiple environments with as many as sample size and
marker numbers. In this study, primary mapping was carried
out in three environments, and two kernel-size QTLs, qKL-
2, and qKW-1, detected in all three environments were
stable. The two QTLs could be benefit for further marker
assisted breeding. Chen et al. (2017) conducted metaQTL
analysis based on collecting information on QTLs conferring
maize yield-related traits from 33 published studies. A total
of 76 MQTLs for maize yield and its related traits were
identified across the whole genome, with the number per
chromosome ranging from four on chromosome 4–10 on
chromosome 5 (Chen et al., 2017). After comparing with
the metaQTL analysis results, qKL-1, qKW-1, and qKW-
2 detected in this study all overlapped with those MQTLs
for kernel-related traits but with more decreased physical
intervals (Table 2).

For qKL-2 locus, primary mapping results showed that
the physical intervals were 133.20–135.75, 131.55–134.75, and
127.55–130.05 Mb on chromosome 9, respectively, in three
environments. In order to confirm and fine map qKL-2, a

NIL population was developed by continuous backcross with
markers assisted selection for confirming and fine mapping
qKL-2. Finally, qKL-2 was mapped in a 1.95 Mb (133.34–
135.29 Mb) interval on maize chromosome 9. Compared with
metaQTL analysis results from Chen et al. (2017), MQTL-
66, which includes 16 QTLs related to grain yield, ear-related
traits, and kernel-related traits located in 120.2–133.6 physical
interval on chromosome 9. There was only 0.26 Mb physical
distance overlap for qKL-2 (133.34–135.29 Mb) and MQTL-
66 (120.2–133.6 Mb). It is very likely that qKL-2 was a new
locus to control KL.

It is of critical importance that the less genes the better
in target QTL interval for map-based cloning. In this
study, RNA-seq technology was applied for transcriptomic
analyzing DEGs between SG5 and SG7 grains in different
developmental stages. DEGs identified were located in
the qKL-2 interval. After DEGs analysis, only 11 protein
coding genes were left in the QTL qKL-2 intervals (Table 4).
The potential functional genes in QTLs physical intervals
decreased significantly after DEGs analysis. According to gene
annotation from Blast swiss prot, the function of 11 genes
include endoglucanase, 17.0 kDa class II heat shock protein,
phospholipid-transporting ATPase 1, receptor-like protein
kinase FERONIA, calcium-binding protein, selenium-binding
protein 2, NAC domain-containing protein, and thioredoxin-like
1–2, chloroplastic. Further comparative genomics analysis
was applied for predicting candidate genes. The evidence on
studies of rice or Arabidopsis thaliana showed that kernel
size was regulated by multiple signaling pathways, including
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FIGURE 3 | (A) Grain length difference between SG5 and SG7. (B) Significance test of difference between SG5 and SG7, P < 0.01 means that difference was
extremely significant between SG5 and SG7. (C) LOD profile of qKL-2, which was identified in the BC3F1 populations. (D) Major QTLqKL-2 was mapped in SSR3
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ubiquitin-proteasome degradation (Verma et al., 2004), the
transcription factor pathway, the phytohormone signaling
pathway, and the G protein independent pathway. Yu et al.
(2014) concluded that receptor kinase FERONIA involved
in a signaling pathway negatively regulated the elongation
of integument cells and then controlled the seed size in
A. thaliana. Based on the above function analysis of 11 protein
coding genes, GRMZM2G006080, which encodes receptor-
like protein kinase FERONIA, was predicted as a candidate
gene of kernel size. The predicted candidate gene will not
only be helpful for underlying genetic mechanism for kernel
size but also provides a basis for improving kernel size traits
in maize.

MATERIALS AND METHODS

Segregation Population Development
and Phenotypic Evaluation
Two maize inbred lines, SG5 and SG7, were used in the
study. The seeds were provided by the Institute of Grain and
Oil, Liupanshui Academy of Agricultural Sciences, Liupanshui,
China. We developed an F2 population by crossing SG5 and
SG7 in Liupanshui, Guizhou province of China in the summer
of 2013 and 2014. A total of 199 F2 individuals were planted
at the Panxian Maize Breeding Station in Sanya, China, in the
winter of 2014. Then, an F2:3 segregation population containing
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TABLE 3 | Statistical analysis of phenotypic values from different types of
recombinants in NILs around the qKL-2 region.

No. of recombinants Grain length/mm

Classa 1 28 10.85 ± 0.14

Class 2 33 9.88 ± 0.13

Class 3 3 9.99 ± 0.16

Class 4 20 10.71 ± 0.19

Class 5 47 10.89 ± 0.11

aClass 1–Class 5 indicates different types of recombinants with six SSR markers.
Class 1 indicates that 28 recombinants with SSR1 and SSR2 homozygous
and SSR3–SSR6 heterozygous. Class 2 indicates 33 recombinants with SSR1
and SSR2 heterozygous and SSR3–SSR6 homozygous. Class 3 indicates three
recombinants with SSR1–SSR3 heterozygous and SSR4–SSR6 homozygous.
Class 4 indicates 20 recombinants with SSR1–SSR4 heterozygous and SSR5–
SSR6 homozygous. Class 5 indicates 47 recombinants with SSR1–SSR5
heterozygous and SSR6 homozygous.

199 lines was developed by selfing each F2 individuals. The F2:3
population was planted at the Panxian Maize Breeding Station
in Sanya for kernel size evaluation in the summer of 2018 and
2019. Field experiment was performed in a randomized block
design with three replications. Single-row plots with row spacing
of 50 cm were adopted, and each plot grew 15 plants with
plant spacing of 35 cm. Kernel size traits, including KL and
KW, were investigated in both F2 and F2:3 populations after
corns were harvested and dried naturally. For F2 generation,
the traits were estimated by the mean value of three repeats
including 10 kernels of an ear. For F2:3, kernel size evaluation
was based on eight ears from the middle part of each plot.

KL and KW were estimated by mean value of three repeats
including 10 kernels randomly selected from bulked kernels of
eight ears. The measured kernels were all sampled from the
middle part of an ear.

Young leaves were collected from each F2 individual for DNA
extraction. The methods of genomic DNA extraction, genotype
sequencing, and grouping, single nucleotide polymorphisms
(SNPs) identification, and high-density linkage map construction
were presented in our previous study (Su et al., 2017). The
forward regression model of CIM method in QTL Cartographer
v2.5 was applied for QTL mapping with walking speed
of 1 cM. The likelihood of odds (LOD) value 3.86 was
used to declare a QTL, which was based upon 1,000 times
permutations analysis. QTL statistics were also reported for
those in which the LOD score exceeded 2.5. LOD peaks were
used for determining the position of a significant QTL on
chromosomes. The positive additive effect value of a QTL
indicates that the increase in phenotypic value is provided
by SG5 alleles while negative value indicates the decrease
in phenotypic value is provided by SG7 alleles. MapChart
2.32 software (Voorrips, 2002) was used for the graphical
presentation of QTLs. The QTLs that are mapped in F2 and
F2:3 populations were compared, and the consistent one will be
regarded as stable QTL.

NILs Development and qKL-2 Fine
Mapping
NILs for the qKL-2 locus were developed by using continuous
backcrossing combined with marker-assisted selection methods.

TABLE 4 | Differentially expressed genes out of 40 protein coding genes in 1.95 Mb physical interval on chromosome 9 and candidate gene predicted for qKL-2.

GeneID (B73 RefGen_v3) Start (bp) End (bp) Length Annotation from blast
swiss prot

LogFCa or RCP1/RCP2b

Day 5c Day 10 Day 15

GRMZM2G099101 132,128,943 132,133,712 2,349 Endoglucanase 9 0.36 0.42 1.66

GRMZM5G899188 132,973,437 132,974,250 814 17.0 kDa class II heat
shock protein

2.03 0.98 3.23

GRMZM2G398288 131,627,588 131,635,485 4,521 Phospholipid-transporting
ATPase 1

−0.40d 0.36 −0.22

GRMZM2G027437 131,778,230 131,786,437 1,277 −0.55 −0.45 −0.79

GRMZM2G006080 131,829,772 131,832,943 3,172 Receptor-like protein kinase
FERONIA

0.41 −0.09 −0.04

GRMZM2G309327 131,924,112 131,925,141 1,030 Probable calcium-binding
protein

−1.87 −2.20 −1.41

GRMZM2G159500 133,066,105 133,068,297 2,048 NAC domain-containing
protein

−0.76 -0.22 −0.21

GRMZM2G102382 133,137,426 133,140,041 1,413 Thioredoxin-like 1–2,
chloroplastic

0.85 0.95 1.01

GRMZM2G102657 13,279,7892 132,800,350 2,053 0/9.54 0/18.55 0/7.55

GRMZM2G404249 132,803,660 132,804,501 842 17.0 kDa class II heat
shock protein

1.70 2.29 1.27

GRMZM5G875954 132,964,847 132,972,815 1,206 Selenium-binding protein 2 −5.07 −3.20 −1.20

aLog 2 ratio, number of folds the gene is differentially expressed in RNA-seq.
bDifferent of read counts between P1 and P2.
cDay 5, day 10, day 15 indicate grain samples collected after selfing 5, 10, and 15 days between the two parents SG5 and SG7.
dPositive sign indicates gene transcript expressed high in SG5 while negative sign indicates gene transcript expressed high in SG7.
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The SSR molecular markers that are near qKL-2 and are
polymorphic between donor parent SG5 and recurrent parent
SG7 were used for marker-assisted selection of the BC2F1
generation. These SSR markers, based on resequencing maize
genome results, were all developed by Xu et al. (2013).
We choose SSRs that are near qKL-2 position with high
polymorphism information content (PIC) values. These SSRs
were used for screening polymorphism between our parental
lines SG5 and SG7. SSRs with clearly bands of polyacrylamide
gel electrophoresis (PAGE) and polymorphism between SG5
and SG7 were selected for developing secondary linkage
map and further fine mapping works. Phenotypic value for
BC3F1 lines was investigated in the same way as for the
F2 population. Young healthy leaves were collected from
each of the 998 BC3F1 line for genomic DNA extraction.
Plant Genomic DNA Kit (TIANGEN, Beijing, China) were
used and the manufacturer’s protocols were followed. DNA
purity was checked by 1% agarose gel and NanoPhotometer
R spectrophotometer (IMPLEN, CA, United States). DNA
concentration was then measured using an Qubit R DNA
Assay Kit in Qubit R 2.0 Flurometer (Life Technologies,
CA, United States).

The secondary linkage map around qKL-2 was generated
by JoinMap 3.0 software (Van Ooijen and Voorrips, 2001).
QTL Cartographer v2.5 was applied for QTL mapping
with the CIM method, walking speed 1 cM, and a LOD
threshold of 10.0.

Candidate Gene for qKL-2 Prediction
Grains of SG5 and SG7 were sampled on the 5th, 10th,
and 15th days after selfing three biological replicates. All
collected samples were immediately frozen in liquid nitrogen
and then transferred to a −80◦C environment before RNA
extraction. We finally got 18 grain samples in total. All the
samples were sequenced at the Illumina NovaSeq platform.
Raw reads with fastq format were firstly handled by in-house
perl scripts. Clean reads were then obtained after deleting
reads containing adapters and ploy-N and removing reads of
a low quality in raw data. In the meantime, the GC content
and Q20 and Q30 of the clean reads were calculated. High-
quality clean data were then carried out for further downstream
analyzing. Reference genome was downloaded directly from
genome website1, and correlated files of gene annotation
were also downloaded from the same website. Bowtie v2.2.3
was used for building reference genome index and TopHat
v2.0.12 (Trapnell et al., 2013) was used for aligning paired-
end clean reads to the reference genome. The number of
reads mapped to each gene was counted by HTSeq v0.6.1.
For each gene, the expected number of fragments per kilobase
of transcript sequence per millions base pairs (FPKM) was
calculated by analyzing the gene length and reads mapped
to the gene. FPKM is a widely accepted method currently
to evaluate levels of gene expression based on considering
sequencing depth effect and gene length of the read count

1ftp://ftp.ensemblgenomes.org/pub/plants/release-29/fasta/zea_mays/dna/Zea_
mays.AGPv3.29.dna.toplevel.fa.gz

simultaneously (Trapnell et al., 2010). The DEGSeq R package
(1.20.0) was applied for analyzing differential expression between
two conditions. The P-values adjusted by using the Benjamini
and Hochberg method were used. The threshold of corrected
P-value 0.005 and log 2 (Fold change) of 1 (absolute value)
were considered as significantly differential expression. More
information about the methods for reference genome index
construction, paired-end clean reads alignment and count, FPKM
calculation and DEGs analysis referred to our previous study
(Zhao and Su, 2019).

Through analyzing DEGs between SG5 and SG7, the
DEGs that were overlaid on to a physical interval of qKL-
2 were considered as candidate genes for kernel size in
maize. The detected DEGs were further annotated from Blast
Swiss Prot database.
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Phospholipase C (PLC) is one of the main hydrolytic enzymes in the metabolism of

phosphoinositide and plays an important role in a variety of signal transduction processes

responding to plant growth, development, and stress. Although the characteristics

of many plant PLCs have been studied, PLC genes of maize have not been

comprehensively identified. According to the study, five phosphatidylinositol-specific

PLC (PI-PLC) and six non-specific PLC (NPC) genes were identified in maize. The PI-

PLC and NPC genes of maize are conserved compared with homologous genes in

other plants, especially in evolutionary relationship, protein sequences, conserved motifs,

and gene structures. Transient expression of ZmPLC-GFP fusion protein in Arabidopsis

protoplast cells showed that ZmPLCs are multi-localization. Analyses of transcription

levels showed that ZmPLCswere significantly different under various different tissues and

abiotic stresses. Association analysis shown that some ZmPLCs significantly associated

with agronomic traits in 508 maize inbred lines. These results contribute to study the

function of ZmPLCs and to provide good candidate targets for the yield and quality of

superior maize cultivars.

Keywords: maize, PLC, genome-wide, expression pattern, stress, association analysis

INTRODUCTION

Phospholipids are important basic structural components of biological membranes and also
as key signaling components responding to the plant development and various environmental
stresses (Pokotylo et al., 2013). Phospholipids could be degraded into various products, such
as diacylglycerol (DAG), phosphatidic acid (PA), free fatty acids (FFAs), and lysophospholipids
(LPLs) by phospholipases, which include phospholipase C (PLC), phospholipase D (PLD), and
phospholipase A (PLA) (Tuteja and Sopory, 2008; Hong et al., 2016). Among them, PLC is
recognized as an important lipid hydrolase in animals and plants and has a profound effect on
membrane lipid remodeling and intracellular signaling (Meldrum et al., 1991).

Based on different substrate affinities and cellular functions, plant PLCs have two different
types: phosphatidylinositol-specific PLCs (PI-PLCs) and phosphatidylcholine-PLC (PC-PLC)
(Kocourková et al., 2011; Pokotylo et al., 2014). PI-PLC hydrolyzes phosphoinositides to produce
inositol 1,4,5-trisphosphate (IP3) and DAG, which may function as the second messengers
(Berridge, 1987; Meldrum et al., 1991). IP3 could be quickly synthesized into hexakisphosphate
(IP6) and trigger Ca2+ influx, while DAG could be phosphorylated by DAG kinase (DGK) and
transformed into PAs (Wang et al., 2006). Unlike PI-PLC, PC-PLC, also known as non-specific
PLC (NPC), preferentially hydrolyzes the common membrane phospholipids, for example, PC,
phosphatidylethanolamine (PE), and phosphatidylserine (PS) (Kocourková et al., 2011).
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In plants, two types of PLCs were composed of many gene
members. For example, Arabidopsis contains nine PI-PLCs and
six NPCs, whereas there are four PI-PLCs and five NPCs in
rice, respectively (Nakamura et al., 2005; Zheng et al., 2012;
Singh et al., 2013). In general, a typical plant PI-PLC enzyme
structurally contains two domains at least, catalytic PI-PLC-
X domain and PI-PLC-Y domain, which are necessary for
PI-PLC to function as phosphoesterase (Hicks et al., 2008).
Furthermore, the X and Y domains could form together a
distorted triose phosphate isomerase (TIM) barrel structure,
which contains the active-site residues (Chen et al., 2011). In
addition, PI-PLCs have a C-terminal Ca2+/phospholipid binding
C2 domain and an N-terminal EF hand domain involved in
calcium binding (Chen et al., 2011). Some plant NPCs contain
a putative signal peptide at the N-terminus, while all NPCs have
a phosphoesterase domain, which is necessary for the function
of esterase, such as NPCs and acid phosphatases (Wimalasekera
et al., 2010). Generally, the phosphoesterase domain contains
two highly conserved motifs, ENRSFDxxxG and TxPNR, and
two other invariable motifs, DExxGxxDHV, and GxRVPxxxxxP
(Pokotylo et al., 2013).

Members of the plant PLC family play important roles
in various biological processes, for example, plant growth,
development, and stress response. AtPI-PLC2 is required for
female gametogenesis and embryo development in Arabidopsis,
and loss of AtPI-PLC2 resulted in defective male and female
gametophyte development (Li et al., 2015; Di Fino et al., 2017).
Similarly, AtNPC2 and AtNPC6 are involved in gametophyte and
embryo development and glycerolipid metabolism in the flower
buds (Ngo et al., 2018), while AtNPC3 and AtNPC4 have an
important regulatory role in root development (Wimalasekera
et al., 2010). In addition, plant PLCs have also been confirmed to
participate in a variety of tolerances to abiotic or biotic stresses.
Arabidopsis AtPI-PLC members, except AtPI-PLC2, could be
induced under various abiotic stresses such as salinity, drought,
and cold (Tasma et al., 2008). Overexpression of Brassica napus
PI-PLC2 in canola induces significant changes in the expression
of stress-related genes and enhances drought tolerance (Georges
et al., 2009). Overexpression of ZmPI-PLC1 enhanced the grain
yield of maize under drought conditions, while suppression of
ZmPI-PLC1 had an opposite effect (Wang et al., 2008). Knockout
of AtNPC4 in Arabidopsis could increase sensitivity to salt stress
in root elongation, seedling biomass, and seed germination, while
AtNPC5 expression could be significantly upregulated under salt
stress and positively regulate the development of lateral root
under salt stress (Kocourková et al., 2011).

In this research, the PLC-encoding genes including PI-PLC
and NPC were identified in the maize genome. The ZmPLCs have
been analyzed in detail, including phylogenetic relationships,
gene structures, conserved motifs, and subcellular localization.
The transcription levels of the ZmPLCs were determined by qRT-
PCR in different tissues and various abiotic stresses. In addition,
the ZmPLC genes with quantitative trait loci (QTLs) associated
with agronomic traits. Furthermore, the results presented herein
provide valuable clues for studying the functions of ZmPLCs
in response to the growth, development, and stress responses
of maize.

MATERIALS AND METHODS

Genome-Wide Identification of the PLC

Genes in Maize
To identify putative PLC proteins, the hidden Markov models
(HMMs) of the two characteristic domains of a PLC protein from
PFam (http://pfam.sanger.ac.uk/), PI-PLC-X (PF00388), and PI-
PLC-X (PF00387) were used as query sequences in local HMM-
based searches, setting E-values < 0.01. In addition, to identify
ZmPLC proteins that might have been missed through HMM
searching, ZmPLC sequences were further identified using the
previously reported Arabidopsis PLC protein sequences from
the Maize Genome Database (https://www.maizegdb.org) and
Phytozomev12.0 (http://www.phytozome.net) under the E-value
cutoff 0.1. The matched sequences were subjected to SMART
(http://smart.embl.de/) analyses to detect the presence and
number of the PLC domain. Therefore, 11 independent ZmPLC
genes were identified in maize. The chromosomal location image
was mapped by MapInspect software. The ExPASy (https://
web.expasy.org/protparam/) was performed to calculate the
molecular weight (MW) and the theoretical isoelectric point (PI).

Phylogenetic Analysis and Synteny
Analysis
The multi-species PLC sequences, including 11 ZmPLCs
from Zea mays, 15 AtPLCs from Arabidopsis thaliana, nine
OsPLCs from Oryza sativa, 22 GhPLCs from Gossypium
hirsutum, eight BdPLCs from Brachypodium distachyon,
10 SbPLCs from Sorghum bicolor, and 19 GmPLCs from
Glycine max (Supplementary File 1), were constructed into a
phylogenetic tree using the neighbor-joining (NJ) method in
MEGA7.1 (Tamura et al., 2011). ZmPLCs were named basing
on the phylogenetic relationship with AtPLCs and OsPLCs.
Syntenic gene pairs among Zea mays and between Arabidopsis
thaliana and Oryza sativa were identified using the TBtools
(Chen et al., 2020).

Analyses of Gene Structures, cis-Acting
Elements, and Motifs
The exon/intron structures of PLCs were analyzed by Gene
Structure Display Server (GSDS) (http://gsds.cbi.pku.edu.cn/).
The genomic sequences 2,000 bp upstream of ZmPLCs predicted
the cis-acting elements using PlantCARE software (http://bioinf
ormatics.psb.ugent.be/webtools/plantcare/html/?tdsourcetag=s_
pcqq_aiomsg). The conserved motifs were analyzed with MEME
(http://meme.sdsc.edu/meme4_3_0/intro.html).

Subcellular Localization of ZmPLCs
In order to confirm the subcellular localization, the coding
sequences of selected ZmPLC genes were amplified using gene-
specific primers. Then, ZmPLCs minus the stop codons were
cloned and inserted into pBI221:eGFP, and the corresponding
expression vectors were introduced into Arabidopsis protoplasts.
The green fluorescent protein (GFP) fluorescence was excited
with a confocal laser scanning microscope LSM 800 (Zeiss).
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Plant Growth Conditions and Treatments
The maize inbred line W22 (from Huazhong Agricultural
University) was used for all the experimental treatments. The
seeds were sterilized with 70% ethanol for 5min and then washed
three times with sterile water. The seedlings were grown in
a Hoagland solution in a greenhouse with a regime of 16 h
light/8 h dark and at 28◦C. When the maize seedlings were
raised to the three-leaf stage, seedlings were selected for stress
treatments according to Lin et al. (2014), including 20% PEG
6000 for drought stress, 200mMNaCl for salt stress, 4◦C for cold
stress, and 20 µmol/L Cu2+ for heavy metal stress. The leaves
were collected at different points in time after treatment. Each
treatment consisted of three replicates. Adult plants were grown
in the field, and then all organs and tissues were harvested. The
root was harvested at the three-leaf stage; the stem and leaf were
collected at five fully extended leaves; the silk, cob, and anther
were harvested at 13 extended leaves; the kernel was harvested at
10 days after pollination (DAP). All materials were immediately
frozen in liquid nitrogen after harvesting and stored at −80◦C
prior to RNA isolation.

Expression Analysis and Quantitative
Real-Time PCR
For quantitative real-time PCR, total RNAs were extracted
from various maize tissues with the RNAprep Pure Plant Kit
(Tiangen, Beijing, China). According to supplier instructions,
total cDNA was synthesized using PrimeScriptTM RT Reagent
Kit with gDNA Eraser (Tiangen, Beijing, China). The Primer
Premier 5.0 was used to design the primers for qRT-
PCR (Supplementary Table 1), and the maize TUB-ribosylation
factor was selected as an internal control. The reaction was
performed on Bio-Rad CFX ConnectTM using SYBR-Green to
detect gene expression levels. For all qRT-PCR analyses, triplicate
biological samples were collected. Data were analyzed using
Bio-Rad CFX Manager software.

Candidate Gene-Based Association
Mapping of ZmPLC Family Members in
Maize
Regional association tests between the single-nucleotide
polymorphisms (SNPs) of candidate genes and the 17 traits
agronomic, including plant height, ear height, tassel branch
number, ear diameter, 100 grain weight, silking time, heading
date, leaf number above ear, tassel main axis length, ear length,
kernel width, cob weight, pollen shed, kernel weight, kernel
number per row, ear leaf width, ear leaf length, were conducted
in the 508 inbred lines (Fu et al., 2013). The genotype and
phenotypes of the association panel were detected by two
genotyping platforms, resulting in 550,000 high-quality SNPs
(Yang et al., 2011; Li et al., 2013), and only SNPs within the range
of 100 kb upstream and downstream of candidate genes were
used. The association analysis was estimated using a mixed linear
model (MLM) incorporated in TASSEL V5.0 (Bradbury et al.,
2007). P ≤ 0.05 was considered the significance threshold. T
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RESULTS

Identification and Characterization of PLCs
in Maize
Eleven ZmPLCs, including five PI-PLC and six NPC sequences,
were identified in the maize genome according to their
domain structures (Supplementary Figure 1A). The ZmPI-
PLC group contains five members: ZmPI-PLC1, ZmPI-PLC2,
ZmPI-PLC3a, ZmPI-PLC3b, and ZmPI-PLC4. The ZmNPC
group has six members: ZmNPC1a, ZmNPC1b, ZmNPC2,
ZmNPC3, ZmNPC4, and ZmNPC5. Domain analysis showed
that the five ZmPI-PLCs contained the catalytic PI-PLC-
X, PI-PLC-Y domain, and Ca2+/phospholipid binding C2
domain, whereas an EF hand-like motif was found only in
ZmPI-PLC4 (Supplementary Figure 1A). Six ZmNPCs had a
phosphoesterase domain, which contains two highly conserved
motifs, ENRSFDxxxG and TxPNR, and two invariable motifs,
DExxGxxDHV and GxRVPxxxxxP (Supplementary Figure 1B).
The gene identification (ID), gene name, open reading frame size,
exon number, length, molecular weight, and isoelectric point of
ZmPLCs were shown in Table 1. Especially, the number of amino
acids (aa) in ZmPLCs of maize is comparable, with ZmPI-PLCs
ranging from 586 to 606 aa and ZmNPCs ranging from 489 to
542 aa (ZmNPC1b is the only exception with 259 aa) (Table 1).

Phylogenetic Relationship, Gene Structure,
and Conserved Motifs of ZmPLCs in Maize
To investigate the phylogenetic relationship of PLC among
different species, a phylogenetic tree consisting of 11 ZmPLCs,
15 AtPLCs, nine OsPLCs, 19 GmPLCs, eight BdPLCs, 10 SbPLCs,
and 22 GhPLCs was constructed using the NJ method (Figure 1).
A total of 94 PLC protein sequences were classified into two
subfamilies, named PI-PLC and NPC, based on the differences
in the domain and phylogenetic relationships (Figure 1).
The phylogenetic analysis showed that ZmPLCs shared high
homology with those from other plants (Figure 1), especially
ZmPI-PLC1, ZmPI-PLC2, ZmPI-PLC3a, and ZmPI-PLC3bmade
a separate small clade, while ZmPLC4 fell apart (Figure 1). While
ZmNPC1a and ZmNPC1b; ZmNPC2; ZmNPC5; ZmNPC3 and
ZmNPC4 made a separate small clade (Figure 1).

Corresponding to the evolutionary relationship, analysis of
the exon/intron structures of the PLC genes revealed that these
genes are also divided into two different types: PI-PLC with an
exon-rich clade (≥5 exons per gene) generally containing 5–10
exons, while NPC with an exon-poor clade (≤5 exons per gene)
containing 1–5 exons (Figure 2). It is worth noting that a similar
exon/intron pattern exists in each clade, for instance, most NPC1
genes contain three exons, and the vastmajority of PI-PLC1 genes
have seven exons (Figure 2).

To further study the characteristic regions of the PLC proteins,
a total of 10 conserved motifs were identified in PLCs using
the online MEME tool (Figure 2). Interestingly, the members
of the same clade usually had similar structures and lengths
in terms of domain. The group PI-PLC members had the
conserved motifs 1, 2, 4, 5, 7, and 9, which are PI-PLC-X, PI-
PLC-Y, and Ca2+/phospholipid binding C2 domain. While the
conserved motifs 3, 6, 8, 9, and 10, which were annotated as

the phosphoesterase domain, were found in group NPC family
(Figure 2).

Chromosomal Location of the ZmPLCs and
Synteny Analysis of PLCs Among Several
Different Species
According to the data of the gene locus, 11 ZmPLC genes
were found in five different chromosomes (Table 1, Figure 3A).
ZmPI-PLC2, ZmNPC1a, ZmNPC3, and ZmNPC4 are localized on
chromosome 1, ZmPI-PLC1 and ZmPI-PLC4 are distributed on
chromosomes 2 or 9, and ZmNPC2 and ZmNPC5 are located
on chromosomes 3, while chromosomes 5 contained ZmNPC1b,
ZmPI-PLC3a, and ZmPI-PLC3b (Figure 3A).

To understand more about the phylogeny of ZmPLC genes
family, syntenic analysis was performed between maize and two
other plant species, including Arabidopsis thaliana and Oryza
sativa (Figure 3B). There were three ZmPLC genes that were
synchronized with those in Arabidopsis thaliana (Figure 3B,
Supplementary Table 2). The comparative syntenic maps of
maize associated with rice were analyzed further, and six out
of 11 ZmPLC genes had collinear genes in rice (Figure 3B,
Supplementary Table 2), indicating that these genes may be
derived from a common ancestor.

Analysis of cis-Elements in the Promoters
of ZmPLCs
To study the expression regulation patterns and the potential
function of ZmPLCs, putative cis-elements on promoter regions
were searched in the Plant CARE database. Cis-elements
related to developmental processes, such as the meristem
expression (CAT-box), were found in the promoter regions of
ZmPI-PLC4, ZmNPC1a, ZmNPC1b, ZmNPC2, ZmNPC3, and
ZmNPC5, suggesting that ZmPLC genes play important roles
in differentiation (Figure 4). The hormone-responsive elements,
including abscisic acid (ABA) responsive elements (ABREs),
MeJA-responsive elements (TGACG-motif and CGTCA-motif),
salicylic acid-responsive element (TCA-element and SARE),
auxin-responsive element (TGA-element and AuxRR-core), and
gibberellin-responsive element (TATC-box, P-box, and GARE-
motif), were also found in some ZmPLC gene promoters
(Figure 4), showing that ZmPLC genes may play a role in growth
and development. Furthermore, stress-responsive elements,
such as low-temperature responsive (LTR) element, drought-
responsive element, anaerobic induction responsive element
(ARE), and defense and stress responsive element (AT-rich and
TC-rich repeats), were observed in some promoters of ZmPLC
genes. For example, LTR elements were detected in ZmPI-
PLC1/2/3a/3b and ZmNPC3/4/5 gene promoters (Figure 4),
while drought-responsive elements were found in the promoters
of ZmPI-PLC1/2 and ZmNPC1a/1b/5 (Figure 4).

Expression Profiles of ZmPLCs in Different
Tissues and Developmental Stages of
Maize
To study the roles of ZmPLCs in growth and development of
maize, qRT-PCR was used to determine the expression profiles

Frontiers in Genetics | www.frontiersin.org 4 January 2021 | Volume 11 | Article 611414111

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Zhu et al. PLC Gene Family in Maize

FIGURE 1 | Phylogenetic analysis of the PLC family. The phylogenetic tree was made by MEGA 7.1 software using the neighbor-joining (NJ) method with

bootstrapping analysis. The analysis involved 94 amino acid sequences from various plants, including Arabidopsis thaliana (At), Glycine max (Gm), Oryza sativa (Os),

Sorghum bicolor (Sb), Gossypium hirsutum (Gh), Brachypodium distachyon (Bd).

of the 11 ZmPLC mRNAs in different tissues, including root,
stem, leaf, silk, immature cob, anther, tassel, kernel (10 DAP)
(Figure 5). The results showed that ZmPLCs were significantly
different under various different tissues. For example, ZmPI-
PLC1 was more highly expressed in silk; ZmPI-PLC2 and
ZmNPC1a were more highly expressed in the leaf than
in other tissues; ZmPI-PLC3a and ZmPI-PLC3b had similar
expression patterns with relatively lower expressions in anther,
while ZmNPC2, ZmNPC3, and ZmNPC4 had relatively high
expressions in anther (Figure 5). Except for the relatively high
expression in root, ZmPI-PLC4 and ZmNPC1b showed low
expression in others organs (Figure 5), and ZmNPC5 was
relatively highly expressed in 10 DAP of kernel (Figure 5). These
results indicated that ZmPLCs may have important functions in
different developmental stages and tissues of maize.

