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Editorial on the Research Topic 


Therapeutic Opportunities and Innovative Biomarkers in Tumor Microenvironment


The past few years have witnessed an explosion of cancer immunology research. Nowadays, it has been well accepted that cancer cells are surrounded and infiltrated by tumor stroma, termed the tumor microenvironment (TME). Alongside cancer cells, TME consists of a heterogenous collection of nontransformed cells, including immune cells, endothelial cells and fibroblasts (1). It is also composed of various non-cellular components, such as the structural matrix, secreted macromolecules, and extracellular vesicles (2). The dynamic, constant and mutual communications between cancer cells and stromal factors contribute significantly to tumorigenesis and cancer progression (3). On one hand, the malignant cells invade healthy tissues and reshape the overall structure of surrounding milieu to induce peripheral immune tolerance, support tumor angiogenesis and disrupt stroma integrity (4). They do so by altering the expression of genes important for the functions of extracellular matrix (ECM) through genetic or epigenetic aberrations, secreting a significant amount of tumor-derived circulating materials, and activate or suppress complex signaling networks to hijack the non-neoplastic cells for their own benefits. On the other hand, tumor-adjacent non-transformed cells are recruited by cancer cells from local host stroma and penetrate into tumors to assist in cancer initiation, growth, invasion, metastasis and responses to therapies (5). These tumor-associated stromal cells (TASCs) support tumorigenesis and cancer progression through direct cell-to-cell contacts or secreting many pro-tumorigenic factors, which provide metabolites, energy, growth signals, metastatic and angiogenesis cues for understanding the cancer cells. In addition, ECM provides a biochemical and biomechanical framework within which cancer cells prosper, and therefore the acellular components within ECM can determine the physical properties, composition and topography of cancer cells, which play an important role in the speed of cancer migration (6).

Intimate and reciprocal communications between cancer cells and surrounding environment inspire the idea that cancer can potentially be treated by targeting the infiltrated nonmalignant components. Moreover, it has been demonstrated that tumor stroma promotes resistance of cancer cells to many anticancer therapies that focus on cancer cells specifically (7). Therefore, development of anticancer agents and identification of cancer biomarkers now have been switched from cancer-centric to TME-centric. Considering the diverse compositions, TME provides a vital new source for the discovery of anticancer drug targets with context-dependent functions in cancer (8). Additionally, in several preclinical and clinical studies, the stromal factors demonstrate significant diagnostic and prognostic values, indicating the potential use of such substances as tumor biomarkers besides many currently used ones that are expressed by cancer cells [(9); Petersen et al.]. In the last decades, new analytical approaches, technologies, biological models and conceptual breakthroughs emerged, which make it possible to identify novel TME-associated drug targets and biomarkers and to explore the mechanisms of their actions. All these advances drive the application of multiple FDA-approved immunotherapies and corresponding predictive biomarkers in clinical practice for the treatment of various types of hematopoietic cancers and solid tumors (10, 11).


Potential Diagnostic, Prognostic, and Therapeutic Biomarkers in Tumor Microenvironment

Biomarkers based on the cellular and non-cellular components of TME have proven clinical values. They serve as indicators of cancer pathogenesis and predict responses to a variety of cancer treatment options including immunotherapy. A number of studies support that infiltration of untransformed cells, such as macrophages (Niu et al.), lymphocytes (Dai et al.; Liu et al.; Fu et al.), and cancer-associated fibroblasts (CAFs) (12), provides important diagnostic and prognostic information for cancer patients. The density levels of tumor-infiltrating lymphocytes (TILs) are shown to link with survival rates in a variety of cancers (13–15), and therefore quantifying TILs has been devised to assess therapeutic prediction. In one study, the content of twenty-two types of TILs in tumors from patients with head and neck squamous cell carcinoma (HNSCC) was analyzed and compared to that in adjacent normal tissues based on the gene expression and clinical data in TCGA database (Liu et al.). Some types of TILs showed notable differences between normal and cancerous tissues. Furthermore, survival analysis showed that patients with more naïve B cells and regulatory T cells tend to live longer, whereas the lifespans of those with more eosinophils and activated mast cells are shorter. Together, these analyses suggest that presence of certain TILs in the TME of HNSCC tumors may provide important diagnostic and prognostic information. In another study, the infiltration degree of CD3+, CD4+ and CD8+ T cells in tumors from patients with high-grade serous ovarian cancer (HGSOC) was significantly stronger than that in the normal counterparts (Dai et al.). In addition, higher densities of CD3+ and CD8+ TILs in (HGSOC) were found to closely associate with higher levels of lactate dehydrogenase (LDH), which is a poor prognostic biomarker for many types of solid cancer (16, 17).

Besides the densities of infiltrated non-tumorigenic cells, expression of genes playing roles in regulation of TME may also have great diagnostic and prognostic values in certain types of human cancer [Zhou et al.; Fu et al. (18, 19)]. For instance, levels of four genes functionally involved in immune signaling (IFI16, LMCB1, RHBDF2 and TACC3) were found upregulated in clear cell renal cell carcinoma, which were associated with poor prognosis (Lv et al.). Immune-related non-coding RNAs (ncRNAs) have also been advocated as powerful prognostic indicators (Wang et al.; Cheng et al.; Guo et al.). In one study, the relationship between expression of a unique class of ncRNAs called circular RNAs (circRNAs) and biochemical recurrence (BCR) in patients with prostate cancer was analyzed (Wang et al.). In another study, an intracellular competitive endogenous RNA (ceRNA) network, the RNA molecules that share the microRNA (miRNA) recognition elements with the target messenger RNAs (mRNAs) and therefore compete for binding to miRNAs (20), was identified in acute myeloid leukemia (AML), which showed differential expression patterns between samples with low and high immune cell infiltration scores (Cheng et al.).

Recent studies show that molecular compositions and biomechanical properties of ECM can both be used as valuable diagnostic tools and to foresee favorable or unfavorable outcome of a certain type of cancer (Petersen et al.). For example, the circulating ECM-related proteins, collagens, were found significantly upregulated in plasma samples from women with breast carcinoma compared to normal specimens, and combination of the collagen amounts can potentially be informative in discriminating breast cancer patients from those with benign disease (21). In addition, it was reported that increased rigidity of ECM promotes resistance to chemotherapy in pancreatic ductal adenocarcinoma and the matrix stiffness exhibited prognostic power in response specifically to paclitaxel (22). Exosome, one of the membrane-bound extracellular vesicles in ECM, assists in the communications between cancer cells and normal tissues or among different components within tumor stroma (23). One study showed that exosomes enhanced the metastasis of lung cancer cells to brain (Gan et al.). They did so by inducing the brain endothelial cells to release DKK-1 protein, an inhibitor of the canonical Wnt/β-catenin pathway that modulates microenvironment to facilitate cancer metastasis (24), and enhanced colonization of cancer cells into brain. It has also been suggested that expression of exosomal circRNAs can be used as clinical tumor biomarkers for early diagnosis, tumor prognosis and prediction of postoperative recurrence (Xu et al.).



Immunotherapeutic Targets and Predictive Biomarkers for Cancer Immunotherapy

Immunotherapy, which deploys the immune system to treat human diseases, has revolutionized cancer treatment. Currently, there are five different classes of immunotherapies that have been integrated into the standard treatment guidelines for cancer patients, i.e., cell-based immunotherapies such as chimeric antigen receptor (CAR) T cells, immunomodulators like cytokine INF-α and immune checkpoint inhibitors (ICIs), cancer vaccines, antibody-based anticancer agents and at last oncolytic viruses (25). Although immunotherapy produces more durable responses and fewer side effects, these therapies confer benefits in only a select group of cancer types and usually in a minority of patients with those cancers (26, 27). Primary and acquired resistance to immunotherapy urge the identification of alternative therapeutic options to potentiate immune surveillance and biomarkers that link patient subpopulations to immunotherapy efficacy.

It has been demonstrated that the tumoricidal activity of some immune cells, like T cells, are profoundly affected by the peptide epitopes that emerge at the surface of cancer cells. Such epitopes may be originated from cancer neoantigens, the immunogenic products generated by somatic mutations in tumor DNA. Thus, neoantigens are specifically expressed on the surface of neoplastic but not normal cells. Due to these features, neoantigens are not expected to induce autoimmune toxicity and therapeutic approaches based on neoantigens sound highly attractive (Han et al.). Another repertoire of tumor-associated epitopes is the antigens encoded by viral open reading frames in virus-infected cancer cells. In one study, gene expression profiling in tissue samples from breast cancer patients with HIV showed upregulated transcripts of human endogenous retroviruses (HERV) compared to HIV-negative samples, which is associated with an increase in the expression of nearby oncogenes in host cells, an enrichment of extracellular matrix organization and a higher concentration of tumor-infiltrating lymphocytes (Curty et al.).

In addition to the peptide epitopes presented on the cancer cell surface, many proteins are also reported to exert specific biological functions within the tumor microenvironment, serving as potential immunotherapeutic targets (Xie et al.; Zhu et al.; (28)). For example, Ser/Arg-rich splicing factor (SRSF3) was demonstrated to bind at 3’-UTRs of some innate immune genes and thus regulate the protein synthesis, indicating a role of SRSF3-mediated translational regulation in innate immunity (28). As another example, TFEB, a member of the Microphthalmia family of bHLH-LZ transcription factors (MiT/TFE), was shown to activate the transcription of genes encoding matrix metalloproteinases, such as MMP2 and MMP9, and those functioning in lysosome biogenesis like ABCA2, which results in the degradation of the extracellular matrix and subsequently enhances the migration and invasion of prostate cancer cells (Zhu et al.). These studies offer new potential drug targets that will expand the reservoirs of cancer immunotherapy agents.

Many studies have also been carried out to recognize predictive biomarkers that link with the efficacy of immunotherapy, particularly with the immune checkpoint inhibitors (ICIs). Ferroptosis, a specific type of programmed cell death due to accumulation of excessive iron and unchecked lipid peroxidation (29), has been suggested to contribute to the anti-tumor effects of immunotherapy (30). One study constructed a Comprehensive Index of Ferroptosis and Immune status (CIFI) in hepatocellular carcinoma (HCC), based on the expression of twenty-seven prognostic ferroptosis- and immune-related genes signatures (Liu et al.). HCC patients in the CIFI-high subgroup had significantly higher frequency of TP53 mutation and higher levels of tumor heterogeneity, associated with worse survival rates and immunotherapy failure. In head and neck squamous cell carcinoma (HNSCC), integrative analysis of the clinical information and gene mutation data suggest that HNSCC patients, who are at least 65-years old and carry wild-type TP53 gene but mutant PIK3CA and ARID1A genes, showed favorable responses to ICI treatment and prolonged overall survival rate (Zhang et al.). Finally, five immune-related genes (IFIH1, CTSG, STC2, SECTM1 and BIRC5) were selected to build an immune gene-related prognostic model (IGRPM), which accurately predicts longer survival time and better responses to immunotherapy in the low-risk subpopulation of patients with soft tissue sarcoma (STS) (Gu et al.). All the information provided in these studies help guide treatment selection for a particular type of cancer and stratify patients who are most likely to benefit from immunotherapy.



Innovative Biological Models or Experimental Platforms for Investigating TME

For the past few years, there has been a tremendous progress in the development of methodologies and ex vivo models to study the biological characteristics of TME. These tools not only enable the accurate assessment of the effectiveness of new drug targets in a milieu resembling the original tumors, but also provide valuable and systematical ways for biomarker identification, bridging the translational gap between pre-clinical and clinical settings.

Mass cytometry, or CyTOF, has been one of the technologies that are commonly used to analyze the phenotypic and functional attributes of distinct immune cells at the single-cell level (31). High throughput CyTOF methodology enables high-dimensional and unbiased examination of immune system and simultaneous interrogation of a large number of parameters that will be able to provide spatial and cell-cell interaction information (Fu et al.).

Recent advances on three-dimensional (3D) in vitro and ex vivo cell culture models, especially those co-cultured with the ECM, open doors for biomarker identification and immunotherapy evaluation (Petersen et al.). These models mimic the compositional and mechanical properties of TME and closely recapitulate the interactions between cancer cells and stromal components. Current 3D culture systems include tumor spheroids, scaffold-based tumor models and cancer cells grown in the 3D printed construct, etc., which leverage the engineered tumor microenvironment to monitor the malignant phenotypes (32). In addition, matrix manipulation, such as use of synthetic and natural gel or nano- and micropatterning, renders a more natural behavior in cancer cells (33). Compared to the classical two-dimensional culture of cancer cells alone, 3D models co-cultured with ECM better reflect the responses of cancer cells to a particular treatment option in clinical scenario and more reliably justify the diagnostic or prognostic power of a biomarker.

Discovery of the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-associated protein 9 (CRISPR-Cas9) system, one of the most efficient and versatile genome-editing systems that enables site-specific changes of single or multiple target genes (34), has revolutionized cancer research including cancer immunology (35). For example, genome-wide CRISPR-Cas9 screening pinpointed RAD9A, a cell cycle checkpoint protein, that upregulates the infiltrating levels of regulatory T cells and consequently confers resistance of prostate cancer cells to the anticancer drug metformin (Chen et al.). As such, CRISPR-Cas9 is advantageous due to its accuracy, efficiency and specificity, and therefore enables the mounting emergence of TME-related drug targets or biomarkers.



Current Limitations and Future Implications

Targeting TME has paved a wider path for human cancer intervention, which will likely fulfill the personalized immunotherapy in properly selected cancer patients to maximize a clinical benefit. Despite an increase in our knowledge of TME, lots of questions remain unaddressed regarding the origins, functions and genetic alterations of distinct components in tumor stroma. Major clinical challenges still need to be resolved, particularly in how to identify the cancer patients who may respond to a particular immunotherapeutic agent and how to establish an optimal scheme so that the biomarkers can be reliably used to track cancer development and progression or predict responses to immunotherapy.

All the biomarkers and therapeutic targets discussed here are novel discoveries in cancer research; however, they are currently at an early stage in terms of their clinical utility. It is not clear in what setting they can be applied to which type of cancer and additional evaluation is needed before integration into routine medical practice. A better understanding of the detailed mechanisms underlying the complex interactions between cancer and the immune system will accelerate the development of clinically useful biomarkers and improved treatment options for patients. Compared to targeting single factor, optimization of a combined use of immune-based therapies or biomarkers in future endeavor will bring more benefits to cancer patients. Furthermore, identification of other TME-associated components, such as circulating tumor cells and cell-free DNA in the blood stream, can extend the clinical scenarios where the candidate immunotherapeutic targets or biomarkers may be applied. Future investigation is warranted to detect valuable biomarkers of low concentrations in non-invasive liquid biopsy.

Characterizing TME in the context of tumors and the functions of stromal components in a systematical manner is the major focus in the development of experimental methods and models for cancer studies. It is essential to establish pre-clinical settings that contain all the hallmarks of human immunity, represent organ-specific tumor microenvironment and maximize the personalized immunotherapy through composite biomarkers. Further multi-omics, biochemical, and animal studies are necessary to ascertain the roles of TME-derived factors as causative and mechanistic biomarkers or alternative drug targets.
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Low response rates to immunotherapy have been reported in soft tissue sarcoma (STS). There are few predictive biomarkers of response, and the tumor immune microenvironment associated with progression and prognosis remains unclear in STS. Gene expression data from the Cancer Genome Atlas were used to identify the immune-related prognostic genes (IRPGs) and construct the immune gene-related prognostic model (IGRPM). The tumor immune microenvironment was characterized to reveal differences between patients with different prognoses. Furthermore, somatic mutation data and DNA methylation data were analyzed to understand the underlying mechanism leading to different prognoses. The IGRPM was constructed using five IRPGs (IFIH1, CTSG, STC2, SECTM1, and BIRC5). Two groups (high- and low-risk patients) were identified based on the risk score. Low-risk patients with higher overall survival time had higher immune scores, more immune cell infiltration (e.g., CD8 T cell and activated natural killer cells), higher expression of immune-stimulating molecules, higher stimulating cytokines and corresponding receptors, higher innate immunity molecules, and stronger antigen-presenting capacity. However, inhibition of immunity was observed in low-risk patients owing to the higher expression of immune checkpoint molecules and inhibiting cytokines. High-risk patients had high tumor mutation burden, which did not significantly influence survival. Gene set enrichment analysis further revealed that pathways of cell cycle and cancers were activated in high-risk patients. DNA methylation analysis indicated that relative high methylation was associated with better overall survival. Finally, the age, mitotic counts, and risk scores were independent prognostic factors for STS. Five IRPGs performed well in risk stratification of patients and are candidate biomarkers for predicting response to immunotherapy. Differences observed through the multi-omic study of patients with different prognoses may reveal the underlying mechanism of the development and progression of STS, and thereby improve treatment.

Keywords: immune-related prognostic genes (model), tumor immune microenvironment, somatic variants, DNA methylation, multi-omic study


INTRODUCTION

Unlike cancers with epithelial origins, soft tissue sarcoma (STS) evolved from mesenchymal tissues in different anatomical sites (1). Despite its lower incidence vs. cancers, STS with high aggressive behavior was responsible for 5,270 deaths according to the 2019 Cancer Statistics (2). Occurrence of STS in the limbs increases the risk of disability in patients (3). Moreover, STS is characterized by high rates of relapse (4). Therefore, the treatment of STS is a challenge to most clinicians.

Patients with early-stage and localized STS (5, 6) can recover from radical surgical resection and achieve higher survival rates. However, patients with metastatic and recurrent STS are linked to rapid progression of disease and death due to poor response to surgical techniques and adjuvant radiotherapy (7). Conventional treatment does not meet the requirements for longer survival time and higher quality of life. An increasing number of studies revealed that the tumor microenvironment and the expression of immune checkpoint molecules accelerated the progression of cancers (8–10). The use of immune checkpoint inhibitors markedly improved the prognosis of cancers (e.g., melanoma) (11, 12). Based on the immune-related pathogenesis in cancers, the use of immunotherapy may promote survival in STS. Recent clinical cases reported favorable response to immune checkpoint inhibitors in classic Kaposi sarcoma (13) and myxoid chondrosarcoma (14). Nevertheless, there is insufficient evidence regarding the efficacy of immunotherapy in STS. Therefore, studies investigating the immune microenvironment or immune gene-related prognostic biomarkers, which have been identified in cervical cancer (15), lung adenocarcinoma (16), and cancers of the digestive system (17) are warranted. Such studies will assist in understanding the effect of immune infiltration on STS and predict response to immunotherapy, thereby improving efficacy against STS.

The aim of the present study was to identify immune gene-related prognostic biomarkers and construct a prognostic model to determine patients with better response to immunotherapy for precision treatment in STS. Moreover, integrated analysis of multi-omic data in patients with different prognoses may elucidate the mechanism involved in tumorigenesis, metastasis, and high aggressive behavior of STS.



MATERIALS AND METHODS


Collection and Preprocessing of Gene Expression and Clinical Data

The latest version of normalized gene expression data (07-20-2019) in the Cancer Genome Atlas (TCGA) database were downloaded from the UCSC (University of California, Santa Cruz) Xena browser (https://gdc.xenahubs.net). Raw gene expression data (GSE21050) (18) were also downloaded from the Gene Expression Omnibus (GEO) database. Subsequently, the gene expression profiles were preprocessed. The “RMA” algorithm (19) was used to process the GSE21050. During the procedure of probe mapping to gene symbols, mean values were maintained when multiple probes shared the same gene symbol. The gene symbols with mean expression value in all samples <0.5 were removed (20). For the subsequent analyses, we selected common genes with top 25% variances in TCGA and GEO datasets (21). In addition, clinical data of the TCGA and GEO samples were downloaded and preprocessed.



Weighted Gene Co-expression Network Analysis (WGCNA)

WGCNA, a new bioinformatics method, is effective in processing gene expression, proteomic, and metabolomic datasets (22, 23). It has been applied to the identification of potential crucial biomarkers in many types of diseases (24, 25) and key genes associated with phenotypic traits (26). There was no information regarding the survival status in the GSE21050 dataset. Therefore, WGCNA was performed to identify prognostic genes based on the expression matrix obtained from TCGA database. The gene expression matrix of genes with top 25% variance was used to construct a gene co-expression network and identify modules. Subsequently, we related modules to clinical information for the detection of modules highly associated with survival. All these procedures were performed using the “WGCNA” package (22) in R 3.5.3 software. Function enrichment analyses were conducted using the “clusterProfiler” package (27) in R software to further determine whether interesting modules were associated with survival. Following the completion of WGCNA, genes identified in the survival-related modules (interesting modules) were extracted as the preliminary immune-related prognostic genes (IRPGs) in STS.



Identification and Validation of the Immune Gene-Related Prognostic Model (IGRPM)

Immune-related genes (IRGs) identified in the Immunology Database and Analysis Portal (ImmPort) database (28) were overlapped with the prognostic genes detected in the WGCNA. The expression matrix containing common immune genes from TCGA and GEO datasets was processed through the “sva” package of R software (29) to remove the batch effect. Subsequently, it was used to identify and validate IRPGs and construct the prognostic model. Firstly, univariate Cox regression analysis of common immune genes was performed based on the “survival” package of the R software. Least absolute shrinkage and selection operator (LASSO) regression analysis (30) was applied for genes with p < 0.05 in the univariate Cox regression analysis. Through the 1000 cross-validations method, more reliable IRPGs would be obtained using the “glmnet” and “survival” packages (31). Genes identified from the LASSO regression analysis were further determined via multivariate Cox regression analysis. The genes that demonstrated significance in the multivariate Cox regression analysis were considered the IRPGs in this study. According to the coefficient of IRPGs in the multivariate Cox regression analysis, the “predict” function in the “survMisc” package was used to construct the IGRPM and compute the risk score for each patient. Based on the median risk scores, patients with risk scores more than the median risk scores were classified into high-risk groups. Similarly, patients with risk scores less than the median were classified into low-risk groups. Subsequently, we plotted the receiver operating characteristic (ROC) curve using the “survivalROC” package and performed overall survival (OS) analysis to evaluate the IGRPM. Differences in gene expression, survival status, and risk scores between the high- and low-risk groups were also visualized to evaluate the prognostic model. Finally, the GSE21050 dataset was used to validate the accuracy of the model based on the same cutoff value applied to the TCGA dataset. Owing to the lack of survival status in this dataset, the rates of metastasis-free survival were used as OS rates to validate the IGRPM.



Immune Infiltration Analysis

The immune microenvironment was investigated in this study. An algorithm using expression data for the estimation of stromal and immune cells in malignant tumors (ESTIMATE) was applied (32). The stromal score and immune score for each patient with STS were computed based on specific gene expression signatures of stromal and immune cells, and single-sample gene set enrichment analysis via the “estimate” package in the TCGA and GSE21050 datasets (32). Differences in stromal and immune cell infiltration between high- and low-risk patients were visualized via the “ggpubr” package (https://CRAN.R-project.org/package=ggpubr). Furthermore, the correlation of risk scores and immune scores was explored to reveal the effect of immune infiltration on prognosis. Subsequently, the CIBERSORT algorithm based on 100 permutations was used to estimate the proportions of 22 types of immune cells following the official manual provided in the CIBERSORT website (http://cibersort.stanford.edu/) (33). In addition, based on previous studies, immune-related molecules and other immune microenvironment components except immune cells (i.e., chemokines, interleukins, interferons, other cytokines, corresponding receptors of the aforementioned molecules, innate immunity molecules, immune inhibitors including common immune checkpoints, immune stimulators, and antigen-presenting molecules) were further analyzed to understand immune infiltration in STS (34–36). A p < 0.05 denoted statistically significant difference between high- and low-risk patients.



Analysis of Somatic Variants

Notably, gene mutations may lead to neoantigen epitopes and influence the components of immune microenvironments (16). Mutation data from the VarScan2 Variant Aggregation and Masking were downloaded through the UCSC Xena website. The “maftools” package with functions for summarizing, analyzing, and visualizing mutation data was used to analyze somatic variants (37). Firstly, the overall mutation status, as well as the corresponding risk and immune scores were determined in all patients. Differential mutations were investigated in patients with different risk and immune scores to identify the crucial gene mutations associated with prognosis and immune filtration, and demonstrate the relationship between immune filtration and prognosis in STS. Finally, the tumor mutation burden (TMB) was calculated between high- and low-risk patients based on a previous study (38).



Gene Set Enrichment Analysis (GSEA)

We performed the GSEA to elucidate the underlying mechanism involved in immune infiltration and high aggressive behavior in STS. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was obtained via the GSEA 4.0.1 software (39). Based on the ranking of normalized enrichment scores, the top 10 terms were displayed to identify differences in biological pathways and behaviors between high- and low-risk patients.



DNA Methylation Analysis

Illumina Human Methylation 450 k data were download from the UCSC Xena website. Using the “ChAMP” package, we filtered the non-cg probes; the CpG falls near a single-nucleotide polymorphism; the probe aligns to multiple locations; and from the X and Y chromosomes (40). Subsequently, the remaining probes were used to conduct the differential analysis between high- and low-risk patients. The mean methylation value of the differential probes was utilized to display the methylation of the promoter, body, 3′untranslated regions (3′UTR), and intergenic regions (IGR) in high- and low-risk patients. Furthermore, the association between methylation and prognosis was investigated. Finally, the differential probes were enriched using the “missMethyl” package to observe potential mechanisms involved in different prognoses.



Identification of Independent Prognostic Factors (IPF) for STS

Clinical factors (i.e., age, sex, margin status, and metastatic diagnosis), mitotic counts, total necrosis percent of tumors, risk scores, and immune scores were included in the univariate and multivariate Cox regression analyses to further evaluate the prognostic model and identify IPF. Only factors with p < 0.05 in both analyses were considered IPF. In addition, the prognostic ability of risk scores and immune scores was evaluated via ROC curves.




RESULTS


Collection and Preprocessing of Gene Expression and Clinical Data

The datasets of TCGA contained 263 samples with STS and two matched controls. After removing the two matched controls, the gene expression data were analyzed. The GSE21050 dataset comprised 310 samples with STS. Using a preliminary filter, 4,113 and 5,046 genes with top 25% variances were obtained from TCGA and GEO datasets, respectively. Notably, they shared 2,447 genes with the WGCNA. The corresponding clinical data of patients were matched to their corresponding gene expression profiles for the subsequent analysis. A total of 256 patients with survival information were included in the survival or prognosis analysis in TCGA dataset. The patient (GSM525864) lacking information regarding survival and metastasis were not included in these analyses of the GSE21050 dataset.



Two Modules Containing 1,141 Genes Were Associated With Survival

As shown in Figure 1A, an adjacency matrix was constructed based on the soft threshold power β (optimal β = 3; R2 = 0·9), determined through the scale-free topology criterion. Figure 1B illustrates the identified modules obtained using the Dynamic Tree Cut method. Subsequently, the identified modules were related to the clinical data. Compared with other modules, two modules were highly associated with survival (Figure 1C). The blue module significantly influenced the survival time of patients with STS (Pearson's correlation between blue module and the trait of survival time: 0.11, p = 0.08). A similar relationship was observed in the brown module associated with the OS status (Pearson's correlation between brown module and the trait of OS status: 0.14, p = 0.03). Furthermore, genes in the blue and brown modules exhibited high positive correlations with survival (Pearson's correlation between gene significance and module membership: 0.41, p = 5.7e−39; Pearson's correlation between gene significance and module membership: 0.46, p = 1.7e−12, respectively) (Figures 1D,E). Function annotation revealed that 929 and 212 genes in the blue module and brown module were mainly involved in the immune process and cell cycle process, respectively. These findings indicated that genes in these two modules highly influenced survival in STS (p < 0.05) (Figure S1).


[image: Figure 1]
FIGURE 1. Weighted gene co-expression network analysis (WGCNA). (A) Selection of the optimal soft threshold power, β (optimal β = 3, scale free topology index, R2 = 0·9). (B) Module identification using the Dynamic Tree Cut method. The different color bands provide a simple visual comparison of module assignments. (C) Module–trait relationship. Six modules were identified and related to clinical traits. Each cell represented the correlation (and p-value) of the module with the corresponding clinical trait. OS represented the overall survival status (alive or dead). (D) Identification of genes with high significance and module membership in the survival time-related blue module. (E) Identification of genes with high significance and module membership in the OS-related brown module.




Identification and Validation of IGRPM

The 1,141 genes obtained from the WGCNA and the IRGs from the ImmPort database shared 207 IRGs, which were involved in immune activity via multiple pathways (p < 0.05) (Figure 2). These 207 IRGs were subsequently analyzed to identify optimal IRPGs. Firstly, 81 IRGs associated with survival from univariate Cox regression analysis were obtained based on p < 0.05. LASSO regression analysis displayed that nine IRGs (i.e., CD1C, C-X-C motif chemokine ligand 2 [CXCL2], interferon induced with helicase C domain 1 [IFIH1], cathepsin G [CTSG], stanniocalcin 2 [STC2], secreted and transmembrane 1 [SECTM1], baculoviral IAP repeat containing 5 [BIRC5], endothelin 3 [EDN3], and nuclear receptor subfamily 1 group H member 3 [NR1H3]) were associated with survival based on the 1000 cross-validations approach (Figures 3A,B). Five optimal IRPGs (i.e., IFIH1, CTSG, STC2, SECTM1, and BIRC5) were obtained from the multivariate Cox regression analysis (Table 1). Subsequently, we used the “predict” function to construct the prognostic model with an area under the curve of 0.74 in 5-year survival rates (Figure 3C). High- and low-risk patients, determined according to their risk scores, had significant differences in survival rates in TCGA (p = 9.457e−06) (Figure 3D) and GSE21050 (p = 1.31e−02) datasets (Figure 3E). The prognostic model was further assessed and validated (Figures 3F,G).


[image: Figure 2]
FIGURE 2. Function enrichment analyses for the overlapped genes from the WGCNA and the Immunology Database and Analysis Portal (ImmPort) database. (A) Gene Ontology (GO) analysis for the immune genes. (B) The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for immune genes.
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FIGURE 3. Construction, validation, and assessment of the prognostic model. (A,B) Identification of prognostic genes using the least absolute shrinkage and selection operator (LASSO) regression analysis. (A) Coefficients of the LASSO regression analysis. (B) Selection of tuning parameters based on the 1000 cross-validations method. (C) The receiver operating characteristic (ROC) curves of the prognostic model in TCGA dataset. The survival curve for high- and low-risk patients in TCGA (D) and GSE21050 (E) datasets. Differences in risk score, survival time, and gene expression of the optimal immune-related prognostic genes (IRPGs) between high- and low-risk patients from TCGA (F) and GSE21050 (G) datasets.



Table 1. The multivariate Cox regression analysis of genes for overall survival.
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Relatively Higher Immune Activation Was Observed in Low-Risk Patients

Estimated immune and stromal scores, immune cells, and immune-related molecules were assessed for the level of immune infiltration between high- and low-risk patients. Higher immune scores and stromal scores were observed in low-risk patients in TCGA (p = 2.3e−12; p = 8.9e−08, respectively) (Figures 4A,B) and GSE21050 (p = 2.9e−16; p = 6.4e−15, respectively) (Figures S2A,B) datasets. Strong negative correlations between the immune scores and risk scores indicated that higher immune filtration was a potential protective factor for survival (Spearman's correlation: −0.522, p < 2.2e−16; Figure 4C and Spearman's correlation: −0.540, p < 2.2e−16; Figure S2C). By analyzing the proportion of immune cells in TCGA dataset, a greater number of immune cells (i.e., CD8 T cells, gamma delta T cells, activated natural killer (NK) cells, monocytes, M1 macrophages, and resting mast cells) were found in low-risk patients (p < 0.05, Figure 4D). Similarly, more CD8 T cells, follicular helper T cells, gamma delta T cells, activated NK cells, M1 macrophages, and resting mast cells were observed in low-risk patients in the GES21050 dataset (p < 0.05, Figure S2D). In addition, immune-related molecules demonstrated that low-risk patients had higher immune activation. High expression of innate immune modules, especially TMEM173(STING1) (Wilcoxon rank-sum test: p = 7.5e−09, Figure 4E and p = 4.8e−09, Figure S2E), was noted in low-risk patients (Figure 4F, Figure S2F). Moreover, low-risk patients exhibited stronger antigen-presenting capacity, mainly measured through the higher expression of major histocompatibility complex (MHC) molecules (e.g., MHC I, MHC II, etc.) (Figure 4G, Figure S2G). A similar tendency was observed in comparisons of immune-stimulating molecules, cytokines, and corresponding receptors between patients with different risks (Figures 4H,I, Figures S2H,I). Finally, positive correlations between immune scores and immune-stimulating molecules further supported and explained the above findings (Figure 4J, Figure S2J).


[image: Figure 4]
FIGURE 4. Analysis of immune infiltration in the TCGA dataset. Comparison of the immune scores (A) and stromal scores (B) between high- and low-risk patients. (C) Spearman's correlation of risk scores with the immune scores. (D) Comparison of 22 types of immune cells in high- and low-risk patients. (E) Comparison of the TMEM173, the initiation molecule of innate immunity between high- and low-risk patients. Comparison of the other molecules of innate immunity (F), major histocompatibility complex (MHC) molecules (G), and immune-stimulating molecules (H), and cytokines (I) between high- and low-risk patients. Low-risk patients exhibited high expression of most of these molecules. Relationships of immune infiltration (immune scores) and immune-stimulating molecules (J). Immune infiltration was positively correlated with most immune-stimulating molecules. ImmS represents the immune scores. ****p < 0.0001; ***p < 0.001; **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.




Low-Risk Patients Showed Immunosuppression

Characterized by higher immune activation, low-risk patients from TCGA also showed immunosupression. Immunosuppression in low-risk patients was verified through immune-inhibiting molecules, especially common immune checkpoints, such as PD-L1 (CD274), PD1 (programmed cell death 1 [PDCD1]), cytotoxic T-lymphocyte associated protein 4 [CTLA4], and lymphocyte activating 3 [LAG3] (Figures 5A,B, Figures S3A,B). There were no differences in the expression level of these four immune checkpoints between the sexes (Figure S4). In addition, higher levels of inhibiting cytokines (e.g., interleukin 10) were present in the tumor microenvironment of low-risk patients (Figure 4I, Figure S2I). The strong correlations noted between immune scores and most immune-inhibiting molecules revealed that low-risk patients exhibited higher immune infiltration and immunosuppression, which increased the risk of immune escape of STS (Figure 5C, Figure S3C).


[image: Figure 5]
FIGURE 5. Inhibition of immunity in low-risk patients from TCGA dataset. (A) Differences in common immune checkpoint molecules between high- and low-risk patients. (B) Differences in immune-inhibiting molecules between high- and low-risk patients. (C) Relationships of immune infiltration (immune scores) and immune-inhibiting molecules. Immune infiltration was positively correlated with most immune-inhibiting molecules. ImmS represents the immune scores. ***p < 0.001; ns (not significant), p > 0.05.




Analysis of Somatic Variants

Gene mutations in STS were also studied. As shown in Figure 6A, 68.78% of the top 20 mutations occurred in all patients, with missense mutation being the most common type. Of note, different types of mutations were observed between high- and low-risk patients. Tumor protein p53 (TP53), ATRX, titin (TTN), mucin 16 (MUC16), and RB transcriptional corepressor 1 (RB1) were the most commonly mutated genes (>10% mutation rate). Obvious differences in the top 20 mutated genes between high- and low-risk patients are illustrated in Figures 6B,C. Following the assignment of patients based on the median of immune scores, more top 20 mutated genes were observed in those with high immune scores (Figures 6D,E). Figures 6F,G show the comparison of high- and low-risk patients, as well as those with high- and low-immune scores. ATRX, paternally expressed 3 (PEG3), WNK lysine deficient protein kinase 2 (WNK2), neurexin 1 (NRXN1), laminin subunit alpha 2 (LAMA2), and CUB and Sushi multiple domains 2 (CSMD2) demonstrated significant gene mutation differences between high- and low-risk patients (p < 0.05) (Figure 6F). Highly mutated genes, such as PEG3, WNK2, NRXN1, and LAMA2 in low-risk patients were also present in patients with high immune scores (Figure 6G). Figure 6H displays that high-risk patients had more TMB (p = 0.0025). However, TMB was not associated with OS in STS (Figure 6J). In addition, more TMB was observed in patients with high immune scores; however, the difference was not significant (p = 0.23) (Figure 6I).


[image: Figure 6]
FIGURE 6. Analysis of somatic variants in soft tissue sarcoma (STS). Top 20 gene mutations in all patients (A). Top 20 gene mutations in high- (B) and low-risk patients (C). Top 20 gene mutations in patients with high (D) and low (E) immune scores. Comparison of high- with low-risk patients (F), as well as patients with high and low immune scores (G). (H) Comparison of the log(TMB+1) in high- and low-risk patients. (I) Comparison of the log(TMB+1) in patients with high and low immune scores. (J) Survival curve for patients with high and low TMB. TMB, tumor mutation burden. **0.001 < p < 0.01; *0.01 < p < 0.05; ns (not significant), p > 0.05.




Potential Mechanisms Associated With Prognosis

GSEA revealed that different pathways were altered in high- and low-risk patients, and demonstrated potential mechanisms associated with the biological phenotype (Figure 7). According to the ranking of normalized enrichment scores, KEGG pathways (e.g., cell cycle, mismatch repair, basal transcription factors, spliceosome, aminoacyl tran biosynthesis, and DNA replication) were activated in high-risk patients with shorter OS (Figure 7). However, the activation of immune-related pathways (e.g., the toll-like receptor signaling pathway, Janus kinase/STAT signaling pathway, cytokine-cytokine receptor interaction, B cell receptor signaling pathway, and natural killer cell-mediated cytotoxicity) led to better prognosis in low-risk patients (Figure 7).


[image: Figure 7]
FIGURE 7. Gene set enrichment analysis for high- and low-risk patients. (A) Top 1–5 terms of the GSEA from TCGA dataset. (B) Top 6–10 terms of the GSEA from TCGA dataset. (C) Top 1–5 terms of the GSEA from the GSE21050 dataset. (D) Top 6–10 terms of the GSEA from the GSE21050 dataset.




High Relative Methylation Was Observed in Low-Risk Patients

After removing the low-quality probes, differential methylation probes were obtained based on the adjusted p < 0.05. Subsequently, we extracted the differential probes in the promoter, body, 3′UTR, and IGR. Figure 8A shows that high relative methylation of these four genomic regions was detected in low-risk patients. Notably, high methylation was associated with better OS (Figure 8B). The differential probes were mainly involved in neuroactive ligand-receptor interaction, RAP1 signaling pathway, ECM-receptor interaction, immune-related pathway (e.g., T cell receptor signaling pathway and cytokine-cytokine receptor interaction) and pathways in cancer (e.g., Ras signaling pathway, breast cancer, and basal cell carcinoma) (Table 2).


[image: Figure 8]
FIGURE 8. DNA methylation analysis for STS. (A) Differences in the mean methylation value in the promoter, body, 3′untranslated regions (3′UTR), and intergenic regions (IGR) (from left to right) between high- and low-risk patients. (B) Survival curves for patients with high and low methylation in the promoter, body, 3′UTR, and IGR (from left to right).



Table 2. The KEGG pathways for the differential probes of methylation.
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Age, Mitotic Count, and Risk Scores May Be IPF in STS

Figure S5A shows that age (p = 0.004), margin status (p = 0.009), diagnosis of metastasis (p < 0.001), mitotic count (p < 0.01), immune scores (p = 0.021), and risk scores (p < 0.001) were prognostic factors identified in the univariate analysis. The level of immune infiltration measured using the immune scores affected survival in STS. The age, mitotic count and risk scores were considered IPF for STS (Figures S5A,B). Figure S6 shows that risk scores (area under the curve:0.74) had better prognostic ability than immune scores (area under the curve:0.388).




DISCUSSION

The application of immunotherapy to multiple cancers significantly improved the survival of patients (41). Based on the accumulating evidence and concept of immunotherapy, this approach is effective in the treatment of advanced or metastatic cancers. Immunotherapy has been utilized for the treatment of STS. Previous studies demonstrated that partial patients with STS could benefit from inhibition of PD-1 (42, 43). Immune-related signatures such as tumor inflammation signature (44), immunological constant of rejection (45), and immunophenoscore (46) have been demonstrated as predictors for prognosis and response to immunotherapy in tumors. However, A pan-cancer study revealed that the score of tumor inflammation signature was not associated with prognosis of sarcoma based on univariate Cox regression analysis (44). Therefore, the discovery of new predictive biomarkers of patient response and comprehensive studies of tumor immune microenvironment in STS are crucial for the optimization of immunotherapy in STS (42).

Multi-omic data were utilized to identify potential IRPGs, as well as construct and validate the IGRPM based on WGCNA, univariate, LASSO, and multivariate regression analyses. Finally, five optimal IRPGs and one IGRPM were determined and validated through two datasets involving 573 patients. The IGRPM based on the five IRPGs demonstrated satisfactory performance in predicting the survival rates and risk stratification in patients with STS. IFIH1 (also termed melanoma differentiation-associated gene 5) exhibits an antitumor effect (47) and was a protective gene in STS. CTSG, which possesses the ability to enhance the cytotoxicity of human natural killer cells (48) was overexpressed in low-risk patients with better OS compared with high-risk patients. STC2 and BIRC5 promote metastasis and progression in different types of cancer [e.g., head and neck squamous cell carcinoma (49), hepatocellular carcinoma (50), lung cancer (51), and ovarian tumor (52)] and were overexpressed in high-risk patients. SECTM1, the stimulator of T cells (53), was also identified as a protective gene. Overall, the different prognoses between high- and low-risk patients was consistent with the expression of the five IRPGs, validating the accuracy of the IRGs and IGRPM obtained in this study. To our knowledge, these five IRPGs were firstly combined to construct the IGRPM for STS.

Characterization of tumor immune microenvironment was performed based on two algorithms of ESTIMATE and CIBERSORT. We demonstrated that longer OS in low-risk patients was associated with higher immune activation (including innate and adaptive immunity). Higher immune scores and more activated immune cell infiltrations (e.g., CD8 T cells and activated NK cells) (54, 55) supported this notion and a similar phenomenon was also present in other types of cancer (15, 56). Specifically, low-risk patients had a greater number of innate immune cells owing to the higher expression of TMEM173, triggering innate immunity and innate immunity-related molecules (57). These findings were consistent with those obtained from the algorithm of CIBERSORT. The higher immune activation was also induced by the high expression of immune-stimulating modules [e.g., inducible T cell costimulator [ICOS] (58) and CD80 (59)] and cytokines (e.g., C-C motif chemokine ligand 4 [CCL4], CXCL9, and CXCL10) (60). In addition, the MHC molecules promoted antigen presentation in low-risk patients. Therefore, the lack of immune cells, immune-stimulating molecules, cytokines, and weak antigen-presenting ability led to poor prognosis in high-risk patients.

Immune escape also affects survival (61) and response to immunotherapy in patients with cancer. In this study, tumor cells tended to escape the immune system due to inhibition of immunity in low-risk patients. This effect was demonstrated by high expression of immune inhibiting molecules (e.g., common immune checkpoints and inhibiting cytokines). The expression of immune checkpoints in tumor cells negatively regulates T cells and evades immune killing (62). The high expression of immune checkpoint molecules further suggested that the five identified IRPGs are predictive biomarkers of response to immunotherapy. A recent study reported sex-dependent differences in patient response to immunotherapy in melanoma and non-small-cell lung cancer (41, 63). However, comparison of common checkpoints PD–L1 (CD274), PD1 (PDCD1), CTLA4, and LAG3 between male and female patients reveled that sex is not the main factor for the prediction of response to immune checkpoint inhibitors in STS. This finding was similar to the results reported in a recent study (64). Inhibition of cytokines (e.g., IL10) (45) also inhibited immunity in low-risk patients.

TMB is an emerging biomarker for predicting the effect of immunotherapy in multiple types of cancer (65). The different top 20 gene mutations observed in patients grouped according to risk scores and immune scores led to the hypothesis that low-risk patients may carry more gene mutations. However, this hypothesis was not validated by the value of the TMB. We revealed that high-risk patients (low immune infiltration) had high TMB. This was not consistent with the theory that high mutations (TMB) tend to generate neoantigen epitopes. We hypothesized that high TMB and low antigen-presenting capacity caused low immune infiltration in high risk patients. Of note, both high- and low-risk patients had relative low TMB, which was consistent with a previous study (66). This indicated that the TMB was not suitable for the prediction of response to immunotherapy in STS. Furthermore, the TMB was not associated with survival in STS.

The GSEA revealed that pathways related to cell cycle, DNA replication, and cancer were activated in high-risk patients, leading to poor prognosis. However, the activation of immune-related pathways improved survival. These results also validated the IRPGs and the IGRPM. Furthermore, differences in DNA methylation were investigated between high- and low-risk patients. Relative low methylation in high-risk patients contributed to poor prognosis. The KEGG analysis further revealed the underlying mechanism involved in the effect of DNA methylation on prognosis. In addition, age, mitotic count and risk score were IPF in STS, further validating the prognostic model.

This study had the following clinical implications and strengths. Firstly, although the use of immunotherapy benefited the treatment of cancers, the low response linked to this therapeutic approach limited its use. The identification of “hot tumors” and transformation of “cold tumors” to “hot tumors” could overcome the current predicament (60). Five IRPGs with satisfactory performance in the discrimination of high risk (“cold tumors”) and low risk (“hot tumors”) were identified as potential predictive biomarkers of response to immunotherapy. Low-risk patients not only showed high immune activation but also had inhibition of immunity, especially high expression of checkpoint molecules. Secondly, an increasing number of studies reported that expression of the MHC could predict response to immune checkpoint blockade (67). The significant differences in MHC expression between high- and low-risk patients also suggested the potential use of the five aforementioned IRPGs for the prediction of response to immunotherapy. Thirdly, the differences between high- and low-risk patients revealed by the multi-omic analysis may provide a reference for subsequent studies on the transformation of “cold tumors” to “hot tumors” or improvement of treatment of STS. Fourthly, the combination of different bioinformatics methods increased the reliability of the results.

However, this study was also characterized by some limitations. Firstly, the small sample sizes of the different histological subtypes limited the integrated analysis for each type. Secondly, the stage of STS, which was not available in TCGA dataset, also had a significant impact on prognosis. Subsequent studies focusing on different histological subtypes and the stage of STS are warranted to validate the results of the present study. Thirdly, the ability of five IRPGs to predict prognosis and response to immunotherapy could not be assessed by current methods such as using PD-L1 immunohistochemistry, or Nanostring tumor inflammation signature for lack of data in STS (68). Therefore, five IRPGs also need to be tested in basic experiment and clinical trials.



CONCLUSION

In this study, one IGRPM with independent prognostic ability based on five optimal IRPGs (i.e., IFIH1, CTSG, STC2, SECTM1, and BIRC5) were identified and validated in STS. Through the comprehensive study of the tumor immune microenvironment, we demonstrated that these five IRPGs contributed to risk stratification and the identification of patients who are responsive to immunotherapy. Furthermore, the multi-omic analysis revealed the potential mechanisms affecting prognosis, providing additional references for the treatment of STS. More studies focusing on histological subtype were needed to provide more precise treatment.
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Immunotherapies that harness the immune system to kill cancer cells have showed significant therapeutic efficacy in many human malignancies. A growing number of studies have highlighted the relevance of neoantigens in recognizing cancer cells by intrinsic T cells. Cancer neoantigens are a direct consequence of somatic mutations presenting on the surface of individual cancer cells. Neoantigens are fully cancer-specific and exempt from central tolerance. In addition, neoantigens are important targets for checkpoint blockade therapy. Recently, technological innovations have made neoantigen discovery possible in a variety of malignancies, thus providing an impetus to develop novel immunotherapies that selectively enhance T cell reactivity for the destruction of cancer cells while leaving normal tissues unharmed. In this review, we aim to introduce the methods of the identification of neoantigens, the mutational patterns of human cancers, related clinical trials, neoantigen burden and sensitivity to immune checkpoint blockade. Moreover, we focus on relevant challenges of targeting neoantigens for cancer treatment.
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INTRODUCTION

The occurrence rate of cancer is increasing rapidly (Torre et al., 2015). New methods such as immunotherapy have become an optimal choice in cancer treatment, along with chemotherapy, radiation and surgery (Restifo et al., 2012; Hamid et al., 2013; Robert et al., 2015a). The foundation of cancer immunology was based on tumor transplantation studies in syngeneic mice (Prehn and Main, 1957; Old and Boyse, 1964). Concurrently, clinicians observed that in gastric carcinoma patients, tumor-infiltration lymphocytes (TILs) were correlated with longer post-operative survival (Black et al., 1954). Recently, it has demonstrated that autologous T cells can show profound tumoricidal activity and immunotherapies based on T cells are effective in multiple human malignancies (Rosenberg, 2011; Rosenberg et al., 2011). In particular, treatment of patients with checkpoint blockade has shown a significant effect on patient survival (Hodi et al., 2010; Brahmer et al., 2012; Topalian et al., 2012; Sharma and Allison, 2015). These data provide clear evidence that endogenous T cells can recognize antigenic determinants—epitopes that present on the tumor cell surface from the major histocompatibility complexes (MHCs). Such epitopes may be originated from three classes of antigens: (1) viral antigens that are encoded by viral open reading frames (ORF) in virus-infected tumor cells (Walboomers et al., 1999; Gillison et al., 2000; Feng et al., 2008), such as hepatitis B virus (HBV) (Merlo et al., 2010), Epstein-Barr virus (EBV) (Lin et al., 2002), and human papilloma virus (HPV) (Morrow et al., 2013); (2) tumor-associated antigens (TAAs) that expression levels are very low in some normal tissues but are overexpressed in malignant cells, including oncofetal antigens, cancer testis antigens (CTA), overexpressed oncogenic proteins and selected differentiation antigens (Caballero and Chen, 2009; Melero et al., 2014; Ward et al., 2016), for example NY-ESO-1 (D’Angelo et al., 2018) and CD19 on B cell malignancies (Sabatino et al., 2016); and (3) neoantigens, which are immunogenic products of somatic mutations that are fully specific to tumors. In the late 1980s, Boon and colleagues were among the first to report that aberrant peptides derived from tumor mutations were able to elicit a tumor specific T cell response in a mouse model (De Plaen et al., 1988; Lurquin et al., 1989). A few years later, it was also observed in human tumors that somatic mutations were a source of neoantigens recognized by T cells (Coulie et al., 1995; Monach et al., 1995; Wolfel et al., 1995). Recently, studies have demonstrated that neoantigens are able to recognize cancer cells by intrinsic T cells (Lennerz et al., 2005; Castle et al., 2012; Matsushita et al., 2012; Kvistborg et al., 2014; Rajasagi et al., 2014; Wick et al., 2014; Chan et al., 2015; Cohen et al., 2015; Rizvi et al., 2015). Neoantigens are fully tumor-specific and bypass central tolerance (Heemskerk et al., 2013), and thus they are not expected to induce autoimmune toxicity and they are a potential target for cancer immunotherapy. With the recent development of cancer genomics (Garraway and Lander, 2013; Vogelstein et al., 2013) and high-throughput immunologic screening (Lin et al., 2008; Zhang et al., 2011), the goal of the analysis of neoantigens based on individual patients has become achievable, which makes neoantigen-directed immunotherapy highly attractive. In this review, we aim to introduce the framework for the identification and prioritization of neoantigens, the mutational patterns of cancer, neoantigen-related trials, mutational burden and sensitivity to immune checkpoint blockade. More importantly, we highlight the relevant challenges of targeting neoantigens for cancer treatment.



NEOANTIGEN IDENTIFICATION

Advances in next-generation sequencing (NGS) (Margulies et al., 2005; Shendure et al., 2005; Bentley et al., 2008; Wheeler et al., 2008; Drmanac et al., 2010) have allowed for the rapid and relatively inexpensive exhaustive sequencing of genomic changes across tens of thousands of human cancers (Li et al., 2011; Stratton, 2011; Gubin et al., 2015; Lu and Robbins, 2016). In conjunction, the innovation of high-throughput immunologic screening techniques has promoted the detection and isolation of neoantigens that can evoke specific T cell responses (Hadrup et al., 2009; Bentzen and Marquard, 2016; Bentzen and Hadrup, 2017) (Figure 1). In the human genome, only 1% codes for known expressed genes (the exomes) among the approximately 3 billion nucleotides (Choi et al., 2009; Ng et al., 2009). Therefore, it can significantly reduce time and costs to sequence only functional exomes. Large projects such as The Cancer Genome Atlas (TCGA) [Cancer Genome Atlas (TCGA) Research Network, 2008; Garraway and Lander, 2013] and The International Cancer Genome Consortium (ICGC) (Hudson et al., 2010) have identified cancer genomes across multiple tumor types. However, whole-exome sequencing (WES) provides limited information on non-coding regions of cancer genomes, including untranslated regions (UTRs), promoters, enhancers, introns, regulatory elements and diverse non-coding RNAs (ncRNAs) as well as unannotated regions (Garraway and Lander, 2013). In contrast, whole-genome sequencing (WGS) may be able to detect these events (Meyerson et al., 2010). Second-generation sequencing of the transcriptome (RNA-seq) is another powerful approach — as cDNA may derive from mRNA, total RNA or other RNAs, such as microRNAs and lncRNA (Morrissy et al., 2009). Recent studies have suggested that tumors harbor more abundant alternative splicing events than paired normal tissues by comprehensive analysis of WES with RNA-seq data and proteomic data, which is a potential source to generate tumor-specific neoantigens (Kahles et al., 2018; Park et al., 2018). In fact, a few studies have developed peptide arrays representing all possible frameshift peptides and detected the antibody responses to the frameshift peptides. This might be a useful method for cancer neoantigen screening (Zhang et al., 2018; Shen et al., 2019). In conclusion, somatic DNA mutations are usually computed from WGS, WES or RNA-seq data from comparisons between tumor and normal sequences (Ding et al., 2014; Tran et al., 2015).
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FIGURE 1. A framework for the identification and prioritization of neoantigens from computational analysis for an individual cancer sample.


Then the patient-specific NGS data from WGS, WES, or RNA-seq can be used to predict HLA types with computational tools such as Optiptype (Szolek et al., 2014) and Polysolver (polymorphic loci resolver) (Shukla et al., 2015). First, reads are selected from the NGS data that potentially derived from the HLA region; second, they are aligned to a full-length genomic library of all known HLA alleles (Robinson et al., 2013); and third, all the best-scoring alignments of each read are kept for further study. After predicting HLA types, computational algorithms such as NetMHC (Andreatta and Nielsen, 2016), NetMHCpan (Rammensee et al., 1999; Nielsen et al., 2007; Nielsen and Andreatta, 2016; Jurtz and Paul, 2017), and MHCflurry (O’Donnell et al., 2018) trained on large in vitro experimental datasets can be used to prioritize candidate neoantigens that bind to the predicted HLA types with high affinity. For example, Neopepsee and pVAC-Seq are representative analysis pipelines for tumor somatic mutations (Hundal et al., 2016; Kim et al., 2018). However, these algorithms are not a good predictor of actual HLA presentation (Bassani-Sternberg et al., 2016; Abelin et al., 2017), with only <5% of predicted peptides found on tumor cell surface (Yadav et al., 2014; Bassani-Sternberg et al., 2015). On the other hand, these prediction strategies do not consider proximal variants that can alter peptide sequences and affect neoantigen binding predictions (Hundal and Kiwala, 2019). Recently, a new prediction model-EDGE based on tumor HLA peptide mass spectrometry (MS) datasets has increased the positive predictive value up to nine-fold. However, it still does not incorporate TCR binding or predict HLA class II binding epitopes (Bulik-Sullivan et al., 2018).

Besides, a range of methodologies can be used to identify autoantibodies against tumor neoantigens based on B-cell response. The costimulatory molecules from CD4+ helper T cells and the neoepitopes presented on the surface of antigen-presenting cells (APCs) could activate the Naïve B cells in lymphoid organs. Most activated B cells will then differentiate into plasma cells to produce antibodies against tumor neoantigens (Zaenker et al., 2016). Protein microarrays are time-effective high-throughput tools (Figure 2). Sandwich immunoassays in the miniaturized system could successfully identify tumor antigens in sera samples extracted from patients (Pollard et al., 2007; Yang et al., 2013). First described by O’Farrell (1975), another tool named Serologic Proteome analysis (SERPA) or 2-D western blots, consists of the isoelectric focusing (IEF) gel run in the first dimension and SDS-PAGE gel run in the second dimension. SERPA separates the proteins in the gel by their isoelectric point (IP) and molecular mass and then transfers the proteins from the gel to a carrier membrane to screen antibodies. Finally, the antigenic protein spots can be identified by MS (Tjalsma et al., 2008). This approach has been used to identify antigens in different tumor types (Dai et al., 2017; Belousov et al., 2019). Serological analysis of recombinant cDNA expression libraries (SEREX), which combines serological analysis with antigen cloning techniques, is a widely used technique to explore tumors’ antigen repertoire. SEREX first construct a cDNA library from cancer cell lines or fresh tumor samples, then screen the cDNA library with autologous sera of cancer patients, and finally sequence the immune-reactive clones. Despite the laborious process, SEREX have identified a variety of tumor antigens including CTAs, differentiation antigens, mutational antigens, splice-variant antigens and over-expressed antigens (Chen et al., 1997; Scanlan et al., 1998; Türeci et al., 1998a, b; Brass et al., 1999; Jäger et al., 1999). Furthermore, other methods such as Multiple Affinity Protein Profiling (MAPPing) and nanoplasmonic biosensor have also been developed to identify tumor antigens (Lee et al., 2015; Jo et al., 2016).
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FIGURE 2. Profiling the humoral immune response and the process of protein microarray to capture autoantibodies against antigens.




MUTATIONAL PATTERNS IN HUMAN CANCERS

Somatic mutations presenting in cancer cells but not in a patient’s germ line are the primary cause of cancers (Weir et al., 2004). The cancer genome alterations include single base substitutions, insertion-deletions (so-called indels), rearrangements (inversions, translocations, duplications, and deletions) (Stratton et al., 2009; Alexandrov et al., 2013; Barrick and Lenski, 2013; Vogelstein et al., 2013; Helleday et al., 2014), but also new DNA sequences acquired from exogenous sources, notably those of viruses such as HBV, HPV, and EBV (Talbot and Crawford, 2004). Somatic mutations can be classified as driver and passenger mutations, and driver mutations, such as BRAF, KRAS, EGFR, IDH1, and PIK3CA, can provide a selective growth advantage and promote cancer development while passenger mutations do not (Haber and Settleman, 2007). Even though cancer has a mere handful of driver mutations, they are still attractive targets for immunotherapy when they are shared between different cancers and individuals. The rates of mutations vary among tumors and cancer types. Some cancer types, such as medulloblastomas, carcinoids, acute leukemias, and testicular germ cell tumors, generally carry relatively few mutations (Greenman et al., 2007; Parsons et al., 2011). However, lung cancers and melanomas occasionally have more than 100,000 mutations (Ding et al., 2008; Kan et al., 2010; Pleasance et al., 2010a), most likely because of overwhelming exposure to mutagenic carcinogen such as ultraviolet (UV) light (Trucco et al., 2018) and tobacco carcinogens (Pleasance et al., 2010b). Except for exogenous mutagenic exposure, endogenous mutational processes, such as mismatch repair deficiency in some colorectal cancers (Pena-Diaz et al., 2017) or upregulation of APOBEC cytosine deaminases, can also contribute to mutation burden (Alexandrov et al., 2013; Helleday et al., 2014). More information about the somatic mutations in human cancer can be found in COSMIC, the Catalog Of Somatic Mutations In Cancer1 (Forbes et al., 2015). One can even explore how cancer mutations impact the structure and function of more than 8,000 human proteins in COSMIC-3D (No authors, 2017a). Non-synonymous somatic mutations, which can alter amino acid coding sequences, are the main cause of neo-epitopes (Wood et al., 2007). Here, we summarize the number of non-synonymous somatic mutations in different cancer types (Table 1). For example, Sjoblom et al. (2006) identified 1,307 somatic mutations among 13,023 genes in 11 breast and 11 colorectal cancers (83% were missense mutations, 6% were nonsense, and the remainder were insertions, deletions, duplications, and changes in non-coding regions). Neoantigens generated from tumor somatic DNA mutations can be identified by the approach described in the first section.


TABLE 1. Non-synonymous somatic mutations in different cancers.
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NEOANTIGEN CLINICAL TRIAL

Promising results of neoantigen vaccines from preclinical studies have raised significant interest in clinical development (Castle et al., 2012; Gubin et al., 2014; Kreiter et al., 2015; Zhang et al., 2017). Recently, the clinical response in patients with advanced melanoma who received neoantigen vaccines treatment is quite encouraging in several phase I clinical trials (Yadav et al., 2014; Ott et al., 2017; Sahin et al., 2017). The main platforms for neoantigen vaccine are synthetic long peptide (SLP) vaccine, DNA vaccine, RNA vaccine, and dendritic cell (DC) vaccine. In addition, adoptive T cell therapy (ACT) targeting neo-epitopes has shown significant efficacy. Currently, there is an increasing number of clinical trials on neoantigen vaccines in a variety of cancers (Tables 2, 3).


TABLE 2. Ongoing clinical trials targeting cancer neoantigens.
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TABLE 3. Completed clinical trials targeting cancer neoantigens.
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SLP Vaccine

The peptide vaccine is fast and flexible, and it is simple to make an individual cocktail for patients. Antigenic peptide has been widely developed in vaccination due to its strengths including low cost, low toxicity and direct function as pivotal T cell epitope (Li et al., 2014; Kumai et al., 2017). Ott et al. (2017) developed an immunogenic personal neoantigen vaccine (NCT01970358). In this phase I clinical study, 6 patients with resected high-risk melanoma (stage IIIB/C and IVM1a/b) received personalized long peptide vaccines targeting up to 20 neoantigens per patient after sequencing and prioritizing HLA class I prediction (toll-like receptor 3 [TLR3] and melanoma differentiation-associated protein 5 [MDA-5] poly-ICLC were also co-administered as adjuvants). The vaccination activated both CD8+ and CD4+ T cells responses against tumor. Treatment-related adverse events were fatigue, rash, injection site reactions and mild flu-like symptoms, with no major autoimmune toxicity. Encouragingly, four of these six vaccinated patients experienced no recurrence at 25 months after vaccination, and another two relapse patients with metastatic disease later experienced complete responses to anti- PD-1 therapy (Ott et al., 2017). However, the therapeutic efficacy of SLP vaccine is limited by inefficient delivery to desired lymphoid organs as it could rapidly diffuse into the peripheral blood vessels due to its small molecular size (Irvine et al., 2015; Zhu and Zhang, 2017).



DNA Vaccine

DNA vaccine is stable, safe in handling, cost-efficient and easy to manufacture (Prazeres and Monteiro, 2014). Importantly, DNA vaccine can activate both CD4+ and CD8+ T cell response, as well as innate immune response due to the recognition of double stranded DNA structure by cytosolic sensors (Tang and Pietersz, 2009; Ori et al., 2017). Newer DNA vaccines have shown efficacy in the clinic (Trimble et al., 2015; Tebas et al., 2017; Aggarwal et al., 2019). Recently, one group utilized a DNA vaccine platform to target tumor neoantigens in a mouse model. They chose TC1, LLC, and ID8 as tumor models that hardly respond to immune-checkpoint blockade alone. After sequencing these tumors and identifying neoantigens, they designed 12 epitopes per plasmid and these synthetic neoantigen DNA vaccines (SNDVs) were tested in vivo. Not surprisingly, it showed robust T cell immunity. Intriguingly, a larger proportion of CD8+ T cell responses was generated during the SNDVs treatment (25% CD4+ and 75% CD8+ T cell responses) compared with other platforms such as SLP neoantigen vaccines (60% CD4+ and 16% CD8+ T cell responses). Although the epitopes were selected in silico for high MHC class I binding affinity, SLP and RNA neoantigen vaccines generated a higher proportion of MHC class II–restricted CD4+ T cells (Kreiter et al., 2015; Martin et al., 2016; Ott et al., 2017; Sahin et al., 2017). However, DNA vaccine shows poor immunogenicity in human trials (Jorritsma et al., 2016).



RNA Vaccine

The advantages of RNA vaccine include low risk of insertional mutagenesis, direct translation into the cytoplasm and simple and inexpensive manufacturing procedure (Sahin et al., 2014). Kreiter et al. (2015) developed synthetic poly-neo-epitope messenger RNA vaccines after exome sequencing and bioinformatic prioritization in three independent murine tumor models. This vaccination induced complete rejection of established tumors and reshaped the tumor microenvironment (Kreiter et al., 2015). As RNA is the genetic material in many viruses, the human immune system tends to be on high alert for it, which gives an RNA vaccine a unique advantage. “It is its own adjuvant,” Sahin says (Sahin et al., 2017), so he implemented the RNA-based poly-neo-epitope vaccines in 13 patients with stage III-IV melanoma (NCT02035956). Two patients had a vaccine-related objective response among the five patients with metastatic disease, and the other eight patients who had no detectable disease mostly experienced prolonged disease-free survival. Two-thirds of vaccination developed de novo in addition to pre-existing immunity. Weide et al. (2009) also showed that direct injection of protamine-protected mRNA vaccine is feasible and safe; it can also increase the T cell response and decrease immunosuppressive cells in metastatic melanoma patients (NCT00204607). However, the translational efficiency of RNA vaccine remains challenging as only a small portion of administered mRNA can be captured and presented by APCs. Therefore, Sahin and his group administered the RNA vaccine directly into lymph nodes through ultrasound-guided percutaneous injection, noted as intranodal injection (i.n.).



DC Vaccine

Dendritic cells have a key role in presenting antigens to the immune system. DCs are often recognized as the most potent APCs, which are capable of acquiring and processing antigens for presentation to T cells and expressing high levels of costimulatory molecules (Sabado et al., 2017). Therefore, vaccination based on DCs is a promising platform for neoantigen vaccine. Carreno et al. (2015) were the first to report autologous DC vaccines directed at tumor amino acid substitutions (AAS) in three melanoma patients (NCT00683670). They filtered the candidate HLA-A∗ 02: 01 epitopes containing mutations residues after whole exome sequencing and HLA binding prediction and evaluated the MHC-epitope binding using mass spectrometry. Then they filtered precursors of DCs from patients’ bloodstream, matured them and exposed them to synthetic epitopes. The peptide-loaded DCs were then returned to the patients by intravenous infusion. It increased the breadth and diversity of anti-tumor immunity after receiving the DC neoantigen vaccine (Carreno et al., 2015). However, DC vaccine is laborious, costly and need highly skilled technicians for manufacturing (Chen et al., 2016).



Adoptive T Cell Therapy (ACT)

T cell therapy targeting driver mutations is quite attractive, since they are not only specific and biologically important, but also shared between different patients (McGranahan et al., 2015). Currently, KRAS mutations are hot-spot driver mutations and the most frequent KRAS mutant is KRAS G12D that is expressed in ∼45% of pancreatic adenocarcinomas (Bryant et al., 2014) and ∼13% of colorectal cancers (Vaughn et al., 2011). Rosenberg et al. (2016) administered cytotoxic T cells targeting mutant KRAS G12D into a patient with metastatic colorectal cancer (NCT01174121). After whole-exome and transcriptome sequencing of three resected lung lesions, they found that CD8+ T cells in TILs specifically recognized mutant KRAS G12D. Then they selected and expanded TILs that were reactive to the mutant KRAS G12D. The patient received a single infusion of 1.48 × 1011 TILs, which contained 1.11 × 1011 HLA-C∗08:02–restricted CD8+ T cells that specifically targeted KRAS G12D. The objective regression of all seven lung metastases was observed at the first follow-up visit. However, one of these metastatic lesions had progressed when evaluating after 9 months of therapy. The loss of the chromosome 6 haplotype encoding the HLA-C∗08:02 class I MHC molecule resulted in progression after resecting this lesion and sequencing, which provides direct evidence of tumor immune evasion (Tran et al., 2016). Furthermore, the group used this approach to demonstrate that CD4+ T helper 1 (TH1) cells in TILs recognized a mutation in erbb2 interacting protein (ERBB2IP) in a patient with metastatic cholangiocarcinoma. This patient was treated with mutation-reactive TH1 cells twice and experienced tumor regression (NCT01174121) (Tran et al., 2014).



NEOANTIGEN LOAD ASSOCIATES WITH IMMUNE CHECKPOINT INHIBITORS

Antibodies targeting two immune checkpoints, PD-1 and CTLA-4, represent the greatest success of cancer immunotherapy, which can elicit durable antitumor responses in a wide range of malignancies (Hodi et al., 2010; Hamid et al., 2013; Chen and Han, 2015; Postow et al., 2015; Robert et al., 2015a; Zou et al., 2016). The treatment of immune checkpoint inhibitors has improved OS and PFS in many different cancers (Robert et al., 2011; Topalian et al., 2014; Borghaei et al., 2015; Brahmer et al., 2015; Garon et al., 2015; Larkin et al., 2015; Robert et al., 2015b; Sundar et al., 2015; George et al., 2016; Tomita et al., 2017). Accumulating evidence suggests that cancers with higher mutation burden are associated with more survival benefits from both anti- PD-1 and anti- CTLA-4 therapy (Table 4) (Hamid et al., 2013; Asaoka et al., 2015; Rizvi et al., 2015; Andor and Graham, 2016; Erratum for the Report “Genomic correlates of response to CTLA-4 blockade in metastatic melanoma” by Van Allen et al., 2016; Hugo et al., 2016; Matsushita et al., 2016; McGranahan et al., 2016; Morris et al., 2016; Rosenberg et al., 2016). Mutations may increase the possibility of generating immunogenic neoantigens, which facilitate the recognition of cancer cells as foreign (Schumacher and Schreiber, 2015; Riaz and Havel, 2016). Studies in melanoma patients have demonstrated that neoantigen-specific CD8+ and CD4+ T cells in TILs responded to checkpoint blockade therapy (Kvistborg et al., 2014; Lu et al., 2014; Tran et al., 2014; Linnemann et al., 2015), which provides testimony for the hypothesis. Furthermore, neoantigen loss may contribute to acquired resistance through tumor cell elimination or chromosomal deletions during immune checkpoint blockade therapy (Anagnostou et al., 2017); other mechanisms include upregulation of alternate immune checkpoints (Koyama et al., 2016), loss of HLA haplotypes (Maeurer et al., 1996), or somatic mutations in HLA or JAK1/JAK2 genes (Shukla et al., 2015; Garcia-Diaz et al., 2017). However, a proof-of-concept by Nicholas in which cytotoxic chemotherapy–induced subclonal neoantigens were enriched in certain poor responders to immune checkpoint inhibitors was presented (McGranahan et al., 2016). Additionally, gliomas that recurred after treatment with the DNA alkylating agent temozolomide were identified to carry numbers of mutations (Hunter et al., 2006; Cahill et al., 2007), which had a higher mutation burden generated from chemotherapy, but had less clinical benefit. As a result, the association between response to immune checkpoint blockade and neoantigen burden is not linear and clear (Le et al., 2015). Matsushita et al. (2017) demonstrated that the number of neoantigens per missense mutation (neoAg frequency) was an independent predictive factor for PFS in ovarian clear cell carcinoma (OCCC), and the low neoAg frequencies were correlated with increased PFS. High mutation and neoantigen load negatively influenced PFS in multiple myeloma (MM) patients, which had a lower mutational burden (Miller et al., 2017). Luksza et al. (2017) developed a neoantigen fitness model that could describe the evolutionary dynamics of cancer cells and predict tumor response to checkpoint blockade immunotherapy. Further studies are needed regarding the relationship between neoantigen load and checkpoint blockade immunotherapy.


TABLE 4. Trials defining a TMB threshold for ICB benefit.
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CHALLENGES


The Challenges With MHC–Peptide-Binding Prediction

Current neoantigen identification techniques are still time consuming and labourious (Tran et al., 2015; Gros et al., 2016). The predictors of immunogenicity are immature (Calis et al., 2013). In addition, since cytotoxic CD8+ T cells are the main killer of cancer cells, the available computational tools can only predict neo-epitopes that bind to MHC class I molecules presented on CD8+ T cells (Nielsen and Andreatta, 2016). Humans have approximately 5,000 alleles encoding MHC class I molecules, with expression of up to six MHC class I molecules (No authors, 2017b) and computational tools cannot predict them all. Intriguingly, even though the epitopes are selected for high MHC class I binding affinity, the neoantigen vaccine trials showed a higher proportion of MHC class II–restricted, CD4+ T cells (Kreiter et al., 2015; Ott et al., 2017). Furthermore, studies demonstrated that CD4+ T cells also recognize a higher number of neo-epitopes than was previously known and can confer potent antitumor activity (Tran et al., 2014; Kreiter et al., 2015). However, it will be more difficult to develop predictive algorithms for MHC class II molecules (Nielsen et al., 2010). First, MHC class II molecules are heterodimers of alpha and beta peptides encoded by four different loci, with three of them being highly polymorphic in the human genome (Robinson et al., 2003). Second, the MHC class II binding groove is open on both ends, presenting longer sequences of amino acids (11–20 amino acids or even longer) than MHC class I molecules (8–11 amino acids) (Babbitt et al., 1985; Bjorkman et al., 1987). Recently, Andreatta et al. (2015) described the method for the quantitative prediction of peptide binding affinity of MHC class II molecules of known sequence.

Primarily, the protein that contains the mutated residue is processed by the proteasome (Figure 3) (Nielsen et al., 2005) —a catalytic complex in the cytosol that can cleave the amino acid (AA) sequence to peptides ranging from 3 to 22 AA in length (Kisselev et al., 1999; Rock et al., 2002; Murata et al., 2009). A fraction of the peptides is further trimmed by aminopeptidases and endopeptidases in the cytosol and the endoplasmic reticulum(ER) (Beninga et al., 1998; York et al., 2002; Yan et al., 2006; Rock et al., 2010). Then, this peptide will be transported into the ER lumen by the TAP1/TAP2 transporter to assemble with MHC class I molecules (Peters et al., 2003; Larsen et al., 2007). Finally, the peptide-MHC class I complex can be presented on the cell surface. However, these computational tools hardly consider the endogenous processing and transport of peptides before HLA binding, which results in a high false-positive rate. As studied by Robbins and colleagues, 229 tumor-specific neo-epitopes were predicted in three melanoma patients, but only 11 (4.8%) of these neo-epitopes elicited a T cell response (Robbins et al., 2013). Neo-epitopes can also be produced by an altered MHC class I processing machinery in cancer cells (Van Hall et al., 2006; Seidel et al., 2012; Van Der Burg et al., 2016), which results in a high false-negative rate. Recently, Abelin et al. (2017) developed a new method of liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis of HLA-associated peptides which takes into account the endogenous processing of peptides, they also developed a new predictor with better algorithm since it is trained on peptide affinity data.
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FIGURE 3. Schematic diagram illustrates the steps involved in tumor neoantigen processing and presentation on MHC class I molecules.


However, some patients may have no expression or aberrated expression of MHC molecules as immune evasion mechanisms (Marincola et al., 2000; Garrido et al., 2010; Leone et al., 2013; Textor et al., 2017). The loss of MHC class I can be detected in the early stage of some cancers (Vermeulen et al., 2005; Van Esch et al., 2014). As studied by Cabrera et al. (2003), β2m mutations and LMP7/TAP2 downregulation are the two main mechanisms in colorectal cancer that are responsible for the loss of MHC surface expression, and thus T cells fail to recognize cancer cells during an immune response. In some tumors, the MAPK pathway may regulate MHC I presentation (Mimura et al., 2013; Bradley et al., 2015; Ebert et al., 2016). After the mutated peptide and MHC class I complex presenting on the tumor cell surface, T cell recognition can occur only when TCRs that have the ability to recognize the mutant epitope exist within the T cell repertoire. Luckily, prior data showed that the T cell repertoire had a diversity of ∼2.5 × 107 (Arstila et al., 1999), and a single TCR was able to recognize up to 106 different MHC/peptide complexes, and thus the immune system could recognize ∼1012 possible foreign epitopes (Mason, 1998), which means the immune system has a strong recognition ability to distinguish even minor variations in MHC/peptide complexes. A study has shown that only certain types of mutations can be missed, such as conservative substitutions at other positions or alterations at the N-terminal peptide residue (Kessels et al., 2004).



Tumor Heterogeneity

Genomic instability and mutational processes can result in extensive tumor heterogeneity in each patient (Gerlinger et al., 2012). First, spontaneous mutations occur during the stages of tumor progression. Second, tumor microenvironments such as T cells can mediate neoantigen immunoediting (Verdegaal et al., 2016) or neoantigen loss. Third, metastatic lesions can involve the distal outgrowth of tumor cells originated from a subclone of the primary tumor; although there is little heterogeneity in driver mutations, there is still considerable epigenetic reprogramming between primary and metastatic tumors as studied in pancreatic ductal adenocarcinoma (PDAC) (Alderton, 2017). Therefore, a single site tumor biopsy may not adequately capture the total number of antigen clones present in the tumors (Sankin et al., 2014). It is well established that intratumor heterogeneity (ITH) correlates with the response of cancer patients to treatments with targeted therapies (Diaz et al., 2012; Shi et al., 2014; Landau et al., 2015). This is only tumor heterogeneity for each individual patient. For different patients and different cancers, the neo-epitopes were rarely shared except for driver mutations, which account for a fraction of mutations. Charoentong et al. (2017) analyzed more than 8,000 patients comprising 20 solid cancers from the TCGA (results available at https://tcia.at/). The pan-cancer analysis showed that the fraction of neo-epitopes generated from driver genes was 7.6%. Only 24 of 911,548 unique predicted neo-epitopes were common in more than 5% of patients (Charoentong et al., 2017). Therefore, neoantigen immunotherapy will probably need to be fully personalized for each patient, and this will be the next generation of precision medicine.



Tumor Suppression Environment

Cancer immunotherapy can offer limited clinical benefit without mitigating the immunosuppressive microenvironment of tumors. It has been increasingly recognized that tumors develop a specialized niche termed the tumor microenvironment (TME) in which tumor cells are protected from therapeutic interventions (Quail and Joyce, 2013). This niche includes fibroblasts (Kalluri and Zeisberg, 2006; Chen and Song, 2018), myeloid suppressor cells (MDSCs) (Goedegebuure et al., 2011; Kumar et al., 2016), regulatory T (Treg) cells (Van Der Burg et al., 2007; Bonertz et al., 2009), tumor-associated macrophages (TAM) (Qian and Pollard, 2010; Panni et al., 2013), lymphocytes, the extracellular matrix (ECM) and abnormal blood and lymphatic vessels (Jain, 2013). For example, high stromal density can limit T cell access to tumor cells and delivery of cytotoxic agents that provide a barrier (Provenzano et al., 2012; Feig et al., 2013; Ozdemir et al., 2014). Cancer cells can also express ligands for inhibitory receptors on T cells and secrete a multitude of chemokines and cytokines to affect antitumor immunity (Walker et al., 2003; Thomas and Massague, 2005). The vaccine strategies can successfully increase the frequency and activity of T cells, but they fail to guarantee that these T cells can exert their function within the tumors. The most important reason is the immune escape mechanisms in cancers, and thus proper co-treatment during vaccination is needed (Arens et al., 2013; Van Der Burg et al., 2016). Other than ICIs, there are multiple inhibitors targeting tumor immunosuppressive factors, including IDO1 inhibitors (Spranger et al., 2014), MEK inhibitors (Ebert et al., 2016), colony-stimulating factor-1 receptor (CSF1R) and chemokine (C-C motif) receptor 2 (CCR2) inhibitors (Mitchem et al., 2013), tumor extracellular matrix and stromal inhibitors (Provenzano et al., 2012), adenosine signaling through the adenosine A2a receptor (A2aR) (Leone et al., 2015), and other metabolic signaling pathways (Pardoll, 2015). In addition, combining such TME modulators with neoantigen-specific therapy may augment antitumor immunity (Melief et al., 2015). As studied by Zhu et al. (2014) CSF1R blockade could significantly improve the efficacy of PD-1 or CTLA-4 antagonists on tumor regressions. Furthermore, among the large number of predicted epitopes, only a minority can be recognized by autologous T cells (Robbins et al., 2013; Van Rooij et al., 2013; Rizvi et al., 2015); therefore, one group has proved that T cells redirected with T cell repertoires of healthy blood donors can efficiently recognize cancer epitopes that are neglected by a patient’s autologous T cells (Stronen et al., 2016).



CONCLUSION AND PERSPECTIVES

Personal neoantigen vaccines can elicite strong T cell responses, which not only expand existing neoantigen-specific T cell populations, but also induce a new proportion of specific T cells in cancer patients (Ott et al., 2017). Hence, the identification of neoantigens is of utmost importance to improve cancer immunotherapy and broaden its efficacy to a larger number of patients. Khodadoust et al. (2017) discovered that immunoglobulin neoantigens in human mantle-cell lymphomas and CD4+ T cells specific for the neoantigens could mediate killing of autologous lymphoma cells. Keskin et al. (2019) also demonstrated that a strategy using multi-epitope, personalized neoantigen vaccination is feasible not only for high-risk melanoma (Rizvi et al., 2015; Ott et al., 2017; Sahin et al., 2017) but also for glioblastoma (Keskin et al., 2019), which has a relatively low mutation load. Furthermore, Balachandran et al. (2017) identified MUC16 as immunogenic hotspots in long-term survivors of pancreatic ductal adenocarcinoma, which is a presumed poorly immunogenic and checkpoint blockade-refractory tumor. These results are encouraging, but efforts are needed to tackle those challenges, and we will be very likely to witness these exciting developments in the near future.
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Osteosarcoma is one of the most aggressive malignant bone tumors worldwide. Although great advancements have been made in its treatment owing to the advent of neoadjuvant chemotherapy, the problem of lung metastasis is a major obstacle in the improvement of survival outcomes. Thus, the aim of the present study is to screen novel and key biomarkers, which may act as potential prognostic markers and therapeutic targets in osteosarcoma. We utilized the robust rank aggregation (RRA) method to integrate three osteosarcoma microarray datasets downloaded from the Gene Expression Omnibus (GEO) database, and we identified the robust differentially expressed genes (DEGs) between primary and metastatic osteosarcoma tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the functions of robust DEGs. The results of enrichment analysis showed that the robust DEGs were closely associated with osteosarcoma development and progression. Immune cell infiltration analysis was also conducted by CIBERSORT algorithm, and we found that macrophages are the most principal infiltrating immune cells in osteosarcoma, especially macrophages M0 and M2. Then, the protein–protein interaction network and key modules were constructed by Cytoscape, and 10 hub genes were selected by plugin cytoHubba from the whole network. The survival analysis of hub genes was also carried out based on the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. The integrated bioinformatics analysis was utilized to provide new insight into osteosarcoma development and metastasis and identified EGR1, CXCL10, MYC, and CXCR4 as potential biomarkers for prognosis of osteosarcoma.
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INTRODUCTION

Osteosarcoma is one of the most aggressive malignant tumors in the bone (1), which derived from mesenchymal tissue and showed osteoblastic differentiation (2). Annually, the incidence rate of osteosarcoma is approximately four to five cases per million (3). In addition, osteosarcoma is most prevalent in children and adolescents (4), and 15–20% of osteosarcoma patients have lung metastasis at the initial diagnosis (5, 6). With the assistance of neoadjuvant chemotherapy, the treatment of osteosarcoma has been greatly improved, but the overall survival of patients with lung metastasis or relapse has not improved and remains low at approximately 20% (7, 8). Therefore, it is extremely necessary to seek novel prognostic factors and therapeutic targets for osteosarcoma.

In recent years, public databases including Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) are widely used to explore diagnostic and prognostic biomarkers in osteosarcoma. In the previous studies, the limited number of samples and inappropriate analysis methods of multiple datasets led to deviation of the results. Zhang et al. (9) and Diao et al. (10) described the role of gene copy number alterations and methylation changes in the malignant progression of osteosarcoma using bioinformatics analyses, respectively. However, these studies were only based on single datasets and had a limited sample size, which may have biased the final results. To analyze more samples and avoid the sample heterogeneity of each independent experiment and the error caused by different technology platforms and different data processing methods, we used the robust rank aggregation (RRA) method to obtain robust differentially expressed genes (DEGs). RRA was used to compare the ranking of multiple gene lists. If a gene ranked the highest in all gene lists, then the smaller its calculated P-value is, the more likely it is to be a robust DEG (11). This method has been widely used in integrated analysis of multiple datasets, and it is robust to errors and noise (12–14). There have been no reports of the use of RRA in osteosarcoma.

In our study, microarray datasets GSE14827, GSE21257, and GSE32981 from GEO database were downloaded and analyzed by RRA method to identify robust DEGs between primary and metastatic osteosarcoma tissues. A total of 524 robust DEGs were determined, including 272 upregulated and 252 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to explore the functions of robust DEGs. Immune cell infiltration analysis was also conducted by CIBERSORT algorithm. In addition, we also constructed the protein–protein interaction (PPI) network and key modules, and finally 10 hub genes were selected by plugin cytoHubba from the whole network. Survival analysis of hub genes was carried out using R packages. In conclusion, the integrated bioinformatics analysis was utilized to identify the significant robust DEGs and hub genes, which may act as novel and potential prognostic biomarkers in osteosarcoma.



MATERIALS AND METHODS


Data Collection and Data Processing

We selected three gene chips of osteosarcoma from GEO database1, including GSE14827, GSE21257, and GSE32981. The selection criteria were as follows: (1) inclusion of primary and metastatic osteosarcoma tissue samples; (2) expression profiling by array as the experiment type; (3) Homo sapiens; and (4) 20 samples as the minimal size. Among them, GSE14827 contained 18 primary samples and 9 metastatic osteosarcoma samples. GSE21257 contained 19 non-metastatic and 34 metastatic osteosarcoma samples. The GSE32981 dataset contained 23 samples. One sample was not available and was excluded. Twenty-two samples were selected for further study including four primary and 18 metastatic samples. The matrix files and platform annotation document of three microarray datasets were downloaded. The names of microarray probes were converted to the gene symbols by Perl. The DEGs were identified between primary and metastatic osteosarcoma samples in each dataset by limma package in R (15) with the cutoff criteria of |log2 fold change (FC)| > 0.585 and P-value < 0.05.



Robust Rank Aggregation Analysis

To integrate the three microarray datasets, RRA method was used to determine the robust DEGs (16), which is a standard method to minimize the bias and errors among several datasets. Before RRA analysis, the upregulated and downregulated genes were ranked by their FC in each dataset. Then, the RobustRankAggreg R package was performed to get robust DEGs on the basis of the ranked genes in the three datasets. Genes with FC > 1.3 and P-value < 0.05 were considered as the significant robust DEGs.



Gene Ontology Function and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analyses

To identify the functional roles of the robust DEGs indicated above, GO enrichment results of biological process (BP), cellular component (CC), and molecular function (MF) were obtained using the R package “clusterprofiler.” The KEGG pathway analysis of robust DEGs was also conducted using the R package (17). P < 0.05 was considered statistically significant.



Immune Infiltration by CIBERSORT Analysis

The CIBERSORT algorithm is commonly used to predict the infiltration of 22 types of immune cells in each tissue sample (18). The 22 kinds of immune cells include seven types of T cells [CD8+ T cells, naïve CD4+ T cells, resting memory CD4+ T cells, activated memory CD4+ T cells, follicular helper T cells, regulatory T cells (Tregs), gamma delta T cells], three types of macrophages (M0, M1, and M2), naïve B cells, memory B cells, plasma cells, resting natural killer (NK) cells, activated NK cells, monocytes, resting dendritic cells, activated dendritic cells, resting mast cells, activated mast cells, eosinophils, and neutrophils. Normalized gene expression matrix was converted to 22 types of immune cell matrix by the CIBERSORT algorithm. The immune cell matrix was filtered according to the criteria of P < 0.05, and then the relative expression of 22 types of immune cells was identified between primary and metastatic osteosarcoma samples by R packages. The principal component analysis (PCA) was also performed to determine the difference between primary and metastatic samples.



Protein–Protein Interaction Network Construction and Module Analysis

We uploaded the robust DEGs to the STRING online database2, and we chose confidence >0.9 as the screening criteria. The visualized PPI network was performed by Cytoscape (version 3.6.1) software3. Cytoscape plugin-MCODE was used to screen the significant modules in the PPI network.



Hub Gene Identification

cytoHubba, a plugin of Cytoscape, provides several topological analysis algorithms, including Degree, Edge Percolated Component (EPC), Maximum Neighborhood Component (MNC), Density of Maximum Neighborhood Component (DMNC), Maximal Clique Centrality (MCC), and six centralities that include BottleNeck, EcCentricity, Closeness, Radiality, Betweenness, and Stress. These algorithms can be used to identify hub genes (19).



Survival Analysis

The RNA-seq-FPKM data and prognostic information of osteosarcoma patients were downloaded from TARGET database4. TARGET is a database that only includes children’s tumors. Presently, TARGET database contains six kinds of tumors, including ALL (Acute Lymphoblastic Leukemia), AML (Acute Myeloid Leukemia), KT (Kidney Tumors), MDLS (Model Systems), NBL (Neuroblastoma), and OS (Osteosarcoma). The survival analyses of hub genes were conducted by R package survival and survminer. P < 0.05 was considered to be statistically significant.



RESULTS


Identification of Differentially Expressed Genes in Each Dataset

In the present study, the biological characteristics of DEGs were identified by integrated bioinformatics analysis. The overall workflow of this study is showed in Figure 1. The osteosarcoma microarray data GSE14827, GSE21257, and GSE32981 were selected and analyzed using limma package in R. A total of 102 osteosarcoma samples including 41 primary and 61 metastatic tissues were identified in our study. According to the cutoff criteria of | log2 FC| > 0.585 and P < 0.05, there were 83 DEGs in GSE14827 including 23 upregulated and 60 downregulated genes. A total of 464 DEGs were screened from the GSE21257 dataset, including 247 upregulated and 217 downregulated genes. Additionally, a total of 650 DEGs were selected in GSE32981, including 299 upregulated and 351 downregulated genes. The distribution of DEGs is shown in volcano plots (Figures 2A–C), where the red and green dots represent the upregulated and downregulated genes, respectively.


[image: image]

FIGURE 1. Study workflow. GEO, Gene Expression Omnibus; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; RRA, robust rank aggregation; TARGET, Therapeutically Applicable Research to Generate Effective Treatments.
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FIGURE 2. Identification of DEGs and robust DEGs. Volcano plots of the distribution of DEGs in GSE14827 (A), GSE21257 (B), and GSE32981 (C). Red and green dots represent the upregulated and downregulated genes, respectively. (D) The heatmap of top 20 upregulated and downregulated robust DEGs identified by RRA method. Red represents high expression robust DEGs, while blue represents low expression robust DEGs. DEG, differentially expressed gene; RRA, robust rank aggregation.




Identification of Robust Differentially Expressed Genes by Robust Rank Aggregation Method

To integrate the three datasets with minimal bias, the RRA method was used. A total of 524 robust DEGs were determined, including 272 upregulated and 252 downregulated genes (Supplementary Table S1). According to the P-value of robust DEGs, we assigned the top 20 upregulated and downregulated robust DEGs in the visualized heatmap (Figure 2D).



Functional Enrichment Analyses of Robust Differentially Expressed Genes

To explore the functions of robust DEGs, the GO and KEGG enrichment analyses were conducted by R packages. The results of GO analysis included three categories: BP, CC, and MF. For BP, the upregulated robust DEGs were mainly enriched in embryonic organ development, multicellular organismal homeostasis, and transmembrane receptor protein serine/threonine kinase signaling pathway. In the CC part, the upregulated genes were particularly enriched in lamellar body, cell–cell junction, and cell–cell adherens junction. The top three significantly enriched terms were DNA-binding transcription activator activity, growth factor receptor binding, and cell adhesion molecule binding in the MF group (Figure 3A and Supplementary Table S2). Moreover, the most significantly enriched GO BP terms of downregulated genes were extracellular matrix (ECM) organization, extracellular structure organization, and regulation of cellular response to growth factor stimulus. For CC category, the downregulated genes were enriched in collagen-containing ECM. In addition, the downregulated DEGs were mainly enriched in ECM structural constituent conferring compression resistance, ECM structural constituent, and glycosaminoglycan binding in the MF group (Figure 3B and Supplementary Table S3). The above results indicated that the robust DEGs were mostly associated with cancer-related functions.
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FIGURE 3. Functional enrichment analysis of robust DEGs. GO enrichment analyses of upregulated robust DEGs (A) and downregulated robust DEGs (B) in three parts: BP, CC, and MF. (C) KEGG pathway enrichment analysis of robust DEGs. DEG, differentially expressed gene; GO, Gene Ontology; BP, biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.


The result of KEGG pathway enrichment analysis is also shown in Figure 3C. TGF-beta signaling pathway, wnt signaling pathway, and IL-17 signaling pathway were highly associated with tumor progression.



Immune Cell Infiltration Analysis

With the use of CIBERSORT algorithm, the infiltration of 22 kinds of immune cells in 102 osteosarcoma tissues is shown in Figure 4A. There was no significant difference in the infiltration of immune cells between primary and metastatic osteosarcoma tissues. However, compared with other immune cells, such as T cells and B cells, macrophage infiltration dominated, whether in primary or metastatic osteosarcoma tissues (Figure 4B). The above results demonstrated that macrophages may play an important role in the development and progression of osteosarcoma. The visualized violin plot was also constructed to prove the above findings (Figure 4C). The PCA of Figure 4D showed nothing individual difference between primary and metastasis samples.
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FIGURE 4. Immune cells infiltration analysis. (A) The distribution of 22 types of immune cells between primary and metastatic osteosarcoma tissues. (B) The difference of immune cells infiltration between primary and metastatic osteosarcoma tissues visualized by heatmap. (C) Violin plot visualizing the differentially infiltrated immune cells (P < 0.05). (D) PCA performed on all osteosarcoma tissues. The two principal components showed nothing significant variation. PCA, principal component analysis.




Protein–Protein Interaction Network Construction and Module Analysis

To further study the interaction of robust DEGs, we constructed the PPI network by STRING database. With the confidence >0.9 and hiding the disconnected nodes, a visualized PPI network was created by Cytoscape (Figure 5A). In the final network, there were 148 nodes and 302 edges, including 84 upregulated and 64 downregulated genes. By using MCODE plugin, three key modules were screened from the whole network (Figures 5B–D). The robust DEGs in module 1 were mainly enriched in type I interferon signaling pathway. BP of genes in module 2 was particularly enriched in chemokine-mediated signaling pathway. In addition, genes in module 3 were mainly enriched in cell–cell adhesion mediated by cadherin, cell–cell junction assembly, and adherens junction organization (Supplementary Table S4).
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FIGURE 5. Construction of PPI network, analysis of key modules, and identification of hub genes. (A) The whole PPI network. Upregulated genes are marked in red, while the downregulated genes are marked in green. (B) PPI network of module 1. (C) PPI network of module 2. (D) PPI network of module 3. (E) Hub genes were identified by intersection of 50 genes from 10 algorithms including MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, and Betweenness. PPI, protein–protein interaction.




Hub Gene Identification

cytoHubba is a Cytoscape plugin that allows the use several topological analysis algorithms, including MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, Betweenness, and Stress. These approaches can be used to predict and explore important nodes in PPI networks. Scores from topological algorithms are assigned to each node in a PPI network. According to the gene score, the top ranked genes can be considered as the hub genes. In the present study, we used 10 topological analysis algorithms (MCC, DMNC, MNC, Degree, EPC, BottleNeck, EcCentricity, Closeness, Radiality, and Betweenness) to rank the top 50 genes of the whole network. The intersection of these 50 genes from the 10 algorithms revealed the 10 hub genes: POMC, EGR1, CXCL10, SERPINA1, OAS1, MYC, CXCR4, CXCL2, CHRDL1, and GNAI1 (Figure 5E). The description of the 10 hub genes is shown in Table 1, including full names, synonyms and primary functions.


TABLE 1. Description of the 10 hub genes.

[image: Table 1]


Survival Analysis

Association between 10 hub genes and the overall survival of osteosarcoma patient were analyzed using R package. Based on each hub gene’s best-separation cutoff value, osteosarcoma patients’ samples within the TARGET-osteosarcoma dataset were divided into two groups to get the Kaplan–Meier (K-M) survival curves. The results demonstrated that gene changes of CXCL10 (P = 0.044), GNAI1 (P = 0.048), MYC (P = 0.011), and OAS1 (P = 0.0091) were significantly correlated with the overall survival of osteosarcoma patients (Figure 6).
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FIGURE 6. Survival analysis. Gene changes of CXCL10 (A), GNAI1 (B), MYC (C), and OAS1 (D) were significantly correlated with the overall survival of osteosarcoma patients (P < 0.05).




DISCUSSION

More and more research based on public database such as GEO and TARGET database has been done to determine biomarkers in osteosarcoma. For example, Wang et al. (20) used the microarray data of 42 different age groups (<20- and >20-year-old) osteosarcoma samples from GSE39058 to find 2113 DEGs, including 1476 upregulated and 637 downregulated genes. Similarly, they also identified 15 differentially expressed miRNAs (DEMs) in GSE39040, and functional enrichment analysis showed that upregulated DEMs were mainly enriched in cell growth and response to growth factor, and downregulated DEMs were involved in cytokine receptor activity. Moreover, using GEO database, Dai et al. (21) screened candidate genes for predicting the response to chemoresistance in osteosarcoma by miRNA–mRNA network. However, the differentially selected genes in these studies are all based on a single dataset, and the small size of samples will cause the instability of results. We integrated three datasets using RRA method, which is standard and robust, compared with other studies on osteosarcoma.

