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Feature Guided Search for Creative
Problem Solving Through Tool
Construction
Lakshmi Nair* and Sonia Chernova

Georgia Institute of Technology, Atlanta, GA, United States

Robots in the real world should be able to adapt to unforeseen circumstances. Particularly

in the context of tool use, robots may not have access to the tools they need for

completing a task. In this paper, we focus on the problem of tool construction in the

context of task planning. We seek to enable robots to construct replacements for missing

tools using available objects, in order to complete the given task. We introduce the

Feature Guided Search (FGS) algorithm that enables the application of existing heuristic

search approaches in the context of task planning, to perform tool construction efficiently.

FGS accounts for physical attributes of objects (e.g., shape, material) during the search

for a valid task plan. Our results demonstrate that FGS significantly reduces the search

effort over standard heuristic search approaches by ≈ 93% for tool construction.

Keywords: tool construction, creative problem solving, task planning, heuristic search, adaptive robotic systems

1. INTRODUCTION

Humans often show remarkable improvisation capabilities, particularly in times of crises. The
makeshift carbon dioxide filter constructed on board the Apollo 13 (Cass, 2005), and the jury-
rigged ventilators built to combat equipment shortages during COVID-19 (Turner et al., 2020),
are examples of human ingenuity in the face of uncertainty. In addition to humans, other
primates and certain species of birds have also been shown to creatively accomplish tasks by
constructing tools from available objects, such as sticks and stones (Jones and Kamil, 1973; Toth
et al., 1993; Stout, 2011). While the capability to construct tools is often regarded as a hallmark
of sophisticated intelligence, similar improvisation capabilities are currently beyond the scope of
existing robotic systems. The ability to improvise and construct necessary tools can greatly increase
robot adaptability to unforeseen circumstances, enabling robots to handle any uncertainties or
equipment failures that may arise (Atkeson et al., 2018).

In this paper, we focus on the problem of tool construction in the context of task planning.
Specifically, we address the scenario in which a robot is provided with a task that requires certain
tools that are missing or unavailable. The robot must then derive a task plan that involves
constructing an appropriate replacement tool from objects that are available to it, and use the
constructed tool to accomplish the task. Existing work that addresses the problem of planning in
the case of missing tools focuses on directly substituting the missing tool with available objects
(Agostini et al., 2015; Boteanu et al., 2015; Nyga et al., 2018). In contrast, this is the first work
to address the problem through the construction of replacement tools, by introducing a novel
approach called Feature Guided Search (FGS). FGS enables efficient application of existing heuristic
search algorithms in the context of task planning in order to perform tool construction by
accounting for physical attributes of objects (e.g., shape, material) during the search for a valid
task plan.
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Heuristic search algorithms, such as A∗ and enforced hill-
climbing (EHC), have been successfully applied to planning
problems in conjunction with heuristics such as cost-optimal
landmarks (Karpas and Domshlak, 2009) and fast-forward
(Hoffmann and Nebel, 2001), respectively. However, the
application of heuristic search algorithms to perform tool
construction in the context of task planning can be challenging.
For example, consider a task where the goal of the robot is to hang
a painting on the wall. In the absence of a hammer that is required
for hammering a nail to complete the task, the robot may choose
to construct a replacement for the hammer using the objects
available to it. How does the robot know which objects should
be combined to construct the replacement tool? One possible
solution is for the user to manually encode the correct object
combination in the goal definition, and the search procedure
would find it. However, it is impractical for the user to know and
encode the correct object combination to use, for all the objects
that the robot could possibly encounter. Alternatively, the robot
can autonomously attempt every possible object combination
until it finds an appropriate tool construction for completing
the task. However, this would require a prohibitive number of
tool construction attempts. Further, what if the robot cannot
construct a good replacement for a hammer using the available
objects, but can instead construct a makeshift screwdriver to
tighten a screw and complete the task? In this case, the task
plan would also have to be adapted to appropriately use the
constructed tool, i.e., “tighten” a screw with the screwdriver
instead of “hammering” the nail. In order to address these
challenges, FGS combines existing planning heuristics with a
score that is computed from input point clouds of objects
indicating the best object combination to use for constructing
a replacement tool. The chosen replacement tool then in turn
guides the correct action(s) to be executed for completing the task
(e.g., “tighten” vs. “hammering”). Hence, our algorithm seeks to:
(a) eliminate the need for the user to specify the correct object
combination, thus enabling the robot to autonomously choose
the right tool construction based on the available objects and the
task goal, (b) minimize the number of failed tool construction
attempts in finding the correct solution, and (c) adapt the task
plan to appropriately use the constructed replacement tool.

Prior work by Nair et al. introduced a novel computational
framework for performing tool construction, in which the
approach takes an input action, e.g., “flip,” in order to output
a ranking of different object combinations for constructing a
tool that can perform the specified action, e.g., constructing
a spatula (Nair et al., 2019a,b). For performing the ranking,
the approach scored object combinations based on the shape
and material properties of the objects, and whether the objects
could be attached appropriately to construct the desired tool. In
contrast, this work focuses on the application of heuristic search
algorithms such as A∗, to the problem of tool construction in
the context of task planning. In this case, the robot is provided
an input task, e.g., “make pancakes,” that requires tools that
are inaccessible to the robot, e.g., a missing spatula. The robot
must then output a task plan for making pancakes, that involves
constructing an appropriate replacement tool from available
objects, and adapting the task plan to use the constructed tool

for completing the task. Thus, prior work takes an action as
input, and outputs a ranking of object combinations. In contrast,
our work takes a task as input, and outputs a task plan that
involves constructing and using an appropriate replacement tool.
Hence, our work relaxes a key assumption of the prior work that
requires the input action to be specified. Our approach directly
uses the score computation methodology described in prior work
(Nair et al., 2019a,b), but combines it with planning heuristics to
integrate tool construction within a task planning framework.

Our core contributions in this paper include:

• Introducing the Feature Guided Search (FGS) approach that
integrates reasoning about physical attributes of objects with
existing heuristic search algorithms for efficiently performing
tool construction in the context of task planning.

• Improving upon prior work by enabling the robot to
automatically choose the correct tool construction and the
appropriate action based on the task and available objects, thus
eliminating the need to explicitly specify an input action as
assumed in prior work.

We evaluate our approach in comparison to standard heuristic
search baselines, on the construction of six different tool types
(hammer, screwdriver, ladle, spatula, rake, and squeegee), in
three task domains (wood-working, cooking, and cleaning). Our
results show that FGS outperforms the baselines by significantly
reducing computational effort in terms of number of failed
construction attempts. We also demonstrate the adaptability of
the task plans generated by FGS based on the objects available in
the environment, in terms of executing the correct action with
the constructed tool.

2. RELATED WORK

Prior work by Sarathy and Scheutz have focused on formalizing
creative problem solving in the context of planning problems
(Sarathy and Scheutz, 2017, 2018). They define the notion
of “Macgyver-esque” creativity as embodied agents that can
“generate, execute, and learn strategies for identifying and
solving seemingly unsolvable real-world problems” (Sarathy and
Scheutz, 2017). They formalize Macgyvering problems (MGP)
with respect to an agent t, as a planning problem in the
agent’s world Wt , that has a goal state g currently unreachable
by the agent. As described in their work, solving an MGP
requires a domain extension or contraction through perceiving
the agent’s environment and self. Prior work by Sarathy also
provide an in-depth discussion of the cognitive processes
involved in creative problem solving in detail, by leveraging
existing work in Neuroscience (Sarathy, 2018). Prior work by
Olteţeanu and Falomir has also looked at the problem of Object
Replacement and Object Composition (OROC) situated within
a cognitive framework called, the Creative Cognitive Framework
(CreaCogs) (Olteţeanu and Falomir, 2016). Their work utilizes
a knowledge base that semantically encodes object properties
and relationships in order to reason about alternative uses for
objects to creatively solve problems. The semantic relationships
themselves are currently encoded a-priori. Similar work by
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Freedman et al. has focused on the integration of analogical
reasoning and automated planning for creative problem solving
by leveraging semantic relationships between objects (Freedman
et al., 2020). They present the Creative Problem Solver (CPS), that
uses large-scale knowledge bases to reason about alternate uses
of objects for creative problem solving. In contrast to reasoning
about objects, prior work by Gizzi et al. has looked at the
problem of discovering new actions for creative problem solving,
enabling the robot to identify previously unknown actions (Gizzi
et al., 2019). Their work applies action segmentation and change-
point detection to previously known actions to enable a robot to
discover new actions. The authors then apply breadth-first search
and depth-first search in order to derive planning solutions using
the newly discovered actions.

In related work, Erdogan and Stilman (2013) described
techniques for Automated Design of Functional Structures
(ADFS), involving construction of navigational structures, e.g.,
stairs or bridges. They introduce a framework for effectively
partitioning the solution space by inducing constraints on the
design of the structures. Further, Tosun et al. (2018) have
looked at planning for construction of functional structures
by modular robots, focusing on identifying features that
enable environment modification in order to make the terrain
traversable. In similar work, Saboia et al. (2018) have looked
at modification of unstructured environments using objects, to
create ramps that enhance navigability. More recently, Choi
et al. (2018) extended the cognitive architecture ICARUS to
support the creation and use of functional structures such
as ramps, in abstract planning scenarios. Their work focuses
on using physical attributes of objects that is encoded a-
priori, such as weight and size, in order to reason about
the construction and stability of navigational structures. More
broadly, these approaches are primarily focused on improving
robot navigation through environment modification as opposed
to construction of tools. Some existing research has also
explored the construction of simple machines such as levers,
using environmental objects (Levihn and Stilman, 2014; Stilman
et al., 2014). Their work formulates the construction of
simple machines as a constraint satisfaction problem where
the constraints represent the relationships between the design
components. The constraints in their work limit the variability of
the simplemachines that can be constructed, focusing only on the
placement of components relative to one another, e.g., placing a
plank over a stone to create a lever. Additionally, Wicaksono and
Sheh (2017) have focused on using 3D printing to fabricate tools
from polymers. Their work encodes the geometries of specific
sub-parts of tools, and enables the robot to experiment with
different configurations of the fabricated tools to evaluate their
success for accomplishing a task.

The work described in this paper differs from the research
described above in that we focus on creative problem solving
through tool construction. Specifically, we focus on planning
tasks in which the required tools need to be constructed from
available objects. Two key aspects of our work that further
distinguish it from existing research include: (i) sensing and
reasoning about physical features of objects, such as shape,
material, and the different ways in which objects can be

attached, and (ii) improving the performance of heuristic search
algorithms for tool construction in the context of task planning,
by incorporating the physical properties of objects during the
search for a task plan.

3. APPROACH

In this section, we begin by discussing some background details
regarding heuristic search, followed by specific implementation
details of FGS.

3.1. Heuristic Search
Heuristic search algorithms are guided by a cost function f (s) =
g(s)+ h(s), where g(s) is the best-known distance from the initial
state to the state s, and h(s) is a heuristic function that estimates
the cost from s to the goal state. An admissible heuristic never
overestimates the path cost from any state s to the goal (Hart
et al., 1968; Zhang et al., 2009). A consistent heuristic holds the
additional property that, if there is a path from a state x to a
state y, then h(x) ≤ d(x, y) + h(y), where d(x, y) is the distance
from x to y (Hart et al., 1968). Most heuristic search algorithms,
including A∗, operate by maintaining a priority queue of states
to be expanded (the open list), sorted based on the cost function.
At each step, the state with the least cost is chosen, expanded,
and the successors are added to the open list. If a successor state
is already visited, the search algorithm may choose to re-expand
the state, only if the new path cost to the state is lesser than
the previously found path cost (Bagchi and Mahanti, 1983). The
search continues until the goal state is found, or the open list
becomes empty, in which case no plan is returned.

3.2. Feature Guided Search
We now describe the implementation of FGS1. For the purposes
of this explanation, we present our work in the context of A∗,
though our approach can be easily extended to other heuristic
search algorithms as demonstrated in our experiments. Let S
denote the set of states, A denote the set of actions, γ denote state
transitions, si denote the initial state, and sg denote the goal state.
For the planning task, we consider the problem to be specified
in Planning Domain Definition Language (PDDL) (McDermott
et al., 1998), consisting of a domain definition PD = (S,A, γ ),
and a problem/task definition PT = (PD , si, sg). Further, we use
O to denote a set of n objects in the environment available for tool
construction, O = {o1, o2, ...on}.

Since our work focuses on tools, we assume that some
action(s) in A are parameterized by a set of object(s) Oa ⊆

O, that are used to perform the action. Specifically for tool
construction, we explicitly define an action “join(Oa)”, where
Oa = {o1, o2, ...om},m ≤ n, parameterized by objects that can be
joined to construct a tool for completing the task. For example,
the action “join-hammer(Oa)” allows the robot to construct a
hammer using the objects Oa that parameterize the action. For
actions that are not parameterized by any object, Oa = ∅. Our
approach seeks to assign a “feature score” to the objects in Oa,

1All source code including problem and domain definitions, are publicly available

at: https://github.com/Lnair1993/Tool_Macgyvering.
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Algorithm 1: Feature guided A∗ search.

1 Function Search(PD ,PT , trust=true):
2 si, sg = extractStates(PT )
3 A = extractActions(PD)
4 O = extractObjects()
5 Oreject = [ ]
6 openList= [ ]
7 setPathCost(si, 0) // Set initial state’s g(s) and f(s) to 0
8 openList. add(si, 0)
9 while OpenList not empty do
10 currState = argmins(f (s)) ∀ s ∈ openList
11 openList. pop(currState)
12 if currState = sg then
13 return extractPlan(sg , si)
14 nextStates = getNext(currState, A)
15 for (s, a,Oa) ∈ nextStates do
16 g(s) = computePathCost(s, currState) // Get

current path cost
17 c(s) = getPathCost(s) // Get previous best

known path cost
18 if g(s) ≥ c(s) then
19 continue

20 else

21 setPathCost(s, g(s)) // Update lower costs as
new paths are
found

22 end

23 h(s) = computeHeuristic(s)
24 φ(s) = featureScore(s, a,Oa, trust) // Compute

the feature score: Algorithm 2
25 if φ(s) = −∞ then

26 Oreject . add(Oa, a) // Track rejected
combinations

27 f (s) = g(s)+ h(s)− φ(s)
28 if f (s) = ∞ then

29 continue

30 openList. add(s, f (s))
31 end

32 end

33 if Oreject not ∅ then

34 Search(PD ,PT , trust = false) // Re-attempt
without trusting all sensors

35 return ∅ // No plan found

indicating their fitness for performing the action a. Thus, given
different sets of objects Oa that are valid parameterizations of
a, the feature score can help guide the search to generate task
plans that involve using the objects that are most appropriate
for performing the action. In the context of tool construction,
the feature score guides the search to generate task plans that
involve joining the most appropriate objects for constructing the
replacement tool, given the objects available in the environment.
Feature scoring can also potentially reject objects that are unfit
for tool construction.

Our approach is presented in Algorithm 1. The search
algorithm extracts information regarding the initial state si and
goal state sg from the task definition (Line 2). The set of actions
A is extracted from the domain definition PD (Line 3). The
agent extracts the objects in its environment from an RGB-D
observation of the scene through point cloud segmentation and
clustering (Line 4). We initialize the open list (openList) as a
priority queue with the initial state si and cost of 0 (Lines 6–
8). Lines 9–32 proceed according to the standard A∗ search
algorithm, except for the computation of the feature score in
Line 24. While the open list is not empty, we select the state
with the lowest cost function (Line 10,11). If the goal is found,
the plan is extracted (Lines 12–13), otherwise the successor states
are generated (Line 14). For each successor state s, the algorithm
computes the path cost g(s) from the current state currState to
s (Line 16). The algorithm then retrieves the best known path
cost c(s) for the state from its previous encounters (Line 17). If
the state was not previously seen, c(s) = ∞. In Lines 18–22,
the algorithm compares the best known path cost to the current
path cost, and updates the best known path cost if g(s) < c(s).
The algorithm then computes the heuristic h(s) (Line 23), and
the feature score φ(s) (Line 24). The algorithm also maintains a
list of object combinations that were rejected by feature scoring
(i.e., assigned a score of −∞), in Oreject (Line 26). The final cost
is computed as f (s) = g(s) + h(s) − φ(s) (Line 27; We expand
more on our choice of cost function in section 3.5). If f (s) 6= ∞,
then the state is added to the open list, prioritized by the cost.
The search continues until a plan is found, or exits if the open list
becomes empty. If no plan was found, the search is reattempted
(Line 34) by modifying the feature score computation (described
in section 3.3). If all search attempts fail, the planner returns a
failure with no plan found. In the following section we discuss
the computation of the feature score in detail.

3.3. Feature Score Computation
In this section, we describe the computation of the feature score
for a given set of objects Oa that parameterize an action a.
Note that, in this work the feature score computation focuses on
the problem of tool construction. However, FGS can potentially
be extended to other problems such as tool substitution, by
computing similar feature scores as described in prior work
(Abelha et al., 2016; Shrivatsav et al., 2019). Given n objects, tool
construction presents a challenging combinatorial problem with
a state space of size nPm, assuming that we wish to construct a tool
with m ≤ n objects. Thus, Oa = {o1, o2, ...om} denotes a specific
permutation of m objects. Inspired by existing tool-making
studies in humans (Beck et al., 2011), prior work introduced
a multi-objective function for evaluating the fitness of objects
for tool construction (Nair et al., 2019b), that we apply in this
work for feature scoring. The proposed multi-objective function
included three considerations: (a) shape fitness of the objects
for performing the action, (b) material fitness of the objects for
performing the action, and (c) evaluating whether the objects in
Oa can be attached to construct the tool.

The calculation of each of the three metrics above relies
on real-world sensing, which can be noisy. This can result in
false negative predictions, that eliminate potentially valid object
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combinations from consideration. In particular, prior work has
shown that false negatives inmaterial and attachment predictions
have caused ≈ 4% of tool constructions to fail (Nair et al.,
2019b). To address the problem of false negatives in material
and attachment predictions, we introduce the notion of “sensor
trust” in this work. Prior work that has looked at accounting
for sensor trust has introduced the notion of “trust weighting”
to use continuous values to appropriately weigh the sensor
inputs (Pierson and Schwager, 2016). In contrast, the sensor trust
parameter in our work is a binary value that determines whether
the material and attachment predictions should be believed by
the robot and included in the feature score computation. This is
because material and attachment scores are hard constraints and
not continuous, i.e., they are −∞ for objects that are not suited
for tool construction (we describe this further in later sections).
Hence, a continuous weighting on the material and attachment
scores is not appropriate for our work.

Our feature score computation approach is described in
Algorithm 2. For actions that are not parameterized by objects,
the approach returns 0 (Lines 2-3). If the trust parameter is
set to true, the feature score computation incorporates shape,
material, and attachment predictions. (Lines 5–12 of Algorithm
2; section 3.4.1 for details). If the trust parameter is set to false,
the feature score computation only includes shape scoring (Lines
14–19 of Algorithm 2; section 3.4.2 for details). Thus, we describe
two modes of feature score computation that is influenced by
the sensor trust parameter. In the following sections, we briefly
describe the computation of shape, material and attachment
predictions, and for a more detailed implementation of each
method, we refer the reader to Nair et al. (2019b) and Shrivatsav
et al. (2019).

3.3.1. Shape Scoring
Shape scoring seeks to predict the shape fitness of the objects in
Oa for performing the action a. This is indicated by the ShapeFit()
function in Algorithm 2. In this work, we consider tools to have
action parts and grasp parts2. Thus, m = 2 and the set of objects
Oa consists of two objects, i.e., |Oa| = 2. Further, the ordering of
objects in Oa indicates the correspondence of the objects to the
action and grasp parts.

For shape scoring, we seek to train models that can predict
whether an input point cloud is suited for performing a specific
action. We formulate this as a binary classification problem.
We represent the shape of the input object point clouds using
Ensemble of Shape Functions (ESF) (Wohlkinger and Vincze,
2011) which is a 640-D vector, shown to perform well in
representing object shapes for tools (Schoeler and Wörgötter,
2015; Nair et al., 2019b). We then train independent neural
networks that take an input ESF feature, and output a binary
label indicating whether the input shape feature is suited for
performing a specific action. Thus, we train separate neural
networks, one for each action3. More specifically, we train

2As in prior work, this covers the vast majority of tools (Myers et al., 2015; Abelha

and Guerin, 2017).
3The advantage of the binary classification is that for new actions, additional

networks can be trained independently without affecting other networks.

Algorithm 2: Feature score Computation

1 Function FeatureScore(s, a,Oa, trust = true):
2 if Oa is empty then
3 return 0
4 if trust then
5 if canAttach(Oa, a) then
6 φs

shape
(Oa) = ShapeFit(Oa, a) // Sensors are fully

trusted - section 3.4.1
7 φs

mat(Oa) =MaterialFit(Oa, a)
8 φ(s) = λ1 ∗ φs

shape
(Oa)+ λ2 ∗ φs

mat(Oa) // The

weighted sum is assigned to s
9 return φ(s)

10 else

11 return−∞

12 end

13 else

14 if (Oa, a) ∈ Oreject then

15 φs
shape

(Oa) = ShapeFit(Oa, a) // Not fully trust

sensors - section 3.4.2
16 return φs

shape
(Oa) // Evaluate objects that were

previously rejected

17 else

18 return−∞

19 end

20 end

separate networks for the tools’ action parts, e.g., the head of
a hammer or the flat head of a spatula, and for a supporting
function: “Handle,” which refers to the tools’ grasp part, e.g.,
hammer handle.

For the score prediction, given a set of objectsOa to be used for
constructing the tool, letK denote the set of objects inOa that are
candidates for the action parts of the final tool, and let Oa −K be
the set of candidate grasp parts. Then the shape score φs

shape
(Oa)

is computed by using the trained networks as:

φs
shape(Oa) =

∏

oi∈K

p(action|oi)
∏

oi∈Oa−K

p(handle|oi) (1)

Where, p is the prediction confidence of the corresponding
network. Thus, we combine prediction confidences for all
action parts and grasp parts. For example, for the action “join-
hammer(Oa)” whereOa consists of two objects (o1, o2), the shape
score φs

shape
(Oa) = p(hammer_head|o1) ∗ p(handle|o2).

3.3.2. Material Scoring
Material scoring seeks to predict the material fitness of the
objects in Oa for performing the action a. This is indicated
by the MaterialFit() function in Algorithm 2. In this work, we
make three simplifying assumptions. Firstly, we consider the
construction of rigid tools which covers a vast range of real-
world examples (Myers et al., 2015; Abelha et al., 2016). Secondly,
we consider the material properties of the action parts of the
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TABLE 1 | Table indicating appropriate materials for action parts of different tools.

Tool Material (Action part)

Hammer Metal, Wood

Screwdriver Plastic, Metal

Ladle Plastic, Wood, Metal

Spatula Plastic, Wood, Metal

Rake Plastic, Wood, Metal

Squeegee Foam

tool since the action parts are more critical to performing the
action with the tool (Shrivatsav et al., 2019). Lastly, we assume
that the materials that are appropriate for different tools is
provided a-priori, e.g., hammer heads are made of wood or
metal (Shown in Table 1). Note that this information can also
be obtained using common knowledge bases such as RoboCSE
(Daruna et al., 2019).

For material scoring, we seek to train models that can
predict whether an input material is suited for performing a
specific action. We represent the material properties of the
object using spectral readings, since it has been shown to
work well for material classification problems in prior work
(Erickson et al., 2019, 2020; Shrivatsav et al., 2019). For extracting
the spectral readings, the robot uses a commercially available
handheld spectrometer4, called SCiO, to measure the reflected
intensities of different wavelengths, in order to profile and classify
object materials. The spectrometer generates a 331-D real-valued
vector of spectral intensities. Then given a dataset of SCiO
measurements from an assortment of objects, we train a model
through supervised learning to output a class label indicating the
material of the object.

For the material score prediction, given the spectral readings
for the action parts in Oa denoted by K, we map the predicted
class label to values inTable 1 to compute thematerial score using
the prediction confidence of the model. Let T(a) denote the set
of appropriate materials for performing an action a. Then the
material score is computed as:

φs
mat(Oa) =







z =
∏

oi∈K

max
ci∈T(a)

p(ci|oi), if z ≥ t

−∞, otherwise

(2)

Where, p is the prediction confidence of the network regarding
the class ci. We compute the max prediction confidence across
all the appropriate classes ci ∈ T(a), and their product over the
action parts inK. For example, for the action “join-hammer(Oa),”
where Oa consists of two objects (o1, o2), the material score
φs
mat(Oa) = max(p(metal|o1), p(wood|o1)). If the max value

exceeds some threshold5 denoted by t, then the corresponding
value is returned. Otherwise, the model returns−∞. Hence, note
that material prediction acts as a hard constraint, by directly

4https://www.consumerphysics.com/ - Note that SCiO can be controlled via an app

that enables easy scanning of objects. The robot simply moves the scanner over the

object, and the user presses a key within the app to scan the object.
5We empirically determined a threshold of 0.6 to work well.

eliminating any objects that are made of inappropriate materials,
thus reducing the potential search effort.

3.3.3. Attachment Prediction
Given a set of objects, we seek to predict whether the objects
can be attached to construct a tool. This is indicated by the
canAttach() function in Algorithm 2. In order to attach the
objects, we consider three attachment types for creating fixed
attachments, namely, pierce attachment (piercing one object with
another, e.g., foam pierced with a screwdriver), grasp attachment
(grasping one object with another, e.g., a coin grasped with
pliers), and magnetic attachment (attaching objects via magnets
on them). For magnetic attachments, we manually specify
whether magnets are present on the objects, enabling them to be
attached. For pierce and grasp attachment, we check whether the
attachments are possible as described below. If no attachments
are possible for the given set of objects, the feature score returns
−∞, indicating that the objects are not a viable combination.
Thus, the search eliminates any objects that cannot be attached.

3.3.3.1. Pierce attachment
Similar to material reasoning, we use the SCiO sensor to
reason about material pierceability. We assume homogeneity of
materials, i.e., if an object is pierceable, it is uniformly pierceable
throughout the object. We train a neural network to output a
binary label indicating pierceability of the input spectral reading
(Nair et al., 2019b). If the model outputs 0, the objects cannot be
attached via piercing.

3.3.3.2. Grasp attachment
To predict grasp attachment, we model the grasping tool (pliers
or tongs) as an extended robot gripper. This allows the use of
existing robot grasp sampling approaches (Zech and Piater, 2016;
ten Pas et al., 2017; Levine et al., 2018), for computing locations
where a given object can be grasped. In particular, we use the
approach discussed by ten Pas et al., that outputs a set of grasp
locations given the input parameters reflecting the attributes of
the pliers or tongs used for grasping (ten Pas et al., 2017). If
the approach could not sample any grasp locations, the objects
cannot be attached via grasping.

3.4. Incorporating the Sensor Trust
Parameter
In this section, we describe how the sensor trust parameter (Line
4, Algorithm 2) is incorporated to compute the feature score in
two different ways. The first approach includes trusting the shape,
material, and attachment predictions of the models described
above. The second approach allows the robot to deal with possible
false negatives in material and attachment predictions, by only
incorporating the shape score into the feature score computation.

3.4.1. Fully Trust Sensors
In the case that the robot fully trusts the material and attachment
predictions, the trust parameter is set to true (Line 4, Algorithm
2). The final feature score is then computed as a weighted sum
of the shape and material scores, if the objects can be attached
(Algorithm 2, Lines 5–8). We found uniform weights of λ1 =

1, λ2 = 1, to work well for tool constructions. If the objects
cannot be attached, then φ(s) = −∞, indicating that the
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objects in Oa do not form a valid combination. Otherwise, using
Equations (1) and (2):

score(s,Oa) = λ1 ∗ φs
shape(Oa)+ λ2 ∗ φs

mat(Oa) (3)

Since both material and attachment predictions are hard
constraints, certain object combinations can be assigned a
score of −∞, indicating that the robot does not attempt
these constructions. As described before, this can lead to
cases of false negatives where the robot is unable to find the
correct construction due to incorrect material or attachment
predictions. In these cases, the algorithm tracks the rejected
object combinations in Oreject (Algorithm 1, Line 26), and
repeats the search as described below, by switching trust to false
(Algorithm 1, Lines 33–34).

3.4.2. Not Fully Trust Sensors
In case of false negatives, the robot can choose to eliminate the
hard constraints of material and attachment prediction from the
feature score computation, thus allowing the robot to explore
the initially rejected object combinations by using only the shape
score. This is achieved by setting the trust flag to false in our
implementation (Lines 14–15, Algorithm 2). In this case, we
attempt to re-plan using the feature score as:

φ(s) =

{

φs
shape

(Oa), if Oa ⊆ Oreject

−∞, otherwise
(4)

Here,Oreject indicates the set of objects that were initially rejected
by the material and/or the attachment predictions. Since, shape
score is a soft constraint, i.e., it does not eliminate any object
combinations completely, we use the shape score to guide the
search in case of the rejected objects. In the worst case, this causes
the robot to explore all nPm permutations of objects. However,
as shown in our results, shape score can serve as a useful guide
for improving tool construction performance in practice, when
compared to naively exploring all possible object combinations.
The final feature score computation, influenced by attachments
and the trust parameter, can be summarized as follows from
Equations (3), (4):

φ(s) =











score(s,Oa), if attachable & trust

φs
shape

(Oa), if not trust & Oa ⊆ Oreject .

−∞, otherwise

3.5. Final Cost Computation
Once the feature score is computed, the final cost function is
computed as f (s) = g(s) + h(s) − λ ∗ φ(s). Interestingly, we
found that λ = 1, thus f (s) = g(s) + h(s) − φ(s), performs very
well with the choice of search algorithms and heuristics in this
work for the problem of tool construction. In this case, the higher
the feature score φ(s), the lower the cost f (s), in turn guiding
the search to choose nodes with higher feature score (lower f (s)
values). Additionally, the values of the feature score are within the
range 0 ≤ φ(s) ≤ 2. Since we use existing planning heuristics that
have been shown to work well, and the task plans generated have
≫2 steps involved, g(s)+h(s)≫2 and thus, f (s) > 0. Thus, λ = 1

works well for the problems described in this work. However, this
presents an interesting research question for our future work in
terms of an in-depth analysis of the choice of heuristic and feature
score values, and its influence on the guarantees of the search.

3.6. Implementation Details
In this section, we describe additional details regarding the
implementation of the work, both in terms of the algorithm, as
well as the physical implementation on the robot.

3.6.1. Algorithm Implementation
In terms of implementation, the process begins with the trust
parameter set to True. FGS generates a task plan that involves
combining objects to construct the required tool. Once a task
plan is successfully found, the robot can proceed with executing
the task plan and joining the parts indicated byOa as described in
Nair et al. (2019b), to construct the required tool for completing
the task. If the tool could not be successfully constructed or used,
the plan execution is said to have failed, and the robot re-plans
to generate a new task plan with a different object combination,
since the algorithm tracks the attempted object combinations.
Note that the approach also keeps track of object combinations
rejected by material and attachment predictions in Oreject . If no
solution could be found with trust set to True, and Oreject 6= ∅,
then the robot switches trust to false, and FGS explores the object
combinations within Oreject (Lines 33-34 of Algorithm 1). If no
solution could be found with either trust setting, FGS returns a
complete failure and terminates.

Further note that in this work, we do not explicitly deal
with symbol grounding (Harnad, 1990) and symbol anchoring
(Coradeschi and Saffiotti, 2003) problems. We overcome these
issues by manually mapping the object point clouds to their
specific symbols within the planning domain definition. Once
the task plan is generated, the mapping is then used to match
the symbols within the task plan to their corresponding objects
in the physical world, via their point clouds. However, existing
approaches can potentially be adapted in order to refine the
symbol grounding functions (Hiraoka et al., 2018), or to enable
the robot to automatically extract the relationships between the
object point clouds and their abstract symbolic representations
(Konidaris et al., 2018).

3.6.2. Physical Implementation
The spectrometer used in this work can be activated either using
a physical button located on the sensor, or through an app
that is provided with the sensor. However, pressing the physical
button requires precision and careful application of the correct
amount of force, which can be challenging for the robot since it
may potentially damage the sensor if the applied force exceeds
a certain threshold. To prevent this, in our implementation,
the robot simply moves the scanner over the objects, and the
user then manually presses a key within the app to activate
the sensor. Additionally, the rate of scanning is also limited
by the speed of the robot arm itself. Since the robot arm used
in this work moves rather slowly, it took about ≈1.7 min on
average to scan 10 objects, while this would take <30 s for a
human. Overcoming these issues and several other manipulation
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challenges are essential to ensure practical applicability of this
work. We discuss this in more detail in section 5.

4. EXPERIMENTAL VALIDATION AND
RESULTS

In this section, we describe our experimental setup and present
our results alongside each evaluation. We validate our approach
on three diverse types of tasks involving tool construction
in a household domain, namely, wood-working, cooking, and
cleaning. For wood-working tasks, the tools to be constructed
include hammer and screwdriver; for cooking tasks the tools
include spatula and ladle; and lastly for cleaning tasks the tools
include rake and squeegee. Each tool is constructed from two
parts (m = 2) corresponding to the action and grasp parts
of the tool6. Our experiments seek to validate the following
three aspects:

1. Performance of feature guided A
∗ against baselines: In

order to investigate the informativeness of including feature
score in heuristic search, we evaluate the feature guided
A∗ approach against three baselines. We also evaluate our
approach in terms of the two different settings of the sensor
trust parameter to investigate the benefits of introducing
sensor trust.

2. Combining feature scoring with other heuristic search

algorithms: To investigate whether feature scoring can
generalize to other search approaches, we integrate feature
scoring with two additional heuristic search algorithms.
Specifically, we present results combining feature scoring with
weighted A∗ and enforced hill-climbing with the fast-forward
heuristic (Hoffmann and Nebel, 2001).

3. Adaptability of task plans to objects in the robot’s

environment: We evaluate whether the robot can adapt
its task plans to appropriately use the constructed tool,
as the objects available to the robot for tool construction
are modified. This measures whether the robot can
flexibly generate task plans in response to the objects in
the environment.

For all our experiments, we use a test set consisting of 58
previously unseen candidate objects for tool construction (shown
in Figure 1). These objects consist of metal (11/58), wood
(12/58), plastic (19/58), paper (2/58), and foam (14/58) objects.
Only the foam and paper objects are pierceable. Prior to planning,
the robot scans the materials of the objects for material scoring
and attachment predictions. For our results, we evaluate the
statistical significance where it is applicable, using repeated
measures ANOVA with post-hoc Tukey’s test. We discuss each
experiment in more detail below, along with the results for each.

4.1. Performance of Feature Guided A*
In this section, we evaluate the performance of feature guided A∗

against three baselines: (i) standard A∗, where f (s) = g(s)+ h(s),
(ii) feature guided uniform cost search, where f (s) = g(s)+ 2.0−

6In this work, we pre-specify the trajectories to be followed when combining the

objects to construct the tool.

φ(s), and (iii) standard uniform cost search, where f (s) = g(s).
In (ii), we use 2.0 − φ(s) to add a positive value to g(s) since,
0 ≤ φ(s) ≤ 2. As a heuristic with A∗, we use the cost optimal
landmark heuristic (Karpas and Domshlak, 2009). We also vary
the sensor trust parameter, and present results for the two cases
where the robot is not allowed to change the trust parameter
(trust always set to true, i.e., lines 33–34 of Algorithm 1 not
executed), and for the case where the robot is allowed to change
it to false when no plan is found.

For the evaluation, we create six different tasks, two tasks each
for wood-working, cooking and cleaning. Each task requires the
construction of one specific tool for its completion, e.g., one of
the tasks in wood-working requires construction of a hammer,
and the other requires construction of a screwdriver. For each
task we created 10 test cases, where each test case consisted of 10
objects chosen from the 58 in Figure 1, that could potentially be
combined to construct the required tool. We report the average
results across the test cases for each task type (total 10 × 2 cases
per task type with 10 candidate objects per case). We create each
test set by choosing a random set of objects, ensuring that only
one “correct” combination of objects exists per set. The correct
combinations are determined based on human assessment of the
objects. For each task, we instantiate the corresponding domain
and problem definitions in PDDL7.

The metrics used in this experiment include (i) the number
of nodes expanded during search as a measure of computational
resources consumed, (ii) the number of failed construction
attempts before a working tool was found (also referred to as
“attempts” in this paper), and (iii) the success rate indicating
the number of times the robot successfully found a working
tool. Ideally, we would like the number of nodes expanded and
the number of failed construction attempts to be as low as
possible. Note that the brute force number of failed construction
attempts for 10 objects is 89, since there are 10P2 possible object
permutations for m = 2, with 89 incorrect possibilities. Ideally,
we would like the number of failed construction attempts to
be 0. The success rate should be as high as possible, ideally
equal to 100%.

Table 2 shows the performance of feature guided A∗ (where
f (s) = g(s) + h(s) − φ(s), denoted by “FS+H”) compared to
the different baselines: “H” denotes standard A∗ (where f (s) =

g(s) + h(s)), “FS” denotes feature guided uniform cost search
(where f (s) = g(s) + 2.0 − φ(s)), and “UCS” denotes standard
uniform cost search (where f (s) = g(s)). The values reported
per task are the average performances across the test cases
where tool constructions were successful. As shown in Table 2,
incorporating feature scoring (FS, FS+H) helps significantly
reduce the number of failed construction attempts compared
to the baselines without feature scoring (H, UCS), with p <

0.001. Since heuristics can help reduce the search effort in terms
of number of nodes expanded, we see that approaches that
do not use heuristics (FS and UCS) expand significantly more

7In the planning problem definition, the objects are instantiated numerically

through “obj0” to “obj9,” where each literal is manually assigned to one of the 10

objects during planning time. Our planning and domain definitions are available

at: https://github.com/Lnair1993/Tool_Macgyvering.
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FIGURE 1 | Dataset of 58 objects used for the experiments, made of different materials.

TABLE 2 | Table comparing feature guided A∗ (“FS+H”) with baselines.