Expression Profiling of ZmPLCs in
Response to Various Stresses
To verify the expression changes of ZmPLCs under stresses,
the expression profiles were examined by qRT-PCR under

different abiotic stress treatments, including 20% PEG6000,
200mM NaCl, 4◦C, and 20 µmol/L Cu2+ (Figure 6). The
results show that ZmPLC genes, except ZmNPC4 and ZmNPC5,
were induced by 20% PEG 6000, peaking at 6 or 12 h after
treatments, and then reduced to the lowest level at 48 h
(Figure 6A). ZmPI-PLC1, ZmPI-PLC3a, ZmNPC1a, ZmNPC1b,
ZmNPC4, and ZmNPC5 were rapidly induced by high salinity,
and ZmPI-PLC3b, ZmPI-PLC4, and ZmNPC3 mRNAs were
almost unaffected; however, the expressions of ZmPI-PLC2 and
ZmNPC2were suppressed (Figure 6B). The expressions of ZmPI-
PLC1, ZmPI-PLC2, ZmNPC1b, ZmNPC2, ZmNPC3, ZmNPC4,
and ZmNPC5 were decreased after cold treatment and then
reached the lower level at 12 h, while ZmPI-PLC3a, ZmPI-PLC3b,

and ZmNPC1a mRNAs were induced with cold treatment,

then still relatively high level at 12 h (Figure 6C). Under 20-
µmol/L Cu2+ treatments, ZmPI-PLC3a, ZmPI-PLC3b, ZmPI-

PLC4, ZmNPC2, and ZmNPC3 mRNAs were suppressed within

48 h, while ZmPI-PLC1, ZmPI-PLC2, ZmNPC1a, ZmNPC1b,
ZmNPC2, and ZmNPC5 were induced within 48 h and peaked
at 3 or 6 h after treatment (Figure 6D). These results show that
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FIGURE 2 | Phylogenetic relationships, gene structures, and conserved protein motifs of maize PLC family. Green boxes indicate exons, and black lines indicate

introns. The motifs, numbered 1–10, are displayed in different colored boxes. The length of the protein can be estimated using the scale at the bottom.

ZmPLCs genes might play important roles in response to various
abiotic stresses.

Subcellular Localization of ZmPLC
Proteins
Previously, it was reported that the substrates of PLCs,
PI4P and PI(4,5)P2, are located in the plasma membrane

(Munnik et al., 1998), so it is speculated that the subcellular

localization of PLCs should also be in the plasma membrane;
however, the sub-localization prediction shows that ZmPLCs
may be multi-localized (Table 1). In order to confirm the
subcellular localization, two randomly selected ZmPLCs,
ZmPI-PLC2 and ZmNPC3, were transiently expressed in
A. thaliana mesophyll protoplasts to analyze subcellular
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FIGURE 3 | The chromosomal distribution of ZmPLC genes (A) and synteny analysis between ZmPLCs and PLCs from Arabidopsis or rice (B). The number of the

chromosome is shown on each chromosome. Gray lines in the background indicate the collinear blocks within maize and other plant genomes, while the red lines

highlight the syntenic PLC gene pairs.

localization by fusing to the N-terminus of GFP. In Arabidopsis

leaf protoplasts, the fluorescence of the vector control

was distributed throughout the nucleus and cytoplasm

(Figure 7); however, the signals of ZmPI-PLC2 and
ZmNPC3 were only observed in the cytoplasm (Figure 7),
showing that ZmPI-PLC2 and ZmNPC3 are located in

the cytosol.

Regional Association Mapping of ZmPLCs

for Agronomic Traits in Maize
To understand the possible functions of the ZmPLCs, an
analysis of agronomy -related trait QTLs from 508 maize
inbred lines was performed. There were significant correlations
between all 11 ZmPLC genes and more than one agronomic
trait at the P ≤ 0.05 level, such as kerner number per row,
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FIGURE 4 | Putative regulatory cis-elements in ZmPLC family gene promoters. Different cis-elements are represented with different color box.

FIGURE 5 | Tissue-specific expression patterns of the 11 ZmPLC genes in maize root, stem, leaf, silk, immature cob, anther, and kernel [10 days after pollination

(DAP)] by using qRT-PCR. The expression levels were normalized to that of TUB. Bars represent SE (n = 3). The entire experiment was repeated three times. Different

letters indicate values that departed significantly from those of root.

100 grain weight, cob weight, and so on (Figure 8). At P
≤ 0.01, 10 ZmPLC genes were identified to be related to
some important agronomic traits (Supplementary Table 3).
For example, ZmPI-PLC1 was significantly correlated with
ear height, ear leaf length, ear length, kerner number
per row, plant height, pollen shed, and tassel branch
number (Supplementary Table 3, Figure 8A); ZmPI-PLC4
significantly affected heading date, pollen shed, 100 grain
weight, silking time, ear leaf width, cob weight, kerner
number per row, and so on (Supplementary Table 3,
Figure 8E); ZmNPC1a significantly affected ear leaf length,
kerner number per row, pollen shed, and plant height
(Supplementary Table 3, Figure 8F).

DISCUSSION

ZmPLC Gene Identification and
Evolutionary Analysis in Maize
At present, PLC genes and their functions in many plants have

been studied and reported, such as Arabidopsis, rice, and soybean

(Wang et al., 2015; Zhang et al., 2018). It was reported that

nine, 15, and 19 PLC genes were found in rice (Singh et al.,

2013), Arabidopsis (Zheng et al., 2012), and cotton (Zhang et al.,
2018), respectively. In this study, 11 ZmPLCs, five PI-PLCs,
and six NPC members were identified according to the domain
structure and phylogenetic analysis (Supplementary Figure 1,
Figure 2). Based on the phylogenetic analysis, although PLCs
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FIGURE 6 | Quantitative real-time PCR analysis of ZmPLCs expression under stress treatments: (A) 20% PEG 6000, (B) 200mM NaCl, (C) 4◦C, (D) 20 µmol/L Cu2+.

The expression levels were normalized to that of TUB. Bars represent SE (n = 3). The entire experiment was repeated three times. Different letters indicate values that

departed significantly from those of without stress.

from closely related species made a phylogenetic clade due to
different genetic relationships (Figure 1), maize PI-PLCs made a
phylogenetic clade with dicots PI-PLCs with very low bootstrap;
however, maize NPCs fall in the same clade with dicot NPCs
with a relative high bootstrap (Figure 1), suggesting that PLCs
from different species diversify during the course of evolution
even after being originated from a common ancestor. In addition,
there are generally more PLCs in dicots than monocots (Zheng
et al., 2012; Zhang et al., 2018), especially PI-PLC, which indicates
that the natural selection of the PLC genes is a variant for different
plant species. Domain and motif analysis of the PI-PLC protein
sequences in maize with homologs from other plants contained
the conserved and typical PI-PLC-X and PI-PLC-Y catalytic
domains and C2 domain (Supplementary Figure 1B, Figure 2).
It is worth noting that an EF hand-like motif was only found in
ZmPI-PLC4 (Supplementary Figure 1A). Similarly, all the NPC
members harbored a highly conserved phosphoesterase domain
(Supplementary Figure 1A). The gene structure of PLCs from
different species could be distinguished into two types: exon-rich
(PI-PLC) and exon-poor (NPC) (Figure 2). Genes in the same

branch usually have similar exon–intron structures, whereas the
gene structures differed markedly among the different branches
(Figure 2). Furthermore, there are similar results in the motif
compositions of the PLC protein (Figure 2). Synteny analysis
showed that the number of PLC homologous genes between
maize and rice were more than those between maize and

Arabidopsis, which indicating that PLC has a higher homology
among related species (Figure 3). These findings indicated that
highly conserved PLC from different plants might have a similar
function in the evolution of plants.

Functional Analysis of the ZmPLCs

Response to the Development and Abiotic
Stress in Maize
The cis-regulatory elements in the promoter play an important
role in regulating the expression patterns of the genes (Vedel
and Scotti, 2011). According to analysis of the cis-acting elements
in ZmPLC promoter region, the ZmPLC promoters contain
various element responses to plant development and stresses,
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FIGURE 7 | Subcellular localization of ZmPLC proteins in Arabidopsis leaf protoplasts.

for example, light-responsive elements, ABA-response elements,
MeJA-responsive elements, LTR element, and so on (Figure 4).
These results mean that ZmPLC genes could be involved not only
in the regulation of the growth and development of maize but
also in various stress responses.

The expression patterns of PLC genes have already been
studied in different tissues and developments of many plants,
such as Arabidopsis, rice, soybean, and so on. In this study, the
expression profiles of ZmPLC genes were validated using qRT-
PCR under different tissues. All ZmPLC genes were expressed in
our tested tissues, while the expression abundance of different
ZmPLC genes is significantly different in tissues (Figure 5). For
example, the transcript levels of ZmPI-PLC2 were relatively high
in all organs, especially leaf and anther (Figure 5). Interestingly,
AtPI-PLC2, involved in reproductive organ development, was
also highly expressed in leaves, stems, roots, and flowers (Tasma
et al., 2008; Li et al., 2015). OsPLC genes from rice are
also expressed differentially during reproductive developmental
phases including stages of panicle and seed development (Singh
et al., 2013). Furthermore, the regional association analysis
between 11 ZmPLCs and 17 agronomic traits in maize indicated
that some ZmPLC genes are significantly correlated with many
development-related traits (Figure 8). These results suggested
that ZmPLC genes have important functions in the regulation
of growth and development in maize and could act as important
candidate genes to improve maize agronomic traits for breeding.

Many previous studies have reported that PLC members
are involved in various abiotic stress-triggered signaling

transductions in many plant species. For example, AtPI-PLC3,
AtPI-PLC9, and AtNPC1 genes play an important function
in regulating heat tolerance (Gao et al., 2014; Krčková et al.,
2015), whereas AtNPC4 and AtNPC5 genes could respond
to salt stress (Kocourková et al., 2011; Peters et al., 2014).
OsPI-PLC4 plays a positive role in osmotic stress response (Deng
et al., 2019). Overexpression of maize PI-PLC1 could enhance
drought tolerance of transgenic plants (Wang et al., 2008). In
this study, the expression of ZmPLC genes showed different
changes under different stresses; however, they presented
their own characteristics (Figure 6). For example, all maize
PI-PLC genes were induced by osmotic treatments, while
only ZmPI-PLC1 and ZmPI-PLC3a were rapidly induced by
high salinity (Figures 6A,B). ZmPI-PLC3a and ZmPI-PLC3b
were upregulated by cold treatment and suppressed by copper
ion treatment (Figures 6C,D). ZmNPC4 and ZmNPC5 were
downregulated by osmotic treatments; however, they were
rapidly induced by high salinity (Figure 6B). The different
expression changes of ZmPLCs under different stresses may
be related to the cis-acting elements in their promoters; for
example, the cis-regulatory elements including MBS (MYB
binding site), ABRE, and defense and stress responsive
element (AT-rich and TC-rich repeats) are known to regulate
various stress responses (Abe et al., 2003; Narusaka et al.,
2003). In this study, the LTR could be detected in ZmPI-
PLC1/2/3a/3b and ZmNPC3/4/5 gene promoters (Figure 4),
and ZmPI-LC3a and ZmPI-PLC3b mRNAs were induced by
cold treatments.
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FIGURE 8 | Regional correlation analysis between ZmPLC genes with the agronomic traits in maize. (A–K) show the correlation between ZmPLC genes with the

agronomic traits, respectively. Local Manhattan plot (top) and linkage disequilibrium heatmap (bottom) surrounding the SNPs for agronomic traits on the range of 100

kb upstream/downstream of ZmPLC genes. An logarithm of the odds (LOD) > 2 indicates that a SNP is significantly related to kernel-related traits.

The substrates of PLCs, phosphoinositides, PC, or PE, are
mainly distributed in the plasma membrane (Munnik et al.,
1998), so it is speculated that the subcellular localization of
PLCs should also be in the plasma membrane. However,
the sub-localization from many plants showed that PLCs
maybe multi-localized. For example, Arabidopsis AtPLC9 and
soybean GmPLC10-GFP fluorescence were located in the
plasma membrane (Zheng et al., 2012), OsPLC1 and OsPLC4
were distributed throughout the cytoplasm and nucleus, while
OsNPC3 protein might be localized in the chloroplast/plastids
(Singh et al., 2013). DAG derived from PI-PLC or NPC
activities can be phosphorylated to PA by DGK, while DAG
could act as a substrate to produce various lipid species and

also significantly affect properties of cell membranes as sites
of crucial cell activity (Darwish et al., 2009; Hong et al.,
2016). On the other hand, PI-PLC hydrolyzes PtdIns(4,5)P2
into Ins(1,4,5)P3, and Ins(1,4,5)P3 is synthesized into InsP6,
which could bind to IP6 receptors and lead to release of
Ca2+ (Hong et al., 2016). Ca2+ and PA could act as a
signaling molecule to play vital roles in various signaling
pathways such as plant development, hormone signaling, and
abiotic or biotic stresses to produce favorable response to
plants (Xue et al., 2007). There is a possibility that the
diverse localization of plant PLCs implies that they might take
part in different cellular processes during development and
abiotic stress.
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CONCLUSIONS

In this study, 11 ZmPLCs were identified by genome-wide
analysis. The results of evolution, gene structures, and motifs
of PLCs indicated that ZmPLCs were highly conserved
compared with their homologous genes from other plants.
Additionally, the cis-elements, expression profiles, and
association analysis between ZmPLC genes and agronomic
traits for ZmPLC genes were also analyzed, which showed that
ZmPLC genes may have important functions in regulating
development and various stresses. Taken together, these
results provide useful information for further study of the
roles of ZmPLCs in plant development and environmental
stress conditions.
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Drought is the major abiotic stress threatening maize (Zea mays L.) production globally.
Despite recent scientific headway in deciphering maize drought stress responses,
the overall picture of key genes, pathways, and co-expression networks regulating
maize drought tolerance is still fragmented. Therefore, deciphering the molecular
basis of maize drought tolerance remains pertinent. Here, through a comprehensive
comparative leaf transcriptome analysis of drought-tolerant hybrid ND476 plants
subjected to water-sufficient and water-deficit treatment conditions at flared (V12),
tasseling (VT), the prophase of grain filling (R2), and the anaphase of grain filling
(R4) crop growth stages, we report growth-stage-specific molecular mechanisms
regulating maize drought stress responses. Based on the transcriptome analysis, a
total of 3,451 differentially expressed genes (DEGs) were identified from the four
experimental comparisons, with 2,403, 650, 397, and 313 DEGs observed at the V12,
VT, R1, and R4 stages, respectively. Subsequently, 3,451 DEGs were divided into 12
modules by weighted gene co-expression network analysis (WGCNA), comprising 277
hub genes. Interestingly, the co-expressed genes that clustered into similar modules
exhibited diverse expression tendencies and got annotated to different GO terms
at different stages. MapMan analysis revealed that DEGs related to stress signal
transduction, detoxification, transcription factor regulation, hormone signaling, and
secondary metabolites biosynthesis were universal across the four growth stages.
However, DEGs associated with photosynthesis and amino acid metabolism; protein
degradation; transport; and RNA transcriptional regulation were uniquely enriched at
the V12, VT, R2, and R4 stages, respectively. Our results affirmed that maize drought
stress adaptation is a growth-stage-specific response process, and aid in clarifying the
fundamental growth-stage-specific mechanisms regulating drought stress responses in
maize. Moreover, genes and metabolic pathways identified here can serve as valuable
genetic resources or selection targets for further functional validation experiments.

Keywords: hub gene, drought stress, RNA-seq, weighted gene co-expression network analyses, Zea mays L
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INTRODUCTION

Among all the abiotic stress factors that present threats to
agricultural production, drought has the largest dramatic effect
on crop growth and productivity, in both natural and manmade
agricultural systems (Wheeler and von Braun, 2013). With
the current evidence suggesting a continued increase in global
warming, water shortage, and climate change, against a rising
human population, crop breeders are faced with the biggest
food security challenge in history (Hu and Xiong, 2014). It is
estimated that the demand for agricultural products, including
cereals, will increase by ∼50% by the year 2030, driven by
population and income growth. This will require unprecedented
sustained increases in the production of annual food crops
(Farooq et al., 2009). Therefore, it is of top priority for crop
breeders to develop drought-tolerant crop cultivars in order to
sustain higher yields and global food security under the prevailing
climate change scenario.

Globally, maize (Zea mays L.) ranks as the third staple crop
after wheat (Triticum aestivum L.) and rice (Oryza sativa L.),
contributing to both food security and industrial growth in
some agro-based economies (Thirunavukkarasu et al., 2017).
However, maize productivity and production expansion are
negatively affected by drought stress, especially in the arid
and semi-arid regions of South East Asia and Sub-Saharan
Africa. More precisely, 60% of China’s maize production region
lies in such drier regions. Consequently, a 20–30% maize
yield loss per year occurs owing to water-deficit stress (Gong
et al., 2014). Therefore, the development of maize hybrids with
enhanced drought tolerance, either through conventional or
genetic engineering approaches, is a priority goal for most maize
improvement programs.

Maize is susceptible to drought stress throughout its life
span, with the most devastating effects being experienced at the
reproductive stage (Hu and Xiong, 2014). Generally, drought
stress results in stomatal closure and reduced transpiration rates,
decreased cell turgor, diminished photosynthetic efficiency, and
overall plant growth (Zhang et al., 2018). The photosynthetic
and gas exchange responses are the most sensitive to drought
and the survival of drought-tolerant plants hinges on the
maintenance of relatively high photosynthetic activity levels
(Aslam et al., 2015). To cope with drought stress, plants institute
several developmental-stage-specific changes at physiological
and molecular levels. Numerous genes are expressed and
translated in response to drought and have been identified to
interact with the environment, thus the networks associated
with water deficit conditions are quite complex. When plants
are exposed to stresses, stress receptors, and transporters on cell
membranes coordinate stress perception and signal transmission
to the target genes. Then, phytohormones such as abscisic acid
(ABA), cytokinin, auxin, and ethylene, etc., regulate numerous
drought-inducible genes (Khan et al., 2019). At the same time,
transcription factors (TFs), including basic region/leucine
zipper motif (bZIP), NAM/ATAF/CUC transcription factor
(NAC), myeloblastosis (MYB), WRKY, and dehydration
responsive element binding protein (DREB) interact with
cis-regulatory sequences to execute transcriptional regulation

of gene expression, thereby providing adaptive responses
to water-deficit conditions (Joshi et al., 2016). Additionally,
plants activate cellular redox homeostasis maintenance through
metabolic adjustment; transduce stress signals for the synthesis
of defense enzymes and other antioxidant systems to protect
cells from reactive oxygen species (ROS) damages; and institute
stress-responsive proteins (Mahajan and Tuteja, 2005). Previous
studies have highlighted the role of late embryogenic abundant
(LEA) and heat shock proteins (HSPs) in enhancing tolerance
to dehydration by functioning as chaperons to combat cellular
damage (Hanin et al., 2011).

As a result of the fast advancement and reduction in the
cost of next-generation sequencing (NGS) technologies, RNA-
sequencing (RNA-Seq) has become a powerful tool for whole
genome-wide gene expression profiling and has been widely
used to investigate complex gene regulatory networks. This
has immensely contributed to our better understanding of
the complex molecular networks involved in adaptation and
tolerance to water-deficit stress (Miao et al., 2017). RNA-seq
technology has also been used in Sorghum bicolor L. (Fracasso
et al., 2016) and rice (Ma et al., 2016). Resultantly, several genes
that respond to drought stress have been identified (Zenda et al.,
2019). In our previous study, we highlighted the role protein
ubiquitination play in coordinating cellular crosstalk between
stress and hormone signaling in maize seedlings under drought
stress conditions (Zenda et al., 2019). Further, the co-expression
of genes associated with osmotic adjustments and transporter
proteins-maintained cell water balance at the seedling stage
(Thirunavukkarasu et al., 2017).

Although global gene expression profiles in response to
drought stress have been monitored in different maize tissues
by micro-arrays and RNA-Seq experiments (Zheng et al., 2010;
Min et al., 2016; Wang et al., 2018; Zenda et al., 2019),
most of these studies were conducted separately in different
tissues and at various developmental stages. Consequently, little
is known about the gene co-expression networks of different
developmental stages. In other words, it is not yet clear how
maize drought adaptation is regulated genetically and how
stress signaling pathways crosstalk with the developmental
signaling pathways.

Fortunately, co-expression network analysis has become an
important tool in the identification of gene co-expression in
relation to their functional associations, this method identifies
gene subsets that are highly correlated with each other within
the network (Thirunavukkarasu et al., 2017). Particularly, the
weighted gene co-expression network analysis (WGCNA), an
approach in systems biology used to describe gene-related
patterns in microarray samples allows for the amalgamation
of vast amounts of microarray data from different biological
samples and multiple experiments to obtain insights into genes
from various metabolic pathways that possess similar expression
patterns. The method has been successfully used to screen
biomarkers and detect hub genes involved in metabolic pathways
in abiotic stress responses (Wang B. et al., 2019).

Meanwhile, plant responses to abiotic stresses and drought
stress, in particular, are dependent on the specific developmental
stage and tissue affected and the level and duration of
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the stress. Therefore, the co-ordination of tissue-specific and
developmental-stage-specific responses to the whole plant
responses to drought stress needs to be considered (Wang B. et al.,
2019). Thus, developing crops with higher resistance to water-
deficit stress requires knowledge of the underlying physiological
and molecular mechanisms of drought tolerance at various plant
developmental stages.

Here, we utilized RNA-seq based approach to perform a
comparative transcriptome analysis of growth-stage-specific
drought stress responses between drought-tolerant maize
hybrid Nongdan 476 (ND476) plants subjected to well-watered
(control) and moisture-stressed (drought) conditions under
short term conditions. Additionally, twenty-four RNA-Seq
datasets were used to conduct WGCNA analysis in order to
identify gene subsets possessing similar expression patterns and
highly correlated with each other within different metabolic
networks. Our results will be vital in clarifying the fundamental
developmental-stage-specific molecular mechanisms regulating
drought tolerance in the tolerant maize genotype.

MATERIALS AND METHODS

Plant Materials and Drought Stress
Treatment
The maize germplasm of hybrid ND476 that was used
in this experiment was bred and provided by the North
China Key Laboratory for Crop Germplasm Resources of the
Education Ministry (Hebei Agricultural University, China).
Maize hybrid ND476 is a highly drought-tolerant cultivar (as
screened/identified by the Dryland Research Institute of Hebei
Academy of Agricultural and Forestry Sciences, China). The
experiment was conducted between May and July 2018 in a fully
automated rain-proof shelter at Qing Yuan Experimental Station,
Baoding, China (115.56 E; 38.80 N; 118 m). Each experimental
plot measured 25 m2 (5 m × 5 m), with 60 cm × 30 cm plant
spacings. The field arrangement was set up in a randomized
complete block design, with the water-sufficient and water-
deprived groups replicated three times. The soil water content
was kept between 70 and 80% in the well-watered plots (control)
and 15–20% in water-stressed plots (treatment). The soil water
content across the water/drought treatments at all the four
maize growth stages was consistently kept the same. This was
made possible by the use of drip irrigation for agricultural
water supply for the trials evaluated under both conditions
(Wang N. et al., 2019). The relative soil water content of one
meter underground was monitored by the TZS-1 soil moisture
measurement instrument (Zhejiang Tuopu Technology Co., Ltd.,
Zhejiang, China). To prevent the transverse infiltration of soil
moisture, building waterproof membranes of one-meter depth
were put between control and treatment units.

Drought treatment was instituted at four different maize
growth stages. Plants were water-deprived (a) from eight fully-
expanded-leaf (FEL) to twelve FEL (V12) period (flared stage);
(b) from twelve FEL until the tassel was visible (VT) (tasseling
stage); (c) from self-pollination until 12 days post pollination
(DPP), that is, the prophase of grain filling stage (R2); and (d)
from 13 DPP until 24 DPP, that is, the anaphase of the grain

filling stage (R4) (Figure 1). For each growth stage, leaf tissues
were collected from the flag leaves of three replicates, of both
control and drought treatment conditions. All the leaf samples
were immediately frozen in liquid nitrogen and then stored at
−80◦C for further analysis.

Determination of Photosynthetic Rate of
Maize Leaves
Physiological parameters were measured for the maize under
well-watered and water-deprived conditions from V12 to R2
stages. Specifically, photosynthetic rate (Pn) was measured
according to drought treatment time and weather conditions
using Li-6400 portable photosynthesis system (LI-COR
Biosciences Inc., Lincoln, NE, United States) from 9:00 to 11:00
in the morning, as well as the conditions for measurement, were
set as follows: photosynthetic photon flux density, 1500 µmol
m−2 s−1; and chamber CO2 concentration, 300 µmol s−1. The
student’s t-test was used to detect any significant differences in
the data measured between control and drought treatment at
each time point.

Total RNA Extraction, cDNA Library
Construction, and Transcriptome
Sequencing
The total RNA was extracted from the leaf samples of the
control and water-deprived plants using TRIzol reagent
(Invitrogen, Carlsbad, CA, United States) following the
manufacturer’s protocols. Subsequently, RNA was treated
with DNase I (QIAGEN, Pudong, Shanghai, China) to
eliminate contaminating genomic DNA. RNA degradation and
contamination (integrity) were monitored on 1% agarose gels,
then RNA quality was determined by 2100 Bioanalyzer (Agilent)
and quantified using the ND-2000 (NanoDrop Technologies Inc.,
Wilmington, DE, United States). A total amount of 1 µg RNA
per sample was used as input material. Only a high-quality RNA
sample (OD260/280 = 1.8∼2.2, OD260/230 ≥ 2.0, RIN ≥ 6.5,
28S:18S ≥ 1.0) was used to construct the sequencing library.
RNA purification, reverse transcription, library construction,
and sequencing were performed at Shanghai Majorbio Bio-
pharm Biotechnology Co., Ltd (Shanghai, China) according
to the manufacturer’s instructions (Illumina, San Diego, CA,
United States). RNA-seq transcriptome library was prepared
following TruSeqTM RNA sample preparation Kit from Illumina
(San Diego, CA, United States) using 1 µg of total RNA. Briefly,
mRNA was isolated according to the polyA selection method by
oligo (dT) beads and then fragmented by fragmentation buffer
firstly. Secondly, double-stranded cDNA was synthesized using
a SuperScript double-stranded cDNA synthesis kit (Invitrogen,
Carlsbad, CA, United States) with random hexamer primers
(Illumina). The short fragments (200 – 300 bp) were ligated with
adapters and the suitable fragments were chose PCR amplified
using Phusion DNA polymerase (NEB) for 15 PCR cycles. After
quantified by TBS380 (Turner Biosystems, United States), the
paired-end RNA-seq sequencing library was sequenced with
the Illumina Novaseq 6000 (2 × 150 bp read length). Four
cDNA libraries were prepared using mRNA isolated from the
leaves of both water-deprived and well-watered maize plants
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FIGURE 1 | Schematic representation of the leaf transcriptome sequencing experiment under control and drought stress treatment in drought-tolerant hybrid line
ND476 from vegetative to reproductive development stages. On the crop development stage timeline, green and yellow colors represent vegetative and reproductive
stages, respectively. On growth condition timelines, green color represents water-sufficient (control), whereas red color represents water-deficit (drought) treatment
periods, respectively. Black dots show the time of leaf sample collection after 12 days of treatment exposure.

of drought-tolerant hybrid ND476 at four developmental
stages. The libraries were denoted ND1_Con (NDCa, NDCb,
NDCc) and ND1_Tre (NDDa, NDDb, NDDc) (the leaves
of control and treatment maize at V12 stage), ND2_Con
(NDCA, NDCB, NDCC) and ND2_Tre (NDDA, NDDB,
NDDC) (the leaves of control and treatment maize at VT stage),
ND3_Con (NDC1, NDC2, NDC3) and ND3_Tre (NDD1,
NDD2, NDD3) (the leaves of control and treatment maize at
R2 stage), ND4_Con (NDC4, NDC5, NDC6) and ND4_Tre
(NDD4, NDD5, NDD6) (the leaves of control and treatment
maize at R4 stage). To identify genes responsive to drought
stress in maize leaves at various growth stages, global gene
expression profiling was performed by Illumina RNA sequencing
of these libraries.

Processing, Mapping of Sequencing
Reads, and Gene Expression
Quantification
Raw data (raw reads) generated by the Illumina Novaseq 6000
system were initially processed by SeqPrep1 and Sickle2 with

1https://github.com/jstjohn/SeqPrep
2https://github.com/najoshi/sickle

default parameters. After trimming the adapter sequencing,
removing low-quality bases, and filtering short reads, clean reads
were separately aligned to the reference genome (ZmB73_Ref-
Gen_v4) with orientation mode using TopHat (version 2.1.1)3

software. The mapping criterion was as follows: sequencing
reads should be uniquely matched to the genome allowing
up to 2 mismatches, without insertions or deletions. At the
same time, Q20, Q30, GC-content, and sequence duplication
level of the clean data (clean reads) were calculated. These
high-quality reads were used in all the subsequent analyses.
Subsequently, the gene expression level of each transcript was
calculated according to the FPKM (fragments per-kilobase
of the exon model per million mapped reads) based on
the length of the reads count mapped to this transcript.
For functional annotation, the quality reads were used for
BLASTX alignment and annotation against non-redundant
protein sequence database (Nr)4, Swiss-port (a manually
annotated and reviewed protein sequence database)5, Clusters of

3http://tophat.cbcb.umd.edu/
4https://www.ncbi.nlm.nih.gov/
5https://web.expasy.org/docs/swiss-prot
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Orthologous Groups (COG)6, the Kyoto Encyclopedia of Genes
and Genomes (KEGG)7 and Gene Ontology (GO)8 with the
threshold e-value = 1E-5.

Differentially Expressed Genes (DEGs)
Detection and Function Annotation of
DEGs
Differential expression analysis of two samples was performed
using the EdgeR package (Empirical Analysis of Digital Gene
Expression in R)9. A differential expression analysis between
stages was conducted using the ratio of FPKM values, and the
p-value of each contrast corrected for multiplicity using the
Benjamini and Hochberg method (Lei et al., 2015). In this study,
genes with fold change (FC) ≥ 1.5 and p-value < 0.05 found by
EdgeR were assigned as DEGs.

To further characterize DEGs in response to drought
stress, the DEGs were visualized using the Mercator web tool
subsequently loaded into MapMan software for a functional and
categories annotation. The mapping file was used for visualizing
the functional classes and pathways belonging to hierarchical
BINs and sub-BINs based on the putative function. Subsequently,
WGCNA analysis was performed to establish the maize DEGs co-
expression network using the free online platform – Majorbio
Cloud Platform10. In a scale-free weighted gene network, a
node corresponded to a DEG, and an edge was determined
by the similarity expression profiles of paired genes calculated
by Pearson correlation. We selected a soft threshold (β) 12 to
construct the co-expression networks according to the adjacency
matrix (Supplementary Figure 1). The other parameters
were as follows: minModuleSize = 30, minKMEtoStay = 0.3,
mergeCutHeight = 0.25. Clusters (Modules) were visualized
using Cytoscape software (version 3.4.0). To further explore the
modules‘ functions, BiNGO plugins of Cytoscape were used for
GO enrichment analysis based on the hypergeometric test and
Bonferroni correction method (FDR < 0.05). Following WGCNA
analysis, hub-genes were detected as the top 10% DEGs with the
highest hub scores (Miao et al., 2017).

