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Editorial on the Research Topic

Drug Repurposing for COVID-19 Therapy

The rapid emergence in December 2019 of cases of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection in China rapidly expanded to multiple countries leading to a pandemic
situation in March 2020 and dramatic changes worldwide. COVID-19 immediately had major health
consequences due to its severity, mainly in the population at risk, and to the lack of effective
treatment to ameliorate the prognosis of the disease. Indeed, SARS-CoV-2 infection causes
respiratory symptoms that range from mild forms to more serious ones, causing pneumonia,
and multi-organ damage. Moreover, the sudden appearance and rapid propagation of COVID-19
produced an unexpected socio-economic crisis and major efforts have been devoted by multiple
professionals to try to minimize the burden generated by this disease.

From the beginning of the pandemic, the scientific community made enormous efforts in order to
rapidly develop vaccines that prevent the propagation of the SARS-CoV-2 infection. These research
efforts result into an unprecedented success by reaching to the development of several efficient and
secure vaccines in a time record in the history of vaccine development. Standard adenoviral
approaches and novel mRNA strategies were used to successfully develop these novel vaccines
and now there are still two enormous challenges opened for reaching an efficient vaccination
campaign: the rapid distribution of these vaccines worldwide and the needs to raise awareness in the
population about the safety and essential requirement of these vaccines to fight the COVID-19
pandemic.

Simultaneously to the vaccine development, multiple scientific groups concentrate their activities
in an attempt to identify effective and safe pharmacological treatments against COVID-19. Indeed,
both vaccines and pharmacological treatments are complementary to avoid the transmission of the
viral infection and to prevent the severe consequences of the disease. In spite of the progress in
the vaccination campaigns, pharmacological interventions are still needed to treat patients suffering
the disease and to palliate the long-term consequences of the persistent forms of COVID-19. The
efforts of the research were mainly devoted to the identification of compounds with anti-SARS-CoV-
2 activity as well as drugs able to minimize the dramatic consequences of the exaggerated immune
response leading to the most severe forms of the disease. However, due to the urgent need for a rapid
development of pharmacological strategies, there was no time to start the long process required to
develop novel compounds for such purposes. Therefore, the dominant research strategy was
repurposing drugs for COVID-19 that were previously developed for other therapeutic purposes.

Research efforts of the scientific community were quickly translated in a large number of
publications, including those devoted to the development of pharmacological approaches. The large
majority of these publications met the rigorous criteria required for any prestigious scientific article.
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However, some few exceptions led to sound retractions that were
largely commented and discussed by the general media, which
emphasized once again the needs of the well-known rigorous peer
review process in any scientific publication.

In order to collect the best evidence about drugs repurposed
for COVID-19, we proposed and coordinated since May 2020 this
Research Topic.

Several articles published in this Research Topic are devoted to
antimalarial drugs that initially raised high expectancy due to
their potential anti-SARS-CoV-2 activity. This initial interest was
mainly focused on chloroquine and hydroxychloroquine,
although the important risks associated to these treatments
prompt overcome their potential benefits, as it is discussed
and well-documented in several articles (Ren et al.; Kamat and
Kumari; Manivannan et al.; Agarwal et al.; Younis et al; Uckun
et al; Lozano-Cruz et al.). Antiretroviral drugs used for the
Acquired Immunodeficiency Syndrome (AIDS) therapy, such
as lopinavir and ritonavir, as well as antiviral drugs used for
Ebola Viral Disease treatment, such as remdesivir, were also
initially repurposed for COVID-19 therapy. However, the high
expectancy for these drugs also promptly turned down
(Gagliardini et al; Li et al.), even if remdesivir is still one of
the few drugs approved by regulatory authorities for treatment of
patients with COVID-19. Other interesting approaches have also
been proposed as novel potential therapeutic strategies with
antiviral activity against SARS-CoV-2 including targeting the
sigma one receptor with selective or non-selective ligands,
such as the antipsychotic compounds (Stip et al; Vela),
modified ovalbumin (Liang et al.), methylene blue (Bojadzic
et al.), Bacillus Calmette-Guérin vaccine (Patella et al.),
vitamin D (Boulkrane et al.), vitamin C (Zhao et al.) and
compounds that may inhibit the binding of the viral spike
protein to ACE2 (Tsegay et al.).

It has been demonstrated that an exacerbated inflammatory
and immunological response to SARS-CoV-2 induces the most
severe cases of the disease. The excessive production of pro-
inflammatory cytokines may lead to a cytokine storm syndrome
that aggravates the respiratory distress. Several drugs have also
been repurposed in order to mitigate the dramatic consequences
of this cytokine storm syndrome. The efficient repurposing of a
particularly potent glucocorticoid drug, dexamethasone, that
has already well-demonstrated the efficacy for such a purpose is
discussed in this Research Topic (Gozzo et al.). Several
immunosuppressant and anti-rheumatic drugs (Rubsamen
et al; Soldevilla-Domenech et al; Mary et al; Cavalli et al;
Sarabia de Ardanaz et al.; Pala et al.), as well as modulators of
estrogen receptor activity (Calderone et al.) and the statins
(Vuorio et al.), have also been proposed as potential
therapies for the severe COVID-19 cases associated to this
cytokine storm. Due to the high prevalence of
thromboembolic complications that often appear mainly in

COVID-19 Therapy

the severe forms of COVID-19, the use of anticoagulants
including heparin has been proposed and the current
evidence for addressing this novel approach is also discussed
in this Research Topic (Gozzo et al; Drago et al.).

Multiple other cellular and molecular pathways have also
been suggested as additional possible targets for the repurposing
of drugs for COVID-19 therapy, as discussed in other articles
included in our topic (Hussman; Sarkar et al; Zhang et al;
Blaess et al.; Al-Motawa et al.; Chen et al.; Khan et al.; Bezemer
and Garssen; Sharma et al.; Zuo et al.; Xiong et al.; De Crescenzo
et al.). The therapeutic perspectives in particular high risk
populations, such as diabetic patients, have also been
discussed in this topic (Sun et al), as well as the new
challenges open for the diagnosis and
pharmacoepidemiological follow up of COVID-19 (Bianco
et al.; Shoaib et al.; Powell et al.).

Finally, several articles highlighted how the repurposing
process, as well as the approval of COVID-19 therapy in
general, has represented an enormous regulatory challenge
which forced the regulatory systems to rapidly adapt their
rules to the pandemic (Gozzo et al; Sultana et al; Andrade
et al.).

We believe that drug reuse has been an important attempt as
an emergency strategy in a serious situation that could recur in
the future. We cannot rule out that similar pandemics still
threaten people as long as globalization affects all human
activities. Therefore, we must consider the experience of drug
reuse for COVID-19 as extremely helpful in enriching our
experience in seeking therapeutic solutions when serious
global health hazards occur.
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INTRODUCTION

Male and female genders exhibit significant differences in the outcome of infective diseases caused
by several viral pathogens. Along with behavioral or social factors which can affect the exposure to
infection and the availability of therapies, it is widely accepted that genetic and physiological factors
can markedly influence sex-related differences in immune responses. In particular, receptors for
gonadal hormones are expressed in many immune cell types and, consistently, sex-related
differences in immune function are likely to be strongly influenced by circulating sex steroid
hormones (Klein and Huber, 2010).

Concerning coronaviruses, epidemiological data from SARS epidemic (severe acute respiratory
syndrome caused by SARS-CoV in 2002-2003) and MERS epidemic (Middle East respiratory
syndrome, caused by MERS-CoV in 2012-2013) showed evident sex-dependent differences in
disease outcome (Karlberg et al., 2004). Notably, such a sex-dependent difference is presently
observed in the new SARS pandemic, broken out in 2019 and caused by SARS-CoV-2 (COVID-19).
In particular, susceptibility to SARS-CoV-2 infection is almost similar in both genders, but higher
severity and mortality are observed in male patients (Wenham et al., 2020).

ROLE OF THE “CYTOKINE STORM” IN COVID-19

The previous severe acute respiratory syndromes caused by SARS-CoV and MERS-CoV were often
associated with rapid viral replication, huge infiltration of inflammatory cells, and excessive
production of proinflammatory cytokines (cytokine storm syndrome), leading to lung injury and
respiratory distress syndrome (Channappanavar and Perlman, 2017). Notably, accumulating
evidence demonstrates that cytokine storm syndrome is involved also in the most severe cases of
COVID-19 (Mehta et al., 2020). These patients rapidly develop respiratory distress syndrome, lung
edema and failure (often associated with hepatic, myocardial, and renal injury, hemostasis
alteration). Elevated levels of proinflammatory cytokines are observed in these patients. In
particular, compared with non-intensive care patients, intensive care patients have higher levels
of IL-2, IL-7, and TNF. Many cytokines detected in these patients belong to the Th17 type response
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(as previously observed in MERS-CoV and SARS-CoV patients).
The consequent IL-17-related pathway promotes broad pro-
inflammatory effects by induction of specific cytokines, such as
IL-1b, IL-6, TNF (responsible for systemic inflammatory
symptoms), chemokines and matrix metalloproteinases
(responsible for tissue damage and remodeling) (Wu and
Yang, 2020). Moreover, pro-inflammatory cytokines, including
IL-1b and IL-6, are directly induced by SARS-CoV-2 by
interaction between viral components (probably nucleocapsid
proteins) and toll like receptors of the host cells. Besides Th17
responses, patients diagnosed with COVID-19 showed marked
rise of the Th1 subset (inflammatory cytokines IL-1B, IL-6, and
IL-12) for more than 2 weeks after the infection onset (Russell
et al., 2020).

In turn, IL-6 induced by SARS-CoV-2 in the lung seems to
promote/amplify Th17 responses that may worsen the severe lung
pathology in susceptible hosts (Hotez et al., 2020). In fact, IL-6 plays
a crucial pathogenetic role in pulmonary injury induced by COVID-
19. Accordingly, elevated levels of IL-6, produced by monocytes,
lung interstitial fibroblasts, and alveolar macrophages, are observed
in critical patients (Sun et al., 2020). Such a crucial role of IL-6
provided the rational basis for considering anti-IL-6 monoclonal
antibodies (i.e. tocilizumab) as promising drugs for COVID-19
(Hotez et al., 2020).

ESTROGENS IN CYTOKINE REGULATION

The complex pathways of cytokine regulation may pave the way to
new pharmacological approaches aimed at limiting IL-6 expression
and cytokine storm. As reported above, COVID-19 outcomes show
clear gender-related differences; notably, gonadal hormones deeply
influence the immune response. Indeed, estrogen receptors (ERs)
regulate the expression of IL-6 gene through inhibition of
transcription factors NF-IL6 and NF-kB, and through disruption

of NF-kB transactivation (Luo and Zheng, 2016). As well, estradiol
(and probably progesterone) inhibits Th17 cell differentiation
(Chen et al., 2015). ERo activation in immune cells reduces Thl
and Th17 responses and skews cytokine production towards a Th2
type, with enhanced antibody response.

ER modulation has been proposed in a murine experimental
model of pulmonary inflammation as a useful pharmacological
strategy. In particular, ERa. are expressed in resident and
infiltrated inflammatory cells of the lungs and activation of
these receptors by estradiol markedly reduces the histological
and biochemical markers of inflammation. Notably, these effects
were observed in both male and female animals (Vegeto et al.,
2010). Protective effects of ER mediators were also observed in
murine models of pulmonary inflammation induced by influenza
virus infection (Vermillion et al., 2018). Consistently, estradiol
(Zhang and Liu, 2020) and other estrogen hormones (such as the
horse estrogen equilin) has been presently reviewed as an
alternative option for the treatment of COVID-19 (Suba, 2020).

SERMS AS POSSIBLE “ADJUVANT
DRUGS” IN COVID-19

Noteworthy, the protective effects evoked by endogenous
estrogens are also promoted by drugs belonging to the class of
SERMs (selective estrogen receptor modulators) (Polari et al.,
2018). These drugs exhibit a complex profile of mixed agonist/
antagonist modulators of the ER subtypes and their effects on
immune system and immune-mediated inflammatory responses
have been described (Behjati and Frank, 2009). Indeed, many
preclinical and clinical studies demonstrated that SERMs evoke
significant anti-inflammatory responses and inhibit the expression
of many proinflammatory cytokines, in different conditions of
systemic or local inflammation (Suuronen et al., 2005; Nalbandian
et al., 2005; Cerciat et al., 2010; Azizian et al., 2018).

ER-mediated effect:
inhibition of the expression of
IL-6 and proinflammatory
mediators.

CYTOKINE
STORM

ER-independent effect:
interference with the
processes of virus entry
into the host cell .

Ceeeuy

FIGURE 1 | Hypothesized mechanisms accounting for the potential effects of SERMs. (A) ERs regulate the expression of proinflammatory cytokines, such as IL-6,
by inhibition of the transcription factors NF-IL6 and NF-xB, and disruption of NFkB transactivation. (B) in experimental studies on established cell lines, some SERMs
have been reported to interfere with the processes of viral entry into the host cell and to inhibit different viral infections, including MERS-CoV, SARSCoV, and Ebola.
Potential interactions with viral glycoproteins and with host proteins involved in the viral infection have been hypothesized.
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Concerning coronavirus infections, a single preclinical study
investigated the role of sex hormones in shaping gender-related
vulnerability to SARS-CoV. In this study, male and female mice
were infected with murine-adapted SARS-CoV (Channappanavar
et al., 2017). Male mice were more vulnerable to SARS-CoV
infection compared to female mice. Such a higher susceptibility of
male mice to SARS-CoV was associated with higher viral titers,
enhanced vascular leakage, and alveolar edema. These changes were
also associated with elevated levels of inflammatory cytokines in
lungs of male mice. Ovariectomy or treatment of female mice with
an ER antagonist increased mortality, indicating a protective effect
for ER signaling in mice infected with SARS-CoV. In contrast,
treatment of female mice with SERMs (ie. tamoxifen) led to
increased levels of protection.

Moreover, beyond the effects of SERMs on ERs, these drugs
seem to present useful ancillary properties. Besides their
potential effects on proinflammatory cytokine expression
(mediated by ERs), some SERMs seem to play broader roles in
inhibiting viral replication by ER-independent mechanisms.
Indeed, in vitro studies on established cell lines reported that
some drugs of the SERM class interfere with processes of viral
entry into the host cell and inhibit different viral infections,
including MERS-CoV, SARSCoV, and Ebola virus. These effects
may be due to potential interaction with viral glycoproteins and
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with host proteins involved in the viral infection (Zhou
et al., 2020).