Cleaning Cooking Wood-working

FS+H H FS UCS FS+H H FS UCS FS+H H FS UCS

# Nodes 5187 5187 9061 9061 329 604 36237 36213 7264 6936 28606 28734

# Failed

attempts
2 46 3 49 3 48 4 40 2 45 2 37

The other notations: “H”—standard A∗; “FS”— feature guided uniform cost search; “UCS”—standard uniform cost search. This table reports the average number of failed attempts per

task, across test cases where tool construction was successful. Note that the max number of failed attempts possible is 89 (brute force). Bold highlights the best performance values

for the different metrics.

FIGURE 2 | Graphs highlighting the success rates for the two different modes of feature scoring based on sensor trust parameter, in relation to the number of failed

attempts. Note that X-axis highlights the actual number of attempts across all test cases for wood-working, cooking, and cleaning put together. (A) Graph showing

the success rate compared to the number of attempts when sensors are fully trusted. (B) Graph showing the success rate vs. the number of attempts when sensors

are not fully trusted.
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nodes than FS+H and H, with p < 0.001. Note that there
is no statistically significant difference in the number of nodes
expanded between H and FS+H. Thus, using feature scoring
with heuristics (FS+H) yields the best performance in terms
of both number of nodes expanded, and the number of failed
construction attempts. To summarize, these results show that
feature scoring is informative to heuristic search by significantly
reducing the average number of failed construction attempts to
≈ 2 compared to ≈ 46 without it (brute force number of failed
attempts is 89).

Further, in Figures 2A,B, we plot the success rate vs. the
resource budget of the robot in terms of the permissible number
of failed attempts. That is, the robot is not allowed to try any
more than a fixed number of attempts, indicated by the resource
budget. Figure 2A considers the case where the sensor trust
parameter is always set to true, and Figure 2B considers the case
when the robot is allowed to switch the trust to false, if a solution
was not found. Note that in contrast to Table 2, the graphs report
actual number of failed attempts, across all tasks, whereas Table 2
reports the average number of failed attempts across the test
cases per task, for tool constructions that were successful. In
Figure 2A, we see that FGS (FS+H and FS) achieves a success
rate of 86.67% (52/60 constructions) within a resource budget
of ≈ 8 failed attempts to do so. This indicates that 13.33% of
the valid constructions were treated as false negatives by material
and attachment predictions, and were completely removed from
consideration (unattempted). Thus, increasing the permissible
resource budget beyond 8, does not make any difference.Without
feature scoring, H and UCS achieve a success rate of 87%
with a budget of 71 attempts, and 100% after exploring nearly
every possible construction (max resource budget of 89 failed
attempts). In contrast, when the robot is allowed to switch the
trust parameter, the robot uses shape scoring alone to continue
guiding the search. As shown in Figure 2B, FGS (FS+H and FS)
achieves 100% success rate within a budget of ≈ 39 attempts,
since the robot does not eliminate any object combinations from
consideration. The performance is also significantly better than
the baselines that do not use feature scoring. This is because
shape scoring guides the search through the space of object
combinations based on the objects’ shape fitness, compared to H
andUCS that do not have anymeasure of the fitness of the objects
for tool construction. To summarize, feature scoring enables the
robot to successfully construct tools by leveraging the sensor
trust parameter, while significantly outperforming the baselines
in terms of the resource budget required.

In order to understand which tools were more challenging
for feature scoring, Table 3 shows a tool-wise breakdown in
performance for feature guided A∗ for the two different sensor
trust values. The notation “trust” denotes the case where sensors
are fully trusted, and “∼trust” denotes case where they are not
fully trusted. When the sensors are fully trusted, rakes were
a particularly challenging test case, as indicated by the lowest
success rate of 7/10. In contrast, hammers and ladles have a
success rate of 10/10. The failure cases for each tool arises from
incorrect material and attachment predictions. While not fully
trusting the sensors (∼trust) leads to a 100% success rate (60/60
cases), using shape score alone leads to more failed construction

attempts when compared to combining shape with material and
attachment predictions since shape alone is less informative
(e.g., for rake, ∼trust has 7 failed attempts vs. 3 failed attempts
for trust).

Figure 3 shows sample task plans generated by the robot in
cooking and cleaning tasks. In the case of cooking, the robot
needed a spatula to flip the eggs, and used a flat piece (obj4)
with tongs (obj5) to construct the spatula via grasp attachment.
For cleaning, the robot needed a squeegee to clean the window,
and used a foam block (obj1) and screwdriver (obj6) to construct
the squeegee via pierce attachment. Without the constructed
tools, the actions highlighted in red would fail, i.e., the “flip”
action would fail without the constructed spatula. Hence, FGS
enables the robot to replace missing tools through construction.
To summarize, the key findings of this experiment indicate that
feature scoring is highly informative for heuristic search by
reducing the number of nodes expanded by ≈ 82%, and the
number of failed construction attempts by ≈ 93%, compared
to the baselines. Further, allowing the robot to switch the trust
parameter when a plan is not found, helps achieve a success
rate of 100% within a budget of ≈ 39 attempts, significantly
outperforming baselines that do not use feature scoring.

4.2. Feature Scoring With Other Heuristic
Search Algorithms
To demonstrate that feature scoring generalizes to other search
approaches, in this section we present results for combining
feature scoring with weighted A∗ (Pohl, 1970), and enforced
hill-climbing using the fast-forward heuristic (Hoffmann and
Nebel, 2001). We use the same experimental setup and metrics
as described in section 4.1. In addition, we also measure the
output plan length to investigate the optimality of the different
approaches. For weighted A∗, feature scoring is incorporated
as f (s) = g(s) + w ∗ (h(s) − φ(s)), where w indicates a
weight parameter8. For enforced hill-climbing, the cost function
is computed as f (s) = h(s) − φ(s). For both weighted A∗ and
enforced hill-climbing, we use the fast-forward heuristic, which
has been shown to be successful for planning tasks in prior work
(Hoffmann and Nebel, 2001).

InTable 4, we present the results for feature scoring combined
with A∗ and the cost-optimal landmark heuristic (“A∗+LM”),
weighted A∗ with fast-forward heuristic (“wA∗+FF”), and
enforced hill-climbing with fast forward heuristic (“eHC+FF”).
Compared to A∗+LM, wA∗+FF and eHC+FF reduce the
computational effort (fewer nodes expanded) in return for
sub-optimal solutions (longer plan lengths). This is expected
of weighted A∗ and enforced hill-climbing since they are
inadmissible algorithms. There is no statistically significant
difference between # failed construction attempts in each case.
To summarize, the key finding of this experiment is that feature
scoring can be applied to other planning heuristics such as fast-
forward, and other heuristic search algorithms like weighted
A∗ and enforced hill-climbing, to further reduce computational
effort, albeit at the cost of optimality in terms of plan length.

8Weight was set to 5.0.
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TABLE 3 | Table showing tool-wise breakdown in performance for feature guided A∗.

Cleaning Wood-working Cooking

Squeegee Rake Hammer Screwdriver Spatula Ladle

Trust ∼Trust Trust ∼Trust Trust ∼Trust Trust ∼Trust Trust ∼Trust Trust ∼Trust

# Failed

attempts
0 1 3 7 2 2 2 8 3 7 2 2

# Success 9/10 10/10 7/10 10/10 10/10 10/10 8/10 10/10 8/10 10/10 10/10 10/10

This table reports the average number of failed attempts per tool, across cases where tool construction was successful. The notation ∼trust indicates cases where sensors are not fully

trusted. Note that max # failed attempts is 89.

FIGURE 3 | (Left) A sample task plan where a spatula must be constructed for a cooking task, and the planner uses the flat piece (obj4 in the problem definition), and

tongs (obj5 in the problem definition). The action “join-spatula” refers to the construction of the spatula using obj4 and obj5. Similarly, (right) a squeegee is

constructed from obj1 (foam block) and obj6 (screwdriver) for the cleaning task. Without tool construction (highlighted in green) the actions underlined in red would fail.

TABLE 4 | Table showing performance of feature guided Weighted A∗ (wA∗) and feature guided Enforced Hill-Climbing (eHC) with the fast-forward heuristic (FF).

Cleaning Cooking Wood-working

A∗+LM wA∗+FF eHC+FF A∗+LM wA∗+FF eHC+FF A∗+LM wA∗+FF eHC+FF

# Nodes 5187 21 21 329 23 35 7264 25 38

# Failed

attempts
2 2 4 3 3 4 2 1 2

Plan length 20 22 22 19 19 19 11 15 15

4.3. Adaptability of Task Plans
In this section we evaluate the adaptability of our FGS approach
to generate task plans based on objects in the environment, to
appropriately use the constructed tool. We create three tasks, one
task each for wood-working, cooking, and cleaning. In each of
the tasks, either of two tools can be constructed to successfully
complete the task, but there is only one ground truth depending
on the objects available for construction. That is, the available
objects only enable the construction of one of the two tools. Thus,
the robot has to correctly choose the tool to be constructed. In

addition, the robot must adapt the task plan to appropriately use
the constructed tool. For the wood-working task either a hammer
(with action “hit”) or a screwdriver (with action “tighten”) can be
used to attach two pieces of wood; for the cooking task either a
spatula (with action “flip”) or a ladle (with action “scoop”) can
be used to flip eggs; and for the cleaning task, either a squeegee
(with action “reach”) or a rake (with action “collect”) can be used
to collect garbage.

For the evaluation, we create three different tasks, one each
in wood-working, cooking, and cleaning. For each task, either

Frontiers in Robotics and AI | www.frontiersin.org 11 December 2020 | Volume 7 | Article 59238214

https://www.frontiersin.org/journals/robotics-and-AI
https://www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-AI#articles


Nair and Chernova Feature Guided Search for Tool Construction

FIGURE 4 | Graph highlighting the number of times the correct object combination was chosen, compared to the random selection baseline. FGS significantly

outperforms random baseline (p < 0.01).

FIGURE 5 | This figure shows the results for two of the test cases in wood-working. The task plans are adapted based on the constructed tool (i.e., hammer or

screwdriver), to either “hit” or “tighten” to attach the two pieces of wood p0 and p1. Arrows denote the parts of the task plan that are adapted.

one of two tools can be used to complete the task as described
above. For each task, we created 10 different test sets of random
objects, similar to the experiment described in section 4.1. In each
case, only one “correct” combination exists. Thus, the robot has
to correctly identify which of the two tools can be constructed
for accomplishing the task, given the set of objects. We evaluate
the performance of feature guided A∗ in each case alongside a
random selection baseline to demonstrate the difficulty of the
problem. The random selection baseline randomly chooses one
of the two tool construction options for each task. Note that for
each task, the domain and problem definitions are unchanged

across the 10 test cases of objects. This indicates that the task
plan adaptability does not require any manual modifications by
the user, instead is the direct result of the sensor inputs received
by the robot.

The key metric used in this experiment includes the number
of times the robot chose the correct tool to construct for each
task. Thus, if the robot chose to construct a hammer, when the
correct combination was to construct a screwdriver, the attempt
is considered to have failed. We also present qualitative results
showing some of the sample task plans and tools constructed by
the robot for different sets of objects.
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FIGURE 6 | Collage indicating sample tool constructions output for two test cases per task. The solid and dashed brackets indicate the test set of objects provided in

each case, along with the tool constructed for it. As the objects are changed, the corresponding constructed tool and action is different. Note that the problem and

domain definitions are fixed for each task, and unchanged across the test cases per task.

Figure 4 shows the performance of feature guided A∗

compared to the random selection baseline. We see that feature
guided A∗ chooses the correct tool for 27/30 cases, and
significantly outperforms the random selection baseline (p <

0.01). The failure cases in the wood-working task arise due to
noisy material detection. In the case of cooking task, the noisy
point clouds sensed by the RGBD camera leads to incorrect
choices, e.g., the concavity of bowls was not correctly detected
for some ladles.

In Figure 5, we show two task plans that are generated within
the task of wood-working. For the same task, either a hammer or
a screwdriver can be used to attach two pieces of wood p0 and p1.
Depending, on the objects available in the environment, the robot
chooses to construct one of the two tools and adapts the task plan
to use the corresponding tool for completing the task. As shown
in the left of Figure 5, the robot chose to construct a hammer to
“hit” and attach the two pieces of wood. Whereas, shown in the
right of Figure 5, the robot chose to construct a screwdriver to
“tighten” and attach the two pieces of wood. Similar adaptations
are observed for the remaining two tasks as well: “scoop” with

ladles vs. “flip” with spatulas in the cooking task, and “reach”
with squeegees vs. “collect” with rakes in the cleaning task. Thus,
the constructed tool depends on the objects in the environment,
which in turn adapts the generated task plan to appropriately use
the constructed replacement tool.

In Figure 6, we present some qualitative results for six
different tools constructed by the robot for six of the test cases.
The solid and dashed parentheses highlight the input test set.
For example, given the metal bowl and metal pliers, the robot
chooses to construct a ladle (and use the “scoop” action in the
task plan). In contrast, when the pliers and bowl are replaced
with a plastic handle and a flat plastic piece, the robot chooses
to construct a spatula instead (and use the “flip” action in the
task plan). Given that the problem and domain definitions are
unchanged for the two cases, this shows that the robot is able to
adapt the task plan in response to the objects in the environment.
To summarize, the key finding of this experiment is that the
robot is able to successfully adapt the task plan to construct and
use the appropriate tool depending on the objects available for
construction, with an accuracy of 90% (27/30 cases).
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5. CONCLUSION AND FUTURE WORK

In this work, we presented the Feature Guided Search (FGS)
approach that allows existing heuristic search algorithms to be
efficiently applied to the problem of tool construction in the
context of task planning. Our approach enables the robot to
effectively construct and use tools in cases where the required
tools for performing the task are unavailable. We relaxed key
assumptions of the prior work in terms of eliminating the need
to specify an input action, instead integrating tool construction
within a task planning framework. Our key findings can be
summarized as follows:

• FGS significantly reduces the number of nodes expanded by
≈ 82%, and the number of construction attempts by ≈ 93%,
compared to standard heuristic search baselines.

• The approach achieves a success rate of 87% within a resource
budget of 8 attempts when sensors are fully trusted, and 100%
within a budget of 39 attempts, when the sensors are not
fully trusted.

• FGS enables flexible generation of task plans based on objects
in the environment, by adapting the task plan to appropriately
use the constructed tool.

• Feature scoring can also be effectively combined with other
heuristic search algorithms such as weighted A∗ and enforced
hill-climbing.

Our work is one of the first to integrate tool construction
within a task planning framework, but there remain many
unaddressed manipulation challenges in tool construction that
are beyond the scope of this paper. Tool construction is a
challenging manipulation problem that involves appropriately
grasping and combining the objects to successfully construct
the tool. That is, once the robot has correctly identified the
objects that need to be combined (focus of this paper), the robot
would then have to physically combine the objects, and use the
constructed tool for the task. Currently, our work pre-specifies
the trajectories to be followed for tool construction, although
existing research in robot assembly can be leveraged to potentially
accomplish this (Thomas et al., 2018). Further, a key question
to be addressed is, how can the robot learn to appropriately use
the constructed tool? Future work could address this problem
by leveraging existing research in tool use (Stoytchev, 2005;
Sinapov and Stoytchev, 2007, 2008), and trajectory-based skill
adaptation (Fitzgerald et al., 2014; Gajewski et al., 2019). Upon
successful construction of the tool, the research problem reduces
to that of using the tool appropriately. In this case, the robot
can either learn how to use the tool as described in Stoytchev
(2005), Sinapov and Stoytchev (2008, 2007) or, the robot can
adapt previously known tool manipulation skills to the newly
constructed tool as described in Fitzgerald et al. (2014) and
Gajewski et al. (2019). Addressing these challenges is important
to further ensure practical applicability of tool construction.

Additionally, creation of tools through the attachment types
discussed in this work is currently restricted to a limited
number of use cases, in which two objects that have the specific
attachment capabilities already exist, and are available to the

robot. In the future, we seek to expand to more diverse types of
attachments, including gluing or welding the objects together, as
well as creation of tools from deformable materials, in order to
improve the usability of our work. We further seek to expand
on this work by investigating the application of feature scoring
to domains other than tool construction. In particular, we seek
to investigate the different ways in which feature score can be
effectively combined with the cost function for other domains
involving tool-use such as tool substitution. While our proposed
cost function is dependent on the values of the feature score and
is shown to perform well for tool construction, it is important
to further investigate the cost function and its influence on
the guarantees of the search to allow for a more generalized
application of FGS.

FGS enables the robot to perform high-level decision making
with respect to the objects that must be combined in order to
construct a required tool. In this work, we use physical sensors
(RGBD sensors and SCiO spectrometer) that produce partial
point clouds and noisy spectral scans, leading to some challenges
that commonly arise in the real world. Nevertheless, there are
several open research questions that need to be addressed before
this work can be deployed in a real setting. Thus, FGS is the first
step within a larger pipeline, and we envision this work to be
complementary to existing frameworks that are aimed at resilient
and creative task execution, such as Antunes et al. (2016) and
Stückler et al. (2016). In summary, FGS presents a promising
direction for dealing with tool-based problems in the area of
creative problem solving.
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Locating Creativity in Differing
Approaches to Musical Robotics
Steven Kemper*

Music Department, Mason Gross School of the Arts, Rutgers University, New Brunswick, NJ, United States

The field of musical robotics presents an interesting case study of the intersection between
creativity and robotics. While the potential for machines to express creativity represents an
important issue in the field of robotics and AI, this subject is especially relevant in the case
of machines that replicate human activities that are traditionally associated with creativity,
such as music making. There are several different approaches that fall under the broad
category of musical robotics, and creativity is expressed differently based on the design
and goals of each approach. By exploring elements of anthropomorphic form, capacity for
sonic nuance, control, and musical output, this article evaluates the locus of creativity in six
of the most prominent approaches to musical robots, including: 1) nonspecialized
anthropomorphic robots that can play musical instruments, 2) specialized
anthropomorphic robots that model the physical actions of human musicians, 3) semi-
anthropomorphic robotic musicians, 4) non-anthropomorphic robotic instruments, 5)
cooperative musical robots, and 6) individual actuators used for their own sound
production capabilities.

Keywords: robotic musical instruments, creativity, anthropomorphism, music generation, musical robotics

INTRODUCTION

The field of musical robotics presents an interesting case study of the intersection between creativity
and robotics. While the potential for machines to express creativity represents an important issue in
the field of robotics and AI, this subject is especially relevant in the case of machines that replicate
human activities that are traditionally associated with creativity, such as music making. Several
recent studies have explored the history and current state of musical robotics. While these present an
overview of the field, they tend to focus primarily on issues related to functional design, with little
discussion of creativity. Musical robots are categorized based on how they produce sound (Kapur
2005), how they function as interactive multimodal systems (Solis and Ng 2011), how they developed
over history (Murphy et al., 2012; Long et al., 2017), and the ways that they engage in “Robotic
Musicianship” (Bretan and Weinberg, 2016).1

Based on a review of existing literature as well as the author’s experience designing and composing
music for musical robots, this article proposes a new classification framework based on the ways that
musical robots express creativity through anthropomorphic form, capacity for sonic nuance, control,
and musical output. By exploring the field of musical robotics through this lens, we are able to better
understand the ways that specific approaches lead to both technical and artistic goals.
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DEFINITIONS AND CRITERIA FOR
EVALUATION

Defining Musical Robotics
Both designers and audiences use the term “musical robots” or
“robotic musical instruments” to refer to a broad range of musical
machines. From an engineering perspective, approaches that lack
autonomy could be more accurately be described as “musical
mechatronics” (Bretan and Weinberg, 2016). However, the
popular conception of robots, rooted in mythology, includes
any machines that can mimic human actions (Jones 2017;
Szollosy, 2017). Therefore, this discussion will consider
“musical robotics” as any approach where an
electromechanical actuator produces a visible, physical action
that models the human act of music making, regardless of
autonomous control.

By modeling the human act of music making, musical robots
may be considered inherently anthropomorphic. Fink describes
the important connection between anthropomorphism and
robotics, as expressed through anthropomorphic form
(appearance), behavior, and interaction with humans (Fink,
2012). While not all musical robots possess an
anthropomorphic form, modeling the physical actions of
music making represents anthropomorphic behavior. The
ways that designers and audiences experience
anthropomorphism significantly impacts how these machines
express creativity. With this idea in mind, I identify six
approaches that express creativity in different ways. These
include: 1) nonspecialized anthropomorphic robots that can
play musical instruments, 2) specialized anthropomorphic
robots that model the physical actions of human musicians,
3) semi-anthropomorphic robotic musicians, 4) non-
anthropomorphic robotic instruments, 5) cooperative musical
robots, and 6) individual actuators used for their own sound
production capabilities.

Defining Creativity
Several different fields currently focus on creativity, including
esthetics, psychology, and artificial intelligence (Götz 1981; Bailin
1983; Boden, 1996; Boden, 2004; Cope 2005; Runco and Jaeger,
2012). Runco and Jaeger distinguish two fundamental criteria of
creativity: originality and effectiveness (Runco and Jaeger 2012,
92). Originality, or creative insight, emerges from what Cope
describes as, “The initialization of connections between two or
more multifaceted things, ideas, or phenomenon hitherto not
otherwise considered actively connected” (Cope 2005, 11).
Effectiveness is determined through evaluation of creative
insight by the creator, as well as related communities (Boden,
1996, 268).

Evaluative Criteria for Creativity in Musical
Robotics
Musical robots tend to be viewed as creative machines due to their
connection to music, which is understood to be an inherently
creative endeavor. While studies of creativity in musical robots
should focus on the music they produce, originality and

effectiveness are also expressed through anthropomorphic
form, capacity for sonic nuance, control, as well as musical
output.

Anthropomorphic Form
The physical appearance of musical robots as well as the ways
they model the human actions of music making are extremely
important for designers and audiences. According to Fink, “the
physical shape of a robot strongly influences how people perceive
it and interact with it. . .” (Fink, 203). Fink also describes the
importance of anthropomorphic behavior from the observer’s
perspective. “If a system behaves much like a human being (e.g.,
emits a human voice), people’s mental model of the system’s
behavior may approach their mental model of humans,” based on
the estimation of the robot’s capabilities (Fink, 201). Some
approaches to musical robotics focus on modeling human
appearance and movement while others explore mechatronic
sound production techniques that do not possess
anthropomorphic form. Evaluating creativity in terms of
anthropomorphic form requires an understanding of the ways
that designers and audiences ascribe human qualities to a musical
robot’s form and behavior.

Capacity for Sonic Nuance
Much of the existing literature in the field of musical robotics
focuses on robots’ ability to model the sonic capabilities of human
performers. The benchmark for success in this area is often
described as the ability to play music expressively (e.g., Murphy,
2014). While designers often describe how advancements in sound
control parameters and their resolution enable expressivity, the
concept of expression tends to be loosely defined (Kemper and
Cypess, 2019). Therefore, it is more accurate to describe these
features as increasing the capacity for sonic nuance (Kemper and
Barton, 2018). While greater capacity for sonic nuance allows
musical robots to more accurately model the dynamics,
articulations, and phrasing of human performers, it can also
create novel sonic and musical possibilities that differ from the
ways that humans perform (Kemper, 2014). Thus, creativity in this
domain refers to novel approaches to sonic nuance either for the
purposes of modeling human performance or exploring new sonic
and musical possibilities that are unique to musical robots.

Control
Musical robots can be controlled in a variety of ways, ranging
from autonomous modes that enable interaction with human
performers to modes where the movement of every actuator is
preprogrammed. One of the challenges of assessing creativity in
musical robotics is that control systems are often separable from
the robot itself. Research in the areas of artificial musical
generation and listening algorithms tend to focus on note
generation in a generic way (e.g., as MIDI data), rather than
being tailored to the mechanical requirements of a specific robot
(e.g., Cope 2005; Xia and Dannenberg, 2015). For example, Solis
and Ng’s Musical Robots and Interactive Multimodal Systems, is
divided into two separate sections that describe control and
output respectively (Solis and Ng, 2011). While control
determines the ways that actuators operate and thus how the
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robot produces sound, it is important to distinguish these
instructions from the actual musical output.

Musical Output
The music that robots perform represents an important avenue
for expressing creativity; however, this topic has received
surprisingly little attention. Some robots use a single piece of
music to demonstrate their capabilities, while others perform in
a diverse array of styles, collaborate in real time with human
performers, and are designed as creative tools for musical
artists.2 Evaluating creativity in musical output should
consider both the robot’s performative capabilities and
musical decisions. Performative capabilities include the
ability for robots to present a compelling performance, either
by modeling human performers or exploring their own unique
capabilities. Musical decisions include the specific musical
pieces composed or arranged for the robot(s), musical
decision-making by autonomous control systems, and the
ways that new music created for (or by) robots engages with
the unique capabilities of these machines.

DIFFERENT APPROACHES TO MUSICAL
ROBOTICS
Nonspecialized Anthropomorphic Robots
that Can Play Musical Instruments
Over the past 2 decades several companies have developed
general-purpose anthropomorphic bipedal robots that replicate
human actions in a variety of areas, including musical
performance (Goswami and Vadakkepat 2019). For example,
Toyota modified versions of their Partner robot to play
trumpet, violin, and an electronic drum kit (Doi and
Nakajima 2019). Of these approaches, the trumpet robot
approximates human performance most closely in terms of
articulation, dynamics, and timing. Conversely, the violin
playing robot is limited in its range, and struggles somewhat
with intonation and tone compared to a trained violinist.3 This
reflects the challenges of modeling the complex physical actions
of bow pressure, bow speed, proper finger position, and vibrato.

In general, these demonstrations prioritize showing versatile,
humanoid robots engaging in a quintessentially “human” activity
over novel musical output. As Doi and Nakajima state, “We
began the development of musical performance humanoid out of
curiosity that we would like to make a humanoid robot realize
such a human unique activity [sic]” (Doi and Nakajima, 218).
This is emphasized by the fact that available videos of these robots
perform easily recognizable versions of popular music, including
“When youWish Upon a Star” and “Pomp and Circumstance.“4,5

As robots are more specifically designed for musical performance,

they become more specialized in their ability to produce sonic
nuance as described in the examples below.

Specialized Anthropomorphic Robots That
Model the Physical Actions of Human
Musicians
Several approaches have focused on building robots that model
the physical actions involved in musical performance. These
include pioneering work from Waseda University, including
the WABOT-series piano robot, WF-series flutist robot, and
the WAS-series saxophone robot (Roads 1986; Solis et al.,
2006; Solis and Hashimoto 2010). Shibuya and Park have also
created robotic models of violin performance (Shibuya et al.,
2007; Park et al., 2016), and Chadefaux has created a robotic
“finger” for harp plucking (Chadefaux et al., 2012).

While these approaches accurately model the actions of human
performance, they can result in a lack of musical “efficiency” when
compared to musical robots that do not model human actions (see
Non-anthropomorphic Robotic Instruments). For example, the
Waseda WF-4RII Flutist Robot possesses 43 DOF, and each
robotic component is designed to replicate its human
counterpart, including “humanoid organs” such as robotic lips,
lungs, arms, neck, tongue, and oral cavity (Solis et al., 2006, 13). By
modeling the human actions of performance, the robot helps us to
understand how instrumental performers produce musical sounds.
However, the complexity of the mechanical model limits the sonic
possibilities that are available to machines, such as super-virtuosic
speed and novel approaches to sonic nuance. This is evidenced by
available videos of performance, such as that of the WF-4RII
performing Rimsky-Korsakov’s “Flight of the Bumblebee” at a
(humanly) comfortable tempo of c.150 BPM.6

Semi-Anthropomorphic Robotic Musicians
The musical robots in this category assume an anthropomorphic
form, however they do not model the specific actions of human
performance and are focused more on appearance and musical
output. Over the past few decades several robotic “bands” have
emerged, including the rock bands The Trons, Captured! By Robots
and Compressorhead, as well as a collaboration between
Z-Machines7 and Squarepusher on the 2014 album “Music for
Robots.” (Snake-Beings, 2017; Gallagher, 2017; Davies and Crosby,
2016; Squarepusher x Z-Machines, 2014). MOJA features a
drummer, harpist, and flutist performing in a style evocative of
traditional Chinese music.8 In addition to these “bands,” the
Robotic Musicianship Group at Georgia Tech has developed
two well-documented semi-Anthropomorphic musical robots:
Haile, a robotic drummer, and Shimon, a robotic marimba
player (Weinberg and Driscoll 2006; Weinberg et al., 2020).

The anthropomorphic nature of these robots is highlighted
primarily by their stylized appearance, rather than an attempt to

2E.g. https://www.patmetheny.com/orchestrioninfo/
3Toyota Partner Violin Robot: https://www.youtube.com/watch?v�-yInphJdick
4Toyota Partner Trumpet Robot: https://www.youtube.com/watch?
v�6fctULDctuA
5Toyota Partner Violin Robot (see n.3).

6http://www.takanishi.mech.waseda.ac.jp/top/research/music/flute/wf_4rii/index.
htm (Section IV)
7https://www.yurisuzuki.com/design-studio/z-machines
8https://news.tsinghua.edu.cn/en/info/1012/5231.htm
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model the human actions of performance. For example,
Compressorhead’s multi-armed drummer “Stickboy” has a
mohawk made of metal spikes and is designed to headbang along
with the music. MOJA’s robots are dressed in Tang-dynasty style
garments. These design choices have nothing to do with sound
production, however they enhance the connection between the
audience and robot performers.

Even though the sound-producing mechanisms of these robots
do not model human performers, much of themusic they play could
be easily performed by humans. One exception to this is
Squarepusher’s approach, which engages with the unique musical
possibilities afforded by Z-Machines’s robots. In the song “Sad Robot
Goes Funny” the double-necked “guitar-bot” instrument performs
extremely rapid picking while at the same time dynamically
changing the chords in a way that would be impossible for a
human musician. This takes full advantage of that instrument’s
78 solenoid-based “fingers” and picks that can articulate each string
individually. Similarly, while Shimon and Haile are designed to
perform with human musicians, both have explored the extra-
human musical capabilities of their designs with an emphasis on
“play [ing] like a machine” (Weinberg et al., 2020, 95).

Non-Anthropomorphic Robotic Instruments
Non-anthropomorphic robotic instruments can either be
mechatronic augmentations of existing acoustic instruments
(e.g. Yamaha’s Disklavier),9 or newly designed instruments with
no acoustic analog (e.g. Andy Cavatorta Studio’s Gravity Harp).10

Table 1 includes a selection of recently active groups and
individuals producing collections of non-anthropomorphic
robotic instruments, as well as well-documented individual robots.

Non-anthropomorphic robotic instruments tend to focus more
on sonic nuance thanmodeling the human actions of performance.
For example, the Logos Foundation’s robotic vibraphone <Vibi>
couples actuating and dampening solenoids to each bar of the
instrument rather than designing robotic arms and hands with
multiple degrees of freedom that would model a human performer
(Maes et al., 2011, 41).11 This design allows <Vibi> to play much
more rapidly than a human performer. It also enables complete
polyphony of the instrument as well as individual control of the
dampening mechanisms. <Vibi>‘s unique capabilities open up a
new world of musical possibilities when compared to a human
performer on a traditional instrument.

One drawback of <Vibi>‘s design is that since the solenoids are
mounted below the striking bars it is difficult for the audience to see
their movement, obscuring the connection between physical action
and sound production. While this is a common issue in this category,
someprojects are designed tomaximize the visibility ofmovement. For
example, LEMUR’s GuitarBot features four vertically mounted strings
where pitch is changed on each string with a belt-driven fret that
travels over half ameter (Singer et al., 2003). Other approaches include
using LEDs to visualize sound production (e.g. Rogers et al., 2015).

Cooperative Musical Robots
An emerging area of musical robotics combines human
performance and robotic actuation on a single shared interface.
Barton describes these devices as cooperative musical machines,
differentiating between cooperative (electro)mechanical
instruments that do not react to human input, and cooperative
robotic instruments that respond and interact with human
performers (Barton, et al., 2017). Examples of cooperative
(electro)mechanical instruments include Meywa Denki’s Ultra
Folk acoustic guitar12 and Gurevich’s STRINGTREES (Gurevich,
2014). Examples of cooperative robotic instruments include
Barton’s Cyther, a human-playable, self-tuning robotic zither, as
well as the previously discussed Halie (Weinberg et al., 2020, 26).

Moving beyond a shared interface, Georgia Tech’s Robotic
Drumming Prosthetic Arm robotically augments the capabilities
of the body. This device consists of a prosthetic arm outfitted with
brushless gimbal motors and a single stage timing belt drive
connected to a drumstick (Weinberg et al., 2020, 219). An
amputee drummer controls the stick through EMG sensors
connected to muscles on the residual limb. Rather than simply
serving as a replacement for a human arm, the capabilities of
mechatronic design and robotic control, including the addition of
a second stick, allow for humanly impossible virtuosity and speed
(Weinberg et al., 213, 226). Beyond musical possibilities, robotic
augmentation of the body concretizes notions of posthumanism and
the cyborg (Haraway 1991). It also causes observers to question the
“humanness” of an augmented individual rather than evoking a
sense of anthropomorphism (Swartz andWatermeyer 2008), though
thatmay change as these technologies becomemorewidely accepted.

Individual Actuators Used for Their Own
Sound Production Capabilities
The final category in this discussion encompasses projects that
focus on the sounds andmovement of individual actuators.While
somemay not consider these approaches to be musical robots due
to a lack of complexity in design or sonic output, I argue that they
are important to consider in this discussion because 1) as with all
of the other approaches described here, they possess
electromechanical actuators that produce a visible, physical
action resulting in sound production and 2) they distill sound
produced by electromechanical actuators to its most basic form.

Several designers have created music using voice coil and stepper
actuators from floppy disc and hard drives, as well as from individual
stepper motors. These approaches tend to reproduce well-known
music, such as Zadrożniak’s arrangement of the “Imperial March”
from Star Wars for floppy disc drives.13 While these actuators
produce a unique timbre, there is limited capacity for sonic nuance.

Other designers create work that produces sound using the
simple actions of motors. For example, Zimoun builds large-scale
sound sculptures that feature individual motors actuating
resonant objects.14 One installation consists of 658 cardboard

9https://usa.yamaha.com/products/musical_instruments/pianos/disklavier/index.
html
10https://andycavatorta.com/gravityharps.html
11https://logosfoundation.org/instrum_gwr/vibi.html

12https://www.maywadenki.com/sketch/tsukuba-2/
13https://www.youtube.com/watch?v�yHJOz_y9rZE
14https://www.zimoun.net/
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boxes that are hit by cotton balls connected to a DC motor by
piano wire. As the motor spins the ball hits the box and produces
a resonant sound. In this approach, gravity, friction, and
resonance, as well as the movement of the motor itself
produce variations in the sound that makes the work compelling.

DISCUSSION

This paper proposes a novel classification system that enables us
to consider how different approaches to musical robotics express
creativity in different ways. In general, the more overtly
anthropomorphic the form, the more central the physical
appearance of the project is to its creativity. For example, the
Toyota Partner robot’s creative impact stems from the fact that a
humanoid robot is performing a quintessentially human activity.
As anthropomorphic form diminishes, originality and
effectiveness are conveyed through the capacity for sonic
nuance, as well as the ways that these machines either
accurately model human performance or develop their own
robotic performance practice. For an extreme case such as
Zimoun’s work, the connection to anthropomorphic behavior

in the process of sound production lies at the center of the work.
By understanding the connections and divergent goals among
different approaches to musical robotics, we can better evaluate
the ways that these machines express originality and
effectiveness for both designers and audiences. Though the
classifications developed here are theoretical in nature, they
will hopefully prove useful in developing future studies that
explore the ways that musical machines can be considered
creative.
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Before, Between, and After: Enriching
Robot Communication Surrounding
Collaborative Creative Activities
Richard Savery*, Lisa Zahray and Gil Weinberg

Robotic Musicianship Lab, Georgia Tech Center for Music Technology, Atlanta, GA, United States

Research in creative robotics continues to expand across all creative domains, including
art, music and language. Creative robots are primarily designed to be task specific, with
limited research into the implications of their design outside their core task. In the case of a
musical robot, this includes when a human sees and interacts with the robot before and
after the performance, as well as in between pieces. These non-musical interaction tasks
such as the presence of a robot during musical equipment set up, play a key role in the
human perception of the robot however have received only limited attention. In this paper,
we describe a new audio system using emotional musical prosody, designed to match the
creative process of a musical robot for use before, between and after musical
performances. Our generation system relies on the creation of a custom dataset for
musical prosody. This system is designed foremost to operate in real time and allow rapid
generation and dialogue exchange between human and robot. For this reason, the system
combines symbolic deep learning through a Conditional Convolution Variational Auto-
encoder, with an emotion-tagged audio sampler. We then compare this to a SOTA text-to-
speech system in our robotic platform, Shimon the marimba player.We conducted a
between-groups study with 100 participants watching a musician interact for 30 s with
Shimon. We were able to increase user ratings for the key creativity metrics; novelty and
coherence, while maintaining ratings for expressivity across each implementation. Our
results also indicated that by communicating in a form that relates to the robot’s core
functionality, we can raise likeability and perceived intelligence, while not altering animacy
or anthropomorphism. These findings indicate the variation that can occur in the
perception of a robot based on interactions surrounding a performance, such as initial
meetings and spaces between pieces, in addition to the core creative algorithms.

Keywords: creativity, robotics, music, improvisation, sound, text-to-speech, human-robot interaction

1 INTRODUCTION

There is a growing body of work focusing on robots collaborating with humans on creative tasks such
as art, language, and music. The development of robotic functionalities leading to and following after
collaborative creative tasks has received considerably less attention. These functionalities can
address, for example, how a robot communicates and interacts with collaborators between
musical improvisations, or before a piece begins or ends. Embodying a creative robot with
speech capabilities that do not specifically address its creative capabilities risks distancing
collaborators and misrepresenting artistic opportunities. In robotic literature this is referred to
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as the habitability gap, which addresses the problematic distance
between a robot’s implied capabilities and its actual potential
output (Moore, 2017). In addition, human-robot collaboration is
dependent on the development of a relationship between human
and robot (Fischer, 2019). Emotion and personality conveyance
has been shown to enhance robotic collaborations, with improved
human-robot relationships and increased trust (Bates, 1994). One
under-explored approach for an artificial agent to convey
emotions is through non-linguistic musical prosody (Savery
et al., 2020a). We propose that such an approach could be
particularly effective in human-robot collaboration in creative
tasks, where emotional expression is at the core of the activity,
and where subtle background conveyance of mood can enhance,
rather than distract, from the creative activity.