Quantitative Real Time-PCR (qRT-PCR)
Analysis
To validate the Illumina sequencing data results, quantitative
real-time PCR (qRT-PCR) was conducted on 24 RNA samples
that were used in the preparation of sequencing libraries using
a C1000 (CFX96 Real-Time System) Thermal Cycler (Bio-Rad).
Twelve genes that co-expressed at two treatment stages were
selected for qRT-PCR to verify the RNA-seq results. Specific
primers for each DEG were designed according to individual gene
sequences using Primer Premier 5 Designer (Premier Biosoft
International, Palo Alto, CA, United States). The cDNA for
qRT-PCR analyses was synthesized from 1 µg total RNA with

6https://www.ncbi.nlm.nih.gov/COG/
7http://www.genome.jp/kegg
8http://www.geneontology.org
9http://www.bioconductor.org/packages/2.12/bioc/html/edgeR.html
10www.majorbio.com

HiFiscript cDNA Synthesis Kit (CWBIO, Beijing, China). QRT-
PCR experiments were performed on a Bio-Rad iQ5 Thermo
Cycler (Bio-Rad, Hercules, CA, United States) using 2 × Fast
Super EvaGreen R© qPCR Mastermix (US Everbright Inc., Daly
City, CA, United States). Each PCR reaction mixture contained
10 µl of 2 × Fast Super EvaGreen R© qPCR Mastermix, 1 µl of
template cDNA, 1 µl of forwarding primer (50 pmol), 1 µl of
reverse primer (50 pmol), and 7 µl ddH2O to a final volume
of 20 µl with three technical replicates of each gene. We
used the maize gene GAPDH (accession no. X07156) as an
internal control for data normalization. Additionally, a negative
control was added. The relative mRNA abundance for each gene
was determined for both the control and the drought-stressed
samples by the 2−11CT method (Livak and Schmittgen, 2001).

RESULTS

Leaf Photosynthesis Rate Response of
Maize Hybrid Cultivar ND476 to Drought
Treatment
To determine whether the water-limited conditions could
influence the physiological activities within the maize leaf tissues,
in this research, we measured Pn of the drought-tolerant hybrid
cultivar ND476 at different growth stages. Our analysis of the
four stages showed that under well-watered conditions, at the
V12 stage, Pn increased initially (from 1 to 9 days post-treatment
exposure), and then decreased gradually thereafter. At the VT
stage, Pn showed an increasing trend from day 1 onward.
However, under well-watered conditions, at the R2 and R4
stages, Pn exhibited a slight gradual decrease throughout the
treatment exposure period, starting from day 1 (Supplementary
Figure 2). Meanwhile, all the four growth stages generally showed
significantly reduced Pn under the water-deficit condition
as compared to the well-watered condition (Supplementary
Figure 2). This observation may indicate that with the increased
drought exposure duration, leaf stomatal closure resulted in
decreased leaf available CO2, or there was increased photo-
oxidative damage induced by an accumulation of ROS.

Illumina Paired-End Sequencing,
Assembly and Annotation of Maize Leaf
Transcriptomes
Resultantly, a total of 125.26 million raw reads were obtained.
The raw sequencing data had been deposited in the NCBI
Sequence Read Archive (SRA, Accession: SPR212360). After
adaptors and low-quality reads were filtered out, 124.16 million
clean reads were obtained, ranging from 23,029,648 to 72,636,578
for each sample. The clean reads were used for further analysis.
Meanwhile, 20,432,633 (88.72%) to 64,399,057 (88.66%) clean
reads were mapped onto unique positions on the maize reference
genome (ZmB73_Ref-Gen_v4) (Supplementary Table 1). The
Q30 base percentage and GC percentages exceeded 94.46% and
54.6%, respectively (Supplementary Table 1).

Subsequently, for functional annotation of the assembled
transcriptome sequences, all the sequences were mapped onto
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the public genome database with an E-value threshold of 1e-
5. We annotated 179,093 (93.1%) and 137,849 (71.66%) genes
in the NCBI Nr database and the Swiss-Port protein database,
respectively (Supplementary Table 2). Based on KEGG analysis,
only 82,758 genes were successfully annotated, accounting for
43.02% of the total number. In addition, 169,691 (88.21%) and
133,525 (69.41%) genes were annotated using COG and GO
databases, respectively (Supplementary Table 2).

Additionally, the similarities or differences of the twenty-
four samples were analyzed using principal component analysis
(PCA). The PCA results of all the samples showed a clear
separation between treatment and control samples at different
stages (Supplementary Figure 3). To measure the gene
expression levels for the three replicates for each sample, Pearson
correlation coefficients between samples were calculated. The
results shown by way of heatmap revealed that each R2 between
the two samples was higher than 90% except for one comparison
(NDC4_vs_NDDb) (Supplementary Table 3). These results
indicated the overall reproducibility and quality of the assay,
which met the demands for further analysis.

Identification of DEGs in Response to
Drought
In order to reveal the transcriptional responses of maize leaves
to water-stressed conditions, we compared the genes identified
under water-sufficient and water-deficit conditions at four
different growth stages. Gene expression levels were calculated
and normalized to the RPKM values. Based on this analysis,
a total of 3,451 DEGs were identified at four various maize
growth stages. We obtained most numbers of DEGs at the V12
stage, including 1,203 upregulated and 1,200 downregulated.
Meanwhile, 352 upregulated and 298 downregulated DEGs were
identified at the VT stage. Similarly, we fished out 397 DEGs
(95 upregulated and 302 downregulated) and 313 DEGs (112
upregulated and 201 downregulated) at the R2 and R4 stages,
respectively (Figure 2A).

The number of DEGs showing overlaps and specific responses
under drought stress in different growth stages is visualized in
Figure 2B. A large number of DEGs were period-specific; there
were 2,164, 483, 307, and 198 DEGs, respectively, at the four
different stages. However, a limited number of common DEGs
were detected. The area I represent 117 DEGs shared between
V12 and VT stages after drought treatment, that is, the common
DEGs identified in the two vegetative stages. Area II represents 15
DEGs shared between R2 and R4 stages after drought treatment,
that is, the common DEGs identified in the two reproductive
stages. There were 180 drought-responsive DEGs identified in the
vegetative stages (V12 or VT) and also differentially expressed at
the reproductive stages (R2 or R4) after drought treatment; that
is, the DEGs identified at both vegetative and reproductive stages
(Area III, Figure 2B).

To further understand the gene expressions between different
stages, we performed the hierarchical clustering analysis of the
identified DEGs (Figures 2C,D and Supplementary Figure 4).
A total of 28 DEGs showed downregulated and 69 DEGs
showed upregulated both of V12 and VT stages, but 20

DEGs showed the opposite trend of expression of the two
stages (Figure 2C). Thirteen DEGs were downregulated both
of R2 and R4 stages, 2 DEGs showed the opposite trend of
expression of the two stages (Figure 2D). The others shared
DEGs in different stages also showed different expression
patterns (Supplementary Figures 4A–D). These results indicated
that there were different mechanisms of maize drought stress
responses at various growth phases.

Functional Annotation of DEGs Using
MapMan
All DEGs of four growth stages were assigned to MapMan
functional categories. The DEGs were grouped into 35 BINs with
putative functions (Supplementary Figure 5). We found out that
720, 183, 147, and 72 DEGs of the V12, VT, R2, and R4 stages,
respectively, were not assigned to any functional group (BIN 35)
due to lack of annotation information (Supplementary Figure 5).
The DEGs of the V12 stage were mainly annotated to the cell wall,
lipid metabolism, photosynthesis (PS), protein synthesis, and
degradation, abiotic stress, secondary metabolites biosynthesis
and hormone metabolism (Figure 3A). The highly enriched
categories of the VT stage DEGs included lipid metabolism,
amino acid metabolism, and hormone metabolism (Figure 3A).
Meanwhile, the enriched categories of the R2 stage DEGs
included lipid metabolism, protein degradation, and secondary
metabolites biosynthesis, whereas the R4 stage DEGs related
to transport, PS, hormone metabolism, secondary metabolites
biosynthesis, and RNA transcriptional regulation were highly
enriched (Figure 3A).

An overview analysis of DEGs was generated with the
MapMan tool and the drought-inducible regulated genes
were classified into different regulatory processes (Table 1).
The DEGs involved in PS showed upregulated expression
under drought stress conditions in all the stages, except the
VT stage. A total of 171 DEGs related to transport were
altered in expression among the four growth stages. Moreover,
266 protein kinases including serine/threonine-protein kinases,
leucine-rich repeat receptor-like proteins, receptor-like kinases,
phospholipases, and protein phosphatases were observed to
be mostly upregulated at the vegetative stages, whilst showing
downregulation at the reproductive stages. Several plant
hormones, which functions as regulatory compounds, were
identified to be responsive to drought stress including abscisic
acid (ABA), auxin, brassinosteroids (BR), gibberellic acid (GA),
salicylic acid (SA), and ethylene. DEGs related to auxin and
SA were downregulated, whilst the DEGs involved in other
hormones showed an increased expression under drought stress.
Additionally, 289 differentially expressed TFs were identified,
such as C2H2, bHLH, HB, MYB domain, MYB-related, and
WRKY domain (Figure 3B). In the current study, more increased
abundance TFs were identified in the vegetative stages compared
to the reproductive stages.

The DEGs were involved in maintaining redox homeostasis
by a series of enzymatic compounds including thioredoxin
(TRX), glutathione S-transferases (GST), and peroxidase (POD),
which played major roles in protecting maize from oxidative
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FIGURE 2 | Gene differential expression and clustering analysis. (A) Number of DEGs expressed in different experimental stages (B) Venn diagram analysis of DEGs.
The regions labeled Area I–III identify genes described under section ‘Identification of DEGs in Response to Drought’ above (C) Clustering analysis of DEGs common
in vegetative stages (Area I). (D) Clustering analysis of DEGs common in reproductive development stages (Area II).

damage. Additionally, 61 DEGs were annotated to stress defense.
HSPs mainly showed upregulated, whist LEA and pathogenesis-
related proteins (PRPs) had increased abundance under drought.
The identification of such a great number of regulatory DEGs
showed that there were multiple signaling mediators and intricate
pathways in response to drought stress. Subsequently, we also
obtained 10, 3, and 2 DEGs of the V12, VT, and R4 stages
that were annotated to “response to drought/salt” (BinCode:
20.2.3) (Table 1). Among them, responsive to dehydration 22
(RD22, AT5g25610) mediated by ABA was identified in the V12
and VT stages and was involved in response to desiccation.
Drought-responsive family protein AT3g05700 and ERD (early-
responsive to dehydration stress, AT4g22120) family protein may
play a role in maize response to water-stress in the V12 stage. In
addition, gene encoding AOC (allene oxide cyclase, AT3g25780),

which is involved in jasmonic acid biosynthesis, is suggested to
play a functional role in maize response to drought at the V12
stage. Taken together, these differentially expressed genes were
speculated to be the vital cogs in maize drought stress tolerance,
and hence aroused our keen interest for further discussion.

Co-expression Network Analysis of
DEGs by WGCNA
To capture crucial shifts in gene networks in maize under
water-stressed conditions, we further applied the WGCNA
approach to perform a network-level analysis of co-expression
relationships among 3,451 DEGs based on their expression
patterns throughout the four growth stages. After filtering, a
total of 2,771 DEGs were divided into 12 modules (clusters)
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FIGURE 3 | Enrichment analysis of the functional categories of DEGs for the four maize growth stages by MapMan. (A) Enrichment of DEGs into functional
categories for different stages. (B) Enrichment of transcription factor subcategories.

(designated M1-M12) comprising of 32 to 1,155 highly co-
expressed genes (Figure 4, Supplementary Figure 6, and
Supplementary Table 4). GO enrichment analysis of each
module by BiNGO highlighted vital biological processes
represented by a series of co-expressed genes. Module M1
formed the largest cluster of 1,155 DEGs enriched in functions
related to metabolic processes (cellular amino acid, oxoacid,
organic acid, and small molecule) and response to temperature
stimulus (Figure 5 and Supplementary Table 5). We also
observed that cluster M5 had 172 DEGs enriched in functions
related to metabolism process (peptide, cellular amide, and
protein) and biosynthetic process (peptide, amide, and cellular
macromolecule) (Supplementary Table 5). Meanwhile, module
M11, comprising a cluster of 34 DEGs, had its DEGs annotated
to biosynthetic process (cinnamic acid, phenylpropanoid,
and carboxylic acid) and metabolism process (cinnamic acid,
aromatic amino acid, and benzene-containing compound)
(Supplementary Table 5). Modules M2, M10 and M12
showed enrichment of GO terms related to photosynthesis
(Supplementary Table 5). Additionally, module M10 represents
DEGs that showed high-expression specifically in the VT-stage
and were enriched in GO terms associated with ion homeostasis
and transport (Supplementary Table 5). The black module
M7 included 52 DEGs involved in response to an abiotic or
environmental stimulus (Supplementary Table 5). Further, the
brown module M3 included DEGs related to ribosome and
ribonucleoprotein complex biogenesis, gene expression, and
RNA processing (Supplementary Table 5). Modules M4, M6,
M8, and M9 did not get enriched in any GO term. By combining
our gene expression pattern and GO enrichment analysis results,
we concluded that the DEGs mainly participated in metabolic

and biosynthetic processes, photosynthesis, ion homeostasis,
transport, and response to abiotic stimulus under drought
stress conditions.

Identification of Hub Genes Within
Network Modules
There were some genes with extremely high connectivity with
other genes, and these were designated as hub genes in each
network module. Owing to their central location within the
network clusters, the hub genes were considered to be vital
components of the networks. Selecting only the top 10% of
genes that showed high connectivity degree, a total of 277
DEGs were identified as hub genes (Figure 6A), including
17 TFs represented from distinct families including WRKY,
MYB-related, C2H2, MYB, and NAC TFs (Supplementary
Table 6). Seven hub genes were also identified as crucial
enzymes playing a key role during maize drought stress response
(Supplementary Table 6). Besides TFs and enzymes, two HSP90
genes that were also observed to respond to water-deficit stress
conditions. Six hub-genes (Zm00001d005410, Zm00001d025920,
Zm00001d008462, Zm00001d019363, Zm00001d020272, and
Zm00001d047235) were observed to respond to drought stress
by taking part in photosynthesis (Supplementary Table 6).
Further, we conducted significant KEGG pathway enrichment
analysis of these hub genes by using the hypergeometric
test. Resultantly, by comparing the top ten pathways that
were most enriched in the hub-genes, we discovered that
starch and sucrose metabolism (6 genes), photosynthesis (4),
linoleic acid metabolism (2), and photosynthesis - antenna
proteins (2) were dominant under droughts stress conditions
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TABLE 1 | Classification of drought-response regulated DEGs into different categories according to MapMan annotation.

Category V12 stage VT stage R2 stage R4 stage

Up- Down- Up- Down- Up- Down- Up- Down-

Photosynthesis

Photosystem II 3 1 0 1 1 0 3 0

Photosystem I 2 0 0 3 0 0 1 0

Electron carrier (ox/red) 3 0 1 2 1 0 0 0

Calvin cycle 0 0 0 2 1 1 0 0

Transport

Transport sugars 8 3 1 2 0 1 0 3

Transport amino acids 11 7 1 4 2 0 1 4

Transport ammonium 0 2 0 1 1 0 0 1

Transport phosphate, nitrate, sulfate 2 4 1 2 0 0 2 4

Transport metal 3 2 3 0 0 3 0 0

Transport peptides and oligopeptides 11 6 1 1 0 1 0 5

Transport potassium 8 4 2 0 0 3 1 1

ABC transporters 6 4 2 1 0 2 1 3

Transport misc 9 6 2 5 0 4 1 2

Protein kinases and phosphatases

Serine/threonine-protein kinase 11 4 2 1 0 5 0 1

LRR receptor-like protein 27 6 10 1 1 7 1 2

Receptor-like kinase 28 20 5 7 0 5 0 10

Phospholipase 8 2 5 0 0 1 2 0

Calmodulin 10 6 0 2 0 4 0 1

Mitogen-activated protein kinase kinase kinase 2 1 1 2 0 0 0 0

Protein phosphatase 2 6 3 0 0 0 4 0

Protein phosphatase 2C 4 0 2 0 0 0 2 2

Plant Hormones

Abscisic acid 14 2 8 1 1 3 9 3

Auxin 4 7 3 3 1 2 1 2

Brassinosteroid 11 4 4 0 0 0 1 1

Jasmonic acid 3 3 4 2 1 1 0 3

Salicylic acid 1 4 1 2 0 0 0 2

Gibberellic acid 3 0 0 0 1 1 0 1

Ethylene 6 4 2 2 2 2 0 0

Transcription factors family

Basic Helix-Loop-Helix 9 3 4 2 2 1 1 1

C2H2 zinc finger 6 3 0 1 0 2 0 1

Homeobox transcription factor 11 4 2 0 0 1 2 2

MYB domain transcription factor 4 3 3 3 0 2 0 2

MYB-related transcription factor 3 1 0 1 0 1 0 1

NAC domain transcription factor 2 4 3 2 0 0 0 1

WRKY domain transcription factor 3 3 1 1 0 0 0 1

bZIP transcription factor 3 0 1 2 0 3 1 1

G2-like transcription factor 2 0 1 3 0 1 0 2

Other transcription factor families 42 54 22 16 7 11 11 3

DEGs related to detoxification

Thioredoxin 2 1 0 1 0 0 2 0

Glutathione S-transferases 6 3 1 4 0 1 0 2

Peroxidase 8 6 1 3 1 4 0 2

Ascorbate and glutathione 5 5 1 0 1 0 1 1

Glutaredoxins 5 1 0 1 0 0 1 0

(Continued)
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TABLE 1 | Continued

Category V12 stage VT stage R2 stage R4 stage

Up- Down- Up- Down- Up- Down- Up- Down-

DEGs involved in defense

Heat shock proteins 4 20 8 7 0 1 0 0

Late embryogenesis proteins 6 0 2 1 0 0 0 0

Pathogenesis-related proteins 5 1 4 0 0 2 0 0

DEGs response to abiotic

Response to heat 4 23 8 7 0 1 0 0

Response to drought/salt 6 4 3 0 0 0 2 0

Response to cold 3 1 0 2 0 2 0 2

Secondary metabolism

Isoprenoids metabolism 13 2 5 0 3 0 0 5

Phenylpropanoids metabolism and biosynthesis 14 7 6 3 0 2 0 12

Flavonoids metabolism 9 15 1 2 7 1 2 4

Sulfur-containing metabolism 5 6 2 2 0 0 0 4

(Figure 6B and Supplementary Table 7). Moreover, the
significantly enriched GO terms related to drought response were
identified, including photosynthesis (GO: 0015979), response
to stress (GO:0006950), and response to external stimulus
(GO:0009605) (Figure 6C).

Validation of DEGs by Quantitative
Real-Time PCR (qRT-PCR)
To confirm the accuracy of the RNA sequencing results,
we conducted a validation experiment by qRT-PCR analysis
for three biological replicates. The representative DEGs were
chosen based on them being highly differentiated in response
to drought and reported to be related to drought resistance.
Precisely, the patterns of RNA-Seq expressions on all the 12
DEGs were consistent with the qRT-PCR data, suggesting that
the patterns of the RNA-seq expression on all the sampled
genes were replicated by the qRT-PCR approach (Figure 7 and
Supplementary Table 8). A correlation coefficient (R2) (of the
fold changes before and after drought treatment) of 93.01% was
obtained (Supplementary Figure 7), endorsing our RNA-Seq
data as reliable.

DISCUSSION

Drought stress during the transition from vegetative to
reproductive development greatly affects grain production in
maize (Zheng et al., 2010; Aslam et al., 2015). Thus, a
full understanding of physiological, biochemical, and gene
regulatory networks associated with water-deficit stress tolerance
at these different growth stages in maize becomes imperative
for breeding drought-tolerant cultivars. However, the complex
adaptive mechanisms underpinning water-deficit stress tolerance
from vegetative growth to reproductive development have
remained elusive despite recent advances in molecular biology
approaches (Bhanu et al., 2016). Therefore, in this report, we have
employed RNA-seq based approach to perform a comprehensive

comparative transcriptome analysis of drought-tolerant hybrid
ND476 from the vegetative to reproductive growth stages to
identify key regulatory genes and gene co-expression networks
involved in maize drought stress response. We have further
conducted photosynthetic parameter measurements to support
the RNA-seq data. Additionally, functional validation by qRT-
PCR analysis corroborated the differential expression of these
identified genes. Our findings not only enrich our knowledge
about maize drought stress tolerance mechanisms but also
provide a valuable genetic resource or selection target for the
genetic improvement of maize.

Photosynthesis Related Genes Were
Differentially Altered in Response to
Drought
Compared to other cereal food crops, maize is relatively
sensitive to water-deficit stress (Pinheiro and Chaves, 2011).
Photosynthesis is the most sensitive physiological process
of plants subjected to abiotic stresses (Zhou et al., 2019).
A stress-induced negative effect on any of the components of
the photosynthesis systems may lead to a reduction in the
overall photosynthetic performance (Lamaoui et al., 2018). To
adapt to water-deprived conditions, plants will immediately
close the stomata, thereby reducing the leaf gas exchange.
This has negative influences on photosynthetic parameters.
In the current investigation, our physiological analysis results
showed that photosynthesis rate was significantly repressed by
drought stress (Supplementary Figure 2). At the molecular
level, MapMan annotation and analysis results of the common
elements of modules M2, M10, and M12 by BiNGO found
out that photosynthesis was significantly enriched mostly
at the V12 and R4 stages in response to drought stress.
Furthermore, we found several genes in the photosynthesis
pathway with altered transcription abundance (Table 1 and
Supplementary Figure 5). The photosynthesis-related genes
showed downregulated expression at the VT stage but showed
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FIGURE 4 | Co-expression network analysis identifying gene modules underlying maize drought stress response at four different growth stages. (A) Hierarchical
cluster trees showing co-expression modules identified using WGCNA of the differentially expressed genes. (B) Heatmap showing gene expression levels of the
genes within the 12 modules across four growth stages. W, well-watered; D, drought treatment.

upregulation at the V12 and R4 stages (Table 1). This
is consistent with the measured photosynthesis rate, and
showing that drought-tolerant hybrid ND476 exhibited the
well-maintained level of photosynthesis under drought stress
conditions. Previously, Wang B. et al. (2019) observed that
drought stress at the V9-V10 stages decreased net Pn in maize
resulting in abnormal ear primordium development. Several
other reports (Min et al., 2016; Lamaoui et al., 2018) have shown
that drought stress represses photosynthesis in maize plants.
However, Ma et al. (2016) found photosynthesis-related genes
displaying upregulated expression in rice drought-tolerant line
IAC1246, but the downregulated expression in rice drought-
sensitive line IRAT109. Taken together, our results suggest that
drought stress retards photosynthetic efficiency in plants, hence

strategies aimed at improving photosynthesis under drought
conditions can be vital for plants’ survival.

Stress Signal Transduction and Protein
Kinases Under Drought Stress
Conditions
Drought-tolerance is typically a complicated trait since
drought stress affects multiple aspects of plant physiology
and metabolism, consequently, changing thousands of
genes’ expression (Min et al., 2016). At the initial stage of
stress signal transduction, receptors, and transporters on
cell membranes perceive stress bridging the gap between
perception and transmission of the signals to the target genes
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FIGURE 5 | Enrichment analysis of DEGs clustered in Module 1 (turquoise module) using GO terms from GO Slim. Significantly over-represented GO terms were
visualized by BiNGO application in Cytoscape. The size of a node represents the proportion of the GO term to the number of targets in GO biological process
category. The deeper the color, the higher the level of significance.

and contributing to plant survival. Water-limited conditions
are often related to a significant increase in transport-proteins
and channel proteins (Guo et al., 2006). In this study, several
transporters were identified in maize response to drought stress
conditions, including phosphate transporters, ion transporters
and nitrate transporters (Table 1). Additionally, receptor
kinases, another vital type of membrane protein, were found
differentially expressed in response to drought stress, including
serine/threonine-protein kinases, cysteine-rich receptor-like
protein kinases, and proline-rich receptor-like protein kinases
(Table 1). Among them, cysteine-rich receptor-like protein
kinase (Zm00001d008462), proline-rich receptor-like protein
kinase (Zm00001d043480) and receptor-like serine/threonine-
protein kinase (Zm00001d002199) was identified as hub-genes
(Supplementary Table 6). Receptor-like protein kinases (PLPKs)
form the largest part of all plant kinases, and are well-known

for playing an important role in abiotic stress responses. Several
PLPKs detected in both leaves and roots of Bothriochloa
ischaemum significantly changed their expression in response to
drought stress (Li et al., 2019).

Protein kinases (PKs) are sensor responder genes which
initiate phosphorylation cascades and play essential parts
in water-deficit responses (Singh and Laxmi, 2015). In this
current study, PKs were differentially expressed to regulate
stress signaling transmitting in maize under water-limited
conditions (Table 1). Moreover, serine/threonine protein
phosphatase 2A (Zm00001d019363) was identified as a hub-gene
(Supplementary Table 6). Similarly, the identical PKs were
reported in faba bean (Vicia faba L.) drought-tolerant variety
hassawi-2 response to drought stress (Khan et al., 2019). From
this discussion, we can infer that a complex web of signaling
was triggered under water-stressed conditions, which relayed
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FIGURE 6 | Co-expression network analysis of hub-genes. (A) Heatmap showing the hub-genes that were expressed at four different maize growth stages.
(B) KEGG pathway enrichment analysis of the hub-genes. (C) GO functional classification of the hub-genes.

messages through the plasma membrane to the cell, activating
a signal transduction cascade. Then, TFs were modulated by
the PKs, as a result affecting corresponding response to the
downstream drought-responsive genes that enabled maize
to regulate its growth and metabolism under drought stress
(Wang et al., 2016).

Enhanced Cellular Redox Homeostasis
May Contribute to Drought Tolerance in
Maize
When plants are subjected to water-stressed conditions, there
is a rapid and transient production of ROS which can damage
cellular components and structures. In response, plants institute
various mechanisms to re-establish the cellular redox balance
and homeostasis, and avoid cellular components and structures
damage caused by ROS. Cellular redox homeostasis transduced
signals for the synthesis of defense and antioxidant enzymes
contribute to the modification of the antioxidant system and
cell turgor maintenance by osmotic adjustment (Mahajan and
Tuteja, 2005). In the current study, twenty-five peroxidases, six

TRXs, fourteen L-ascorbate peroxidase (APX), and seventeen
GSTs were observed to be differentially altered in their
expressions in response to drought stress at various maize growth
stages (Table 1).

It is well known that peroxidases are central in neutralizing
the damaging effects of toxic peroxides and other ROS that
accumulate under oxidative stresses. It has been reported that
the upregulated expression of peroxidases protected wheat plants
from ROS-induced cell damage under drought stress (Sheoran
et al., 2015). Similarly, Khan and Komatsu (2016) indicated
peroxidases’ essential role in soybean root ROS scavenging and
cellular redox homeostasis. The chloroplast thioredoxin (TRX)
systems compose an important component of the redox network,
with thioredoxin reductase (TRs) functioning in re-establishing
cellular redox homeostasis. Previous researchers have identified
that TRX genes were upregulated or downregulated in response
to drought stress, adjusting the cellular redox status in the process
(Xie et al., 2016). Ascorbate peroxidases (APXs) are a vital cog
of the complex stress response network. APXs play a role in
detoxifying hydrogen peroxide (H2O2) in the chloroplasts and
cytosol using ascorbate as a substrate (Xu and Huang, 2010).
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FIGURE 7 | qRT-PCR validation of selected genes among various maize growth stages. The y-axis represents the gene relative expression levels (fold changes) in
real-time PCR analysis and RNA-seq data. (A) The DEGs identified at V12 stage; (B) The DEGs identified at VT stage; (C) The DEGs identified at R2 stage; (D) the
DEGs identified at R4 stage. All genes with negative values means they were downregulated. Maize gene GAPDH (accession no. X07156) was used as the internal
reference.

APXs expression has been reported to be significantly increased
in winter rapeseed (Brassica napus L.) under drought stress
conditions (Urban et al., 2017). Additionally, a previous study
identified APXs being involved in ROS scavenging in maize in
response to water-deficit stress (Miao et al., 2017). Glutathione-
S-transferases (GSTs) are conjugating enzymes involved in the
detoxification of a wide range of harmful substances such
as ROS or xenobiotic compounds (Xu and Huang, 2010).
Accumulation of GST in wheat has also been reported under
drought stress conditions (Bazargani et al., 2011). However,
GST showed downregulation in rapeseed subjected to drought
stress (Mohammadi et al., 2007). Overall, our results here
indicate that hybrid cultivar ND476 could endure water stress via
increased activation of genes associated with ROS detoxification
and oxidation-reduction processes, whereas the downregulated
expression of some stress redox homeostasis genes may imply the
complexity of the cell redox system in drought stress response.

Regulation of Drought Stress by
Transcriptional Factors
As gene regulators, TFs play a key role in modulating
gene expression and transmitting stress signals in plant
cells. Therefore, TFs have been designated master regulators
of abiotic stresses, including drought (Wang et al., 2016).
In the current study, there were 42 classes of TFs that
were annotated by MapMan among the four maize growth

stages (Figure 3B). Meanwhile, among the total 277 hub-
genes, 17 (6%) were annotated as TFs, belonging to 13
different families (Supplementary Table 6), indicating that
differential transcription mechanisms function in the water
stress signal transduction pathway in maize. A large number
of identified TFs belong to MYB, NAC, WRKY, and bZIP
families, which are well known for their roles in drought
stress response (Thirunavukkarasu et al., 2017). Previously, Tran
et al. (2004) observed that three Arabidopsis genes (ANAC019,
ANAC055, and ANAC072) and two homologous maize NAC
transcripts were abiotic-stress-inducible-expression genes. NACs
were identified in foxtail millet (Setaria italica L.) (Shi et al.,
2018) and maize (Song et al., 2017) responding to drought stress.
WRKY TFs were identified as the key drought response elements
by changing their differential expressions under drought stress
(Yan et al., 2014). MYB factors were related to hormone signal
transduction and abiotic stress response (Liu et al., 2015).
Overexpression of R1R2R3-MYB TF in Arabidopsis significantly
enhanced the tolerance of transgenic plants to drought stress
(Zhang et al., 2019). More recently, Wu et al. (2019) reported
that over-expressing ZmMYB3R enhanced drought and salt stress
tolerance in transgenic maize. A previous study by Song et al.
(2017), observed that C2H2 and bHLH TF factors were involved
in drought stress response in maize leaves. Additionally, Zhang
et al. (2014) observed that several NACs, MYBs, bZIPs, bHLHs,
and other TFs expression was tightly coupled to plant water
potential, indicating their involvement in Medicago truncatula L.
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drought adaptation responses. Furthermore, 49 TFs from bHLH,
bZIP, C2H2, MYB, and NAC families were found in maize spatio-
temporal drought stress response (Miao et al., 2017). Taken
together, the complex expression changes of these TFs crucially
contribute to the drought stress tolerance of maize hybrid line
ND476 as these TF genes interact with other molecular actors in
complex networks.

Genes Related to Hormone Signaling Are
Critical for Drought Stress Response
Plant hormones participate in numerous plant abiotic stress
responses. For instance, a large number of genes related to
biosynthesis or signaling of plant hormones such as auxin,
ABA and ethylene were identified in a drought-tolerant faba
bean variety under drought stress (Khan et al., 2019). Here,
several auxin-responsive genes were altered in their expression
levels in response to drought stress (Table 1). Previously, a
series of auxin-responsive genes were induced by several abiotic
stresses, revealing that auxin may function in abiotic stress
signaling. Consistent with our findings, genes encoding auxin-
responsive protein exhibited significantly increased abundance
under partial desiccation treatment (Jing et al., 2017). It is well
recorded that ABA is a critical messenger that mediates the
adaptive response of plants to abiotic stresses. When plants are
subjected to drought stress, a large number of ABA-regulated
genes are accumulated. Previously, water deprivation resulted in
high levels of ABA in maize, which stimulated the production
of ROS and regulated the activity of the antioxidant defense
system (Jiang and Zhang, 2002). Similarly, in our current
study thirty-two (78%) genes related to ABA biosynthesis were
upregulated. However, nine cis-epoxycarotenoid dioxygenase
(NCED3) enzymes showed decreased expression under drought
treatment (Table 1). By comparing our results with the previous
observations, we realized that NCED3, a vital enzyme in ABA
biosynthesis, was also downregulated in faba bean battling
drought stress (Khan et al., 2019).