The hypothesized mechanisms of the potential effect of
SERMs are summarized in Figure 1.

CONCLUSION

Taken together, these data suggest that ER modulation may be a
suitable pharmacological approach for preventing/attenuating
the cytokine storm and inflammation associated with COVID-
19 and in particular the use of SERMs and/or “tissue selective
estrogen complex” (TSEC, i.e. association of SERM and natural
estrogen) may represent a promising pharmacological option.
Such a therapeutic approach would be particularly useful for
treatment of both male and female patients in early phase of the
disease (with mild/moderate symptoms), in order to prevent or
mitigate the possible evolution towards more serious and dangerous
forms of the disease, due to the onset of the cytokine storm.
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Cellular and Molecular Pathways
of COVID-19 and Potential Points
of Therapeutic Intervention

John P. Hussman*

Hussman Foundation, Ellicott City, MD, United States

With the objective of linking early findings relating to the novel SARS-CoV-2 coronavirus
with potentially informative findings from prior research literature and to promote
investigation toward therapeutic response, a coherent cellular and molecular pathway is
proposed for COVID-19. The pathway is consistent with a broad range of observed
clinical features and biological markers and captures key mediators of pathophysiology. In
this proposed pathway, membrane fusion and cytoplasmic entry of SARS-CoV-2 virus via
ACE2 and TMPRSS2-expressing respiratory epithelial cells, including pulmonary type-Ii
pneumocytes, provoke an initial immune response featuring inflammatory cytokine
production coupled with a weak interferon response, particularly in IFN-A-dependent
epithelial defense. Differentiation of non-classic pathogenic T-cells and pro-inflammatory
intermediate monocytes contributes to a skewed inflammatory profile, mediated by
membrane-bound immune receptor subtypes (e.g., FC)RIIA) and downstream signaling
pathways (e.g., NF-xkB p65 and p38 MAPK), followed by chemotactic infiltration of
monocyte-derived macrophages and neutrophils into lung tissue. Endothelial barrier
degradation and capillary leakage contribute to alveolar cell damage. Inflammatory
cytokine release, delayed neutrophil apoptosis, and NETosis contribute to pulmonary
thrombosis and cytokine storm. These mechanisms are concordant with observed clinical
markers in COVID-19, including high expression of inflammatory cytokines on the TNF-o/
IL-6 axis, elevated neutrophil-to-lymphocyte ratio (NLR), diffuse alveolar damage via cell
apoptosis in respiratory epithelia and vascular endothelia, elevated lactate dehydrogenase
(LDH) and CRP, high production of neutrophil extracellular traps (NETS), depressed
platelet count, and thrombosis. Although certain elements are likely to be revised as
new findings emerge, the proposed pathway suggests multiple points of investigation for
potential therapeutic interventions. Initial candidate interventions include prophylaxis to
augment epithelial defense (e.g., AT1 receptor blockade, type Il and type | interferons,
melatonin, calcitriol, camostat, and lopinavir) and to reduce viral load (e.g., remdesivir,
ivermectin, emetine, Abelson kinase inhibitors, dopamine D2 antagonists, and selective
estrogen receptor modulators). Additional interventions focus on tempering inflammatory
signaling and injury (e.g., dexamethasone, doxycycline, Ang1-7, estradiol, alpha blockers,
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and DHA/EPA, pasireotide), as well as inhibitors targeted toward molecular mediators of
the maladaptive COVID-19 immune response (e.g., IL-6, TNF-a, IL-17, JAK, and CDKO9).
Keywords: COVID-19, immunity, therapeutics, signal transduction, cytokines

INTRODUCTION and capillary leakage contribute to alveolar cell damage.

COVID-19 is a severe acute respiratory disease caused by the
novel coronavirus SARS-CoV-2, which emerged in Wuhan,
China in late 2019, quickly becoming a global pandemic, with
over 10 million reported cases and 500,000 fatalities attributed to
the disease through June 2020. Much of the response to the novel
coronavirus has relied, by necessity, on a broad range of early
reports relating to clinical features, biological markers, and
candidate therapeutics. At the same time, many characteristics
of the SARS-CoV-2 coronavirus and the acute respiratory distress
produced by severe cases of COVID-19 infection mirror those
observed in earlier coronavirus outbreaks, including SARS (severe
acute respiratory syndrome, caused by SARS-CoV) and MERS
(Middle-East respiratory syndrome, caused by MERS-CoV).
Other conditions with informative overlap include ARDS
(acute respiratory distress syndrome, resulting from pulmonary
edema) and dengue hemorrhagic fever (DHF), which features
severe and often fatal secondary immunopathology following
dengue virus infection (Kurane, 2007) involving rapidly
elevated cytokine expression, pulmonary edema, and acute
respiratory failure.

The SARS-CoV-2 epidemic has emerged in the context of a
rich existing literature detailing aspects of cellular and molecular
pathways affected by prior CoV serotypes and related conditions.
Much of the emerging literature specific to SARS-CoV-2 not
only is strongly consistent with these findings but also features
informative differences, particularly in lung tissue (e.g., weaker
type IIT and type I interferon response, suppressed epithelial
defense, and elevated pulmonary infectivity).

With the objective of linking early findings relating to the novel
SARS-CoV-2 coronavirus with potentially informative findings
from prior research literature and to promote investigation toward
therapeutic response, a coherent cellular and molecular pathway is
proposed for COVID-19. The pathway is consistent with a broad
range of observed clinical features and biological markers and
captures key mediators of pathophysiology.

In this proposed pathway, membrane fusion and cytoplasmic
entry of SARS-CoV-2 virus via ACE2 and TMPRSS2-expressing
respiratory epithelial cells, including pulmonary type-II
pneumocytes, provokes an initial immune response featuring
inflammatory cytokine production coupled with a weak
interferon response, particularly in IFN-A-dependent epithelial
defense. Differentiation of non-classic pathogenic T-cells and
pro-inflammatory intermediate monocytes contributes to a
skewed inflammatory profile, mediated by membrane-bound
immune receptor subtypes (e.g., FcyRIIA) and downstream
signaling pathways (e.g., NF-xB p65 and p38 MAPK), followed
by chemotactic infiltration of monocyte-derived macrophages
and neutrophils into lung tissue. Endothelial barrier degradation

Inflammatory cytokine release, delayed neutrophil apoptosis,
and NETosis contribute to pulmonary thrombosis and
cytokine storm. These mechanisms are concordant with
observed clinical markers in COVID-19, including high
expression of inflammatory cytokines on the TNF-o/IL-6 axis,
elevated neutrophil-to-lymphocyte ratio (NLR), diffuse alveolar
damage via cell apoptosis in respiratory epithelia and vascular
endothelia, elevated lactate dehydrogenase (LDH) and C-reactive
protein (CRP), high production of neutrophil extracellular traps
(NETs), depressed platelet count, and thrombosis.

Although certain elements are likely to be revised as new
findings emerge, the proposed pathway suggests multiple points
of investigation for potential therapeutic interventions. These
include prophylaxis to augment epithelial defense, reduce viral
load, and temper inflammatory injury, as well as therapeutics
targeted toward molecular mediators of the COVID-19
immune response.

CLINICAL FEATURES

Among patients with COVID-19 infection, cellular biomarkers
in severe cases include elevated leukocyte and neutrophil
counts, along with suppressed lymphocyte count, resulting in
a significantly higher NLR ratio relative to non-severe cases
(Huang C. et al., 2020; Qin et al., 2020). In a meta-analysis of
nine studies including 1779 patients, 399 with severe disease,
low platelet count was significantly associated with disease
severity and mortality. Platelet count (thrombocytopenia)
below the locally defined reference range is associated
with a five-fold increase in the risk of severe disease (Lippi
et al., 2020).

Molecular biomarkers of severe disease include elevated
procalcitonin, serum ferritin, D-dimer, C-reactive protein
(CRP), and inflammatory cytokines including IL-6, IL-2R, IL-
7, IL-8/CXCL8, IP10, MCP-1/CCL2, MIP1A/CCL3, GM-CSF,
and TNF-q, as well as IL-10 (Huang C. et al., 2020; Qin et al,,
2020). However, the level of IL-10, a negative regulator of
immune response, is reported to vary with COVID-19 severity
and progression, with lower initial levels and subsequent decline
associated with milder cases and possibly more successful viral
clearance (Ouyang et al., 2020). Fast respiratory rate and elevated
levels of lactate dehydrogenase (LDH), a marker of cell death,
also predict severity (Huang H. et al., 2020).

Elevated inflammatory markers including IL-6, CRP,
procalcitonin (PCT), and erythrocyte sedimentation rate (ESR)
are observed in fatal cases (Zeng et al., 2020). Fatal acute lung
injury is associated with T-lymphocyte dysregulation and
cytokine-driven inflammation (Qin et al, 2020), with diffuse
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pulmonary thrombosis and damage to endothelial cells (Poor
et al., 2020).

In examination of postmortem tissue from all major organs of
COVID-19 subjects, the primary finding is diffuse alveolar
damage (DAD), featuring marked infection and viral burden in
type II pneumocytes, along with pulmonary edema (Bradley
et al., 2020; Carsana et al., 2020). CT examination is reported to
have high diagnostic value, with multiple ground glass opacities
being a prominent feature of disease progression (Li and
Xia, 2020).

COVID-19 features infiltration of macrophages into lung
tissue, with apoptosis of epithelial cells and pneumocytes.
Infiltration of macrophages into alveolar cavities may be
induced by MCP-1, with TGF-B1 and TNF-o. contributing to
proliferation and amplified cytokine production (He et al., 2006).
Markers of infiltration include the neutrophil chemokine
receptor CXCR2, along with monocyte chemotactic protein
MCP-1/CCL2 and its receptor CCR2. Genes upregulated in
severe and critically ill patients are enriched with members
belonging to the NF-xB pathway (Hadjadj et al., 2020).
Increased expression of TGF-beta in COVID-19 patients may
promote fibroblast proliferation and contribute to pulmonary
fibrosis (Xiong et al., 2020).

Several comorbid conditions are cited as risk-factors for
progression and case fatality, including age, diabetes, vascular
disease, cardiac dysfunction, hypertension, and cancer (Wu and
McGoogan, 2020). Fever is the most common initial symptom,
followed by cough, with maximum body temperature at
admission, respiratory rate, CRP, and albumin significantly
associated with progression in severity (Liu W. et al, 2020).
Gastrointestinal symptoms are also reported but with lower
frequency than in SARS or MERS (Ge et al., 2020).

The conditions associated with severe COVID-19 are not
accurately described as “compromised immunity.” Among
5700 hospitalized patients in the New York area with
confirmed disease, the most frequent comorbidities reported
were hypertension (56.6%), obesity (41.7%), diabetes
(33.8%), and coronary artery disease (11.1%) (Richardson
et al., 2020), all of which may be better described as
conditions featuring predisposition to inflammation. Indeed,
several key inflammatory cytokines associated with
hypertension (TNF-o, MCP-1, and IL-6) (De Miguel et al,
2015) overlap those elevated in COVID-19.

ACE2-MEDIATED VIRAL ENTRY AND
PRIMING OF INFLAMMATORY RESPONSE

Like the SARS coronavirus, the novel SARS-CoV-2 virus uses
membrane-bound ACE2 to gain access to cells. ACE2 functions
as an enzyme within the renin-angiotensin system (RAS),
contributing to the regulation of blood pressure, fluid balance,
and vasoconstriction. Angiotensin I (Ang I) generated by renin
cleavage is converted by angiotensin-converting enzyme ACE to
produce Ang II, which in turn activates ATIR receptors,
contributing to increased blood pressure, vasoconstriction,

oxidative stress, and pro-inflammatory signaling. The ACE2
enzyme has high affinity for Ang II, producing Ang(1-7).
ACE2 thereby antagonizes the effects of Ang II and exerts a
protective effect in conditions such as diabetes, hypertension, and
cardiovascular disease (Cheng et al., 2020). Notably, elevated
levels of Ang II are observed in ACE/ARB naive COVID-19
cases, and high levels are associated with increased severity (Liu
N. et al., 2020).

Initial genetic evidence of ACE2-mediated entry by SARS-
CoV demonstrated that injection of spike protein in mice
contributed to acute lung failure in mice and down-regulation
of ACE2 expression. Inhibition of AT1R reduced lung pathology
by blocking the effect of Ang II (Kuba et al., 2005). Notably,
ACE2 is abundantly expressed on lung alveolar cells and
enterocytes of the small intestine and is also present in
vascular endothelia (Hamming et al., 2004), consistent with
initial presentation of symptoms and sites of subsequent
tissue damage.

SARS-CoV-2 viral entry is also dependent on priming of the
viral S protein by the serine protease TMPRSS2, which may be
partially blocked in some cell types by the serine protease
inhibitor camostat mesilate. Full blockade was reported when
camostat inhibition of TMPRSS2 was combined with an
inhibitor of endosomal cysteine proteases cathepsin B/L
(Hoffmann et al., 2020).

Despite exploitation of RAS by SARS-CoV-2, clinical
evidence does not support the discontinuation of ACE-
inhibitors or ATIR blockers (ARBs) as a strategy to limit
infection, particularly as both types of inhibitors act to reduce
the hypertensive and pro-inflammatory effects of Ang II. In
SARS-CoV-2 infection, virus-induced ACE2 downregulation
would be expected to lead to reduced production of Ang(1-7)
and accumulation of Ang II, contributing to pulmonary edema
and inflammation (Verdecchia et al., 2020).

Initial reports showed mixed evidence of clinical benefit of
ACE inhibitors and AT1R blockers (ARBs) in COVID-19, with
some showing insignificant effect (Peng et al., 2020; Richardson
et al., 2020), as well as reports of protective effect among patients
with pre-existing hypertension (Liu Y. et al., 2020; Yang et al.,
2020). In a recent meta-analysis of five studies, the odds of death
were reduced by a statistically significant 43% among 308
COVID-19 patients using ACE/ARB medications, compared
with 1,172 patients not using ACE/ARB medications. A non-
significant 19% reduction in the odds of hospitalization among
users was also observed (Ghosal et al., 2020). In a separate, larger
study of 610 cases and 48,667 high-coverage population-based
controls, individuals with hypertension using ARBs were
reported to have a 76% lower likelihood of developing
COVID-19. However, a similar effect was not reported for
ACE inhibitors (Yan et al., 2020).