In our study, a total of 524 robust DEGs were determined by RRA method, including 272 upregulated and 252 downregulated genes. The results of GO and KEGG pathway enrichment analyses indicated that the robust DEGs were significantly correlated with ECM organization, cell adhesion molecule binding, cell–cell adherens junction, collagen-containing ECM, and TGF-beta signaling pathway, which were associated with tumorigenesis and metastasis. Through immune cell infiltration analysis, we compared the infiltration of immune cells in primary and metastatic osteosarcoma specimens. We also constructed the PPI network by STRING database and module analysis; finally, we screened 10 hub genes by cytoHubba including POMC, EGR1, CXCL10, SERPINA1, OAS1, MYC, CXCR4, CXCL2, CHRDL1, and GNAI1. Survival analysis of hub genes based on the TARGET database was also performed in our study.

Based on the results of enrichment analyses, the GO terms and KEGG pathways were explored in osteosarcoma. A substantial body of studies indicated that epithelial-to-mesenchymal transition (EMT) is a process needed for metastasis, during which the loss of cell–cell junction such as adherens junctions, allows tumor cells dissociate from the primary site and acquire the motility to invade stroma (22–25). EMT is also reported to confer resistance to anoikis, which is necessary to survive in the circulation (26). In addition to the involvement of EMT process, the tumor-related ECM is also a key factor in tumor progression. In fact, ECM re-organization such as collagen deposition mediated by collagen-binding integrins may be a general cue for prognosis of tumors (27). Consistent with the above conclusions, the results of GO enrichment analysis, such as ECM organization, cell adhesion molecule binding, cell–cell adherens junction, and collagen-containing ECM, indicate their involvement in the progression of osteosarcoma. Additionally, enrichment of robust DEGs in some KEGG pathways, including TGF-beta pathway and wnt pathway, also demonstrates their relationship with osteosarcoma development. The overexpression of TGF-βs is related with the presence of lung metastasis (28) and is associated with high-grade osteosarcoma (29). Inhibition of wnt pathway can reduce osteosarcoma invasiveness by reversing the EMT (30). On the basis of the above results, we showed that the robust DEGs were highly associated with pathogenesis and progression of osteosarcoma. Furthermore, on the basis of the analysis of modules, we found that three key modules are mainly related to type I interferon signaling pathway, chemokine-mediated signaling pathway, and cell–cell adhesion functions. In the type I interferon pathway, interferon-α has been widely studied. Interferon-α reportedly enhanced the apoptosis of osteosarcoma cells mediated by etoposide (31) and doxorubicin (32). Whether the weakening of interferon signaling pathway plays an important role in the development and metastasis of osteosarcoma deserves further study. It has been reported that chemokine-mediated pathways induce the metastasis of primary tumors to distant target organs. In osteosarcoma, the interaction between chemokine CXCL12 and its receptor CXCR4 drives the metastasis of osteosarcoma cells to the lung (33). CXCR3 and its ligands have the same role in promoting lung metastasis of osteosarcoma (34). In addition, the CXCR7 receptor promotes osteosarcoma lung metastasis (35) and has been recognized as a second receptor with high affinity to CXCL12 (36). The interaction of CXCR7/CXCL12 in the progression of osteosarcoma needs to be further investigated.

In the past few decades, accumulating evidence has indicated that cancer initiation and progression are related with not only cancer itself but also tumor microenvironment (TME) (37, 38). TME is a complex including ECM, exosomes, and stromal cells (39). Among stromal cells, tumor-associated macrophages (TAMs), namely, the M2 type macrophages, have been reported to promote angiogenesis, matrix remodeling (40) and are closely associated with osteosarcoma progression and prognosis (41). In our study, we found that macrophages are the most principal infiltrating immune cells in osteosarcoma including undifferentiated macrophage M0 and macrophage M2; thus, the role of macrophages, especially M2 type macrophages, in the microenvironment of osteosarcoma needs to be further clarified.

Based on the PPI network construction, 10 hub genes were identified. Among these hub genes, six key genes were screened to explore their roles. Serpin peptidase inhibitor clade A member 1 (SERPINA1), a protease inhibitor, was reported to be a predictor in breast cancer (42) and colorectal cancer (43). However, the diagnostic and prognostic roles of SERPINA1 in osteosarcoma were still obscure. Chemokine CXCL2 was reported to be related with prognosis of bladder cancer (44), but its role in the progression of osteosarcoma was still unclear. Early growth response protein 1 (EGR1), a zinc-finger transcription factor, was reported to be involved in cell proliferation and migration (45, 46). And an increasing number of studies have shown that EGR1 is highly associated with cancer development and progression. Liu et al. reported that EGR1 was essential for HNF1A-AS1-mediated cell growth and invasion of gastric cells (47). EGR1 was also reported to promote prostate cancer bone and brain metastasis, as demonstrated by the reduction of blood vessel density in brain and bone caused by decreased EGR1 expression (48). In our study, the expression of EGR1 was higher in metastatic osteosarcoma tissues than primary tissues, but its role in osteosarcoma remained unclear. C-X-C motif ligand 10 (CXCL10) is a member of the CXC subfamily of chemokines and acts through CXC receptor 3 (CXCR3) (49, 50). The prognostic role of serum CXCL10 was proved by Yu et al. in colorectal cancer, and the authors also indicated that the high levels of serum CXCL10 were highly related with liver metastasis (51). Similarly, a study was also reported that high circulating levels of CXCL10 are a biomarker for worse survival in osteosarcoma (52). According to our result, high expression of CXCL10 in osteosarcoma tissues predicted a better survival. The differences in the above conclusions may be due to the different sources of CXCL10; the association between the CXCL10 expression in tissues and overall survival of osteosarcoma patients need to be further studied. Genetic mutations of tumor suppressor such as TP53 and RB1 are highly associated with osteosarcoma development (53, 54). In addition, the mis-regulated expression of oncogene MYC is often found in osteosarcoma patients (55). A study indicated that the overexpression of c-myc promoted osteosarcoma cells invasion through MEK-ERK pathway (56). Consistent with above result, the expression of MYC was higher in metastatic osteosarcoma tissues compared with the primary tissues, and the low expression of MYC predicted a better overall survival in our study. In a word, the MYC expression may act as a biomarker in osteosarcoma metastasis. Chemokine receptor 4 (CXCR4), a seven-transmembrane G protein, has been implicated to mediate the metastasis of several tumors and has become a potential target for tumor therapy (57). Several studies highlighted that the overexpression of CXCR4 potentiated osteosarcoma growth and lung metastasis (58–60). The CXCR4 antibody (61) and antagonist AMD3100 (62) were reported to suppress osteosarcoma cell invasion and lung metastasis, and it revealed that CXCR4 may act as a therapeutic agent to inhibit osteosarcoma progression.



CONCLUSION

In conclusion, by using integrated bioinformatics analysis such as RRA method, we identified the significant robust DEGs and gene modules in osteosarcoma. The enrichment analyses of DEGs showed that they were closely associated with osteosarcoma development and progression. We not only identified immune cell infiltration in osteosarcoma tissues, but we also screened 10 hub genes. After the above discussion, we found that genes EGR1, CXCL10, MYC, and CXCR4 may be considered as novel biomarkers of osteosarcoma, and more studies need to be done to illuminate their contribution in the diagnosis and prognosis of osteosarcoma.
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Ser/Arg-rich (SR) proteins are RNA-binding proteins known as constitutive and alternative splicing (AS) regulators that regulate multiple aspects of the gene expression program. Ser/Arg-rich splicing factor 3 (SRSF3) is the smallest member of the SR protein family, and its level is controlled by multiple factors and involves complex mechanisms in eukaryote cells, whereas the aberrant expression of SRSF3 is associated with many human diseases, including cancer. Here, we review state-of-the-art research on SRSF3 in terms of its function, expression, and misregulation in human cancers. We emphasize the negative consequences of the overexpression of the SRSF3 oncogene in cancers, the pathways underlying SRSF3-mediated transformation, and implications of potential anticancer drugs by downregulation of SRSF3 expression for cancer therapy. Cumulative research on SRSF3 provides critical insight into its essential part in maintaining cellular processes, offering potential new targets for anti-cancer therapy.
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BACKGROUND

Ribonucleic acid (RNA) splicing is a fundamental process of gene expression, during which non-coding sequences (introns) are removed and coding sequences (exons) are ligated together from a precursor messenger RNA (pre-mRNA) to form a mature messenger RNA (mRNA) (1). In higher eukaryotes, most genes undergo alternative splicing from a single pre-mRNA transcript via splice site selection, generating multiple mature mRNAs that have different functions and contribute to biologic complexity (Figure 1). Both constitutive and alternative splicing processes are catalyzed by dynamic and complex macromolecular major (U2-dependent) or minor (U12-dependent) spliceosomes (2). Each spliceosome contains five small nuclear ribonucleoprotein (snRNPs) particles: U1, U2, U4, U5, and U6 snRNAs for former and U11, U12, U4atac, U5, and U6atac snRNAs for the latter (3). Spliceosome recognizes the consensus sequence elements at the 5'ss, 3'ss, and branch point (BP) sites, which is a crucial step in the splicing pathway (3). The selection of splice sites for recognition is modulated by an array of RNA regulatory sequence elements, including exonic and intronic splicing enhancers and silencers. These splicing regulatory elements (SREs) are recognized by numerous accessory splicing factors, including the heterogeneous nuclear ribonucleoproteins (hnRNPs) and Ser/Arg-rich (SR) proteins (3). SR proteins and hnRNPs promote and suppress splicing, respectively, in a sequence-depending manner and in diverse ways, including facilitating the recruitment of U1 or U2 snRNP, occluding a splice site, and “looping out” an exon (4). In addition to their role as splicing regulators, these proteins also participate in other diverse RNA metabolic processes and cellular processes, such as Pol II transcription, mRNA export and translation, genomic stability maintenance, cell viability, and cell-cycle progression (5).


[image: Figure 1]
FIGURE 1. Schematic diagram of gene expression in prokaryote cells.


An increasing body of evidence supports that the aberrant splicing of pre-mRNA results in the production of aberrant proteins that contribute to the misregulation of cellular growth, differentiation, and tissue development, eventually leading to the susceptibility to diseases, including cancer (6). Recent studies have found that alterations and mutations in the genes encoding core spliceosomal proteins and related RNA-splicing factors provide major mechanisms for cancer-associated splicing and transformation, implicating tumor establishment, progression, and resistance to therapy (4, 6). Many splicing factors, including SR and hnRNP families, have been certified to act as both oncoproteins (or proto-oncoproteins) and tumor suppressors. Therefore, we focus on Ser/Arg-rich splicing factor 3 (SRSF3), also called SRp20, which is a member of the highly conserved SR protein family. SRSF3 plays a critical role in the regulation of RNA splicing and many other cellular functions. Aberrant SRSF3 function can be identified in several human diseases, including Alzheimer's disease (7), systolic heart failure (8), ocular hypertension (9), virus infection (10–12), and tumor (13). In this review, we summarize current research on the function and expression regulation of SRSF3 and the misregulation and biological implications of SRSF3 in cancer, as well as its therapeutic potential.



SRSF3 FUNCTIONS

SR protein family are identified by possessing one or two N-terminal RNA-recognition motif (RRM) domains and a C-terminal domain enriched with the Arginine (R) and Serine (S) amino acid sequences (RS domain). In general terms, RRM domains recognize RNA, whereas RS domains take part in diverse protein-protein and protein-RNA interactions (14, 15). Thus, far, 12 members of the SR protein family have been identified in humans, encoded by 12 genes and designated SRSF1-12. All members of the SR protein family are mainly nuclear and localize to interchromatin granule clusters (IGCs) or nuclear speckles, but some members including SRSF3 can shuttle between the nucleus and the cytoplasm (15–17). SR proteins have been shown to regulate constitutive and alternative splicing as well as multiple other steps of RNA biological metabolism, suggesting that they are multifunctional proteins taking part in transcriptional, co-transcriptional, and post-transcriptional regulation pathways (18, 19). Given the important roles that SR proteins act on these processes, aberrant expression and/or activation and somatic mutation in SR proteins would lead to developmental impairments and disease pathophysiology (4, 20).

SRSF3 composes 164 amino acids with 19 kDa molecular weight makes it to be the smallest member of the SR protein family (13). Although initially identified as a splicing regulator, SRSF3 has been identified as a polyfunctional protein involved in multiple physiological and pathological processes, as shown in Figure 2.


[image: Figure 2]
FIGURE 2. SRSF3 regulates several cellular functions in eukaryote cells.



Regulation of Splicing

SRSF3 regulates the global change in gene expression program to maintain cell homeostasis by constitutive splicing and alternative splicing (21). Alternative splicing is an essential process for regulating most protein-coding genes by producing multiform messenger RNA transcripts to yield proteomic diversity in eukaryotic cells. Several distinct patterns of SRSF3-induced alternative splicing exist, including mutually exclusive exons (22), alternative terminal exons (23), alternative cassette exons (where one or more exons is either skipped or included) (24–26), alternative unique exon (27), skipping of 5'-nucleotides from exon (28), intron retention (IR) (29, 30), and early termination codon (30). In addition, SRSF3 can act as activators or repressors in the alternative splicing of other RNA-binding proteins (RBPs), such as SRSF1 (31), SRSF5 (32), C-terminal domain (CTD) of RNA polymerase II (pol II) (25), polypyrimidine tract-binding protein (PTBP) 1 and heterogeneous nuclear ribonucleoprotein (hnRNPs) A1 (33). Similar to other SR members, SRSF3-related aberrant splicing is often associated with the non-sense-mediated mRNA decay pathway, resulting in inducing aberrant protein isoforms that are often linked to numerous human diseases, including cancers.



Regulation of RNA Export

The ability of SRSF3 to shuttle between the nucleus and the cytoplasm allows it to be a major contributor to the regulation of mRNA export. Similar to other SRSFs, the nuclear to cytoplasmic translocation of SRSF3 relates to the export receptor, nuclear export factor 1 (NXF1) via Arginine-rich peptide adjacent to RRM (34). Among those SRSFs, SRSF3 presents the most effective adaptor for the NXF1 adaptor (35), suggesting that SRSF3 can act as a sturdy ship in the TAP-dependent mRNA export from nucleus to cytoplasm. SRSF3 represses nuclear export of programmed cell death (PDCD4), isoform 2 mRNA. Consequently, at SRSF3 knockdown, PDCD4 AS-2 mRNA level, but not AS-1, was found to increase in the cytoplasm (36). In addition, SRSF3 can interact with NXF1-nuclear transport factor 2-related export protein 1 (NXF1-NXT1), resulting in the export of “intronless” mRNAs (37).



Regulation of RNA Translation

SRSF3 can mediate post-transcriptional regulation of mRNA. It presents an internal ribosome entry site (IRES) and mediates the translation initiation of viral RNA in company with PCBP2, an IRES-binding protein (38). Moreover, it was reported that SRSF3 is not only participating in pre-mRNA alternative splicing but also in the regulation of the translation of PDCD4 mRNA. Of the two alternatively spliced transcripts of PDCD4, only isoform 1 (the major isoform) was found to be affected at the translational level by SRSF3. Further study found that SRSF3 exerted its effect on PDCD4 mRNA translation through a strong interaction with the 5'-untranslated region (5'-UTR) and recruitment to P-bodys (PBs). When SRSF3 was silencing, PBs disappeared and the translation inhibition of PDCD4 mRNA was relieved. These data investigate that SRSF3 recruits PDCD4 mRNA to PBs for the expression of PDCD4 (36, 39). In addition, a reproducible hypoxia-induced increase in SRSF3 protein was associated with the hypoxic stress-induced retained intron (RI) in translation initiation of EIF2B5 (29). RI in EIF2B5 creates a premature termination codon (PTC), leading to a 65kDa truncated protein isoform that opposes full-length eIF2Bε to inhibit global translation. Upon SRSF3 knockdown, the expression of the 65 kDa isoform of eIF2Bε disappearances in normoxia or hypoxia conditions. Then the biding between SRSF3 protein and EIF2B5 mRNA was proved to increased (29). These results indicate SRSF3 as a regulator mediating RI in EIF2B5, consequently taking part in translational control under hypoxia. Moreover, SRSF3 was identified as a translation regulator of innate immune genes, which may be because there are several putative binding sites for SRSF3 in 3′ UTRs of some innate immune gene (40). As expected, SRSF3 silencing led to the increase in the protein synthesis of immune mediators, containing SAA3, CCL5, and CCL3, suggesting that SRSF3-mediated translational regulation is involved in innate immunity (40).



Regulation of RNA Polyadenylation

Polyadenylation is a processing step for generating mature mRNA in eukaryotes (41). In the model for the negative regulator of splicing (NRS)-stimulated Rous sarcoma virus (RSV) polyadenylation, it was shown that SR proteins, including ASF/SF2, 9G8, and SRSF3, binding to NRS- or systematic evolution of ligands by exponential enrichment (SELEX)-binding sites was sufficient to stimulate polyadenylation in vitro. However, just SR protein-binding sites promoted polyadenylation independent of the NRS complex in vivo when moved nearer to the viral poly(A) site. Data manifest that SR proteins play a promoting role in RSV polyadenylation, but only when they are close to the RNA 3′ end by binding to the NRS (42). In addition, SRSF3 was reported to affect the recognition of an alternative 3′-terminal exon by effecting the efficiency with which a polyadenylation factor is bound to an alternative polyadenylation site (43). These results suggest that SR proteins not only regulators the polyadenylation of cellular mRNAs but also controls alternative polyadenylation.



Regulation of Transcriptome Integrity

SRSF3 is also reported to contribute to the establishment and modulation of the maternal transcriptome (19). SRSF3 was proved to highly express in germinal vesicle (GV) and MII oocytes (at metaphase of meiosis II), indicating SRSF3 acting as a critical maternally inherited factor. SRSF3 knockdown in grown germinal vesicle oocytes compromises the capacity of germinal vesicle breakdown (GVBD). Further, the GVBD defect in mutant oocytes was proved to be due to both aberrant alternative splicing (including Brd8 and Pdlim7) and depression of B2 SINE transposable elements. These observations suggest that the control of the transcriptional identity of the maternal transcriptome by SRSF3 is essential to the development of fertilized competent oocytes (19).



Regulation of Genome Integrity

DNA lesions are usually caused by chemical compounds with (pro-)genotoxic activity and dysregulations of basic processes, including transcription, DNA replication, and mitosis (44). Mitotic distortions and transcription-associated RNA-DNA hybrids (R-loops) formations induced by impaired expression of RNA-binding proteins are strongly associated with DNA injury (45). SLU7 as a key mediator of genome stability was reported to be required for the mitotic progression of transformed cells, suitable spindle assembly, sister chromatid cohesion (SCC), and sororin splicing regulation, as well as for the protecting cells from R-loop formation and DNA damage (45). SLU7 knockdown leads to the formation of R-loops, DNA damage, cell-cycle arrest, and SCC loss. Further study found that SLU7 regulates the splicing of SRSF1 and SRSF3 and inhibites the protein expression of truncated SRSF3 (SRSF3-TR) (45). These results demonstrate that SRSF3-TR proteins, as a target of SLU7, may play a important role in DNA damage and genome instability.



Regulation of Transcription Termination

Termination of RNA polymerase II (Pol II)-mediated transcription acts a significant role in the regulation of gene expression (46). The transcription termination of RNA polymerase II (Pol II) contains two linked steps: mRNA 3′-end formation and Pol II release from DNA. The intact 3′-processing signal and some 3′-end processing factors are also required for Pol II transcription termination (47, 48). In the model of a C. elegans operon intended to select factors taking part in the transcription termination, the lin-15 operon involves two genes: lin-15B and lin-l5A (49). Two deletion alleles of rsp-6, which encodes SRSF3, were found to strongly suppress the synthetic Multivulva phenotype of lin-15AB (n765) at levels similar to RNAi. In lin-15AB, RNA levels decrease markely at the site of the insertion, whereas they restore at the site of the insertion in the rsp-6 mutant strain. Further, SRSF3 was found to increase the RNA downstream of the cleavage site without influencing cleavage (49). These data indicate that SRSF3 acts a role in termination of transcription and not in cleavage, maybe by interacting with the RNA downstream of the cleavage site.



Regulation of miRNA Process

SRSF3 was also demonstrated to facilitate primary microRNA transcripts (pri-miRNAs) recognition and processing. Pri-miRNAs own at least one RNA motif in the major and conserved motif family: UG, UGU, and CNNC (50). The UG and UGU motifs of pri-miRNAs cooperate with the microprocessor complex (including RNase III DROSHA and DGCR8 dimer) to cleave pri-miRNAs to initiate microRNA (miRNA) maturation, whereas CNNC connects with SRSF3 to induce the microprocessor to process pri-miRNAs. That is, SRSF3 supplies DROSHA to the foundational junction in a CNNC-dependent manner, then improving microprocessor activity (50). For example, a genetic variant (G27-to-A variant) in the terminal loop (TL) of pri-mir-30c-1 leads to the reorganization of the RNA secondary structure, thereby promotes the interaction of pri-mir-30c-1 with SRSF3. And the interaction between them occurs at the CNNC motif located 17 nucleotides away from the Drosha cleavage site at the basal region of the G/A variant. This interaction, also increases the microprocessor-mediated processing of primir-30c-1, causing the upregulation of miR-30c level (51). In addition, expressions of mature miR-1908-5p (52) and miR-3131 (53) were also mediated by SRSF3. NF-κB was also shown to be involved in SRSF3-regulated miR-1908 expression (51).



Regulation of DNA Repair

Recently, SRSF3 was identified as a regulator of the homologous recombination-mediated DNA repair (HRR) process, which may regulate the HRR-related gene expression indirectly by an epigenetic pathway (54). SRSF3 knockdown impaired HRR activity and improved the level of γ-H2AX which ating as a biomarker for double-strand DNA breaks. It also downregulated the genes involved in HRR, including BRCA1, BRIP1, and RAD51, changed the KMT2C (a H3K4-specific histone methyltransferase) splicing pattern, and decreased the mono- and trimethylated H3K4 level (54).




SRSF3 EXPRESSION REGULATION

Given the above, SRSF3 is an essential gene for embryogenesis. SRSF3 exists in oocytes and the early phase of embryonic development (19, 55), and SRSF3 missing leads to the arrest at one/two-cell developmental stage (19). In addition, it was found that the SRSF3-zygotic knockout embryos, using Cre-loxP-mediated recombination in mice to stimulate the expression of SRSF3 gene, died at the morula stage, failing to form blastocysts (55). Contrarily, the overexpression of SRSF3 in rodent fibroblasts leads to tumorigenesis with immortal cell growth and transformation (11). Thus, the SRSF3 level in cells is controlled by multiple factors and involves complex mechanisms, as shown in Figure 3.
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FIGURE 3. SRSF3 expression is regulated by several factors and signaling pathways.



Autoregulation

Autoregulation is a common mechanism for maintaining relatively stable expression of splicing factors (56). SRSF3 is the first SR protein identified as a auto-regulator for itself alternative splicing and be regulated by other members of the SR protein family (57). Genomic SRSF3 constructs are able to express two different forms of SRSF3 because of the alternative splicing of exon 4 (also referred to as intron 3 owning an in-frame stop codon), generating a full-length isoform that lacks exon 4 (Iso1) and an alternative isoform that includes exon 4 (Iso2) (57, 58). The overexpression of SRSF3 reduces the level of exon 4-skipped SRSF3 transcripts and activates the outcome of transcripts containing exon 4 (SRSF3-ISO2), resulting in a truncated protein lacking the C-terminal RS domain SRSF3-TR later, which has been identified as an autoregulatory mechanism for avoiding SRSF3 accumulation (44, 57).



Regulation by Other Splicing Factors

Besides autoregulation, SRSF3 interacts with other RNA binding proteins, including other SR splicing factors. SRSF1 (also called ASF/SF2), another member of the SR family, can lead to the disappearance of the exon 4-included isoform without affecting the amount of the skipped isoform. The outcome of the included isoform is restrained by SRSF1 even in the presence of the transfection of wild-type genomic SRSF3, suggesting that SRSF1 is dominant over SRSF3 in this system. These results indicate that SRSF1 and SRSF3 have adverse effects on SRSF3 exon 4 splicing with SRSF3 playing as an activator and SRSF1 as a suppresser (57). In addition to SRSF1, other splicing factors including PTBP1 and PTBP2, can also antagonize the autoregulation of SRSF3 splicing. PTBP1 overexpression and the presence of neuron-enriched homolog of PTBP1 and PTBP2 can shift the transcript expressions from coding SRSF3 to SRSF3+ exon 4′ (59). Further study found that PTBP1 and PTBP2 can inhibit the inclusion of an exonic splicing suppressor (an ESS motif with pyrimidine-rich) by binding to it, which leads to the overexpression of full-length SRSF3 (56). In addition, RNA-binding motif protein 4 (RBM4) (an antagonizer of PTBPs), was studied to determine whether it has a antagonistic effect on SRSF3 splicing regulation (59). Results show that RBM4 overexpression robustly shifts the transcript expressions from coding SRSF3 to SRSF3+exon4′, whereas RBM4 excision inversely resulted in the increasing of the coding SRSF3 transcript. The mutations of RNA recognition motif or substitution of the serine-to-aspartate (S309D) impedes the impact of RBM4 on productions of SRSF3+exon4′ transcripts, which suggests that RBM4 interferes with SRSF3 splicing at the post-transcriptional level (59). These data indicate that there is an antagonistic effect between RBM4 and PTBPs on the utilizing of SRSF3 exon 4.

Moreover, SLU7, a another critical splicing factor for the 3′ splice site selection (60), is also reported to modulate SRSF3 splicing; that is, the knockdown of SLU7 induces an increase in the ratio of SRSF3 Iso2/Iso1, while SLU7 overexpression has the opposite effect (44). Further study found that SLU7 can inhibit the increasing of SRSF3-TR proteins at two levels: during the regulation of SRSF3 splicing and during the expression of miR-17 that can target SRSF3-Iso2 and promote its degradation (44).

hnRNP L is a multi-functional splicing factor that is active in a series of RNA processes, including chromatin modification, mRNA export, mRNA stability, alternative splicing, poly(A) site selection, and translational regulation (61). It was found that hnRNP L knockdown reduced the expression of SRSF3 in many cancer cell lines (62). The overexpression of hnRNP L has been found to promote SRSF3 expression in caner cells. In addition, the expression levels of hnRNP L were found to positively correlate, moderately, with the expression levels of SRSF3 in OSCC tissues. hnRNP L expression correlates with SRSF3 expression in OSCC tissues (62).



Regulation by Wnt/β-Catenin Signaling

Wnt/β-catenin signaling is a highly conserved pathway in eukaryotic cells, its activation depends on the involvement of β-catenin in signal transduction (63). Generally, free cytoplasmic β-catenin is translocated to the nucleus to bind to the T-cell factor/lymphocyte enhancer factor (TCF/LEF), resulting in the displacement of co-repressors and recruitment of additional co-activators for Wnt target genes (64). SRSF3 is determined as a target of β-catenin/TCF4 signaling, and both the transcript and protein levels of SRSF3 are regulated by the activity of β-catenin (65–68). The isolated SRSF3 gene promoter makes responds to influence of β-catenin/TCF4 signaling. Further study demonstrates that an increasing of SRSF3 protein levels mediated by the β-catenin/TCF4 pathway is sufficient to regulate alternative splicing decisions (67, 68).



Regulation by DARPP-32

DARPP-32 (dopamine and cyclic adenosine monophosphate-regulated phosphoprotein, Mr 32000) is a master molecular regulator in neurons that receive the neurotransmitter dopamine (69). It was found that stable overexpression of DARPP-32 enhanced SRSF3 protein level, while endogenous DARPP-32 knockdown significantly decreased SRSF3 protein expression. Interestingly, overexpression or knockdown of endogenous DARPP-32 had no significant effects on SRSF3 mRNA levels. Further experiments in immunoprecipitation and immunoblotting showed the co-existence of DARPP-32 and SRSF3, and DARPP-32 could prolong the SRSF3 protein half-life (20.5 h) compared with that of the control (14.9 h). Finally, DARPP-32 was proved to stabilize the SRSF3 protein by regulating its ubiquitination, which subsequently triggered the degradation of SRSF3 protein. This indicates that DARPP-32 positively regulates SRSF3 protein levels through a post-translational mechanism (70).



Regulation by PLCβ1

PLCβ1 (phospholipase C beta 1) acts an significant role in the intracellular transduction of multiple extracellular cell signals with the assistant of calcium. An increasing evidences show that PLCβ1 is the main isoform of PLC locates in the nucleus in a phosphoinositide-specific manner (71). The overexpression of PLCβ1 causes the decrease of SRSF3 protein level. Further study found that SRSF3 could interacted with nuclear PLCβ1 at the nuclear level. These results suggest that SRSF3 is a novel target gene of the nuclear phosphoinositide-specific PLCβ1 signaling and creates new stages for the metabolism of nuclear inositol lipid (72).



Regulation by CircSMARCA5

circSMARCA5, an exonic circRNA, was found to be in high numbers in the human brain, and was proved to act as a regulator of SRSF3 splicing. In glioblastoma biopsies, circSMARCA5 was markedly downregulated comparing with the normal brain tissues (73, 74). circSMARCA5 overexpressing was able to increase the expression levels of SRSF3 isoform including exon 4 (SRSF3 Ex4) in cells. Consistently, a significant increasing of SRSF3 isoform without exon 4 (SRSF3 No Ex4) in biopsies exhibits a observably downregulation of circSMARCA5. Precipitously, SRSF3 Ex4 levels was also upregulated in biopsies, consistent with the data obtained from the circSMARCA5 overexpression cells. This indicates that there is a positively correlation between the SRSF3 Ex4/SRSF3 No Ex4 ratio and the expression levels of circSMARCA5 in glioblastoma biopsies (74).




SRSF3 IN CANCER

Despite the above-mentioned regulatory mechanisms for maintaining constant SRSF3 levels, many environmental factors can still influence the expression of SRSF3, such as human papillomavirus (HPV) (75), hepatitis B virus-encoded X protein (HBx) (76), hypoxia (29, 77), low pH (78), carcinogen DMBA (79), caffeine (80), amiodarone (81), small molecule amiloride (82), digoxin (83), and theophylline (84). Thus, the aberrant expression of SRSF3 closely relates to the occurrence, development, prognosis, and treatment response of diseases, including cancer.


Aberrant Expression of SRSF3 in Cancer

SRSF3, as a potential diagnostic and prognostic biomarker, is upregulated in multiple types of human cancer, including breast cancer (85–88), ovarian cancer (26, 89), retinoblastoma (90, 91), head and neck cell squamous (62, 79, 92), glioblastoma (GBM) (23), gastric cancer (36), colorectal cancer (CRC) (33, 36, 93), cervical cancer (94), and hepatocellular carcinoma (HCC) (30, 95). Moreover, studies show SRSF3 upregulation not only in epithelial cancers, but also in mesenchymal tumors, as Table 1 shows (11). In addition, the single nucleotide polymorphisms (SNPs) of SFRS3 were also associated with tumor progression and prognosis. Studies report that three SNPs in SRSF3 (rs2145048, rs1406945, and rs9394364) were found in breast cancer, which may be associated with susceptibility to cancer. Among these SNPs, the C allele of rs1406945 was found to be related with increased breast cancer risk, the A allele of rs9394364 was associated with a marginally lower breast cancer risk, and the A allele of rs2145048 was associated with a lower breast cancer risk (104). Interestingly, there are contradictory reports on the expression and function of SRSF3 in colorectal cancer. It was reported that SRSF3 and hnRNPA1 indicated the two highest increasing incidences (88 and 74%, respectively), for colorectal cancer (97). There is no statistically significant correlation between the mRNA levels of SRSF3 and the histological features, lymph node metastasis, or tumor node metastasis (TNM) stage (97). However, it was found that SRSF3 was significantly upregulated in a normal colon, but it had different expression levels (negative to strong) in colorectal cancer tissues (33, 93). SRSF3 presents a gradual expression loss during cancer progression. SRSF3 is negative or weakly positive expressed in 80% patients with metastatic stage IV, which was markedly related to poor survival in colorectal cancer (93). Similar to colorectal cancer, the expression and function of SRSF3 are also contradictory in liver diseases. In mice, SRSF3 overexpression was proved to be crucial for maintaining hepatocyte metabolic function and differentiation (20, 105). The deletion of SRSF3 damages the maturation and metabolism of hepatocyte during early adulthood in mice developed spontaneous HCC as they aged. In addition, SRSF3 may play a role in the prevention of hepatic carcinogenesis by regulating splicing to inhibit fibrosis, mitogenic splicing, and epithelial-mesenchymal transition (EMT) (105). In line with these results, hepatic SRSF3 expression was decreased in mouse models of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Thus, the avoidance of SRSF3 degradation in mice can protect them from hepatic steatosis, fibrosis, and inflammation, to some extent (98). However, SRSF3 expression presented no changes in mouse models of PTEN-deficient HCC and DEN-induced HCC (95). In human HCC, it was reported that SRSF3 expression was either downregulated or the protein was mislocalized (105), whereas Wang found a significant increasing expression of SRSF3 in human HCC tumors (30, 95), which emerged progressive upregulation from a normal liver to a cirrhosis/fibrosis liver, and ultimately HCC (30). In addition, upregulation of isoforms SRSF3 was also found in these tissues (30, 95), which might enhance the development of HCC by regulating splicing of SRSF3 targets (30). Consequently, it is likely that SRSF3 presents low expression and tumor-suppressor activity in mouse liver disease, while it shows high expression and acts as an oncogene in human HCC, suggesting its role as an unfavorable prognostic predictor in HCC. Unexpectedly, there is a positive links between SRSF3 upregulation and longer overall survival in patients with HCC resection (95).


Table 1. Clinical features, cell functions and related genes associated with upregulation of SRSF3 in human cancer.
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In contrast to the upregulation of SRSF3 in the above tumors, the expression of SRSF3 mRNAs was significantly decreased in acute myeloid leukemia (103) and renal cancer (106), as shown in Table 1. However, it was also identified as an oncogene in these two types of cancers. Nonetheless, the correlation between SRSF3 expression and carcinogenesis and the progression of these cancers, such as histological features, lymph node metastasis, TNM stage, or overall survival, remains to be studied.


Pro-oncogenic Activity of SRSF3 by Regulating Cellular Biological Processes

SRSF3 functions as an oncogene manipulating cell proliferation, cell cycle, apoptosis, migration, invasion, transformation, tumorigenesis, metastasis, drug resistance, autophagy, and cellular senescence by regulating many pathways, including p53, JNK, Ras, Wnt, HER2 signaling pathways, and miRNAs (Figure 4).
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FIGURE 4. The comprehensive mechanism of SRSF3 functions as an oncogene by regulating multiple splicing targets in cancer cells. On the one hand, SRSF3 can enhance cell proliferation, migration, invasion, metastasis, transformation, drug resistance, tumorigenesis, and energy metabolism. On the other hand, SRSF3 can inhibit cell cycle arrest, apoptosis, cellular senescence, and autophagy. SRSF3 is also involved in immunotherapy resistance, tumor microenvironment, cell homeostasis, and maintenance of HPV-related cancer.




Enhancement of Cell Proliferation, Migration, Invasion, and Metastasis

SRSF3-silencing inhibits the proliferation, migration, invasion, and metastasis of tumor cells (33, 39, 52, 99). It was reported that SRSF3 affected the expression levels of miR-132-3p and miR-212-3p, including both their primary form and their mature form, by controlling RE1-silencing transcription factor (REST) in cancer cells (99). miR-132-3p and miR-212-3p were found to inhibit the malignant phenotypes of cancer cells by repressing Yes-associated protein 1 (YAP1) and its downstream gene CCND1 (Cyclin D1), which demonstrates that SRSF3 gives malignant characteristics to cancer cells by SRSF3/REST/miR-132-3p (miR-212-3p)/YAP1/CCND1 axis (99). Beside miR-132-3p and miR-212-3p, SRSF3 may also upregulate the expression of miR-1908-5p by enhancing NF-κB transactivation (52). Interestingly, miR-1908-5p in turn could downregulate NF-κB activation by binding to an inhibition factor of NF-κB pathway, NF-κB inhibitor interacting Ras-like 2 (NKIRAS2), resulting in elevating cancer cell proliferation and metastatic potential (52). These data suggest that SRSF3 enhances the malignant characterization of cancer cells via the SRSF3/miRNA axis.

CCDC50, as a tyrosine-phosphorylated protein, is required for cell survival as it inhibits the NF-κB or p53 mediated apoptotic pathway (107, 108). CCDC50S, as a truncated oncogenic splice variant, was highly expressed in HCC and significantly correlated with progression and predicts poor survival of patients (76). SRSF3 was reported to directly bind to CCDC50S mRNA for its maintenance in the cytoplasm, resulting in the promotion of HCC progression by increased activation of Ras/forkhead box protein O4 (Foxo4) signaling (76). Contrarily, SRSF3 was mediated by the interaction of HBx and 14-3-3β, which demonstrated the existence of the HBx/14-3-3β/SRSF3/CCDC50S/Foxo4 axis in oncogenic progression of HCC (76).

Mitogen-activated protein 4 kinase 4 (MAP4K4) belongs to the STE20/MAP4K family that content a serine/threonine kinase domain, and is involved in cytoskeletal rearrangement and migration by regulating the MAPK/ERK kinase cascade (109). It was reported that alternatively spliced MAP4K4 variants showed differential influences on the EMT process, which is a critical process for the migration and invasion of cancer cells (59). SRSF3 could modulate the usage of MAP4K4 exon 16′ in a sequence specific manner, while the inclusion of SRSF3 exon 4′could be enhanced by RBM4 in colorectal cancer cells (59). These date suggest that the RBM4-SRSF3-MAP4K4 axis manipulate the metastasis of cancer cells through the EMT process.

TDP43 (TAR DNA-binding protein), is a highly conserved and an important splicing regulator that controls gene expression. TDP43, as a major splicing regulator in triple-negative breast cancer (TNBC), is associated with poor prognosis in TNBC progression (86). And TDP43 overexpression could significantly enhance the proliferation and malignancy of mammary epithelial cell (86). In coordination with SRSF3, TDP43 can alter most splicing events, including PAR3 and NUMB which play essential roles in cell proliferation and metastasis (86). Further study found that the TDP43/SRSF3/PAR3 axis regulated the metastasis of cancer cells, while the TDP43/SRSF3/NUMB axis controlled the proliferation of cancer cells (86).



Enhancement of Cell Transformation

HER2 (ErbB2) is a member of the erythroblastic oncogene B (ErbB) family of receptor tyrosine kinases. The overexpression of HER2 is associated with many aggressive tumors and a poor prognosis (110). HER2 possesses several splice variants that produce diverse proteins with various biological activities and functions in tumor development (111). SRSF3 was identified as an important splicing regulator of HER2. Loss of SRSF3 results in alterations in all splice variants of HER2. Especially, SRSF3 knockdown leads to a switch in HER2 mRNA splice variants from Δ16HER2 to p100 (101). Interestingly, the function of these two splice variants is contradictory. Δ16HER2 is a highly tumorigenic factor that is likely to increase malignant transformation of breast cancer cells (112, 113), whereas p100 is involved in the inhibition of tumor cell proliferation and oncogenic signals (114). That is, the overexpression of SRSF3 in tumors switches splicing variants of HER2 mRNA from p100 to Δ16HER2, leading to tumor progression (101).

Moreover, SRSF3 also controls the production of various splicing variants of interleukin enhancer binding factor 3 (ILF3) by the exclusion, inclusion, or 3' splice site selection of ILF3 exon 18 (100). SRSF3 knockdown expression produced aberrant isoform-5 and−7 of ILF3 in osteosarcoma cancer cells. Both isoform-5 and−7 can inhibit tumor cell proliferation, and isoform-7 can also induce cell apoptosis. SRSF3 overexpression in cancer cells has a positive association with the steady status maintenance of ILF3 isoform-1 and−2, which can promote cell proliferation and transformation (100).



Enhancement of Drug Resistance

The main obstacle to the improvement of prognosis is cancer chemotherapy resistance. The multidrug resistance protein 1 (MRP1) belongs to the ATP-binding cassette transporter subfamily linked to multidrug resistance (115, 116). MRP1 upregulation may trigger resistance to various chemotherapeutic drugs in ovarian cancer cell lines. MRP1 has also been reported to be involved in clinical drug resistance and to be of prognostic significance for predicting patients' response to chemotherapy (117–119). Interestingly, more MRP1 mRNA splice variants were found in ovarian tumors compared to the matched normal tissues (26). These variants can confer drug resistance even if they are not as effective as the full-length MRP1. Further study found that SRSF3 overexpressed in ovarian tumors could result in more splicing variants of MRP1 mRNA by increasing the identification of weak exons (26), which indicates that SRSF3 may be involved in the cancer chemotherapy resistance.



Enhancement of Cell Tumorigenicity

In patient-derived glioma stem-like cells (GSC), the increasing expression of SRSF3 causes the significantly improvement of cell proliferation, self-renewal, and tumorigenesis (23). More than 1,000 SRSF3-related AS events are identified by transcriptomic profiling, and they have a preference for exon skipping in cell mitosis genes. SRSF3 knockout results in the exon skipping at exon 7 of transcription factor ETS variant 1 (ETV1) to product ETV1-E7, leading to the enhancement of the proliferation and sphere formation ability of tumor cells. Further, the phosphorylation of ETV1-E7-encoded peptide could enhance the oncogenic activity of ETV1, promoting an ETV1-mediated oncogenic transcriptional program in GSCs. Moreover, SRSF3 knockout also induced the nudE neurodevelopment protein 1 (NDE1) gene to a mutually exclusive exon 9' taking the place of the terminal exon 9, resulting in the production of isoform-specific function of NDE1 (NDE1-E9) in mitotic spindle formation that is important for tumor cell growth (23).

Similarly, in CD133+ colon cancer stem like cells (CSLCs), SRSF3 was overexpressed and acted a part in the oncogenicity of colon CSLCs by regulation of the Wnt/b-catenin pathway (65). SRSF3, as a novel target of the Wnt/b-catenin pathway, was upregulated by Wnt pathway activation in CD133+ colon cancer cells (68). SRSF3 exerts a powerful negative effect on the expression of the mutated in colorectal cancer (MCC) protein expression, which is significantly upregulated in various CRC cell lines. Interestingly, the MCC protein could interact with β-catenin, resulting in the inhibition of Wnt signaling (65, 120), suggesting that SRSF3 may be involved in the Wnt pathway modulation, resulting in forming positive feedback relationships among the Wnt/b-catenin pathway, SRSF3, and MCC.



Enhancement of Energy Metabolism

Alternative splicing of the pyruvate kinase M (PKM) can produce the pyruvate kinase muscle 2 (PKM2) isoform and promote aerobic glycolysis and tumor growth (121). PKM is controlled by mutually beneficial effects on the two mutually exclusive exons 9 and 10 in cancer cells, resulting in the repression of exon 9 and the activation of exon 10. SRSF3 was found to activate exon 10, mediating changes in glucose metabolism (22). Loss of SRSF3 in human colon cancer cells induces an increasing in the ratio of PKM1/PKM2, leading to a metabolic shift from glycolysis toward oxidative phosphorylation. Moreover, the SRSF3 silenced cells causes markedly inhibition of cell growth and autophagy (33). These findings indicate that SRSF3 acts as a critically positive regulator for PKM mRNA splicing and cancer-specific energy metabolism.



Inhibition of Cell Cycle Arrest and Apoptosis

A decreased level of SRSF3 could induce cell apoptosis and reduce cell proliferation in SW480 (human colon adenocarcinoma) and U2OS (human osteosarcoma) cells (39). Microarray analyses shows that SRSF3 silencing causes the upregulation of 381 genes and the downregulation of 274 genes in U2OS cells. Among them, A number of genes are related to the apoptotic and anti-apoptotic processes, including PDCD4, who was the most affected (39). PDCD4 was reported to be a tumor suppressor that was involved in cellular processes, such as antiproliferation, apoptosis, and antimetastasis in various cancer cells (122, 123). As mentioned above (functions of SRSF3), SRSF3 was further proved to participate in alternative splicing and the export and translation of PDCD4 mRNA, leading to the downregulation of the PDCD4 protein (36, 39). SRSF3 and PDCD4 knockdown could prevent tumor cell apoptosis with decreased Caspase-3 activation and decreased amount of fragmented chromosomal DNA. These results indicate that the effects of PDCD4 on cell proliferation and apoptosis might be dependent on the expression levels of PDCD4 (39).

The p53 tumor suppressor gene is a nuclear transcription factor that transmits signals arising from many types of genotoxic or cellular stress, such as DNA damage, hypoxia, and nucleotide deprivation, to the target genes and related factors that induce cell cycle arrest, cell death, or cellular senescence (124). The tumor-suppressor function of p53 can be induced or inhibited by many other genes, including SRSF3. Reportedly, the inactivation of SRSF3 with the inclusion of MDM4 exon 6, can stimulate p53 activation (24). SRSF3 was found to be necessary for MDM4 exon 6 inclusion and the growth of melanoma. In embryonic tissues and cancers, the enhancement of exon 6 inclusion can significantly upregulate the levels of MDM4 protein to inhibit the tumor-suppressor function of p53 (125, 126). In human cancers, an increasing expression of MDM4 is promoted by a non-sense-mediated, decay-targeted isoform of MDM4 (MDM4-S) by enhancing exon 6 inclusion (127, 128). The knockdown of SRSF3 leads to MDM4 downregulation, resulting in the activation of p53 pathway as well as its target genes, such as p21, MDM2, and BBC3 (24). Consequently, cell growth is markedly decreased, while cell death is increased in SRSF3 silencing cells.

The increased expression of SRSF3 overexpression in cancer cells causes the improvement of cell cycle performance by influencing the expression levels of G2/M transition regulators, including Forkhead box transcription factor M1 (FoxM1), PLK1, and Cdc25B. Conversely, SRSF3 silencing causes G2/M arrest, growth retardation, and apoptosis (11). Further study documented that SRSF3 silencing also caused G1 arrest in combination with the downregulation of several G1/S checkpoint regulators, including cyclins (D1, D3, and E1), E2F1, and E2F7, which likely impaired G1-to-S-phase progression (28). In addition, SRSF3 silencing could induce cell apoptosis by reduction of Bcl-2 (28, 96). Moreover, SRSF3 silencing changed the alternative splicing of homeodomain-interacting protein kinase2 (HIPK2), resulting in the production of HIPK2 De8 isoform which facilitated the cell apoptosis by phosphorylating p53 at Ser46 (28). These results expose the critical role of SRSF3 in the regulation of G1-S and G2-M cycle performance, Bcl-2 expression, and HIPK2-mediated cell apoptosis (28).



Cellular Senescence Inhibition

Cellular senescence, an irreversible proliferation arrest, is identified as another endogenous mechanism that represses tumorigenesis in company with cell death programs (129–131). Endogenous SRSF3 knockdown could induce cellular senescence, and upregulate the expression of p53β (an alternatively spliced isoform of p53) to trigger p53-mediated senescence (27). p53 silencing restores SRSF3-knockdown-induced cellular senescence in part, suggesting that SRSF3 plays a role in the initiation of p53-mediated cellular senescence. Further, SRSF3 was found to bind to an alternatively-spliced exon of p53β mRNA in sequence-dependent manner. (27), suggesting that SRSF3 is an inhibitor in p53-mediated cellular senescence.



Inhibition of Autophagy

Autophagy is an evolutionarily conserved cellular catabolic process. SRSF3 can act as an autophagy suppressor (33, 102). SRSF3 knockdown significantly induces autophagy with an increased LC3B-II/LC3B-I ratio, whereas the overexpression of SRSF3 inhibits autophagy induction with an decreased ratio of LC3B-II/LC3B-I. Moreover, SRSF3 knockdown plus autophagic degradation inhibitor chloroquine could enhance the accumulation of LC3B-II, suggesting that SRSF3 knockdown truly increases autophagic flux. The molecular mechanism is due to the suppression of the FoxO1 and p65 expressions as well as the transcriptional and protein levels of BECN1 (102).



Others

SRSF3-mediated alternative splicing was also reported to be associated with many other key genes, such as CD19 (132), CD44 (68, 133), and VEGF (78), and to be involved in other tumor related biology process, including the resistance to CART-19 immunotherapy (132), tumor cell homeostasis (21), tumor microenvironment (low pH) (78), and the maintenance of HPV-related cancer (134). With the growing knowledge on SRSF3 overexpression or knockout in human tissues and cells by high-throughput RNA-sequencing, more possible target genes and underlying mechanisms will be elucidated. It is even possible that the new data on cancer cells might differ from that on non-cancer cells, reflecting the oncogenic effects vs. tumor suppressor effects when expressed at high vs. low levels of SRSF3. Nevertheless, considerable efforts and in-depth studies are expected to provide more information on SRSF3 and their targets.



Implications for Therapy

The multifunctional characteristics of SRSF3 highlight it as a novel splicing regulator for gene expression and cell homeostasis. Given the crucial roles of alternative splicing in cancer biology, pharmacological modulation of SRSF3-mediated splicing may represent an important therapeutic strategy. Indeed, thus far, SRSF3 has been evidenced to associate with the antitumor function of some drugs in the development of targeted therapeutics for the treatment of cancer, as shown in Figure 5.
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FIGURE 5. The antitumor function of some drugs via decreasing the expression of SRSF3. Caffeine, digoxin, amiodarone, amiloride, and theobromine induce the apoptosis of cancer cells by decreasing the expression of SRSF3 and its downstream signaling cascade, including inducing the switch of p53 splicing from p53α to the p53β isoform. Moreover, theophylline and amiodarone could enhance caffeine-induced cell death, and amiodarone could also enhance the efficacy of digoxin.


Caffeine, a 1,3,7-trimethylxanthine derivative, is a potential anticancer drug that inhibits cell proliferation and induces apoptosis on various cancer cells in vitro and in vivo (135–137). The alternative splicing of cancer-related genes is involved in caffeine-induced antitumor function, including p53, PKM2, and hypoxia-inducible factor-1α/2α (HIF-1α/2α) (80, 138–140). In cervical cancer cells, caffeine regulates cell-cycle arrest and cell apoptosis by decreasing SRSF3 expression that modifies the expression of various splice variants of p53, including reducing p53α expression and inducing p53β expression. In addition to p53-dependent functions, multiple genes involved in the EMT and hypoxic conditions are all found to be regulated by SRSF3 (80). Theobromine (1,3-dimethylxanthine), a metabolite of caffeine, may also downregulate SRSF3 expression by switching p53 from p53α into p53β, which is similar to caffeine. Consequently, theophylline demonstrates antitumor roles via inducing cellular apoptosis, senescence, and decreasing colony formation. Moreover, theophylline could synergistically enhance caffeine-induced cell death (84). A similar switch of p53 splicing from p53α to p53β is induced by digoxin, a popular cardiac glycoside identified as a potential anticancer drug (83, 141). Similar to caffeine, digoxin regulates G2/M arrest, DNA damage, and cell apoptosis via p53-dependent pathway in cervical cancer cells by reducing both SRSF3 expression and increasing expression of p53β isoform (83).

Amiodarone is an anti-arrhythmic drug commonly used to block several types of myocardial potassium channels in arrhythmia and atrial fibrillation (142, 143). Amiodarone also sensitizes tumor cells in response to chemotherapy (144, 145). It has been proved that the mechanism of action of amiodarone may be similar to that of caffeine or digoxin, it also regulates senescence through the SRSF3-p53 pathway (20, 27, 146, 147). Amiodarone could induce cellular reactive oxygen species (ROS) and suppressed cell survival in cervical cancer cells. Moreover, amiodarone is found to strengthen the effectiveness of caffeine and digoxin on cell toxicity (81). Amiodarone also reduces the SRSF3 gene and protein expression. However, it accumulates the population of SRSF3-PTC without the switch of p53 splicing from p53α to p53β via the SRSF3 downregulation, suggesting that amiodarone causes cancer cell death in a p53-independent manner. Interestingly, amiodarone can work in coordination with caffeine and digoxin on the expression of p53 alternative splicing isoforms from p53α into p53β via decreasing SRSF3 (81). Amiloride, 3,5-diamino-6-chloro-N-(diaminomethylene) pyrazinecarboxamide monohydrochloride, is a prototype intracellular pH (pHi) modulator medicine widely used for clinically treating in edema and hypertension depending on its sodium transport and humoral steady-state effects (148). In many solid tumor and leukemic cells in humans, amiloride was discovered to present an antitumor ability that decreased cell migration and invasion, arrested cell cycle, enhanced apoptosis, and caused severe DNA damage, and, ultimately, cell death (82). Mechanically, amiloride was proved to “normalize” the mRNA splicing of BCL-X, HIPK3, and RON/MISTR1 by the decreased expression of SRSF3 and some other SR proteins in human HCC cells. Further, it was found that amiloride regulated SRs by downregulating kinases and upregulating phosphatases involved in phosphorylation pathways of SRs (82). However, further study is required to investigate whether the various antitumor drugs mentioned above regulate SRSF3 in a direct or indirect fashion.





DISCUSSION

The rising role of alternative splicing and splicing-related factors in cancer has opened doors not only for the understanding of tumor occurrence and progression but also for the development of new targeted therapy. In reality, splicing-related factors can act either as survival-promoting factor that reduce drug-induced apoptosis or, contrarily, as potentiating the pro-apoptotic effects of chemotherapeutics (149). SRSF3 can be considered as a potential molecular switch that regulates many biological processes in cancer cells, enabling sensitization of cancer cells to therapeutic treatments. Notably, the contribution of SRSF3 to the regulation of key genes goes far beyond the splicing reaction and involves all aspects of gene expression, while also cooperating with other splicing regulators. For instance (Figure 6), in addition to the induction of the MCC protein, β-catenin/TCF4-induced SRSF3 expression decreased Rac1b expression in colorectal tumor cells by increasing skipping of alternative exon 3b (67). Interestingly, Rac1b, an alternative splicing variant of Rac1, is an oncoprotein increased in the subgroup of colorectal tumors and is necessary to maintain the viability of tumor cells (150, 151). These results may support the view that SRSF3 causes the overall change of gene expression to maintain cell homeostasis (21). This may also explain the fact that SRSF3 presents a high expression in normal colons, and the loss of SRSF3 expression is significantly correlated with low survival rate and short disease-free survival time, especially in the early step of colorectal cancer (93). Moreover, in contrast to SRSF3 acting as a silencer of endogenous Rac1b splicing, SRSF1 was found to increase the inclusion of alternative exon 3b, acting as an enhancer of Rac1b splicing (67). Meaning, SRSF1 and SRSF3 exhibits antagonistic effects on alternative splicing of Rac1b, which is in accordance with that of SRSF1 and SRSF3 having antagonistic effects on mutual splicing events (57). In addition to SRSF1, hnRNP L is the other splicing factor whose alternative splicing is regulated by SRSF3, while hnRNP L also regulates the expression of oncogene SRSF3 (62, 92). Contrarily, hnRNP L and SRSF1 also have an antagonistic effect on 5′SS selection (152). This indicates that multiple SR members share target genes and the redundancy of functions of multiple SR proteins. This also indicates that there is compensatory regulation of expression in multiple SR protein members, which is very relevant to the effectiveness of multiple drugs on SRSF3 action as there might be compensatory upregulation of other SR protein members after SRSF3 inhibition. Moreover, some RNA modification regulators are also involved in the regulation network of splicing factors, including the N6-methyladenosine (m6A)-binding protein YTHDC1 (YTH domain containing 1). YTHDC1 can promote exon inclusion of targeted mRNA by recruiting SRSF3 while blocking SRSF10, which expands the potential utility of m6A modification mRNA (153, 154). In a word, the mutual regulation of splicing factors is a complex and important process for expression in target genes. Thus, future study is needed for the exploration of the relationship between SRSF3 and other mRNA related factors, including that of other spliceosome-associated proteins, splicing regulatory factors, and transcriptional factors.


[image: Figure 6]
FIGURE 6. The crosstalk between SRSF3 and other splicing regulators in the regulation of gene expression. There are antagonistic effects among SRSF3, SRSF1, and HnRNP L on alternative splicing or 5'ss selection, involving the key genes or signaling pathways, such as the Wnt/β-catenin pathway, MCC protein, and Rac1b.


In terms of the importance of splicing factors in cancer pathology, emerging studies focus on the discovery of new small compounds in tumor suppression, targeting spliceosome elements (149). SRSF3 downregulation is associated with cell death by the treatment of caffeine, digoxin, theophylline, amiodarone, and amiloride in cancer cells (80–83). In addition, small inhibitors of kinases have been identified as potential chemotherapeutics to angiogenesis, including BE-13793C (155), TG003 (156), and SRPIN340 (157); it will be interesting to evaluate their impact on SRSF3. Similar to other SR proteins, SRSF3 is phosphorylated by kinases including topoisomerase I, the SR protein kinase (SRPK) family, and the CDC2-like kinase (CLK) family (24, 158–160), with affecting SR protein subcellular localization, binding to substrate mRNA and interacting with other proteins (161). Additionally, indole derivatives, such as benzopyridoindoles and pyridocarbazoles, is a recently discovered class of compounds that regulate splicing by altering the splicing activity of SR protein in company with the exonic splicing enhancer (ESE) (162). Indole derivatives have been proved to regulate splicing events that reversing the pro-metastatic splicing of Ron proto-oncogene mRNA (4, 163). Of course, the effects of SRSF3 in the functions of indole derivatives in tumor cells need extensive analysis. Nevertheless, investigating the molecular mechanisms governing SRSF3-dependent signaling will promisingly reveal new drug candidates and therapeutic targets for cancer treatment.
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In people living with HIV (PLWH), chronic inflammation can lead to cancer initiation and progression, besides driving a dysregulated and diminished immune responsiveness. HIV infection also leads to increased transcription of Human Endogenous Retroviruses (HERVs), which could increase an inflammatory environment and create a tumor growth suppressive environment with high expression of pro-inflammatory cytokines. In order to determine the impact of HIV infection to HERV expression on the breast cancer microenvironment, we sequenced total RNA from formalin-fixed paraffin-embedded (FFPE) breast cancer samples of women HIV-negative and HIV-positive for transcriptome and retrotranscriptome analyses. We performed RNA extraction from FFPE samples, library preparation and total RNA sequencing (RNA-seq). The RNA-seq analysis shows 185 differentially expressed genes: 181 host genes (178 upregulated and three downregulated) and four upregulated HERV transcripts in HIV-positive samples. We also explored the impact of HERV expression in its neighboring breast cancer development genes (BRCA1, CCND1, NBS1/NBN, RAD50, KRAS, PI3K/PIK3CA) and in long non-coding RNA expression (AC060780.1, also known as RP11-242D8.1). We found a significant positive association of HERV expression with RAD50 and with AC060780.1, which suggest a possible role of HERV in regulating breast cancer genes from PLWH with breast cancer. In addition, we found immune system, extracellular matrix organization and metabolic signaling genes upregulated in HIV-positive breast cancer. In conclusion, our findings provide evidence of transcriptional and retrotranscriptional changes in breast cancer from PLWH compared to non-HIV breast cancer, including dysregulation of HERVs, suggesting an indirect effect of the virus on the breast cancer microenvironment.

Keywords: breast cancer, HIV, human endogenous retrovirus, retrotranscriptome, microenvironment, formalin-fixed paraffin-embedded, telescope software, breast cancer oncogenes


INTRODUCTION

The majority of mammary tumors in mice are caused by the mouse mammary tumor virus (MMTV) (1), and the suggestion that a retrovirus related to MMTV might be involved in breast cancer in humans is one of the longest running controversies in human retrovirology (2, 3). Early studies of the breast cancer cell line T47D showed retroviral particles which were responsive to estradiol (4–8). These were later identified as human endogenous retrovirus (HERV)-K envelope transcripts, and were found both in cell lines and in breast cancer tissues (9, 10). HERVs are “fossil” retrovirus sequences remnant in the human genome, which originated millions of years ago from retrovirus germline cell infections. They are transmitted vertically, but they do not show infective capabilities in humans (11–13). They comprise ~8% of the human genome (14).

In women with breast cancer, HERV-derived material has been found in peripheral blood (15, 16). The consequences of changes in HERV expression include translation of some HERV proteins and stimulation of anti-HERV immune responses (17–19). A chimeric antigen receptor (CAR) specific for HERV-K env protein was effective in reducing tumor burden in a mouse model (20). The corollary is that HERV-K expression may be related to oncogenesis, and that HERV-K Env proteins appear to play an important role in tumorigenesis and metastasis (21). A recent study showed that the endogenous retrovirus-derived long noncoding RNA (lncRNA) TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation (22). Thus, expression of HERVs in breast cancer may relate to pathogenesis, but also to generation of anti-HERV immunity with protective potential.

In HIV infection, we, and others, have found that HERV expression is changed in CD4+ cells (23–41), and that it is partially mediated by HIV Vif (28). Although no bystander specific HERV activation has been observed, interestingly, people living with HIV (PLWH) have higher levels of HERV-K RNA expression, which is negatively associated with the level of T cell activation (28, 31).

No study has yet addressed the impact of HIV mediated HERV transcription in breast cancer. Since breast cancer cell lines and tissues appear to express HERVs, and the local microenvironment of breast cancer contains potentially HIV infected-CD4+ cells, there is the possibility of direct or indirect interaction between HERVs dysregulated by HIV and HERVs dysregulated in breast cancer. We undertook this retrospective pilot analysis of HERV expression from archived formalin-fixed, paraffin-embedded (FFPE) tissue samples in women who had breast cancer with or without HIV infection.



MATERIALS AND METHODS


Sample Collection

FFPE blocks of breast tissue from 10 women with invasive ductal carcinoma (IDCA) of the female mammary gland (four HIV-negative: six HIV-positive) registered from 2003 to 2014 at the Brazilian National Cancer Institute (INCA), were used in this study.

The study was approved by the local Institutional Review Board, as well as by the Brazilian National Ethics Committee. All subjects had signed informed consent forms in accordance with the Declaration of Helsinki.



RNA Extraction

FFPE tissue blocks were sectioned into 3 μm thick curls and placed in 2 mL Safe-Lock tubes (Eppendorf, cat. no. 022600044), with the first three 3 μm sections discarded. No more than ten sample curls were placed in each Eppendorf tube, ~30 μm worth of material, according to manufacturer's instructions of a maximum 40 μm processing limit. Samples were then deparaffinized in 320 μL Deparaffinization Solution (Qiagen, cat. no. 19093) at 56°C for 3 min, then allowed to cool at room temperature.

RNA extraction and purification from FFPE tissue sections were carried out using the RNeasy FFPE Kit (Qiagen, cat. no. 73504). The RNeasy MinElute spin columns were incubated for 5 min with RNase-free water before centrifugation. Samples were eluted in 20 μL RNase-free water. A DNase treatment was added using HL-dsDNase kit (ArticZymes, cat. no. 70800-201 250U), with additive MgCl2 (ThermoFisher Scientific, cat. no. AB0359) and DTT, Molecular Grade (Promega, cat. no. P117A). RNA samples were DNase-treated at room temperature for 15 min, followed by a 55°C 10-min incubation to complete enzyme activity. RNA was stored at −80°C.



RNA Quantification and Quality Assessment

RNA was assessed for quantity on a Qubit™ 2.0 Fluorometer using the RNA Broad Range Assay Kit (Invitrogen, cat. no. Q32855). RNA was assessed for quality and integrity on an Agilent Bioanalyzer 2100 unit using Agilent RNA 6000 Nano Series II Kit (Agilent Technologies, cat. no. 5067-1511).



Library Preparation and Quality Control

RNA samples were prepared with Ovation® Human FFPE RNA-Seq Library Systems (Nugen, cat. no. 0340, 0341). Clean-up steps, including magnetic bead purifications, were performed with freshly made 70% EtOH from 100% proof Absolute Ethanol (Fisher BioReagents™, cat. no. BP2818-500), nuclease-free water (Ambion®, cat. no. AM9939), and DynaMag™-96 Side magnetic plates (Invitrogen, cat. no. 12331D). As a rule, each library was amplified for 18 PCR cycles. Amplified library products were routinely checked for quantity and purity before pooling for Next Generation Sequencing. Final products were assessed on an Agilent Bioanalyzer 2100 unit using the High Sensitivity DNA Kit (Agilent Technologies, cat. no. 5067-4626). Final products were also assessed using KAPA Library Quantification Kit (Illumina) and/or ROX Low qPCR Mix (Roche, cat. no. 07960336001). If samples passed quality control inspection, each library prep was diluted at 4 nM using 10 mM Tris-HCl, 0.1% Tween-20, pH 8.5 (Teknova, cat. no. T7724). Libraries were pooled in 8 sample sets, and sequenced in a paired-end mode, Mid-Output platform on an Illumina NextSeq 2000 Sequencing System.



Bioinformatics

BCL2FastQ2 Conversion Software (version 2.20, Illumina Inc.) was used to demultiplex data and convert the sequencing files to reads in FASTQ format. Paired-end reads were trimmed for adaptors with Trimmomatic (42) and filtered by quality (phred ≥ 30) and length (≥ 35). Filtered paired-end reads were then aligned to the reference human genome (hg38) using Bowtie2 (43). The Bowtie2 output was used as input for Telescope software (44) to define and quantify retrotransposon elements (HERV and LINE-1) using annotations, previously described and available at https://github.com/mlbendall/telescope_annotation_db/tree/master/builds.

In addition, we mapped all reads to the human genome (hg38) with STAR (45). The output was then used for gene quantification using Htseq-count (46) with Gencode version 31. Telescope and Htseq-count table outputs were merged and genes or retrotransposon elements which were present in less than two samples were removed. The processed output was then used to calculate HERVs and genes differentially expressed genes in breast cancer from HIV-positive vs. HIV-negative patients using DESeq2, Wald-test (47).

Volcano plots were drawn with the Bioconductor EnhancedVolcano (https://github.com/kevinblighe/EnhancedVolcano). HERVs and host genes with adjusted p-value <0.05 and absolute(log2FoldChange) > 1.0 were considered differentially expressed genes (DEGs) and results were shown using pheatmap and ggplot R packages. HERV localization in the human genome was visualized with integrative genomics viewer (IGV) software (Broad Institute, Cambridge, MA) using Gencode version 31 and HERV annotations as previously described (41). We also analyzed nearby HERVs to genes associated with breast cancer development (Supplementary Table 1) (48–50). The HERV localization was defined and HERV and nearby gene expression results were shown in graphs using ggplot R packages.

Gene set enrichment analysis (GSEA) was performed with WebGestal (available at http://webgestalt.org/) using Reactome as functional pathway database (51). We also analyzed the differentially immune gene expression, including CD4 and CD8 (CD8A and CD8B) mRNA in the samples to check T-cell-derived material in transcriptome data. The graphs were constructed using the ggplot R and the adjusted p-value was calculated from DEseq2 analysis performed using the Wald-test.

All data generated in the study has been deposited in GEO under the accession number GSE149156.



Immunohistochemistry

Immunohistochemical (IHC) was done using a standard protocol for FFPE tissues. Breast tumor biopsies from six HIV-positive and four HIV-negative women were sectioned into 10 μm slices and then deparaffinized, rehydrated, and subjected to antigen retrieval with 10 mM sodium citrate buffer and heat for 10 min. Staining was done using antibodies for four differentially expressed genes PROM1/CD133 (CST D2V8Q XP® Rabbit mAb #64326, 1:400 dilution), LAMB3 (Abcam antibody ab97765, 1:400 dilution), SLC6A4 (ThermoFisher polyclonal antibody PA5-50624, 1:100 dilution), and MRPS12 (ThermoFisher polyclonal antibody 15225-1-AP, 1:50 dilution). Detection of the signal was done using SignalStain Boost Detection Reagent (Cell Signaling Technology) and brightfield images were taken using a Keyence BZ-X810 microscope.




RESULTS

We analyzed RNA-seq data of breast tissue from women with IDCA HIV-positive and -negative breast cancer. Samples from both HIV-positive and -negative groups were predominantly of luminal subtype and of advanced stage at diagnosis (Table 1). The one case of triple-negative IDCA was not of medullary subtype, and there was no morphologically apparent increase in tumor-infiltrating lymphocytes in any of the samples. No patient received neo-adjuvant therapy before resection. It is important to note that, although gene expression data was available, IDCA subtyping was performed using immunohistochemical analysis (IHC) of estrogen receptor and progesterone receptor and a combination of IHC and in situ hybridization analysis, as necessary. The transcriptomic analyses showed no significant difference in expression of ESR1, ESR2, PGR, or ERBB2 by RNA-Seq analysis. We found a total of 181 DEGs when comparing both groups, HIV-positive and HIV-negative breast cancer [FDR <0.05, absolute(log2FoldChange) > 1.0; Figures 1A,B]. One hundred and seventy eight of those genes were upregulated and three were downregulated in HIV-positive breast cancer (Supplementary Table 2). PROM1, LAMB3, OSR1, and CAVIN1 were the most upregulated host genes in HIV-positive women with a long2foldchange of 20.8, 7.9, 7.5, and 7.1, respectively (Supplementary Table 2). In contrast, SLC5A11, SLC6A4 and MRPS12 were the most downregulated in HIV-positive breast cancer with a long2foldchange of −6.7, 6.5 and −4.7, respectively (Supplementary Table 2). To biologically validate these findings, we performed IHC assay to detect the expression of four proteins (PROM1, LAMB3, SLC6A4, and MRPS12) generated from those genes found to be differentially expressed in HIV-positive breast cancer samples (Figure 1C). PROM1 and LAMB3 showed lower protein levels in HIV-negative breast cancer tissues compared in those found in HIV-positive breast cancer tissues. Conversely, protein levels of Mrps12 and Slc6a4 were increased in HIV-negative tissues compared to HIV-positive tissues. Thus, these data corroborate with transcriptome results (Supplementary Table 2).


Table 1. Demographic and pathologic data of breast cancer samples from HIV-negative and HIV-positive women.
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FIGURE 1. Differentially expressed genes in breast cancer from HIV patients. (A) Volcano plot shows differentially expressed HERV and host genes, up-regulated (right side) and down-regulated (left side) in breast cancer HIV-positive samples. Threshold lines to adjusted p-value <0.05 (x-axis) and log2FoldChange > 1.0 (y-axis) are shown. Green and red colors indicate significant and non-significant genes, respectively, found in the differential gene expression analysis. (B) Heatmap plot demonstrates 181 differentially expressed genes in the horizontal dendogram to breast cancer samples (labeled in blue) from HIV-positive (labeled in pink) and HIV-negative (labeled in green). Unsupervised clustering for rows and columns was performed using Euclidean distances and a complete linkage method. (C) Immunohistochemical analysis of four host proteins (PROM1, LAMB3, SLC6A4, and MRPS12) in HIV-negative and HIV-positive breast cancer tissues. (D) GSEA illustrates cellular pathway gene enrichment in HIV-positive samples. False discovery rate (FDR) shows up- and down-regulated pathways in light orange and blue, respectively, for q-value > 0.05, while q-value <0.05 is represented in dark orange and blue.


Furthermore, the results showed enrichment of extracellular matrix organization, immune system, PI3K/AKT signaling and lipid metabolism pathways, all upregulated in HIV-positive samples, but at non-significant levels (Figure 1D and Supplementary Table 3). Transcription machinery and membrane trafficking pathways were found to be downregulated in HIV-positive samples (Figure 1D and Supplementary Table 3).

Additionally, we quantified locus-specific HERV expression at 14,968 genomic loci using Telescope, a software developed for solving multimapping reads, and performed a combined differential expression analysis with all annotated genes. Four HERV transcripts (HERVL_22q13.31, HERVL40_2p23.3b, HUERSP1_15q22.31, LTR19_14q23.1) were significantly upregulated in HIV-positive samples (Figure 2). HERVL40_2p33.3b and LTR19_14q33.1 were present in the intronic region of intersectin (ITSN2) and Pecanex 4 (PCNX4) genes, respectively (Figures 3B,D and Supplementary Figures 1B,D), HERVL_22q13.31 localized in an alternative polyadenylation site of Fibulin 1 (FBLN1) gene and HUERSP1_15q22.31 is an intergenic HERV (Figures 3A,C and Supplementary Figures 1A,C). Despite none of these host genes was statistically differentially expressed, we analyzed their expression in association with their nearby HERV expression (Supplementary Figure 1). Interestingly, the HUERSP1_15q22.31 expression was associated with the upstream SMAD6 long non-coding RNA expression, lnc-SMAD6 (AC110048.2), in HIV-positive samples (R2 = 0.86, p-value = 0.029) (Supplementary Figure 1C). In the same way, the LTR19_14q23.1 and PCNX4 expression also showed a positive association in HIV-positive samples (R2 = 0.86, p-value = 0.027) (Supplementary Figure 1D). In addition, we also analyzed HERVs that were associated, by localization, with breast cancer development genes (BRCA1, CCND1, ATM, NBS1/NBN, RAD50, KRAS, PI3K/PIK3CA) (Supplementary Table 1). Although both HERV and genes in this analysis were not differentially expressed in HIV-positive samples, we found significant association between RAD50 and its intronic HERV, ERVLE_5q31.1d, expression (R2 = 0.82, p-value = 0.044) (Supplementary Figure 2A). Additionally, the last two exons of the BRCA1 long non-coding RNA, lnc-BRCA1 (AC060780.1), are contained in the HARLEQUIN_17q21.31 and therefore the expression of both elements, the lncRNA and the HERV are also correlated (R2 = 0.96, p-value = 0.0019) (Supplementary Figure 2D). These results suggest a possible role of HERVs in the regulation of at least some of the breast cancer development genes.
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FIGURE 2. Differentially expressed HERV transcripts in breast cancer from HIV-positive patients. (A) Heatmap plot shows the four differentially expressed HERVs in horizontal dendogram to breast cancer samples (labeled in blue) from HIV-positive (pink) and HIV negative (green) are annotated. (B) Expression of the four HERV transcripts with adjusted p-values are shown.
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FIGURE 3. Genome localization from differentially expressed HERV genes. HERVL_22q13.31 (A), HERVL40_2p23.3b (B), HUERSP1_15q22.31 (C), and LTR19_14q33.1 (D) are shown in human genome (hg38). Chromosome number and region, beside exon (blue square) and intron (blue line) are illustrated.


We also analyzed CD4 and CD8 mRNA expression in the samples, as a proxy for the presence of T-cell-derived material in transcriptome data. The CD8 mRNA expression was higher in HIV-positive than in HIV-negative samples (Figure 4), but at non-significant levels. We further analyzed the differential expression of T-cell signature genes (Supplementary Figure 3), and we found the PIK3IP1 gene upregulated in HIV-positive samples. This pilot study highlighted the importance of additional studies to confirm the increase of tumor-infiltrating lymphocytes and their immune effects on the IDCA microenvironment in HIV-positive patients.
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FIGURE 4. Normalized CD4 and CD8 expression in HIV-positive and HIV-negative from breast cancer samples. The adjusted p-value is shown (FDR).




DISCUSSION

Breast carcinoma is a heterogeneous malignancy originating from the epithelium of the terminal ductal-lobular unit, and it is the most common malignancy in women worldwide (52). Interestingly, women living with HIV (WLWH) have an approximate 40% lower risk for developing this kind of cancer (SIR = 0.63, 95% CI = 0.58–0.68) and have a lower frequency of breast tumors larger than 5 cm (SIR = 0.65, CI 95% = 0.50–0.83) (53). However, the biological mechanism associated with the lower incidence of breast cancer in WLWH is unknown.

In this study, we have described the transcriptome and retrotranscriptome of breast cancer FFPE samples from HIV-positive and HIV-negative women with breast cancer. RNA extracted from FFPE samples may be partially degraded, and performing RNA sequencing from these samples is technically challenging (54–56). However, studies have shown that RNA-seq from FFPE tissues can be used as an alternative for frozen samples, and it can promote advances in clinical retrospective studies, especially in rare types of cancer. The rarity of breast cancer among WLWH poses a major hurdle to prospective analyses of fresh tumor samples, which yields higher-quality sequencing data.

Herein, we found 181 differentially expressed genes and HERVs between HIV-positive and HIV-negative women with breast cancer, with 178 genes upregulated in HIV-positive samples. These data agree with a recent study on HIV-related diffuse large B-cell lymphoma (57), in which digital gene expression profiling and array comparative genomic hybridization from FFPE samples were performed. Diffuse large B-cell lymphoma from HIV infected patients showed differential gene expression, and genes associated with cell cycle progression, DNA replication and DNA damage repair were significantly increased in HIV-positive compared to HIV-negative tumors (57). HIV infection is characterized by persistent inflammation and cell-signaling pathway dysregulation in immune cells (58). Together, these results show that HIV may regulate the host gene expression and impact cellular pathways in addition to inducing HERV expression.

The upregulation of HERV has been implicated in oncogenesis and metastases of breast cancer cells (21). Expression of the HERV-K protein np9 is increased in breast cancer (19) and is considered a viral oncogene due to its association to cellular signaling pathways such as WNT, ERK, Akt and Notch1 (59, 60). HERV and breast cancer associations are frequently based on the analysis of HERV-K expression (9, 16, 19, 61, 62). In this study, we did not find differential HERV-K expression profiles in breast cancer samples from HIV-positive women when compared to samples from HIV-negative women. However, expression of other HERV families have been described in various other types of cancer such as colorectal, stomach and others (63). Studies of HIV/HERV associations also mostly have relied on HERV-K analyses (28, 31, 32, 64).

Furthermore, one critical aspect of HIV pathogenesis is the suppression of the intracellular viral restriction factor APOBEC3 by the HIV protein Vif in CD4 T cells (65). Reduced APOBEC3 activity has been associated with activation of HERV in HIV infection (28, 66). Despite the defined associations between HERV and both HIV and breast cancer, very little is known about the impact of HERV expression in the context of breast cancer in WLHW.

In the current study, we used the Telescope program, a pipeline for locus specific HERV expression identification (44, 67). Telescope is able to identify HERV locus specific expression in RNA-seq data with higher accuracy than other methods (44). We found four overly expressed HERV genes in HIV-positive from breast cancer samples (HERVL_22q13.31, HERVL40_2p23.3b, HUERSP1_15q22.31, LTR19_14q23.1), two of them from HERV-L clades. Interesting, we previously reported HERV-L specific immunity in HIV-1 infection, characterizing a potential novel target for assessment of HIV pathogenesis (27). Moreover, HERV-L shows elevated numbers of somatic single-nucleotide variations in cancer (68), which may impact cancer progression. In addition, HERVs are able to induce carcinogenesis and cancer progression by regulating nearby host genes (12, 69, 70). Herein we reported positive association between expression of some HERVs and their neighbor genes. The HUERSP1_15q22.31 and LTR19_14q23.1, differential expressed in HIV-positive samples, were associated with the SMAD6 long non-coding RNA and PCNX4 expression, respectively. In addition, the analysis of HERVs and breast cancer oncogenes also showed a positive association in HIV-positive samples. The ERVLE_5q31.1d and HARLEQUIN_17q21.31 were associated, respectively, with RAD50 and BRCA1 long non-coding RNA expression. Mutation in RAD50 is associated with breast cancer, genome instability and poor survival (71, 72). Additionally, dysregulation of long non-coding RNA expression has been associated with tumorigenesis (73, 74). Together, these data suggest the association between HERV and host gene expression, including oncogenes, which may have a key role in carcinogenesis in breast tissues from HIV-positive persons. HERV expression has also been involved in the aggressiveness and plasticity of cancer cells, showing an important effect in the tumor microenvironment (75). We also found an upregulation of CAVIN1 (caveolae associated protein 1) in HIV-positive breast cancer samples. This protein, which is present in abundance at the cell surface is associated with caveolae formation, and it has been proposed as tumor suppressor protein (76, 77). In contrast, studies have shown proteins of the CAVIN family downregulated in breast cancer (77) from HIV-negative samples. These findings suggest that upregulated CAVIN1 in HIV infection might have an important role in HIV-positive breast cancer suppression. In addition, PROM1 (prominin 1) was found upregulated in HIV-positive breast cancer samples, a gene commonly overexpressed in ovarian, esophageal and liver cancer (78). Its expression is negatively associated with cancer prognosis (78, 79). However, its biological function and role are not well understood in breast cancer.

The breast cancer microenvironment is complex, and there are many interactions between different kind of cells that may impact breast cancer gene expression (80–82). Interestingly, we found a higher but non-significant CD8 mRNA expression in HIV-positive breast cancer compared to HIV-negative, suggesting a higher concentration of tumor-infiltrating lymphocytes in these samples. We also found immune pathway enrichment in HIV-positive breast cancer women according to GSEA. In addition, by analyzing immune T-cell signature genes, we showed PIK3IP1 upregulated in HIV-positive breast cancer samples. The PIK3P1 protein is a negative regulator of T-cell activation and of antitumor T-cell immunity (83, 84). Interestingly, tumor-infiltrating lymphocytes are able to induce an immune response, and their presence is often associated with a good prognosis across a spectrum of malignancies in HIV-negative patients (85, 86). Our findings may also indicate differential immune response regulation and lymphocyte recruitment in the HIV-related breast cancer microenvironment. Therefore, this pilot report highlights the importance of additional studies of HIV-positive breast cancer patients to evaluate HERV expression effects on breast cancer cells.

Based on our results, the impact of HIV infection in the context of breast cancer in WLWH might rely on a specific HERV expression profile different from the previously HERV-K and breast cancer association seen in HIV-negative women. This pilot study is the first to analyze the impact of HIV infection in breast cancer using transcriptome and retrotranscriptome data and it can serve as basis to further studies. Despite of limited samples number due the rarity of breast cancer among WLWH, our findings suggest that HIV infection might indirectly modulate host and HERV gene expressions in the breast cancer microenvironment. Future studies to better understand the interplay between HIV and HERVs in the breast cancer microenvironment are warranted.
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Lung adenocarcinoma accounts for half of all lung cancer cases in most countries. Mounting evidence has demonstrated that microRNAs play important roles in cancer progression, and some of them can be identified as potential biomarkers. This study aimed to explore the role of miR-550a-5p, a lung adenocarcinoma-associated mature microRNA screened out from the TCGA database via R-studio and Perl, with abundant expression in samples and with 5-year survival prognosis difference, as well as having not been studied in lung cancer yet. Potential target genes were predicted by the online database. Gene ontology enrichment, pathway enrichment, protein–protein interaction network, and hub genes–microRNA network were constructed by FunRich, STRING database, and Cytoscape. Then, LIMD1, a known tumor suppressor gene reported by multiple articles, was found to have a negative correlation with miR-550a-5p. The expression of miR-550a-5p was up-regulated in tumor samples and tumor-associated cell lines. Its high expression was also correlated with tumor size. Cell line A549 treated with miR-550a-5p overexpression promoted tumor proliferation, while H1299 treated with miR-550a-5p knockdown showed the opposite result. Mechanically, miR-550a-5p negatively regulated LIMD1 by directly binding to its 3′-UTR validated by dual luciferase assay. In summary, a new potential prognostic and therapeutic biomarker, miR-550a-5p, has been identified by bioinformatics analysis and experimental validation in vitro and in vivo, which promotes lung adenocarcinoma by silencing a known suppressor oncogene LIMD1.

Keywords: lung adenocarcinoma, microRNA, oncogene, cancer therapy, cell proliferation


INTRODUCTION

Lung cancer is the most dangerous disease and is thought of as the foremost cause of cancer-related death around the world. The 5-year survival prognosis of lung cancer patients is generally <15% (1). Among them, lung adenocarcinoma (LUAD) accounts for half of all lung cancer cases in most countries (2). Therefore, specific molecules serve as biomarkers for early diagnosis, and therapeutic targets in lung cancer become urgently needed.

microRNAs (miRNAs) are very short non-coding RNAs (20–24 nucleotides) that were discovered in 1993 (3) and expeditiously recognized that miRNAs are involved in multiple aspects of lung cancer such as cell proliferation, apoptosis, invasion, and EMT (4). Now, it was well recognized that apart from few studies that have unconcealed the role of miRNAs in activating gene expression in specific conditions, most miRNAs can identify and bind to complementary sites present in the 3′-untranslated region (UTR) of target mRNA resulting in post-transcriptional gene silencing (5).

The rise of bioinformatics analysis technology enables people to analyze genetic data in various databases. Based on the Cancer Genome Atlas (TCGA) database, we screened out LUAD-associated miRNAs by R-studio and Perl, with different expression and with 5-year survival prognosis, as well as having not been reported in lung cancer-associated articles. Other bioinformatics analysis technologies like GO enrichment, pathway enrichment, protein–protein interaction (PPI) network, hub gene–miRNA, and so on were performed for further exploration.

The present study aims to explore and identify LUAD-associated differential expression miRNAs (DE-miRNAs) and their potential molecular mechanisms through a series of bioinformatics analyses. Then, experiments in vitro and in vivo were carried out to verify the consistency with hypothesis based on informatics analysis.



MATERIALS AND METHODS


Patients and Tissue Collection

Twenty-nine pairs of NSCLC and matching adjacent normal tissues were obtained from NSCLC patients who underwent thoracoscopic surgery at the First Affiliated Hospital of Nanjing Medical University from January 2019 to December 2019. All specimens were preserved in liquid nitrogen after resection until use. Informed consent was acquired from patients. This current research was approved by the Department of Ethics Committee of our hospital.



Bioinformatics Analysis

TCGA database (https://portal.gdc.cancer.gov/) was used to download vital biomarker miRNA in LUAD. Perl (version 5.28) and R-studio (version 3.6) were used to selected suitable differential miRNAs (Padj = 0.01, fold change = 2). Then, heatmap, volcano, and survival analysis were drawn. Target genes of relative miRNAs were predicted by miRtarBase (http://mirtarbase.mbc.nctu.edu.tw). GO enrichment analysis, pathway enrichment analysis, PPI network analysis, and hub genes analysis were performed by Enrichr (http://amp.pharm.mssm.edu/Enrichr), STRING database (https://string-db.org), FunRich (version 3.13), and Cytoscape (version 3.8). An online survival analysis tool Kaplan–Meier Plotter database (https://kmplot.com/analysis) was used to further evaluate target genes.



Cell Culture

Five human LUAD cell lines (SPCA1, A549, H358, PC9, and H1299) and one human bronchial epithelioid cell line (16HBE) were involved in this study. All cell lines above were bought from the American Type Culture Collection. Cells were cultured in RPMI-1640 medium + 10% fetal bovine serum along with penicillin (100 U/ml) and streptomycin (100 μg/ml, Invitrogen, Carlsbad, CA) in an incubator containing 5% CO2 at 37°C.



Cell Transfection

Lentiviral (Lv-miR-550a-5p, Sh-miR-550a-5p, Lv-vector, Sh-vector), plasmid-LUAD, and siRNA-LIMD1 were purchased from Gene Pharma (Shanghai, China). Selected cell lines were infected with lentiviral vectors and screened with puromycin according to the protocols. Lipofectamine 3000 (Invitrogen) was used for plasmid-LIMD1 and siRNA-LIMD1 transfection.



RNA Extraction and Real-Time Quantitative PCR (RT-qPCR)

TRIzol reagent (Invitrogen) was used to isolate total RNA from tissues and cells based on the instructions. cDNA was generated from total RNA using the PrimeScript RT reagent (Takara, Japan), and RT-qPCR was performed with SYBR Green Master Mix II (Takara) on an ABI 7900 fast real-time PCR system (ABI, CA, USA). Data of mRNA and miRNA were normalized by GAPDH and U6. All the experiments were performed three times independently. The oligonucleotides used in this study are shown in Table 1.


Table 1. Sequences of the primers in this study.

[image: Table 1]



CCK-8 Assay

Transfected NSCLC cells (1 × 103 cells/well) were incubated into the plates (96-well). Three replicate wells were used for each group. CCK-8 solution (Beyotime, Shanghai, China) was added into each well (10 μl/well) for 2 h of incubation. Finally, the absorbance was examined at 450 nm (A450) by using a spectrophotometer (Thermo Scientific, Rockford, IL, USA).



The 5-ethynyl-2′-deoxyuridine (EdU) Assay

Regent EdU Apollo567 in vitro Flow Cytometry Kit (Ribobio, Guangzhou, China) was used to determine cell proliferation capacity. Cells were incubated with EdU (50 μm) for 2 h. Positive cells were screened by Apollo and DAPI staining through fluorescence microscope. The ratio of EdU-positive to total DAPI-positive cells representing the EdU incorporation rate.



Colony Formation Assay

Results were displayed via the clonogenicity of a single cell. In brief, the transfected cells were seeded into 60-mm plates (1 × 103 cells/plate). The culture medium was changed every 5 days. After 10 days, cells were washed with PBS twice and then fixed and stained with crystal violet staining solution (Beyotime, Shanghai, China) for 15 min. Colonies containing ≥50 cells were counted. Each experiment was performed independently three times.



Flow Cytometric Analysis

In the cell cycle experiment, the cells were harvested and 70% pre-cooled ethanol was added for times ranging from 2 h to overnight, and then the cells were stained with propidium iodide (PI) (Vazyme, Nanjing, China) by FACScan flow cytometry for 30 min, while cell apoptosis was evaluated with an APC/7-AAD apoptosis detection kit (KeyGen Biotech Co., Ltd., Nanjing, China) according to the manufacturer's instructions.



Western Blotting

Total protein of cells was extracted from RIPA buffer (Beyotime, Shanghai, China) containing 100 μg/ml PMSF (Beyotime, Shanghai, China) and 2 μg/ml aprotinin (Beyotime, Shanghai, China). Protein lysates were separated by 10% SDS-PAGE and transferred to the PVDF membrane. After that, the membrane was blocked by 5% BSA for 2 h and then incubated with primary antibodies and secondary antibody. Primary antibodies used in Western blotting were LIMD1 (Cell Signaling Technology, 13245), Ki67 (Abcam, ab92742), and GAPDH (Cell Signaling Technology, 5174).



Dual-Luciferase Assay

The 3′-UTR sequence or the mutant sequence of LIMD1 was cloned into pGL3 promoter vector (Genscript, Nanjing, China). A549 cells were cultured in 24-well plates transfected miR-550a-5p mimics or negative control (NC). Then, cells were transfected with pGL3-LIMD1 3′-UTR or pGL3-LIMD1-MUT by Lipofectamine 3000 reagent (Invitrogen). Twenty-four hours later, the cells were collected and Renilla luciferase activity was considered as a normalization using Dual-Luciferase Assay Kit (Promega).



The Xenograft Model

With the approval of the Animal Care and Use Committee of Nanjing Medical University, in vivo experiments were performed with a group of BALB/C nude mice (4–5 weeks old) purchased from the Animal Center of Nanjing Medical University. Subsequently, mice were randomly divided into four groups (five mice/group). Both flanks of mice were subcutaneously injected with H1299 cells or A549 cells stably down-regulating or up-regulating miR-550a-5p or NC. Tumor size (calculated as length × width × 0.5 mm3) was measured every 5 days. After 4 weeks, nude mice were euthanized and nodules were weighed.



Immunohistochemistry (IHC) Analysis

All samples were fixed with 4% formalin solution and embedded in paraffin. Then, 5-μm-thick sections were made and incubated with Ki-67 primary antibody (Abcam, 92742) overnight at 4°C. The next day, after being washed with PBS, sections were incubated with an HRP-conjugated secondary antibody for 1 h at 37°C. Then, DAB solution was used for staining for 5 min, accompanied by hematoxylin for counterstaining. Images were evaluated by an Olympus microscope (Olympus, Tokyo, Japan).



Statistical Analysis

All experiment data were analyzed through GraphPad Prism (version 8.0) and SPSS (version 19.0). P-values were analyzed using Student's t-test, and P < 0.05 was regarded as significant.




RESULTS


Identification of DE-miRNAs

Data from 528 patient samples, consisting of 483 tumor samples and 45 normal samples, were downloaded from the TCGA database. “Bronchus and lung,” “TCGA-LUAD,” “adenomas and adenocarcinomas,” “miRNA-Seq,” “primary tumor,” “solid tissue normal,” “transcriptome profiling,” and “miRNA Expression Quantification” were keywords selected to search in the repository. Subsequently, differential expression analysis was conducted via R-studio and Perl, and DE-miRNAs including 212 up-regulated and 67 down-regulated miRNAs were obtained (|logFC1| ≧ 1, P value <0.01). A volcano plot and a heatmap of these DE-miRNAs are displayed in Figure 1. To screen out miRNAs with research value, the DE-miRNAs reported in LUAD-related articles and with no significant difference in 5-year survival prognosis were ignored. Therefore, miR-550a-1, miR-550a-2, and miR-4661 were taken into consideration (Figure 1; Table 2).


[image: Figure 1]
FIGURE 1. Identification of DE-miRNAs. (A) Heatmap of DE-miRNAs. The black patterns represent miRNAs that are not differentially expressed between 483 human LUAD tumor samples and 45 human normal samples. The red patterns represent up-regulated miRNAs and the green represent down-regulated miRNAs. (B) Volcano plot of DE-miRNAs. The black plots represent miRNAs with no difference, while the red plots represent up-regulated miRNAs and the green plots represent down-regulated miRNAs. (C–E) The expression of miR-550a-1, miR-550a-2, and miR-4661 in tumor tissues was compared with that in normal tissues in LUAD patients from TCGA database. (F,G) Survival curve of hsa-miR-550a and hsa-miR-4661 in LUAD from the Kaplan–Meier database.



Table 2. The DE-miRNAs screened from TCGA database.
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Go Functional and Biological Pathway Enrichment Analysis

It is well known that pre-miRNA will evolve into two mature single strands through the enzyme digestion reaction. The passenger strand is often degraded, while the guide strand combines with Ago2 protein to form RNA-induced silencing complex (RISC). Mature guiding strands miR-550a-5p derived from miR-550a-1 or miR-550a-2 and miR-4661-3p derived from miR-4661 were selected. Then, 134 potential target genes were predicted for the two selected up-regulated mature miRNAs by using miRTarBase. Subsequently, GO functional annotation analysis was conducted, including molecular function (MF), biological process (BP), and cellular component (CC).

As presented in Figure 2, the enriched GO functions for the potential target genes included cell growth, signal transduction, cell communication, cell proliferation, regulation of nucleobase in the BP; plasma membrane, extracellular, exosomes, cytoplasm exosomes in the CC, transporter activity, catalytic activity, RNA binding, transcription regulator activity, and receptor activity in the MF. These results were analyzed by FunRich.


[image: Figure 2]
FIGURE 2. GO enrichment analysis and pathway enrichment analysis for the predicted target genes of miR-550a-5p and miR-4661-3p. (A–C) Enriched biological process, cellular component, and molecular function of the target genes. (D) Pathway enrichment analysis of the target genes. The blue bars represent percentage of the target genes, and the red line and the yellow line represent P-value (0.05) and –log10 (P-value), respectively.


Similarly, biological pathway enrichment analysis of the target genes was also performed by FunRich. The enriched pathways contained signaling events mediated by VEGFR1 and VEGFR2, VEGF and VEGFR signaling network, ALK1 pathway, cell cycle, mitotic, p53 pathway, and mTOR signaling pathway (Figure 2).

All these results hinted that miR-550a-5p and miR-4461-3p might affect LUAD via modulating cell proliferation.



PPI Network and miRNA-hub Gene Network

The PPI network of target genes of miR-550a-5p and miR-4461-3p was drawn by Cytoscape, revealing interaction among these target genes (Figure 3). The matching nodes of target genes were constructed via the STRING database. Since, in the PPI network, the more genes a certain gene can affect, the more important this gene is, 15 hub genes were analyzed by cytohubba function in Cytoscape according to node degree.
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FIGURE 3. PPI network and miRNA-hub gene network. (A) Protein–protein interaction network of the target genes. (B) Hub genes identified in the PPI interaction. The darker the color, the more important the gene. (C) The regulatory network between the selected miRNAs and hub genes.


Subsequently, the miRNA-hub gene network was constructed (Figure 3). Ten hub genes could be modulated by miR-550a-5p, and five hub genes could be regulated by miR-4661-3p. This network suggested that miR-550a-5p and miR-4661-3p might be the key potential regulator in LUAD.

As we know, there is a negative regulation between most miRNA and their downstream target genes. Evaluation of the expression of hub genes of miR-550a-5p and miR-4661-3p was conducted by UALCAN, an analysis website based on the TCGA database. However, in UALCAN, no negative correlation between these hub genes and miR-4661-3p was found in LUAD samples. Then, the survival prognosis analysis of genes that were negatively related to miR-550a-5p was performed by Kaplan–Meier Plotter (Figure 4). Since LIMD1 is a tumor suppressor gene in LUAD, we speculated that miR-550a-5p might exert a cancer-promoting effect by directly targeting LIMD1.


[image: Figure 4]
FIGURE 4. Evaluations of the hub genes of miR-550a-5p. (A–M) The mRNA expression of hub genes analyzed via UALCAN database. (N,O) Kaplan–Meier survival curve of LIMD1 and HSPA12B in LUAD.




miR-550a-5p Was Up-Regulated Both in LUAD Tissues and in Cell Lines

Based on the results of the previous bioinformatics analysis, RT-qPCR detection of the expression of miR-550a-5p in LUAD tissues and cell lines was performed. Compared with the normal bronchus cell line 16HBE, miR-550a-5p was highly expressed in LUAD cell lines, and it was also highly expressed in LUAD tissues compared to adjacent tissues (Figure 5; Table 3). These results were consistent with the bioinformatics analysis.