We present a model for generating emotional musical prosody
in embedded platforms in real time for creative robots. The
system aims to address the habitability gap by enriching
human-robot communication before, during and after
collaborative creative interaction. To support the system, we
have created a new dataset of improvised emotional sung
phrases, used to generate new emotional midi phrases through
a convolutional variational autoencoder (CVAE) conditioned on
emotion.

We implement this system in a marimba playing robot,
Shimon, and analyze the impact on users during creativity-
based musical interactions. The musical tasks feature call and
response musical improvisation over a pre-recorded playback.
We compare the perception of common metrics of likeability and
perceived intelligence, with the perceived creativity and
preferences for interaction as well as Boden’s creativity metrics
(Boden, 2009). We demonstrate that by using a creative
communication method in addition to the core creative
algorithms of a robotic system we are able to improve the
interaction based on these metrics. Our implementation leads
to the perception of higher levels of creativity in the robot,
increased likeability, and improved perceived intelligence.

2 RELATED WORK

2.1 Human-Robot Communication
Verbal language-based interaction is the prominent form of
communication used in human-robot interaction (Mavridis,
2015) covering a wide range of tasks from robot companions
(Dautenhahn et al., 2006) to industrial robots (Pires and Azar,
2018). Many robotic interactions do not include language; these
non-verbal forms of communication fall into six categories:
kinesics, proxemics, haptics, chronemics, vocalics, and
presentation (Jones, 2013; Saunderson and Nejat, 2019).
Kinesics includes communication through body movement,
such as gestures (Gleeson et al., 2013), or facial expressions,
while proxemics focuses on the robotic positioning in space, such
as the distance from a human collaborator (Walters et al., 2005).
Haptics refers to touch based methods (Fukuda et al., 2012), while
chronemics includes subtle traits such as hesitation (Moon et al.,
2011). Presentation includes the way the robot appears, such as
changes based on different behavior (Goetz et al., 2003). The final

category, vocalics, includes concepts such as prosody (Crumpton
and Bethel, 2016), which have shown to improve trust and other
human-robot interaction metrics (Savery et al., 2019a). The vast
majority of these communication techniques require significant
technical and financial expense and variation to a system, such as
adding augmented reality technology or changing robot
movements (Saunderson and Nejat, 2019). In comparison,
musical prosody can be implemented in an existing system
with only minor changes (Savery et al., 2019b).

2.2 Musical Generation
Music generation has been widely addressed as a deep learning
task (Briot et al., 2017), in particular using LSTMs (Sturm et al.,
2016; Wu et al., 2019) and more recently transformers Huang
et al. (2018). Music tagged with emotion has also been generated
through long short-termmemory networks (LSTMs) with logistic
regression and used to generate music with sentiment (Ferreira
and Whitehead, 2019). Other efforts have used a Biaxial LSTM
network (Zhao et al., 2019), generating symbolic polyphonic
musical phrases corresponding to Russel’s valence-arousal
emotion space (Posner et al., 2005). Variational autoencoders
(VAEs) Kingma and Welling (2013); Rezende et al. (2014) use an
encoder to represent its input probabilistically in latent space, and
a decoder to convert from latent space back to the original input.
Such VAEs have seen recent success in music generation tasks, for
example, MIDI-VAE which use a VAE with recurrent encoder/
decoder pairs to perform style transfer on midi data, changing the
genre or composer of a piece (Brunner et al., 2018). MusicVAE
employs a hierarchical decoder to better represent the long-term
structure present in music, generating midi phrases that were
16 bars (about 30 s) long (Roberts et al., 2018).

3 CUSTOM DATASET

For this project we created a custom dataset of 4.22 h of audio
recorded by Mary Esther Carter1. Carter is a professional vocalist
and improviser who the authors have worked with before and
were confident would be able to create a dataset matching the
projects goals. Before collecting the data, we conducted
exploratory sessions with seven different student musicians,
comparing their ability to improvise different emotions using
different classification systems. We additionally evaluated how
well the musicians in this group could recognize the emotions
played by other musicians. This process consisted of a 45 min in-
person session, with musicians first improvising, followed by an
informal interview to discuss the difficulty and their preferences
for emotional classifications for improvisation. After these
sessions, we decided that the Geneva Emotion Wheel (GEW)
(Sacharin et al., 2012) was best suited for our purposes. The GEW
is a circular model, containing 20 emotions with emotions and
position corresponding to the circumplex model.

Our decision to use the GEW was based on multiple factors,
firstly we aimed to capture as large a range of emotions as

1https://maryesthercarter.com/
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possible, that could be accurately improvised by musicians in the
sessions. In our exploratory study, the GEW balanced between
having many recognizable classes, while also avoiding the
potential confusion from too many overlapping classes, or the
challenge of continuous classes such as the circumplex model.
The GEW also has advantages for implementation, with 20
different discrete emotions which can be reduced to four
separate classes, aligned with a quadrant from the circumplex
model. GEW also includes most of the Eckman’s basic
emotions—fear, anger, disgust, sadness, happiness—only
leaving out surprise. The ability to potentially reduce our
collected dataset between these different models of emotion
allows for significant future use cases.

It should be noted that this dataset comes from only one
musician, and therefore only captures one perspective on musical
emotion. While the dataset can make no claim to represent cross-
cultural emotion conveyance and does not create a generalized
emotion model, we believe that only collecting data from one
person has advantages. By having only one vocalist our system
can recreate one person’s emotional style, avoiding incorrectly
aggregating multiple styles to remove distinctive individual and
stylistic features.

3.1 Process and Data
We first created a short list of vocalists who we have worked with
in the past. We then conducted Skype calls with three professional
vocalists refining the overall plan and describing the process,
before asking Mary Carter to record and emotionally label her
vocal improvisation. We choose to work with Carter as she had at
home access to high quality recording equipment, and the
authors have previously worked with her. In the future we
expect to record with additional vocalists. Carter was paid
$500 to record the samples over a week long period at her
home studio, using a template we created in Apple digital
audio workstation—Logic Pro, while maintaining the same
microphone positioning. For the samples we requested phrases
to be between 1 and 20 s, and to spend about 15 min on each
emotion, allowing unscripted jumping between any order of the
emotions. We allowed deletion of a phrase if the singer felt
retroactively that the phrase did not capture the correct
emotion. The final recorded dataset includes 2,441 phrases
equaling 4.22 h of data with an average of 122 phrases for
each emotion. Samples from the dataset can be heard online.2

3.2 Dataset Validation
To validate the dataset, we performed a study with 45 participants
from Prolific and Mechanical Turk, paying each $3. Each
question in the survey asked the participant to listen to a
phrase and select a location on the wheel corresponding to the
emotion and intensity they believed the phrase was trying to
convey. Phrases fell under two categories of “best” and “all,” with
each participant listening to 60 total phrases selected at random.
Between the 45 participants listening to 60 phrases, 2,700 ratings
were given, which we believe gave a strong overall rating of the

dataset. The “best” category consisted of five phrases for each
emotion that were hand-selected by the authors as best
representing that emotion. The best emotions were chosen to
ensure an even distribution of phrase lengths in each emotion set,
with each emotion having a chosen phrase for the lengths, 3, 5, 7,
9, and 11 s. When multiple phrases existed for each length the
authors chose phrases that were most distinctive in style from the
other emotions, aiming to create a stylistic separation between
each emotion class. The “all” category consisted of a phrase
sampled from all phrases in the dataset for that emotion, with
a new phrase randomly selected for each participant. Rose plots of
the validation results that combine the “best” and “all” categories
can be seen in Figure 1, separated into each Geneva Wheel
quadrant. The plots show strong validation correlation in
Quadrants 1, 2 and 3, while Quadrant four showed a higher
level of confusion.

3.3 Dataset to Midi
We converted each phrase’s audio into a midi representation to
use as training data. This process required significant iteration, as
we developed a custom pipeline for processing our dataset. This
was necessary due to the range of vocal timbre and effect, ranging
from clear melodies, to non-pitched effects. We first ran the
monophonic pitch detection algorithm CREPE (Kim et al., 2018)
on each phrase, which output a frequency and a confidence value
for a pitch being present every 0.01 s. As the phrases included
breaths and silence, it was necessary to filter out pitches detected
with low confidence. We applied a threshold followed by a
median filter to the confidence values, and forced each
detected pitch region to be at least 0.04 s long.

We next converted the frequencies to midi pitches. We found
the most common pitch deviation for each phrase using a
histogram of deviations, shifting the midi pitches by this
deviation to tune each phrase. We rated onsets timing
confidence between 0 and 1. To address glissando, vibrato and
other continuous pitch changes, we identified peaks in the
absolute value of the pitch derivative, counting an onset only
when detecting a pitch for at least 0.04 s.

3.4 Scales
Scherer has shown that musical scales—without a melody or
rhythm - are able to display emotion (Scherer et al., 2017). We
therefore asked the singer to also record scales tagged with
emotion to be used in an audio sampler. The audio sampler
was designed to play back each note from the recorded scales, in
such a way that new symbolic phrases consist of combinations of
each note from the scale. In contrast to the main dataset we only
recorded scales for four emotion classes, corresponding with each
quadrant of the circumplex model. In addition to explaining the
model to the vocalist, each quadrant had two key words which
were angry/anxious, happy/exciting, relaxing/serene, sad/bored.

The data collection plan was based around common practice
described by virtual instrument libraries3. For each emotion, 11
versions of a chromatic scale across an octave and a half were

2www.richardsavery.com/prosodycvae 3https://www.spitfireaudio.com/editorial/in-depth/grow-your-own-samples/
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sung, 3 with very short notes, 3 with 500 ms, 3 with 1000 ms and 2
with 2000 ms duration. To allow the scales to contain all timbrel
features for each emotion, we allowed for any dynamic variations
and accents. The syllables themselves were also chosen for each
scale by the vocalist.

4 GENERATIVE SYSTEM DESIGN

The system was designed with the primary goal of operating and
responding to audio in real time on multiple embedded

platforms. Future use cases will likely involve other
computationally expensive systems, such as speech recognition
and emotional interactions. In past work we have generated raw-
audio for prosody (Savery et al., 2019b), however even after
considerable refinement, and the use of multi-GPU systems,
generation required 3 s of processing per 1 s of audio. With
this in mind the initial design choice was to generate symbolic
data using a version of the dataset converted to midi values, and
not attempt to generate raw audio.

The symbolic generation of the system contains the pitch and
rhythm of emotionally labeled melodies. Due to the process

FIGURE 1 | Rose plots of dataset validation and generation evaluation.

FIGURE 2 | Generative System Overview.
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described in Section 3.3 the data also includes micro-timings.
Symbolic data alone does not capture the range of emotion
present in the dataset through timbre variations. By using the
scale dataset described in Section 3.4 the generation process
encapsulates symbolic information with tagged emotion,
capturing timbre and phoneme information. Figure 2 shows
an overview of the system. The system’s interface is written
MaxMSP, allowing users to chose an emotion. This activates a
python script which generates a midi file and returns it to
MaxMSP. Figure 3 presents an example of the musical
prosody phrases the systems is capturing, showing the
contrasting pitch, rhythm and timbre for each emotion.
Generated samples can be heard online.4

4.1 CC-VAE
4.1.1 Data Representation
Wemaintain the same data structure as developed in our audio to
midi process, using midi pitch values that are sampled every 10
milliseconds. We then convert each melody to a length of 1,536
samples, and zero pad shorter melodies. Versions of each phrase
are then transposed up and down six semitones, to give 12
versions of each phrase, one in each key. The melody is then
reshaped to be 32 by 48 samples. The emotion label for each
melody is converted to a one-hot representation.

4.1.2 Network Design
We chose to use VAEs due to their recent success in sequence and
music generation tasks, and because they allow for analysis of the
latent space which can provide insight into how well the network
has learned to represent the different emotions. VAEs can be used
to generate new data by sampling and decoding from the latent
space, allowing the system to learn features of the data in an
unsupervised manner. Figure 4 shows the latent space after

FIGURE 3 | Spectogram of musical prosody phrases (blue line indicates pitch contour).

FIGURE 4 | Vanilla VAE Latent Space, classifying Carter’s audio dataset.

4www.richardsavery.com/prosodycvae
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training a Vanilla VAE on our custom dataset, without emotion
labels. This demonstrates the latent space is able to separate by
emotion without conditioning.

Our Conditional VAE is based on the standard architecture
proposed by Sohn et al. (Sohn et al., 2015). A Conditional
Variational Encoder (CVAE) varies from a VAE by allowing
an extra input to the encoder and decoder. We input a one-hot
emotion label, allowing for sampling a specific emotion from the
latent space. As is common practice for a VAE, we use Kullback-
Leibler divergence in the loss function. Our latent space
dimension is 512, which we arrived at after testing multiple
variations.

We chose to use a Convolutional Network (ConvNet) within
our CVAE for multiple reasons. Although ConvNets are much
less common in symbolic music generation (Briot et al., 2017),
they have been used for audio generation such asWaveNet (Oord
et al., 2016) as well as some symbolic generations (Yang et al.,
2017). While we experimented with Vanilla RNNs, LSTMs and
GRUs as encoders and decoders we found they were very prone to
overfitting when trained conditionally, likely due to our dataset
size. Our architecture is presented in Figure 2.

4.2 Sample Player
The generated midi file is loaded into MaxMSP to be played by
the sampler. The audio sampler plays back individual notes
created during the recording of the scales. MaxMSP parses the
midi file, assigning each note a midi channel. Channels are
divided by emotion and note length. For example, happy is
assigned to channels one to four, with channel one containing
the shortest note and channel four the longest note; sad is
assigned to channels five to eight with the shortest note
assigned to channel five and the longest note assigned to
channel 8. The audio sampler plays as a midi device, and can
be played directly like any midi instrument.

4.3 Generation Evaluation
To evaluate the results, we first generated three phrases for each
emotion. We then ran a survey using the same questions as the
dataset validation described in Section 3.2, asking 39 new
participants to select an emotion and intensity for each of the
60 total generated phrases. Participants encountered five listening
tests during the survey, and we only used data from participants
who answered all listening tests correctly. Figure 1 shows a
comparison between the rose plots for each quadrant of the
original dataset vs. the generated phrases.

We computed the mean and variance for each emotion,
weighted by intensity, using the methods described in (Coyne

et al., 2020), which rely on circular statistics. The results are
shown in Table 1. The first columns show the percentage of all
data points that were classified as an emotion in the correct
quadrant. The next columns, showing average difference, were
calculated by first finding the difference between each ground
truth emotion’s angle and its weighted average reported angle,
and then averaging that value over the emotions within each
quadrant. It is worth noting that only three emotions in the
dataset and two emotions in the generated data had weighted
average angles outside the correct quadrant. The final units were
converted from degrees to units of emotion (20 emotions in 360°).
The last columns, showing variance, were calculated by finding
the weighted variance for each emotion (converted to units of
emotion), and then averaging for each quadrant.

Our results show that the generated phrases performed
similarly to the dataset in terms of emotion classification.
While the percentage of phrases identified in the correct
quadrant is slightly lower for the generated phrases, the
average difference and variance have similar values. Visually,
the rose plots show that participants were able to largely
identify the correct quadrant, having the most difficulty with
Quadrant 4 (relaxing/serene) for both our collected dataset and
generations.

5 EXPERIMENT

After creating the described prosody generation system we linked
the system to our custom robotic platform Shimon. Shimon is a

TABLE 1 | Results of emotion survey for dataset phrases compared with generated phrases. See Generation Evaluation for an explanation of the metrics.

Quadrant % Correct Quadrant Average Difference Average Variance

Dataset Generated Dataset Generated Dataset Generated

1 57.2 56.3 1.32 1.98 1.76 1.83
2 54.5 52.5 1.45 0.96 1.79 1.88
3 57.4 51.5 2.16 1.93 1.92 1.89
4 43.7 31.9 1.61 1.24 1.86 2.03

FIGURE 5 | Shimon the robotic marimba player.
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four-armed marimba playing robot that has been used for a wide
range of musical tasks from improvisation (Hoffman and
Weinberg, 2010) to film scores (Savery and Weinberg, 2018).
Figure 5 shows Shimon improvising with a human performer. To
visually show Shimon voicing the prosody we copied a previous
implementation used to link Shimon’s gestures to human
language for hip hop (Savery et al., 2020b).

For the experiment, we considered creativity through Boden’s
framework for computational creativity (Boden, 2009). Boden
considers creativity as a balance between novelty and coherence,
with expressivity playing a significant role in the process. This
concept draws on the notion that a completely random idea could
be considered novel, yet would lack coherence. Boden’s
framework was used to evaluate computational creativity in a
number of previous works (Riedl and Young, 2010; Savery et al.,
2020b).

We choose to compare musical prosody to a text-to-speech
system for Shimon. Speech is very commonly used in robotics
(Brooks et al., 2012; Niculescu et al., 2013) and is likely the
primary form of audio interaction. Speech is often described as a
way for replicating human to human communication
(Crumpton and Bethel, 2016) and we believe would
commonly be considered the default audio type for a robot
such as Shimon.

Our experiment was designed to answer two research
questions:

(1) Can emotional prosody improve a robot’s creative
output, as measured through novelty, coherence and
expressivity when compared to a text-to-speech system?

(2) Can emotional prosody alter the perception of animacy,
anthropomorphism, likeability and intelligence for a
creative robot compared to a text-to-speech system?

For these research questions we developed two exploratory
hypothesis, extending the work of Moore (2017), where voices
matching the mode of interaction will improve the interaction.
For research question 1 we hypothesize that when
communicating using emotion-driven prosody, Shimon will
achieve higher ratings for novelty, and expressivity with a
significant result, while coherence will not have significant
difference. We hypothesize this will occur since prosody will
increase the image of Shimon as creative agent, but not alter
coherence. This aligns with our design goals of addressing the
habitability gap and aiming for a robot that interacts in a manner
that matches its performance. For research question 2 we
hypothesize that there will be no difference in perception of
animacy, and anthropomorphism, however prosody will achieve
a significant result for higher likeability. We believe that the extra
functionality implied by a text-to-speech system will enhance the
perceived intelligence.

5.1 Experimental Design
We conducted the experiment as a between-group study, with
one group watching robotic interactions with a text-to-speech
system and the other with our generative prosody system. The
study was set up as an online experiment with participants

watching videos of a musician interacting with Shimon. For
the text-to-speech we used Google API with a US female voice
(en-US-Wavenet-E) (Oord et al., 2016). We chose the voice
model as it is easily implemented in real time and a widely
used system.

The musical interactions involved six clips of a human
improvising four measures, followed by Shimon responding
with a four-measure-long improvisation. The improvisation
was over a groove at 83 beats per minute, resulting in the
improvisation lasting for about 23 s. Each improvisation was
followed by a seven-second gesture and response from
Shimon, either using text-to-speech or prosody. Both the
speech and prosody used three high valence-low arousal and
three low valence-low arousal phrases. The prosody or text-to-
speech was overdubbed after recording allowing us to use
identical musical improvisations from the human and robot.
For text-to-speech we used phrases that designed by the
author based on past interactions in rehearsal between human
participants.

The high valence-low arousal text included the three phrases:

• Great work. What you played really inspired me to play
differently. Could you hear how we were able to build off
each others music?

• That was fun, it was good playing with you. I really liked
hearing the music you played on keyboard, it worked well
with what I played.

• Thanks so much for playing here with me, I thought what
you played was really good. Let’s keep playing together.

The low valence-low arousal text included the three phrases:

• Let’s try it again soon, the more we play together the more
we will improve. I’m going to listen to you really carefully
next time

• That was a really good start, I enjoyed the way we interacted
together. We should keep trying to work on it and get better.

• Did you listen to what I played? Do you think it worked well
with what you played? The more we practice the better we
can get.

Participants first completed a consent form outlining the
process, and then read brief instructions on the experiment
process. After watching three of the clips they were asked to
rate them based on Boden’s metrics, then repeated the process for
the next three clips. Boden’s metrics were rated on a seven point
sliding scale. Participants were explicitly asked to rate the musical
improvisation from the robot for each metric. Clips were
randomly ordered for each participant. Additionally, a seventh
clip was added as an attention check, which included an
additional video. In this video, instead of sound, participants
were asked to type a word that was asked for at the end of the
survey.

After watching each interaction, participants rated animacy,
anthropomorphism, likeability and perceived intelligence using
the Godspeed measure (Bartneck et al., 2009). Each metric
contained four or five sub-questions, which were averaged to
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give an overall rating. To conclude the experiment, participants
answered demographic questions and were given an open text
response to comment on the robot or experiment.

We used Amazon Mechanical Turk (MTurk) to recruit
participants who then completed the survey through Qualtrics.
MTurk is a crowd-sourcing platform created by Amazon that
allows individuals and businesses to hire users to complete
surveys. Participants were paid $2.00 upon completion of the
survey, which took around 10 min. We allowed only MTurk
Masters to participate, and required a successful job rate of 90%.
We also monitored time to complete overall, and time spent to
complete each question. We recruited 106 initial participants,
four of whom failed the attention check. An additional two
participants were disqualified as they completed the survey in
under 5 min. As participants failed the attention check a new spot
was immediately opened allowing us to reach 100 participants. In
total we included data from 50 participants who heard the text-to-
speech system and 50 who heard the prosody system. The mean
age of participants was 44, ranging from 25 to 72, with a standard
deviation of 11. The majority of participants were based in the
United States (89) with the remaining in India (11). We found no
difference in comparisons of the results between each country.
Considering the gender of each participant, 39 identified as
female, 60 as male and one as non-binary.

5.2 Results
Our analysis was conducted with a Jupyter Notebook, running
directly on the exported CSV from qualtrics. Libraries for analysis
included NumPy, and SciPy.stats.

5.2.1 Creativity
Prosody had a higher mean for coherence 4.80 (std � 1.31),
novelty 5.18 (std � 1.30), and quality 4.95, (std � 1.68) compared
to speech with the means 4.19 (std � 1.56), 4.64 (std � 1.24), and
4.14 (std � 1.37). Prosody had effect sizes of 0.40 for coherence,
0.43 for novelty, and 0.56 for quality indicating a medium size
effect calculated using Cohen’s D. For expressivity prosody had
an effect size of 0.25, indicating a small effect size. After
conducting a pairwise t-test across categories were significant

with the results, coherence (p � 0.041), novelty (p � 0.040), and
quality (p � 0.014). After a Bonferroni-Holm correction for
multiple comparisons, only quality remained significant with
(p � 0.014) while coherence (p � 0.12) and novelty (p � 0.12)
where no longer significant. For expressivity, prosody only had a
slightly higher mean which was not significant (p > 0.05).
Figure 6 shows a box plot of all Boden’s metrics.

5.2.2 Godspeed
For the Godspeed metrics we first calculated Cronbach’s alpha for
each question subset. This resulted in animacy (0.86),
anthropomorphism (0.88), likeability (0.92), perceived
intelligence (0.89). This shows high internal reliability across
all metrics. Prosody had an effect size for each metric as animacy
(0.16), anthropomorphism (0.08), likeability (0.85) and perceived
intelligence (0.54), measured with Cohen’s D.

Prosody had a slightly higher mean for animacy 3.56 (std �
0.88) compared to speech 3.44 (std � 0.75). Prosody also had a
slightly higher rating for anthropomorphism 3.14 (std � 0.99),
compared to speech 3.08 (std � 0.885). After running a pairwise
t-test neither animacy or anthropomorphism were significant.
Prosody had a higher mean for likeability, 4.38 (std � 0.89)
compared to 3.94 (std � 0.52) and showed a significant result (p �
0.002) in a pairwise t-test, which remained significant after a
Bonferroni-Holm correction for multiple comparison (p � 0.011).
For perceived intelligence, prosody 4.10 (std � 0.82)
outperformed speech 3.72 (std � 0.70), with a significant result
(p � 0.014) which remained significant after correction (p �
0.042). Figure 7 shows a box plot of all Godspeed metrics.

6 DISCUSSION AND FUTURE WORK

6.1 Research Question 1
Overall, our results indicated that the communication method
outside of performance made a significant difference in
participant ratings of creativity. The higher ratings for novelty
and quality supported our hypothesis that prosody would
outperform speech, however we did not expect coherence to
improve with prosody as well. Surprisingly, we found no

FIGURE 6 | Box plot of Boden’s Creativity Metrics. Quality is significant,
p � 0.014.

FIGURE 7 | Box plot of Godspeed Metrics. Likeability and Intelligence
are significant p � 0.011 and p � 0.042.
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significant difference between voice type for expressivity and
additionally expressivity only had a small effect size. This did
not support our hypothesis as we had expected prosody to create
the impression of a more expressive robot.

Further research is required to understand why the perception
expressivity, as a creativity trait, did not change based on the voice
used. One possible reason is that participants believed a robot that
could use language was capable of a wide range of expression,
much like the addition of prosody. Alternatively, expressivity is a
feature that is not easily altered by the form of interaction post-
performance.

The relation between each creativity rating cannot be easily
simplified, and there is no correct answer to what rating a
performance should receive for coherence or novelty. We
expected that the prosody system would receive higher ratings
for novelty, but not coherence. We believe that the higher ratings
for coherence may have come from the system acting as a unified
robot, with its communication functioning in the samemanner as
its performance.

6.2 Research Question 2
Our results for likeability matched our hypothesis that prosody
would outperform speech. Perceived intelligence ratings however
did not support our hypothesis as we had predicted language would
be interpreted as having a higher intelligence. It was reasonable to
assume that with text-to-speech and the ability to speak a language,
Shimon would have been perceived as more intelligent. We found
that the system with prosody was considered more intelligent,
despite not communicating linguistically. This can be explained by
the assumptions that moving towards the habitability gap will
create a disjointed perception of the robot. A possible conclusion
was that participants understood there was not a deep knowledge
of language, whereas musical phrases implies a deeper musical
intelligence.

6.3 Text Responses
We found no distinct variation in text responses between the speech
and prosody group. Overall 92 participants chose to respond, with
responses ranging from one sentence to four sentences. From the
speech group only one participant mentioned the voice, writing “I
enjoyed the robot, especially when she spoke to the pianist” (gender
added by participant). In the prosody responses four participants
mentioned the voice, but only in passing, such as the voice was
“cute.” The vast majority of response rated the musical responses
and generations, with themajority positive such as “I liked the robot
and I like the robots music more than the humans,” and “Nice to
listen to.”The negative comments tended to focus on the inability of
robots in general to play music or be creative such as “It could play
notes, but it lacked creativity.”

6.4 Generative Process
Our dataset used interpretation of emotions from one vocalist.
While this had the benefit of consistency throughout phrases, in
future work we intend to gather data from a larger number of
musicians and to evaluate how well the model can generalize. We
also plan to have other robots communicating through prosody
using data from different vocalists.

We plan to further investigate timbre and its potential
application to the generation process. We also intend to study
which features of the phrases influenced participants’ choice in
selecting an emotion. For example, exploring whether there is a
difference in emotion classification accuracy for the melody of the
generated phrases alone, in comparison with emotionally-
sampled audio as we used here. Future work will also include
more extensive studies using the generated prosody in human-
robot interactions. This will take place between varying group
sizes from one human and robot, to groups of humans and robots
with different embedded personalities. We expect for emotional
musical prosody to enable many future collaborations between
human and robot. Our overall accuracy presented in Table 1
shows consistent results in the mid 50%. We believe this accuracy
is acceptable for our current system, as the average variance and
average difference are both close to two across all categories,
implying that the primary errors in identification where small,
such as mistaking love for admiration. For our experiment in
particular we only used two quadrants, and were also able to
choose only specific emotions that scored over 80% accuracy.

In both the original dataset and generated material
participants had the lowest accuracy identifying the fourth
quadrant emotions. Our results are not easily compared to
other generative systems as the fourth quadrant emotions are
rarely used in robotic studies Savery andWeinberg (2020). This is
partly because common classification systems such as Ekman’s
discrete classes do not include anything in the fourth quadrant.
We also believe these emotions tend to be less easily displayed
externally as they are low arousal and closer to neutral emotions.
In future work we aim to consider methods to better develop the
fourth quadrant emotions.

6.5 Limitations
We compared one text-to-speech system with one musical
prosody system on one robotic platform. In future work we
aim to compare further audio systems, to expand
understandings of why different metrics showed significant
results. It is possible that varying the speech used would alter
the final ratings. Nevertheless, we believe that the range of metrics
that did prove significant show that this is an important first step
in understanding how communication between core creative
tasks can shape the perception of a robot.

We were only able to compare two forms of communication in
a the constrained scenario consisting of directly after a musical
interaction. To restrict our experiment to two groups we did not
compare prosody to moments where the robot did not interact at
all. We believe that by its nature a robot such as Shimon is always
interacting and its presence can alter humans actions (Hoffman
et al., 2015), leading us to believe that no movement or audio is its
own form of interaction. In future research we intend to analyze
the impact of musical prosody compared to no interaction in a
longer performance.

This study was conducted online through video, which comes
with benefits and drawbacks. As we were running online we were
able to gather many more participants than would have been
possible in person. Similar HRI studies have shown no difference
in online replication of certain studies (Woods et al., 2006), and
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we believe our method was constrained to a point that would be
replicated in an in-person study. We did not include a
manipulation check in our study, however our analysis of the
text responses indicated that participants did not identify the
independent variable between groups.

The range of participants included in the study also adds some
limitations. Our primary goal was to understand how changes to a
creative systemwould generalize across a broad population.We did
not factor in concerns between cultural groups that may take place,
such as between Japan and United States (Fraune et al., 2015),
however our study did not find any significant variation between
origin country. Additionally, our ability to generalize is restricted
by only collecting participants on MTurk, who it has been shown
do not always represent standard population samples, such as in
the case of participants health status (Walters et al., 2018). Finally,
our sample size of 106 participants was under the total that would
be required to detect an effect size of 0.50 with 0.80 power at an
alpha level of 0.05, which requires a sample size of 128.

7 CONCLUSION

The paper presents a new generative system for emotional
musical prosody that is implemented in Shimon, a creative
robot. We explore how a robot’s response outside of its key
creative task—such as musical improvisation—alters the
perception of the robot’s creativity, animacy,
anthropomorphism, perceived intelligence, and likeability. Our
research questions focus on how prosody compares to text-to-
speech in a creative system for each of these HRI metrics.

We found that by addressing the habitability gapwewere able to
increase user ratings for the key creativity ratings; novelty and
coherence, while maintaining ratings for expressivity across each
implementation. Our results also indicated that by communicating
in a form that relates to the robot’s core functionality, we can raise
likeability and perceived intelligence, while not altering animacy or
anthropomorphism. These findings clearly indicate the impact of
developing interactions surrounding a creative performance, such
as initial meetings and gaps between creative interaction.

Our results present wide ranging implications and future
concepts for the development of creative robots. The
importance of design outside primary tasks should not only be
considered for creative robots, but across HRI. These findings

indicate that embodiment and external design choices alter not
only the impression of the robot, but the impression of its primary
functions. We also believe this work indicates the importance of
audio design, and the impact on perception that changes to audio
alone can have on a system. By designing audio for the system
task and not relying on default audio methods it is possible to
drastically change the perception of a robotic system.
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Creative Action at a Distance: A
Conceptual Framework for Embodied
Performance With Robotic Actors
Philipp Wicke* and Tony Veale

School of Computer Science, University College Dublin, Belfield, Ireland

Acting, stand-up and dancing are creative, embodied performances that nonetheless
follow a script. Unless experimental or improvised, the performers draw their movements
from much the same stock of embodied schemas. A slavish following of the script leaves
no room for creativity, but active interpretation of the script does. It is the choices one
makes, of words and actions, that make a performance creative. In this theory and
hypothesis article, we present a framework for performance and interpretation within
robotic storytelling. The performance framework is built upon movement theory, and
defines a taxonomy of basic schematic movements and the most important gesture types.
For the interpretation framework, we hypothesise that emotionally-grounded choices can
inform acts of metaphor and blending, to elevate a scripted performance into a creative
one. Theory and hypothesis are each grounded in empirical research, and aim to provide
resources for other robotic studies of the creative use of movement and gestures.

Keywords: robotics, computational creativity, embodiment, storytelling, spatial movement

1 INTRODUCTION

Embodied performances on a stage often start with a script. Performers can slavishly follow this
script, like a computer executing a computer program, or they can interpret its directives as they see
fit. Only by doing the latter can a performer be said to deliver a “creative” performance.

A performance is a conceptual scheme turned into physical action. When concepts become
movements, movements suggest meanings and meanings evoke concepts in the minds of an
audience. Since every link in this chain is under-determined, creativity can insinuate itself into
every part of the meaning-making process. The physical actions of a performance suggest meanings,
or reinforce what is also communicated with words, so the most effective actions tap into an
audience’s sense of familiarity, obviousness and conceptual metaphor. In this paper, we consider
story-telling as a performance that combines linguistic (spoken) and physical (embodied) actions.
Our embodied actors can communicate a tale by narrating it, or by acting it out, or as an ensemble of
agents that do both. Our focus is unique for a number of reasons. First, our embodied actors are
robots, not humans, although they aim to move, pose and gesture much as humans do. Second, the
tales they tell are not spun by a human, but generated by a machine in an act of computational
creativity. An AI system that controls the writing process, the telling process and the acting process
can thus be used to explore the ties between concepts, words and embodied actions in a creative,
performative setting. Third, our robots can interpret the written script just as actors interpret a film
script. They can literally depict the actions through movement and gesture, or they can interpret the
actions of the script metaphorically. This flexible reading of the script allows metaphor to shape its
embodied interpretation, fostering creativity in the physical enactment of the story. In short, we
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explore here how interpretation is infused with emotionally-
grounded choice to appreciate and to achieve embodied
creativity in a system for performing machine-generated
stories.

Story-telling is just one kind of embodied performance. We
humans use our bodies to tell jokes, engage in animated
conversation, and communicate feelings in play and in
dance. Starting from a narrative perspective, with a system
designed to support the performance of computer-generated
stories with computer-controlled robotic actors, we set out to
generalize our approach and create a framework for
embodied communication that can support multiple types
of performance. Key to this approach is the meaning-making
potential of physical acts, which we ground in image-
schematic models of language. As we will show here, story-
telling provides an ideal basis for empirically testing our
hypotheses, but our aim is to broaden the framework to
accommodate new possibilities and new kinds of
performance.

We adopt a bottom-up approach to unifying theory and
practice, in which an implemented AI system supports the
empirical studies that motivate our hypotheses, before we
generalize those hypotheses into a combinatorial framework
for embodied meaning-making. We begin by surveying the
state-of-the-art in robotic performance to define a taxonomy
that accommodates humanoid movements from walking to
posing and gesturing. Although physical actions are not
words, deliberate physical actions do have a semiotic
component that we will analyze here. So, by exploring robotic
enactment in a storytelling context, we can identify the semantic
units of movement and their cognitive-linguistic underpinnings
in image schemas and conceptual metaphors. Ultimately, our goal
is to identify the points of contact between action and meaning
where creativity – and in particular, machine creativity – can
blossom.

In our Performance Framework (Section 3), we outline which
movements can be executed in parallel or in series, to convey
meanings of their own or to augment the meaning of the
spoken dialogue. In addition, we will consider the properties of
physical actions to identify those that are additive (when
compounded movements achieve a cumulative effect),
persistent (when a movement has a lasting effect on the
physical relationship between actors), and summative
(allowing an action to summarize what has already
occurred). For example, the meaning conveyed by one actor
stepping away from another intensifies with each additional
step. The action and its meaning are also persistent, since,
unlike gestures, stepping away does not necessitate a
subsequent retraction of the action. After multiple steps, the
resulting distance between actors (and characters) is the sum
of all steps, and so conveys a global perspective.

We distinguish between locomotive, spatial movements
(hereinafter spatial movement) along a stage, postural
reorganizations of the body, and gestures made with the
hands, arms and upper-body to communicate specific
intents. For gestures, we also discriminate pantomimic or
iconic gestures (which play-act a meaning, e.g., using an

invisible steering wheel to signify driving) from more
arbitrary actions (which may use metonymy to depict
culturally-specific actions, such as bending the knee to
propose), from those that instantiate a conceptual metaphor
to achieve their communicative intent. The framework
formally integrates each of these forms of physical
meaning-making, and constrains how they work with each
other in the realization of a coherent performance.

Connecting the underlying script with the performance
requires an appropriate choice of the movements to be
enacted. When a script dictates the actions, there is no space
for choice. Likewise, when a script provides simple disjunctive
choices – do this or that – it allows a performer to explore the
space of possible stories without regard for the emotions of the
characters. The actor’s capacity to interpret the script should
consider these emotions and how they can shape the
performance. By creating choices at the time of performance,
an interpretation can look at the unfolding narrative so far and
shape the course that the actor will take. Since these choices are
guided by the character’s emotional valence at any given moment,
we introduce an emotional layer between the level of scripted
actions (what happens next) and the expressive level (physical
movements and spoken words). This new layer annotates the
emotions implied for each action and movement, to inform the
actors about the emotional resonances of their choices. By
considering the influence of earlier actions in the plot, choices
can be made in the moment, to reflect an interpretation of how
characters should be feeling and acting. The Interpretation
Framework (Section 4) provides the tools to a performer to
make deliberate use of gesture and space for an emotionally-
informed performance.