Apoptosis of alveolar epithelial cells relies on autocrine
generation of Ang II, while Ang(1-7) inhibits apoptosis
through the Ang(1-7) receptor (Uhal et al.,, 2011). Exogenous
delivery of Ang(1-7) is reported to reduce inflammation and
improve lung function in ARDS models (Wosten-van Asperen
et al,, 2011). Recombinant ACE2 is also reported as a potentially
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useful therapy in clinical studies of ARDS, producing a rapid
decrease in plasma Ang II levels, as well as reduced IL-6
expression (Imai et al., 2007; Zhang and Baker, 2017).

PRO-INFLAMMATORY IMMUNE
RESPONSE INITIATED BY TYPE-II
ALVEOLAR PNEUMOCYTES

The innate pro-inflammatory response to SARS-CoV-2 infection
in the lower respiratory tract may be most directly mediated by
type-II alveolar pneumocytes, which highly express ACE2. Type-
II pneumocytes act as epithelial immune cells and are capable of
producing TNF-q, IL-6, IL-1B, MCP-1, and GM-CSF. Infected
ACE2+ lung cells, but not uninfected cells, produce high levels of
pro-inflammatory cytokines (Wong and Johnson, 2013). The
age-related expression profile of ACE2 in uninfected human lung
tissue is distinct from that in other ACE2-expressing tissues,
showing a positive correlation with immune-cell and interferon-
response marker genes in older individuals (>49 years) and a
negative correlation in younger individuals (Li et al., 2020).

Local inflammatory cytokine expression in lung tissue of
severe CoV infection may differ from that observed in
circulating blood. SARS-CoV single-strand RNA is reported to
provoke high production of pro-inflammatory TNF-a, IL-6, and
IL-12 cytokines via activation of TLR7 and TLR8 (both highly
expressed in lung tissue), amplifying the innate immune response
(Lietal., 2013). Alveolar type-II cells are preferentially infected by
SARS-CoV, resulting in the production of pro-inflammatory
cytokines, with mRNA encoding IL-6 elevated approximately
10-fold in infected type-II cultures. In contrast, monocytes,
monocyte-derived dendritic cells, and alveolar macrophages are
not readily infected by SARS-CoV in culture and produce
comparatively weak interferon and cytokine levels in response
to viral exposure (Qian et al., 2013).

Likewise, the SARS-CoV-2 spike protein is a potent T-cell
antigen, and direct activation of COVID-19 patient-derived
peripheral blood mononuclear cells (PBMCs) by SARS-CoV-2
peptides in culture results primarily in production of T helper 1
(Th1)-related cytokines. However, IL-6 production is not
observed in stimulated PBMCs. This finding suggests that
direct antigen-specific T-cell activation may not induce
production of IL-6 and that it may instead be mediated by
innate immune cells (Weiskopf et al., 2020).

Based on intracellular cytokine staining, peripheral CD14
+CD16+ monocytes are also implicated in the production of
inflammatory cytokines in COVID-19 (Zhou et al., 2020).
However, based on single-cell RNA sequencing of peripheral
blood mononuclear cells (PBMCs) from seven COVID-19 cases
and six healthy controls, peripheral monocytes and lymphocytes
were not found to express substantial amounts of pro-
inflammatory cytokines, suggesting that circulating leukocytes
do not sufficiently account for COVID-19 cytokine storm (Wilk
et al., 2020).

Such expression findings should be interpreted cautiously,
as transcripts of many key immune genes demonstrate greater

variation and transcription bursts than other genes (Gaublomme
et al,, 2015). Still, it appears likely that the cytokine storm
observed in severe COVID-19 is mediated primarily by type II
alveolar cells and local retention of blood cells that have migrated
from peripheral circulation to infiltrate lung tissue.

INDUCTION OF NON-CLASSIC TH1 CELLS
AND INTERMEDIATE CD14+CD16+
MONOCYTES

SARS-CoV-2 infection produces rapid activation of pro-
inflammatory blood cell lineages. CD4+ Thl lymphocytes co-
expressing IFNyand GM-CSF are reported almost exclusively in
ICU patients with COVID-19, with relative absence of these cells
in non-ICU patients and healthy controls. The percentage of
CD14+CD16+ monocytes is also much greater in ICU patients
with severe pulmonary complications. Pathogenic Thl cells
(GM-CSF+IFNy+) are associated with increased proliferation
of inflammatory CD14+CD16+ intermediate monocytes
expressing both GM-CSF and IL-6. These contribute to the
risk of inflammatory cytokine storm (Zhou et al., 2020).

Pathogenic GM-CSF+IFNy+ Thl cells have been described in
inflammatory disease as “non-classic” Th1 cells (or “Th17/Th1”
cells) and have been studied in conditions such as multiple
sclerosis and juvenile rheumatoid arthritis. These CCR6+
Th17-derived cells have an intermediate gene expression
profile between Thl and Thl17, with weaker suppression of
Th17-associated genes RORC2 and IL-17A than classic Thl
cells (Mazzoni et al., 2019). Th17 lymphocytes have an
unstable phenotype and rapidly shift to a more aggressive non-
classic Thl phenotype in the presence of IL-12 and TNF-o.
Inhibitors of TNF-o abrogate this transition (Cosmi et al., 2014).
One of the earliest case reports of COVID-19 implicated an
increased concentration of CCR6+ Th17 cells as a driver of
severe respiratory damage (Xu et al, 2020). The potential
therapeutic use of IL-17 inhibitors in COVID-19 has been
proposed (Pacha et al., 2020).

The transcription factor Eomes, induced by the combined
activity of IL-2 and IL-12, favors the induction of non-classic
Thl cells by selectively suppressing the expression of genes
involved in Th17 differentiation. Knockdown of Eomes can be
induced by tamoxifen (which also functions as a selective
estrogen receptor modulator having tissue-dependent effects as
a mixed agonist/antagonist) (Mazzoni et al., 2019). Non-classic
Th1 cells are more pathogenic than Th17 cells (Kotake et al,
2017). The preferential induction of these cells is notable, as a
comparison of gene expression between severe and non-severe
COVID-19 patients reported that, in severe cases, the most
significant biological function among differentially expressed
genes (DEGs) having downregulated expression was the Th17
cell differentiation pathway (Ouyang et al., 2020).

Intermediate monocytes express the surface molecule
CD14 and CD16, which encodes the FcyIII receptor. CD14+
CD16+ intermediate monocytes produce high levels of pro-
inflammatory TNF-o, coupled with low-to-absent levels of
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anti-inflammatory IL-10 and have high antigen-presenting
capacity. Elevated CD14+CD16+ cells are associated with
increased ESR and C-reactive protein (CRP) levels (Ziegler-
Heitbrock, 2007). Among monocytes, the highest expression
of TNF-o receptor TNFR1 is observed in CD14+CD16+ cells
(Hijdra et al., 2013). These monocytes can be mobilized
under stress conditions, which may include, but are not
dependent on, catecholamine release (Steppich et al., 2000).

Males are reported to have a significantly higher risk of
mortality and mechanical ventilation than females in COVID-
19, both before and after age-matching (RR, 1.4; 95% CI, 1.2-1.7)
(Singh et al.,, 2020). In this context, it is notable that CD14+
monocytes and monocyte-derived macrophages deprived of 17
beta-estradiol express higher levels of CD16, with significant
increases in TNF-a, IL-1B, and IL-6 production due to the
absence of estrogen (Kramer et al, 2004). Additional factors
potentially affecting gender differences in COVID-19 include
androgen-mediated transcription of TMPRSS2 and X-linked
effects (Wambier and Goren, 2020), as ACE2, androgen
receptor, and TLR7 loci are all situated on the X chromosome.

The effects of CD14+CD16+ monocytes in elevating cytokine
production and NLR ratios have been studied in other
conditions. CD14+CD16+ cells are the preferential targets of
Zika virus infection, with amplified proliferation of these cells
and a reduction in the percentage and number of classical CD14
+CD16- monocytes (Michlmayr et al., 2017). In acute leukemia,
CD14+CD16+ monocytes are positively correlated with
neutrophil proliferation and negatively correlated with CD4+
lymphocyte count (Jiang et al., 2015). Rheumatoid arthritis is
characterized by preferential activation of intermediate CD14
+CD16+ monocytes, which contribute to pathogenesis through
the production of inflammatory cytokines including TNF-o, IL-
1B, and IL-6 (Rana et al., 2018). In patients with type-1 diabetes,
CD14+CD16+ monocyte production of IL-1f3 and IL-6 similarly
contribute to pro-inflammatory pathology (Hamouda
et al., 2019).

SKEWED INFLAMMATORY CYTOKINE
PRODUCTION MEDIATED BY FC AND TLR
RECEPTORS

Several membrane-bound proteins may contribute to the
skewed inflammatory response, elevated cytokine production,
and depressed platelet count observed in severe COVID-19. Fc
receptors are cell surface proteins that mediate the phagocytosis
and cytotoxic destruction of antibody-bound pathogens. Toll-like
receptors (TLRs) are pattern-recognition receptors that participate
in the innate immune response to extracellular pathogens.
Fc)RIITA (CD16) expression by monocytes is essential for
antibody-dependent cellular toxicity (ADCC), which makes
antibody-bound targets, such as virus infected cells, vulnerable
to TNF-o-mediated cell death (Yeap et al., 2016). Meanwhile,
the monocyte surface molecule CD14 cooperates with TLR2 in
response to viral infection, activating nuclear factor-xB (NEF-

kB)-dependent transcription of genes encoding inflammatory
cytokines, which may be inhibited via blockade of TLR2-
mediated signaling (Zhou et al., 2010). Expression of TLR2 in
monocytes is upregulated by IL-6 (Pons et al., 2006). Activation
of TLR2 by SARS-CoV spike protein induces the production of
inflammatory cytokines, including IL-6, IL-8, and TNF-o (Wang
et al., 2007).

In addition to NF-«B activation, CD14-positive monocytes in
SARS-CoV patients show an increase in phosphorylated
mitogen-activated protein kinase MAPK p38. Augmented p38
MAPK activation in CD14 cells is associated with elevated IL-8
levels (Lee C. H. et al., 2004). The p38 MAPK signaling pathway
is also implicated in the death of SARS-CoV-infected cells
(Mizutani, 2007).

Given the observed proliferation of CD14+CD16+
intermediate monocytes in COVID-19 patients with
severe pulmonary distress, it is possible that differential
activation of Fcy receptor subtypes, particularly FcyRIIA
(inflammatory) and FcyRIIB (inhibitory), may contribute to an
imbalanced inflammatory response. SARS macaque models
produce skewed inflammatory cytokine production (including
chemoattractants IL-8 and MCP-1) and absence of wound-
healing similar to that observed in fatal human cases. Blockade
of FcyRIIA reduces these effects (Liu et al., 2019). TNF-o and IL-
10 synergistically upregulate FcYRIIA expression, while TNF-o.
downregulates FcyRIIB expression (Liu et al., 2005).
Accordingly, TNF-o inhibition has been suggested as a
potential therapeutic in SARS-CoV (Tobinick, 2004).
Interestingly, the inhibitory FcyRIIB subtype is selectively
upregulated in dendritic cells from RA patients with quiescent
disease (Wenink et al., 2009).

Blockade of FcR activation via IVIG has been suggested for
severe pulmonary inflammation and lung injury in SARS-CoV-2
(Fu et al., 2020). The anti-inflammatory effect is associated with
its ability to recruit surface expression of the inhibitory Fc
receptor FCyRIIB (Samuelsson et al., 2001). Among potentially
repurposed therapeutics, IVIG is not without dangers (renal
failure, thrombosis), and effectiveness is not established in MERS
(Mustafa et al., 2018). Alternatively, human polyclonal
immunoglobulin G from bovines has been reported to inhibit
MERS-CoV in vivo (Luke et al., 2016).

Because depressed platelet count and dysregulated immune
function is observed in COVID-19, the mediating role of Fcy
receptors in immune thrombocytopenia (ITP) may also be
informative. In ITP, loss of self-tolerance to platelet protein
leads to destruction of platelets and precursor megakaryocytes by
binding of platelets to Fc receptors on macrophages. The
inhibitory FcyRIIB receptor subtype (FCGR2B) prevents
consumption by macrophages. Exogenous soluble Fc)RIIB
competitively binds antibody-bound platelets (Luke et al,
2016) and prevents autoantibody production (Shih et al,
2014). In contrast, Fc)RIIA (FCGR2A) significantly aggravates
the severity of antibody-mediated thrombocytopenia (McKenzie
et al., 1999). Blocking Fc)RIIIA (CD16) has also been shown to
reduce ITP in mouse models (Flaherty et al., 2012).
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In addition to viral entry via ACE2, antibodies against
coronavirus spike proteins (anti-spike-S-IgG) can induce
antibody-dependent enhancement (ADE) of viral entry via type
II Fcyreceptors. Such enhancement has been studied in SARS-CoV
infection (Wang et al., 2014) and appears to be dependent on the
activation of Fcy receptor II. Among FcR subtypes, FcyRIIA
(CD32A) appears to mediate infectivity most efficiently (Jaume
etal,,2011). In MERS-CoV, neutralizing antibodies can bind to the
spike protein and enable alternative entry into FcyRIIA expressing
cells (Wan et al, 2020). Accordingly, care in the selection of
antigens is essential in the design of vaccine and antibody-based
therapeutic strategies in order to avoid the potential for ADE.

Risk-genotypes associated with severe inflammatory pathology
may be informative in the context of COVID-19. The FcyRIIA-R/
R131 (rs1801274) genotype induces variation in the FcyRIIA
receptor, while the CD14-159CC (rs2569190) genotype induces
variation in CD14-mediated pro-inflammatory cytokine
induction. Both are risk-genotypes for severe SARS (Yuan et al.,
2005; Yuan et al., 2007) as well as aberrant immune response in
pneumonia (Yuan et al., 2005), myasthenia gravis (van der Pol
et al., 2003; Aricha et al., 2011), and acute asthma (Martin et al.,
2006; Zhou et al., 2019).

NEUTROPHIL INDUCTION AND LUNG
INFILTRATION

Severe SARS-CoV-2 infection is characterized by high neutrophil
infiltration into lung tissue. In a study of 222 COVID-19 patients,
disease severity was associated with significantly higher levels of
both anti-virus IgG (IgG) and NLR ratio. Severity rates for
patients with NLRM&"gG"8" NLRM&"IgGo", NLRVIgGMe",
and NLR"*"IgG'" phenotypes were 72.3, 48.5, 33.3, and 15.6%,
respectively (p < 0.0001). Recovery rates for severe patients with
these phenotypes were 58.8, 68.8, 80.0, and 100%, respectively
(p = 0.0592). Notably, high NLR patients expressed the highest
levels of IL-2, IL-6, and IL-10, with fatalities observed only in
these patients (Zhang et al., 2020Db).