Meanwhile, we observed that sixteen (76%) genes encoding
brassinosteroid (BRs) biosynthesis had an increased abundance
in response to drought (Table 1). The BRs have critical functions
in detoxifying oxidative damage by the expression of genes
involved in ROS scavenging under drought stress conditions.
Previously, BRs have also been identified in maize response
to water-deficit conditions (Fracasso et al., 2016). The stress-
tolerance ability of BR rests with its crosstalk with other plant
hormones such as ABA (Divi et al., 2010). Additionally, we
identified ethylene-, jasmonic acid- and salicylic acid-regulated
genes that were responsive to drought treatment, suggesting
that these plant hormones may play critical roles in drought
stress signaling.

Stress Defense Genes Are Essential for
Plant Response to Water-Stress
Conditions
Expectedly, several genes involved in stress defense including
HSPs, pathogenesis-related (PR) and LEA proteins showed
significant changes in expression under drought stress

FIGURE 8 | Model of the drought stress pathways occurring in maize from
vegetative growth to reproductive development under drought stress. ABA,
abscisic acid; JA, jasmonic acid; SA, salicylic acid; BR, brassinosteroid; ETH,
ethylene; MAPK, mitogen-activated protein kinase; PP2C, protein
phosphatase 2C; ERD4, early-response to dehydration stress; RD22,
responsive to dehydration; POD, guaiacol peroxidase; TRX, thioredoxin; APX,
ascorbate peroxidase; GST, glutathione S-transferases; HSP, heat shock
proteins; PR, pathogenesis-related proteins; LEA, late embryogenesis
proteins; PSI-D, photosystem I 20 kDa subunit II; PSI-N, photosystem I
reaction center subunit N; PSI-G, photosystem I reaction center subunit V;
PERK15, proline-rich receptor-like protein kinase 15; CP29, chlorophyll a-b
binding protein CP29.1 chloroplastic.

conditions (Table 1). Two HSP90 genes (Zm00001d041719
and Zm00001d052809) were identified as hub-genes in drought
stress response. Meanwhile, twenty-eight HSPs exhibited
decreased abundance at the four growth stages after drought
treatment (Table 1). HSPs play important roles in helping proper
folding or unfolding of proteins and preventing unwanted
aggregation, as well as contributing to cellular homeostasis
in cells under stress conditions (Wang et al., 2004). Here, the
downregulation of the HSPs at the V12 stage may imply that
short-term drought stress had a significant negative impact on
the chaperon activities of these protective proteins at this stage.
PRs are also thought to be involved in plants’ developmental
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processes and defense responses against abiotic stress (Kim
et al., 2008). In our research, unlike HSPs, PR proteins showed
significantly increased accumulation at the V12 and VT stages
(Table 1). Previously, drought stress-induced response of PR
proteins showed increased abundance in tobacco (Gharechahi
et al., 2015) and grapevine (Król and Weidner, 2017).

Late embryogenic abundant proteins are commonly induced
during water-deficit conditions, and their expressions are
regulated by ABA and C2H2 TFs, helping to maintain the osmotic
balance (Thirunavukkarasu et al., 2017; Khan et al., 2019). LEA
proteins were induced in vegetative tissues by drought stress.
Several LEA proteins showed increased abundance both at the
V12 and VT stages in response to drought stress (Table 1). The
relation of this protein with drought stress has been previously
reported in wheat (Li et al., 2012) and faba bean (Khan et al.,
2019). Moreover, the over-expression of the barley LEA HVA1
gene enhanced transgenic wheat biomass productivity and water
use efficiency under water-limited conditions (Sivamani et al.,
2000). Taken collectively, our results reveal that stress defense
proteins, interacting with other proteins in complex networks,
are essential for drought-tolerant ND476 maize plants’ survival
under water-deficit conditions.

The Gene Co-expression Network
Analysis Offered an Essential Resource
for Mining Novel Genes Related to
Water-Deficit Stress Conditions
Given that the expression of a great number of DEGs was
affected by drought treatment, WGCNA was used to construct
a gene co-expression network to mine the major genes and
dig out the key modules involved in the maize responses to
drought stress from the vegetative to reproductive stages. In
this study, a total of 12 modules were identified based on gene
expression patterns, and several modules showed functional
specificity in various stages, as genes were regulated dynamically
under water-limited conditions (Figure 4). Then for investigating
these DEGs’ functional biological roles, BiNGO software was
used (Supplementary Table 5). The functions of DEGs with
known biological functions could be predicted according to their
module, and this analysis found a series of biological processes
that were affected by drought stress. By comparing our results
with previous studies, similar biological processes were identified
in plants’ response to drought stress. Therefore, the gene co-
expression network analysis provides an essential resource for
mining novel genes related to water-deficit stress acclimation of
maize. Particularly, the hub-genes are suggested to be the key
players in maize drought stress response. Further downstream
analysis studies will be essential in determining each of these hub
genes‘ exact contribution to drought stress tolerance in maize.

Proposed Molecular Model for Maize
Drought Stress Tolerance
According to our main findings of the drought-responsive DEGs
and their related networks, in combination with the related
relevant literature, we herein propose a molecular model for

drought stress tolerance in maize at four different growth stages
as shown in Figure 8.

CONCLUSION

In the present study, we performed a comprehensive comparative
leaf transcriptome analysis of the drought-tolerant maize
hybrid ND476 plants subjected to water-sufficient (control)
and water-deficit treatment conditions at four different growth
stages. Based on the transcriptome analysis, a total of 3,451
DEGs were identified from the four experimental comparisons,
and changes in these genes affected corresponding metabolic
pathway responses related to drought tolerance in maize.
Subsequently, 3,451 DEGs were divided into 12 modules by
the WGCNA analysis. Our results showed that maize drought
stress adaptation is a stage-specific response process. Whereas
DEGs related to stress signal transduction, detoxification,
transcription factor regulation, hormone signaling and secondary
metabolites biosynthesis were universal across the four crop
growth stages, those associated with photosynthesis and amino
acid metabolism, protein degradation, transport, and RNA
transcriptional regulation were uniquely enriched at the V12,
VT, R2, and R4 stages, respectively. Our findings may help
in clarifying the important growth-stage-specific molecular
mechanisms regulating maize drought stress responses. Further,
the key genes and metabolic pathways identified here may serve
as valuable genetic resources or selection targets for genetic
engineering of drought-resistant maize cultivars.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

SL, TZ, NW, and HD conceived and designed the experiments.
SL, TZ, HD, AD, and YY performed the experiments. SL, TZ, AD,
and YY analyzed the data. SL and TZ wrote the manuscript. All
authors have read and approved the final manuscript.

FUNDING

This research was supported by the National Key Research and
Development Program of China (2018YFD0300501).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fgene.2021.
645443/full#supplementary-material

Frontiers in Genetics | www.frontiersin.org 16 January 2021 | Volume 12 | Article 645443136

https://www.frontiersin.org/articles/10.3389/fgene.2021.645443/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2021.645443/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-645443 January 20, 2021 Time: 15:54 # 17

Liu et al. Drought Stress Responses in Maize

REFERENCES
Aslam, M., Maqbool, M. A., and Cengiz, R. (2015). Drought stress in maize (Zea

mays L.): Effects, resistance mechanisms, global achievements and biological
strategies for improvement. SpringerBriefs in Agriculture. Cham: Springer.

Bazargani, M. M., Sarhadi, E., Bushehri, A. A., Matros, A., Mock, H. P.,
Naghavi, M. R., et al. (2011). A proteomics view on the role of
drought-induced senescence and oxidative stress defense in enhanced stem
reserves remobilization in wheat. J. Proteomics. 74, 1450–1462. doi: 101016/
jjprot201105015

Bhanu, B. D., Ulaganathan, K., Shanker, A. R., and Desai, S. (2016). RNA-seq
analysis of irrigated vs water stressed transcriptomes of Zea mays cultivar Z59.
Front. Plant Sci. 7:239. doi: 103389/fpls201600239s

Divi, U. K., Rahman, T., and Krishna, P. (2010). Berseaarschs airnticolesteroid-
mediated stress tolerance in Arabidopsis shows interactions with abscisic acid,
ethylene and salicylic acid pathways. BMC Plant Biol. 10:151. doi: 101186/1471-
2229-10-151

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., and Basra, S. M. A. (2009). Plant
drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29,
185–212.

Fracasso, A., Trindade, L. M., and Amaducci, S. (2016). Drought stress tolerance
strategies revealed by RNA-Seq in two sorghum genotypes with contrasting
WUE. BMC Plant Biol. 16:115. doi: 10,1186/s12870-016-0800-x

Gharechahi, J., Hajirezaei, M. R., and Salekdeh, G. H. (2015). Comparative
proteomic analysis of tobacco expressing cyanobacterial flavodoxin and its
wild type under drought stress. J. Plant Physiol. 175, 48–58. doi: 101016/
jjplph201411001

Gong, F., Yang, L., Tai, F., Hu, X., and Wang, W. (2014). “Omics” of maize stress
response for sustainable food production: opportunities and challenges. OMICS
18, 714–732. doi: 10.1089/omi.2014.0125

Guo, L., Zi, Y. W., Lin, H., Wei, E. C., Chen, J., Liu, M., et al. (2006). Expression and
functional analysis of the rice plasma-membrane intrinsic protein gene family.
Cell Res. 16, 277–286. doi: 101038/sjcr7310035

Hanin, M., Brini, F., Ebel, C., Toda, Y., Takeda, S., and Masmoudi, K. (2011). Plant
dehydrins and stress tolerance versatile proteins for complex mechanisms. Plant
Signal. Behav. 6, 1503–1509. doi: 10.4161/psb.6.10.17088

Hu, H., and Xiong, L. (2014). Genetic engineering and breeding of drought-
resistant crops. Annu. Rev. Plant Biol. 65, 715–741. doi: 10;1146/annurev-
arplant-050213-040000

Jiang, M., and Zhang, J. (2002). Water stress-induced abscisic acid accumulation
triggers the increased generation of reactive oxygen species and up-regulates
the activities of antioxidant enzymes in maize leaves. J. Exp. Bot. 53, 2401–2410.
doi: 101093/jxb/erf090

Jing, D., Zhang, J., Xia, Y., Kong, L., Ou, F., Zhang, S., et al. (2017). Proteomic
analysis of stress-related proteins and metabolic pathways in Picea asperata
somatic embryos during partial desiccation. Plant Biotechnol. J. 15, 27–38.
doi: 101111/pbi12588

Joshi, R., Wani, S. H., Singh, B., Bohra, A., Dar, Z. A., Lone, A. A., et al.
(2016). Transcription factors and plants response to drought stress: current
understanding and future directions. Front Plant Sci. 7:1029. doi: 10.3389/fpls.
2016.01029

Khan, M. A., Alghamdi, S. S., Ammar, M. H., Sun, Q., Teng, F., Migdadi,
H. M., et al. (2019). Transcriptome profiling of faba bean (Vicia faba L.)
drought-tolerant variety hassawi-2 under drought stress using RNA sequencing.
Electron. J. Biotechnol. 39, 15–29. doi: 10.1016/j.ejbt.2019.02.004

Khan, M. N., and Komatsu, S. (2016). Proteomic analysis of soybean root including
hypocotyl during recovery from drought stress. J. Proteomics. 144, 39–50. doi:
101016/jjprot201606006

Kim, S. T., Yu, S., Kang, Y. H., Kim, S. G., Kim, J. Y., Kim, S. H., et al. (2008).
The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and
biotic stresses and exhibits ribonuclease activity. Plant Cell Rep. 27, 593–603.
doi: 101007/s00299-007-0485-6

Król, A., and Weidner, S. (2017). Changes in the proteome of grapevine leaves
(Vitis vinifera L) during long-term drought stress. J. Plant Physiol. 211, 114–126.
doi: 101016/jjplph201611016

Lamaoui, M., Jemo, M., Datla, R., and Bekkaoui, F. (2018). Heat and drought
stresses in crops and approaches for their mitigation. Front. Chem. 6:26. doi:
10.3389/fchem.2018.00026

Lei, L., Shi, J., Chen, J., Zhang, M., Sun, S., Xie, S., et al. (2015). Ribosome profiling
reveals dynamic translational landscape in maize seedlings under drought
stress. Plant J. 84, 1206–1218. doi: 10.1111/tpj.13073

Li, C., Dong, J., Zhang, X., Zhong, H., Jia, H., Fang, Z., et al. (2019). Gene expression
profiling of Bothriochloa ischaemum leaves and roots under drought stress.
Gene 691, 77–86. doi: 101016/jgene201812038

Li, Y. C., Meng, F. R., Zhang, C. Y., Zhang, N., Sun, M. S., Ren, J. P., et al. (2012).
Comparative analysis of water stress-responsive transcriptomes in drought-
susceptible and -tolerant wheat (Triticum aestivum L). J. Plant Biol. 55, 349–360.
doi: 101007/s12374-011-0032-4

Liu, J. Y., Anne-Osbourn, A., and Ma, P. D. (2015). MYB transcription factors as
regulators of phenylpropanoid metabolism in plants. Mol. Plant. 8, 689–708.
doi: 101016/jmolp201503012

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression
data using real-time quantitative PCR and the 2−11CT method. Methods 2,
402–408. doi: 10.1006/meth.2001.1262

Ma, X., Xia, H., Liu, Y., Wei, H., Zheng, X., Song, C., et al. (2016). Transcriptomic
and metabolomic studies disclose key metabolism pathways contributing
to well-maintained photosynthesis under the drought and the consequent
drought-tolerance in rice. Front. Plant Sci. 21:1886. doi: 10,3389/fpls,2016,
01886, eCollection 2016

Mahajan, S., and Tuteja, N. (2005). Cold salinity and drought stresses: An overview.
Arch. Biochem. Biophys. 444, 139–158. doi: 10,1016/j,abb,2005,10,018

Miao, Z. Y., Han, Z. X., Zhang, T., Chen, S. Y., and Ma, C. (2017). A systems
approach to a spatiotemporal understanding of the drought stress response in
maize. Sci Rep. 7:6590. doi: 10.1038/s41598-017-06929-y

Min, H. W., Chen, C. X., Wei, S. W., Shang, X. L., Sun, M. Y., Xia, R., et al. (2016).
Identification of drought tolerant mechanisms in maize seedlings based on
transcriptome analysis of recombination inbred lines. Front. Plant Sci. 7:1080.
doi: 103389/fpls201601080

Mohammadi, M., Kav, N. N. V., and Deyholos, M. K. (2007). Transcriptional
profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel,
dehydration-responsive genes. Plant Cell Environ. 30, 630–645. doi: 10.1111/j
1365 -3040.2007.01645.x

Pinheiro, C., and Chaves, M. M. (2011). Photosynthesis and drought: can we
make metabolic connections from available data? J. Exp. Bot. 62, 869–882.
doi: 10.1093/jxb/erq340

Sheoran, S., Thakur, V., Narwal, S., Turan, R., Mamrutha, H. M., Singh, V., et al.
(2015). Differential activity and expression profile of antioxidant enzymes and
physiological changes in wheat (Triticum aestivum L) under drought. Appl.
Biochem. Biotechnol. 177, 1282–1298. doi: 101007/s12010-015-1813-x

Shi, W., Cheng, J., and Wen, X. (2018). Transcriptomic studies reveal a key
metabolic pathway contributing to a well-maintained photosynthetic system
under drought stress in foxtail millet (Setaria italica L). Peer J. 6:e4752. doi:
107717/peerj4752

Singh, D., and Laxmi, A. (2015). Transcriptional regulation of drought response: a
tortuous network of transcriptional factors. Front. Plant Sci. 6:895. doi: 10.3389/
fpls.2015.00895

Sivamani, E., Bahieldin, A., Wraith, J. M., Al-Niemi, T., Dyer, W. E., Ho, T. H. D.,
et al. (2000). Improved biomass productivity and water use efficiency under
water deficit conditions in transgenic wheat constitutively expressing the barley
HVA1 gene. Plant Sci. 155, 1–9. doi: 101016/S0168-9452(99)00247-2

Song, K., Kim, H. C., Shin, S., Kim, K. H., Moon, J. C., Kim, J. Y., et al. (2017).
Transcriptome analysis of flowering time genes under drought stress in maize
leaves. Front. Plant Sci. 8:267. doi: 103389/fpls201700267

Thirunavukkarasu, N., Sharma, R., Singh, N., Shiriga, K., Mohan, S., Mittal, S., et al.
(2017). Genomewide Expression and Functional Interactions of Genes under
Drought Stress in Maize. Int. J. Genomics. 2017:2568706. doi: 10.1155/2017/
2568706

Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K.,
et al. (2004). Isolation and functional analysis of arabidopsis stress-inducible
NAC transcription factors that bind to a drought-responsive cis-element in
the early responsive to dehydration stress promoter. Plant Cell. 16, 2481–2498.
doi: 101105/tpc104022699

Urban, M. O., Vasek, J., Klima, M., Krtkova, J., Kosova, K., Prasil, I. T., et al. (2017).
Proteomic and physiological approach reveals drought-induced changes in
rapeseeds: Water-saver and water-spender strategy. J. Proteomics. 152, 188–205.
doi: 101016/jjprot201611004

Frontiers in Genetics | www.frontiersin.org 17 January 2021 | Volume 12 | Article 645443137

https://doi.org/101016/jjprot201105015
https://doi.org/101016/jjprot201105015
https://doi.org/103389/fpls201600239s
https://doi.org/101186/1471-2229-10-151
https://doi.org/101186/1471-2229-10-151
https://doi.org/10,1186/s12870-016-0800-x
https://doi.org/101016/jjplph201411001
https://doi.org/101016/jjplph201411001
https://doi.org/10.1089/omi.2014.0125
https://doi.org/101038/sjcr7310035
https://doi.org/10.4161/psb.6.10.17088
https://doi.org/10;1146/annurev-arplant-050213-040000
https://doi.org/10;1146/annurev-arplant-050213-040000
https://doi.org/101093/jxb/erf090
https://doi.org/101111/pbi12588
https://doi.org/10.3389/fpls.2016.01029
https://doi.org/10.3389/fpls.2016.01029
https://doi.org/10.1016/j.ejbt.2019.02.004
https://doi.org/101016/jjprot201606006
https://doi.org/101016/jjprot201606006
https://doi.org/101007/s00299-007-0485-6
https://doi.org/101016/jjplph201611016
https://doi.org/10.3389/fchem.2018.00026
https://doi.org/10.3389/fchem.2018.00026
https://doi.org/10.1111/tpj.13073
https://doi.org/101016/jgene201812038
https://doi.org/101007/s12374-011-0032-4
https://doi.org/101016/jmolp201503012
https://doi.org/10.1006/meth.2001.1262
https://doi.org/10,3389/fpls,2016,01886,
https://doi.org/10,3389/fpls,2016,01886,
https://doi.org/10,1016/j,abb,2005,10,018
https://doi.org/10.1038/s41598-017-06929-y
https://doi.org/103389/fpls201601080
https://doi.org/10.1111/j
https://doi.org/10.1093/jxb/erq340
https://doi.org/101007/s12010-015-1813-x
https://doi.org/107717/peerj4752
https://doi.org/107717/peerj4752
https://doi.org/10.3389/fpls.2015.00895
https://doi.org/10.3389/fpls.2015.00895
https://doi.org/101016/S0168-9452(99)00247-2
https://doi.org/103389/fpls201700267
https://doi.org/10.1155/2017/2568706
https://doi.org/10.1155/2017/2568706
https://doi.org/101105/tpc104022699
https://doi.org/101016/jjprot201611004
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-645443 January 20, 2021 Time: 15:54 # 18

Liu et al. Drought Stress Responses in Maize

Wang, B., Liu, C., Zhang, D., He, C., Zhang, J., and Li, Z. (2019). Effects of maize
organ-specific drought stress response on yields from transcriptome analysis.
BMC Plant Biol. 19:335. doi: 10.1186/s12870-019-1941-5

Wang, N., Liu, B., Liang, X., Zhou, Y., Song, J., Yang, J., et al. (2019). Genome-wide
association study and genomic prediction analyses of drought stress tolerance
in china in a collection of off-PVP maize inbred lines. Mol. Breed. 39:113.

Wang, H., Wang, H., Shao, H., and Tang, X. (2016). Recent advances in utilizing
transcription factors to improve plant abiotic stress tolerance by transgenic
technology. Front. Plant Sci. 7:67. doi: 103389/fpls201600067

Wang, N., Li, L., Gao, W. W., Wu, Y. B., Yong, H. J., and Weng, J. F.
(2018). Transcriptomes of early developing tassels under drought stress reveal
differential expression of genes related to drought tolerance in maize. J. Integr.
Agric. 17, 1276–1288. doi: 10.1016/s2095-3119(17)61777-5

Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. (2004). Role of plant heat-
shock proteins and molecular chaperons in the abiotic stress response. Trends
Plant Sci. 9, 244–252. doi: 10.1016/j.tplants.2004.03.006

Wheeler, T., and von Braun, J. (2013). Climate change impacts on global food
security. Science 341, 508–513. doi: 10,1126/science,1239402

Wu, J., Jiang, Y., and Liang, Y. (2019). Expression of the maize MYB transcription
factor ZmMYB3R enhances drought and salt stress tolerance in transgenic
plants. Plant Physiol. Biochem. 137, 179–188. doi: 101016/jplaphy201902010

Xie, H., Yang, D., Yao, H., Bai, G., Zhang, H., and Xiao, B. G. (2016). iTRAQ-
based quantitative proteomic analysis reveals proteomic changes in leaves of
cultivated tobacco (Nicotiana tabacum) in response to drought stress. Biochem.
Biophys. Res. Commun. 469, 768–775. doi: 101016/jbbrc201511133

Xu, C. P., and Huang, B. (2010). Comparative analysis of drought responsive
proteins in kentucky bluegrass cultivars contrasting in drought tolerance. Crop
Sci. 50, 2543–2552. doi: 102135/cropsci2010030152

Yan, H., Jia, H., Chen, X., Hao, L., An, H., and Guo, X. (2014). The cotton
WRKY transcription factor GhWRKY17 functions in drought and salt stress in
transgenic Nicotiana benthamiana through ABA signalling and the modulation
of reactive oxygen species production. Plant Cell Physiol. 55, 2060–2076. doi:
10.1093/pcp/pcu133

Zenda, T., Liu, S., Wang, X., Liu, G., Jin, H., Dong, A., et al. (2019). Key maize
drought-responsive genes and pathways revealed by comparative transcriptome
and physiological analyses of contrasting inbred lines. Int. J. Mol. Sci. 20:1268.
doi: 10.3390/ijms20061268

Zhang, J. Y., Cruz de Carvalho, M. H., Torres-Jerez, I., Kang, Y., Allen, S. N.,
Huhman, D. V., et al. (2014). Global reprogramming of transcription and
metabolism in Medicago truncatula during progressive drought and after
rewatering. Plant Cell Environ. 7, 2553–2576. doi: 101111/pce12328

Zhang, X., Lei, L., Lai, J., Zhao, H., and Song, W. (2018). Effects of drought stress
and water recovery on physiological responses and gene expression in maize
seedlings. BMC Plant Biol. 18:68. doi: 10.1186/s12870-018-1281-x

Zhang, Y., Tang, W., Wang, L., Hu, Y., Liu, X., and Liu, Y. (2019). Kiwifruit
(Actinidia chinensis) R1R2R3-MYB transcription factor AcMYB3R enhances
drought and salinity tolerance in Arabidopsis thaliana. J. Integr. Agric. 18,
417–427. doi: 101016/S2095-3119(18)62127-6

Zheng, J., Fu, J., Gou, M., Huai, J., Liu, Y., Jian, M., et al. (2010). Genome-wide
transcriptome analysis of two maize inbred lines under drought stress. Plant
Mol. Biol. 72, 407–421. doi: 10.1007/s11103-009-9579-6

Zhou, R., Kan, X., Chen, J., Hua, H., Li, Y., Ren, J., et al. (2019). Drought-
induced changes in photosynthetic electron transport in maize probed by
prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow
signals. Environ. Exp. Bot. 158, 51–62. doi: 10.1016/j.envexpbot.2018.11.005

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Liu, Zenda, Dong, Yang, Wang and Duan. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 18 January 2021 | Volume 12 | Article 645443138

https://doi.org/10.1186/s12870-019-1941-5
https://doi.org/103389/fpls201600067
https://doi.org/10.1016/s2095-3119(17)61777-5
https://doi.org/10.1016/j.tplants.2004.03.006
https://doi.org/10,1126/science,1239402
https://doi.org/101016/jplaphy201902010
https://doi.org/101016/jbbrc201511133
https://doi.org/102135/cropsci2010030152
https://doi.org/10.1093/pcp/pcu133
https://doi.org/10.1093/pcp/pcu133
https://doi.org/10.3390/ijms20061268
https://doi.org/101111/pce12328
https://doi.org/10.1186/s12870-018-1281-x
https://doi.org/101016/S2095-3119(18)62127-6
https://doi.org/10.1007/s11103-009-9579-6
https://doi.org/10.1016/j.envexpbot.2018.11.005
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


ORIGINAL RESEARCH
published: 11 February 2021

doi: 10.3389/fgene.2021.625985

Frontiers in Genetics | www.frontiersin.org 1 February 2021 | Volume 12 | Article 625985

Edited by:

Jian Ma,

Sichuan Agricultural University, China

Reviewed by:

Kaimei Zhang,

Nanjing Forestry University, China

Ahsan Habib,

Khulna University, Bangladesh

Zhumei Ren,

Shanxi University, China

*Correspondence:

Yueping Ma

mypluna@sina.com

Specialty section:

This article was submitted to

Plant Genomics,

a section of the journal

Frontiers in Genetics

Received: 04 November 2020

Accepted: 07 January 2021

Published: 11 February 2021

Citation:

Zhang W, Xu H, Duan X, Hu J, Li J,

Zhao L and Ma Y (2021)

Characterizing the Leaf Transcriptome

of Chrysanthemum rhombifolium (Ling

et C. Shih), a Drought Resistant,

Endemic Plant From China.

Front. Genet. 12:625985.

doi: 10.3389/fgene.2021.625985

Characterizing the Leaf
Transcriptome of Chrysanthemum
rhombifolium (Ling et C. Shih), a
Drought Resistant, Endemic Plant
From China
Wenjie Zhang 1, Hongyuan Xu 1, Xiaxia Duan 1, Jing Hu 1, Jingjing Li 1, Liang Zhao 2 and

Yueping Ma 1*

1College of Life and Health Sciences, Northeastern University, Shenyang, China, 2College of Life Sciences, Northwest A&F

University, Yangling, China

Chrysanthemum rhombifolium (Ling et C. Shih), an endemic plant that is extremely

well-adapted to harsh environments. However, little is known about its molecular biology

of the plant’s resistant traits against stress, or even itsmolecular biology of overall plant. To

investigate themolecular biology ofC. rhombifolium andmechanism of stress adaptation,

we performed transcriptome sequencing of its leaves using an Illumina platform. A total

of 130,891 unigenes were obtained, and 97,496 (∼74.5%) unigenes were annotated

in the public protein database. The similarity search indicated that 40,878 and 74,084

unigenes showed significant similarities to known proteins from NCBI non-redundant and

Swissprot protein databases, respectively. Of these, 56,213 and 42,005 unigenes were

assigned to the GeneOntology (GO) database andCluster of Orthologous Groups (COG),

respectively, and 38,918 unigenes were mapped into five main categories, including

18 KEGG pathways. Metabolism was the largest category (23,128, 59.4%) among

the main KEGG categories, suggesting active metabolic processes in C. rhombifolium.

About 2,459 unigenes were annotated to have a role in defense mechanism or stress

tolerance. Transcriptome analysis of C. rhombifolium revealed the presence of 12,925

microsatellites in 10,524 unigenes and mono, trip, and dinucleotides having higher

polymorphism rates. The phylogenetic analysis based on GME gene among related

species confirmed the reliability of the transcriptomic data. This work is the first genetic

study of C. rhombifolium as a new plant resource of stress-tolerant genes. This large

number of transcriptome sequences enabled us to comprehensively understand the

basic genetics of C. rhombifolium and discover novel genes that will be helpful in the

molecular improvement of chrysanthemums.

Keywords: Asteraceae, stress tolerance, ornamental plant, RNA-seq, SSR
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INTRODUCTION

Chrysanthemum (Chrysanthemum morifolium (Ramat.)Tzvel.;
Asteraceae) is among the most popular flowers in China,
and the most important cut flowers in the world, having
a great ornamental and economical value (Song et al.,
2018; Su et al., 2019). However, the long-term artificial
domestication of chrysanthemums often causes declines in their
resistance to environmental stressors and adaptability (Da Silva,
2003; Chen et al., 2011, 2012; Song et al., 2014), thereby
limiting their use in landscaping and industrial production.
Therefore, the development of Chrysanthemum cultivars with
increased environmental tolerance has always been a goal of
breeders (Su et al., 2019). Many stress resistance traits, and
corresponding stress resistance gene resources identified in the
wild chrysanthemum species (Zhao et al., 2009; Lu et al., 2010; Li
et al., 2013), have a great significance for the genetic improvement
of chrysanthemum cultivars.

RNA sequencing (RNA-Seq) is a powerful tool for quantifying
and analyzing different types of RNA molecules using deep-
sequencing technologies (Wang et al., 2009). It provides us
large-scale transcript data with high throughput, accuracy,
sensitivity and reproducibility which enabled us to generate an
unprecedented global view of the transcriptome of the species
(Angeloni et al., 2011; Jain, 2011). RNA-seq has been widely used
in plants, especially for some non-model species and some large
and complex genomes, greatly accelerating the discovery of novel
genes, understanding the complex tissue-specific expression
patterns, and regulation networks in higher plants (Li andDewey,
2011; Wang et al., 2014, 2017; Wu et al., 2016).

Chrysanthemum rhombifolium Ling et Shih is a perennial herb
endemic to Wushan, Chongqing in China (Shih and Fu, 1983;
Bremer and Humphries, 1993) and has a high ornamental value.
It has diamond-shaped leaves with dense abaxial pubescence and
semi-lignified stems and branches (Figure 1). The species is well-
adapted to environments characterized by high temperatures,

FIGURE 1 | The plant of C. rhombifolium. (A) The habitat; (B) leaf, up,

abaxially, down, adaxially. Scale bars = 2 cm.

low soil fertility, and drought (Zhao et al., 2009, 2010). However,
few studies performed on C. rhombifolium except using as a
sample in molecular phylogeny of Chrysanthemum (Masuda
et al., 2009; Zhao et al., 2010; Li et al., 2014; Ma et al., 2020) or in
geographical distribution of Chrysanthemum (Zhao et al., 2009;
Li et al., 2013). Here, little is known about its molecular biology
of overall plant or the plant’s resistant traits against stress. This
prompted us to characterize its leaf transcriptome using high-
throughput RNA sequencing and de novo assembly to provide
a comprehensive resource for understanding the biology of C.
rhombifolium in general, and gain insights in improving the
breeding of chrysanthemums and other related crops.

MATERIALS AND METHODS

Plant Materials
We collectedC. rhombifolium plants fromWushan of Chongqing
in China and planted them in the Nurse Garden of the
Northeastern University, China. Fresh, mature leaves were
washed with sterile water, immediately frozen in liquid nitrogen,
and stored at−80◦C.