Since the AI system automatically maps tales from pre-
generated texts onto physical performances, we can use these
performances as the basis of empirical studies that explore
whether audiences intuitively appreciate the deliberate use of
space and gesture in a performance. More specifically, we look
at whether coherent usage is as appreciated as incoherent use,
and whether the schematic use of space in a cumulative,
summative fashion is as appreciated by audiences as the use
of transient, culturally-specific gestures. We interpret the
results of those studies with respect to the frameworks
presented here. Both studies (described in Section 5) have
been conducted by recording robotic performances under the
coherent and incoherent conditions, and then eliciting crowd-
sourced ratings of those performances. Each participant is
shown short videos of plot segments that feature relevant
movements, and each is asked to rate the performance on a
customized HRI questionnaire. As such, we intend to
contribute to multiple areas of interdisciplinary research
with this framework: not just automated storytelling (as
built on automated story-generation) and embodied
performance using robots, but the study of expressive
gestures and physical meaning-making more generally,
across a diversity of settings. While we evaluate a rather
specific use of the framework in the story domain, we will
provide a taxonomy and a terminology that will foster further
interdisciplinary research in the areas that contribute to it.
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2 BACKGROUND AND RELATED WORK

Although this framework is evaluated in a storytelling setting, it is
applicable in different contexts of choreographed robotic
interaction. Thus, we apply a new interpretation to existing
data and argue that the framework has interdisciplinary
relevance to other researchers in robotics.

Robots can make use of a variety of different modalities, each of
which has been studied in different contexts: gaze (Mutlu et al., 2012;
Andrist et al., 2014), facial expression (Reyes et al., 2019; Ritschel
et al., 2019), voice (Niculescu et al., 2013), gesture (Pelachaud et al.,
2010; Ham et al., 2011) and movement (Shamsuddin et al., 2011).
The focus of our framework is on the movement of the robot,
including both gestures and spatial movements (walking to and fro).
Gestures have been extensively studied in linguistics and human-
robot interaction, while spatial movement that concerns the whole
body has been studied with social robots for comedy (Katevas et al.,
2014), theater/improvisation (Bruce et al., 2000; Knight, 2011), and
dance (LaViers and Egerstedt, 2012; Seo et al., 2013). Our
consideration of related work thus takes an interdisciplinary look
at various definitions and properties of gestures and holistic body
movements, and derives a basis for characterizing the properties of
spatial movements and gestures with reference to a series of
empirical studies. We conclude by outlining the advantages of
this framework for robotic performance.

2.1 Robotic Movement
We distinguish two classes of performative movement: local
movement or gesture, typically with the arms, hands or head,
and spatial relocation of the whole body. Gestures can arguably

involve the whole body (as in e.g., air marshalling), while bodily
locomotion can involve gestures while in motion. Yet the
literature on gestures mostly confines gestures to the upper
torso, arms and head (McNeill, 2008), while McNeill’s widely
used reference frame for gesture space depicts a sitting human
with only the upper torso, arms and head in play (McNeill, 1992).
Restriction to the upper body implies a locality of movement,
while shifting the body in space has proximity effects that are
global and relational. Locality and relativity are just two of
multiple properties that reinforce a distinction between
locomotive movements and gestures.

The taxonomic diagram in Figure 1 defines the specific
gestures and body movements we consider for our taxonomy.
The top-most generalization Robotic Movement is split into Body
Movement andGestures, and each sub-type is linked to even more
specific sub-types (vertically) and properties (horizontally).
Although presented top-down, the taxonomy is a bottom-up
approach that builds on a schematic basis for movement types to
derive combinations and well-defined tools for roboticists and
gesture researchers. Some related studies have looked at human
motion in order to model movement dynamics (Bregler, 1997;
Del Vecchio et al., 2003), while others have utilized
computational models to simulate movement styles (Brand
and Hertzmann, 2000; LaViers and Egerstedt, 2012).

2.1.1 Gestures
In addition to considering the spatial trajectories of gestures, we
must also look at their expressive role in communicating
meaning. Empirical work by McNeill (1985), Bergen et al.
(2003) and Hauk et al. (2004) has shown that gestures are an

FIGURE 1 | A taxonomy of robotic movements and their properties. Nodes to the left and right depict broad types of robotic movement and their specific sub-types
(rotational, spatial, iconic gestures, narrative beats, etc). Shared properties are indicated with horizontal connections (dashed lines).
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important instrument of human communication. It has also been
argued that gestures are always embedded in a social, ideological
and cultural context, and as such, they infuse our conversations
with a contextual semantics (Bucholtz and Hall, 2016). Although
some researchers have proposed a unified methodology for the
semantic study of gestures (Mittelberg, 2007), there is as yet no
clear consensus around a single framework. Studies that focus on
the timely execution of gestures, such as those exploring gesture
recognition (Kettebekov and Sharma, 2001; Sharma et al., 2008),
follow Kendon’s approach to the separation of gestures into
preparation, stroke and retraction phases (Kendon, 1980).
Here, we note that the necessary retraction after a gesture
makes the gesture transient and ephemeral, so that the posture
of the performer is the same before and after the gesture is
performed. A broader classification which has been adopted in
many studies is provided by McNeill (1992):

• Iconic: A gesture resembles what is denotes. Example:
Shadow boxing when talking about a fight.
• Deictics: A pointing gesture may refer to another object.
Example: Pointing at another actor on stage.
• Metaphoric: A figurative gesture should not be taken
literally, yet it communicates a truth about the situation.
Example: Showing a trajectory with the hand when talking
about a trip.
• Cohesives: A cohesive gesture binds two temporally distant
but related parts of a narrative. Example: Making the same
hand movement whenever the same character appears.
• Beats: A gesture marks narrative time. Example: A rhythmic
arm movement indicates time passing.

The class of Iconic gestures requires that users recognize the
iconicity of a gesture when it is performed by a robot. A study by
Bremner and Leonards (2016) shows that iconic gestures
performed by a robot can be understood by humans almost as
well as those performed by humans. Another study, conducted by
Salem et al. (2011), suggests that human evaluation of a robot is
more positive when it uses iconic, referential and spatial gestures
in addition to speech. Regarding spatial and referential gestures, it
has been argued that gestures are primarily used to augment non-
visuospatial speech communication with visuospatial
information (McNeill, 1992). In the five classes of gesture
above, most can convey some visuospatial information, but
Deictic gestures do so by definition. Deictics play a crucial role
in human to human communication by supporting direct
reference to visual and non-visual objects (Norris, 2011). It
has also been shown that robotic deictic gestures can shift our
attention in much the same way as human uses of these gestures
(Brooks and Breazeal, 2006). The level of abstraction in
Metaphoric gestures is generally higher than that of Iconic and
Deictic gestures, and there is evidence to suggest that distinct
integration processes apply to these different classes of gesture in
the human brain (Straube et al., 2011). Metaphors exploit familiar
source domains, so the same gestural movement can be
metaphorical in one speech context and iconic in another. For
example, the gesture “raising one arm above the head with a
horizontal, open hand” is iconic when it accompanies the

sentence “The plane flew way above the clouds”, and
metaphorical when it accompanies “She is way out of your
league”. A study by Huang and Mutlu (2013) investigated four
of McNeill’s gesture classes (all but Cohesives) as used by
interacting humanoid robots in a narrative context. Those
authors evaluate each gesture type on several fronts:
information recall, perceived performance, affective evaluation,
and narration behavior. In their study, Deictics are shown to
improve information recall relative to other gestures, while Beats
lead to improvements in effectiveness.

There are observable overlaps between the reference
framework used within spoken language and the reference
framework used with gestures (Cienki, 2013a). For example, if
an event occurs to the left of a person, that person is more inclined
to gesture to their left when retelling the event (McNeill, 1992).
While this appears to hold for most Indo-European languages,
there are some culturally dependencies. Speakers of the Mayan
language Tzeltal use an absolute spatial reference framework for
both speech and gesture, so if an event occurs to the west of a
Tzeltal speaker, they are inclined to point west when they later tell
of it (Levinson, 2003). Another example of cultural diversity is
found in the Aymaran language. The Aymara people of the
Bolivian Andes refer to future events by pointing behind
rather than ahead of themselves (Núñez and Sweetser, 2006).
However, some gestures appear relatively stable across cultures
when there is a consistent, well-established link from form to
meaning (Ladewig, 2014). These recurrent gestures often serve a
performative role, and fulfill a pragmatic function when they
work on the level of speech (Müller et al., 2013). We exclude this
class of gestures from our movement framework, since we focus
here on gestural meaning-making that is parallel to, and not so
easily tangled up with, speech. Nonetheless, for the sake of
completeness, the recurrent gestures are depicted atop the
other gesture classes in Figure 1.

A variety of studies have looked at gestures in human-robot
interaction. Ham et al. (2011) evaluated a storytelling robot with a
set of 21 handcrafted gestures and 8 gazing behaviors. Csapo et al.
(2012) presented a multi-modal Q&A-dialog system for which
they implemented 6 discourse-level gestures, much as Häring
et al. (2011) had earlier presented a multi-modal approach that
included 6 specific upper-body postures. Those implementations
use a small set of gestures, whereas others have made use of a
reusable database with about 500 annotated gestures
(Vilhjálmsson et al., 2007; Pelachaud et al., 2010). Those
authors also describe a Behavioral Markup Language that
allows virtual and physical presenters to use and combine
these gestures. Despite sharing the goal of non-verbal
communication with robots, most studies define gesture sets
which are either specific to the task or to the robot. While the
Behavioral Markup Language aims to overcome the latter, the
iconicity and cultural-dependence of most gestures makes it is
difficult to see how the implementation of task-specific gestures
can be easily generalized.

2.1.2 Schematic Movement
We can also explore commonalities among gestures with regard
to their embodied semantics. Cienki (2013a) argues that gestures
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ground the cognitive model of situated speakers in their physical
environment. The schematic nature of certain movements across
different gesture types has been related to image-schematic
structures. These are recurring cognitive structures shaped by
physical interaction with the environment (Lakoff, 2008;
Johnson, 2013), and can be observed not just in verbal but in
non-verbal communication (Cienki, 2013b; Mittelberg, 2018).
Johnson provides the example “Let out your anger” (Johnson,
2013). Here, anger, a metaphorical “fluid” housed in the body, is
said to be released from its container. As shown in (Wicke and
Veale, 2018c), such schemas can be used to depict causal relations
in embodied storytelling with robots. Not only does the theory of
image schemas provide a Conceptual Scaffolding (Veale and
Keane, 1992) for narrative processes, it also provides an
algebraic basis for modeling complex processes and situations
(Hedblom, 2020). In this way, simple schemas can be used as
primitive building blocks of larger, more complex structures
(Veale and Keane, 1992; Besold et al., 2017). For example,
Singh et al. (2016) describe a playful co-creative agent that
interacts with users by classifying and responding to actions in
a 2D virtual environment. These authors train a Convolutional
Neural Network on schematic movements so that it can classify
inputs as, for instance, Turn, Accelerate or Spin. Moving from a
two-dimensional plane to three-dimensional embodied space
allows us to combine gestures with other body movements
that extend beyond gesture space. Those extended movements
can also tap into our stock of embodied schemas to support a
metaphorical understanding of physical actions.

2.1.3 Body Movement
An advantage of the schematic approach is that a small set of
robotic movements can produce a large number of useful
combinations. For our current purposes we define just two
types of bodily movements:

• Spatial: Movement along one axis
• Rotational: Rotation around one axis

Each type of movement fulfills a physical function: Spatial
movement changes the position of the robot in space, while
rotational movement changes the direction the robot is facing. It
is known from the early studies of Heider and Simmel (1944) that
even simple movements can lead an audience to project
intentional behavior onto inanimate objects, to perceive
emotion where there is only motion. A study by Nakanishi
et al. (2008) shows that even minimal movement on one axis
of a robot-mounted camera increases one’s sense of social
telepresence. Implementing rotation and directional movement
in a museum robot, Kuzuoka et al. (2010) show that a robot’s
rotation can influence the position of a visitor, and that full body
rotation is more effective than partial, upper-body rotation.
Nakauchi and Simmons (2002) have investigated literal spatial
movement in the context of queuing in line, and consider relative
positioning in line as a parameter for achieving optimal, socially-
accepted movement. Our focus here is on the metaphorical
potential of bodily movement in a robotic context that must
speak to human emotions. Table 1 provides examples of how

schematic constructions, implemented simply with robots, can
convey intention and emotion. Of course, even the metaphors we
live by (Lakoff and Johnson, 2008) can brook exceptions. For
example, UPmay generally signify good, and DOWN bad, but we
want a fever to go down, and do not want costs to go up. This
observation also applies to the schemas presented in Table 1.
There are some situations where moving away increases
emotional closeness, and moving closer decreases it, as when
e.g., the former signifies awe and great respect, and the latter
signifies contemptuous familiarity. As with all powerful schemas,
we believe the benefits of generalization outweigh the occasional
exceptions.

Following Falomir and Plaza (2020), who argue that primitive
schemas like these can be a source of creative understanding in
computational systems, we believe that simple schemas can be
reused across creative applications of robotic movement, to
connect the semantics of the task with the movement of the
robots. Each movement may carry a unique semantics for
different tasks, yet build on the same schematic basis. For
example, the choreography of dancing robots can be
synchronized using the same basic motions (back, forth, left,
right). The dance can reflect abstract concerns through
metaphorical motions, as when robots dance in a circle to
reflect a repeating cycle of events. Likewise, in a storytelling
context, actors can strengthen a perceived bond by moving
closer together over the course of a story, or weaken and
break that bond by gradually moving apart.

2.1.4 Limitations by Context
“Space” is a very general notion that can be understood in
different ways in different performative contexts. For instance,
our understanding of the movements of fellow pedestrians on the
street is subtly different from our understanding of actors pacing
about a designated stage. Even stages differ, and a proscenium
arch can frame the action in a way that encourages a different
kind of dramatic interpretation than a stage that is not so clearly
divided from the viewing gallery. So our perception of how space
is framed can influence our construal of meaning within that
space (Fischer-Lichte and Riley, 1997). Just as the physical stage
frames our conception of space, physical actors frame our notions
of gesture and locomotion. We make a simplifying assumption in
this work that our robots exhibit comparable degrees of freedom
to an able-bodied human actor, but this need not be the case,
Different robot platforms presuppose different kinds of
movements, and support different degrees of physical
verisimilitude (see Section 6.3). While we accept the
limitations of our current platform, the anthropomorphic Nao,
and choose our actions and schemas to suit these limitations,
other robot platforms may afford fewer or greater opportunities
for embodied meaning-making.

2.2 Exploring Meaning in Movement
Robots do more than stand in for the characters in a story. Their
performances should convey meaning that augments that of the
spoken dialogue and narration. When we speak of the semantic
interpretation of movements and gestures, it is tempting to
ground this interpretation in a componential analysis, and ask:
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what are the components of gestures and other movements that
convey specific aspects of meaning? In sign language, for instance,
signs have a morphemic structure that can be dissected and
analyzed (Padden, 2016). But gestures are not signs in any sign-
language sense, and cannot usually be dissected into smaller
meaningful parts. Indeed, signers can use gestures with sign
language, just as speakers use them with spoken language
(Goldin-Meadow and Brentari, 2017). Moreover, there is some
neuro-psychological evidence that speech-accompanying
gestures are not processed by language-processing mechanisms
(Jouravlev et al., 2019). Our gestures give additional context to
speech, while speech gives a larger context to our gestures. They
add meaning to language (Kelly et al., 1999; Cocks et al., 2011)
while not strictly constituting a language themselves. Some
gestures indicate that a speaker is looking for a certain word
[these are called Butterworth gestures by McNeill (1992)], and so
serve a meta-communicative function. Likewise, a speaker can
produce many kinds of unplanned movement while
communicating with language, such as tugging the ear,
scratching the head or waving the hands, and although an
entirely natural part of embodied communication, we do not
seek to replicate these meta-communicative gestures here. Rather,
our focus is on gestures that communicate specific meanings, or
that can be used to construct specific metaphors.

2.3 Creative Robots in Other Performative
Contexts
Story-telling is just one performative context in which robotic
actors use space and movement to convey meaning. For instance,
robots have been used for improvisational comedy. ImprovBot
(Rond et al., 2019) collaborates with human actors in ways that
require it to spin around, move in circles, or move forward,
backward, and sideways. Similarly, the robotic marimba player
Shimon (Hoffman and Weinberg, 2011) recognizes the gestures
of a human collaborator, and uses a schematic understanding of
those gestures to make corresponding music-making decisions. A
robot artist that creates photo montages and digital collages by
interacting with a human user is discussed in Augello et al.
(2016a). The robot takes its cue from a variety of information
sources, one of which is the posture of its user. A design for a
robot artist that interacts with a human user in a therapeutic
setting is sketched in Cooney andMenezes (2018). Again, the aim

is integrate a range of cues, both verbal and physical, from the
human into the robot’s physical actions. Just how well robots like
these mesh with their collaborators, whether human or artificial,
is the basis of the interactional “fluency” explored by Hoffman
(2007).

When creative robots use motion to convey meaning, we
expect them to aim for more than the “mere execution” of
a literal script. Augello et al. (2016b) explicitly make the
latter their goal, in the context of a robot that learns to dance
in time to music. Another dancing robot system, that of
Fabiano et al. (2017), chooses its actions to match the
schematic drawings of dance movements shown to it by a
collaborator.

Robot actors on a stage can be likened to human actors in a
stage play, or to animated cartoon characters. In each case,
however, the artifice succeeds to the extent that movements
are considered natural. Laban movement analysis (LMA),
which allows one to characterize the effort required for
different bodily movements, in addition to modeling the
body’s shape and use of space, has been used by Bravo
Sánchez et al. (2017) to support natural robot movements
in short plays. Robots can enact artificial stories generated by
an AI system, or they can interactively enact a human-crafted
story. The GENTORO system of Sugimoto et al. (2009) does
the latter, to encourage story-telling in children by
combining robots and handheld projectors. A story-telling
(or story-enacting) robot can be a physical presence, or a
wholly virtual one, as in Catala et al. (2017). Nonetheless,
results reported in Costa et al. (2018) show that embodied
robots garner more attention and engagement that
virtual ones.

As noted in (Augello et al., 2016b), a performer should do
more than merely execute a script. Rather, it should interpret that
which it sets out to perform, in whatever context – conversation,
theatre, dance – it is designed to do so.

One of the first computational storytelling systems to consider
context was Novel Writer Klein et al. (1973), a system for
generating short tales of murder in a specific context (a
weekend party). Simulation is used to determine the
consequences of events as shaped by the chosen traits of the
killer and his victim. Changing these traits can alter the
simulation and produce different plot outcomes. Story-telling
systems can obtain and set these plot-shaping traits in a variety of

TABLE 1 | A listing of image schemas with their robotic realizations, with additional potential for metaphorical meaning. Each row contains a schema and its inverse.

Schema Movement Metaphorical Meaning Schema
(Reverse)

Definition Metaphorical Meaning

NEAR The robot is moving near
another robot or object

There is an interest or sympathy
towards the robot/object

FAR The robot is moving further away
from the robot/object

There is a growing dis-interest or
disliking to-wards the robot/object

FRONT The robot is moving or turning in
front of itself or another ro-bot/
object

The robot is actively en-gaging
with the other ro-bot/object

BACK The robot is moving or turning to
the back of itself or another robot/
object

The robot is actively dis-engaging
with the other robot/object

UP The robot is moving upwards The robot is displaying some
super-iority over the other robot/
object

DOWN The robot is moving down or
downwards

The robot is displaying some infer-
iority over the other robot or object
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ways, both direct and indirect. A robot storyteller can, for
instance, obtain personal traits from its users, by asking a
series of personal questions that are shaped by its own
notions of narrative (Wicke and Veale, 2018a). Those
questions, and the answers that are provided, then shape
the generated story, and provide a context for the audience
to understand the actions of the performer. Basing a story on a
user’s own experiences is just one way of providing a clear
interpretative basis for the performer’s actions on stage. The
more general approach provided here seeks to instead ground
the performer’s choices in a user-independent model of how
characters are affected – and are seen to be affected – by the
cumulative actions of the plot.

3 PERFORMANCE FRAMEWORK FOR
ROBOTIC ACTORS

3.1 Technical Description of Movements
The Performance Framework is applicable to a variety of
embodied performance types that include robots, such as
dancing, storytelling, joke telling and conversation. While
those tasks impose unique requirements for hardware and
software, the framework provides a unified conceptual
perspective. The next sections present the framework, and
explain its terminology and its syntax for describing
movement. We start with a technical description of the
specific movements that can be derived from the conceptual
organization of movement types. As in Section 2.1, we address
gestures first, followed by body movements.

3.1.1 Gestures
The properties of the five types of gestures described in (Section
2.1.1) are listed in Table 2, along with illustrative examples of
each gesture. We illustrate each gesture in its most iconic form,
with the exception of the Beats and Cohesive gestures, since these
are always specific to the temporal context in which they appear.
As noted earlier, the Iconic and Metaphoric gestures can use the
same movements to convey different meanings in different
contexts.

Iconic: An iconic gesture has an obvious meaning, since an
icon can clearly substitute for what it is supposed to represent [see
Peirce (1902) and Mittelberg (2019); the latter provides a
thorough linguistic discussion of signs, icons and gestures].
These icons of physical actions are schematic by nature,
insofar as they enact patterns of embodied experience
(Mittelberg, 2019). We therefore attribute the property of
Obviousness to the Iconic gestures, since they make meanings
more explicit, and leave little room for alternate interpretations.
Table 2 presents an example of a robot steering an invisible
vehicle to iconically depict the act of driving. Despite their
obvious iconicity, many iconic gestures can be culturally-
specific. As discussed in Section 2.1.1, gestures that are
obvious to the speakers of one language may be confusing,
misleading and far from obvious to members of a different
cultural or linguistic grouping.

Deictic: Since pointing gestures refer to spatial/physical
landmarks, we ascribe to Deictic gestures the property
Referential. The technical implementation of such a gesture
requires a limb, ideally an arm, that can point at the target
reference. It is also beneficial if the pointing is further supported

TABLE 2 | Examples of gestures: Iconic, Deictic, Metaphoric, Cohesive and Beats by a robot. Each gesture is ascribed a general property, along with its hardware
requirements.

Gesture Type (Example) Depiction (Example) Req. Hardware Properties

Iconic (Drive) Arms, Hands Obvious

Deictic (Point) Pointing limb Relational

Metaphoric (PUOH) Arms, Hands Metaphorical

Cohesive Limb Global
Beats Limb Local
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by the head or gaze direction of the robot (Clair et al., 2011). As
with Iconic gestures, Deictic gestures also overlap with
metaphorical gestures in different contexts (e.g., pointing
ahead of oneself to signal a future event). Table 2 shows the
example of a robot pointing ahead with its arm.

Metaphoric: Metaphoric gestures, labelled Metaphorical in
Table 2, are the most challenging to implement since their
intent must be discerned via a mapping from literal to non-
literal meanings. Yet, as a consequence of this mapping,
metaphorical gestures also open new possibilities for creativity
within the system. An example of the creative use of metaphorical
gestures is provided in Section 4.

Cohesives: Cohesive gestures are dependent on their context
of use, and require careful timing. Whether a shaking of the fist, a
circling of the finger or a turning of the wrist, such movements
only make sense in a narrative if they are used coherently.
Coherent usage aids discourse comprehension and allows
audiences to construct a spatial story representation (Sekine
and Kita, 2017). Moreover, Cohesives can strengthen our grasp
of the whole narrative if they are used recurrently to reinforce
persistent or overarching aspects of the plot. We therefore ascribe
the attribute Global to these gestures.

Beats: Beats are just as context-dependent as Cohesives, but lack
the latter’s global influence, as they are relevant to one-off events

FIGURE 2 | Combination of Spatial and Rotational Movement in two representations. Left: Spatial movement can co-occur with rotational movement. Different directions
can be achieved by combining rotations with positive or negative spatial moves. Right: The result of parallel spatial and rotational movement is a curved walk. Here t0 is the
robot’s position prior to movement. t1 is the point when the robot shifts from forward movement to backward movement, whilst completing half of the 90 degree rotation.

TABLE 3 | Depiction of the body movements Spatial and Rotational with their corresponding name, depiction with a physical robot, movement vector and properties in the
respective columns.

Movement Depiction Transformation Matrix Properties

Spatial
Sx(ω) �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
ω 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
• Global
• Relational
• Summative
• Additive
• Persistent

Rotational Rz(α) � ⎡⎢⎢⎢⎢⎢⎣ cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦ • Relational
• Obvious
• Summative
• Additive
• Persistent
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only. Since the movement itself is less relevant than its timing
and its context of use, no concrete example is offered in
Table 2. In opposition to the Cohesives, we label these
gestures as Local. Note that a gesture that is considered a
Beat in one task domain, such as story-telling, might serve a
global role in the synchronization of movement in another,
such as dance. In that case, the gesture would be labelled Global
in the latter context.

Since the gesture types illustrated in Table 2 do not constitute an
exhaustive list, some additional properties may need to be included
in the future. For example, some gestures are performed with two
hands and so can exhibit relational properties in the way that each
hand, representing a character, relates to the other (Sowa and
Wachsmuth, 2009). We can also consider the naturalness of the
gesture, as this is an important property for HRI and a common
basis for assessing any computational model that uses gestures
(Salem et al., 2012; Huang and Mutlu, 2013). However, we might
also view naturalness – as we do here – as an emergent property of
the implementation, rather than as a constitutive property of the
performance framework itself.

3.1.2 Body Movement
Spatial Movement describes a simple trajectory of an agent along
one axis. This core movement requires the agent to possess a

means of locomotion, such as wheels or legs. In its basic form,
spatial movement in one direction is a transformation of the
positional coordinates in one variable:

x→ � (ω, 0, 0) withω ∈ R (1)

The corresponding translation matrix is given in Table 3. This
movement is compatible with all other movement types.
Combined with rotational movement, it covers all directions
on the 2D plane. When the mode of locomotion allows for it,
the vector can be positive or negative. This kind of movement can
exhibit the following properties:

• Global: The moving body affects the relative proximity,
shared references and spatial configuration of all agents in a
performance, and so has implications for the performance of
the narrative as a whole.
• Relational: The movement has implications for other agents
on the stage since an absolute change in position for one actor
also changes its position relative to others.
• Summative: The movement of an actor into its resulting
position summarizes, in some general sense, the history of past
actions up to this point.
• Additive: A movement compounds a previous action to
achieve a perceptible cumulative effect.

FIGURE 3 | Diagram of four possible tasks that can be accounted for by the framework. From left to right, each task poses some prototypical requirements for the
corresponding software module, which can be addressed by the performance framework properties.

TABLE 4 |Possible combinations of movement types. comb. (green) are combinablemovements, restr. (yellow) are combinations that are only possible to some restricted
extent and excl. (red) are movements that are mutually exclusive.
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• Persistent: Amovement has a lasting effect on an actor or its
the physical relationship to others.

The property Obviousness is not attributed here, since actors
(robotic or otherwise) can move in space without necessarily
conveying meaning. Some movements help a speaker to
communicate while being uncommunicative in themselves, as
when an actor steps back to maintain balance, or moves their
hands in time to their words as they speak. In contrast, it is hard to
perceive a rotational movement as unintentional, since rotation
carries such an obvious, iconic meaning. Thus, while the property
of Obviousness is not wholly context-free, it is sufficiently robust
across contexts to earn its keep in a performative HRI system.

Rotational Movement This movement requires an actor to
possess some form of rotational joint, so that it can rotate around
one axis. While a humanoid robot can simply turn its head or
torso, this kind of rotational movement requires full body
rotation. In some cases, rotation is only possible in
combination with spatial movement. For example, some
bipedal robots cannot rotate on the spot, and need to walk in
a curve to achieve full rotation. The rotation around one axis is
given by the transformation matrix in Table 3 as Rz(α) (with α as
degree of rotation). This kind of movement can exhibit the
following properties:

• Obviousness: When the movement achieves the iconic
action of turning away from, or turning toward someone
else, this iconicity deserves the label Obvious.
• Relational: The rotation has implications for other agents on
the stage since an absolute change in orientation for one actor
changes its relative orientation to other agents.
• Summative, Additive and Persistent: These properties hold
the same meanings for rotational movements as they do for
spatial movements.

3.2 Combinations of Robotic Movement
Defining the basic types of movement and their properties
provides a foundational set of movements that can be
implemented for different kinds of robots. Basic movements
can be considered primitive actions in a performance system,
whose possibility space is the space of their possible combinations.
Gestures can be combined with whole body movements (spatial
and rotational) to produce complex behaviours. The individual
movements themselves are not creative – many are iconic, and
highly familiar – but the mapping from narrative to physical
action does allow for metaphor and for other creative choices
(Boden, 2004). The example combination provided in Figure 2
shows a forward movement followed by a backward movement,
paralleled by a rotational movement during the transition. The
resulting performance (see Figure 2 Spatial Representation) is the
sum of its parts, and fosters audience interpretation of the
performer’s behaviour. This is where the properties Summative,
Additive and Persistant come into play.

An embodied performance can draw on all available
movements and all possible combinations of such. Table 4
presents a combination matrix showing possible combinations,
mutually exclusive movement types, and restricted combinations.

The group that is least conducive to interaction with others is the
Beats. Due to their local property, these are grounded in a specific
narrative moment, which does not permit metaphorical, iconic or
deictic displays. This momentary status also strongly prohibits
combinations with Cohesives. In short, only Beats can combine
with Beats. Nonetheless, Beats can be performed during spatial or
rotational movements, as this does not change their function. In
fact, spatial and rotational movements can be combined with all
other movement types, as well as with themselves. However, a
spatial or rotational movement during an iconic or metaphoric
gesture can cause positional changes that affect the gesture, while
deictic gestures are also sensitive to any referential changes of
position. For example, pointing while walking is a much more
restrictive task than either alone, since the target of the reference
might move behind the performer.

By definition, iconic and metaphoric gestures exclude each
other. As with a change of context, a gesture’s obviousness can be
exchanged for a metaphorical interpretation, but a combination
of iconic andmetaphoric gestures must be sequential, not parallel.
Likewise, the Cohesives can be combined with any other
movement type except for the Beats, since these groups have
opposing global and local properties.

3.3 Performance Framework at Work
Figure 3 depicts four example tasks, the requirements of each,
and the applicability of the framework to each instance of the
task. The framework is designed to meet the demands of these
different tasks. When the Software Modules for a task depend on
the choice of performing agents (e.g., embodied/non-embodied,
single/multiple), the properties needed to support an appropriate
conceptual response are given.

Different performances types can place varying emphases
on the meanings of any given movement. Dancing is an
expressive act which aims to convey themes and emotions
through the use of the entire body. While Figure 3 lists only
Body Movement as a necessary requirement for dance, dancing
can have other requirements in context, e.g. single or multiple
bodies which can - but do not need to - move synchronously.
Dance types can range from the highly coordinated to the
highly improvised and relatively uncoordinated. As shown in
Figure 3, rhythm can, for example, be achieved with a
repetition of movements. However, while rhythm and
synchrony are listed as prototypical requirements of a dance
task, these are neither necessary nor sufficient for dance, and
this point applies more generally to all performance types,
from dance to storytelling to joke-telling and casual
conversations. In robotic dance, complex relational
movements and motion dynamics are at play, which may or
may not exhibit synchrony and rhythm (LaViers and Egerstedt,
2012; LaViers et al., 2014; Thörn et al., 2020). Within the
Performance Framework, additive, relational, local and global
properties can be identified, and, in cases where it is required,
rhythm can be achieved by adding repeated movements, just as
synchronized movement can be realized in terms of global and
relational additions. Ultimately, Body Movements is a flexible
requirement which should always acknowledge the diversity of
bodily capabilities across humans and across robots, making it
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all the more important that each possible requirement is
appropriately integrated on the software level.

For storytelling, Wicke and Veale (2020b) have shown that
movement, gesture and relative positioning play an important
role in enacting a story well. These requirements can each be met
using movements with persistent, relational, global and additive/
summative properties. When actors undergo changes in their
physical spaces that mirror the changes undergone by characters
in a narrative space, metaphorical schematic movements and
gestures can depict plot progression and character
interrelationships.

Certain performance types, such as stand-up comedy, place a
greater emphasis on timing than others (Vilk and Fitter, 2020).
When timing is key, spatial movements may be subtle and
minimal (Weber et al., 2018), making the properties obvious,
relational and global all the more important. For example, the
timing needed to land a punch line requires global and relational
knowledge of the performance as a whole, while the use of iconic
gestures throughout can increase the effectiveness of the
performance.

Lastly, conversational agents make use of various discourse
strategies that can be enhanced by the use of iconic and deictic
gestures. The latter are especially useful in maintaining shared
attention and awareness, by mirroring movement in a topic space
with movement in physical space (Jokinen and Wilcock, 2014).

4 AN INTERPRETATION FRAMEWORK FOR
STORYTELLING ROBOTS

By meaningfully connecting plot actions to movements, the
Performance Framework allows a performer to pick its
movements to suit the action (x) at hand. More formally,
C(x)1E(x) denotes the mapping of an action x as it is
represented in the conceptual domain C of stories to its
expressive realization in the embodied, physical world E. For
example, the insult action can be expressed with an iconic
gesture in which an actor “flips the finger” to another actor.
That other actor may show that they feel disrespected by
moving their head slightly backwards. In this case,
C(insult)1E(insult) because the actors physically express
the insult action that the plot calls for. However, each actor
should take into account the current state of the story, and their
residual feelings that carry over from earlier actions. If we
denote this state of the story as S, then the performers consider
the mapping S(C(insult))1S(E(insult)). In a story space with
xN possible actions, the general form of this mapping is
S(C(xN ))1S(E(xN)).

Skilled actors are able to interpret an action within the context
of the unfolding story, so we also need a complementary
Interpretation Framework to allow performers to interpret
each action in context. Suppose character A has supported B
in some way, or confided in B, or defended B, and B then responds
by insulting A. Viewed in isolation, the insult should make A feel
disrespected, and even a little attacked, so it would be appropriate
to embody this event as C(insult)1E(insult). However, given
the earlier events which make this insult all the more shocking, it

would be even more appropriate, from A’s perspective, to enact
C(insult)1E(attack), since attack carries more shock value than
insult. Each performer brings a different interpretation to bear on
the same plot action. So while B interprets the insult action
directly, A interprets it as attack action. The result is a
performative blend of the two enactments. B enacts its agent
role in the insult while A enacts its patient role in the attack. That
is, while B enacts the event via the mapping
S(C(insult))1S(E(insult)), A uses the mapping
S(C(insult))1S(E(attack)). The more general form of A’s
interpretation is C(x)1E(x). It is the task of the
Interpretation Framework to provide the mapping mechanisms
for interpretations such as these.

4.1 The Representation of Gestures Within
the Framework
Wicke and Veale (2018b) define one-to-many mappings from
plot actions to gestures and movements, from which performers
can choose an appropriate but context-free enactment at random.
The purpose of the performance framework is to transform this
choice from a purely disjunctive one to a choice based on
interpretation in context. To this end, each gesture must be
understood by the system as more than a black box motor
script. So in addition to duration information, a schematic
classification as given in Table 1, and the properties given in
Table 2, we must give the framework an emotional basis for
making real choices.

Our database of gesture representations is available from a public
repository1. More than 100 movements are currently stored and
labelled for use in embodied storytelling. Each is assigned a unique
name that describes the movement briefly. This name aims to be as
telling as possible in just a few words, while a longer free-form
description is as explicit and detailed as possible. For example, the
movement named “strike down” has the description “right arm
squared angle lifted above shoulder, quickly striking down with
hand open.” This movement, which takes approximately 212 seconds
to execute, is labelled as a schematic downmovement. This motion
is not associated with rotational or spatial movement, and its
possible uses as an iconic or metaphorical gesture depend on the
narrative context in which it is performed.

As noted in (Wicke and Veale, 2018b), the existing disjunctive
mapping from plot actions to physical actions is further labelled
with an appropriateness label, since some gestures are more
obviously suited to their associated plot actions than others. For
example, the action disagree with can map to either of the gestures
“shaking the head” or “shaking the head, raising both arms and
turning away.” In this case, both gestures are equally appropriate
for the action. For another action, however, such as contradict or
break with, the latter is more appropriate than the former. Three
distinct appropriateness levels – high, medium and low – are used
to qualify the mappings of actions to gestures. This suggests a very
practical motivation for metaphor within the system: the mapping
C(x)1E(x) is preferable toC(x)1E(x)when E(x) offers amore

1https://osf.io/e5bn2/?view_only�2e30ee7e715342d59c371b5d30c014e0
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appropriate enactment for x than E(x). In general, metaphor will
be motivated by a mix of concerns, from the practical (does
this action have a vivid enactment that really suits it?) to the
expressive (does this action adequately capture the feelings of
the moment?). Notice that in each case, however, metaphor
hinges on questions of expressive adequacy, and the question
of whether the systems knows of a better way to communicate
what it wants to say.

4.2 Selective Projection for Creative
Interpretation
An embodied performance of a story is a careful presentation of
story elements – plot, character, emotion – in a physical space. As
such, performers project elements from the story space, a space of

words and concepts, into the presentation space, a space of
gestures and movements and spoken dialogue. The performers
are themselves, with their own physical affordances and
limitations, and the characters they play. In the terminology of
Fauconnier and Turner (1998), Fauconnier and Turner (2008),
the performance is a conceptual blend.

Turner and Fauconnier’s Conceptual Blending Theory has
previously been used to model stories in a computational
setting (Li et al., 2012). The basic theory has been extended by
(Brandt and Brandt, 2005) to incorporate additional spaces that
are especially relevant here, such as a reference space (for the
underlying story), a context space (specifying situations within
the story, and discourse elements relating to those situations), and
a presentation space in which story elements are packaged and
prepared for a performance.

FIGURE 4 | Depending on the narrative context, the action A insult B can cause B to feel “insulted” (C(x)1E(x)) or to feel “attacked” (C(x)1E(x)). B’s emotional
response will then dictate the actor’s physical reaction on stage.