[image: Figure 5]
FIGURE 5. miR-550a-5p accelerated LUAD cell proliferation. (A) miR-550a-5p level in 29 LUAD tissues and paired adjacent tissues investigated by RT-qPCR. (B) miR-550a-5p level in normal lung epithelial cell line 16HBE and five LUAD cell lines investigated by RT-qPCR; U6 was used as an internal control. (C,D) Verification of miR-550a-5p expression in H1299 and A549 cell lines after lentivirus treatment by RT-qPCR. (E,F) CCK-8 was used to determine the proliferation of transfected H1299 and A549 cell lines. (G,H) Effect of miR-550a-5p on colony-forming capacity of H1299 and A549 cell lines treated with lentivirus. (I,J) Representative profile of EdU cell growth in H1299 and A549 cell lines after transfection with lentivirus, respectively, compared with the control. Data expressed as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001).



Table 3. Clinical pathological characteristics.
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miR-550a-5p Modulated LUAD Proliferation in vitro

To determine the role of miR-550a-5p in LUAD, loss- and gain-of-function experiments were performed via transfecting Lv-miR-550a-5p into the A549 cell line compared with Lv-vector, as well as sh-miR-550a-5p into the H1299 cell line relative to Sh-vector. The transfection efficiency was verified by RT-qPCR. CCK-8 assay, EdU assay, and colony formation assay showed that up-regulation of miR-550a-5p obviously enhanced A549 cell line proliferation compared with the negative control, while down-regulation of miR-550a-5p in the H1299 cell line showed attenuation (Figure 5). In addition, by regulating miR-550a-5p, the cell cycle and apoptosis of LUAD cell lines were also significantly affected (Figure 6). These experimental results demonstrated that miR-550a-5p exerted a promoting effect on cell proliferation.


[image: Figure 6]
FIGURE 6. miR-550a-5p affected cell cycle and apoptosis in LUAD cells. (A,B) FACS analysis of effect of miR-550a-5p expression alteration on cell cycle and apoptosis. Data expressed as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001).




miR-550a-5p Negatively Regulated LIMD1 by Directly Binding to its 3′-UTR

In order to verify whether LIM domains containing 1 (LIMD1), a hub gene screened out from the bioinformatics analysis above, is the target gene of miR-550a-5p, RT-qPCR of LIMD1 in patients' samples was conducted in the first step. Compared to adjacent tissues, relative expression of LIMD1 mRNA was low expressed in tumor tissues. In addition, Western blot and RT-qPCR experiments were carried out on cell lines treated with lentivirus, and it was found that the expression level of LIMD1 had a negative correlation with miR-550a-5p. For further investigation, a luciferase experiment was performed to verify whether 3′-UTR in mRNA of LIMD1 was a target of miR-550a-5p. The relative luciferase intensity of cells with miR-550a-5p and LIMD1 3′-UTR plasmids was obviously reduced compared with cells transfected with mutation sites of LIMD1 3′-UTR (Figure 7). These results revealed that miR-550a-5p might negatively regulate LIMD1 in LUAD by directly binding to its 3′-UTR.


[image: Figure 7]
FIGURE 7. miR-550a-5p negatively regulated LIMD1 by directly binding to its 3′-UTR. (A) LIMD1 mRNA in 29 LUAD tissues and paired adjacent tissues was investigated by RT-qPCR. (B) A negative correlation was found between LIMD1 and miR-550a-5p in 29 clinical tumor samples. (C–E) Regulatory effect of miR-550a-5p on LIMD1 was detected by Western blot and RT-qPCR; GAPDH was used as an internal control for Western blot, while U6 was used for RT-qPCR. (F) The potential miR-550a-5p seed region at the 3′-UTR of LIMD1 mRNA. (G) A luciferase reporter assay was conducted to verify that miR-550a-5p directly bound to the 3′-UTR sequences of LIMD1. 1: pGL3-LIMD1; 2: pGL3-LIMD1 + miR-550a-5p mimics; 3: pGL3-LIMD1 + NC; 4: pGL3-LIMD1 mut; 5: pGL3-LIMD1 mut + miR-550a-5p mimics; 6: pGL3-LIMD1 mut + NC. Luciferase activity was normalized by the ratio of firefly and Renilla luciferase signals. Data expressed as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001).




Knockdown of LIMD1 Partially Abolished the miR-550a-5p-Mediated Effects

Cell lines were co-transfected with Lv-miR-550a-5p and LIMD1 or Sh-miR-550a-5p and Si-LIMD1 to perform rescue assays; Lv-vector and Sh-vector were designed as negative controls. The efficiency of transfection was confirmed by RT-qPCR (Figure 8). The results of CCK-8 assay, colony formation assay, and EdU assay suggested that the reverse regulation of LIMD1 could partially abolish the affection of miR-550a-5p on tumor proliferation in LUAD.


[image: Figure 8]
FIGURE 8. miR-550a-5p accelerated LUAD cell proliferation by targeting LIMD1. (A,B) The expression level of LIMD1 mRNA was verified by RT-qPCR in A549 and H1299 cell lines co-transfected by miR-550a-5p and LIMD1. (C–H) Rescue assays consisted of CCK8 assay, colony formation assay, and EdU assay were performed to verify the roles of miR-550a-5p and LIMD1 in regulation of LUAD cell proliferation. Data expressed as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001).




miR-550a-5p Promoted Xenograft Tumor Formation in vivo

To confirm whether miR-550a-5p could also exert a promoting effect on tumor formation in vivo, cell lines transfected with lentivirus or empty vector were subcutaneously injected into both sides of the flanks of BALB/C nude mice. The results showed that down-regulated miR-550a-5p decreased tumorigenic ability in vivo compared to NC, while up-regulation exhibited an opposite result. In addition, IHC staining against Ki67 was consistent with the result that miR-550a-5p could promote LUAD proliferation (Figure 9). Therefore, these findings demonstrated that miR-550a-5p promoted tumor formation in vivo.


[image: Figure 9]
FIGURE 9. miR-550a-5p promoted xenograft tumor formation. (A) Photographs of tumors were obtained from the different groups of nude mice transfected with Lv-miR-550a-5p, Lv-vector and Sh-miR-550a-5p, Sh-vector respectively. (B,C) Growth curve of tumor volumes were calculated every 5 days. (D,E) Weight of tumors was measured and compared between groups. (F,G) The expression level of miR-550a-5p in xenografts was detected by RT-qPCR. (H) The relative expression of LIMD1 in xenografts was detected by Western blot. (I) The expression level of Ki67 in samples collected from nude mice was analyzed by IHC. Data expressed as mean ± SD (*P < 0.05; **P < 0.01; ***P < 0.001).





DISCUSSION

Although there was a continuing decline in recent years, it is still one of the leading causes of cancer deaths. The molecular mechanism in the development of lung cancer is still lacking (6). LUAD is the most common type of lung cancer and is one of the most aggressive and rapidly fatal tumor types, accounting for half of all lung cancer cases (7).

As far as the current research stage is concerned, miRNAs play an important role in the tumor, functioning as diagnostic or prognostic biomarkers for malignancies and being potential therapeutic targets (8–10). However, the specific biological function of most abnormally expressed miRNAs in LUAD remains unclear (11, 12). Therefore, the research of miRNAs in LUAD still needs to be supplemented and improved.

In recent years, with the advent of the era of data technology, bioinformatics analysis of various databases has become popular. In this study, based on the TCGA database, some miRNAs were found up-regulated in LUAD cases through bioinformatics analysis. Among them, miRNAs reported in LUAD-associated articles and without difference in 5-year survival prognosis were ignored. Therefore, miR-550a-1, miR-550a-2, and miR-4661 were screened out for further study.

It comes to light that most miRNAs are transcribed as a long precursor by RNA polymerase II and undergo extensive processing before they are integrated into the active RISC (13). Initially, primary miRNAs (pri-miRNAs) turn into precursor miRNAs (pre-miRNAs) by getting trimmed by Drosha to a hairpin duplex in the nucleus. Subsequently, the duplex gets transported to the cytoplasm and integrated into Ago2 protein. During the process of strand selection, one passenger strand of the strands of the duplex is discarded, leaving a guide strand with Ago2 to form activated RISC (14, 15). The RISC allows the guide strand to interact with the target mRNA, usually with its 3′-UTR. This interaction results in translational repression by the degradation of the target mRNA (16–20).

Speaking of the guide strand and passenger strand, for mankind, guide strand has an excess of purines (A/G), whereas the passenger strand is an excess of pyrimidines (U/C) (21). Therefore, through the search of miRbase and relative articles, we conducted further research on miR-550a-5p, which is processed from miR-550a-1 and miR-550a-2, and miR-4661-3p formed from miR-4661. According to the node degree of target genes predicted, their hub genes were screened out, and the miR-hub genes network was constructed. Through this network, we found that most of the hub genes could be potentially modulated by miR-550a-5p, and in recent research reports, miR-550a-5p is also involved in the development of colorectal cancer. More importantly, based on UALCAN, the hub genes did not have a negative correlation with miR-4661-3p. Therefore, we chose miR-550a-5p for further research. RT-qPCR assays on cells and tissues were performed, as well as cell function experiments and nude mice tumorigenesis experiments, which proved that miR-550a-5p played an important role in LUAD.

Given the miR-hub genes network and UALCAN database, the expression of LIMD1 and miR-550a-5p exhibited a negative correlation in LUAD. Meanwhile, the survival prognosis analysis of LIMD1 in lung cancer from the Kaplan–Meier Plotter database also showed its significance in tumor inhibition. LIMD1 is a member of the Zyxin proteins, encoded at chromosome 3p21.3 and widely expressed in human tissues (22, 23). A large number of previous studies have suggested that LIMD1 functions as a tumor suppressor (24–27). In terms of molecular mechanism, LIMD1 could participate in cellular processes and pathways through its scaffold function, meaning that the tumor-suppressive function of LIMD1 is likely to be regulated by different signal cascades (28). For example, LIMD1 can regulate Hippo-YAP signaling activity (29), and its phosphorylation is necessary for mitotic progression (23). LIMD1, identified as a hypoxia-inducible factor (HIF) target gene, participates in HIF-associated regulation of tumorigenesis (28). Therefore, through experiments in the current research, directly targeting the 3′-UTR of LIMD1 is the reason that miR-550a-5p functions as a tumor promoter (Figure 10).


[image: Figure 10]
FIGURE 10. Schematic diagram of miR-550a-5p targeting LIMD1 to modulate cell proliferation in LUAD.


In conclusion, a new potential prognostic and therapeutic biomarker, LUAD proliferation-associated miR-550a-5p, has been identified by bioinformatics analysis and experimental validation in vitro and in vivo, which promotes LUAD by silencing a known suppressor oncogene LIMD1.
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Exosomes are a group of nano-sized membrane vesicles and are important mediators of intercellular communication, particularly in tumor microenvironment. Recently, researchers have found that circular RNAs (circRNAs), with the great research significance, are enriched and stable in exosomes. In this review, we summarize the research significance of exosomal circRNAs, sorting mechanisms and their functioning mechanisms in tumor progression. Their clinical applications as clinical tumor biomarkers and as therapeutic targets in inhibiting tumor metastasis, anti-cancer immunity response and drug resistance have been widely discussed.
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INTRODUCTION

Exosomes were first identified in sheep reticulocytes by Harding et al. (1983) in 1983 and were named “exosomes” by Pan and Johnstone (1983) 4 years later. The role of exosomes was then speculated to be a way for cells to excrete waste. In 1996, Raposo et al. (1996) found that immune cells which similar to B lymphocytes also secrete antigen-presenting vesicles, which can directly stimulate the anti-tumor response of CD4+ cells. In 2007, Valadi et al. (2007) further discovered that cells could exchange genetic material through RNA in exosomes. With the deepening of the research, researchers found exosomes are widely involved in various biological processes such as immune response, antigen presentation, cell differentiation, tumor growth and invasion (Ibrahim and Marbán, 2016). Exosomes are small membrane vesicles with lipid bilayer structure, approximately 40–160 nm in diameter (Kalluri and LeBleu, 2020). Studies have shown that specific molecular markers such as lipids, proteins and RNA exist on the surface of exosomes. They also contain various components inside, such as RNA, proteins and even DNA, which are transported to the recipient cells to come into play (Bebelman et al., 2018). Because of these advantages, exosomes play crucial roles in a variety of diseases, especially mediating the communication between tumor cells.

Following microRNA (miRNA) and long non-coding RNA (LncRNA), circRNA is an emerging endogenous non-coding RNA (ncRNA) with excellent research potential, which is a new member of the non-coding RNA family. In 1976, Sanger (Sanger et al., 1976) first found covalently closed circRNAs in plant viroids, and in 1979, when Hsu (Hsu and Coca-Prados, 1979) found similar circRNAs in the cytoplasm of HeLa cells by electron microscopy, it was believed that circRNAs were the product of faulty splicing (Cocquerelle et al., 1993). Until 1993, Capel (Capel et al., 1993) found that circular RNA genes of mice Sry (sex-determining region Y) may exert a specific function in mice testicles, which truly brought circular RNA into the field of scientific research vision, and gradually become the focus of research. In recent years, with the development of RNA research technology, researchers have found a large number of circRNAs in diverse organisms. These circRNAs have important biological functions, such as serving as miRNA sponges, interacting with RNA binding proteins (RBPs), and encoding proteins or peptides (Hansen et al., 2013; Zheng et al., 2016; Hsiao et al., 2017). Previous studies have shown that circRNAs are closely associated with diabetes (Zhu et al., 2019), neurological diseases (You et al., 2015), cardiovascular diseases (Zhang S. et al., 2020), and cancer (Zhang N. et al., 2020), and also play an important role in the early diagnosis and clinical treatment of diseases (Xian et al., 2020). CircRNAs are expected to be extracted from samples and analyzed, so studies on their potential as molecular markers are being undertaken widely.

Intriguingly, recent research found that the expression of circRNAs in exosomes is abundant and stable. Exosomal circRNAs can play a significant role after being absorbed by recipient cells (Li et al., 2015). In this review, we elucidate how circRNAs involved in exosomes and the mechanisms by which exosomal circRNAs play a role in tumors. We particularly emphasize the mechanism of mediating tumor drug resistance and their clinical applications in tumor therapy.



CURRENT RESEARCH SITUATION OF EXOSOMAL CircRNAs


Biogenesis and Characteristics of circRNAs

CircRNAs are generated from specific alternative splicing of pre-mRNA (Fu and Ares, 2014) and can be divided into three categories according to its components: Exon circRNAs (EciRNAs), Intron circRNA (CiRNAs), and Exon-Intron circRNA (EIciRNAs) (Belousova et al., 2018; Wang and Fang, 2018). Currently, two mechanisms for CircRNA formation are widely accepted: (1) Back-splicing hypothesis is that the downstream splicing site is reversely connected to the upstream splicing site to form a closed circRNA molecule (Ebbesen et al., 2017). This cyclization is mainly caused by base-pairings between repeating elements in the upstream or downstream introns (Ivanov et al., 2015; Kelly et al., 2015), or by the dimerization of RBPs (Conn et al., 2015), or by the combination of RBPs with the motif in the flanking introns (Zhang et al., 2014; Errichelli et al., 2017), which are commonly referred to as intron-pairing-driven cyclization (Ebbesen et al., 2017; Chuang et al., 2018; Eger et al., 2018; Liu et al., 2019) and RBP-driven cyclization (Conn et al., 2015). This mechanism mainly produces EciRNAs and EIciRNAs; (2) Lariat-driven cyclization formed by exon-skipping reading is another mechanism of circRNAs formation (Eger et al., 2018). Besides, circRNAs are also produced by intron lariat detaching from the branching structures during splicing, which leads to the formation of EciRNAs and CiRNAs (Zhang et al., 2013; Lasda and Parker, 2014; Eger et al., 2018). Mechanisms for circRNAs’ formation are shown in (Figure 1A).
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FIGURE 1. Biogenesis of circRNAs and exosomes. (A) The biogenesis of circRNAs: The mechanisms of lariat-driven cyclization, intron-pairing driven cyclization, RBP-driven cyclization and intron cyclization can form EcRNAs, EIciRNAs and CiRNAs. (B) The biogenesis of exosomes.


Compared to other ncRNAs, circRNAs have some unique characteristics. Firstly, there are thousands of tissue-specific circRNAs in eukaryotes (Wang et al., 2014; Westholm et al., 2014; Ivanov et al., 2015). For example, circRNAs from Rmst and Klhl2 were highly expressed in the brains of mice, but not in the liver or lungs (You et al., 2015). In drosophila, circMbl was far less expressed in the ovaries than in the head (Westholm et al., 2014). Secondly, due to its unique closed-loop structure, circRNAs have good stability, long half-life (Enuka et al., 2016), and are hard to be degraded by exonuclease (Jeck et al., 2013; Memczak et al., 2013).



Formation and Release of Exosomes

Exosomes are a class of extracellular vesicles (EVs), which are membrane vesicles secreted by various types of cells. Compared with other EVs, exosomes have unique ways of formation and release: the cytoplasmic membrane is enmeshed, and some extracellular components and cell membrane proteins are wrapped together to form early-sorting endosome (ESEs), which can exchange materials with other organelles, or fuse with different ESEs to form late-sorting endosomes (LSEs), and then further form into intracellular multivesicular bodies (MVBs), which contain many intraluminal vesicles (ILVs) (Mathieu et al., 2019; McAndrews and Kalluri, 2019). During the process of forming endosomal membranes, the cytoplasmic RNA molecules (mRNA and miRNA) and some functional proteins are wrapped up in it (Kulkarni et al., 2019). ILVs, which were broadly considered to be exosomes, can be released by the fusion of MVBs with the plasma membrane (PM) into the extracellular space (Kowal et al., 2014; Frydrychowicz et al., 2015; Bebelman et al., 2018). MVBs may also be degraded by fusion with autophagosomes or lysosomes to release ILVs as exosomes (Kahlert and Kalluri, 2013; van Niel et al., 2018). Unique formation and release way of exosomes are shown in Figure 1B. After being released, exosomes may exist around the releasing cell or remain in the extracellular space. Additionally, they can move dynamically in body fluids. Exosomes can also be absorbed by adjacent and distant cells, thus changing the behaviors of target cells (Melo et al., 2014). However, the absorption of exosomes is not a random event. Some reports have explained that several mediators with specific roles can help exosomes find their target cells, including lipids, proteins, and some extracellular matrix. For example, cancer-derived exosomes can target specific tissues, such as the liver and lung, and promote the formation of a premetastatic niche by the composition of integrin (Hoshino et al., 2015). In addition, some cell-derived exosomes themselves can expose adhesion molecules on their surfaces to attract and grab target cells (Théry et al., 2009).



Discovery of Exosomal circRNAs

Exosomes contain many RNAs, including mRNA and ncRNAs (Skog et al., 2008; Taylor and Gercel-Taylor, 2008; Lai et al., 2010). Surprisingly, Li et al. (2015) found circRNAs were abundant and stable in exosomes from MHCC-LM3 HCC cells through RNA-seq analysis. Their results indicated that exosomes contained at least twice as many circRNAs as the circRNA-producing cells themselves. In addition, the genome-wide analysis revealed that the ratio of circRNAs to linear RNA in exosomes was 6-8 times than that of the producing cells, and more than 1,000 different circRNAs have been found in exosomes of human serum (Bao et al., 2016).



POSSIBLE MECHANISM OF CircRNAs SORTING INTO EXOSOMES

Although RNA loading is a random event, different levels of RNA enrichment in EVs suggest that RNA sorting is regulated by specific mechanisms (Koppers-Lalic et al., 2014; Hinger et al., 2018). The mechanism often relies on RBPs and their relative partners, which can target RNAs to the site of EV generation and protect them from degradation. In recent years, researchers have been exploring how RNAs load into EVs. MiRNAs are the most widely studied. Using qPCR, the researchers found that when the expression level of miRNAs in cells changed, the corresponding miRNAs expression level in exosomes would also show the same change trend, but with a larger change range. It was further found that the sorting of miRNAs into exosomes is directly regulated by the abundance of their targeted mRNAs in the cells that produce these miRNAs. When the targeted mRNAs are increased, the miRNA is more likely to remain in the cell and be excluded from the exosomes. Conversely, if mRNA levels decrease, the miRNAs is loaded into the exosomes and secreted (Squadrito et al., 2014). Second, Ago2, the main components of miRISCs (miRNA loaded RNA-induced silencing complexes), may serve as an important transferring machinery for EV-miRNAs (McKenzie et al., 2016). Knockdown of Ago2 reduces several miRNAs sorting to EVs. Besides, endosomal sorting complex required for transport (ESCRT) proteins, such as Alix and Aps4A, have been shown to regulate miRNA sorting to EVs (Kosaka et al., 2010; Wei et al., 2015; Iavello et al., 2016). Third, some RBPs were shown to mediate specific miRNAs to EVs (Teng et al., 2017; Clancy et al., 2019). There still remains certain RBPs which perform miRNAs sorting by recognizing specific RNA motifs (Villarroya-Beltri et al., 2013; Lee et al., 2019). For example, hnRNPA2B1 can bind and convey miRNAs with GGAG motif into exosomes. HnRNPA2B1 was also reported to regulate the loading of lncARSR into exosomes, which depends on the specific sequence at the 5′ end (Qu et al., 2016).

Although there is no clear evidence to show how lncRNAs target EV-producing sites, they may share the similar sorting mechanisms with mRNAs (Batagov et al., 2011). MRNAs have been shown to differentially sorted to EVs mostly depending on their specific sequences and secondary structures in the 3′-untranslated regions. For example, lncRNA YBX1 could participate in the sorting process by specifically binding with corresponding motifs (Kossinova et al., 2017; Yanshina et al., 2018).

Considering that the types of circRNAs in exosomes are different from those in multiple cell lines, the mechanism of circRNAs entering exosomes deserves further investigation. Research showed that the abundance of exo-circRNAs was only moderately correlated with the level of cellular circRNAs, indicating that the sorting of specific circRNA species to exosomes may be actively regulated (Bao et al., 2016). Since circRNAs have been reported to bind to miRNAs in cells, and miRNAs are also abundant in exosomes, Li et al. (2015) speculated that there may be a relation between miRNAs and circRNAs in producer cells in the sorting of circRNAs into exosomes. The results suggested that the sorting of circRNAs to exosomes was at least, to some extent, regulated by the changes of related miRNAs levels in producer cells. For example, the authors introduced miR-7 mimics into cells and measured the abundance of CDR1as/cirS-7, the results revealed that the abundance of CDR1as/cirS-7 decreased in exosomes compared with that in the producer cells. Meanwhile, circRNAs still retain their original biological functions in receptor cells. In previous studies, Dou et al. (2016) explored 7 circRNAs with the highest abundance in exosomes of DKs-8 cells were also high expressed in DKs-8 cells, indicating that some circRNAs in the cells could be transferred into exosomes. However, RT-PCR showed that circRTN4 was high expressed in the exosomes of DLD-1 cells and low in DLD-1 cells, which indicated that molecular transport between cells and their exosomes was very complex.

Besides, other possible mechanisms include RNA-associated proteins binding to circRNAs (Bao et al., 2016). Nonetheless, the precise mechanism of circRNA sorting remains largely unknown.



REGULATORY MECHANISMS OF EXOSOMAL CircRNAs IN TUMORS


Exosomal circRNAs Act as miRNA Sponges to Exert Biological Functions

MiRNAs are a class of endogenous, regulatory ncRNAs with a length of about 20–25 nucleotides in eukaryotes (Macfarlane and Murphy, 2010). MiRNAs can identify mRNAs by complementary pairings, guide the RISCs to degrade mRNAs or inhibit the translation of mRNAs (Macfarlane and Murphy, 2010). CircRNAs have abundant miRNA binding sites. Large numbers of studies have shown that circRNAs act as miRNA sponges, thereby eliminating the inhibition of miRNA on target genes and increasing the expression level of target genes (Figure 2A; Denzler et al., 2014; Thomson and Dinger, 2016).
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FIGURE 2. Functions of circRNAs and exosomal circRNAs. (A) CircRNAs affect the development of diseases by competitively binding to miRNAs. (B) Some exoxomal circRNAs bind to miRNAs in exosomes. After being released, miRNAs detach from circRNAs and silence the target genes in recipient cells. (C) Upon arriving, circRNAs can bind to miRNAs which exist in the recipient cells to activate the target genes. (D) CircRNAs can interact with RBPs. (E) Some exosomal circRNAs may bind to proteins in exosomes and be transported together to target cells. Or they can be transferred to recipient cells and then combine with proteins to come into effect. (F) CircRNAs with IREs or m6A modification can encode proteins or peptides. (G) Exosomes may transmit circRNAs to recipient cells to encode proteins or peptides to regulate the activity of life. The functional proteins may also be transported to recipient cells.


Studies have shown that exosome-derived circRNAs can still function as miRNA sponges after targeting recipient cells. The transfer of exosomes makes the circRNAs in exosomes more flexible and generally regulate the downstream target genes. There may be two situations: (1) CircRNAs bind with miRNAs and enter the exosomes together. Upon arrival at the recipient cells, miRNAs detach from circRNAs and then bind to the mRNAs in the recipient cell, thereby silencing mRNAs (Figure 2B). (2) Another assumption is that after circRNAs enter the recipient cells through exosomes, they absorb miRNAs in recipient cells to alleviate the inhibitory effect of miRNAs on the corresponding mRNA (Figure 2C).

The latter has found the following main types so far:


1.Target at adipocytes: (Zhang et al., 2019b) found that the exosomal ciRS-133 in the plasma of gastric cancer (GC) patients was up-regulated, and in vivo experiments showed that the ciRS-133 secreted by GC cells could be transferred into the pre-adipocytes by exosomes, thereby promoting the expression of Positive Regulatory Domain containing 16 (PRDM16), a key factor determining the fate of adipocyte differentiation, by inhibiting the biological function of miR-133. Upregulation of PRDM16 in preadipocytes determined the direction of cell proliferation and activated the expression of UCP1, so this study determined that circRNAs produced by cancer cells play an important role in the regulation of WAT Browning and tumor-related cachexia through exosomes.

2.Target at normal liver cells (L-02): (Dai et al., 2018) found that circRNA_100284 was up-regulated in arsenite-transformed L-02 cells, and their exosomes could be absorbed by normal L-02 cells, resulting in the up-regulated expression of circRNA_100284 in normal liver cells. Subsequently, they showed that circRNA_100284, delivered by exosomes to normal liver cells, could up-regulate the expression of Enhancer Of Zeste Homolog2 (EZH2) which is a potential marker for proliferation and cyclin-D1 which regulates the G1 to S phase transition in the cell cycle by acting as a sponge for miR-217, thus accelerating the cell cycle, promoting cell proliferation and malignant transformation of untransformed cells in hepatocellular carcinoma (HCC). Besides, the researchers found that circRNA Cdr1as is highly expressed in HCC patients cell lines and their exosomes, and can accelerate the development of cancer through miR-1270 sponge action. In HCC cell lines, the expression of circRNA Cdr1as was significantly higher than that of surrounding normal 293T cells. Exosomes secreted by HCC cells can transfer circRNA Cdr1as to surrounding normal cells, increasing the content of circRNA Cdr1as in 293T cells, thereby significantly enhancing the proliferation and migration ability of 293T cells (Su et al., 2019).

3.Target at human microvascular vein endothelial cells (HUVECs): HUVECs is a barrier that controls the exchange of substances between surrounding tissues and blood, it is an important factor to prevent the invasion of pancreatic carcinoma (PADC) cells. Studies have shown that exosomes from PADC cells transferred circ-IARS to HUVECs, which could absorb miR-122 and remove its inhibition on target gene RhoA and activate the RhoA signaling pathway, thus increasing endothelial monolayer permeability and promoting invasion and metastasis of PADC (Li J. et al., 2018).

4.Target at tumor cells: in addition to affecting normal cells in the body, exosomal circRNAs secreted by tumor cells also can perform effects on the same type of cancer cells with low metastatic ability. For example, Wang G. et al. (2019) conducted further studies on the interactions between HCC cells with non-metastatic (HepG2), low metastatic (97L) and high metastatic ability (LM3). The results showed that exosomes released by highly metastatic HCC cells with a high abundance of circPTGR1 could down-regulate the expression of miR449a in recipient cells and thus promoted the expression of MET, enhance the migration and invasion of HCC cells with low or no metastasis, and lead to destruction of the tumor microenvironment homeostasis and promote HCC progression.



Recent researches have shown that normal cells can also transmit circRNAs to tumor cells through exosomes and function as sponges, thus promoting or inhibiting tumor progression in recipient cells. For example, Zhang et al. (2019a) found that the expression of circ-DB in exosomes secreted by adipocytes is higher in patients with higher body fat rate. Circ-DB can absorb miR-34a to promote the expression of Ubiquitin-specific protease 7 (USP7) and Cyclin A2. At the same time, they also found that the exosomes secreted by adipocytes can promote the proliferation and reduce DNA damage in HCC. Experimental data in vivo showed that exosomes secreted by adipose tissues could significantly reduce the level of miR-34a and activate the USP7/Cyclin A2 pathway. However, effects all the above could be eliminated after the knocking down of circ-DB. Thereby, it can be concluded that adipose-cell-derived exosomes could mediate the transmission of circ-DB and promote the development of HCC by regulating the ubiquitin-related miR-34a/USP7 pathway. In addition, Chen et al. (2020) detected exosomal circRNAs in plasma by microarray sequencing and found that the expression of circ-0051443 was significantly reduced in both exosomes of HCC tissues and plasma. In this study, it was found that normal cells could deliver specific circ-0051443 to HCC cells via exosomes. When exosomes were absorbed by HCC cells, circ-0051443 bound to miR-331-3p competitively and reduced the expression of Bcl2 Antagonist/Killer 1 (BAK1) which is an important cell death regulator, thereby promoting apoptosis of HCC cells and inhibiting cell cycle to control the progression of malignant tumors.

Exosomes can gather circRNAs within vesicles with an abundance of 2–4 times greater than that in the cytoplasm and transport them to target cells (Li et al., 2015). With the targeting effect of exosomes, circRNAs can not only promote or inhibit cancer in a cell or a piece of tissue but also can be delivered to adjacent or distant cells or tissues to play a role as a potential therapeutic target for tumors.



Exosomal circRNAs Interact With Binding Proteins to Exert Biological Functions

RNA binding proteins are a group of proteins that bind to RNA and regulate the metabolism. More than 800 RBPs have been identified in the human genome (Lunde et al., 2007). They can accompany the whole life of circRNAs, including production, post-transcriptional regulation, translation, functional execution and potential extracellular transport pathways (Zang et al., 2020). The interactions between circRNAs and RBPs are shown in Figure 2D.

Exosomal circRNAs can also interact with binding proteins in recipient cells to perform biological functions. Huang et al., 2020 found that circRNA-1,00,338 was significantly highly expressed in HCC cells and their exosomes, and the exosomal circRNA-1,00,338 could enhance the metastasis ability of HCC cells by enhancing the activity of angiogenic factors after entering recipient HUVECs. To further investigate the mechanism of exosomal circRNA-1,00,338, the authors transfected HUVECs with biotin-labeled circRNA-1,00,338 probes and performed RNA pull-down experiment. The results indicated that the RNA binding protein NOVA2, which regulates post-transcriptional modification of RNA, can bind to circRNA-1,00,338. NOVA2 has been reported to regulate vascular development and lumen formation (Giampietro et al., 2015), suggesting that the internalized exosomal circRNA-1,00,338 may regulate angiogenesis by interacting with the binding protein NOVA2. However, the authors didn’t confirm this with further experiments.

Another study suggests that exosomal circRNAs may play a biological role by interacting with RBPs in recipient cells. Firstly, researchers found that CD133+ cells isolated from colorectal cancer (CRC) cells could notably enhance cell stemness, sphere formation and metastasis. Next, they further cocultured CD133– cells with exosomes from CD133+ cells, the results revealed that cell stemness, sphere formation and metastasis were remarkably enhanced. To further explore the mechanism of exosomes from CD133+ cells in CRC, researchers screened out the upregulated circ-ABCC1 which is a CRC-related circRNAs in exosomes by means of circRNADisease database. Naturally, researchers speculated that exosomes from CD133+ cells carrying circ-ABCC1 mediate cell stemness and metastasis in CRC. Subsequently, researchers inferred and preliminarily confirmed that circ-ABCC1 could bind with β−catenin into the cell nucleus and activate the Wnt pathway to regulate CRC progression via RNA Immunoprecipitation (RIP) and RNA pull-down experiments (Zhao et al., 2020). In this study, the researchers overexpressed circ-ABCC1 in recipient CD133– cells to simulate exosome transporting circ-ABCC1 to recipient cells. However, this approach does have its drawbacks, the authors should further confirm whether exosomes secreted by CD133+ cells could transport circABCC1 to recipient CD133– cells by some certain experiments. Under this condition, it can finally be concluded that exosomal circABCC1 does play a certain role in promoting CRC process via interacting with certain proteins.

Compared to the previous two studies, a recent study provided ample evidence that exosome-derived circRNAs can interact binding proteins and regulate tumor progression in recipient cells. Circ-CCAC1 expression was significantly increased in bile and serum extracellular vesicles in patients with cholangiocarcinoma (CCA), and the EVs of CCA cells carried circ-CCAC1 into vascular endothelial cells selectively. CCLP1 cell-derived EVs could significantly down-regulate the expression of ZO-1/Occludin in HUVEC, while the EVs overexpressed circ-CCAC1 in CCLP1 could significantly down-regulate the expression of Zo-1/Occludin. The RPISeq database predicted proteins that might interact with circ-CCAC1, and the prediction results indicated that EZH2, DNMT1, and STAU1 might interact with circ-CCAC1. The RIP and RNA pull-down experiments showed that there was an obvious interaction between EZH2 and circ-CCAC1. The interaction was also verified by fluorescence in situ hybridization (FISH) co-location analysis. Increased circ-CCAC1 in EVs significantly increased the cytoplasmic localization of EZH2, while decreased the expression of ZO-1 and Occludin. SH3GL2 is a negative regulator of ZO-1/Occludin, and circ-CCAC1 in the extracellular vesicle may increase the expression of SH3GL2. Chromatin Immunoprecipitation (ChIP) experiments showed that EZH2 could directly bind to the promoter of SH3GL2 and promote its H3K27me3 methylation level, and thus inhibit the expression of SH3GL2. Circ-CCAC1 derived from EVs could reduce the efficiency of EZH2 binding to the SH3GL2 promoter, thereby promoting the expression of SH3GL2, which further inhibited the expression of ZO-1/Occludin (Xu et al., 2020).

Therefore, we concluded that exosomal circRNAs also interact with binding proteins in recipient cells to exert biological functions. As is mentioned above, with the assistance of binding proteins, circRNAs enter the exosomes and are transported by exosomes to the recipient cells. Another situation is that circRNAs are transported by exosomes and released into the recipient cells, thus binding to the RBPs of the recipient cell to perform functions. More experiments are needed to verify these hypotheses. The potential interactions between exosomal circRNAs and RBPs are shown in Figure 2E.



Possibility of Exosomal circRNAs Encoding Proteins or Peptides

Since circRNAs do not contain 5′caps, the translation is hat-independent. Some circRNAs have an internal ribosomal entry site (IRES) (Abe et al., 2015) or translate in an m6A-modified manner in the 5′ untranslatable region (UTR) (Meyer et al., 2015). While thousands of circRNAs are currently expected to contain a hypothetical open reading frame (ORF) and an upstream IRES, there are very few circRNAs that encode proteins or peptides actually. The pattern of circRNAs encoding proteins or peptides is shown in Figure 2F.

In glioblastoma, circ-SHPRH can be translated into SHPRH-146aa, which is involved in the occurrence and development of tumors of the central nervous system by regulating the protein ubiquitination pathway. Overexpression of SHPRH-146aa in U251 and U373 glioblastoma cells can reduce the degree of malignancy and tumorigenicity both in vivo and vitro (Begum et al., 2018). SHPRH-146aa protects the whole length of SHPRH from degradation by ubiquitinase. It also stabilizes SHPRH as an E3 ligase by ubiquitinating the proliferating nuclear antigen. In this way, it inhibits cell proliferation and tumorigenicity.

Although it has not been reported that exosomal circRNAs could encode protein or peptides to regulate the development of tumors, theoretically, circRNAs may take advantage of exosomal targeting merit to transfer encoded protein to cells in need. They may also transmit circRNAs to recipient cells to encode the corresponding proteins to regulate the activity of life. The model will be more “humane” to satisfy the need of our body, which need more experimental verification. The potential of exosomal circRNAs encoding proteins or peptides is shown in Figure 2G.



CLINICAL APPLICATIONS OF EXOSOMAL CircRNAs IN ANTICANCER THERAPY


Exosomal circRNAs Can Be Used as Tumor Biomarkers

Since the early symptoms of most tumors are not obvious and lack of specific early diagnosis biomarkers, patients tend to miss the optimal opportunity for treatment before being diagnosed ultimately. Therefore, it is an urgent clinical challenge to find accurate therapeutic targets. At present, some ncRNAs (miRNA and lncRNA) have shown to have the potential to be tumor biomarkers (Dumache, 2017; Zhao et al., 2018; Fadhil et al., 2020). CircRNAs are enriched and stable in exosomes and can be released into the body fluids. Exosomal circRNAs usually stay in the body fluids steadily to mark tumors (Figure 3A; Stoorvogel et al., 2002).
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FIGURE 3. Clinical applications of exosomal circRNAs in anti-cancer therapy. (A) Exosomal circRNAs can be used as tumor biomarkers. (B) Exosomal circRNAs may be therapeutic targets for inhibiting tumor metastasis. (C) Exosomal circRNAs can regulate anti-cancer immunity response. (D) Exosomal circRNAs can be therapeutic targets to reverse tumor drug resistance.



Exosomal circRNAs Can Be Used as Biomarkers for Early Diagnosis of Tumors

Through microarray data analysis, the authors (Wang J. et al., 2020) found that circRNA-002178 is highly expressed in exosomes extracted from the serum of lung adenocarcinoma (LUAD) patients compared to the healthy volunteers. The area under the curve (AUC) of exosomal circRNA-002178 is 0.9956. These results confirmed that serum exosomal circRNA-002178 could be a novel diagnostic biomarker for LUAD. Tian et al., 2019 found that overexpression of circRASSF2 can be carried by exosomes and released into serum of laryngeal squamous cell carcinoma (LSCC). The expression of serum exosomal circRASSF2 is higher than normal, which can be used as a new clinical molecular biomarker for LSCC. Besides, Pan et al. verified that the up-regulated serum exosomal has_circ_0004771 could distinguish CRC patients from healthy controls with the AUC of 0.88, which suggested that circulating has_circ_0004771 may serve as an early diagnostic biomarker of CRC (Lasda and Parker, 2016; Pan et al., 2019).



Exosomal circRNAs Are Closely Related to Tumor Stage

Using qPCR, Li et.al found exo-FECR1 was significantly higher in patients with small cell lung cancer (SCLC). More importantly, the exo-FECR1 level in patients with extensive stage SCLC was significantly higher than that in limited stage patients with SCLC, indicating that exo-FECR1 is closely associated with tumor stage (Li et al., 2019). In addition, Pan et al. (2019) validated that exosomal hsa-circ-0004771 was significantly increased in the serum of stage I/II CRC patients. The AUC was 0.86 (95%CI, 0.785–0.933) to discriminate stage I/II CRC patients from healthy donors. They further found that the expressions of exosomal hsa-circ-0004771 in serum were significantly up-regulated in stage I/II CRC patients to differentiate patients with benign intestinal diseases (BIDs) from stage I/II CRC patients was 0.81.



Exosomal circRNAs Can Be Used to Monitor Tumor Prognosis

In Bladder urethral epithelial carcinoma (UCB), circPRMT5 is overexpressed and its high expression is positively correlated with low survival in patients. Mechanism studies have found that circPRMT5 can promote Epithelial-Mesenchymal Transition (EMT) progression by binding to miR-30c. CircPRMT5 was found to be up-regulated in the serum and urine exosomes of patients and was closely related to tumor progression. It is expected to be a prognostic marker for UCB patients to evaluate its postoperative efficacy (Chen et al., 2018). Additionally, survival analysis also confirmed that the high expression of exosomal circPDE8A was a risk factor, and PADC patients with low expression of exo-circPDE8A lived longer (Li Z. et al., 2018). Patients with SCLC with lower level of exo-FECR1 experienced longer disease remissions than those with higher exo-FECR1 level, suggesting that exo-FECR1 might be a useful prognostic indicator to predict survival outcomes (Li et al., 2019).



Exosomal circRNAs Can Be Used to Predict Postoperative Recurrence of Tumor

Compared with the normal control group, the expression of CircNFIX in the exosomes of the patients’ serum samples was significantly increased, and the expression of CircNFIX in serum exosomes of patients with tumor recurrence was higher than that of the serum of patients with primary tumor. According to ROC curve analysis, it could be concluded that the exosomal CircNFIX has the potential to be used as a biomarker to detect the postoperative recovery for glioma patients (Ding et al., 2020).

The exosomal circRNAs can be released into the body fluid, making sampling more convenient and having the potential to become tumor biomarkers. If the detection of exosomal circRNAs based on blood or urine can be effectively applied to the clinic, the tumor patients can be diagnosed as early as possible and avoid the pain of invasive exploration.



Exosomal circRNAs May Be Therapeutic Targets for Inhibiting Tumor Metastasis

Exosomes play an important role in the cellular microenvironment. Cells can convey information to nearby or distant cells through packing molecules into exosomes and other EVs. Studies showed that tumor-derived exosomes could enhance cell metastasis by conveying some circRNAs with specific functions.

There is growing evidence that communication between cancer cells and the surrounding stroma contributes to metastasis. CircSHKBP1 was highly expressed in tumor and serum exosomes of GC patients, and overexpression of circSHKBP1 promoted the growth and metastasis of GC cells, while knockdown circSHKBP1 inhibited the development of GC cells. More importantly, with the ectopic expression of circSHKBP1 in GC cells, more circSHKBP1 was loaded into exosomes, thus interfering with the biological functions of nearby or distant GC cells (Xie et al., 2020).

Further research shows that circ-PDE8A promotes tumor cell growth by upregulation of MET, a tyrosine kinase receptor that is one of the key oncogenes in a subset of epithelial tumors including PDAC. In addition, circ-PDE8A excreted by the tumor can be released into the blood circulation through exosome transport, acting as ceRNA of miR-338, regulating MACC1 and promoting invasive metastasis through MACC/MET/ERK or AKT pathways (Li Z. et al., 2018). Ultimately, this process leads to increased vascular endothelial permeability and promotes pancreatic tumor liver metastasis.

A novel circRNA, circPACRGL, is derived from CRC exosomes. CircPACRGL was significantly upregulated after the addition of tumor-derived exosomes to CRC cells. In addition, circPACRGL acts as a sponge for miR-142-3p/miR-506-3p to promote the expression of transforming growth factor-1 (TGF-1). TGF-β is a multifunctional cytokine implicated in tumor initiation, progression, and metastasis. CircPACRGL promoted the proliferation, migration and invasion of CRC cells and the differentiation of Neutrophils from N1 to N2 via miR-142-3p/miR-506-3P-TGF-1 axis. This study is the first to reveal the role of cancer-derived exosomal circPACRGL in CRC proliferation and metastasis (Shang et al., 2020).

Another study screened a set of differentially expressed circRNAs from plasma exosomes from CRC patients and normal subjects. Circ-133 is associated with hypoxia and regulates the distribution of E-cadherin protein on the cell membrane. Then, it was verified in vivo and vitro that exosomal circ-133 from hypoxic cells were transported to normal oxygenated cells through miR-133a/GEF-H1/RhoA axis, which regulated the distribution of E-cadherin membrane and promoted tumor metastasis (Yang et al., 2020).

In addition to be biomarkers, exosomal circRNAs have potential to be therapeutic targets. For example, using the targeting properties of exosomes, we can encapsulate drugs or siRNA in exosomes, which are absorbed by specific cells and bind to the corresponding circRNAs in the cells, thus alleviating the metastasis and proliferation of tumors (Figure 3B).



Exosomal circRNAs Can Regulate Anti-cancer Immunity Response

Extracellular vesicles-RNAs mediate cross-talk between cancer cells and immune cells and within immune cells to regulate malignant behavior of cancer cells. Tumor-derived EV-RNAs can contribute to the immunosuppression, reduce the anti-tumor activity of various immune cells (Liang et al., 2019; Yin Z. et al., 2019).

For example, T cell immunoglobulin and mucin domain 3 (TIM-3) is a kind of immunomodulatory receptor which can bind with ligands on tumor cells in the microenvironment to inhibit antitumor immunity in a variety of cancers, including HCC. TIM-3 is one of the main inhibitory receptors on the natural killer (NK) cells. The expression of circUHRF1 is higher in human HCC tissues than in matched adjacent nontumor tissues. CircUHRF1 in the plasma of HCC patients was mainly delivered in the form of HCC cell exosomes. It upregulated the expression of its target gene TIM-3 by degrading miR-449c-5p, thereby inhibiting NK cell function, promoting immune escape of HCC, and driving resistance to PD1 immunotherapy. Overexpressing circUHRF1 can improve the resistance of HCC to PD1 therapy. Therefore, targeting circUHRF1 may be an effective method to restore the sensitivity of HCC to PD1 therapy (Figure 3C; Zhang P.F. et al., 2020).



Exosomal circRNAs and Drug Resistance

Chemotherapy and radiotherapy are still the most commonly used methods in the clinical treatment of many tumors, but these methods are prone to drug resistance and the therapeutic effect is not satisfactory. Currently, exosomes have been proved to be able to transfer nucleic acids and multi-drug resistance (MDR)-related proteins from resistant cells to target cells in order to expand the drug-resistance of cancer cells. For example, exosomes secreted by cancer-related fibroblasts can transport lncRNA H19 to CRC cells and enhance Oxaliplatin (OXA) resistance of cells (Ren et al., 2018). It has been reported that exosomes in GC can transfer miR-155-5p to the recipient cells, making the cells resistant to Paclitaxel (PTX) (Wang M. et al., 2019). At the same time, circRNAs have made great progress in the study of drug resistance of tumors due to their unique characteristics and functions. For example, in lung cancer, circPVT1 participated in Cisplatin (CDDP) and Pemetrexed (MTA) resistance via the mir-145-5p/ABCC1 axis (Zheng and Xu, 2020). In breast cancer, hsa_circ_0006528 was up-regulated in Adriamycin (ADM)-resistant cancer cells, which may play a regulatory role through circRNA/mir-7-5p/Raf_1 axis (Gao et al., 2017). Li et al., 2019 found that serum exo-FECR1 dynamically responds to chemotherapies in SCLC. For patients with SCLC who have partial remission or complete remission after six courses of first-line chemotherapy, the authors found that serum levels of exo-FECR1 were significantly reduced. This phenomenon suggested that serum exo-FECR1 changed dynamically in parallel with drug response. However, the expression level of serum exo-FECR1 increased from the base line for patients with disease progressed. When they treated with second-line therapy, the expression level of exo-FECR1 reduced again. Therefore, we hypothesized that the dysregulation of exosomal circRNAs might be associated with drug resistance.

There is growing evidence that some epithelial cancers, such as CRC, are preferentially resistant to many advanced drugs. KRAS is an intracellular signaling molecule, and about 40% of colorectal tumors have KRAS mutations, so identifying the key signaling pathways affected by KRAS mutations help us understand how to conduct drug-targeted therapy (Andreyev et al., 2001). Initially, compared with DKs-8 cells (wild type KRAS), the abundance of circRTN4 in exosomes derived from DLD-1 CRC cells with KRAS mutation was significantly up-regulated. But in DLD-1 and DKO-1 cells, the abundance of intracellular circRTN4 was significantly down-regulated, indicating that exosome circRNAs are independent of intracellular circRNAs and can be actively transferred between exosomes and cytoplasm (Dou et al., 2016). These findings provided a novel insight into the ability of exosomal circRNAs to regulate chemotherapy resistance.

Recently, new studies have found that some circRNAs with abnormal expression in drug-resistant cell lines can be transferred to drug-sensitive cell lines through exosomes, which promotes the development of drug resistance in tumors to some extent. Through exosome uptake and co-culture experiments, Hon et al. (2019) found that exosomes could transfer chemical resistance from FOLFOX-resistant (HCT116-R) cells to parental HCT116-P cells. The results of qRT-PCR showed that the expressions of circ_0032883 and circ_0002039 in HCT116-P cells were up-regulated after co-culturing with exosomes of HCT116-R cells, which were consistent with the up-regulated expressions in CRC drug-resistant tissues. This suggested that exosomes of CRC could selectively transfer circRNAs from drug-resistant cancer cells to corresponding drug-sensitive cells, thereby regulating chemotherapy resistance in CRC. Similarly, silence of hsa_circ_0000338 in HCT116-R cell lines can improve drug resistance, suggesting that hsa_circ_0000338 may play a pro-carcinogenic role in HCT116-R exosomes and enhance drug resistance of recipient cells. Wang X. et al., 2020 further investigated the role of exosomal circRNAs in OXA resistance in CRC. They found that expression of ciRS-122 was abnormal in drug-resistant cells and was confirmed to act as a sponge for miR-122 in oxaliplatin-resistant CRC cells, and the expression level of exosomal ciRS-122 in serum was positively correlated with chemotherapy resistance. In vitro and vivo studies have shown that exosomes from drug-resistant cells can deliver ciRS-122 to drug-sensitive cells and enhance cell glycolysis and drug resistance by reducing miR-122 and upregulating Human pyruvate kinase M2 (PKM2). In vitro experiments, exo-si-ciRS-122 could reverse oxaliplatin resistance by inhibiting the ciRS-122/miR-122/PKM2 pathway, and injection of exo-si-ciRS-122 in nude mice could also reverse oxaliplatin resistance. It can be seen that exosomal circRNAs are expected to be therapeutic targets for inhibiting tumor drug resistance.

Previous studies have reported that tumor-derived exosomes regulate progression and drug resistance of glioma by transmitting lncRNAs or miRNAs to recipient cells (Yin J. et al., 2019; Zhang et al., 2019). Ding et al. (2020) elucidated for the first time that exosome-mediated CircNFIX enhanced glioma resistance to Temozolomide (TMZ) both in vivo and vitro via sponging miR-132. ABCG2, one of the members of the ABC transporters, has been considered as a MDR protein for tissue defense (Leslie et al., 2005). When exposed to TMZ, the expression of ABCG2 in glioma cells is regulated by CircNFIX/miR-132 axis. But in this study, the authors have no direct evidence to confirm that ABCG2 was regulated by CircNFIX/miR-132 axis which leads to TMZ resistance. The new mechanism is still imperfect in vivo and remains to be further explored. With further study of the mechanism, we may be able to design targeted drugs or small interfering RNAs (siRNAs) to reduce or eliminate the negative effects of exosomal circRNAs on tumor drug resistance (Figure 3D).

An overview of roles of exosomal circRNAs in tumors is shown in Table 1.


TABLE 1. Mechanisms and biological functions of exosomal circRNAs in tumors.
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CONCLUSION AND PROSPECT

Exosomes are a kind of EVs which contain numerous different varieties of bioactive cargoes secreted from cells. Notably, circRNAs are abundant and stable in exosomes, particularly in tumor-derived exosomes, compared with parent cells. One hypothesis suggested that the mechanism of circRNAs entering exosomes is partially related to miRNAs levels in parent cells. Another speculated that RBPs may function in circRNAs incorporating into exosomes. It has been reported that RBPs can promote miRNAs into exosomes, so it is reasonable to speculate that the related RBPs can also promote circRNAs into exosomes, or even that RBPs with different functions can load different types of circRNAs into exosomes.

Upon entering the recipient cells, most exosomal circRNAs function as miRNA sponges to regulate tumor progression. However, the regulatory mechanisms of exosomal circRNAs in tumors are still in the preliminary stage of exploration. Besides, a small number of exosomal circRNAs have been discovered to interact with RBPs in recipient cells to exert biological functions. Binding proteins may be encapsulated with circRNAs into exosomes and function in recipient cells. It should be a relatively common situation for the released circRNAs to bind to the RBPs in the recipient cells after exosomes are fused with plasma membrane. In addition, circRNAs have recently been found to encode proteins or peptides, so we hypothesize that exosomal circRNAs may also encode proteins. Exosomes may transport circRNA-encoded proteins to cells in need, or circRNAs transported to target cells may encode functional proteins which regulate the activity of recipient cells. However, more experiments are needed to confirm these speculations. The ultimate goal of scientific researches is to improve the clinical treatment effect of patients. Due to their unique characteristics and high specificity, the combination of exosomes and circRNAs is beneficial to its potential clinical application as a biomarker for cancer diagnosis and prognosis. Besides, exosomal circRNAs can be used as therapeutic targets in inhibiting tumor metastasis, regulating tumor anti-cancer immunity response and mediating tumor drug resistance.

Despite these studies, there still remain some fundamental questions that need further clarification and exploration. (1) The sorting mechanisms of exosomal circRNAs are unclear. (2) In terms of tumor drug resistance, we considered whether interference can be designed to reverse exosomal circRNAs-mediated tumor drug resistance. For example, we can design corresponding drugs or small interfering fragments targeted at recipient cells for intervention, or during the entry of drug-resistant circRNAs into exosomes or transporting. (3) It is a controversial topic that whether the functions of exosomes mediated only by their circRNAs. There are a lot of contents inside exosomes, and we can’t rule out whether other substances also play a similar role in inhibiting or promoting cancer. (4) There are no intuitive and effective methods to confirm that the process of circRNAs passing from cell to cell via exosomes. The commonly used method is to detect the difference in the expression level of circRNAs between donor cells and recipient cells. (5) It is not clear whether exosomal circRNAs function in vivo. The changes in the behavior of recipient cells may be partly due to the human regulation of exosomal circRNA expression. In addition, the lack of a suitable model is a major obstacle to the study of the roles of exosomal circRNAs in cancer. The cell model system in vitro could not adequately simulate intercellular communication mediated by exosomal circRNAs in vivo. The incorporation of a large number of exosomes into cultured cells may amplify the true effect of their circRNA vectors on recipient cells. After fully elucidating the function and molecular mechanism of exosomal circRNAs related to human cancer, new ways of understanding will be opened up to provide new methods for the treatment of malignant tumors.
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ABBREVIATIONS

CircRNAs, circular RNAs; miRNA, microRNA; LncRNA, long non-coding RNA; ncRNA, non-coding RNA; RBPs, RNA binding proteins; EciRNAs, exon circRNAs; CiRNAs, intron circRNAs; EIciRNAs, exon-intron circRNAs; EV, extracellular vesicle; ESEs, early-sorting endosome; LSEs, late-sorting endosomes; MVBs, intracellular multivesicular bodies; ILVs, intraluminal vesicles; PM, plasma membrane; mRNA, messenger RNA; miRISCs, miRNA loaded RNA-induced silencing complexes; ESCRT, endosomal sorting complex required for transport; GC, gastric cancer; EZH2, enhancer of zeste homolog 2; HCC, hepatocellular carcinoma; HUVECs, human microvascular vein endothelial cells; PADC, pancreatic cancer; USP7, ubiquitin-specific protease7; BAK1, Bcl2 Antagonist/Killer 1; CRC, colorectal cancer; RIP, RNA immunoprecipitation; CCA, cholangiocarcinoma; ChIP, chromatin Immunoprecipitation; IRES, internal ribosomal entry site; UTR, untranslatable region; ORF, open reading frame; LUAD, lung adenocarcinoma; LSCC, laryngeal squamous cell carcinoma; SCLC, small cell lung cancer; UCB, bladder urethral epithelial carcinoma; EMT, epithelial-mesenchymal transition; TGF-1, transforming growth factor-1; TIM-3, T cell immunoglobulin and mucin domain 3; NK cells, natural killer cells; MDR, multi-drug resistance; OXA, oxaliplatin; PTX, paclitaxel; CDDP, Cisplatin; MTA, pemetrexed; ADM, adriamycin; PKM2, human pyruvate kinase M2; TMZ, temozolomide; siRNA, small interfering RNA.
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The immunosuppressive tumor microenvironment plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSC). Compared to traditional chemoradiotherapy, immune checkpoint inhibitors (ICIs) have become increasingly important in HNSC therapy. Prior studies linked the efficacy of ICIs to PD-L1, microsatellite instability (MSI), HPV infection, tumor mutation burden (TMB), and tumor lymphocyte infiltration in patients with HNSC, but further verification is needed. Additional predictors are needed to recognize HNSC patients with a good response to ICIs. We collected the clinical information and mutation data of HNSC patients from Memorial Sloan Kettering Cancer Center (MSKCC) and The Cancer Genome Atlas (TCGA) databases to generate two clinical cohorts. The MSKCC cohort was used to recognize predictors related to the efficacy of ICIs, and the TCGA cohort was used to further examine the immune microenvironment features and signaling pathways that are significantly enriched in the subgroups of predictors. Multivariate Cox regression analysis indicated that age (HR = 0.50, p = 0.014) and ARID1A (HR = 0.13, p = 0.048), PIK3CA (HR = 0.45, p = 0.021), and TP53 (HR = 1.82, p = 0.035) mutations were potential predictors for ICI efficacy in HNSC patients. Age > 65 years and ARID1A or PIK3CA mutations correlated with good overall survival (OS). TP53 mutant-type (MT) patients experienced a worse prognosis than TP53 wild-type (WT) patients. The subgroups associated with a good prognosis (age > 65 years, ARID1A-MT, and PIK3CA-MT) universally had a high TMB and increased expression of immune checkpoint molecules. Although TP53-MT was associated with a high TMB, the expression of most immune checkpoint molecules and immune-related genes was lower in TP53-MT patients than TP53-WT patients, which may reflect low immunogenicity. Pathways related to the immunosuppressive tumor microenvironment were mostly enriched in the subgroups associated with a poor prognosis (age ≤ 65 years, low TMB, ARID1A-WT, PIK3CA-WT, and TP53-MT). In conclusion, the factors age > 65 years, PIK3CA-MT, and ARID1A-MT predicted favorable efficacy for ICI treatment in HNSC patients, and TP53 mutation was a negative predictor.
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INTRODUCTION

Head and neck cancers include tumors arising in the lip, oral cavity, pharynx, larynx, and paranasal sinuses, and occult primary cancer, salivary gland cancer, and mucosal melanoma (National Comprehensive Cancer Network [NCCN], 2019). Squamous cell carcinoma is the main histological type, and it accounts for more than 90% of these tumors (National Comprehensive Cancer Network [NCCN], 2019). Head and neck squamous cell carcinoma (HNSC) is a common malignant tumor. According to the GLOBOCAN 2018 estimates of cancer incidence and mortality, there were approximately 830,000 new cases of tumors arising in the lip, oral cavity, pharynx and larynx, which accounted for 4.6% of the new global cancer cases. Approximately 450,000 patients died of these tumors, which accounted for 4.6% of global cancer-related deaths (Bray et al., 2018). Patients who present with early stage disease (stage I or II) may be treated with surgery or radiotherapy alone or concurrent chemoradiotherapy (National Comprehensive Cancer Network [NCCN], 2019). The preferred scheme for patients with locally advanced disease is concurrent chemoradiotherapy (National Comprehensive Cancer Network [NCCN], 2019). However, the therapeutic efficacy of systemic therapy is limited. The 5 years overall survival (OS) rate of HNSC patients receiving concurrent chemoradiotherapy is approximately 50% (Lin et al., 2016), and the median OS time is 66.3 months (Stokes et al., 2017).

The immunosuppressive tumor microenvironment is an important feature of HNSC (Oddone et al., 2009). Previous studies indicated that HPV-positive HNSC displayed the highest levels of immune cell infiltration compared to other cancer types (Mandal et al., 2016). Notably, these patients also presented high levels of immunosuppression (Mandal et al., 2016). Tumor cells evade immunosurveillance and inhibit the activation and function of immune cells by inducing the production of immunosuppressive factors, reducing tumor immunogenicity, and recruiting immune cells with immunosuppressive functions (De Costa and Young, 2011; Moy et al., 2017; Concha-Benavente et al., 2018; Peltanova et al., 2019; Plzak et al., 2019). Immune checkpoint inhibitors (ICIs) recently, expanded our horizons of cancer therapy. ICIs targeting CTLA-4 and PD-(L)1 led to dramatic advances in non-small cell lung cancer (Reck et al., 2016; Sui et al., 2018). Immune checkpoint blockade enables immune cells to regain the ability to recognize tumor cells (Seidel et al., 2018). The application of nivolumab and pembrolizumab targeting PD-1 in HNSC patients was approved by the FDA (National Comprehensive Cancer Network [NCCN], 2019). Burtness et al. (2019) performed a phase III clinical trial of HNSC patients with recurrent or metastatic diseases and showed that pembrolizumab monotherapy or pembrolizumab combined with chemotherapy effectively prolonged the OS of HNSC patients.

Although ICIs show great application prospects in the treatment of cancers (Reck et al., 2016; Bertucci and Goncalves, 2017; Kang et al., 2017; Sui et al., 2018; Fan et al., 2019), their efficacy is heterogeneous in different tumors and different patients with the same tumor. The identification of biomarkers of immunotherapy efficacy is urgently needed to further recognize individuals who are likely sensitive to immunotherapy. A large number of studies indicated that the expression of PD-L1 (Patel and Kurzrock, 2015; Chang et al., 2018), tumor mutation load (TMB) (Chan et al., 2019; Liu et al., 2019), microsatellite instability (MSI) (Chang et al., 2018; Luchini et al., 2019; Zhao et al., 2019), and mutations in specific genes (Dong et al., 2017a; Xiao et al., 2018) can predict the efficacy of ICIs. Some researchers also believe that the clinical characteristics of patients, such as sex (Conforti et al., 2018; Wu et al., 2018; Lin W. et al., 2020), and age (Kugel et al., 2018; Lin W. et al., 2020), are related to the efficacy of immunotherapy.

An increasing number of studies showed that driver gene mutations may cause differences in the efficacy of ICIs by affecting the tumor immune microenvironment (Huang et al., 2020; Lin A. et al., 2020; Lin W. et al., 2020; Niu et al., 2020; Yi et al., 2020; Zhang et al., 2020). Dong et al. (2017a) indicated that non-small cell lung cancer patients with EGFR mutations responded poorly to PD-(L)1 inhibitors, which may be related to reduced CD8+ T lymphocyte infiltration and low immunogenicity. Dong et al. (2017b) also showed that lung adenocarcinoma patients with co-mutation of TP53 and KRAS had a high TMB, high PD-L1 expression and high levels of CD8+ T lymphocyte infiltration, which may promote the response to ICI therapy by affecting the cell cycle, DNA replication, and DNA repair. Wang et al. (2019) and Wu et al. (2019) suggested that patients with TET1 or POLE/POLD1 gene mutations were likely to benefit from ICI therapy.

However, heterogeneity exists in different tumor types, and these biomarkers may not reflect the sensitivity of all patients to ICI treatment. Under the background of HNSC, related studies noted that some characteristics, such as PD-L1 (Ferris et al., 2016), MSI (Tardy et al., 2018), HPV infection (Zandberg et al., 2019), TMB (Hanna et al., 2018), and tumor lymphocyte infiltration (Hanna et al., 2018), may be predictors of immunotherapy efficacy. The different outcomes of HNSC patients with or without HPV infection may be attributed to the distinct immune cell infiltration (Cillo et al., 2020). More large-scale studies are needed to verify their reliability and stability in clinical applications. We need to screen additional biomarkers to promote the clinical application of immunotherapy. There may be a relationship between different biomarkers, and the combination of biomarkers may provide new insights into patient sensitivity toward ICIs (Luchini et al., 2019; Zhao et al., 2019).

The present study detected markers of immunotherapy efficacy in HNSC patients using their clinical characteristics and gene mutation data. We examined the relationship between the tumor immune microenvironment and relevant clinical characteristics or gene mutations in immune gene activation, immune-related cell infiltration, markers of immune cell exhaustion and the activation of pathological pathways. Our results provide insight into how clinical characteristics and gene mutations affect ICI efficacy from the perspective of the immune microenvironment to provide new ideas for the study of the immunotherapy mechanisms related to HNSC and guide treatment selection or improve responses to ICIs.



MATERIALS AND METHODS


Clinical Cohorts

We analyzed an immunotherapeutic cohort from Memorial Sloan Kettering Cancer Center (MSKCC) described by Samstein et al. (2019), of which 138 HNSC patients were treated with ICIs (Supplementary Figure S1). Samples with somatic mutation and clinical data (n = 129) were selected to evaluate the relationship between age, gene mutations, and the prognosis of HNSC patients treated with ICIs. A detailed flow chart of the analysis is shown in Supplementary Figure S1. The somatic mutation data in the cohort were derived from HNSC patients receiving anti-PD-(L)1 monotherapy or anti-PD-(L)1 combined with anti-CTLA-4 therapy whose DNA was sequenced using the Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) panel.

The R package TCGAbiolinks (Colaprico et al., 2016) was used to download the most recent clinical data and sample information (mRNA expression profile, somatic mutation data) of HNSC patients in The Cancer Genome Atlas (TCGA) database from the Genomic Data Commons1. Gene expression in the TCGA-HNSC dataset was in units of pan-cancer normalized log2 [fragments per kilobase of exon model per million mapped fragments (FPKM) + 1]. The processes of tumor RNA extraction, mRNA library preparation, sequencing, quality control, and subsequent data processing for quantitative gene expression in TCGA-HNSC samples were described in the literature (Cancer, 2014).



Identification of Survival-Related Age Group and Establishment of Prognostic Gene Mutations

The clinical data and mutation information of the MSKCC cohort were used to identify the age group and gene mutations associated with the prognosis of HNSC patients. The optimal thresholds of age and tumor mutation count grouping were based on the surv_cutpoint function of the R package survival. Age, tumor mutation count, other clinical information, and gene mutations with a mutation frequency > 5 were included in univariate Cox regression analysis, in which factors with statistical significance (p < 0.1) and clinical factors were selected for the subsequent multivariate Cox regression analysis. Kaplan-Meier (KM) analysis and log-rank test were used to evaluate the prognosis of HNSC patients based on the variables identified as statistically significant (p < 0.1) in the univariate Cox regression analysis and clinical factors.



Immune Characteristics and Tumor Immunogenicity Analysis

Immune-related genes and neoantigen load data of the TCGA-HNSC dataset were derived from Thorsson et al. (2018), and the expression levels of these genes were quantified as log2 (FPKM+1). TMB refers to the total number of substitution and insertion/deletion mutations per megabase in the exon coding region of the tumor genome (Yarchoan et al., 2017). Non-synonymous mutations were divided by 38 to quantify TMB in the TCGA and MSKCC cohorts (Chalmers et al., 2017).

EdgeR is a bioconductor package that provides methods to analyze the differential gene expression of RNA-seq data (Robinson et al., 2010). Our study used edgeR to calculate the log (fold change) and p-value of the differential expression of immune-related genes (Robinson et al., 2010), and these genes were visualized according to their functional classification.



Functional and Pathway Enrichment Analyses

Gene set enrichment analysis (GSEA) identifies significantly enriched pathways by evaluating the differential gene expression in annotated gene set across subgroups of patients (Subramanian et al., 2005). The R package edgeR was used to standardize the gene expression data (raw count) of HNSC downloaded by TCGAbiolinks (Robinson et al., 2010). GSEA was performed using the R package clusterProfiler (Yu et al., 2012), and p < 0.05 was considered statistically significant in the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome analyses. The GO, KEGG, and Reactome gene sets used for GSEA were derived from the Molecular Signatures Database (MSigDB) of the Broad Institute (Subramanian et al., 2005).



Statistical Analysis

For groups with significant differences in the univariate Cox regression model, the Mann-Whitney U test was used to compare differences in TMB, neoantigen load and the mRNA expression of immune-related genes in the TCGA cohort. The KM analysis, log-rank test and univariate Cox proportional hazards regression analysis were used to assess OS in the MSKCC cohort. P < 0.05 was considered statistically significant, and all statistical tests were two-sided. R software (version 3.6.1) was used for statistical analyses. The R package ComplexHeatmap (Gu et al., 2016) was used to visualize the mutation and immune cell landscape. The R package ggplot2 (Wickham, 2009) was used to visualize bubble plots, violin plots, forest plots, alluvial plots, and volcano plots, and the R package trackViewer (Ou and Zhu, 2019) was used to visualize lollipop plots.




RESULTS


Cox Regression Analysis

As shown in Supplementary Figure S1, our analysis consisted of two clinical cohorts. The MSKCC cohort (n = 129) was used to examine the relationship between clinical characteristics, gene mutations and the prognosis of HNSC patients. The clinical data and sample information of HNSC patients from the TCGA database were downloaded to establish the TCGA cohort (n = 489), which was used for the subsequent tumor immunogenicity analysis and GSEA.

Somatic mutation and clinical data of the MSKCC cohort were subjected to univariate Cox regression analysis (Figure 1A, left panel), and variables with p < 0.1 were included in multivariate Cox regression analysis together with clinical data. The results of the multivariate Cox regression analysis (Figure 1A, right panel) found that age [HR = 0.50 (95% CI 0.28–0.87), p = 0.014] and mutations in ARID1A [HR = 0.13 (95% CI 0.02–0.98), p = 0.048], PIK3CA [HR = 0.45 (95% CI 0.23–0.89), p = 0.021] and TP53 [HR = 1.82 (95% CI 1.04–3.17), p = 0.035] were independent predictors of the efficacy of ICIs. As shown in Figures 1A,B, we speculated that age > 65 years and mutations in PIK3CA and ARID1A were favorable predictors of ICI treatment (HR < 1), and the TP53 mutation was an adverse predictor (HR > 1).
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FIGURE 1. The predictive value of clinical characteristics and mutant genes on ICIs efficacy. (A) Forest plots for the results of the univariate (left panel) and multivariate (right panel) Cox regression analyses. In the univariate Cox regression analysis, the factors with a p-value less than 0.1 were age, mutation count, and mutations in ROS1, PIK3CA, ARID1A, TP53, and ASXL1. The multivariate Cox regression analysis showed that age and ARID1A, PIK3CA, and TP53 mutations were independent predictors of ICI therapy in HNSC patients. The main portion of the forest plot presents the hazard ratio (HR) and 95% confidence interval (95% CI), where red dots indicate p < 0.05. The HR indicates the predictors of favorable (HR < 1) or poor (HR > 1) OS. (B) Bubble plots were used to visualize the results of the univariate (left panel) and multivariate (right panel) Cox regression analyses. The blue and red dashed lines indicate p-values of 0.1 and 0.05, respectively. The size of the circle indicates the mutation count. The gray circles represent variables with p < 0.1 (left panel) or p < 0.05 (right panel), and the yellow circles represent the clinical characteristics of patients. The color of other circles represents the gene mutations associated with a good (orange; HR < 1) or poor (green; HR < 1) prognosis.


Previous studies provided ample evidence that TMB was a predictor of sensitivity to ICI treatment (Chan et al., 2019). A high TMB is related to a high level of tumor neoantigens that can be recognized by T cells, which leads to strong antitumor immunological effects after blockade of immune checkpoints. Figure 1B shows that patients with PIK3CA, ARID1A, or TP53 mutations had high mutation counts. Although the mutation count of patients older than 65 years was relatively low, it was close to patients with a mutation count > 7. In accordance with these results, the gene mutation landscape (Figure 2) showed that PIK3CA mutant-type (MT) patients were associated with a higher TMB and better OS compared to wild-type (WT) patients, and TP53-MT patients were associated with a higher TMB. Notably, the OS of TP53-MT patients were significantly shorter than TP53-WT patients, which was investigated in the subsequent analysis.
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FIGURE 2. Genomic profiles of HNSC patients in the MSKCC (A) and TCGA (B) cohorts. The top 20 genes with the highest mutation frequencies and the corresponding clinical information are shown in the figure. The top five genes with the highest mutation frequencies in the MSKCC cohort were TP53 (55%), PIK3CA (26%), NOTCH1 (17%), FAT1 (16%), and KMT2D (16%). The top six genes with the highest mutation frequencies in the TCGA cohort were TP53 (71%), TTN (41%), FAT1 (24%), CDKN2A (21%), MUC16 (19%), and CSMD3 (19%). Among the three genes selected from the multivariate Cox regression analysis, TP53 had the highest mutation rate in both clinical cohorts (55 and 71%, respectively), followed by PIK3CA (26 and 18%, respectively), and ARID1A (9 and 4%, respectively). The alteration types of TP53 were dominated by missense, nonsense and frameshift mutations. Missense mutations were the main mutation type of PIK3CA, and nonsense and frameshift mutations were the main mutation types of ARID1A. The mutation types are indicated as follows: yellow indicates splice sites, blue indicates missense mutations, orange indicates frameshift mutations, green indicates inframe insertion/deletion, and brown indicates nonsense mutations. The mutation status of ARID1A, PIK3CA, and TP53, TMB status, MSI score, neoantigen status, OS, and other clinical characteristics are shown as patient annotations (upper barplot). The left barplot marks the mutation rate of each gene. Genes marked in red represent the three genes screened from the multivariate Cox regression analysis. In the figure legends, “MT” represents patients with a certain gene mutation, and “WT” represents patients without certain gene mutation.


The gene mutation landscape (Figure 2) showed the alteration types and clinical information of the top 20 genes with the highest mutation frequencies in the two clinical cohorts. The mutation sites of ARID1A, PIK3CA, and TP53 are shown in Supplementary Figure S2.



KM Survival Analysis

To verify the predictive value of age and mutations in PIK3CA, ARID1A, and TP53, we performed KM survival analysis on nine variables (Figure 3). Consistent with the results of the multivariate regression analysis, the OS of HNSC patients with ARID1A-MT [log-rank test, HR = 0.12 (95% CI 0.06–0.27), p = 0.01, Figure 3B] or PIK3CA-MT [log-rank test, HR = 0.5 (95% CI 0.3–0.84), p = 0.021, Figure 3C] was longer than patients with ARID1A-WT or PIK3CA-WT, respectively. Although no significant differences were observed between patients with TP53-MT and TP53-WT [log-rank test, HR = 1.49 (95% CI 0.93–2.39), p = 0.070, Figure 3D] or ASXL1-MT and ASXL1-WT [log-rank test, HR = 0.19 (95% CI 0.08–0.49), p = 0.053, Figure 3E], there was a trend toward longer OS in patients with TP53-WT. Consistent with these findings, PIK3CA and ARID1A mutations were associated with favorable outcomes, as shown in the alluvial diagram (Supplementary Figure S3).
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FIGURE 3. KM survival curves for OS in 129 HNSC patients from the MSKCC cohort. We performed KM survival analysis on different subgroups of patients based on age (A), gene mutation status (B–E), mutation count (F), sex (G), sample type (H), and drug type (I). “Combo” represents the combination treatment of anti-PD-(L)1 and anti-CTLA-4 therapy, and “Mono” represents anti-PD-(L)-1 monotherapy.


In addition to the mutations in related genes, we also included the clinical data of patients in the survival analysis. The results showed that patients over 65 years had prolonged OS [log-rank test, HR = 0.56 (95% CI 0.35–0.89), p = 0.014, Figure 3A], and patients with a mutation count > 7 also benefited from ICI treatment [log-rank test, HR = 0.5 (95% CI 0.31–0.8), p = 0.009, Figure 3F]. Other clinical factors, such as sex, drug type, and sample type, had no statistical significance on OS.



Immune-Related Analysis

To investigate the mechanism underlying the predictive value of age and related gene mutations, we performed tumor immunogenicity analysis on the data from the TCGA cohort and compared differences in the expression of immune checkpoint molecules, TMB and neoantigen load between subgroups based on age and gene mutations.

Immune checkpoint molecules have become important molecular targets of immunotherapy because these molecules can help tumor cells escape immune system attack via immune tolerance mechanisms (Seidel et al., 2018). As shown in Figure 4, the expression levels of CD274 and IDO1, neoantigen load and TMB were higher in patients over 65 years than patients younger than 65 years (Mann Whitney U test, p < 0.05). Patients with ARID1A mutations had a high neoantigen load and TMB (Mann Whitney U test, p < 0.05). TMB and the expression of CD27 and CD274 in PIK3CA-MT patients were also higher than the PIK3CA-WT patients, while the opposite relationship was true for CD276 (Mann Whitney U test, p < 0.05). For TP53-MT patients, the expression levels of most of the immune checkpoint molecules listed in the figure were notably lower (Mann Whitney U test, p < 0.05), except CD276. We also observed a trend toward a higher TMB and neoantigen load in TP53-MT patients than TP53-WT patients (Mann Whitney U test, p < 0.05, p > 0.05, respectively), which was consistent with the results in Figure 1B.
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FIGURE 4. Violin plots showing the expression of immune checkpoint molecules, neoantigen load and TMB. The range of p-values is represented by the asterisks above each violin plot (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.0001).


To further reveal the relationships between age, gene mutations, and the tumor immune microenvironment, we assessed and compared the expression of immune-related genes and immune exhaustion biomarkers including antigen presentation-associated molecules, cell adhesion molecules, immune-related receptors and ligands, co-inhibitors, and co-stimulators between different subgroups. As shown in Figure 5, TP53 exhibited the most significant difference. Most HLA molecules were upregulated in patients with TP53-WT, PIK3CA-MT, or older than 65 years. Other immune-related molecules, such as immune-related receptors and ligands, co-inhibitors, and co-stimulators, were mostly highly expressed in TP53-WT patients. Difference in the expression of most immune-related genes between ARID1A-MT and ARID1A-WT patients was not statistically significant, but some HLA molecules, immune-related receptors, such as CCL5, CD40LG and CD70, and ARG1, were significantly downregulated in ARID1A-MT patients.
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FIGURE 5. Bubble plots showing the expression of immune-related genes and immune exhaustion biomarkers. The color of the circles in the first column represents the categories of the molecules according to their functions, in which orange represents antigen presentation, black represents inhibitory molecules, and gray represents stimulatory molecules. The color of the other circles indicates logFC, as shown in the legend, and the size is proportional to the statistical significance.




Gene Set Enrichment Analysis (GSEA)

We further examined whether signaling pathways were aberrantly activated in different age and gene mutation subgroups (Figure 6). The subgroups associated with a poor prognosis (low TMB, age ≤ 65 years, PIK3CA-WT, ARID1A-WT, and TP53-MT) were enriched for FGFR, MET and other cancer-promoting pathways, such as NOTCH, JAK-STAT, PI3K-Akt, and angiogenesis. Signaling pathways involving the activation of T cells and NK cells were also enriched in PIK3CA-MT patients, and enrichment of the IL-6-related pathway was observed in ARID1A-WT patients. Notably, the pathways related to cell metabolism, such as fatty acid metabolism, were primarily enriched in the PIK3CA-WT and ARID1A-WT subgroups, and the glucose metabolism pathway was enriched in the ARID1A-MT subgroup.
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FIGURE 6. Results of gene set enrichment analysis. The following subgroups served as control groups: age > 65 years, high TMB, ARID1A-MT, PIK3CA-MT, and TP53-WT. ES > 0 indicates that the corresponding pathways are significantly enriched in the experimental groups. Colors of curves correspond to the font colors of the pathway names.





DISCUSSION

HNSC is a group of complex malignant tumors, and the immunosuppressive tumor microenvironment plays a critical role in its occurrence and development (Oddone et al., 2009). By targeting PD-(L)1 and CTLA-4, ICIs overcome immune suppression and promote the recognition and elimination of tumor cells. Compared to traditional systemic therapy, the efficacy of ICIs is better, and the incidence of adverse reactions is lower, which provide encouraging perspectives for the treatment of HNSC. Notably, not all patients benefit from ICIs. Therefore, it is of great clinical value to identify potential biomarkers that allow the identification of HNSC patients with favorable responses and long-term benefits to ICIs. Our analyses showed that age > 65 years, TP53-WT, PIK3CA-MT, and ARID1A-MT were associated with prolonged OS in HNSC patients treated with ICIs. The activated pathways, cell metabolism, TMB, PD-L1 expression, and tumor immunogenicity led to different characteristics in the immune microenvironment, which further affected the sensitivity of HNSC patients to ICI therapy (Supplementary Figure S4).

GSEA showed that upregulation of the FGFR signaling pathway was primarily enriched in the subgroups associated with a poor prognosis, such as patients aged ≤ 65 years, patients with a low TMB, and PIK3CA-WT, or TP53-MT patients. Fibroblast growth factor (FGF) primarily regulates angiogenesis, and critical cellular behaviors, such as proliferation, survival, differentiation, and migration via binding to four transmembrane tyrosine kinase receptors (FGFR1-4) of the FGFR family (Turner and Grose, 2010). Aberrant FGF signaling is generally associated with a poor prognosis (Turner and Grose, 2010). Palakurthi et al. (2019) suggested that FGFR inhibitor or anti-PD-1 antibody monotherapy would not achieve a significant survival benefit in a lung cancer mouse model, but the combination of FGFR inhibitor and anti-PD-1 therapy would significantly improve survival in mice. The synergistic effect of FGFR inhibitors and anti-PD-1 therapy may be related to the tumor immunosuppressive microenvironment induced by FGFR activation. After inhibition of the FGFR pathway, infiltrating T lymphocytes and NK cells increase, and regulatory T Cells (Tregs), tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), T cells with an exhausted phenotype and the expression of PD-L1 decreased (Liu et al., 2014; Palakurthi et al., 2019). Our study showed that the FGFR4 signaling pathway was primarily enriched in HNSC patients aged ≤ 65 years. Whether age maybe considered a predictor of the efficacy of ICIs remains controversial. Kugel et al. (2018) showed that melanoma patients > 60 years old had a better response to anti-PD-1 treatment than patients < 60 years old, and the mechanism may be related to the increase in Treg cells and the decrease in CD8+ T cells in younger patients. Treg depletion increased the response of young mice to the anti-PD-1 antibody. By combining these results with the current study, we speculated that FGFR4 pathway downregulation in HNSC patients over 65 years old mediated a good response to immunotherapy via the decreased expression of PD-1 and changes of the proportion of immune cell subsets. The NOTCH signaling pathway was also enriched in HNSC patients aged ≤ 65 years. A considerable number of studies indicated that upregulation of the NOTCH pathway promoted the proliferation and migration of tumor cells and inhibited their apoptosis (Lin et al., 2010; Zou et al., 2016). Notably, Weaver et al. (2016) found that enhanced NOTCH signaling upregulated the expression of FGF1 in oral squamous cells to promote tumor migration and invasion. In addition to the FGFR signaling pathway, the PIK3CA-WT subgroup was also enriched for the angiogenesis signaling pathways and downregulated signaling pathways involving NK cell-mediated immunity and T cell activation. This result was also consistent with the results from prior studies on the effect of FGFR activation on angiogenesis (Turner and Grose, 2010) and immune cell subsets (Liu et al., 2014; Palakurthi et al., 2019).

Cell metabolism, including glucose and fatty acid metabolism, has an important effect on the tumor immune microenvironment. Previous studies showed that the expression of PD-L1 promoted glycolysis in tumor cells (Chang et al., 2015). The competitive uptake of glucose by tumor cells and the expression of PD-1 contribute to the metabolic shift of T cells from glycolysis (Chang et al., 2015) to fatty acid metabolism (Patsoukis et al., 2015). Aerobic glycolysis is necessary for T cells to differentiate into effector cells (Cham et al., 2008), whereas M2 macrophages rely on fatty acid metabolism (Huang et al., 2014), which may protect them from the effects of glucose metabolism in tumor cells. The fatty acid metabolic pathway was primarily enriched in the ARID1A-WT and PIK3CA-WT subgroups, which were associated with a poor prognosis, and the glucose metabolism pathway was enriched in the ARID1A-MT subgroup, which indicates that the function of immune cells in the ARID1A-MT subgroup was suppressed and accompanied by the expression of PD-1. Therefore, ICI treatment may change the metabolism of tumor cells and T cells and relieve the inhibition of the antitumor effect of T cells, which allows patients with ARID1A and PIK3CA mutations to gain clinical benefits.

Numerous studies demonstrated that a high TMB and high PD-L1 expression were conducive for immune cells recognition and elimination of tumor cells, which makes patients sensitive to ICI therapy (Reck et al., 2016; Chan et al., 2019; Liu et al., 2019). Some researches revealed a better response to immunotherapy in HNSC patients with high TMB (Hanna et al., 2018) or high PD-L1 expression (Ferris et al., 2016). This observation was also confirmed in our survival analysis. For example, the subgroup associated with a good prognosis (i.e., age > 65 years and ARID1A-MT, and PIK3CA-MT) had a significantly high TMB and neoantigen load and high PD-L1 expression. PIK3CA is an important oncogene in the PI3K signaling pathway (German et al., 2013), and ARID1A is a tumor suppressor gene. Most ARID1A mutations are inactivating mutations (Wu et al., 2014). Mutations in the PI3K pathway and the loss of ARID1A expression may lead to defective DNA repair in different ways and result in an increased TMB and neoantigen load (Lui et al., 2013; Shen et al., 2018). There is a positive correlation between the loss of ARID1A expression and MSI (Li et al., 2019). The deletion of ARID1A and the activation of PIK3CA may upregulate the expression of PD-L1 via activation of the PI3K/AKT pathway (German et al., 2013; Kim et al., 2019). Therefore, the favorable response of patients with ARID1A or PIK3CA mutations may be explained from the perspectives of TMB and PD-L1 expression.

Some controversy about the predictive role of TP53 mutation in immunotherapy exists, which may result from intertumoral heterogeneity. Xiao et al. (2018) showed that TP53 mutation was associated with poor clinical outcomes in patients with metastatic melanoma treated with anti-CTLA-4 therapy. Another study observed improved OS in non-small cell lung cancer patients with TP53 mutation receiving anti-PD-1 therapy (Assoun et al., 2019). Our analysis showed that HNSC patients with TP53-MT exhibited a poor response to ICIs. Compared to TP53-WT patients, TP53-MT patients exhibited a higher TMB, but the expression of most immune checkpoint molecules, such as CD27, CD274, CTLA4, HAVCR2, ICOS, IDO1, LAG3, PDCD1, and TIGIT, was decreased. Most of the HLA molecules, immune-related receptors and ligands, co-inhibitors, and co-stimulators were significantly overexpressed in TP53-WT patients. All of these results indicate the low immunogenicity of TP53-MT patients, which may be one of the mechanisms contributing to their low sensitivity to ICIs. TP53-MT patients also exhibited enriched MET, FGFR2, and PI3K/AKT signaling pathways, which promote tumor development. In a variety of tumors, including HNSC, the abnormal activation of mesenchymal-epithelial transition (MET) tyrosine kinase receptor promotes the proliferation, invasion, migration, and epithelial-mesenchymal transformation of tumor cells (Rothenberger and Stabile, 2017; Vsiansky et al., 2018; Moosavi et al., 2019). Activation of the HGF/MET signaling pathway also inhibits the function of T cells and antigen-presenting cells and induces an increase in MDSCs and Tregs (Benkhoucha et al., 2010; Yen et al., 2013).

In summary, we screened four independent prognostic predictors of the response to ICIs by performing a bioinformatics analysis of MSKCC and TCGA data. The impact of TP53 mutation on immunotherapy outcome is controversial, and it was not investigated in HNSC. As a preliminary examination, we found that TP53 mutation was a negative prognostic predictor in our study. We also identified three other positive predictors: age > 65 years, PIK3CA-MT, and ARID1A-MT. However, there are some limitations to our study, which lie primarily in the following aspects. First, the MSK-IMPACT panel was used in the MSKCC cohort, and whole-exome sequencing was used in the TCGA cohort. The number of genes included in the MSK-IMPACT panel was less than 500, and many high-frequency genes associated with HNSC revealed by whole-exome sequencing did not appear in the MSK-IMPACT panel, which resulted in the omission of some potential predictors. Second, a subset of patients in the MSKCC cohort had received other treatments before immunotherapy, which may have affected the results of the subsequent analysis. Our results must be further validated, and a more detailed mechanism must be studied.
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Prostate cancer (PCa) is a high morbidity malignancy in males, and biochemical recurrence (BCR) may appear after the surgery. Our study is designed to build up a risk score model using circular RNA sequencing data for PCa. The dataset is from the GEO database, using a cohort of 144 patients in Canada. We removed the low abundance circRNAs (FPKM < 1) and obtained 546 circRNAs for the next step. BCR-related circRNAs were selected by Logistic regression using the “survival” and “survminer” R package. Least absolute shrinkage and selector operation (LASSO) regression with 10-fold cross-validation and penalty was used to construct a risk score model by “glmnet” R software package. In total, eight circRNAs (including circ_30029, circ_117300, circ_176436, circ_112897, circ_112897, circ_178252, circ_115617, circ_14736, and circ_17720) were involved in our risk score model. Further, we employed differentially expressed mRNAs between high and low risk score groups. The following Gene Ontology (GO) analysis were visualized by Omicshare Online tools. As per the GO analysis results, tumor immune microenvironment related pathways are significantly enriched. “CIBERSORT” and “ESTIMATE” R package were used to detect tumor-infiltrating immune cells and compare the level of microenvironment scores between high and low risk score groups. What’s more, we verified two of eight circRNA’s (circ_14736 and circ_17720) circular characteristics and tested their biological function with qPCR and CCK8 in vitro. circ_14736 and circ_17720 were detected in exosomes of PCa patients’ plasma. This is the first bioinformatics study to establish a prognosis model for prostate cancer using circRNA. These circRNAs were associated with CD8+ T cell activities and may serve as a circRNA-based liquid biopsy panel for disease prognosis.
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INTRODUCTION

Prostate cancer (PCa) is a high morbidity solid tumor most commonly detected in older males in developed countries (Siegel et al., 2020). Radical prostatectomy (RP) offers great therapeutic effect for most cases of localized PCa. Nonetheless, up to 50% patients will experience biochemical recurrence (BCR) after the operation (Freedland et al., 2005; Moris et al., 2020). Research has shown that the prognosis of prostate cancer depends on many factors, such as age, positive margin, pathological stage, Gleason score, PSA, and so on (Kreuz et al., 2020). Due to the heterogeneity of prostate cancer, the existing prognosis judgment system currently fails to meet the needs of every patient. There is an urgent need for a new prostate cancer prognosis prediction model to be constructed.

In the human genome, only 2% of genes are protein coding and up to 98% are non-coding RNAs. The discovery of non-coding RNAs has completely changed our understanding of cancer research (Slack and Chinnaiyan, 2019). The prognosis value of microRNA (miRNA) and long non-coding RNA (lncRNA) are widely reported in cancers (Yang et al., 2019; Mitra et al., 2020; Zhou et al., 2020). As the use of sequencing methods becomes more popular, new kinds of non-coding RNA are emerging. Circular RNA (circRNA) is a new category of non-coding RNA which has a covalent circular structure (Kristensen et al., 2019). By comparing them with other linear RNAs, circRNAs have been shown to exist widely in body fluids and are more difficult to degrade because of their framework (Su et al., 2019). What’s more, circRNAs are ideal biomarkers based on their tissue specific, stable, and easy to detect features (Salzman et al., 2013). The latest reports show that circRNAs play important roles in PCa progression, including proliferation, epithelial-mesenchymal transition (EMT), and apoptosis (Feng et al., 2019; Shen et al., 2020; Shi et al., 2020). Progressions in high-throughput sequencing methods and updated bioinformatics algorithms have facilitated research into circRNAs (Santer et al., 2019). However, there are no reports of prognostic models on circRNAs signature in PCa so far.

In our study, we screened high abundance BCR-related circRNAs from a cohort of 144 PCa patients and developed a new circRNA risk score model to predict the prognosis. The GO analysis of differentially expressed mRNAs between high and low risk score groups shows that the circRNAs may affect BCR using the tumor microenvironment (TME). What’s more, the following CIBERSORT and ESTIMATE analyses proves their effect in TME. In addition, we verified two circRNA’s (circ_14736 and circ_17720) characteristics and tested their biological function with qPCR and CCK8 in vitro. In summary, we are the first in constructing this circRNA risk score model to predict the prognosis of PCa, which may be helpful in guiding therapeutic strategy.



MATERIALS AND METHODS


Ethics Statement

This study was approved by the Ethics Committee of Zhujiang Hospital, Southern medical University. Informed consent forms were signed by all patients. According to the ethical and legal standards, three blood samples from PCa patients were handled and made anonymous.



Dataset Preparation

circRNA sequencing data and corresponding clinical follow-up information were downloaded from the Gene Expression Omnibus (GEO) database1. We obtained the GSE113124 (Chen et al., 2019) expression profiles, including 144 patients with prostate cancer, for the next analysis by removing the circRNAs of FPKM (Fragments Per Kilobase Million) < 1 from expression dataset. The clinical characteristics of the patients are summarized in Table 1.


TABLE 1. Clinical characteristics of the prostate cancer patients.
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Construction of LASSO Model

circRNAs with FPKM > 1 were analyzed the Logistic regression; P < 0.05 was used as the significance cut-off to identify candidate circRNAs associated with BCR and the median of sample expression was used as the cutoff of high and low expression groups. Twenty eight circRNAs were selected, and the least absolute shrinkage and selector operation (LASSO) regression (Ramsay et al., 2018) with 10-fold cross-validation and penalty was used to construct a prognostic prediction model by “glmnet” R software package. Patients of the GSE113124 dataset were randomly assigned to 10 groups; one of these was the test set and the remaining nine groups were the training set. The risk score was calculated by expression profile data and the coefficient of the corresponding circRNAs. The formula is as follows:

[image: image]

where n is the number of circRNAs in the prognostic prediction model, Coef(i) represents the coefficient, and X(i) means the relative circRNAs expression level identified by LASSO regression.



Assessment of the Prognostic Prediction Model

Kaplan-Meier method was employed to draw the survival curves and assess the BCR of high and low risk score groups. Receiver operating characteristic (ROC) curve from “pROC” R package was performed to assess the sensitivity and specificity of the model compared with PSA, Gleason score, and pathologic stage. We identified differentially expressed mRNAs between different risk-score groups with FDR < 0.05 and —log2FoldChange— > 1, and Gene Ontology (GO) pathway analysis of those mRNAs were performed using OmicShare online tool. The background gene list is all Homo sapiens genes with Ensembl release 96 and Ensembl Genomes 43.



Nomogram Construction

The Cox proportional hazard model for 5-year BCR free probability were fit to 144 patients by an “rms” R package, and the variables included PSA, clinical T stage, Gleason score, risk-score, and C-index of the nomogram.



Immune Analysis by CIBERSORT and ESTIMATE

To calculate the tumor-infiltrating immune cells (TIICs) in the tumor samples, we used normalized gene expression profiles and LM22 signature matrix at 1,000 permutations to run the CIBERSORT1, which is a deconvolution algorithm website. Then the result of CIBERSORT was employed to draw a boxplot of immune cells based on risk-score group. For comparing the level of microenvironment scores between high and low risk groups, we obtained all RNA expression profiles by annotating with GRCh37. The result of running the ESTIMATE package (Yoshihara et al., 2013) was conducted to study the difference of microenvironments between the two groups.



Cell Lines and Cell Culture

The prostate cancer cell lines PC3, DU145, C4-2, and LNCaP, were all purchased from Beina Biotechnology Research Institute. PC3 and DU145 were cultured in DMEM medium. C4-2 and LNCaP were cultured in RPMI-1640 medium. Both DMEM and RPMI-1640 medium were supplemented with 10% fetal bovine and 1% Penicillin and Streptomycin. The immortalized prostate epithelial cell line RWPE-1 was recovered from the nitrogen liquid tank in our lab and was maintained in KM medium with 1% recombinant epithelial growth factor. All the cell lines above were cultivated in the incubator with constant 5% CO2 at 37°C.



RNase R Treatment, RT-qPCR, and Agarose Gel Electrophoresis

1 × 106 cells were prepared for total RNA extraction with Trizol reagent. RNA from cytoplasmic and nuclear sections were separated according to the manufacturer of PARISTM Kit (Life technologies). To acquire pure circRNA, total RNA was digested by RNase R (Rev: 20180502; Geneseed) at 37°C for 10 min. Then, RNA was transcribed into cDNA with HiScript II Q RT SuperMix for qPCR (R223-01, Vazyme). SYBR Green real-time PCR Master Mix (QPK-201, TOYOBO) was used to assess the expression level of target circRNAs by Bio-Rad CFX96 PCR machine. β-actin was used as the inner reference. Finally, the PCR product was separated by 1.5% agarose gel electrophoresis to detect the existence and molecule weight of each targeted gene. Convergent and divergent primers of circ_14734, circ_17720, and GAPDH are shown in Supplementary Table 1.



SiRNA Transfection and Cell Proliferation Assay

All small interference RNAs (siRNA) were synthesized by Hippo Biotechnology Company. DU145 and PC3 cells were seeded into the 6-well plates, then the negative control siRNA and siRNAs targeted to objective genes mixed with lipofectamine 3000 (L3000008, ThermoFisher) were added to the prepared cells in the fusion of 60–70%. RT-qPCR was used to detect the knockdown efficiency in DU145 and PC3 cells. Cell proliferation assay was carried out with CCK-8 kit (C0042, Beyotime Biotechnology),and cell viability was evaluated by the absorbance at 450nm using the microplate reader (Bio-Rad iMark). More details can be found in our previous study (Mo et al., 2017). SiRNAs sequence targeted to circ_14734 and circ_17720 are shown in Supplementary Table 1.