RNA Isolation and cDNA Library
Construction
Total RNA was isolated from the leaves using TRIzol reagent
(InvitrogenTM Life Technologies, CA, USA) following the
manufacturer’s instructions. The RNA quality was assessed using
formaldehyde denaturing gel electrophoresis (28S:18S>2), a
NanoPhotometer R©spectrophotometer (IMPLEN, CA, USA),
and RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100
system (Agilent Technologies, CA, USA). For RNA-Seq analysis,
three biological replicates were used. Sequencing libraries
were generated with 1 µg RNA sample using NEBNext R©

UltraTM RNA Library Prep Kit for Illumina R© (NEB, USA)
following the manufacturer’s recommendations. The mRNA
was purified from total RNA using beads with Oligo (dT),
and cut into short fragments with fragmentation buffer.
First-strand cDNA was synthesized using random hexamer
primers and M-MuLV Reverse Transcriptase (NEB, USA), and
second-strand cDNA was synthesized using buffer, dNTPs,
RNase H, and DNA polymerase I. The remaining overhangs
were converted into blunt ends via exonuclease/polymerase
activities. After adenylation of the 3′ ends of DNA fragments,
NEBNext Adaptor with hairpin loop structure was ligated
to prepare for hybridization. cDNA fragments, preferentially
250–300 bp in length, were selected by purifying the library
fragments with AMPure XP system (Beckman Coulter, Beverly,
USA). The size-selected, adaptor-ligated cDNA fragments
were incubated with 3 µl USER Enzyme (NEB, USA) at
37◦C for 15min, followed by 5min at 95◦C before PCR.
PCR was performed with Phusion High-Fidelity DNA
polymerase, Universal PCR primers, and Index (X) Primer.
The PCR products were purified (AMPure XP system)
and library quality was assessed on the Agilent Bioanalyzer
2100 system.
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Sequencing and de novo Assembly
We sequenced the transcriptome library using the Illumina
HiSeq 2500 platform, and generated paired-end reads. We
filtered the raw data using the Filterfq program (BGI, Shenzhen,
China) to remove adaptor sequences, reads in which unknown
nucleotides (N) were >5%, and low-quality sequences with
>20% low-quality bases (quality value ≦10) to generate clean
data. The raw data were deposited in the Sequence Read Archive
(SRA) of the National Center for Biotechnology Information
(NCBI) with the Bioproject accession: PRJNA674029 and
BioSample accessions:SAMN16633381- SAMN16633383.

We then used the Trinity software (v2.8.0; http://trinityrnaseq.
sourceforge.net/) with default settings for de novo transcriptome
assembly (Grabherr et al., 2011). Two contigs thus obtained
were connected into a single scaffold to generate unigenes.
These unigenes were further spliced to generate longer complete
consensus sequences and to remove redundant sequences with
TGICL (v 2.1; http://www.tigr.org/tdb/tgi/) (Pertea et al., 2003).

Functional Annotation and Classification of
Unigenes
We annotated the obtained unigenes using the NCBI Nr
(non-redundant protein database), NCBI Nt (non-redundant
nucleotide sequences), Swiss-Prot, Gene ontology terms (GO),

TABLE 1 | Summary of sequence assembling of C. rhombifolium transcriptome.

Category Transcripts Unigene

Number 300–500 bp 102,216 59,296

500-1 Kbp 74,883 41,353

1 K-2 Kbp 53,959 21,862

>2 Kbp 23,795 8,380

Total number 254,853 130,891

Mean length 921 807

N50 1,301 1,034

Total nucleotides 234,824,746 105,639,077

TABLE 2 | Summary of functional annotation of assembled unigenes in C.

rhombifolium.

Database Number of unigenes

annotated

Percentage

(%)

Annotated in NR 40,878 31.23

Annotated in NT 55,831 42.65

Annotated in KO 37,488 28.64

Annotated in SwissProt 74,084 56.59

Annotated in PFAM 56,213 42.94

Annotated in GO 56,213 42.94

Annotated in KOG 42,005 32.09

Annotated in all databases 7,286 5.56

Annotated in at least one database 97,496 74.48

Total unigenes 130,891 100

and Protein family (Pfam) using BLAST 2 with an E-value
cut-off of 10−5 to obtain information on protein function
annotation. We also performed functional annotation using
Clusters of Orthologous Groups of proteins (KOG/COG) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to
classify possible COG functions and KEGG pathways and predict
possible functional classifications and molecular pathways,
respectively (Conesa et al., 2005; Ye et al., 2006; Kanehisa et al.,
2008).

Phylogenetic Analysis
GDP-D-mannose 3′, 5′- epimerase (GME), regulates cell wall
biosynthesis and ascorbate accumulation, playing an important
role in plant development and abiotic stress tolerance (Tao et al.,
2018). We extracted annotated GME unigene sequences, aligned
themwith other GME homologs retrieved fromGenbank (http://
www.ncbi.nlm.nih.gov/entyez/query.fcgi). Multiple alignments
were made using MUSCLE (Edgar, 2004) in Geneious v.8.1.2
(http://www.geneious.com/; Kearse et al., 2012) and adjusted
manually. We contructed the phylogenetic tree by the neighbor-
joining (NJ) method with 1,000 bootstrap replicates usingMEGA
7 (Kumar et al., 2016).

Simple Sequence Repeats (SSRs)
Prediction
We predicted SSR regions among all the assembled unigenes
using MIcroSAtellite (MISA, http://pgrc.ipk-gatersleben.de/
misa/; Zalapa et al., 2012). We detected the SSR motifs of mono-,
di-, tri-, tetra-, penta-, and hexa-nucleotides with a minimum
of twelve, six, five, five, four, and four repeats, respectively. For
other parameters, default settings were used.

RESULTS AND DISCUSSION

Illumina Paired-End Sequencing and
Assembly
The 151,037,024 raw sequencing reads obtained from the
Illumina sequencing were cleaned by removing low-quality

FIGURE 2 | The percentage (%) of C. rhombifolium unigenes hits the species

in the Nr database.
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data and adaptors, yielding 147,842,128 clean reads with
Q20 bases at 97.9%, and a GC content of 44.44%. Using
the overlapping information of high-quality reads from
the Trinity software, 254,853 transcripts with an average
length of 921 bp and N50 of 1,301 bp were generated.
After that 130,891 unigenes with an average length of 807

bp and N50 of 1,034 bp were obtained (Table 1). The
number and average length of the unigenes we obtained
was larger and longer than the transcriptomes of the related
species, C. nankingense (45,789) and C. lavandulifolium
(108,737) (Wang et al., 2013, 2014), indicating the high quality
of sequencing.

FIGURE 3 | COG classifications of unigenes in the transcriptome of C. rhombifolium unigenes.

FIGURE 4 | Functional classification of C. rhombifolium unigenes based on Gene Ontology (GO) categorization. The results are summarized in three main GO

categories: biological process (shown in red color), cellular component (shown in green color) and molecular function (shown in blue color). The x-axis indicates the

subcategories, and the y-axis indicates the numbers related to the total number of GO terms present.
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FIGURE 5 | Pathway assignment based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). (A) Classification based on cellular process categories, (B)

classification based on environmental information processing categories, (C) classification based on genetic information processing categories, (D) classification

based on metabolism categories, and (E) classification based on organismal systems categories.

FIGURE 6 | Simple sequence repeat (SSR) types present in the C. rhombifolium transcriptome.
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FIGURE 7 | Phylogenetic analysis of the GME in plants. Helianthus annuus XM_022174384.1; Lactuca sativa (XM_023912155.1); Cynara cardunculus var. scolymus

(XM_025140401.1), Chrysanthemum rhombifolium (R|Cluster-20886.25690); Camelina sativa (XM_010456910.1); Capsella rubella (XM_006287892.2); Nelumbo

nucifera (XM_010275940.2); Morus notabilis (XM_024169380.1); Vitis riparia (XM_034830226.1); Vitis vinifera (XM_002283862.4); Ziziphus jujuba (XM_016019918.2);

Gossypium arboretum (XM_017764784.1); Gossypium hirsutum (XM_016869694.1); Durio zibethinus (XM_022891507.1); PREDICTED: Herrania umbratica

(XM_021427500.1); Theobroma cacao (XM_018122066.1); Pistacia vera (XM_031412928.1); Citrus sinensis (XM_006471610.2); Citrus unshiu (HQ224947.1).

Functional Annotation and Classification of
All Non-redundant Unigenes
We used the Nr, Nt, Pfam, KOG, Swiss-prot, GO, and KEGG
databases to annotate the assembled unigenes. Among the
130,891 unigenes obtained, at least 97,496 unigenes (74.48%)
could be annotated with the searched databases −40,878
(Nr), 55,831 (Nt), 37,488 (KO), 74,084 (Swiss-prot), 56,213
(Pfam), 56,213 (GO), and 42,005 (KOG/COG), suggesting that
this project generated a substantial fraction of the expressed
genes in this study (Table 2). The unigenes annotated with
the Nr database mainly comprised Quercus suber L. (51%),
Helianthus annuus L. (12.9%), Lactuca sativa Linn. (10%),
Cynara cardunculus L., Sp. Pl. (5.8%), andHordeum vulgare Linn.
(2.3%) sequences (Figure 2). The highest similarity observed was
with Q. suber, a species with resistance to wind, drought, and
barren environments (Pereira-Leal et al., 2014).

The COG analysis enabled the functional classification of
42,005 unigenes (Figure 3). The most frequently identified
classes were “Translation, ribosomal structure and biogenesis”
(7,147; 17%), followed by “Posttranslational modification,
protein turnover, chaperones” (6,016; 14.3%), “Energy
production and conversion” (4,830; 11.5 %), “General function
prediction only” (4,706; 11.2%), “Amino acid transport and

dynamics” (2407; 5.7%), “Intracellular trafficking, secretion,
and vesicular transport (2218; 5.3%), “signal transduction”
(2,145; 5.1%), “Lipid transport and metabolism” (2065, 4.9%)
and “Carbohydrate transport and metabolism (2057; 4.9%). The
least frequently identified groups were “Nuclear structure” (183;
0.4%), “Extracellular structures” (36; 0.09%), and “Cell motility”
(24; 0.06%). Similar patterns have been reported in some
angiosperms, such as Chrysanthemum nankingense (Wang et al.,

2013) and Camelina sativa (Liang et al., 2013). We found 205
unigenes belonging to “Defense mechanism,” which indicated
the existence of stress resistance genes in C. rhombifolium.

Based on the Nr annotation, 42,005 unigenes were assigned to
three ontologies and classified into 48 functional GO categories

using the Blast2GO software. Of these, 1050 (68.5%), 163 (10.6%),
and 320 (20.9%) GO terms were related to cellular components,

biological processes, and molecular functions, respectively

(Figure 4). The assignment of GO terms in C. rhombifolium in
this study focused on “cellular processes,” “metabolic processes,”
“single-organism processes,” “cell,” “cell parts,” “macromolecular
complex,” “membrane part,” “organelles,” and “binding and
catalytic activity,” which reflected the functional gene expression
characteristics during its normal growth. This result was similar
to those GO terms in some drought- resistance species, e.g., bread
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wheat, oak, Boea hygrometrica, Boea hygrometrica, and so on
(Gupta et al., 2003; Durand et al., 2010; Xiao et al., 2015; Zhu
et al., 2015), which mainly due to the selective gene expression
caused by various environments and physiological states.

Based on the sequence homology searches against the KEGG
database, 56,213 unigenes were assigned to five ontologies
and classified into 18 functional KEGG pathways (Figure 5).
Among these pathways, the “translation pathway” (6,912; 12.3%
of KEGG unigenes) was the largest category in “metabolism”
followed by “carbohydrate metabolism” (4,876), “overview”
(4,496), “amino acid metabolites” (3,306), “folding, sorting, and
degradation” (3,112), “energy metabolism” (2,663), “transport
and catabolism” (2,297), and “lipid metabolism” (2,168). In this
study, we highlight the pathways enriched for the interaction
between plants and their environment, including: “metabolism
of terpenoids and polyketides” (752), “signal transduction”
(592), “environmental adaptation” (719), and “replication and
repair” (396). Our results are consistent with those from
other studies identifying plant genes and gene products with
important roles in drought-resistant plants (Gechev et al.,
2012; Xiao et al., 2015). More than 74% of the unigenes
from C. rhombifolium were mapped in the known databases,
which is higher than that reported for C. nankingense (64%)
(Wang et al., 2013).

Frequency and Distribution of SSRs
In total, 12,925 SSR regions were identified in 10,524 unigenes.
Among the identified SSRs, 128 different motifs were identified,
the distribution and frequencies of which are shown in Figure 6.
Mononucleotide motifs were the most abundant, and A/T were
the largest subset (6,328). Overall, 6,429 mononucleotide, 2,463
di-repeats, 3,694 tri-repeats, 199 tetra-repeats, 56 penta-repeats,
and 84 hexa-repeats were found in the C. rhombifolium leaf
transcriptome. Among the unigenes containing SSRs, 941 SSRs
presented compound formation, and 1,874 contained more than
one SSR. On average, one SSR was found every 8.17 kb. The
observed number of SSR sequences in our study was higher than
EST-SSR ever reports inChrysanthemum (Wang et al., 2013). The
SSR sequences may gain or loss of repeats at a locus in their rapid
evolution for adaptation to various environments (King et al.,
1997; Trifonov, 2004). The mass EST-SSR loci in C. rhombifolium
may be caused by its harsh habitats. These ESTs will provide a

valuable repository of abundant information for future functional
SSR studies.

Phylogenetic Analysis of GME
Using the annotated sequence of GME in C. rhombifolium and
other GME homologs, we constructed a phylogenetic tree among
related species. All of the GME sequences from the same taxa
were clustered together and GME in C. rhombifolium were
grouped into a single clade with the sequences of Helianthus
annuus and other Asteraceae species (Figure 7), this result
revealed a close relationship of C. rhombifolium and other
Asteraceas species, which consistent with the taxonomy based
on morphology.

CONCLUSIONS

We obtained 130,891 unigenes from the leaf of C. rhombifolium
by NGS transcriptomics, of which 97,496 (∼74.5%) unigenes
were successfully annotated in the public protein database. A
total of 12,925 SSRs were detected in 10,524 unigenes. This is the
first genetic study of C. rhombifolium as a plant resource of stress-
tolerant genes. These large numbers of transcriptome sequences
have enabled us to comprehensively understand the basic
genetics of C. rhombifolium and discover novel genes that will
be helpful in the molecular improvement of chrysanthemums.
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Drought is a major threat to global wheat production. In this study, an association panel

containing 200 Chinese wheat germplasms was used for genome-wide association

studies (GWASs) of genetic loci associated with eight root and seedling biomass traits

under normal water and osmotic stress conditions. The following traits were investigated

in wheat seedlings at the four-leaf stage: root length (RL), root number (RN), root fresh

weight (RFW), root dry weight (RDW), shoot fresh weight (SFW), shoot dry weight (SDW),

total fresh weight (TFW), and total dry weight (TDW). A total of 323 and 286 SNPs were

detected under two water environments, respectively. Some of these SNPs were near

known loci for root traits. Eleven SNPs on chromosomes 1B, 2B, 4B, and 2D had

pleiotropic effects on multiple traits under different water conditions. Further analysis

indicated that several genes located inside the 4Mb LD block on each side of these 11

SNPs were known to be associated with plant growth and development and thus may be

candidate genes for these loci. Results from this study increased our understanding of the

genetic architecture of root and seedling biomass traits under different water conditions

and will facilitate the development of varieties with better drought tolerance.

Keywords: wheat, seedling biomass, root traits, GWAS, osmotic stress

INTRODUCTION

Wheat (Triticum aestivum L.) is a widely cultivated crop in the world that provides the main
source of calories and protein in the human diet (Shewry, 2009). In many regions of the world,
wheat production suffered significant losses due to drought stress (Trethowan and Pfeiffer, 2000).
Drought stress can induce significant morphological and physiological changes in plants, including
stomatal closure, reductions in photosynthesis and transpiration, shoot and root growth inhibition,
antioxidant production, and changes in hormonal composition (Szegletes et al., 2000; Lawlor and
Cornic, 2002; Zhu, 2002). The yield loss caused by drought can be up to 92% (Farooq et al., 2014).
Due to climate change, the frequency and severity of drought stress will significantly increase in
the future and pose a threat to the food security of the rapidly increasing world population (IPCC,
2014).

The root system is vital for plants to obtain water and nutrients from the soil. A positive
correlation between root system architecture and agronomic traits was reported by Cane et al.
(2014). During grain filling, every millimeter of water extracted from the soil increased wheat
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yield by 55 kg/ha (Manschadi et al., 2006; Kirkegaard et al., 2007;
Christopher et al., 2013). The root system is also a key structure
to respond to water stress conditions and maintain yield under
drought stress because plants with deep root systems and large
root biomass could extract more water from deeper soil layers
(Boyer, 1996; Sharma and Carena, 2016; Wasaya et al., 2018). A
study on durum wheat showed that compared with shallow root
genotypes, deep root genotypes had 16 to 35% larger grains and
can increase grain yield by 35% and thousand-grain weight by 9%
in environments with limited moisture (El Hassouni et al., 2018).
Furthermore, unlike the consistent reduction of shoot biomass
and grain yield under drought stress, the responses of wheat root
biomass to drought might be negative, positive, or no response
depending on the genotype and environmental factors, which
make it an ideal target trait for the improvement of drought
tolerance (Wasaya et al., 2018).

To date, a large number of quantitative trait loci (QTL)
related to various root traits including root dry weight, seminal
root number, total root length, root diameter, number of root
tips, root number, etc., have been reported in wheat (Bai et al.,
2013; Liu et al., 2013, 2019; Ayalew et al., 2017; Xie et al.,
2017; Alahmad et al., 2019; Beyer et al., 2019). Of these QTL,
some QTL were specific to water stress conditions. For example,
Ayalew et al. (2017) identified four root length QTL specific
to drought stress conditions on chromosomes 1A, 3A, and 7B.
Similarly, Liu et al. (2013) reported several QTL for maximum
root length and seminal root area on chromosomes 1A, 2A, 5A,
and 5D. Several QTL controlling plant height and shoot dry
weight also affected various root traits such as root length and
root biomass, indicating the important roles of the root system on

TABLE 1 | Basic statistics of root traits for 200 accessions grown in controlled and drought conditions.

Environment Trait Min Max Ave SD Coef. of var (%) H2

Drought RL (cm) 17.806 19.650 18.796 0.335 1.7 0.517

RN 3.815 5.708 4.947 0.313 6.3 0.793

RFW (g) 0.088 0.125 0.107 0.006 6.4 0.544

RDW (g) 0.013 0.020 0.017 0.001 7.0 0.650

SFW (g) 0.141 0.222 0.174 0.015 9.0 0.654

SDW (g) 0.017 0.031 0.022 0.002 10.8 0.766

TFW (g) 0.231 0.345 0.282 0.019 7.0 0.628

TDW (g) 0.031 0.049 0.039 0.003 8.3 0.731

Control RL (cm) 25.635 28.815 27.332 0.599 2.1 0.271

RN 4.685 7.551 6.061 0.514 8.4 0.692

RFW (g) 0.155 0.323 0.210 0.026 12.4 0.619

RDW (g) 0.010 0.022 0.014 0.001 12.5 0.572

SFW (g) 0.348 0.654 0.469 0.052 11.2 0.668

SDW (g) 0.010 0.056 0.035 0.005 14.6 0.676

TFW (g) 0.505 0.969 0.679 0.078 11.5 0.667

TDW (g) 0.035 0.076 0.049 0.006 13.8 0.661

Trait abbreviations: RL, root length; RN, root number; RFW, root fresh weight; RDW, root dry weight; SFW, shoot fresh weight; SDW, shoot dry weight; TFW, total fresh weight; TDW,

total dry weight; SD, standard deviation; H2, broad-sense heritability.

plant growth and development (Cao et al., 2014; Iannucci et al.,
2017).

In this study, we performed a genome-wide association
study (GWAS) to identify sets of markers associated with root
and seedling biomass traits in a panel of 200 Chinese wheat
germplasms under normal water and PEG-induced osmotic
environments via hydroponic culture. The results will increase
our understanding of the genetic architecture of root and seedling
biomass traits under different water conditions and will facilitate
the development of varieties with better drought tolerance.

MATERIALS AND METHODS

Plant Material
An association panel consisting of 200 Chinese varieties of wheat
collected from different wheat production regions of China were
used in this study (Supplementary Table 1). Most of them were
from the Yellow and Huai River Valley, one of the major wheat-
producing regions in China (Jin et al., 2020).

Phenotypic Evaluation
Seeds were first selected by removing small and shriveled kernels.
Seeds from each variety were soaked in 70% sodium hypochlorite
solution for 10min to sterilize and then washed two to three
times with distilled water. Following that, seeds were germinated
in petri dishes at room temperature. The seedlings with 0.5 cm
length of coleoptiles were rolled in germination paper after 1–2
days. Correspondingly, seedlings were transferred 1 day later to
a container with 1/2 Hoagland nutrient solution in a greenhouse
with 60% humidity, 25◦C temperature, and 10/14 h (day/night)
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FIGURE 1 | Correlation analyses between eight root and seedling biomass traits for each environment. Trait abbreviations: RLD, root length in drought environment;

RLN, root length in controlled environment; RND, root number in drought environment; RNN, root number in controlled environment; RDWN, root dry weight in

controlled environment; RDWD, root dry weight in dry environment; RFWN, root fresh weight in controlled environment; RFWD, root fresh weight in dry environment;

SFWN, shoot fresh weight in controlled environment; SFWD, shoot fresh weight in dry environment; SDWN, shoot dry weight in controlled environment; SDWD, shoot

dry weight in drought environment; TFWN, total fresh weight in controlled environment; TFWD, total fresh weight in drought environment; TDWN, total dry weight in

controlled environment; TDWD, total dry weight in drought environment.

timing using automatic timer. On the seventh day, eight seedlings
of each variety were grown to 1/2 Hoagland solution with
20% polyethylene glycol (PEG) 6000 (Sinopharm Chemical
Reagent Co. Ltd, China) for drought treatment, whereas the
remaining eight seedlings were kept in 1/2 Hoagland solution
for control. The solution containing PEG was changed every
3 days to keep the water potential stable. For both controlled
and drought environments, the experiment was repeated
three times.

When the seedlings were at the four-leaf stage, eight traits,
including root length (RL), root number (RN), root fresh weight
(RFW), root dry weight (RDW), shoot fresh weight (SFW), shoot
dry weight (SDW), total fresh weight (TFW), and total dry
weight (TDW), were evaluated under both normal and drought
environments. The roots of the seedlings were first washed before
measurement. The longest root among all the roots of a seedling
was selected for the measurement of RL with the help of a
measuring scale and was expressed in centimeters (cm). For
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the measurement of RFW, the excessive water was removed
by pressing the roots gently with a tissue paper sheet. For the
measurement of RDW, samples were dried to constant weight by
incubating them in small paper bags at 80◦C for 48 h. The SFW
and SDW were measured in a similar way.

Statistical Analysis
To analyze the variation among all eight traits, different statistical
tools such as mean, median, sum, variance, range, standard
error of the mean, confidence interval of the mean, standard
deviation, and coefficient of variance were applied by using a
statistical package “pastecs” in R software. The following formula
was used for the calculation of broad sense heritability (H2) of
various traits:

H2
= VG/(VG + VE)

Here, VG denotes genetic variance, and VE represents
environmental variance (Ehlers et al., 2009). R corrplot was
employed to analyze the correlation of each trait. For each line,
the lme4 package in R was used for the estimation of the best
linear unbiased predictors (BLUP), which were later used for
GWAS analysis. Each trait was analyzed within eight plants in
each accession, and the mean of all eight traits was used for
consecutive statistical analysis and GWAS.

Genome-Wide Association Analysis and
Prediction of Candidate Gene
Molecular marker data of the 200 germplasms in the association
panel was extracted from our previous publication (Jin et al.,
2020). The Genomic Association and Prediction Integrated Tool
(GAPIT) package in R (Version 4.0.3.) was used for GWAS
analysis (Lipka et al., 2012). GWAS was performed using the
mixed linear model (PCA + K), and the variance–covariance
kinship matrix (K) was calculated by the VanRaden method in
R (VanRaden, 2008; Zhang et al., 2010; Lipka et al., 2012; Jin
et al., 2020). A suggestive threshold of P value equal to 1.0E−3
(P = 1/n, n = effective SNP number) was used to estimate the
significant SNPs (Sun et al., 2017; Jin et al., 2020). The CMplot
package in R was used to draw Manhattan plots, which are
showing the SNPs identified for root traits in GWAS using BLUP
values of 200 wheat germplasm (LiLin-Yin, 2020).

The stable SNPs in the three experiments were selected for
the favorable allele analysis. In the analysis of allele effects on
each trait, alleles with positive effects leading to higher values
of root traits were described as “favorable alleles,” whereas those
with lower values were “unfavorable alleles” (Liu et al., 2019). For
the investigation of potential candidate genes, the EnsemPlants
database (http://plants.ensembl.org) was used to download the
genes within 4Mb LD block on both sides of the significant
SNPs in both controlled and drought environments (Jin et al.,
2020). Gene annotation, the relative homologous rice, and the
Arabidopsis gene of particular wheat genes were also investigated
through the Triticeae-Gene Tribe (TGT) website (http://wheat.
cau.edu.cn/TGT/index.html) (Chen et al., 2020).

RESULTS

Phenotypic Evaluation
All phenotypic traits in both controlled and drought
environments showed continuous and significantly wide
variations in 200 wheat germplasms. The basic statistics of these
phenotypic traits is shown in Table 1. The mean values of RDW,
SDW, TDW, RFW, SFW, TFW, RN, and RL were significantly
higher in a controlled environment (0.014, 0.035, 0.049, 0.21,
0.469, 0.679, 6.061, and 27.332, respectively) compared with
those in a drought environment (0.017, 0.022, 0.039, 0.107,
0.174, 0.282, 4.947, and 18.796, respectively) as shown in Table 1.
The coefficient of variation for all eight traits in controlled and
drought environments ranged from 2.1 to 14.6% and 1.7 to
10.8% respectively. The values of standard deviation (SD) ranged
from 0.001 to 0.599 in the controlled environment and from
0.001 to 0.335 in the drought environment (Table 1).

Correlation coefficients (r2) among different phenotypic traits
were analyzed to quantify the relationship between all eight traits
under both controlled and drought environments (Figure 1). A
strong correlation was detected in various root traits under both
environments. For example, TFWD is positively correlated with
SFWD and TDWD with a value range of (0.83) and (0.87) in
the drought environment, while RFWN was positively correlated
with SDWN (0.81), SFWN (0.87), TDWN (0.86), and TFWN
(0.94), respectively (Figure 1). Most of the investigated traits
showed a strong broad sense heritability (H2), ranging from 0.271
(RL) to 0.692 (RN) and 0.517 (RL) to 0.793 (RN) in the controlled
and drought environments, respectively (Table 1). However, the
H2 of RL under controlled environments was relatively low
(0.271), suggesting a significant environmental effect (Table 1).

Marker–Trait Associations
Based on the BLUP values in the three experiments, a total of 609
SNPs were significantly associated with eight root and seedling
biomass traits in the current study (Supplementary Table 2).
The B genome has the highest number of SNPs (440), followed
by the D (93) and A (65) genomes. These significant SNPs
were distributed on 21 chromosomes except 2A, 4A, 5A, and
7A. From these SNPs, a total of 323 SNPs related to root and
seedling biomass traits were identified in the normal water
condition. Chromosome 2B had the largest proportion of SNPs
(19.50%), followed by chromosome 5B. Additionally, 115 SNPs
were associated with multiple traits, including 30 SNPs on
chromosomes 5B (22), 4D (6), and 5D (2) associated with RDW,
RFW, SDW, SFW, TDW, and TFW (Supplementary Table 2).
A total of 286 SNPs related to root and seedling biomass traits
were observed under the drought environment. These SNPs
were distributed on all the 21 chromosomes of wheat except 6A
(Supplementary Table 2). The same as those in the controlled
environment, most of these SNPs were on chromosome 2B
(38.11%) and chromosome 5B (26.57%).

Moreover, statistical analysis identified 11 SNPs that appeared
to be significantly associated (P < 0.001) with RN, RDW,
SFW, SDW, TFW, and TDW under two water conditions
(Table 2). These 11 loci were distributed on chromosomes 1B,
2B, 4B, and 2D, respectively. Two SNP loci (Affx-111601113
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TABLE 2 | The SNP significantly associated with pleiotropic effect in different phenotyping traits in two environments.

Markera Chromosome Positionb Pleiotropic effect SNPc P value

Affx-109979441 1B 533184310 RDWN, SFWN, SDWN, TFWN, TDWN, SDWD, TDWD C <0.001

Affx-109782056 2B 607064966 SDWN, SFWD, SDWD, TDWN, TFWD, TDWD C <0.001

Affx-111326878 2B 606037476 SDWN, TDWN, SFWD, SDWD, TDWD T <0.001

Affx-111434051 2B 606938708 RDWN, SDWN, SFWD, SDWD, TFWD, TDWD T <0.001

Affx-111601113 2B 448398290 RNN, SDWN, TDWN, SDWD A <0.001

Affx-92897136 2B 641102486 SDWN, SDWD C <0.001

Affx-109617080 2D 514348182 RDWN, SDWN, TDWN, SFWD, SDWD, TFWD, TDWD C <0.001

Affx-88425798 2D 375362652 RNN, SDWN, TDWN, SDWD C <0.001

Affx-109674658 4B 37700884 SDWN, TDWN, SDWD, TDWD T <0.001

Affx-88444969 4B 37845625 TDWN, SDWD G <0.001

Affx-88596529 4B 37735225 SDWN, SDWD, TDWN C <0.001

Trait abbreviations: RNN, root number in controlled environment; RDWN, root dry weight in controlled environment; SFWN, shoot fresh weight in controlled environment; SDWN, shoot

dry weight in controlled environment; TFWN, total fresh weight in controlled environment; TDWN, total dry weight in controlled environment;, SFWD, shoot fresh weight in drought

environment; SDWD, shoot dry weight in drought environment; TFWD, total fresh weight in drought environment; TDWD, total dry weight in drought environment.
aRepresentative marker at a specific locus.
bPhysical position of SNP marker in base pair (bp).
c Indication of favorable allele (SNP).

on chromosome 2B and Affx-88425798 on chromosome 2D)
explained 14.5 to 30.6% of the phenotypic variance in RNN
(Table 2, Figure 2). These two SNP loci also had significant
effects on SDWN, TDWN, and SDWD. Similarly, one SNP
(Affx-109979441) on chromosome 1B was associated with
RDWN, SFWN, TFWN, TDWN, SDWD, and TDWD; five
on chromosome 2B (Affx-111601113, Affx-111326878, Affx-
111434051, Affx-109782056, and Affx-92897136) were associated
with RNN, SFWN, SDWN, TDWN, SFWD, SDWD, TFWN,
and TDWD; three on chromosome 4B (Affx-109674658, Affx-
88444969, and Affx-88596529) showed pleiotropic effect for
SDWN, TDWN, SDWD, and TDWD, respectively (Table 2).

Stability is an important parameter to evaluate a particular
QTL. Of the SNPs identified by GWAS analyses based on BLUP
value, four SNPs on chromosomes 2D, 4D, and 6D were stable in
all of the three replicates (Supplementary Table 2). The favorable
allele of SNP Affx-111174209 on chromosome 4D led to an
increase from 0.45 to 0.48 for SFWN, and from 0.65 to 0.71 for
TFWN (Figure 3). The SNP (Affx-109617080) on chromosome
2D led to an increase from 0.0209 to 0.0254 for SDWD. Two
SNPs on chromosome 6D including Affx-109538680 and Affx-
108905447 led to an increase of 0.97 and 1.1 for RNN, respectively
(Figure 3).

Candidate Genes for the SNPs Stable
Under Two Water Conditions
Based on genes annotated in Chinese spring reference
genome, a total of 442 genes were identified in the 4Mb
(LD block) region on each side of 11 significant SNPs
(Supplementary Table 3). Some of these genes raised our
interests due to their reported roles in plant growth and
development. These genes included TraesCS1B02G310200
near Affx-109979441 on chromosome 1B, which encoded
the transcription repressor OFP4, TraesCS2B02G423500 on
chromosome 2B and TraesCS2D02G402400 on chromosome

2D encoding rolling and erect leaf 2 protein, two genes on
chromosome 4B including TraesCS4B02G048400 encoding G-
type lectin S-receptor-like serine/threonine protein kinase, and
TraesCS4B02G049700 encoding 26S proteasome non-ATPase
regulatory subunit 8, respectively.