FIGURE 5 | Selective projection in a situation in which an insult is interpreted as an attack. Situational relevance is determined by the emotional valence of the
current action. Figure based on context-dependent blending theory by Brandt and Brandt (2005), and adapted from Li et al. (2012).
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Consider again the example story in which character B insults
A after A has shown favor to B, perhaps by praising, aiding or
defending B. In the reference space this plot action is literally
captured as B insult A. As mediated by the context space,
however, which brings both situational relevance and a
discourse history to the interpretation of events, B views this
insult as an attack, and so the action is instead represented in the
presentation space as B attack A. Since the performers take their
stage directions from the presentation space, A will move, gesture
and speak as though the victim of an actual attack. So, when B
performs a “giving the finger” gesture to A, A will do more than
lean back in disappointment – the standard response to an insult
– it will step away with its arms extended in a defensive posture.
This construal of events by A and B, the first of three scenarios
unpacked below, is illustrated in Figure 4.

Scenario 1: An insult delivered in some contexts can surprise
more, and wound more, than in others. The standard response,
which entails a literal mapping from the reference to the
presentation space, is S(C(insult))1S(E(insult)). However, in
a story state S that makes the insult seem all the more severe,
S(E(insult)) may equate to E(attack), to produce the non-
standard mapping S(C(insult))1E(attack). In that case, it is
not the embodied response to an insult, E(insult) that is enacted
by the insult’s target (leaning back, with head down) but
E(attack) (stepping back, arms outstretched defensively).

Scenario 2: A performer whose character, A, praises the work
of another, B, might enact a show of “praise” with a clap of the
hands or a nod of the head. This is the standard response in a
story context where praise is literally interpreted as praise, that is,
S(C(praise))1S(E(praise)). However, if the context indicates
that A has strong grounds to respect and feel inspired by B –
perhaps B rescued A in the previous action – then S(E(praise))
may be interpreted in this light to produce a stronger reaction
than praise. As such, S(E(praise)) might equate to E(worship)
and the performer playing A will bow accordingly.

Scenario 3: A succession of actions that reinforce the same
emotional response in a character can lead to a character feeling
and expressing that emotion to a higher degree, shifting its
embodied response from the standard interpretation to a
heightened, metaphorical level. Suppose the story concerns
character A treating character B as a lowly minion. A
overworks and underpays B, taking advantage of B at every
turn. If A should now scold B, B may interpret S(E(scold)) as
E(whip), or interpret S(E(command)) as E(enslave), and finally
interpret S(E(fire)) as E(release). Interpretative performance
allows for a shadow narrative to play out in physical actions
as the literal narrative is rendered in speech.

In each scenario, the situated actor uses contextual
information to interpret the current plot action, in light of
previous actions, and chooses to accept the scripted action
(x1x) or to take a metaphorical perspective (x1x) instead.
An alternate construal, such as construing an insult as an attack,
or an act of praise as an act of worship, changes the physical
enactment of the action in the script. Notice that when an
alternate enactment is chosen, the dialogue associated with the
scripted action is still used. The combination of one action’s
gestures with another action’s dialogue adds further variety to the

blend, while also helping to foster understanding by the audience.
Gestures are dramatic on a physical level, but dialogue carries a
more explicit semiotic content. Even when the performers choose
to be metaphorical, the performance remains grounded in some
literal aspects of the script. This grounding is rooted in the
assumption that audiences are capable of fully comprehending
the narration and dialogue of the script. When this is not the case,
gestures and other non-verbal cues become an even more
important channel of communication.

A blending interpretation of Scenario 1 is illustrated in
Figure 5, further adapting the treatment of Brandt and Brandt
(2005) that is offered in Li et al. (2012). Notably, situational
relevance is informed by the Emotional Valence of the situation,
the calculation of which we consider next.

4.3 Emotional Valence in Story Progression
Veale et al. (2019) have shown how the actions, characters and
structural dynamics of a story can influence the performers’
reactions so as to elicit a comedic effect in a performance by
robots. In that approach, the logical structure of the narrative – in
particular, whether successive actions are linked by “but” or
“then” or “so” – provides a reasonable substitute for an
emotional interpretation of the action, so that performers
know when to act surprised, or can infer when an audience
might be getting bored (e.g., because the plot lacks “but” twists) or
confused (e.g., because it has too many “but” twists). To go
deeper, we must augment this structural perspective with an
emotional perspective, so that performers can grasp why certain
actions are linked by a “but” and not a “so”. We begin by situating
each role (A and B) of every possible action in a plot (Scéalextric
defines more than 800 different actions) on the following four
scales:

disappointed←A → inspired disappointed←B → inspired

repelled←A → attracted repelled←B → attracted

attacked←A → supported attacked←B → supported

disrespected←A → respected disrespected←B → respected

These emotions are chosen to suit the action inventory of a
story-telling system like Scéalextric. Other emotional scales
may be added as needed to suit other tasks, such as dance
(Camurri et al., 2003). The story-telling system draws from a
knowledge base of over 800 actions, which can be causally
connected to create stories that exploit tropes and other
common narrative structures. Each story revolves around
two central characters and a retinue of secondary figures
(partners, spouses, friends, etc.). The most common themes
elicit feelings of trust, respect, admiration and cooperation
about and between those characters.

For example, the insult action associates a strong sense of
being disrespected with the B role. When A insults B, we expect B
to feel very disrespected (or negatively respected). Similarly, the
worship action associates a strong sense of being inspired with the
A role, and a strong sense of being respected with the B role.
Conversely, the surrender to action associates a negative sense of
being attacked (and so a positive sense of being supported) with
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the B role, because A is no longer an active threat to B. Viewed
individually, each emotional setting can be compared to that of
the previous action, to determine how much change has been
wrought by the current plot turn. It is this change that explains
why certain transitions warrant a “but” and others warrant a “so”
or a “then”. It can also motivate why an insult can come as a
surprise to a character, and feel more like an attack.

The four emotional scales can also be viewed in the aggregate,
to determine an overall valence for the current action from a
given role’s perspective, or to determine an overall shift in valence
from one action to the next. We calculate the valence of a role in
an action αi as the total valence across all emotional scales for that
role in that action. See Eqs 2, 3 for the valence of the A and B roles
in αi. A positive valence for a role indicates that a character in that
role should experience a positive feeling when the action is
performed; conversely, a negative valence suggests a negative
feeling for the action.

valenceA(αi)← inspirationA(αi) + attractionA(αi) + supportA(αi)
+ respectA(αi)

(2)

valenceB(αi)← inspirationB(αi) + attractionB(αi) + supportB(αi)
+ respectB(αi)

(3)

A character is a persistent entity in a narrative, one that moves
through the plot from one action to the next. The current valence
of a character is a function of the valence of the role it plays in the
current action, and of the valence of its roles in previous actions,
with the current action making the greatest contribution.
Previous actions have an exponentially decaying effect based
on their recency. If 0< β< 1 specifies the weight given to the
current action, the contextual valence of the characters filling the
A and B roles is given by Eqs 4, 5 respectively. We assume a fixed
decay rate, while acknowledging that certain events might have a
stronger and more lasting impact on perceived valence than
others. It remains to be seen in future work whether this
simple one-size-fits-all approach needs to be replaced with a
more variable, local solution. For now, we continue to view this
simplicity as a virtue.

contextA(αi)← β.valenceA(αi) + (1 − β)contextA(αi−1) (4)

contextB(αi)← β.valenceB(αi) + (1 − β)contextB(αi−1) (5)

Calculating aggregate valence levels for the characters in a
story allows the interpretation framework to track their changing
emotions to each other over time, at least on a gross level.
Although it is highly reductive, this gross level allows
performers to distil complex emotions into simple but
expressive physical actions. Because they are calculated as a
function of the valence of current and past actions, these levels
are both summative and persistent, and thus well-suited to
making decisions regarding summative and persistent physical
actions in a performance. If a significant increase in positive
valence for a character A is interpreted as a result of actions
involving character B, then performer A can move a step closer to

performer B in physical space. Conversely, a significant decrease
can cause A to move a step away from B. This increase or decrease
for A is given by Eq. 6. The same spatial/emotional calculus
applies to B’s perspective, as given in Eq. 7. In each case, a
significant increase or decrease is determined to be a positive or
negative change that exceeds a fixed threshold τ. In this way, the
relative spatial movements of performers on stage are not
explicitly indicated by the script, or directly associated with
the actions in the plot, but determined by each performer’s
evolving interpretation of the narrative context.

ΔA(αi)← contextA(αi) − contextA(αi−1) (6)

ΔB(αi)← contextB(αi) − contextB(αi−1) (7)

The emotional valence of an action for a character, much
like a character’s “inertial” contextual valence, is derived from
four emotionally charged scales that have been chosen to suit
our system’s inventory of 800 plot actions. New parallel scales
can be added, or existing ones removed or replaced, if this
inventory were to change significantly. Currently, one obvious
omission is an arousal scale (Kensinger and Schacter, 2006), to
show the degree to which an action either calms or arouses a
particular role. Arousal is not a charged dimension – for one
can be as aroused by hate as by love – and so it does not
contribute to our calculations of valence. Nonetheless, an
arousal dimension is useful for indicating the scale of an
actor’s response. A high-arousal action may demand a
bigger and more dramatic physical response that a calming,
low-arousal event. For that reason, it makes sense to add a new
scale as follows:

calmed←A → aroused calmed←B → aroused

A state of high-arousal can be conveyed with a sweeping, high-
energy gesture. while a calm state might be conveyed with a
slow movement or a slight gesture. Of course, the robot
platform may not support the distinction between high- and
low-energy motions. The extent to which it does, or does not,
indicates the extent to which an arousal dimension is
worthwhile in a story-telling context. Still, we may find that
arousal is wrapped up with the question of contextual valence
and how quickly the influence of context should decay. If
arousal can be shown to influence the rate of decay, it would be
a valuable addition to the framework whatever robot platform
is used. It thus remains a topic of ongoing research in this
project.

5 EVALUATION

When a performer’s spatial movements and gestures are
chosen on the basis of its interpretation of the plot, we
deem those physical actions to be coherent. Conversely,
when those movements and gestures at chosen at random,
to create the mere appearance of embodied performance, we
deem those actions incoherent. Clearly, the value of
interpretation lies in the audience’s ability to recognize
coherent uses of movement and gesture. More importantly,
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it lies in the increased appreciation that an audience will feel
for coherent vs. incoherent performances. This is what we set
out to evaluate here, by asking: how much do audiences
appreciate spatial and gestural embodiment, and how much
do they appreciate the interpretation that goes into the
embodied choices that are made by our robotic performers
when enacting a story?

5.1 Space and Gesture: Together and Apart
These stories are generated using Scéalextric, and performed
by two Softbank NAO robots working within a related
framework, named Scéalability, that choreographs their
actions (Wicke and Veale, 2020b). Although the robots
appear to speak to each other during the performance, the
choreography is actually achieved using backstage
communication via a blackboard architecture (Hayes-Roth,
1985). The NAO robots are bipedal, humanoid robots offering
25 degrees of freedom (Gouaillier et al., 2009). Scéalextric and
Scéalability are used to generate and perform the stories that

crowd-sourced judges will evaluate for spatial and gestural
coherence. The test performances can combine spatial
movements and gestures, or use spatial movements alone,
or use gestures alone. In each case, spatial movements and
gestures can be chosen coherently, on the basis of an
interpretation of the plot, or incoherently. Incoherent
spatial movements are chosen to be the opposite of what
would be considered coherent in context; thus, if the
coherent movement is to take a step forward, the
incoherent alternative is to take a step backwards, and vice
versa. For gestures, which have no clear opposite, the
incoherent choice is a random choice amongst all available
gestures.

Our first experiment has three conditions, and raters on the
crowd-sourcing platform Amazon Mechanical Turk (AMT) are
presented with stories reflecting one of these conditions. In the
first condition, the performers use only spatial movements in the
enactment, and not gestures. Those movements are always
chosen to be coherent with the plot. In the second condition,

FIGURE 6 | Scenario and results using the performance framework. The graph shows that a combined spatial and gesture performance receives a higher average
rating on a questionnaire assessing Human-Robot interaction utility measures. The star indicates a significant difference between the mean values (p< 0.05) and the
whiskers show the standard error of the mean. The image on the right shows an example of an iconic gesture performed by one of the robots during the evaluated
performance.

FIGURE 7 | Coherent use of spatial movement in a performance – to and fro movements dictated by a performer’s interpretation of the current plot action – are
appreciated more by audiences than incoherent movements that are chosen at random, or chosen contrary to that interpretation. The same can be seen for coherent vs.
incoherent gestures. A star indicates a significant difference between the mean values (p<0.05), while the whiskers show the standard error of the mean.
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the performers use only gestures, not spatial movements, where
again those gestures are chosen to be coherent. In the third
condition, performers use coherent spatial movements and
coherent gestures in the same performance. Raters reflect their
appreciation of the given performance, which they view as an
online video, on a Human-Robot Interaction questionnaire. Their
feedback then forms the basis of a between-subjects study. On
average, and as shown in Figure 6, raters appear to appreciate
coherent gestures more than coherent spatial movements, but
appear to appreciate a coherent combination of both more than
any one mode of physical expression.

For the experimental setup of three conditions, the null
hypothesis (H0) states that there are no differences in the
appreciation of the performances with different types of body
movements, i.e., the rating of the performance should be
independent of the movement performed. Our alternative
hypothesis (H1) is that there are real differences in the
appreciation of performances that use different body
movements, i.e., the rating of a performance should be
dependent on the type and coherence of the movements used.
An analysis of variance (ANOVA) is conducted to determine
whether there are any statistically significant differences between
the means of the three conditions. Unless one or more of the
distributions is highly skewed, or the variances are very different,
the ANOVA is a reliable analytical measure. When we compare
the variances of the distributions with a Levene test for
homoscedasticity (Brown and Forsythe, 1974), no significant
differences are found (Test-statistics � 2.207 with p> 0.05 to
accept equal variances). Hence, we assume equal variance for all
conditions.

Consequently, the analysis of variance reveals significant
differences between the three conditions, with p � 0.0019 (Sum
of squares � 38.686, F-values � 6.292). With the results of this
ANOVA, we can reject the null hypothesis to argue that there
is a significant dependence of the rating of the performance on
the type and coherence of the movements used. We
hypothesize that some movements are more appreciated
than others, but since the ANOVA does not make any
claims about individual differences and effects, we
conducted an additional t-test. Given the significant
differences between conditions of more-or-less equal
variance, we applied a two-sided t-test to tease out the
differences between the three conditions. Because the t-test
only provides a p-value to signify in-between differences, we
also calculated Cohen’s d to measure an appropriate effect size
for the comparison between the means of the three conditions.
This t-test showed a significant difference between the spatial
movement and combined movement conditions (p � 0.002
Bonferroni corrected). The spatial movement condition
yielded a mean appreciation score of μSpatial � 3.728 with a
standard deviation of σSpatial � 1.792. The combined condition
received an average appreciation rating of μCombined � 4.131
with a standard deviation of μCombined � 1.762. The measured
effect favours the latter (Cohen’s D � 0.227). Statistical tests
have been conducted on the accumulated test construct (of all
14 items) and the results are visualized in Figure 6. More
details are available in (Wicke and Veale, 2020a).

Within the Human-Robot Interaction questionnaire, each
participant rates the robotic performance using an
appreciation construct that comprises two parts of seven
questions apiece. One part, which measures the perceived
attractiveness of the performance, uses the AttrakDiff
questionnaire of Hassenzahl et al. (2003). The other elicits
quality ratings for the embodiment, e.g., as to whether the
physical actions of the performers appear to be appropriate to
the story. The scores in Figure 7 represent mean average scores,
which to say, mean scores for all fourteen questions averaged
across all raters for the relevant conditions.

The stories generated using Scéalextric can be long and
convoluted, with many sub-plots and secondary characters.
This complexity tends to confound the analysis of
embodiment choices, since it requires raters to watch long
video performances. So, for the three conditions studied here,
raters are shown extracts from longer performances that
focus on specific events in a story that involve the kinds of
movements we aim to evaluate. Three one-minute videos are
shown to 40 raters for each condition (so 120 in total) on
Amazon Mechanical Turk. Each one-minute video is an
excerpt of an embodied performance with a narrative
voice-over. Each rater is paid 0.40$ per video to fill out the
questionnaire of 14 questions. Three additional gold-
standard questions are also included, which allow us to
detect disengaged raters who provide uniform or random
responses. When we exclude these invalid responses, there are
32 valid responses for the Spatial Movement condition, 29 for
the gesture condition and 33 for the combined movement
condition, yielding a total of N � 94 valid responses. More
details on this study can be found in (Wicke and Veale,
2020a).

The crowd-sourcing of raters on platforms such as Amazon’s
Mechanical Turk (or AMT) brings with it some clear
advantages and disadvantages. AMT does not provide
demographic information about its participants, so we
did not seek out this information. While there are
concerns about the demographic characteristics of AMT
rater populations (Chandler and Shapiro, 2016), AMT
can still provide a relatively diverse demography,
especially if compared to other Web-based
samples and to the average American campus sample
(Buhrmester et al., 2016). A study of AMT workers by
Michel et al. (2018) reports that the average age of task
participants is 35.5 years (SD � 11.0), and that 58% of
workers are female.

5.2 To Interpret or Not: Coherence Versus
Incoherence
This first experiment concerns performances in which
performers always make coherent choices. In a second
experiment, we aim to show that audiences appreciate
coherence more than incoherence – and thus appreciate
interpretation over non-interpretation – by showing raters
performances in which choices are made either coherently
(using the interpretation framework) or incoherently
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(ignoring, or going against the interpretation framework). This
second experiment creates performances that observe one of four
conditions: using spatial movements alone (coherent), with no
gestures; using spatial movements alone (incoherent), with no
gestures; using gestures alone (coherent), with no spatial
movements; and using gestures alone (incoherent), with no
spatial movements. Once again, raters evaluate video
performances from a given condition, and provide their
ratings using the same Human-Robot Interaction
questionnaire. A between-subjects study of their ratings, again
collected via Amazon Mechanical Turk and that again
incorporates gold-standard questions to weed out disengaged
raters, yields the findings shown in Figure 7.

As before, 40 raters were recruited for each condition
(N � 40 x 4 � 160), and each was paid 0.40$ for completing the
questionnaire after watching a 1-minute video. After filtering
invalid responses, the four trials resulted in 29 valid responses
for coherent gestures, 28 for incoherent gestures, 32 for coherent
spatial movements and 29 for incoherent spatial movements
(N � 118). Our findings suggest that audiences do appreciate
coherent interpretation over the incoherent lack of interpretation
when performers use physical actions to convey a story.

6 CONCLUSION

6.1 Frameworks for Storytelling
The relative strengths of the Performance and Interpretation
frameworks underline the distinction between what is performed
and how it is interpreted. Both systems are distinct, yet they must
work together, because interpretation is based on performance, and
the latter is shaped by what the system and its actors wish to convey.
Performers must first interpret for themselves what they wish an
audience to subsequently interpret from their actions. But this is
hardly a novel concern. Within the theory and practice of acting, it is
suggested that “Rather than playing an emotion, actors are advised to
play the action and encode the emotion in the action through
parameters, such as speed, intensity, shape, and direction.” (El-
Nasr, 2007). Human approaches to acting, such as that famously
outlined in (Stanislavski, 2013), can thus inform our approach to the
robotic performance of stories. Importantly, however, we must
abstract away from the physical limitations and peculiar
affordances of the actors themselves, or, in our case, of the
specific robots that we employ. The modularity of our approach is
a clear advantage in this regard.

Creativity by a producer always requires a corresponding (if
perhaps lesser) creativity in the consumer if it is to be properly
appreciated. In this paper we have necessarily focused on
producer-side creativity, and said little about the consumer-
side creativity that it necessitates in turn. This lopsided view is
tenable in the short-term, for practical reasons, but it must be
redressed eventually, Future work must thus address this
imbalance, which is inherent to the creative equation in any
performative context. Producers anticipate how consumers will
react, while consumers model the intent of the producer. To
adequately account for one side of the equation, we must also
account for the other.

6.2 Discussion
The Softbank NAO robots that are used in our performances and
crowd-sourced evaluations have none of the grace or agility
exhibited by recent, bio-inspired machines, such as those of
Boston Dynamics (Guizzo, 2019). Those robots are capable of
animal-like movements and human-like poise, as recently shown
in scripted robotic dances2. Nonetheless, we focus on a larger
point here, one that is mostly independent of the robotic
hardware that is used. To perform a story for an audience,
performers must do more than follow a literal script to the
letter. They must interpret the script, to actually fill the
positions – spatially and otherwise – of the characters they are
supposed to “inhabit.” Interpretation requires an emotional
understanding of the unfolding plot, so that actions can be
chosen to coherently reflect that understanding.

To this end, our interpretation and performance frameworks
employ representations and mechanisms that mediate between
plot actions, character emotions, and a performer’s movements
and gestures on stage. Interpretation creates choice for a
performer, motivating departures from the script when the
scripted response seems inadequate in context. Moreover,
interpretation guides performance, so that the robotic
performers become part of a larger whole, in which relative
position is as important as individual action.

One dimension of human emotional expression that is
overlooked here is that of facial expression. We humans
communicate with our looks as well as our words and
gestures, as shown e.g., by the importance of non-manual
features in sign language (Nguyen and Ranganath, 2012). We
do not consider this dimension here because it is not the primary
focus of our current work, not least because our robots lack the
means to emote with their faces. Nonetheless, facial emotion is a
dimension we must address in future work and in any addition to
the current framework. To begin, we are presently considering the
role of facial emotion and gestures in audience members as they
watch a robotic performance. When viewers engage with a story,
their expressions and gestures can subtly (and not so subtly) guide
the interpretations of the robotic performers, perhaps warranting
a comment in response, or even a dramatic plot change in mid-
narrative. As outlined in (Wicke and Veale, 2021), the underlying
stories can be generated as disjunctive trees rather than linear
paths, and robots can elicit emotional feedback from users via a
video feed, to determine which forks in the plot to follow.

We have defined a modular and extensible framework that can
be adapted and reused by HRI researchers for different kinds of
robotic performance. For example, a study on the perception of
drone movements by Bevins and Duncan (2021) evaluates how
participants respond to a selection of schematic flight paths. Since
the identified movements are inherently schematic, e.g. Up-
Down and Left-Right, we believe that our framework can help
to categorize their results from a performative and an
interpretative perspective. Other recent work suggests how we
might extend our performance framework’s taxonomy of motion
types to include, as noted earlier, properties such as naturalness.

2https://www.youtube.com/watch?v�fn3KWM1kuAw
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In this vein, Kitagawa et al. (2021) investigate how robots can
most naturally move toward their goals, and show that common
rotate-while-move and rotate-then-move strategies are inferior to
their proposed set of human-inspired motion strategies.

A natural complement to the visual modality of spatial
movement is sound. Three types of artificial sounds for
robotic movements are explored in Robinson et al. (2021) in
the context of a Smooth Operator. Their results indicate that
robotic movements are interpreted differently, and perceived as
more or less elegant, controlled or precise, when they are coupled
with different sounds. These findings suggest that our
interpretation framework might be applied to additional
modalities, such as sound, to exploit additional channels of
communication and augmented modes of meaning-making.

Of course, these modalities are usually bidirectional. The visual
modality, for example, works in both directions: as the audience
perceives the performers, the performers can also perceive their
audience. As noted earlier, this allows audiencemembers to use their
own gestural and facial cues to communicate approval or
disapproval to the actors as they enact their tales. This feedback
– in the guise of a smile or a frown, a thumbs up or a thumbs down –
allows performers to change tack and follow a different path through
the narrative space when, as described in Wicke and Veale (2021),
the underlying story contains branching points at which actors
should seek explicit feedback from the audience. A video camera
provides a visual feed that is analyzed for schematic gestures and
facial emotions, and when such cues are present, the actors base their
choice not on their own interpretation but on that of the audience.

6.3 The Nao Robot
When considering the limitations of this work, we must address our
choice of robot, the Nao. Qualities that are desirable from an
interpretative perspective may be undesirable from a performance
perspective, and vice versa. For instance, a decision to link arousal with
the energy and speed of the robot’s actions must consider issues of
unwanted noise (from the robot’s gears) and balance (itmay fall over if
it reacts too dramatically). The latter also affects its use of space. As
robots move closer together, to e.g., convey emotional closeness, their
gestures must become more subtle, lest they accidentally strike one
another in the execution of a sweeping motion. While our
interpretation and performance frameworks might look different
than they are had we chosen a different platform, we are confident
that these modular and extensible frameworks can grow to
accommodate other choices in the future, either by us or by others.

Because the Nao platform has been used in a variety of related
research [e.g., Gelin et al. (2010), Pelachaud et al. (2010), Ham
et al. (2011), LaViers and Egerstedt (2012), and Wicke and Veale
(2018a)], this speaks well to the reproducability of our approach.
Despite its limitations, the Nao currently suits our needs, not least
because it has 25 degrees of freedom and the ability to move its
limbs independently of each other. The robot’s fixed facial
expression is certainly a limitation, one that prevents us from
conveying emotion with facial cues, yet this also helps us to avoid
unwanted bias in our user studies. It also means that we need not
worry that the robot’s manual gestures will occlude its facial
expressions at key points. Other limitations can be addressed in a
more-or-less satisfactory fashion. For instance, the Nao cannot

turn on the spot, but turning can be implemented as a
composition of spatial and rotational movements. So, although
the movements of our performance framework are shaped in
large part by the abilities of our robots, they are not wholly
determined by their limitations. A comparison with other robot
platforms would undoubtedly be useful and revealing, but it is
beyond the scope of this current paper.

6.4 Current Thoughts, Future Directions
The interpretation and performance frameworks support both
fine-grained and gross-level insights into the unfolding narrative.
For instance, we have seen that aggregate assessments of valence –
for a given role of a specific action at a particular point in the plot
– allow for aggregate judgments about characters and their
changing feelings. These gross judgments, which reveal
positive or negative shifts in a character’s overall feelings, can
suggest equally reductive actions for robot performers to execute
on stage, such as moving closer to, or further away from, other
performers playing other characters. In this way, gross
interpretations support powerful spatial metaphors that are
equally summative and equally persistent. We have largely
focused here on the semantics of gross spatial actions, but the
literature provides a formal basis for the more fine-grained forms
of expression that we will pursue in future work, such as those
from the domain of dance (LaViers et al., 2014; Bacula and
LaViers, 2020).

But fine-grained insights are also supported by the
framework, which is to say, insights based on movements
along a single emotional dimension. Spatial movement to
and fro, of the kind evaluated in the previous section, are
reductive and general. But metaphors that allow a performer to
construe on action as another in a given context, such as by
construing an insult as an attack, or an act of praise as an act of
worship, are more more specific. They work at the conceptual
level of plot action, and do more than suggest an embodied
response. Rather, they increase the range of choices available to
a performer because they operate at a deeper and more specific
level of interpretation.

We humans reach for a metaphor when we want to broaden
our palette of expressive options, and so too can our robot
performers. But metaphor it itself just one choice that leads to
others. Irony is another. A performer can, for example, choose to
react ironically to a script directive. Suppose character A is
expected to show fealty to character B, and the story so far
firmly establishes this expectation in the minds of the audience
(and in the view of the interpretation framework). Irony is always
a matter of critiquing a failed expectation, by acting as though it
has not failed while clearly showing that it has. It is the ultimate
creative choice. Suppose now that the plot calls for A to rebel
against, or stand up to, or to break with B. When the
interpretation framework compares the emotions established
by previous actions with those stirred by this new action, it
recognizes a rift that should, if it is large enough, influence how
the performers react. The robot portraying character A might
thus act out an action more in line with the expected emotions,
such as bowing down to B, while speaking the dialogue associated
with the current action, such as “I’ve had enough of you!”. The

Frontiers in Robotics and AI | www.frontiersin.org April 2021 | Volume 8 | Article 66218218

Wicke and Veale Creative Action at a Distance

54

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


bifurcation of irony, of expectation vs. reality, easily maps onto
the parallel modalities of speech and physical action, so that a
performer can indeed follow both branches at once.

Although we have not examined or evaluated irony here, we
mention it now to show that robotic performances of complex
semiotic structures, such as stories, open many avenues for an
interpretative performer, at both the conceptual and the
expressive levels. These choices, which include construal
mechanisms such as metaphor and irony and more besides,
open more choices in turn, if a performer has the wit to
perceive and exploit them. As such, it is fair to say that we
have barely scratched the surface of what an interpretative
approach to embodied performance can yet bring to domains
such as story-telling. As we go deeper, we may need to use a richer
model of the gestures and motions that realize the embodiment,
such as by drawing on insights and representations from the
world of dance, where more nuanced actions – andmore nuanced
notations – necessarily hold sway.
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Educational Robotics and Robot
Creativity: An Interdisciplinary
Dialogue
Alla Gubenko1, Christiane Kirsch1, Jan Nicola Smilek1, Todd Lubart2 and
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1Departement of Education and Social Work, Institute for Lifelong Learning andGuidance, Luxembourg, Luxembourg, 2Université
de Paris et Université Gustave Eiffel, LaPEA, Boulogne-Billancourt, France

There is a growing literature concerning robotics and creativity. Although some authors
claim that robotics in classrooms may be a promising new tool to address the creativity
crisis in school, we often face a lack of theoretical development of the concept of creativity
and the mechanisms involved. In this article, we will first provide an overview of existing
research using educational robotics to foster creativity. We show that in this line of work the
exact mechanisms promoted by robotics activities are rarely discussed. We use a
confluence model of creativity to account for the positive effect of designing and
coding robots on students’ creative output. We focus on the cognitive components of
the process of constructing and programming robots within the context of existing models
of creative cognition. We address as well the question of the role of meta-reasoning and
emergent strategies in the creative process. Then, in the second part of the article, we
discuss how the notion of creativity applies to robots themselves in terms of the creative
processes that can be embodied in these artificial agents. Ultimately, we argue that
considering how robots and humans deal with novelty and solve open-ended tasks could
help us to understand better some aspects of the essence of creativity.

Keywords: creative robotics, human creativity, cognition, embodied creativity, educational robotics, human-robot
collaboration, machine learning

INTRODUCTION

Enhancing the ability to generate unique and useful ideas in both humans and artificial agents is a
crucial challenge for 21st-century problem solving. The ways in which humans and robots may
engage in the creative process and foster the development of creative productivity is a central research
question that interfaces psychology and technology. Robots have been a feature of modern culture
since the early pulp fiction stories and Isaac Asimov’s literary contribution. Interestingly, Robbie the
Robot was one of the stars of this early period, and finally became a featured “agent” in a 1956 classic
science fiction film, entitled Forbidden Planet. Robby the Robot, who was human-sized, possessed
artificial intelligence and was a problem solver who helped humans during space missions. More
recently, Robby the Robot has re-appeared, in a miniature format, as a toy that children can learn to
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program. Although the idea of incorporating robots into our
everyday lives might have seemed outlandish and flat-out
unrealistic some decades ago, the presence of robotics has well
expanded, even into classrooms.

The pedagogical motivation for connecting robots with pupils
is the hypothesis that creativity may be fostered through human-
machine interactive exchanges. The scientific literature highlights
a number of experiments of this type which seem to produce
positive effects on both children and machines. Thus, this article
seeks to 1) exemplify through a synthesis of the literature what
creativity-related aspects are covered by the field of educational
robotics, 2) present the mechanisms underlying creativity which
are potentially at work in these pedagogical situations and, thus,
3) understand better how children but also artificial agents can
develop their creative expertize from physically and socially
situated practices.

A SHORT OVERVIEW OF EDUCATIONAL
ROBOTICS

The term “educational robotics” refers to a field of study that aims
to improve student’s learning experiences through the creation
and implementation of activities, technologies, and artifacts
related to robots (Angel-Fernandez and Vincze, 2018). In
practice, these activities can involve the use of a physical
robot, may that be a modular system like LEGO Mindstorms,
or robots specifically constructed for the designated activities.

Such activities can be conceptualized for students from
elementary to graduate levels and may include design,
programming, application, or experimentation with robots.
Educational robotics activities usually consist of the use of a
robotics kit, with which children learn how to build and program
the robots for a given task (Jung & Won, 2018). These activities
can take the form of interventions, after-school activities,
voluntary classes, or an entire course module focusing on
robotics.

The theoretical foundations for the application of educational
robots are multiple, but the constructionist educational approach
has been the norm (Kafai and Resnick, 1996; Papert, 1981;
Danahy et al., 2014). Robotics kits provide a modular
approach regarding programming and building, often used as
creativity-enhancing interventions in the school context. In
working with these kits, students can exert engineering
competencies and creative1 solutions to a vast array of
problems, starting from making a robot move from point A to
B. Furthermore, principles such as problem-based learning and
gamification are guiding the implementation of educational
robotics interventions. The latter, gamification, describes the
use of game elements in non-game contexts to foster
motivation (Sailer et al., 2014).

The robots’ humanoid appearance may foster student
engagement (Zawieska et al., 2015). The characteristics of
robotic devices themselves can yield interesting effects as well.
In interviews with students who underwent a course including the
use of robotics, Apiola et al. (2010) found that the playful aspect
of robotics, partnered with the physical embodiment of learning
contents, had an important role in students’ engagement. An
exploratory qualitative study by Nemiro et al. (2017) emphasized
the role of robotics in creating an engaging classroom
atmosphere.

OVERVIEW OF EXISTING INTERVENTIONS
USINGROBOTICS TO FOSTERCREATIVITY

An early theoretical stance on creativity in children was
developed by Vygotsky (1967), who argued that creativity
would develop out of playful activities in which children
engage. During these play activities, not only past
experiences would be engaged, but a sort of combinatory
imagination would encompass newly formed impressions
stemming from new realities. Guilford (1950) asked why
schools do not engage more thoroughly in the fostering of
students’ creative abilities.

In 1972, Papert and Solomon published “Twenty Things to Do
with a Computer”, in which they proposed a further integration
of Information and Communication Technology into school
curricula. In the article, the authors presented a robot called
“Turtle”, which is an early example of an educational robotics
device (Papert and Solomon, 1972). This rather simplistic and
non-anthropomorphic robot was directed to move around via an
easy-to-learn programming language called “LOGO”. Papert and
Solomon described how “Turtle” could be programmed to draw
pictures on the surface on which it moved via a pen that was
located on the center bottom of the robot.

In the early 2000s, robotic toolkits gained an ever-growing
attention in the pedagogical context (Alimisis, 2013). Wang
(2001) described the use of a robotics course for engineering
students, stating that LEGO robotics would be “an excellent
medium for teaching design, programming and creativity”
(Wang, 2001, p. 5). However, this work focused mainly on
promoting engineering education content and did not include
a standardized creativity measure.

Adams et al. (2010) interviewed engineering undergraduates
who completed a voluntary robotics module. Among other
engineering problem-solving tasks, the module involved
programming a LEGO Mindstorms robot. After this module,
64% of participants stated that their creative thinking skills had
improved.

Cavas et al. (2012) investigated the effect of a LEGO
Mindstorms robotics course on student’s scientific creativity.
The sample consisted of 23 twelve-to thirteen-year-old
students, attending a Turkish private school. During the
course, the students were introduced to building and
programming robots. The authors did not specify their
measure of scientific creativity but stated that it increased in
students after the program.

1In this article, the term “creative” refers to a response that is: adapted to the
problem situation and has not been taught in class (children), adapted to the
problem situation and has not been previously programmed for (robot).
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Álvarez and Larrañaga (2013) examined how a robotics
intervention using LEGO Mindstorms affected student’s
motivation and their improvement in algorithm coding
abilities. Via short self-report questionnaires, the authors
established an increase in the student’s motivation and course
interest.

Huei (2014) implemented a five-week program in which
freshmore students were introduced to a programming
language for coding robots. After the program, 93.25% of the
74 participants agreed or strongly agreed that the mini-project
had enhanced their creativity, research and problem-solving skills
(Huei, 2014). Jagust et al. (2017) presented the results of
workshops for gifted elementary students using LEGO
Mindstorms robotic sets. Although the authors did not
psychometrically assess creativity, their qualitative analysis
concluded that the children were “creatively productive”
(Jagust et al., 2017).

In the context of educational robotics, the term
“programming” applies also to younger pupils, considering
that simple, visual programming interfaces are widely
available. Using these already available or self-designed
robotics kits, students are often given a specific problem to
solve. Sullivan and Bers (2018) provide an example of this
kind of intervention; in their study, the children were asked to
program a robot to move in accordance with a given dance.
During the curriculum, the researchers used Positive
Technological Development checklists for observing the pupil’s
behavior during the intervention. Sullivan and Bers (2018) stated
that the frequency of creative behavior observed during the
curriculum was “relatively high” (Sullivan and Bers, 2018).
Creative behavior was associated with the use of a variety of
materials or with using affordances of the materials in
unexpected ways.

In some studies, the effects of educational robotics on
student’s creativity were examined using standardized
creativity measures. Alves-Oliveira (2020) investigated
whether scholastic activities with robots would enhance
children’s creativity. Children’s creativity levels were
assessed in three conditions. In the first condition, children
performed STEAM activities by learning how to code robots.
In the second condition, children performed these activities by
learning how to design robots. The third, control, condition,
was comprised of children engaging in a music class. The
pretest-to-posttest evolution in creativity was assessed with the
Test for Creative Thinking-Drawing Production–TCT-DP
(Urban and Jellen, 1996). In the TCT-DP, the examinee
must finalize an unfinished drawing, and several variables,
including new elements added, are evaluated. Results showed
that creativity levels were boosted after each intervention.
When examining the change in overall creativity scores,
associated with each condition, the coding condition yielded
a larger effect size than the control and the design condition.
The TCT-DP assesses two creativity dimensions, namely:
adaptiveness and innovativeness (Lubart et al., 2010). The
effect of the design intervention on children’s creativity was
mainly explained by an increase in scores on the TCT-DP
innovativeness dimension, which is related to unconventional

ways of thinking. According to Alves-Oliveira (2020), this
dimension is associated with divergent thinking.