Exosome Extraction and Identification

Before exosome isolation, the cultured cells were maintained in exosome free medium for 24 h. In brief, 10 ml culture medium with exosome free FBS was collected and centrifuged at 1,000 rpm for 10 min. Then the supernatant was filtrated with 0.22 μm filter to remove the cell debris. Subsequently, the medium containing exosomes was incubated with one quarter volume of PEG (polyethylene glycol) 8000 buffer overnight at 4°C (Sun et al., 2019). Finally, the mixture was centrifuged at 3,000 rpm for 30 min and re-suspended with 20 μl PBS. The morphology of exosomes was detected by Transmission Electron Microscope (TME), and the particle size distribution was examined via NanoSight. The exosome markers, including HSP70 (Proteintech, No.: 10995-1-AP) and CD63 (Proteintech, No.: 25682-1-AP), were examined by Western blot, and the details of this procedure can be found in our previous study (Mo et al., 2017).



Statistical Analysis

R (version 3.6.1)3 and related packages were applied to all statistical analyses. The Wilcoxon test was used to compare two independent non-parametric samples. The Kaplan-Meier survival curves were verified with the log-rank test. We used mean ± standard deviation to describe the continuous variables in normal distribution while the median (range) was applied to testify the continuous variables in abnormal distribution. P < 0.05 was regarded as statistically significant.



RESULTS


Constructing a CircRNA’s Signature Model to Predict BCR in 144 Patients With Prostate Cancer

Our workflow is showing in Figure 1. By analyzing expression profiles of circRNA in 144 PCa patients, the filter with mean FPKM for circRNAs less than 1 were identified 546 circRNAs from GSE113124. To study the relationship between circRNAs and biochemical recurrence, those circRNAs were subjected to logistic regression with low or high expression levels of each circRNA as the variable. Using a P-value of 0.05 as the cut-off criterion for circRNAs selection, we obtained 28 circRNAs that were significantly linked to biochemical recurrence. The expressions of those 28 circRNAs are shown as a heatmap in Figure 2. Target circRNAs were selected and based on a LASSO regression model. The best model was determined by L1 regularization and 10-fold cross-validation with the AUC (Area Under Curve) as the benchmark (Figures 3A,B). A range of models was constructed for selecting circRNAs. The best model (AUC value = 0.923) incorporating eight circRNAs (circ_30029, circ_117300, circ_176436, circ_112897, circ_178252, circ_115617, circ_14736, and circ_17720) was identified.


[image: image]

FIGURE 1. The flow diagram of this study.
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FIGURE 2. The heatmap of 28 BCR-related circRNAs based on logistic regression.
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FIGURE 3. Construction and assessment of the eight circRNAs signature associated with biochemical recurrence by LASSO regression. (A) Process of variable selection in LASSO regression with 10-fold cross-validation. (B) Confidence interval in every lambda of LASSO regression. (C–E) circRNA predictor-score analysis of 144 PCa patients. The horizontal axis represents the 144 patients. Heatmap of circRNA expression level. (F) Biochemical recurrence analysis for the classifier. (G) Time-dependent ROC analysis curve for the classifier and clinical factors. (H) Kaplan-Meier estimates of eight circRNAs signature associated with biochemical recurrence.


Non-zero coefficients and the expression of eight circRNAs in the LASSO regression model constructed the following risk-score formula for BCR prediction: Risk score = (-0.0637∗expression level of circ_30029) + (-0.0991 ∗expression level of circ_117300) + (-0.0015∗expression level of circ_176436) + (-0.0185∗expression level of circ_112897) + (-0.0187∗expression level of circ_17720) + (0.0809 ∗expression level of circ_115617) + (0.0027 ∗expression level of circ_14736) + (0.0906 ∗expression level of circ_178252). The essential information and Kaplan-Meier plots of eight circRNAs were shown in Table 2 and Figure 3H. Three circRNAs with positive coefficients (circ_178252, circ_115617, and circ_14736) laid out high expression with an abhorrent outcome. Meanwhile, the negative coefficients in the remnants (circ_30029, circ_117300, circ_176436, circ_112897, and circ_17720) indicated high expression was correlated with less biochemical recurrence.


TABLE 2. CircRNAs significantly associated with the biochemical recurrence free survival in the test series patients (N = 144).

[image: Table 2]Figures 3C–E shows the relation among prognostic scores, the biochemical recurrence status, and prostate cancer circRNAs expression in 144 patients ranked by the prognostic score of the eight-circRNAs signature. Patients were divided into high-risk score group and low-risk score group by the median prognostic risk score. The higher risk scores revealed more BCR and less BCR-free time in PCa patients. Kaplan-Meier survival curve shows that patients with high-risk scores have statistically higher BCR than that of the low-risk score group (Figure 3F). As shown in Figure 3G, time-dependent ROC curve analyses were conducted to illustrate the sensitivity and specificity of BCR prediction. The AUC for the eight circRNAs signature prognostic model (AUC = 0.799) was calculated and compared with the AUC of clinical factors (AUC of PSA = 0.557, AUC of Gleason score = 0.626 and AUC of pathological stage = 0.569). Then, multivariate Cox regression analysis was carried out to estimate the prognostic value of the signature on BCR-free survival. With Gleason score, PSA, and pathological stage as covariates, the result shows that the eight-circRNAs signature was an independent prognostic factor for prostate cancer patients (Table 3). What’s more, we constructed a nomogram to predict the 5-year BCR-free survival rate of prostate cancer patients by the risk score and clinical factors, and the C-index of nomogram was 0.796 (Figure 4).


TABLE 3. Cox proportional hazards models in 144 patients.
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FIGURE 4. The nomogram to predict likelihood of 5-year BCR-free survival. Nomogram predicting PCa patients’ 5-year BCR-free survival. Each variable is projected to the point scale to obtain a value. The higher the value, the more likely to have BCR.




The Link Between 8 CircRNA’s Signature and Tumor Microenvironment

We employed DESeq2 to work out the differentially expressed mRNAs between the high risk score and low risk score groups. 338 differentially expressed mRNAs were enriched (logFC > 1 or logFC < -1, adjust P < 0.05), including 261 up-regulated mRNAs and 77 down-regulated mRNAs (Figure 5A). We presented the top 20 enriched GO terms (P < 0.05) by GO analyses involving biological process (BP), molecular function (MF), and cellular component (CC) in Figure 5B, which also includes the positive regulation of T cell activation via T cell receptor contact with antigens bound to MHC molecules on antigen presenting cells, MHC class II protein complex assembly, and MHC protein complex assembly.
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FIGURE 5. Tumor immune microenvironment between low-risk and high-risk score group. (A) Volcano Plot shows the differentially expressed mRNAs between high and low risk score groups (The cutoff value is —logFC— > 1 and p < 0.05). (B) GO pathways analysis of differentially expressed mRNAs. (C) The proportion of 22 kinds of immune cells in individual. (D) The proportion of 22 immune cells between high and low risk score groups. The red means high risk score and the green represents low risk score. The parameter p-value was obtained by Wilcoxon test. (E) Kaplan-Meier analysis of BCR and the comparison of different risk-score group based on immune score, stromal score, and estimate score from ESTIMATE package.


Emerging evidence revealed that circRNAs related to the tumor microenvironment, involved in roles such as tumor surveillance, endothelial monolayer permeability, angiogenesis, hypoxia, remodeling of the extracellular matrix (ECM), exosomes, and so on (Ou et al., 2019; Hu et al., 2020; Huang et al., 2020). Based on the results of the GO analysis, we explored our eight circRNAs signature in the tumor immune microenvironment. CIBERSORT was employed to estimate the abundances of 22 immune cell types using mRNA expression data in GSE 113124 (Figure 5C). In Figure 5D, patients in the low-risk group had more CD8+ T cells (P < 0.001), plasma cells (P <0.01), and dendritic cells resting (P <0.01), and patients in the high-risk group had more activated dendritic cells (P <0.05). ESTIMATE R package was used to obtain immune score, stromal score, and ESTIMATE score of patients. According to medians of the three scores, patients were divided into a high score group and low score group. KM curves describe the relationships between biochemical recurrence and immune score, stromal score, and ESTIMATE score (Figure 5E). In ESTIMATE evaluation, it has a consistent trend with CIBERSORT that shows a high-risk score is positively correlated with high immune infiltration, although there is no significant statistical difference.



Experimental Verification of Circ_14734 and Circ_17720

According to a pervious study, circ_14734 and circ_17720 can be detected in PCa patients’ urine (Vo et al., 2019). We wondered if they had potential to be biomarkers. What’s more, we further characterized these two circRNAs by experimental analysis. Firstly, we specially designed the divergent primers targeted to each selected circRNA and identified the circularized site through Sanger sequencing (Figure 6A). Then we examined the basal expression of circ_14734 and circ_17720 through RT-qPCR, and found both to be downregulated in PCa cell lines (Figure 6B). Circ_14734 and circ_17720 were all resistant to RNase R digestion, while the linear mRNA of their parent genes were not (Figure 6C). Additionally, we found that circ_14734 and circ_17720 could be amplified only in cDNA instead of in gDNA (Figure 6D), which indicates that circ_14734 and circ_17720 were not the results of trans-splicing or genomic rearrangements (Jeck and Sharpless, 2014). Moreover, to further obtain the cell distribution of circ_14734 and circ_17720, cytoplasmic and nuclear fraction assay and RT-qPCR were conducted, and the results showed that circ_14734 and circ_17720 were mainly located in the cytoplasm of DU145 and PC3 cells (Figure 6E). Finally, to explore the function of circ_14734 and circ_17720, oligo RNAs containing si-NC and siRNAs specially targeting to the back-splicing junction site of circ_14734 and circ_17720 were transfected into DU145 and PC3 cells. It was confirmed that both first two siRNAs that targeted circ_14734 and circ_17720 efficiently knocked down their expression at around 70% via RT-qPCR. Then, CCK-8 assay was applied to detect the cell viability of NC and knockdown groups. As shown in Figure 6F, knockdown of circ_14734 or circ_17720 both inhibited the proliferation of DU145 and PC3 cells.
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FIGURE 6. Experimental validation of circ_14736 and circ_17720. (A) The back-splicing junction site of circ_14734 and circ_17720 was determined by sanger sequencing. (B) The naive expression of circ_14734 and circ_17720 in prostate cancer cell lines. (C) circ_14734 and circ_17720 could be detected after the treatment of RNase R digestion. (D) the amplification of circ_14734 and circ_17720 by convergent and divergent primers was examined in cDNA and gDNA. (E) The distribution of circ_14734 and circ_17720 by nuclear and cytoplasmic fraction was determined by RT-qPCR. (F) Si-RNAs knock down effect screening. circ_14734 and circ_17720 inhibited DU145 and PC3 cell proliferation via CCK-8 assay. (G,H) The morphology and particle size distribution of Plasma-derived exosomes were verified by TEM and Nano-Sight. (I) Western blot analysis of exosomes isolated from three PCa patients’ blood plasma. The exosomal markers CD63 and HSP70 were detected. J. circ_14734 and circ_17720 were examined in blood plasma exosomes by gel electrophoresis.


Considering circ_14734 and circ_17720 were closely related to immune infiltration, which was regarded as a sort of tumor microenvironment, we began to consider whether there was a potential connection between tumor-cell-derived exosomes and the immune microenvironment. Therefore, we collected exosomes from serum in the manner of precipitation with PEG 8000 and verified the morphology and particle size through TME and NanoSight. The results showed that the exosomes were nearly spherical, and the particle size mainly distributed in around 100 nm (Figures 6G,H). CD63 and HSP70, two exosomal markers, were detected by western blot in three PCa patients’ blood plasma (Figure 6I). Subsequently, RT-qPCR and Agarose gel electrophoresis were performed to testify the existence of circ_14734 and circ_17720, and the results revealed that both circ_14734 and circ_17720 could be detected in exosomes derived from three PCa patients (Figure 6J).



DISCUSSION

PCa remains one of the most common malignant tumors in men (Welch and Albertsen, 2020). Generally, BCR is a useful clinical index to monitor disease progression (Fenton et al., 2018). As reported by the European guidelines, BCR is characterized as two consecutive PSA ≥ 0.2 ng/ml after surgical procedure (Mottet et al., 2020). Moreover, some BCR cases are going to evolve into metastasis, which means a worse prognosis (Dall’Era et al., 2012). Due to the complex molecular mechanism of development and progression, the existing methods of PCa prognosis prediction are still deficient. We need to develop some prediction models for early detection, individualized therapeutic strategy, and distinguishing high-risk patients.

Molecular signatures have been related to predict the prognosis in some kinds of tumors. The risk score model based on non-coding RNAs, such as miRNAs and lncRNAs, has been largely reported in PCa (Pang et al., 2019). Through miRNA analysis in 78 PCa blood samples, Hoey et al. (2019) identified four circulating miRNAs which could accurately stratify patients into high- and low-risk categories after radical prostatectomy. In addition, Shao et al. (2019) built up a prognostic model using seven lncRNA signatures and revealed that the high risk of this model predicted faster BCR of PCa. However, the prognosis value of circRNAs in PCa is still not clear. Compared with other non-coding RNAs, circRNAs have a typical circular structure that resist the degradation of RNase and could be easier detected in body fluid (Su et al., 2019). There is growing research about the dysregulation of circRNAs in cancer. For example, Chen et al. (2020) found that circ-MALAT could directly bind to ribosome and PXA5 mRNA, forming a ternary complex, and functioned as a miRNAs sponge to sustain the self-renewal of hepatocellular cancer stem cells. Additionally, it has been reported that circASPA1 promoted hepatocellular carcinoma (HCC) progression by regulating miR-326/miR-532-5p-MAPK1 signaling, and positively correlated with tumor-associated-macrophage infiltration via the miR-326/miR-532-5p-CSF-1 axis (Hu et al., 2019). Moreover, circRNAs also exert an influence on metabolic reprogramming in malignant tumors. ciRS-122, which was confirmed to be an exosome-transmitted circRNA, could promote glycolysis to strengthen chemoresistance colorectal cancer cells (Wang et al., 2020).

Our study is the first to report a circRNAs signature model in predicting the BCR of PCa. In our work, the mRNAs and circRNAs obtained based on high-throughput sequencing and clinical data of 144 PCa patients are from GSE113124. Firstly, 28 circRNAs whose FPKM was more than 1.0 and were significantly linked to biochemical recurrence in logistic regression were selected. Subsequently, LASSO regression and 10-fold cross-validation targeted eight circRNAs to construct a best risk score model (AUC value = 0.923) for predicting BCR. Our eight circRNAs risk score model (circ_30029, circ_117300, circ_176436, circ_112897, circ_178252, circ_115617, circ_14736, and circ_17720) shows that patients with high-risk scores are statistically significantly higher than the low-risk score group in the rate of BCR by KM survival curve. What’s more, in the ROC and multivariate Cox regression analysis, the prognostic value of our risk score model is better than the existing clinical indexes.

Among the eight circRNAs in our model, only a few have been reported in medical research. Circ_117300 may be specifically found in tuberculosis patients’ plasma (Huang et al., 2018). In addition, circ_176436 inhibited ovarian cancer progression by suppressing miR-518a-5p to induce Fas expression (Zhang et al., 2020). To assess their function in PCa, we gathered the differentially expressed mRNAs between high and low risk score groups. Some T cell and MHC related pathways have been enriched in the GO analysis. As we know, T cells and MHC are two important parts of the immune system, so we hypothesized that these eight circRNAs could affect the tumor microenvironment in prostate cancer. As per the results of our following CIBERSORT and ESTIMATE analyses, we proved our assumption. In the CIBERSORT analysis, CD8+ T cells were markedly decreased in the high-risk score group. CD8+ T cells act as cytotoxic T cells to anti-tumor in most conditions (Qiao et al., 2019; Lynn et al., 2020). For our study, the eight circRNAs may promote BCR by protecting PCa cells as a result of cut down of the CD8+ T cells in the high-risk score group. Coincidentally, we have a consistent trend that the high-risk score is positively correlated with the high immune infiltration in ESTIMATE analysis, although there are no significant statistical differences.

To verify the individual capacity of these circRNAs, we selected circ_14736 and circ_17720 in our experimental validation because they exist in urine. We identified their junction sites by Sanger sequencing, examined the native expression in prostate cell lines, and characterized their circularized structure. What’s more, circ_14736 and circ_17720 showed cell viability inhibition effects in CCK8 assay. Finally, we detected them in the exosomes of PCa patients’ plasma. It gave us some hints that we could develop their prognosis values by blood test. To date, only a minor part of circRNAs’ biological functions have been identified, with most of them playing a miRNA sponge role (Hansen et al., 2013; Memczak et al., 2013). In addition, immunoprecipitation experiments data showed that circRNAs can interact with proteins directly (Ashwal-Fluss et al., 2014; Li Z. et al., 2015; Du et al., 2016; Abdelmohsen et al., 2017; Chen et al., 2018), through roles such as decoy proteins, enhancing protein function, protein scaffolding, and recruiting protein. Interestingly, some circRNAs have a protein or polypeptide translation ability (Legnini et al., 2017; Yang et al., 2018; Zhang et al., 2018), although most circRNAs are regarded as non-coding. In our data, circ_14736 and circ_17720 are mainly located in cytoplasm. What’s more, they both have a binding site with miRNAs and proteins according to the circinteractom database. Furthermore, only circ_17720 revels a protein coding potential (Fickett score: 1.1294, Hexamer score: 0.1549, IRES elements score: 0.90). We will explore the function and mechanism of circ_14736 and circ_17720 in our next study.

Unfortunately, due to the limitation of our clinical samples’ amount and patients’ prognosis information, we cannot verify our model in different datasets. We will monitor any updated circRNAs datasets to improve the accuracy of our model. We are also going to collect more samples to develop their prognosis value in blood.



CONCLUSION

We constructed an eight circRNAs risk score model to reliably predict the BCR of PCa patients. We found that the BCR predicting effect may be related to the tumor microenvironment. At the same time, we preliminarily verified the function of circ_14736 and circ_17720 in vitro. Further experiments are necessary to clarify their roles in PCa.



DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author/s.



ETHICS STATEMENT

The studies involving human participants were reviewed and approved by the Ethics Committee of Zhujiang Hospital, Southern medical University. The patients/participants provided their written informed consent to participate in this study.



AUTHOR CONTRIBUTIONS

JL and XM designed the study. SW and WS analyzed the data. CZ did the experimental validation. TY, WC, GC, ZL, KW, and WZ searched literature. JL and BL wrote the manuscript. All authors read and approved the manuscript.



FUNDING

This research was supported by grants from the National Natural Science Foundation of China (81773277, 81802567, and 82003271), China postdoctoral science foundation (2019M662979), Science and Technology Program of Guangzhou (201803010014). and Fundamental Research Funds for the Central Universities (21618306).



SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcell.2020.599494/full#supplementary-material


ABBREVIATIONS

AUC, Area Under Curve; BCR, Biochemical recurrence; BP, Biological Process; CC, Cellular Component; cDNA, Complementary DNA; circRNAs, Circular RNAs; DMEM, Dulbecco’s Modified Eagle’s medium; DU145, Duke University 145; ECM, Extracellular matrix; EMT, Epithelial-mesenchymal transition; FBS, Fetal bovine serum; FPKM, Fragments Per Kilobase Million; gDNA, Genomic DNA; GEO, Gene Expression Omnibus; GO, Gene Oncology; HCC, Hepatocellular carcinoma; HGNA, HUGO Gene Nomenclature Committee; KM survival curve, Kaplan-Meier survival curve; LASSO, Least absolute shrinkage and selection operator; LNCaP, Lymph Node Carcinoma of the prostate; lncRNA, Long non-coding RNA; MF, Molecular Function; MHC, Major histocompatibility complex; miRNA, MicroRNA; PCa, Prostate cancer; PSA, Prostate-specific antigen; Rnase R, Ribonuclease R; ROC, Receiver-operating characteristic; RP, Radical prostatectomy; RT-qPCR, Quantitative reverse transcription PCR; siRNA, Small interference RNAs; TIICs, Tumor-infiltrating immune cell; TME, Tumor microenvironment.

FOOTNOTES

1http://www.ncbi.nlm.nih.gov/geo/

2http://cibersort.stanford.edu/

3https://www.r-project.org/


REFERENCES

Abdelmohsen, K., Panda, A. C., Munk, R., Grammatikakis, I., Dudekula, D. B., De, S., et al. (2017). Identification of HuR target circular RNAs uncovers suppression of PABPN1 translation by CircPABPN1. RNA Biol. 14, 361–369. doi: 10.1080/15476286.2017.1279788

Ashwal-Fluss, R., Meyer, M., Pamudurti, N. R., Ivanov, A., Bartok, O., Hanan, M., et al. (2014). circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66. doi: 10.1016/j.molcel.2014.08.019

Celis, J. E., Gromov, P., Cabezon, T., Moreira, J. M., Friis, E., Jirstrom, K., et al. (2008). 15-prostaglandin dehydrogenase expression alone or in combination with ACSM1 defines a subgroup of the apocrine molecular subtype of breast carcinoma. Mol. Cell. Proteom. 7, 1795–1809. doi: 10.1074/mcp.R800011-MCP200

Chen, L., Kong, R., Wu, C., Wang, S., Liu, Z., Liu, S., et al. (2020). Circ-MALAT1 functions as both an mRNA translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv. Sci. 7:1900949. doi: 10.1002/advs.201900949

Chen, N., Zhao, G., Yan, X., Lv, Z., Yin, H., Zhang, S., et al. (2018). A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:218. doi: 10.1186/s13059-018-1594-y

Chen, S., Huang, V., Xu, X., Livingstone, J., Soares, F., Jeon, J., et al. (2019). Widespread and functional RNA circularization in localized prostate cancer. Cell 176, 831–843.e22. doi: 10.1016/j.cell.2019.01.025

Dall’Era, M. A., Albertsen, P. C., Bangma, C., Carroll, P. R., Carter, H. B., Cooperberg, M. R., et al. (2012). Active surveillance for prostate cancer: a systematic review of the literature. Eur. Urol. 62, 976–983. doi: 10.1016/j.eururo.2012.05.072

de la Monte, S. M., Tamaki, S., Cantarini, M. C., Ince, N., Wiedmann, M., Carter, J. J., et al. (2006). Aspartyl-(asparaginyl)-beta-hydroxylase regulates hepatocellular carcinoma invasiveness. J. Hepatol. 44, 971–983. doi: 10.1016/j.jhep.2006.01.038

Ding, L., Abebe, T., Beyene, J., Wilke, R. A., Goldberg, A., Woo, J. G., et al. (2013). Rank-based genome-wide analysis reveals the association of ryanodine receptor-2 gene variants with childhood asthma among human populations. Hum. Genom. 7:16. doi: 10.1186/1479-7364-7-16

Du, W. W., Yang, W., Liu, E., Yang, Z., Dhaliwal, P., and Yang, B. B. (2016). Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44, 2846–2858. doi: 10.1093/nar/gkw027

Feng, Y., Yang, Y., Zhao, X., Fan, Y., Zhou, L., Rong, J., et al. (2019). Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis. 10:792. doi: 10.1038/s41419-019-2028-9

Fenton, J. J., Weyrich, M. S., Durbin, S., Liu, Y., Bang, H., and Melnikow, J. (2018). Prostate-specific antigen-based screening for prostate cancer: evidence report and systematic review for the US preventive services task force. JAMA 319, 1914–1931. doi: 10.1001/jama.2018.3712

Freedland, S. J., Humphreys, E. B., Mangold, L. A., Eisenberger, M., Dorey, F. J., Walsh, P. C., et al. (2005). Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 294, 433–439. doi: 10.1001/jama.294.4.433

Glondu-Lassis, M., Dromard, M., Lacroix-Triki, M., Nirde, P., Puech, C., Knani, D., et al. (2010). PTPL1/PTPN13 regulates breast cancer cell aggressiveness through direct inactivation of Src kinase. Cancer Res. 70, 5116–5126. doi: 10.1158/0008-5472.CAN-09-4368

Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K., et al. (2013). Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388. doi: 10.1038/nature11993

Hoey, C., Ahmed, M., Fotouhi, G. A., Vesprini, D., Huang, X., Commisso, K., et al. (2019). Circulating miRNAs as non-invasive biomarkers to predict aggressive prostate cancer after radical prostatectomy. J. Transl. Med. 17:173. doi: 10.1186/s12967-019-1920-5

Hu, W., Liu, C., Bi, Z. Y., Zhou, Q., Zhang, H., Li, L. L., et al. (2020). Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol. Cancer 19:102. doi: 10.1186/s12943-020-01199-1

Hu, Z. Q., Zhou, S. L., Li, J., Zhou, Z. J., Wang, P. C., Xin, H. Y., et al. (2019). Circular RNA sequencing identifies CircASAP1 as a key regulator in hepatocellular carcinoma metastasis. Hepatology 72, 906–922. doi: 10.1002/hep.31068

Huang, X. Y., Huang, Z. L., Huang, J., Xu, B., Huang, X. Y., Xu, Y. H., et al. (2020). Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis. J. Exp. Clin. Cancer Res. 39:20. doi: 10.1186/s13046-020-1529-9

Huang, Z., Su, R., Yao, F., Peng, Y., Luo, Q., and Li, J. (2018). Circulating circular RNAs hsa_circ_0001204 and hsa_circ_0001747 act as diagnostic biomarkers for active tuberculosis detection. Int. J. Clin. Exp. Pathol. 11, 586–594.

Jamshidi, J., Asnaashari, A., Alipoor, R., Mohammadi, S., Roostaei, S., Samadian, M. M., et al. (2018). ATP2B1 rs2681472 and STK39 rs35929607 polymorphisms and risk of hypertension in Iranian population. Med. J. Islam Repub. Iran. 32:14. doi: 10.14196/mjiri.32.14

Jeck, W. R., and Sharpless, N. E. (2014). Detecting and characterizing circular RNAs. Nat. Biotechnol. 32, 453–461. doi: 10.1038/nbt.2890

Kong, B., Wang, Q., Fung, E., Xue, K., and Tsang, B. K. (2014). p53 is required for cisplatin-induced processing of the mitochondrial fusion protein L-Opa1 that is mediated by the mitochondrial metallopeptidase Oma1 in gynecologic cancers. J. Biol. Chem. 289, 27134–27145. doi: 10.1074/jbc.M114.594812

Kreuz, M., Otto, D. J., Fuessel, S., Blumert, C., Bertram, C., Bartsch, S., et al. (2020). ProstaTrend-A multivariable prognostic RNA expression score for aggressive prostate cancer. Eur. Urol. 78, 452–459. doi: 10.1016/j.eururo.2020.06.001

Kristensen, L. S., Andersen, M. S., Stagsted, L., Ebbesen, K. K., Hansen, T. B., and Kjems, J. (2019). The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 20, 675–691. doi: 10.1038/s41576-019-0158-7

Laczmanska, I., Karpinski, P., Gil, J., Laczmanski, L., Makowska, I., Bebenek, M., et al. (2017). The PTPN13 Y2081D (T>G) (rs989902) polymorphism is associated with an increased risk of sporadic colorectal cancer. Colorectal. Dis. 19, O272–O278. doi: 10.1111/codi.13727

Legnini, I., Di Timoteo, G., Rossi, F., Morlando, M., Briganti, F., Sthandier, O., et al. (2017). Circ-ZNF609 is a circular rna that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9. doi: 10.1016/j.molcel.2017.02.017

Li, W., Ji, W., Li, Z., He, K., Wang, Q., Chen, J., et al. (2015). Genetic association of ACSM1 variation with schizophrenia and major depressive disorder in the Han Chinese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 168B, 144–149. doi: 10.1002/ajmg.b.32291

Li, Z., Huang, C., Bao, C., Chen, L., Lin, M., Wang, X., et al. (2015). Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264. doi: 10.1038/nsmb.2959

Li, Z., Zhu, W., Xiong, L., Yu, X., Chen, X., and Lin, Q. (2016). Role of high expression levels of STK39 in the growth, migration and invasion of non-small cell type lung cancer cells. Oncotarget 7, 61366–61377. doi: 10.18632/oncotarget.11351

Luu, M., Sabo, E., de la Monte, S. M., Greaves, W., Wang, J., Tavares, R., et al. (2009). Prognostic value of aspartyl (asparaginyl)-beta-hydroxylase/humbug expression in non-small cell lung carcinoma. Hum. Pathol. 40, 639–644. doi: 10.1016/j.humpath.2008.11.001

Lynn, G. M., Sedlik, C., Baharom, F., Zhu, Y., Ramirez-Valdez, R. A., Coble, V. L., et al. (2020). Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat. Biotechnol. 38, 320–332. doi: 10.1038/s41587-019-0390-x

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., et al. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338. doi: 10.1038/nature11928

Mitra, R., Adams, C. M., Jiang, W., Greenawalt, E., and Eischen, C. M. (2020). Pan-cancer analysis reveals cooperativity of both strands of microRNA that regulate tumorigenesis and patient survival. Nat. Commun. 11:968. doi: 10.1038/s41467-020-14713-2

Mo, R. J., Lu, J. M., Wan, Y. P., Hua, W., Liang, Y. X., Zhuo, Y. J., et al. (2017). Decreased HoxD10 expression promotes a proliferative and aggressive phenotype in prostate cancer. Curr. Mol. Med. 17, 70–78. doi: 10.2174/1566524017666170220104920

Moris, L., Cumberbatch, M. G., Van den Broeck, T., Gandaglia, G., Fossati, N., Kelly, B., et al. (2020). Benefits and risks of primary treatments for high-risk localized and locally advanced prostate cancer: an international multidisciplinary systematic review. Eur. Urol. 77, 614–627. doi: 10.1016/j.eururo.2020.01.033

Mottet, N., van den Bergh, R. C. N., Briers, E., Cornford, P., De Santis, M., Fanti, S., et al. (2020). EAU - ESTRO - ESUR - SIOG guidelines on prostate cancer - 2020 update. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol.

Ou, Z. L., Luo, Z., Wei, W., Liang, S., Gao, T. L., and Lu, Y. B. (2019). Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: role of circ_0000977/miR-153 axis. RNA Biol. 16, 1592–1603. doi: 10.1080/15476286.2019.1649585

Pang, X., Zhao, Y., Wang, J., Li, W., Xiang, Q., Zhang, Z., et al. (2019). Competing endogenous RNA and coexpression network analysis for identification of potential biomarkers and therapeutics in association with metastasis risk and progression of prostate cancer. Oxid. Med. Cell. Longev. 2019:8265958. doi: 10.1155/2019/8265958

Qiao, J., Liu, Z., Dong, C., Luan, Y., Zhang, A., Moore, C., et al. (2019). Targeting Tumors with IL-10 prevents dendritic cell-mediated CD8(+) T cell Apoptosis. Cancer Cell 35, 901–915.e4. doi: 10.1016/j.ccell.2019.05.005

Ramsay, I. S., Ma, S., Fisher, M., Loewy, R. L., Ragland, J. D., Niendam, T., et al. (2018). Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training. Schizophr. Res. Cogn. 11, 1–5. doi: 10.1016/j.scog.2017.10.001

Ren, A., Sun, S., Li, S., Chen, T., Shu, Y., Du, M., et al. (2019). Genetic variants in SLC22A3 contribute to the susceptibility to colorectal cancer. Int. J. Cancer 145, 154–163. doi: 10.1002/ijc.32079

Salzman, J., Chen, R. E., Olsen, M. N., Wang, P. L., and Brown, P. O. (2013). Cell-type specific features of circular RNA expression. PLoS Genet. 9:e1003777. doi: 10.1371/journal.pgen.1003777

Santer, L., Bar, C., and Thum, T. (2019). Circular RNAs: a novel class of functional RNA molecules with a therapeutic perspective. Mol. Ther. 27, 1350–1363. doi: 10.1016/j.ymthe.2019.07.001

Shao, N., Zhu, Y., Wan, F. N., and Ye, D. W. (2019). Identification of seven long noncoding RNAs signature for prediction of biochemical recurrence in prostate cancer. Asian J. Androl. 21, 618–622. doi: 10.4103/aja.aja_118_18

Shen, Z., Zhou, L., Zhang, C., and Xu, J. (2020). Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Lett. 468, 88–101. doi: 10.1016/j.canlet.2019.10.006

Shi, J., Liu, C., Chen, C., Guo, K., Tang, Z., Luo, Y., et al. (2020). Circular RNA circMBOAT2 promotes prostate cancer progression via a miR-1271-5p/mTOR axis. Aging 12, 13255–13280. doi: 10.18632/aging.103432

Siegel, R. L., Miller, K. D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30. doi: 10.3322/caac.21590

Slack, F. J., and Chinnaiyan, A. M. (2019). The role of non-coding RNAs in oncology. Cell 179, 1033–1055. doi: 10.1016/j.cell.2019.10.017

Su, M., Xiao, Y., Ma, J., Tang, Y., Tian, B., Zhang, Y., et al. (2019). Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol. Cancer 18:90. doi: 10.1186/s12943-019-1002-6

Sun, X., Jung, J. H., Arvola, O., Santoso, M. R., Giffard, R. G., Yang, P. C., et al. (2019). Stem Cell-derived exosomes protect astrocyte cultures from in vitro ischemia and decrease injury as post-stroke intravenous therapy. Front. Cell. Neurosci. 13:394. doi: 10.3389/fncel.2019.00394

Vo, J. N., Cieslik, M., Zhang, Y., Shukla, S., Xiao, L., Zhang, Y., et al. (2019). The landscape of circular RNA in cancer. Cell 176, 869–881.e13. doi: 10.1016/j.cell.2018.12.021

Waerner, T., Gardellin, P., Pfizenmaier, K., Weith, A., and Kraut, N. (2001). Human RERE is localized to nuclear promyelocytic leukemia oncogenic domains and enhances apoptosis. Cell Growth Differ. 12, 201–210.

Wang, X., Zhang, H., Yang, H., Bai, M., Ning, T., Deng, T., et al. (2020). Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol. 14, 539–555. doi: 10.1002/1878-0261.12629

Welch, H. G., and Albertsen, P. C. (2020). Reconsidering prostate cancer mortality - the future of PSA screening. N. Engl. J. Med. 382, 1557–1563. doi: 10.1056/NEJMms1914228

Yang, H., Liu, H., Lin, H. C., Gan, D., Jin, W., Cui, C., et al. (2019). Association of a novel seven-gene expression signature with the disease prognosis in colon cancer patients. Aging 11, 8710–8727. doi: 10.18632/aging.102365

Yang, Y., Gao, X., Zhang, M., Yan, S., Sun, C., Xiao, F., et al. (2018). Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J. Natl. Cancer Inst. 110:435. doi: 10.1093/jnci/djx166

Yoshihara, K., Shahmoradgoli, M., Martinez, E., Vegesna, R., Kim, H., Torres-Garcia, W., et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4:2612. doi: 10.1038/ncomms3612

Zhang, M., Zhao, K., Xu, X., Yang, Y., Yan, S., Wei, P., et al. (2018). A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma. Nat. Commun. 9:4475. doi: 10.1038/s41467-018-06862-2

Zhang, N., Jin, Y., Hu, Q., Cheng, S., Wang, C., Yang, Z., et al. (2020). Circular RNA hsa_circ_0078607 suppresses ovarian cancer progression by regulating miR-518a-5p/Fas signaling pathway. J. Ovarian Res. 13:64. doi: 10.1186/s13048-020-00664-1

Zhou, R., Sun, H., Zheng, S., Zhang, J., Zeng, D., Wu, J., et al. (2020). A stroma-related lncRNA panel for predicting recurrence and adjuvant chemotherapy benefit in patients with early-stage colon cancer. J. Cell. Mol. Med. 24, 3229–3241. doi: 10.1111/jcmm.14999


Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Wang, Su, Zhong, Yang, Chen, Chen, Liu, Wu, Zhong, Li, Mao and Lu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 15 December 2020
doi: 10.3389/fcell.2020.591405





[image: image]

Lung Cancer Cells-Controlled Dkk-1 Production in Brain Metastatic Cascade Drive Microglia to Acquire a Pro-tumorigenic Phenotype

Dong-Xue Gan†, Yi-Bei Wang†, Ming-Yang He, Zi-Yang Chen, Xiao-Xue Qin, Zi-Wei Miao, Yu-Hua Chen and Bo Li*

Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China

Edited by:
Kexin Xu, The University of Texas Health Science Center at San Antonio, United States

Reviewed by:
Monique Michels, Universidade do Extremo Sul Catarinense, Brazil
Han Qu, University of California, Riverside, United States

*Correspondence: Bo Li, bli28@cmu.edu.cn

†These authors have contributed equally to this work

Specialty section: This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology

Received: 04 August 2020
Accepted: 25 November 2020
Published: 15 December 2020

Citation: Gan D-X, Wang Y-B, He M-Y, Chen Z-Y, Qin X-X, Miao Z-W, Chen Y-H and Li B (2020) Lung Cancer Cells-Controlled Dkk-1 Production in Brain Metastatic Cascade Drive Microglia to Acquire a Pro-tumorigenic Phenotype. Front. Cell Dev. Biol. 8:591405. doi: 10.3389/fcell.2020.591405

Objectives: Organotropism is primarily determined by tumor-derived exosomes. To date, the role of lung cancer cells-derived exosomes underlying the pre-metastatic niche formation is unclear.

Materials and Methods: The animal models of retro-orbital and intra-ventricular injection were constructed to administrate lung cancer cells-derived exosomes. Cytokine array was used to screen the cytokines released from brain endothelium after internalization of lung cancer cells-derived exosomes. The cellular co-culture system was established to mimic microglia-vascular niche contained lung cancer cells-derived exosomes. The levels of Dkk-1 and the activities of microglia were analyzed by qRT-PCR, western blot and immunofluorescence. In vivo selections of highly brain metastatic cells were performed to analyze the direct interaction of lung cancer cells with microglia.

Results: Animal studies demonstrated that there was a suppressive signal transferred from brain endothelium to microglia after internalization of lung cancer cells-derived exosomes into brain endothelium, which caused an absolutely less M1 phenotypic microglia and a relatively more M2 phenotypic microglia. Further results indicated that lung cancer cells-derived exosomes induced a release of endogenous Dkk-1 from brain endothelium, which rendered microglia to acquire a pro-tumorigenic feature in pre-metastatic niche. Subsequently, the declines of Dkk-1 in metastatic lung cancer cells removed the suppression on microglia and enhanced microglial activation in metastatic niche.

Conclusion: Our findings shed a new light on the synergistic reaction of the different cells in “neurovascular units” toward the metastatic messages from lung cancer cells and provided a potential therapeutic pathway for lung cancer metastasis to brain.

Keywords: Dkk-1, lung cancer, exosomes, brain endothelial cells, microglia, neurovascular units, brain metastasis


INTRODUCTION

Brain metastasis (BrM) is known as the mortal complication of tumor. Traditional radiation and surgery are insufficient for the control of BrM, and 80% patients with symptomatic BrM have survived for less than 1 year (Nayak et al., 2012). The different cancer types and subtypes display preferentially metastasize to brain, known as “organotropism to brain.” Lung cancer is the primary tumor that most commonly metastasizes to the brain. The epidemiological data indicated that about 20% of lung cancers spread to brain, which took up the highest proportion of any cancer types (Gould, 2018). However, it is still unclear why lung cancer metastasize to brain more frequently than others. Thus, a better understanding of the pathogenesis of lung cancer metastasis to brain is critical for the development of more effective therapies.

Many studies focused largely on identifying cell-intrinsic determinants of organotropic metastasis, including genes and chemokine receptors expressed on cancer cells. The adhesion and extracellular matrix molecules, such as integrins, tenascin and periostin, had been also shown to promote colonization of metastatic cancer cells. Among them, extracellular vesicles, especially exosomes were paid closed attention. Exosomes were nano-sized vesicles (30–150 nm diameters) enclosed by a lipid bilayer. They were secreted by most cells, which were as a mean of intercellular communication by transporting various biomolecules, including proteins, lipids, RNA, and DNA (Steinbichler et al., 2017; Gao et al., 2019; Yuzhalin and Yu, 2019). Several studies had provided enough evidence that tumor-derived exosomes could conduct “pre-metastatic niches” prior to the arrival of tumor cells (Lobb et al., 2017). Lyden’s study revealed that exosomes derived from organotropic metastatic cancer cells could be preferentially up-taken by specific host organ cells to create the pre-metastatic niche (Hoshino et al., 2015). Exosomal miR-25-3p derived from colorectal cancer cells mediated the formation of a vascular pre-metastatic niche to promote metastasis (Zeng et al., 2018). Melanoma-derived exosomes redirected the functions of stromal cells in a distinct manner, promoting the formation of an inflammatory pre-metastatic niche (Isola et al., 2016). These research results suggested that exosomes conferred to the organotropism to specific organs by unloading their cargo to residential cells in the secondary organ. The distinctive characteristic of brain metastasis was attributed to the complex components and precise structures. The association between brain microvascular cells (BMECs), pericytes, astrocytes, microglia and neurons forms functional “neurovascular units” (NVU), which together maintained the brain homeostasis (Hosford and Gourine, 2019). Recent studies highlighted the importance of NVU in brain metastasis (Phillips et al., 2016; McConnell et al., 2017; Prakash et al., 2019). Among cells of the NVU, BMECs were active in immediately responding to extracerebral tumor exosomes and continuously associating with invading tumor cells. The BMECs could secrete VEGF-A after uptook exosomes from leukemia blasts, leading to sequential BBB disruption and central nervous system (CNS) invasion (Kinjyo et al., 2019). Exosomal miR-105 from metastatic MDA-MB-231 breast cancer cells could target ZO-1, a tight junction protein, in the BMECs, which destroyed the integrity of brain endothelial monolayers and promoted brain metastasis in the animal model (Zhou et al., 2014). More interesting, the exosomes isolated from the brain-seeking subline of breast cancer cells traveled exclusively to the brain after injection retro-orbitally into mice, and 98% exosmoes harbored to BMECs (Hoshino et al., 2015). Our previous study had also shown that BMECs-derived exosomes could facilitate small cell lung cancer cells (SCLCs) to evade death signals and colonize into brain (Xu et al., 2019). These findings highlighted a possibility that BMECs might firstly receive the messages of organotropism in tumor-derived exosomes, and transferred this information to other types of cells in the NVU. However, the exact roles of lung cancer cell-derived exosomes underlying the metastatic niche formation were far from being understood.

Here, we determined the role of Dickkopf-1 (Dkk-1) initially released from the BMECs after internalization of lung cancer cells exosomes, in the formation of metastatic niche in brain. Dkk-1, a member of Dickkopf proteins family, had most extensively been characterized as an inhibitor of the canonical Wnt/β-catenin pathway. It competitively bound to the Wnt co-receptors LRP5/6, leading to the β-catenin complex degradation (Huang et al., 2018; Baetta and Banfi, 2019). Several studies had inferred the role of Dkk-1 in various malignancies. The elevated levels of Dkk-1 were correlated with a poor prognosis in patients suffering from multiple myeloma, prostate cancer, hepatocellular carcinoma and non-small cell lung cancer (NSCLC) (Politou et al., 2006; Yang et al., 2013; Dong et al., 2014; Rachner et al., 2014). Here, we reported that lung cancer cell derived-exosomes controlled the activity of microglia in pre-metastatic niche by inducing the release of Dkk-1 from the BMECs. Subsequently, the decline of Dkk-1 in the metastatic lung cancer cells would strengthen the extent of microglia activation and infiltration into in tumor mass.



MATERIALS AND METHODS


Cell Lines and Regents

The detailed information was given in Supplemental Experimental Procedures.



Animal Experiments

The animals used in this experiment were C57BL/6 mice, 6–8 weeks, provided by the Laboratory Animal Department of China Medical University. Mice were fee at the SPF facilities of China Medical University. All experiments involving animals were approved by the Animal Care and Use Committee of China Medical University. Firstly, mice were anesthetized by inhalation of isoflurane and inoculated via retro-orbital injection with 200 μl PBS containing 10 μg LLC exosomes every other day according to the instruction described previously (Yardeni et al., 2011). For intra-ventricular injection, a mini-osmotic pump was implanted into the brain to infuse LLC exosomes intracerebroventricularly (Hashimoto et al., 2002). After that, the delivery of 10 μg LLC exosomes was carried out every other day by retro-orbital vein and intra-ventricular injection, respectively. For in vivo administration of Dkk-1, mice were treated with recombinant mouse Dkk-1 at a dose of 1.25 μg in 5 μl PBS via intra-ventricular injection; the control mice received vehicle alone. Secondly, the brain metastatic cell populations from Lewis lung cancer (LLC) cells were obtained by consecutive rounds of in vivo selection in C57BL/6 mice. For orthotopic brain injections, the mice were anesthetized with halothane (induction 5% and maintenance 1%) and fixed to the stereo tactical frame. A midline incision was made on the scalp and a small hole was drilled onto the skull at bregma, 1 mm anteroposterior and + 1.8 mm mediolateral. A 2.5 μl Hamilton syringe with a 30-gauge needle was used to inject 105 LLC cells in 2.5 μl sterile Hanks’ buffered salt solution into the brain at the depth of 1.5 mm.



Patients and Specimens

All patients who attended Shengjing Hospital of China Medical University (CMU) from 2018 to 2019 were initially diagnosed with lung cancer. All experimental protocols were approved by the Ethical Review Board of China Medical University, and were performed in accordance with the committee guidelines. The written informed consents were obtained from all patients. Firstly, nine sets of lung cancer specimens were collected from the lung cancer patients without brain metastasis, including the primary tumor sites (T), precancerous lesions (P) (< 0.5 cm) and neighboring normal tissues (N) (< 1 cm, > 0.5 cm) in lung. The nine patients were diagnosed with adenocarcinoma (n = 3), squamous cell carcinoma (n = 2) and small cell lung cancer (n = 4), respectively. Meanwhile, the brain metastasis tissue samples were collected from another 10 lung cancer patients, who were undergoing craniotomy for brain tumor resection. Additionally, for isolation of circulating exosomes, the serum samples were obtained from 20 lung cancer patients without brain metastasis, including six patients with squamous cell carcinoma, eight patients with adenocarcinoma, and six patients with small cell lung cancer. Six serum samples of normal human were as the controls. All groups had a concordance with age, clinical stage, treatment regimen, and collection time. All samples were obtained from patients who had not received preoperative neo-adjuvant chemotherapy or radiation therapy. In addition, 31 primary SCLC specimens and 16 SCLC brain metastatic samples were from our previous study (Xu et al., 2019), and were re-examined for the immunohistochemistry (IHC)-based expression of Dkk-1.



Isolation and Characterization of Lung Cancer Cells-Derived Exosomes

The isolation of exosomes derived from lung cancer cells were performed by the serial ultracentrifugation as described in our previous paper (Xu et al., 2019). The circulating exosomes from lung cancer patients were purified using the ExoQuick precipitation solution (System Biosciences, Ozyme, France) according to the manufacturer’s instructions. The purified exosomes were verified by western blot to detect the presence of the endosomal markers CD63 and CD9. The structures of exosomes were observed by transmission electron microscopy. Exosomes sizes and particle number were analyzed using the Zetasizer Nano ZS90 system (Malvern Instruments, United Kingdom).



Immunofluorescence for Brain Slices

To harvest the brain tissues, mice were anesthetized with 1% pentobarbital sodium and transcardially perfused with PBS, followed by 4% paraformaldehyde. After that, the brains were removed and post-fixed in 4% paraformaldehyde overnight, followed by 30% sucrose overnight. The 100 μm coronal brain slices were made using vibratome (Leica, Bensheim, Germany). The serial brain slices were blocked with blocking solution for 1 h and incubated with the mixture of rat anti-CD31 antibody (1:50) and goat anti-Iba1 antibody (1:200) overnight at 4°C. Secondary antibodies, Alexa Fluor 488, anti-rat and Alexa Fluor 555, anti-goat were used for visualization by the scanning laser confocal microscope. Nuclei were visualized using 4′, 6-diamidino-2-phenylindole (DAPI, Thermo Fisher Scientific). For each brain slice, randomly selected five fields were imaged and analyzed the average number of Iba-1-positive microglia per field using the ZEN Software (Carl Zeiss). The serial sections were made every 2 mm downward from the basal plane (surface of the brain slice, 0 mm) to the bottom of the slice to image the distribution of microglia at the different depth.



Cytokine Array

105 human brain microvascular endothelial cells (HBMECs) were seeded into a 24-well insert with a membrane pore size of 0.4 μm (Transwell, Corning Costar). After incubation for 24 h, the media containing 10% FBS depleted of bovine exosomes and A549 exosomes (10 μg/ml) were added to the upper chamber. After co-culturing for 12 h, the media in the upper and lower chambers were separately collected. The analysis of cytokine array was conducted using Proteome Profiler Human XL Cytokine Array Kit (R&D) according to the manufacturer’s instructions.



The Cellular Co-culture System in vitro

A cellular co-culture system was developed according to the method as described preveriously. Briefly, 105 bEnd.3 cells (mouse brain microvascular endothelial cells, mBMECs) were firstly seeded placed on the upper chamber of 24-transwell polycarbonate membrane with pore sizes of 0.4 μm (Corning Costar Corp., Cambridge, MA). Meanwhile, 105 LLC cells were seeded on the other 24-well plates. After co-culturing for overnight, the transwells cultured with bEnd.3 cells were inserted into the 24-well plates with LLC cells. The indicated intervention experiments were carried out as shown in the presented study.



Cells Treatment

For exosomes uptake assay, 105 BMECs (HBMECs and MBMECs) were plated on the 24-well and incubation for overnight. Then, after changing the media containing 10% FBS depleted of bovine exosomes, the exosomes derived from lung cancer cells were added and incubated for 24 h. The BMECs and co-cultured medium were collected and subjected to quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. For microglia polarization, the BV2 cells were pretreated with 100 ng/ml LPS and 10 ng/ml mouse recombinant IL-4 for 24 h, respectively. For the neutralization experiment, 20 μg/ml anti-Dkk-1 antibodies were added into the upper chamber of co-cultured system. IgG isotype was as the control. Likewise, mouse recombinant Dkk-1 (50 ng/ml) was applied for a rescue experiment, and bovine serum albumin (BSA) was as the control. To knock down the level of Dkk-1 in mBMECs, Dkk-1 small interfering RNA (siRNA) (Dkk-1 siRNA: 5′-GAACAAGUACCAGACUCUUTT-3′; was used as mouse Dkk-1 (NM_012242) target sequences. Non-silencing siRNA (5′-UUCUCCGAACGUGUCACGU-3′) was used as the negative control. The MBMECs were transiently transfected with siRNA using Dharma FECT siRNA Transfection Reagents (Dharmacon, Lafayette, CO) and the levels of Dkk-1 were measured at the indicated time points by western blot.



Quantitative Real-Time PCR (qRT-PCR)

Total RNA was isolated using TRIzol reagent (Invitrogen, Thermo Fisher Scientific Inc., Waltham, MA) according with manufacturer’s instructions. The quality and quantity of purified RNA were identified a NanoDrop UV-visible spectrophotometer. The cDNA was synthesized and amplified using a PrimeScrip RT Reagent Perfect Real Time Kit and TaqMan Premix Ex Taq Perfect real-time kit (Takara Bio, Tokyo, Japan) according to the manufacturer’s protocols. The qRT-PCR was conducted on ABI PRISM 7500HT Sequence Detection System (Applied Biosystems, Thermo Fisher Scientific Inc., Waltham, MA). The sequences of primers were listed in Supplementary Table 1. The relative levels of target genes were normalized to GAPDH by 2–ΔΔCt method.



Western Blot

The mice brain tissues and cells were sonicated in cold lysis buffer (Beyotime Institute of Biotechnology, China). The lysate was centrifuged at 12,000 g for 10 min at 4°C. Then, the supernatant fraction was collected and the concentrations of total proteins were detected by the BCA protein assay reagent kit (Pierce Chemical Co., Rockford, IL). The primary antibodies were as follows: rabbit anti Dkk-1 (1: 800); rabbit anti β-tubulin (1: 1,000); rabbit anti-CD63 and CD9 (1: 1,000); rabbit anti IL-1β and arginase-1 (1: 1,000). The secondary antibodies were anti-rabbit IgG, HRP-linked antibody (1:10,000). Protein bands were visualized using chemiluminiscent reagents (Pierce) and were analyzed using Alphamanger 3400 software (Alpha Innotech Corporation, San Leandro, United States).



Statistical Analysis

All analysis was carried out by GraphPad Prism 8.0 software. A two-tailed Student’s t-test was applied for the statistical comparison of two groups, and a one-way ANOVA with Tukey test was used for multiple groups. The data were presented as the mean ± SD, and P < 0.05 was considered statistically significant.



RESULTS


The Brain Endothelia Cells Delivered an Inhibitory Signal to Microglia After Uptake of Lung Cancer Cells-Derived Exosomes

Although multiple studies had demonstrated that the residential cells in brain could be instigated by tumor-derived exosomes and participate in brain metastasis, the findings concerning the role of microglial in the progress had been limited; especially, there were no more in vivo experimental studies on microglial responses in pre-metastatic niche. Here, to ascertain how lung cancer cells-derived exosomes affected the function of microglia, we developed an experimental model of retro-orbital injection of mice and osmotic pump implantation for intra-ventricular injection according to the instructions as described elsewhere (Figure 1A; Hashimoto et al., 2002; Yardeni et al., 2011). Firstly, the exosomes derived from LLC cells were purified from the conditioned media by ultracentrifugation and the characteristics of exosomes were identified by Zetasizer Nano analyzer, transmission electron microscopy, western blot and flow cytometry analysis with anti-CD63 magnetic beads, respectively. The results showed a spherical, membrane encapsulated particle and the nano-size of approximately between 30 and 100 nm and the expressions of exosomal markers, CD9 and CD 63 (Supplementary Figure 1). To determine whether LLC-derived exosomes could be incorporated by BMECs, we retro-orbitally injected 10 μg of red fluorescent labeled-exosomes into C57BL/6 mice (Supplementary Figure 2A). Forty eight hours after inoculation, the distribution of exosomes in brain was visualized by laser confocal microscopy. As shown in Supplementary Figure 2B, the red fluorescently labeled exosomes was located around the vessels, which suggested that tumor exosomes in the peripheral vascular system could be caught by BMECs shown by CD31-positive immune-active. The results from immunofluorescence indicated that microglia in cortex was activated and took on an amoeboid morphology, that is, larger nuclei and cell bodies with shorter processes after intra-ventricular injection of exosomes. Iba1 was a specific marker for microglia, known as a representative of active microglia (Norden et al., 2016), and then the quantitative morphometric analysis showed that the numbers of Iba-1-positive microglia in the cortex of C57BL/6 mice was significantly increased compared to the vehicle group (p = 0.0258). However, after retro-orbital injection with exosomes, microglia showed the small cell bodies with numerous long and highly branching processes and the amounts of Iba-1-positive microglia were instead decreased (Figures 1B,C). These results suggested that the different deliveries of LLC derived-exosomes might elicit the opposite effects on microglia. After retro-orbital injection, BMECs could internalize the messages in LLC derived-exosomes and released a suppressive signal to microglia. While intra-ventricular injection provided LLC derived-exosomes a direct pathway to enter into the brain and directly induced the activation of microglia. To further confirm these results, we constructed the in vitro cellular co-culture model to mimic the microglia-vascular niche (Figure 1D). Because the activation of microglia was often considered polarized as M1 or M2 phenotype based on the expressions of cell membrane receptors and secreted factors (Ellert-Miklaszewska et al., 2013), the expressions of microglia phenotypic markers were measured by qRT-PCR. The direct exposure to LLC derived-exosomes led to BV2 cells activation as exhibiting by pronounced expressions of the characteristic M1-type markers (IL-1β, iNOS, TNFα, and TLR-4); and the characteristic M2-type markers, arginase-1 and CD206, compared to the BV2 cells co-cultured with mBMECs alone (as the controls). While there was a significant reduction in the levels of M1/M2 phenotypical markers when BV2 cells were co-cultured with mBMECs after uptake of LLC derived-exosomes, which seemed to be in accord with the in vivo results (Figures 1E,F). Furthermore, it was very interesting that the ratios of M2/M1 phenotypical markers were increased significantly after treatment with LLC exosomes, suggesting a more production of M2 microglia (Supplementary Figure 3). Taken together, our results suggested that there seem to be a suppressive message transferred from BMECs to microglia after the internalization of tumormal exosome into BMECs. Moreover, this message also caused the unbalance of M1 and M2 phenotypic microglia and the comparative enhancement of M2 microglia.


[image: image]

FIGURE 1. The uptake of lung cancer cells-derived exosomes by brain endothelia cells offered an inhibitor signal to microglia. (A) Schematic illustration of the methods of LLC exosomes administration to C57 mice. (B) Representative immunofluorescence staining for Iba1 and CD31 from cerebral cortex regions of the injected side after retro-orbital injection and intra-ventricular injection, respectively. Scale bar, 100 μm. (C) Quantitative analysis for the numbers of Iba-1-positive microglia cells. The PBS alone was as the vehicle. The histograms represented the average numbers of Iba-1-positive microglia cells from the total 6 random visual fields in three independent experiments. (D) The schemes of the in vitro cellular co-cultured experiment and the methods of LLC cell-derived exosomes treatments. (E) The qRT-PCR analysis of M1 markers (IL-1β, iNOS, TNFα, and TLR-4) in BV2 cells in the presence or absence of LLC cells-derived exosomes in cellular co-cultured system. The results were presented as mean ± SD of three independent experiments. (F) The qRT-PCR analysis of M2 markers (arginase-1 and CD206) in BV2 cells in the presence or absence of LLC cells-derived exosomes in cellular co-cultured system. The results were presented as mean ± SD of three independent experiments.




Lung Cancer Cell-Derived Exosomes Induced Brain Endothelia Cells to Secrete Dkk-1

Given that BMECs were the first responders to extra-cerebral lung cancer cell-derived exosomes, we initially evaluated the uptake of tumoral exosomes in the co-culture system according to the methods described in our previous study (Xu et al., 2019). As shown in Supplementary Figure 4, GFP-labeled HBMECs incorporated the mCherry-exosomes from A549 cells transfected with mCherry-CD63 plasmids. Next, the supernatants of HBMECs incubated with A549-derived exosomes for 24 h were collected and a profile of cytokine secretory was performed using a proteome profiler human XL cytokine array (Figure 2A). The results revealed the enrichment of Dkk-1 protein in the lower chamber compared to that of the upper chamber under A549-derived exosomes treatment. Dkk-1, a Wnt inhibitor, had been identified as a serological marker of breast cancer metastatic organotropism and inhibits lung metastasis (Zhuang et al., 2017). The levels of Dkk-1 mRNA were significantly increased in HBMECs in the presence of the indicated lung cancer cell-derived exosomes (Figure 2B, p = 0.008). The analyses of ELISA further confirmed an increment of extracellular levels of Dkk-1 in BMECs after treatment with lung cancer cells-derived exosomes (Figure 2C). Further results showed that there was an obvious elevation of Dkk-1 in HBMECs compared to that of HUVEC under lung cancer cell-derived exosomes treatment, suggesting that the release of Dkk-1 in the progress displayed an organtropic pattern (Figures 2D,E). In addition, HBMECs were incubated with exosomes isolated from the serum of lung patients and the supernatants were subjected to ELISA analysis. As shown in Supplementary Figure 5, the levels of Dkk-1 in HBMECs stimulated with lung cancer derived-exosomes from adenocarcinoma or SCLC were significantly higher than that of squamous cell carcinoma, which were in accordance with their potent to brain metastasis.
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FIGURE 2. Lung cancer cells-derived exosomes induced brain endothelial cells to secret Dkk-1. (A) HBMECs were cultured on the membrane of Transwells in the presence or absence of A549 cells-derived exosomes and the media were collected from the upper and lower chambers, respectively. A comparative analysis of cytokine secretion was measured by Proteome Profiler Human XL Cytokine Array. (B) The qRT-PCR analysis of Dkk-1 in HBMECs incubated with lung cancer cells-derived exosomes. The results were presented as mean ± SD of three independent experiments. (C) ELISA analysis for the levels of Dkk-1 secreted by the brain endothelial cells after treatment with the indicated lung cancer cells-derived exosomes. The untreated groups were as the controls. The results were presented as mean ± SD of three independent experiments. (D) A comparative analysis of Dkk-1 secretion between HBMECs and HUVECs after treatment with A549 cells-derived exosomes. The results were presented as mean ± SD of three independent experiments. (E) A comparative analysis of Dkk-1 secretion between HBMECs and HUVECs after treatment with NCI-H446 cells-derived exosomes. The results were presented as mean ± SD of three independent experiments. (F) The analysis of western blots for Dkk-1 in the cerebral cortex and hippocampus regions of mice after LLC cells-derived exosomes administration by retro-orbital and intra-ventricular injection, respectively. Above: The histograms represented the average levels of Dkk-1 measured by densitometric values, normalized to the levels of β-tubulin. The results were presented as mean ± SD of three independent experiments. Below: The representative image of western blots for Dkk-1 expression was shown. (G) The immunofluorescence staining for the distribution of Dkk-1 in the mice brain after LLC cells-derived exosomes administration by retro-orbital and intra-ventricular injection, respectively. The inset box to right at a higher magnification. Arrows (↑) indicated the location of Dkk-1 in the brain endothelial cells. Scale bar, 100 μm.


To further identified whether lung cancer cells-derived exosomes also induced the upregulation of Dkk-1 in BMECs in vivo, we constructed an experimental mice model with retro-orbital and intra-ventricular injection of 10 μg LLC exosomes as shown in Figure 1A. Then, the samples of cerebral cortex and hippocampus from the injected side of the brains were collected and the expressions of Dkk-1 were detected by western blot. As shown in Figure 2F, the expression of Dkk-1 in the groups of retro-orbital injection was higher than that of the untreated groups. However, there was no apparent change in the levels of Dkk-1 after intra-ventricular injection with LLC exosomes. Next, we sought to detect the localization of Dkk-1 protein in vivo after injection of LLC exosomes. The retro-orbital injection of LLC exosomes led to an increase in the numbers of Dkk-1-positive cells, and Dkk-1 was mainly localized around the cerebral vessels positively stained with CD31 (Figure 2G). Collectively, our results supported the hypothesis that BMECs might release endogenous Dkk-1 after internalization of lung cancer-derived exosomes from the peripheral vascular system and Dkk-1 might suppress the activation of microglia.



The Release of Dkk-1 From Brain Endothelial Cells Contributed to the Suppressive Effect of Lung Cancer Cells-Derived Exosomes on Microglia

To further demonstrate that Dkk-1 secreted by BMECs contributed to the suppressive effect of lung cancer cells-derived exosomes on microglia, we used RNAi to knock down the levels of Dkk-1 in MBMECs (bEnd.3 cells). A cellular co-culture system was developed according to the method as shown in Supplementary Figure 6. The addition of LLC exosomes could down-regulate the expression of representative M1and M2 signature genes, IL-1β, arginase-1 and CD206 in BV2 cells, while knock down of Dkk-1 eliminated these effects, as evidenced with the significant up-regulation of M1 and M2 markers in BV2 cells (Figures 3A–C). Meanwhile, the proportions of M2/M1 microglia had fallen when Dkk-1 was depleted in the BMECs (Supplementary Figure 7), which suggested that Dkk-1 released by the BMECs was required for a more production of M2 microglia in brain pre-metastatic niche. Further results from western blot also displayed the similar alterations in the levels of IL-1β (Figure 3D) and arginase-1 (Figure 3E). Next, the effects of Dkk-1 on microglial in vivo were further analyzed through delivering recombinant Dkk-1 protein into mice brain using osmotic pump implantation (Figure 3F). The brain slices were subjected to double immunofluorescent staining against microglia marker Iba-1 and endothelial marker CD31. The results showed that Dkk-1 treatment triggered a significant reduction in the numbers of Iba-1-positive cells in cerebral cortex and hippocampus (Figures 3G,H). However, the delivery of Dkk-1 proteins had no effect on the cerebrovascular density shown by CD31-positive cells. These results suggested that lung cancer cell derived-exosomes could indirectly modulate the activity of microglia via directly inducing the secretion of Dkk-1 in BMECs.
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FIGURE 3. LLC cells-derived exosomes-induced the release of Dkk-1 from the brain endothelium inhibited the phenotypic polarization of microglia. The brain endothelia cells (bEnd.3 cells) were transfected with Dkk-1 siRNA to knocked down the expression of Dkk-1, and co-cultured with BV2 cells in the presence or absence of LLC cells-derived exosomes. The qRT-PCR analyses for M1 marker, IL-1β (A) and M2 Markers, arginase-1 (B), and CD206 (C) were shown. Results were presented as mean ± SD of three independent experiments. The quantitative analysis of western blots for M1 marker, IL-1β (D) and M2 marker, arginase-1 (E) were shown. Above: The histogram represented the average levels of target proteins measured by densitometric values, normalized to the levels of β-tubulin. Results were presented as mean ± SD of three independent experiments. Below: The representative images of western blots for target proteins were shown. (F) Schematic illustration of the methods of Dkk-1 administration to mice. (G) The immunofluorescence staining for Iba1 and CD31 in the injected sides of cerebral cortex and hippocampus after intra-ventricular injection of Dkk-1. Scale bar, 100 μm. (H) The quantitative analysis for the numbers of Iba-1-positive microglia cells. The PBS alone was as the vehicle. The histograms represented the average numbers of Iba-1-positive microglia cells from the total 6 random visual fields in three independent experiments.




Dkk-1 Hindered the Polarization of Quiescent Microglia and Induced the M1 to M2 Phenotypic Conversion of Microglia in vitro

Microglia could be differentiated into classical (M1) or alternative (M2) phenotype under microenvironment stimulus. M1 cells were activated by lipopolysaccharide (LPS), and M2 cells were activated by type II cytokines such as IL-4 (Ellert-Miklaszewska et al., 2013; Ghosh et al., 2016). To further elucidate the effect of Dkk-1 on microglia activity, we firstly performed the inhibition experiment in co-cultured system using GW4869, which inhibited the secretion of lung cancer cell derived-exosomes. The results indicated that IL-1β expressions, a M1-specific marker, were gradually increased in the presence of GW4869, whereas the levels of M2-specific markers, arginase-1 and CD206, were decreased (Supplementary Figure 8). These results suggested that inhibition of exosomes secreted from LLC cells led to BV2 cells in co-cultured system maintained the M1 phenotypic microglia. Conversely, the appearance of lung cancer cell-derived exosomes might induce a shift of M1 to M2 phenotypic microglia. After that, BV2 cells were pretreated with Dkk-1 and then activated with LPS. The induction of M1 phenotype was shown by the levels of the characteristic markers, IL-1β, TNF-α and iNOS measured by qRT-PCR. As shown in Figure 4A, the expressions of M1-specific cytokines in LPS stimulated group were enhanced while the levels of these cytokines were significantly suppressed in Dkk-1 + LPS group (p = 0.026). Similarly, the production of M2 phenotype markers, arginase-1 (p = 0.001) and CD206 (p = 0.035), was also significantly suppressed in the Dkk-1 + IL-4 group when compared to IL-4 group (Figure 4B). Likewise, the results from western blot for IL-1β and arginase-1 also exhibited that Dkk-1 pretreatment inhibited LPS-induced the polarization of M1 microglia. When BV2 cells were activated with LPS and then treated with Dkk-1, an unexpected elevation of arginase-1 concomitant with a reduction of IL-1β was indicative of a phenotype conversion of M1 (IL-1β+) to M2 microglia (arginase-1+) (Figures 4C,D). Next, we further investigated whether Dkk-1 was involved in the phenotype conversion from M1 to M2 microglia. As shown in Figure 4E, LPS exposure alone induced the upregulation of M1-specific cytokines, IL-1β, TNF-α, and iNOS, which were significantly down-regulated after IL-4 addition. Meanwhile, the elevated expressions of M2 phenotypic markers, arginase-1 and CD206, were shown in the LPS + IL-4 group (Figure 4F). These results indicated that LPS-activated microglia converted to M2 microglia under IL-4 stimulation. Interestingly, in LPS-activated microglia, concurrent application of Dkk-1 and IL-4 dramatically led to a reduction of M1 markers and an increment of M2 markers compared to combination of LPS and IL-4, suggesting that there was a synergistic effect of Dkk-1 and IL-4 for a transition to M2 phenotype (Figures 4E,F). Our results suggested that Dkk-1 could impair the sensitivity and reactiveness of microglia to inflammatory stimulus, but conferred to a synergism signal to facilitate the phenotypic conversion from M1 to M2 microglia. Therefore, an absolutely less M1 microglia and a relatively more M2 microglia might contribute to the initial phase of pre-metastatic niche with an immunosuppressive state. To further demonstrate the effect of lung cancer cells-derived exosomes on lung cancer metastasis to brain, we analyzed the ability of lung cancer cells transendothelial migration using Transwell system with the appearance of microglia. As shown in Supplementary Figure 9, pretreatment with LLC cells-derived exosomes to brain endothelium co-cultured with BV2 cells promoted the transendothelial migration of LLC cells, while knockdown of Dkk-1 in brain endothelium abolished the effects. Although this was not an in vivo experiment to demonstrate that the changes of the pre-metastatic niche, or Dkk-1 manipulation, increases brain metastasis, these results at least partly indicated the release of Dkk-1 from brain endothelium after uptake of lung cancer cells-derived exosomes contributed to the transendothelial migration of lung cancer cells. After that, to ascertain how Dkk-1 induced M1 to M2 microglia switches, we detected the related pathway involved in the phenotype of microglia, such as Wnt/β-catenin and AMPK. As shown in Supplementary Figure 10, the addition of LLC exosomes into brain endothelial cells could induce the AMPK activation in BV2 cells of co-cultured system, but knockdown of Dkk-1 abolished these effects. However, there were almost no changes in the levels of β-catenin, a key factor of Wnt pathway. These results suggested that AMPK signal might be correlation with the role of Dkk-1 in microglia phenotype. Then we further examined the activation of AMPK in the process of Dkk-1-induced M1 to M2 microglia switches. When LPS-activated microglia converted to M2 microglia under IL-4 stimulation, the phosphorylation of AMPK was obviously increased. Then, we substituted mouse recombinant Dkk-1 protein for IL-4 and obtained the similar results. Moreover, there was no effect on IL-4-activated microglia after treatment with Dkk-1. However, there were almost no changes in the levels of β-catenin. Taken together, these results suggested that AMPK signal pathway might be involved in Dkk-1-mediated M1 to M2 microglia switches.
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FIGURE 4. Dkk-1 suppressed M1/M2 microglia activation and stimulates M1 to M2 phenotypic conversion of microglia. (A) The qRT-PCR analyses for M1 markers, IL-1β, TNF-α, and iNOS, in BV2 cells pretreated with or without recombinant Dkk-1 proteins followed by LPS stimulation. The BV2 cells alone were as the control. (B) The qRT-PCR analyses for M2 markers, arginase-1 and CD206, in BV2 cells pretreated with or without recombinant Dkk-1 protein followed by IL-4 stimulation. The BV2 cells alone were as the controls. (C) The BV2 cells were stimulated with LPS prior to treatment with recombinant Dkk-1 proteins. Alternatively, The BV2 cells were pretreated with recombinant Dkk-1 proteins following exposure to LPS stimulation. The analyses of western blot for IL-1β and arginase-1 in the indicated BV2 microglia cells were shown. (D) The quantitative analysis of western blots for IL-1β and arginase-1 were shown. The histogram represented the average levels of target proteins measured by densitometric values using Image J software, normalized to the levels of β-tubulin. The results were presented as mean ± SD of three independent experiments. (E,F) The BV2 cells were pretreated with LPS to be M1 phenotypic microglia. Treatment of LPS-stimulated BV2 cells with only IL-4, or combination with recombinant Dkk-1 protein and IL-4. After 24 h, the levels of M1 markers (E) and M2 markers (F) were examined by qRT-PCR. All results were presented as mean ± SD of three independent experiments.




The Levels of Dkk-1 in Lung Cancer Cells Became Less After Colonization Into Brain

Accumulated clinical evidence had demonstrated that high levels of Dkk-1 were correlated with poor overall survival in various cancers, which suggested that Dkk-1 might be as a prognostic marker (Politou et al., 2006; Yang et al., 2013; Dong et al., 2014; Rachner et al., 2014). Having demonstrated that brain endothelium-derived Dkk-1 directly triggered microglia to promote the formation of pre-metastatic niche, we next sought to evaluate whether Dkk-1 was also involved in the progression of lung cancer metastasis to brain. Firstly, the IHC analysis displayed that there was a decline of Dkk-1 expression in the brain metastatic lesions compared to the primary lung cancer tissues (Figures 5A,B). Meanwhile, the results from western blots showed that the high expression of Dkk-1 was observed in the primary tumor tissues and the associated precancerous lesions, while the neighboring lung tissues showed the low expression of Dkk-1 (Figures 5C,D). More importantly, the decline of Dkk-1 expression had been also observed in the brain metastatic lesions compared to the primary tumor tissues in lung (Figures 5C,D). To further confirm the reduction of Dkk-1 in lung cancer cells after colonization into brain, we performed the in vivo selection of highly metastatic lung cancer cells as described in other study (Bos et al., 2009). Firstly, the parental LLC cells were directly injected into C57 mice brain using stereotaxic apparatus. After tumor micro-dissociation and expansion in culture, the obtained cell populations (brain metastatic derivative 1, BrM1) were re-inoculated into mice, yielding BrM2 cell populations. Then, a third round of selection in vivo yielded BrM3 cell populations (Figure 5E). Histological analysis showed that LLC BrM3 lesions replaced large areas of the brain parenchyma, suggesting more rapid and efficient colonization into the brain. Moreover, LLC BrM3 cells exhibited the increased activity of growth in vitro (Figure 5F). Next, we examined the expressions of Dkk-1 in the metastatic cell populations and found a declining trend for Dkk-1 expression along with their abilities to colonization into the brain, which were similar with the in vivo results (Figure 5G). Taken together, these results implied a possibility that the levels of Dkk-1 in lung cancer cells became descend after colonization into brain.
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FIGURE 5. The expressions of Dkk-1 were inversely correlated to lung cancer metastasis to brain. (A) The representative image for immunohistochemical staining of Dkk-1 in primary lung cancer tissue and the unmatched brain metastatic lesion. Scale bar, 200 μm. (B) The statistical analysis of immunohistochemical staining for Dkk-1 in the primary lung cancers (n = 31) and unmatched brain metastatic lesions (n = 16). The staining intensity of Dkk-1 was quantified by average integrated optical density (IOD) values from 6 random visual fields per tissue section. (C) Left: the analysis of western blots for Dkk-1 in the 9 sets of samples, including the primary tumor sites (T), precancerous lesions (P < 0.5 cm) and neighboring normal tissues (N < 1 cm, > 0.5 cm) obtained from the same lung cancer patient. Right: the analysis of western blots for Dkk-1 in the brain metastatic lesions from the other patients with lung cancer (BrM, n = 10). (D) The quantitative analyses of densitometric values of blots (data in C, normalized to the levels of β-actin.) from 9 sets of samples derived from lung cancer patients and the brain metastatic lesions derived from the other lung cancer patients (BrM, n = 10). (E) Schematic illustration of in vivo selection of highly brain metastatic derivative lung cancer cells (LLC BrMs). (F) The identification of in vivo selection of highly brain metastatic derivative cells. Fourteen days after orthotopic brain injection of LLC BrM cells, the representative images of the tumor mass in mice brains were shown by the white circle. The brain sections were subjected to histological analyses by light microscope and immunofluorescence staining for CK19, as a marker of LLC cells. Scale bar, 50 μm. (G) The expressions of Dkk-1 in three rounds brain metastatic derivative cells were detected by western blot. β-actin was used as the loading control. The densities of Dkk-1 were quantified using Image J software and the results were presented as the amounts of Dkk-1 normalized against β-tubulin. A representative blot was shown in the below.




The Reduction of Dkk-1 in Brain Metastatic Lung Cancer Cells Conferred the Activation of Microglia in Metastatic Microenvironment

To determine the extent to which microglia was directly trigged in brain metastatic lesions, we collected the brain tissue sections after inoculation with three rounds of LLC cell populations. Confocal microscopy of immunofluorescence showed that the activated microglia cells were identified as round cells with shortened cell process and immune-reactive to Iba1. Along with the enlargement of metastatic lesions, the microglia massively was infiltrating into the metastatic foci (Figure 6A). Moreover, the amounts of Iba-1-positive microglia cells were increased dramatically in the LLC BrM3-derived lesions compared to the other groups (Figure 6B and Supplementary Figure 11). Because the expression of Iba1 only indicated the highly activated microglia in brain, we further analyzed the expression of M1/M2-like markers in brain metastatic foci micro-dissected from the LLC BrMs-bearing mice. The results showed that IL-1β expressions, a M1-specific marker, were gradually decreased from LLC BrM1 to LLC BrM3 metastatic foci, whereas the levels of M2-specific markers, arginase-1 and CD206, were on the rise (Figure 6C). Therefore, further results from the cellular co-cultured system in vitro confirmed that the potency of LLC cells colonization into brain was a determinant of the degree of microglia activation (Figure 6D and Supplementary Figure 12A). Therefore, it was a possibility that the decline of Dkk-1 in lung cancer cells was a result of lung cancer cells survival in the brain. To test this hypothesis, we performed the neutralized and rescued experiments through the addition of anti-Dkk-1 antibody and a recombinant Dkk-1 protein, respectively. As shown in Figure 6E, the different LLC BrMs cells were seeded on Transwell membrane of the apical chambers and BV2 cells were plated in the basal chambers. Given the levels of Dkk-1 in three BrM cell lines, we treated LLC BrM1 cells with a blocking Dkk-1-specific antibody and LLC BrM3 cells with a recombinant Dkk-1 protein, respectively. Compared to the IgG control, the blockage of Dkk-1 derived from LLC BrM1 cells could obviously lead to an increment of M1 marker and a reduction of M2 markers (Figure 6F). Instead, the application of recombinant Dkk-1 protein to LLC BrM3 cells brought about the opposite results (Figure 6G). Moreover, a shift of M1 to M2 phenotypic microglia was shown in LPS-active BV2 microglia co-cultured with the different BrMs cell populations, which was dependent on the abilities of BrMs cells colonization into the brain (Supplementary Figures 12B,C). Collectively, our results suggested that a reduction of endogenous Dkk-1 in lung cancer cells after colonization into brain would control microglia to acquire a pro-tumorigenic phenotype.
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FIGURE 6. The reduction of Dkk-1 in brain metastatic lung cancer cells was conducive to the phenotypic polarization of microglia in metastatic microenvironment. (A) The confocal microscopy images of immunofluorescence staining for Iba1 in the brain sections of LLC BrM cells-bearing mice. Scale bar, 100 μm. (B) The quantitative analysis for the numbers of Iba-1-positive microglia cells in LLC BrM cells-bearing mice brain. The histograms represented the average numbers of Iba-1-positive microglia cells from the total 6 random visual fields in three independent experiments. (C) The qRT-PCR analyses for M1/M2-like markers in brain metastatic foci microdissected from the LLC BrMs-bearing mice. The results were presented as mean ± SD of three independent experiments. (D) The qRT-PCR analyses for M1/M2-like markers in BV2 cells co-cultured with LLC brain metastatic derivative cells. The results were presented as mean ± SD of three independent experiments. (E) Schematic illustration of the neutralized or rescued experiment through treatment with an anti-Dkk-1 antibody or a recombinant Dkk-1 protein, respectively. (F) The qRT-PCR analyses for M1/M2-like markers, IL-1β, arginase-1 and CD206, in BV2 cells co-cultured with LLC BrM1 cells as shown in (E). The rabbit IgG was used as the control. The results were presented as mean ± SD of three independent experiments. (G) The qRT-PCR analyses for M1/M2-like markers, IL-1β, arginase-1 and CD206, in BV2 cells co-cultured with LLC BrM3 cells as shown in E. BSA was used as the control. The results were presented as mean ± SD of three independent experiments.




DISCUSSION

The microenvironment is gradually recognized as a profound determinant of tumor progression and therapeutic target. Composed of neurons, glial and protected by the BBB, the brain microenvironment is very complicated and unique. The whole microenvironment regulation of the brain metastatic cascade is pretty complicated, such as BBB transmigration, pro-apoptotic functions, astrocyte crosstalk, T lymphocytes cell responses and so on. Here, our data revealed that lung cancer cells could control the levels of Dkk1 in brain metastatic cascades, leading to the shaping of the pro-tumorigenic microenvironment in different phases: a pre-metastatic niche with insensitive microglia without tumor elements, and a micro-metastatic niche characterized by the presence of active microglia and lung cancer cells.

A key question in brain metastasis was the brain-preferential localization of certain tumor. It had been identified that tumor-derived exosome was a key regulator for the formation of the pre-metastatic niche in the secondary organs, serving as a mean of intercellular communication by transporting various biomolecules. Accumulated evidence had demonstrated that tumor-derived exosomes could educate brain-resident cells, such as brain endothelial cells, astrocytes, microglia, and neurons, favoring the disseminated tumor cells colonization into the brain (Hoshino et al., 2015; Zhang et al., 2015; Hoshide and Jandial, 2017; Kinjyo et al., 2019; Schulz et al., 2019; Xu et al., 2019). Microglia was regarded as the innate immune cell of CNS. As part of their constant surveillance, microglia executed host defense against infectious agents and neoplastic tumors in the CNS. Most in vitro and in vivo studies had mainly focused on the direct effects of tumor cell-derived exosomes on microglia, and indicated that tumor cell-derived exosomes could activate microglia to accelerate growth and invasion of metastatic tumors (Gener Lahav et al., 2019). A recent study reported that uptake of CEMIP exosomes by microglial cells in ex vivo brain slice induced a pro-inflammatory signature microglia (M1) to promote brain vascular remodeling and metastasis (Rodrigues et al., 2019). However, the other study showed that the exosomes derived from the XIST-knockdown breast cancer cells induced the conversion of microglia from M1 to M2 phenotype in the brain metastatic lesions (Xing et al., 2018). Moreover, 98% exosomes derived from the brain-seeking subline of breast cancer cells almost completely harbored into brain endothelium after retro-orbital injection into mice, suggesting that brain endothelial cell was an first recipient for exosomes from extra-cerebral cancer cells (Bos et al., 2009; Hoshino et al., 2015). Here, we constructed two animal models for inoculation with lung cancer cells-derived exosomes and observed the effects of tumor exosomes when they entered the brain via the different routes, retro-orbital vein and cerebral ventricle, respectively. Similarly, our results also indicated that the brain endothelia cells predominantly up-took lung cancer cells-derived exosomes in vivo and in vitro. Moreover, the retro-orbital injection of LLC-derived exosomes, mimicking the systemic exosomes released by primary tumor traveling to brain, led to a significant reduction of Iba1-positive cells in the cortex compared to the intra-ventricular injection. The cellular co-cultured experiments further indicated that a suppressive signal was outputted by brain endothelium after internalization with LLC-derived exosomes to attenuate the activity of microglia inside brain. Recently, the concept of the NVU was proposed to emphasize the unique intimate relationship between the intra-cerebral cells and the cerebral vasculature. The dynamic communication between cancer cells and NVU elements provided insights into the role of brain microenvironment in metastasis. It had been well reported that the components in NVU played the crucial roles in creating a permissive niche that driven metastatic cascade (Phillips et al., 2016; McConnell et al., 2017; Gener Lahav et al., 2019; Prakash et al., 2019; Schulz et al., 2019). Among them, brain-resident microglia was responsible for the immune privileged status of CNS. It was tempting to speculate that the initial and essential role of microglia at the pre-metastatic niche might be the resistance to the invading tumor cells. Different microglial-derived factors including proteases (e.g., Ctss, Mmp3, and Mmp9), Wnt signaling components or chemokines (e.g., Cxcl12) have been implicated in assisting tumor cells to cross the BBB and colonize the brain parenchyma. Here, our findings showed that there was an absolutely less M1 polarized microglia and a relatively more M2 polarized microglia in pre-metastatic cerebral parenchyma after the primary lung cancer cells-derived exosomes had been incorporated into the brain endothelium. Therefore, we inferred that the primary lung cancer cells-derived exosomes might transfer a suppressive signal from brain endothelium to microglia, which facilitated microglia in the pre-metastatic niche to acquire a tumor-promoting phenotype.

What was an inhibitor signal occurred in the brain endothelium after uptake of lung cancer exosomes? To ascertain the question, we performed a profile of cytokines to look for a relative factor. The Dkk-1 was identified as a potential effector based on its inhibitory effect on Wnt signaling, a pathway that was always over-activated in cancer. Dkk-1 had been widely investigated in various cancers, in which high levels of Dkk-1 were correlated with poor overall survival (Politou et al., 2006; Yang et al., 2013; Dong et al., 2014; Rachner et al., 2014). Additionally, some studies implied that Dkk-1 could serve as a modulator to alter the cancer metastasis-associated microenvironment. In the context of multiple myeloma, the Dkk-1 in the bone microenvironment contributed to the development of focal osteolytic lesions and indirectly facilitated multiple myeloma metastases to bone (Faict et al., 2018). Dkk-1 promoted vasculogenic mimicry formation by inducing NSCLC cells to acquire cancer stem-like cell characteristics (Yao et al., 2016). These findings suggested that Dkk-1displayed more pleiotropic effects in tumor development, not only transforming tumor cells themselves, but also creating a hospitable niche that allowed tumor cells survival and proliferation. A recent study demonstrated that Dkk-1 was a Janus-faced molecule, that is, Dkk-1 could promote breast-to-bone metastasis and inhibit breast-to-lung metastasis (Zhuang et al., 2017). It proposed concept that the microenvironment in the secondary organs might restrict the role of Dkk-1 in cancer metastasis. Because the arrival of lung cancer exosomes was prior to lung cancer cells colonization into brain, the release of Dkk-1 from brain endothelium after uptake of exosomes seemed to be an early event. To exclude whether tumor-derived exosomes carried Dkk-1 and transferred to brain endothelial cells, we examined the levels of Dkk-1 in the different lung cancer cells-derived exosomes and found that there was no Dkk-1 detected in lung cancer cells-derived exosomes (Supplementary Figure 13). Dkk-1 not only impaired the sensitivity and reactiveness of microglia to inflammatory stimuli, but provided a synergism signal to facilitate the phenotypic switch of microglia. Thus, an absolutely less M1 polarized microglia and a relatively more M2 polarized microglia might cause the deficits of immune response during the initial phase of pre-metastatic niche formation. It had been reported that Dkk-1 played an immune-modulatory role through direct targeting of β-catenin in myeloid-derived suppressor cells (MDSC) (D’Amico et al., 2016). Here, we revealed that Dkk-1 secreted by brain endothelium contributed to the immune suppression in pre-metastatic niche by controlling the plasticity of microglia. That is, Dkk-1 might directly hold microglia in an inactive state; meanwhile indirectly drive the existed pro-inflammatory M1-like microglia to transform into anti-inflammatory M2-like microglia. Thus, a supportive microenvironment in brain was built at the future metastatic site. A growing body of evidence had indicated that tumoral exosomes could weaken the activities of immune cells in the microenvironment, which diminished the immune surveillance (Greening et al., 2015). Given that the role of microglia was to guard, detect and respond to any insult; the insensitivity of microglia would weakened immune response in brain. For example, microglia activation was known as mandatory for the induction of T and B cells response to clean tumor cells, but loss of microglia would attenuate these effects (Yin et al., 2017). In the present study, we provided evidence to demonstrate that brain endothelium could accept the information of lung cancer cells-derived exosomes, and subsequently transfer a suppressive signal to microglia, resulting in a transition of active phenotype.

Because there was a more complicated cell-cell communication in brain, the role of NVU in the development of brain metastasis should be taken into account. To further confirm our results, we constructed the intra-cortical injection of LLC cells into mice in order to bypass the extravasation step of brain metastasis. It had been reported that even only a single tumor cell was sufficient to recruit and activate microglia (Van Hove et al., 2019). In established brain metastasis, tumor-associated microglia were the most abundant non-cancerous cell type and constituted up to 30% of the total tumor mass (Graeber et al., 2002; Watters et al., 2005). Here, the persistent re-inoculation of LLC cells enhanced their brain-tropic abilities, along with a substantial infiltration of M2-microglia into the tumor mass. However, the levels of Dkk-1 were instead decreased in LLC BrM cells with preferential colonization to brain. The analysis of clinical data was also supported that the levels of Dkk-1 was negatively correlation with the occurrence of lung cancer metastasis to brain. Further in vitro experiments demonstrated that brain metastatic lung cancer cells with low Dkk-1 induced microglia to obtain an anti-inflammatory property, known as a feature of brain micro-metastases. Our results were in accord with a serial previous study of brain metastasis, which had provided evidence to underline the role of Wnt signaling during cerebral colonization (Nguyen et al., 2009; Pukrop et al., 2010; Klemm et al., 2011).

In summary, we proposed a model whereby as a major component of BBB, the brain microvascular endothelium was an incipient target for lung cancer-derived exosomes. The lung cancer-derived exosomes induced brain endothelial cells to secrete Dkk-1. The Dkk-1 inside brain might directly hold microglia in an inactive state; meanwhile indirectly drive the existed M1-like microglia to convert into pro-tumorigenic M2-like microglia. These changes caused the deficits of immune response during the initial phase of pre-metastatic niche formation. When the metastatic cancer cells colonized into brain, the decline of Dkk-1 would remove the limitation of immune suppression on microglia and facilitate them to acquire a tumor-supportive phenotype (Figure 7). Our findings shed a new light on the synergistic reaction of the different cells in NVU toward the metastatic messages from primary lung cancer cells, emphasizing the unique role of NVU in organotropism to brain. Therefore, the interventions that control early activation of microglia might provide a potential therapeutic pathway for lung cancer metastasis to brain.
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FIGURE 7. A proposed model for lung cancer cells-controlled Dkk-1 production in brain metastatic cascades driving microglia to acquire a pro-tumorigenic phenotype. As a major component of BBB, the brain microvascular endothelia cells were the primary target for lung cancer-derived exosomes. The incipient exosomes induced the release of Dkk-1 from brain endothelial cells. The Dkk-1 inside brain might directly hold microglia in an inactive state; meanwhile indirectly drive the existed M1-like microglia to convert into the pro-tumorigenic M2-like microglia. An absolutely less M1 polarized microglia and a relatively more M2 polarized microglia caused the deficits of immune response during the initial phase of pre-metastatic niche formation. When the metastatic lung cancer cells emerged into brain, the decline of Dkk-1 in metastatic lung cancer cells would facilitate microglia to acquire tumor-supportive phenotype and massively infiltration into metastatic lesion.
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The tumor biomarkers already have proven clinical value and have become an integral part in cancer management and modern translational oncology. The tumor tissue microenvironment (TME), which includes extracellular matrix (ECM), signaling molecules, immune and stromal cells, and adjacent non-tumorous tissue, contributes to cancer pathogenesis. Thus, TME-derived biomarkers have many clinical applications. This review is predominately based on the most recent publications (manuscripts published in a last 5 years, or seminal publications published earlier) and fills a gap in the current literature on the cancer biomarkers derived from the TME, with particular attention given to the ECM and products of its processing and degradation, ECM-associated extracellular vesicles (EVs), biomechanical characteristics of ECM, and ECM-derived biomarkers predicting response to the immunotherapy. We discuss the clinical utility of the TME-incorporating three-dimensional in vitro and ex vivo cell culture models for personalized therapy. We conclude that ECM is a critical driver of malignancies and ECM-derived biomarkers should be included in diagnostics and prognostics panels of markers in the clinic.
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Introduction

Cancer remains one of the leading causes of deaths globally with a strong tendency to become the “number one killer disease” in the 21st century (1). Despite the recent achievements in understanding how malignant tumor arise and develop there are many unique aspects of tumorigenesis which are not fully understood, one of them is how the tumor microenvironment (TME) orchestrates a wide array of events in the tumor initiation and progression. The studies focusing on the role of TME in cancer initiation and progression may identify novel therapeutic targets and biomarkers derived from within the TME, with clinical translational potential.

A biomarker is a biological characteristic that can be identified and objectively evaluated as an indicator of a normal or pathological biological process (2) and may serve for various clinical purposes (3, 4). The prognostic biomarkers can predict favorable or unfavorable outcome of disease irrespective of the therapy, predictive biomarkers may foresee favorable or unfavorable response to the therapy. It is apparent now that only genomic biomarkers are not clinically informative enough, and the set of available diagnostic tools should be expanded (5). The growing number of studies demonstrates that biomarkers identified not only in the tumor cell itself, but also within the TME are valuable diagnostic tools (6–8) (Supplementary Table 1). These biomarkers include bio-mechanical characteristics of ECM, structural components of ECM, products of ECM biosynthesis, processing, degradation, proteinase inhibitors, as well as activators, circulating EVs, cytokines, and others. There are a number of techniques allowing detection of such biomarkers in a clinical setting, such as ELISA (9), microscopy and imaging analysis (10), mass-spectrometry (11) including MALDI imaging mass-spectrometry applied to analysis of formalin-fixed paraffin-embedded tissues (12), immunohistochemistry (13), Western blotting (14), RT-qPCR (15), and others.

In the present review, we will provide a framework for understanding the role of TME-associated biomarkers in cancer pathogenesis and discuss their clinical utility in precision oncology, with special emphasis on biomarkers predicting response to immunotherapy. Particular focus is given to the ECM-derived protein markers, EVs and their molecular cargo, biomechanical characteristics of ECM, and ECM-incorporating 3D cell culture models for translational oncology.



ECM Components as Cancer Biomarkers

ECM is an extracellular three-dimensional (3D) maze-like structure formed by a variety of macromolecules such as proteins, proteoglycans, glycoproteins, polysaccharides, and others (16, 17). It also contains multitude of matrix-stored regulatory and signaling biomolecules, such as growth factors and cytokines, circular RNAs (circRNAs), and miRNAs within the TME-associated exosomes, and others (18, 19). Structurally, the ECM comprises the basal membrane and the interstitial tissue. The components of ECM, also referred to as “matrisome” (20), are produced by the cells of several types, predominantly fibroblasts (21). Interactions of cell surface receptors with the components of ECM enable cell-ECM adhesion, which is vital for many types of anchorage-dependent cells (22). ECM has a plethora of functions—it creates a niche for stem cells and regulates intercellular chemical and mechanical signaling networks, angiogenesis, innate and adaptive immune response, and migration and invasion of the cells (23–25). All this makes the ECM one of the key regulators of cancer progression and response to the therapy, capable of modulating fundamental hallmarks of cancer (26).

The molecular composition, mechanical properties of ECM, its infiltration by immune cells and stromal cells is heterogeneous and immensely diverse in different types of tumor tissues. To accommodate the specific needs of the tumor, both cancer cells and tumor-associated stromal cells modify ECM by producing and secreting ECM-modifying enzymes. For example, fibroblasts associated with tumor tissue (cancer-associated fibroblasts, CAFs) and tumor-associated macrophages (TAMs) modify ECM to create a metastasis-permissive environment (27, 28). Many components of ECM are deregulated in cancer, and some oncogenic macromolecules within the tumor ECM are upregulated whereas tumor-suppressors are downregulated (29) (Supplementary Table 1). The analysis of expression of 820 matrisome genes across a panel of 32 malignant tumors has identified universal pan-cancer gene signatures which supposedly might be used for diagnostics (30). Recent study of the changes in the matrisome during the cancer progression identified expression patterns of the 22 genes associated with shorter overall survival of patients with ovarian and several other solid tumors (31). Several independent attempts have also been made to characterize the profile of ECM-derived biomarkers for a particular type of cancer and identify cancer-specific markers for clinical application (Supplementary Table 1).

Some ECM-derived peptides, termed “matrikines” or “matricryptines”, have cytokine-like activity (32). The matricryptines are generated by the structural or enzymatic modification of ECM resulting in exposure of the biologically active and previously hidden (“cryptic”) sites. It has been suggested recently that cryptic collagen elements serve as signaling hubs regulating tumor metastasis and growth (33). ECM may also evolve releasing biologically active substances, including matrikines, which may be used as “protein fingerprint” of cancer. One of them is Tumstatin derived from collagen type IVα3 and described as a biomarker for non-small-cell lung cancer (NSCLC) (34).

Importantly for transnational oncology, ECM-derived biomarkers may reflect response to therapy, including immunotherapy. Whereas the role of stromal cells within TME in immune response is comprehensively studied and reviewed elsewhere (35), the role of ECM and products of its modification as biomarkers of tumor response to immunotherapy is not well known. Recent study demonstrated that tumor matrisome gene signatures are predictive biomarkers of resistance to ICT immunotherapy (36). Versican-derived matrikine versikine is a biomarker of tumor response to immunotherapy (37) and regulator of tumor infiltration by T-cells (38, 39) [notably, versican itself is upregulated in cervical cancer and leiomyosarcoma (40, 41)]. In patients with stage IV melanoma, collagen-derived biomolecules RO-C3, C1M, C3M, and C4M are biomarkers of poor response to the therapy with immune checkpoint inhibitor (ICI) ipilimumab (42). In patients with metastatic melanoma, blood-based biomarkers of type III collagen turnover are associated with worse overall survival and progress-free survival following PD-1 inhibition immunotherapy (43). In a clinical scenario, the ECM-turnover associated with the response of melanoma to immuno-therapy might be assessed in a “liquid biopsy” (44), and allows to stratify patients with metastatic melanoma according to their response to ICI therapy (45). Finally, many protein biomarkers of tumor invasiveness localized in ECM have been identified (comprehensively reviewed in (46).