Neutrophils comprise the majority of infiltrating cells into
tissues undergoing inflammation. Transcriptional analysis of
genes induced by SARS-CoV-2 features a host response
characterized by weak induction of type I and type III
interferons, coupled with enrichment of genes associated with
cell death, leukocyte activation, and chemokine recruitment,
including IL-1A, MCP-1 (CCL2), and IL-8 (CXCL8) (Blanco-
Melo et al., 2020). In ARDS, MCP-1 and IL-8 induce chemotaxis
of pro-inflammatory neutrophils into the lungs, where they
are retained in the capillary bed and migrate into the alveolar
space, contributing to cytokine production, formation of
microthrombi, and cell death. GM-CSF, IL-8, and IL-2
contribute to delayed apoptosis, prolonging the amplified
inflammatory response. In animal models of neutrophil-driven
lung injury, cyclin-dependent kinase (CDK) inhibitors are
reported to reduce inflammation and improve resolution by
inducing neutrophil apoptosis (Potey et al,, 2019). CDK9 is
specifically implicated in this process (Wang et al., 2012).

Neutrophils can target pathogens and create a physical barrier
to their migration by releasing NETs comprised of mesh-like
extracellular DNA. NETs are observed at high levels in COVID-
19 patients. Patient sera induce healthy control neutrophils to
undergo NETosis. However, NETs may contribute to cytokine
release and progression to respiratory failure (Zuo et al., 2020)
and contribute to thrombosis via platelet-neutrophil interaction
(Laridan et al., 2017).

ADHESION AND TISSUE RETENTION OF
INFLAMMATORY LEUKOCYTES

The pathological inflammatory response observed in COVID-19
may be mediated by adhesion of hyperactivated and aggressive
T-cells, monocytes, and neutrophils retained from peripheral
circulation by vascular endothelia. Endothelial barrier
degradation, capillary leakage, and extravasation into inflamed
tissue may then contribute to the DAD observed in severe cases.

Phenotypic profiling of circulating leukocytes in critical
COVID-19 patients indicates high activation of S-protein
specific T-cells producing inflammatory cytokines, coupled with
depletion of CD4+ and CD8+ T-cells expressing the LFA-1
integrin subunit CD11a. Conversely, recovery from respiratory
distress is accompanied by a reversal of CD11a+ cell depletion
(Anft et al., 2020). Hyperactivated T-lymphocytes and
inflammatory macrophages recruited by chemokine signaling to
lung tissue exhibit strong interaction with epithelial cells,
contributing to increased cell death and lung injury. Elevated
markers of immune cell trafficking in COVID-19 include MCP-1
and LFA-1. As monocyte recruitment and epithelial damage can
be induced by binding of MCP-1 to ligands CCR1 or CCR5,
blockade of these ligands has been suggested as a potential
therapeutic approach (Chua et al., 2020).

Adhesion of inflammatory CD14+CD16+ monocytes and
neutrophils to vascular endothelia is mediated by interaction of
LFA-1 with its ligand, intercellular adhesion molecule ICAM-1.
Inflammatory cytokines IL-1 and TNF-o induce ICAM-1
expression on endothelial cells. Expression of ICAM-1 selectively
enhances adhesion of inflammatory non-classical and intermediate
CD16+ monocytes under flow, with no effect on CD16- monocytes
(Regal-McDonald et al., 2019). Docosahexaenoic acid (DHA) is
reported to inhibit TNF-o-induced ICAM-1 expression (Lin H. C.
et al., 2019), with similar inhibition of ICAM-1 expression reported
for eicosapentaenoic acid (EPA) in aortic endothelia (Huang
et al., 2015).

ICAM-1 facilitates cytokine-induced adhesion of neutrophils
to vascular endothelia (Tonnesen, 1989). Notably, upregulation of
ICAM-1 expression and inflammatory leukocyte recruitment is
observed in ARDS (Miiller et al., 2002) and respiratory syncytial
virus (RSV) disease (Arnold and Konig, 2005). Similar
upregulation is observed in Ang II-induced macrophage
infiltration and cardiovascular pathology, which is ameliorated
by ICAM-1 blockade (Lin Q. Y. et al., 2019). Blockade of ICAM-1
is also reported to markedly reduce pulmonary barrier damage in
ARDS (Svedova et al., 2017).
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Extravasation of CD14+CD16+ intermediate monocytes is
mediated by secretion of MMP-9, a protease that degrades
extracellular matrix proteins, resulting in the release of matrix-
bound VEGF-A and increased vascular membrane permeability
(Sidibe et al.,, 2018), In COVID-19 patients with respiratory
failure, a significant increase is observed in circulating MMP-9,
strongly correlated with neutrophil count (Ueland et al., 2020).

COVID-19 respiratory failure thus features co-expression of
inflammatory cytokines with regulators of leukocyte recruitment
and vascular integrity. This suggests a mechanism by which
inflammatory leukocytes may degrade the alveolar-capillary
barrier, with resulting destruction of lung tissue. Notably,
electron microscopy of post-mortem lung tissue reveals
extensive opening of junctional complexes. Hyperalbuminemia
in severe COVID-19 patients, consistent with vascular
permeability and capillary leakage, is strongly associated with
mortality (Wu M. A. et al., 2020).

The potential importance of this mechanism in COVID-19
pathology is underscored by transcriptional and proteomic
profiling. In bronchial epithelial cells infected with SARS-CoV-
2, DEGs are enriched for members of pathways related to NF-xB,
TNF-0, and IL-17 signaling. Specific genes shared by these
pathways include MMP9, ICAM1, CSF3, and IL6 (Enes and
Pir, 2020). A protein-protein interaction network of DEGs
shared between COVID-19, MERS, SARS, HINI, and Ebola
identifies ICAM1, VEGFA, MMP?9, IL6, TNF, IL-8, IL1B, STATI,
TLR2, TLRI1, IRF7, and CXCLI as hub genes (Alsamman and
Zayed, 2020). Proteomic profiling of blood samples from
COVID-19 patients identifies ICAM-1 and FCGR3A (CD16)
as the most significant proteins in the classification of short vs.
extended disease course (Tang). Likewise, in post-mortem lung
tissue, IL-6, TNF-o,, ICAM-1, and CASP-1 (an activator of
inflammatory response and cell death) show significantly
higher tissue expression, compared with control and HIN1
samples (Nagashima et al., 2020).

Although SARS-CoV-2 infection in pediatric cases is generally
associated with asymptomatic resolution, a perplexing minority
of children present with Kawasaki disease (KD)-like features,
alternatively described as multisystem inflammatory syndrome
(MIS). These patients present with high inflammatory markers,
early gastrointestinal symptoms, and acute myocarditis, with
therapeutic immune globulin reportedly contributing to
recovery (Toubiana et al, 2020; Belhadjer et al., 2020). These
cases may potentially be understood in the context of the
same mechanisms of inflammatory leukocyte infiltration
implicated above.

Specifically, acute KD is associated with increased
proliferation of CD14+CD16+ intermediate monocytes
(Katayama et al., 2000), while diminished inflammation in
response to plasma exchange therapy is associated with a
significant reduction in the percentage of CD14+CD16+
intermediate monocytes, relative to total leukocytes (Koizumi
et al., 2019). The acute phase of KD also features transient
depletion of CDI1la-expressing T-cells from peripheral blood
(Furukawa et al., 1993). In cultured vascular endothelial cells,
patient sera from acute phase KD induces significantly higher

expression of ICAM-1 than quiescent sera, with TNF-o
contributing to ICAM-1 expression (Inoue et al., 2001). In KD
cases exhibiting coronary artery abnormalities, a high and
unresponsive NLR ratio is associated with resistance to IVIG
treatment (Cho et al, 2017). Thus, the KD-like symptoms
observed in a subset of pediatric COVID-19 cases are broadly
consistent with the inflammatory mechanisms described in the
proposed pathway.

WEAK INTERFERON DEFENSE AND
NEUTROPHIL-DRIVEN CYTOTOXICITY
IN LUNG EPITHELIA

SARS-CoV-2 infection is associated with increased levels of pro-
inflammatory cytokines (Chen et al., 2020; Zhang, Guo, et al.,
2020), yet the immune response in lung tissue features a
relatively impaired response of type I (o/f), II (9), and III (A)
interferons (Chu et al, 2020), along with down-regulation of
interferon-induced genes. This contrasts with the interferon
response in SARS-CoV, where preferential infection of alveolar
type-II cells results in a marked increase of IFN-f3 and IFN-A (IL-
29) production (Qian et al.,, 2013).

The suppressed IFN-A response observed in COVID-19 may
be a key factor mediating viral infectivity. In human lung tissues,
SARS-CoV-2 demonstrates markedly higher infectivity and
replication than that of SARS-CoV, generating 3.2 times the
number of infectious virus particles within 48 hours of infection
(Chu et al., 2020).

While IFN-o and IFN- receptors are primarily expressed on
peripheral blood cells, IFN-A receptors have restricted
expression, preferentially defending epithelial cells, including
respiratory pneumocytes. IFN-A expression thus provides an
initial line of defense to restrict viral replication in the upper
airways, suppress excessive inflammation of the lower airways,
and maintain the integrity of cellular barriers to inflammatory
injury (O’Brien et al., 2020; Broggi et al., 2020).

In Dengue infection, IFN-A inhibits replication of the
DENV-2 virus in a dose-dependent manner in vitro (Palma-
Ocampo et al., 2015). The rs7247086 variant of IFNLI (the T
allele) is reported to be protective against DHF, suggesting
that IFNLI may play a role in the pathogenesis and elevated
cytokine expression observed in this condition (Arayasongsak
et al., 2020).

Notably, MERS-CoV encodes two accessory proteins, NS4a
and NS4b that contribute to suppression or evasion of innate
antiviral immune pathways. In particular, both deletion of NS4a
and mutation of catalytic or nuclear localization sites of NS4b
result in increased expression of IFN-A1 (Comar et al., 2019).
The weak interferon response observed in COVID-19 suggests
that the possibility that one or more SARS-CoV-2 viral proteins
may exert a similar effect in suppressing IFN-A expression,
weakening front-line innate immune defense against viral
infectivity. Similarly, viral proteins of RSV, the most important
respiratory virus among infants, antagonize IFN-mediated
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epithelial protection. Exogenous IFN-A1 confers prophylactic
benefit against viral infection (Villenave et al., 2015).

A recent genome-wide association study examined 300,000
loci to identify genetic factors associated with ACE2 expression
in the presence of RNA virus infection. The most significant
association was identified in three SNPs within the IFN-A region
of chromosome 19, controlling expression of IFNL3 and IFNL4.
In the presence of RNA virus infection, ACE2 expression shows a
significant negative correlation with IFN pathway genes. One of
these SNPs is located near a frameshift mutation that disables the
production of IFN-A4 (Ansari et al., 2020). As both ACE2 and
receptors for IFN-A are preferentially expressed on type II
alveolar pneumocytes, their association may be relevant in
COVID-19 pathology, as suppressed IFN-A expression coupled
with elevated ACE2 expression could simultaneously suppress
epithelial defense while amplifying the viral load.

Weak induction of IFN-A in COVID-19 may be an
important amplifier of cytokine production by impairing the
control of inflammatory neutrophil responses. In animal
models of ARDS induced by influenza-A virus (IAV)
infection, neutrophils comprise the majority of infiltrating
cells and are the primary source of pro-inflammatory
cytokines. Neutrophils also express high levels of the
interferon-lambda receptor IFNLR1 in proximity to epithelial
cells, allowing IFN-A to mediate sustained local anti-viral
defense without amplifying inflammation. Accordingly,
exogenous administration of pegylated recombinant IFN-A in
IAV-induced ARDS suppresses viral replication and improves
lung function (Galani et al., 2017). IFN-A also suppresses the
migration of neutrophils and their proclivity to NETosis,
thereby enabling the suppression of thromboinflammation
(Chrysanthopoulou et al., 2017).

Low levels of IFN-A in COVID-19 also appear likely to
skew immune response toward neutrophil proliferation and
suppressed lymphocyte response, contributing to the
thrombosis, pro-inflammatory cytokine production, and
fatality observed among NLR™E" patients. Exogenous IFN-)
may reduce these consequences. CD14+ monocytes quickly
express the IFN-A receptor IFNLRI upon differentiation to
macrophages. IFN-A stimulates the cytotoxic and phagocytic
capacity of macrophages, as well as the secretion of cytokines
that mediate T and NK-cell migration and cytotoxicity (Read
et al., 2019).

CYTOKINE STORM FEATURING HIGH
EXPRESSION OF IL-6 AND TNF-a

Increased IL-6 is an early indicator of cytokine release syndrome
in COVID-19 patients (Wang et al., 2020). IL-6 concentrations
are increased 2.9-fold in patients with complicated COVID-19
vs. uncomplicated (Coomes and Haghbayan, 2020), and IL-6
levels are predictive of respiratory failure (Herold et al., 2020;
Zhang et al., 2020a).

The SARS-CoV spike protein induces (TNF-o. converting
enzyme) TACE-dependent shedding of the extracellular ACE2

receptor domain, resulting in loss of ACE2 function and
production of TNF-a. NL63-S, a common cold coronavirus
serotype, also uses ACE2 for entry, but does not induce similar
ACE2 shedding or TNF-a. production (Haga et al., 2008). TACE
antagonists have been suggested as an approach to inhibit TNF-
o and attenuate disease severity in SARS-CoV (Tobinick, 2004).

Cytokine storm on the IL-6/TNF-c. axis appears likely to be
mediated by phosphorylation of the NF-xB subunit p65. In
SARS-CoV infection, the viral spike protein induces activation
of NF-kB via IkB-o. degradation, resulting in production of IL-6
and TNF-o. (Wang et al., 2007). The viral nucleocapsid protein of
SARS-CoV can also bind the NF-kB regulatory element on the
IL-6 promoter, and activity is highest when the p65 subunit is
present (Zhang et al., 2007).

Regulatory elements in the ACE2 gene control the
transcription of PIR (pirin), a negative regulator of NF-xB
subunit RELA (p65). SARS-CoV-2 disruption of ACE2 is
proposed to reduce PIR expression (Fadason et al., 2020). PIR
is proposed to function as a reversible switch that enables NF-xB
response to changes in redox levels (oxidative stress) in the cell
nucleus (Liu et al., 2013). Repression of PIR ablates inhibition of
IL-6 expression (Wu et al., 2017).