Alves-Oliveira (2020) argued that the nature of the coding
task, which involved learning via trial and error, stimulated non-
conventional thinking in the children. More specifically, in the
coding condition of this study, the children learned how to use
“Scratch language” (Resnick et al., 2009 in Alves-Oliveira, 2020).
The young participants were divided into groups of 3–4
participants. Each group was appointed to program a mail-
delivery robot. The robot was directed by simple codes written
by the pupils, which made the robot move from one place to
another. According to Alves-Oliveira (2020), this fostered a
strong effect of the coding condition on the “stimulation of
non-conventional ways of thinking”. The author argued that
the nature of the coding task explained the larger effect size
on children’s “innovativeness”, observed in the coding condition;
the children were forced to experiment and explore during the
coding tasks and learned by trial and error. Alves-Oliveira (2020)
concluded that this learning via trial and error stimulated non-
conventional thinking.

Eteokleous et al. (2018) conducted a study in which 32 primary
school students between 5 and 12-years old participated in a 1-h
non-formal robotics curriculum once per week. In order to assess
the effects of the curriculum on student’s creativity, the Torrance
Test of Creative Thinking, TTCT (Torrance, 1974), was
administered before and after the 36-week intervention.
Comparisons of the creativity scores before and after the
intervention indicated a significant improvement in children’s
creative abilities (Eteokleous et al., 2018).

Badeleh (2019) examined the effects of a robotics construction
course on 120 student’s creativity and physics learning. A
constructivist robot learning approach was used, which means
that the learning outcomes were mainly acquired through the
construction and testing of a robot with the use of a prepared
manual. Badeleh (2019) implemented a study design, which
included an experimental and a control group. The control
group received traditional physics classes. The Torrance
Creativity Questionnaire (Torrance, 1974 as cited in; Badeleh,
2019), assessing the dimensions of fluidity, flexibility, innovation,
and detailed explanation, was administered to both groups before
and after the intervention. The results showed that the
constructionist robotics training had significantly increased
student’s global creativity.

Hendrik et al. (2020) examined whether the use of robotics as
learning tools has a positive effect on Figural Creativity (FC) in 40
elementary school students. The educational robotics
intervention consisted of seven weekly lessons of 2–3 h. After
the first introductory lesson, students participated in robot
designing projects. To assess possible changes in FC, Hendrik
et al. (2020) used the Torrance Figural Creativity Test (Torrance,
1974) before and after the intervention. Hendrik et al. (2020)
defined the purposes of each lesson beforehand, and which of the
four dimensions (fluency, flexibility, originality, elaboration) of
the Torrance Test would be targeted each time. In one lesson,
students were asked to construct an anthropomorphic robot,
using LEGOMindstorms sets. According to Hendrik et al. (2020),
an important outcome of this lesson was to raise the student’s
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attention to the fact that different types of robots (humanoid and
non-humanoid) could be built with the same robotics kit. The
pretest-to-posttest comparisons of global FC scores indicated that
they had increased in the intervention group. Therefore, Hendrik
et al. (2020) advocated the inclusion of robotics classes in school
curricula.

To summarize, a substantial amount of work dedicated to
Educational Robotics (ER) has been conducted. Although many
studies on ER include the notion of “creativity”, they refer mainly
to problem-solving abilities. At times, creative abilities were
exclusively assessed with self-report measures. Other studies,
which relied on standardized instruments, such as the TCT-
DP or the TTCT, observed increases in participant’s
Innovativeness (Alves-Oliveira, 2020), Closure and Creative
Strength (Eteokleous et al., 2018). In general, studies that
examined the effects of ER on creativity rarely made use of
clearly defined creativity constructs, and often did not provide
a detailed account of the revealed effects.

Future studies could explore the underlying cognitive aspects
of ER interventions, with reference to standardized creativity
measures. One line of work could investigate the specific impact
of ER interventions on ideational fluency, flexibility, and
originality. Another line of work could examine the
differential effects of specific types of ER activities, such as
differences between designing robots vs. programming robot
kits for a specific task. In practice, that could result in an
examination of cognitive outcomes related to either designing
or programming robots. However, in order to understand the
underlying cognitive processes of ER interventions, clearly
defined, operationalized and transferable theoretical
frameworks are necessary.

MULTIVARIATE APPROACH TO
CREATIVITY–CONFLUENCE MODEL

In the multivariate approach to creativity, the confluence model
(Lubart et al., 2015) considers how cognitive, conative, affective,
and environmental aspects synergistically interact with the
requirements of a particular field to give birth to a creative
product. Cognitive aspects refer to intelligence, knowledge,
and information processing abilities. Conative aspects refer to
personality traits and motivation. With regards to personality,
perseverance, tolerance of ambiguity, openness to new
experiences, and risk taking are particularly important for
creativity. The creative process does not unfold in a vacuum,
however. Environment plays an important role in the translation
of creative potential into a creative product.

Educational robotics provides an excellent opportunity to
study how real-world creativity emerges from student’s
interaction with their social, physical, and cultural
environment (Figure 1). In robotics activities, students learn
to use affordances and constraints of robotic construction kits
while engaging in collaborative problem solving in order to build
their authentic and functional robotic device. These activities
perfectly instantiate Glăveanu’s definition of creativity (Glăveanu,
2013, p.76), which is “the action of an actor or group of actors, in

its constant interaction with multiple audiences and the
affordances of the material world, leading to the generation of
new and useful artifacts”.

While recognizing the role of conative factors, in this work, we
will pay special attention to student’s cognitive processes and
strategies because we suppose that non-cognitive factors act upon
cognitive ones. In the following sections, we will consider
creativity as situated practice and explain the positive effect of
educational robotics on student’s cognitive mechanisms.
However, before considering the mental process involved in
robotics training, we will describe the creative process itself.

EXISTING MODELS OF CREATIVE
COGNITION

One of the first models of creative thinking was proposed by
Wallas (1926). His four-stage model comprised preparation
(problem finding, problem analysis, and acquisition of domain
skills and knowledge), incubation (putting the problem aside for a
while without consciously thinking about it), illumination (a
sudden burst of insight), and verification. Walla’s model not
only emphasized the role of meta-components such as problem
definition and evaluation but also stressed the role of
uncontrolled, unconscious processing in idea generation.
Although the model is intuitively appealing, it has been noted
that not all creative solutions arise from a spontaneous “Aha”! or
“Eureka” experience. The creative idea can also be a result of
deliberate problem-solving efforts (Weisberg, 1986; Finke, 1996;
Dietrich, 2004). As such, a comprehensive model should give a
more detailed account of cognitive operations underlying the
solution-finding process. Moreover, whereas the creative process
is described as linear, the real-life creative problem solving is
dynamic, has a loosely structured sequence, and does not
necessarily follow a linear structure (Mumford et al., 1991;
Schön, 1983; Corazza and Agnoli, 2018; Lubart, 2018). Despite
these drawbacks, the Walla’s model (1926) has had an enormous
impact on modern conceptions of the creative act and represents
the first account of the creative process as involving explicit and
implicit mechanisms.

Building on the model of Wallas, Amabile (1983) proposed to
make a distinction between 1) the problem identification and 2)
preparation stages. According to Amabile, during the former,
problem definition and construction take place, whereas the latter
is where reactivation of knowledge and search for task-relevant
information happen. Amabile has also replaced a black-box
illumination phase by 3) response generation phase and
defined it as seeking and producing potential responses. She
has suggested that the solution generation process represents a
flexible (sometimes even random) search of possible pathways
and exploring the environment’s characteristics. In other words,
this stage involves searching for productive heuristics, which are
defined as any principle or device that provides useful shortcuts
for solving novel problems. Amabile argues that the choice of
strategy (a set of heuristics) is crucial as it determines the level of
novelty of the final solution. This idea draws upon the
information-processing model of cognition by Newell and
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Simon (1972) and has received empirical support in creativity
research (Spiridonov, 1997; Gilhooly et al., 2007; Nusbaum and
Silvia, 2011). Newell and Simon hypothesized that people can
solve unfamiliar problems because they can choose among
alternative actions, anticipate the outcomes of these actions,
evaluate them, and vary the approach when needed. Newell
et al. (1962) called this process heuristic search through a
problem space. In this view, switching between search
strategies can account for the creative solution (Simon, 1986).
The final step in the creative process, according to Amabile, is 4)
response validation, which is similar toWalla’s verification phase,
and involves evaluating possible responses against factual
knowledge and other criteria, along with implementing and
testing the idea (Amabile, 1983; Amabile, 1996).

Concerning the incubation phase, there is evidence that some
insightful ideas arise when a complex problem is temporarily set
aside. Whereas some authors associated this process with the
ability to abandon unproductive search strategies,
i.e., “productive forgetting” (Simon, 1966; Finke, 1996), others
point to the role of defocused attention (Martindale, 1999;
Sarathy, 2018).

In a line of work that focuses on the component cognitive
operations (Sternberg, 1986a; Sternberg, 1986b; Sternberg, 1988),
or “sub-processes” that compose complex cognition, the overall
creative process was examined in more detail (Lubart, 2000). The
first phase of the creative process (problem definition) includes
selective encoding which is responsible for updating relevant and
inhibiting irrelevant information (Benedek et al., 2014) and leads
to problem representation in working memory. Selective
comparison is responsible for 1) recalling relevant knowledge
from long-term memory, and 2) mapping the relations between
new and extant knowledge (Markman and Gentner, 1993).
Selective comparison allows discovering a new relationship
between new and already acquired information. Finally, novel
solutions during the idea generation phase arise from the
combination and recombination of knowledge in working
memory (Sternberg, 1988). Mumford et al. (1991) have further
addressed mechanisms of knowledge combination and proposed
that reasoning, analogy use, and divergent thinking account for
creative solutions. Sternberg (1986b) highlights also the role of
meta-components in problem finding, problem definition (and
redefinition), and strategy choice. Some theorists also refer to
these processes as executive functioning (Miller and Cohen,
2001).

Finke et al. (1992) developed the Geneplore model of creative
cognition and distinguished between generative and exploratory
phases of creative search. The idea generative phase comprises
strategies such as knowledge retrieval, synthesis, and categorical
reduction (see Gilhooly et al., 2007 for the description). The
generative phase results in the production of preinventive
structures—preliminary models which are characterized by
novelty and ambiguity. These characteristics of preinventive
structures afford numerous possibilities for the selective
combination of their properties during exploratory phase.
Strategies that allow further exploration of these structures are,
for example, searching for potential functions, attributes or
limitations, hypothesis testing, and conceptual interpretation.

As generation and exploration cycles repeat, the preinventive
structures could be partially modified or completely replaced by
the new ones.

Repetitions of Geneplore cycles and switching between generative
and explorative strategies may be accompanied by changes in
attentional focus. Indeed, there is evidence indicating that early
stages of the creative process may involve instances of defocused
attention, whereas later stages may require more focused attention
(Dorfman et al., 2008; Kaufman 2011; Zabelina et al., 2016).

Martindale (1999) proposed that creative people are
characterized by a better ability to shift between focused and
defocused attention as a function of task demands. This claim has
received empirical confirmation (Zabelina and Robinson, 2010).
In terms of the Geneplore model, it means that the effective
creative process may involve enhanced switching between
generative and explorative strategies.

In summary, drawing on the work by Sternberg (1986a; 1986b;
1988; 2012), Amabile (1993;1996), Finke et al. (1992), Beghetto
and Corazza (2019), we argue further that the creative process is a
multistage dynamic process which builds on existing knowledge
and is guided by a productive strategy search. This search is
characterized by alternation between generative and explorative
thinking. Importantly, generative and explorative cycles could
unfold on two levels: a strategy could be discovered by explicitly
reflecting on the task demands and previous problem-solving
experience, i.e., at a meta-level, but it could also happen on the
implicit level and be a result of trial and error search and
exploration of associations between task, actions, and
outcomes (Figure 2). This view is reminiscent of dual-process
models (system 1, system 2) of human cognition (Crowley et al.,
1997; Stanovich and West, 2000; Kahneman, 2011).

COGNITIVE COMPONENTS OF THE
PROCESS OF DESIGNING AND
PROGRAMMING ROBOTS
Drawing on principles of constructionism, Kolodner (2002)
introduced a learning model that incorporates design and

FIGURE 1 |Confluence model for educational robotics. Note: This figure
is adapted from Nemiro et al. (2017).
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inquiry activities organized in two interrelated cycles: the
“Investigate and Explore” cycle, where students acquire
knowledge and generate ideas, and “Design/Redesign” cycle,
where knowledge is applied. We can note that the model
instantiates the basic principle of the Geneplore model of
creative cognition (Ward et al., 1999), where the generative
search alternates with explorative processes. Given the
resemblance, it seems reasonable to apply existing models of
creative cognition to analyze mental processes that underlie
robotics activities.

The initial step in building and programming a robot is
presenting the problem to be solved. For example, students are
given a task to build a mobile robot and program its basic
movements. This could be, for example, a creation of a robotic
system that models a human heart (Cuperman and Verner, 2013),
or programming a mail-delivery robot (Alves-Oliveira, 2020). A
common feature of these robotic challenges is that they are poorly
structured, have multiple solution paths, i.e., could be solved
using different strategies, and do not have a single criterion for
evaluating the solution.

From a cognitive point of view, the first step in the process of
creating a robotic device is problem identification, in which a
problem solver has to elaborate a problem representation. In
terms of robotics, this implies analysis of the system’s
requirements and translation of these requirements into
design specifications (Pahl and Beitz, 2007). In information
processing terms, this step could be accomplished through
selective encoding, i.e., selecting relevant elements of a
problem and suppressing those that are not relevant for task
completion (Sternberg, 1988; Benedek et al., 2014). Another
important process is the retrieval of relevant information from
long-term memory (Smith, 1995). Presumably, this is done via
selective comparison (Sternberg, 1986a; 1986b), in which
problem solver aligns existing knowledge and previous
problem-solving experience with the characteristics of the
new challenge (Holyoak, 1984; Mumford et al., 1991). It
involves a comparison of critical elements such as goals,
procedures, and constraints encountered in similar
problems. In practical terms, with respect to generating
ideas for a robot’s design, students spend time thinking
about known solutions and how they might be reused in

the new task (Kolodner, 1994). This process helps learners
to identify the gaps in their existing knowledge. When
the problem is new and procedural and dispositional
knowledge is lacking, a great deal of learning takes place
(Amabile, 1983). For example, in the study of Cuperman
and Verner (2013), before building a robotic model of
the human heart students had to carry out investigations to
learn the principle of the heartbeat mechanism. If the domain-
relevant skills and knowledge are sufficient to afford a range
of possible pathways to explore, students immediately start
the process of building a robot after the problem has been
defined.

The process of solution generation in robotics problems is
often paralleled with implementation, i.e., designing the robots.
As robotics problems are often ill-defined, finding possible
solutions for each design specification requires a search among
numerous potential alternatives within a space of possibilities
(Ball et al., 1997). There is evidence that generating few ideas at
this stage leads to the restriction of the search space and poor
designs, as students became “fixated” on concrete solutions too
early (Fricke, 1996).

The generation stage in robotics design involves mental and
physical synthesis of building components and creating
functional prototypes. Functional prototypes of robots that
result from initial generative processes may be viewed as
preinventive structures (Finke et al., 1992) that are assessed
for appropriateness and other criteria and are further modified
during the exploratory phase. Evaluation of the prototypes
naturally leads students back to the first stages of the creative
process—redefining the design specifications, as well as gathering
task-relevant information (Suwa et al., 1999). This iterative
process of perceiving an emerging design and making a
change to it allows to learn new affordances and often leads to
unexpected discoveries (Schön and Wiggins 1992; Kelly and
Gero, 2014).

The process of a robot’s design is followed by an iterative, trial-
and-error phase of programming the robot’s moves, testing, and
modifying its design and software code (Nemiro et al., 2017;
Alves-Oliveira, 2020; Chevalier et al., 2020). In the later cycles of
the process of creation of the robotic model, students move
beyond a trial-and-error method and start developing their

FIGURE 2 | Two-level view of the creative process.
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own heuristic approach, which allows them to come up with
original technical solutions (Hayes, 1978; Altshuller, 1988;
Sullivan and Lin, 2012; Sullivan, 2017).

Barak and Zadok (2009) described three explorative strategies
that lead learners to inventive solutions in robotic tasks. The first
strategy the authors called “assigning a new function”, where
students find a new use for an already existing robot’s movement.
The second strategy involves the elimination of a component
from the system. This heuristic has been extensively described in
TRIZ (Altshuller, 1988). The third strategy consists of examining
physical objects available in the environment and trying to apply
them to solve a problem. Sullivan (2011) called this last strategy
“utilizing environmental affordances”. Attentional mechanisms,
and more specifically, diffused attention, may be important for
this strategy as it helps to notice some environmental cues leading
to the generation of novel ideas (Sarathy, 2018; Zabelina, 2018).

Sullivan (2011) described the process of constructing a robotic
model in terms of troubleshooting cycles and rapid prototyping
rounds, in which students fluently move between 1) writing code,
2) testing the robot, 3) analyzing problems, 4) proposing changes
to the model, and 5) testing the device again. The author’s
detailed analysis of the solution trajectory shows that each
troubleshooting round includes three key stages: 1) problem
identification, 2) idea generation and strategy choice, and 3)
reflections on the progression of the problem-solving process.
Sullivan (2011) described a case of a robotics programming
activity in which the solution process consisted of 17
troubleshooting cycles and was two-fold: first, an explorative
strategy was used to discover novel affordances of materials
and then the problem was redefined, i.e., meta-level reasoning
was applied.

To summarize, the process of building robotic models can be
characterized by a constant search and movement back and forth
between generative and explorative thinking (Figure 3). The
creation of a robotic model involves using generative
strategies, like memory retrieval (Sullivan, 2011),
brainstorming (Nemiro et al., 2017), mental synthesis, and
analogical transfer (Barak and Zadok, 2009; Cuperman and
Verner, 2013), as well as explorative strategies–attribute
finding, conceptual interpretation (Barak and Zadok, 2009;
Chan and Schunn, 2015), and utilizing the environmental
affordances (Sullivan, 2011). As our analysis suggests, the
search for a solution in a robot construction process involves
not only switching between generative and explorative strategies
but also switching between levels of thinking at which these
strategies operate. One may suppose that the practice of
alternating between two different modes of cognition,
generative and explorative, coupled with implicit and
metacognitive processes that work in parallel, could result in
better coordination between these components and promote
student’s cognitive flexibility. Recent instructional models for
teaching creativity via educational robotics also underscore the
role of generative, explorative, and meta-components (Chevalier
et al., 2020; Yang et al., 2020). Another possible explanation that
can account for the promotion of student’s creative potential by
robotics programs is that the process of engaging in collaborative
construction of robotic devices leads not only to novel physical

artifacts but also to the emergence of new mental tools–implicit
and meta ideational strategies. Thus, engaging in physically,
technologically and socially situated robotics problems could
lead to the development of creative expertize in students.

This rather brief analysis does not aim to provide an
exhaustive description of the process of robot building and
programming. Rather, we aimed to illustrate that the solution
trajectory in robotics problems could share parallels with the
creative process and could be described in cognitive processing
terms that are often cited in conceptions of creative cognition.

CREATIVE PROCESSES IN AUTONOMOUS
ROBOTS

In previous sections, we have described creativity as a socially and
materially situated practice that unfolds over time through
perceiving and exploring material and technological
affordances and generating novel artifacts. In addition to
student’s conative and cognitive factors, the confluence model
of creativity emphasizes the role of the environment in translating
the student’s creative potential into novel and useful products.
Evaluating such models of human creativity is, however,
challenging in natural settings due to ethical concerns and
difficulties in isolating hypothesized variables.

Modern machine learning algorithms allow roboticists to
develop autonomous agents able to learn by exploring their
environment. Contrary to computational creativity, research in
robotics using reinforcement learning is also situated, in the sense
that it uses methods applicable for embodied agents. In this
regard, the robot becomes a perfect tool to study and model the
emergence of creativity.

Up to this point, we have used the term “robot” in a passive
form and considered it as a tool to develop human creativity. In
this section, we will change our perspective to consider the robot
as a testbed to implement and verify our model of the creative
process. Implementing a model for physical experimentation
requires specifying all internal structures and processes
involved (Fong et al., 2002).

Building on the description of processes outlined in the
preceding sections, we argue that to be able to simulate the
creative process, autonomous agents should be able to:

1. Acquire new knowledge and learn.
2. Reactivate and reuse knowledge in a wide range of

environments.
3. Select and change problem-solving strategies.
4. Use meta-reasoning to define and redefine problems, evaluate

the process and artifacts.

A collection of automatic processes capable of producing
behavior that would be deemed creative in humans is called a
“creative system” by Wiggins. The Creative Systems Framework
(Wiggins, 2006) describes the creative system in terms of a search
process that goes through a conceptual space to generate artifacts.
This exploratory search is coupled with a metacognitive search
process that operates within all possible conceptual spaces.
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Linkola et al. (2020) attempted to apply the notion of Wiggins
exploratory search to learning agents. Drawing on concepts from
Markov Decision Processes (MDPs), the Creative Action
Selection Framework (Linkola et al., 2020) provides a formal
account of the agent’s action choice based on the value, novelty,
and validity of artifacts and concepts.

Several authors suggested that modern reinforcement learning
algorithms based on MDPs could allow simulation of the creative
process in autonomous agents (Vigorito and Barto, 2008;
Schmidhuber, 2010; Colin et al., 2016). Reinforcement learning
(RL) resembles the creative process as both involve interaction
between a decision-making agent and its dynamic, uncertain
environment, when the agent is searching for a solution to a given
problem. In reinforcement learning problems, an agent explores
the space of possible strategies and gets feedback based on the
results of its decision making. This information is used to deduce
an optimal policy (Kober et al., 2013). According to Colin et al.
(2016), the agent’s policy changes within hierarchical
reinforcement learning algorithms resemble the change in
strategies that happens during creative processes.

One of the challenges of reinforcement learning is the
dilemma between exploration and exploitation (Sutton and
Barto, 1998). To obtain more reward, a reinforcement learning
agent must choose actions that have been effective in the past. But
to discover such actions and make better action selection in the
future, the robot has to try actions that it has not selected before.
The creative process is also marked by the constraint between
new and already existing problem-solving strategies (Collins and
Koechlin, 2012) and by the necessity to build upon previous
experience and knowledge in order to extend or break with them
to generate novelty.

One way to address this dilemma is to introduce intrinsic
motivation in RL, i.e., modifying the reward function to improve
the performance of an agent (Singh et al., 2010). Whereas the
traditional approach to RL is to provide reward only in case of
task achievement, intrinsically motivated agents are also

encouraged by “cshaping” rewards for discovering novel,
surprising patterns in the environment (Ng et al., 1999).
According to Schmidhuber (2010), the discovery of these
novel regularities in curiosity-driven exploration would be
marked by an impressive reduction in computational resources.

Recent advances in reinforcement learning are associated with
the introduction of deep reinforcement learning, showcasing
agents learning to play games which have long been
considered as very complex for artificial agents (Mnih et al.,
2015; Silver et al., 2016; Schulman et al., 2017). One of the major
limitations of RL algorithms is, however, their high
computational cost to learn new environments. Although RL
has been successfully used to autonomously solve complex tasks,
learning to solve these tasks requires large time investments. This
is due to the fact that in order to converge on a good solution, RL
agents require a significant number of explorative interactions
with the environment.

Several approaches have been introduced to reduce
reinforcement learning time; these include learning through
other agent’s advice in a shared environment (Saunders, 2012;
Silva and Costa, 2019), and learning from human demonstrations
(Argall et al., 2009; Fitzgerald et al., 2018). Another way to
overcome the drawback of time-consuming exploration is to
enable machine learning algorithms with the ability to transfer
and reuse previously acquired knowledge across tasks using a
case-based reasoning approach (CBR) (Riesbeck and Schank,
1989; Kolodner, 2014).

CBR begins with a problem representation of the situation in
which the case can be used. Problem representation is compared
with cases stored in a case base using specified similarity
measures. If relevant cases exist, they are retrieved, adjusted,
and reused in the problem at hand (Aamodt and Plaza, 1994; De
Mantaras et al., 2005). Given that CBR has already been coupled
with TRIZ problem-solving strategies and showed its potential to
accelerate innovation design (Robles et al., 2009; Ching-Hung
et al., 2019), its application to speed up RL seems promising.

FIGURE 3 | Solution generation and exploration.
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Recent attempts to combine the advantages of reinforcement
learning with case-based reasoning can be found in Glatt et al.
(2020), Bianchi et al. (2018). Whereas Deep Case-Based Policy
Inference algorithm accelerates learning by building a collection
of policies and using it for a more effective exploration of a new task,
the latter, Transfer Learning Heuristically Accelerated
Reinforcement Learning algorithms (TLHARL), speeds up the RL
process using CBR and heuristics. Bianchi et al. (2018) have shown
that TLHARL improved significantly the learning rate in two
domains – robot soccer and humanoid-robot stability learning.

The success of a system using CBR techniques depends on the
ability of the system to retrieve, redefine, and reuse cases. To detect
reasoning failures, improve the similarity assessment measure and
the case adaptation mechanisms of the CBR system, meta-reasoning
techniques are used. Arcos et al. (2011) have described an
introspective reasoning model enabling a CBR system to learn
autonomously to improve multiple facets of its reasoning process.
The model performs five distinct functions: 1) monitoring the CBR
process; 2) assessing the quality of proposed solutions; 3) identifying
reasoning failures; 4) proposing goals; and 5) evaluating the impact
of proposed improvements. Enabled with meta-reasoning, the
system can identify and repair the sources of failures and thus
incrementally adapt to the new problem situation.

CBR systems have their limits as well, however. Whereas they
are effective when dealing with cases that bear resemblance to the
task that has already been experienced by the robot, CBR systems
have limited efficiency when they encounter novel problems.
Parashar et al. (2018) have introduced an architecture enabling an
agent to cope with novelty. The work addresses the issue raised by
Sarathy and Scheutz (2018), Konidaris et al. (2018) and combines
planning and reinforcement learning approaches. This
combination of top-down and bottom-up approaches makes
the work of Parashar et al. (2018) especially relevant for the
context of creative problem solving in robotics. The authors
proposed a three-layered agent architecture, with 1) object-
level reasoning acts based on the information encoded from
the environment; 2) deliberative reasoning, responsible for
plan construction and action based on object-level
information, and 3) a meta-reasoning layer responsible for
problem construction and re-construction based on object-
level and deliberative-level information and learning history.
Meta-level reasoning also allows to control switching between
object-level and deliberative strategies.

In this section, we have outlined the techniques that could be a
possible starting point for modeling the creative process in
artificial systems. A tentative model of system architecture is
shown in Figure 4. A combination of these or similar techniques
(Augello et al., 2018; Edmonds et al., 2020; Goel et al., 2020) might
result in a hybrid approach for design agents capable of
addressing novelty and handling MacGyver-type problems
using affordances (Sarathy and Scheutz, 2018).

DISCUSSION

We began with the observation that whereas numerous studies
have shown a positive effect of constructing and programming

robots on creativity, little attention has been paid to the
mechanisms that can account for this effect. Educational
robotics has been considered as an inherently creative activity.
To address this gap, we have examined the process of designing
and programming robots with respect to existing models of
creative cognition. Our analysis resulted in a description of the
creative process as a multistage process, which builds on existing
knowledge and involves trial-and-error, generative, explorative,
and metacognitive components. Next, we reviewed some recent
techniques enabling robots to simulate the creative process and
proposed that a combination of reinforcement learning, case-
based reasoning, and meta-reasoning methods has the potential
to design robots that can address novelty and solve MacGyver-
type problems.

Many questions remain, however. First, as the confluence
model (Lubart et al., 2015) specifies, a combination of
cognitive mechanisms is a necessary condition for the creative
product to appear. Conative and environmental aspects must also
join to engage creative work. And yet, what is even more striking,
our current understanding of human creativity is far from
complete, as psychologists still do not know precisely how
these multiple factors interactively work together to influence
creative production. For example, what is the optimal level of a
person’s intrinsic motivation and tolerance to ambiguity to
achieve a creative outcome? Does intrinsic motivation enhance
the use of certain strategies? How do contextual variables, such as
resources or an uncooperative environment, modify the creative
process? Is there a threshold for the various creativity predictors,
under which creativity cannot arise? Can creativity occur if one
cognitive or conative feature is completely missing?

In the case of robotics, even though certain cognitive processes
have been emulated, it is still not clear how robots construct
problem representations, what is the nature of these
representations, or whether robots can autonomously find
problems to solve. Regarding the non-cognitive aspects of
Lubart et al.’s confluence model (2015), the question arises as
to which extent robots can be designed to incorporate conative
aspects.

In the light of conceiving robots that should act as social
agents, their potential “personality” moves into the spotlight. If
the genetic contribution to personality is lower than to cognition
(Loehlin and Nichols, 2012), it should theoretically be easier to
program robots that develop a certain “personality”, and this is
what some researchers have tried to do (Goetz and Kiesler, 2002;
Lee et al., 2006; Woods et al., 2007; Tapus et al., 2008), notably
regarding the introversion/extraversion trait (Goetz and Kiesler,
2002; Lee et al., 2006; Tapus et al., 2008). The important question
is to which extent robots can imitate the major creativity-related
traits, including perseverance, tolerance of ambiguity, openness
to new experiences, and risk-taking (Lubart et al., 2015).
Regarding openness to new experiences, which is viewed as
the most relevant personality trait for creativity (McCrae,
1987; Feist, 1998; Feist, 1999), no direct attempts have been
realized to program an “open-minded” robot. Agnoli et al.
(2015) found that attentional processing of apparently
irrelevant information (irrelevance processing) acts as a
moderator between openness and creative performance. It is
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imaginable that robots could be programmed for irrelevance
processing and, as such, embody a certain “openness”.

With respect to tolerance of ambiguity, creative performance
is favored by encouraging people not to be satisfied by hasty,
partial, or non-optimal solutions to complex problems (Lubart
et al., 2015). Re-interpreted as a metacognitive skill, ambiguity
tolerance refers to the “ability to cope with increasing
sensitization to novel features of a phenomenon in order to
redefine prior conceptual interpretations, contingent on trust
and motivation” (Lakhana, 2012, p. III). When defined in this
way, it is imaginable that robots could be programmed to display
ambiguity tolerance.

As far as motivation is concerned, most attention has focused
on intrinsic motivation as a positive condition for creative
engagement and achievement in humans (Collins and
Amabile, 1999). As described in the previous section, there are
currently attempts to create intrinsically motivated robots using
the reinforcement learning approach, especially regarding their
intrinsically motivated open-ended learning (Schmidhuber, 2010;
Santucci et al., 2020). The research is also marked with some
encouraging attempts (Parisi and Petrosino, 2010; Kashani et al.,
2012; Daglarli, 2020) to simulate robot’s emotional states.

When it comes to the environmental aspects fostering creative
performance, as we have mentioned in the previous section, there
are already robots that cooperate and transfer knowledge (Silva

and Costa, 2019). Projects like the Curious Whispers (Saunders
et al., 2010), which study the potential of artificial society’s
evolution within a human physical, social, and cultural
environment, are being investigated.

The possibility of comparing humans and robots in terms of
creativity has traditionally focused on the productions of both,
looking at whether humans and robots may produce similar or
different creative work. Questions concerning the relative
originality or productivity of humans and computers are
raised. In contrast, our focus has been process-oriented. Do
humans, who engage in a robot construction project, involve
specific types of cognition that foster the development of
creativity? Do robots, which instantiate artificial intelligence
algorithms, engage in creative processing as humans do
spontaneously? A robot may best be compared with a human
baby who is learning and making discoveries by exploring the
environment. As Smith and Gasser (2005), p.13 argued, “starting
as a baby grounded in a physical, social, and linguistic world is
crucial to the development of the flexible and inventive
intelligence that characterizes humankind.” We suggest that
full-fledged creativity is in a robot’s “zone of proximal
development” (Vygotsky, 1967): what a robot cannot reach
alone, it may reach with the help of a human teacher. As we
have seen, robots, even in their simplest form, could also aid
humans in their creative endeavors. Hence, humans and robots

FIGURE 4 | System architecture.
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could fruitfully complement one another in the elaboration of
creative outcomes.

CONCLUSION

In this work, we have described the creative process in
information and cognitive processing terms, suggesting that
computer science and cognitive psychology have had a mutual
impact on each other. This influence has led to the development
of a common language among psychologists and computer
science engineers. As our analysis suggests, creativity research
in psychology has accumulated a large set of empirical data and
theoretical knowledge on human creativity, which can be useful
for both an analysis of the benefits of robot design and
programming for students to develop their own creativity, as
well as the design of artificial agents, robots, who are themselves
capable of being creative. After providing models of human
creativity for machine design, psychology could gain new

insights from the implementation and verification of these
models in embodied agents. Interdisciplinary dialogue and
collaboration between psychologists and roboticists could
contribute toward better understanding of creativity and the
future development of both creative humans and creative robots.
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Brainstorming With a Social Robot
Facilitator: Better Than Human
FacilitationDue toReducedEvaluation
Apprehension?
Julia Geerts, Jan de Wit and Alwin de Rooij *

Department of Communication and Cognition, Tilburg Center for Cognition and Communication, Tilburg School of Humanities
and Digital Sciences, Tilburg University, Tilburg, Netherlands

Brainstorming is a creative technique used to support productivity and creativity during the
idea generation phase of an innovation process. In professional practice, a facilitator
structures, regulates, and motivates those behaviors of participants that help maintain
productivity and creativity during a brainstorm. Emerging technologies, such as social
robots, are being developed to support or even automate the facilitator’s role. However,
little is known about whether and how brainstorming with a social robot influences
productivity. To take a first look, we conducted a between-subjects experiment (N �
54) that explored 1) whether brainstorming with a Wizard-of-Oz operated robot facilitator,
compared to with a human facilitator, influences productivity; and 2) whether any effects on
productivity might be explained by the robot’s negative effects on social anxiety and
evaluation apprehension. The results showed no evidence for an effect of brainstorming
with a teleoperated robot facilitator, compared to brainstorming directly with a human
facilitator, on productivity. Although the results did suggest that overall, social anxiety
caused evaluation apprehension, and evaluation apprehension negatively affected
productivity, there was no effect of brainstorming with a robot facilitator on this
relationship. Herewith, the present study contributes to an emerging body of work on
the efficacy and mechanisms of the facilitation of creative work by social robots.

Keywords: social robot, brainstorming, facilitator, creativity, social anxiety, evaluation apprehension

INTRODUCTION

Originally developed by Osborn (1957), the brainstorming technique motivates people to generate
and express as many outrageous ideas as they can, while refraining from criticizing each other’s ideas.
In this way, they can build upon each other’s ideas freely, under the assumption that quantity will
ultimately lead to creativity. The role of a facilitator is to structure, regulate, and motivate those
behaviors that enable participants in a brainstorm to maintain productivity and creativity
throughout (Isaksen et al., 2010). For example, by enforcing brainstorm rules when participants
deviate from these. However, facilitation requires advanced knowledge and skill about creative
thinking that is hard to come by. Emerging technologies, such as co-creative agents and specifically
social robots, are therefore increasingly looked at as an alternative to professional human facilitation
(Davis et al., 2015; Frich et al., 2019). This research program is further emboldened by experimental
findings that suggest that generating ideas with a social robot facilitator can enhance productivity and
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creativity, when compared to facilitation delivered via other
technologies (Kahn et al., 2016; Ali et al., 2021; Alves-Oliveira
et al., 2020). Although social robots are generally defined as being
(semi) autonomous (Bartneck and Forlizzi 2004), in the present
work we have used teleoperation to explore the potential future in
which social robots would be able to autonomously facilitate
brainstorming. Therefore, in the present study “social” mainly
refers to the humanlike appearance and behavior of the robot as
perceived by others, rather than its social intelligence.
Surprisingly little is known about how working with a social
robot facilitator compares to working with a human facilitator,
and what the mechanisms may be that underlie its potentially
advantageous effects on productivity and creativity. The present
study takes a first look at how brainstorming with a social robot
facilitator compares to brainstorming with a human facilitator.

Compared to virtual co-creative agents, brainstorming with a
social robot facilitator shows great potential because these
embodied machines can be designed to perceive and
understand the world around them, and to communicate with
humans using natural language (Fong et al., 2003). Thus, they can
deliver facilitation via known and readily understandable
communication channels, and in situ (Zawieska, 2014). Recent
findings support that doing brainstorming and other creative
work with a social robot facilitator might be advantageous over
using other technologies. Alves-Oliveira et al. (2020), for example,
showed that using the social robot YOLO as a character in a
storytelling task, led children to generate more original ideas
when YOLO actively facilitated creative thinking than when
YOLO was turned off. In addition, Ali et al. (2021) showed
that facilitating figural creativity by engaging and managing turn-
taking in a drawing completion task by means of the social robot
Jibo, increased productivity, flexibility, and originality scores of
children’s drawings, compared to facilitation by an iPad
application. Furthermore, Kahn et al. (2016) found that
facilitation by a (teleoperated) social robot led adult
participants to generate more creative expressions while
designing a Zen rock garden, than when facilitation was
delivered via a PowerPoint presentation. The authors of the
present paper, however, propose that understanding the true
efficacy of brainstorming with a social robot facilitator also
requires comparison with a human facilitator, rather than with
another technology.

To explore this open scientific and applied problem, the
following research question will be answered:

“Does brainstorming with a social robot facilitator,
compared to brainstorming with a human facilitator,
influence productivity?”

Previous research on brainstorming in groups suggests that
social interactions with other people may cause productivity
losses (Sawyer 2011). Specifically, past experimental work by
Camacho and Paulus (1995) showed how people that have a
stronger, compared to a weaker, disposition to experience a fear
of being watched or judged by others produced fewer ideas when
they brainstormed with others, compared to when they
brainstormed alone. Such a disposition, or trait social anxiety,

is thought to increase the chance that people experience this
anxiety in transient emotional form, state social anxiety, while
interacting with another human being (Spielberger 1966). In turn,
the social anxiety experienced may cause evaluation apprehension
(Leary 1983; Bordia, Irmer, and Abusah 2006), where people
during a brainstorm or other creative task do not express all of
their ideas because they fear the social consequences of sharing
these ideas (Diehl and Stroebe 1987; Warr and O’Neill 2005).
Experiencing social anxiety would thus result in a productivity
loss during brainstorming due to its effects on evaluation
apprehension, while the likelihood that this occurs is
moderated by the disposition to experience social anxiety.