Aforementioned, many soluble ECM-derived molecules arising from within a solid tumor can be found in a peripheral blood, are detectable using routine laboratory methods such as immunoassays (42, 43), and may therefore be used as a non-invasive “liquid biopsy” biomarkers. This makes them very attractive for use in clinics (47), the only limitation of their use being sensitivity and specificity of the immunoassay.



Mechanical and Physical Properties of ECM as Cancer Biomarkers

Mechanotransduction, also known as mechanosignaling, is a process through which cells initiate a biochemical process in response to mechanical signals. The stiffness, topology, and other mechanistic characteristics of the ECM are critical drivers and regulators of the tumor progression, affecting cancer cell biology via the mechanotransduction [comprehensively reviewed in (48–50)] and therefore can be used as biomarkers of malignancy (51, 52). The phenomenon of durotaxis (directed migration of the cells in response to the gradient of stiffness of the substrate) also plays an important role in tumorigenesis (53, 54).

The biomechanical properties of the ECM dynamically change over the course of the disease and differ between tumor and matched normal tissue. In many types of solid tumors, ECM within the tumor tissue is more rigid than ECM of matched non-tumorous tissue (55) mostly because of the elevated deposition and cross-linking of collagen type I, which can be detected by the imaging or manual examination. Such stiffness of the ECM induces epithelial-to-mesenchymal transition (EMT) of the cancer cells, thus resulting in a metastatic phenotype, for example, in pancreatic ductal adenocarcinoma (56) and in hepatocellular carcinoma (57). On the other hand, ovarian cancer cells undergo EMT on softer substrates (58), and soft matrices enhance cancer stem cell phenotype in hepatocellular carcinoma (59). This should be considered then developing therapeutic approaches aimed to modify softness/rigidity of the ECM and targeting its mechanical features (60, 61).

The overall role of the biomechanical properties of ECM in several types of cancer, for example, esophageal cancer (62), ovarian cancer (63), and colorectal cancer (64), has been comprehensively reviewed recently (Supplementary Table 1). The stiffness of the ECM can also be a biomarker predicting response to the chemotherapy; for example, it has been shown that in case of pancreatic ductal adenocarcinoma it induces chemoresistance to paclitaxel, but not to gemcitabine (56). Furthermore, the mechanical characteristics of ECM play a role in immune oncology and therefore might be a biomarker of response to immunotherapy. For example, stiffness of ECM modulates PD-L1 expression in lung cancer (65) and breast cancer cells (66) and regulates activity of T-cells within the tumor tissue (67).

There are several powerful tools and approaches available to assess mechanical and physical properties of TME, for example, high resolution Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Spatial Light Interference Microscopy (SLIM), and others (64, 68–70). The Multiphoton Microscopy and Second Harmonic Generation (SHG) imaging can be applied to analyze “evolution” of collagen within the ECM during tumor progression (71). That said, non-invasive imaging techniques, such as Ultrasound Elastography, Magnetic resonance elastography, Magnetic Resonance Imaging (MRI), and others might still be a good option for assessing biomechanical characteristics of the tumor tissue in clinic (72–74).



Extracellular Vesicles as Cancer Biomarkers and Regulators of TME

Within the TME, cells communicate via different mechanisms including extracellular vesicles (EVs). EVs are carriers of a biologically active molecular cargo (lipids, nucleic acids, proteins, mRNA, miRNA, circRNA, lncRNA, and others). As some of the contents of EVs may modulate ECM [for example, matrix-remodeling enzymes (75)] or participate in a cross-talk of the cancer cell with stromal cells, thus contributing to chemotherapy resistance or metastasis, there is a possibility to use EVs within a TME as a therapeutic targets and therapeutic biomarkers. Moreover, the possibility to detect tumor-derived EVs in a bloodstream makes them attractive for use in a clinical setting (76).

In the context of ECM, there is a subset of matrix-bound nanovesicles (MBVs) (77, 78) present within the ECM rather than in biological fluids. They are embedded into the ECM, express surface antigens that are commonly found on exosomes, and can be isolated from the matrix only by methods of enzymatic digestion of ECM scaffolds (77). Their molecular cargo comprises miRNAs and is capable of changing the phenotype of the cells exposed to the contents of MBVs, for example, affecting the phenotype of macrophages (78). MBVs are integral and distinct components of ECM, and their content is unique to cellular origin (78). Recently, it has been demonstrated that MBVs can suppress pro-inflammatory signaling in microglia and astrocytes (79). So far, the literature exists only on MBVs found in non-timorous ECM, but we propose that tumor-specific MBVs may also be found. If molecular cargo of MBVs is cell type-dependent and unique to cellular origin, as demonstrated by Hussey et al., the MBVs derived from tumor ECM most likely will also have unique and tumor-specific characteristics. Further studies on this subject should be carried out on various types of malignancies to assess feasibility of using MBVs as potential biomarkers.

Finally, the promising avenue in translational oncology is a possibility to study EVs in vitro using cell culture models to identify and characterize novel cancer biomarkers. It has been demonstrated recently that there are cell culture-dependent differences in the content and production of EVs (80). The essential molecular cargo components of EVs secreted by cancer cells cultured in vitro in two-dimensional (2D) or 3D format are different, and EVs from 3D culture have much higher similarity to the EVs secreted in vivo by tumor tissue (81), and the spectrum of small RNAs in EVs derived from cells in 3D culture has approximately 96% similarity to EVs from cancer patient’s plasma (81). This provides a rationale for developing 3D cell culture-based in vitro model systems for cancer biomarkers identification.



3D Cell Culture Models Incorporating TME as a Testing System in Translational Oncology and Personalized Therapy

Over the past decades, significant progress has been made in developing ex vivo models that recapitulate in vivo tumor characteristics including response to the therapy. It is apparent now that in vitro 2D culture of cells on glass or plastic is not an accurate model of in vivo “biological reality”. Moreover, mono-culture of cancer cells is a less accurate model compared to the co-culture of cancer cells and stromal cells. Adding to this complexity, compared to the 2D culture, the in vitro 3D cell culture models, especially the models including ECM, more closely resemble in vivo TME, better reproduce a variety of conditions such as inter-tumor heterogeneity of hypoxia in vivo, and more closely resemble a patient’s response to the therapy compared to a 2D mono-culture, as have been demonstrated in many studies.

Currently, 3D systems with tunable ECM stiffness, bio-printed 3D cell culture systems incorporating TME, systems based on 3D culture of patient’s tumor tissue, and systems utilizing decellularized ECM from the patient’s tumor have been established (82–85). Such systems have a clear potential for use in translational oncology. For example, a 3D in vitro model of pancreatic ductal adenocarcinoma (PDAC) mimicking mechanical properties of the TME potentially allows more accurately distinguish between pancreatic cancer and pancreatitis (86). A host of technologies and tools have been developed to study the impact of ECM biomechanics on a cell behavior in a variety of 3D cell culture models [comprehensively reviewed in (87)].

Three-dimensional cell culture systems also have proven to be a “biomarkers goldmine”—a valuable tool for biomarker identification (88). For example, using 3D culture model with decellularized ECM scaffolds (dECM) allowed to identify full-length Collagen VI as a driver of breast cancer cell invasion in obesity and metastasis (89). In colorectal cancer, the patterns of expression of miRNA dependent on 3D microenvironment have been characterized, and one of them (miR-142-5p) was identified as a theranostic biomarker (90). As applied to clinical scenarios, the 3D cell culture models incorporating TME are referred to as a “patient’s avatar” (91) and “patient-on-a-chip” (92) models, and can allow to identify biomarkers of individual response to the therapy. For example, patient-derived 3D organoid culture of breast tumor was utilized to choose personalized chemotherapy (93). The feasibility of the automated real-time pharmacokinetic profiling in 3D tumor models has been demonstrated (94), and 3D micro-tumor platform comprising ECM-derived hydrogel and patient-derived colorectal tumor tissue has been created for high-throughput screening of the chemotherapies in a patient-specific format (95). Further development of ECM‐mimicking scaffolds and 3D bio-printing (comprehensively reviewed in (96)) can potentially assist in personalized therapy, although it has been suggested that some 3D cell culture models are rather too complex for routine implementation in clinics at this stage (97), and clinical use of such models would require a high level of methodological (as well as clinical) validation (98). In the next few years, we expect to see a growing number of publications in this emerging field of research.

Overall, the recognition that TME is one of the drivers of malignancy (Figure 1) changes the current approach to how malignant tumors will be diagnosed and treated. Here, we emphasize that all types of the TME components depicted in Figure 1 (such as ECM and its mechanical or biological characteristics, EVs, phenotype of stromal cells, and others) have a potential to serve as biomarkers.




Figure 1 | Schematic depiction of the TME and its multiple roles in the tumor initiation and progression.





Conclusion

ECM-derived biomarkers have a great potential in translational oncology and in clinical use. Hitherto, many novel biomarkers arising from within the ECM have been identified, although the clinical utility of many of them remains to be assessed. Based on a multitude of recent studies, we conclude that TME should be included into the in vitro and ex vivo models for cancer drug development and personalized therapy. In particular, 3D cell culture models incorporating TME and tumor-specific mechanistic characteristics of ECM, such as stiffness and topology, are more accurate and physiologically relevant models of the tumor compared to the traditional cell culture or animal xenograft models.
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Background: Immunotherapy and sorafenib exert anti-tumor effects via ferroptosis, but reliable biomarkers for the individual treatment and prognosis prediction of hepatocellular carcinoma (HCC) based on the ferroptosis and immune status remain lacking.

Methods: Ferroptosis-related genes (FRGs) were identified by downloading data from FerrDb and by searching and reading original articles from PubMed. Immune-related genes (IRGs) were downloaded from ImmPort. Prognostic FRGs and IRGs in the GSE14520 (n = 220) and The Cancer Genome Atlas (TCGA, n = 365) datasets were identified. Least absolute shrinkage and selection operator (LASSO) Cox regression and multivariate Cox regression were used for model construction. Ferroptosis expression profiles, the infiltration of immune cells, and the somatic mutation status were analyzed and compared.

Results: Twenty-seven prognostic ferroptosis- and immune-related signatures were included to construct a comprehensive index of ferroptosis and immune status (CIFI). A subgroup of patients was identified as having a high CIFI value, which was associated with a worse prognosis. This subgroup of patients had significantly up-regulated expressions of many suppressors of ferroptosis and higher fractions of immunosuppressive cells, such as cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs). Notably, somatic mutation analysis indicated that high-CIFI patients had higher levels of tumor heterogeneity and higher mutation frequencies of genes like TP53.

Conclusion: In this work, a novel prognostic classifier was developed based on ferroptosis- and IRGs in HCC, and this classifier could be used for prognostic prediction and the selection of patients for immunotherapies and targeted therapies.

Keywords: ferroptosis, immune, hepatocellular carcinoma, prognosis, personalized therapy


INTRODUCTION

Hepatocellular carcinoma (HCC) is a lethal disease with high incidence and dismal prognosis (Hartke et al., 2017; Kulik and El-Serag, 2019). Even among patients who receive resection at an early stage, HCC reoccurs in more than half within 2 years (Tabrizian et al., 2015). Sorafenib and lenvatinib are the two first-line therapies for advanced HCC patients, who show a medium overall survival (OS) of around 1 year with the treatment (Llovet et al., 2008; Kudo et al., 2018). Many phase I and II clinical trials suggest that immune-based therapies, including anti-CTLA-4, anti-PD-1, and anti-PD-L1 strategies, benefit HCC patients (Hilmi et al., 2019). A recent phase III study also indicated that unresectable HCC patients who receive atezolizumab plus bevacizumab as a first-line treatment have a 1-year survival rate of 67.2% and a median progression-free survival of 6.8 months, which are better than those of patients who receive only sorafenib (Finn et al., 2020a). However, another immune checkpoint inhibitor, pembrolizumab, failed to reach its primary end-points as a second-line therapy against HCC in a randomized, double-blind, phase III trial (Finn et al., 2020b). Nivolumab also failed to prove its superiority over sorafenib in a phase III trial (Liu Z. et al., 2019). These results suggest that HCC might have a complex immune status, and more studies are required to understand its underlying mechanisms.

Ferroptosis might be one such essential mechanism in HCC that deserves attention. As an iron-dependent, lipid peroxidation-mediated form of cell death, ferroptosis is distinct from apoptosis, necrosis, and autophagy (Dixon et al., 2012). Since its first definition in 2012, numerous genes have been identified to regulate this new form of cell death (Dixon et al., 2012; Hassannia et al., 2019). Some are well-defined suppressors of ferroptosis (SOFs), some are drivers of ferroptosis (DOFs), and some genes, like TP53, could act as a SOF or DOF in a context-dependent manner (Jiang et al., 2015; Tarangelo et al., 2018). A remarkable study was conducted by Wang W. et al. (2019), who reported that CD8+ T cells enhance ferroptosis by down-regulating SLC3A2 and SLC7A11, and the induction of ferroptosis contributes to the anti-tumor efficacy of immunotherapy, suggesting that the immune system might, at least in part, function through ferroptosis (Stockwell and Jiang, 2019). Moreover, ferroptotic cancer cells might release signals like oxidized lipid mediators to affect anti-tumor immunity, or a small proportion of cells undergoing ferroptosis might suppress the immune system and allow tumor growth (Friedmann Angeli et al., 2019). However, a comprehensive regulatory network between ferroptosis and immune response is currently lacking, as few studies have explored their relationship.

Sorafenib, the standard first-line therapy against advanced HCC, also exerts cytotoxic effects via the induction of ferroptosis (Louandre et al., 2013, 2015; Galmiche et al., 2014). Several genes have been reported to regulate the sensitivity of HCC cells to sorafenib by enhancing or inhibiting ferroptosis (Louandre et al., 2015; Sun et al., 2016a; Feng et al., 2020). For instance, the down-regulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) attenuates sorafenib-induced lipid peroxidation and ferroptosis (Feng et al., 2020). Additionally, the sorafenib-induced up-regulation of metallothionein 1G (MT1G) in HCC suppresses ferroptosis and contributes to the acquired sorafenib resistance of the disease (Sun et al., 2016a).

Consequently, ferroptosis, a biological process in which immune therapy and sorafenib converge to exert an anti-tumor effect, might have a fundamental impact on the treatment response of HCC. The understanding of the occurrence and regulation of ferroptosis has increased considerably in recent decades; however, only a few studies have explored the ferroptosis-related genes (FRGs) and pathways in HCC (Louandre et al., 2013, 2015; Carlson et al., 2016; Houessinon et al., 2016; Sun et al., 2016b; Bai et al., 2019; Qi et al., 2019; Feng et al., 2020; Kim et al., 2020). With the currently available FRGs and immune-related genes (IRGs), and the accumulative data deposited in public databases like The Cancer Genome Atlas (TCGA), it is hypothesized that a prognostic molecular classifier based on the immune response and ferroptosis status might help to identify subgroups of HCC patients with distinct ferroptosis-immune phenotypes and survival profiles. In the present work, it is demonstrated that a comprehensive index of ferroptosis and immune status (CIFI) developed from FRGs and IRGs is tightly correlated with the actual ferroptosis and immune status, as well as the prognosis of HCC patients.



MATERIALS AND METHODS


Study Population and Data Acquisition

Publicly available data on HCC were downloaded from the Gene Expression Omnibus (GEO) database (GSE14520/GPL3921) and TCGA, and were processed as reported in the authors’ previous study (Zhang J. et al., 2020). Patients who met the following selection criteria were included: (a) histologically diagnosed with HCC; (b) available gene expression data; (c) available survival information. The first sample according to the label was selected if the same patient had two or more samples in the TCGA dataset. The baseline characteristics of patients in these two cohorts are summarized in Table 1.


TABLE 1. Baseline characteristics of HCC patients in the GSE14520 and TCGA cohorts.
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Generation of FRGs and IRGs

The FRGs were first downloaded from the FerrDb website.1 Because the database was last updated on February 23, 2020, PubMed2 was searched with the keyword “ferroptosis” on July 13, 2020, and 1,113 records were obtained. The authors read all the original articles and supplemented the list of FRGs (Supplementary Table 1) with the following criteria: (a) the inhibitor(s) or activator(s) of the gene could regulate ferroptosis; (b) the over-expression or down-regulation of the gene could regulate ferroptosis. Non-coding RNAs (ncRNAs) and markers of ferroptosis were not included. A total of 283 FRGs were identified, and are summarized in Supplementary Table 1. These FRGs were further divided into two groups based on their regulatory effects on ferroptosis, namely DOFs and SOFs.

The comprehensive list of IRGs was downloaded from ImmPort3 on August 2, 2020, as reported in other studies (Li et al., 2017; Zheng et al., 2020). The FRGs and IRGs available in the GSE14520 and TCGA datasets were included in this study.



Development of the CIFI

The FRGs and IRGs in the GSE14520 and TCGA were first respectively subjected to univariate Cox regression. The genes with prognostic significance (p < 0.05) in both datasets were input into a least absolute shrinkage and selection operator (LASSO) Cox regression model, which is a widely used machine learning algorithm that deals with multicollinearity (Gui and Li, 2005; Wu et al., 2019). The analysis generated crucial genes for model construction, and was achieved by using the “glmnet” package in R software (Friedman et al., 2010). A multivariate Cox regression model was applied to obtain the regression coefficients for these crucial genes. To reflect the comprehensive effects of the ferroptosis and immune status, a risk score of each patient was calculated by multiplying the normalized gene expression of each crucial gene with its corresponding regression coefficient. To facilitate the interpretation of results from different datasets, the CIFI value of each patient was calculated by using the risk score of the patient subtracted by the minimum risk score of the cohort, which was then divided by the maximum risk score of the cohort, namely CIFI = (Risk score−Min)/Max.



Functional Analysis and Heterogeneity

Gene Set Enrichment Analysis (GSEA software, version 4.0.3) was used to investigate the pathways enriched in the high- and low-CIFI subgroups. Gene expression data were loaded into GSEA, and c2.cp.v7.1.symbols.gmt was selected as the gene set database. The pathways with the following criteria were regarded to be significantly enriched: nominal p-value < 0.05, false discovery rate (FDR) q-value < 0.25, and normalized enrichment score (NES) > 1.

The crucial genes were constructed into a protein–protein interaction (PPI) network by uploading them into the STRING database.4 The network was visualized by Cytoscape (version 3.8.0). The expressions of these genes in tumor and normal samples were visualized by the “pheatmap” package in R. Principal component analysis (PCA) was carried out to examine the clustering efficacy of the prognostic signature with the “gmodels” package in R.

Somatic mutation data of the TCGA cohort were downloaded from the GDC database on August 7, 2020. The downloaded MAF files of simple nucleotide variation (workflow type: varScan2 variant aggregation and masking) were processed and visualized by the “maftools” package in R. The tumor mutation burden (TMB) and the mutant-allele tumor heterogeneity (MATH) score of tumor samples in the TCGA cohort were also calculated by the “maftools” package.



Immune Profile Analysis

To analyze the immune status of each sample in the GSE14520 and TCGA cohorts, the relative infiltrations of 28 immune cell types in the tumor microenvironment (TME) were calculated via single-sample GSEA (ssGSEA) with the application of the “GSVA” package in R. The feature gene panels for each type of immune cell were downloaded from the publication by Charoentong et al. (2017). The normalized gene expression data of the GSE14520 and TCGA cohorts were further uploaded into the EPIC website,5 and the proportions of eight categories of immune cells were estimated according to the instructions on the website (Racle et al., 2017).



Statistical Analysis

Univariate and multivariate Cox regressions were conducted by using the “survminer” package in R. The OS, relapse-free survival (RFS), disease-specific survival (DSS), and progression-free interval (PFI) of the high- and low-CIFI subgroups were compared using the Kaplan–Meier method with a log-rank test. Time-dependent receiver operating characteristic (ROC) analyses and the subsequent calculation of the area under the curve (AUC) were performed using the “timeROC” package in R. The “corrr” and “corrplot” packages were used to conduct the correlation analysis with the Pearson method. The significance of the differences in the expressions of specific genes or in the fractions of immune cells was assessed by the Wilcoxon test. Student’s t-test was used to compare the differences in the TMB and MATH scores between the high- and low-CIFI subgroups. The “ggplot2,” “ggforest,” “cowplot,” “plot3D,” “maftools,” “VennDiagram,” and “ggplotify” packages in R (version 4.0.2) were used for visualization. A p-value of less than 0.05 was considered to be statistically significant (∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ****p < 0.0001).



RESULTS


Construction of the CIFI Classifier in HCC

Populations of 220 patients from the GSE14520 dataset and 365 patients from the TCGA dataset were identified and included in this study (Table 1). The gene expression data were used to construct the CIFI classifier. In total, 279 FRGs (four genes were removed because they were identified as both DOFs and SOFs) and 952 IRGs in the two datasets were mapped and used for model construction (Figure 1A). Univariate Cox regression analysis was conducted to estimate the prognostic significance of these genes. The results showed that 85 genes in both the GSE14520 and TCGA cohorts had significant prognostic relevance (p < 0.05) (Figure 1B and Supplementary Table 2). The expressions of these 85 genes in the GSE14520 cohort are shown in Figure 1C. The PPI network of these genes demonstrates that the FRGs had strong correlations with the IRGs (Figure 1D).
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FIGURE 1. Identification of prognostic FRGs and IRGs in HCC. (A) A Venn diagram indicating that 1231 FRGs and IRGs were identified in the GSE14520 and TCGA cohorts. (B) A Venn diagram indicating that 85 prognostic genes were identified in the GSE14520 and TCGA cohorts. (C) A heatmap showing the expressions of the 85 prognostic genes in the tumors and normal tissues of the GSE14520 dataset. (D) A PPI network suggesting the relationship between FRGs and IRGs.


The LASSO Cox regression model was then applied to construct a prognostic model for the OS of HCC patients by using the gene expression data of the 85 genes in the GSE14520 dataset. The model identified 27 genes based on the optimal value of λ (Figures 2A,B). Among them, G6PD, WDR76, CA9, and AHCYL1 were FRGs, HMOX1, and FLT3 participated in both ferroptosis and the immune process, and the remaining 21 genes (SPP1, EPO, CKLF, GLP1R, LHB, NR1H3, ADM, GAL, IRF5, IL18RAP, SEMA3F, PLXNA2, MMP12, ANGPT1, ECD, FABP3, LANCL1, OGFR, GH2, STC1, and OSMR) were IRGs. A novel risk score was calculated by multiplying the gene expression of each gene and its corresponding coefficient, which was obtained by multivariate Cox regression analysis. The CIFI values were generated by the formula mentioned in section “Materials and Methods.” The correlation analysis indicated that the CIFI value was significantly correlated with the selected genes (Figure 2C), and the correlations between the CIFI values and FRGs are shown in Figure 2D. The HCC patients were stratified into high-risk (high-CIFI, n = 80) and low-risk (low-CIFI, n = 140) subgroups based on the optimal CIFI cut-off value (0.52), which was calculated by the surv_cutpoint function in the “survminer” package (Figure 2E and Supplementary Figure 1A). As illustrated in Figure 2F, the patients in the high-risk subgroup had more occurrences of death and shorter survival times. PCA revealed that the patients in these two subgroups were distinctively clustered (Figures 2G,H).
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FIGURE 2. Construction of a predictive model and the CIFI of HCC. (A,B) The LASSO Cox regression model was constructed from the 85 prognostic genes, and the tuning parameter (λ) was calculated based on the partial likelihood deviance with 10-fold cross-validation. An optimal log λ value is indicated by the vertical black line in the plot. (C,D) Correlation networks (C) between the CIFI value and the 27 signature genes or (D) between the CIFI value and the ferroptosis-related genes in the GSE14520 dataset. (E,F) The distribution and optimal cutoff value of (E) the risk scores and (F) the OS status and OS in the GSE14520 dataset. (G,H) The (G) 2D and (H) 3D plots of the PCA of the GSE14520 dataset based on the expression profiles of the 27 signature genes in different risk groups.


Time-dependent ROC curves were plotted by R software, and the AUC was calculated at different time points to estimate the predictive performance of the CIFI. As shown in Figure 3A, the AUC reached 0.76 at 1 year, 0.72 at 3 years, and 0.77 at 5 years, suggesting a favorable predictive value of the CIFI in short- and long-term follow-up. Kaplan–Meier curves indicated that patients with high CIFI values had significantly shorter OSs than their counterparts with low CIFI values (Figure 3B, p < 0.001). In addition, patients with high CIFI values relapsed earlier than those with low CIFI values (Figure 3C, p < 0.001).
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FIGURE 3. Time-dependent ROC analysis and Kaplan–Meier analysis of the CIFI-stratified patients in the GSE14520 cohort. (A) Time-dependent ROC analysis of the CIFI regarding the OS and survival status in the GSE14520 cohort. (B,C) Kaplan–Meier plots of the (B) OS and (C) RFS in the high-CIFI and low-CIFI subgroups of the GSE14520 cohort.




Validation of the CIFI Classifier in HCC

To validate the indicative CIFI value in a larger cohort of HCC patients, the CIFI values in the TCGA dataset (n = 365) were calculated using the same risk formula and cutoff point obtained from the GSE14520 dataset. Ultimately, 63.64% of the HCC patients (n = 232) in the TCGA cohort were categorized into the low-risk (low-CIFI) subgroup, while the remaining patients (n = 133) were categorized into the high-risk (high-CIFI) subgroup. Consistent with the results of the GSE14520 dataset, PCA indicated that the two subgroups in the TCGA cohort were distributed in discrete directions (Figures 4A,B). The AUCs for OS were 0.69 at 1 year, 0.7 at 3 years, and 0.73 at 5 years, indicating an increasing predictive value in long-term follow-up (Figure 4C). The medium OS time of the patients in the low-risk subgroup was 2,532 days, which was dramatically longer than that of patients in the high-risk subgroup (medium OS time: 899 days, p < 0.0001, Figure 4D). In addition, patients with low CIFIs had significantly longer DSSs (p = 0.00024, Figure 4E) and PFIs (p = 0.0038, Figure 4F).
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FIGURE 4. Validation of the CIFI in the TCGA cohort. (A) 2D and (B) 3D plots of the PCA of the TCGA dataset. (C) Time-dependent ROC analysis of the CIFI regarding the OS and survival status in the TCGA cohort. (D–F) Kaplan–Meier plots of the (D) OS, (E) DSS, and (F) PFI in the high-CIFI and low-CIFI subgroups of the TCGA cohort.




Ferroptosis Profile in the CIFI

A correlation analysis of the GSE14520 dataset revealed a correlation between the CIFI values and FRGs (Figure 2D). Because genes might either facilitate or suppress ferroptosis, the transcriptional changes of SOFs and DOFs in the CIFI-stratified subgroups were investigated. ATF4, CA9, EGLN1, ELAVL1, FTH1, GPX4, HELLS, ITGB8, NFE2L2, SLC7A11, SQSTM1, and VDAC2 are well-investigated SOFs (Dixon et al., 2012; Sun et al., 2016b; Chen et al., 2017; Jiang et al., 2017; Zhang et al., 2018; Bai et al., 2019; Li et al., 2019). It was found that, excluding GPX4, NFE2L2, and SQSTM1, the remaining SOFs were significantly up-regulated in the high-CIFI subgroup of the GSE14520 cohort (Figure 5A). The change of these genes was further validated in the TCGA cohort (Figure 5B). Although GPX4 was found to be significantly down-regulated in the high-CIFI subgroup of the GSE14520 dataset, such a change was not observed in the TCGA cohort (Figures 5A,B). Moreover, it was found that there were no significant differences in most of the DOFs (ALOX12, ALOX12B, ALOX15, ALOXE3, BECN1, BID, GOT1, PRKAA1, and PTGS2) at the transcriptional level between the high- and low-CIFI subgroups in the GSE14520 cohort (Supplementary Figure 1B). Moreover, ALOX15B and NOX1 were significantly down-regulated in the high-CIFI subgroup, while ACSL4 and ALOX5 were significantly up-regulated (Supplementary Figure 1B).
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FIGURE 5. Ferroptosis profiles in the CIFI-stratified groups. (A,B) Comparison of the expressions of the suppressors of ferroptosis between the high- and low-CIFI subgroups of the (A) GSE14520 and (B) TCGA cohorts. (C) GSEA of the CIFI-stratified groups in the GSE14520 and TCGA cohorts. **p < 0.01; ***p < 0.001; ****p < 0.0001.


Gene Set Enrichment Analysis was further conducted between the two subgroups of both the GSE14520 and TCGA cohorts. The results showed that the genes in the low-CIFI subgroups of the two cohorts were significantly enriched in ferroptosis-related biological processes like biological oxidation, fatty acid metabolism, peroxisome, mitochondrial fatty acid beta-oxidation, peroxisomal lipid metabolism, glyoxylate metabolism, and glycine degradation (Figure 5C). Considered together, these results suggest a ferroptosis-suppressed status of the high-CIFI subgroup.



Immune Profile in CIFI

To understand how the CIFI reflects the immune status of HCC, ssGSEA was first employed to calculate the immune enrichment scores of various immune categories in each patient, and their relationships with the CIFI value were investigated. Myeloid-derived suppressor cells (MDSCs) are immune-suppressing cells that contribute to the growth and invasion of HCC, while eosinophil inhibits the growth of the disease (Lin et al., 2017; Hollande et al., 2019; Lu et al., 2019). As shown in Figure 6A, the CIFI value was found to have a significant positive correlation with MDSCs in both the GSE14520 and TCGA datasets, while a significant negative correlation was observed between the CIFI value and eosinophil in both datasets. However, the CIFI value also exhibited positive associations with activated CD4 T cells and central memory CD4 T cells (Figure 6A), which are regarded as cytotoxic cells against HCC (Jin et al., 2018). The proportion of immune cells was also estimated by the EPIC application, and it was found that the CIFI value was positively correlated with the fraction of cancer-associated fibroblasts (CAFs) and negatively correlated with the fraction of macrophages (Figures 6B,C). The GDC website6 contains data on the fractions of immune cells in tumors of TCGA via application of the CIBERSORT method. As shown in Figure 6D, macrophages M0, plasma cells, neutrophils, and regulatory T cells (Tregs) were up-regulated in the high-CIFI subgroup of the TCGA cohort, while naïve B cells, resting mast cells, monocytes, resting natural killer (NK) cells, naïve CD4 T cells, and CD8 T cells were significantly down-regulated (p < 0.05).
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FIGURE 6. Immune profiles in the CIFI-stratified groups. (A) ssGSEA and correlation analysis of the CIFI value and the immune enrichment scores of immune categories in the GSE14520 and TCGA cohorts. (B,C) ECIP and correlation analysis of the CIFI value and the fraction of immune cells in the GSE14520 and TCGA cohorts. (D) Comparison between the fractions of immune cells in the high- and low-CIFI subgroups of the TCGA cohort via the CIBERSORT method. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.




Gene Mutation in CIFI

To investigate the difference in gene mutation between the high- and low-CIFI subgroups, simple nucleotide variation data were downloaded from the GDC database7 and processed with the “maftools” package in R. Supplementary Figures 1C,D present summaries of the gene mutation information of these two subgroups. As shown in Figure 7A, the top five genes with the highest mutation frequencies in the low-CIFI subgroup were CTNNB1 (31%), TP53 (24%), TTN (23%), ALB (15%), and MUC16 (15%), while those in the high-CIFI subgroup (Figure 7B) were TP53 (41%), TTN (24%), CTNNB1 (15%), MUC16 (13%), and CSMD3 (10%). HUME1, TP53, TSC2, DLG2, KANK1, IDH1, and COL3A1 were found to be highly mutated in the high-CIFI subgroup as compared to the low-CIFI subgroup, while CTNNB1 was found to be highly mutated in the low-CIFI subgroup (Figure 7C). Although the TMBs were not different between the two subgroups (Figure 7D), high-CIFI patients had higher MATH scores, demonstrating a higher level of tumor heterogeneity in this subgroup (Figure 7E, p = 0.018).
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FIGURE 7. Somatic mutation in the CIFI-stratified groups. (A,B) Oncoplots of the mutated genes in the (A) low-CIFI and (B) high-CIFI subgroups of the TCGA cohort. (C) Forest plot of the differentially mutated genes between the high- and low-CIFI groups. (D) TMB and (E) MATH scores in the high- and low-CIFI groups.




Independent Prognostic Value of the CIFI Classifier

The preceding analysis suggests that HCC patients with high CIFI values had a ferroptosis-suppressive and immune-suppressive status; this spurred an interest to analyze the associations between the CIFI value and clinicopathological features of these patients. As shown in Table 2, more patients in the high-CIFI subgroup in both the GSE14520 and TCGA cohorts were at an advanced TNM stage (stage III or IV, p < 0.001), and a considerably higher percentage of patients in the high-CIFI subgroup of the GSE14520 cohort were at an advanced BCLC stage (p = 4.88 × e–5). In addition, a significantly higher percentage of HCC patients in the high-CIFI subgroup of the GSE14520 cohort had cirrhosis (p = 0.009881), while no difference was observed in patients with fibrosis between the two subgroups of the TCGA cohort (p = 0.2979). Moreover, more patients in the high-CIFI subgroup of the TCGA cohort had higher histologic grades (G3 or G4, p < 0.001) or vascular invasion (p = 0.02296). High-CIFI HCC patients in the GSE14520 cohort had higher levels of AFP (p = 0.001172), and such a relationship was also observed in the TCGA cohort, although the result did not reach significance. No consistent differences were observed between CIFI value and age or gender in the GSE14520 and TCGA cohorts. Considered together, these results suggest that a high CIFI value is associated with worse clinicopathological features of HCC patients.


TABLE 2. Relationships between the CIFI value and clinicopathological features of HCC patients.

[image: Table 2]To determine whether the CIFI could serve as an independent prognostic predictor of OS, the clinicopathological features and CIFI values were first input into a univariate Cox regression analysis. As illustrated in Figures 8A, 9A, the CIFI value was found to be significantly associated with OS in both the GSE14520 (HR = 7.785, 95% CI = 4.848–12.5, p < 0.001) and TCGA datasets (HR = 2.498, 95% CI = 1.763–3.541, p < 0.001). Then, the CIFI values and the clinicopathological features with prognostic significance (p < 0.05) were subjected to a multivariate Cox regression analysis, which revealed that CIFI remained an independent prognostic predictor after correction for other confounding factors (p < 0.001, Figures 8B, 9B).
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FIGURE 8. Results of the (A) univariate and (B) multivariate Cox regression analyses regarding OS in the GSE14520 cohort.
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FIGURE 9. Results of the (A) univariate and (B) multivariate Cox regression analyses regarding OS in the TCGA cohort.




DISCUSSION

The advent of selective genome- and immune-targeted therapy has considerably improved the prognosis of cancer patients, and treatment decisions tend to be made on the basis of abnormal molecular profiles or “signatures” rather than the tissue type or anatomical site of tumors (Jackson and Chester, 2015; Abubakar and Gan, 2016; Jia et al., 2016). For instance, patients with lung cancer, colon cancer, or melanoma bearing BRAF V600E mutations all benefit from inhibitors targeting this mutation (Long et al., 2017; Planchard et al., 2017; Kopetz et al., 2019). Indeed, an increasing number of studies have attempted to identify subgroups of tumor patients based on their molecular profiles, which reflect unique phenotypes, distinct treatment responses, and different prognoses. For example, the hypoxialow/immunehigh subgroup of triple-negative breast cancer (TNBC) patients has a significantly longer OS and might have a better response toward immunotherapies (Zheng et al., 2020). Colorectal cancer (CRC) patients can be classified into low- and high-risk groups on the basis of their autophagy-related features, and high-risk CRC patients might require more aggressive treatment interventions (Zhou et al., 2019).

Considering that immunotherapy and sorafenib inhibit the growth of tumors (including HCC) via the induction of ferroptosis (Louandre et al., 2013; Wang W. et al., 2019), HCC patients with distinct ferroptosis and immune phenotypes might have different prognoses. In this work, the CIFI of HCC was developed based on the currently known FRGs and IRGs and on their expression data from publicly available datasets. HCC patients with high CIFI values were found to have significantly shorter OSs, RFSs, DSSs, and PFIs than those with low CIFI values (Figures 3B,C, 4C–F). Moreover, the high-CIFI subgroup was found to have a significantly higher percentage of HCC patients with worse clinicopathological features, such as an advanced TNM stage, an advanced BCLC stage, cirrhosis, and vascular invasion (Table 2). The patients in the high-CIFI subgroup showed a ferroptosis-suppressive status, as a set of well-defined SOFs was significantly up-regulated in this subgroup (Figures 5A,B). A recent study showed that both SQSTM1 and NFE2L2 protect HCC cells from ferroptosis (Sun et al., 2016b); however, no consistent change was observed in these two genes between the high- and low-CIFI subgroups, suggesting that the SQSTM1-Keap1-NFE2L2 pathway might not play a role in the CIFI-stratified subgroups. GPX4, a key regulator in suppressing ferroptosis (Hassannia et al., 2019; Seibt et al., 2019), was unexpectedly found to be down-regulated in the high-CIFI subgroup of the GSE14520 cohort, while its expression in the TCGA cohort was not different between the high and low-CIFI subgroups. This suggests that other imbalanced factors between the two subgroups, like hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, or fatty liver disease, might play a predominant role in the expression of this gene. Indeed, other studies have found that GPX4 is over-expressed in HCV-related HCC patients and could be induced by HCV to increase virion infectivity (Guerriero et al., 2015; Brault et al., 2016). However, the HCV infection status of the HCC patients in these two cohorts was not available, and further studies may be required to address this question. In addition, two typical DOFs, namely NOX1 and ALOX15B, were found to be significantly down-regulated in HCC patients with high CIFI values, while many other DOFs were not differentially expressed between the two subgroups (Supplementary Figure 1B). Interestingly, ACSL4 and ALOX5 were found to be significantly up-regulated in HCC patients with high CIFI values, even though they facilitate the execution of ferroptosis (Liu et al., 2015; Yuan et al., 2016; Doll et al., 2017). However, it is worth noting that both ACSL4 and ALOX5 are over-expressed in HCC as compared to normal livers, and promote the progression of the disease (Xu et al., 2011; Chen et al., 2020; Ndiaye et al., 2020; Wang et al., 2020). Thus, the over-expression of ACSL4 and ALOX5 contributes to the proliferation and progression of HCC, but renders the patients more susceptible to ferroptosis inducers. Indeed, researchers have found that some genes participate in multiple biological activities, some of which even seem contradictory. For instance, the well-known tumor suppressor TP53 plays an oncogenic role in HCC by inducing the P53 upregulated modulator of apoptosis (PUMA) (Kim et al., 2019). Nicotinamide phosphoribosyltransferase (NAMPT) drives tumor immune evasion by inducing PD-L1 expression in multiple types of tumors, but enhances the efficacy of immune checkpoint inhibitors (Lv et al., 2020). Further, GSEA revealed that genes in the low-CIFI subgroup were significantly enriched in biological oxidation, fatty acid metabolism, peroxisome, and glycine degradation (Figure 5C). These biological processes are all critical for the execution of ferroptosis (Hassannia et al., 2019), suggesting a high sensitivity to ferroptosis in this subgroup. In addition, recent studies have found that ferroptosis inducers, such as erastin and sorafenib, could alleviate liver fibrosis (Sui et al., 2018; Wang L. et al., 2019; Zhang Z. et al., 2020); thus, the ferroptosis-suppressive status observed in the high-CIFI subgroup might facilitate the progression of liver fibrosis and the development of cirrhosis. After all, the high-CIFI subgroup had a significantly higher percentage of HCC patients with cirrhosis (Table 2).

Hepatocellular carcinoma patients with high CIFI values also exhibited immune-suppressive features. ssGSEA revealed that the CIFI value was positively correlated with the infiltration of MDSCs, which are able to promote immune escape and impair antitumor T-cell response in HCC (Chiu et al., 2017; Lin et al., 2017). On the contrary, eosinophil, which possesses anti-tumor activity toward tumors, including HCC (Kataoka et al., 2004; Hollande et al., 2019), was found to have a significantly negative association with the CIFI value in HCC (Figure 6A). Unexpectedly, a positive association was also observed between CIFI value and CD4 T cells, which are regarded as cytotoxic to tumors (Jin et al., 2018). However, a study has shown that HBV-specific CD4 T cells are less cytotoxic to HCC cells and suppress the anti-tumor function of CD8 T cells (Meng et al., 2017). Indeed, 95.9% (211/220) of patients in the GSE14520 cohort were either active viral replication chronic carriers (AVR-CCs) or HBV chronic carriers (HBV-CCs) (Table 1). Consequently, the positive relationship between CIFI and CD4 T cells might suggest an immune-suppression status instead of an immune-activation status. CIFI was also found to have a positive relationship with the fraction of CAFs in HCC (Figure 6B). As one of the most abundant and critical components of the TME, CAFs contribute to immune evasion and immunotherapy failure, and promote the proliferation and invasion of tumors, including HCC, by secreting various growth factors and cytokines (Kubo et al., 2016; Chakravarthy et al., 2018; Liu T. et al., 2019). CIBERSORT analysis further indicated that HCC patients with high CIFI values had a significantly higher fraction of Tregs, which have been shown to be enriched in HCC and to inhibit IFN-gamma secretion and the cytotoxicity of CD8 + T cells (Yang et al., 2012; Langhans et al., 2019). Although less lytic than activated NK cells, resting NK cells are still cytotoxic and target cells like tumor cells, and could be converted to activated NK cells with certain stimuli (Bryceson et al., 2006; Lugini et al., 2012); however, the CIBERSORT analysis also revealed that the high-CIFI subgroup exhibited a lower infiltration of resting NK cells, while no difference was observed in the activated NK cells between the two subgroups (Figure 6D). In addition, although the TMB was not found to be different between the two subgroups based on the calculation of gene mutation data, MATH analysis suggested that the high-CIFI subgroup had higher levels of tumor heterogeneity, which is generally a predictor of worse prognosis and is correlated with less immune response in various types of cancer (Mroz et al., 2015; Ma et al., 2019; McDonald et al., 2019). Considered together, these data suggest that high CIFI values might be correlated with immunosuppression in HCC.

In particular, it was observed that patients in the high-CIFI subgroup had a significantly higher frequency of TP53 mutation (41 vs. 24%). TP53 is a typical tumor suppressor, and its mutation leads to tumorigenesis and the progression of many types of tumors, including HCC (Leroy et al., 2014). However, TP53 mutation could either induce or suppress ferroptosis depending on the mutation site of the gene (Jiang et al., 2015; Jennis et al., 2016; Ou et al., 2016), and further studies are required to illustrate its exact impact on ferroptosis in HCC. Moreover, TP53 can activate an anti-tumor immune response via multiple mechanisms, like the down-regulation of immune-evading signals such as PD-L1, or the up-regulation of the NK cell ligands ULBP1 and ULBP2 (Textor et al., 2011; Cortez et al., 2016; Munoz-Fontela et al., 2016). HCC patients with TP53WT have a significantly stronger local immuno-phenotype than those with mutant TP53 (Long et al., 2019). Consequently, the higher frequency of TP53 mutation observed in the HCC patients in the high-CIFI subgroup might contribute to the ferroptosis- and immune-suppressive phenotype of the subgroup.

A recent study predicted the prognosis of HCC patients by constructing a FRG signature from 60 FRGs (Liang et al., 2020). However, the results were not repeated and the signature was not compared with the model developed in the present work because the CARS gene could not be found in TCGA, GSE14520, or the Gene Cards website.8 The authors might have mistaken CARS1 or CARS2 for CARS. In addition, the AUCs of the 10-gene signature in the TCGA and ICGC cohorts were respectively 0.668 and 0.718 at 3 years; in contrast, those determined by the model in the present work were 0.72 and 0.7 at 3 years in the GSE14520 and TCGA cohorts, suggesting a slightly better predictability of the proposed model. In addition, the proposed signature was also found to have good predictability in long-term follow-up, as it achieved AUCs of 0.77 and 0.73 at 5 years in the GSE14520 and TCGA cohorts, respectively. Moreover, not only IRGs, but also FRGs (n = 283), were included in this work, and both suppressors and DOFs were considered for the construction of the predictive model. Therefore, the model might more comprehensively reflect the ferroptosis and immune status of HCC patients.

The predictability of the proposed signature failed to be validated in the ICGC cohort because only a few dozen of the samples included the gene expression data of the selected genes. On the other hand, it should be noted that this work was limited because it was a retrospective study; thus, a further well-designed prospective analysis is necessary to validate the value of the developed model.

Because immunotherapy and targeted therapies, like sorafenib, function through ferroptosis, the novel comprehensive ferroptosis–immune status classifier developed in the present study suggests that personalized treatment should be applied in different subgroups of HCC patients. The high-CIFI subgroup represents a ferroptosis- and immune-suppressive phenotype, and might not benefit greatly from immunotherapy, targeted therapy, or a combined therapy like atezolizumab plus bevacizumab. On the other hand, the distinct features of this subgroup also imply that a ferroptosis inhibitor might synergize with immunotherapy and targeted therapy for a better treatment response.



CONCLUSION

In conclusion, a novel prognostic classifier based on ferroptosis and immune expression profiles in HCC was developed and validated. This classifier could be used for prognostic prediction and the selection of patients for immunotherapies and targeted therapies.
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Metformin is a classic type II diabetes drug which possesses anti-tumor properties for various cancers. However, different cancers do not respond to metformin with the same effectiveness or acquire resistance. Thus, searching for vulnerabilities of metformin-resistant prostate cancer is a promising strategy to improve the therapeutic efficiency of the drug. A genome-scale CRISPR-Cas9 activation library search targeting 23,430 genes was conducted to identify the genes that confer resistance to metformin in prostate cancer cells. Candidate genes were selected by total reads of sgRNA and sgRNA diversity, and then a CCK8 assay was used to verify their resistance to metformin. Interestingly, we discovered that the activation of ECE1, ABCA12, BPY2, EEF1A1, RAD9A, and NIPSNAP1 contributed to in vitro resistance to metformin in DU145 and PC3 cell lines. Notably, a high level of RAD9A, with poor prognosis in PCa, was the most significant gene in the CCK8 assay. Furthermore, we discerned the tumor immune microenvironment with RAD9A expression by CIBERSORT. These results suggested that a high level of RAD9A may upregulate regulatory T cells to counterbalance metformin in the tumor immune microenvironment.

Keywords: prostate cancer, CRISPR, metformin, RAD9A, whole-genome, tumor immune microenvironment


INTRODUCTION

Despite the progress made in screening, diagnosis, and therapy for prostate cancer (PCa), there are still more than one million new cases and 300,000 related deaths annually worldwide (Ferlay et al., 2013, 2015). Based on the diagnostic tools and therapeutic strategies of PCa, significant advances in the diagnosis and treatment of PCa have been made (Cuccurullo et al., 2017; Fanti et al., 2018). The androgen/androgen receptor (AR) axis plays a vital role in the pathogenesis of PCa, thereby androgen deprivation therapy (ADT) remains the first choice for this disease (Di Zazzo et al., 2019). New kinds of androgen inhibitors or androgen receptor (AR) antagonists, such as enzalutamide, have improved the survival percentage of PCa patients (Attard and Antonarakis, 2016; Baciarello et al., 2018). Despite the initial response, PCa usually develops resistance to these drugs and progresses to castration-resistant prostate cancer (CRPC) stages. Thus, preventing progression is a major concern for patients with drug resistance after surgery.

Metformin is a classic type II diabetes drug which may possess anti-tumor properties for various cancers, such as colon cancer (Boorjian et al., 2012), pancreatic cancer (Duan et al., 2017), breast cancer (Wahdan-Alaswad et al., 2016), and prostate cancer (Gong et al., 2006; Comstock et al., 2007; Tong et al., 2017). Metformin mainly blocks hepatic gluconeogenesis and anti-tumor cells by modulating glucose metabolism due to the cancer cells' frequent utilization of the Warburg effect to generate ATP (Akula et al., 2019). Accumulating evidence implies that Metformin inhibits cancer proliferation by activating the AMPK pathway, which suppresses the mammalian target of the rapamycin (mTOR) pathway, inducing apoptosis and reducing proliferation (Han et al., 2015; Zhao et al., 2015). In addition, metformin has multiple antineoplastic effects (Gonzalez-Angulo and Meric-Bernstam, 2010; Cameron et al., 2016; Heckman-Stoddard et al., 2017) through the intervention of the IGF-1 signaling pathway, the inhibition of the AR pathway, and the modulation of the immune response. However, not all types of cancer respond to metformin with the same effectiveness or acquire resistance (Bansal et al., 2015; Scherbakov et al., 2016). Thus, more investigations into the potential roles of metformin and its anti-cancer effects on PCa could reveal a novel strategy that is safe and economical in treating PCa.

The CRISPR-Cas9 system and the progress of high-throughput sequencing (htseq) techniques have given us the possibility to conduct genome-wide screening in mammalian cells (Shalem et al., 2014; Wang et al., 2014; Bester et al., 2018). In the drug resistance field, many new novel targets were discovered. A genome-scale CRISPR-Cas9 knockout screening (Cao et al., 2018) found nine genes participating in imatinib-resistant cells. Another group found that MSH2 took part in cisplatin resistance in bladder cancer cell lines by performing a whole-genome CRISPR screening. Huang et al. identified that NF-κB/E2F6 was responsible for temozolomide resistance in glioblastoma using the CRISPR-Cas9 genome-wide screening system (Huang et al., 2019). Detecting for vulnerabilities of metformin insensitivity in PCa is a promising way to improve the therapeutic efficiency of metformin. In this study, we took a novel approach to find genes of metformin insensitivity by performing the first genome-wide CRISPRa screening of metformin resistance in PCa.



MATERIALS AND METHODS

All experiments involving human tissues were approved by the Ethics Committee of The First Affiliated Hospital of Guangzhou Medical University, PR of China.


Cell Culture

The prostate cancer cells of human DU145 and PC3 were purchased from the American Type Culture Collection (ATCC, USA) and cultured in DMEM (HyClone, SH30022.01B) medium containing 10% fetal bovine serum (FBS, Gibco) and 100 U/mL of double antibiotics (penicillin and streptomycin, TBD, PS2004HY) in a humidified incubator with 5% CO2 at 37°C.



Cytotoxicity of Metformin in vitro

To find out the minimum lethal dose (MLD) of metformin, DU145 cells were treated with 0, 50, 100, 150, and 200 mM of metformin and PC3 cells were treated with metformin at 0, 12.5, 50, 100, and 150 mM concentrations for 24 h. The cell morphology was observed by an optical microscope (Nikon) and cell viability was conducted using a cell counting kit-8 (CCK-8 Kit) (Beyotime, Shanghai, China).



Lentiviral Packaging and Infection

The CRISPR/Cas9 Synergistic Activation Mediator (SAM) pooled library plasmids was acquired from Addgene (https://www.addgene.org/crispr/libraries/). The CRISPR/Cas9 SAM pooled library plasmids, pCMV-VSV-G, pMDLg, pRRE, and pRSV-Rev were added into 100 μL of Opti-MEM in a ratio of 3:3:1:1:1, and then mixed with polyethylenimine (PEI), briefly vortexed and incubated for 15 min. The cell supernatant containing lentiviruses was collected after 48 h. DU145 cells were transduced at a calculated multiplicity of infection (MOI) (Sanjana et al., 2014; Shalem et al., 2014) of 0.4 followed by selection with hygromycin B (YEASEN, 60225ES03) and blasticidin (MDBio, D0120601) for 15 d. A polymerase chain reaction (PCR) was applied to identify the successful transfection of lentiCRISPRa vector in DU145 cells. CRISPRa-F: TCTTGTGGAAAGGACGAAACACCG and CRISPRa-R: CTCCTTTCAAGACCTAGGATC were selected as the PCR amplification regions (209 bp) from the lentiCRISPRa vector, followed by electrophoresis. The thermocycling parameters of PCR were 95°C for 60 s, 30 cycles of (95°C for 10 s, 56°C for 10 s, 72°C for 30 s), and 72°C for 1 min.



Performing the CRISPRa Resistance Screen

DU145 cells were plated in quadruplicate for each condition. Cells were treated with metformin (100 mM) for 24 h or vehicle for 24 h. After three rounds of metformin treatment, the treatment media were removed and cells were allowed to grow to confluency prior to harvesting the genomic DNA.



Genomic DNA Extraction and PCR Products

The HiPure Tissue DNA Mini Kit (Magen) was used to extract genomic DNA of metformin-resistant DU145 cells. The sgRNA sequences of each sample were amplified by polymerase chain reaction (PCR) from genomic DNA using primers containing adaptor and barcoding sequences. For PCR, the primers CRISPRa-F (TCTTGTGGAAAGGACGAAACACCG) and CRISPRa-R (CTCCTTTCAAGACCTAGGATC) were used. The thermocycling parameters were: 95°C for 60 s, 30 cycles of (95°C for 10 s, 60°C for 10 s, 72°C for 30 s), and 72°C for 1 min. After the PCR products were electrophoresed, the HiPure Gel Pure DNA Mini Kit was used for gel extraction.



sgRNA Deep Sequencing and Enrichment Analysis

HiSeq2500 (Illumina Inc., San Diego, CA, USA) was used for sequencing. Htseq (Anders et al., 2015) was used to count the sgRNA. The top resistant genes were identified by ranking the total reads of sgRNA and sgRNA diversity (number of detected different sgRNAs that target to the same gene) (Cao et al., 2018).



Cytotoxicity of Metformin in Transfected Cells With Candidate Genes

DU145 and PC3 cells were seeded in 6-well plates and transient transfection was performed with a single sgRNA vector. Then the cell viability assay was conducted using cell counting kit-8 (CCK-8 Kit) (Beyotime, Shanghai, China) according to the manufacturer's instructions. Briefly, the cells (8 × 103 cells per well) were cultured in 96-well plates in triplicate. After allowing the cells to attach to the bottom of the plate for 12 h, the cells were then treated with different concentrations of metformin (PC3 50, 80 μM and DU145 80, 100 mM) or DMSO vehicle for 24 h. And then, 10 μL of the CCK-8 solution was added to each well, and the absorbance (450 nm) was measured by a microplate reader (BioTeke).



Quantitative Reverse Transcriptase PCR

The EEF1A1, BPY2, ABCA12, ECE1, TAF1L, C20orf203, NIPSNAP1, and RAD9A mRNA levels (see Table 1 for primer sequences) were detected by real-time quantitative reverse transcriptase PCR (q-PCR). Total RNA was extracted using the total RNA Rapid Extraction Kit (BIOTEKE, RP1201) according to the manufacturer's instructions. The SYBR Green® Realtime PCR Master Mix (#QPK-201, Toyobo Co, Ltd, Osaka, Japan) was used for quantitative reverse transcriptase PCR assays. The data were analyzed with an Applied Biosystems 7900 Real Time PCR System. Target genes were normalized to the mean β-actin expression.


Table 1. Primer sequences for q-PCR.
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Bioinformatic Analysis of DNA and RNA Level

We compared the mRNA expression of RAD9A between cancer and adjacent normal tissues by GEPIA (Gene Expression Profiling Interactive Analysis) in the TCGA dataset (http://gepia.cancer-pku.cn/). Next, we analyzed the RAD9A alterations and networks in three prostate adenocarcinoma databases (TCGA PanCancer dataset, TCGA Cell 2015 dataset, TCGA Firehose Legacy) by using the cBioPortal (https://www.cbioportal.org/) online tool. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to explore the potential functions of genes correlated with RAD9A from the TCGA dataset by OmicShare (https://www.omicshare.com/tools/). The gene correlation cutoff was set at 0.3, and the Q-value at < 0.01.



Immunohistochemistry Analysis

The RAD9A protein expression in the TMA (cat no. PR808b, Xi'an Alenabio Biotech Company, Ltd.) was detected by immunohistochemistry and evaluated with the immunoreactivity scores (IRS) system as we previously described (Lin et al., 2017). A primary antibody against RAD9A (abs136198, Absin Bioscience Inc) was used in these studies. All experiments involving human tissues were approved by the Ethics Committee of Huizhou Municipal Central Hospital, China.



Bioinformatic Analysis of Protein Level

We used GeneMANIA (http://genemania.org) and STRING (https://string-db.org/) which are two web tools for identifying protein and protein interactions.



Immune Cell Infiltration Analysis

CIBERSORT (Cell-type Identification by Estimating Relative Subsets of RNA Transcripts; http://cibersort.stanford.edu) was used to characterize the infiltration of 22 kinds of immune cell types with the RNA expression profile of each patient A (Newman et al., 2015). We obtained the abundance ratio matrix of 22 immune cell types with the criteria of P < 0.05. We also compared the different infiltration levels of 22 immune cell types in low and high RAD9A expression by “ggplot2” packages.



Statistical Analysis

Our data were expressed as mean ± SD. Analyses were performed using the SPSS 20.0 statistical software (SPSS Inc, IL, USA). Comparisons between groups were analyzed through a t test. A p < 0.05 was considered statistically significant.




RESULTS


Whole-Genome CRISPR Library Screening for Genes Associated With Metformin Resistance

We executed an unbiased gain-of-function screening using the human CRISPR/Cas9 SAM pooled library to identify sgRNA constructs that were enriched in metformin-treated PCa cells (Figure 1A). Supplementary Figure 1 shows the successful transfection of the lentiSAMv2 vector in DU145 cells by electrophoresis, indicating the activation of target genes. To determine the minimum lethal dose (MLD) of metformin, PCa cells were treated with different concentrations of metformin (DU145: 0, 50, 100, 150, and 200 mM and PC3: 0, 12.5, 50, 100, and 150 mM) and observed for 24 h. As shown in Supplementary Figure 2, fewer cells survived when treated with 100 mM of metformin at 24 h. The CCK8 assay showed that cell viability was significantly reduced when treated with 100 mM of metformin (P < 0.01) (Figure 1B). Then the control cells (DU145-NC) were treated with 60 mM of metformin. Cells transfected with the lentiSAMv2 pooled library were treated with 100 mM of metformin for 24 h (Figure 1C).
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FIGURE 1. Schematic of functional screening by the CRISPR/Cas9 SAM pooled library and metformin treatment. (A) Schematic of metformin-resistant DU145 cells construction for high-throughput sequencing analysis; (B) PC3 (0, 12.5, 50, 100, 150 mM) and DU145 (0, 50, 100, 150, 200, 200 mM) cell lines were treated with the indicated doses of metformin for 24 h, and cell viability was measured using a CCK8 assay. Data were represented as mean ± SEM of a representative experiment (of three experiments); (C) optical microscopic images of DU145 cells transfected with lentiSAMv2 control or lentiSAMv2 pooled library and treated with metformin (60, 100, 120, 150 mM).




Enriched sgRNAs in DU145 Cells With Metformin Resistance

With the use of sgRNAs to target each gene of metformin-resistant DU145 cells after metformin treatment, a set of differentially upregulated sgRNAs (representing different particular genes) was enriched, which can be seen in the cluster heat map and scatter plot (Figures 2A,B), suggesting the gain of these particular genes contributes to metformin resistance. Furthermore, we screened the genes based on the total reads of sgRNA and sgRNA diversity for subsequent validation. As shown in Figure 2C, genes that have three significantly sgRNAs were detected in DU145 cells with metformin resistance. There were 23 or 28 genes that appeared to have two resistant sgRNAs, and 151 or 181 genes with one resistant sgRNA. Collectively, EEF1A1, BPY2, ABCA12, ECE1, TAF1L, C20orf203, NIPSNAP1, and RAD9A were the genes ultimately selected for further study (Figure 2D).
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FIGURE 2. Gain of function screening in DU145 cells reveals genes that confer metformin resistance. (A) A heatmap displaying median-centered counts for differentially abundant sgRNAs; (B) scatter plot showing the significantly upregulated sgRNA enriched after metformin treatment; (C) number of genes with 0, 1, 2, or 3 significantly enriched resistant sgRNAs. Genes were selected by reads of sgRNA and sgRNA diversity, as shown in black boxes. (D) A heatmap displaying the resistant sgRNAs counts of the selected eight genes.




Overexpression of Candidate Genes in PCa Cells Are Resistant to Metformin

To verify whether these candidate genes which were identified from the CRISPRa screening were resistant to metformin, we generated individual gene overexpression in the DU145 and PC3 cells. Compared with the NC group, each candidate gene individually overexpressed by CRISPRa was highly expressed in PCa cells (Supplementary Figure 3). We then tested their susceptibility to metformin with CCK8 assays.

As shown in Figure 3A, overexpression of ECE1, ABCA12, BPY2, EEF1A1, RAD9A, NIPSNAP1, and C20orf203 exhibited significant pro-proliferative effects on PC3 cells compared with the NC group. Similar results were also obtained in DU145 cells. When treated with 80 and 100 mM of metformin, DU145 cells overexpressing ECE1, ABCA12, BPY2, EEF1A1, RAD9A, NIPSNAP1, and TAF1L grew faster than that of the control group (Figure 3B). These data show that the overexpression of these candidate genes (Figure 3C; ECE1, ABCA12, BPY2, EEF1A1, RAD9A, NIPSNAP1) in metformin-treated PCa cells increased cell survival. Interestingly, RAD9A and NIPSNAP1 were the top two increased groups in both cell lines. Based on the TCGA-PRAD dataset, a high level of RAD9A was correlated with poor prognosis while NIPSNAP1 showed no effect on the prognosis of PCa patients (Figure 3D).
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FIGURE 3. The overexpression of the candidate genes increases metformin resistance in PCa cell lines. (A,B) PC3 and DU145 cell lines with single gene overexpression were treated with the indicated doses of metformin for 24 h, and cell viability was measured using a CCK8 assay. Data were represented as mean ± SEM of a representative experiment. (C) The Venn diagram shows that the candidate genes increases metformin resistance in PC3 and DU145. (D) Disease Free Survival analysis of RAD9A and NIPSNAP1 in TCGA-PRAD dataset.




Functional Enrichment in the mRNA Level of RAD9A in Prostate Cancer

To further investigate the role of RAD9A at the mRNA level, some bioinformatic analysis was conducted. The results of GEPIA revealed that the RAD9A expression levels were significantly upregulated in the vast majority of cancers including prostate cancer (Figure 4A). The cBioPortal showed that the percentage of RAD9A genetic alterations including mutation, amplification, and deep depletion were 2.7% (9/333), 2.61% (13/499), and 2.23% (12/494), respectively (Figure 4B). Figures 4C,D shows the number of KEGG pathway annotations in diverse categories and the top 20 KEGG pathways. The results showed that KEGG pathways were enriched mainly in cancers of human diseases, and the endocrine and immune system of organismal systems. In addition, metabolic pathways, mRNA surveillance pathway, and endocytosis were enriched in the top 20 KEGG pathways that might play indispensable roles in prostate cancer.


[image: Figure 4]
FIGURE 4. RAD9A gene expression and mutation analysis in prostate cancer. (A) The scatter of RAD9A expression levels in cancers from GEPIA (left), the boxplot of RAD9A expression levels in prostate cancer from TCGA (right). (B) Alteration frequency and genetic alteration analysis in prostate cancer by cBioPortal. (C,D) The top 20 pathways of KEGG pathway analysis, the input genes are related with RAD9A expression (Q-value < 0.01, r > 0.3, or r < −0.3) from the TCGA dataset. The size of the bubble represents the gene number, and the color indicates the Q-value.




Functional Enrichment in the Protein Level of RAD9A

Immunohistochemistry analysis of the RAD9A antibody was undertaken in a PCa tissue microarray and was found to be mainly located in the nuclear and cytoplasm (Figure 5A). The positive staining areas of RAD9A had a significantly stronger intensity than those in benign tissues (P < 0.001; IRS of cancerous tissue: 5.52 ± 1.31; IRS of benign tissue: 2.31 ± 1.12; Table 2). Moreover, PCa tissues samples that had high RAD9A protein expression levels were more likely to have high Gleason scores (P < 0.001). Besides, we explored the network for RAD9A and the 20 most frequently altered neighbor genes using GeneMANIA (Figure 5B) and identified the interactions of the RAD9A protein expression level by using STRING (Figure 5C). The GeneMANIA analysis found physical interactions of RAD9A with BCL2, BCL2L1, C10orf2, TOPBP1, HEK2, CLSPN, and RAD17, the shared protein domain of RAD9A with RAD9B, and STRING analysis showed that RAD9A interacted with ATM, RAD1, RAD17, BRCA1, CLSPN, ATR, HUS1, HUS1B, TOPBP1, CHEK1, and ATM.


[image: Figure 5]
FIGURE 5. Cellular sub-localization and enrichment analysis of RAD9A at the protein level. (A) Immunohistochemistry analysis of the RAD9A antibody in a PCa tissue microarray. (B) The network for RAD9A and the 20 most frequently altered neighboring genes in the GeneMANIA dataset. (C) Protein-protein interaction network for RAD9A in the STRING dataset.



Table 2. RAD9A expression level with clinical features in prostate cancer TMA.
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Immune Cell Infiltration Analysis

The proportion of 22 immune cell types in PCa from the TCGA dataset showed that some cells were highly abundant, such as resting CD4 memory T cells, plasma cells, and resting mast cells (Figure 6A). The infiltration levels of immune cells between low and high RAD9A expression groups revealed that a high expression of RAD9A was consistent with a high proportion of regulatory T cells, T follicular helper cells, CD8+ T cells, plasma cells, activated NK cells (P < 0.05), and that RAD9A was negatively related to the infiltrating levels of naive B cells, resting dendritic cells, M1 macrophages, and resting memory CD4 T cells (Figure 6B).


[image: Figure 6]
FIGURE 6. Intratumoral immune cell composition analysis. (A) The proportion of 22 immune cell types in prostate cancer from TCGA datasets. (B) The boxplot shows the different infiltration levels of 22 immune cell types between the high and low RAD9A expressions. *P < 0.05; **P < 0.01; ***P < 0.001. ****P < 0.0001.





DISCUSSION

Metformin, 1, 1-dimethylbiguanide hydrochloride, has been proven to be effective against a variety of tumors, including colon, lung, breast, endometrial, pancreatic, and prostate cancer (Gong et al., 2006; Comstock et al., 2007; Boorjian et al., 2012; Wahdan-Alaswad et al., 2016; Duan et al., 2017; Tong et al., 2017). Accumulating evidence suggests that the metformin anti-tumor effect is multifaceted (Pineda et al., 2015; Daugan et al., 2016). First, metformin can block the PI3K/MAPK pathway in cell growth to decrease glycaemia and insulinemia (Chen et al., 2009; Gallagher and LeRoith, 2011; Weinberg and Chandel, 2015). Second, metformin can activate the AMPK pathway to influence tumor metabolism, inflammation, and angiogenesis (Choi and Park, 2013; Mohammed et al., 2013). As a potential anticancer drug, metformin has become a research hotspot. However, patients with diseases including cancer will eventually become drug resistant after long-term use of metformin, and the underlying mechanisms involved in resistance to metformin is still unclear. In this study, genome-scale CRISPRa screening and deep sequencing analysis were applied to find novel genes involved in metformin resistance.

In our CRISPRa screening and deep sequencing analysis, EEF1A1, BPY2, ABCA12, ECE1, TAF1L, C20orf203, NIPSNAP1, and RAD9A were the potential metformin resistance genes. Furthermore, single gene overexpression in DU145 and PC3 cell assays ruled out TAF1L and C20orf203. What is more, RAD9A and NIPSNAP1 were in the top two increased groups and a high level of RAD9A correlated with a smaller disease-free possibility. From the above results, we chose RAD9A for further analysis.

RAD9 checkpoint clamp component A (RAD9A) is a kind of cell cycle checkpoint protein (Sierant et al., 2010). Due to its 3' to 5' exonuclease activity, RAD9A excels at sensing DNA dual-strand breaks, responsively forming a heterotrimeric ring-shaped complex involving RAD9A, RAD1, and HUS1, which activates the CHK1 checkpoint kinase and initiates DNA damage repair (DDR) during the G2/M cell cycle period (Greer et al., 2010; Balmus et al., 2016; Sierant and Davey, 2018). Recently, RAD9A has been proven to play a vital role in cancer proliferation, metastasis, and drug sensitivity (Balmus et al., 2016; Broustas et al., 2019). It is reported that knockdown of RAD9A enhanced esophageal cancer sensitivity to trichostatin A inducing DNA damage (Pang et al., 2016). More importantly, apart from functioning as a part of the RAD9A-HUS1-RAD1 complex, RAD9A independently drives prostate cancer metastasis by controlling AGR2 abundance (Broustas et al., 2019). These findings indicate that RAD9A may act as a key regulator in modulating metformin resistance in prostate cancer, which is required for further research. Nonetheless, the role of RAD9A in PCa drug resistance is still unknown.

To ascertain the function of RAD9A in PCa, we systematically performed some bioinformatic analyses. At the mRNA level, RAD9A were significantly upregulated in many cancers including prostate cancer. Besides, we enriched cancers, metabolic pathways, and the mRNA surveillance pathway in KEGG pathways analysis. Based on our PCa TMA, RAD9A was mainly located in the nuclear and cytoplasm. The positive staining areas of RAD9A had a significantly stronger intensity in cancer tissues and were in the higher Gleason scores group. Additionally, RAD9A potentially interacted with some famous oncogenes, such as BRCA1, CLSPN, and BCL2 based on GeneMANIA and STRING. These analyses suggested that RAD9A may have an important oncogene effect on PCa. However, more experimental evidence is needed.

Growing evidence has shown that metformin exhibits anti-tumor capability via adjusting the tumor immune microenvironment (TIME). Wang et al. (2020) reported that metformin reprogrammed the TIME by increasing infiltrated CD8+ cytotoxic T lymphocyte, CD20+ B lymphocyte, tumor-suppressive (CD11+), and decreasing tumor-promoting (CD163+) macrophages. At the same time, metformin triggered AMPK, STAT3 inactivation, and altered cytokine production in the immune cells. The above effects occurred in a more anti-tumoral state which may be beneficial to immunotherapy. Based on the metformin resistance effect of RAD9A, we wondered whether RAD9A would counteract metformin in TIME. Therefore, we explored the role of RAD9A in the TIME by using the TCGA-PRAD dataset as the background data. In our CIBERSORT results, regulatory T cells, T follicular helper cells, CD8+ T cells, plasma cells, and activated NK cells were correlated with a high RAD9A level. Besides, naive B cells, resting dendritic cells, M1 macrophages, and resting memory CD4 T cells were correlated with a low RAD9A level. RAD9A showed a tumor promoting effect in our data. Nevertheless, it was unexpected that CD8+ T cells and activated NK cells, two players which act in an anti-tumor role in TIME (Gajewski et al., 2013), were positively correlated with RAD9A. Because of the complexity of TIME, it is hard to explain this with a single cause. We believe that the regulatory T cells which are upregulated in the high RAD9A level group occupy an important position in the inhibition of CD8+ T cells and activated NK cells (Terme et al., 2008). From the above analyses, we presumed that RAD9A could counterbalance the “more anti-tumoral state” formed by metformin.

In summary, our data provide some new evidence for ascertaining the genetic determinants of metformin resistance in DU145 cell using the CRISPR-Cas9 genome-wide screening strategy. We demonstrated that ECE1, ABCA12, BPY2, EEF1A1, RAD9A, and NIPSNAP1, contribute to in vitro resistance to metformin in PCa cells. Furthermore, RAD9A may be involved in TIME adjustment of metformin by upregulating regulatory T cells. These findings suggested that the differentially resistant genes of metformin detected by our approach could therefore be of great importance in identifying novel options for PCa therapy. However, further experiments should be performed to validate the underlying mechanisms of RAD9A and other candidate genes in metformin resistance.
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The immune microenvironment is important for the development, progression, and prognosis of anaplastic glioma (AG). This complex milieu has not been fully elucidated, and a high-dimensional analysis is urgently required. Utilizing mass cytometry (CyTOF), we performed an analysis of immune cells from 5 patients with anaplastic astrocytoma, IDH-mutant (AAmut) and 10 patients with anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeletion (AOD) and their paired peripheral blood mononuclear cells (PBMCs). Based on a panel of 33 biomarkers, we demonstrated the tumor-driven immune changes in the AG immune microenvironment. Our study confirmed that mononuclear phagocytes and T cells are the most abundant immunocytes in the AG immune microenvironment. Glioma-associated microglia/macrophages in both AAmut and AOD samples showed highly immunosuppressive characteristics. Compared to those in the PBMCs, the ratios of immune checkpoint-positive exhausted CD4+ T cells and CD8+ T cells were higher at the AG tumor sites. The AAmut immune milieu exhibits more immunosuppressive characteristics than that in AOD.




Keywords: anaplastic astrocytoma, anaplastic oligodendroglioma, CyTOF/mass cytometry, immune profiling, microenvironment, glioma



Introduction

WHO grade III anaplastic gliomas (AGs) comprise approximately 6 to 10% of all newly diagnosed adult primary brain tumors (1). Previously, based on morphological criteria, AGs were classified into three groups: a) anaplastic oligodendroglioma, b) anaplastic oligoastrocytoma, and c) anaplastic astrocytoma. Anaplastic oligoastrocytoma accounts for 30–50% of all AGs, and the remaining 50–70% are referred to as anaplastic astrocytoma (2). In 2016, the WHO organization defined two molecular markers for histological analysis in the diagnostic and prognostic stratification of AGs (3). Based on the mutation of isocitrate dehydrogenase (IDH) and the codeletion of chromosome 1p/19q, AGs can be divided into three main distinct subgroups: 1) anaplastic astrocytoma, IDH-mutant (AAmut); 2) anaplastic astrocytoma IDH-wild-type (AAwt); and 3) anaplastic oligodendroglioma, IDH-mutant and 1p/19q codeletion (AOD) (3). The typical treatment for AGs is maximal safe resection followed by radiation therapy or chemotherapy. Despite surgery, radiation therapy and chemotherapy, the prognosis of WHO grade III glioma is still poor. The median overall survival of AGs varies widely from 3 to 12 years (4, 5).

Iris Elens investigated the immunotherapy safety and efficacy for recurrent AGs (6). After surgical resection, 39 patients received dendritic cell vaccines loaded with autologous tumor lysates (6). Compared with that of temozolomide treatment in the literature, the median progression-free survival was not significantly different after immunotherapy, although the expected outcome of immunotherapy was more pronounced than temozolomide treatment in AGs (6). The design of immunotherapy strategies for AGs requires detailed knowledge of the immune cell landscape. To our best knowledge, tumor-driven immune changes in the milieu of AGs have seldom been reported.

Patients with AOD have a more favorable prognosis than those with AAmut, even among those with the same tumor grade (7). The immune milieu acts a pivotal part in the glioma response to treatment and the prognosis (8). The difference in the immune microenvironment between these two subgroups with different prognostic estimates remains elusive.

Immunotherapy for AG is an emergent revolution that promises the prospect of highly specific and less toxic therapy compared to conventional strategies (9). Immunotherapy generically intensifies immune cell functions and facilitates improved antitumor immunity. Therefore, a wide-ranging understanding of the AG immune milieu on a high-dimensional single-cell basis is crucially needed. In the present study, we applied mass cytometry (CyTOF) to demonstrate the tumor-driven immune changes in situ to capture the cellular and molecular complexities of the AG immunosuppressive milieu. We compared the difference in immune signatures between the AAmut and AOD subgroups in the AGs. Our data will help elucidate the immune microenvironment changes in AGs and promote the development of immunotherapy.



Materials and Methods


Anaplastic Glioma Tissue and Blood Samples Collection

From June 2018 to March 2019, we enrolled patients with WHO grade III AAmut or AOD who underwent craniotomy surgery at Beijing Tiantan Hospital (Beijing, China), and blood and tumor tissues were obtained. All these patients were diagnosed and confirmed by histopathological and molecular analysis. Before sampling, none of these enrolled patients used glucocorticoids. The current study was approved by the Institutional Review Board and Ethics Committee of Beijing Tiantan Hospital, Capital Medical University. Written informed consent was obtained from all patients.



AG Tumor Specimen Single-Cell Preparation

After the operation, the ice-cold Dulbecco’s phosphate-buffered saline (DPBS, Sigma-Aldrich) was immediately used to wash AAmut or AOD tumor tissues. In brief, type IV collagenase (Gibco) was used to dissociate the AG specimens. Next, Dulbecco’s modified Eagle’s medium (DMEM, Sigma-Aldrich) was used to wash the specimens. After centrifugation, the specimens were filtered through a 40 µm cell strainer with DPBS and washed with red blood cell (RBC) lysis buffer (BD Biosciences). Next, DPBS was used to wash the dissociated cell suspension. Finally, the cells were resuspended in staining buffer (DPBS containing 5% fetal bovine serum; ScienCell).



Blood Specimen Single-Cell Preparation

Peripheral blood specimens were gathered with ethylenediaminetetraacetic acid anticoagulation tubes. To remove plasma, the blood specimens were centrifuged first. Then, the blood specimens were transferred into SepMate peripheral blood mononuclear cell (PBMC) isolation tubes containing Ficoll (STEMCELL Technologies). After centrifugation, RBC lysis buffer was used to wash the cells. Finally, these cells were washed with staining buffer twice.



CyTOF Examination

A panel of 33 antibodies was used as previously reported (10). Preconjugated antibodies were purchased from Fluidigm Company. Purified antibodies were purchased from Biolegend Company and then conjugated with metals using the Maxpar® X8 Multimetal Labeling Kit (Fluidigm) according to the manufacturer’s protocol. Supplementary Figure S1 demonstrates the list of the antibodies and reporter isotopes. In brief, the cell specimens were rewarmed quickly. Anti-CD45 antibody conjugated with 156Gd was used to stain cells from AG tissues, while anti-CD45 antibody conjugated with 89Y was used to stain cells from PBMCs. We mixed together the cells from the AG and PBMC samples and then stained the specimens with cell surface antibodies. Subsequently, the mixed specimens were permeabilized and stained with intracellular antibodies. Then 0.125 nM Intercalator-Ir (Fluidigm) diluted in phosphate-buffered saline (PBS; Sigma-Aldrich) containing 2% formaldehyde was used to wash and incubate the antibody-labeled specimens. Specimens were stored at 4°C until CyTOF examination. Before acquisition, deionized water was used to wash the specimens. The specimens were resuspended in deionized water containing a 1:20 dilution of EQ Four Element Beads (Fluidigm) at a concentration of 1 × 106 cells/ml. The specimens were examined by CyTOF2 mass cytometry (Fluidigm Company).



Mass Cytometry Data Analysis

The.fcs files of CyTOF data were uploaded and analyzed with Cytobank (www.cytobank.org). As previously described (11), based on EQ Four Element Beads, we can use the MATLAB-based normalization technique according to the bead intensities. T cells were characterized as CD45+CD3+; natural killer (NK) cells were characterized as CD45+CD3−CD16+CD56+ (8, 12); B cells were characterized as CD45+CD19+; monocytes were characterized as CD45+CD14+CD16+ (13); macrophages or microglial cells were characterized as CD45+CD11b+CD3−CD19− CD66b−CD16− (14); regulatory t cells (Tregs) were characterized as CD45+CD4+CD25+CD127− (15) and granulocytes were characterized as CD45+CD66b+. Mononuclear phagocytes are composed of monocytes and macrophages (16). Immunocyte populations of interest were manually gated as previously reported (17). The viSNE analysis of T cells or glioma-associated microglia/macrophages (GAMs) was performed based on patients with more than 500 cell events in both PBMC and AG tumor lesions. Automatic cluster gate functionality was applied for the hierarchical cluster analysis. R software (version 3.4.0) was used to generate the heatmaps of marker expression or relative marker expression.



Normalization for Heatmap Data

For Figures 2E, D we used log10-scaled values to normalize the data.

For Figure 3A, we first calculated the ratio of the value of each GAM cytokine or marker to that of the paired mononuclear phagocytes in PBMCs. Then we log10-scaled the ratio to normalize the values.



Polychromatic Immunofluorescence Staining

Three AAmut and three AOD samples were collected for polychromatic immunofluorescence staining. Four percent formalin was used to fix the AG specimens and the specimens were embedded in paraffin blocks. For polychromatic immunofluorescence, 3 µm paraffin sections were washed in PBS twice, and permeabilized in 0.2 to 0.5% Triton X-100 (Solarbio). Then the paraffin sections were blocked in 5% normal donkey serum (Jackson Lab) and stained with primary antibody. Fluorescent-conjugated secondary antibodies (ZSGB-Bio) were used to detect the primary antibodies. Fluorescence mounting medium (Dako) was used to mount the sections. As previously described (18), we used the Opal 4-Color Manual IHC Kit (Perkin Elmer) for the analysis of formalin-fixed paraffin-embedded AG sections following the manufacturer’s protocols. Zeiss LSM880 NLO microscope was used to acquire fluorescent images. Primary antibodies were anti-CD45 (OriGene), anti-lba1 (CST), and anti-CD206 (Proteintech). GAMs were defined based on cells that costained with CD45 and lba1. CD206+ GAMs were defined based on cells that were costained with CD45, lba1, and CD206. The percentage of CD206+ GAMs was defined by (CD206+ GAMs)/GAMs.



Statistical Analysis

For the CyTOF data, five AAmut samples and the paired PBMCs and 10 AOD samples and the paired PBMCs were analyzed. The paired t-test was used to determine significant differences between the AG and paired PBMC samples. The unpaired t-test was used to determine significant differences between the AAmut and AOD lesions. GraphPad Prism software (version 7.00) was used to perform statistical analysis. P values less than 0.05 were considered to be statistically significant.




Results


High-Dimensional Single-Cell Immunophenotyping of AG Samples Using CyTOF

We obtained 10 AOD tumor tissues, all of which had paired peripheral blood samples (oPBMCs). We also obtained five AAmut tumor tissues and paired PBMC (aPBMC) samples (Figure 1A). The baseline characteristics of all AG patients are summarized in Table 1.




Figure 1 | Suppressive immune response to AG tumor lesions. (A) Schematics for defining the immune cell composition of AAmuts and AODs. AG tumor lesions and paired PBMC specimens were collected from AG patients. The specimens were prepared and stained with metal isotope-conjugated antibodies. CyTOF single-cell data were analyzed to identify the immune features of the AG patients. (B) Constitution of the immunocyte compartment showing the average frequencies of the major immunocyte lineages. (C) Bar plots displaying the average frequencies of AG patients and paired PBMC specimens (by paired t-tests and unpaired t-tests). Bar plots show the mean ± SEM (NS, no significance; *p < 0.05; **p < 0.01 and ***p < 0.001).




Table 1 | Basic characteristics of the AAmut and AOD patients.



We mapped the immune compartments of the AOD and AAmut lesions and their paired PBMCs at the same time (Figure 1A). The initial gating hierarchies for CD45+ immunocytes are demonstrated in Supplementary Figure S2A, and Supplementary Figure S2B summarizes the gating strategies for the indicated immunocytes. The viSNE map of the CD45+ immunocytes collected from all AG specimens demonstrated differential abundances of infiltrating immunocyte populations in the tumor immune milieu compared to those in the PBMCs (Supplementary Figure S2C).



Mononuclear Phagocytes and T Cells Are the Most Abundant Immunocytes in the AG Immune Microenvironment

We mapped the immune compartment of the AG tumor lesion and the paired peripheral blood specimens at the same time to distinguish the tumor-driven immune changes from the AG immune environment. In the AG immune microenvironment, mononuclear phagocytes (64.16% in AAmut and 56.76% in AOD) and T lymphocytes (25.92% in AAmut and 31.9% in AOD) were the most abundant immunocytes. There were no significant differences in the compartments of immunocytes between the AAmut and AOD immune microenvironments, and the immunocyte compartments in the peripheral blood were also similar. Compared with that in the PBMCs, the ratio of mononuclear phagocytes was notably increased in the AG lesions (p < 0.001 in both AAmuts and AODs), while the ratios of T cells (p < 0.01 in AAmuts and p < 0.001 in AODs) and B cells (p < 0.05 in AAmuts and p < 0.01 in AODs) were notably decreased, and the ratios of NK cells and granulocytes were similar (Figures 1B, C).



T Cells Demonstrate Immunosuppressive Phenotypes in AG

Compared with those in the PBMCs, the percentages of CD4+ T cells (p < 0.01 in both AODs and AAmuts) declined, while those of CD8+ T cells (p < 0.01 in both AAmuts and AODs) increased in the AAmuts and AODs. As expected, the proportions of Tregs in the AG lesions were significantly increased in both the AAmuts and AODs (p < 0.05 and p < 0.001, respectively). PD-1-, TIM-3-, or LAG-3- positive T cells are recognized as exhausted subgroups (19–21). Compared to that in the PBMCs, the proportions of PD-1- or TIM-3- positive exhausted T cells were substantially higher at the AG tumor sites (Figure 2A).




Figure 2 | Exhausted T cell compartment in the AAmut and AOD lesions. (A) Bar plots displaying the frequencies of the T cell subsets in the AAmut and AOD tumor sites and their paired PBMCs (by paired t-test and unpaired t-test). Bar plots show the mean ± SEM (NS, no significance; *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001). (B) ViSNE map, colored by specimen source (top) or specimen type (bottom), showing T cell subsets in five AAmut and five AOD patients. (C) ViSNE map demonstrating the expression level of PD-1 on T cells. (D) ViSNE map displaying T cell subgroups in five AAmut and five AOD patients. The map was colored by clusters. (E) Heatmap displaying the normalized indicated marker expression levels for the 21 T cell clusters identified in tumor lesions of the five AAmut and five AOD patients.



We employed the viSNE map tool (22) to convert the high-dimensional CyTOF data into a two-dimensional atlas. ViSNE analysis was performed on the patients who gathered more than 500 T cells in both the tumor sites and PBMCs. Finally, five AAmut patients and five AOD patients were analyzed. The viSNE map demonstrates that T cells in the AAmut and AOD groups displayed similar distributions (Figure 2B). Compared with the PBMCs, the AG lesions had a certain group of T cells that highly expressed PD-1 (Figure 2C).

Based on the hierarchical cluster analysis of the T cells using automatic cluster gate functionality, the T cells were subdivided into 21 subgroups according to the surface markers (Figure 2D). The heatmap visualized the expression profiles of these T cell clusters (Figure 2E). We identified seven CD4+ phenotypes, eleven CD8+ phenotypes, one Treg phenotype, and two CD4+/ CD8+ double-negative phenotypes with this approach.



Glioma-Associated Microglia/Macrophages in Anaplastic Astrocytomas Exhibit More Immunosuppressive Characteristics Than Those in Anaplastic Oligodendroglioma

Previous studies have shown the strong infiltration of peripheral macrophages and resident microglia within gliomas (23), and macrophages and microglia are collectively termed GAMs. In the current research, GAMs were the most enriched immune cell population in the AG tumor sites compared to the other immune cells. These cells were obviously distinguishable from the mononuclear phagocytes in PBMCs; the GAMs in both AAmut and AOD had higher expression levels of PD-L1, IDO, LAG-3, TIM-3, CD206, and TNFα than mononuclear phagocytes in the PBMCs (Figure 3A). Moreover, the GAMs showed intertumoral heterogeneity since CD206, immune checkpoints (PD-L1, TIM-3, and LAG-3), immunosuppressive cytokines (IL-10 and TGFβ), TNFα, and VEGF were expressed at various levels in the AG patients (Figure 3A). Compared to the mononuclear phagocytes in the PBMCs, GAMs in AOD lesions expressed higher levels of TGFβ (p < 0.05). Although TGFβ is an immunosuppressive agent (24), there was no significant difference in TGFβ expression levels in GAMs between AAmut and ADO lesions (Supplementary Figure S3A).




Figure 3 | Depiction of the GAM phenotypes in AG. (A) Heatmap displaying the relative expression levels of the indicated markers in the 5 AAmut and 10 AOD patients. The relative marker expression levels were defined by the ratios of the indicated marker expression levels of GAMs in AG lesions to those of the mononuclear phagocytes in PBMCs. (B) ViSNE map, colored by sample type, demonstrating the GAM subsets in four AAmut and four AOD patients. (C) ViSNE map, colored by clusters, demonstrating the GAM subset distribution in the AG tumor sites and the PBMCs. (D) Heatmap demonstrating the normalized indicated marker expression levels of the 17 GAM clusters identified in the four AAmut and four AOD patients. (E) ViSNE map demonstrating GAMs in AAmut and AOD colored to show the expression level of CD206. (F) Representative AAmut and AOD tissues stained for CD45 (purple), lba1 (red), and CD206 (green). Costaining of CD45, lba1, and CD206 (upper) indicated more CD206+ GAMs in AAmut lesions than in ADO lesions. The scale bar corresponds to 50 μm.



Four AAmut patients and four AOD patients gathered more than 500 GAM or mononuclear phagocyte event counts in both the AG tumor lesions and the PBMCs, and viSNE analysis was performed based on these cells. The viSNE map demonstrated that the GAMs were obviously distinguishable from the mononuclear phagocytes in PBMCs (Figure 3B). With automatic cluster gate functionality, the GAMs or mononuclear phagocytes could be subdivided into 17 subgroups based on the surface markers, and the expression levels of these GAM subpopulations were visualized in a heatmap (Figures 3C, D). At the single-cell level, the viSNE map demonstrated a cluster involving M-1, which was described as high expression of CD206, a marker that is expressed by protumor GAMs and may promote a tumor-supportive microenvironment (25). This cluster was excluded from the PBMCs, and there were more CD206+ GAMs in the AAmut lesions than in the AOD lesions (p < 0.05) (Figure 3E and Supplementary Figure S3B). Polychromatic immunofluorescence confirmed that there were more CD206+ GAMs in the AAmut lesions than in the AOD lesions (p < 0.01) (Figure 3F and Supplementary Figure S3C).



NK Cells Act a Complicated Part in the AG Immune Response

It has been reported that CXCR3 is required for NK cell infiltration (26). The expression level of CXCR3 between AAmut and AOD was not significantly different whereas the infiltrated NK cells in the AAmut or AOD lesions expressed higher CXCR3 levels (p < 0.05 or p < 0.001 respectively) than those in their paired PBMCs (Figure 4). Although the difference in IFNγ expression level between NK cells in AAmut and ADO lesions was not significant, the NK cells that infiltrated the AOD lesion seemed to demonstrate higher levels of cytolytic activities, as these NK cells expressed higher levels of IFNγ than the paired PBMCs (p < 0.01). Notably, granzyme B expression levels were similar between AAmut and AOD tumor sites, whereas granzyme B expression level was significantly lower in the AOD samples than in the peripheral blood samples (p < 0.05) (Figure 4).




Figure 4 | Cytolytic NK cells are dysfunctional at AG lesions. Bar plots demonstrating the expression levels of CXCR3, granzyme B, and IFNγ in the NK cells from AG patients and their paired PBMCs (by paired t-test and unpaired t-test). Bar plots show the mean ± SEM (*p < 0.05; **p < 0.01; ***p < 0.001; and NS, no significance).






Discussion

In our study, using CyTOF analyses, we analyzed infiltrating immunocytes from surgically resected initial AG tissues, including AAmut and AOD samples. Based on a panel of 33 markers, we present a single-cell view of the complicated AAmut and AOD immune microenvironment. Our study verified that mononuclear phagocytes and T cells were the most abundant groups in the immune microenvironment of AGs. The GAMs in both AAmut and AOD showed substantial inter- and intratumoral heterogeneity with highly immunosuppressive characteristics. Compared to that in the PBMCs, the ratios of immune checkpoint-positive exhausted CD4+ T cells and CD8+ T cells were distinctly higher at the AG tumor sites. The immune microenvironment in AAmut exhibits more immunosuppressive characteristics than that in AOD.

AGs are regarded as intermediate-grade gliomas, whose malignancy is between low-grade gliomas and glioblastomas (GBMs) (27). Furthermore, AGs are infiltrative neoplasms with a highly invasive nature, in which the disruption of the blood-brain barrier (BBB) is between that of low-grade gliomas and GBMs (28). Both the malignancy of the tumor and the breakdown of the BBB contribute to the unique and specific immune microenvironment in low-grade gliomas and GBMs (8). In our study, mononuclear phagocytes and T cells were the most abundant groups in the immune microenvironment of the AGs. The GAMs in the AGs present highly with various immunosuppressive cytokines and chemokines among the patients and among GAM subsets. Compared to those in the PBMCs, the ratios of exhausted CD4+ T cells and CD8+ T cells were distinctly higher at the AG tumor lesions. CyTOF technology provides a high-dimensional view of the composition of the immunosuppressive microenvironment in AGs, which may be vital for effectively targeting the immunosuppressive subpopulation in a clinical setting and for the special design of future immunomodulators for AGs.

It has been reported that the prognosis between WHO grade III AAmuts and AODs is significantly different, and AOD patients have a better overall survival time than AAmuts patients (7). Glioma cells promote the infiltration of a range of immune cells into the tumor site by secreting numerous cytokines, chemokines, and growth factors (29–31); these nonneoplastic elements create a specific niche called an immune microenvironment. The immune microenvironment plays a vital role in the glioma response to treatment and prognosis (8, 32, 33). A systematic view of the immune milieu that differs between AAmuts and AODs is still lacking. Using the CyTOF method, on a single-cell basis, we showed that GAM clusters in AAmut were characterized by higher expression of CD206 than those in AOD. CD206 is a prominent prognostic marker that is specifically expressed by protumor GAMs, meanwhile the immune milieu plays a vital role in glioma progression and prognosis (8, 25). Our results implied that immunocytes especially GAMs in AAmut exhibit more immunosuppressive characteristics than those in AOD and that the different immune microenvironments of AOD and AAmuts might be partial reasons for their different prognoses.

Granzyme B has been traditionally viewed as a primary mechanism used by NK cells to eliminate tumor cells (34). NK cells in both AAmut and AOD lesions expressed lower levels of granzyme B than those in PBMCs. Meanwhile granzyme B in NK cells between AAmut and ADO lesions demonstrated similar expression levels. This suggests that in the AG immune microenvironment NK cells might act a complicated part in the immune response which needs further exploration.

Our study has several limitations. The IDH status of glioma was shown to affect the tumor immune state and progression (35, 36). Deciphering the immune milieu of AGs and clarifying the differences between AAmuts and AAwts and patient prognosis requires further research and the small number of cases may not be enough to identify the immune microenvironment differences between AAmuts and AODs, which needs the collection of more cases and further exploration. Although CyTOF makes the concurrent measurement of more than 30 parameters per single cell possible (37), the limited number of surface markers measured simultaneously still restricts the analysis. In-depth studies such as single-cell RNA sequencing are needed to further validate our findings.
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Supplementary Figure 1 | Mass cytometry panel. Markers used to characterize AAmut and AOD immune phenotypes.

Supplementary Figure 2 | Analysis of the immune microenvironment of AG using CyTOF. (A) Gating hierarchy for identifying the CD45+ cells. a) EQ3 beads and EQ4 beads were utilized to recognize cell events from all events. b) Single living cells were recognized by gating the cell events positive for 193Ir and negative for 195Pt. c) CD45+ cells from AGs and PBMCs were gated from the single living cells. (B) Cell type identification strategies. (C) ViSNE plots of the immunocytes in all samples based on the relative expression levels of the CyTOF markers. The cell colors show the expression level of the indicated markers. The immunocyte populations are indicated as well (left). Five hundred CD45+ immunocytes per specimen were included in the viSNE analysis.

Supplementary Figure 3 | Comparison of the immune microenvironment between AAmut and AOD samples. (A) Bar plots displaying TGFβ expression from GAMs or mononuclear phagocytes in the AAmut and AOD tumor sites and their paired PBMCs (by paired t-test and unpaired t-test). Bar plots show the mean ± SEM (*p < 0.05 and NS, no significance). (B) Bar plots displaying the frequencies of the CD206+ GAMs the AAmut and AOD tumor sites using CyTOF (by unpaired t-test). Bar plots show the mean ± SEM (*p < 0.05). (C) Bar plots displaying the frequencies of the CD206+ GAMs the AAmut and AOD tumor sites using polychromatic immunofluorescence staining (by unpaired t-test). Bar plots show the mean ± SEM (**p < 0.01).
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Background

Tumor-infiltrating lymphocytes (TILs) have important roles in predicting tumor therapeutic responses and progression, however, the method of evaluating TILs is complicated. We attempted to explore the association of TILs with clinicopathological characteristics and blood indicators, and to develop nomograms to predict the density of TILs in patients with high-grade serous ovarian cancer (HGSOC).



Methods

The clinical profiles of 197 consecutive postoperative HGSOC patients were retrospectively analyzed. Tumor tissues and matched normal fallopian tubes were immunostained for CD3+, CD8+, and CD4+ T cells on corresponding tissue microarrays and the numbers of TILs were counted using the NIH ImageJ software. The patients were classified into low- or high-density groups for each marker (CD3, CD4, CD8). The associations of the investigated TILs to clinicopathological characteristics and blood indicators were assessed and the related predictors for densities of TILs were used to develop nomograms; which were then further evaluated using the C-index, receiver operating characteristic (ROC) curves and calibration plots.



Results

Menopausal status, estrogen receptor (ER), Ki-67 index, white blood cell (WBC), platelets (PLT), lactate dehydrogenase (LDH), and carbohydrate antigen 153 (CA153) had significant association with densities of tumor-infiltrating CD3+, CD8+, or CD4+ T cells. The calibration curves of the CD3+ (C-index = 0.748), CD8+ (C-index = 0.683) and CD4+ TILs nomogram (C-index = 0.759) demonstrated excellent agreement between predictions and actual observations. ROC curves of internal validation indicated good discrimination for the CD8+ TILs nomogram [area under the curve (AUC) = 0.659, 95% CI 0.582–0.736] and encouraging performance for the CD3+ (AUC= 0.708, 95% CI 0.636–0.781) and CD4+ TILs nomogram (AUC = 0.730, 95% CI 0.659–0.801).