Inhibition of NF-xB activation has been suggested as a
therapeutic strategy to increase survival in SARS-CoV infection
(DeDiego et al., 2014). Inhibition of JAK signaling may block p65
phosphorylation and attenuate proinflammatory cascade (Yang
et al., 2017). Tocilizumab, a well-tolerated blocker of the IL-6
receptor, may have potential to dampen cytokine release
syndrome in COVID-19 (Zhang C. et al, 2020). Because
catecholamines augment the production of IL-6 and other
inflammatory cytokines, o-1 adrenergic receptor inhibition
(e.g., prazosin) has also been suggested as a candidate that may
provide prophylactic benefit against cytokine storm (Konig
et al., 2020).

Use of low molecular weight heparin is reported to be
associated with improvement in aberrant coagulation and a
reduction of IL-6 levels (Shi et al, 2020), and is reported to
increase survival in COVID-19 (Negri et al., 2020; Tang et al.,
2020). However, elevated anti-heparin-PF4 antibodies have been
observed in severe COVID-19 patients, even in the absence of
heparin exposure, and may contribute to heparin-induced
thrombocytopenia, via binding of antibody-heparin complexes
to the platelet FcyRIIA receptor (Liu X. et al., 2020). For that
reason, the use of alternative anticoagulants (other than
coumadin, which may provoke thrombotic complications) may
be indicated (Izak and Bussel, 2014).

DISCUSSION

The rapid case growth and high fatality rate of COVID-19 have
posed an urgent global health challenge. Major uncertainties
exist in ascertainment, and case reports are likely to exclude large
numbers of subclinical or asymptomatic cases that may
contribute to infectivity and confound containment efforts.
Meanwhile, conditional on cases that have been reported and
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confirmed, the global case fatality rate of the disease exceeds
4.8%, with the United States experiencing the highest number of
fatalities (127,000) through June 2020 (ncov-CSSE, 2020).

Despite incomplete knowledge of the pathophysiology relating
to the novel coronavirus SARS-CoV-2, the proliferation of initial
reports and small-scale studies carry stronger information content
than may be evident amid the “noise” of this emerging literature,
when integrated in the context of prior research on other CoV
serotypes, ARDS, and related inflammatory conditions. From a
noise-reduction perspective, information content can often be
amplified by extracting jointly correlated signals from what might
otherwise be individually weak sensors. The tractable pathway
presented here is reflective of that effort.

Part of this analysis, by necessity, includes findings from early
reports and pre-published data that may be modified or
contradicted by subsequent studies. Accordingly, some
elements of this pathway may require revision as new findings
emerge. Figure 1 illustrates this pathway.

Among the benefits of a coherent biological pathway,
consistent with the observed clinical course of SARS-CoV-2, is
that it connotes multiple points of intervention for potential

therapeutic candidates. Emphatically, the candidates described
below are not prescriptive but are instead discussed here to
provoke pathway-informed investigation.

Potential investigational therapeutics consistent with the
proposed COVID-19 pathway are listed in Table 1. Specific
candidates are indicated as examples and do not comprise an
exhaustive list. These candidates are not prescriptive but are
instead intended to provoke further research and pathway-
informed investigation.

Initial interventions with potential benefit early in SARS-CoV-
2 infection may include approaches focused on augmenting
epithelial defense, reducing viral load, and modifying
inflammatory signaling. Potential candidates include the use
ACE inhibitors and AT1R blockers (ARBs) to reduce the
hypertensive and pro-inflammatory effects of Ang II, exogenous
Ang(1-7), recombinant ACE2, pegylated IFN-A, early
administration of IFN-I, and o-1 adrenergic receptor inhibition.

In a study of 77 COVID-19 patients, treatment with IFN-0:2b
significantly reduced the duration of detectable virus in the upper
respiratory tract, and reduced the duration of elevated IL-6 and
CRP levels (Zhou Q. et al., 2020). However, evidence from SARS
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FIGURE 1 | Proposed features of cellular and molecular pathophysiology in COVID-19. Membrane fusion and cytoplasmic entry of SARS-CoV-2 virus via ACE2 and
TMPRSS2-expressing respiratory epithelial cells, including pulmonary type-Il pneumocytes, provokes an initial immune response featuring inflammatory cytokine
production coupled with a weak interferon response, particularly in IFN-A-dependent epithelial defense. Differentiation of non-classic pathogenic T-cells and pro-
inflammatory intermediate monocytes contributes to a skewed inflammatory profile, mediated by membrane-bound immune receptor subtypes (e.g., FC)RIIA) and
downstream signaling pathways (e.g., NF-xB p65 and p38 MAPK), followed by chemotactic infiltration of monocyte-derived macrophages and neutrophils into lung
tissue. Endothelial barrier degradation and capillary leakage contribute to alveolar cell damage. Inflammatory cytokine release, delayed neutrophil apoptosis, and
NETosis contribute to pulmonary thrombosis and cytokine storm. These mechanisms are concordant with observed clinical markers in COVID-19, including high
expression of inflammatory cytokines on the TNF-o/IL-6 axis, elevated neutrophil-to-lymphocyte ratio (NLR), DAD via cell apoptosis in respiratory epithelia and
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TABLE 1 | Potential investigational therapeutics consistent with proposed COVID-19 pathway.

Therapeutic candidate Class

(not exhaustive)

Potential mechanism and basis for investigation

Losartan, Irbesartan
Recombinant ACE2, Ang (1-7)
Prazosin

Pasireotide

Pegylated IFN-A

Angiotensin Il receptor AT1R blocker (ARB)
Exogenous RAS modulators
Alpha-adrenergic blocker

Somatostatin analogue

Interferon-lil

Calcitriol, Melatonin

Lopinavir, Camostat
Remdesivir

Chlorpromazine, Triflupromazine
Emetine, Ivermectin,
Hydroxychloroquine

Imatinib, Dasatinib
Toremifene, Tamoxifen

Natural hormone supplement
Protease inhibitor

Antiviral agent

Dopamine D2 receptor antagonist
Anti-parasitic

Abelson (ABL) kinase inhibitor
Estrogen receptor modulator (tissue-dependent
mixed agonist/antagonist)

Estradiol Steroid hormone

DHA, EPA n-3 polyunsaturated fatty acid
Doxycycline Tetracycline antibiotic
Dexamethasone, Glucocorticoid
Methylprednisolone

Sekukinumab, Broadalumab IL-17 inhibitor

Tocilizumab, Siltuximab IL-6 inhibitor

Etanercept TNF inhibitor

Tofactinib, Fedratinib JAK inhibitor

Alvocidib Cyclin-dependent kinase (CDK) inhibitor
FciRIIB Exogenous Fc receptor delivery

Blockade of pro-inflammatory, pro-hypertensive Ang Il effects
Restoration of anti-inflammatory, anti-hypertensive Ang(1-7) effect
Reduction of catecholamine-related amplification of cytokine response
Reduction of cortisol-mediated NLR

Augmented defense of respiratory epithelium, reduced cytokine production,
NETosis and thrombosis

Prophylaxis, reduced cytokine induction

Disruption of viral entry

Reduction of viral replication

Reduction of viral titer via disruption of clathrin-mediated endocytosis
Prophylactic reduction of viral titer

Blockade of host-virus membrane fusion

Antiviral activity and inhibition of non-classic Th1 induction, potentially via
receptor-independent mechanisms

Inhibition of CD16 and proliferation of inflammatory intermediate monocytes
Reduced ICAM-1-mediated leukocyte adhesion and inflammatory response
Antibiotic, anti-inflammatory effect on cytokine expression and MMP activity
Reduced inflammatory response

Reduced inflammatory response

Reduced inflammatory response

Reduced inflammatory response

Inhibition of NF-kB p65 signaling

Reduced inflammatory response and neutrophil-mediated cell death
Reduced inflammatory response, potential inhibition of platelet consumption

and MERS cases suggests that while early delivery of IFN-I can
reduce viral replication, later delivery may amplify risk by
elevating pro-inflammatory response (Channappanavar et al.,
2016; Channappanavar et al., 2019).

Among conservative, well-tolerated therapeutic candidates,
melatonin exerts a protective effect on vascular endothelia by
inhibiting NF-xB induced expression of MMP-9 (Qin et al,
2012). It is also reported to protect lung tissue from hypoxic
stress by downregulating TNF, IL-6, and VEGF expression, with
quercetin providing additional prophylactic effect (Al-Rasheed
et al., 2017). Vitamin D attenuates TLR-mediated induction of
inflammatory cytokines (Thota et al., 2013). This mechanism
may be relevant in COVID-19 as low plasma levels of vitamin
D are reported in SARS-CoV-2 infected individuals and
significantly contribute to the risk of infection and
hospitalization (Merzon et al., 2020). Calcitriol, the active
form of vitamin D, is also reported to directly reduce the
virus-induced cytopathic effect of SARS-CoV-2 infection in
cultured human respiratory epithelial cells (Mok et al., 2020).
The combination of melatonin and vitamin D has been
proposed as a potentially synergistic intervention in COVID-
19 (Martin Gimeénez et al., 2020).

Several classes of therapeutics may have benefit as potential viral
entry inhibitors. In a screening of 290 compounds for antiviral
activity against SARS-CoV and MERS-CoV, those promoting at
least 50% viral inhibition in Vero E6 cells in vitro with little or no
toxicity included selective estrogen receptor modulators (SERMs)
(e.g., toremifene and tamoxifen), Abelson kinase (ABL)
inhibitors (e.g., imatinib and dasatinib), dopamine D2 receptor

antagonists (e.g., chlorpromazine and triflupromazine), and
antiparasitic agents (e.g., hydroxychloroquine and emetine) (Dyall
et al, 2014). Research involving additional cell lines may be
informative in this context, because while SARS-CoV-2 can be
isolated from Vero E6 cells, cells engineered to express TMPRSS2
display a nearly 10-fold increase in SARS-CoV-2-infected cells than
parental Vero E6 cells (Matsuyama et al., 2020).

SERMs such as toremifene are reported to potently
inhibit Ebola virus, even without detectable expression of
estrogen receptors, suggesting that SERMs may affect viral
activity through an alternative pathway (Johansen et al., 2013).
In CD14+ monocytes, SERMs are reported to reduce
inflammatory signaling by downregulating TNF-o—stimulated
NF-xB activation and to promote macrophage differentiation
toward an M2 anti-inflammatory/repair phenotype (Polari et al,
2018). Toremifene was among two network-predicted
therapeutics, along with the ATIR blocker irbesartan, with the
strongest correlation between CoV-induced transcriptomes and
drug-induced transcriptomes and having literature-based antiviral
evidence (Zhou Y. et al.,, 2020).

ABL inhibitors are reported to have potent effect against
SARS-CoV and MERS-CoV cell fusion, which is required for
cytoplasmic delivery of the viral genome (Coleman et al., 2016).
The D2 receptor antagonist chlorpromazine is reported to inhibit
clathrin-mediated endocytosis in both SARS-CoV (Inoue et al.,
2007) and MERS-CoV (Liang et al., 2018).

Several antiparasitic agents are recognized for exhibiting
antimicrobial and anti-inflammatory properties, suggesting
potential benefit against SARS-CoV-2 infection. For example,
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ivermectin interferes with the nuclear import of proteins
encoded by several RNA viruses and is reported to exert anti-
viral action against SARS-CoV-2 in Vero cells (Caly et al., 2020).
Early evidence suggests that ivermectin treatment may be
associated with reduced mortality risk in patients with COVID-
19, particularly in those requiring oxygen support or mechanical
ventilation (Rajter et al., 2020).

Hydroxychloroquine has been broadly used during the SARS-
CoV-2 epidemic, with evidence of potential prophylactic effect
(Colson et al., 2020) mediated by reduced viral replication
(Keyaerts et al., 2004) and interference with ACE2 binding
(Vincent et al., 2005). Chloroquine is also reported to reduce
secretion of IFN-y and IL-17 in activated Th1l and Th17 cells,
respectively (Schmidt et al., 2017). However, evidence of
therapeutic benefit for hospitalized patients has not been clearly
established (Magagnoli et al., 2020; Shamshirian et al., 2020). In
addition to potential risks of retinopathy and arrhythmia,
combination therapy with azithromycin is reported to be
associated with increased risk of heart failure and cardiovascular
mortality (Lane et al., 2020).

A randomized, controlled trial of remdesivir including more
than 1000 patients reported a reduction in average time to
recovery to 11 days for the treatment group vs. 15 days for
patients assigned to placebo. A small but insignificant reduction
in the risk of fatality was also observed among treated patients
(Ledford, 2020). In a screening of 16 therapeutic candidates
specifically targeting SARS-CoV-2, the antiparasitic agent
emetine was reported among four compounds achieving at
least 50% in-vitro inhibition, along with remdesivir, lopinavir,
and homorringtonine. Synergy between remdesivir and emetine
was observed, enabling reduced dosages to achieve significant
reduction in viral yield (Choy et al, 2020). In the context of
SARS-CoV-2, adjuvant use of emetine may be of particular
interest, given that emetine has a well-established role in
enhancing interferon activity (Schellekens et al.,, 1975) and is
reported to disrupt viral entry and replication (Yang et al., 2018).
Considerations include pregnancy and cardiovascular risk.

The broad spectrum antibiotic doxycycline has been shown to
exert anti-inflammatory effects by interfering with the expression
of IL-6, IL-8, and TNF-0, reducing the recruitment of
neutrophils and lymphocytes into inflamed tissue, and
suppressing the activity of metalloproteinases (MMPs) (Di
Caprio et al,, 2015). Notably, doxycycline treatment was
reported to reduce mortality by half in human patients with
DHEF, with survival associated with significant reductions in TNF
and IL-6 levels (Fredeking et al., 2015). Administration of
doxycycline also significantly decreases MMP-mediated
capillary leakage and alveolar damage in virus-infected mice
(Ng et al., 2012). These properties suggest potential therapeutic
benefit of doxycycline across multiple fronts of COVID-
19 immunopathology.