DISCUSSION

Due to the difficulty in phenotyping root traits, direct selection
for variation in root characteristics is impractical (Reynolds et al.,
2007). Molecular screens are likely to have a considerable cost-
benefit advantage over the phenotyping method (Tuberosa and
Salvi, 2006). In this study, a total of 164 SNPs were associated with
root traits under controlled environment, whereas 152 SNPs were
identified under osmotic stress (Supplementary Table 2). These
SNPs are useful genetic resources for the improvement of root
traits and drought tolerance in wheat. Some of these SNP loci
are closely located to the known loci associated with root traits
based on the reference genome of IWGSC V1.1. For example,
under drought stress condition, three SNP loci including Affx-
88733278, Affx-109672297, and Affx-110800753 for root length
on chromosome 2B are 2.29, 1.79, and 3.39Mb away from
AX_111251784, AX_94405934, and AX_108756976, which were
associated with total root length in a previous study (Liu et al.,
2019). Three SNPs (Affx-110656000, Affx-111718859, and Affx-
88565514) on chromosome 3A for root number was about
0.7Mb away from an SNP (S7_12487861) for branched root
length (Beyer et al., 2019). Under normal water conditions, Affx-
110668350 on chromosome 6A for RDW and Affx-109434039
on chromosome 7D for RL were 0.48 and 1Mb away from
S16_7327093 and S21_99959518 for root diameter, respectively
(Beyer et al., 2019).

Similar to the SNP specific to a single water condition,
several SNPs under two water conditions were closely located
to known QTL for root traits or grain yield-related traits
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FIGURE 2 | Manhattan plots for the eight root and seedling biomass traits identified by genome-wide association study (GWAS) using BLUP values. The dashed line

represents the significance threshold (–log10 P = 3.0). Trait abbreviations: RLD, root length in drought environment; RLN, root length in controlled environment; RND,

root number in drought environment; RNN, root number in controlled environment; RDWN, root dry weight in controlled environment; RDWD, root dry weight in dry

environment; RFWN, root fresh weight in controlled environment; RFWD, root fresh weight in dry environment; SFWN, shoot fresh weight in controlled environment;

SFWD, shoot fresh weight in dry environment; SDWN, shoot dry weight in controlled environment; SDWD, shoot dry weight in drought environment; TFWN, total fresh

weight in controlled environment; TFWD, total fresh weight in drought environment; TDWN, total dry weight in controlled environment; TDWD, total dry weight in

drought environment.

(Table 2). For example, the three SNP loci (Affx-109782056,
Affx-111326878, and Affx-111434051) on chromosome 2B for
seedling biomass traits were in the same chromosome region
as a QTL (QSRN.cgb-2B) controlling seminal root number (Liu
et al., 2013). Two previously reported QTL for kernel number
per spike (QKNS.caas-4BS) and spike number per unit area
(QSN.caas-4BS) also located near the interval targeted by three
SNPs (Affx-109674658, Affx-88444969, and Affx-88596529) on
chromosome 4B for seedling biomass traits (<0.1Mb) (Li et al.,
2018). Additionally, one SNP (Affx-88431037) on chromosome

4D for SDWN was 1.7Mb from Rht-D1 controlling plant height.
The close locations of the loci for root and seedling biomass traits
in the current analysis and those reported previously for plant
height and grain yield are in line with the strong relationship
between those traits (Bai et al., 2013; El Hassouni et al., 2018).
Considering that the LD block in this population is about 4Mb, it
is likely that the loci for root and seedling biomass in the current
analysis are the same as those for plant height and grain yield.
However, further experiments are required to confirm the genetic
relationship between these loci.
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FIGURE 3 | Comparison of the allele effects of four environmentally stable SNPs on chromosomes 2D, 4D, and 6D. Trait abbreviations: TFWN, total fresh weight in

controlled environment; SFWN, shoot fresh weight in controlled environment; RNN, root number in controlled environment; SDWD, shoot dry weight in drought

environment. ***p < 0.001.

Because of the stability of the 11 SNPs under different
water conditions, we investigated the potential candidate genes
for these 11 SNPs. Some of the genes located within the 4-
Mb LD block on each side of the 11 SNPs were known to
be associated with plant growth and development based on
previous literature (Table 2). For example, an Arabidopsis gene
AtOFP1 could suppress cell elongation and regulate cotyledon
development in a postembryonic manner (Wang et al., 2007,
2011). In the current study, TraesCS1B02G310200, a wheat
homologous gene of AtOFP1, is only about 95 kb from Affx-
109979441 on 1B controlling several seedling biomass traits
and RDWN. Previous research found that a mutant of rolled
and erect leaf 2 (REL2) gene is associated with the increased
ability of rice leaves to capture light energy and exchange
gas and thus increase the yield of rice (Yang et al., 2016).
In this study, we found two homologous genes of the rice
REL2, one is TraesCS2B02G423500 near Affx-109782056 on
chromosome 2B, and the other is TraesCS2D02G402400 near
Affx-109617080 on chromosome 2D (Supplementary Table 3).
The expression of OsTMK is particularly high in regions

undergoing cell division and elongation, and low in the non-
growing region of the internode, implying that OsTMK regulates
rice growth (Van Der Knaap et al., 1999; Hirose et al., 2007).
TraesCS4B02G048400, a homologous gene of OsTMK was
located 1Mb away from Affx-109674658 on chromosome 4B.
Kurepa et al. (2009) showed that partial loss of function of
the regulatory particle non-ATPase (RPN) subunits RPN10 and
RPN12a caused a stronger defect in proteasome function and
also resulted in cell enlargement and decreased cell proliferation
in Arabidopsis. The gene TraesCS4B02G049700 near the SNP
Affx-88444969 is homologous to the Arabidopsis gene RPN12a
(Supplementary Table 3). Further experiments will be carried
out to determine the functions of the above genes in root and
seedling development.
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Aegilops tauschii is the diploid progenitor of the D subgenome of hexaploid wheat
(Triticum aestivum L.). Here, the phenotypic data of kernel length (KL), kernel width (KW),
kernel volume (KV), kernel surface area (KSA), kernel width to length ratio (KWL), and
hundred-kernel weight (HKW) for 223 A. tauschii accessions were gathered across three
continuous years. Based on population structure analysis, 223 A. tauschii were divided
into two subpopulations, namely T-group (mainly included A. tauschii ssp. tauschii
accessions) and S-group (mainly included A. tauschii ssp. strangulata). Classifications
based on cluster analysis were highly consistent with the population structure results.
Meanwhile, the extent of linkage disequilibrium decay distance (r2 = 0.5) was about
110 kb and 290 kb for T-group and S-group, respectively. Furthermore, a genome-wide
association analysis was performed on these kernel traits using 6,723 single nucleotide
polymorphism (SNP) markers. Sixty-six significant markers, distributed on all seven
chromosomes, were identified using a mixed linear model explaining 4.82–13.36% of
the phenotypic variations. Among them, 15, 28, 22, 14, 21, and 13 SNPs were identified
for KL, KW, KV, KSA, KWL, and HKW, respectively. Moreover, six candidate genes
that may control kernel traits were identified (AET2Gv20774800, AET4Gv20799000,
AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and AET5Gv21111700).
The transfer of beneficial genes from A. tauschii to wheat using marker-assisted
selection will broaden the wheat D subgenome improve the efficiency of breeding.

Keywords: Aegilops tauschii, candidate gene, genetic diversity, GWAS, kernel traits, SNP

INTRODUCTION

Aegilops tauschii (2n = 2× = 14, DD) is the diploid progenitor of the D subgenome of hexaploid
wheat (Triticum aestivum L., 2n = 6× = 42, AABBDD) and a vital genetic resource for the
improvement of wheat quality and yield (Dvořák et al., 1998; Ogbonnaya et al., 2013). The
A. tauschii has a rich genetic diversity and multiple biological and abiotic resistances, including
excellent genetic resources such as stress resistance (Qin et al., 2016), disease resistance (Zhang
et al., 2019), and improved yield, which are uncommon in ordinary hexaploid wheat.
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Hexaploid wheat arose through natural hybridization and
chromosome doubling between a cultivated allotetraploid
(2n = 4× = 28, AABB) and A. tauschii (Dvořák et al., 1998;
Matsuoka, 2011). However, common wheat descends from a
small number of spontaneous interspecific hybrids (Cox, 1997).
Thus, there is scope for A. tauschii to improve wheat and
increase wheat yield by artificially synthesizing hexaploids. After
several collaborative long-time research efforts, the International
Center for Maize and Wheat Improvement (CIMMYT) have
synthesized hexaploid wheat lines by crossing elite tetraploid
durum with A. tauschii (Ogbonnaya et al., 2013). The A. tauschii
has several yield traits or components that may be transferred
to synthetic hexaploid wheat when used as a paternal parent.
Furthermore, it has previously been used to introgress yield
traits into wheat, such as the large-kernel wheat Chuanmai
42 (Zhang et al., 2004) and heavy panicle Shumai 830 (Hao
et al., 2019). With the rapid development of scientific research
technology, identification of the linked markers in the genetic
background of A. tauschii can enable targeted introgressions, thus
making it economical.

Single nucleotide polymorphism (SNP) is a third-generation
genetic marker technology. SNPs are abundant and have traits
such as high frequency and good genetic stability. Currently,
SNP genetic studies are widely used for kernel yield, disease
resistance, and stress resistance. Genome-wide association study
(GWAS) based on linkage disequilibrium (LD) has been widely
adopted to identify loci significantly associated with important
and complex morphological traits in several species, including
A. tauschii (Liu et al., 2015a,b), rice (Chen et al., 2014), wheat
(Lin Y. et al., 2017, 2019, 2020a; Liu Y. et al., 2017), and maize
(Lu et al., 2010, 2011 Yang et al., 2014). Moreover, only a
few GWAS have reported kernel size traits in A. tauschii. For
example, using 193 A. tauschii accessions worldwide, 58 SSR
were identified in three environments for seven grain traits (Zhao
et al., 2015). Using 5,249 SNPs, a GWAS was performed for
114 A. tauschii germplasm, and a total of 17 SNPs associated
with grain size traits distributed over all the seven chromosomes
(Arora et al., 2017). However, this study aimed to investigate
marker-trait associations for kernel size traits using SNPs in a
core collection of 223 A. tauschii of diverse origin. Moreover,
our objective was to scan candidate gene responses to kernel
size traits. These identified genes and SNPs will provide an
important research framework for cloning kernel trait genes in
A. tauschii.

MATERIALS AND METHODS

Plant Materials and Field Experiments
A total of 223 A. tauschii accessions were collected by
Triticeae Research Institute, Sichuan Agricultural University.
These A. tauschii accessions were originally obtained from
17 different countries (Supplementary Table 1). According to
morphological classification criteria (Zhao et al., 2018), 135
and 88 A. tauschii accessions were classified as A. tauschii
ssp. tauschii and A. tauschii ssp. strangulata, respectively
(Supplementary Table 1).

All A. tauschii were planted in Wenjiang, Chongzhou,
and Wenjiang in 2017, 2018, and 2019, respectively. Each
accession was planted in three rows. Each row’s length was
1.5 m, and the space between the rows was 0.6 m, as a
previous study described (Liu et al., 2015b). Spikes were
harvested at physiological maturity and threshed by hand. Fifty
kernels of each A. tauschii plant were used to evaluate six
traits with three repetitions. Kernel length (KL), kernel width
(KW), kernel width to length ratio (KWL), kernel surface area
(KSA), and kernel volume (KV) were evaluated in all three
environments, and hundred-kernel weight (HKW) was evaluated
in 2018 and 2019. Kernel morphologic traits, including KL,
KW, KWL, KSA, and KV, were scanned using an Epson XL
scanner system (11,000 × ) (Seiko Epson Corporation, Nagano-
ken, Japan) and analyzed using the Win-SEEDLE Pro 2012a
image analysis system (Régent Instruments, Quebec, Canada)
software. Hundred-kernel weight was calculated as two times the
weight of 50 kernels.

Statistical Analysis of Phenotypic Data
Analysis of variance (ANOVA) was conducted using the “car”
package in the software R 3.5.1 R Core Team (2014). As HKW
was only calculated in two environments, ANOVA could
not be conducted for HKW. In this study, we established
selection indices involving multiple kernel traits, and a
series of linear regressions were performed for all traits.
We built a series of linear regressions to explain HKW
and chose our predictive variables through a stepwise
selection process.

The broad-sense heritability was calculated using the Smith
et al. (1998) method as previous studies described (Liu Y. et al.,
2017; Lin et al., 2020b; Lin Y. et al., 2021). Meanwhile, to
reduce the environmental impact on kernel traits, best linear
unbiased predictors (BLUP) of each trait across environments
were calculated using SAS 9.2 (SAS Institute Inc., Cary, NC).
Descriptive analysis, Pearson’s correlation, linear regression, and
clustering analyses were performed based on BLUP values for
each trait using SPSS 20 (IBM, United States). Moreover, three
different categories were calculated based on traits, i.e., low-,
mid-, and high-performing genotypes corresponding to below,
between, and above X ± SD (Standard Deviation), respectively
(Zar, 2010; Abdel-Ghani et al., 2012), where X represent mean
values of each trait. Meanwhile, Shannon–Weaver diversity index
(H’) was calculated based on BLUP values for six kernel traits
using the formula.

H′ = −
n∑

i=1

PiLn(Pi)

Where Pi is the number of materials in the i level of a specific trait
in the total percentage of copies, and Ln is the natural logarithm
(Hutcheson, 1970).

Genotyping and Genetic Diversity
Analysis
Genomic DNA from each A. tauschii samples was
extracted from the young leaves using the CTAB method
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(Murray and Thompson, 1980). All A. tauschii samples were
genotyped by Illumina 10K SNP array, and the gathered
SNPs were mapped onto the A. tauschii reference genome
v4.0 (Aet v4.01) to obtain the physical location (Luo et al.,
2017). Then, the mapped SNPs with minor allele frequency
(MAF) >5% and missing data <20% were retained for further
analysis. Finally, a total of 6,723 polymorphic markers were
obtained and used for population structure, kinship, and
association analysis. Genetic diversity was evaluated using
polymorphism information content (PIC), as PIC = 1−6(Pi)2,
where Pi is the proportion of the population carrying the allele
(Botstein et al., 1980).

Population Structure, Kinship and
Linkage Disequilibrium Analysis
Population structure was analyzed using the Bayesian inference
program STRUCTURE 2.3.4 based on the linkage ancestry
model (Pritchard et al., 2000; Falush et al., 2007). A total
of 10,000 burn-in iterations followed by 10,000 Markov
Chain Monte Carlo iterations for K = 1–10 clusters were
used to identify the optimal range of K, performing 10
runs per K. The optimal value of K was determined using
STRUCTURE HARVESTER (Earl and vonHoldt, 2012) based
on the Evanno method (Evanno et al., 2005). The CLUMPP
(Jakobsson and Rosenberg, 2007) was used to determine the
best comparison among five repeated samples. Kinship was
estimated using 6,723 markers in TASSEL 3.0 (Bradbury
et al., 2007). The LD squared allele frequency correlation
(r2), which contains both mutational and recombination
history, as evaluated for linked/syntenic loci (p < 0.001).
The LD analyses was conducted separately for the T-group
and S-group, respectively. The LD estimates between marker
pairs were obtained using TASSEL 3.0, the mean r2 over
different genetic distances was calculated for the T-group and
S-group, respectively.

Genome-Wide Association Analysis and
Candidate Gene Prediction
Genome-wide association analysis was performed based on 6,723
SNPs using mean value of each environment and the BLUP values
of each trait in Tassel 3.0 based on a mixed linear model (MLM)
(Bradbury et al., 2007). The significance threshold was set at p
-value < 0.001, correspondingly −log10

(p) = 3.00 as previous
studies (Liu J. et al., 2017; Ye et al., 2019; Fu et al., 2020).
Manhattan and Quantile-Quantile plots of GWAS results were
plotted in R 3.5.1 (R Core Team., 2014).

Based on Aet v4.0, putative genes in 10 Kb upstream and
downstream of the significant SNPs were selected and then
annotated using KEGG Orthology Based Annotation System
3.0 (KOBAS 3.0) (Xie et al., 2011; Arora et al., 2017; Wu
et al., 2017). Arabidopsis and rice were used as background
species. Candidate genes were identified according to the
homologous function.

1https://www.ebi.ac.uk/ena/browser/view/GCA_002575655.1

RESULTS

Marker Distribution and Population
Structure Analysis
A total of 6,723 polymorphic SNPs was mapped on the A. tauschii
reference genome Aet v4.0 with MAF >5%, missing data <20%.
The 6,723 SNPs were evenly distributed on seven chromosomes
of A. tauschi (Supplementary Figure 1). The number of SNPs
ranged from 784 for chromosome 4D to 1,231 for chromosome
2D (Supplementary Table 2). The marker density ranged from
0.53 to 0.70 Mb for each chromosome (chromosomes 2 and
6D, respectively) (Supplementary Table 2). The PIC ranged
from 0.10 to 0.50, with an average value of 0.42 for the
whole subgenome (Supplementary Table 2), indicating a high
polymorphism of SNPs.

Based on the population structure analysis, K = 2 was
selected. Thus, the whole panel was divided into two groups
(Supplementary Table 1). Group 1 (S-group) contained 84
A. tauschii, including 83 A. tauschii ssp. strangulata and one
A. tauschii ssp. tauschii. Group 2 (T-group) contained 139
A. tauschii, including 137 of A. tauschii ssp. tauschii and two
A. tauschii ssp. strangulata. Meanwhile, the LD analyses were
conducted separately for the T-group and S-group two lineages.
The mean r2 values gradually decreased with increasing pairwise
distance. The extent of LD decay distance (r2 = 0.5) was
about 110 and 290 kb for T-group and S-group, respectively
(Supplementary Figure 2).

Phenotypic Variation and Cluster
Analysis
The ANOVA results for 223 A. tauschii samples are listed
in Table 1. All kernel traits showed significant (p < 0.001)
differences among genotypes and environments, except for
HKW. The coefficients of variation of the six kernel traits among
three environments ranged from 8.49 to 48.99% (Supplementary
Table 3). The heritability ranged from 0.74 for KL to 0.87 for KW,
indicating medium to high heritability (Table 2). Based on BLUP
values, coefficient of variation of six kernel traits ranged from
5.13 to 23.49% (Table 2). The minimum, maximum, and average
values of KL, KW, KV, KSA, KWL, and HKW in the S-group
were significantly (p < 0.01) higher than those in the T-group
(Supplementary Table 4), and there were significant differences
between the two subspecies (Figure 1). Results indicated that
the six kernel traits in S-group exhibited higher H’ values
than those in T-group, and S-group subspecies had a wider
diversity range than those in T-group subspecies. Regarding the
phenotypic distribution of six kernel traits based on BLUP values,
all traits frequency distribution was continuous (Supplementary
Figure 3), indicating that kernel traits were quantitative and
controlled by multiple genes.

Based on the BLUP value, correlation analysis for each trait
showed significant correlations among traits, with correlation
coefficients ranging from 0.27 (between KL and KW) to 0.98
(between KSA and KV) (Table 3). All correlations were positive,
except for that between KL and KWL. KW showed medium-
to-high correlations with KV, KSA, KWL, and HKW, while KL
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TABLE 1 | The analysis of variance of six kernel traits of 223 Aegilops tauschii among three environments.

Type III sum of square Mean square F-values Significance†

Environment Genotype Environment Genotype Environment Genotype Environment Genotype

DF 2 222 2 222 2 222 2 222

KL 29.18 82.05 14.59 0.37 150.61 3.82 *** ***

KW 25.33 50.49 12.67 0.23 442.70 7.95 *** ***

KV 662.19 475.14 331.10 2.14 798.22 5.16 *** ***

KSA 10556.28 5703.71 5278.14 25.69 933.59 4.54 *** ***

KWL 1.49 2.13 0.74 0.01 542.37 7.00 *** ***

HKW − − − − − − − −

DF, degrees of freedom; KL, kernel length; KW, kernel width; KV, kernel volume; KSA, kernel surface area; KWL, kernel width to length ratio; HKW, hundred-kernel weight.
† ***, significant at p < 0.001, respectively. KL, KW, KV, KSA, and KWL were measured for 3 years, while HKW was measured for 2 years.

TABLE 2 | Descriptive analysis, coefficient of variation, heritability, and Shannon–Weaver diversity index (H′) of six kernel traits based on BLUP values among the 223
Aegilops tauschii.

Trait Mean ± SD CV% Min Max Heritability H′

223 accessions T-group† S-group

KL (mm) 5.02 ± 0.26 5.13 4.31 5.77 0.74 0.85 0.76 0.98

KW (mm) 2.23 ± 0.24 10.70 1.83 2.89 0.87 0.89 0.79 0.93

KV (mm3) 2.88 ± 0.68 23.49 1.84 5.01 0.81 0.80 0.76 0.77

KSA (mm2) 17.75 ± 2.27 12.77 13.71 24.81 0.78 0.81 0.83 0.85

KWL (/) 0.45 ± 0.05 10.71 0.37 0.59 0.86 0.81 0.79 0.90

HKW (g) 0.82 ± 0.16 20.05 0.49 1.27 0.80 0.86 0.72 0.85

CV, coefficient of variation; KL, kernel length; KW, kernel width; KV, kernel volume; KSA, kernel surface area; KWL, kernel width to length ratio; HKW, hundred-kernel
weight; SD, standard deviation.
† T-group and S-group were divided based on population structure analysis.

showed low-to-medium correlations with KV, KSA, KWL, and
HKW (Table 3). Additionally, KW and KL showed a medium-
to-high correlation with HKW. These results indicated that KW
and KL were the major determinants of kernel architecture
and weight in A. tauschii, showing that the same loci may
orchestrate the control of these traits, indicating that SNPs
identified in our study may play pleiotropic effects. The final
model based on HKW phenotypic variation explained 76.8%
of variability with KV, KL, KSA, and KW, verifying the above
results (Supplementary Table 5). Meanwhile, cluster analysis
(Ward’s method) grouped the 223 A. tauschii into two clusters
(Supplementary Table 1). Results showed a high consistency of
classification results by population structure.

Marker Trait Associations for Kernel Size
Traits
GWAS was performed on all six traits using 6,723 SNPs
among three environments. A total of 141 significant SNPs were
identified for six kernel traits with phenotypic variation explained
(PVE) ranging from 4.82 to 17.14% (Supplementary Table 6).
The highest number of markers was detected for KV(78), which
was followed by kernel volume KW (43), KSA (42), KWL (34),
KL (26), HKW (21) (Supplementary Table 6). Based on BLUP
values, GWAS was performed on all six traits using 6,723 SNPs
by MLM. A total of 66 significant SNPs was identified for six

kernel traits with phenotypic variation explained (PVE) ranging
from 4.82 to 13.36% (Table 4 and Supplementary Table 6),
and these markers were distributed on all seven chromosomes
(Figures 2, 3, Table 4, and Supplementary Table 6). In order
to reduce environment effects, significant SNPs detected using
BLUP values were used for further analysis.

Based on BLUP values, 15 significant SNPs for KL were
detected with PVE, ranging from 4.85 to 9.02%, these SNPs
were distributed on chromosomes 1D, 2D, and 7D (Table 4
and Supplementary Table 6). For KW, 28 significant SNPs were
detected with PVE, ranging from 4.83 to 8.73%. These SNPs were
distributed on chromosomes 2D, 3D, 4D, 5D, and 7D. For KV,
22 significant SNPs were detected with PVE, ranging from 4.82
to 13.02%. These SNPs were distributed on chromosomes 2D,
4D, 5D, and 7D. For KSA, 14 significant SNPs were detected
with PVE, ranging from 4.87 to 13.36%. These SNPs were
distributed on chromosomes 2D, 4D, 5D, and 7D. For KWL,
21 significant SNPs were detected with PVE, ranging from
4.86 to 9.66%. A total of 13 significant SNPs were detected
for HKW with PVE ranging from 4.82 to 7.05%. These SNPs
were distributed on chromosomes 3D, 4D, 5D, 6D, and 7D.
These SNPs were distributed on all seven chromosomes (Table 4
and Supplementary Table 6). The contig17143_54, located on
chromosome 5D at 538.15 Mb, was strongly associated with
KV with 13.02% PVE (Supplementary Table 6). The contig
17143_54, located on chromosome 5D at 538.15 Mb, was most

Frontiers in Genetics | www.frontiersin.org 4 May 2021 | Volume 12 | Article 651785159

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-651785 May 22, 2021 Time: 17:21 # 5

Wang et al. GWAS of Kernel Traits

FIGURE 1 | Boxplots of six kernel characters of T-group and S-group. ∗∗, and ∗∗∗ denote significance at p < 0.01 and p < 0.001, respectively. (A) KL, kernel length
(mm), (B) KW, kernel width (mm), (C) KV, kernel volume (mm3), (D) KSA, kernel surface area (mm2), (E) KWL, kernel width to length ratio (%), (F) HKW,
hundred-kernel weight (g).

significant for KSA with 13.36% PVE, while contig67633_66,
located on chromosome 6D at 406.04 Mb, was most significant
with KL with 9.66% PVE. Twenty-six loci of six kernel traits
showed pleiotropy, e.g., contig17143_54, located on chromosome
5D at 538.15 Mb, was significantly related to KW, KSA, KV,
and HKW; GDRF1KQ01CJ4KM_378, located on chromosome
7D at 246.23 Mb, was significantly related to HKW, KSA, KL, KV,
KW, and F1BEJMU01CNNGZ_79, located on chromosome 4D at
453.78 Mb, was significantly related to KW, KWL, KV.

Candidate Genes That May Be Linked to
Kernel Traits
Based on Aet v4.0, putative genes in 10 Kb upstream
and downstream of the significant SNPs were homologous

comparison using KOBAS 3.0. A total of 38 predicted genes
were selected. Thirty-six and 38 genes were homologous to
arabidopsis and rice, respectively (Supplementary Table 7). Six
predicted genes, included AET2Gv20774800, AET4Gv20799000,
AET5Gv20005900, AET5Gv20084100, AET7Gv20644900, and
AET5Gv21111700, were homologous to MST1 (Takeda et al.,
2001; Mao et al., 2011), MAC3B (Monaghan et al., 2009;
Li S. et al., 2018), ETR1 (Yin et al., 2017), ZAR1 (Guo
et al., 2013; Yu et al., 2016), NAC047 (Kunieda et al.,
2008; Mathew et al., 2016), EXPA7 (Lizana et al., 2010;
Jadamba et al., 2020), respectively (Table 5). These genes
(MST1, MAC3B, ETR1, ZAR1, NAC047, EXPA7) could affect
embryo development, cause seed surface atrophy, increase the
number of cells to increase organ size, or affect kernel size
through ethylene response. Thus, the six A. tauschii genes
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TABLE 3 | The correlation analysis of the six kernel traits based on best linear unbiased prediction (BLUP) values.

Trait KL KW KV KSA KWL HKW

KL 1

KW 0.27** 1

KV 0.47** 0.96** 1

KSA 0.61** 0.90** 0.98** 1

KWL −0.30** 0.83** 0.67** 0.53** 1

HKW 0.56** 0.79** 0.84** 0.84** 0.46** 1

KL, kernel length; KW, kernel width; KV, kernel volume; KSA, kernel surface area; KWL, kernel width to length ratio; HKW, hundred-kernel weight. ** represented significance
at p < 0.01 respectively.

TABLE 4 | Significant SNP markers identified for six kernel-related traits by genome-wide association study based on best linear unbiased prediction (BLUP) values.

Trait Number Chromosome Mean −log10
(p) −log10

(p) range Mean PVE (%) PVE range (%)

KL 15 1D/2D/7D 3.70 3.02–5.11 6.14 4.85–9.02

KW 28 2D/3D/4D/5D/7D 3.54 3.01–5.16 5.84 4.83–8.73

KV 22 2D/4D/5D/7D 3.74 3.02–6.64 6.22 4.82–13.02

KSA 14 2D//4D/5D/7D 4.22 3.05–6.83 7.13 4.87–13.36

KWL 21 1D/2D/3D/4D/5D/6D/7D 4.14 3.03–5.65 6.92 4.86–9.66

HKW 13 3D/4D/5D/6D/7D 3.22 3.01–3.74 5.27 4.82–7.05

KL, kernel length; KW, kernel width; KV, kernel volume; KSA, kernel surface area; KWL, kernel width to length ratio; HKW, hundred-kernel weight; PVE, phenotypic variation
explained.

FIGURE 2 | Manhattan plots of genome-wide association study results for six kernel traits based on BLUP value. (A) KL, kernel length, (B) KW, kernel width, (C) KV,
kernel volume, (D) KSA, kernel surface area, (E) KWL, kernel width to length ratio, (F) HKW, hundred-kernel weight.
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FIGURE 3 | The Q-Q plots of genome-wide association study results for six kernel traits based on BLUP value. (A) KL, kernel length, (B) KW, kernel width, (C) KV,
kernel volume, (D) KSA, kernel surface area, (E) KWL, kernel width to length ratio, (F) HKW, hundred-kernel weight.

TABLE 5 | Candidate genes identified for six kernel traits.

A. tauschii gene Marker Chr Position (Mb) Trait Rice gene Arabidopsis gene Putative candidate
genes

AET2Gv20774800 GBF1XID01
D2CAC_283

2D 438.95 KW MST1 Monosaccharide
transporters (MST1)

AET4Gv20799000 GA8KES401
CWBR7_178

4D 501.57 KW, KWL MAC3B U-Box Proteins
(MAC3B)

AET5Gv20005900 be405667Contig
1ATwsnp1

5D 2.89 KV, KSA ETR1 Ethylene receptor
protein (ETR1)

AET5Gv20084100 F5XZDLF01A
U4HH_125

5D 32.51 KW ZAR1 RLK/Pelle kinase family
(ZAR1)

AET7Gv20644900 GDRF1KQ01C
J4KM_378

7D 246.23 KW, KL,HKW, KV,KSA NAC047 NAC Family Proteins

AET5Gv21111700 contig1
7143_54

5D 538.15 KW, KV, KSA, HKW EXPA7 Expansin genes
(EXPA7)

Chr, chromosome; KL, kernel length; KW, kernel width; KV, kernel volume; KSA, kernel surface area; KWL, kernel width to length ratio; HKW, hundred-kernel weight.
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maybe directly or indirectly regulate kernel growth or regulate
kernel size.

DISCUSSION

The improvement of common wheat has gone through the cross
between landraces and main popularized varieties to the cross
between elite varieties now. However, wheat has been affected by
domestication and selection of long-term backbone parents, and
genetic “evolutionary bottlenecks” have appeared, which leads to
a decrease in yield. Wheat kernel traits are the most important
factor affecting yield, and excellent kernel traits greatly increase
yield. However, A. tauschii is one of the ancestral species of
hexaploid wheat and the donor species of D subgenome. It has
a lot of valuable genes and a rich genetic diversity, and a vital
genetic resource for the improvement of wheat quality and yield
(Dvořák et al., 1998; Ogbonnaya et al., 2013). The purpose of this
research is to dig out the excellent genes that regulate kernel size
in A. tauschii, and lay a foundation for the transfer of common
wheat and the broadening of genetic diversity. There have been
many successful cases of introducing A. tauschii genes into wheat
through hybridization. Such as Chuanmai 42, Shumai 969, and
Shumai 830 etc. thereinto, Chuanmai 42 is a large and heavy
spike cultivar with a large kernel (Zhang et al., 2004; Duan et al.,
2006), and Shumai 830, is also a heavy spike cultivar (Hao et al.,
2019). These successful wheat varieties suggest the considerable
potential of A. tauschii for wheat improvement, especially for
breeding cultivars with large and heavy spikes. However, the aim
of this study was to discover genes in A. tauschii that regulate
kernel size, introducing the significant target markers that affect
kernel traits directly into wheat would accelerate the breeding of
target varieties and save time.