Conclusion

Menopausal status, ER, Ki-67 index, WBC, PLT, LDH, and CA153 could reflect the densities of T cells in the tumor microenvironment. Novel nomograms are conducive to monitor the immune status of patients with HGSOC and help doctors to formulate the appropriate treatment strategies.





Keywords: high-grade serous ovarian cancer, nomograms, tumor-infiltrating lymphocytes, tumor microenvironment, blood indicators



Introduction

Ovarian cancer is the most lethal gynecological malignancy worldwide (1); of which high-grade serous ovarian cancer (HGSOC) accounts for 70–80% of all ovarian cancer-related deaths. The prognosis of HGSOC has not been significantly improved in the past decades (2). Clinically, HGSOC prognosis is mainly assessed using the International Federation of Gynecology and Obstetrics (FIGO) staging system (3). However, the predictive limitations of the FIGO staging system have forced researchers to explore more specific and accurate prediction models using histological classification, molecular typing, biomarkers, and tumor-infiltrating lymphocytes (TILs) approaches (4–8).

TILs refer to mononuclear immune cells (such as white blood cells [WBC], T-cells and B-cells) nested in the tumor stroma or intra-epithelium (9). It has now been well-established that TILs play a crucial role in controlling tumor growth, recognition of cancer antigens, therapeutic response, and the inhibition of cancer development in solid tumors (10, 11). The survival benefits of TILs have been shown in a variety of cancers including, but not limited to, melanoma (12), colon cancer (13), and ovarian cancer (14). Quantification of TILs has shown promising potential to be used as a new biomarker for cancer. Approaches of quantifying TILs include image-analysis, methylation signature and multi-omics data, and have been devised to assess therapeutic prediction or prognosis (15–17). However, there is not a convenient method to provide standardized and efficient TILs evaluation in clinical practice yet.

Blood routine and biochemical indicators are widely used to monitor the patients’ health conditions because of related cancer-induced disorders in the bio-energetic metabolism, and their potential roles in tumors have been extensively studied in recent years. Blood indicators, including lactate dehydrogenase (LDH) (18), the NLR (neutrophil-to-lymphocyte ratio) (19), the PLR (platelet-to-lymphocyte ratio) (20), the LMR (lymphocyte-to-monocyte ratio) (21), carbohydrate antigen 125 (CA125) (22), and carbohydrate antigen 153 (CA153) (23), have shown important diagnostic and/or prognostic value in ovarian cancer. Additionally, nomograms, considered as a clinically easy-to-implement and reliable calculating model, have been established by combining related risk factors to help clinicians to develop individualized treatment and follow-up management strategies in breast, gastric and bladder cancers (24–27). These have attracted our attention to devise such a model for HGSOC.

To the best of our knowledge, no nomograms had been proposed for predicting TILs in HGSOC. This study aimed to explore the association of TILs (CD3+, CD8+, and CD4+) to the clinicopathological characteristics and blood indicators of HGSOC; based on which nomograms were established to assess the density levels of TILs, with the hope of providing a convenient method to monitor the immune status of HGSOC patients and help to guide therapeutic strategies in clinical practice.



Materials and Methods


Patients

One hundred ninety-seven surgically resected ovarian cancer samples and matched normal fallopian tubes were collected at the Sun Yat-sen University Cancer Center between February 1, 2008, and December 31, 2013. All the included patients were histologically diagnosed as HGSOC. Additionally, no patients had a second primary tumor, chronic inflammatory disease (such as autoimmune disease and infection, etc.), or received any preoperative treatments, including chemotherapy, radiotherapy, targeted therapy, immunotherapy. Basic clinicopathological data of the patients were obtained by reviewing their medical records. This study was approved by the Institutional Review Board and Ethics Committee at Sun Yat-sen University Cancer Center.



Laboratory Measurements of Blood Biochemical Indicators

Tumor biomarkers, including CA125, CA153, carbohydrate antigen 199 (CA199), and carcinoembryonic antigen (CEA), were measured using an automatic electrochemistry luminescence immunoassay system [ROCHE E170 (Roche, Mannheim, Germany)]. WBC, neutrophils, lymphocytes, monocytes, platelets (PLT), NLR, PLR, LMR, LDH, albumin (ALB), and C-reactive protein (CRP) were classified as inflammatory markers. WBC, neutrophils, lymphocytes, monocytes, and PLT were measured by routine blood examination [XE-5000TM Automated Hematology System (Sysmex UK Ltd., Milton Keynes, UK)]. LDH, ALB, and CRP were tested with a blood analyzer [Hitachi Automatic Analyzer 7600-020 (Hitachi, Tokyo, Japan)]. All biomarkers data were obtained within one week before surgery. The normal ranges of CA125, CA153, CA199, CEA, WBC, neutrophils, lymphocytes, monocytes, PLT, LDH, ALB, and CRP levels in blood were 0–35 U/mL, 0–25 U/L, 0–35 U/mL, 0–5 ng/mL, 3.69–9.16 10E9/L, 2.0–7.0 10E9/L, 0.8–4 10E9/L, 0.12–1.2 10E9/L, 100–300 10E9/L, 109–245 U/L, 35–55 g/L, and 0–8.2 mg/L, respectively. NLR, PLR, and LMR had no standard normal range. The patients were classified into four subgroups according to quartiles of CA153 (quartile1, 22.3; quartile2, 62.1; quartile3, 148.1), WBC (quartile1, 5.95; quartile2, 7.2; quartile3, 8.8), PLT (quartile1, 234.7; quartile2, 305.0; quartile3, 379.8) and LDH (quartile1, 182.1; quartile2, 224.5; quartile3, 306.6).



Tissue Microarray (TMA) Construction and Immunohistochemistry (IHC)

The tissue array (TMA) slides contained 197 pairs of HGSOC cases and matched normal fallopian tubes. Each core tissue biopsy (1 mm in diameter) was taken from individual paraffin-embedded HGSOC or internal controls (donor block) and re-arranged in a new recipient paraffin block (tissue array block) with a tissue array instrument (Minicore Excilone, Minicore, UK). Then, the paraffin-embedded tissue specimens were cut into 4-mm sections and mounted onto glass slides. The slides were stained with anti-CD3 (2GV6; 1:100; Roche/Ventana), -CD8 (AM0063; 1:100; Ascend Biotechnology Co.,Ltd), -CD4 (ZM-0418; 1:100; ZSGB-BIO), -Ki-67 (ZA-0502; 1:100; ZSGB-BIO), -p53 (Bp-53-12; 1:100; BioGenex), -ER (clone SP1; Roche/Ventana), and all slides were stained with hematoxylin and eosin (H&E). Stained slides from representative areas of the core of the tissue biopsy were scanned using an Olympus digital slide scanner. Each slide was evaluated by two pathologists, who were blinded to the clinical status of the patients. Densities of CD3+, CD8+, and CD4+ TILs per mm2 were calculated using the NIH ImageJ v1.48 software, a Java-based image processing program (28). Patients were divided into subgroups based on each immunostained marker. The median density of TILs was chosen as the cut-off value for defining high and low expression. ER positivity threshold was defined as ≥1% displaying nucleus ER staining of any intensity (29). A median Ki-67 index of 30% was chosen as the cut-off value for defining high and low Ki-67 index. For p53, tumors with more than 60% immunoreactivity in the nuclei were defined as mutational, otherwise wild.



Construction and Validation of Nomograms

Independent predictors of CD3+, CD8+, and CD4+ TILs for HGSOC patients were identified by univariate and multivariate analyses. All variables were evaluated with the backward multivariate binary logistic regression model (30). Then, based on the screened variables, three nomograms were developed. Bootstrapping with 40 resamples were applied for internal validation of the nomograms. The performance of each nomogram for prediction was judged using the Harrell's concordance index (C-index) and receiver operating characteristic (ROC) curves. Calibration curves were implemented to validate the accuracy and reliability of the nomograms (31).



Statistical Analysis

Statistical analyses were performed using the SPSS software, version 22.0 (SPSS, Chicago, IL, USA) and the programming language R (version 3.6.3, http://www.R-project.org) for Windows. The correlation between the clinical variables and density levels of TILs (CD3+, CD8+, CD4+ T cells) were assessed by the chi-squared test. Based on the levels of TILs, all blood indicators between subgroups were displayed as median (minimum–maximum) and the distribution differences were analyzed by non-parametric tests. Due to non-normal distributions of blood indicators, the association between blood indicators and the expression levels of TILs were assessed using the Spearman's correlation test to obtain correlation coefficients. All variables with p less than 0.1 in the univariate analysis were incorporated into multivariate analyses to identify the independent predictors related to TILs. According to the results of the multivariate analysis, nomograms, ROC curves, and calibration plots were established respectively by R 3.6.3 with the rms, ROC, and calibrate packages. All statistical tests were two-sided, and p values less than 0.05 were considered statistically significant.




Results


Patients' Clinical Characteristics 

A total of 197 HGSOC patients were found eligible for this study and their characteristics are detailed in Table 1. The patients’ age ranged from 22 to 85 years, with a median age of 52 years. 111 (56.3%) patients were in menopause. Most of the tumors recorded were larger than 5 cm [n = 165 (83.8%)] and occurred in the bilateral ovaries [n = 144 (73.1%)]. The pathological differential for the vast majority of tumors was poorly differentiated (160, 81.2%), and only 37 patients were moderately differentiated. 143 (72.6%) patients were classified as stage III–IV (2009 FIGO) and 144 (73.1%) patients had ascites. Approximately 1/3 of the patients had metastatic lymph nodes and 57 (28.9%) patients did not undergo lymphadenectomy. 173 (87.8%) cases had p53 mutations, and 6 cases without successful immunohistochemical (IHC) staining. Hormone levels were also tested as follows: 161 (81.7%) for positive ER and 128 (65.0%) for positive progesterone receptor (PR). Using a Ki-67 index of 30% as boundary, the amount of patients in the two groups is similar.


Table 1 | Basic clinicopathological characteristics of 197 high-grade serous ovarian cancer patients.





Immunohistochemical Characteristics of Various Markers

TILs were examined in 197 pairs of tissue samples from patients with HGSOC and normal fallopian tube. As 24 out of the 197 matched normal specimens lack the fallopian tube epithelium, the actual number of normal specimens was 173. We detected the density levels of CD3+, CD8+, and CD4+ T cells /mm2 in tumor and normal specimens, respectively (Figures 1A–C). The degree of various T cell infiltrations in the tumors was significantly higher than that of the normal tissues (all p < 0.001) (Figure 1J). The median density of CD3+ T cells in the tumor was 104/mm2 (1/mm2–791/mm2), 48/mm2 (0/mm2–684/mm2) for CD8+ T cells, and 12/mm2 (0/mm2–236/mm2) for CD4+ T cells, respectively. Low-density level was defined as a value below the median, and high-density level was defined as a value above the median (Figures 1D–I). Representative H&E and IHC images of ER, Ki-67 index, and p53 are shown in Figures 2A–H, respectively.




Figure 1 | Expression of CD3+, CD8+, and CD4+ TILs in HGSOC tissues (Tu) and matched normal epithelium of the fallopian tubes (N), shown at 40× magnification with inset (400×). (A–C) Representative images of CD3+, CD8+, and CD4+ TILs in the normal fallopian tube tissues. (D, G) Representative images of low-density and high-density of CD3+ TILs in the HGSOC tissues. (E, H) Representative images of low-density and high-density CD8+ TILs in the HGSOC tissues. (F, I) Representative images of low-density and high-density of CD4+ TILs in the HGSOC tissues. (J) Box plots of CD3+, CD8+, and CD4+ TILs per mm2 in tumor tissues (n=197) or normal epithelium of the fallopian tubes (n=173). Quantitative data are presented as mean ± SEM. TILs, tumor-infiltrating lymphocytes; HGSOC, high-grade serous ovarian cancer.






Figure 2 | Immunohistochemical staining of H&E, ER, Ki-67, and p53 in HGSOC tissues (Tu) and matched normal fallopian tubes tissue (N), shown at 40× magnification with inset (400×). (A, B) Representative images of H&E in the matched normal epithelium of the fallopian tubes (N) and HGSOC tissues (Tu). (C, D) Representative images of negative and positive ER in HGSOC tissues are presented. (E, F) Representative images of high and low Ki-67 index in HGSOC tissues are shown (G, H) Representative images of mutant type and wild type p53 staining in HGSOC tissues are presented. TILs, tumor-infiltrating lymphocytes; HGSOC, high-grade serous ovarian cancer; H&E, Hematoxylin and Eosin.





Association Between Clinical Characteristics and Tumor-Infiltrating T Cells

The association between CD3+, CD4+, CD8+ TILs, and clinicopathological characteristics is shown in Table 2. CD3+, CD4+, CD8+ TILs were significantly correlated with tumor differentiation and ER status (all p < 0.05). Additionally, CD8+ TILs were relatively higher in older patients with more than 52 years (57.5% vs. 42.6%, p = 0.039) and menopausal patients (58.6% vs. 41.1%, p = 0.008). Only the level of CD4+ TILs were higher in patients with high Ki-67 index (62.5% vs. 37.5%, p < 0.001). Tumor size, location, ascites, and lymph node metastasis had no significant association with the densities of CD3+, CD8+, and CD4+ TILs.


Table 2 | Association between clinicopathological characteristics and tumor infiltrating T cells.





Association Between Inflammatory Markers and Tumor-Infiltrating T Cells

As shown in Table 3, the levels of LDH, PLT, and WBC demonstrated a significant association with the expression levels of TILs. Furthermore, we investigated the linear relationship between the three inflammatory markers and TILs, and found that higher level of serum LDH was associated with a higher density of CD3+ TILs in the tumor microenvironment, with a coefficient of 0.153 (p = 0.031) (Figure 3A). Figure 3B presents that the more PLT was significantly associated with lower levels of CD3+ TILs in the tumor, with a coefficient of −0.186 (P = 0.009). However, no significant linear correlation between LDH level and density of CD8+ TILs was observed, with a coefficient of 0.111 (p = 0.120) (Figure 3D) and the same for the correlation between WBC and CD4+ TILs density, with a coefficient of −0.126 (P = 0.079) (Figure 3F). We also found that the density of TILs had no significant correlations with neutrophils, lymphocytes, monocytes, NLR, PLR, LMR, ALB, and CRP in the tumor microenvironment (Table 3).


Table 3 | Association between inflammatory markers and T cells in the microenvironment.






Figure 3 | Correlation between various blood indicators and the density of TILs. (A) The density of CD3+ TILs showed a positive correlation with the level of serum LDH, with a coefficient of 0.153 (p = 0.031). (B) The density of CD3+ TILs was negatively related to the PLT, with a coefficient of −0.186 (P = 0.009). (C) The density of CD3+ TILs showed a positive correlation the level of serum CA153, with a coefficient of 0.168 (P = 0.019). (D) The density of CD8+ TILs showed a tendency that positively correlated with the level of serum LDH, with a coefficient of 0.111 (P = 0.120). (E) The density of CD8+ TILs showed a tendency that positively related to the serum CA153, with a coefficient of 0.133 (P = 0.065). (F) The density of CD4+ TILs showed a tendency that negatively correlated with the number of WBC in the blood, with a coefficient of -0.126 (P = 0.079). (G) The density of CD4+ TILs was positively related to the CA153, with a coefficient of 0.207 (P = 0.004). TILs, tumor-infiltrating lymphocytes; WBC, white blood cells; LDH, lactate dehydrogenase; PLT, platelet; CA153, carbohydrate antigen 153.





Association Between Tumor Markers and Tumor-Infiltrating T Cells

Only CA153 was significantly associated with the density level of TILs, as displayed in Table 4. Linear correlation analysis showed that higher level of serum CA153 was associated with higher density of CD3+ or CD4+ TILs in the tumor microenvironment with a coefficient of 0.168 (p = 0.019) and 0.207 (p = 0.004) (Figures 3C, G), respectively. However, a similar trend for CD8+ TILs was not observed, which had a coefficient of 0.133 (p = 0.065). The remaining tumor markers, including CA125, CEA, and CA199, had no significant association with the density of TILs.


Table 4 | Association between tumor markers and tumor infiltrating T cells.





Independent Predictors of Density Levels of TILs

Our previous results showed that age, menopausal status, pathological differentiation, ER, Ki-67 index, CA153, WBC, PLT, and LDH had significant association with the expression levels of TILs. To further distinguish independent predictors of expression levels of TILs, we assessed the aforementioned clinical characteristics and blood indicators using the binary logistic regression. Predictors for CD3+, CD8+, CD4+ TILs were initially distinguished by univariate logistic regression analysis (Table 5). Six variables, including menopausal status, pathological differentiation, ER, CA153, PLT, and LDH, were potentially associated with the expression levels of CD3+ TILs (p < 0.1). Age, menopausal status, pathological differentiation, ER, and LDH were potentially associated with expression levels of CD8+ TILs (p < 0.1). Additionally, there were six potential factors related to the expression levels of CD4+ TILs, namely, menopausal status, pathological differentiation, ER, Ki-67 index, CA153, and WBC. Then, all of the above factors were included in multivariate regression analyses to identify the respective independent predictors of CD3+, CD8+, and CD4+ TILs (Table 6). Three factors were actually correlated with the expression level of CD3+ TILs: ER [positive: odds ratio (OR) 4.455, 95% CI 1.761–11.274, p = 0.002], PLT (234.7≤ x <305.0: 0.661, 0.277–1.575, p = 0.350; 305.0≤ x <379.8: 0.800, 0.332–1.928, p = 0.619; ≥379.8: 0.151, 0.056-0.405, p < 0.001) and LDH (182.1≤ x <224.5: 1.715, 0.709–4.152, p = 0.232; 224.5≤ x <306.6: 1.713, 0.708–4.145, p = 0.233; ≥306.6: 4.885, 1.825–13.076, p = 0.002). There were also three factors correlated with the expression level of CD8+ TILs: Menopausal status (positive: 1.926, 1.047–3.544, p = 0.035), ER (positive: 2.771, 1.199–6.402, p = 0.017), and LDH (182.1≤ x <224.5: 1.576, 0.669–3.710, p = 0.298; 224.5≤ x <306.6: 1.659, 0.704–3.907, p = 0.247; ≥306.6: 3.654, 1.450–9.209, p = 0.006). Similarly, the expression levels of CD4+ TILs were related to four factors: ER (positive: 2.400, 1.031–5.584, p = 0.042), Ki-67 index (≥30%: 3.034, 1.604–5.741, p = 0.001), CA153 (22.3≤ x <62.1: 1.151, 0.470–2.817, p = 0.759; 62.1≤ x <148.1: 1.557, 0.629–3.856, p = 0.339; ≥148.1: 3.479, 1.385–8.743, p = 0.008), and WBC (5.95≤ x <7.2: 0.347, 0.141–0.855, p = 0.022; 7.2≤ x <8.8: 0.281, 0.115–0.688, p = 0.005; ≥8.8: 0.219; 0.086–0.559, p = 0.002).


Table 5 | Correlative factors for tumor infiltrating T cells identified by univariate logistic regression analysis.




Table 6 | Correlative factors for tumor infiltrating T cells identified by multivariate logistic regression analysis.





Development and Validation of Nomograms for Density Levels of TILs

According to the independent predictors identified in the multivariate logistic regression analysis, three nomograms were respectively developed to predict the possible density levels of CD3+ (Figure 4A), CD8+ (Figure 4D), and CD4+ (Figure 4G) TILs in patients with HGSOC. The CD3+ TILs nomogram showed that PLT had the largest contribution, followed by LDH and ER. ER made the largest contribution in the CD8+ TILs nomogram, followed by LDH and menopausal status. For the CD4+ TILs nomogram, WBC made the largest contribution, followed by CA153, Ki-67 index, and ER. Harrell' concordance indicators of CD3+ (C-index = 0.748), CD8+ (C-index = 0.683), and CD4+ (C-index = 0.759) TILs nomograms were assessed and the calibration curves showed their good agreement between predictions and observations (Figures 4B, E, H). Then, we applied ROC analysis to evaluate the discrimination power for TILs nomograms. In the ROC curves of CD3+ TILs nomogram, the AUC value was 0.708 (95%CI 0.636–0.781) (Figure 4C), for the CD8+ TILs nomogram, it was 0.659 (95%CI 0.582–0.736) (Figure 4F) and was 0.730 (95%CI 0.659–0.801) (Figure 4I) for the CD4+ TILs nomogram. The results show that the CD4+ TILs nomogram had the best calibration and discrimination, followed by CD3+ and CD8+ TILs nomograms.




Figure 4 | Nomograms, calibration curves, and ROC curves analysis for predicting density of TILs in patients with high-grade serous ovarian cancer. (A) The CD3+ TILs prediction nomogram. (B) Calibration curves for predicting density of CD3+ TILs. (C) ROC curves of CD3+ TILs prediction nomogram in the internal testing set. (D) The CD8+ TILs prediction nomogram. (E) Calibration curves for predicting density of CD8+ TILs. (F) ROC curves of CD8+ TILs prediction nomogram in the internal testing set. (G) The CD4+ TILs prediction nomogram. (H) Calibration curves for predicting density of CD4+ TILs. (I) ROC curves of CD4+ TILs prediction nomogram in the internal testing set. All the points assigned on the top point scale for each factor are summed together to generate a total point score. The total point score is projected on the bottom scales to determine the probability of high density for tumor-infiltrating T cells in an individual. The nomogram-predicted frequency of high T cell density is plotted on the x-axis, and the actual observed frequency of high T cell density is plotted on the y-axis. The AUC was calculated, and its 95% CI was estimated by bootstrapping. TILs, tumor-infiltrating lymphocytes; ROC, receiver operating characteristic; 95% CI, 95% confidence interval.



The instruction for using nomograms are as follows. The score of the parameter is displayed at the top of the scale, and sum up the scores of each parameter. Finding the corresponding point at the axis of total points and drawing a line perpendicularly to the axis of high TILs infiltration probability, the intersection point is the personal probability of high TILs infiltration. For example, for high CD3 T cells, values for negative ER, PLT<234.7 10E9/L, and LDH <182.1 U/L will obtain a total score of approximately 100 which means the probability for high CD3+ T cells infiltration is 0.2. It implies that the patient has a high probability of lacking of CD3+ T cells infiltration.




Discussion

We present a retrospective study with TMA analysis, to explore the correlations of TILs (CD3+, CD8+, or CD4+) with clinical characteristics and blood indicators in HGSOC; based on which novel nomograms to help monitor the density levels of TILs in the tumor environment were developed. Our study showed the older patients in menopause had more CD8+ TILs and the clinical characteristics (including pathological differentiation, ER, and Ki-67) were significantly associated with TILs in HGSOC patients. Additionally, inflammation markers and tumor markers including WBC, PLT, LDH, and CA153 demonstrated significant linear correlations with TILs. Multivariate analysis indicated that most of the above markers were independent predictors for TILs and the nomograms displayed good efficacy to assess the density levels of CD3+, CD8+, and CD4+ TILs in the tumor environment. These results imply that the nomograms using minimally-invasive peripheral blood markers could be a promising approach to facilitate the monitoring of the immune status for HGSOC patients.

We observed more CD8+ TILs in older or menopausal patients than those in younger or un-menopausal patients but no similar differences for CD3+ and CD4+ TILs were found. We hypothesized that this might be because the state of the patient's hormone levels may play a more important role in immune function than age. There was a bi-directional interaction effect for hormones and immune system (32) and fertile women were found to be more vulnerable to auto-immune diseases than men till post-menopause (33). Kumru and his colleagues reported that surgical menopause contributed to an increase in CD8+ cells and reduced the ratio of CD4+ to CD8+ cells, and such trends could be reversed by estrogen replacement therapy (34). Therefore, estrogen deficiency may be the cause for the change of lymphocyte subsets in the tumor microenvironment. In our study, we stratified the patients based on the median age of 52 years. The median menopausal age of Chinese women reported was 50 years (35). Thus, we observed an increased CD8+ TILs in both older and post-menopausal people. Additionally, the interaction process of tumor cells and the immune system is critical for tumor progression. The infiltration of various TILs in the tumor microenvironment reflects the immune response to tumor aggressive biological features. The present study revealed that the increased number of various TILs was significantly associated with pathological differentiation and ER status, and the increased number of CD4+ TILs was significantly associated with high expression of the Ki-67 index (p < 0.001) (Table 2). The relationships between TILs and biological features of tumors shown here are in line with the results from other literatures in ovarian and breast cancers (36, 37). It would be meaningful to further explore the correlations and potential mechanisms between TILs and tumor pathological characteristics in a large number of patients with HGSOC.

Several studies have demonstrated that high levels of pro-inflammatory cytokines and inflammation among HGSOC patients were associated with the initiation and/or progression of most ovarian cancers (38, 39). We observed that the concentration of various TILs was closely correlated to the inflammatory markers. High densities of CD3+ and CD8+ TILs in the tumor microenvironment were associated with higher levels of serum LDH. Besides, the levels of PLT and WBC were negatively related to the densities of CD3+ and CD4+ TILs, respectively. The high level of serum LDH could suppress immune function in the tumor microenvironment and was a poor prognostic biomarker for many solid neoplasms (40–42). Previous study reported that the high level of lactate and acidification promoted immune inactivation and immune escape, even though tumor tissue with heavily infiltrated by functionally inactive T cells in metastatic melanomas (43). Cancer-associated thrombocytosis is a poor prognostic factor for various cancer types and platelets also have adverse effects on adaptive immunity (44). Another study showed that the TGF-β released by PLT could suppress anti-tumor T cell immunity and promoted tumor immune escape (45). Especially, increased counts of WBC also showed a heightened inflammatory state (46). A previous study showed that CD4+ T regulatory cells could inhibit neutrophil function and promote their apoptosis and death (47), and our results also pointed out a negative relation trend of neutrophil levels and CD4 + TILs (Table 3). We speculated that the WBC count was the sum of the absolute numbers of various inflammatory cells, so the WBC count was more likely to be an overall reflection of the association between CD4+ TILs and various inflammatory cells.

We observed that the level of CA153 in the blood was positively correlated with the densities of CD3+ and CD4+ TILs in the tumor microenvironment, and the same tendency for CD8+ TILs (Table 4) was observed. However, CA153 was an independent predictor only for CD4+ TILs in the multivariate logistic analysis and other tumor markers, such as CA125, CEA, CA199, had no significant association with TILs. Mucin 1 (MUC1), also known as CA153, is one of the commonly used tumor markers in the diagnosis and recurrence monitoring of ovarian cancer (48). The expression of MUC1 can disrupt cell–cell and cell–matrix adhesions, and promote tumor adhesion and presumably metastasis (49, 50). A previous study also showed soluble MUC1 mediated immune suppression by blocking T-cell activation (51) and Budiu et al. reported that the expression of MUC1 in ovarian tumor cells could promote regional spread and increase the accumulation of CD4+Foxp3+ immune-suppressive regulatory T cells which is often accompanied with high levels of MUC1 in the blood (52). Further investigation on circulating MUC1 for the chemotaxis of T cells in the tumor microenvironment would be interesting and the intensive molecular mechanisms are worthy of more elaborate study.

For advanced patients with HGSOC, to the approaches of preferentially select neoadjuvant chemotherapy (NAC) or primary debulking surgery remains controversial (53, 54). Besides prognostic value, higher pre-treatment TILs levels were related with higher pathologic complete response (pCR) for NAC (55). However, tumors lacking TILs tended to lack TILs after NAC, and the assessment of TILs level in pretreatment could help identify immune-inert tumors that would be probably resistant to NAC or immunotherapy (56). Conversely, tumors that initially have high TILs infiltration tend to have more TILs infiltration after NACT (57). Tumors with abundant TILs infiltration may have higher levels of PD-L1 expression, and patients may respond better to PD1/PD-L1 inhibitors (58). A study reported that before chemotherapy, patients with suppressed immune function were at high Treg levels, and low levels of cytotoxic, helper T cells and NK cells. However, a single cycle of the combination of carboplatin and paclitaxel can reverse the immunosuppressive effect, reaching a peak two weeks after treatment, suggesting that 1–2 days after chemotherapy is the best time to start immunotherapy (59, 60). Therefore, physicians could determine whether the patient needs to undergo NACT first to adjust the immune function and the timing of immunotherapy based on the status of tumor TILs infiltration. At present, TILs in tumor tissues are mainly evaluated by IHC staining of tissue sections (61). However, in daily clinical practice, this approach is invasive, costly and technically complex and alternatives are urgently warranted for timely treatment (62). Therefore, we focused on clinical research according to clinically easily accessible indicators. Some researchers have estimated the survival probability and therapeutic response using nomograms with multiple clinicopathologic factors. A study of 840 patients with epithelial ovarian cancer assessed available clinicopathological characteristics to develop nomograms for 5-year survival probability and showed accurate calibration and the C-index was 0.71 (95% CI 0.69–0.74) (63). In addition, Seung-Hyuk Shim et al. formulated and validated a positron-emission tomography/computed tomography-based nomogram incorporating the radiomics features and surgical aggressiveness index to facilitate the preoperative individualized prediction of incomplete cytoreduction in advanced ovarian cancer patients (64). Hye Won Hwang and colleagues developed a breast cancer therapeutic response nomogram to predict pCR based on pre-NAC TILs levels (65). Thus, nomograms are common prediction tools in oncology and the measuring scales with multiple factors are convenient for simple calculations, we decided to formulate nomograms for TILs prediction in HGSOC. Three nomograms were respectively developed and validated for predicting CD3+, CD8+, CD4+ TILs in patients with HGSOC. The nomogram for CD3+ TILs comprised of ER, PLT and LDH and the nomogram for CD8+ TILs incorporates menopausal status, ER and LDH, while the nomogram for CD4+ TILs contains four factors: ER, Ki-67, CA153, and WBC. The factors included in the nomograms were significantly associated with TILs in tumor microenvironment and all of the nomograms demonstrated favorable validation and discrimination in the internal verification. After investigated the correlations of densities of TILs with clinicopathologic characteristics and blood indicators in the tumor microenvironment, we proposed that menopausal status, ER, Ki-67 index, CA153, WBC, PLT, and LDH may be utilized to assess the immune status in HGSOC patients and these data could be easily acquired in the process of diagnosis through routine blood test and pathological biopsy. Importantly, the developed nomograms could greatly facilitate to simplify the calculation process in the assessment of the patient's immune status.

Nevertheless, the present study also had a few limitations. First, the nomograms lacked external validation. Because the sample size was limited for a single-center clinical retrospective research, multi-center large sample size verification could provide a higher level of evidence for clinical application. Second, this study did not incorporate genetic markers. Because genetic testing is not a routine examination, clinical factors and blood indicators were more frequently collected. However, combining genetic markers may improve the prediction of TILs nomograms in patients with HGSOC. Third, we did not analyze other types of TILs, such as B cells, natural killer cells, and other specific types of T cells, although these cells also played important roles in the tumor microenvironment. Fourth, the study did not pay attention to the location of TILs, which had particular significance in ovarian carcinoma. Due to the TMA method, the location and area of tumor tissue were restricted. Fifth, the conclusions of this study may only apply to high-grade serous ovarian cancer and the types of TILs are limited to CD3+, CD4+, and CD8+ T cells.



Conclusions

Our results demonstrated that menopausal status, ER, Ki-67 index, CA153 level, WBC count, PLT, and LDH were associated with the densities of CD3+, CD8+ or CD4+ TILs in the tumor microenvironment. Based on the above factors identified, we developed the first applied nomograms that could conveniently assess individualized immune status of TILs for patients with HGSOC. Moreover, the nomograms demonstrated high accuracy and reliability in the internal validation and they could help clinicians to monitor patients' immune status and make clinical treatment strategies for patients with HGSOC.
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Transcription factor EB (TFEB), a member of the MiT family, is dysregulated in different cancers and exerts specific biological functions within the tumor microenvironment. Downregulation of TFEB induces macrophage polarization in the TME and promotes tumor progression. However, the biological role and clinical significance of TFEB in prostate cancer (PCa) remain unknown. This study aimed to identify the role of TFEB in PCa and its potential clinical value. We explored TFEB expression in PCa using public databases and verified its prognostic value using immunohistochemistry in PCa tissue samples. The results revealed that TFEB expression was up-regulated in PCa tissues and was associated with cancer metastasis. Next, overexpression of TFEB promoted PCa cell malignant behavior in in vivo and in vitro experiments. RNA-sequencing and bioinformatics analysis showed high expression of TFEB promoted lysosomal biogenesis and knockdown of TFEB expression decreased the number of lysosomes. Furthermore, the ATP-binding cassette transporter A2 (ABCA2) was identified as a target gene of TFEB, which was verified using the cleavage under targets and release using nuclease (CUT&RUN) assay and qRT-PCR. Silencing of ABCA2 reduced lysosomal biogenesis and decreased matrix metalloproteinases expression, which reduced PCa cell invasion and migration in the tumor microenvironment. Our study suggests that TFEB promotes PCa progression by regulating ABCA2 through lysosomal biogenesis and may serve as a prognostic factor or as a potential therapeutic target of PCa.
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Introduction

Prostate cancer (PCa) remains a leading cause of cancer incidence and mortality in the United States, with 191,930 new cases and 33,300 deaths reported annually (1). In the past decade, the frequency and mortality of PCa in China has exhibited an increasing course (2). The principal modality in treating localized PCa is radical prostatectomy (3). Although most PCa patients can initially receive RP, many will progress to biochemical recurrence and/or metastasis (4, 5). Presently, the preoperative serum prostate-specific antigen (PSA), the Gleason score (GS), TNM stage, and surgical margin status are the predominant methods for predicting PCa prognosis. However, these indexes, with limitations in the differentiation of the biological heterogeneity of tumors, cannot precisely estimate the risk of aggressive PCa. Therefore, identifying novel sensitive and specific biomarkers to monitor the prognosis of PCa is urgently required.

Transcription factor EB (TFEB, also known as BHLHE35 or ALPHATFEB), a member of the microphthalmia family (MiTF/TFE family), is a master transcriptional regulator of lysosomal biogenesis and autophagy and regulates the expression of various lysosome and autophagy genes (6). In the breast tumor microenvironment (TME), macrophage-specific TFEB knockout promoted breast tumor growth by inducing macrophage M2 polarization through autophagy/lysosome-mediated pathways (7). Dysregulated TFEB has been implicated in many human diseases, including several types of solid tumors, neurodegenerative diseases, and lysosomal diseases (8). Furthermore, TFEB is highly expressed in glioblastoma (9), non-small lung cancer (10), pancreatic ductal adenocarcinoma (11), and breast carcinoma (12). Enhanced TFEB expression correlates with aggressive clinical features and can be an unfavorable independent prognostic factor in breast cancer. In PCa, a previous study found that the androgen receptor can increase TFEB expression by binding to the promoter region (13). However, the expression of TFEB in the human prostate TME and its biologic role and clinical significance remain unknown.

The lysosome is a crucial catabolic membrane-bound organelle. There are various hydrolases in the lysosomal microenvironment, those hydrolases can decompose complex macromolecules, such as large protein complexes, nucleotides, lipids, glycolipids, and glycoprotein, recycle the endocytic receptor, and participate in energy metabolism (14, 15). Normal lysosomal biogenesis levels are essential for cells to sustain a healthy intracellular environment, whereas tumors with increased lysosomal biogenesis have been correlated with highly invasive and metastatic behavior and, ultimately, poor prognosis (12). There are many kinds of cysteine cathepsins active in the lysosome, which can be exocytosed to the TME and degrade the extracellular matrix to promote cancer cell invasion and migration (16). Furthermore, cancer cells lysosomes can degrade chemotherapeutic drugs through internal acid hydrolase to obtain chemotherapy resistance as treatment time increases (17).

In the present study, we aimed to explore the expression and effects of TFEB in PCa. Moreover, the specific biological role of TFEB in PCa were explored using a series of in vivo and in vitro experiments.



Materials and Methods


Patients and Tissue Samples

For immunohistochemistry (IHC) analysis, 205 samples were used for prostate tissue micro-array (TMA) analysis in this study. Detailed information is provided in the Supplementary Methods. The data relative to TFEB mRNA expression derived from The Cancer Genome Atlas (18) and was analyzed using UALCAN analysis tools (http://ualcan.path.uab.edu/) (19). To further evaluate the clinical relevance and survival analysis of TFEB downregulated genes, publicly available datasets of prostate tissue mRNA expression were extracted from Taylor dataset (20) s and analyzed by the cBioPortal tool (http://www.cbioportal.org/) (21, 22).



Immunohistochemical Analysis

Protein expression levels of TFEB and ABCA2 in PCa and xenograft tumor samples were detected by immunohistochemistry. A standard immunoperoxidase staining procedure was used to perform IHC analysis. Primary antibodies against TFEB (A303-673A; BETHYL, TX, USA) or ABCA2(A16735; ABclonal, Wuhan, China) were used at a concentration of 1:200 and 1:50, respectively. The intensity of immunostaining was graded as 0 (negative), 1 (weak), 2 (moderate), and 3 (strong). Two independent authors (XZ and YZ) scored the stained TMA slide in a blinded fashion without any information regarding the patients’ clinicopathological data and clinical outcomes. For cases which the primary reviewers could not reach consensus, a third investigator (CLW) was consulted to reach group consensus. Cases were defined as a high expression if immunostaining intensity was equal to or greater than moderate in > 20% of the cancer cell population.



Cell Line Culture and Transfection

Four PCa cell lines (22RV1, LNCaP, PC3, and DU145) were purchased from the American Type Culture Collection (USA). The PCa cell lines were grown in RPMI 1640 medium (HyClone, USA) or DMEM high glucose medium (HyClone, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco, USA) and 1% penicillin-streptomycin at 37°C and 5% CO2. TFEB short hairpin RNAs (shTFEB), the scramble shRNA control, the TFEB overexpression plasmid, and the control plasmid were purchased from HYY Med Company (Guangdong, China). The target sequences of the shRNAs were as follows: sh-TFEB#1: 5′-TGGCAACAGTGCTCCCAATAG-3′, sh-TFEB#2: 5′-CGATGTCCTTGGCTACATCAA-3′ and sh-TFEB#3: 5′-GGAGACGAAGGTTCAACAT-3′. TFEB knockdown lentivirus was created by transfection of 293T cells (China Center for Type Culture Collection, Wuhan, China) with packaging plasmid and TFEB knockdown plasmid. TFEB overexpression lentivirus was created by transfection of 293T cells with packaging plasmid and TFEB overexpression plasmid. Then, the different 293T cells were incubated for 48–72 h at 37°C and 5% CO2. Collected lentiviral supernatants were filtered through a 0.45-μm filter (Millipore, America), and then the lentivirus supernatants were added to different PCa cells in the presence of polybrene (1:1,000), respectively. 22RV1 and LNCaP cell lines were transfected with the shTFEB lentivirus, cells transfected with scramble vector lentivirus were used as controls; DU145 and PC3 cells were transfected with the TFEB overexpression lentivirus, also DU145 and PC3 cells transfected with vector lentivirus were used as controls. Stable cell lines were generated using puromycin selection (2 μg/ml) for 48 h after transfection, levels of TFEB were measured by western blotting. The ABCA2‐siRNA and negative control siRNA were synthesized and modified by Guangzhou RiboBio (RiboBio, China).



Western Blot Analysis

Cells or tissues were lysed in RIPA, PMSF, and SDS buffer. Ten percent of SDS-PAGE was used to resolve an equal amount of protein, and protein was transferred to a 0.45 um PVDF membrane (Millipore, #ISEQ00010) and then blocked for one and half hours at room temperature (RT) with 5% phosphate-buffered saline tween-20 (PBS-T) milk. Membranes were incubated overnight with primary antibodies. TFEB (A303-673A) was obtained from Bethyl Laboratories (TX, USA). ABCA2 (A16735) was obtained from ABclonal (Wuhan, China). Antibodies are specific for LAMP1 (21997-1-AP), GAPDH (60004-1-Ig), β-actin (66009-1-Ig), and TBP (66166-1-Ig) were purchased from Proteintech Group, Inc. (Chicago, IL, USA). Secondary antibodies, HRP-conjugated goat anti-rabbit IgG (H+L) antibodies (SA00001-2), and goat anti-mouse IgG (H+L) antibodies (SA00001-2) were purchased from Proteintech Group, Inc. (Chicago, IL, USA). ECL Western blotting reagent (Thermo Pierce) was used to visualize the proteins. The Nuclear/Cytosol Fractionation Kit (BB-36021, BestBio Science, Shanghai, China) was used to extract the cytoplasmic and nuclear proteins according to the manufacturer’s procedure. Western blot data quantification was analyzed by ImageJ (National Institutes of Health, MD, USA).



RNA Extraction, Semiquantitative RT-PCR, and qPCR

RNA extraction, semiquantitative RT-PCR, and qPCR were performed as described previously. Briefly, total RNA from prostate tissue samples and prostate cancer cells was purified using TRIzol (15596-026, Invitrogen, CA, USA) and prepared with HiScript III RT SuperMix for qPCR (+gDNA wiper) (R323-01, Vazyme, Nanjing, China). Complementary DNA (cDNA) was synthesized using the ChamQ Universal SYBR qPCR Master Mix (Q711-03, Vazyme, Nanjing, China). Reactions were run on a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, CA, USA). The relative mRNA expression levels of target genes were calculated by the 2−ΔCT method. The corresponding genes in control cells were used to define as a baseline. The PCR products were analyzed by electrophoresis on 1.5% agarose gel. β-actin was used as an internal control of RNA integrity, and the assay was always performed in triplicate. Detailed information about the primer sequence is provided in Supplementary Methods.



Cell Viability, Migration, and Invasion Assays

Cell counting kit 8 (CCK8), transwell, and wound-healing assay were performed to estimate PCa cell viability, invasion, and migration ability. Details regarding these assays are based on our previous studies (23–25).


CCK8 Assay

The CCK8 assay kit (MA0218, Meilunbio, Dalian, China) was used to test cells’ proliferation. Approximately 2,500 cells were planted into 96-well plates and cultured for 4, 24, 48, 72, and 96 h with complete medium. Then cells were then incubated with 90 μl medium and 10 μl CCK-8 for 2 h at 37°C. The OD value of 96-well plates was measured by a spectrophotometer (iMark™, Bio-rad, CA, USA) at 450 nm wavelength. The data were presented as the results of three independent experiments.



Transwell Assay

In the chamber’s upper compartment, 50,000 cells were seeded suspended in 100 μl of serum-free medium and 500 μl of growth medium containing 10% FBS was added to the lower chamber. After 24 h of incubation, the cells on the upper side of the membrane were removed with a cotton swab. The membrane was fixed with 3.7% paraformaldehyde and then stained with 0.1% crystal violet at room temperature for 1 h. Photos were taken using a microscope camera of the invading cells and the number of cells in four random fields of view were counted.



Wound-Healing Assay

The PCa TFEB-knockdown cell lines and TFEB-overexpressed cell lines were seeded in six-well plates separately and grown to nearly 80% confluence for the migration assay. Before using 200 μl sterile tips to make scratches on each well, all wells were cultured with standard medium without FBS. A microscope camera was used for all wells to take photos of healing of scratches every 24 h.



Colony Formation Assay

TFEB-overexpressing vector, TFEB-knockdown (shTFEB), or scramble shRNA control (shNC) cells were seeded in six-well plates, 500 cells in each well. PCa cells were treated with complete RPMI1640 or DMEM medium for 14 days. The medium was replaced every 48 h. Next, 0.1% crystal violet was used to fix and stain the cell lines at room temperature for 1 h.




RNA-Seq and Bioinformatic Analysis

RNA-sequencing of DU145-TFEB and DU145-vector transfected cells was performed by the Novogene Corporation (Beijing, China). Collection, preparation, and library preparation of mRNA samples was performed according to the manufacturer’s protocol. Briefly, total mRNA was obtained using the RNeasy Mini Kit (Qiagen). RNA concentration was measured using the Qubit® RNA Assay Kit in Qubit®2.0 Fluorometer (Life Technologies, CA, USA). Following the manufacturer’s recommendations, the NEBNext® UltraTM RNA Library Prep Kit for Illumina® (NEB, USA) was used to generate sequence libraries. Differential expression analysis of DU145-TFEB and DU145-vector cells was performed using the DESeq2 R package (1.16.1); the cutoff values were |log2(fold change)|>1.5 and q<0.05. Metascape (https://metascape.org/gp/index.html) was used to perform KEGG functional enrichment analysis and GESA analysis (26). The GENEMANIA analysis tool (http://genemania.org/) was used to analyze the gene expression pattern (27).



Lysosomal Staining and Flow Cytometry

Lyso-Tracker was used to estimate the number of lysosomes and lysosomal function. Lyso-Tracker Red DND-99 (C1046) was purchased from Beyotime Biotechnology (Shanghai, China). The fluorescence intensity was observed under a ZESIS 880 confocal microscope (Zeiss, Oberkochen, Germany), and representative cells were selected and photographed. For live-cell Lyso-Tracker flow cytometry analysis, cells were grown to about 80% confluence and treated with Lyso-Tracker Red DND-99 for 1 h. Following trypsinization with 0.05% trypsin EDTA (PYG0014, Boster, Biological Technology, Ltd. Wuhan, China) and resuspended in PBS for FACSCalibur Flow Cytometry (BD Biosciences, USA). Flow Cytometry analysis was performed using FlowJo software (OR, USA).



Immunofluorescence

For immunofluorescence studies, 5×104 cells/well were seeded on the confocal dish (BS-20-GJM; Biosharp, Hefei, China). After 48 h, cells were treated and fixed with 3.7% paraformaldehyde, washed with PBS, and permeabilized with Triton X-100 for a half-hour, followed by incubation blocking solution (1% BSA) for 1 h. Cells were incubated with the following antibodies diluted in PBS with 1% BSA overnight at 4°C: anti-TFEB (dilution 1:500) and anti-ABCA2 (dilution 1:100). The cells were washed with PBS and incubated with rhodamine (TRITC) goat anti-rabbit IgG (H+L) (AS040, ABclonal, Wuhan, China) for 1 h at room temperature. Cell nuclei were stained with Hoechst 33342 (P0133, Beyotime Biotechnology, Shanghai, China). Labeled cells were examined under the ZESIS LSM880 microscope with a ×100/1.4 objective lens. Confocal microscopy images were acquired and processed with LSM880 system confocal microscope software.



Transmission Electron Microscopy

Using EDTA for digestion, 22RV1 and DU145 cancer cells lines were collected in 1.5 ml tubes, washed three times with cold PBS buffer and centrifuged at 4°C. After removing the supernatant, the cells were fixed with 2.5% glutaraldehyde in 0.1 M phosphate buffer. Next, cells were fixed and dehydrated in a classified ethanol series and embedded in resin. Leica UC-7 was used to collect ultrathin sections. PCa cells were observed under the transmission electron microscope.



PCa Cell Lines Xenograft Model

Fourteen nude mice (BALB/c-nu, males, 4–8 weeks old) were purchased from the Sun Yat-sen University Experimental Animal Center (Guangzhou, China). All animals were maintained under specific pathogen-free (SPF) conditions, and all the laboratory animal studies were submitted to and approved by the Research Ethics Committee of Guangzhou Medical University (Guangzhou, China). TFEB-knockdown cells and shNC cells (3×106) were injected subcutaneously into the anesthetized nude mice’s dorsal region. In addition, cells overexpressing TFEB and vector cells (2×106) were injected subcutaneously into the anesthetized nude mice’s dorsal region. Tumor volume (cm3) was measured every 4 days once the tumors were measurable, and tumor weight (mg) was measured at the end of the experiment. Nude mice will be euthanized within the specified time, although nude mice in poor condition were euthanized early.



Transcription Factor Binding Site Analysis and Prediction

The TFEB motif sequence was obtained from the JASPAR database (jasper.genereg.net) (28). For searching transcription factor potential binding sites of target genes promoters, the EPDnew database (https://epd.epfl.ch) (29) was used to get putative transcription factor binding motifs on ABCA2 genes promoters. Promoter regions were defined as the genomic interval from −1900 to +100 bp relative to the putative transcription start sites (TSS).



Cleavage Under Targets and Release Using Nuclease Assay

CUT&RUN assay (Cell Signaling Technology, MA, USA) of TFEB was performed according to published protocol with modifications (30). Briefly, 8×105 DU145-TFEB cells were collected in a new 1.5 ml tube. After washing with 1x wash buffer (including spermidine and protease inhibitor cocktail) and centrifuging at 700 g for 5 min at room temperature, DU145-TFEB cells were then resuspended with 400 μl buffer. Then 100 µl of above cells were transferred to a new 1.5 ml tube and stored at 4°C, which were taken as input sample for further verification. Another 300 μl DU145-TFEB cells were divided equally and transferred into three new tubes respectively, these three new tubes were marked as the positive control group, negative control group, and TFEB group. Ten microliters of activated concanavalin A-coated magnetic beads suspension was added into these groups for capture cells. These groups were incubated with antibodies targeting Tri-methyl-histone H3, IgG control, and TFEB at 4°C overnight. Tri-methyl-histone H3 and IgG antibody were served as the positive and negative control, respectively. Protein A-MNase enzyme was added into immunoprecipitated samples and incubated for 60 min at 4°C. Then, 2 mM CaCl2 was added into immunoprecipitated samples to activate protein A-MNase on ice for half hour. One hundred milliliters of stop buffer was added into these samples to stop the reaction at 15 min at 37°C, then these samples were centrifugated at 4°C and the supernatant containing the CUT&RUN fragments were collected. DNA of CUT&RUN fragments was purified by DNA Purification Kit (Cell signaling technology Inc, MA, USA). For qRT-PCR verification, positive control group, negative control, input DNA group, and experimental group were used to determine downstream genes binding sites capacity and efficiency of amplification.



Statistical Analyses

All statistical analyses were performed with SPSS v.26.0 (SPSS Inc, Chicago, USA). Continuous variables and data were expressed as means ± SD. Associations between gene expression and clinicopathological characteristics were evaluated by two independent samples t-test and the one-way ANOVA test. Survival rates were calculated using the Kaplan-Meier method, and the log-rank test was used for comparisons. Univariate analysis was performed to evaluate the association between gene expression and oncological outcomes, variables, which showed statistical significance were further fixed into a multivariate Cox proportional hazards model. The relative risks for death outcomes were expressed as adjusted hazard ratios (HRs) and corresponding 95% confidence intervals (CIs). All statistical tests were two-sided, with p < 0.05 considered statistically significant.




Results


TFEB Was Upregulated in Patients With PCa and Affected PCa Progression

To explore the role of TFEB in PCa, we confirmed TFEB mRNA expression levels in TCGA public dataset (Figure 1A). TFEB mRNA expression was found to be significantly upregulated in PCa tissues compared to normal prostate tissues. In addition, TFFB mRNA expression increased in esophageal carcinoma, glioblastoma, hepatocellular carcinoma, and kidney carcinoma. Furthermore, to investigate TFEB expression in PCa tissues, immunohistochemical staining was performed in 205 human PCa samples. TFEB showed absent or weak-to-moderate staining in the cytoplasm and perinuclear/nuclear area of benign prostatic luminal cells (Figure 1B). TFEB expression was also observed in stromal fibroblasts in a sporadic pattern (Figures 1B, C). TFEB expression in cancer cells showed diffuse cytoplasmic and perinuclear staining with sporadic nuclear expression. Absent or weak TFEB staining was found in 57.6% (118/205) of the cases (Figure 1D). High TFEB expression was seen in 42.4% of cases (87/205) (Figure 1E). Furthermore, postoperative metastasis occurred at a significantly higher frequency in the high TFEB expression group than the low TFEB expression group (19.5 vs. 8.5%, p=0.035). Meanwhile, higher preoperative PSA levels were observed in high TFEB expression cases than in cases with low TFEB expression (7.4 vs. 5.9 ng/ml, p=0.050). However, there was no significant association between TFEB expression status and other prognostic factors for PCa progression, including Gleason score (GS) (p=0.171), pT stage (p=0.425), and surgical margin (p=0.773) (Table 1).




Figure 1 | TFEB expression in prostate tissues microarray and its association with PCa progression. TFEB is often upregulated in PCa and is associated with poor outcome in PCa patients. (A) Bioinformatics analysis of TFEB in Pan-cancer of TCGA database. And TFEB mRNA expression was increased in PCa compared to normal tissues (p=0.02). (B–D) IHC analysis of TFEB expression in 225 PCa samples. (B) TFEB staining is negative in benign prostate tissue. (C) Moderate TFEB staining in benign prostate tissue. (D) The weak staining of TFEB in PCa tissues. (E) Strong cytoplasmic and perinuclear TFEB staining can be detected in PCa tissues. (F–H) Kaplan-Meier curves representing different endpoint survival of 205 patients treated with radical prostatectomy for prostate cancer stratified by TFEB status. (F) Biochemical recurrence-free survival (p=0.008). (G) Metastasis-free survival (p=0.029). (H) Overall death-free survival (p=0.697). (I) qRT-PCR results showed that the mRNA expression of TFEB was increased in our cohort. (J) Quantitative protein expression of western-blot showed TFEB expression was increased in PCa tissues compared to adjacent tissues. (K, L) The mRNA and protein expression of TFEB was decreased in DU145 and PC3 compared to 22RV1 and LNCaP cell lines.




Table 1 | Association of TFEB expression in prostate cancer cells with clinicopathologic characteristics in 205 patients who underwent radical prostatectomy between 1993 and 1995 in Massachusetts General Hospital.



The prognostic value of TFEB expression was examined for three different clinical outcomes, including biochemical recurrence (BCR), overall survival (OS), and distant metastasis. On univariate analysis, high expression of TFEB was significantly associated with a worse prognosis of BCR (Figure 1F, p=0.008) and distant metastasis (Figure 1G, p=0.029). According to the multivariate analysis, there was a trend for high TFEB expression being associated with a worse prognosis for BCR (p=0.065). After adjusting for independent covariates, a similar trend was observed for GS and preoperative PSA (Table 2A). Interestingly, the independent prognostic significance for distant metastasis (p=0.037) was sustained when adjusted by the GS (Table 2B). For OS, TFEB expression showed no prognostic value on univariate analysis (Figure 1H, p=0.697). Meanwhile, we performed mRNA and protein quantification assays to determine TFEB levels and found that TFEB was up-regulated in PCa tissues compared with normal tissues (Figures 1I, K).


Table 2A | Univariate and multivariate analysis of clinicopathologic factors with biochemical recurrence-free survival. Multivariate Cox regression model fitted with factors that showed significance in univariate analysis.




Table 2B | Univariate and multivariate analysis of clinicopathologic factors with metastasis-free survival. Multivariate Cox regression model fitted with factors that showed significance in univariate analysis.





Construction of Two Different Expression Pattern of TFEB in PCa Cell Lines

To further characterize the potential biological functions of TFEB in PCa, we generated two different expression patterns of TFEB according to its relative expression levels in PCa cell lines (Figures 1J, L). TFEB was stably transfected in DU145 and PC3 cell lines (DU145-TFEB or PC3-TFEB). Empty vector plasmid was transduced into two cell types, which were considered the control groups (DU145-vector or PC3-vector). Conversely, in LNCaP and 22RV1 cell lines, we established stable TFEB knockdown cells (22RV1-shTFEB and LNCaP-shTFEB) and control cells (22RV1-shNC or LNCaP-shNC). Western blotting was used to detect the expression levels of TFEB in over-expressing TFEB or TFEB knockdown cell lines (Supplementary Figure 1
). Notably, TFEB protein levels in the nucleus and cytoplasm were increased in TFEB overexpressing cell lines (Supplementary Figures 1D–F). Moreover, in the TFEB knockdown expression cell lines, TFEB protein levels were reduced in both the cytoplasm and nucleus compared with shNC groups (Supplementary Figures 1A–C). TFEB is a transcription factor, which binds to the promoter region target genes to drive gene expression in nucleus (31). Therefore, evaluating TFEB protein expression in the nucleus could indicate that it might play a role in transcriptional regulation.



TFEB Knockdown or Overexpression Influences Proliferation, Migration, and Invasion of PCa Cells

Functional assays were performed to investigate the tumorigenic potential of TFEB. The results showed that the knockdown of TFEB inhibited PCa cell proliferation and colony formation ability (Figures 2A, B). Conversely, the overexpression of TFEB promoted PCa cell proliferation and colony formation (Figures 2E, F). Cancer cell invasion and migration are important events in PCa metastasis. Therefore, we evaluated the effects of TFEB on PCa cell invasion and migration. Our results showed that the silenced expression of TFEB in PCa cells inhibited cell migration and invasion ability (Figures 2C, D), whereas overexpression of TFEB resulted in increased cell migration and invasion (Figures 2G, H). Metalloproteinases are broadly recognized as being involved in cancer cell invasion and migration; thus, we analyzed the effects of TFEB on metalloproteinases by detecting the expression level of MMP2 and MMP9. Western blotting further demonstrated that MMP2 and MMP9 protein levels were increased in TFEB-overexpressing PCa cells. In contrast, TFEB-knockdown PCa cells, was associated with decreased MMP2 and MMP9 protein levels (p<0.05, Figures 2I, J).




Figure 2 | Overexpressing or knockdown expression of TFEB significantly effect PCa cell proliferation, tumorigenicity, invasion, and migration. (A–D) Overexpression of TFEB promotes cell proliferation, invasion, and migration in vitro experiment. (E–H) Knock down expression of TFEB inhibit cell proliferation, invasion and migration in vitro experiment. (A, E) CCK-8 assay. (B, F) Colony formation assay. (C, G) Wound healing assay; Black dashed line indicates 0-h, red dashed line indicates 48h. (D, H) Transwell assay; cancer cells were stained after 24h. Quantitative analysis of the colony formation assay, wound healing assay and transwell assay from panel left respectively, those assays were repeated three times. (I, J) Quantitative protein expression of MMP2 and MMP9 by western-blot in TFEB overexpressed or knock-down PCa cell lines. Statistical analysis was from three independent experiments and is presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control group.





RNA-Sequencing Analysis Showed That TFEB Was Involved in a Lysosomal-Related Pathway in PCa

Recent studies have shown that TFEB plays different biological roles in different tumors or diseases; however, its biological function in PCa has not yet been fully elucidated. Therefore, we utilized an RNA-sequencing strategy to investigate whether TFEB had a role in PCa. DU145-vector and DU145-TFEB cell lines were used for analyses by RNA-sequencing. Compared to the control DU145-vector cell line, and we found that many genes were significantly up-regulated in the DU145-TFEB group (Figure 3A). Next, using Metascape website tools (http://metascape.org), we selected those differentially expressed genes (DEGs) to perform biological annotation and functional enrichment analysis in order to explore the role of TFEB in PCa. As shown in Figure 3B, we found that upregulated DEGs were enriched in the lysosome-related pathways, which meant part of these genes were involved in lysosome biogenesis and lysosomal enzyme activity. Besides, we observed that matrix metalloproteinases and autophagy pathways were also enriched (Figure 3B). We then used the GENEMANIA analysis tool (http://genemania.org/) to explore the functions or interactions between those genes to understand their biological roles and possible regulation by TFEB. Most of these genes presented a co-expression pattern, which meant they might share a similar regulatory network that participates in lysosome activation (Figure 3C). Of note, part of upregulated DEGs belonged to the CLEAR (Coordinated Lysosomal Expression and Regulation) gene network regulated by TFEB and involved in lysosomal biogenesis, proliferation, proteostasis, and acidification. Furthermore, to verify the RNA-seq results, we selected many genes related to the lysosome for PCR and western blotting verification. ABCA2, CALR, DGAT2, FKBP10, SIGMAR1, GAA, GPX4, and PSAP genes mRNA levels showed a significant increase in the DU145-TFEB cell line than in the DU145-vector controls (Figure 3D). CLCI4, MAP1B, TAOK1, and TEAD1 were down-regulated in DU145-TFEB overexpressing cells. At the protein level, a significant increase in ABCA2 protein, a membrane protein located on the lysosome, was observed in the TFEB over-expressing cell lines compared with the control groups (Figures 3E, F). Cellular immunofluorescence showed ABCA2 was mainly expressed in the cytoplasm and upregulated in TFEB over-expressing cell lines compared with the vector groups (Figures 3G, H). Furthermore, we detected ABCA2 protein expression in the TFEB knockdown cell lines and found that ABCA2 expression was significantly decreased in the TFEB knockdown groups (Supplementary Figure 2).




Figure 3 | Bioinformatics analysis in TFEB-overexpressing DU145 cell lines. (A) The transcription differential genes heat map in DU145-TFEB vs. DU145-vector. The result revealed there are 1,559 differentially expressed genes (DEGs) in TFEB-overexpressing DU145 cell line compared with vector group. (B) Kyoto Encyclopedia of Genes and Genomes analysis showed differentially expressed genes are enrichment in lysosome biogenesis, activation of matrix metalloproteinases and autophagy pathway. (C) Gene-gene interaction network of DEGs predicted using the GeneMANIA online tool. (D) Genes of interest validated by real-time RT-PCR. (E, F) Western-blot verification of ABCA2 gene in TFEB-overexpressing cell lines. Quantitative analysis of the western-blot from panel (F). (G, H) Immunofluorescence of ABCA2 in DU145cell lines. Quantitative relative fluorescence intensity of ABCA2 from (G). (I) The correlation between TFEB and ABCA2 in Taylor dataset. (J) Kaplan-Meier curves representing metastasis-free endpoint survival of ABCA2 status in Taylor dataset (p=0.034). (K) Kaplan-Meier curves representing metastasis-free endpoint survival of combined TFEB high expression and ABCA2 high expression in Taylor dataset (p=0.069). Statistical analysis was from three independent experiments and is presented as mean ± SD. *p < 0.05, **p < 0.01 compared with control group.



ABCA2 is located on the lysosome surface and mainly transports various molecules across the lysosome and cytoplasm, which is important for lysosomal function. By analyzing the Taylor dataset (20), we found a positive correlation between TFEB and ABCA2 in the Taylor dataset (p<0.001, Figure 3I). Furthermore, Kaplan-Meier curves indicated worse metastasis outcomes in PCa patients with high expression of ABCA2 (p=0.034, Figure 3J). In addition, we evaluated the prognostic value of the combined expression of TFEB and ABCA2, and observed a trend for worse prognosis in terms of metastasis outcome albeit the trend was not statistically significant (p=0.069, Figure 3K).



TFEB Regulated Lysosomal Biogenesis in PCa Cells

To examine the effects of TFEB on lysosomal biogenesis and function, several assays were used to determine its roles in lysosomal function in different cells. First, as showed in Figure 4A, lysosomal-related genes were upregulated in DU145-TFEB and down-regulated in 22RV1-shTFEB cells, and included ATP subunits genes (ATP6V1A and ATP6V1H), proteases genes (CTSA, CTSB, CTSD, and CTSF), membrane genes (LAMP1, CLCN7, and MCOLN1), and fusion genes (VPS11 and VPS18). Second, LAMP1, a membrane protein considered to be a lysosomal marker, was used to assess the intracellular lysosome number. In vitro experiments showed that TFEB could influence LAMP1 expression in TFEB transfected cell lines (Figure 4B). To determine how TFEB affects lysosome biogenesis and function, Lyso-Tracker Red (DND-99) was used to assess the number and morphology of live lysosomes in different PCa cell lines. As shown in Figure 4C, the number of lysosomes in the cytoplasm and fluorescence intensity was increased in DU145-TFEB transfected cells compared with DU145-vector control cells, and was decreased in 22RV1-shTFEB compared with 22RV1-shNC cells. Furthermore, there was no significant difference in lysosomal morphology across any of the groups. Based on the electron microscopy findings, we found that the number of lysosomes was increased in the TFEB over-expressing cell line and was decreased in the TFEB knockdown cell line compared with untransfected controls (Figure 4D). Third, flow cytometry was used to quantitate lysosome numbers stained by Lyso-Tracker Red. We found decreased lysosome numbers in the TFEB knockdown PCa cells compared to the shNC group (Figure 4E); while, an increase in lysosome numbers was observed in the TFEB over-expressing cell line (Figure 4F).




Figure 4 | Overexpression of TFEB induced lysosome biogenesis in PCa cell. Knockdown TFEB expression decreased lysosome biogenesis in PCa. (A) Validation of lysosome related genes by qRT-PCR in different PCa cell lines. (B) Validation of lysosome marker protein LAMP1 by western-blot in different PCa cell lines. Quantitative analysis of the western-blot shows LAMP1 expressed significantly differently in TFEB-overexpressing or TFEB knockdown cell lines. (C) PCa cells were treated with Lyso-Tracker Red DND-99 (50 nM) for 45 min. (D) Transmission electron microscope (TEM) image of lysosomes or autophagosomes in PCa cells. (E, F) The quantitative measurement of Lyso-Tracker Red DND-99 (50 nM) was performed by flow cytometry. Statistical analysis was from three independent experiments and is presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control group.





Overexpression of TFEB Promoted Xenograft Tumor Growth in PCa

To assess the ability of TFEB to affecting tumorigenicity of PCa cells in vivo. 22RV1-shTFEB and 22RV1-shNC cells were subcutaneously injected into the left and right dorsal flanks of eight nude mice (n=8). Further, DU145-vector and DU145-TFEB were subcutaneously injected into the left and right dorsal sides six nude mice per condition (n=6). The xenograft tumors were checked every 3 days or 6 days; then, the mice were sacrificed at the specified time. Furthermore, the xenograft tumors samples were collected for further study. Two DU145 nude mice were sacrificed in advance because they were in senescence and exhibited poor conditions. Compared with the control groups, tumors formed following TFEB knockdown were markedly reduced (p < 0.05, Figure 5A), and tumors in xenografts containing TFEB-overexpressing DU145 cells were significantly larger (p < 0.05, Figure 5B).




Figure 5 | The TFEB xenograft tumor model and the validation of MMP9, MMP2 and ABCA2. (A) Knock-down TFEB expression inhibit PCa growth in 22RV1 xenograft tumor. The upper column is the control group (shNC), and the bottom line is the TFEB knockdown group (shTFEB). The curves of tumor volume and weight are also shown at right panel. (B) Overexpression of TFEB promoted PCa growth in DU145 xenograft model. The upper column is the control group (Vector), and the bottom line is the TFEB overexpression group (TFEB). The curves of tumor volume and weight are also shown at right panel. (C, D) Validation of TFEB, LAMP1, MMP9, MMP2, and ABCA2 protein expression by western-blot. Quantitative analysis of the western-blot from panel (C). (E) Immunohistochemistry of TFEB and ABCA2 in TFEB knockdown and TFEB overexpressing xenograft tumor samples. Statistical analysis was from three independent experiments and is presented as mean ± SD. *p < 0.05, **p < 0.01 compared with control group.



In the xenograft tumors, we found that TFEB was highly expressed in the DU145-TFEB group compared to the DU145-vector group, which revealed the effects of TFEB overexpression (Figures 5C, D). Moreover, TFEB expression was decreased in the 22RV1-shTFEB group compared to the 22RV1-shNC group. In addition, we found that LAMP1, a lysosome marker protein, was decreased in the 22RV1-shTFEB group and was increased in the DU145-TFEB group. By investigating metalloproteinase expression to assess invasion or migration ability of TFEB in vivo, we found that MMP9 and MMP2 protein expression were increased compared with the vector-transfected group. Furthermore, MMP9 and MMP2 protein expression were decreased in the TFEB knockdown group (Figures 5C, D). The above results were consistent with the in vitro experiments. Next, we detected the protein expression of potential downstream genes, such as ABCA2. In the TFEB knockdown xenograft tumor groups, ABCA2 protein expression was decreased, while an increased expression was observed in TFEB-overexpressing xenograft tumor groups compared to vector groups (Figures 5C, D). The IHC assays revealed that the expression of TFEB was decreased in 22RV1-shTFEB xenograft tumor samples and was increased in the DU145-TFEB xenograft tumor samples compared to the control group Furthermore, ABCA2 expression in the cytoplasm was increased in TFEB-overexpressing xenograft tumor samples and was decreased in TFEB knockdown xenograft tumors (Figure 5E).



TFEB Regulated ABCA2 Expression to Influence Invasion and Migration of PCa

ABCA2, a member of the superfamily of ATP-binding cassette transporters, is located on the lysosome membrane and mainly transports lipids and chemotherapy drugs. In this study, our findings revealed that TFEB influenced ABCA2 expression both in in vivo and in vitro experiments; however, the mechanisms regulating TFEB and ABCA2 expression not been elucidated. To mechanistically understand how TFEB regulated ABCA2 expression, the Cleavage Under Targets and Release Using Nuclease (CUT&RUN) assay was used to analyze the potential regulatory mechanism involved. First, using the bioinformatics website tool to analyze the potential binding sites of the promoter region, we searched for potential binding sites according to the TFEB motif sequence (Figure 6A) and identified two different potential binding sites, P1 and P2 (Figure 6B). Using the CUT&RUN assay kit, we determined the TFEB binding sequence in the DU145-TFEB cell line, and the results showed that TFEB indeed bound to the promoter region of ABCA2 to increase the expression of ABCA2 in DU145-TFEB transfected cells compared with DU145-vector controls. P1 and P2 expression were higher than the IgG-treated negative control group (p<0.05). The 2−△CT value of P1 was higher than the P2 (Figure 6C), which meant TFEB might have a higher binding capacity at P1 than P2. Furthermore, the nucleic acid electrophoresis findings revealed that the size of the two binding site products were between 60 and 150 bp, which was compliant with the standard of CUT&RUN assay (Figure 6D). Furthermore, to determine whether TFEB might regulate ABCA2 activity during lysosomal biogenesis, which may ultimately influence PCa cell invasion and migration, we silenced ABCA2 expression in DU145-TFEB and DU145-vector cell lines to explore its influence in PCa invasion, migration, and lysosomal biogenesis. As shown in Figures 6E and F, silencing ABCA2 in DU145 cell lines resulted in decreased invasion ability (p<0.001). In addition, silencing ABCA2 expression reduced cancer cell migration ability in PCa (p<0.001, Figures 6G, H). Furthermore, western blotting showed that, after silencing ABCA2 in DU145 cell lines, ABCA2, LAMP1 MMP9, and MMP2 protein expression were decreased (p<0.05, Figures 6I, J). In addition, we also detected the number of lysosomes by flow cytometry and observed reduced numbers after silencing ABCA2 expression in PCa cell lines (p<0.05, Figures 6K, L).




Figure 6 | TFEB binding ABCA2 promoter to regulate its expression to involve PCa cell invasion and migration. (A) The binding motif of TFEB were provide from website. (B) The potential binding site of ABCA2 promoter. Mismatch rate is less than 1%. (C) Validation of the DNA fragment pulled down with TFEB chip-level antibody by qRT-PCR. DNA fragment were obtained from CUT&RUN assay and purified by DNA extraction kit. Rb IgG as a negative control. Anti-TFEB as an experimental group. (D) The DNA fragment product from qRT-PCR was validated by nucleic acid electrophoresis. The length of input, P1 and P2 mainly between 60 to 120 bp. (E, F) Transwell assay showed silenced ABCA2 expression inhibited PCa cell invasion. Cancer cells were stained after 24h. (G, H) Woundhealing assay showed silenced ABCA2 expression inhibited PCa cell migration after 48h culture. (I, J) Validation of ABCA2 LAMP1, MMP9, and MMP2 protein expression by western-blot after ABCA2 gene silenced. Quantitative analysis of the western-blot from (I). (K, L) DU145-vector and DU145-TFEB cell line were silenced ABCA2 for 72h and then treated with LysoTracker Red DND-99 (50 nM) for 45 min. Note: Statistical analysis was from three independent experiments and is presented as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001 compared with control group.






Discussion

PCa is regarded as one of the most frequently diagnosed types of malignancy worldwide (1). In the past decades, PSA has often been used to diagnose early staged PCa patients. At present, many novel markers have appeared for accurate diagnosis in the early stages and to suggest precise treatment in PCa (32), especially TME-related biomarkers like TRIB1 (33). However, because of differentiation of the biological heterogeneity in PCa, currently available biomarkers and indexes cannot precisely estimate the risk in aggressive PCa patients, who may eventually experience BCR, develop castration-resistant prostate cancer, or metastasis. It is crucial to identify novel biomarkers for a more accurate diagnosis of PCa.

TFEB is the second-most characterized member of the MiT family, and shares DNA binding, HLH, and Zip regions (6). Previous cancer-related studies have demonstrated that TFEB is dysregulated in many cancers, Sounak et al. have suggested that TFEB is overexpressed in TFEB-rearranged renal cell carcinomas (RCC) and is associated with aggressive biological behavior: TFEB amplification in RCC patients has been associated with poor outcome compared to other types of RCC (34). A study reported that TFEB is a master regulator of tumor-associated macrophages in the breast TME, downregulation of TFEB-induced macrophage polarization and a tumor-promoting phenotype. However, it has not been determined how TFEB exerts its role in PCa. In this study, we revealed for the first time that TFEB expression was upregulated in PCa tissue samples at both the mRNA and protein levels. Moreover, high TFEB expression correlated with higher preoperative PSA levels and metastasis status. Patients with overexpressed TFEB tended to have poor prognosis.

To further validate the role of TFEB in PCa, we used PCa cell lines to perform in vivo and in vitro experiments. Lentivirus-mediated knockdown of TFEB in PCa cells had lower invasiveness and migration capabilities. Further, overexpression of TFEB significantly promoted PCa cell proliferation, invasion, and migration. Our results were consistent with Lu et al., who had clarified that overexpression of TFEB significantly reduced the number of apoptotic cells in vascular smooth muscle, and TFEB knockout caused an increase in the number of apoptotic cells. It might due to TFEB directly regulate the expression of anti-apoptosis gene BCL2 (35). However, we did not explore more mechanism about the regulation of apoptosis by TFEB. Of note, TFEB-overexpressing xenograft tumors exhibited an increase in tumor weight and volume, while knocked-down TFEB expression resulted in slower growth in xenograft tumors. Nevertheless, our objective was to determine how TFEB affected PCa. Thus, we used RNA-sequencing and bioinformatics analysis to identify 1559 differentially expressed genes in TFEB over-expressing cell lines compared to the vector control group. Most upregulated genes showed a co-expression pattern and were enriched in a lysosome-related pathway. Furthermore, we found that overexpressing TFEB in the PCa cell line induced an increased number of lysosomes and higher lysosomal enzyme activity. Those findings were consistent with other studies performed by Sardiello et al., who reported that TFEB could regulate coordinated lysosomal expression and the expression of (CLEAR) network genes, as well as promote lysosomal biogenesis in degenerative storage diseases (8).

Growing evidence has revealed that the lysosome acts as a metabolic or growth regulator in many kinds of cancer, and its activation could affect cancer cell proliferation, invasion, and migration (36). Lysosome-related pathway activation may play a dual role in cancer development. Lysosomes could induce apoptosis by releasing cathepsin and cleavage of Bid, which is a proapoptotic protein, and may generate Bax-mediated release of cytochrome c (37). Besides, lysosomes can fuse with autophagosomes to degrade damaged organelles and produce amino acids, sugars, lipids, and nucleotides to support cancer cell growth (15). LAMP1, as a marker of the lysosome has been used to assess the number of lysosomes. Downregulation of LAMP1 inhibited PCa cell proliferation, invasion, and migration ability (38). It is well known that effective lysosomal functions are essential for advanced cancer cells. Lysosomes can fuse with autophagosomes to degrade damaged organelles and provide energy and factors able to support cancer cell proliferation, invasion, and migration (39). Cancer progression and metastasis are related to conspicuous lysosome changes, including lysosome numbers, volume, and lysosomal enzyme activity. Kundu et al.. found that TMEM106B can promote lung cancer cell invasion and metastasis through TFEB-mediated lysosome biogenesis (10). High expression levels of lysosomal cathepsins are frequently associated with metastasis and poor prognosis (36). Consequently, in our study we demonstrated that TFEB overexpression induced lysosome synthesis and promoted cancer cell proliferation, invasion, and migration in PCa. Based on these results, we speculated that the increased lysosomal biogenesis fueled PCa cells malignant phenotype through degrading damaged organelles for providing energy and material basis.

Matrix metalloproteinases (MMPs) are essential to cancer cell invasion and metastasis, especially MMP2 and MMP9 (40). MMPs will be released by tumor cells into the TME to influence stroma cell growth and degrade the extracellular matrix, which results in the induction of cancer cell invasion and tumor spread. Many studies have used MMP9 and MMP2 as indicators for evaluating cancer cell invasion and migration ability (41, 42). In our study, we found that MMP2 and MMP9 were upregulated in the TFEB over-expressing cell line and were downregulated in the TFEB knockdown cell line group in vivo and in vitro. It has also been reported that lysosome activation can release active protease cathepsin B to simulate MMP9 activity by cleaving its endogenous inhibitor TIMP-1 (43), which might provide additional evidence to support our results. Therefore, TFEB might regulated MMP2 and MMP9 expression through lysosomal biogenesis in the tumor environment. Moreover, we have identified a novel target gene, ABCA2, associated with lysosomal biogenesis by RNA-sequencing, which might affect MMP9 and MMP2 expression in the TME.

ABCA2 is the second member of the superfamily of ABC transporters and is located on the lysosome surface (44). ABCA2 is a uniport carrier of various substrates across the cytoplasm into the lysosome, including lipid and chemotherapy drugs, and thus might affect lysosomal biogenesis. Aberuyi et al. have reported that ABCA2 is upregulated in acute lymphoblastic leukemia and may contribute to multidrug resistance by transporting drugs localized in the cytoplasm into the lysosome for degradation (45). Using Abca2 knockout mice, Kenneth et al. found that ABCA2-deficiency inhibited PCa metastatic progression and altered metastatic localization in the TME (46). In our study, we found that mRNA expression of ABCA2 was up-regulated in TFEB over-expressing cell lines and was positively associated with TFEB in the Taylor dataset. In addition, patients with high ABCA2 expression exhibited a worse metastasis prognosis in PCa. Furthermore, the prognostic value of the combination of ABCA2 and TFEB expression showed a trend for poor outcomes in PCa. In this study, we used the novel CUT&RUN assay, which is a method used to analyze protein interactions with DNA, to detect the relationship between ABCA2 and TFEB (45). Using this approach, we defined the anti-TFEB binding DNA sequence in PCa cells, and qRT-PCR revealed that TFEB had binding sites located within the ABCA2 promoter region, one of which showed a higher binding capacity (P1>P2). Moreover, rescue assays indicated that silenced ABCA2 in TFEB over-expressing or the vector control group reduced PCa cell invasion and migration ability, and MMP9 and MMP2 protein expression were also significantly decreased. Conversely, LAMP1 protein expression and the fluorescence intensity of Lyso-Tracker DND-99 was decrease when ABCA2 was silenced, which meant lysosomal biogenesis was also reduced in PCa. These results illustrated that TFEB promoted lysosomal biogenesis by regulating ABCA2 expression, and induced MMP9 and MMP2 upregulation in the TME to enhance PCa cell invasion and metastasis.

Our results revealed a novel mechanism underlying PCa progression. We showed that TFEB expression was increased in PCa tissues, and played a role in the progression of PCa by influencing ABCA2 activity in cancer-related lysosome biogenesis, which might contribute to patient’s poor clinical prognosis. Further research is needed to uncover the underlying role of ABCA2 in lysosomal biogenesis and PCa progression. Taken together, TFEB might serve as a novel therapeutic and prognostic target in PCa patients.
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Nuf2 participates in the regulation of cell apoptosis and proliferation by regulating the binding of centromere and spindle microtubules to achieve the correct separation of chromosomes. Previous reports have suggested that Nuf2 may play a role in various human cancers. However, the mechanism and function of Nuf2 in the development of Hepatocellular carcinoma (HCC) remains uncertain. This study investigated the prognostic potential of Nuf2 and its relation with immune cell infiltration in HCC. Nuf2 expression in tumor cells was examined using the TIMER and Oncomine databases, and its prognostic potential was assessed via the Kaplan-Meier plotter and GEPIA databases. The relationships between Nuf2 and tumor immune infiltration were analyzed using TIMER. The relationships between Nuf2 and biomarkers of tumor immune infiltration were analyzed using TIMER and GEPIA. Here we revealed that Nuf2 expression increased in tumor tissues containing HCC, and this correlated with poor relapse-free survival, disease-specific survival, progression-free survival, and overall survival in patients with HCC regardless of grades, genders, races, drinking behaviors and other clinical factors. Additionally, high expression of Nuf2 was positively correlated with differential immune cell infiltration and various immune biomarkers. Our work demonstrated that Nuf2 could be a potential prognostic biomarker and could be related to tumor immune cell infiltration in HCC.
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Introduction

Hepatocellular carcinoma (HCC), caused by factors such as alcoholic hepatitis, chronic hepatitis B and hepatitis C infections, and nonalcoholic fatty liver disease, has become one of the most commonly diagnosed cancers (1–4). HCC is not only highly malignant and difficult to treat, but also has poor prognosis and high relapse rates, resulting in overall 5-year survival rates of only 5%–9% (5). Early identification of at-risk patients, exploration of new biomarkers and therapeutic targets for diagnosis, and in-depth understanding of the molecular pathogenesis of HCC are prerequisites for controlling this disease.

Nuf2, also known as CDCA1, is a key element of the Ndc80/Nuf2 complex that is required for the formation of stable kinetochore-microtubule attachments and chromosome alignment during mitosis. Nuf2 participates in the regulation of cell apoptosis and proliferation by regulating the binding of centromere and spindle microtubules to achieve the correct separation of chromosomes (6, 7). Nuf2 can be cleaved into alternative splice variants and expressed differentially between tumor tissues and the corresponding normal tissues (8). Nuf2 promotes the tumorigenesis and tumor development and is highly expressed in various human cancers, including serous adenocarcinoma, renal cell carcinoma, cholangiocarcinoma, and colorectal, lung, ovarian, gastric, and bladder cancers (8–13). Knockout of the Nuf2 gene significantly delayed cell growth and increased apoptosis in ovarian, stomach, and colorectal cancer cell lines (9, 10, 12). High Nuf2 expression has been reported to correlate with poor prognosis in non-small cell carcinoma patients (10). Additionally, Nuf2 can also function as a potential biomarker in human tumor diagnosis and immunotherapy (10). These findings strongly imply a potential function of Nuf2 in tumorigenesis. However, the mechanism and role of Nuf2 in the development of HCC remains uncertain.

This study investigated the prognostic potential of Nuf2 and its relation with immune cell infiltration in HCC. Nuf2 expression in tumor cells was examined using the TIMER and Oncomine databases, and its prognostic potential was assessed via the Kaplan-Meier plotter and GEPIA databases. The relationships between Nuf2 and tumor immune infiltration were analyzed using TIMER. The relationships between Nuf2 and biomarkers of tumor  immune infiltration were analyzed using TIMER and GEPIA. Here we revealed that the expression level of Nuf2 was significantly increased in HCC, and was correlated with the prognosis of HCC patients. We suggest that Nuf2 has the potential to be a diagnostic gene in hepatocarcinogenesis and prognostic biomarkers for HCC patients.



Materials and Methods


Oncomine Analysis

Oncomine platform (https://www.oncomine.org/) is a publicly accessible online tumor related-gene microarray database, which collects the related gene expression profiles and relevant clinical information. The transcriptional levels of Nuf2 in different tumors and corresponding normal tissues were analyzed by Oncomine. The expression levels were considered different significantly when fold change is greater than 1.5, with P-value < 0.001. We set the threshold value of gene rank to “top 10%” and the data type to “all” (14).



Kaplan–Meier Plotter Analysis

The Kaplan-Meier plotter was used for analyzing the relationship between survival rate and Nuf2 expression in breast, gastric, liver, lung, and ovarian cancers based on two parameters, namely hazard ratios (HR) and log-rank P-values (15). We performed survival analysis with the parameters of Group Cutoff: Median; Hazards Ratio: Yes; 95% Confidence Interval: Yes.



TIMER Analysis

The TIMER database (http://timer.comp-genomics.org/) is a consolidated database to analyze the immune infiltration in different tumor types. Information from 32 types of tumors with more than 10,000 samples from TCGA database was used for immune infiltration analysis via the TIMER database. TIMER ascertains the abundance of tumor infiltrates based on gene expression (16). The correlations between Nuf2 expression and immune cell infiltration levels in different tumors were analyzed according to biomarker gene expression in tumors. The biomarker genes of tumor-infiltrating immune cells including B cells, CD8+T cells, dendritic cells, T cells (general), TAMs, M1 macrophages, M2 macrophages, monocytes, neutrophils, natural killer cells, T-helper cells (Th), Tregs, follicular helper T cells (Tfh), and exhausted T cells were investigated in this study (17, 18).



GEPIA Analysis

GEPIA (http://gepia.cancer-pku.cn/index.html) is a web server for analyzing the RNA sequencing expression data from the TCGA and the GTEx projects, using a standard processing pipeline (19). We analyzed the correlation between Nuf2 and different immune cell biomarkers via GEPIA. The correlation coefficient was determined by the Spearman method with default parameters.




Results


The Expression of Nuf2 in HCC and Other Cancers

Analysis using the Oncomine platform revealed a significant increase in the transcription level of Nuf2 in a variety of cancerous tissues compared to normal tissues, including liver and other 14 types of cancers (bladder, brain and central nervous system, breast, cervical, colorectal, esophageal, gastric, head and neck, lung, lymphoma, melanoma, ovarian, pancreatic, and prostate cancers) (Figure 1A). Additionally, analysis of TCGA RNA-seq data in TIMER database, we found consistent results, i.e. the expression of Nuf2 in HCC was significantly higher than that in normal tissue, as well as other 16 tumor tissues (Figure 1B), suggesting that Nuf2 may play a role in tumorigenesis, especially in HCC, and has the potential to be a diagnostic gene for liver cancer and other cancers.




Figure 1 | Nuf2 expression in different human tumor cell types. (A) Nuf2 expression in cancer tissue types compared to that in normal tissues (data from Oncomine). (B) Level of Nuf2 expression in various cancers (data from TCGA via TIMER) (***P<0.001).





Prognostic Potential of Nuf2 Expression in Hepatocellular Carcinoma

Overall survival (OS), disease specific survival (DSS), relapse free survival (RFS) and progression free survival (PFS) are four common prognostic monitoring indexes. As the name suggests, these four indicators can basically summarize the prognosis and survival of cancer patients. Using the Kaplan-Meier plotter, we found that the expression level of Nuf2 gene was significantly correlated with the prognostic survival rate. For example, poor first progression survival and overall survival in lung cancer; poor post progression survival, overall survival and progression free survival in ovarian cancer; poor post progression survival, first progression survival and overall survival in gastric cancer; and poor relapse-free survival in breast cancer (Supplementary Figure S1).

In particular, for HCC, we found that the DSS (Figure 2A, HR=2.99, 95% CI=1.89 to 4.75, P=1e-06), PFS (Figure 2B, HR=1.94, 95% CI=1.41 to 2.66, P=3.7e-05), OS (Figure 2C, HR=2.32, 95% CI=1.61 to 3.34, P=3.9e-06), and RFS (Figure 2D, HR=1.95, 95% CI=1.36 to 2.78, P=2e-04) were significantly reduced when the expression level of Nuf2 was high, indicating that active transcription of Nuf2 might cause health risks, and these genes could be potential prognostic biomarkers for HCC patients.




Figure 2 | Correlation analysis between Nuf2 expression and prognostic survival in HCC patients via Kaplan-Meier plotter analysis. (A) Overall survival, n = 364; (B) Progression-free survival, n = 370; (C) Disease-specific survival, n = 362; (D) Relapse-free survival, n = 316.





Relationship Between Nuf2 Expression and Clinical Features in Hepatocellular Carcinoma Patients

The correlation between Nuf2 expression and various clinical features in HCC patients was evaluated via the Kaplan-Meier plotter. High expression of Nuf2 was associated with poor OS and PFS for HCC patients regardless of genders (female and male), races (white and Asian), HCC grades or alcohol consumption. Particularly, high Nuf2 expression was correlation with poor OS and PFS in grades 1 to 3 in HCC patients, indicating that high Nuf2 expression might be harmful to the prognosis of HCC patients (Table 1). Notably, Nuf2 expression was only associated with survival in the absence of hepatitis virus, but not in the presence of hepatitis virus. Interestingly, when there was vascular invasion in HCC, Nuf2 expression and PFS show a significant negative correlation; while when there is no vascular invasion, Nuf2 and OS show a significant negative correlation (Table 1). The differences in clinical features suggest that the application of Nuf2 as an indicator gene should be combined with the patient’s condition.


Table 1 | Correlation of Nuf2 expression and prognosis in HCC with diverse clinicopathological factors by Kaplan-Meier plotter.





Relationship Between Nuf2 Expression and Immune Cell Infiltration in Hepatocellular Carcinoma

TIMER was used to investigate the correlation between the expression of Nuf2 and infiltration levels of immune cells. In HCC, on the whole, high Nuf2 transcripts were associated with high immune cell infiltration (Figure 3). Specifically, Nuf2 expression was positively correlated with infiltration of B cells (r=0.451, P=1.28e-18); DCs (r=0.417, P=9.35e-16); macrophages (r=0.408, P=4.30e-15); neutrophils (r=0.329, P=3.72e-10); CD4+ T cells (r=0.307, P=6.38e-09); and CD8+ T cells (r=0.298, P=1.83e-08) in HCC (Figure 3).




Figure 3 | Correlation between Nuf2 expression and immune cell infiltration levels in HCC tissues analyzed via TIMER (n = 371).





Correlation Between Nuf2 Expression and Biomarkers of Different Immune Cell Subsets

The association between Nuf2 expression and tumor-infiltrating immune cell status was investigated based on immune biomarker gene expression levels in HCC. Immune cells in HCC tissues contained dendritic cells, B cells, monocytes, CD4+ T cells, natural killer cells (NKs), CD8+ T cells, neutrophils, M1 macrophages, M2 macrophages, and tumor-associated macrophages (TAMs). Furthermore, different T cell subsets, including T-helper 17 (Th17), T-helper 2 (Th2), T-helper 1 (Th1), exhausted T cells, follicular helper T cells (Tfh), and regulatory T cells (Tregs) were analyzed. Analysis by GEPIA and TIMER indicated a significant positive correlation between Nuf2 expression and most of biomarkers expression in immune cells in HCC (Supplementary Figure S2 and Table 2).


Table 2 | Correlation analysis between Nuf2 and biomarker genes of immune cells in HCC.



Through the analysis of TIMER and GEPIA databases, a notable positive correlation was found between Nuf2 expression and specific immune cell biomarkers, namely CD8+ T cell biomarkers (CD8A, CD8B), T cell (general) biomarkers (CD2, CD3E, CD3D), B cell biomarkers (CD19, CD79A), Monocyte biomarkers (CD86), TAM biomarkers (CD68), M1 Macrophage biomarkers (IRF5), Neutrophil biomarkers (CD11b), NK biomarkers (KIR2DL3, KIR2DL4, KIR3DL2), DC biomarkers (CD11c, BDCA-4, HLA-DRA, HLA-DQB1, HLA-DPB1, HLA-DPA1), Th1 biomarkers (TNF-α, IFN-γ, STAT1, STAT4), Th2 biomarkers (IL13, GATA3, STAT5A), Tfh biomarkers (BCL6, IL21), Th17 biomarkers (STAT3), Treg biomarkers (TGF-β, STAT5B, CCR8, FOXP3), T-cell exhaustion biomarkers (TIGIT, TOX, TIM-3, LAG3, CTLA4, PD-1).




Discussion

According to the 2018 global cancer statistics report, the incidence and mortality rates of HCC ranked sixth and fourth, respectively (20). Although surgical resection, tumor vascular embolization, and radiofrequency ablation can improve survival rates, the probability that most patients will eventually encounter the invasion or progression of liver cancer is high, and the prognosis is usually poor (21–23). Immune escape, invasion, and metastasis further reduce the long-term survival rate of HCC patients (24). Through a series of bioinformatics analysis with the publicly accessible online databases, we investigated the expression levels of Nuf2 in HCC and corresponding normal tissues, and the effect of Nuf2 expression on survival of prognosis and immune cell infiltration. We showed that Nuf2 expression increased in tumor tissues containing HCC, and this correlated with poor relapse free survival, disease specific survival, progression free survival, and overall survival in patients with HCC regardless of grades, genders, races, drinking behaviors and other clinical factors. Additionally, high expression of Nuf2 was positively correlated with differential immune cell infiltration and various immune biomarkers. Our works demonstrated that Nuf2 could be a potential diagnostic gene in hepatocarcinogenesis and prognostic biomarkers for HCC patients.

In the course of tumorigenesis and development, due to the post-transcriptional regulation mediated by small non-coding RNAs such as miRNA and lncRNA, the transcription level of mRNA sometimes inconsistent with the final protein expression. However, mRNA was still selected as our main research object in this study, because many physiological and biochemical interactions take place at the mRNA level. In addition, compared with protein, the transcriptional alterations of mRNA can be detected on a large scale by simple operation and low cost. To clarify the role of Nuf2 in HCC, by multiple database analysis we revealed that Nuf2 was highly expressed in HCC tissue, indicating that Nuf2 has potential as a diagnostic gene for the occurrence and development of HCC. Similarly, Nuf2 has been proved to be highly expressed in many other cancer types, indicating its wide applicability and functional conservation. However, there was no significant up-regulation of Nuf2 was found in leukemia, suggesting that it is necessary to distinguish the types of cancer when they were used as diagnostic genes.

According to previous reports, Nuf2, also known as CDCA1, is mainly responsible for regulating cell mitosis (25). Down-regulation of Nuf2 expression can inhibit the proliferation of tumor cells, while over expression of Nuf2 is associated with poor prognosis (6, 13). This is consistent with the results of our study. In particular, there is a significant negative correlation between Nuf2 and prognostic survival of OS, DSS, RFS, and PFS, and this correlation is generally applicable to HCC patients with different clinical conditions, indicating that high Nuf2 expression may be one of the causes of poor prognosis. Cancer patients need careful observation after treatment, and Nuf2 may be used, to some extent, as a prognostic marker to reduce the risk of recurrence.

There has been considerable progress in immune therapy for cancer in recent years, and people have begun to pay attention to the effects of the immune system in tumorigenesis and development (26). The study of tumor microenvironment is an active research field of tumor diagnosis, treatment targets, and prognostic biomarkers (27). Many subtypes of immune cells, for example of Th1, Th2, and tumor-associated macrophages (TAMs) have been reported in tumor microenvironment (28). Nuf2 showed a significant positive correlation with various immune cells, indicating that Nuf2-mediated hepatocarcinogenesis might mobilize the activity of these immune cells and make them play an anti-tumor role. Macrophage was divided into M1 macrophage and M2 macrophage. M1 macrophages are mainly related to the recognition and attack of tumor cells, while M2 macrophages are related to tumor progression and immunosuppression (29–31). In this study we revealed that Nuf2 expression was related to the biomarker genes of M1 macrophages, not M2 macrophages. We therefore hypothesized that Nuf2 might not be involved in the mechanism of tumorigenesis mediated by M2 macrophage, but mainly play the anti-tumor role via M1 macrophages pathway. Our findings, to a certain extent, indicated the future research direction.

Nuf2 was positively associated with the biomarkers of T-cell exhaustion (PD-1, CTLA4, TIM-3, LAG3, TOX, TIGIT). TIM-3 is a T-cell suppressor molecule that can cause CD8+T cell (exhausted CD8+ T cells, TEX) to fail in chronic conditions and tumors (32). TOX is one of the most common immunotherapeutic targets. Wherry et al. have reported that TOX+ cells can express inhibitory receptors such as CD160, LAG3, TIGIT, and PD-1, and suggest that TOX is a major molecule which regulates the differentiation of TEX at the transcriptional and epigenetic levels (33). In our study, high level of Nuf2 expression was significantly correlated with TOX and TIM-3, thus clarifying the potential function of Nuf2 in the induction of TEX via the TOX and TIM-3 pathways. This may explain the reason underlying the relationship between high Nuf2 expression or high levels of immune cell infiltration and low survival rate in patients with HCC. This association may lead to the development of new immunotherapy for patients with HCC who do not respond to existing immunosuppressive checkpoint inhibitors. But for most immune cells and their subsets, Nuf2 was only related to some (not all) of the biomarker genes, indicating that there is a certain specificity and selectivity in this interaction, which also provides some basis for immunotherapy in the future.

It should be emphasized that although big data analysis can comprehensively and rapidly mine potential data and functional biomolecules, various false-positive results are inevitable. Our work was mainly to provide a fast and simple method for functional genes screening, and point out a direction for future research. However, accurate conclusions need further experimental analysis and clinical verification.



Data Availability Statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.



Ethics Statement

The studies involving human participants were reviewed and approved by all the research data based on the bioinformatics analysis of the open resources from the TIMER, Oncomine, TCGA, Kaplan–Meier plotter, and GEPIA databases. Written informed consent for participation was not required for this study in accordance with the national legislation and the institutional requirements.



Author Contributions

XX and XL contributed to the concept and wrote the manuscript. XX and SJ designed the experiments, performed the experiments, and analyzed the data. XX and SJ contributed equally to this study. All authors contributed to the article and approved the submitted version.



Funding

This work was supported by the 2019 Doctor Initiation Fund of Guizhou University of Chinese Medicine (3043-043190019) and Research Initiation Foundation for Doctor of Henan Agricultural University (30602107).