Corticosteroids are commonly used in the treatment of
inflammatory conditions, but timing and duration of use are
important considerations in the context of COVID-19. In SARS,

early corticosteroid treatment (<7 days of illness) was associated
with an increase in subsequent viral load (Lee N. et al., 2004).
However, the use of steroids may be beneficial at the point of
disease progression to acute respiratory distress and cytokine
storm (Tomazini et al,, 2020). Methylprednisolone use is
reported to reduce the risk of death in patients with COVID-
19 pneumonia that has progressed to ARDS (Wu C. et al., 2020).
This result is consistent with clinical evidence in SARS, where
pulse methylprednisolone was reported to be beneficial in a
subset of patients with critical illness. Prolonged steroid
administration without effective antimicrobial support is
discouraged due to the risk of secondary infection (Tai, 2007).

In a randomized controlled trial comparing 2104 COVID-19
patients receiving dexamethasone and 4321 patients receiving
standard-of-care, dexamethasone treatment reduced the risk of
death by one-third in patients requiring invasive mechanical
ventilation and by one-fifth in patients requiring oxygen without
invasive ventilation. Dexamethasone did not reduce mortality
risk in patients that had not progressed to the need for
respiratory support at the time of randomization (Horby et al,,
2020). However, in non-intubated patients with COVID-19
pneumonia, combination therapy including corticosteroids
and tocilizumab is reported to increase survival (Mikulska
et al., 2020).

Steroid use has been suggested as a possible factor
contributing to the elevated NLR ratio observed in SARS
patients. However high NLR is observed even in steroid-naive
patients, and elevated serum cortisol is reported to be correlated
with the degree of neutrophilia and lymphopenia (Panesar et al.,
2004). High adrenocorticotropic hormone (ACTH) production
and induced cortisol release in response to SARS-CoV infection
has been suggested to mimic the effect of corticosteroids in
driving T-lymphocytes out of peripheral circulation (Panesar,
2003). The somatostatin analogue pasireotide may attenuate the
skewed neutrophil/lymphocyte response observed in COVID-19.

Additional pathway-informed candidate therapeutics targeting
molecular mediators of the COVID-19 hyperinflammatory
response include biologics such as TNF-a inhibitors, IL-6
inhibitors, tamoxifen-mediated inhibition of Eomes, IL-17
inhibitors, CDK inhibition, exogenous delivery of soluble
Fc)RIIB, and JAK inhibitors. Among TNF inhibitors, etanercept
was proposed as a potential first-line choice in SARS-CoV based
on considerations of safety, short-half life, and limited
immunogenicity (Tobinick, 2004). Early evidence relating
to compassionate use of IL-6 inhibitors in SARS-CoV-2
(tocilizumab and siltuximab) appears promising, with
unfavorable outcomes generally associated with treatment-
resistant increases in IL-6. Well-designed clinical trials appear
justified (Khan et al., 2020).

The high infectivity, rapid case growth, and severe outcomes of
the SARS-CoV-2 epidemic have created an urgent global health
crisis and a pressing need for therapeutic approaches to contain
the number of fatalities. This epidemic has emerged in the context
of a rich existing literature detailing aspects of cellular and
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molecular pathways affected by prior CoV serotypes and related
conditions. Much of the emerging literature specific to SARS-
CoV-2 is strongly consistent with these findings, and also features
informative differences, particularly in lung tissue (e.g., weaker
interferon response, suppressed epithelial defense, and elevated
pulmonary infectivity).

The resulting synthesis enables construction of a coherent
biological pathway that suggests multiple points of investigation
for potential therapeutic candidates. Given the high case fatality
rate of COVID-19, such candidates may help to bridge an urgent
gap. While results from ongoing randomized controlled clinical
trials remain essential, critical patients may benefit in the interim
from the estimation of preliminary odds ratios relating to
repurposed therapeutics, based on outcomes of COVID-19
patients having existing exposure to pathway-relevant candidates.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is responsible
of variable clinical manifestations, ranging from no symptoms to severe pneumonia with
acute respiratory distress syndrome, septic shock, and multi-organ failure resulting in
death. To date no specific antiviral drug have been approved for COVID-19, so the
treatment of the disease is mainly focused on symptomatic treatment and supportive
care. Moreover, there are no treatments of proven efficacy to reduce the progression of
the disease from mild/moderate to severe/critical. An activation of the coagulation
cascade leading to severe hypercoagulability has been detected in these patients,
therefore early anticoagulation may reduce coagulopathy, microthrombus formation,
and the risk of organ damages. The role of heparin in COVID-19 is supported by a lot
of studies describing its pleiotropic activity but it must be proven in clinical trials. Several
protocols have been designed to assess the risk-benefit profile of heparin (low-molecular-
weight or unfractionated heparin) in hospitalized subjects. Although prophylactic doses
may be adequate in most patients, it is important to wait the results of clinical trials in order
to define the appropriate effective dose able to improve disease outcome.

Keywords: COVID-19, coagulopathy, heparin, pleiotropic activity, clinical trials

INTRODUCTION

The clinical manifestations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection range from asymptomatic infection to severe pneumonia with acute respiratory distress
syndrome (ARDS), septic shock, and multi-organ failure resulting in death (Wang Y. et al., 2020).

A large Chinese epidemiological study showed that among 44,672 confirmed cases, 80.9% were mild,
13.8% severe, and 4.7% critical. The fatality rate for critical patients was 49%, higher in patients with
comorbidities (cardiovascular disease 10.5%, diabetes 7.3%, chronic respiratory disease 6.5%,
hypertension 6.0%, cancers 5.6%) than those without comorbidities (0.9%) (Wang Y. et al., 2020).
Laboratory findings of Corona Virus Disease 19 (COVID-19) include lymphopenia with depletion of
CD4 and CD8 lymphocytes, prolonged prothrombin time, elevated lactate dehydrogenase (LDH), D-
Dimer, alanine transaminase, C-reactive protein (CRP), and creatinine kinase (Huang et al., 2020; Wang
D. et al,, 2020).
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One of the most important mechanisms underlying the
deterioration of disease is the cytokine storm (Shimabukuro-
Vornhagen et al., 2018). This clinically severe phase is
accompanied by high level of pro-inflammatory molecules,
such as interferons o and B, and IL-6 (Mehta et al., 2020).

Severe disease is also complicated with coagulopathy and
disseminated intravascular coagulation (DIC) has been reported
in the majority of deaths (Tang et al, 2020a). Patients with
progressive, severe COVID-19 infection with acute lung injury or
ARDS have very high D-dimer and fibrinogen levels, related to a
hypercoagulable state. Moreover, severe and critically ill COVID
patients with prolonged immobilization are inherently at high
risk of venous thromboembolism (VTE) and some patients who
require mechanical ventilation may have acute pulmonary
embolism (PE) or deep vein thrombosis (DVT), even without
strong predisposing risk factors.

Thus, an early anticoagulation, which blocks uncontrolled blood
clotting and reduce micro-thrombus formation, would lower the
risk of major organ disfunction. Accordingly, even if the risk-benefit
ratio has not been established, the World Health Organization
(WHO) recommended in these patients thrombo-prophylaxis with
either unfractionated or low molecular weight heparin (LMWH)
(Driggin et al., 2020; WHO, 2020b; WHO, 2020a).

Aim of this work is to describe the link between inflammation,
immune activation, and coagulopathy and the hypothetical
pleiotropic role of heparin in COVID-19.

INFLAMMATION, SEPSIS, AND
COAGULOPATHY

A variety of disorders (sepsis, systemic inflammatory conditions,
trauma, malignant disease) lead to activation of the coagulation
system, up to the most extreme form of DIC, and microvascular
thrombosis is a frequent complication of critical illness
conditions (Dhainaut et al., 2005; Ito, 2014).

Inflammation and coagulation are clearly linked by different
molecular signals and their interactions play a major role in the
pathophysiology of sepsis and DIC (Levi and Poll, 2015; Li and
Ma, 2017).

Acute infections, including viral ones, induce a systemic
inflammatory response and coagulation disruption (Subramaniam
and Scharrer, 2018). The process is complex and multifactorial,
involving cellular disruption and plasmatic elements of the
hemostatic system and of the innate immune system to the
pathogen (Gando et al,, 2016). Thrombosis under certain
circumstances plays a major physiological role in immune
defense. The coagulation system and innate immunity (the so-
called immunothrombosis system) play a beneficial role in early host
defense against pathogens (Delvaeye and Conway, 2009; Fiusa et al,,
2015), limiting microbial dissemination, protecting blood vessels,
promoting recruitment and activation of leukocytes through fibrin,
fibrinogen, and their degradation products, and stimulating cellular
immune responses at the infection sites. Moreover, intravascular
thrombi produce a distinct compartment where antimicrobial
peptides can be concentrated and kept in contact with pathogens.

However, aberrant or uncontrolled immunothrombosis may be
harmful, determining an imbalance between pro-coagulant and
anticoagulant mechanisms (Ito, 2014).

Multiple pathogenetic mechanisms have been identified in
the coagulation cascade activation, and involving endothelial
cells, von Willebrand factor, Toll-like receptor, and tissue-
factor pathway (van Gorp et al., 1999; Ito, 2014). The effect is
the deregulated thrombin generation, further worsened by the
impairment of anticoagulant and fibrinolytic systems.

The pro-inflammatory mediators activate coagulation, which
in turn promotes inflammatory activity (Opal, 2000; Russell,
2006; Hunt, 2014). In particular, inflammation promotes
coagulation by leading to intravascular tissue factor expression,
inducing the expression of leukocyte adhesion molecules on the
endothelial cell, and down-regulating the fibrinolytic pathways
by the up-regulation of plasminogen activator inhibitor-1 (PAI-
1). On the other hand, thrombin stimulates inflammatory
response in a self-propagating feedback loop.

The simultaneous impairment of pro-coagulant pathways and
fibrinolytic systems as a result of systemic inflammation lead to
platelet activation and fibrin deposition (Simmons and Pittet, 2015;
Levi and van der Poll, 2017). It has been demonstrated that the most
important mediators for orchestrating this imbalance during sepsis
are cytokines (Levi et al., 1997), such as interleukin-1 (IL-1), IL-6,
and tumor necrosis factor-o. (TNF-o), but also denatured DNA and
cationic proteins, such as histones, released from damaged cells
(McDonald et al., 2017)[21].

The final result of the uncontrolled activation of the
coagulation system is multiple organ dysfunction (Iba and
Levy, 2018; Li X. et al., 2020).

Moreover, it is relevant in the pathogenesis of specific organ
damage, such as ARDS (MacLaren and Stringer, 2007;
Frantzeskaki et al., 2017). The lung coagulopathy is related to a
localized tissue factor-mediated thrombin generation, and
depression of bronchoalveolar plasminogen activator-mediated
fibrinolysis, mediated by the PAI-1 increase (Glas et al., 2013;
Ozolina et al., 2016).

Thus, the involvement of the hemostatic system in severe
COVID-19 is not surprising, being well documented that
inflammation and sepsis are initiators of DIC (Voves et al,
2006). The most typical findings in patients with COVID-19 and
coagulopathy are an increased D-dimer level, a modest decrease
in platelet count, and a prolongation of the prothrombin time
(Levi et al, 2020). The pattern is therefore different to that
typically seen in sepsis, in which thrombocytopenia is more
severe, and D-dimer not very high (Levi and Scully, 2018). In
particular, markedly elevated D-dimer has been detected and
associated with higher intensive care unit (ICU) admission and
mortality, likely reflecting coagulation activation, cytokine storm
development, and organ failure (Guan et al., 2020; Huang et al.,
2020; Tang et al., 2020b; Zhou et al., 2020). Furthermore, post-
mortem examinations show vascular thrombosis in small vessels
of the lungs (Carsana et al., 2020; Menter et al., 2020; Wichmann
et al., 2020), suggesting that the COVID-19 coagulopathy can
include, besides a low-grade of DIC, a so-called “Pulmonary
Intravascular Coagulopathy-PIC” (Belen-Apak and Sarialioglu,
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2020; Fogarty et al., 2020; McGonagle et al., 2020), a localized
pulmonary thrombotic micro-angiopathy determining organ
damage (Levi et al., 2020).

It is believed that the coagulation cascade in COVID-2019 can
be activated through the well-known mechanisms reported
above, which lead to the deregulated thrombin generation both
systemically and locally in the lungs, resulting in the deposition
of fibrin with subsequent tissue damage and micro-angiopathy
(Li T. et al,, 2020). Moreover, SARS-CoV-2 would directly
damage vascular endothelial cells through angiotensin-
converting enzyme 2 (ACE2), which could represent the first
injury triggering the abnormal coagulation in particular in the
lung (Li H. et al, 2020). However, other studies showed that
ACE2 pulmonary expression is restricted to type II pneumocytes,
and is nearly absent in endothelial (McGonagle et al., 2020;
Rivellese and Prediletto, 2020). In this context, the strict contact
between type II pneumocytes and the pulmonary vascular
network, and the severe local inflammatory reaction, is likely
to drive the generalized pulmonary hypercoagulable state seen in
patients with COVID-19 (Li H. et al, 2020; McGonagle et al.,
2020; Rivellese and Prediletto, 2020). Nevertheless, the
mechanisms contributing to coagulopathy in COVID-19 have
to be comprehensively clarified yet.

TREATMENT STRATEGIES

To date, treatment of coagulopathy/DIC has been focused on the
target of the primary associated pathology (Levi and Scully,
2018). This is limited in the case of COVID-19, due to the lack
of approved antiviral drug treatment, so the management of
patients is mainly focused on symptomatic and supportive care.
Moreover, there are no treatments of proven efficacy to reduce
the progression of the disease from mild/moderate to severe/
critical, in particular counteracting the cytokine storm (Chen
et al., 2020). However, reducing the release or activity of pro-
inflammatory mediators can prevent or reverse the uncontrolled
hyper-inflammation, thereby improving the condition of
patients and a lot of drugs with this aim are under evaluation
in clinical trials.

The use of anticoagulants for patients with severe COVID-19
has been recommended by expert consensus and by WHO
(Driggin et al., 2020; WHO, 2020b).

The International Society of Thrombosis and Haemostasis
(ISTH) introduced a new category identifying an earlier phase of
sepsis-associated DIC, called “sepsis-induced coagulopathy”
(SIC) (Iba et al., 2019). In this case or in patients with
markedly elevated D-dimers, LMWH at prophylactic dose
should be considered (Tang et al., 2020a).

The optimal thrombo-prophylactic regimen in patients with
COVID-19 is unknown (Driggin et al., 2020). Given drug-drug
interaction with direct oral anticoagulants and some anti-viral
regimens, heparins, either unfractionated or low molecular
weight, may be preferred.