Interestingly, there is also evidence that suggests that social
robots can help mitigate social anxiety. A recent study by Nomura
et al. (2020) showed that when anticipating collaboration, people
with a stronger, compared to a weaker, disposition to experience
social anxiety were more likely to prefer collaborating with a
social robot than with a human being. Speculatively, this may be
because some social robots tend to be perceived as non-
judgmental and patient (Breazeal 2011), or because of the
perception that social robots do not possess the same agency
as human beings, but are rather considered as being somewhere
in between inanimate toys and animate social beings (Scassellati
et al., 2012). This unique relationship between human and social
robot might lead people to engage in social interactions with these
machines, with a decreased chance of experiencing the feeling
that what they say or do is being evaluated or judged in any way
by the robot. Though a mere conjecture, this previous work
suggests that brainstorming with a social robot facilitator,
compared to brainstorming with a human facilitator, might
increase productivity because it prevents triggering a
psychological mechanism where social anxiety causes
evaluation apprehension to occur, with productivity loss as a
consequence.

Based on these conjectures, the following working hypothesis
will be explored:

“Brainstorming with a social robot facilitator, compared
to brainstorming with a human facilitator, increases
productivity due to its effects on the relationship
between state social anxiety and evaluation
apprehension, which is moderated by trait social
anxiety.”

MATERIALS AND METHODS

To explore the research question and working hypothesis an
experiment was conducted with a between-subjects design, where
participants were asked to brainstorm with either a social robot,
teleoperated by a professional human facilitator, or directly with
the human facilitator.

Participants
Fifty-four people participated in the experiment (Mage � 23.21,
SDage � 3.24, Rangeage � [18, 35], 34 females, 20 males). The
participants were recruited via the researchers’ own network and
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the human subjects pool of Tilburg University. The participants
were predominantly Dutch (N � 29). Only a few participants that
brainstormed with the robot facilitator had seen (N � 7) or
collaborated (N � 5) with the social robot before in another
situation. The participants possessed an acceptable to good level
of knowledge about the brainstorming task topic (M � 3.35, SD �
0.96), and experienced an acceptable to good ability to think
creatively during the facilitated brainstorm sessions (M � 3.56,
SD � 0.74). Participants that were recruited through the human
subject pool received study credits. The study was approved by
the TSHD Research Ethics and Data Management Committee,
Tilburg University.

Materials and Measures
The protocol, source code for the robot interaction, and
measurement instruments are all available in the
supplementary files.1

Brainstorming Task
The participants were asked to brainstorm ideas using Osborn’s,
(1957) now classical brainstorm rules for the problem: “How can
you help to reduce mental illness among students?”. This topic was
chosen for its sensitiveness and actuality among the participants
(RIVM 2018). The former increases the chance that evaluation
apprehension occurs (Diehl and Stroebe 1987; Pinsonneault et al.,
1999). There were no criteria of what constituted an idea: this
could be an initial thought, or a concrete solution (e.g.,
mindfulness app). All ideas were written down by the
participant on Post-Its, which were color coded to indicate
whether the idea originated from the participant or the
facilitator. The brainstorm task took 15 min.

Robot vs. Human Facilitator
Participants were randomly assigned to brainstorm with a
social robot facilitator (N � 27; coded: 0) or a human
facilitator (N � 27; coded: 1). For the social robot
facilitator, the Wizard-of-Oz method was used where the

participants sat face-to-face with a social robot (SoftBank
Robotics NAO v5) that was invisibly controlled from
another room by the same professional facilitator that was
present in the human facilitator condition. The Wizard-of-Oz
method is used in related work as well (Kahn et al., 2016), and
allowed us to maximize consistency between the two
conditions. To enable robot facilitation, the Choregraphe
software (Pot et al., 2009) was used to remotely send pre-
defined and custom responses to the participant while a
camera was used to monitor the brainstorm (Figure 1). The
responses were vocalized to the participants through the
robot’s text-to-speech capabilities. The robot was
“breathing” (swaying its arms and legs slightly) to simulate
life-likeness, but did not use any other forms of non-verbal
communication. In both conditions, the facilitator used the
same response protocol. This protocol was developed to strike
a balance between the rich role that facilitators play in a
brainstorm, while maintaining the believability of the robot
and the human as a facilitator. This entailed pre-defining short
general purpose responses that covered instructions needed to
structure the different phases of the brainstorm (e.g.,
mentioning Osborn’s brainstorm rules), and process-
regulating (e.g., “Do you know another way to solve the
problem?”) and motivating messages (e.g., “I like that idea
as well!”) needed to keep a brainstorm going. When
participants were stuck or too fixated on a line of thinking,
the facilitator deviated from using only pre-defined messages
and relied on their experience to provide the participant with
an idea to keep the brainstorm going. This unscripted
assistance was provided in both conditions, and the number
of facilitator-proposed ideas was counted to control for
variation between participants (see Assessment of Facilitator
Intervention). Five participants suspected or were unsure
whether the social robot was controlled by a human being,
but only when explicitly asked after the brainstorm and not
during the brainstorm. Although an influence therefore cannot
be ruled out, it is likely to be small. Thus, their data was
included in the analyses to prevent an imbalanced distribution
across the experimental conditions.

Assessment of Trait and State Social Anxiety
Trait and state social anxiety were both assessed using a 13-item
five-point Likert scale (1 � strongly disagree, 5 � strongly agree)
from the Social Interaction Anxiety Scale (Heimberg et al., 1992).
Seven items were removed from the original 20-item scale
because they did not apply to both trait and state anxiety.
Two items were reverse coded. To assess trait anxiety the
original items were administered. Cronbach alpha suggested
good internal consistency, α � 0.821. State anxiety was
assessed with rephrased questions that fit the experience of
social anxiety during the brainstorming task. For example, the
item “I find myself worrying that I don’t know what to say in social
situations” was rephrased as “I found myself worrying that I
wouldn’t know what to say in the session”. Here, Cronbach
alpha suggested minimally acceptable internal consistency, α �
0.679. The means for the trait and state anxiety items were used in
the analysis.

FIGURE 1 | Setup of the robot facilitator condition.

1https://osf.io/g5bhy/?view_only�6606a7779fed43188914d803bc053407.
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Assessment of Evaluation Apprehension
Evaluation apprehension was assessed with a seven-item five-
point Likert scale developed by Bolin and Neuman (2006) (1 �
strongly disagree, 5 � strongly agree). The original items were
reformulated to better fit the dyadic nature of the present study.
For example, items such as “As a group, we listened to . . . ” were
reformulated into “As collaboration partners, we listened to . . . ”.
The first three items were reverse coded. Although previous work
suggested good consistency of the scale, the Cronbach alpha in
the present study was not acceptable, α � 0.181. To check whether
one or more unwieldly items may be responsible, Cronbach
alphas were calculated while excluding items from the scale.
This to no avail. Therefore, principle component analysis
(oblique rotation) was used to explore whether the scale
measured different factors (Field 2013). The results showed
three factors with an eigenvalue over 1.00 that together
explained 60.82% of the variance. Sampling adequacy was
acceptable, KMO � 0.60. Inspection of the items suggested
that these three factors could be interpreted as measures of
“no room for expression,” “criticism on ideas,” and “fear of
evaluation.” The three factors were used in the analysis. The
items and factor loadings are presented in Table 1.

Assessment of Productivity
To measure the participants’ productivity the number of ideas
they produced during the brainstorm was counted (Diehl and
Stroebe 1987; Paulus and Yang 2000). This is in line with
common instructions used during brainstorming in
professional practice where there is an initial focus on
producing many ideas (quantity), without criticizing or
otherwise evaluating generated ideas (quality) (Paulus and
Yang 2000). Only non-redundant ideas, written down on Post-
Its by each participant, were counted.

Assessment of Facilitator Intervention
Because the facilitator intervenes at times to keep the brainstorm
going by generating an idea, the number of ideas introduced by
the facilitator was also counted. The number of ideas introduced
may confound the tested relationships between state anxiety,
evaluation apprehension, and productivity. If this is the case,
these will be included as a covariate in the statistical analysis.

Demographics and Task-Relevant Sample
Characteristics
Participants filled in basic demographic information (age, gender,
and nationality) and were asked to “. . . indicate your level of
expertise about the topic of the brainstorm” and “. . . rate your level
of creativity during the idea generation session” on a five-point
Likert scale (1 � very poor, 5 � very good). As knowledge is at the
basis of creativity (Abraham 2018), and good facilitation entails
ensuring that people feel they are creative (Isaksen et al., 2010),
these are reported as relevant sample characteristics. These are
reported in Participants.

Procedure
The study was conducted at the Media Design Lab of Tilburg
University. There, participants were seated in a room at a table
(Figure 1) and read the study information, COVID-19 protocols,
task instructions, and signed informed consent. Information that
could reveal the use of the Wizard-of-Oz method and the true
purpose of the experiment was not yet shared. After this, the
participants filled in the trait social anxiety questionnaire. Then,
they engaged in the brainstorm task with either the robot or the
human facilitator. After the brainstorm, the participants filled in
the questionnaires used to assess state social anxiety, evaluation
apprehension, and their demographics. Finally, they were fully
debriefed and thanked for taking part in the experiment. After they
left, the researcher recorded the number of ideas generated by the
facilitator and by the participant.

RESULTS

To explore whether brainstorming with a social robot facilitator,
compared to brainstorming with a human facilitator, influences
productivity, an independent-samples t-test was conducted with
facilitator type (robot facilitator code � 0; human facilitator
code � 1) as the independent variable and productivity as the
dependent variable. See Table 2 for an overview of the descriptive
statistics and correlations.

The results showed no significant difference between
brainstorming with a social robot facilitator (M � 11.33, SD �
2.81) and a human facilitator (M � 12.37, SD � 3.51), for

TABLE 1 | Results principle component analysis of the evaluation apprehension questionnaire.

Items Components evaluation apprehension

No room for
expression

Criticism on
ideas

Fear of
evaluation

As collaboration partners, we listened to each other’s ideas (r) 0.606 0.485 0.022
As collaboration partners, we gave each other’s ideas fair consideration (r) 0.799 0.119 0.149
I was at ease during the idea generation session (r) 0.479 −0.672 −0.100
The collaboration partner was very critical in their reaction to other ideas −0.225 0.659 0.096
I would not want my name attached to some of the ideas 0.737 −0.071 0.057
I kept thinking that the collaboration partner would criticize my ideas −0.047 −0.111 0.970
I did not express all of my ideas because I did not want the collaboration partner to think I was weird or
crazy

0.404 0.317 −0.146

Data are factor loadings for the items contained in the evaluation apprehension questionnaire. Items one to three were reverse coded (r).
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productivity, t (52) � −1.20, p � 0.236, 95% CI [−2.77 0.70].
Further checks suggested that these findings could not be
explained by facilitator intervention. That is, an independent-
samples t-test showed no significant difference between
brainstorming with a social robot facilitator (M � 4.70, SD �
1.61) and a human facilitator (M � 4.41, SD � 1.62), for the
number of ideas the facilitator brought in, t (52) � 0.67, p � 0.504,
95% CI [−0.59 1.18]; and no significant correlation was found
between facilitator intervention and productivity, r (54) � 0.192,
p � 0.163. These findings suggest no evidence for a difference in
productivity when people brainstorm with a social robot
facilitator, compared to when they brainstorm with a human
facilitator.

To explore whether brainstorming with a social robot
facilitator, compared to brainstorming with a human
facilitator, might increase productivity due to its effects on the
relationship between state social anxiety and evaluation
apprehension, and whether this is moderated by trait social
anxiety, further analyses were conducted. That is, additional
independent-samples t-tests were conducted with facilitator
type as the independent variable, and social anxiety and the
three evaluation apprehension factors as the dependent variables.
Furthermore, correlations were calculated to explore whether the
expected relationships between social anxiety, evaluation
apprehension, and productivity could be confirmed.
Combined, significant results could justify further exploration
by means of (moderated) mediation analyses (Hayes 2017).

The results showed no significant difference between
brainstorming with a social robot facilitator (M � 1.99, SD �
0.46) and a human facilitator (M � 1.86, SD � 0.44), for state social
anxiety, t (52) � 1.08, p � 0.286, 95% CI [−0.11 0.37]. This finding
was not likely to be unduly influenced by sampling errors. That, is
an independent-samples t-test showed no significant difference
between brainstorming with a social robot facilitator (M � 2.28, SD
� 0.57) and a human facilitator (M � 2.31, SD � 0.63), for trait
social anxiety, t (52) � −0.20, p � 0.846, 95% CI [−0.36 0.30]. As a
consequence, trait anxiety does not moderate the relationship
between facilitator type and state social anxiety. Further checks
showed a significant positive correlation between facilitator
intervention and state social anxiety, r (54) � 0.359, p � 0.008.

Regarding the three evaluation apprehension factors, the
results showed no significant difference between brainstorming
with a social robot facilitator (M � −0.01 SD � 1.05) and a human

facilitator (M � 0.01, SD � 0.97), for no room for expression, t (52)
� −0.11, p � 0.917, 95% CI [−0.55 0.49]; between brainstorming
with a social robot facilitator (M � 0.08, SD � 0.98) and a human
facilitator (M � −0.08, SD � 1.03), for criticism on ideas, t (52) �
0.56, p � 0.576, 95% CI [−0.40 0.70]; nor between brainstorming
with a social robot facilitator (M � 0.18, SD � 1.06) and a human
facilitator (M � −0.18, SD � 0.92), for fear of evaluation, t (52) �
1.37, p � 0.178, 95% CI [−0.18 0.87]. Note that the Shapiro-Wilk
tests showed that the data of no room for expression and feature
of evaluation were not normally distributed (p < 0.050).
Therefore, emphasis must be placed on the bootstrapped 95%
confidence intervals, rather than on the p-values.

The results did, however, show a significant positive
correlation between state social anxiety and the evaluation
apprehension factor no room for expression, r (54) � 0.469,
p < 0.001; and a significant negative correlation between the
evaluation apprehension factor criticism on ideas and
productivity, r (54) � −0.293, p � 0.032.

Given these results further exploration by means of
(moderated) mediation analyses is unlikely to provide further
insight into the results. Therefore, these were not conducted
(Hayes 2017). These findings suggest that, at least to some extent,
the expected relationship between social anxiety, evaluation
apprehension, and productivity was replicated. Brainstorming
with a social robot facilitator, compared to a human facilitator,
however, did not appear to influence this relationship in any way.

DISCUSSION

The presented study was conducted to take a first look at how
brainstorming with a social robot facilitator compares to
brainstorming with a human facilitator.

Summary and Interpretation of the Results
The results showed no evidence that brainstorming with a
teleoperated social robot facilitator, compared to
brainstorming with a human facilitator, influenced
productivity. Where previous studies found positive effects of
social robot facilitation compared to other technologies, such as
an iPad application (Ali et al., 2021), PowerPoint presentation
(Kahn et al., 2016) or a social robot that was turned off (Alves-
Oliveira et al., 2020), the present study thus adds no evidence

TABLE 2 | Means, standard deviations (between parentheses), and Pearson correlations (two-tailed).

Variable Robot facilitator Human facilitator Correlations

1 2 3 4 5 6 7

1. Productivity 11.33 (2.81) 12.37 (3.51) −
2. State anxiety 1.99 (0.46) 1.86 (0.44) −0.077 −
3. Trait anxiety 2.28 (0.57) 2.31 (0.63) 0.077 0.277* −
4. No room for expression −0.01 (1.05) 0.01 (0.97) 0.011 0.469** 0.272* −
5. Criticism of ideas 0.08 (0.98) −0.08 (1.03) −0.293* −0.051 −0.113 0.000 −
6. Fear of evaluation 0.18 (1.06) −0.18 (0.92) −0.060 0.114 0.038 0.000 0.000 −
7. Facilitator intervention 4.70 (1.61) 4.41 (1.62) 0.192 0.359** −0.107 0.043 −0.132 −0.049 −
*p < 0.050, **p < 0.010.
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indicative that robot facilitation led people to generate more ideas
than human facilitation. However, participants also did not
generate fewer ideas with a robot than with a human
facilitator. When a human facilitator is unavailable, or
undesirable, a social robot might be a suitable replacement,
provided that it can be programmed to facilitate
brainstorming autonomously.

The results also showed no evidence that brainstorming with a
social robot facilitator, compared to with a human facilitator,
increased productivity due to its effects on the relationships
between social anxiety and evaluation apprehension. This
finding adds to previous work, which suggested that when
people anticipate to collaborate on a task, people with a
strong, compared to a weak disposition to experience social
anxiety prefer to work with a social robot rather than a with
human collaborator (Nomura et al., 2020). In the present study,
participants actually worked with the social robot, but this had no
notable effect on state social anxiety, nor was this effect
moderated by trait social anxiety. Actually working with a
social robot may thus not affect social anxiety, at least not
within the context of an appropriately facilitated brainstorm,
in this case by a professional facilitator via teleoperation. Further
conjectures about subsequent effects on productivity via
evaluation apprehension were therefore by extension also
inaccurate.

The results did confirm, at least partly, the general
theoretical assumptions about the relationships between
social anxiety, evaluation apprehension, and productivity
during brainstorming (Table 2). Social anxiety positively
influenced participants’ experience that there was no room
for expression, and experienced criticism on their ideas
negatively affected productivity (Leary 1983; Bordia et al.,
2006). Moreover, a stronger disposition to experience social
anxiety, led participants to experience more state social anxiety
during the brainstorm (Spielberger 1966). Trait and state
anxiety, however, did not influence productivity. Although
this seems to contradict Camacho and Paulus’s (1995)
findings, their study was about brainstorming with peers
rather than with a facilitator. Instead, the present study
showed that the facilitator shared more ideas to keep the
brainstorm going with participants that experienced more
state social anxiety, compensating rightly for their reduced
productivity (Sanders and Stappers 2008). The general
psychological mechanism by which a social robot facilitator
was thought to affect productivity, was therefore at least
partially confirmed. It was just that no evidence was found
of an effect of brainstorming with a robot facilitator, compared
to a human facilitator, on these relationships between trait and
state anxiety, evaluation apprehension, and productivity
during brainstorming.

Limitations and Future Research
As with any first look, there are limitations that need to be
taken into account when interpreting and building upon the
results.

Firstly, next to any limitations introduced by the modest
sample size, it may have been the case that the social anxiety

experienced during the brainstorm was not sufficiently strong to
lay bare effects of brainstorming with a social robot thereon. The
scores on the trait and state anxiety questionnaires were low,
indicating on average slight disagreement with statements
indicative of social anxiety. This limits the generalizability of
the results. Even so, if people with high trait and state social
anxiety are the only demographic for which brainstorming with a
social robot facilitator may be advantageous, this may not provide
a strong case for investing in further research and development in
social robot facilitators. Before such conclusions can be drawn,
however, it may be advantageous to do further exploratory
testing, a second look if you will, that includes further
variables that may affect the relationship between human and
robot facilitation, such as variation in level of training, facilitation
styles, different group sizes, perceived robot autonomy, and
online vs. offline differences.

Secondly, analysis of the evaluation apprehension scale
revealed that three separate constructs were measured
(Table 1). Although there were relationships between state
social anxiety and no room for expression, and between
criticism on ideas and productivity, these factors showed
that state anxiety and productivity could not be correlated
directly via the mechanisms that underlie evaluation
apprehension. The imposed reliance on factor analysis, here,
rather being able to rely on more in-depth theory to tease out
the cause-and-effect relationships between social anxiety,
evaluation apprehension, and productivity, threatens the
study’s internal and construct validity; which is further
threatened by the resultant reliance on a non-simple factor
structure (items 1 and 7), inclusion of factor loadings of close
but inverted intensity (item 3), a factor expressed by a single
item (factor “fear of evaluation” and item 6), and deviations
from normality (factors “no room for expression” and “fear of
evaluation”) (e.g., Sellbom and Tellegen, 2019; Thurstone,
1947). See also Table 1. Combined with the fact that only
one type of robot form was tested (the SoftBank Robotics NAO
v5), further work could benefit from testing the effects of
dedicated robotic forms and behaviors on the precise
psychological mechanisms that drive the relationships
between social anxiety, evaluation apprehension and
productivity during brainstorming.

Thirdly, it must be noted that relying on the Wizard-of-Oz
method threatens the study’s external validity, because it remains
to be seen whether the AI of a social robot can be developed to
effectively deliver our brainstorm facilitation protocol. Although
the Wizard-of-Oz method is widely used in research on the
efficacy of brainstorming or doing other types of creative work
with a social robot facilitator (Kahn et al., 2016; Alves-Oliveira
et al., 2020), more research is needed to develop the
computational backbone of social robot facilitators. In this
regard, researchers such as Ali et al. (2021) are leading the way.
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Embodiment in 18th Century
Depictions of Human-Machine
Co-Creativity
Anna Kantosalo1*, Michael Falk2* and Anna Jordanous3*

1Department of Computer Science, School of Science, Aalto University, Espoo, Finland, 2School of English, University of Kent,
Canterbury, United Kingdom, 3School of Computing, Cornwallis South, University of Kent, Canterbury, United Kingdom

Artificial intelligence has a rich history in literature; fiction has shaped how we view artificial
agents and their capacities in the real world. This paper looks at embodied examples of
human-machine co-creation from the literature of the Long 18th Century (1,650–1,850),
examining how older depictions of creative machines could inform and inspire modern day
research. The works are analyzed from the perspective of design fiction with special focus
on the embodiment of the systems and the creativity exhibited by them. We find that the
chosen examples highlight the importance of recognizing the environment as a major
factor in human-machine co-creative processes and that some of the works seem to
precede current examples of artificial systems reaching into our everyday lives. The
examples present embodied interaction in a positive, creativity-oriented way, but also
highlight ethical risks of human-machine co-creativity. Modern day perceptions of artificial
systems and creativity can be limited to some extent by the technologies available; fictitious
examples from centuries past allow us to examine such limitations using a Design Fiction
approach. We conclude by deriving four guidelines for future research from our fictional
examples: 1) explore unlikely embodiments; 2) think of situations, not systems; 3) be aware
of the disjunction between action and appearance; and 4) consider the system as a
situated moral agent.

Keywords: human-machine co-creativity, embodiment, creativity, design fiction, literature, digital humanities,
computational creativity

1 INTRODUCTION

Tools for assisting creativity are becoming more commonplace. New systems utilizing artificial
intelligence (AI) methods to empower the tools themselves to be creative are stepping in different
fields, including robots for playing music (Hoffman and Weinberg, 2010; Weinberg et al., 2020) and
singing (Miranda, 2008), sketching (Lin et al., 2020) and even fostering creativity in children (Ali
et al., 2019). These co-creative robots represent technological progress in machine engineering,
artificial intelligence as well as human-machine interaction.

The idea of machines assisting creativity precedes the current practical advancements by
hundreds of years. Simple tools such as musical dice were invented in the 18th Century to
enable musically ignorant persons to take part in writing music and received huge popularity
in the contemporary intellectual climate fuelled by rationalism (Hedges, 1978). Provided with
a pre-composed set of musical fragments, typically musical phrases that fit certain melodic or
harmonic constraints, people could construct coherent musical compositions by using dice
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rolls to select fragments from the set. These musical dice
games have acted as inspirations for more modern AI based
approaches to interactively compose music with computers
(see e.g., Lin et al., 2015).

In this paper we explore examples of co-creative systems from
Eighteenth-Century literature in different areas of artistic
creativity. We have focused on robotic and other physical
systems to emphasize the embodied aspects of human-
machine interaction. Like the example of musical dice games
we expect these systems to fuel the imagination of modern-day
researchers. In the same way that present-day design fictions
combine science fiction and design research (Sterling, 2005;
Bleecker, 2009; Dunne and Raby, 2013; Blythe, 2014), these
older fictions depict potential solutions for solving complex
creativity related problems and offer us a new perspective for
questioning our design solutions and research approaches. Bruce
Sterling, inventor of the term “design fiction”, argues that design
fictions aim to “suspend disbelief about change” (quoted in
(Blythe, 2014, p. 3)). By taking old speculations about human-
machine co-creation seriously, we may discover that new kinds of
human-machine co-creation are possible.

2 MATERIALS AND METHODS

This work aims to develop our understanding of embodied
creativity, by increasing our knowledge of how human-
machine co-creativity has been understood in the past. We
analyze five examples, selected by our literary expert author as
representative of human-machine co-creativity in the Long 18th
Century (c. 1,650–1850): two Romantic poems about aeolian
harps (harps played by the wind): Samuel Taylor Coleridge’s “The
Eolian Harp” (1795, rev. version 1817, in Coleridge and Keach
(1997)) and Eduard Mörike’s “An eine Äolsharfe” (1837, in
Mörike (1838)); E. T. A. Hoffman’s “Automata” (1814), a tale
containing a multitude of automatic musical systems and a
humanoid question/answer machine; the creativity thinking
aids featured in Laurence Sterne’s novel Tristram Shandy
([1759–67] 2009); the self-conscious Hackney Coach from
Dorothy Kilner’s Adventures of a Hackney Coach (1781); and
the artificial man Homunculus in Goethe’s play Faust: Der
Tragödie Zweite Teil (1832). Like contemporary design
fictions, these literary design fictions take a variety of forms
(poetry, fiction, drama).

We have chosen to focus on the Long 18th Century (c.
1650s–1850s) because it marked a watershed in the history of
AI (Riskin, 2016). At the beginning of this period, René Descartes
set the question of AI on a new footing with his mind-body
dualism; by the end of this period, Mary Shelley’s Frankenstein
(1818) had spawned a powerful myth that still dominates the way
AI is imagined today. In between Descartes and Shelley there was
a period of great imaginative freedom, when authors
experimented with many different kinds of fictional AIs.

Descartes had shattered the Thomistic consensus that mind
and matter were interfused, and that only God could create new
forms of life. He argued that the body was a mere machine, and
that functions of life such as ingestion and sense-perception could

be explained by the mechanical workings of matter; the soul was
utterly separate from the body, and was responsible for abstract
thought alone (Descartes, 1988, 64–65). Later in the period,
radical materialists such as Julian Offray de La Mettrie (1996)
would dispense with the soul, arguing that thought was also just a
function of the body’s machine. These arguments made it possible
to believe that scientists might create a living or intelligent
machine using the laws of physics alone, and fired the
imaginations of writers and inventors alike. In our chosen
examples, all sorts of objects are imagined as potentially
intelligent: from bowling-greens and Pentagraphs to harps and
hackney-coaches. These visions of AI can seem strange and
eccentric to the twenty-first-century reader. This is precisely
why they are worth considering.

By the end of the Long Eighteenth-Century, speculations
about AI had become commonplace, and the marvellous
automata that had dazzled the European public had begun to
lose their allure for an intellectual or scientific audience (Hankins
and Silverman, 1999, 213–216). With her blockbuster novel
Frankenstein, Mary Shelley simultaneously revived public
interest in AI and sent the discussion in a new direction. The
myth of the rebellious superintelligence was born. In the 19th
Century, novelists such as Samuel Butler (1872) and George Eliot
(1879) extended Shelley’s ideas about how AI might evolve
beyond its human creators. In our own time, AI theorists such
as Kurzweil (2006), Bostrom (2014), Tegmark (2018) and (Russell
et al., 2019) have attempted to bring the Frankenstein-myth into
the scientific mainstream (Falk, 2021). Meanwhile rebellious
super-intelligent AIs remain a staple of contemporary science
fiction. By looking back to the Long 18th Century, before the
Frankenstein-myth set in, we hope break open the scientific
imagination, and open up new ways of thinking about the
roles AI might play in human life.

In our search for new ways of thinking about the roles of AI,
we choose to focus on human-machine co-creativity. In this
paper human-machine co-creativity is considered as a
collaborative activity between a human and a machine driven
toward an artistic goal. In human–computer co-creativity, co-
creation is often understood as the creation of artifacts via the
interaction of different initiatives (Yannakakis et al., 2014),
sharing of creative responsibility (Kantosalo et al., 2014) or
blending the machine into the human creative process (Davis,
2013). The term encompasses various different ways of
organizing the co-creative process and the human and the
machine can play different kinds of roles (for example, see the
classifications of such roles by Kantosalo and Jordanous (2020);
Lubart (2005)) or contribute to the creative process in different
ways (Kantosalo and Takala, 2020). The style of
human–computer co-creative interfaces is often similar to
mixed-initiative interaction (Allen et al., 1999; Horvitz, 1999)
for this reason, human–computer co-creativity is sometimes
referred to as mixed-initiative co-creativity (Yannakakis et al.,
2014) and the related interfaces as mixed-initiative creative
interfaces (Deterding et al., 2017). In general
human–computer co-creative systems can express various
degrees of co-creative intent on a spectrum from full human
intent to full computational intent (Deterding et al., 2017).
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The selected fictitious examples are analyzed as design fictions
for variations in levels of embodiment and creativity.
Embodiment was selected as a perspective, since it builds a
bridge between contemporary artificial intelligence research
and eighteenth-century philosophy. Eighteenth-century
scientists such as Jacques de Vaucanson and Wolfgang von
Kempelen argued that the achievement of AI would require
simulation of bodily systems (Riskin, 2003; Riskin, 2016).
These arguments appeared to be justified at the time by
extraordinary advances in the design of mechanical
calculators, in the construction of “automata” (clockwork
robots that replicated bodily movements), and in fields such as
optics and acoustics. Meanwhile philosophers such as Étienne
Bonnot de Condillac (1984) argued that cognition of external
objects would be possible only for an embodied being with a sense
of touch. These eighteenth-century arguments foreshadow
debates in phenomenology, cognitive science and
neuromorphic computing today. It was a period of
considerable speculation about the possibility of artificial
intelligence, and the literature of the period may contain
useful lessons for scientists today.

2.1 Selected Works for Analysis
As shown in Table 1, the examples chosen for this work
represent a variety of co-creative systems ranging from the
very tool-like systems presented in Tristram Shandy (Sterne,
2009), through to more genuinely co-creative examples such as
the mechanical musicians in E. T. A. Hoffman’s “Automata”
(1814) or the almost autonomous Hackney Coach in (Kilner,
1781). The examples also represent different kinds of
embodiment, from the utterly non-human aeolian harps in
Coleridge and Mörike’s poems (Coleridge and Keach, 1997;
Mörike, 1838), to Hoffman’s humanoid Talking Turk
(Hoffman, 1957), and the essentially disembodied
Homunculus in Goethe’s Faust (Goethe, 1832).

The first two examples are the aeolian harp poems of Samuel
Taylor Coleridge and Eduard Mörike. Aeolian harps were
popular stringed instruments of the 18th and 19th centuries.

They could take various forms, but all aeolian harps were harps
designed to be played by the wind rather than human fingers.
They were of particular interest to early researchers in acoustics,
who were perplexed by the harps’ peculiar creative properties:
when a harp’s string is plucked by a human, it can only produce
one note, but when played by the wind, it can produce a great
variety of different notes (Hankins and Silverman, 1999, ch. 5).
Poets like Coleridge and Mörike were also interested in the harps’
creative properties, but interpreted the harp in a more mystical
way. Coleridge, for instance, seems to have believed that the harp,
the wind, and its human listener all participated in a shared
consciousness:

And what if all of animated nature
Be but organic Harps diversely fram’d,
That tremble into thought, as o’er them sweeps,
Plastic and vast, one intellectual Breeze,
At once the Soul of each, and God of all?
(Coleridge and Keach, 1997)

In Mörike’s poem, there is a similar ambiguity. As the poet
listens to the harp, it is hard to distinguish whether the emotions
of the music are the harp’s emotions, the poet’s emotions, or
emotions that are latent in the situation as a whole. We see these
as poetic examples of extended consciousness.

In Part Two of Johann Wolfgang von Goethe’s Faust, we
encounter a more typical fictional AI: the creature Homunculus.
Homunculus is an artificial man created by Wagner, a scientist
and alchemist. What makes Homunculus unusual, especially
when compared to more famous fictional AIs such as
Frankenstein’s monster, is his embodiment. His human body
is minuscule, and contained within a fragile glass phial. He
doesn’t seem to make any use of his human body parts.
Instead of walking, he floats in mid-air. He also has the ability
to glow, read human thoughts, and later, absorb himself into
other beings. In some regards, Homunculus resembles a
disembodied software program more than an embodied
human, despite his human appearance, and looks forward to

TABLE 1 | Embodied interactions in each example text.

Work Artificial agent Agent’s embodiment Human’s embodiment

Coleridge’s “Eolian
Harp” (1795)

An aeolian harp String instrument played by the wind The human poet (Coleridge) interacts using sense of
hearing

Mörike’s “An eine
Äolsharfe” (1837)

An aeolian harp String instrument played by the wind The human poet (Mörike) interacts using sense of hearing

Goethe’s Faust II (1832) Homunculus Tiny artificial human enclosed in a glass phial; glows and can
read minds

Human characters converse with Homunculus or have
their minds read

Hoffman’s “Automata”
(1814)

The Talking Turk Clockwork fortune-teller with power of speech andmysterious
inner mechanism

Human characters ask the Turk questions, hear its
answers and peer into its mechanism

Artificial
performers

When activated by a human, the performers create music Humans activate the artificial performers, play alongside
them, and listen as the audience

Kilner’s Hackney Coach
(1781)

A hackney coach Coach can see and hear its immediate surroundings, but does
not control its own movements

Humans drive or ride on the coach, unwittingly providing
the material for its narrative

Sterne’s Tristram
Shandy (1759–67)

Mechanical
writing-aides

Audio or optical devices that change the appearance of an
observed object

Human narrator imagines using different aides to gain
different insights into his human characters

The bowling green A bowling green of soft earth that is shaped into a scale model
of key battlefields in the nine years’ war

Human characters manually update the bowling green
model as news arrives from the front
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the disembodied AIs of cyberpunk classics such as Masamune
(2009); Gibson (2016).

The artificial agents in E.T.A. Hoffman’s story, “Automata”,
are more down-to-earth, because they are based on actual
automata that were built and exhibited in Eighteenth-Century
Europe. At the beginning of the story, the main characters
encounter the Talking Turk, a clockwork question-answering
system of stereotypically Turkish appearance. The Turk answers
users’ questions, and is cleverly designed to defy users’ attempts to
work out how it operates. The other automata in the story are a
group of clockwork musicians, based on some famous examples
by the French artificer Jacques de Vaucanson (Riskin, 2016, ch. 6).
The main characters meet the creator of these musicians. The
creator turns them on, and plays a piece with them on his piano.
One useful feature of this example is that the main characters
disagree about whether any of the automata are truly intelligent
or creative.

Dorothy Kilner’sAdventures of a Hackney Coach (1781) is an “it
novel” or “novel of circulation”. This was a popular genre of fiction
in the late 18th Century, in which an inanimate character such as a
coin, atom or statue would narrate their adventures in the world
(Bellamy, 2007). In Kilner’s novel, the narrator is a Hackney Coach,
who is driven around London and the surrounding area picking up
passengers from different social classes. The novel is told from the
Hackney Coach’s perspective, as it recounts the conversations of its
passengers and describes the different places and events it visits.
There are two key creative collaborations: the Coach collaborates
with its passengers, who unwittingly provide the material for the
story, and the Coach collaborates with the human reader, to whom
the narrative is addressed.

Sterne’s novel Tristram Shandy (Sterne 2009) is the fictional
autobiography of the main character, Tristram Shandy. It is a
famously experimental and unusual novel. Although it is
ostensibly the story of Tristram’s life, he gets so sidetracked
describing the lives of his father, Walter Shandy, and his
Uncle Toby, that never manages to narrate more than the first
few years of his own life. The book also contains many
digressions, where Tristram discusses the art of novel-writing
and other mostly irrelevant topics.

Tristram Shandy includes two interesting examples of co-
creative machines. In Volume 1, Chapter 23 the narrator
describes several imaginary writing aids that allow the writer to
develop character depictions. Momus’s glass is a device installed on
a character’s chest, which enables the writer to perceive the inner
workings of the character’s soul as if through a window. Other
writing aids include musical instruments that play the characters’
emotions, a Pentagraph, a mechanical device that exactly replicates
themovements of the humanwriter’s pen, and the “Hobby-Horse”,
which Tristram uses to reveal a character’s driving obsession. For
clarity, we have focused on Momus’ glass, the most extreme and
also best-described of Tristram’s imaginary co-creative machines.
The second main co-creative system is the bowling green used by
Uncle Toby, which Tristram describes in particular in Volume 2,
Chapter 1, and Volume 6, Chapters 21–23. The bowling green is a
massive model of the Nine Years’War, and, ironically enough, it is
Uncle Toby’s “HobbyHorse”, linking it to the first set of co-creative
machines. We look at this model as a physical co-creative

environment in which Uncle Toby acts and analyses various
events of the war.

2.2 Design Fiction
How can two hundred year old fictional texts inform scientific
research today? None of the examples we have chosen describe a
scientific process by which a creative artificial agent could be made.
Indeed, some of the examples are impossible. Dorothy Kilner’s
intelligent Hackney Coach, for example, is able to see and hear
events in its immediate surroundings even though it apparently
lacks any sensory organs, and its personality is notably human and
English despite the fact it is a coach. Rather than explaining how
this kind of intelligent agent exists, the novel takes the agent for
granted and explores its implications.