In this study, 223 A. tauschii were divided into T-group
and S-group subgroups through population STRUCTURE.
T-group and S-group representing A. tauschii ssp. tauschii and
A. tauschii ssp. strangulata, respectively. The results of this
study are completely consistent with previous studies (Arora
et al., 2017). Population structure is one of the most important
factors affecting LD (Flint-Garcia et al., 2003). Thus, the LD
analyses was conducted separately for the T-group and S-group,
respectively. Only one previous study reported LD decay distance
in A. tauschii. The LD decay distance was reported at 9.8 and
2.7 cM for T-group and S-group, respectively (Arora et al.,
2017). This study firstly reported the LD decay distance based
on physical distance. The LD decay distance was highest in the
T-group (approximately 110 kb) and S-group (approximately 290
kb), the average LD decay distance was approximately 200 kb.
In wheat, the LD decay distance was 250 kb for D subgenome,
consistent with our results (Long et al., 2019).

The present study aimed to identify significant markers for
kernel size trait in A. tauschii, the D subgenome donor of
hexaploid wheat. Significant (p < 0.001) differences were noted
among genotypes and environments; A. tauschii showed high
diversity, indicating high research and utilization value, and it
could make a major contribution to broadening the genetic
diversity of the wheat D subgenome. In the present study,

heritabilities of kernel traits were medium to high. In previous
studies, moderate or high heritabilities were also observed in
A. tauschii (Arora et al., 2017), consistent with our study.
In some reports in wheat, moderate to high heritability were
also observed (Kuchel et al., 2007; Liu Y. et al., 2017). These
results indicated that the kernel size-related traits was more
controlled by genetic factors. We used correlation and linear
regression analyses revealed a significant positive correlation
between KL, KW, KV, and HKW, and HKW increased with
increasing KL, KW, and KV. Previous studies have found that,
in the tetraploid and hexaploid wheat, TaGW2-A1 mutations
could increase KW and KL, thereby increasing yield by increasing
TKW (Simmonds et al., 2016). The correlations between these
trait points to a causal relationship between kernel size and
weight because longer and wider kernels can accumulate more
starch and, therefore, have greater kernel weight (Duan and
Sun, 2005). Our study showed the consistent results. Thus,
in the process of breeding, breeders could pay attention to
discovering varieties with long or wide kernels. The identified
A. tauschii accessions with long or wide kernels could be
used in further breeding through SHW to broaden the genetic
diversity of wheat.

In the present study, cluster analysis results were highly
consistent (83%) with the population structure results. Similar
results have been reported in A. tauschii and wheat (Liu
et al., 2015b; Liu Y. et al., 2017). A previous cluster analysis
performed using 29 morphological traits in 322 A. tauschii
showed 72% consistency with the population structure results
(Liu et al., 2015b). This result may be caused by an intermediate
type between A. tauschii ssp. tauschii and A. tauschii ssp.
strangulata subspecies (Zhao et al., 2018). Indeed, Kihara et al.
(1965) reported that intermediate forms and hybrids existed
between the two subspecies. Due to the presence of intermediate
type or hybrids, there may be uncertainty in morphological
identification, resulting in differences between morphology- and
genotype-based identification. Besides, morphological traits may
also be more easily affected by the ecological environment. Plant
growth will be affected to varying degrees in different ecological
environments, affecting plant growth and, ultimately, kernel size
(Wang et al., 2009; Liu et al., 2015b). Thus, the morphological
traits clustering is roughly correct, but there will be some
classification errors. Compared with genotype data classification
results, cluster analysis could correctly classify most A. tauschii.

For GWAS results, the threshold is set to Bonferroni
correction method a = 0.01 or 0.05. Because MLM is too strict and
can lead to over-correction. The Bonferroni correction method
a = 1 to reduce negative errors caused by overcorrection (Yang
et al., 2014). The p-value was 1.49× 10−4 for the 6,723 SNPs, with
a corresponding −log10

(p) = 3.80. However, only 22 significant
SNPs were identified. This is due to overcorrection caused by
MLM. In addition, −log10

(p) = 3.00 is also commonly set as a
threshold (Liu J. et al., 2017; Ye et al., 2019; Fu et al., 2020)
to reduce the negative false rate. Meanwhile, it has also been
successfully applied in GWAS in wheat (Liu J. et al., 2017; Ye
et al., 2019; Fu et al., 2020). This indicates that this threshold
is a frequently used empirical value and the results are reliable.
In this study, the threshold setting as −log10

(p) = 3.00, 66
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significant loci were identified for kernel traits using 6,723 SNPs
markers by GWAS. To the best of our knowledge, to date, only
two studies have reported QTL for kernel characteristic traits
in A. tauschii based on GWAS (Zhao et al., 2015; Arora et al.,
2017). Owing to the lack of publicly available marker sequence
information, our results were compared to those of previous
studies based on chromosomes. In previous studies for KL,
significant loci were identified on chromosomes 1D, 2D, 5D, and
6D (Zhao et al., 2015; Arora et al., 2017), while in this study,
11 significant markers were identified on chromosome 7D; these
may represent novel loci. For KW, we detected 28 significant
markers on chromosomes 2D, 3D, 4D, 5D, and 7D. Significant
markers on these chromosomes were also found in previous
studies (Zhao et al., 2015; Arora et al., 2017). For KSA, 14
significant markers were identified on chromosomes 2D, 4D, 5D,
and 7D, and loci on chromosome 4D may be novel according to a
comparison with previous research (Zhao et al., 2015). For HKW,
loci were identified on all chromosomes in previous studies,
except for 7D (Zhao et al., 2015; Arora et al., 2017). In this study,
significant markers were identified on chromosome 7D, as well
as on chromosomes 3D, 4D, 5D, and 6D. Besides, 21 significant
markers for KWL were identified on all seven chromosomes, and
22 for KV were identified on chromosomes 2D, 4D, 5D, and
7D. GWAS is an important and effective approach for wheat
breeding by helping in the design of hybrid crosses. The identified
significant markers/variants can be designed for use as molecular
markers in wheat breeding directly.

To further serve the breeding of target varieties with desirable
kernel traits, six candidate genes were identified based on
homologous functions in arabidopsis and rice. AET2Gv20774800
was flanking the SNP marker GBF1XID01D2CAC_283. This gene
was homologous to the MST1 gene in arabidopsis; they are also
called sulfurtransferases 1 (STR1). Of note, a mutation of STR1
alone resulted in a shrunken seed phenotype. The shrunken
seed phenotype was associated with delayed/arrested embryo
development (Mao et al., 2011). In addition, the MST1 family
gene OsMST5 plays an important role in early seed development
in rice (Takeda et al., 2001). AET5Gv20084100 was flanking SNP
marker F5XZDLF01AU4HH_125 for KW on chromosome 5D. It
was homologous to the ZAR1 gene in arabidopsis, which belongs
to the RLK/Pelle kinase family (Yu et al., 2016). Maize ARGOS1
(ZAR1) transgenic alleles increase hybrid maize yield, as ZAR1
increased plant and organ size primarily through increasing
cell numbers (Guo et al., 2013). AET5Gv20005900 was flanking
SNP marker be405667Contig1ATwsnp1 for KV and KSA on
chromosome 5D, and it was homologous to ETR1 in arabidopsis,
respectively. In Rice, a reduction of ETR2 expression could
increase the thousand-seed weight (Wuriyanghan et al., 2009).
However, enhanced ethylene response also may be related to a
larger or heavier kernel (Yin et al., 2017). The starch and protein
of rice kernel determine factors of seed dry weight and size
(Duan and Sun, 2005; Yin et al., 2017). Thus, AET5Gv20005900
may presumably affect starch accumulation in A. tauschii, finally
affecting kernel size. The AET4Gv20799000 gene related to
KW and KWL was predicted on the 4D chromosome. It was
homologous to the MAC3B gene in arabidopsis, which belongs
to the U-box family. U-box is a ubiquitin ligase activity-related

protein domain in plants (Li and Li, 2014; Li S. et al., 2018).
Ubiquitin ligases have been identified as key factors of seed
size control in plants (Li N. et al., 2018). For example, grain
width gene GW2 encodes a RING-type E3 ubiquitin ligase and
controls kernel width and weight in rice (Matsuoka and Ashikari,
2007). Finally, AET7Gv20644900 was homologous to NAC047 in
arabidopsis and belonged to the NAC gene family. It was reported
that NAC2 regulates embryogenesis, affecting seed shapes in
arabidopsis (Kunieda et al., 2008; Mathew et al., 2016). As NAC2
and NAC047 belong to the same family, we speculate that these
candidate genes may affect embryo development, kernel size, and
yield. The genes identified by GWAS can be speeds up selective
breeding using CRISPR-Cas9 system, which is a powerful tool
for rapid and effective genetic improvement and allows several
QTL/genes to be edited precisely and simultaneously or even
novel alleles to be created.

CONCLUSION

This in-depth study of A. tauschii provides new insight into its
potential role in wheat improvement. Six kernel traits, including
KL, KW, KWL, KSA, KV, and HKW, were evaluated among
223 A. tauschii over 3 years. H’ was in the range 0.80-0.89,
showing that A. tauschii had high diversity. Kernel traits showed
medium to high heritability (0.74-0.87), and correlation and
linear regressions analyses showed that HKW increased with
increasing KL, KW, and KV. Kernel size traits affected kernel
weight and, subsequently, yield. Our research results revealed that
there are favorable varieties with longer and wider kernels in both
subspecies of A. tauschii. Based on BLUP values, a total of 66
significant SNPs was identified using GWAS, and six candidate
genes were identified as potential genetic drivers of these yield-
related traits. The identified SNPs/genes will speed up the wheat
breeding by MAS and genome-editing technology. It is expected
that the excellent target gene from the D subgenome can be
successfully introduced into wheat, so as to increase the yield of
wheat and broaden the genomic resources of wheat.
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Genetic improvement for quality traits, especially color and meat yield, has been limited
in aquaculture because the assessment of these traits requires that the animals be
slaughtered first. Genotyping technologies do, however, provide an opportunity to
improve the selection efficiency for these traits. The main purpose of this study is to
assess the potential for using genomic information to improve meat yield (soft tissue
weight and condition index), body shape (cup and fan ratios), color (shell and mantle),
and whole weight traits at harvest in the Portuguese oyster, Crassostrea angulata. The
study consisted of 647 oysters: 188 oysters from 57 full-sib families from the first
generation and 459 oysters from 33 full-sib families from the second generation. The
number per family ranged from two to eight oysters for the first and 12–15 oysters for
the second generation. After quality control, a set of 13,048 markers were analyzed
to estimate the genetic parameters (heritability and genetic correlation) and predictive
accuracy of the genomic selection for these traits. The multi-locus mixed model analysis
indicated high estimates of heritability for meat yield traits: 0.43 for soft tissue weight
and 0.77 for condition index. The estimated genomic heritabilities were 0.45 for whole
weight, 0.24 for cup ratio, and 0.33 for fan ratio and ranged from 0.14 to 0.54 for
color traits. The genetic correlations among whole weight, meat yield, and body shape
traits were favorably positive, suggesting that the selection for whole weight would have
beneficial effects on meat yield and body shape traits. Of paramount importance is the
fact that the genomic prediction showed moderate to high accuracy for the traits studied
(0.38–0.92). Therefore, there are good prospects to improve whole weight, meat yield,
body shape, and color traits using genomic information. A multi-trait selection program
using the genomic information can boost the genetic gain and minimize inbreeding in
the long-term for this population.

Keywords: genetic improvement, genomic selection, high density SNP markers, prediction accuracy, genetic
parameters
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INTRODUCTION

The Portuguese oyster, Crassostrea angulata, is becoming an
important aquaculture mollusk species in various parts of the
world, including Asia and Europe (Grade et al., 2016; Vu et al.,
2017a; Gagnaire et al., 2018). The hatchery and production
technologies are well established for this species. A genetic
improvement program was established in Vietnam in 2014 using
stock from three hatcheries to form the base population (Vu
et al., 2017b). Initially, the breeding program focused solely on
increasing the whole weight at harvest using traditional family
selection approaches. The genetic evaluation of the first three
generations (generation interval is 1 year) of the program showed
a considerable genetic gain of around 6.0% per generation in
the whole weight at harvest (Vu et al., 2019). Other traits such
as meat yield, body shape (“cup” and “fan” ratios), and color
of the shell and mantle have more recently been evaluated and
incorporated into the breeding program due to an increasing
market demand for these traits (Vu et al., 2019, 2020). Seafood
color, especially for oysters that are usually sold live or in the
half-shell, affects consumers’ preferences and their willingness to
buy because certain colors are perceived to be associated with
better flavor and quality (Kahn and Wansink, 2004; Xing et al.,
2018). In addition, shell shape has been reported to be related
to meat yield in mollusk species (Gimin et al., 2004). Misshapen
animals fetch a lower price than well-formed oysters (Lee et al.,
2004). Previous studies showed that the heritability for meat
yield, body shape, and color traits varied from 0.13 to 0.57 and
has potential for genetic improvement (Vu et al., 2019, 2020).
Conventional selection, however, is less efficient for traits that
cannot be measured in living animals (Meuwissen et al., 2013).
This is the case for meat yield and mantle color as these traits
require slaughter before measurements can be taken. The current
breeding program relies on measurements of meat yield and
mantle color from the siblings of the selection candidates and
on correlated traits. As a result, selection accuracy has been low
and genetic progress has been slow for these traits. An alternative
would be to add genomic selection for these difficult-to-measure
traits to the breeding program; it is considered a more efficient
way to speed up the rate of genetic progress and increase the
prediction accuracy (Muranty et al., 2014).

Genomic selection is now widely used in many agricultural
species, and it can significantly improve traits that are determined
by many loci with small effects (Robledo et al., 2018b).
Genomic selection can be used to estimate the breeding values
of individuals with no pedigree information and can more
accurately predict breeding values than traditional selection
based on pedigree records because it uses genetic markers to
build a genomic relationship matrix to be used to estimate the
breeding values for individuals that better approximate realized
relationships (Goddard and Hayes, 2007). The advantages of
genomic selection over traditional pedigree-based approaches in
terms of the accuracy of the predictions for polygenic traits have
been well established for aquaculture species (Vallejo et al., 2017;
Gutierrez et al., 2018, 2019; Hollenbeck and Johnston, 2018; Joshi
et al., 2019). In addition, genomic selection is extremely useful for
exploring within-family variability to increase the rates of genetic

gain and to reduce generation intervals (Georges et al., 2019). In
aquaculture species, the accuracy of genomic prediction reported
for growth, carcass, and meat quality traits as well as disease
resistance traits ranged between 0.16 and 0.83 (Castillo-Juárez
et al., 2015; Zenger et al., 2018; Joshi et al., 2019; Liu et al., 2019;
Yoshida et al., 2019). Genomic prediction has not yet been widely
adopted for mollusk breeding, but there are a few examples of
its use for traits such as growth and disease resistance in Pacific
oysters, Crassostrea gigas (Gutierrez et al., 2018, 2019), and pearl
quality in pearl oysters, Pinctada maxima (Jones et al., 2017). To
our knowledge, there are no reports on the genomic prediction
for whole weight in Portuguese oysters nor for meat yield (soft
tissue weight and condition index), body shape, and color (shell
and mantle) in any other oyster species.

The purpose of this study was to (i) estimate the genomic
heritability and genetic correlations for meat yield, color
traits, harvest whole weight, and body shape and (ii)
evaluate the accuracy of genomic prediction for these traits
in Portuguese oysters.

MATERIALS AND METHODS

Oyster Samples
The Portuguese oysters used in this study originated from a
breeding program to improve the whole weight at harvest in
Vietnam (Vu et al., 2019). The oysters were produced in a
hatchery and then raised in the open ocean from spat (2–
4 mm) until harvest. The oyster families were separately raised
in the ocean. Tissue samples were collected from the oysters at
harvest after about a 9-month period of culture. Information
on the animals included sire, dam, spawning date, harvest date,
and rearing condition. Phenotypic measurements taken on the
oysters included whole weight, body shape, meat yield, and
color traits. Tissue samples were collected from a total of 647
oysters: 188 oysters representing 57 full-sib families from the first
generation and 459 oysters representing 33 full-sib families from
the second generation. The number per family ranged from two
to eight oysters for the first and 12–15 oysters for the second
generation. Most of the oysters from the second generation were
progeny of the first generation of oysters (Vu et al., 2021b). All
tissue samples were preserved in 80% ethanol, stored at −80◦C,
and sent to Diversity Array Technology Pty. Ltd., Canberra,
Australia, for sequencing.

Traits Studied
Growth
The oyster shells were cleaned in water before taking the
measurements. The whole weight of oysters at harvest was
recorded using electronic scales with an accuracy of 0.01 g.

Body Shape
The cup and fan ratios were used as indicators of the body shape
of the oysters. The cup ratio was calculated by dividing the shell
width by the shell depth, and the fan ratio was calculated by
dividing the shell length by the shell depth (Walton et al., 2013).
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Meat Yield
Electronic scales with an accuracy of 0.01 g were used to measure
the soft tissue weight. The condition index was calculated as
soft tissue weight multiplied by 100/(whole weight minus shell
weight) (Lawrence and Scott, 1982).

Color
The shell and mantle colors of oysters at harvest were measured
using a FRU colorimeter WR10 8 mm model (Giang et al., 2019)
via a CIELab L∗a∗b colorimeter which determines the color as a
number under a device-independent 3D color model (Leon et al.,
2006). The three dimensions in the model are L∗ (whiteness), a∗
(redness), and b∗ (yellowness). The values of L∗ range from 0
for black to 100 for white; a∗ values are negative for green and
positive for red; and b∗ values are negative for blue and positive
for yellow (b∗ = zero, neutral color) (Giang et al., 2019).

DNA Extraction, Library Construction,
and Genotyping
The frozen oyster mantle samples were sequenced using
DArTSeqTM (Diversity Arrays Technology Pty. Ltd., Canberra,
Australia) at a high marker density of 2.5 million sequences per
sample. Genomic DNA was extracted and purified by Diversity
Array Technology Pty. Ltd. (Supplementary Table S1). The
SNP development and analysis were as described by Kilian
et al. (2012). Briefly, DNA samples were digested with PstI–
SphI (Kilian et al., 2012; Vu et al., 2021a) and then ligated
using two different adaptors with two different restriction enzyme
overhangs. The PstI-compatible adapter consists of Illumina’s
flow-cell attachment, a sequencing primer, and a “staggered”
varying-length barcode region (Elshire et al., 2011). The reverse
adapter included a flow-cell attachment region and a SphI-
compatible overhang sequence. The PCR reaction used to
amplify the mixed fragments of PstI–SphI following the reaction
conditions comprised of an initial denaturation for 1 min at 94◦C,
followed by 30 cycles of 94◦C for 20 s, 58◦C for 30 s, and 72◦C for
45 s, and a final extension at 72◦C for 7 min.

The PCR products from each sample were fed to the c-Bot
(Illumina) bridge PCR, followed by sequencing 77 nucleotide
single-end reads on an Illumina Hiseq 2500. Reads with
inaccurate barcode sequences were filtered out. Approximately
2,500,000 sequences per barcode/sample were used in marker
calling. Finally, identical sequences were collapsed into “fastqcoll
files,” which were “groomed” to correct for low-quality bases.
The “groomed” fastqcoll files were used in a secondary pipeline
incorporating DArT SNP and SilicoDArT (presence/absence of
restriction fragments in representation), called analysis algorithm
DArTsoft14, which clustered all tags from all libraries at a
threshold of 3 for SNP calling. Technical parameters, especially
the balance of read counts for the allelic pairs, were used to parse
into separate SNP loci. Additional selection criteria included
analysis of approximately 1,000 controlled cross-populations and
testing for Mendelian distribution of alleles to assign consistency
scores to classify high-quality/low-error rate markers. Calling
quality was assured by a high average read depth per locus (the
average across all markers was over 30 reads/locus).

The sample and marker statistics are given in Supplementary
Tables S2,S3, respectively. There were 18,849 SNP markers
identified from genotyping by sequencing. Quality control was
conducted with a call rate of 50% of SNP presence in the
samples, leaving 13,048 SNP markers retained for analysis.
The missing genotypes were imputed using the SVS Suite
software with a default setting, changing them to average values
(Bozeman, 2010).

Estimation of Narrow Sense Heritability
and Genetic Correlations
Univariate linear mixed models were used to estimate the narrow
sense heritabilities of the traits. The fixed effects fitted in the
model were generation (age is a linear covariate nested within
generation), sex determined at harvest (age based on spawning
and harvest dates), and their interactions. The additive genetic
effect and the residuals were used as random factors.

Heritability was calculated as the ratio of σ2
a on σ2

p, where σ2
a

is the additive genetic variance and σ2
p is the phenotypic variance

calculated as σ2
p = σ2

a + σ2
e and σ2

e is the residual variance.
Genetic correlations between traits were estimated using

a bivariate version of the same model (Mrode, 2014). All
analyses were conducted using the average information restricted
maximum likelihood procedures in the SVS Suite software
(Bozeman, 2010).

Genomic Prediction
The accuracy of genomic prediction was estimated for all
traits by fivefold cross-validation analysis (training set—80%
and validation set—20%) with five replicates for each trait
using gBLUP through the SVS Suite software (Bozeman, 2010).
The gBLUP method assumes equal distribution and variance
for individual SNP effects. The genome-wide complex trait
analysis method was used to calculate the normalized genomic
relationship matrix in our analysis (Yang et al., 2011). The gBLUP
model is written in matrix notation as follows:

y = m+ Xß+Ma+ e

where y is the vector of phenotypic observations (whole weight,
body shape, meat yield, and color traits), m = overall mean, and
X is the incidence matrix consisting of fixed effects (generation,
sex, age, and interactions) in ß. The matrix M is the incidence
matrix of genetic effects, and the genetic values are g = Ma, such
that gn×1 ∼ N(0n, Gσ2

g) and the genomic relationship matrix is
Gn×n =

MM′∑m
j=1 2pjqj

(VanRaden, 2008), in which p
′

js are the minor

allele frequencies of the SNP genotypes (qj = 1− pj) and σ2
g =

m∑
j=1

2pjqjσ
2
a. Using the genomic best linear unbiased prediction

(GBLUP) (VanRaden, 2008), genetic values were then fitted (on
discovery population) and predicted (on validation population)
by solving the mixed model equation.

The allele substitution effects (ASE) and fixed effect
coefficients obtained from iterations and k-folds of the cross-
validation analysis that gave the largest R2-value were used to

Frontiers in Genetics | www.frontiersin.org 3 July 2021 | Volume 12 | Article 661276169

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-661276 July 8, 2021 Time: 16:39 # 4

Vu et al. Genomic Selection in Oyster

predict the phenotypes of individual animals with the following
model:

ŷ = Xß̂+Mα̂

where ŷ is the predicted phenotypes, X is the fixed effects matrix,
ß̂ is the fixed effect coefficient, M is the genotype matrix, and α̂

is the ASE values.
The fivefold cross-validation using the gBLUP method

was conducted using the SVS Suite (Bozeman, 2010). The
actual and predicted phenotypes were compared using linear
regression analysis. The coefficient of determination (R2) from
the regression analysis was used to assess the predictive ability
of the gBLUP model for the traits studied. Furthermore,
the animal effects were also predicted by traditional BLUP
using the pedigree-based numerator relationship matrix for
comparison with the genomic-based predictions described above.
The pedigree summary of the oyster population in this study is
given in Supplementary Table S4.

Population Genetics
Nucleotide diversity was estimated using the method developed
by Nei and Li (1979). Using an in-house computer program,
the genotype file obtained from DArTSeq was converted to the
variable call format (VCF). This file was used as an input for
the online software VCF2PopTree (Subramanian et al., 2019) to
obtain the pairwise divergence matrix of all combinations of
oyster individuals. This matrix was then used to construct a
neighbor-joining tree using the software MEGA (Kumar et al.,
2018). Fixation index (FST) was calculated using the nucleotide
diversities of the total and sub-populations (Nei, 1973).

RESULTS

Phenotypic Data
The summary statistics of the traits are shown in Table 1.
The average whole weight at harvest calculated from the 647
oysters in this study was 51.07 g, with the data range within
three standard deviations of the mean (Table 1). There was
considerable variation in whole weight, with a wide range from
15.71 to 69.90 g. The shell and mantle color had a significant
yellow component (mean b∗ significantly greater than zero) and
was dark (L around 25% but with considerable variation). The
average cup and fan ratios indicated a typical depth/width/length
ratio of 1:1.6:2.9. The largest variation levels were also found
in color traits of tissues and shells, especially for shell color
a∗, with values from −2.07 to 54.96, and mantle color L∗,
from 7.24 to 63.70.

Heritability and Genetic Correlation
The genomic heritability (h2), the proportion of total variance
explained by the SNP markers, ranged from 0.14 to 0.77 (Table 2).
The heritability of the shell color traits ranged from moderate
to high (0.14–0.54), and the estimates of heritability were 0.13
for a∗ (red), 0.26 for b∗ (yellow), and 0.34 for L∗ (lightness).
For the mantle, these traits had heritabilities of 0.54 for red,
0.49 for yellow, and 0.34 for lightness. The heritability estimates

for meat yield traits were relatively high (0.43–0.77). Similarly,
the estimate of heritability for whole weight was quite high at
0.45. However, the heritability estimates for body shape using the
indicators of cup and fan ratios were low to moderate at 0.24 and
0.33, respectively.

Genetic Correlations
The positive genetic correlation between whole weight and soft
tissue weight was high at 0.63, suggesting that selection for
improved whole weight can result in desirable changes in soft
tissue weight. However, low or insignificant genetic correlations
were observed between whole weight and the other traits: color
traits (−0.14 to 0.34), condition index (0.18), and body shape
(0.08–0.14), implying that the selection for growth would result in
little or no changes in these traits in this population. In addition,
the genetic correlations between whole weight and all color traits
were not only small, but they all had large standard errors and
were therefore not significant. The genomic genetic correlations
(rg) of whole weight with the other traits are presented in
the Table 2.

Accuracy of Genomic Prediction
Table 3 shows the prediction accuracy of genomic selection
for the traits using the fivefold cross-validation method. High
prediction accuracies using GBLUP were found for meat yield
and color traits, where measurements cannot be taken on living
animals. The accuracies were 0.71 for soft tissue weight and 0.49
for condition index. For the color traits, the accuracies ranged
between 0.38 and 0.92. The GBLUP prediction accuracy was
comparatively high for the harvest whole weight at 0.74; similarly,
the body shape traits also showed a high accuracy, with 0.40 for
cup ratio and 0.63 for fan ratio. Across all traits, the GBLUP
predictions had higher prediction accuracies than the traditional
BLUP prediction accuracies.

The association test of predicted and actual phenotypes for
four predominant traits are presented in Figure 1A for the whole
weight, Figure 1B for soft tissue, Figure 1C for mantle color a∗,
and Figure 1D for mantle color b∗. The R2 values varied from
0.37 for the mantle color L∗ to 0.91 for the shell color a∗.

DISCUSSION

Our results have made five important discoveries that can be
used to improve the genetic progress of the current breeding
program for Portuguese oysters. Specifically, they answer the
following questions.

Is There Any Genetic Variation in the
Traits Studied?
Our analysis indicated a large genetic variation, with estimates of
genomic heritability falling in the range of 0.14–0.77. Our results
were somewhat higher than those we have previously obtained
with the traditional pedigree-based relationship matrix in the
same population (Vu et al., 2019). The genomic heritability for
meat yield and body shape, in particular, was much larger than
that reported using a pedigree-based estimation (Vu et al., 2019).
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TABLE 1 | Summary of the phenotypic data.

Groups Traits Unit n Mean SD Min Max

Growth Whole weight g 647 51.07 16.13 15.71 69.90

Body shape Cup ratio Ratio 361 1.61 0.33 0.74 2.60

Fan ratio Ratio 361 2.93 0.72 1.46 5.07

Meat yield Soft tissue weight g 490 9.55 3.13 1.05 19.92

Condition index Index 284 67.78 21.65 14.29 99.93

Color Shell color a* CIELab 306 2.35 3.71 −2.07 54.96

Shell color b* CIELab 306 11.58 4.25 3.99 43.02

Shell color L* CIELab 306 23.63 12.30 6.49 69.71

Mantle color a* CIELab 448 4.40 3.46 0.16 24.60

Mantle color b* CIELab 448 10.11 4.01 1.02 23.30

Mantle color L* CIELab 448 24.21 8.73 7.24 63.70

TABLE 2 | SNP heritability (h2) and genetic correlations (rg) of whole weight with other traits.

Groups Traits Heritability Genetic correlation

h2 SE rg SE

Growth Whole weight 0.45 0.06

Body shape Cup ratio 0.24 0.10 0.14 0.24

Fan ratio 0.33 0.08 0.08 0.15

Meat yield Soft tissue weight 0.43 0.07 0.63 0.10

Condition index 0.77 0.07 0.18 0.15

Color Shell color a* 0.14 0.07 −0.13 0.22

Shell color b* 0.26 0.09 −0.02 0.13

Shell color L* 0.34 0.09 0.34 0.19

Mantle color a* 0.54 0.06 −0.13 0.13

Mantle color b* 0.49 0.07 −0.14 0.15

Mantle color L* 0.34 0.09 0.14 0.19

TABLE 3 | Genomic prediction accuracy of the traits with GBLUP and traditional BLUP.

Factors Single variate linear mixed model

Groups Traits GBLUP BLUP

Growth Whole weight 0.74 0.66

Body shape Cup ratio 0.40 0.29

Fan ratio 0.63 0.55

Meat yield Soft tissue weight 0.71 0.51

Condition index 0.49 0.22

Color Shell color a* 0.92 0.46

Shell color b* 0.62 0.65

Shell color L* 0.83 0.66

Mantle color a* 0.87 0.67

Mantle color b* 0.89 0.44

Mantle color L* 0.38 0.14

Similarly, the estimates of heritability based on SNP markers for
mantle color traits (h2 = 0.34–0.54) were around twice those
based on pedigree (h2 = 0.15–0.33) (Vu et al., 2020). These
differences between genomic and pedigree heritability estimates
of meat yield, body shape, and color traits are most likely due to
errors in pedigree recording between spawning and harvesting.
These results suggest that genomic selection can be extremely
efficient for traits that cannot be measured directly on the

selection candidates especially since oyster breeding involves a
few large families, and pedigree information is difficult to record
accurately. Unfortunately, there have been no other studies using
a genomic selection approach to estimate heritability for meat
yield, color, and body shape traits in mollusk species that could
be used for comparison. Finally, the estimation of heritability
for whole weight in this study was significantly higher than that
reported in the Pacific oyster by Gutierrez et al. (2018) (h2 = 0.45
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FIGURE 1 | Prediction accuracy for whole weight (A), soft tissue weight (B), mantle color a (C), and mantle color b (D).

vs. 0.35, respectively). However, estimated heritability in genomic
selection can also depend on species, sample size, marker
density, relationship of reference and validation population,
and statistical methods for analysis (Georges et al., 2019). It
should be noted that our population is highly inter-related, and
the high estimates probably only pertain to selection within
that population.

Does This Genomic Analysis Predict
That Selection for Harvest Whole Weight
Will Affect Body Shape, Meat Yield, and
Color?
The genetic correlations obtained with the GBLUP analysis
were generally similar to those obtained from the traditional
BLUP method (Vu et al., 2019). The high and positive genetic
correlation between harvest whole and soft tissue weight
indicates that these two traits are controlled by some common
sets of genes. This result is in line with the previous estimate
by Vu et al. (2019) using the BLUP method (0.63 for GBLUP
vs. 0.50 for BLUP). Therefore, soft tissue weight will increase
along with the harvest whole weight under the selection for
harvest whole weight. Meanwhile, the small positive genetic

correlations found between harvest whole weight and body
shape show that there is some/limited potential to improve
these traits by selection for harvest whole weight, and any
genetic progress will be very slow. Therefore, trait groups such
as whole weight, body shape, and meat yield can improve in
the same direction, and this suggests that the selection for one
trait (harvest whole weight) will lead to an improvement in
these other traits. In contrast, the negative and positive but
low genetic correlations between whole weight and color traits
found in this study agree with those reported in the same
population using the pedigree BLUP method (Vu et al., 2020).
Consequently, our results suggest that no potential exists to
improve color traits by selection for harvest whole weight. Taken
together, this study provides fundamental information to better
understand the genetic architecture of quantitative complex traits
in Portuguese oysters.