Accurate patient assessment is necessary to balance the
individual risk of thrombosis and bleeding. Therapeutic

anticoagulation is not required unless another indication
for therapeutic anticoagulation is documented (e.g. VTE,
atrial fibrillation, or mechanical valve). Moreover, evidence of
coagulopathy/DIC and especially elevated D-dimer levels
observed even in early phase of PIC might be useful to guide
therapeutic decision (Lillicrap, 2020).

Prophylactic dose LMWH is recommended for all hospitalized
COVID-19 patients in the absence of contraindications.

However, standard prophylactic regimens may be insufficient
in severe and critically ill patients with variable thromboembolic/
bleeding risk, and monitoring of anti-Xa activity may be
considered when LMWH is used in these patients (Duranteau
et al., 2018).

In cases where there are no contraindications, empiric
therapeutic anticoagulation has been proposed by the
American Society of Hematology in the following cases
(Ash, 2020):

* intubated patients who develop sudden clinical and
laboratory findings highly consistent with PE;

e patients with physical findings consistent with thrombosis
(superficial thrombophlebitis, peripheral ischemia or
cyanosis, thrombosis of dialysis filters, tubing, or catheters);

* patients with respiratory failure, particularly when D-dimer
and/or fibrinogen levels are very high, in whom PE or
microvascular thrombosis is highly suspected and other
causes are not identified (e.g., ARDS, fluid overload).

A normal level D-dimer level provides reasonable confidence
that anticoagulation should continue at prophylactic doses.

However, the efficacy and safety of anticoagulation as well as
the appropriate dose regimen able to improve disease outcome in
patients with COVID-19 have yet to be defined in clinical trials.

PHARMACOLOGICAL PROPERTIES OF
HEPARIN AND CLINICAL EVIDENCE
IN COVID-19

Although primarily employed for its anticoagulant properties, it is
known that heparin possesses anti-inflammatory, immunomodulatory,
anti-viral, and anti-complement activity which may offer benefit
beyond the anti-coagulation (Davidson et al, 2002; Hoppensteadt
et al, 2008; Young, 2008; Ludwig, 2009; Li et al, 2012; Li et al., 2014;
Li et al, 2015; Li and Ma, 2017; Thachil, 2020).

Heparin is a member of a family of polyanionic polysaccharides
called glycosaminoglycans (Young, 2008). It remains one of the
most important anticoagulant drugs in clinical practice, currently
used for the prevention and treatment of venous thrombosis and
PE, the management of arterial thrombosis in patients with acute
myocardial infarction and in the prevention of re-thrombosis after
thrombolysis, and the prevention of thrombosis in extracorporeal
circuits and hemodialysis.

The mechanisms behind its pleiotropic effect are complex and
not completely understood.
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Its polyanionic nature allows to bind sites proteins such as
antithrombin III, but also cytokines, chemokines, growth factors,
adhesion molecules, cytotoxic peptides, tissue destructive
enzymes, involved in inflammation (Day et al, 2004). Thus,
the binding of acute phase and complement proteins may
contribute to the anti-inflammatory activity of heparin (Weiler
et al, 1992; Young et al.,, 1997).

Indeed, even if the binding of released cytokines may protect
them from proteolytic degradation, heparin may alter the secondary
and tertiary structure of cytokines and prevent the binding to their
specific receptors (Balasubramanian and Ramanathan, 2000;
Mummery and Rider, 2000; Jayanthi et al., 2017), thus,
influencing their biological activity, limiting accumulation of
inflammatory cells and activation and subsequent tissue damage.
When given in pharmacological doses, exogenous heparin and
heparinoids demonstrated to attenuate tissue damage, neutralizing
a variety of mediators released from inflammatory cells (Elsayed
and Becker, 2003).

In line with this assumption, a large number of studies have
revealed that LMWH reduce the release and the biological
activity of IL-6 and IL-8 (Qian et al., 2014; Shastri et al., 2015;
Li et al., 2016; Liu et al., 2019).

In addition, heparin binding to P-selectin showed to inhibit
leukocyte adhesion to endothelial cells, independently by its
anticoagulant activity (Lever et al., 2000).

The dysfunction of endothelial cells and the reduction of
glycocalyx are key characteristics of sepsis. Heparin, as a heparan
sulphate (HS) analogue, may reconstitute the protective layer of
proteoglycans to restore the natural vascular barrier (Nelson
et al., 2008). The protective function on the endothelial tight
junctions has been demonstrated in a model of lung damage
induced by lipopolysaccharide, where heparin administration
decreased edema and vascular leakage (Liu et al., 2019).

Moreover, the protective responses observed with heparin in
experimental models of sepsis seem to be mediated by blocking
the pro-inflammatory signaling pathways regulated by
MAPK, NF-xB, and STAT3 (Iba and Levy, 2018; Li X. et al,,
2020). It has been demonstrated that heparin is readily bound
and internalized into the cytosolic compartment, where it can
prevent the NF-kB translocation to the nucleus through the
binding of the positively charged nuclear localization sequence
(Letourneur et al., 1995; Akimoto et al., 1996; Dudas et al., 2000).
Blocking of this transcriptional factor can reduce inflammatory
gene activation and regulate the production of pro-inflammatory
cytokines, chemokines, and adhesion molecules.

A novel immune-modulating mechanism of heparin related
to blockage of circulating histones has been studied in vitro and
in septic mouse models (Wildhagen et al., 2014). It is noteworthy
that extracellular histones released from dead cells play
important role in cellular damage and are robustly associated
with endothelial dysfunction, organ dysfunction and even death
during sepsis (Xu et al., 2009; Ekaney et al., 2014; Iba et al., 2015).
Heparin demonstrated a strong affinity for extracellular histones
and prevents their interaction with platelets, a potential
mechanism contributing to the regulation of inflammation
(Fuchs et al., 2011; Alhamdi et al., 2016).

Finally, the putative antiviral role of heparin has been studied
in experimental models. Thanks to its polyanionic nature,
heparin can bind to several proteins, such as cell surface
glycoproteins and thus inhibit herpes simplex virus attachment
(Shukla and Spear, 2001). Furthermore it has been demonstrated
that in zika virus infection it prevents virus-induced cell death
(Ghezzi et al., 2017).

Interestingly, in vitro and in vivo experimental studies have
shown that human coronaviruses utilize heparin sulfate
proteoglycans for attachment to target cells (Milewska et al.,
2014), and interaction between the SARS-CoV-2 Spike S1
protein receptor binding domain (SARS-CoV-2 S1 RBD) and
heparin has been recently showed, supporting the role of heparin
in the therapeutic armamentarium against COVID-19 beyond
the anticoagulant effect (Courtney Mycroft-West et al., 2020).

However, the exact benefit and safety of heparin as anti-
inflammatory and antiviral agent in clinical setting are yet to be
defined and conflicting results have been reported by previous
clinical trials.

According to systematic reviews and meta-analyses regarding
the use of heparin as a potential treatment for patients with
sepsis, treatment with low doses of heparin is associated with
significantly reduced 28-day mortality in sepsis (Liu et al., 2014;
Wang et al., 2014; Zarychanski et al., 2015; Fan et al., 2016).

Another meta-analysis shows a reduction of the risk of 7-day
and of 28-day mortality, and a significant improvement of PaO2/
FiO2 ratio in patients with ARDS treated with high-dose LMWH
(Li et al., 2018), demonstrating that treatment with heparin may
be helpful in mitigating the pulmonary coagulopathy found
in ARDS.

The existing evidence on the use of heparin to prevent or
treat thrombotic complications in COVID-19 derives from
retrospective and observational data.

Recently, a retrospective cohort study analyzed the relieving
effect of LMWH in patients with COVID-19, to investigate the
anti-inflammatory effects of heparin and the delay of disease
progression (Shi C et al, 2020). Compared to the control
group, patients treated with heparin had an improvement of
hypercoagulability, a reduction of IL-6 and neutralization of
its biological activity, and an increase in the percentage
of lymphocytes. A large retrospective cohort showed lower
mortality in COVID-19 patients treated with heparin, even after
adjustment for age and gender (OR 95% CI 0.55, 0.37-0.82; p =
0.003), saturation of oxygen <90%, and temperature >37°C (OR
0.54, 0.36-0.82; p = 0.003), and use of concomitant medications
(OR 0.42, 0.26-0.66; p < 0.001) (Ayerbe et al., 2020). Moreover, a
recent observational study conducted in US found a reduced risk of
mortality among patients (n = 786) hospitalized with COVID-19
who received anticoagulation (Paranjpe et al., 2020).

Randomized controlled trials are necessary to confirm these
preliminary observations.

Ongoing Clinical Trials in COVID-19

As reported on the COVID-19 clinical trials registry (http://
www.covid-trials.org, 2020) which collects all trials from
International Clinical Trials Registry Platform (Chinese Clinical
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Trial Registry, ClinicalTrials.gov, Clinical Research Information
Service—Republic of Korea, EU Clinical Trials Register, ISRCTN,
Iranian Registry of Clinical Trials, Japan Primary Registries Network,
and German Clinical Trials Register), 16 clinical trials are ongoing (9/
16 recruiting and 7/16 not-recruiting) to evaluate the effect of
anticoagulation with heparin (low-molecular-weight—mainly
enoxaparin—or unfractionated heparin) in hospitalized patients
with COVID-19 (Appendix 1). More than 80% of these studies
are open-label, randomized, two-arm trials, and at least 75% of
protocols include a comparison between therapeutic anticoagulation
(investigational arm) and thromboprophylaxis (control arm), in line
with the uncertainty about the benefit/risk ratio of the two treatment
strategies. As reported in Appendix 2, the primary outcome
measures of heparin clinical trials are hard endpoints such as
mortality or composite measure of clinical events and/or survival,
as recommended by the WHO guidelines (WHO, 2020d).

Overall, almost 10,000 patients are expected to be enrolled.
However, the completion of some studies (expected in the second
half of 2020 and in 2021) would be difficult at least in European
countries and China due to the reduction in the number of new
cases and hospitalizations (WHO, 2020c).

CONCLUSION

Coagulation activation has been reported in COVID-19,
determining pathological changes specifically involving the lung
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APPENDIX 1 | Ongoing clinical trials with heparin in patients with COVID-19 (update May 28, 2020).

ID Country Treatment Phase Completion Trial Design Blinding Arms Patient Size
status setting
2020-001709-21 France Enoxaparin, tinzaparin, % NA Recruiting Randomized Open-label 2 Hospital 550
dalteparin, nadroparin
2020-001823-15 France Enoxaparin % NA Recruiting  Single-arm Open-label 1 ICU 200
2020-001891-14 Spain Enoxaparin Il NA Recruiting Randomized Open-label 2 Hospital 140
CHICTR2000030700 China Enoxaparin / 2020-Sep Not Randomized Open-label 2 Hospital 60
recruiting
CHICTR2000030701  China Enoxaparin / 2020-Sep Not Randomized Open-label 2 Hospital 60
recruiting
CHICTR2000030946 China LMW heparin I\ 2020-Apr Recruiting  Non- Unspecified 2 Hospital 120
randomized
NCT04344756 France Tinzaparin, enoxaparin, Il 2020-Jul Not Randomized Open-label 2 Hospital, 808
dalteparin, unfractionated recruiting ICU
heparin
NCT04345848 Switzerland Enoxaparin 1l 2020-Nov Recruiting Randomized = Single 2 Hospital, 200
Unfractionated heparin ICU
NCT04354155* United States Enoxaparin Il 2022-Sept  Not Single-arm  Open-label 1 Hospital 38
recruiting
NCT04359277 United States Enoxaparin 1l 2021-Apr Recruiting Randomized Open-label 2 Hospital 1,000
Unfractionated heparin
NCT04360824 United States Enoxaparin % 2021-Apr Not Randomized Open-label 2 Hospital 170
recruiting
NCT04362085 Canada LMW heparin Il 2020-Nov Recruiting Randomized Open-label 2 Hospital 462
Unfractionated heparin
NCT04366960 Italy Enoxaparin Il 2020-Aug Recruiting Randomized Open-label 2 Hospital 2,712
NCT04367831 United States Enoxaparin v 2020-Nov Recruiting Randomized Single 4 ICU 100
Unfractionated heparin
NCT04372589 Canada Enoxaparin, tinzaparin, / 2021-Jan Not Randomized Open-label 2 Hospital 3,000
dalteparin, unfractionated recruiting
heparin
NCT04377997 United States Enoxaparin Il 2021-Jan Not Randomized Open-label 2 Hospital, 300
Unfractionated heparin recruiting ICU

Four trials recently approved in ltaly and not yet reported in the online registry are not included.
NA, not available; ICU, intensive care unit. *Pediatric subjects.

APPENDIX 2 | Main outcome measures of ongoing clinical trials with heparin in patients with COVID-19.

ID Primary outcome measures

2020-001709-21 Onset of a symptomatic venous thromboembolic event, or symptomatic pulmonary embolism, or unexplained death when a pulmonary embolism
cannot be excluded

2020-001823-15 Measurement of the anti-Xa activity of enoxaparin

2020-001891-14 Need for oxygen therapy escalation or invasive mechanical ventilation or mortality

CHICTR2000030700 Time to Virus Eradication

CHICTR2000030701  Time to Virus Eradication

CHICTR2000030946 Biochemical indicators

NCT04344756 « Survival without ventilation (NIV or mechanical ventilation) in patients not requiring ICU who need for oxygen but no NIV or high flow.
« Ventilator free survival in patients with respiratory failure and requiring mechanical ventilation

NCT04345848 Composite outcome of arterial or venous thrombosis, disseminated intravascular coagulation, and all-cause mortality

NCT04354155 Safety of in-hospital thromboprophylaxis

NCT04359277 All-cause mortality, cardiac arrest, symptomatic deep venous thrombosis, pulmonary embolism, arterial thromboembolism, myocardial infarction,
hemodynamic shock

NCT04360824 Mortality

NCT04362085 Composite outcome of ICU admission, non-invasive positive pressure ventilation, invasive mechanical ventilation, or all-cause death

NCT04366960 Incidence of venous thromboembolism

NCT04367831 Composite of being alive and without clinically-relevant venous or arterial thrombotic events at discharge from ICU

NCT04372589 Need for invasive mechanical ventilation or mechanical ventilation, and occurrence of death

NCT04377997 Composite efficacy endpoint of death, cardiac arrest, symptomatic deep venous thrombosis, pulmonary embolism, arterial thromboembolism,

myocardial infarction, or hemodynamic shock

ICU, intensive care unit; NIV, non-invasive ventilation.
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With the lack of effective therapy, chemoprevention and vaccination, focusing on the
immediate repurposing of existing drugs gives hope of curbing the pandemic.
Interestingly, montelukast, a drug usually used in asthma, may be proposed as a
potential adjuvant therapy in COVID-19. The aim of the present article was to review
the properties of montelukast that could be beneficial in COVID-19. Ten experimentally
supported properties were retrieved, either related to SARS-CoV-2 (antiviral properties,
prevention of endotheliitis and of neurological disorders linked to SARS-CoV-2), and/or
related to the host (improvement of atherogenic vascular inflammation, limitation of the
ischemia/reperfusion phenomenon, improvement of respiratory symptoms), and/or
related to serious COVID-19 outcomes (limitation of the cytokine storm, mitigation of
acute respiratory distress syndrome), and/or related to tissue sequelae (antioxidant
properties, anti-fibrosis effects). Based on gathered theoretical evidence, we argue that
montelukast should be further tested to prevent and treat COVID-19 outcomes.