Supplementary Material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.621373/full#supplementary-material



References

1. Bray, F, Ferlay, J, Soerjomataram, I, Siegel, RL, Torre, LA, and Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2018) 68:394–424. doi: 10.3322/caac.21492

2. Llovet, JM, Montal, R, Sia, D, and Finn, RS. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol (2018) 15:599–616. doi: 10.1038/s41571-018-0073-4

3. Makarova-Rusher, OV, Altekruse, SF, McNeel, TS, Ulahannan, S, Duffy, AG, Graubard, BI, et al. Population attributable fractions of risk factors for hepatocellular carcinoma in the United States. Cancer (2016) 122:1757–65. doi: 10.1002/cncr.29971

4. Zhang, BH, Yang, BH, and Tang, ZY. Randomized controlled trial of screening for hepatocellular carcinoma. J Cancer Res Clin Oncol (2004) 130:417–22. doi: 10.1007/s00432-004-0552-0

5. Li, C, Chen, J, Zhang, K, Feng, B, Wang, R, and Chen, L. Progress and prospects of long noncoding RNAs (lncRNAs) in hepatocellular carcinoma. Cell Physiol Biochem (2015) 36:423–34. doi: 10.1159/000430109

6. Hu, P, Chen, X, Sun, J, Bie, P, and Zhang, LD. siRNA-mediated knockdown against NUF2 suppresses pancreatic cancer proliferation in vitro and in vivo. Biosci Rep (2015) 87:1183–9. doi: 10.1042/BSR20140124

7. Nabetani, A, Koujin, T, Tsutsumi, C, Haraguchi, T, and Hiraoka, Y. A conserved protein, NUF2, is implicated in connecting the centromere to the spindle during chromosome segregation: a link between the kinetochore function and the spindle checkpoint. Chromosoma (2001) 110:322–34. doi: 10.1007/s004120100153

8. Ohnuma, S, Miura, K, Horii, A, Fujibuchi, W, Kaneko, N, Gotoh, O, et al. Cancer-associated splicing variants of the CDCA1 and MSMB genes expressed in cancer cell lines and surgically resected gastric cancer tissues. Surgery (2009) 145:57–68. doi: 10.1016/j.surg.2008.08.010

9. Kaneko, N, Miura, K, Gu, Z, Karasawa, H, Ohnuma, S, Sasaki, H, et al. siRNA-mediated knockdown against CDCA1 and KNTC2, both frequently overexpressed in colorectal and gastric cancers, suppresses cell proliferation and induces apoptosis. Biochem Biophys Res Commun (2009) 390:1235–40. doi: 10.1016/j.bbrc.2009.10.127

10. Hayama, S, Daigo, Y, Kato, T, Ishikawa, N, Yamabuki, T, Miyamoto, M, et al. Activation of CDCA1-KNTC2, members of centromere protein complex, involved in pulmonary carcinogenesis. Cancer Res (2006) 66:10339–48. doi: 10.1158/0008-5472.CAN-06-2137

11. Harao, M, Hirata, S, Irie, A, Senju, S, Nakatsura, T, Komori, H, et al. HLA-A2-restricted CTL epitopes of a novel lung cancer-associated cancer testis antigen, cell division cycle associated 1, can induce tumorreactive CTL. Int J Cancer (2008) 123:2616–25. doi: 10.1002/ijc.23823

12. Sethi, G, Pathak, HB, Zhang, H, Zhou, Y, EMargret, B, Vathipadiekal, V, et al. An RNA interference lethality screen of the human druggable genome to identify molecular vulnerabilities in epithelial ovarian cancer. PloS One (2012) 7:470–86. doi: 10.1371/journal.pone.0047086

13. Hu, P, Shangguan, J, and Zhang, L. Downregulation of NUF2 inhibits tumor growth and induces apoptosis by regulating lncRNA AF339813. Int J Clin Exp Pathol (2015) 8:2638–48. doi: 10.1287/orsc.12.5.599.10094

14. Rhodes, DR, Kalyana-Sundaram, S, Mahavisno, V, Varambally, R, Yu, J, Briggs, BB, et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia (2007) 9:166–80. doi: 10.1593/neo.07112

15. Lánczky, A, Nagy, Á, Bottai, G, Munkácsy, G, Szabó, A, Santarpia, L, et al. miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2178 breast cancer patients. Breast Cancer Res Treat (2016) 160:439–46. doi: 10.1007/s10549-016-4013-7

16. Danaher, P, Warren, S, Dennis, L, D’Amico, L, White, A, Disis, ML, et al. Gene expression biomarkers of Tumor Infiltrating Leukocytes. J Immunother Cancer (2017) 5:18–32. doi: 10.1101/068940

17. Sousa, S, and Määttä, J. The role of tumour-associated macrophages in bone metastasis. J Bone Oncol (2016) 5:135–8. doi: 10.1016/j.jbo.2016.03.004

18. Tang, Z, Li, C, Kang, B, Gao, G, Li, C, and Zhang, Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res (2017) 45:98–102. doi: 10.1093/nar/gkx247

19. Siegel, RL, Miller, KD, and Jemal, A. CA: A Cancer Journal for Clinicians. Cancer Statistics (2019) 69:7–34. doi: 10.3322/caac.21551

20. Gaetano, B, Shirin, D, Annalisa, A, Maria, P, Giulia, M, Nicoletta, B, et al. The immune system in hepatocellular carcinoma and potential new immunotherapeutic strategies. BioMed Res Int (2015) 2015:1–12. doi: 10.1155/2015/731469

21. Ikeda, K, and Inoue, S. TRIM proteins as RING finger E3 ubiquitin ligases. Adv Exp Med Biol (2012) 770:27–37. doi: 10.1007/978-1-4614-5398-7_3

22. Hatakeyama, S. TRIM family proteins: roles in autophagy, immunity, and carcinogenesis. Trends Biochem Sci (2017) 42:297–311. doi: 10.1016/j.tibs.2017.01.002

23. You, K, Sun, P, Yue, Z, Li, J, Xiong, W, Wang, J, et al. NOR1 promotes hepatocellular carcinoma cell proliferation and migration through modulating the Notch signaling pathway. Exp Cell Res (2017) 352:375–81. doi: 10.1016/j.yexcr.2017.02.032

24. Zhang, T, Zhou, Y, Qi, ST, Wang, ZB, Qian, WP, Ouyang, YC, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle (2015) 14:2701–10. doi: 10.1080/15384101.2015.1058677

25. Camidge, DR, Doebele, RC, and Kerr, KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nat Rev Clin Oncol (2019) 16:341–55. doi: 10.1038/s41571-019-0173-9

26. Altorki, NK, Markowitz, GJ, Gao, D, Port, JL, Saxena, A, Stiles, B, et al. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer (2019) 19:9–31. doi: 10.1038/s41568-018-0081-9

27. Ino, Y, Yamazaki-Itoh, R, Shimada, K, Iwasaki, M, Kosuge, T, Kanai, Y, et al. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer (2013) 108:914–23. doi: 10.1038/bjc.2013.32

28. Rodell, CB, Arlauckas, SP, Cuccarese, MF, Garris, CS, Li, R, Ahmed, MS, et al. TLR7/8-agonist-loadednanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat BioMed Eng (2018) 2:578–88. doi: 10.1038/s41551-018-0236-8

29. Jayasingam, SD, Citartan, M, Thang, TH, Mat Zin, AA, Ang, KC, and Ch’ng, ES. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol (2019) 9:1512–20. doi: 10.3389/fonc.2019.01512

30. Wynn, TA, Chawla, A, and Pollard, JW. Macrophage biology in development, homeostasis and disease. Nature (2013) 496:445–55. doi: 10.1038/nature12034

31. Barber, DL, Wherry, EJ, Masopust, D, Zhu, B, Allison, JP, and Sharpe, AH. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature (2006) 38:682–7. doi: 10.1038/nature04444

32. Wherry, EJ, and Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol (2015) 5:486–99. doi: 10.1038/nri3862

33. Li, T, Fan, J, Wang, B, Traugh, N, Chen, Q, Liu, JS, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res (2017) 77:108–10. doi: 10.1158/0008-5472.CAN-17-0307



Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Xie, Jiang and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.











	 
	ORIGINAL RESEARCH
published: 16 March 2021
doi: 10.3389/fcell.2021.621618





[image: image]

Functional Assessment of Four Novel Immune-Related Biomarkers in the Pathogenesis of Clear Cell Renal Cell Carcinoma

Daojun Lv1,2†, Xiangkun Wu1,2†, Ming Wang1,2, Wenzhe Chen1,2, Shuxin Yang1,2, Yongda Liu1,2*, Guohua Zeng1,2* and Di Gu1,2*

1Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

2Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, Guangzhou, China

Edited by:
Zhenyu Jia, University of California, Riverside, United States

Reviewed by:
Yao Zhu, Fudan University, China
Dongjun Lee, Pusan National University, South Korea

*Correspondence: Yongda Liu, 13719007083@163.com; Guohua Zeng, gzgyzgh@vip.tom.com; Di Gu, di.gu@doctors.org.uk

†These authors have contributed equally to this work and share first authorship

Specialty section: This article was submitted to Molecular and Cellular Oncology, a section of the journal Frontiers in Cell and Developmental Biology

Received: 26 October 2020
Accepted: 26 February 2021
Published: 16 March 2021

Citation: Lv D, Wu X, Wang M, Chen W, Yang S, Liu Y, Zeng G and Gu D (2021) Functional Assessment of Four Novel Immune-Related Biomarkers in the Pathogenesis of Clear Cell Renal Cell Carcinoma. Front. Cell Dev. Biol. 9:621618. doi: 10.3389/fcell.2021.621618

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma whose pathogenesis is not well understood. We aimed at identifying novel immune-related biomarkers that could be valuable in the diagnosis and prognosis of ccRCC.

Methods: The Robust Rank Aggregation (RRA) method was used to integrate differently expressed genes (DEGs) of 7 Gene Expression Omnibus (GEO) datasets and obtain robust DEGs. Weighted gene co-expression network analyses (WGCNA) were performed to identify hub genes associated with clinical traits in The Cancer Genome Atlas (TCGA) database. Comprehensive bioinformatic analyses were used to explore the role of hub genes in ccRCC.

Results: Four hub genes IFI16, LMNB1, RHBDF2 and TACC3 were screened by the RRA method and WGCNA. These genes were found to be up-regulated in ccRCC, an upregulation that could be due to their associations with late TNM stages and tumor grades. The Receiver Operating Characteristic (ROC) curve and Kaplan-Meier survival analysis showed that the four hub genes had great diagnostic and prognostic values for ccRCC, while Gene Set Enrichment Analysis (GSEA) showed that they were involved in immune signaling pathways. They were also found to be closely associated with multiple tumor-infiltrating lymphocytes and critical immune checkpoint expressions. The results of Quantitative Real-time PCR (qRT-PCR) and immunohistochemical staining (IHC) analysis were consistent with bioinformatics analysis results.

Conclusion: The four hub genes were shown to have great diagnostic and prognostic values and played key roles in the tumor microenvironment of ccRCC.

Keywords: clear cell renal cell carcinoma, immune-related biomarkers, diagnosis and prognosis, robust rank aggregation, weighted gene co-expression network analysis, tumor microenvironment


INTRODUCTION

Renal cell carcinoma (RCC) is the third most common malignancy of the urinary system, accounting for approximately 3% of all malignancies (Siegel et al., 2020). According to the global cancer statistics (2018), there were about 403,262 (2.2%) new cases of RCC with a mortality rate of 1.8% (Bray et al., 2018). Clear cell renal cell carcinoma (ccRCC), accounting for over 80% of all RCC cases, is the most common pathological subtype of RCC (Hsieh et al., 2017). An estimated 30% of all ccRCC cases are diagnosed in the metastatic stages with recrudescence occurring in 20 to 30% of patients who have undergone partial or radical nephrectomy (Cairns, 2010; Wolff et al., 2016; Hsieh et al., 2017). Targeted therapies such as sunitinib (Motzer et al., 2006), sorafenib (Hutson et al., 2010) and axitinib (Hutson et al., 2013) are important as first-line ccRCC medications. These therapies, coupled with immunotherapy have a positive prognostic outcome in ccRCC patients (Rini et al., 2019). Despite the advances in the therapeutic management of ccRCC, the recovery rate of these patients is still low (Vera-Badillo et al., 2015; Tsimafeyeu et al., 2017). Therefore, identify more novel immune-related biomarkers that could be vital in the diagnosis, treatment and prognosis of ccRCC is urgent.

The development of high-throughput technologies and bioinformatic advancements have led to the identification of novel ccRCC biomarkers (Mitchell et al., 2018; Linehan and Ricketts, 2019). However, research using small sample sizes and different sequencing platforms has resulted in great variabilities and poor statistical inferences among studies. The Robust Rank Aggregation (RRA) method can integrate differentially expressed gene (DEG) lists of different datasets, thereby overcoming the challenges posed by small sample sizes (Kolde et al., 2012). In addition, the use of DEGs between different samples, while ignoring the internal relationship between genes, can help overcome this problem. Genes with extremely similar expression patterns in different samples can be identified by the weighted gene co-expression network analysis (WGCNA) (Langfelder and Horvath, 2008). This analysis screens out biomarkers based on internal relationships among genes and correlates gene sets with their clinical traits (Langfelder and Horvath, 2008).

In this study, we aimed at identifying novel immune-related biomarkers that were significantly associated with the progression and prognosis of ccRCC. Moreover, we investigated the potential molecular mechanisms of these biomarkers, as well as their associations with the tumor microenvironment (TME). Finally, we performed Quantitative Real-Time PCR (qRT-PCR) analysis to detect the expression of novel immune-related biomarkers in clinical ccRCC samples.



MATERIALS AND METHODS


Data Source and Preprocessing

The workflow of this study is shown in Figure 1. The matrix files of eligible microarray datasets were obtained from the Gene Expression Omnibus (GEO) database1. Datasets that had human renal tissue samples and contained at least 10 tumor- and non-tumor renal control tissue samples were included in this study. Cell line and xenograft tissues were excluded from this study. Accordingly, 7 GEO datasets were included for DEG analysis, including GSE71963, GSE66270, GSE53757, GSE40435, GSE36895, GSE17895, and GSE16449. The probes were matched to the gene symbols using the annotation files of the respective platforms. Normalized RNA-sequencing data as FPKM (Fragments Per Kilobase Million) and the corresponding pathological information of ccRCC samples were downloaded from The Cancer Genome Atlas (TCGA) database2. In total, 517 TCGA-ccRCC and 89 CPTAC-ccRCC samples that had complete clinic-pathological data with follow up time were included into this study.
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FIGURE 1. A workflow showing the process of screening out hub genes and their comprehensive analysis.




Identification of Robust DEGs

DEGs between the adjacent normal tissue and ccRCC samples were identified by the ‘limma’ package (version 3.44.33), while DEG integration of the 7 microarray datasets to obtain robust DEGs was achieved using the RRA method. In the RRA analysis, | log2-fold change (FC)| and false discovery rate (FDR) < 0.05 were set as the cutoff points for robust DEGs based on the ‘RobustRankAggreg’ package (version 1.14). Robust DEGs were further validated between paired ccRCC and adjacent samples in the TCGA-ccRCC database using the ‘edgeR’ package (version 3.30.05). Statistical significance was set at | log2FC| > 1 and FDR < 0.05.



Function Enrichment Analysis of Robust DEGs

Gene Ontology (GO) enrichment, including molecular functions (MF), cellular components (CC) and biological processes (BP), and the Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses were conducted with the ‘clusterprofiler’ package (version 3.16.16). GO terms or KEGG pathways with FDR < 0.05 were visualized by the “GOplot” package.



WGCNA and Identification of the Key Module

The expression data of robust DEGs were retrieved from the TCGA database and used in the WGCNA analysis. The WGCNA method was important in constructing co-expression networks and identifying clinical traits related to DEGs. Pearson’s correlations between all pair-wise genes were used to generate the adjacency matrix, while the soft threshold power of β = 5 was used to achieve scale-free topology of the adjacency matrix. The adjacency matrix was then transformed into a topological overlap matrix (TOM). This transformation was done based on the TOM-based dissimilarity measure with a minimum module size of 30 and cut height of 0.25. Robust DEGs with similar expression patterns were classified into the same gene module by average linkage hierarchical clustering. The correlation between module eigengenes (MEs) and clinical traits was calculated to identify clinically significant modules. Finally, robust DEGs with a gene significance (GS) > 0.3 and a module membership (MM) > 0.7 were selected as hub genes.



Comprehensive Bioinformatic Analyses of Hub Genes

The TIMER website7 was used to validate the differences in hub gene expression between pan-cancer and adjacent normal tissues. To identify the diagnostic value of these hub genes in TCGA ccRCC, Receiver Operating Characteristic (ROC) curve analysis was performed and the area under the curve (AUC) was calculated using the “pROC” package (version 1.10.08). The ‘ggstatsplot’ package (version 0.6.19) was used to assess hub gene expression between different T stages, AJCC stages and tumor grades.

Normal tissue protein level and ccRCC data were obtained from the CPTAC database10 and used to identify the protein level of the hub genes. Moreover, ROC curve analysis was performed to assess the diagnostic value of these proteins.

Exploration of enriched KEGG pathways of the hub genes was achieved using the Gene Set Enrichment Analysis (GSEA) 4.0.1 software. Based on each hub gene’s median expression, the 517 ccRCC samples were divided into high- and low-expression groups. “c2.cp.kegg.v7.1.symbols.gmt” as the reference gene set was acquired from the Molecular Signatures Database V7.1 (MSigDB). Statistical significance was set at FDR < 0.05 and | Normalized Enrichment Score (NES)| > 1.



Tumor Immunity Analysis of Hub Genes

The estimate, stromal and immune scores of each TCGA ccRCC sample were downloaded from the ESTIMATE bioinformatics website11 and used to determine the association between hub genes and tumor purity and the association between the infiltration level of immune cells and the level of stromal cells in ccRCC tissues. The ESTIMATE algorithm is based on a single sample GSEA to evaluate tumor purity.

The TIMER website7 was used to explore the relationships between hub gene expression and abundance of tumor-infiltrating lymphocytes (TILs) such as CD8 + T cells, CD4 + T cells, B cells, dendritic cells, macrophages and neutrophils (Li et al., 2017). Estimation of 22 TIL compositions from bulk tissues based on their gene expression profiles was performed using the CIBERSORT method (Chen et al., 2018). The LM22 signature matrix was used to identify the 22 TILs containing seven T cell types, natural killer (NK) cells, myeloid subsets, plasma cells and naive and memory B cells. To further identify the relationships between hub genes and TILs, the CIBERSORT website12 in combination with the FPKM data of TCGA ccRCC and the LM22 signature matrix was used to estimate the TIL fractions. The sum of the 22 estimated TIL fractions in each sample is equal to 1. Spearman rank correlation analysis was used to evaluate the relationships between TILs. Moreover, the TISIDB website13 was used to explore the associations between hub genes and critical immune checkpoint inhibitors (ICIs: CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT).



Survival Analysis of Hub Genes

A total of 517 TCGA-ccRCC samples were divided into high- and low- expression groups based on best cutoff points calculated by the ‘survminer’ package (version 0.4.814). The Kaplan-Meier survival analysis with the log-rank test was then conducted to identify prognosis-related genes using the “survival” package (version: 3.2-715). Furthermore, 89 CPTAC-ccRCC samples were used to validated the prognosis of the hub genes. To validate whether hub genes were risk factors independent of clinical-pathological variables (age, T stage, N stage, M stage, AJCC stage and tumor grade) in ccRCC patients, univariate and multivariate Cox proportional hazards regression analyses were performed.



Cell Lines and Culture

Human normal kidney cell line HK-2 and ccRCC cell lines 786-O, OSRC-2, Caki-1, SN12-PM6 and SW839 were purchased from the American Type Culture Collection (ATCC, Manassas, VA, United States). The cells were cultured in 1640 Medium (Invitrogen, Grand Island, NY, United States) supplemented with 10% FBS (GIBCO, Brazil), penicillin (25 units/ml), streptomycin (25 g/ml), and 1% L-glutamine at 37°C with 5% CO2.



RNA Extraction and qRT-PCR

Total RNA was isolated with TRIzol reagent (TaKaRa Biomedical Technology, Dalian, China) according to the manufacturer’s instructions. Complementary DNA was reverse-transcribed using the Prime Script RT reagent Kit (TaKaRa). the qRT-PCR analysis was conducted using TB® Green PCR Master Mix (TaKaRa). The specific primers set for IFI16, LMNB1, RHBDF2, TACC3, CD4, CD8 and GAPDH are presented in Supplementary Table 1. All data analyses were managed using RocheLightCycler480. Data were calculated from three biological and technical replicates then normalized to GAPDH expression levels using the 2–ΔΔCt method.



Patients and Clinical Samples

Primary ccRCC patients who underwent radical surgery without any preoperative chemotherapy or radiotherapy at the First Affiliated Hospital of Guangzhou Medical University between 2016 and 2019 were enrolled in the study. As for Formalin fixed paraffin—embedded ccRCC specimens, a total of 150 patients diagnosed with primary ccRCC who underwent operation at the Department of Urology of the First Affiliated Hospital of Guangzhou Medical University (Guangzhou, China) and Nanfang hospital (Guangzhou, China) between February 2008 to August 2015 were enrolled in our study. The follow up of participants (n = 150) were gotten through phone calls until death or the cut-off date of August 1, 2015. The mean follow-up time was 68 months (from 4.0 to 90.0 months). All the deaths were ascribed to ccRCC. Pathological TNM staging was reassessed in accordance with the American Joint Committee on Cancer (AJCC). Histological and pathological diagnoses of the specimens was assigned basing on the 2007 World Health Organization (WHO) Consensus Classification and Staging System of Renal Tumor and Fuhrman grade by two experienced pathologists. Written informed consent was obtained for all patients before specimen collection, following the ethical protocols of the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University. All the study protocol was approved by the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University and Southern Medical University Institutional Board.



Tissue Microarray Construction and Immunohistochemistry (IHC)

Tissue microarray (TMA) was established from 150 formalin-fixed paraffin-embedded human ccRCC tissues block according to the standard methods. IFI16, RHBDF2, TACC3 protein expression was confirmed using an immunoperoxidase method. The tissue array was deparaffinized, rehydrated, and inhibited endogenous peroxidase activities by 0.3% H2O2 for 30 min. For antigen retrieval, the slides were boiled in sodium citrate buffer (10 mM, pH 6.0) in a pressure cooker for 7 min. Afterward, non-specific binding was blocked with 5% normal goat serum, and then incubated with primary antibody (IFI16, 1:200, ab13454, Abcam Inc., Cambridge, MA, United States). (RHBDF2, 1:500, abs10947, Absin, Shanghai, China), (TACC3, 1:100, 14970s, Cell Signaling Technology, Inc., United States). Sequentially tissue array was incubated with polyperoxidase-anti-mouse IgG (Zhongshan Biotech. China). Diaminobenzidine (DAB) was visualized as a chromogen substrate. The nucleus was counterstained with hematoxylin. IFI16, RHBDF2, TACC3 staining in nuclear was reckoned as detectable immunoreactions. To evaluate the consequences of IFI16, RHBDF2, TACC3 staining, the intensity and percentage of cells in cancerous and non-cancerous tissues were scored by two pathologists independently. The intensity of staining was determined in accordance with the following scale: 0 (no staining); 1 (weak staining, light yellow); 2 (moderate staining, yellowish brown) and 3 (strong staining, brown). Based on the percentage of positively stained tumor cells, the score of staining extent was denoted on 4point scale as follows: 0 (less than 5%); 1 (5 to 25%); 2 (25 to 50%); 3 (more than 75%). The final scores were then calculated according to score × proportion of positive tumor cells for IFI16, RHBDF2, TACC3 expression (range from 0 to 9). Tumor tissues with scores of 0–1 was recognized as low expression because approximately 90% of normal kidney tissues expressed a low level of IFI16, RHBDF2, TACC3 with an IHC score of ≤ 1 in our preliminary study. Then we defined 0-1 as low expression and 2–9 as high expression.



Statistical Analysis

The hazard ratio (HR) and 95% confidence interval (CI) were calculated by Cox regression analysis and Kaplan-Meier survival analysis. Spearman correlation analysis was used to evaluate the correlation between two continuous variables. The Kruskal-Wallis or student’s t-test was used to compare between groups for continuous variables. When multiple comparisons were performed, p-values were corrected according to the FDR method. The FDR method was used to control for multiple testing that could lead to a false positive. All experiments were repeated thrice and the data were presented as means and standard deviation (SD) in all plots shown in this study unless differently stated in the legend. All statistical analyses were conducted by R software (version 3.6.216) and all P < 0.05 (2-sided) were considered statistically significant.



RESULTS


Identification of Robust DEGs

Details of 7 eligible GEO datasets (GSE71963, GSE66270, GSE53757, GSE40435, GSE36895, GSE17895 and GSE16449) are shown in Table 1 with their DEG identifiers (5314, 3180, 4033, 7082, 4090, 6250, and 5334 DEGs, respectively). A total of 957 robust DEGs in GEO datasets were detected by RRA analysis. Among these, 841 DEGs with downregulated (454 DEGs) and up-regulated (387 DEGs) mRNAs were validated between paired ccRCC and adjacent samples in a TCGA-ccRCC database (Supplementary Figure 1A). The top 20 up- and down-regulated robust DEGs detected using RRA analysis are listed in Supplementary Figure 1B.


TABLE 1. Details of 7 GEO datasets included in this study.
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Functional Enrichment Analysis of Robust DEGs

Significantly enriched BP of robust DEGs was identified, including monovalent inorganic cation homeostasis, small molecule catabolic process, carboxylic acid biosynthetic process and organic acid biosynthetic process (Figure 2A). Several CC GO terms were detected, including apical part of the cell, apical plasma membrane, basolateral plasma membrane and blood microparticle (Figure 2B). In GO terms of MF, secondary active transmembrane transporter activity, active transmembrane transporter activity and cofactor binding were significantly enriched terms (Figure 2C). Based on KEGG pathway analysis, glycolysis/gluconeogenesis, PPAR signaling pathway and collecting duct acid secretion were mostly associated with the robust DEGs (Figure 2D).


[image: image]

FIGURE 2. GO and KEGG analysis of robust DEGs. (A) Chord plot shows the relationship between genes and GO terms of biological process. (B) Chord plot shows the relationship between genes and GO terms of cellular component. (C) Chord plot shows the relationship between genes and GO terms of molecular function. (D) Chord plot shows the relationship between genes and KEGG pathways (GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes).




WGCNA and Identification of Key Modules and Hub Genes

To identify key modules significantly related to ccRCC clinical traits, WGCNA was performed on the TCGA-ccRCC dataset incorporating 841 robust DEGs derived from the previous analysis (Figure 3). Clinical information of ccRCC patients such as age, overall survival status (OSS), overall survival time (OST), disease-free status (DFS), disease-free time (DFT), T stage, N stage, M stage, AJCC stage and tumor grade were retrieved from TCGA (Figure 3A). By setting the cut height at 0.25 and β at 5 (scale-free R2 = 0.85), 841 robust DEGs were divided into six modules (Figures 3B–E). As shown in the heatmap of the module-trait relationship, the brown module was significantly related to clinical traits (Figure 3F). Gene significance > 0.3 of AJCC stage and tumor grade and MM > 0.7 were selected as cutoff points (Figures 3G,H). We identified 4 hub genes from the brown module: IFI16, LMNB1, RHBDF2 and TACC3.
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FIGURE 3. Identification of key modules correlated with clinical traits in the TCGA-ccRCC dataset. (A) Clustering dendrograms of robust DEGs. Color intensity varies positively with age, overall survival time (OST), disease free time (DFT), T stage, N stage, M stage, AJCC stage and tumor grade. In terms of overall survival status (OSS) and disease-free status (DFS), red means dead or disease progression and white indicates live or disease free. (B–C) Analysis of scale-free fit index (B) and mean connectivity (C) for various soft-thresholding powers. (D) Clustering of module eigengenes. The red line shows cut height (0.25). (E) Dendrogram of robust DEGs clustered based on a dissimilarity measure (1- TOM). (F) Heatmap of the correlation between module eigengenes and clinical traits of ccRCC. Each cell contains p-value and the correlation coefficient. (G) Scatter plot of module eigengenes related to AJCC stage in the brown module. (H) Scatter plot of module eigengenes related to tumor Grade in the brown module.




Comprehensive Bioinformatic Analyses of Hub Genes

As shown in the pan-cancer view (Supplementary Figure 2), the 4 hub genes (IFI16, LMNB1, RHBDF2, and TACC3) were significantly up-regulated in ccRCC samples and other cancer types when compared to adjacent normal tissues (p < 0.001). Furthermore, the ROC curve analysis showed that these hub genes had a high diagnostic value as biomarkers for TCGA ccRCC (IFI16 AUC: 0.921, LMNB1 AUC: 0.87, RHBDF2 AUC: 0.957, TACC3 AUC: 0.896; Supplementary Figure 3A). These genes were significantly differentially expressed in ccRCC samples with different T stages, AJCC stages and tumor grades (p < 0.001). Higher expression levels were an indication of advanced T stages, AJCC stages and tumor grades (Figures 4A–C).
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FIGURE 4. Validation of four hub genes in the TCGA-ccRCC database. (A) Expression of IFI16, LMNB1, RHBDF2 and TACC3 in ccRCC samples with different T stages. (B) Expression of IFI16, LMNB1, RHBDF2 and TACC3 in ccRCC samples with different AJCC stages. (C) Expression of IFI16, LMNB1, RHBDF2 and TACC3 in ccRCC samples with different tumor grades. (D) Corresponding protein levels between ccRCC and adjacent normal tissue.


The protein levels of the 4 hub genes were significantly up-regulated in ccRCC samples compared to normal tissues (p < 0.001) (Figure 4D). The ROC curve analysis revealed that these genes had good efficacies in the diagnosis of ccRCC (IFI16 protein AUC: 0.955, LMNB1 protein AUC: 0.959, RHBDF2 protein AUC: 0.94, TACC3 protein AUC: 0.915; Supplementary Figure 3B).

Further investigations of enriched KEGG pathways of IFI16, LMNB1, RHBDF2 and TACC3 in ccRCC showed that highly expressed genes [IFI16 (A), LMNB1 (B), RHBDF2 (C), and TACC3 (D)] were all enriched in T cell receptor signaling pathway, NK cell-mediated cytotoxicity, antigen processing and presentation and primary immunodeficiency. Meanwhile, the NOD-like receptor signaling, cytosolic DNA sensing and Toll-like receptor signaling pathways were enriched in the high-expression groups of IFI16, LMNB1 and RHBDF2. The cell cycle and B cell receptor signaling pathway were enriched in LMNB1 and IFI16 high-expression groups, respectively. The GSEA showed that LMNB1, IFI16, RHBDF2 and TACC3 were closely associated with immune signaling pathways (Figures 5A–D).
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FIGURE 5. GSEA of KEGG pathway gene sets in IFI16 (A), LMNB1 (B), RHBDF2 (C), and TACC3 (D) high versus low samples from TCGA database. The normalized enrichment scores (NES) are shown in each plot.




Tumor Immunity Analysis of Hub Genes

IFI16, LMNB1, RHBDF2 and TACC3 were positively correlated with the estimate, stromal, and immune scores (Supplementary Figure 4). These results suggest that the 4 hub genes were negatively correlated with the tumor purity of ccRCC and were up-regulated in the TME. The expression levels of IFI16, LMNB1, RHBDF2 and TACC3 positively correlated with infiltration levels of the six TILs, including CD8 + T cells, CD4 + T cells, B cells, dendritic cells, macrophages and neutrophils (Supplementary Figure 5). This shows that these genes play a key role in the immune infiltration of ccRCC. As shown in Figure 6A, abundant fractions of 22 TILs were different in each ccRCC sample. This explains the tumor heterogeneity among different individuals. In addition, different TIL subpopulation ratios were weakly to moderately correlated (Figure 6B). The analysis showed that these genes were positively correlated with multiple TILs, especially activated CD4 + memory T cells, CD8 + T cells, regulatory T cells (Treg) and follicular helper T (Tfh) cells, but were negatively correlated with resting mast cells, resting NK cells and activated NK cells (Figure 6C). There was also a positive correlation between the 4 hub genes and the expression levels of TIGIT, HAVCR2, CTLA4, PDCD1 and LAG3 in ccRCC, revealing that these genes might be associated with the immunosuppressive microenvironment (Figure 7).
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FIGURE 6. The landscape of immune infiltration in TCGA ccRCC patients. (A) The abundance fraction of 22 tumor-infiltrating lymphocytes (TILs) in the 396 ccRCC samples. Each column represents a sample, and each column with a different color and height indicates the abundance fraction of TILs in that sample. (B) The correlation between the abundance fractions of various immune cells. The value represents the correlation value. Red represents a positive correlation, and blue represents a negative correlation. (C) The relationship between expression of IFI16, LMNB1, RHBDF2 and TACC3 and various TILs.
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FIGURE 7. Associations between the expression of IFI16 (A), LMNB1 (B), RHBDF2 (C), and TACC3 (D) with the expression of CTLA4, HAVCR2, LAG3, PDCD1, and TIGIT in ccRCC.




Survival Analysis of Hub Genes

The Kaplan-Meier survival analysis showed that higher expressions of IFI16 (p < 0.001, HR = 2.25, 95% CI: 1.63-3.1), LMNB1 (p < 0.001, HR = 1.71, 95% CI: 1.23-2.38), RHBDF2 (p < 0.001, HR = 2.26, 95% CI: 1.62-3.15) and TACC3 (p < 0.001, HR = 2.43, 95% CI: 1.74-3.41) predicted poor OS (Figures 8A–D), which were consistent with the Kaplan-Meier survival analysis results of CPTAC-ccRCC cohort (Supplementary Figure S6). In the univariate Cox proportional hazards regression analysis, 11 variables, included T stage, M stage, N stage, age, tumor grade and AJCC stage, showed statistical significance with hub gene expression. Based on the multivariate Cox proportional hazards regression analysis, the 4 hub genes were regarded as independent prognostic factors for ccRCC (Table 2).
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FIGURE 8. Kaplan-Meier survival analysis showing the higher expressions of IFI16 (A), LMNB1 (B), RHBDF2 (C), and TACC3 (D) that were correlated with poor survival of ccRCC patients in the TCGA database.



TABLE 2. Cox regression analysis of four hub genes and clinical data of ccRCC in TCGA database.
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Validation of the Expression of Hub Genes in Clinical ccRCC Specimens

To detect the expression of the 4 hub genes (IFI16, LMNB1, RHBDF2, and TACC3) in ccRCC, we performed the qRT-PCR analysis in clinical specimens. The clinicopathological information of 15 ccRCC patients is shown in Supplementary Table 2. The mRNA expression of all the hub genes was significantly higher in ccRCC tissues when compared with adjacent normal tissues (Figure 9). This is consistent with the results of our bioinformatics analysis. These findings suggested that the expression of the hub genes may act as a promising biomarker for ccRCC. However, we don’t found closely correlation between the 4 signatures and the immune cells biomarkers (CD4 and CD8) in ccRCC sample (Supplementary Figure 7).
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FIGURE 9. The expression of these Hub genes in human ccRCC specimens and adjacent normal tissues (ANT). (A–D) q-RTPCR analysis of IFI16 (A), TACC3 (B), LMNB1 (C), and RHBDF2 (D) in paired ccRCC tissues (n = 15). GAPDH was used as a loading control. *p < 0.05, **p < 0.01, ***p < 0.001.


To further confirm the correlation of hub genes expression with tumor progression in ccRCC. We performed immunohistochemical staining (IHC) in human tissue samples to detected the protein expression of IFI16, RHBDF2, TACC3. Patients’ characteristics were retrospectively collected from the review of medical records and detailed in Supplementary Table 3. Results demonstrated that IFI16 was increased significantly in most of the paired ccRCC tissues compared with adjacent normal kidney tissues (Figure 10A and Table 3, p < 0.0001). However, RHBDF2 was decreased in the paired ccRCC tissues than adjacent normal kidney tissues (Supplementary Figure 8 and Supplementary Table 4, p < 0.0001) and TACC3 was negative in most tissues (Supplementary Figure 8 and Supplementary Table 5). Subsequently, we analyzed the clinical correlation of IFI16 and clinicopathological characteristics. As shown in Table 3, upregulation of IFI16 was significantly associated with pathology grade (p < 0.0001). However, no significant correlation was found between IFI16 protein expression with other clinical features. Kaplan–Meier analysis for 150 patients with follow-up data suggested that patients with higher levels of IFI16 presented significantly lower overall survival rates than those with low levels of IFI16 expression (Figure 10B, Log rank, p = 0.046). Furthermore, the multivariate analysis of the Cox regression model, IFI16 expression (p = 0.0226, HR = 5.474) was confirmed to be independent prognosis factors for ccRCC patients (Table 4). To further investigate the expression profile of IFI16 in human ccRCC, we detected IFI16 expression in four human ccRCC cell lines (i.e., SW839, OSRC-2, SM12-PN6, Caki-1, and 786-O) and found that the mRNA levels of IFI16 was relatively higher in most of the ccRCC cells (Figure 10C). These results suggested that IFI16 may be a probable independent predictor in patients with ccRCC.
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FIGURE 10. IFI16 expression profiles in ccRCC tissues and cell lines. (A) Representative images of IFI16 protein immunochemistry in unpaired and paired ccRCC tissues compared with adjacent normal kidney tissues. Magnification: ×50, ×200; (B) The Kaplan-Meier overall survival curve of ccRCC patients (n = 150) according to IFI16 protein expression (p = 0.0024, by the log-rank test). (C) Expression level of IFI16 in ccRCC cell lines were screened by qRT-PCR. (ns no significant; **P < 0.01; ***P < 0.001).



TABLE 3. The correlation between IFI16 expression and clinicopathological characteristics was analyzed in ccRCC by IHC (n = 150).
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TABLE 4. Univariate and multivariate analysis of different prognostic parameters in patients with ccRCC by Cox regression analysis.
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DISCUSSION

Clear cell renal cell carcinoma is a complex and highly heterogeneous disease whose pathogenesis remains unclear (Hsieh et al., 2017). Therefore, understanding the potential molecular mechanisms of ccRCC is crucial for better diagnosis, treatment and prognostic predictions (Linehan and Ricketts, 2019). Although previous studies have used high-throughput technologies and advanced bioinformatics to find novel biomarkers and therapeutic targets for ccRCC, there are inconsistencies among the DEGs analyzed in different studies (Barbieri et al., 2017).

In this study, 7 GEO datasets were integrated using RRA to minimize inconsistencies and identify robust DEGs. Enrichment analyses to explore potential biological functions of robust DEGs in ccRCC were also performed, after which hub genes associated with the pathogenesis of ccRCC were screened. Four hub genes were finally screened from the two phenotypes. Comprehensive bioinformatic analyses of the four hub genes showed that they were closely associated with the pathogenesis of ccRCC. Their protein levels were significantly up-regulated in ccRCC samples when compared to normal tissues. This high expression coincided with a poor OS, hence, these genes could be regarded as independent ccRCC prognostic factors. The GSEA analysis showed that these genes were closely related to immune signaling pathways. To the best of our knowledge, this is the first study combining RRA with WGCNA to explore hub genes involved in ccRCC pathogenesis.

Robust DEGs, such as AQP9 (Xu et al., 2019) and SULT (Li et al., 2019), are biomarkers of ccRCC and play a key role in its pathogenesis. Based on GO enrichment results of robust DEGs, studies have proved that small molecule catabolic processes and carboxylic acid biosynthetic processes are significantly associated with the initiation and progression of cancer (Sciacovelli and Frezza, 2016; DiNatale et al., 2020). Selvakumar et al. (2014) reported that active transmembrane transporter activity plays a key role in ccRCC, which was an enriched GO term of robust DEGs. Enrichment of robust DEGs in some KEGG pathways such as glycolysis/gluconeogenesis (Massari et al., 2015; Ciccarese et al., 2016) and PPAR signaling (Chang and Lai, 2019) also prove their relevance in ccRCC pathogenesis. Documented evidence suggests that ccRCC cells use the glycolytic pathway for energy production in the presence of oxygen, a phenomenon known as the Warburg Effect (Massari et al., 2015; Ciccarese et al., 2016). Dysregulated PPAR signaling pathway in pan-cancer results in dysregulated metabolism and is associated with immunosuppression (Chang and Lai, 2019). We noted multiple molecular mechanisms of robust DEGs that were closely associated with ccRCC pathogenesis.

Four hub genes (IFI16, LMNB1, RHBDF2, and TACC3) were identified in this study. Interferon-inducible 16 (IFI16), an innate immune sensor for DNA in cells, can recruit STING after DNA stimulation (Unterholzner et al., 2010). This interferon can also activate the STING signaling pathway that plays a key role in the immune escape, thereby promoting tumor progression (Lemos et al., 2016; He et al., 2017). Cai et al. reported that IFI16 promotes the progression of cervical cancer by up-regulating PD-L1 in TME through the STING-TBK1-NF-kB pathway (Cai et al., 2020). Lamin B1 (LMNB1) is associated with various cellular physiological activities, including nuclear autophagy, DNA replication and transcription, nuclear migration, DNA repair pathways, etc. (Barascu et al., 2012; Yang et al., 2019). Previous studies showed that LMNB1 was overexpressed in pancreatic cancer, liver cancer and prostate cancer (Butin-Israeli et al., 2012; Irianto et al., 2016) and its overexpression was associated with poor clinical outcomes in the cervical (Yang et al., 2019) and colon (Izdebska et al., 2018) cancers. These findings were consistent with our results. Rhomboid 5 homolog 2 (RHBDF2) induces gastric cancer cell invasiveness by regulating Transforming Growth Factor Beta 1 (TGFB1) signaling (Ishimoto et al., 2017), a finding that corresponds with our results. Mutations in RHBDF2 accelerate tumorigenesis by activating epidermal growth factor receptor (EGFR) signaling (Hosur et al., 2014) and are associated with tylosis esophageal cancer (Blaydon et al., 2012). Transforming acidic coiled-coil protein 3 (TACC3) is overexpressed in RCC cells and can promote proliferation, invasion and migration of RCC cells (Guo and Liu, 2018). Overexpression of TACC3 is associated with poor prognosis in the breast (Song et al., 2018), prostate (Qie et al., 2020) and colorectal (Du et al., 2016) cancers. Commonly occurring gene fusions such as FGFR3-TACC3 fusions are potent oncogenes that rely on mitochondrial respiration (Frattini et al., 2018). This finding is similar to the finding in our study. However, there is no documented evidence on the roles of the four hub genes (IFI16, LMNB1, RHBDF2, and TACC3) in ccRCC pathogenesis. Furthermore, we performed the qRT-PCR analysis in clinical samples and found that the mRNA expression of the four hub genes was significantly higher in ccRCC tissues when compared with adjacent normal tissues. This study highlights the roles of the four hub genes in ccRCC; however, more in vivo and in vitro experiments are needed to authenticate these findings.

Clear cell renal cell carcinoma is a highly immune-infiltrated tumor and its pathogenesis was closely associated with TME (Galon and Bruni, 2019). Immunotherapy plus targeted therapy are the new conventional approaches for systemic treatment of metastatic ccRCC (Rini et al., 2019). Our study shows that the four hub genes are involved in multiple immune-related signaling pathways and they positively correlate with Estimate scores. This shows that they were overexpressed in the TME. We hypothesized that the effect of these genes on tumor prognosis is related to tumor immunity. Based on this aspect, we found that these genes were positively correlated with multiple TILs, especially Treg cells, activated CD4 + memory T cells and CD8 + T cells. Multiple pieces of research documented that the high abundance of CD4 + T cells and CD8 + T cells in ccRCC were related to its pathogenesis and poor prognosis (Nakano et al., 2001; Remark et al., 2013). Increased Treg cell numbers can suppress anti-tumor immune responses and are correlated with poor ccRCC prognosis (Liotta et al., 2011; Kang et al., 2013; Polimeno et al., 2013). There was a negative association between resting NK and activated NK cells and the four hub genes. Low NK-cell densities were related to a worse prognosis in ccRCC (Remark et al., 2013). These results reveal that TACC3, RHBDF2, LMNB1 and IFI16 may promote tumor progression by regulating TILs in ccRCC. However, exploring the molecular mechanisms by which these genes regulate TILs in ccRCC will be significant.

Among the ICIs, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), the godfather of checkpoint inhibitors, can dampen early activation and differentiation of T cells and actively send inhibitory signals to T cells (Pardoll, 2012; Buchbinder and Desai, 2016). Programmed cell death protein 1 (PD1; also known as PDCD1) is highly expressed on Treg cells of various cancers, thereby suppressing T cell effector functions (Pardoll, 2012; Hellmann et al., 2016). Lymphocyte activation gene 3 (LAG3) and T cell membrane protein 3 (TIM3; also known as HAVCR2) have been linked to the inhibition of lymphocyte activity (Hellmann et al., 2016; Du et al., 2017). Blocking these receptors has been shown to strengthen anti-tumor immunity in tumor animal models (Pardoll, 2012). TIGIT, T cell immunoglobulin and ITIM domain, is an inhibitory immunoreceptor and an interesting cancer immunotherapy target (Manieri et al., 2017). We report that IFI16, LMNB1, RHBDF2 and TACC3 expression was positively associated with ICIs. A high expression of these genes coincided with poor ccRCC prognosis, as they likely promote ccRCC progression by tumor immune escape.

Our study provides new insights into immunotherapy and TME in ccRCC. However, there were some limitations in this study. First, retrospective study designs induce heterogeneity in results, thus, more in vivo and in vitro experiments should be performed to validate our findings. Second, the biological mechanisms of TACC3, LMNB1, RHBDF2, and IFI16 identified in this study warrant further investigation.

In conclusion, there are robust DEGs and several gene modules that are associated with the clinical pathogenesis of ccRCC. Four hub genes (IFI16, LMNB1, RHBDF2 and TACC3) were up-regulated in ccRCC tissues and correlated with ccRCC progression. These genes were associated with poor prognosis of ccRCC and may play key roles in the TME of ccRCC by regulating TILs or ICIs. However, in vivo and in vitro experiments are needed to validate the contribution of these genes in the pathogenesis of ccRCC. Additionally, more studies should be conducted to understand the molecular mechanisms of IFI16, LMNB1, RHBDF2 and TACC3 in the pathogenesis of ccRCC.
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Supplementary Figure 1 | Identification of differentially expressed genes. (A) The expression matrix of 841 robust DEGs in 72 pairs of ccRCC and adjacent normal tissues followed by unsupervised hierarchical clustering in TCGA database. (B) Heatmap presenting the top 20 upregulated (Red) and top 20 downregulated (Green) robust DEGs according to p-value. The numbers in the heatmap represent log2- fold change in each dataset calculated by the “limma” R package. DEG, differentially expressed gene.

Supplementary Figure 2 | Differences in the four hub gene expressions between pan-cancer and adjacent normal tissues. (A) IFI16; (B) LMNB1; (C) RHBDF2; (D) TACC3.

Supplementary Figure 3 | ROC curve analysis of IFI16, LMNB1, RHBDF2 and TACC3 (A) and corresponding proteins (B) for the diagnosis of ccRCC in the TCGA database.

Supplementary Figure 4 | Positive correlations between IFI16, LMNB1, RHBDF2 and TACC3 expression (FPKM) and immune, stromal, and estimate scores in the TCGA database.

Supplementary Figure 5 | Association between the expression of IFI16 (A), LMNB1 (B), RHBDF2 (C), and TACC3 (D) with tumor-infiltrating lymphocytes in ccRCC. p < 0.05 is regarded as statistically significant. Each dot represents a ccRCC sample in the TCGA database.

Supplementary Figure 6 | Kaplan-Meier survival analysis showing the higher expressions of IFI16 (A), RHBDF2 (B), LMNB1 (C), and TACC3 (D) that were correlated with poor survival of ccRCC patients in the CPTAC cohort.

Supplementary Figure 7 | The correlation of 4 signatures and the immune cells biomarkers (CD4 and CD8) in ccRCC samples was detected by RT -qPCR.

Supplementary Figure 8 | RHBDF2 and TACC3 protein expression profiles in ccRCC tissues. (A,B) Representative images of RHBDF2 and TACC3 protein immunochemistry in unpaired and paired ccRCC tissues compared with adjacent normal kidney tissues. Magnification: ×50, ×200.
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4https://www.icesi.edu.co/CRAN/web/packages/RobustRankAggreg/
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6http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html

7https://cistrome.shinyapps.io/timer/

8https://cran.microsoft.com/snapshot/2017-07-15/web/packages/pROC/index.html

9https://cran.r-project.org/web/packages/ggstatsplot/index.html

10https://proteomics.cancer.gov/programs/cptac

11https://bioinformatics.mdanderson.org/estimate/index.html

12https://cibersort.stanford.edu/

13http://cis.hku.hk/TISIDB/index.php

14https://cran.r-project.org/web/packages/survminer/index.html

15https://cran.r-project.org/web/packages/survival/index.html
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Head and neck squamous cell carcinoma (HNSCC) is an immunosuppressive malignancy accompanied by noted alterations in various immune cells and cytokines. Recognition of the immune system’s role in contributing to cancer development is an important advancement in our original understanding of carcinoma. We obtained HNSCC gene expression and clinical data from The Cancer Genome Atlas (TCGA) database. We assessed the relative proportion of 22 Infiltrating immune cell types in both HNSCC and adjacent non-cancer tissues using Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) method, identifying the influence of the immune cells content in tumor staging and survival prediction. We further predicted the tumor purity, and the presence of infiltrating stromal/immune cells in HNSCC tissues using Estimation of STromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, identifying its potential correlation with patient survival. Stromal and immune score-associated differentially expressed genes (DEGs) were subsequently verified and their roles in immune response were displayed by functional enrichment analysis and protein-protein interaction (PPI) network. Our research demonstrated the underlying association between the immune microenvironment and HNSCC, and the results were intended to serve as valuable terms for HNSCC diagnosis, prognosis, and targeted immune therapy.
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Introduction

Head and neck squamous cell carcinoma (HNSCC), accounting for nearly 95% of head and neck cancer cases, is the sixth most common type of malignant tumor worldwide. About 635,000 cases are newly diagnosed every year with Chinese patients’ occupancy at more than 12% (1), and only 50–60% of patients are alive at 5 years after diagnosis (2). Tumor cells are first recognized as foreign invaders by the host immune cells and then are effectively destroyed by an activated immune system (3). Several immune system alterations occur in HNSCC patients, suggesting that this cancer is an immunosuppressive malignancy (3, 4), the adaptive immune response is suppressed in HNSCC through overexpression of cytokines, triggering apoptosis of T cells, and alterations in antigen processing machinery (5, 6). A better understanding of the immune microenvironment in cancer can promote immunotherapy for the treatment of carcinoma (7).

Tumor microenvironment of cancer patients is composed of cancer cells, adjacent epithelial, stromal, and immune cells (8). The cellular elements of tumor microenvironment often coevolve with tumor suppression or progression. Derangements in various immune cells contribute to cancer suppression or progression eventually. HNSCC is among the most immune infiltrated tumors as reported previously (9). Anthony R. Cillo et al. had assessed the transcriptional profiles and identified immune cell clusters within tumors of HNSCC on single cell level (10). In this study, we first assessed the relative proportion of 22 Infiltrating immune cell types in both HNSCC and adjacent non-cancer tissues from TCGA database using Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) method, identifying the influence of the immune cells content in tumor staging and survival prediction. It provides valuable targets for tumor immune therapy. Besides, an algorithm called ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data) can be applied to tumor purity prediction based on single sample gene set enrichment analysis which generates three scores: stromal score that captures the presence of stroma in tumor tissue, immune score that represents the infiltration of immune cells in tumor tissue, and ESTIMATE score that infers tumor purity (11). Increased application of the algorithm in multiple types of research provided us a new tool for diagnosis and prognosis of cancer (12, 13). Bin Liang et al. also conducted the immune cell type identification of HNSCC patient samples by CIBERSORT. They further analyzed differentially expressed genes (DEGs) by grouping samples into HNSCC tissues and adjacent non-cancer tissues, and conducted enrichment analysis based on those DEGs (14). However, the DEGs generated by this kind of grouping can be hardly related to immune cell type and tumor immune microenvironment. To distinguish useful genes that are differentially expressed in HNSCC specific immune microenvironment which may influence tumor immune response, we assessed stromal, immune, and ESTIMATE score of HNSCC samples from TCGA database using ESTIMATE algorithm. Stromal and immune score-associated DEGs were subsequently verified by dividing the samples into high and low stromal/immune score groups with median score as the cutoff. The role of these DEGs in immune response were subsequently displayed by protein-protein interaction (PPI) network, as well as GO and KEGG functional enrichment analysis. Our research demonstrated the underlying association between immune microenvironment and HNSCC, and the results were intended to serve as valuable terms in HNSCC diagnosis, prognosis and targeted immune therapy.



Materials and Methods


Database

We obtained all the gene expression and clinical data of HNSCC patients from TCGA data portal (https://tcga-data.nci.nih.gov/tcga/). There are 501 HNSCC patients in total, with RNA expression data from 502 HNSCC cancer tissues and 44 adjacent non-cancer tissues. All of the 501 patients had complete survival data, while only 433 patients had tumor stage information.



Immune Infiltration Analysis

We used CIBERSORT (Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts) method to characterize the infiltrating immune cell types from complex tissues based on RNA sequencing data. A validated leukocyte gene signature matrix (LM22) was used to identify the 22 functionally defined immune cell subtypes. The filter criteria of each sample is set as the CIBERSORT calculation of P < 0.05, indicating that the inferred proportion of each infiltrating immune cell subtype is fairly accurate and suitable for further analysis. We used R packages to visualize the 22 immune cells content in both HNSCC samples and adjacent non-cancer samples, and illustrated the relationship of immune cells content with patient stage.



Tumor Purity Analysis

To evaluate tumor purity, and the presence of infiltrating stromal and immune cells in HNSCC tissues, we calculated stromal score, immune score, and ESTIMATE score by applying the ESTIMATE (Estimation of STromal and Immune cells in Malignant Tumor tissues using Expression data) algorithm to the downloaded gene expression data of 502 HNSCC samples. Stromal score captures the presence of stroma in tumor tissue, immune score represents the infiltration of immune cells in tumor tissue, and ESTIMATE score infers tumor purity (11).



Identification of Differentially Expressed Genes (DEGs)

We analyzed all the data with the help of R programming language, and “limma” package in R was applied to study the DEGs between HNSCC samples with high stromal/immune score (n = 251) and low stromal/immune score (n = 251) groups by setting logFC > 1 and FDR < 0.05. Commonly upregulated or downregulated intersect genes of high stromal score and immune score groups were extracted using R package of “VennDiagram”.



Overall Survival Analysis

We applied Kaplan-Meier plots using R package of “survival” to show the relationship between patients’ overall survival and different immune cells content, Stromal/Immune/ESTIMATE scores, or gene expression levels of DEGs. The results were tested by the log-rank test.



Construction of PPI Network

We constructed the PPI network of the differentially expressed intersect genes in the high stromal score and immune score groups with the highest confidence of 0.9 on the online STRING database (https://string-db.org/), a database of known and predicted protein-protein interactions. The interactions include direct (physical) and indirect (functional) associations; they stem from computational prediction, from knowledge transfer between organisms, and interactions aggregated from other (primary) databases. We further filtered out the top 30 critical genes with 16 or more connecting nodes in the PPI network using Cytoscape software.



Enrichment Analysis of DEGs

Functional enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed by using R packages of “clusterProfiler” and “enrichplot”. False discovery rate (FDR) < 0.05 was considered as significant enrichment.



Statistical Analysis

All the statistical analyses in this study are performed using R v3.6.2 and publicly available Bioconductor R packages (https://www.bioconductor.org/). Student’s t-test and one-way analysis of variance (ANOVA) were utilized to compare continuous (different proportions of 22 immune cell types between HNSC tissues and adjacent non-cancer tissues) and discrete (clinical staging characteristics in HNSC patients) variables, respectively. Overall survival curves were calculated by Kaplan–Meier method and tested by log-rank test. In all appropriate instances, p values were corrected for multiple comparisons using a false discovery rate with a threshold of <0.05 for statistical significance.




Result


Infiltrating Immune Cell Types Associated With Clinical Stage of HNSCC Cases

RNA expression data from 502 HNSCC cancer tissues and 44 adjacent non-cancer tissues were obtained from the TCGA database. Clinical information of 501 HNSCC patients is also derived. Among all the HNSCC patients, 133 cases were female and 368 patients were male. These HNSCC patients were divided into three clinical stages according to their pathological condition, including 96 cases of stage I and II, 78 cases of stage III, and 259 cases of stage IV (with 68 cases of unknown stage). By applying the CIBERSORT method, we have learned the complicated component of infiltrating immune cells in the samples (Figure 1A). Ten adjacent non-cancer tissues (normal samples) and 420 tumor tissues (tumor samples) were filtered out which can be evaluated fairly accurately by CIBERSORT method with P < 0.05. We quantified the amount of different immune cells in both groups, trying to discover the immune cell types associated with carcinoma (Figures 1B, C). It was found that resting NK cells and M0 macrophages were significantly increased in HNSCC, while CD8 T cells, activated NK cells, and resting mast cells were significantly decreased in HNSCC with P < 0.05 (Figure 1C). These data indicated that the aberrantly expressed immune cells may contribute to the tumorigenesis and tumor progression of HNSCC.




Figure 1 | Filtrating immune cell types associated with HNSCC. (A) Variation of different immune cells in content under normal and pathological state derived from TCGA database (n = 110 for presentation from 430 samples). (B) Heatmap of different immune cells content in control group (normal tissues, n = 10) and tumor group (tumor tissues, n = 100 for presentation from 420 tumor samples). (C) Differences between control group (blue, normal tissues, n = 10) and tumor group (red, tumor tissues, n = 420) in immune cells content. (D–F) M0 Macrophages fraction (D), resting CD4 memory T cells fraction (E), and follicular helper T cells fraction (F) in patients with different clinical stages (n = 362, p = 0.014, p = 0.044, p = 0.008).



Subsequently, we assessed whether there was an underlying correlation between infiltrating immune cell types and clinical stages (362 patients with stage information). We compared the proportion of immune cells in patients with different clinical stages, and found that the proportion of both M0 macrophages (Figure 1D, p = 0.014) and resting CD4 memory T cells (Figure 1E, p = 0.044) are increased in higher stage, whereas the proportion of follicular helper T cells (Figure 1F, p = 0.008) is decreased in higher stage. The results indicate that infiltrating immune cells influenced the process of cancer aggravation.



Tumor Microenvironment Is Significantly Associated With Overall Survival of HNSCC Patients

To find out whether there was a correlation between tumor microenvironment and clinical overall survival, we divided all the HNSCC cases into halves according to every immune cell content with median value as the cutoff, and compared the length of survival years between these two groups. Immune cell types that induced notable survival differences were thus demonstrated. As shown in Kaplan-Meier survival curves (Figure 2A), patients who had more naïve B cells (p = 0.02) and regulatory T cells (Tregs) lived longer (p = 0.037), whereas more eosinophils (p = 0.00) and activated mast cells (p = 0.021) shortened their lifespan.




Figure 2 | Immune cells, immune scores, stromal scores, and ESTIMATE scores are associated with HNSCC overall survival. (A) HNSCC cases were divided into two groups based on their naïve B cells, Tregs, eosinophils, or activated mast cells content: the top half of 210 cases had more immune cells and the bottom half of 210 cases had less immune cells. As is shown in the Kaplan-Meier survival curves, the median survival of the high content group which had more naïve B cells and Treg cells is significantly longer than the low content group with p = 0.02 and p = 0.037, respectively. On the contrary, the median survival of the high content group which had more eosinophils, and mast cells is shorter than the low content group with p = 0.00 and p = 0.021, respectively. (B) HNSCC cases were divided into two groups based on their immune scores, stromal scores, or ESTIMATE score: the top half of 251 cases with higher scores and the bottom half of 250 cases with lower scores. As is shown in the Kaplan-Meier survival curves, the median survival of the high score group is relatively longer than the low score group (p = 0.166, p = 0.848, p = 0.418).



Based on ESTIMATE algorithm, we further divided all the HNSCC cases into halves by their Stromal score, Immune score, and ESTIMATE score, with median value as the cutoff. As shown in Figure 2B, the longer median overall survival was positively linked with a higher immune score (p = 0.166). The result was consistent with the stromal score group that median overall survival of cases with low score group was shorter (p = 0.848), and so was the ESTIMATE score groups (p = 0.418), although statistically not significant.



Comparison of Gene Expression Profile With Different Stromal Score and Immune Score in HNSCC

To figure out the corresponding relationship between global gene expression profiles and assess scores based on ESTIMATE, we compared all the HNSCC cases from TCGA database by stromal score and immune score, and drew gene expression heatmaps (Figures 3A, B). Gene expression differences can be observed visually and distinctly between high (n = 251) and low (n = 251) stromal score and immune score groups. A total of 1,071 and 897 significant differentially expressed mRNAs were filtered out in stromal score and immune score groups, respectively, with logFC > 1 and FDR < 0.05. The heatmap grouped by Immune score showed that 699 genes were upregulated, whereas another 198 genes were downregulated in the high immune score group as compared to the low Immune score group (Figures 3B–D). As for the stromal score group, 976 genes were upregulated and 95 genes were downregulated in the high stromal score group as compared to the low stromal score group (Figures 3A, C, D). As was shown in the Venn diagrams (Figures 3C, D), there were 242 intersect genes upregulated, and 22 intersect genes downregulated in the high stromal and immune score groups as compared to the corresponding low score groups. We also noticed that more than half of downregulated DEGs existed in the immune score group while the upregulated DEGs in the stromal score group account for 51.2%.




Figure 3 | Comparison of gene expression profile with immune scores and stromal scores in HNSCC. Heatmaps were drawn based on the average linkage method and Pearson distance measurement method. Genes with higher expression are shown in red and lower expression is shown in green. (A) Heatmap of the DEGs of stromal scores of top half (high score, n = 251) vs. bottom half (low score, n = 251). A total of 1,071 DEGs were derived with logFC > 1 and FDR < 0.05. (B) Heatmap of the DEGs of immune scores of top half (high score, n = 251) vs. bottom half (low score, n = 251). A total of 897 DEGs were derived with logFC > 1 and FDR < 0.05. (C, D) Venn diagrams showing the intersect 242 upregulated (C) or 22 downregulated (D) DEGs in both stromal and immune score groups.





Correlation of Expression of Individual DEGs in Overall Survival

To find out the possible association between the 264 individual intersect DEGs and overall survival, we drew Kaplan-Meier survival curves according to the gene expression level with median expression value as the cutoff. Furthermore, genes with statistical significance (p < 0.02) were shown in Figures 4 and 5, which indicated that higher expression of those genes were correlated positively with longer survival.




Figure 4 | Significant DEGs associated with overall survival of 501 HNSCC patients, genes were listed from left to right. Single mRNA Survival prediction by the expression level of 20 Significant DEGs filtered out from the intersect genes in the Venn graph which showed significant differential survival rate with p value <0.02. The cutoffs of the high and low gene expression groups were the median value. (A) AC136428.1, ARHGEF6, CCR4, CCR8, CD28. (B) CHRNA, COL6A6, FLI1, GIMAP5, GIMAP6. (C) IGLL1, IL2RA, ITGA4, KCNA3, LAX1. (D) LILRA, MPEG1, NRROS, NTRK1, P2RY8.






Figure 5 | Significant DEGs associated with overall survival of 501 HNSCC patients, genes were listed from left to right. Single mRNA Survival prediction by the expression level of 15 Significant DEGs filtered out from the intersect genes in the Venn graph which showed significant differential survival rate with p value <0.02. The cutoffs of high and low gene expression groups were the median value. (A) P2RY14, PIK3CG, RASSF2, RCSD1, RUBCNL. (B) SELL, SELP, SLC13A4, SLC14A1, TCL1A. (C) TIFAB, TRPV2, WDFY4, WIPF1, ZNF366.





Protein-Protein Interactions Among Genes With Prognostic Value

To further clarify the DEGs involved in the regulation network of immune responses, we obtained protein-protein interaction (PPI) networks using the online STRING database (Figure 6A). Top 30 remarkable genes with 16 or more connecting nodes in the network were filtered out using Cytoscape software and were shown in Figure 6B. Genes of FPR2, C3AR1, FCER1G, and ITGB2 had the highest degree values in the connection network.




Figure 6 | Protein-protein interactions among genes with prognostic value. (A) PPI network with the confidence of 0.9. (B) Top 30 genes involved in PPI network with more than 16 connecting nodes.





Functional Enrichment Analysis of Immune Related Genes With Prognostic Value

Then we investigated gene annotation information of these DEGs by conducting Gene Ontology (GO) analysis (Figure 7A), which includes cellular component (CC), biological process (BP), and molecular function (MF). Among these terms, neutrophil activation, neutrophil degranulation, and neutrophil-mediated immunity are of great importance. Besides, we conducted Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and found 28 KEGG pathways involved in HNSCC process which showed significant enrichment with p value <0.05 (Figure 7B), including osteoclast differentiation, tuberculosis, Staphylococcus aureus infection, and immune-related pathways such as cytokine-cytokine receptor interaction, phagosome, chemokines signaling pathway, and B cell receptor signaling pathway.




Figure 7 | GO terms and KEGG pathway analysis of prognostic genes. (A) Biological process (BP), cellular component (CC), and molecular function (MF). (B) KEGG pathway.






Discussion

Tumors reprogram their surroundings, creating a metabolically fertile environment to meet their high energy and anabolic requirements, and this process was aptly described by Paget as the “seed and soil” hypothesis (15). Through the tumor’s influence on the microenvironment, the immune system can be exploited to promote metastasis, angiogenesis, and growth of carcinoma. This complex milieu between tumor cells and cells surrounding the tumor provides necessary space and elements for tumor progression, and creates an immunosuppressive environment (16–18). It consists of the extracellular matrix, soluble molecules, and tumor stromal cells and keeps a dynamic balance all the time (19). Both immune cells and non-immune cells are likely to have an essential impact on the initiation, promotion, and progression of tumors that arise in the microenvironment (20).

In our study, we planned to distinguish related infiltrating non-tumor cells and genes which contributed to HNSCC development based on gene expression and clinical data of HNSCC patients on TCGA database. Firstly, we analyzed the content of infiltrating immune cells in 420 tumor tissues and 10 normal tissues by CIBERSORT, discovering the notable differences between them. Among the immune cells, resting NK cells and M0 macrophage were upregulated in tumor microenvironment, whereas CD8 T cells, activated NK cells, and resting mast cells were downregulated significantly with P < 0.05. We also found that M0 macrophages and resting CD4 memory T cells were positively associated with clinical stage, while follicular helper T cells negatively correlated with clinical stage. This is consistent with previous studies (21). What we should pay attention to is that M0 macrophages were statistically different in both preliminary diagnostic tests and late clinical staging, which indicates that they might be a vital immune cell to the diagnosis, prognosis, and targeted immune therapy of HNSCC.

The distribution, density, and functional status of the immune cells in tumor tissues and other comprehensive immunological factors can be independent prognostic factors of many cancers, including breast cancer (22), ovarian cancer (23), prostate cancer (24), and colorectal cancer (25). As cellular immunity is the main form of anti-tumor immunity, immune cells that exist in the tumor microenvironment play a significant role in anti-tumor immune response, and the activated immune system may be an effective treatment for cancer patients. T cells, natural killer cells (NK cells), and macrophages are the most critical effectors. Tumor-associated macrophages have long been identified as a potential inhibitor of tumor expansion, which play critical roles in anti-tumor immunity. They can clear tumor cells by killing them directly or activating the immune response of the body through presenting tumor-related antigen. Our study also found that the content of M0 macrophages is increased significantly in HNSCC tissue. It provided us a theoretical basis for exploring immune therapy strategy and finding innovative immunotherapy target for improving the survival of HNSCC patients.

Next, we performed Kaplan-Meier survival analysis to find out the relationship of survival with immune cells content. We calculated the stromal/immune score of HNSCC samples using ESTIMATE algorithm, classified the HNSCC samples into high and low stromal/immune score groups, and analyzed their association with clinical survival. We further performed gene differential expression analysis between high and low stromal/immune score groups, and filtered out the commonly upregulated or downregulated intersect genes for high stromal score and immune score groups as compared to low score groups, which may influence the tumor immune microenvironment and eventually patient diagnosis and prognosis. Among those intersect genes, we found 35 genes that influence patient survival significantly with p < 0.02, as shown in Figures 4 and 5. We further present the interplay of essential regulatory modules by constructing the PPI network among those intersect DEGs on an online STRING database. Among the top 30 genes with more than 16 connecting nodes, FPR2, ITGB2, and C3AR1 had the highest connecting nodes. CCR4, CCR8, ITGA4, and P2RY14 were upregulated in the high stromal/immune score group and the high level of their expression showed a significant correlation with longer patient survival with p < 0.01 as displayed in Figures 4 and 5. The formyl peptide receptor (FPR) family is highly expressed on the surface of some malignant tumor cells and is closely related to the occurrence, development, and metastasis of these tumors. FPR2, one of the famous receptors, has been reported to be involved in many kinds of carcinoma, including gastric cancer (26) and colorectal cancer (27). In HNSCC, FPR2 takes effect after the activation of annexin 1 (AnxAl) which is associated with metastasis of some invasive malignancies (28). It was reported that ITGB2, which is mainly expressed on the surface of leukocytes, can recruit tumor cells by combining ICAM (29). Complement receptor C3AR1 was also proved to promote an immunosuppressive microenvironment by limiting expansion and differentiation of alloreactive CD8+ T cell immunity (30). The role of FCER1G in HNSCC, one of the hub node genes, remains to be clarified. Overexpression of integrin α4 (ITGA4) has been reported in several cancers which mediates migration of cancerous cells (31, 32). Thus, inhibition of ITGA4 could be a therapeutic strategy.

Enriched KEGG pathways, such as cytokine-cytokine receptor interaction (33, 34), chemokines signaling pathway (35, 36), and B cell receptor signaling pathway, are closely related to the immune microenvironment in tumors and are critical for tumor immune responses. A complex network of chemokines and their receptors influences the development of primary tumors and metastases (37). It has been shown that Tregs strongly express CCR4, a chemokine receptor for CCL17 or CCL22, on their surface as compared to effector T cells in leukemia studies (38). CCL17 and CCL22 played an essential part in immune inhibition by gathering CD4+CD25+Tregs. This process has been identified to promote invasion and metastasis of some solid tumors such as stomach cancer and esophageal cancer (35, 36). Suppressive activity of regulatory T cells and upregulation of the CCR4 were reported to be observed in the peripheral blood sample of HNSCC patients (39–41). Our study showed that low level of Tregs and CCR4 were related to a worse prognosis of HNSCC patients, which is different from the above results.

Remarkably Enriched GO terms of neutrophil activation, neutrophil degranulation, and neutrophil-mediated immunity, all indicated that the immune microenvironment regulates HNSCC and are valuable for tumor immunology. It revealed the close relationship between stromal/immune related DEGs and tumor immune response. Human neutrophils contain a releasable membrane-bound organelle named the secretory vesicle and are endowed with three major types of cytoplasmic granules that modulate cell function, namely primary or azurophilic granules, secondary or specific granules, and tertiary or gelatinase granules (42). Mature neutrophils (polymorphonuclear neutrophils, PMNs; or neutrophil polymorphonuclear granulocytes) account for ~50–70% of all leukocytes in adult human peripheral blood, and are abundant in tumor microenvironments (43). Neutrophils constitute the first line of defense against invading pathogens and are the first leukocytes to migrate to sites of inflammation (44). The highly enriched biological process and cellular component of GO terms indicate a strong correlation of DEGs with immune responses.

In conclusion, we extracted the 22 immune cells content and gene expression of clinical HNSCC patients on TCGA database which is related to tumor microenvironment. We conducted the immune infiltrating analysis, tumor purity analysis, survival analysis, gene differential expression analysis, protein-protein-interaction analysis, and functional enrichment analysis of HNSCC, and analyzed the influence of immune microenvironment on stage and survival of HNSCC patients. The results can serve as valuable terms for HNSCC diagnosis, prognosis, and targeted immune therapy. Further exploiting individual genes or their combined effects on carcinoma can lead to novel insights into the relationship between tumor microenvironment and HNSCC diagnosis and prognosis.
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Background: Increasing evidence has shown that hypoxia microenvironment relates to tumor initiation and progression. However, no studies focus on the application of hypoxia-associated genes in predicting osteosarcoma patients’ prognosis. This research aims to identify the hypoxia-associated genes related to osteosarcoma metastasis and construct a gene signature to predict osteosarcoma prognosis.

Methods: The differentially expressed messenger RNAs (DEmRNAs) related to osteosarcoma metastasis were identified from Therapeutically Applicable Research to Generate Effective Treatments (Target) database. Univariate and multivariate cox regression analyses were performed to develop the hypoxia-associated prognostic signature. The Kaplan–Meier (KM) survival analyses of patients with high and low hypoxia risk scores were conducted. The nomogram was constructed and the gene signature was validated in the external Gene Expression Omnibus (GEO) cohort. Single-sample gene set enrichment analysis (ssGSEA) was conducted to investigate the relationships between immune infiltration and gene signature.

Results: Two genes, including decorin (DCN) and prolyl 4-hydroxylase subunit alpha 1 (P4HA1), were involved in the hypoxia-associated gene signature. In training and testing datasets, patients with high-risk scores showed lower survival rates and the gene signature was identified as the independent prognostic factor. Receiver operating characteristic (ROC) curves demonstrated the robustness of signature. Functional analyses of DEmRNAs among high- and low-risk groups revealed that immune-associated functions and pathways were significantly enriched. Furthermore, ssGSEA showed that five immune cells (DCs, macrophages, neutrophils, pDCs, and TIL) and three immune features (CCR, APC co inhibition, and Check-point) were down-regulated in the high-risk group.

Conclusion: The current study established and validated a novel hypoxia-associated gene signature in osteosarcoma. It could act as a prognostic biomarker and serve as therapeutic guidance in clinical applications.

Keywords: osteosarcoma, hypoxia, prognosis, metastasis, immune


INTRODUCTION

Osteosarcoma is one of the most common primary bone malignant tumors which predominately occurs in the juvenile population (Ritter and Bielack, 2010). With the progression of multimodal treatment, especially neoadjuvant chemotherapy combined with wide surgical excision, the 5-year survival rates of these patients have significantly improved to over 70% (Anderson, 2016). However, a large number of patients present with metastasis at initial diagnosis or after intensive treatment. Less than one-fifth of these patients could survive over 5 years (Dai et al., 2011; Kansara et al., 2014). Therefore, targeting osteosarcoma metastasis has been a hot direction and numerous researchers focus on it. Unfortunately, little progress has been achieved since the underlying mechanisms are still unclear.

Hypoxia, or oxygen deficiency, is one of the hallmarks of human solid tumor (Ruan et al., 2009). It relates to rapid proliferation of tumor cells which triggers the imbalance between oxygen demand and supply. During malignant tumor progression, hypoxia always interacts with other hallmarks and enhances epithelial-mesenchymal transition (EMT), angiogenesis, and stemness of tumors (Mathieu et al., 2011; Guo et al., 2020; Hapke and Haake, 2020). Recent studies also indicate that hypoxia could influence tumor immune microenvironment, such as decreasing natural killer (NK) cell and cytotoxic T lymphocyte (CTL) activity, increasing immunosuppressive cells (i.e., TAMs, Tregs, and MDSCs) differentiation potential, and enhancing disadvantageous immune cytokines expression (Terry et al., 2017). All these biological processes finally lead to resistance to chemotherapy, distal metastasis, and poor prognosis of patients (Vaupel, 2008; Walsh et al., 2014).

With the development of microarray and next-generation sequencing technology, numerous aberrantly expressed oncogenes are detected. The majority of these genes relate to occurrence or development of cancers and some could serve as the prognostic signature (Liu et al., 2020; Wu et al., 2020). In osteosarcoma, several gene signatures related to energy metabolism, tumor microenvironment and immune system have been investigated (Hong et al., 2020; Hu et al., 2020; Zhu et al., 2020). However, no hypoxia-associated prognostic signature has been established.

In the present study, we obtained hypoxia-associated differentially expressed messenger RNAs (DEmRNA) among metastatic and non-metastatic patients in Therapeutically Applicable Research to Generate Effective Treatments (Target) database. DEmRNAs related to prognosis were screened out through univariate cox regression analysis and the prognostic signature was obtained by multivariate cox regression analysis. Then the Kaplan–Meier (KM) survival analyses of patients with high and low signature risk scores were conducted. The nomogram was built and the signature’s relationship with immune infiltration was also explored. What is more, the prognostic value of the signature was validated in the Gene Expression Omnibus (GEO) database. The work-flow of this study is shown in Figure 1. We hoped that the present research would extend our knowledge between osteosarcoma metastasis and hypoxia. We believed that the gene signature could serve as a promising prognostic biomarker and might act as a potential therapeutic target for osteosarcoma patients.
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FIGURE 1. The work-flow of the study. (A) The hypoxia-associated metastatic DEmRNAs were identified through the Target and MSigDB databases. (B) Combined methods were used to construct the hypoxia-associated gene signature. (C) The application of the hypoxia-associated gene signature in clinic and validation in GEO database. (D) Identification and functional analysis of DEmRNAs associated with hypoxia risk. (E) Immune infiltration features associated with hypoxia risk. DEmRNA, differentially expressed messenger RNA; GEO, Gene Expression Omnibus.




MATERIALS AND METHODS


Selection of Datasets

The mRNA expression profiles of osteosarcoma were searched from GEO1 and Target2 databases. The datasets involved in this study should meet the following criteria: (1) the tumors were confirmed as osteosarcoma by histology; (2) the datasets contained metastatic and non-metastatic patients; (3) the datasets had complete prognosis-associated information; (4) the sample size in the dataset was more than 50. At last, the osteosarcoma RNA-seq from Target was selected as the training group and GSE21257 (platform GPL10295, Illumina human-6 v2.0 expression beadchip Illumina, Inc., San Diego, CA, United States) was used as the validation group. The clinical characteristics of patients in Target and GSE21257 datasets are shown in Supplementary Table 1. The hypoxia-associated genes were downloaded from the hallmark gene sets in the Molecular Signature Database3 (MSigDB).



Acquisition of Hypoxia-Associated DEmRNAs

Patients’ mRNA expression data were downloaded from target database and merged as the file through Perl software. The clinical information was also obtained from Target database and then patients were divided into metastatic and non-metastatic groups based on their features. The Linear Models for Microarray Analysis (limma) package was applied to perform the analysis of DEmRNAs between two groups. The cutoff value of DEmRNAs was P < 0.05 and | fold change (FC)| > 1.5. The volcano plot was drawn through the “pheatmap” package in R software. The hypoxia-associated DEmRNAs were obtained through the overlap between DEmRNAs and hypoxia-associated genes.



Construction and Validation of the Hypoxia-Associated Prognostic Signature

The hypoxia-associated prognostic genes were selected from univariate cox regression analysis by overall survival (OS). The multivariate cox regression analysis was conducted to identify the independent prognostic genes and the prognostic signature was established based on the multivariate cox stepwise regression analysis. The minimum number of mRNAs that represented the signature was screened through Akaike information criterion (AIC) (Vrieze, 2012). Then the risk score was calculated through multivariate Cox regression model coefficients multiplied by gene expression values as follows:
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All patients with complete prognostic data were divided into high- and low-risk groups based on the median value of risk score. The KM survival analysis of hypoxia-associated signature in the whole and subgroups were conducted through the “survival” package in R software. The time-related receiver operating characteristic (ROC) curves were performed to test the predictive value of this gene signature.

Next, univariate and multivariate cox regressions were used again to verify the independent risk role of this hypoxia-associated gene signature in clinical application. The subgroup analyses of individual genes in the hypoxia-associated prognostic signature were conducted based on patients’ clinical features. The hypoxia-associated signature was validated in GSE21257. All above processes were operated in R software. P < 0.05 was considered as statistically significant.



Construction of the Nomogram

In order to predict the 3- and 5-year survival probability of osteosarcoma patients, the nomogram was established based on risk scores and clinical factors such as age, gender, and metastasis (Iasonos et al., 2008). Each factor in the nomogram was assigned a score based on the results of the multivariate cox regression analysis. Harrell’s concordance index (C-index) was conducted to estimate the prediction bias of the nomogram. The nomogram was validated through GSE21257 once more. The package “rms” in R software was used to operate above tasks.



Identification and Functional Enrichment Analyses of Gene Signature-Related DEmRNAs

In the Target and GSE21257 datasets, DEmRNAs between high- and low-risk groups were obtained through the “limma” package in R software. The heatmap was drawn by the “pheatmap” package. The overlapping DEmRNAs in two datasets were identified as the risk score-associated DEmRNAs.

To study the interactions between DEmRNAs, the online tool Search Tool for the Retrieval of Interacting Genes database4 (STRING) was used to construct the protein–protein interaction (PPI) network (Szklarczyk et al., 2015). Then the network was visualized in Cytoscape (v3.7.1) and the disconnected nodes were hidden. Gene ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of risk score-associated DEmRNAs were performed by “clusterProfiler” and “enrichplot” packages in R software. P- and q-values of <0.05 were defined as significantly enriched.



Estimation of Immune Infiltration Status Related to Hypoxia

The immune infiltration of 16 immune cells and 13 immune-associated features in the Target and GSE21257 datasets were evaluated through single-sample gene set enrichment analysis (ssGSEA). The overlapped items occurring with the same trends were considered as the immune characteristic changes. The R package “gsva” was used and P < 0.05 was considered as statistically significant.



RESULTS


Identification of Hypoxia-Associated DEmRNAs Related to Osteosarcoma Metastasis

The mRNA expression data were downloaded from the Target dataset which contained 54 metastatic and 43 non-metastatic osteosarcoma patients. 680 DEmRNAs (329 up-regulated and 351 down-regulated) associated with metastasis were identified and the volcano plot showed the distribution trend (Figure 2A). The hypoxia-related genes were obtained from MSigDB and then overlapped with DEmRNAs obtained previously (Figure 2B). At last, 13 hypoxia-associated DEmRNAs were screened out (Table 1).
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FIGURE 2. Identification of hypoxia-associated DEmRNAs related to osteosarcoma metastasis. (A) DEmRNAs related to osteosarcoma metastasis in Target database. Red indicated upregulated DEmRNAs (P < 0.05, FC > 1.5) and green indicated downregulated DEmRNAs (P > 0.05, FC < –1.5). (B) Thirteen overlapped hypoxia-associated DEmRNAs were identified in the Target and MSigDB databases. DEmRNA, differentially expressed messenger RNA; FC, fold change.



TABLE 1. The hypoxia-associated DEmRNAs in Target dataset.
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Construction of the Hypoxia-Associated Prognostic Signature in Target Database

To construct the hypoxia-associated gene signature in osteosarcoma, univariate and multivariate cox regression analyses were performed in 13 hypoxia-related DEmRNAs. In univariate cox regression analysis, six genes showed significant relationships with osteosarcoma patients’ OS (Figure 3A). Base on the multivariate cox regression analysis, two genes were identified as the independent prognostic factors (Figure 3B) and the risk score formula was established just as mentioned previously:
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FIGURE 3. Construction of the hypoxia-associated prognostic signature in the Target database. (A) Univariate cox regression analysis of hypoxia-associated DEmRNAs revealed six prognostic genes. (B) Multivariate cox regression analysis revealed two independent hypoxia-associated DEmRNAs. (C) The heatmap of P4HA1 and DCN in high- and low-risk groups showed that P4HA1 was positively correlated with risk score while DCN showed the opposite trend. (D) The scatter plot of patients’ risk scores and survival time. (E) Kaplan–Meier survival plot of patients in high- and low-risk groups. (F) Time-dependent ROC curve at 1, 3, and 5 years of hypoxia-associated prognostic signature. DEmiRNA, differentially expressed microRNA; ROC, receiver operating characteristic; P4HA1, prolyl 4-hydroxylase subunit alpha 1; DCN, decorin.
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According to the median value of the risk scores, 47 patients were identified as high-risk and the rest, 48, were considered as low-risk (Supplementary Figure 1). The expression of prolyl 4-hydroxylase subunit alpha 1 (P4HA1) was positively correlated with risk score while decorin (DCN) showed the opposite trend (Figure 3C). Patients with low-risk scores appeared to have lower mortality rates and longer survival years than those with high-risk scores (Figure 3D). At the same time, the KM survival curve also indicated that the high-risk group had worse prognoses (Figure 3E, p = 0.0046). In the end, the predictive accuracy of the risk score was performed through time-dependent ROC curve. The areas under the ROC curve were 0.81 at 1 year, 0.67 at 3 year, and 0.66 at 5 year, which indicated that the risk model was reliable (Figure 3F).



Validation of the Hypoxia-Associated Prognostic Signature in GSE21257

The robustness of the hypoxia-associated prognostic signature was tested in GSE21257. A total of 53 patients with integrated survival data were enrolled in this validation group. Patients were separated into high- and low-risk groups according to the median value of previous formula results (Figure 4A). The expression trends of prognostic genes in the GSE21257 dataset were similar to the Target database (Figure 4B). At the same time, the risk plot (Figure 4C) and KM survival analysis (Figure 4D, p = 0.037) also indicated that a high risk score was related to poor prognosis. Moreover, the time-dependent ROC curve demonstrated that the prognostic signature was convincible (Figure 4E).
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FIGURE 4. Validation of the hypoxia-associated prognostic signature in GSE21257. (A) The distribution and median value of risk score. (B) The expression of P4HA1 and DCN in high- and low-risk groups revealed that P4HA1 was positively correlated with risk score while DCN showed the opposite trend. (C) The scatter plot of patients associated with risk scores. (D) Kaplan–Meier survival plot of patients in high- and low-risk groups. (E) Time-dependent ROC curve at 1, 3, and 5 years of hypoxia-associated prognostic signature. ROC, receiver operating characteristic; P4HA1, prolyl 4-hydroxylase subunit alpha 1; DCN, decorin.




Correlations Between Hypoxia-Associated Gene Signature and Clinical Parameters

To evaluate the prognostic value of hypoxia-associated gene signature in clinical application, univariate and multivariate cox regression analyses were performed once more. As shown in Figures 5A and B, risk score (HR = 1.43, 95% CI = 1.20–1.69, P < 0.001) was regarded as the independent prognostic factor in Target dataset. The same results were obtained in GSE21257 (Supplementary Figures 2A,B).
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FIGURE 5. Relationships between hypoxia-associated gene signature and clinical parameters in Target dataset. (A,B) Univariate and multivariate cox regression analyses revealed risk score and metastasis were two independent prognostic factors. (C–F) Boxplot of DCN expression and clinical characteristics. (G–J) The correlation between P4HA1 expression and clinical characteristics. DCN, decorin; P4HA1, prolyl 4-hydroxylase subunit alpha 1.


The KM survival analyses of gene signature in different clinical subgroups were also conducted. As shown in Supplementary Figures 3A–E, high risk scores related to worse survival rate in metastasis (P = 0.043), less or equal to 14 years (P = 0.040), over 14 years (P = 0.012), female (P = 0.017) and male (P = 0.036) groups. The same results were identified in GSE21257 (Supplementary Figures 4A–E).

The relationships between prognostic signature genes and clinical parameters were performed through Wilcoxon rank-sum test. In the Target matrix, the expression of P4HA1 and DCN were not related to the patient’s age at diagnosis or gender (Figures 5C,D,G,H). In contrast, P4HA1 significantly increased in metastatic (p = 0.032) and high-risk (p < 0.01) groups (Figures 5I,J), while DCN showed the opposite trend (and Figures 5E,F). The same results also appeared in the GSE21257 dataset except that the metastasis status was not correlated with two gene expression (Supplementary Figures 2C–J).



Construction and Validation of the Nomogram

Nomogram was a powerful tool that integrated different risk factors to predict the prognosis of patients. In the present study, the nomogram associated with osteosarcoma patients’ survival was established in the Target dataset (Figure 6A). The C-index (0.85) and calibration curve indicated the high reliability of the nomogram (Figure 6B). The same results were achieved in the validation matrix GSE21257 (Supplementary Figures 5A,B).
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FIGURE 6. Construction of the nomogram in the Target dataset. (A) The nomogram to predict the 3- and 5-year survival risk of osteosarcoma patients. (B) The calibration curve of the 3- and 5-year survival in Target dataset.




Identification and Functional Analyses of DEmRNAs Related to Hypoxia-Associated Gene Signature

The DEmRNAs related to the hypoxia-associated prognostic signature were also investigated in the Target and GSE21257 datasets. About 1,386 mRNAs in the Target matrix and 958 mRNAs in GSE21257 were differentially expressed and the overlapped genes (119 DEmRNAs) were extracted for further analyses (Figures 7A–C). The interactions of DEmRNAs were established through the online tool STRING and the network was visualized in Cytoscape (Figure 7D).
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FIGURE 7. Identification and functional analyses of DEmRNAs related to hypoxia-associated gene signature. (A) The heatmap of risk score-associated DEmRNAs in Target dataset. (B) The heatmap of risk score-associated DEmRNAs in GSE21257. (C) The overlapped DEmRNAs between Target and GSE21257 datasets. (D) The PPI network of DEmRNAs. (E,F) KEGG and top 10 GO functional analyses results of DEmRNAs. DEmRNA: differentially expressed messenger RNA, PPI, protein–protein interaction; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.


In order to understand the potential biological functions of these DEmRNAs, GO functional and KEGG pathway analyses were conducted (Figures 7E,F). Numerous biological processes (i.e., extracellular matrix structural constituent, collagen binding, and extracellular structure organization) related to hypoxia were significantly enriched. It was worth noting that various immune-associated functions were also enriched, which indicated the widespread relevance between hypoxia and immune status.



Evaluation of the Relationship Between Hypoxia and Immune Infiltration

To further understand the association between hypoxia and immune infiltration, ssGSEA analysis was carried out. Nine immune cells and seven immune functions were significantly related to the hypoxia-associated risk score in the Target dataset (Figures 8A,B). At the same time, seven immune cells and seven immune functions were statistically significant in the GSE21257 dataset (Figures 8C,D). The intersection of two datasets contained five immune cells (DCs, macrophages, neutrophils, pDCs, and TIL) and four immune functions (CCR, APC co inhibition, Check-point, and Type II IFN response), while the Type II IFN response showed opposite trends in two databases and was eliminated (Figure 8E).
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FIGURE 8. The relationships between hypoxia and immune infiltration. (A,C) The correlations between risk score and different immune cells in Target and GSE21257 datasets. (B,D) The association between risk score and different immune features in Target and GSE21257 datasets. (E) The overlapped immune cells and functions among Target and GSE21257 datasets. The red color implied the opposite trend in two datasets. NS, not significant; *P < 0.05; **P < 0.01; ***P < 0.001.




DISCUSSION

Osteosarcoma was one of the highly aggressive tumors which frequently developed metastasis. Lung was the most common metastatic site and the 5-year survival rates of these patients were extremely low (Isakoff et al., 2015). The mechanisms underlying tumor metastasis were first mentioned by Paget in 1889, just known as the “seed and soil” theory (Fokas et al., 2007). Since then, numerous hallmarks associated with tumor metastasis were proposed, such as gene fusion and mutation, EMT, angiogenesis and so on (Han et al., 2019). Among these risk factors, hypoxia was widely explored and considered as the crucial prognostic factor.

The contradiction between growing demands and inadequate supplement of blood always resulted in a hypoxia tumor microenvironment (Petrova et al., 2018). Under the hypoxia microenvironment, the tumor often initiated multiple adaptive transformations (i.e., migration, proliferation, and invasion) which eventually contributed to progression (Muz et al., 2015; Jing et al., 2019). In the last few decades, a large number of genes related to hypoxia have been identified in various cancers including osteosarcoma (Guo et al., 2014; Leng et al., 2018). For example, Cao et al. (2015) found that the expression of WSB1 in osteosarcoma was elevated under a hypoxia microenvironment, which promoted RhoGDI2 degradation and enhanced metastasis. What is more, many researchers realized that these genes could unite as the hypoxia-associated signature, which might serve as the prognostic biomarker in cancers (Mo et al., 2020; Zhang et al., 2020). However, no such signature had been built in osteosarcoma.

In the present study, we identified 680 DEmRNAs among metastatic and non-metastatic osteosarcoma patients in the Target dataset. The hypoxia-associated genes were screened out and the prognostic signature was established through univariate and multivariate cox regression analyses. Then we divided the cohort into high- and low-risk groups according to the risk scores. The KM survival analyses showed that high-risk patients lived for a shorter amount of time and the ROC curve indicated that the prognostic signature is robust. These results were validated in the dataset GES21257. What is more, we demonstrated that the risk score was the independent prognostic factor in both datasets. The KM plot of patients in different subgroups also indicated that the low-risk patients had better prognosis, which demonstrated the extensive applicability of the gene signature. At last, the nomogram including several clinical features and risk scores was constructed to estimate the prognosis of patients. The C-index and calibration curve indicated that the nomogram was robust, which further supported the reliability of this hypoxia-associated prognostic signature. To sum up, we believed that the hypoxia gene signature in this research was a convincible prognosis biomarker and could be applied in clinic.

The immune system was one of the major components in the tumor microenvironment and was often suppressed in hypoxia (Wigerup et al., 2016). Previous studies indicated that hypoxia promoted osteosarcoma development through increasing immunomodulatory proteins such as macrophage migration inhibitory factor (MIF), Galectin-1, and so on (Pierrevelcin et al., 2020; Song et al., 2020). In the present study, we identified the overlapped DEmRNAs related to the hypoxia-associated prognostic signature in the Target and GSE21257 datasets. The functional analyses of these DEmRNAs showed that they were enriched in several immune-associated functions and pathways, such as MHC class II protein complex binding, antigen processing presentation, Th1 and Th2 cell differentiation, and NK cell mediated cytotoxicity. Interestingly, numerous researchers also revealed the same results. For instance, Yamada et al. (2012) reported that the relevance between osteosarcoma and NK cells declined when NKG2D ligand MICA was decreased. This change eventually minimized the cytotoxicity of NK cells (Yamada et al., 2012). To further detect the correlations between hypoxia and immune infiltration, ssGSEA analysis was conducted. The results showed that five immune cells (DCs, macrophages, neutrophils, pDCs, and TIL) infiltrated lower in high-risk group. Among them, DCs were known as the antigen-presenting cells that often stimulated the differentiation of naïve T cells to eliminate tumors. In osteosarcoma, the hypoxia-associated factor HIF-1α inhibited DC functions, which impeded antitumor immunity (den Haan et al., 2000; Vaupel and Multhoff, 2018). Furthermore, the differentiation process of plasmacytoid DC (pDC) was also abolished by HIF-1α, which resulted in tumor progression (Labiano et al., 2015). The tumor infiltration lymphocyte (TIL), always regarded as the antitumor cell, was also exhausted in the osteosarcoma microenvironment and accelerated tumor recurrence (Shi et al., 2020). These results highlighted that the hypoxia microenvironment might down-regulate anti-tumor immune cells, which enhanced the immune escape of osteosarcoma and promoted metastasis as well as progression.

What is more, two genes involved in our hypoxia-associated prognostic signature also played crucial roles in cancer development. DCN, one of the small leucine-rich proteoglycans, constituted the extracellular matrix (ECM) and played key roles in stromal structure regulation. Recent research has revealed that DCN could act as the ligand to bind several receptor tyrosine kinases (RTK) in cancers, which inhibited tumorigenesis, angiogenesis, and immunomodulatory function (Sainio and Järveläinen, 2019; Xiao et al., 2020). DCN was also able to elevate cyclin kinase inhibitor P21 and apoptosis factors. These changes would suppress tumor growth and promote apoptosis (De Luca et al., 1996; Seidler et al., 2006). In osteosarcoma, Shintani et al. (2008) reported that DCN interacted with fibronectin (FN) and inhibited pulmonary metastasis. P4HA1 was the most common subtype of prolyl 4-hydroxylase which enhanced collagen modification through increasing 4-hydroxyproline (Chen et al., 2006). Numerous studies revealed that P4HA1 might act as the oncogenic factor. For example, P4HA1 could regulate the secretion of collagen in fibroblast and altered the composition of ECM. These alterations influenced cancer cells’ motility, adhesion, and morphology (Gilkes et al., 2013). Under a hypoxia microenvironment, the elevated HIF-1α induced the expression of P4HA1, which remodeled ECM and promoted tumor invasion, EMT, angiogenesis, and so on (Gilkes et al., 2013; Balamurugan, 2016). Interestingly, P4HA1 could stabilize HIF-1α in turn and then increased downstream genes expression (Xiong et al., 2018).

As far as we know, this was the first study that revealed the hypoxia-associated gene signature in osteosarcoma metastasis. We thought the gene signature might serve as the prognostic biomarker in clinical application. However, some limitations should be noticed. First, the cohort size was relatively small which probably resulted from the low incidence of osteosarcoma and lack of studies. Second, the specific mechanisms of DCN and P4HA1 in osteosarcoma were still unclear. Most importantly, our research was a retrospective investigation and further prospective studies should be designed to validate the results.