Is Genomic Selection Reliable for the
Traits Studied?
Our study reports, for the first time, the predictive accuracy of
genomic selection for color and meat yield traits in a mollusk
species. The predictive accuracies using the GBLUP model for
meat yield and color traits were significantly higher than those
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FIGURE 2 | The structure of the population for this Portuguese oyster population in the first generation. Colors represent four distinct clusters based on genetic
similarities. Roman numerals represent the whole weight category that the individual belong to: I: 30–40, II: 40–50, III: 50–60, IV: 60–70, and V: >70 g. This figure
demonstrates that the oysters in the population do not cluster based on their whole-body weight but only based on their genetic relationship.

obtained from the pedigree BLUP model, suggesting that the
genomic selection for these traits is more efficient than the
pedigree-based selection. The predictive accuracies using the
GBLUP method for meat yield and color traits are in good
agreement with those reported in banana shrimp (Nguyen et al.,
2019). However, these accuracies were higher than those obtained
for growth-related traits in the Pacific oyster (Gutierrez et al.,
2018), Pacific white leg shrimp (Wang et al., 2017), and yellow
drum (Liu et al., 2019). In addition, the accuracies from our
study are high due to the close relationships of the sampled
oysters. The differences among the studies could originate from
the SNP marker density, the set of SNP markers used for the
analysis (Liu et al., 2019), the training population size (Andonov
et al., 2017; Zenger et al., 2018; Georges et al., 2019), the
relationship between the training and validation datasets (Hayes
and Goddard, 2001), the relationships between individuals in the
reference population (Hayes et al., 2009), and the heritability
of the traits (Daetwyler et al., 2008; Georges et al., 2019).
To the best of our knowledge, no studies have reported the
prediction accuracy of genomic selection for body shape in
any other aquaculture species. Collectively, across aquaculture
species, our estimates of accuracies for whole weight, body
shape, meat yield, and color traits in Portuguese oysters fall in
the range observed in other aquaculture species (Zenger et al.,
2018). The high levels of prediction accuracy open new selection
opportunities to improve meat yield and color traits in the
Portuguese oyster.

Does Population Stratification Affect the
Results of This Study?

To quantify the genetic variation in the data, we estimated the
nucleotide diversity, which produced a value of 0.009, suggesting
0.9% variation in the population. This estimate was slightly less
than that observed for the Pacific oyster (1.2%) (Zhang et al.,
2012). One of the confounding factors in genomic selection
method is the structure of the populations, owing to the effects
of genetic drift (Goddard and Hayes, 2007). Some of the genetic
markers can, by chance alone, correlate with the traits due to
the familial or pedigree structure of the populations compared.
To examine the genetic relatedness among the first-generation
animals, we selected 50 individuals, excluding their siblings.
We categorized these oysters based on their whole-body weight
as I: 30–40, II: 40–50, III: 50–60, IV: 60–70, and V: >70 g.
We then constructed a neighbor-joining tree (Figure 2), which
revealed four distinct clusters (four colors) in the population
based on their genetic similarities. The fixation index (FST) of
0.13 among these clusters suggested the existence of a population
structure. However, it is evident from Figure 2, which shows
that the whole weight of the members of each cluster varies
significantly within a cluster. Therefore, these results suggest
that the population structure observed in the data does not
correlate with the phenotypic trait (whole weight) evaluated in
this study. Hence, population stratification is unlikely to influence
the results of this study.
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Are There Any Prospects for Using
Genomic Selection in This Portuguese
Oyster Population?
Genomic selection programs can be improved by using updated
estimates of genetic parameters and benefiting from the higher
predictive accuracy for quantitative complex traits, especially
meat yield and color traits, in the Portuguese oyster. The
favorably positive genetic correlations between whole weight,
body shape, and meat yield traits found in this study suggest
that there is little need to use a selection index to improve these
related traits. To further illustrate, the heritability and genetic
correlations from our study were used in SelAction (Rutten et al.,
2002) to simulate the selection process and indicated that the
traits whole weight, meat yield, and body shape can be improved
simultaneously. The selection for enhancing whole weight results
in beneficial changes in the other traits. However, it is necessary
to use a selection index to improve color traits as well as weight
traits due to the low genetic correlations between whole weight
and color traits.

Collectively, the results from this study showed that there
are prospects for the application of genomic selection to
improve a range of complex traits in the Portuguese oyster.
Consequently, further studies should be carried out to collect
further information on predictive power and potential genetic
gain. Firstly, the training population size needs to be increased
to obtain a more accurate prediction (Goddard, 2009), i.e., we
need to increase our sample size from the rather small population
of 647 oysters used in this study to a much larger reference
population which represents more families and generations. One
strategy can be a mixture of low- and high-density panels, where
the broodstock is sequenced at a higher marker density and
the offspring are sequenced at a lower density, and then the
lower density panels are imputed up to the higher density for
the genomic prediction (Yoshida et al., 2018; Tsairidou et al.,
2020). This strategy allows a larger number of samples to be
sequenced, thus a larger training population size. This has been
done at medium density in Pacific oysters for growth-related
traits or in salmon (Gutierrez et al., 2018). Secondly, the use of
a genome-wide association study—informative SNPs instead of
random SNPs—was able to assist in improving the predictive
accuracy (Liu et al., 2019). Therefore, the use of a smaller number
of informative SNPs may help to reduce the cost of genotyping in
this population. Thirdly, the prediction equations were evaluated
in the reference population in which both phenotypes and
genotypes were available; validation should be carried out in
a breeding population where the selection candidates are the
training population, and validation is on subsequent generations.
Fourthly, individual grouping methods such as mean weight of
family based on genomic information should be considered in
Portuguese oysters to improve the accuracy for further studies.
These individual grouping methods have been shown to increase
the predictive accuracy and resulted in a higher genetic gain
(Chu et al., 2019).

From the discussion above, the optimization of genomic
selection will reduce the generation interval and increase the
genetic gain in this population. Lowering the generation interval
may result in an increase in inbreeding rate in the long-term.

Therefore, to balance between inbreeding rate and genetic gain,
genetic improvement programs have applied optimal genomic
selection methodology and strategies (Nielsen et al., 2011;
Gorjanc and Hickey, 2018; Robledo et al., 2018a). For the
Portuguese oyster sector, if genomic selection is integrated into
the breeding program, it could reduce the generation interval
below 1 year per generation. The lower generation interval
contributes to a faster life cycle, resulting in a higher economic
revenue due to saving labor and time. In addition, estimates of
breeding values using genomic information are more accurate
than those using physical tags in the pedigree, where errors may
occur during spawning, larval rearing, or pedigree management.
Therefore, genomic selection will allow a more accurate selection
of oysters to become parents in the next generations. However,
a major impediment to widely using genomic selection in the
aquaculture industry is the cost of genotyping and phenotyping
the selection candidates. The former can be dealt with by using
low-density SNP panels that can balance between prediction
accuracy and sequencing costs to achieve the accuracy needed for
genomic selection (Lillehammer et al., 2013; Gutierrez et al., 2018;
Tsairidou et al., 2020; Boudry et al., 2021; Vu et al., 2021a).

CONCLUSION

The predictive accuracy using genomic selection was relatively
high for all the traits studied. In addition, the estimates of
heritability in the meat yield traits such as soft tissue weight and
condition index were high, while those of color traits such as shell
and mantle color were from low to high. The genomic selection
for improvement of whole weight leads to desirable changes in
other traits, such as meat yield and body shape traits, but will not
affect color traits. Future breeding programs should combine all
traits into a selection index to bring about higher revenues for
aquaculture farmers and entrepreneurs.
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Non-typhoidal Salmonella, particularly Salmonella enterica serovar Typhimurium (S.

Typhimurium), is the predominant endemic serovar in the Australian egg production

industry and is one of the most frequently reported serovars in foodborne infections

in Australia. This study was conducted to investigate the genomic characteristics of

Salmonella isolated from retail table eggs in Western Australia and to identify the impact

of production systems on genomic characteristics of Salmonella such as virulence and

antimicrobial resistance. A total of 40 non-typhoidal Salmonella isolates [S. Typhimurium

isolates (n = 28) and Salmonella Infantis isolates (n = 12)] sourced from retail eggs

produced by different production systems (barn-laid, cage, and free-range) in Western

Australia were sequenced by whole-genome sequencing. The isolates were de novo

assembled, annotated, and analyzed. The results indicated an association between

Salmonella genomic variation and the system used to raise poultry for egg production

(p-value< 0.05). All but one of the S. Infantis isolates were recovered from eggs collected

from poultry raised under barn and cage production systems. A higher proportion

(83.3%) of S. Typhimurium isolates were recovered from the eggs produced by free-range

production system as compared with those produced under barn (76.9%) and cage

production systems (53.3%). Our analysis indicated that Salmonella isolated from the

eggs produced by barn and cage production systems had more virulence genes than

the isolates of the free-range produced eggs. A low carriage of antimicrobial-resistant

gene was detected in the isolates of this study. We have built a Salmonella genomics

database and characteristics-linked gene pools to facilitate future study, characterization,

and tracing of Salmonella outbreaks.

Keywords: Salmonella, genomics, egg production system, antimicrobial resistance, virulence, genome

environment interaction
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BACKGROUND

Salmonella are gram-negative bacteria known for more than
100 years to cause foodborne illness in humans. Salmonella are

considered host-adapted tomanywild and domesticated animals,
based on their international distribution and high prevalence in

poultry, pigs, and sheep (1). Among 2,600 identified Salmonella
serovars (2), non-typhoidal serovars have been recognized as

the source of 550 million foodborne illnesses annually in the
world with 230,000 deaths every year in the world (3); however,
many of these Salmonella-associated illnesses are preventable

with appropriate interventions. Foodborne disease surveillance
can be used to gather evidence to help identify emerging strains
and resistance that could help in designing appropriate control

measures and to evaluate the efficacy of interventional efforts.
In Australia, an estimated 5.4 million cases of foodborne

disease occur annually, costing an estimated $1.2 billion per

year (4). A number of different Salmonella serovars have been
isolated in humans and food animals in Australia; however,
Salmonella enterica serovar Typhimurium (S. Typhimurium)
is the predominant endemic serovar in the Australian egg
production industry and is the most frequently reported serovar
in foodborne infections (5, 6). Between 2011 and 2014, 128
outbreaks of S. Typhimurium in humans resulted in 2,343 cases
with 347 requiring hospitalizations due to consumption of raw
eggs and raw egg-related products in various food preparation
settings across Australian states/territories, particularly in New
SouthWales, Queensland, andVictoria (7). Recently, a significant
preference of Australian consumers for eggs from cage-
free production systems (free-range and barn-laid) has been
observed, due to the perception that non-cage production
systems produce safer and higher-quality eggs (8) and to public
concerns for animal welfare (9).

Over the past decade, Western Australia (WA) has
experienced a higher rate of occurrence of human Salmonella
infection, for both S. Typhimurium and non-Typhimurium
infections, when compared with the overall national average
(10). Better strategies for preventing and managing Salmonella
outbreaks are of critical importance, and these require improved
understanding of the genetic characteristics linked to the
mutation, serovar, virulence, and antimicrobial resistance of
Salmonella. Genomic and metagenomic researches on bacteria
play an important role in public health and food safety.
The increasing use of whole-genome sequencing (WGS) of
Salmonella isolates from outbreaks provides a rapid, highly
accurate, and discriminatory source tracing and identification
of strains. However, there are limited surveillance data and
resources available in WA, which have resulted in a lack
of detailed understanding of the Salmonella outbreaks that
occurred in WA.

There have been studies in the USA on the safety of non-
cage egg production systems, and it has been hypothesized that
non-cage production systems may lead to higher likelihood
of exposure to pathogens by chickens, including Salmonella
(11, 12), due to higher exposure of layer flocks to the
outdoor environment, pests, and wildlife vectors. The recent
expansion of non-cage production systems has raised concerns

about the potential increase in pathogens,such as Salmonella,
on eggs arising from contaminated farm environments (13).
We isolated Salmonella strains from eggs available through
retail supermarkets in metropolitan Perth, the capital of WA,
as previously described (14). Apart from confirming serovar
diversity and multilocus sequence types (MLSTs), we conducted
WGS to form a better understanding of the genomic mechanisms
of the Salmonella isolates. In total, we sequenced 40 isolates
consisting of three different egg production systems (barn-
laid, caged, and free-range). The goals of the study include (1)
understanding the genomic characteristics (serovar and MLST)
of the Salmonella from the WA egg industry and (2) assessing
the association between production systems and the genomic
characteristics of Salmonella such as mutation, virulence, and
antimicrobial resistance. This study also indicated the likelihood
impact of the environment in driving variations in Salmonella
genomes and thus forms a basis for devising more effective
guidelines and recommendations for industry to better manage
the risks of public health in Salmonella outbreaks.

MATERIALS AND METHODS

Sampling
We isolated Salmonella strains from egg samples (each
containing one dozen eggs, totalling 2,400 eggs of 200 dozen
packages) purchased from different supermarket chains across
Perth residential suburbs. The sample size was calculated as 101
using previously described pooled sampling with Epitools online
for uncertain test sensitivity and specificity (15). The estimated
true prevalence was considered at precision level of 5% and
desired confidence level of 95%, assuming 90% sensitivity and
specificity of the test. Subsequently, we collected 200 pool samples
to further minimize bias and to represent diversity of retail
chain. Details of sample collection and Salmonella isolation were
described in our previous investigation (14). The proportion of
samples from each production system was targeted at∼50% free-
range (93 dozen packages), 30% cage-laid (68 dozen packages),
and 20% barn-laid (39 dozen packages). These sampling ratios
of the production systems were chosen in an effort to reflect the
recent egg production demand proportion in Australia (16).

Isolation, Identification, and Serotyping of
Salmonella
Salmonella isolation was performed according to the ISO 6579-
1:2017 standard and followed the procedure described by (17).
In summary, the bag containing crushed shells was weighed
and mixed a corresponding volume of Buffered Peptone Water
(BPW) (Oxoid, Hampshire, UK) to obtain sample-to-diluent
ratio at 1:9. Then the mixture was homogenized in a stomacher
for 1min. The bag containing the pooled egg contents of the same
sample unit was first blended in a stomacher for 2min in 25ml
and was homogenized for 1min with 225ml of BPW. Both of the
homogenized crushed shells and contents were incubated at 37◦C
for 48 h. After pre-enrichment of the incubated homogenate, 1ml
was inoculated into Muller-Kauffman Tetrathionate Novobiocin
Broth (MKTTn) (Oxoid, Hampshire, UK), and also from the
same homogenate 0.1ml was spotted (three drops) on the surface
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of Modified Semi-solid Rappaport Vassiliadis (MSRV) (Oxoid,
Hampshire, UK). MKTTn was incubated for 24 h at 37◦C,
while MSRV was incubated at 41.5◦C and checked after 24 h
for a migration zone (turbid, white halo, with radius larger
than 10mm). MSRV plates with no migration zone after 24 h
were checked again after 48 h. Streaks from both MKTTn broth
and MSRV media were applied on Xylose Lysine Deoxycholate
(XLD) agar (Oxoid, Hampshire, UK) and Brilliant Green (BGA)
agar (Oxoid, Hampshire, UK), which were then incubated at
37◦C for 24 h. Presumptive (up to five) colonies with suspected
Salmonella morphology were selected from both selective media
and transferred into Nutrient Agar (Oxoid, Hampshire, UK)
plates. After incubating Nutrient Agar plates at 37◦C for 24 h,
well-isolated colonies were confirmed to species level using
matrix-assisted laser desorption ionization–time-of-flight mass
spectrometry (MALDI-TOFMS) using the Microflex instrument
(Bruker Diagnostics, Berlin Germany). All confirmed Salmonella
isolates (up to five isolates per positive sample) were sent for
serotyping (Kauffmann-White-Le Minor scheme) by a nationally
accredited reference laboratory (PathWest Laboratory, Perth,
WA, Australia). Isolates from confirmed positive egg samples
were stored at −80◦C till further use. A total 40 non-typhoidal
Salmonella isolates were selected for WGS based on diversity in
production systems.

Whole-Genome Sequencing
DNA was extracted using the BIOLINE DNA extraction
kit (ISOLATE II, Genomic DNA Kit) according to the
manufacturer’s instructions. Library preparation was performed
using an Illumina NexTera R© XT library preparation kit
(Illumina, San Diego, CA, USA) as per manufacturer’s
instructions. The library preparations were sequenced on
an Illumina NextSeq platform using a mid-output 2× 150 kit.

Genome Assembly
All the raw sequencing reads were analyzed by using FastQC
(version 0.10.1) and MultiQC ver 1.8 (18) to check for read
quality. To alleviate contamination from adaptor and vector
sequences, the raw read sequences were examined against a
comprehensive Illumina adaptor sequence and contaminant
library created in-house; and adaptor sequences were removed
from the reads when detected. If a read had more than 30
base pair (bp) contaminant sequences, reads were considered
problematic and discarded. The raw reads were further processed
to remove PCR artifact: only one copy was retained for exactly
stacked reads.

The filtered reads were de novo assembled using SPAdes
software ver 3.11.1 (19) in paired-end mode. Default parameters
for SPAdes were used to generate contigs; error correction and
Kmer sizes were set to auto. The contigs files were scaffolded by
using SSPACE ver 3.0 (20), minimum scaffold size was set to 300
bp, and expected insert size was set to 150 bp with minimum
allowed error of 50%.

All read data generated in this study have been deposited
in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive, and the 40 whole-genome-sequenced
Salmonella isolate accession numbers are in a continuous serial

between SAMN12097892 and SAMN12097931 (project accession
number PRJNA549805).

Serotype, Multilocus Sequence Type, and
Virulence Gene Identification
The assembly genomes were uploaded to the Centre for Genomic
Epidemiology (http://www.genomicepidemiology.org/) to
screen for serotype using SeqSero 1.2 (21), MLST by using
MLST ver 1.8 (22), and the contents of virulence genes by
VirulenceFinder ver 2.0 (23). The antibiotic resistance genes
were also identified by using ResFinder ver 3.1 (23) and NCBI’s
curated Bacterial Antimicrobial Resistance Reference Gene
Database (NCBI, https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA313047).

Genome Annotation and Comparative
Analysis
Prokka ver 1.1.2 (24) was used to annotate the gene and
microRNA contents of the genome assemblies with bacteria
kingdom as annotation model. Standard annotation files,
including GFF and GBK annotation files, were generated by
running Prokka. Salmonella pathogenicity islands (SPIs) were
detected with SPIFinder ver 1.0 with default parameters (25) and
by BLAST against known SPIs. Prophage regions were identified
with PHASTER ver 1.0 (26). Pseudogenes were determined with
Pseudofinder ver 0.10 (27) with standard parameters and length
0.8. Genomic rearrangements were detected with progressive
Mauve ver 2.4.0, with standard parameters (28). Roary pipeline
ver 3.11.2 (29) was used to perform whole-genome comparison
and generate a pan-genome of the sequenced Salmonella isolates
at default parameter set. Scoary ver 1.6.16 (30) and R ver 3.3.2 (9)
were used to evaluate the significance of association of the genes
identified in the pan-genome with different factors, including
serovar and production systems.

Phylogenetic Analysis
From the phylogenetic analysis, single copy gene families,
and multigene families that are conserved among species are
identified. Lineage-specific genes, which may contribute to
species-specific phenotypes, are determined. Phylogenetic tree
of Salmonella isolates included in the pan-genome analysis was
inferred using maximum likelihood approach (PhyML ver 3.3
under smart model selection) (31) on the single copy orthologous
genes identified by Roary with 100 bootstrap replicates. The
phylogenetic trees were visualized by using R package “ggtree” ver
2.2.4 (32). The phylogeny was inferred as unrooted and without
using outgroups.

Pathway
Pathway analysis was performed by using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database
(33). Annotated genes were supplied to KEGG database through
the online interface to map to functional pathways. Identified
virulence genes and antimicrobial-resistant genes were searched
to identify the pathways they are likely to be involved with by
using KEGG database. The associated pathways were visualized
by KEGG online access interface.
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Statistical Analysis
The basic genome assemblies’ statistics were calculated in
R using custom R scripts. The association analysis between
Salmonella pan-genes and other egg production factors including
production system and serotype were performed using Scoary
(https://github.com/AdmiralenOla/Scoary). Scoary employs
several procedures to filter and perform the association (30).
Bonferroni-adjusted p-values ≤0.05 were used as significance
cutoff for Scoary-based association results. Fold change was also
used as the secondary criterion in determining the significance
of the association. All the downstream statistical analysis and
visualization were performed in R using custom R scripts. R
packages “ggplots” (34) were used for exploratory analysis;
package “ggtree” was used for plotting the phylogenetic tree;
“pathfindR” (35) was used for pathway analysis.

RESULTS

Genome Assembly and Annotation
All 40 Salmonella isolates were assembled to a near-complete
form with an average genome size of 4,825,017 bp. The genomes
were assembled at high continuity with an averageN50 of 257,277
bp, the largest N50 achieved for a single isolate is around 460,000
bp, and the average number of scaffolds is 76. The complete
list of the basic statistics of the assemblies of all isolates is
given in Supplementary Table 1. The detailed statistics of the
assembly of one sample S30, a randomly selected retail isolate
from an egg produced in a caged production system, is given
in Supplementary Figure 1 as an example to demonstrate the
quality of the assembly.

A pan-genome of Salmonella isolates was constructed by
genome comparison among all 40 retail isolates of all three
production systems. The genic sections of the isolate genomes
were identified to be quite reserved. In total 5,604 genes were
identified across the 40 retail Salmonella isolates, while 38
isolates share 3,980 core genes, and 1,145 genes were identified
shared between six and 38 isolates. In comparison, 479 genes
were identified as “cloud genes” that were unique to individual
isolates (Figure 1). The functional annotation indicated that

the most abundant functional pathways of the bacteria include
amino acid transport and metabolism; energy production and

conversion; translation and transcription-related activities
including ribosomal structure and biogenesis, replication,
recombination, and repair; posttranslational modification,
protein turnover, and chaperones; and cell wall or membrane-
related biogenesis, signaling, and transport. The overview of the
functional categories of the gene annotations is given in Figure 2.

A local sequence database of Salmonella was constructed,
which hosts genome sequences, protein sequences, and
annotations. The web-based interface was provided, which
enables concurrent enquiries and searches.

Serotype Drives the Main Genomic
Divergence
Serotype analysis indicated that the retail isolates consisted of
two different serovars: 12 isolates were identified as Salmonella
Infantis and 28 isolates as S. Typhimurium. Interestingly, all

FIGURE 1 | The pan-genome of the retail Salmonella isolates, core genes,

shell genes, and cloud genes were identified by comparing the isolates.

of the S. Infantis isolates except one were recovered from
samples collected from barn and cage production systems,
while S. Typhimurium isolates were recovered from samples
from the free-range production system (n = 11) as well
as barn and cage (n = 17) (Supplementary Table 1). An
obvious genetic divergence between these two serotypes can
be observed, and this contributes to the majority of the total
genomic variations presented by the isolates. Firstly, the
genome sizes of S. Infantis isolates were consistently smaller
than the genome sizes of S. Typhimurium isolates (Figure 3).
Secondly, the MLST analysis indicates that S. Infantis isolates
have more MLSTs given their smaller genomes compared
with S. Typhimurium isolates (Supplementary Table 1). The
phylogenetic analysis using maximum likelihood approach on
the core gene sets shared by the isolates consistently identified
these two serotypes to have different origins. The inferred
evolutionary tree is given in Supplementary Figure 2. Based
on the gene presence and absence, in total, 924 genes were
identified to be differentially associated with the serotypes
with Bonferroni-adjusted p-values smaller than 0.05. The
most consistent genes include S. Infantis unique genes (3-
oxoacyl-[acyl-carrier-protein] reductase FabG, 50S ribosomal
protein L36 2, aldo-keto reductase IolS, and arsenic resistance
transcriptional regulator ArsR2, etc.) and S. Typhimurium
unique genes (2-dehydro-3-deoxy-6-phosphogalactonate
aldolase, 2-nitroimidazole transporter, carbohydrate diacid
regulator, 3-hexulose-6-phosphate isomerase, 60 kDa SS-A/Ro
ribonucleoprotein, abequosyltransferase RfbV, acetylornithine
deacetylase, antirestriction protein KlcA, antitoxin CcdA, DinJ,
VapB, aspartate aminotransferase, and so on). A heatmap
displaying the genetic distribution of the identified differential
genes is given in Figure 4A.
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FIGURE 2 | The functional annotation of the genes identified from collected isolates.

FIGURE 3 | The boxplots of the isolates genome sizes. The Salmonella Infantis

and Salmonella Typhimurium serotypes were grouped separately by the three

different egg production systems, namely, barn, cage, and free-range.

Production System Leads to Genetic
Variations
Apart from the serotype difference, the second most important
source of the genomic divergence among the isolates was

identified to be associated with the egg production systems.
Around 40 genes were identified to be able to distinguish
the egg production systems by their presence or absence
with an adjusted p-value <0.05 and 33 of which have
odd ratios >2, which is given in Supplementary Table 2.
A heatmap showing the genetic difference presented by
the key genes is shown in Figure 4B. The most dominant
divergence in gene compositions among the three production
systems was observed in the free-range isolates. Our results
indicated that the Salmonella isolated from eggs sourced
from barn and cage production systems were genetically
less diverse than the ones sourced from free-range systems.
The most distinguishing genes of the isolates recovered from
the eggs produced by free-range production system from
the isolates recovered from the eggs produced by barn
and cage systems include DNA translocase FtsK, L-aspartate
oxidase, Macrolide export ATP-binding/permease protein MacB,
exodeoxyribonuclease 8, and lysozyme RrrD. These genes
were identified to be associated with translocating genes,
regulating gene expression, cell wall division and formation,
sugar metabolism, and phosphorylation in bacteria (36–
42). This demonstrates that the Salmonella isolated from
eggs source from barn and cage production systems have
undergone different mutations that have somehow altered their
genomic compositions.
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FIGURE 4 | The heatmap of the genomic composition comparison by different factors. (A) The heatmap comparing Salmonella Infantis and Salmonella Typhimurium

serotypes on the genes identified to be differentially associated with the serotypic difference. (B) The heatmap comparing different egg production systems on the

genes identified to be differentially associated with barn, cage, and free-range production systems.
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Production System Associated With
Virulence
Searching the assembled genomes against virulence gene
database (43), we identified four genes that are associated
with virulence, i.e., SpvB, SpvC, sseL, and PhoQ, belonging to
the Salmonella plasmid virulence gene family and are mainly
involved with the pathogen’s toxin and promote the survival
and rapid growth of Salmonella in the host. Interestingly, these
virulence genes were identified in the isolates from barn and cage
produced eggs, and free-range isolates were largely free of these
virulence genes.

PhoQ controls expression of more than 40 genes and
is required for intracellular survival, cationic antimicrobial
peptides resistance, and stimulation of cytokine secretion. sseL
gene is a deubiquitinase required for macrophage killing and
virulence. The associated genes and their biological pathways are
given in Supplementary Figure 3, where the identified virulence
genes are marked in red. From Supplementary Figure 3, the
detailed regulation mechanisms of the virulence genes can be
seen. The Spv family genes are involved in the Salmonella
infection pathway. SpvB and SpvC are involved in the actin
depolymerization by regulating F-actin.

Our analysis has observed little evidence of antimicrobial
resistance genes from the Salmonella isolates after comprehensive
searching through the NCBI’s curated Bacterial Antimicrobial
Resistance Reference Gene Database, while two isolates were
estimated to contain a β-lactamase resistance gene family
by ResFinder.

DISCUSSION

Our Salmonella assemblies are of consistent quality across all
isolates, capturing well both gene space and repetitive segments
across the genome. In total, 1,440 universal orthologs were
searched against all chromosomes, with around 94.4% identified
by BUSCO (benchmark universal single-copy orthologs) on
average (44). This is on par with “Gold Standard” reference
genome assemblies, including human (Homo sapiens GRCh38)
at 95.5%, corn at 97.0% (Zea mays W22v2), and (Arabidopsis
thaliana) at 95.7% (TAIR10). We have constructed a genome
sequence database consisting of S. Infantis and S. Typhimurium
isolates collected from retail eggs. Our finding is the first effort
in building a comprehensive collection of isolates in WA by
collecting samples from retail companies in metropolitan Perth.
This study can serve as a valuable genetic resource and roadmap
for studying Salmonella, tracing infection, and epidemiological
surveillance of outbreaks in WA.

Our analysis demonstrated that the egg production system
has a reasonable association with the genomic characteristics
of the pathogens; different production systems may lead to
genetically different pathogens and virulence. We identified
around 40 genes that are unique and relevant to the individual
production systems; particularly free-range strains appear to be
quite genetically divergent from barn and cage strains, which
share more similarity in their genomic compositions. The genetic
difference of isolates from free-range and the other two systems

was significant. Eggs sourced from free-range enterprises were
mainly identified to have S. Typhimurium, while S. Infantis
strains were most likely isolated in barn-laid and caged eggs. Our
results only identified a handful of virulence genes, but more
were found to be present in the Salmonella isolates collected from
barn and cage production systems compared with the free-range
isolates. Previous investigations also identified virulence genes in
various Salmonella isolates recovered from cage farms (45, 46).
However, limited information is available on virulence typing
of Salmonella serovars isolated from free-range environments
(13). There are four virulence genes that were identified almost
exclusively from cage and barn eggs. Although the presence of
virulence genes may indicate a higher likelihood to cause serious
infections in people who contract these strains, the detailed
mechanisms of these virulence genes are not fully understood
as yet. In recent years, consumer demand for free-range eggs
has been fast growing due to the conceived high quality (8).
However, limited molecular studies have been performed to
scientifically evaluate the safety of free-range eggs. Our results
indicated that egg production systems can potentially lead to
specific genetic variations in the Salmonella isolates. Further
research is required to assess how different management practices
related to these production systems impact upon the genetic
variation (i.e., mutation and virulence) of Salmonella serovars.

The difference in genomic profiles and virulence between free-
range and the other production systems is likely to be driven by
the environmental and management factors. Free-range chicken
farms have a lower stocking density than the other two systems
with a high stocking density shown to be associated with higher
stress, lower immune response, and higher chances of infection
(47). These events could provide favorable conditions for bacteria
to evolve and develop or sustain virulence factors. In contrast,
chickens raised under a free-range production system are more
likely to interact with farm’s outside environments and intense
human contact, as constant interaction is necessary during
hand egg collection, cleaning, and monitoring, and herding
stock. These events increase the likelihood of uptake of more
diverse genes (virulence and resistance). This is very informative
and presented a serious argument if certain chicken density
requirement be implemented as a regulation for public health
policymakers. It would be very interesting to perform more
thorough study to evaluate specific environmental factors of
different production systems. This will help to identify the most
important hazards for fostering bacteria virulence and resistance.
Although it is well-known in the plant domain, i.e., cereal crops,
canola, and Arabidopsis, that the environment plays an equally
important role in the genotypes for controlling phenotypes,
how the environment affects bacterial genomes is relatively less
understood. The results of our study demonstrated that different
types of production system for egg laying poultry are associated
with the genomic compositions of Salmonella.

Our finding indicated very low carriage of antimicrobial
resistance genes by all the Salmonella strains. No antimicrobial
resistance genes have been also identified from S. Sofia isolated
from chicken meat in a previous study in Australia (48).
Finding very few resistance genes in our study provided
evidence of the significance of environment in driving bacteria
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mutations, which might be because of WA is geographically
isolated from the rest of Australia and the world or might
be due to the strict conservative approach to registration of
antibiotics for use in food-producing animals in Australia. As
future work, it is recommended to incorporate management
strategies and design new ways of quantitatively measure key
environmental condition at chicken farms. In this way, the
association between the bacteria genetic mutations and the
environmental factors can be better understood and modeled.
To correlate human Salmonella isolates with egg Salmonella
isolates will be another interesting direction for future research.
This kind of integrative analysis may lead to novel methods
for predicting the virulence of unseen strains and the resistance
to antibiotics so that the treatment and the management can
be more effective.
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