Keywords: coronavirus disease 2019, severe acute respiratory syndrome coronavirus 2, montelukast, lukasts,
treatment, research

INTRODUCTION

Coronaviruses are a large family of single-stranded RNA viruses, which infect animals and humans.
Since December 2019, the coronavirus disease 2019 (COVID-19) caused by the severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2; previously 2019-nCoV) is spreading worldwide.
The virus is primarily spread between people during close contact, most often via small droplets
produced by coughing, sneezing, and talking. COVID-19 is characterized by fever, cough, severe
pneumonia, RNAaemia, combined with the incidence of ground-glass opacities, clot formation and
endotheliitis, and a variety of clinical signs including fatigue, cardiac and neurological outcomes
(Ahn et al., 2020). Of note, while the majority of cases result in only mild symptoms, some progress
to acute respiratory distress syndrome (ARDS) possibly precipitated by significant increase in blood
levels of cytokines and chemokines. This “cytokine storm”, reportedly due to angiotensin-
converting enzyme-2 (ACE2) downregulation by SARS-CoV-2 (Bourgonje et al., 2020), triggers a
proinflammatory environment which is strongly associated with severe tissue damages, contributing
to ARDS and fatal outcomes of COVID-19 patients (Kimura et al., 2013).
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As of June 2020, the COVID-19 pandemic has affected
millions of people in 196 countries and left hundreds of
thousands dead. With the lack of effective therapy,
chemoprevention and vaccination, focusing on the immediate
repurposing of existing drugs gives hope of curbing the
pandemic. Interestingly, a recent in silico exploration identified
montelukast (MK), from the Leukasts family (LKs; i.e. cysteinyl
leukotriene receptors antagonists), among the top-scoring
clinically-oriented drugs likely to inhibit SARS-CoV-2 main
protease (Huynh et al., 2020). One retrospective study
consistently found that older asthmatic outpatients receiving
MK had fewer episodes of confirmed COVID-19 than those
not using MK (Bozek and Winterstein, 2020). The aim of this
article was to review the properties of LKs, especially of MK, that
could be beneficial in COVID-19 and would deserve further
dedicated studies.

MONTELUKAST

MK works as a cysteinyl leukotriene (cysLT) receptor antagonist.
Leukotrienes are inflammatory mediators produced by the immune
system. They promote bronchoconstriction, inflammation,
microvascular permeability, and mucus secretion in asthma and
chronic obstructive pulmonary disease. Consequently, use of high-
dose MK as an anti-inflammatory agent is effective in acute asthma
(Wueetal, 2003). MK is mainly used as a complementary therapy in
adults in addition to inhaled corticosteroids. The use of MK is also
known to decrease the frequency and severity of wheezing after an
upper respiratory tract infection caused by adenovirus, influenza,
metapneumovirus or coronavirus (Brodlie et al., 2015). Common
side effects include diarrhea, nausea, vomiting, mild rashes,
asymptomatic elevations in liver enzymes and fever. In 2019 and
2020, concerns for neuropsychiatric reactions were added to the

RELATED TO SARS-CoV-2

RNA enveloped virus:
Antiviral properties

Endotheliitis mediated by the ACE2 receptor:
Reduction of endothelial inflammation

Neurological tropism:
Protection of the blood-brain barrier

RELATED TO HOST

Cardiovascular comorbidities

Vascular risk factors:
Reduction of inflammatory component of atheroma

ather

Limitation of ischemia / reperfusion phenomenon

Asthma

Exacerbations:
Limitation of risk

S—

label in the UK and US where the most frequently suspected were
nightmares, depression, insomnia, aggression, anxiety and abnormal
behavior (Glockler-Lauf et al., 2019).

Apart from MK, LKs also include Zafirlukast (ZK) and
pranlukast (PK). These three compounds may have properties
of potential interest to treat COVID-19, the main ones of which
are illustrated in Figure 1 and described hereafter.

PROPERTIES OF MK RELATED TO
SARS-COV-2

Antiviral Properties

Several antiviral properties of MK, potentially useful in COVID-
19, have been described in vitro and in vivo, based on distinct
mechanisms depending on the virus under investigation. For
Influenzae A virus, an inhibition of the expression of the viral
genome was observed with MK (Landeras-Bueno et al., 2016).
For flaviviridae, in particular Zika virus, an irreversible and early
inactivation of the virus was reported, probably due to some
damage to the lipid membrane (Chen et al., 2020). Three distinct
mechanisms were proposed to support the beneficial impact of
MK on Zika virus: i) a direct antiviral action, ii) an antagonization
of the cytokine storm, and iii) an inhibition of the vertical
transmission by a MK-related neuroprotective effect on the brain
of fetus. For the hepatitis C virus, MK induced a dose-dependent
decrease in the levels of RNAs expressed, indicating an inhibition of
viral replication (Ruiz et al., 2020). MK also attenuated the initial
responses to respiratory syncytial virus (RSV) infection in neonate
and adult mice, and reduced the consequences of RSV reinfection
in mice initially infected as neonates (Han et al., 2010; Kloepfer
etal., 2011). Finally, in humans, Morita et al. (2017) have reported a
decrease of almost 50% in the number of colds in younger boys
aged 1 to 5.

RELATED TO SERIOUS RELATED TO
COVID-19 OUTCOMES TISSUE
SEQUELAE
Antioxidant
properties
Cytokinic storm:
Decreased Mitigation of
inflammation type 1 ARDS
and
TNF-induced Mitigation of
endothelial type 2 ARDS
lesions Anti-fibrosis
properties

FIGURE 1 | Experimentally supported properties of Cyst LT1 receptor antagonists potentially beneficial in COVID-19.
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Endotheliitis Induced by SARS-CoV-2
Infection

SARS-CoV-2 interacts with the ACE2 receptors to infect the host
(Bourgonje et al., 2020). This process is thought to promote the
development of endotheliitis (Varga et al., 2020), a condition that
may be responsible for the multiplicity of clinical signs observed in
COVID-19. MK antagonizes the inflammatory cascade induced by
angiotensin II in vascular smooth muscle cells (Mueller et al.,
2010) and could therefore constitute a specific treatment for the
inflammation induced by this condition (Fidan and Aydogdu, 2020).

Neurological Disorders Induced by SARS-
CoV-2 Infection

Central nervous system disorders affect ca. 36.4% of patients with
COVID-19 (Mao et al, 2020), mainly involving anosmia,
dysgeusia, and headache. More serious manifestations such as
seizures, delirium, encephalitis, and stroke have also been reported
(Mao et al., 2020). LK limits the damage induced on the blood-
brain barrier and has shown anti-convulsant properties in an
experimental animal model of epilepsy (Lenz et al., 2014). Such
protection of the blood-brain barrier could limit the occurrence
and severity of brain damage (Zhou L. et al, 2019). It was also
reported that MK improves fiber re-organization and long-term
functional recovery after brain ischemia, enhancing recruitment
and maturation of oligodendrocyte precursor cells (Gelosa et al.,
2019). Additionally, a 6-week treatment with MK reduced
neuroinflammation and elevated hippocampal neurogenesis
through inhibition of the GPR17 receptor in younger and older
rats (Marschallinger et al., 2015), with potential benefits for the
prevention of manifestations such as delirium.

PROPERTIES OF MK RELATED THE HOST

Atherogenic Vascular Inflammation

It has been proposed that some severe complications of COVID-
19 are mainly related to the host (Zhang et al., 2020). They are
influenced by the age, gender and comorbidities, notably linked
to preexisting inflammatory vascular and respiratory conditions.
The cysLT are precisely strongly involved in the inflammatory
phase of the atheromatous process although they are not used in
this indication thus far. Antagonization of cysLT receptors
greatly attenuates arterial spasm on human coronary arteries
with atherosclerotic lesions, but it has no effect on healthy
coronary arteries (Allen et al, 1993). A systematic review of
the anti-atheromatous properties of MK in twenty-six animal
and two human studies concluded that all studies supported the
efficacy of LKs and MK on the atheromatous process (Hoxha
et al., 2018). LKs could therefore reduce COVID-19 mortality in
atheromatous patients, conferring a protection that would be
(theoretically) proportional to the extent and severity of the
atheromatous lesions (Almerie and Kerrigan, 2020).

Ischemia/Reperfusion
The ischemia/reperfusion phenomenon results in downstream
vascular lesions following reperfusion. In patients with severe

atheromatous disease, tissue hypoxia and hypoperfusion increase
the risk of developing new endothelial lesions and ruptured
atheroma plaque, inducing thrombosis and emboli. This may
explain in part why COVID-19 is associated with an increased
risk of arterial and venous thromboembolism, which affects
approximately 30% of SARS-CoV-2-infected patients hospitalized
in intensive care units (Klok et al, 2020). MK alleviates the
ischemia/reperfusion phenomenon in animal models of intestinal
anastomosis (Sayin et al., 2020), in skeletal muscles (Bilgic et al.,
2018), in the spinal cord (Korkmaz et al., 2015), and even following
ovarian (Oral et al,, 2011) or testicular torsion/distortion (Silay
et al,, 2014). A coronary stent coated with MK particles is being
developed (Zamani et al., 2016).

Asthma, Hyper-Reactivity Bronchitis, and
Post-Infectious Cough

Asthma, for which LKs are usually prescribed, is a frequent and
serious condition affecting 7%-8% of the population, though it is
still under-diagnosed and under-treated (Deschildre, 2014). MK
is effective against cough when it is an asthmatic equivalent,
regardless of the functional respiratory parameters (Miwa et al.,
2018). In contrast, MK has not shown any efficacy in chronic
post-infectious cough (Wang et al., 2014), even though there was
a high level of subjective improvement in the placebo group in
this study (Wang et al., 2014). It would be of interest to examine
MK on the mild symptomatic forms of COVID-19 respiratory
damage (bronchospasms, cough, and chest pain).

PROPERTIES OF MK RELATED TO
COVID-19 SERIOUS OUTCOMES

Cytokine Storm

The cytokine storm, corresponding to an unopposed generation
of both pro-inflammatory and anti-inflammatory cytokines by
the innate immune system, is responsible for most of the serious
pulmonary complications of COVID-19 (Russell et al., 2020).
The antagonist action of ZK on CystLT1 receptor protects the
endothelium from inflammatory lesions induced by TNF-o
(Zhou X. et al, 2019). By increasing IFN-y production and
inhibiting the expression of cytokines such as IL-1, IL-6, and
IL-8, the inflammatory chain-reaction could be better controlled
(Han et al., 2010). Clinically, MK is used to reduce drug-related
cytokine reactions induced by daratumumab (Chari et al., 2018)
and rituximab (Kotchetkov et al., 2020). In this indication, MK is
associated with a marked decrease in frequency and intensity of
cytokine reactions and this action seems to be strengthened by the
addition of an anti-H1, namely rupatadine (Kotchetkov et al., 2020).

Acute Respiratory Distress Syndrome

SARS-CoV-2-infected patients classically show mild symptoms
that may gradually progress to more severe manifestations such
as lethal ARDS. The type 1 ARDS is secondary to a direct alveolar
inflammatory reaction, whereas the type 2 ARDS is secondary to
systemic damage and occurs in the context of multi-visceral
failure. To date, there is no effective chemotherapeutic treatment
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for ARDS. The cornerstone of this condition remains the
mechanical ventilation (Fan et al., 2018).

Regarding the type 1 ARDS, LK showed significant benefit on
models induced by inhalation of irritant product like chlorine
(Hamamoto et al,, 2017) or pro-inflammatory lipids (Aquino-
Junior et al., 2019), with a decrease in the intensity of the induced
cytokine cascade and a lesser activation of neutrophils in the
bronchoalveolar fluid. A similar effect was also reported in an
animal model of malignant flu (Cardani et al., 2017).

Regarding the type 2 ARDS in an animal model of lung
lesions induced by hepatic ischemia (Yeh et al, 2015) or
hemorrhagic shock (Al-Amran et al., 2013), administration of
LK resulted in a pulmonary reduction of neutrophil infiltration,
lung inflammation, oxidative stress, and extent of lesions, along
with a significant decrease in TNF-o. and IL-6 cytokines in the
pulmonary parenchyma and bronchoalveolar lavage.

PROPERTIES OF MK RELATED TO
TISSUE SEQUELAE

Antioxidant Properties

An overproduction of reactive oxygen species (ROS) is crucial for
viral replication and the subsequent virus-associated disease
(Khomich et al, 2018). Experimental animal models of ARDS
have shown enhanced ROS levels and disturbance of antioxidant
defense during SARS-CoV infection (van den Brand et al., 2014). In
cells infected with SARS-CoV, there was a greater amount of
activated (phosphorylated) forms of all mitogen-activated protein
kinase (MAPK) members (Khomich et al,, 2018); i.e. a family of
serine/threonine that are activated in response to environmental
stresses including oxidative stress, DNA damage, carcinogenic
stimuli and viral infections. Clinically, Shao et al. (2006) observed
an upregulation of mitochondrial genes and genes responding to
oxidative stress in peripheral blood mononuclear cells of
convalescent SARS-CoV patients. Some of these genes, including
PRDXI1, FTH1 and FOS, are sensitive to oxidative stress and showed
a remarkable elevation. These results support a role for oxidative
stress during COVID-19. Importantly, protective effects of MK are
not limited to inflammatory and microbial infectious attacks, but
also include protection against chemotoxicity (bleomycin, cysplatin,
doxorubicin, statin, paracetamol) (Hareedy et al., 2019) and
radiotoxicity (Hormati et al., 2020) in animal experiments, which
demonstrates some antioxidant properties resulting in increased
mitochondrial mass and functionality, together with increased
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