CONCLUSION

In summary, we constructed and validated a novel hypoxia-related prognostic signature associated with osteosarcoma metastasis. Besides, we found that hypoxia was closely related to immune infiltration of osteosarcoma. This hypoxia gene signature could serve as the prognostic biomarker and inspired new thoughts in hypoxia- or immune-targeted therapy. More studies should be carried out to verify our findings and clarify the fundamental mechanisms of hypoxia in osteosarcoma.
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Acute myeloid leukemia (AML) is malignant hematologic tumors with frequent recurrence and cause high mortality. Its fate is determined by abnormal intracellular competitive endogenous RNA (ceRNA) network and extracellular tumor microenvironment (TME). This study aims to build a ceRNA network related to AML TME to explore new prognostic and therapeutic targets. The RNA expression data of AML were obtained from The Cancer Genome Atlas (TCGA) database. First, we used the ESTIMATE algorithm to calculate the immune cells and stromal cells infiltration scores in the TME and found that all scores were highly correlated with AML’s prognostic characteristics. Subsequently, differentially expressed mRNAs and lncRNAs between high and low score groups were identified to construct a TME-related ceRNA network. Further, the Cox-lasso survival model was employed to screen out the hub prognostic ceRNA network composed of two mRNAs (EPB41L3, COL2A1), three miRNAs (hsa-mir-26a-5p, hsa-mir-148b-3p, hsa-mir-148a-3p), and two lncRNAs (CYP1B1-AS1, C9orf106), and construct nomograms. Finally, we used CIBERSORT algorithm and Kaplan-Meier survival analysis to identify the prognostic TME immune cells and found that naive B cells, M2-type macrophages, and helper follicular T cells were related to prognosis, and the hub ceRNAs were highly correlated with immune cell infiltration. This study provided a new perspective to elucidate how TME regulates AML process and put forward the new therapy strategies combining targeting tumor cells with disintegrating TME.




Keywords: acute myeloid leukemia, tumor microenvironment, ceRNA network, prognosis, immune microenvironment



Introduction

Acute myeloid leukemia (AML) is one of the most malignant hematologic tumors, characterized by the massive expansion of abnormally differentiated hematopoietic precursor cells (1, 2). AML shows a high degree of heterogeneity due to its complex genetic mutations and variable molecular phenotypes, which results in the failure of traditional treatment with a single mode of action in achieving an ideal effect (3). Although 50% of the AML patients could obtain a complete remission (CR) after receiving therapies, such as intensive induction chemotherapy and post-remission, still more than 20% of AML cases remain unresponsive and refractory. Even among patients who achieve CR, there is still a recurrence rate of up to 50% (4). Hematopoietic stem cell transplantation, the only method to cure AML currently, still faces severe challenges, such as tumor immune escape, recurrence, and graft-versus-host response (5). Targeted chemotherapy and chimeric antigen receptor cell therapy have brought a new breakthrough to the treatment of AML. But off-target, drug resistance, and even treatment-related death, still pose insurmountable obstacles to its safe application (6). Old age, high white blood cell counts, abnormal genotypes of leukemia cells, and complicating other myeloid diseases have significant effect on the prognosis of AML. To promote the transformation of prognostic markers, exploration into clinical application is the driving force for the leap-forward development of all tumor, including AML treatment strategies.

The generation and progression of tumor are determined by abnormal molecular aberrations inside tumor cells and the tumor microenvironment (TME) outside the cells. AML originates from abnormal bone marrow (BM) microenvironment. Tumor cells hijack and reshape the BM microenvironment ecology to transform it into tumor protective phenotype, mediating the immune escape and therapeutic tolerance of AML (7). Under the protection of abnormal BM microenvironment, AML stem cells and initiation cells can maintain their potential of regeneration, and small residual lesions can obtain effective incubation and induce the recurrence of AML (8). As a hotbed of AML, the abnormal BM microenvironment employs extracellular matrix (ECM) as a scaffold and contains cellular components, such as immune cells, stromal cells, endothelial cells, and various soluble molecules, such as exosomes, cytokines, and hormones. Among them, stromal cells and immune cells are key components that affect the progression of AML and therapeutic response.

The emergence of competitive endogenous RNA (ceRNA) network theory provides new ideas for exploring the internal mechanisms of tumorigenesis and development. Long non-coding RNA (lncRNA), circular RNA (circRNA), and other non-coding RNA (ncRNA) form an endogenous RNA competitive regulatory network when competing with mRNA for the binding to microRNA (miRNA). The competitive effect of ncRNAs is crucial to the structural stability and translation function of mRNAs. Abnormal ceRNA networks are involved in various tumor processes, including AML (9, 10). A number of studies have clarified the role of lncRNA and other ncRNAs or TME in AML and revealed their potential value in predicting the prognosis of AML (11, 12). Conducting in-depth exploration of the internal and external mechanisms of AML progress, looking for highly efficient prognostic targets, and combining precise targeting tumor cells with completely disintegrating tumor protective microenvironment may bring new breakthroughs for the treatment of AML.

In this study, we obtain the clinical information and transcriptome expression data of AML patients from The Cancer Genome Atlas (TCGA) database. The Estimate of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) was employed to quantify the scores of immune and stromal cells infiltrations in TME. DEmRNAs and DElncRNAs between high and low scores groups were identified, and the TME-related ceRNA network was constructed. We screened hub prognostic genes and established nomograms to quantify their predictive power. Meanwhile, The Cell Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to calculate the composition and proportion of immune cells in TME, and the correlation between ceRNAs and immune cell infiltration was verified, so as to provide more reliable biological targets for AML therapy. Finally, we identified two lncRNAs (CYP1B1-AS1, C9orf106), three miRNAs (hsa-mir-26a-5p, hsa-mir-148b-3p, hsa-mir-148a-3p), and two mRNAs (EPB41L3 and COL2A1) to construct a prognostic lncRNA-miRNA-mRNA ceRNA network. Furthermore, our study identified that several immune cells, such as M2 macrophages, naive B cells, and helper follicular T cell, have dramatic prognosis value.



Materials And Methods


AML Transcriptome Data and Clinical Information

The RNA sequencing data and corresponding clinical information of 173 AML samples were obtained from the TCGA database (https://portal.gdc.cancer.gov/). The miRNA expression array GSE142699 (GPL26945 NanoString nCounter Human miRNA) downloaded from the Gene Expression Omnibus (GEO) database contains 24 AML and 24 normal control samples, and mRNA expression array GSE71014 (GPL10558 Illumina humanht-12 V4.0 expression beadchip) contains mRNA data and clinical information of 104 AML samples.



Analysis of Differentially Expressed Genes Related to Microenvironment

The ESTIMATE algorithm can evaluate the non-tumor cell components in TME based on the gene expression characteristics of the tumor, and quantify the TME immune cell and stromal cell infiltration scores (13). ESTIMATE algorithm was used to analyze the AML mRNA sequencing data and calculate the BM microenvironment scores. The AML samples were divided into high, low immune infiltration groups and stromal infiltration groups with the median score as the boundary. The “limma” R package was used to identify differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) between high- and low-stromal or immune score groups with |log2FC| > 1 and adjusted P value < 0.05 as the cutoff criteria, and then intersection was taken (14, 15). Meanwhile, differentially expressed miRNAs (DEmiRNAs) between AML and normal samples were identified after normalization, |log2FC|>1 and adjusted P value <0.05 was defined as the cutoff criteria (16, 17). The “pheatmap” and “ggplot2” R packages were involved in drawing heatmap and volcanoes of the differential genes.



Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Analysis

The “clusterProfiler” (18) R package was used to perform gene ontology (GO) enrichment analysis of DEmRNAs to reveal the biological processes (BP), cellular components (CC) and molecular functions (MF) that they are involved in. Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis was used to annotate the signaling pathways DEmRNAs involved. The adjusted P value <0.05 was statistically significant.



CeRNA Network Construction

MiRcode (19) database was employed to predict the miRNAs (lnc-pre-miRNAs) targeted by DElncRNAs. The intersection of lnc-pre-miRNAs and DEmiRNAs was obtained, and then the mRNAs (mi-pre-mRNAs) targeted by the intersecting miRNAs were predicted through Targetscan (20)and miRDB (21) databases. The intersection was taken within mi-pre-mRNAs and DEmRNAs. miRNAs and lncRNAs related to common mRNAs were identified according to the targeting relationship, and Cytoscape v3.7.2 was used to construct the initial TME-related ceRNA network.



Cox, Lasso Regression Analysis, and Construction of Nomogram

The Cox-lasso survival model was constructed to screen the hub prognostic mRNAs. Univariate Cox proportional hazards regression analysis was employed to identify the relationship between the mRNAs expression and overall survival (OS) of patients using the “survival” R package, and the forest map was drawn using the “forestplot” R package. The mRNAs with P<0.05 entered lasso regression and multivariate Cox proportional hazards regression, which were also performed with the “survival” R package. Subsequently, with the median of the risk scores obtained by multivariate Cox regression as the boundary, the AML patients were divided into high and low risk groups. The “survival” R package was employed to perform survival analysis and draw survival curves of the two groups. At the same time, the hub prognostic mRNAs nomogram was established based on the results of multivariate Cox regression to quantitatively predict the prognosis of AML, using the “rms” R package.



TME Immune Cell Infiltration Analysis

CIBERSORT algorithm analyzes gene expression data to identify cell abundance and proportion in mixed cell populations. CIBERSORT can easily recognize each cell type and its count in each sample (22). We used CIBERSORT algorithm to identify the proportion of the 22 types of immune cells infiltrated in AML samples. Analyses were performed with 100 permutations with the default statistical parameters to improve the credibility of the results. Samples with a CIBERSORT output of P < 0.05 were considered to be eligible for further analysis (16, 23).



Statistical Analysis

The Kaplan‐Meier survival analysis was performed using the R package “Survival” to analyze the correlations between patients’ OS and other variates, such as TME scores, hub prognostic mRNAs’ expression, and immune cell infiltration proportion, and also employed in identifying the OS’ difference between high and low risk groups after Cox regression, two-sided P <0.05 was the statistically significant cutoff. The statistical significance of the correlation was tested by the log-rank test. Pearson correlation analysis was done for each prognostic biomarker in the ceRNA network and the proportion of each microenvironment related immune cell using the “limma” package (23). All statistical analyses were performed by R software (v.3.6.3) and corresponding program packages.




Results


TME Scores Were Highly Related to the AML Patients Prognosis

The results of ESTIMATE analysis showed that the immune scores of 173 AML samples ranged from 1329.53 to 3971.97, and the stromal scores ranged from −1888.81 to 435.75. The ESTIMATE scores were the sum of immune scores and stromal scores. The AML patients were divided into high and low groups according to stromal scores, immune scores, and ESTIMATE scores to perform survival analysis. Results showed that the survival time of the patients with high immune scores (P = 0.021; Figure 1A) and high ESTIMATE scores (P = 0.011; Figure 1C) is much shorter than those with the low scores. Meanwhile, the overall survival time of patients with high stromal scores was shortened, but there was no significant statistical difference (P = 0.69; Figure 1B).




Figure 1 | Identification of the relationship between TME scores and prognosis of AML. (A) Survival curve of high and low immune groups: the survival rate of patients with high immune scores was significantly reduced (P = 0.021). (B) Survival curves of high and low stromal groups: the survival rate of patients with high stromal score decreased, with no significant statistical difference (P = 0.69). (C) Survival analysis showed that the survival rate of patients with high ESTIMATE score was significantly reduced (P = 0.011). (D–F) The distribution of the three scores in different FAB classifications are significantly different (all P values < 0.0001); (G–H) The relationship between the survival status of AML patients and three scores: the immune scores of the dead cases (P = 0.0093) and the ESTIMATE scores (P = 0.029) were significantly higher than those of the surviving patients, and the patients with high stromal scores were more likely to be in the state of death, but there was no significant statistical difference (P = 0.2).



At the same time, we analyzed the relationship between three types of scores and prognosis-related clinical traits. The results showed that immune, stromal, and ESTIMATE scores were all significantly different among different FAB classification of leukemia (P < 0.001; Figures 1D–F); The three scores were also correlated with the survival status of the patients. Each score in the death cases was significantly increased, among which stromal score were not statistically significant (Figures 1G–I). In addition, immune scores were significantly different in different cytogenetic risk classifications (P = 0.011; Supplementary Figures 1A–C), while the three scores were not related to gender (P >0.05; Supplementary Figures 1D–G). All the above results indicate that TME immune cells and stromal cells are of great significance in the prognosis of AML, especially in the diagnosis and classification of AML.



Identification of TME-Related DEmRNAs and DElncRNAs

In order to evaluate the possible impact of stromal and immune scores on breast cancer, we investigated the expression patterns in different stromal and immune groups. DEmRNAs and DElncRNAs were compared between high- and low-stromal or immune score groups with |log2FC| > 1 and adjusted P value < 0.05 as the cutoff criteria through R package “limma.” For comparison based on immune scores, there were 414 DEmRNAs (Figures 2A, C) and 294 DElncRNAs (Figures 3A, B) in the high immune-score group. Similarly, for the high and low groups based on stromal scores, 367 DEmRNAs (Figures 2B, D) and 222 DElncRNAs (Figures 3C, D) were obtained. After taking the intersection of mRNAs and lncRNAs separately, we got 285 mRNAs (Figure 2E) and 172 lncRNAs (Figure 3E) that were differentially expressed in in both stromal and immune groups. We believed that these genes were highly correlated with TME and used them for further analysis.




Figure 2 | Identification of TME-related mRNAs. (A) Heatmap of DEmRNAs between high and low immune groups. (B) Heatmap of DEmRNAs between high and low stromal groups. (C) Volcano map of mRNAs expression between high and low immune groups. (D) Volcano map of mRNAs expression between high and low stromal groups. (E) Venn diagram was used for the intersection of DEmRNAs within immune and stromal groups, we considered the common DEmRNAs to be TME-related mRNAs. (F) GO enrichment analysis was performed to annotate TME-related DEmRNAs: the larger the bubble and longer columns represent the more genes enriched in this function, the deeper the color of the bubble and bars, the smaller the P value. (G) TME-related DEmRNAs KEGG enrichment analysis results.






Figure 3 | Identification of TME-related lncRNAs. (A–D) Heatmaps and volcano maps of DElncRNAs between high and low immune and stromal groups. (E) Venn diagram was used for the intersection of DElncRNAs within immune and stromal groups, and we considered the common DElncRNAs to be TME-related mRNAs. (F) miRNAs predicted by TME-related lncRNAs.



285 common DEmRNAs were subjected to perform GO and KEGG enrichment analysis to further verify the biological processes involved. The results of GO analysis showed that they were mainly enriched in cytokine production and secretion (GO: 0050663, GO: 0001819, GO: 0050707), neutrophil activation (GO: 0042119, GO: 0043312), lymphocytes (GO: 0050900), and T Cell (GO: 0042110) function and immune response (GO: 0050727, GO: 0045088) and other immune processes (Figure 2F, Table 1). KEGG analysis showed they were enriched in signaling pathways, such as osteoclast differentiation (hsa04380), cytokines and cytokine receptor interaction (hsa04060), phagosome (hsa04145), and B cell receptor (hsa04662) (Figure 2G, Table 2). Both are related to tumor immune response and TME remodeling.


Table 1 | GO enrichment analysis results of the TME-related DEmRNAs.




Table 2 | KEGG enrichment analysis results of the TME-related DEmRNAs.





Identification of DEmiRNAs and Preliminary Construction of TME-Related ceRNA Network

We obtained the DEmiRNAs between the 24 AML and 24 normal control samples in GSE142699 miRNA microarray. A total of 61 DEmiRNAs were identified with |log2FC|>1 and adjusted P value <0.05 as the cutoff criteria (Figure 4A).




Figure 4 | Construction of TME-related ceRNA network. (A) Heatmap of DEmiRNAs between AML and normal control samples in GSE142699 microarray. (B) Venn diagram of the intersecting miRNAs between DEmiRNAs and lnc-pre-miRNAs. (C) Venn diagram of the intersecting of mRNAs between mi-pe-mRNAs and TME-related DEmRNAs, a total of 43 common mRNAs. (D) Preliminary establishment of TME-related ceRNA network, including 43 mRNAs, 23 miRNAs, and 7 lncRNAs.



We predicted the targeting relationships among lncRNAs, miRNAs and mRNAs through a variety of databases and preliminarily established TME-related ceRNA network.

First, 55 lnc-pre-miRNAs were obtained by predicting the 172 common DelncRNAs targeting genes (Figure 3F). The intersection of lnc-pre-miRNAs and DEmiRNAs yielded 23 miRNAs (Figure 4B). Subsequently, 4187 mi-pre-mRNAs targeted by the 23 intersecting miRNAs were predicted by both Targetscan and miRDB databases (Figure 4C). In order to improve the correlation between ceRNA network and TME, the intersection of mi-pre-mRNAs and DEmRNAs was taken, and 43 hub mRNAs were obtained. Finally, we preliminarily constructed a TME-related ceRNA network consisting of 43 mRNAs, 23 miRNAs and 7 lncRNAs (Figure 4D). GO and KEGG enrichment analysis were performed on 43 mRNAs to verify their involvement in TME and immune-related processes (Supplementary Figure 2).



Survival Model to Screen Hub Prognostic mRNAs and Construct Nomograms

In order to ensure the accuracy and sensitivity of AML prognosis prediction, we constructed a survival model consisting of univariate Cox proportional hazard regression-lasso regression-multivariate Cox proportional hazard regression to further screen the hub prognostic ceRNAs. Firstly, 16 of 43 common mRNAs which were highly related to overall survival (OS) of AML patients were screened by univariate Cox regression (P <0.05; Figure 5A). To prevent overfitting of multivariate Cox regression, Lasso regression was used to screen eight mRNAs from 16 mRNAs (Figures 5B, C). Three hub prognostic mRNAs: KCNK10, EPB41L3, and COL2A1 were finally screened out by multivariate Cox regression (Figure 5D, Table 3). The receiver operating characteristic (ROC) curve was drawn to check the accuracy of the model. The area under the curve (AUC) of 5-year survival was 0.777, indicating the high accuracy of this model (Figure 5E). Kaplan-Meier survival analysis of high and low risk groups showed that the survival rate of the high-risk group was significantly lower than that of the low-risk group (P = 0.001; Figures 5F, G). Simultaneously, heatmap of the differential expression of three hub mRNAs between the high and low risk groups were drawn (Figure 5H), and a nomogram was constructed according to the expression of the three mRNAs (Figure 5I).




Figure 5 | Construction of the survival model to screen hub prognostic mRNAs. (A) Forest map of univariate Cox proportional hazards regression: 16 mRNAs with P < 0.05 were screened out of 43 common mRNAs (marked by *). (B, C) Lasso regression screening of mRNAs into multivariate Cox regression: λ and cv graphs show that eight hub mRNAs were selected. (D) Forest map of multivariate Cox proportional hazards regression: three hub prognostic mRNAs (KCNK10, EPB41L3, COL2A1) were screened out. (E) ROC curve of multivariate Cox regression: AUC of 5-year survival was 0.777, indicating the high accuracy of multivariate Cox regression model. (F) The AML samples were divided into high and low risk groups according to the risk scores obtained from Cox regression. (G) Survival curve of high and low risk groups: the survival rate of the high-risk group was significantly reduced (P = 0.0011). (H) Heatmap of KCNK10, EPB41L3, and COL2A1 expressions among the high and low risk group samples. (I) Nomogram of KCNK10, EPB41L3, and COL2A1 based on the results of the multivariate Cox regression.




Table 3 | Identification of hub prognostic mRNAs through univariate Cox regression-lasso regression-multivariate Cox regression.



At the same time, we performed Kaplan-Meier survival analysis of the three hub mRNAs separately. The results showed that the survival rate of patients with high EPB41L3 expression was significantly reduced (P = 0.011; Figure 6A), and low expression of COL2A1 predicted poor prognosis (P = 0.013; Figure 6B), while there was no significant relationship between the KCNK10 expression and the prognosis of AML (P = 0.681; Figure 6C). The survival analysis results of EPB41L3, COL2A1, and KCNK10 in GSE71014 array were consistent with the above, but there was no significant statistical difference in the survival analysis of the three mRNAs (Supplementary Figure 3). Therefore, we identified EPB41L3 and COL2A1 as the hub prognostic mRNAs and plotted the prognostic nomogram of the two genes (Figure 6D). Finally, the hub ceRNA network consisting of two mRNAs (EPB41L3 and COL2A1), three miRNAs (hsa-mir-26a-5p, hsa-mir-148b-3p, hsa-mir-148a-3p), and two lncRNAs (CYP1B1-AS1, C9orf106) were constructed (Figure 6E).




Figure 6 | Verifying the prognostic value of the three core mRNAs. (A–C) Survival curve of the three hub mRNAs: the survival rate of AML patients with high expression of EPB41L3 significantly decreased (P = 0.011), and the survival rate of AML patients with low expression of COL2A1 significantly decreased (P = 0.013). There is no significant difference in survival rate between different KCNK10 expression levels (P = 0.681), so we believe that EPB41L3 and COL2A1 are core prognostic mRNAs with predictive value. (D) Nomogram of EPB41L3 and COL2A1 based on the results of the multivariate Cox regression. (E) Hub prognostic ceRNA network based on EPB41L3 and COL2A1; (F) Forest map of multivariate Cox regression analysis: the risk score of prognostic model maintained independence in predicting the OS of AML patients (HR = 1.8469, 95% CI = 1.2652–2.6961, P = 0.00147). At the same time, age and cytogenetic risk groups of AML patients also have independent prognosis value. (G) The nomogram of the risk score of prognostic model and clinic characters.



Furthermore, in order to evaluate the independent predictive value of the two hub mRNAs prognostic model in patients with complete clinical information from the TCGA cohort, we constructed univariate and multivariate Cox regression analyses according to the risk scores from prognostic model and clinical covariates including age, gender, cytogenetic risk group, FAB classification, history of hydroxyurea treatment. The result of univariate Cox regression analysis revealed that risk scores have obvious predictive value (P < 0.0001), and some clinic characters, such as age (P < 0.0001) and cytogenetic risk group (P < 0.001) also had prognosis significance (Table 4). The multivariate Cox regression analysis indicated that the risk score of prognostic model maintained independence in predicting the OS of AML patients (HR = 1.8469, 95% CI = 1.2652–2.6961, P = 0.00147) (Figure 6F, Table 4). We plotted the prognostic nomogram of the risk score of prognostic model and clinic characters (Figure 6G).


Table 4 | Identification the independent prognostic value of survival model and clinic characters through univariate Cox regression and multivariate Cox regression.





AML Microenvironment Immune Cell Infiltration and Its Prognostic Value

In this study, the CIBERSORT algorithm was used to analyze the 22 immune cell subtypes infiltration in the AML microenvironment (Figure 7A) and the infiltrating differences between the high and low immune and stromal score groups obtained by the ESTIMATE algorithm were analyzed (Supplementary Figure 4). The results showed that the resting dendritic cells, resting mast cells and neutrophils were significantly different between different immune and stromal groups (P <0.05), and the activated mast cells (P = 0.013) were significantly different between the high and low stromal groups (P = 0.013). Then Pearson test was performed to identify the correlation between TME immune cells and the correlation heatmap was drawn (Figure 7B). The results showed that there were strong correlations among various immune cells such as M2 macrophages, activated NK cells, memory B cells, and helper follicular T cells (Figure 7C, Supplementary Figure 5).




Figure 7 | Correlation analysis of TME immune cells and prognosis. (A) Histogram of the infiltration proportion of 22 types of immune cells between different samples. (B) Correlation heat map between immune cells. (C) Plots of correlation between immune cells: memory B cells and monocytes (P = 0.013) was significantly positively correlated; there was a significant negative correlation between resting mast cells and M2 macrophages (P = 0.007), activated NK cells and M0 macrophages (P = 0.044), naive CD4 memory T cells and helper follicular T cells (P = 0.026). (D) Survival curves of TME immune cell: the survival rate of AML patients with high proportion of M2 macrophages infiltration was significantly reduced (P = 0.002), patients with low proportion of naive B cells (P <0.001) and helper follicular T cells (P = 0.016) had decreased survival rate. In addition, the increase in the ratio of γδ T cells, activated CD4 memory T cells and memory B cells also predicted the adverse outcome of AML, with no statistically significant difference.



The results of Kaplan-Meier survival analysis showed that the M2 macrophages (P = 0.002), naive B cells (P <0.001), helper follicular T cell (P = 0.016) were significantly correlated with the survival rate of patients. In addition, the increased proportion of γδT cells, activated CD4 memory T cells and memory B cells also predicted a poor outcome, but the results were not statistically significant (Figure 7D, Supplementary Figure 6).



Correlation Between TME-Related Hub Prognosis ceRNA Network and Immune Cell Infiltration

In order to fully elucidate the mechanism of the hub prognostic ceRNA network in AML, and at the same time look for the potential way for TME to determine the fate of AML, we performed Pearson test on the correlation between EPB41L3, COL2A1, CYP1B1-AS1, C9orf106 and TME immune cells and plotted heatmap (Figure 8A). The results showed that EPB41L3, COL2A1, CYP1B1-AS1, and C9orf106 were all related to TME immune cells. EPB41L3 was significantly positively correlated with resting mast cells, neutrophils and M1 macrophages, while being negatively correlated with plasma cells; COL2A1 was positively correlated with naive CD4 T cells; CYP1B1-AS1 was positively correlated with resting CD4 memory T cells, and C9orf106 was positively correlated with activated dendritic cells (all P values < 0.05; Figure 8B). In addition, we found that the expression of CYP1B1-AS1 was significantly positively correlated with that of the EPB41L3 and C9orf106 (Supplementary Figure 7).




Figure 8 | Correlation analysis of hub prognostic ceRNA network and TME immune cells. (A) Correlation heat map between EPB41L3, COL2A1, CYP1B1-AS1, C9orf106, and TME infiltrating immune cells; (B) Verifying the correlation between EPB41L3, COL2A1, CYP1B1-AS1, C9orf106, and immune cells: EPB41L3 was significantly positively correlated with resting mast cells, neutrophils, and M1 macrophages, and had strong negative correlation with plasma cells, COL2A1 was positively correlated with naive CD4 T cells. CYP1B1-AS1 was positively correlated with resting CD4 memory T cells. C9orf106 was positively correlated with activated dendritic cells (all P values <0.05).






Discussion

AML progresses rapidly and causes a very high mortality rate. Its initiation, development, drug resistance and recurrence all depend on the abnormal molecular and genetic changes inside the cell and the protection of the extracellular TME (24). More and more scholars have realized that current immune therapies and targeted therapies cannot fully deal with the extremely complex heterogeneity of AML, and are committed to excavating new prognostic biomarkers to promote the innovation of AML precision diagnosis and treatment (25, 26). This study identified the TME related hub prognostic lncRNA-miRNA-mRNA ceRNA network, while focusing on the correlations between specific TME immune cell populations and ceRNA network of AML. A multiple prognostic verification model based on TME score survival analysis-ceRNA survival model-TME immune cell infiltration survival analysis was constructed, which highly improved the prognosis predicting accuracy of the biomarkers in this study while ensuring the high correlation between ceRNA and TME. We tried to elucidate the mechanism of TME regulating the fate of AML, and provide a unique perspective for finding new targets for AML.

AML cells manipulate TME through a complex interaction network, domesticate and reshape it into a pro-leukemia phenotype. The modified AML protective TME in turn promotes AML progression, providing tumor cells with an increasingly strong bastion, and forming a positive feedback loop of tumor-TME mutually promoting. Stromal cells and immune cells in TME have important regulatory and protective effects on AML. Abnormally expressed adhesion molecules, cell cycle regulators and angiogenic factors in tumor-associated stromal cells promotes the angiogenesis in TME, and meanwhile enable AML cells to accelerate proliferation, resist apoptosis and malignantly invade (27). TME immune cell-mediated inflammatory response is considered to be an important driving force for the remodeling of the AML microenvironment (28). In this study, ESTIMATE algorithm was employed to identify the infiltrating immune and stromal cells in the AML TME, and it was confirmed that the infiltration degree of these two types of cells was significantly correlated with the prognosis of AML, and it had a prominent effect on assisting the diagnosis of AML FAB typing. At the same time, the TME related mRNAs and lncRNAs were obtained according to the TME score grouping and the ceRNA network was constructed. These results and opinions are consistent with the findings of Yan (11), Huang (29) and others who utilized the ESTIMATE algorithm to identify hub prognostic mRNAs related to the AML microenvironment.

As an important post-transcriptional regulatory mechanism, ceRNA network is of great significance in the progression of AML. Several studies have proved that HOXA-AS2, RPPH1, and other lncRNAs regulate mRNAs expression as ceRNA and participate in AML proliferation, differentiation, and invasion (10, 30, 31). We constructed a survival prediction model of univariate Cox regression-lasso regression-multivariate Cox regression, supplemented by Kaplan-Meier survival analysis and nomograms, to identify hub mRNAs (EPB41L3, COL2A1) with both high TME correlation and high prognostic efficacy and construct the hub prognostic ceRNA network by layer-upon-layer screening. As early as 2003, Celal et al. reported the high expression of EPB41L3 in AML cell line HL-60 (32), which was consistent with the poor prognosis of AML patients with up-regulated EPB41L3 expression in this study. As the gene involved in cytoskeletal construction, EPB41L3 has also been shown to promote tumor metastasis by promoting epithelium-mesenchymal transformation in advanced lung cancer (33). The dynamic balance of osteoblasts and osteoclasts is of great significance for maintaining the normal BM microenvironment. Increased osteoclast activity in the BM of AML patients results in bone demineralization and the destruction of the normal BM structure (34). COL2A1 encodes type II collagen α1 chain, which participates in the composition of ECM, is an important osteogenic protein. Decreased expression of COL2A1 reduces the osteogenic protein, destroys normal ECM structure, promotes the remodeling of the BM microenvironment toward the direction of tumor promotion, and participates in the mutual promotion between TME and AML (35, 36). Ganapathi et al. demonstrated that the low expression of COL2A1 was significantly associated with the rapid recurrence of high-grade serous breast cancer, and proposed that the tumor suppressive effect of COL2A1 might be achieved by depleting oncogene miR-301 as ceRNA (37), revealing the important role of COL2A1 related ceRNA network in tumor development. Meanwhile, miRNAs in this study have been proved to be closely related to AML. The decreased expression of hsa-mir-26a-5p in AML can cause high expression of peroxiredoxin III, thereby promptly clearing the reactive oxygen species within cells and protecting tumor cells from oxidative stress injury (38, 39); In another study, researchers found that enforced expression of hsa-mir-26a-5p in AML cells was able to inhibit cell cycle progression by downregulating cyclin E2 expression, potentiated the antiproliferative effects of 1,25-dihydroxyvitamin D (3) (VitD) and stimulated myeloid differentiation by targeting E2F7 (40). Furthermore, hsa-mir-26a-5p was also proved as a target of c-Myc, which revealed the vital role this miRNA played in ceRNA network (41). Huang et al. demonstrated that MLL-fusion/MYC⊣miR-26a⊣TET1 signaling circuit played an important role in AML, in which hsa-mir-26a-5p functioned as an essential tumor-suppressor mediator and its transcriptional repression was required for the overexpression and oncogenic function of TET1 in MLL-rearranged AML (42). miRNAs sequencing of exosomes derived from bone marrow mesenchymal stromal cells and bone marrow specimens also found hsa-mir-26a-5p to be significantly associated with overall survival of AML patients and was closely related to HOX-related genes (43). Wang et al. found that the expression of hsa-mir-148 family decreased in AML patients, and it was highly correlated with FAB typing of AML (44).They also verified that DNMT1 was identified to be a downstream target of hsa-mir-148, and was negatively regulated by miR-148a in AML cell lines. It was a strong evidence that hsa-mir-148 was involved in the regulation of AML as a core member of ceRNA network (45). However, the role of two hub lncRNAs (CYP1B1-AS1, C9orf106) in tumors has not been reported. In our previous study, we have established an AML related circRNA-lncRNA-miRNA-mRNA ceRNA network based on the differentially expressed RNAs and the target relationship among circRNA-miRNA, lncRNA-miRNA, and miRNA-mRNA. Through comparing the previous results and the new discovery in this study, we noticed that lncCYP1B1-AS1 were involved in both studies, indicating that lncCYP1B1-AS1 may perform an important function in regulating the intracellular biological process and extracellular microenvironment of AML cells, and it had great potential and research value as a powerful prognostic marker (46). Zhang at al. identified 10 RNAs (LINC00471, hsa-mir-100, hsa-mir-150, ANP32E, ERMP1, MYO1B, PAPD7, PTGIS, TERF1, and VEGFA) to be ceRNAs closely related to childhood AML. Even prognostic RNAs in Zhang’s study are different from those in our study. We speculate that it may be due to the childhood AML remarkably differing from adult AML in karyotype, therapeutic strategy, and therapeutic effects. Still and all, it reminds us to consider more general markers for both types of AML and excavate more accurate markers for various subtypes (47).The abovementioned confirms that the ceRNA network established in this study plays an important role in the remodeling of the AML microenvironment, and has high prognostic value.

Chimeric antigen receptor immune cell therapy brings new hope for the treatment of leukemia and myeloma, and confirms that the tumor treatment using normal immune cells to penetrate and change the abnormal TME immune cell populations is effective and feasible. To systematically reveal the immune microenvironment of AML, we also used CIBERSORT algorithm to identify TME infiltrating immune cells, verify their prognostic value, and explore the relationship between TME immune cells and hub prognosis ceRNA. The results showed that the higher the proportion of M2 macrophages infiltration was, the poorer the prognosis (P = 0.002), and the lower the proportion of naive B cells (P <0.001) and helper follicular T cells (P = 0.016) would be, resulting in the lower the survival rate of the patients. In addition, the increased proportion of γδT cells, activated CD4 memory T cells and memory B cells also predicted the poor outcome of AML. Macrophages can be divided into M1 type that suppresses tumors and M2 type that promotes tumors. TME can induce the differentiation of monocytes and mesenchymal stem cells into M2 macrophages and promote the malignant process of tumor. M2 macrophages can not only suppress the anti-tumor immune response, but also promote tumor proliferation, invasion, migration and angiogenesis (48). Through analyzing a variety of blood tumors by CIBERSORT algorithm, Xu et al. found that the proportion of M2 macrophages in the AML microenvironment was much higher than that of the normal control and even other tumors, and it also predicted the reduced survival rate of patients and the rapid recurrence (49). In another study which identifies infiltrating lymphocytes in TME by CIBERSORT algorithm, γδT cells were found significantly increased in various hematological tumors, such as M3-AML, chronic myeloid leukemia, B-cell acute lymphoblastic leukemia, and could promote tumor progression by promoting tumor-related inflammatory response and mediating the formation of immunosuppressive TME (50). It is consistent with the results that proportions of TME infiltrating of M2 macrophages and γδT cells determines the outcome of AML in our study. Besides, we found that EPB41L3, COL2A1, CYP1B1-AS1, and C9orf106 are all highly correlated with immune infiltration, which is consistent with various studies. For example, Wendell et al. found that COL2A1 was bound up with cytotoxic lymphocyte immune signature and T-cell trafficking (51). It coincides with the finding of this study that there is a positive correlation between COL2A1 and naive CD4 T cells, confirming that COL2A1 is involved in the regulation of AML immune microenvironment.

Nevertheless, there are still some inescapable deficiencies in this study. On the one hand, due to the limitation of the existing data amount, the comparative study of different FAB classification and cytogenetic risk groups could not be completed, suggesting that more expression data is urgently needed for more accurate analysis. On the other hand, although we correlated ceRNA network with AML microenvironment through layers of verification, the role of multiple hub ceRNAs in AML is still not completely clear, and the exploration and verification of the functions of these RNAs is just beginning.



Conclusion

In summary, our research combined ESTIMATE and CIBERSORT algorithms to identify AML TME related genes and immune cells, screened out ceRNA network that have high prognostic predictive power and highly TME association through multiple rigorous survival models and survival analysis. This study proposed a new way to reveal the role of TME in AML from the perspective of post transcriptional regulation, and contributed to exploring more diverse and effective AML biological markers.
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Tumor-adjacent normal (TAN) tissues, which constitute tumor microenvironment and are different from healthy tissues, provide critical information at molecular levels that can be used to differentiate aggressive tumors from indolent tumors. In this study, we analyzed 52 TAN samples from the Cancer Genome Atlas (TCGA) prostate cancer patients and developed a 10-gene prognostic model that can accurately predict biochemical recurrence-free survival based on the profiles of these genes in TAN tissues. The predictive ability was validated using TAN samples from an independent cohort. These 10 prognostic genes in tumor microenvironment are different from the prognostic genes detected in tumor tissues, indicating distinct progression-related mechanisms in two tissue types. Bioinformatics analysis showed that the prognostic genes in tumor microenvironment were significantly enriched by p53 signaling pathway, which may represent the crosstalk tunnels between tumor and its microenvironment and pathways involving cell-to-cell contact and paracrine/endocrine signaling. The insight acquired by this study has advanced our knowledge of the potential role of tumor microenvironment in prostate cancer progression.
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Introduction

Prostate cancer, which is one of the most common and deadly tumors in men, represents over 20% of newly diagnosed male cancers every year (1). In 2019, there were about 191,930 diagnosed cases and 33,330 deaths of prostate cancer in the USA (1). Although prostate cancer has the best 5-year survival rate among all types of cancers, about one-fourth of diagnosed patients are subject to high risk of postsurgery recurrence that threatens lives, making prostate cancer the second leading cause of cancer death in men in the USA (2, 3).

Disease screening, including prostate-specific antigen (PSA) test and digital rectal exam (DRE), and pathological characterization of biopsy tissues substantially contribute to the diagnosis and early risk stratification for patients with prostate cancer. For the patients treated with prostatectomy, a prognosis is needed to assess the risk of biochemical recurrence (BCR) for the development of further therapy plans. Various nomograms have been devised to predict postsurgery BCR-free survival primarily based on pathological variables, including Gleason score, tumor grade, and tumor stage. However, these traditional nomogram models had limited prediction accuracy due to large variation in scoring of these pathological variables as well as the heterogeneous nature of prostate cancer. With the rapid advancement of the technologies for quantification of genomic data, numerous biomarkers have been developed for predicting the outcomes of prostate cancer, for example, urine PCA3 (4), transmembrane protease, serine 2-TMPRSS2-ERG fusion (5), and a few commercial tests based on the profiles of multiple genes, including prolaris and decipher (6, 7). These new prognostic schemes using biomarkers, which have gain ground in the clinical application (8), are based on the assay of tumor tissue samples; thus, their prediction accuracies are potentially still hampered by tumor heterogeneity of various levels.

Tumor microenvironment is not an inert component; rather, known as a battlefield between the cancer cells and stromal cells, it plays an important role in cancer progression and metastasis (9). Tumor-adjacent tissues actively interact with tumor through the extracellular matrix or secreted factors, to either fight against tumor or to facilitate tumor growth when these tissues have been domesticated by tumor. Although tumor-adjacent tissues appear histologically normal, alterations in genomic transcription have been identified between tumor-adjacent tissues and authentic normal prostate tissues from disease-free subjects, which have been applied as a diagnostic tool to detect the presence of tumor even if biopsy samples do not contain tumor (10). A set of 15 genes have been characterized to be specifically activated in histologically normal tissue adjacent to various types of tumor based on the analysis of the Cancer Genome Atlas (TCGA) database (11). It has been also shown that expression profiles of certain genes in tumor-adjacent tissue may reflect the characteristics of the tumor, either aggressive or indolent; such genes may be useful to the prediction of tumor outcomes including BCR (12). A recent study on breast cancer also suggested that tumor microenvironment provided useful information in understanding disease recurrence, which can be used to guide the development of surgical strategies (13). Therefore, tumor-adjacent tissues are as important as tumor tissues in cancer research to advance our knowledge of cancer biology. Due to their more homogeneous genetic background, tumor-adjacent tissues may serve as better clinical material for disease prognosis than tumor tissues. A literature search indicated that majority of the prognosis studies in prostate cancer were focused on tumor tissues, while TAN tissues have been understudied. Moreover, lacking authentic normal prostate tissues in most of these prostate cancer studies, TAN tissues were often improperly employed as control to address the differences between diseased tissues and healthy tissues (14, 15).

In this study, the dataset from the Cancer Genome Atlas Prostate Adenocarcinoma (TCGA-PRAD) project and the dataset E-MTAB-6128, which represent the only data sources with TAN samples, were used to develop and validate a prognostic model based on expression profiles of multigene in tumor microenvironment. Only TAN prostate tissues from these two datasets have been analyzed in this study to establish a multigene model that can accurately predict the BCR-free survival for patients. First, the differentially expressed genes (DEGs) were identified between patients who experienced BCR and the BCR-free patients in the training set, i.e., TCGA-PRAD project. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and Protein-Protein Interaction (PPI) Network analysis were utilized to explore the potential connections among these BCR-related DEGs in TAN tissues. The univariate Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) analysis were performed to further screen these DEGs, yielding a 10-gene prognostic signature based on TAN tissues. The potential functions or relatedness among these 10 signature genes were further demonstrated by the gene-set enrichment analysis (GSEA). Finally, the prediction accuracy of this new 10-gene prognostic model, specifically devised for the tests based on TAN tissues, has been validated using TAN samples from an independent patient cohort, i.e., E-MTAB-6128.



Method


Prostate Cancer Data and Preprocessing

High-throughput RNA-sequencing count data and clinical data of prostate cancer patients were downloaded from TCGA-PRAD project using GDCRNAtools (16). From a total of 547 TCGA patient samples, only 52 TAN samples were selected for this study. An independent dataset (E-MTAB-6128), which consisted of mRNA counts data and clinical data of prostate cancer patients were obtained from the ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) (17). From a total of 141 E-MTAB-6128 patient samples, only 26 TAN samples were used for validation. The potential batch effect (unwanted systematic bias) between two datasets was eliminated using the function of “removeBatchEffect” in “limma” package in R. Trimmed mean of M value (TMM) normalization of the count data was performed using edgeR. The clinical characteristics for the prostate cancer patients in both datasets are summarized in Table 1.


Table 1 | Clinical characteristics of selected sample in TCGA-PRAD project, E-MTAB-6128, and pooled cohort.





Differential Expressed Gene Analysis

The DEGs in TAN tissues between patients who experienced BCR and the BCR-free patients were identified using edgeR package. A twofold change or more and p < 0.05 were used as the selection criterions for the identification of DEGs.



Biological Enrichment and PPI Network Analysis

The GO assay and KEGG pathway analysis were employed to analyze the BCR-related DEGs through clusterProfiler package (18). The p-value and adjusted p-value by the Benjamin-Hochberg method were calculated for each identified pathway. The PPI interaction network among these BCR-related DEGs was established by STRING and visualized by Cytoscape (19).



Selection of Prognostic Genes and Construction of Prognostic Model

The univariate Cox regression analysis was first employed to test the association between BCR-free survival and the profile of each identified DEG. The LASSO method was implemented by the glmnet package in R to screen the survival-relevant genes, with BCR status (1 for BCR and 0 for BCR-free) being treated as binary response variable. The optimal lambda value in the LASSO model was determined by cross-validation to achieve a minimum estimation error. Finally, the genes with nonzero coefficients were selected by LASSO analysis for the construction of a prognostic model based on their expression in TAN tissues. The linear combination formula for calculating a risk score (RS) of a patient using this prognostic model is

	

where RS is the risk score of BCR for a patient, n is the number of genes included in this prognostic model, Xi is the expression level of the ith gene measured in the patient’s TAN sample, and βi represents the regression coefficient of the ith gene estimated by LASSO method. The Kaplan-Meier analysis and log-rank test were used to test the association between the BCR-free survival and the RSs calculated by the TAN-tissue-based prognostic model, with patients being dichotomized into high-risk and low-risk groups with the median value of the RSs. The p < 0.05 was adopted as the significance level for these tests. The receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to evaluate the prediction accuracy of the model using “survivalROC” package.



Validation of the Prognostic Model With an Independent Cohort

Using the exact prognostic model trained by the TCGA-PRAD, we calculated the RS for the patients in the validation set (E-MTAB-6128) based on the TAN samples. These validation patients were also dichotomized into high- and low-risk groups based on the median RS value. The Kaplan-Meier analysis was used to test the association between BCR-free survival and the RS. The ROC curve and AUC were used to assess the prediction accuracy of the prognostic model.



Biological Function Analysis of the Genes in the Prognostic Model

To further explore the potential functions of the prognostic genes in the model, we divided the TAN samples of TCGA-PRAD dataset into high- and low-risk groups based on the median RS values calculated by the model, and then performed the differentially expressed analysis between these two groups using edgeR package. All the genes (transcriptome) were sorted by the log2 (fold change) in decreasing order, and then analyzed by the GSEA analysis in R package clusterProfilter using “hallmark gene sets”, “KEGG gene sets”, and “Ontology gene sets” as the annotation sets. These annotation gene sets were downloaded from the Molecular Signatures Database (MSigDB).




Result


Identification of the Differentially Expressed Genes Between Patients Who Experienced BCR and BCR-Free Patients Using TAN Samples

The data for 52 prostate TAN tissue samples, including RNAseq data and patients’ clinical data, were selected from TCGA-PRAD project and used as the training set. Five out of these 52 patients experienced BCR after the surgery (Table 1), forming the BCR group. From the remaining 47 patients, we selected another five patients who had the greatest BCR-free survival times to constitute the BCR-free group. The differential expression analysis was used to identify 223 DEGs between these two groups based on the selection criteria of fold change >2 and p < 0.05 (Figure 1A). The heatmap in Figure 1B shows the expression profiles of these DEGs between BCR patients and BCR-free patients.




Figure 1 | Identification of the differentially expressed genes between patients who experienced BCR and BCR-free patients using tumor-adjacent normal samples. (A) Volcano plot for the differentially expressed genes. The red/green dot represents upregulated/downregulated genes in the BCR group. The horizontal dashed line represents the cutoff of p < 0.05. The two vertical dashed lines denote the cutoffs of log2 FC <−1 (left) or log2 FC >1 (right), respectively. (B) Heatmap showing the profiles of the differentially expressed genes in TAN tissues between BCR patients and BCR-free patients.





Enrichment Analysis of the Differentially Expressed Genes

To further explore the potential connection between the genes in our model and prostate cancer progression, all the 223 DEGs identified between the BCR group and the BCR-free group in the training set were analyzed using the GO and KEGG methodologies to mine the potential pathways or associated biological characteristics represented by these genes. The results from the GO analysis showed that the DEGs were enriched in “COP9 signalosome” and “collagen-containing extracellular matrix” in cellular component (Figure 2A); “cell-substrate adhesion,” “hormone secretion”, and “hormone transport” in biological process (Figure 2B); “ErbB-2 class receptor binding” and “extracellular matrix constituent, lubricant activity” in molecular function (Figure 2C), and “pantothenate and CoA biosynthesis” and “tryptophan metabolism” in KEGG (Figure 2D).




Figure 2 | Gene Ontology and KEGG enrichment analysis of DEGs. (A) Cellular component, (B) biological process, (C) molecular function, and (D) KEGG pathway analysis.





PPI Network Analysis of the Differentially Expressed Genes

A total of 52 nodes and 448 interaction pairs were identified in the PPI network (Figure 3A). The nodes with high topological scores may play important roles in the disease. In this study, the top 10 nodes (degree ≥8), including prostaglandin-endoperoxide synthase 2 (PTGS2), synaptosome-associated protein 25 (SNAP25), chromogranin A (CHGA), angiotensinogen (AGT), neuropeptide Y (NPY), lipoprotein lipase (LPL), serpin family E member 1 (SERPINE1), synaptophysin (SYP), ATP-binding cassette subfamily C member 8 (ABCC8), and interleukin 18 (IL-18) were regarded to be the hub nodes of the network (Figure 3C). The subnetwork of these 10 hub nodes and their interaction pairs is shown in Figure 3B.




Figure 3 | PPI network analysis of the DEGs. (A) The connection among DEGs. (B) Sub-PPI network of the top 10 hub genes in DEGs. The larger circles and blue to pink color correspond to the higher degrees between genes, and the wider line and blue to pink color refer to the increasing of the combined score. (C) The levels of degree for the top 10 hub genes in DEGs.





Development of Prognostic Models Based on Gene Expression Profiles in Tumor Microenvironment

The univariate Cox regression analysis was first used to analyze the association between each of the 223 DEGs and BCR-free survival based on the 52 TAN samples. A total of 25 out of these 223 genes in tumor microenvironment were detected to be significantly relevant to BCR-free survival using the threshold of p < 0.05 (Table 2). From these 25 potential prognostic genes, the analysis of the 52 TAN samples using LASSO identified 10 final genes to establish a prediction model, with the optimal lambda value being set to 0.036 (Figures 4A, B). These 10 genes included Jade family PHD finger 1 (JADE1), uroplakin 3A (UPK3A), family with sequence similarity 46 member A (FAM46A), ATPase H+ transporting V1 subunit B1 (ATP6V1B1), dual oxidase 2 (DUOX2), G protein-coupled estrogen receptor 1 (GPER1), sphingosine-1-phosphate receptor 5 (S1PR5), leucine-rich repeat containing 75A (LRRC75A), homeobox C6 (HOXC6), and docking protein 6 (DOK6). Wilcoxon signed-rank test was conducted on these 10 genes between TAN tissues and corresponding prostate cancer tissues in TCGA-PRAD cohort. As shown in Supplementary Figure S1, FAM46A, ATP6V1B1, DUOX2, GPER1, S1PR5, and HOXC6 were significantly differentially expressed between TAN tissues and corresponding prostate cancer tissues (Wilcoxon signed-rank test, p < 0.05), while JADE1, LRRC75A, UPK3A, and DOK6 did not show statistically differential expression between these two types of tissues (Wilcoxon signed-rank test, p > 0.05). The linear combination formula of the prognostic model for the calculation of the risk scores (RS) using the expression values of these 10 genes is




Table 2 | Univariate Cox regression analysis of DEGs.






Figure 4 | The development of the prognostic model based on gene expression profiles in tumor microenvironment (TAN) samples and the evaluation of this model. (A) LASSO coefficient profiles of the 10 prognostic TAN-related genes. (B) Selection of the optimal lambda in the LASSO model. (C) The risk score, survival status, and expression abundances of the 10 genes based on the TAN samples in TCGA-PRAD project. (D) Kaplan-Meier survival analysis in terms of BCR-free survival for the high- and low-risk patient groups. (E) The ROC analysis for the prediction of the 3-, 5-, and 7-year BCR-free survival based on the risk scores calculated by the 10-gene prognostic model.



where RS is the BCR risk score for a patient and Xg represents the expression level of gene g measured in the patient’s TAN sample. With this formula, the risk scores for 52 patients in TCGA-PRAD cohort were calculated. The distribution of the risk scores, survival status, and expression abundances of 10 genes are shown in Figure 4C. It appeared that GPER1, JADE1, FAM46A, HOXC6, LRRC75A, and DOK6 were positively correlated with the risk score and recurrence status, while UPK3A, S1PR5, ATP6V1B1, and DUOX2 were negatively associated with risk score and recurrence status. The patients were then dichotomized into a high-risk group and a low-risk group, with equal size, by the median-risk score (0.672). In Figure 4D, Kaplan-Meier analysis showed that patients in the high-risk group had significantly worse clinical outcomes than those in the low-risk group (p = 0.023), in regard to BCR. The ROC analysis indicated that, based on these 52 patients in TCGA-PRAD project, the prognostic accuracies for 3-, 5-, and 7-year BCR-free survival were 0.913, 0.93, and 0.883, respectively, using this prognostic model (Figure 4E).



Validation of the 10-Gene Prognostic Model for TAN samples

We further verified the 10-gene TAN-tissue-based prognostic model using 26 TAN tissue samples from an independent test cohort (E-MTAB-6128). The exact formula (Equation 1) has been used to calculate the risk scores for each of these independent 26 patients. The relations between the expression of these 10 genes, the risk scores, and recurrence-free survival status are shown in Figure 5A. Similarly, these 26 patients were dichotomized into high- and low-risk groups based on the calculated median RS value, and the Kaplan-Meier analysis shown in Figure 5B indicated that these two groups had significantly different BCR outcomes (p = 0.033). The ROC analysis in Figure 5C showed that the prognostic accuracies for 3- and 5-year BCR-free survival were 0.68 and 0.713, respectively, for the 26 patients in E-TAB-6128 dataset. We then combined 52 patients in TCGA and 26 patients in E-TAB-6128 to form a large cohort and carried out the same test on this pooled data using the 10-gene prognostic model. The results are shown in Figures 5D–F, which also demonstrated the prediction value of the prognostic model in kthe TAN samples successfully.




Figure 5 | External validation of the 10-gene prognostic model using independent test set (E-MTAB-6128) and the pooled dataset (TCGA and E-MTAB-6128). (A) The risk score, survival status, and expression levels of the 10 genes based on the TAN samples in E-MTAB-6128. (B) Kaplan-Meier survival analysis in terms of BCR-free survival for the high- and low-risk groups in the TAN samples of E-MTAB-6128 database. (C) The ROC analysis for the prediction of the 3- and 5-year BCR-free survival based on the risk scores calculated by the 10-gene model. (D) The risk score, survival status, and expression levels of the 10 genes based on the TAN samples in the pooled dataset. (E) Kaplan-Meier survival analysis in terms of BCR-free survival for the high- and low-risk groups in the TAN samples in the pooled dataset. (F) The ROC analysis for the prediction of the 3-, 5-, and 7-year BCR-free survival based on the risk scores calculated by the 10-gene model.





Bioinformatics Analysis of the 10 Prognostic Genes in Tumor Microenvironment

In order to explore the potential biological mechanisms involving these 10 prognostic genes, we conducted a GSEA analysis between high- and low-risk patients, determined by the 10-gene prognostic model, in the 52 TCGA-PRAD patients. Significant gene sets are shown in Table 3 and the immune-related gene sets were visualized as an Enrichment Map (Figure 6). The results showed that these prognostic genes were strongly associated with the biological categories related to the carcinogenic pathway in the high-risk group, e.g., myogenesis, epithelial mesenchymal transition, angiogenesis, KRAS signaling, and oxidative phosphorylation, whereas, P53 pathways and some immune-related pathways, e.g., allograft rejection and interferon gamma response, were enriched in low-risk group (adjusted p-values <0.01 and normalized enrichment score (NES) >1 or NES <−1, Figures 6A, B). Similar result was obtained in the GSEA analysis between the high- and low-risk groups using the KEGG gene set. Carcinogenic pathways, e.g., ECM receptor interaction, focal adhesion, gap junction, and regulation of actin cytoskeleton, were enriched in high-risk group, and immune-related pathways, e.g., allograft rejection, intestinal immune network for IGA production, and primary immunodeficiency, were enriched in the low-risk group (adjusted p-values <0.01 and NES >1 or NES < −1, Figures 6C, D).


Table 3 | GSEA for high- and low-risk groups based on 10-gene signature.






Figure 6 | GSEA analysis between high- and low-risk patients determined by the 10-gene prognostic model, in the 52 TCGA-PRAD patients. (A) Hallmark gene sets strongly associated with the 10 prognostic gene in high-risk group. (B) Hallmark gene sets strongly associated with the 10 prognostic gene in low-risk group. (C) KEGG pathways that the 10 genes enriched in high-risk group. (D) KEGG pathways that the 10 genes enriched in low-risk group.






Discussion

There are not only morphological distinctions between tumors and their surrounding nontumor tissues but also many other forms of differences, including pH, allied gene imbalance and telomere length, stromal behavior, and transcriptional and epigenetic alteration. The formation of a tumor is typically associated with the alteration starting from the non-tumor components. The “field cancerization” theory on tumor microenvironment described a cumulative process of carcinogenesis in which genetic alterations are acquired stepwise, leading TAN tissues to an intermediate and preneoplastic state with morphologically normal but molecularly altered cells (20). Indeed, many studies have identified the differences in genomic transcription between healthy tissues and TAN tissues (10, 11). Since these transcriptional alterations in TAN tissues are caused by the nearby tumor tissue, our hypothesis is the profiles of such changes may reflect the aggressiveness of the tumor and, thus, may be leveraged as a signature for predicting cancer outcomes. Roman-Perez et al. described a multigene (>3,700) signature, derived from 72 extratumoral tissue with breast cancer, was capable of distinguishing active or inactive transcriptome phenotype, suggested that the phenotype of the extratumoral microenvironment may have value as an independent predictor of ER-positive/hormone-treated patient outcome (21). Wu et al. built a 73-gene signature of the tumor-adjacent parenchymal image feature which can stratify breast cancer patients into low- versus high-risk groups in terms of recurrence-free survival and overall survival (22). Besides, an advantage of using TAN samples as test material for disease prognosis is that TAN tissues have a simpler and more homogenous genetic background when compared with the tumor tissues. Therefore, if prognostic tests based on TAN samples cannot completely replace the tumor-based tests, they can at least serve as an efficient companion test to improve disease prognosis.

Many tumor-tissue based prognostic signatures have been constructed for prostate cancer. For example, Wang et al. used three Gleason score-associated genes to construct an outcome prediction model for prostate cancer (23). Hu et al. developed a prognostic and predictive model for overall survival and disease-free survival based on the five autophagy-related genes in prostate cancer (24). A clinical prediction model was built using three genes that are associated with prostate cancer BCR (25). One of our previous works based on the analysis of tumor tissues developed a 160-gene signature for predicting prostate cancer BCR (26). Moreover, Li et al. comprehensively evaluated the performances of machine learning models and 30 published prognostic signatures using PCa population cohorts of large sizes (27). In this study, we identified the DEGs between BCR patients and BCR-free patients using TCGA-PRAD cohort, and further screen these DEGs to establish a 10-gene prognostic model specifically for testing the TAN samples. The model can calculate an RS for each patient using the expression profiles of these 10 genes in TAN tissue, and the results showed that high-risk and low-risk group defined by the RSs had significantly different BCR-free survival. This model was further validated successfully using an independent dataset. The comparison between the prognostic genes in TAN tissues (in this study) and those in tumor tissues (26) showed that there was no overlap, suggesting potentially different mechanisms relevant to disease progression in these two tissue types. Several of the 10 genes in our TAN-tissue-based model have been reported to play critical roles in various types of cancer. For example, JADE1 plays a key role in HBO1 complex to regulate DNA replication initiation and, on the other hand, serves as a tumor suppressor by inhibiting proliferation and promoting apoptosis (28). In addition, JADE1 was stabilized by direct interaction with pVHL and directly linked to Wnt tumorigenesis pathway in renal cancer (29). UPK3A, which is specific to the urothelium, is involved in the process of epithelial cell differentiation and cell morphogenesis (30) and has been reported as a reliable marker for bladder cancer detection (31). It was reported that FAM46A protein was involved in cellular proliferation and associated with nonsmall cell lung cancer (32). Nishie et al. revealed the relationship between the expression of ATP6V1B1 and the intracellular environment of cancer cells, suggesting the downregulation of ATP6V1B1 affected the resistance to antibody-dependent cellular cytotoxicity (33). DUOX2, which promoted 5-fluorouracil-induced epithelial-mesenchymal transition by producing reactive oxygen species, appeared to play a significant role in colon cancer chemoresistance and the aggressiveness of this cancer (34). GPER1 was reported to be involved in the regulation of cellular growth, proliferation, and tumor development (35). Moreover, immunohistochemical studies have shown a positive association between the expression of GPER1 and the progression of female reproductive cancer (36).

Communication between tumor and surrounding histologically normal tissue, i.e., tumor microenvironment, is a two-way process, in which composite and complex mechanisms are involved. Identification of the commons and differences in biological pathways between these tissue types will advance our knowledge of cancer biology. The enrichment analysis showed that both the 160 prognostic genes in tumor tissues (26) and the 10 genes in the TAN-tissue-based model were significantly enriched by the p53 signaling pathway, indicating a potential crosstalk tunnel between these two types of tissues. Interestingly, “focal adhesion,” “gap junction,” and “adipocytokine signaling pathway” were found to be only activated in TAN tissues from BCR high-risk patients. The completion of tumor progression or tumor migration relies on intercellular communications via direct cell-to-cell contact or through paracrine/endocrine signaling, in which cytokines, chemokines, and growth factors represent the most common exchange molecules for signal transition, cell adhesion, and gap junctions (9). The results of the study indicated that the prognostic genes included in the 10-gene TAN-tissue-based model likely participate in prostate cancer progression in tumor microenvironment and, thus, they are useful biomarkers for the prediction of clinical outcomes of prostate cancer patients.

One limitation of the study is lacking a validation with a sufficiently large number of fresh samples which usually requires enormous effort in clinical practice, relevant management, such as specimen storage and follow-up with patient, and rigorous gene expression assay and data analysis. We are in the process of developing such a tissue bank and a database; however, they will not be available for a validation study in a few years. TAN tissues have not been brought to the research focus for decades, thus, only two datasets, i.e., TCGA-PRAD (RNAseq) and E-MTAB-6128 (Affymetrix Human Gene 2.0 ST Array), have been identified from public database to test our hypothesis aforementioned. Owing to the small number of TAN samples available for the study, we had limited statistical power to identify the prognostic genes with moderate or minor effects in tumor microenvironment. However, the results and findings of the study are very promising in spite of limited TAN samples, which warrants further exploration and clinical validation. Once more TAN tissues become available in the future, the advanced statistical methods, including BLUP-HAT, can be used to boost outcome predictability by including a large number of genes (from genes with major effects to genes with minor effect) in the regression model.



Conclusion

This study developed a new 10-gene prognostic model for predicting biochemical recurrence-free survival leveraging gene expression profiles in tumor microenvironment. This innovative model has been rigorously validated using data from an independent cohort. Additional novelties of the study include: (1) Novel prognostic genes for prostate cancer have been identified in tumor microenvironment. (2) The potential roles of these prognostic genes in tumor microenvironment have been uncovered. (3) A common p53 signaling pathway that involves in prostate tumor progression has been detected between tumors and their microenvironment, indicating a potential crosstalk tunnel between these two tissue types.
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Univariate Cox analysis in GSE14520

Factor @ Notsig. @ Risk

Number of sample OR (95% CI) Odds | Ratio P Value
Gender 220 0.595 (0.287-1.232)  [&] 0.162
Age- 220 0.801 (0.451-1.422) -] 0.448
Cirrhosis 220 4577 (1.125-18.62) | — 0.0336
Stage 218 3.43 (2.177-5.404) —] < 0.001
BCLC- 218 3.465 (2.209-5.435) — —] < 0.001
AFP 217 1508 (1.041-2.455) — 0.0322
CIFI- 220 7.785 (4.848-12.5) | - | < 0.001
12 -0 8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22
B 5 . . .
Multivariate Cox analysis in GSE14520
Factor @ Notsig. @ Risk
Number of sample OR (95% ClI) Odds | Ratio P Value
Cirrhosis 215 2.202 (0.529-9.176) — | 0.2783
Stage 215 1.189 (0.5958-2.371)  He—] 0.624
BCLC 215 1.934 (0.9793-3.819) —0—| 0.0575
AFP 215 0.928 (0.5846-1.473) |4 0.7512
CIFI 215 7.785 (4.848-12.5) } & } < 0.001
12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20 22
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Univariate Cox analysis in TCGA

Factor @ Notsig. @ Risk

Number of sample OR (95% ClI) Odds | Ratio P Value
Age 365 1.214 (0.856-1.722) H—] 0.278
Child_pugh- 238 1,616 (0.797-3.275) | F3 | 0.183
AFP- 276 1.016 (0.622-1.661) ——] 0.95
Fibrosis- 209 0.7792 (0.47-1.293) — 0.334
Grade- 360 1.12 (0.781-1.606) - 0.539
Vascular_invasion 311 1.348 (0.89-2.042) |——0—| 0.159
Gender- 365 1.025 (0.86-1.746) H—] 0.26
Stage- 341 2.449 (1.689-3.549) : & | <0.001
CIFI 365 2498 (1.763-3.541) | & | <0.001
4 -3 -2 -1 1 2 3 4 6
B Multivariate Cox analysis in TCGA
Factor @ Risk
Number of sample OR (95% CI) Odds|Ratio P Value
Stage- 314 1.956 (1.329-2.879) I PN { <0.001
CIFI- 314 2262 (1.538-3.326) | & | < 0.001
sl =B —g —1 1 2 8 4 6
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Factor Multivariable

HR (95% CI) P
Eight-circRNAs classifier 11.68(3.45 to 39.57) <0.001*
Gleason score 2.41 (0.92 t0 6.31) 0.072
PSA 1.48 (0.4510 4.92) 0.522
Pathological stage 2.23 (1.03 t0 4.80) 0.042*

*Two-sided likelihood ratio test. Cl, confidence interval; HR, hazard ratio.
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Parameter GSE113124 (n = 144)

Age at diagnosis (mean + SD) 61.5+ 6.5
Clinical stage, n (%) £T1¢ 83 57.6%
>T2a 61 42.4%
Gleason score, n (%) <6 11 7.6%
=7 123 85.4%
>8 9 4.2%
Null 1 0.7%
PSA at diagnosis (ng/ml), n (%) 0-3.9 17 11.8%
4-9.9 93 64.6%
>10 34 23.6%
BCR, n (%) Yes 30 20.8%
No 114 79.2%
Metastasis, n (%) Yes 9 6.3%
No 134 93.1%

Null 1 0.7%
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CircRNA Position Length Coefficient Gene symbol Description Associated diseases of Associated diseases
parent gene of circRNA
circ_30029 chr2:168920009- 402 —0.0637 STK39 Serine/threonine kinase  Lung cancer (Li et al., 2016) —
168986268: 39 Hypertension (Jamshidi
n et al., 2018)
circ_117300 chr7:131071878- 535 —0.0991 MKLN1 Muskelin 1 Childhood asthma (Ding Active tuberculosis
131084192: et al., 2013) (Huang et al., 2018b)
+
circ_176436 chr6:160819010- 546 —0.0015 SLC22A3 Solute carrier family 22 Colorectal cancer (Ren Ovarian cancer (Zhang
160831878: member 3 etal., 2019) et al., 2020b)
+
circ_112897 chr16:20636744- 161 —0.0185 ACSM1 Acyl-CoA synthetase Breast carcinoma (Celis =
20638638: medium et al., 2008)
Chain family member 1 Depressive disorder (Li W.
et al., 2015)
circ_178252 chr8:62593526- 264 0.0906 ASPH Aspartate Liver cancer (de la Monte ~
62596747: beta-hydroxylase et al., 2006)
Lung carcinoma (Luu et al.,
2009)
circ_115617 chr4:87693930- 723 0.0809 PTPN13 Protein tyrosine Colorectal cancer s
87696805: phosphatase non- (Laczmanska et al., 2017)
+ receptor type 13
Breast cancer
(Glondu-Lassis et al., 2010)
circ_14736 chr1:58971731- 865 0.0027 OMA1 OMAT1 zinc Gynecologic cancers (Kong =
59002413: metallopeptidase etal, 2014)
circ_17720 chr1:85565122- 708 —-0.0187 RERE Arginine-glutamic acid Leukemia (Waerner et al., =

8674745:

dipeptide repeats

2001)
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circRNAs expression matrix and clinical
information of 144 patients

circRNAs with FPKM > 1

Logistic regression identified 28 BCR
related circRNAs (p<0.05)

LASSO Cox regression model with ten-
fold cross-validation in 144 patients

Choosing 8 circRNAs significantly
associated with BCR

Construction of risk score model by
> coefficient X expression of 8 circRNAs

!

Kaplan-Meier
survival curve
analysis of BCR

l l

|

Multivariable Cox DHfErence mikhloks
analysis and functional
regression analysis enrichment

Nomogram

Immune infiltration analysis

Experimental verification in 2 of 8
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ENSG00000109101 FOXN1 -1.008 0.367 0.169 0.797 0.011
ENSG00000181350 LRRC75A 1.239 3.452 1.317 9.050 0.012
ENSG00000204618 RNF39 -1.402 0.246 0.082 0.742 0.018
ENSG00000180739 S1PR5 -0.677 0.508 0.298 0.867 0.013
ENSG00000196754 S100A2 -0.511 0.600 0.400 0.901 0.014
ENSG00000206052 DOK6 0.681 1.976 1141 3.420 0.015
ENSG00000121552 CSTA -0.570 0.566 0.357 0.897 0.015
ENSG00000127129 EDN2 -1.064 0.345 0.142 0.840 0.019
ENSG00000100373 UPK3A -0.386 0.680 0.492 0.940 0.019
ENSG00000171401 KRT13 -0.568 0.567 0.347 0.924 0.023
ENSG00000197757 HOXC6 0.462 1.588 1.062 2374 0.024
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ENSG00000221818 EBF2 0.383 1.467 1.038 2.073 0.030
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ENSG00000112773 FAMA46A 0.669 1.953 1.045 3.648 0.036
ENSG00000160326 SLC2A6 1.265 3.541 1.063 11.796 0.039
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ENSG00000077684 JADE1 1014 2.756 1.027 7.399 0.044
ENSG00000108352 RAPGEFL1 -1.477 0.228 0.054 0.963 0.044
ENSG00000043039 BARX2 -0.704 0.495 0.249 0.984 0.045
ENSG00000116039 ATPEV1B1 -0.543 0.581 0.341 0.990 0.046
ENSG00000091879 ANGPT2 0.840 2316 1.016 5.276 0.046
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Tumor size (om)

<5 32 (16:2%)

5 165 (63.8%)
Location

Uniateral 53 (26.9%)

Biateral 144 (73.19%)
P53 status

Wid 18(2.1%)

Mutant 173 67.8%)

Unknown 60.1%)
Pathoogical difecentation

Moderate 7 (18.8%)

Poor 160 (81.25%)
=

Negative 36 (18.3%)

Posiive 161(61.75%)
PR

Negative 69 (@5.0%)

Positive 128 (65.0%)
K67 index (%)

<0 93 (47.2%)

230 104 (52:8%)
pscies

No 53(26.9%)

Yes 144 (73.1%)
Lymph node metastasis

Negative 78(396%)

Posiive 62 31.5%)

Unknown 57 (28.9%)
FIGO stage (2000)

' 19.(0.6%)

[ 35 (17.8%)

" 118 (59.9%)

v 25 (12.7%)

ER, estrogen receptor: PR, Progesterons receptor.
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Clinical features TMA

N Mean + SD P

Benign 10 231+ 1.12 <0.001
Malignant 70 5524131
6 14 4134032 <0001
7 12 5.38+0.82

28 46 6.35+0.79

<T2c 40 514022 0.921
T3a-T4 16 5.28 +0.47
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Primer name Product size Sequences

p-actin 185 bp F: TGGCACCAGCACAATGAA
R: CTAAGTCATAGTCCGCCTAGAAGCA
RADOA 114 bp F: CACCCAAGAAGTTCCGCTCA
R: TCTTGGTTCAGCCTTCACCC
NIPSNAP1 178 bp F: CACAAAGTGGATCCCCGGAA
R: CGAGTGAGCATGGGTAGTCC
EEF1A1 143 bp F: GAAMAGCTGAGCGTGAACGTG
R: AGTCAGCCTGAGATGTCCCT
BPY2 186 bp F: ACTTCTGACTATGCCCAGCCT
R: GCAGCACCTGTGAAAATCTGG
C200rf203 247 bp F: CTCCAATTCATCACGGTCGCT
R: GCACAGCCTCGGTCCCTAAT
ECE1 226 bp F: ACCATCTTCTACCCCGTGGA
R: GACAGGTCTTCTTGGTCCCG
TAFIL 123 bp F: AAGAGTAAAGATCGGCCACG
R: CATCCCTGTGCGTTTGAAGT
ABCA12 155 bp F: TCTTCCCAGGGACATACGGT

R: GGCAGATGGGTTGGTGTTCT
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Cancer types

Non-synonymous
somatic mutations

References

Acute myeloid leukemia
Breast cancer

Glioblastoma
Pancreatic cancer
Hepatocellular cancer
Colon cancer

Melanoma
Lung cancer

10, ni=t
Average of 84, n =11

Average of 36, n = 21
Average of 48, n = 24
63,n=1

Average of 76, n = 11

Average of 201, n =14

More than 300, n =1

Ley et al., 2008

Sjoblom et al., 2006;
Wood et al., 2007

Parsons et al., 2008
Jones et al., 2008
Totoki et al., 2011

Sjoblom et al., 2006;
Segal et al., 2008

Wei et al., 2011
Lee et al., 2010
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ClinicalTrial.gov
identifier

NCT03645148

NCT02950766

NCT03558945

NCT03662815

NCT03122106

NCT03532217

NCT02632019

NCT03199040

NCTO03639714

NCT03606967

NCTO03715985

NCT03412877

NCT03171220

NCT03359239

NCT03658785

NCT03674073

NCT01970358

NCT02287428

NCT03361852

NCT03219450

Phase Enroliment

status

Recruiting

Recruiting

Recruiting

Active, not
recruiting

Active, not
recruiting

Recruiting

Unknown
status

Recruiting

Recruiting

Not yet
recruiting

Recruiting

Recruiting

Recruiting

Recruiting

Not yet
recruiting

Recruiting

Active, not
recruiting

Active, not
recruiting

Not yet
recruiting
Not yet
recruiting

Sample
size

20

20

60

30

15

20

40

24

214

70

25

210

40

40

24

20

Vaccine

Biological: iNeo-Vac-P01 Other:
GM-CSF

Biological: NeoVax

Biological: Personalized neoantigen

vaccine

Biological: iNeo-Vac-PO1 Other:
GM-CSF

Biological: Personalized neoantigen

DNA vaccine

Biological: Neoantigen DNA vaccine
Other: PROSTVAC-V PROSTVAC-F

Biological: Dendritic cell-precision T

cell for neo-antigen

Biological: Neoantigen DNA vaccine

Biological: GRT-C901 GRT-R902

Biological: Personalized synthetic

long peptide vaccine Others: Poly

ICLC
Biological: EVAX-01-CAF09b

Biological: Individual patient
TCR-transduced PBL

Biological: Neoantigen reactive T
cells (NRTs) Other: SHR-1210

Biological: PGV001 Other: Poly
ICLC

Biological: TIL

Biological: Neoantigen
vaccines

Biological: Peptides Other:
Poly-ICLC

Biological: Personalized
neoantigen vaccine

Biological: NeoVax

Biological: NeoVax

Cancer type

Pancreatic cancer

Kidney cancer

Pancreatic cancer

AMST

Pancreatic cancer

Metastatic hormone-sensitive
prostate cancer

Advanced biliary tract
malignant tumor

Triple negative BC

NSCLGC; CC;
Gastroesophageal;
Adenocarcinoma; Urothelial
Carcinoma

Anatomic stage IV BC

Malignant melanoma
metastatic; NSCLC metastatic;
Kidney cancer metastatic

Glioblastoma; NSCLC; Ovarian
Cancer; BC;
Gastrointestinal/Genitourinary
cancer

AMST

Urothelial/Bladder cancer; Nos

RC; MC; Solid tumor

HCC

Melanoma

Glioblastoma

Follicular lymphoma

Lymphocytic leukemia

Primary endpoint

(1) Objective response rate; (2) Number
of participants experiencing clinical and
laboratory adverse events

Number of participants with
dose-limiting toxicity experienced within
49 days of treatment initiation as
assessed by CTCAE v4.0

Overall time: the time between
operation and the death of patients

(1) Objective response rate; (2) Number
of participants experiencing clinical and
laboratory adverse events

Safety of neoantigen DNA vaccine as
measured by the number of subjects
experiencing each type of adverse
event

(1) Safety and tolerability of regimen as
defined by incidence of adverse events;
(2) Immune response as measured by
tetramers; (8) Immune response as
measured by genomic studies; (4)
Immune response as measured by flow
cytometry; (5) Safety and tolerability of
regimen as defined by incidence of
dose-limiting toxicities

Overall survival

Safety of neoantigen DNA vaccines
given alone or in combination with
Durvalumab as measured by number of
adverse events experienced by patient

(1) Incidence of adverse events, serious
adverse events, and dose-limiting
toxicities; (2) Objective response rate in
phase 2 using RECIST v1.1; (3) Identify
the recommended Phase 2 dose of
GRT-C901 and GRT-R902

Progression-free survival

Number and type of reported adverse
events

Response rate

Number of participants with adverse
events

(1) Number of neo-antigens; (2) Number
of peptides synthesized; (3) Vaccine
Production time; (4) Proportion of
consent to tissue acquisition phase; (5)
Proportion of subjects eligible for the
treatment phase; (6) Number of
toxicities

Objective response rate

Safety of neoantigen-based DC vaccine as measured by
the number of subjects experiencing each type of adverse
event according to the National Cancer Institute Common
Terminology Criteria for Adverse Events v4.0.

(1) Number of participants experiencing clinical and
laboratory adverse events; (2) Number of participants for
whom sequencing and analysis leads to identification of at
least 10 actionable peptides to initiate vaccine production

(1) Cohorts 1, 1a, 1b, and 1c: Number of participants with
adverse events as a measure of safety and tolerability; (2)
Cohorts 1d: Number of participants with adverse events as
a measure of safety and tolerability; (3) Cohort 1: Number of
participants with at least 10 actionable peptides as a
measure of study feasibility; (4) Cohort 1: Number o
participants who are clinically able to initiate post-RT
vaccine therapy within 12 weeks or less from date of
surgery

Feasibility of Neovax following 4 weekly doses of Rituximab

(1) The proportion of all enrolled patients for whom
sequencing and analysis leads to identification of at least 7
actionable peptides to initiate vaccine production; (2) The
proportion for whom the time from sample collection to
vaccine availability is less than 12 weeks; (3) The number of
patients with treatment-limiting toxicities

All the relevant information of clinical trials was registered on the official website (clinicaltrials.gov). AMST (advanced malignant solid tumor), BC (breast cancer), NSCLC
(non-small cell lung cancer), CC (colorectal cancer), HCC (hepatocellular carcinoma), RC (recurrent cancer), MC (metastatic cancer).





OPS/images/fcell-08-00728/fcell-08-00728-t003.jpg
ClinicalTrial.gov Vaccine Phase Cancer type Mechanism Primary outcome Adverse events References
identifier
NCT00683670  DC vaccine | Melanoma Autologous DC vaccines Vaccination broadened the - Carreno et al.,
directed at tumor amino acid  antigenic breadth and clonal 2015
substitutions diversity of anti-tumor immunity
NCT01970358  Peptide vaccine | Melanoma Vaccine targeting up to 20 Four of six vaccinated patients Fatigue, rash, injection Oftt et al., 2017
predicted personal tumor experienced no recurrence and site reactions, mild
neoantigens another two relapse patients  flu-like symptoms
experienced CR to anti- PD-1
therapy
NCTO1174121  TIL vaccine Il Epithelial cancer Mutated ERBB2IP-specific The patient experienced = Tran et al.,
CD4* T cell response disease stabilization for about 2014
13 months after cell infusion
NCT00204607  RNA vaccine /Il Malignant Protamine-stabilized mRNA Vaccine-directed T cells Injection site reactions, Weide et al.,
melanoma vaccine coding for Melan-A, increased, while the frequency fatigue and flu-like 2009
Tyrosinase, gp100, Mage-A1,  of immunosuppressive cells symptoms
Mage-A3, and Survivin decreased. No adverse events
more than grade Il were
observed
NCT02287428  Peptide vaccine |  Glioblastoma Vaccines contained upto 20 Median PFS and OS were 7.6~ Chills, dizziness, Keskin et al.,
long peptides that were divided and 16.8 months, respectively fatigue, flushing, 2019
into pools of 3-5 peptides headache, myalgia,
admixed with poly-ICLC nausea and injection
site reaction
NCT02035956  RNA vaccine I Melanoma RNA vaccine encoding shared Two patients had a o Sahin et al.,
tumor-associated self-antigens vaccine-related OR among the 2017
five patients with metastatic
disease, and the other eight
patients mostly experienced
prolonged DFS
NCTO1174121  TIL vaccine I Metastatic TIL vaccine that specifically The objective regression of six - Tran et al.,
colorectal cancer  targeted KRAS G12D lung metastases was observed, 2016

while one metastatic lesions
had progressed

DC (dendritic cell), TIL (tumor-infiltrating lymphocyte), CR (complete responses), PFS (progression-free survival), OS (overall survival), OR (objective response), DFS
(disease-free survival).
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Genes

IFIH1
CTSG
8TC2

SECTM1
BIRCS

coef

-0.373
-0.215
0.195
-0.259
0.229

HR

0.689
0.806
1.215
0.772
1.258

Overall survival

95% CI

0.5056
0.671
1.027
0.631
1.033

coef, coefficient; HR, hazard ratio; Cl, confidence interval.

0.939
0.968
1.438
0.944
1.530

p-value

0.018
0.021
0.023
0.012
0.022
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Pathway FDR
Neuroactive ligand-receptor interaction 3.40E-05
Rap? signaling pathway 7.58E-05
ECM-receptor interaction 0000226155
Calcium signaling pathway 0000324435
Offactory transduction 0.000868637
Blle secretion 0001056711
Pathways in cancer 0001266947
Cytokine-cytokine receptor interaction 0001669184
Adrenergic signaling in cardiomyocytes 0001669184
Phospholipase D signaling pathway 0002095849
GAMP signaling pathway 0003042019
Glutamatergic synapse 0.003538057
PIBK-Akt signaling pathway 0.005381894
Inflammatory mediator regulation of TRP channels 0006788386
Melanogenesis 0006788386
Ras signaling pathway 0008512401
Axon guidance 0008790691
C-type lectin receptor signaling pathway 0008790691
Doparinergic synapse 0008790691
Estrogen signaling pathway 0008790691
Vascular smooth muscle contraction 0.009496407
Hypertrophic cardiomyopathy (HCM) 0009832625
Proteoglycans in cancer 000088492
Basal cell carcinoma 0010425995
Arachidonic acid metabolism 0.011721194
Oxytocin signaling pathway 0011721194
Dilated cardiomyopathy (DCM) 0011721194
MAPK signaling pathway 001188034
Circadian entrainment 001188034
Gastric cancer 0012601185
Focal adhesion 0.016998021
Renin secretion 0017058953
Linoleic acid metabolism 0.018485501
Insulin resistance 0018728758
Human papilomavirus infection 0018728758
Tight junction 0019045102
Glycerophospholipid metabolism 0.019618676
Wt signaling pathway 0.019855177
Hippo signaling pathway 0.019855177
CGMP-PKG signaling pathway 0.022078288
Platelet activation 0022978288
AGE-RAGE signaling pathway in diabetic complications 0022978288
Breast cancer 0025542783
Ether lipid metabolism 0025994303
Relaxin signaling pathway 0.026994303
Regulation of actin cytoskeleton 0.027185869
Amyotrophic lateral sclerosis (ALS) 0027202385
Gastric acid secretion 0.028582194
Insulin secretion 0029401081
Apelin signaling pathway 0034688902
Phototransduction 0.038659036
Sphingolipid signaling pathway 0.039963306
Pertussis 0040982726
Parathyroid hormone synthess, secretion and action 0042635342
Aldosterone synthesis and secretion 0.045623293
T cell receptor signaling pathway 004895089
Fc epsilon Rl signaling pathway 004895089
Adipocytokine signaling pathway 004895089

KEGG, kyoto encyclopedia of genes and genomes; FDR, false discovery rate.
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Demographic data

Median age (min-max)
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Triple-negative
Not available
Cancer staging
2A
28
3A
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HIV-negative
% (N/Total)
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Covariates clinical characteristics

Univariate analysis

Multivariate analysis

P HR 95.0% ClI for HR P HR 95.0% ClI for HR

Sex 0.354 0.652 0.265—1.609 0.535 0.729 0.269-1.976
Age 0.466 1.012 0.979-1.047 0.922 0.998 0.962—1.036
Pathology Grade < 0.0001 5.030 2.486—-10.178 0.088 2.151 0.892-5.188
AJCC clinical stage < 0.0001 3.206 2.104—4.886 0.142 6.441 0.5636—77.359
T stage < 0.0001 3.091 2.013—-4.747 0.441 0.367 0.029—4.701

Tumor size < 0.0001 1.003 1.002—1.004 0.034 1.001 1.000—1.003
IFI16 0.009 6.795 1.612—-28.639 0.026 5.474 1.220—-24.561

Abbreviations: Cl, confidence interval; HR: Hazard Ratio.
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Variables Total IFI16 ¥2  p-value?

number
High expression Low
(+ +/+ + +, expression
n,%) (~/ + ,n,%)

Adjacent 30 2(6.7) 28(93.3) 12.273 < 0.0001
Normal

ccRCC 30 14 (46.7) 16 (63.3)
Age(years)

< 572 76 53 (69.7) 23 (65.0) 0.082 0.775
> 157 74 50 (67.6) 24 (75.9)

Gender

Male 107 72 (67.3) 35 (32.7) 0.329 0.566
Female 43 31 @2.1) 12 (27.9)

Pathology

grade

| 19 1(6.3) 18 (94.7) 45.366 < 0.0001
Il 94 68 (72.3) 26 (27.7)

- v 37 34 (91.9) 3(8.1)
T stage
T1a-T1b 118 78 (66.1) 40 (33.9) 2.057 0.358
T2a-T2b 21 17 (81.0) 4(19.0)
T3-T4 i 8(72.7) 3(27.3)
Tumor size

< 107¢ 103 68 (66.0) 35 (34.0) 0.265 0.607
> 107 47 35 (74.5) 12 (25.5)
AJCC

clinical

stage

| 119 79 (66.4) 40 (33.6) 1.521 0.467
Il 19 15(78.9) 4(21.1)

- v 12 9(75.0) 3(25.0)

a8 mean age.

b p-value is from y2-test -test. —/ +, total expression score 0-2; + +/+ + +
total expression score 3—12.
C, mean tumor size; ccRCC, Clear Cell Renal Cell Carcinoma.
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Variables

Univariate analysis

Multivariate analysis 1

HR (95% CI) P HR (95% CI) P

Age 1.02(1.01-1.04) < 0.001 1.03(1.01—-1.04) < 0.001
T Stage (T3 and T4/T1 and T2) 3.11(2.28—4.21) < 0.001 0.83(0.45—-1.52) 0.56
N Stage (N1/NO) 3.97(2.14—7.33) < 0.001 2.23(1.18—-4.19) 0.01
M Stage (M1/MO) 4.45(3.26—6.08) < 0.001 2.50(1.71-3.65) < 0.001
AJCC Stage (Il and IV/I and II) 3.75(2.72-5.14) < 0.001 2.14(1.08—4.21) 0.03
Grade (G3 and G4/G1 and G2) 2.64(1.87-3.70) < 0.001 1.58(1.10—2.29) 0.01
IFI16 expression 1.96(1.563—-2.51) < 0.001 1.63(1.26—2.11) < 0.001
LMNB1 expression 1.90(1.60—2.25) < 0.001
RHBDF2 expression 2.05(1.67—2.49) < 0.001
TACC3 expression 2.03(1.72-2.37) < 0.001
Variables Multivariate analysis 2 Multivariate analysis 3 Multivariate analysis 4

HR (95% CI) P HR (95% CI) P HR (95% CI) P
Age 1.03(1.01-1.04) <0.001 1.03(1.01-1.04) <0.001 1.03(1.01—-1.04) <0.001
T Stage (T3 and T4/T1 and T2) 0.89(0.49—-1.62) 0.72 0.89(0.48—1.62) 0.7 0.91(0.49—-1.65) 0.76
N Stage (N1/NO) 1.96(1.02-3.72) 0.041 1.70(0.92—3.41) 0.08 1.65(0.86—3.15) 0.13
M Stage (M1/MO) 2.30(1.67-3.37) <0.001 2.39(1.63-3.49) <0.001 2.37(1.62-3.45) <0.001
AJCC Stage (Il and IV/I and 1I) 2.05(1.03—4.06) 0.04 2.06(1.03—4.10) 0.039 1.97(0.99-3.92) 0.051
Grade (G3 and G4/G1 and G2) 1.48(1.01-2.14) 0.04 1.48(1.02—-2.15) 0.035 1.41(0.96—-2.04) 0.07
LMNB1 expression 1.48(1.22—-1.79) <0.001
RHBDF2 expression 1.51(1.21-1.86) <0.001
TACC3 expression 1.66(1.39—-1.97) <0.001
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Dataset ID Sample size Platform
Normal Tumor

GSE71963 16 32 Agilent-014850 Whole Human Genome
Microarray 4 x 44K G4112F

GSE66270 14 14 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

GSE53757 72 72 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

GSE40435 101 101 lllumina HumanHT-12 V4.0 expression
beadchip

GSE36895 23 53 [HG-U133_Plus_2] Affymetrix Human
Genome U133 Plus 2.0 Array

GSE17895 22 138 Affymetrix GeneChip Human Genome
U133 Plus 2.0 Array (MBNI v11 Entrez
Gene ID CDF)

GSE16449 52 18 Agilent-014850 Whole Human Genome

Microarray 4 x 44K G4112F
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Name

miR-550a-5p F
miR-550a-5p R

UBF

UsR

GAPDHF

GAPDHR

UMD1F

UMD1 R

miR-550a-5p inhibitor
miR-550a-5p inhibitor NG
miR-550a-5p mimics
miR-550a-5p mimics NG
si-LIMD1

s-NC

E forward primer; R, reverse primer.

Sequence (5’ — 3)

TGCTGTTAGGTTGTCTTCA
CTATGTTTTGTCCAATTTCT
CTCGCTTCGGCAGCACATATACT
ACGCTTCACGAATTTGCGTGTC
AAGGTGAAGGTCGGAGTCA
GGAAGATGGTGATGGGATTT
TGGGGAACCTCTACCATGAC
CACAAAACACTTTGCCGTTG
GGGCUCUUACUCCCUCAGGCACU
CAGUACUUUUGUGUAGUACAA
AGUGCCUGAGGGAGUAAGAGCCC
UUCUCCGAACGUGUCACGUTT
GGGCCCAAAUCUUACCUUUTT
UUCUCCGAACGUGUCACGUTT
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Smoker
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Tumor size
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miR-550a-5p expression P-value
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13

10
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4
23

Low

0.163

0.037%

The tumor size was classified by The Union for Interational Cancer Control (UICC) version

8."P < 0.05.
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Gene

POMC

EGR1

CXCL10

SERPINA1

OAS1

MYC
CXCR4

CXCL2
CHRDL1

GNAI

Full name

Pro-opiomelanocortin

Early growth response protein 1
C-X-C motif chemokine 10
Alpha-1 antitrypsin
2'-5'-oligoadenylate synthase 1

Myc proto-oncogene protein
C-X-C chemokine receptor type 4

C-X-C motif chemokine 2
Chordin-like protein 1

Guanine nucleotide-binding protein G(j) subunit
alpha-1

Synonyms

KROX24, ZNF225

INP10, SCYB10

AAT, PI

O1AS
BHLHE39

GRO2, GROB, MIP2A, SCYB2
NRLN1

Function

Regulation of cytokine-mediated pathway and signal
transduction

Transcriptional regulator. Regulation of cell survival,
proliferation and cell death

Pro-inflammatory cytokine that is involved in a wide
variety of processes such as chemotaxis, differentiation,
and activation of peripheral immune cells

Inhibitor of serine proteases
Regulation of interferon-gamma-mediated pathway
Activating the transcription of growth-related genes

Enhancing MAPK1/MAPKS activation and involving in
the AKT signaling cascade

Chemokine-mediated signaling pathway

Cell differentiation and negative regulation of BMP
signaling pathway

GTPase activity and regulation of cell cycle and cell
division
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Cancer type

NSCLC

NSCLC

NSCLC

SCLC

NSCLC
NSCLC

Melanoma
Melanoma
Various cancers

Agents

Pembrolizumab

Anti-PD-1 and
anti-PD-L1
Nivolumab and
ipilimumab
Nivolumab and
ipilimumab
Nivolumab
Nivolumab and
ipilimumab
Anti-CTLA-4
Nivolumab
Various
immunothera-
pies
Atezolizumab
Atezolizumab
Nivolumab

Methods

WES

MSKCC and
NGS

WES

WES

WES
FM and NGS

WES
WES
FM and NGS

FM and NGS
FM and NGS
WES

Threshold defined

200 mut

7.4 mut/Mb

158 mut

248 mut

>243 mut
>10 mut/Mb

100 mut
100 mut
20 mut/Mb

16 mut/Mb
>9.65 mut/Mb
>170 versus < 85 mut

RR

59% versus 12%

38.6% versus 25%

51% versus 13%

46.2% versus 21.3%

47 %versus 23%
45.3% versus 24.6%

58% versus 20%

31.9% versus 10.9%

PFS

NR versus
3.4 months

17.1 versus
3.7 months

7.8 versus
1.4 months

HR 0.62

7.1 versus
3.2 months

12.8 versus
3.3 months

3 versus 2 months

References

Rizvi et al., 2015

Rizvi et al., 2018

Hellmann et al., 2018a

Hellmann et al., 2018b

Carbone et al., 2017
Hellmann et al., 2018c

Snyder et al., 2014
Riaz et al., 2017
Goodman et al., 2017

Balar et al., 2017
Powles et al., 2018
Galsky et al., 2020

RR (relative risk), PFS (progression-free survival), NSCLC (non-small-cell lung cancer), SCLC (small-cell lung cancer), UC (urothelial cancer), PD-1 (programmed cell
death protein 1), PD-L1 (programmed cell death-ligand 1), CTLA-4 (cytotoxic T-lymphocyte-associated protein 4), WES (whole exome sequencing), NGS (next generation
sequencing), FM (foundation medicine), mut (mutation), HR (hazard ratio).
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Gene Logo,FC P value

DCN —0.65 0.031
EFNAT1 0.74 0.00016
EGFR —0.98 0.0036
ENO2 0.67 0.021
FAM162A 0.65 0.0021
MXI1 0.70 0.000013
NCAN —0.70 0.040
NDRG1 0.69 0.0031
P4HA1 0.70 0.00071
PGF 0.81 0.0022
PYGM 1.21 0.0058
SCARB1 0.66 0.0023
TPD52 0.89 0.0057

DEmRNA, differentially expressed messenger RNA.
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Tumor type

Glioblastoma

Ovarian cancer

Colorectal cancer

Hepatocellular
carcinoma

Osteosarcoma

Breast cancer

Gastric cancer
Cervical cancer

Head and neck
squamous cell
carcinoma

Retinoblastoma
Others cancers
(lung, bladder,
Kidney, skin,
thyroid)

Acute myeloid
leukemia

Renal cancer

Expression

Upregulated

Upregulated

Upregulated or
gradual loss

Upregulated

Upregulated

Upregulated

Upregulated
Upregulation

Upregulated

Upregulated
Upregulated

Downregulated

Downregulated

Role

Oncogene

Oncogene

Oncogene

Oncogene

Oncogene

Oncogene

Oncogene
Oncogene

Oncogene

Oncogene
Oncogene

Oncogene

Oncogene

Clinic relevance

High tumor grades

Poor clinical
parameters, poor
sunvival

No significance (based
on protein level);
advanced

cancer progression,
poor survival (based
on protein level)

Positive associated
with HBV-associated
HCC in patients with
higher AFP levels;
poor overall survival;
longer overall survival
in patients with HCC
resection

Unknown

High tumor grade,
poor tumor
progression and
prognosis

No significance

Increased diagnostic
accuracies
comparable to CEA

high tumor grade,
worse lymphatic
metastasis,

poor survival

Unknown
Unknown

Unknown

Unknown

Cell line

87, GSC83,
GSC528, GSC23

A2780, IGROV1,
SKOV3

HCT-116, HT-29,
KM12C, CaCo-2,
HCT-8, Colo206,
HCT-116, DLD-1,
WiDr, KM12SM,
SW480

Bel-7404, HopG2,
Bel-7402,
MHCCO7H,
MHCCOTL,
HepG2.2.15

U208, Rh30

MDA-MB231,
SKBR3

Hela, C33A, CaSki

CAL27, FaDu,
8CC-9

Unknown
JSC-1, BCBL1,
SUDHL-6, T24,
253J-BV, PC3,
KATOIIl, A375,
NUGCS, MKN7

Unknown

786-0

Function

Tumorigenicity,
proliferation,

cell growth,
self-renewal
Drug resistance,
apoptosis,
metastasis
Tumorigenicity,
prolferation,
metastasis,
adhesion,
invasion,
apoptosis

Colony formation;
prolferation,
migration;
invasion

Colony formation,
transformation,
proliferation,
migration,
invasion cell cycle,
apoptosis
Transformation,
proliferation,
apoptosis,
metastasis,
cellcycle

Colony formation,
prolferation,
apoptosis,
migration,
invasion,

cell cycle
Autophagy, cel
growth

Unknown

prolferation,
apoptosis

Unknown

Proliferation

Related gene

ETV1, NDE1

Bcl-2, MRP1, CD44

RBM4, MAP4K4,
JNK1, E-cadherin,
N-cadherin, B-catenin,
MCC, PKM, E2F1/7,
vimentin,

cyclins (D1/DJ/ET),
HIPK2, Bol-2

NEDDS, ARHGEF2,
14-3-3p, Ras, Foxod,
CCDC50S, HBX

CCND1,
miR-1908-5p, REST,
miR-132-3p,
miR-212-3p, YAP1,
NF-«B, NKIRAS2,
IL-3; PDCD4

p53; TDP4; PARS;
NUMB; HER2

P53, REST,
miR-132-3p, PLK1,
CCND1, FoxM1,
miR-212-3p, YAP1,
Cdc25B, IL-3

BECNT1, FoxOf1, Snail,
P65, N-cadheri,
hnRNP L

Unknown
MDM2/4, p21, BBC3

Caspase-8

Unknown
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