We therefore propose to interpret these texts as design fictions
(Sterling (2005); Bleecker (2009); Dunne and Raby (2013); Blythe
(2014)). The purpose of design fictions is not to show scientists
how to solve a problem, but rather to help scientists determine
what problem they should try to solve. Design fictions achieve this
purpose by simulating the experience of interacting with new
technologies. Instead of describing how a particular technology
functions, or describing the process of manufacture, design
fictions presuppose that such a technology exists, and portray
what interacting with it would be like. A design fiction is typically
in the form of a film, novel, poem, play or art installation. When
we read or view such a fiction, we imagine ourselves in a new
world, where a new technology exists, and can feel what it might
be like to live with such a device. We imagine the future ‘from the
inside’, and gain an intuitive, embodied, subjective understanding
of which technologies we might desire to have or wish to avoid
(Burdick, 2019). In this way, design fiction offers two key benefits
to scientists: goalposts and warning signs. Goalposts: by painting
a vivid picture of humanity’s possible futures with technology,
design fiction can fire scientists’ imaginations and widen the
search space. Warning signs: by allowing us to explore the
“implications” rather than simply the “applications” of new
technologies, design fiction can help scientists determine the
moral and ethical implications of their research (Dunne and
Raby, 2013, p. 49).

These historical texts were not necessarily intended as “design
fictions”, but by focusing on the interaction between the human
and non-human agents, we can read them as if they were. To read
these texts as design fictions, we focus specifically on embodied
interaction. How does the embodiment of the fictional artificial
agent affect its cognition of the world and its interaction with
human beings? And likewise, how does the embodiment of
human agents affect their interaction with the artificial agents?
In Mörike and Coleridge’s poems, for example, the artificial agent
is an aeolian harp. Such harps are large stringed instruments that
are played by the wind. Due to this embodiment, they must be
placed outside or in a window, where the wind blows, and they
produce output in the form of sound. The agent is therefore
stationary, under the wind’s influence, and surrounded by
outdoor scenes. To interact with the harp, the human agent
must go outside, wait for the wind, and listen with their ears. Thus
the embodiment of the harp and the human intersect to produce a
particular kind of interaction. The poems describe this interaction
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in vivid language, recreating the experience of listening to the
aeolian harp and offering the reader an intuitive understanding of
what value such an interaction could have.

2.3 Embodiment and Creativity
Viewpoints on embodied creativity and collaboration, and on
embodied artificial intelligence more generally, range across a
number of notions (Chrisley, 2003; Ziemke, 2015). Competing
theories about the role of embodiment in cognition range from
theories of minimal embodiment, which look at the
embodiment of humans through a reduced body without a
brain, to views of embodiment that connect the body with the
environment, or allow it to absorb tools to extend its
embodiment, and all the way to radical views of
embodiment viewing perception as an action oriented
concept shaping most cognitive processes (Gallagher, 2011),
or behavior-based robotics (Brooks, 1991). Dreyfus (1979)
argued that some form of embodiment was necessary for
intelligence, echoing the arguments of eighteenth-century
materialists such as Condillac and La Mettrie.

Very few works of human–computer co-creativity address
aspects of embodiment specifically or take a stance on
different theories of embodiment. Embodiment is briefly
discussed in some works featuring robotic collaborators, such
as an investigation of task-transfer (Fitzgerald et al., 2017), and
the works of Saunders, Gemainboeck and their colleagues (e.g.,
Saunders et al., 2010, 2013; Gemeinboeck and Saunders, 2013),
which feature embodied robots that allow for shifting the balance
of co-creative initiative toward machine initiative. A few
theoretical works, discuss the extended mind theory (Bown,
2015), an enactivist theory for co-creation (Davis et al., 2015)
and the wide acceptance of creativity as a situated activity within
the field of computational creativity (Guckelsberger et al., 2017),
but there appears to be no unified view of how to look at
embodiment from the perspective of human–computer co-
creativity. Therefore for this paper we wanted to find a
disambiguation of embodiment that would more directly
address creativity and collaboration with machines.

Dag Svanæs (2013) created a bridge between creativity and
embodiment in his work investigating the role of embodiment in
interactive technologies. Svanæs applies Merleau-Ponty’s ideas
about the lived body and embodied perception into analyzing
interaction with technology. As a result he created three concepts
“the feel dimension”, “interaction gestalts” and “kinaesthetic
thinking” which he used to discuss different kinds of digital
products and interfaces. From the last concept he developed the
idea of “kinaesthetic creativity”, which discusses how a designer,
embedded in a rich context through their lived body can use that
experience to create new solutions to problems perceived in that
moment.

This paper examines the effects the embodiment of the
example systems may have on their creativity. In his paper,
Svanæs (2013) shows how to use Merleau-Ponty’s ideas
selectively to perform formative analysis of interaction with a
few examples ranging from abstract creative art to e-readers.
Svanæs’ examples focus on software oriented artifacts with
tangible physical interfaces. To be able to compare fictitious

robotic examples in a summative, systematic manner, we took
the twelve key components Svanæs’ derives from Merleau-
Ponty’s (1962) to support his user interaction concepts and
turned them into comparison criteria. The twelve criteria are
active perception; perception shaped by the phenomenal field;
directed perception; mediating perception through artifacts;
whole body perception; the lived body; incorporating artifacts
into the body; body schema; bodily space; skills acquisition; the
dynamic nature of the body, tools and objects; and concrete and
abstract movement.

Following Svanæs’ (2013) descriptions, the first concept,
active perception, focuses on human perception as active uses
of senses instead of passive reception of stimuli. The second
concept, perception shaped by the phenomenal field, looks at
how the individual background, such as experiences and
training, affect human perception. The third concept,
directed perception, looks at the intentions of the individual
affecting what and how they perceive. The fourth concept,
mediating perception through artifacts, looks how the body can
adapt and extend its perceptional capacity through the use of
artifacts, such as by a visually impaired person navigating with
a stick. The fifth concept, whole body perception, looks at how
the whole body can be used automatically to extend
perceptional capacity, such as turning an object while
visually perceiving it to take in various angles. The sixth
concept, the lived body, considers the body as a general
medium of presence in the world. The seventh concept,
incorporating artifacts into the body, looks at assuming
artifacts as part of the lived body, such as a person using a
wheelchair. The eight concept, body schema, describes the
“nonconscious knowledge” an individual has of their lived
body and its potential actions in the world. The ninth concept,
bodily space, considers the degrees of freedom the lived body
has in the space. The 10th concept, skills acquisition, considers
how an individual is able to “internalize external devices
through learning”. The 11th concept, the dynamic nature of
the body, tools, and objects, looks at the changing contextual
meaning and purpose of the body, tools and objects. The 12th
concept, concrete and abstract movement, looks at movements
“made naturally as part of a situation” and movements made
for the purpose of movement.

We combine this analysis of embodiment with a separate
analysis of creativity. This allows us to explicitly consider
how embodiment and creativity interact in fictions of this
period. In modern creativity research, creativity is
characterized by many aspects (Jordanous and Keller, 2016),
which vary in importance across domains. Over the years some
authors such as Kantosalo and Takala (2020) have attempted
to establish frameworks for describing human–computer co-
creativity that take into account various theories of human
creativity, including for example Glăveanu (2013) and
Csikszentmihalyi’s (1988) views of creativity as a
socio–cultural act and Glăveanu’s views of material
affordances of the creative environment. But to our
knowledge, there is no single definition for creativity that is
adopted over others in human–computer co-creativity
research. Therefore for our analysis we have attempted to

Frontiers in Robotics and AI | www.frontiersin.org June 2021 | Volume 8 | Article 6620365

Kantosalo et al. 18th Century Human-Machine Co-Creativity

84

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


find some more general definitions of creativity that would fit
the variety of the literary samples examined here.

Creativity research commonly adopts a minimal “bifold”
definition of creativity (Runco and Jaeger, 2012), but such a
minimal definition makes it difficult to classify the myriad forms
of creativity encountered in literary texts. Creativity is an example
of an essentially contested concept (Gallie, 1955; Jordanous, 2012),
in that by its nature, creativity resists full, complete and fixed
definition (Corazza, 2016). The nature of creativity has been
much discussed from multiple perspectives and various
disciplines (Jordanous and Keller, 2016) (e.g., Guilford (1950);
Gero (1996); Gabora (2005); Hennessey and Amabile (2010);
Weisberg (2015), as a selection of a few different perspectives in a
vast and multi-disciplinary area of research).

It is widely acknowledged that practical concerns drive us to
adopt working definitions where necessary (Runco and Jaeger,
2012), definitions which others may see as partial or
incomplete for their purposes. This paper provides a good
example: we argue that the “standard definition” of creativity
proposed by Runco and Jaeger (2012) is insufficient for this
work, whereas many creativity scholars would find this
definition adequate for their purposes. Instead we include in
our considerations 14 components of creativity, which were
derived by Jordanous and Keller (2016) from computational
analysis of a corpus of seminal articles spanning a period of
60 years of research on creativity, from multiple disciplinary
perspectives. We do not claim that these components form a
conclusive and complete definition of creativity; however for
practical purposes these components enable a more divergent,

detailed and multi-faceted analysis of the literary and
embodied context of this work, considering aspects such as
generative ability and originality, as well as social interaction
and communication. The components are listed and briefly
defined in Table 2.

3 RESULTS

We conducted our analysis of the works such that relevant
passages of the works would be read by two researchers
separately after which the researchers discussed the different
elements of embodiment and the different aspects of creativity
in the examples.1 Based on these discussions we compiled two
tables which allowed for comparing and contrasting the different
examples through these elements and also to examine whether
the embodiment of the systems had any interesting connections
to the creative capacities exhibited by the examples (Tables 3, 4).
In each case, the question was whether the relevant fictional agent
was capable of the given component of embodiment, or the given
component of creativity. For example, in none of the fictional
examples did the artificial agent acquire a new skill, so all received
a null score for “skills acquisition” (Table 3). In some cases, the
situation was ambiguous. In Hoffmann’s “Automata”, for
example, the Talking Turk seems to display “general intellect”

TABLE 2 | Components of Creativity, with definitions adapted from Jordanous and Keller (2016).

Component Definition (adapted from Jordanous and Keller (2016))

Active involvement and persistence Being actively involved; reacting to, deliberate
Tenacity to persist, even at problematic points

Generation of results Working toward some end target, or goal, or result
Producing something that previously did not exist

Dealing with uncertainty Coping with incomplete, missing or ambiguous information
Element of risk/chance, lack of routine/pre-existing methods

Domain competence Domain-specific intelligence, knowledge, expertise
Recognizing problems and generating new ideas in that domain

General intellect General intelligence and intellectual ability
Flexible and adaptable mental capacity

Independence and freedom Working independently with autonomy over actions/decisions
Freedom to work, perhaps challenging cultural/domain norms

Intention and emotional involvement Personal and emotional investment, immersion
Intention/desire to perform a task, for fulfilment/enjoyment

Originality A new product, or doing something in a new way
Results that are unpredictable, unexpected, surprising

Progression and development Movement, advancement, evolution during a process
Some developmental progression in a domain/task

Social interaction and communication Communicating and promoting work to others
Mutual influence, feedback, collaboration

Spontaneity/Subconscious processing Thoughts may inform a process subconsciously
Reacting quickly and spontaneously when appropriate

Thinking and evaluation Consciously evaluating several options
Proactively selecting a decided choice from possible options

Value Making a useful contribution valued by others
End product is relevant and appropriate

Variety, divergence and experimentation Generating different ideas to compare and choose from
Multi-tasking during a process

1The exception was Faust, which was read by the literary expert alone, and then
discussed at length with the team.
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because it is able to listen to and answer any question posed by a
member of the public (Table 4). But the story is deliberately
ambiguous as to whether the android is actually intelligent or is
just a hoax: when the Turk talks and gestures, “die Rückwirkung
eines denkendenWesens unerläßlich schien” [the agency of some
intelligent being seemed essential] (Hoffmann, 1957, vol. 6, p. 82).
When we felt that an example was insuperably ambiguous in this
way, we have placed a “??” in the relevant cell of the table.

4 DISCUSSION

Advocates of speculative design argue that design fictions “can
play a significant role in broadening our conception of what is
possible” (Dunne and Raby, 2013, p.162). Our examples could
play this role, by helping scientists rethink core concepts of

computational creativity, including embodiment, agency and
creativity itself. These texts break down the usual template of
creative activity: the human being. They suggest that radically
non-human actants such as musical instruments, vehicles or even
the ground may exercise certain kinds of creative agency. If
scientists engage with these texts, they may rethink their
assumptions about the form a creative system might take,
invite new analysis of ethical and social implications, and open
new lines of inquiry.

4.1 Concrete and Abstract Body: Varying
Levels of Agency
Most of our examples describe creativity as an automatic or
mechanical process, which does not require intellect or self-
consciousness. In Table 3, for example, only a few of the

TABLE 3 | Analysis of works by embodiment criteria adapted from Svanæs (2013).

Mörike,
“Äolsharfe”

Coleridge
“Eolian
Harp”

Kilner,
“Hackney
Coach”

Sterne,
“Tristram
Shandy”;
bowling
green

Sterne,
“Tristram
Shandy”;
writing
aides

Goethe,
“Faust:
Zweiter
Teil”

Hoffmann,
“Automata”;

Talking
Turk

Hoffmann,
“Automata”;
instruments

Active perception x x x — — x x —

Perception shaped by the phenomenal field — — x — — x — —

Directed perception x x x — x x ?? —

Mediating perception through artifacts — — x — — — — —

Whole body perception x x — — — x — —

The lived body — — x — — x — —

Incorporating artifacts into the body x x ?? x x x — x
Body schema x x x — — — — —

Bodily space x x x x x — x x
Skills acquisition — — — — — — — —

The dynamic nature of the body, tools and
objects

— — — x x — — —

Concrete and abstract movement — — ?? — — ?? — —

TABLE 4 | Analysis of works by creativity component.

Mörike,
“Aolsharfe”

Coleridge
“Eolian
Harp”

Kilner,
“Hackney
Coach”

Sterne,
“Tristram
Shandy”;
bowling
green

Sterne,
“Tristram
Shandy”;
writing
aides

Goethe,
“Faust:
Zweiter
Teil”

Hoffmann,
“Automata”;

Talking
Turk

Hoffmann,
“Automata”;
instruments

Active involvement and persistence x x x x — x x —

Dealing with uncertainty — — x — — — — —

Domain competence — x x — — — x —

General intellect — — x — — — ?? —

Generating results x x x x — x x —

Independence and freedom x x ?? — — x x —

Intention and emotional involvement x x x — — x x —

Originality — — x — x x x x
Progression and development — — — — — x — —

Social interaction and communication x x x x — x x —

Spontaneity and subconscious
processing

x x x — — x x —

Thinking and evaluation ?? ?? x — — x ?? —

Value x x x x x x x ??
Variety, divergence and
experimentation

x x ?? ?? x x x —
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examples display “skills acquisition”, a “dynamic relationship
between body, tools and objects”, or the distinction between
“concrete and abstract movement”. This last component is
particularly interesting in the cases of the Hackney Coach
and Homunculus. Both of these artificial agents have human-
level general intelligence, and are able to interact socially with
human beings. The Hackney Coach composes a novel
describing its life, while Homunculus converses with other
characters. But neither of them seem to distinguish between
unconscious “concrete” movement (e.g., the automatic
movement of the fingers while typing) and conscious,
intentional ‘abstract’ movement (e.g., carefully positioning
the fingers to pick up a sharp object). The Hackney Coach
moves passively, according to the pulling force of its horse and
the direction of its driver. It is therefore capable only of
“concrete”, unconscious movement, as its wheels turn to
accommodate the direction of the horse and driver.
Homunculus, by contrast, moves intentionally, but his form
of movement (levitation) requires no bodily action. In his case,
he is capable of purely “abstract”, intentional movement, but
not of “concrete”, unconscious movement. In this way, both
these agents break down the distinction between “conscious”
and “unconscious”, at least as far as bodily movement is
concerned.

This lack of bodily self-consciousness correlates with several
components of creativity. Few of the agents “deal with
uncertainty”, possess “domain competence”, have “general
intellect”, or “progress and develop” (Table 4). Their creativity
is generally spontaneous and adventitious, rather than self-
conscious and deliberate. In Coleridge and Mörike’s poems,
for instance, the aeolian harps create original music, decode
emotional information that is encoded on the wind, and
communicate it to human listeners who participate by
providing the missing ingredient of self-consciousness. Mörike,
for instance, describes how the wind:

. . . säuselt her in die Saiten,
Angezogen von wohllautender Wehmuth,
Wachsend im Zug meiner Sehnsucht,
Und hinsterbend wieder. (Mörike, 1838, p.52)
[. . . rustles hither in the strings,
Drawn by eloquent melancholy,
Growing in the pull of my desire,
And dying away again.]

The wind appears to feel some emotion, being itself “drawn” to
the poet’s melancholy. Meanwhile the poet responds emotionally
to the music of the wind in the strings of the harp. The harp
creates such music, and communicates such emotion, without
apparently having any kind of intellect or consciousness.

This example raises the difficult problem of agency: How can
we ascribe creative intentions or actions to the harp or the wind?
In his own aeolian harp poem, Coleridge speculates that there is
“one life, within us and abroad, — Which meets all motion and
becomes its soul” (Coleridge and Keach, 1997, p. 87). If there is
indeed such a global “soul”, “life” or consciousness that pervades
all things, then it would be perfectly possible for the wind to

intend or to act. But such a “world-soul” is scarcely consistent
with modern science. According to Riskin (2016, pp. 1–2), in
contemporary physics and chemistry it is considered
unacceptable to describe any physical system by ascribing
agency to its components. Probabilities and causes are
acceptable explanations, not decisions. This hesitancy over
agency is quite palpable in the field of computational
creativity. In a classic definition of the field, Wiggins (2006, p.
2) says that Computational Creativity is:

The study and support, through computational means
and methods, of behaviour exhibited by natural and
artificial systems, which would be deemed creative if
exhibited by humans.

This strange phrase, “would be deemed creative’, indicates an
insecurity at the heart of the field. If no agency can be ascribed to
“natural and artificial systems”, then how can a computer actually
be creative? At best it can merely simulate or model creative
activity.

This problem of agency, creativity and machinery is addressed
explicitly in Hoffmann’s “Automata”, when the characters debate
whether the mechanical musicians create genuine music. After
hearing the mechanical musicians, the characters Ludwig and
Ferdinand come to differing conclusions. Ludwig finds the
automatons’ music “zuwider” [repugnant], arguing that the
agency of a human musician is required to create true music
(Hoffmann, 1957, vol. 6, p. 105).2 Ferdinand finds the artificial
music beautiful, though agrees that it is inferior to human music.
Interestingly, although Ludwig loathes the machines’ music, he
nonetheless claims that music has an ultimately nonhuman
source:

“Kann denn”, ewiderte Ludwig, “die Musik, die in
unserm Innern wohnt, eine andere sein als die,
welche in der Natur wie ein tiefes, nur dem höhern
Sinn erforschliches Geheimniss verborgen, und die
durch das Organ der Instrumente nur wie im
Zwange eine mächtigen Zaubers, dessen wir Herr
worden, ertönt?” (Hoffmann, 1957, vol. 6, p. 107)
[“Can it be,” replied Ludwig, “that the music that lives
within us is different to that which lies as a deep mystery
in Nature, discoverable only by the highest sense, and
which is expressed by instruments only under the
compulsion of a mighty spell of which we are the
masters?”]

For this reason, although the automaton musicians are not to
his taste, Ludwig is more open to the music of Aeolian harps, and
claims that a “höhere musikalische Mechanik” [“higher

2This aligns with modern-day interpretations of what it means to be creative when
generating music (Jordanous and Keller, 2012): social communication and
interaction, domain competence and intention/emotional involvement were
found to be crucial factors, and Ludwig is questioning the ability of the
automatons to engage with their music intentionally and with emotion.
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mechanics of music”] is possible (Hoffmann, 1957, vol. 6, p. 105).
Thus even this more sceptical, scientific text leaves open the
possibility that nature itself may have creative properties that
could be harnessed by a mechanical system.

This issue of agency is particularly prominent in Tristram
Shandy, whose artificial agents lack not only self-consciousness,
but also “independence and freedom”, “intention and emotional
involvement” and also, in one case “originality” (Table 4). In
terms of embodiment, the agents also lack “active perception” and
the “shaping force of the phenomenal field” (Table 3). The
bowling green is entirely shaped by human hands, and has no
sense organs of any kind, while the writing aids, such as Momus’
glass, are essentially optic, acoustic or haptic instruments that
provide the writer with novel input about the character they are
trying to describe. Momus’ glass provides a vision of the
character’s heart, but there is no suggestion that the glass
actually sees the character’s heart itself.

Nonetheless, in the novel both the writing aids and the
bowling green frequently intervene in the plot and change the
course of events, displaying a form of material agency which does
not require any kind of awareness. In a mundane way, the
bowling green’s soil composition affects how well Uncle
Toby’s model operates:

Nature threw half a spade full of her kindliest compost
upon it, with just so much clay in it, as to retain the
forms of angles and indentings—and so little of it too, as
not to cling to the spade, and render works of so much
glory, nasty in foul weather (Sterne, 2009, p. 342,
p. 342).

This is the most obvious way the bowling green’s embodiment
affects its collaboration with humans, but throughout the novel, the
bowling green acts in other, more surprising ways. It is directly
implicated in Tristram’s accidental circumcision, for instance.
Having misplaced the chamber-pot, Tristram’s maid Susanna
instructs the young boy to “**** *** ** *** ******” (Sterne, 2009,
p. 301).3 Unfortunately, all the leaden counterweights in Tristram’s
house have been resumed by Uncle Toby’s trusty corporal Trim, to
be melted down and make cannons for their bowling-green model
of the Nine Years’War. The sash window falls, and the unfortunate
Tristram suffers a surprise operation. Admittedly, in this case, the
bowling green acts through human agents, whose search for raw
materials to upgrade the bowling green is the proximate cause of the
accident. But the novel is replete with jokes the blur the boundaries
between human bodies and physical objects in their environment.
Tristram’s mother relies on hearing the sound of Tristram’s father
winding the clock in order to experience sexual arousal (Sterne,
2009, p. 9). Near the end of the novel, when Uncle Toby is wooing
the widow Wadman, she is curious about the groin injury he
sustained at the siege of Namur. “You shall lay your finger upon the
place”, Uncle Toby tells her (Sterne, 2009, p. 514). She is at first
surprised by this intimate suggestion, but Uncle Toby then fetches a
map, and allows her to lay her finger on the geographical place

where he was wounded. The map and the man become thoroughly
confused. The confusion is even greater when we consider that
Uncle Toby’s bowling green is also the “Hobby Horse” that
Tristram uses as a writing aid to describe his Uncle’s character.
Tristram jokes that “a man’s HOBBY-HORSE is as tender a part as
he has about him” (Sterne, 2009, p. 91). Like a tender body part,
Uncle Toby’s bowling green can cause him pain, and Tristram can
use it as a creative collaborator to illuminate Toby’s personality.

It is in this broad context, in which human bodies and confused
with the material world around them, that the bowling green, and
Tristram’s imaginary writing-aids, seem to acquire agency, despite
lacking some of the usual embodied and creative components that
an agent would be expected to have. In its anarchic, comedic way,
Tristram Shandy foreshadows contemporary philosophers of
science, such as Jane Bennett, who argue that our conventional
understanding of agency is too narrow, and that mere matter may
have an “agentic power” that we overlookwhenwe define agency in
term of human intentionality and consciousness (Bennett, 2010, p.
69). Similar ideas about attributing creative agency to the materials
participating in a creative act are also expressed by some
computational creativity scholars, such as Bown (2015).

Tristram Shandy is not very explicit about where this “agentic
power” may come from. The bowling green shifts and morphs,
drawing Tristram and Uncle Toby’s bodies into itself; the writing
aids somehow create a connection between the writer’s pen and
the character’s personality. These processes are joked about rather
than explained. Similarly, in Adventures of a Hackney Coach, the
Hackney Coach simply is sentient, with no attempt to explain this
surprising fact. Aside from Coleridge, with his idea of the “one
life”, the only author in our sample who seriously attempts to put
forward a more general theory of creative agency is Johann
Wolfgang von Goethe. When Wagner creates Homunculus, he
argues that matter has an innate self-organizing tendency which
allows it to become creative:

Was man an der Natur Geheimnißvolles pries,
Das wagen wir verst ändig zu probiren,
Und was sie sonst organisiren lie ß,
Das lassen wir krystallisiren (Goethe, 1832, p. 105).
[What we thought before was Nature’s secret,
That is what we now dare to experiment with.
And what Nature once allowed to self-organize,
We now allow to crystallise.]

Homunculus is “crystallized” out of a material that already has a
natural tendency to organize itself. Even Wagner, the human
scientist who is an agent in the usual sense, “lässt” [“lets”] the
crystallization occur. As in the case of the Aoelian harps, where the
environment itself, the wind, plays a key role in the creative process,
in Faust, there seems to be no real difference between human agents
and inert matter—everything has some kind of “agentic” or
“organizing” power, and can collaborate in the creative process.

These texts present a challenging view of creative agency,
which could influence the way researchers design creative robotic
systems. First, if an object can be a creative agent while lacking
intelligence, intention and even perception, then this could
impact how we evaluate creative systems (Jordanous, 2017;3“Piss out of the window”
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Kantosalo, 2019). This problem of evaluation, as we have seen, is
explicitly raised in Hoffmann’s “Automata’, when Ferdinand and
Ludwig dispute the creativity and intelligence of the story’s
robotic systems, based on their differing attitudes about the
uniqueness of human agency. Secondly, by opening up the
field of how a creative agent might be embodied, these texts
could inspire new designs. A creative robot could emulate Uncle
Toby’s bowling green: its body could be a protean landscape, that
morphs in physical space to portray different information to the
user. A shape-shifting landscape-robot could be well-suited for
elementary education, could interact effectively with visually
impaired human users, or could provide adversarial training
for autonomous vehicles. The example of The Adventures of a
Hackney Coach has already been trialled by experimental writer
Ross Goodwin. His novel 1 the Road was written by a neural
network image-captioning system hooked up to a webcam that he
bolted to the top of a car (Goodwin, 2018). His neural network
did not meet the same embodiment and creativity criteria as
Kilner’s Hackney Coach (Tables 3, 4), but it did make use of a
vehicle’s embodiment as part of the creative system.

This view of creative agency has a third challenging implication.
By de-emphasizing the role of general intellect and other humanlike
forms of agency, these texts foreground the creative contribution of
the environment or situation. The Hackney Coach composes a
highly original novel by simply recording the chance encounters
thrown at it by the busy metropolis of London. Coleridge and
Mörike’s harps produce powerful music in collaboration with the
wind. The bowling green literally is the environment. With their
broad understanding of agency, authors such as Coleridge or Goethe
found it easy to explain how the environment itself could be creative.
An interesting challenge, ripe for further exploration in creative
robotics, is therefore to model how the physical environment has
input into the creative process, as reflected on by the “Press”
(environment) variable being one of the Four Ps of creativity
(Rhodes, 1961; Jordanous, 2016). Some useful steps forwards in
this area have already been taken, e.g. Saunders’ Curious Whispers
embodied interactive creative agents (Saunders, 2012), inspired by
Csikszentmihalyi’s systems approach to creativity (Csikszentmihalyi,
1988); and Jon McCormack’s Eden project (McCormack, 2001), an
artificial ecosystem where inhabitants have a creative interactive co-
evolutionary relationship with their environment. We do also
however acknowledge the alternative perspective of behaviour-
based robotics and related Artificial Life research, that advocates
a largely representation-free interaction with the external physical
environment (Brooks, 1991; Jordanous, 2020).

4.2 An Exploration of Ethics
So far we have considered these fictional examples as possible
designs which scientists could evaluate or emulate. But design
fictions can also serve another purpose: to help “us to explore
ethical and social issues within the context of everyday life” (Dunne
and Raby, 2013, p. 51). Our fictional examples reveal some of the
risks posed by creative AIs, and may help scientists anticipate
unintended consequences of their research. Kilner’s Hackney
Coach overhears the private conversations of its passengers
without their knowing. Goethe’s Homunculus is able to read
human thoughts. On a slightly different tack, Hoffmann’s

Talking Turk is built to conceal its operations, and to appeal to
racist stereotypes about Oriental mysticism; in these ways the
Turk’s creator uses it to prey upon paying customers, allowing
its creator to control and profit from the public (see Falk (2021)). In
each of these cases, the embodiment of the artificial agent affects
how humans interact with it, with potentially disastrous results.
Some of the examples are chillingly relevant today. Cars, phones
and home assistants all have the capacity to record their users, and
often do: What is to stop them spilling the beans, as the Hackney
Coach does, particularly as text generation improves? The Talking
Turk, meanwhile, offers a critical perspective on the design of
chatbots and other question-answering systems. How might
artificial voices or faces be designed, and how can consumers
and the public be protected from subconscious manipulation?

Homunculus presents a special case. His peculiar embodiment
gives him peculiar capabilities. Like the superintelligent AIs of
contemporary cyberpunk novels, he seems to inhabit a world of
pure information. Though he is able to hear and speak, he also
emits light that grants him direct access to other characters’
minds. Shortly after coming into existence, he levitates over the
sleeping character Faust, and observes his dreams:

Homunculus (erstaunt)
Bedeutend! –
(Die Phiole entschlüpft aus Wagners Händen, schwebt über
Faust und beleuchtet ihn.)
Schön umgeben!—Klar gewässer
Im dichten haine, Frau’n die sich entkleiden [. . .] (Goethe,
1832, p. 107, p. 107)
[Homunculus (astounded)
Remarkable! –
(The phial slips out of Wagner’s hands, floats over Faust and
illuminates him.)
Such beautiful scenery!—Clear water
In the shady grove, women undressing themselves [. . .]]

Through this direct mind-machine interface, Homunculus is able
to peer into Faust’s erotic dreams, which the sleeping professor would
surely have preferred to keep private. The character Mephistopheles
linksHomunculus’smind-reading capabilities to his embodiment: “So
klein du bist, so groß bist du Phantast” [So small you are, yet such a
great fantasist.] (Goethe, 1832, p. 108). The word “Phantast” is
crucially ambiguous, meaning something between “dreamer” and
“novelist”. There seems to be a relationship between Homunculus’s
tiny presence and fragility in the physical world, and his intimidating
presence and creativity in the psychic world. In the end, Homunculus
forsakes both his physical presence and self-identity altogether, when
he fuses with Proteus in a flash of light (Goethe, 1832, p. 178). His
choice of Proteus to fuse with is highly significant: Proteus is a
shapeshifting Greek deity of the sea, whose body never remains in
the same form for more than an instant. In some ways, Homunculus
seems to foreshadow cyberpunk fantasies about uploading the mind
into the cloud and living a virtual, disembodied life.

At first glance, Homunculus may seem barely credible as an AI
design, but in fact he exhibits crucial properties of actually existing
systems. Many contemporary AI systems exist primarily as
software, and lack embodiment in much the same way as
Homunculus. Likewise, Mephistopheles is quite right to suggest
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that Homunculus’s diminutive embodiment is linked to his mind-
reading abilities. Like Homunculus, devices such smartphones,
home assistants, cochlear implants or Elon Musk’s neuralink chip
all need to be small in order to penetrate human lives or human
brains. Siri and Alexa may actually reside in giant data centres, but
in users’ day-to-day lives they take the form of small, limbless,
glowing bodies, and persistently monitor users’ behaviour in order
to read (or rather, model) their minds. Both Homunculus and the
Hackney Coach take advantage of their embodiment to slip into
human lives. In bothAdventures of a Hackney Coach and Faust, the
results are creative and positive: the Coach produces a brilliant
satirical novel based on its secret observations, while Homunculus
develops a higher form of consciousness and merges with Proteus.
But the darker ethical implications are there to see, and may
provoke important discussions in laboratories and design studios.

4.3 The Method of Historical Design Fiction
We conclude this discussion by reflecting on the multi-pronged
approach to analysis adopted in this research. The Design Fictions
approach enabled us to treat historical fiction as sources of
inspiration for future creative robotics research. Our decision to
use componential characterisations of creativity and embodiment
has given us a multi-dimensional model by which to examine the
historical texts. By considering so many different aspects of
creativity and embodiment in a systematic manner, we could
highlight many new and useful details to bring forward from
the 18th Century to present-day attention, and we could consider
examples that may not have fulfilled the requirements of the more
rigid ‘bifold’ definition of creativity.

5 CONCLUSION

In our work we have examined several literary depictions from the
Long 18th Century (c. 1650–1850) describing different kinds of
embodied systems or autonomous entities capable of contributing to
human creativity. Initially, the idea of examining past fictitious
examples may seem curious; however the design fictions
approach reveals that these examples vividly capture some of the
ideals concerning creativity support and co-creativity during the
time. In particular, we see an emphasis on active involvement,
directed perception, experimentation and the ability to capitalize
on spontaneity, with embodiment and interaction crucial to
generating valuable results.

Based on our discussion of these examples, we offer four
guidelines to researchers in creative AI and robotics. These are
guidelines for discovery. They aim to widen the search space of
design and research possibilities, and give researchers a finer
sense of the contours of the search surface.What kinds of artificial
creative agents are possible? Which are preferable?

1. Explore unlikely embodiments: Eighteenth-century
examples invite us to widen the space of possible mechanistic
co-creative partners. In Tristram Shandy, one creative system has
a flat body of soft soil. In Coleridge and Mörike’s eolian harp
poems, the systems have resonant bodies of wood and gut. What
new kinds of creative action might be enabled by other strange
materials, body shapes and dimensions?

2. Think of situations, not systems:Our examples emphasize the
way that systems draw on the environment to create new situations.
The Hackney Coach creates a new series of connections between
people and places in London, because of its imperceptibility and
position in a network of human interactions. Inspired by such fictions,
researchers can look beyond individual systems, and consider what
new situations they would like to bring into being. What new
environments or connections, what new patterns of interaction or
behaviour might different embodiments bring about?

3. Be aware of the disjunction between action and
appearance: How an agent appears can often conceal what it
does. In Faust, Homunculous’s tiny, fragile body conceals vast
capacities—indeed, Mephistopheles suggests that his tininess
actually enables his vast capacities. Likewise the small physical
footprint of a modern agent like Alexa can conceal the large
distributed system it embodies, and enable that system to
penetrate people’s lives. Ethical designers should consider what
to conceal and what to reveal in their artificial agent’s embodiment.

4. Consider the system as a situated moral agent: We have
seen how in many of these fictions, apparently unconscious or
static agents act in self-consistent and unpredictable ways, much
like conscious human agents. Uncle Toby’s bowling-green brings
about Tristram’s circumcision. Hoffmann’s musical automata
challenge Ferdinand and Ludwig to reconsider who is the
composer of a novel tune. While it can be tempting to deny
agency to mechanistic creative systems, a mechanistic system’s
potential consequences come more sharply into view if we
consider the system itself as the one who acts.

Overall, like the example of the musical dice, the historical ideas
and inspirations we highlight above can capture the imagination of
modern roboticians and co-creativity scholars, and can inspire their
efforts, unhindered by any potential current technical blinders. Thus,
understanding how long-18th-century authors viewed mechanical/
robotic creativity offers a firm foundation for building models for
modern co-creative robotics. As famously observed by Sagan, “you
have to know the past to understand the present.”
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There is growing interest in developing creative applications for robots, specifically
robots that provide entertainment, companionship, or motivation. Identifying the
hallmarks of human creativity and discerning how these processes might be
replicated or assisted by robots remain open questions. Transdisciplinary
collaborations between artists and engineers can offer insights into how robots
might foster creativity for human artists and open up new pathways for designing
interactive systems. This paper presents an exploratory research project centered on
drawing with robots. Using an arts-led, practice-based methodology, we developed
custom hardware and software tools to support collaborative drawing with an industrial
robot. A team of artists and engineers collaborated over a 6-month period to
investigate the creative potential of collaborative drawing with a robot. The
exploratory project focused on identifying creative and collaborative processes in
the visual arts, and later on developing tools and features that would allow robots
to participate meaningfully in these processes. The outcomes include a custom
interface for controlling and programming robot motion (EMCAR) and custom tools
for replicating experimental techniques used in visual art. We report on the artistic and
technical outcomes and identify key features of process-led (as opposed to outcome-
led) approaches for designing collaborative and creative systems. We also consider the
value of embodied and tangible interaction for artists working collaboratively with
computational systems. Transdisciplinary research can help researchers uncover new
approaches for designing interfaces for interacting with machines.

Keywords: artistic research, drawing, performance, dance, robot, creativity, human robot interaction, embodied
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1 INTRODUCTION

The study of the relationship between human creativity and
machines has fascinated artists and engineers for centuries.
The earliest machines mechanically reproduced activities
associated with human creativity and artistic expression:
playing musical instruments, drawing, dancing, and writing
(Schaffer, 1999; Riskin and Bregović, 2017). From ancient
automatons to recent applications of machine learning, artists
and scholars continually explore new approaches for
understanding and modelling expressions of human creativity
(Herath et al., 2016; Laviers and Egerstedt, 2014). Machines
designed for artistic expression function as both tools for art
making and sites for creatively exploring the nature of interaction
and human-machine interfaces. Identifying the hallmarks of
creativity and discerning whether or how these processes can
be replicated or assisted by computers or robots remain open and
highly contested questions (Boden, 1994; McCormack and
d’Inverno, 2012; Laviers and Egerstedt, 2014). Our interest is
in exploring how robots function as creative tools and catalysts
for artistic expression, and using the arts to help uncover new
approaches for designing interfaces for interacting with
machines. This article describes an arts-led, practice-based
research investigation that explores collaborative drawing
between human artists and an industrial robot. Rather than
starting with a predefined research question, we conducted a
series of workshops to explore how an industrial robot could be
a catalyst for human creativity. Our transdisciplinary research
team was comprised of artists, engineers and creative
technologists who worked collaboratively over a 6-month
period in a series of workshops. Together, we identified
creative and collaborative processes in visual art making
(namely drawing and painting) and explored how a robot
could participate meaningfully in those processes. This
inquiry led to the design of new tools that enabled the artist
to work directly with the robot through tangible interaction in
real-time. The intention of these tools was not to control or
produce a specific preconceived outcome, but rather to make the
robot more accessible as a tool for collaborative and creative
expression. The project resulted in several tangible outcomes,
including a custom interface for controlling and programming
robot motion (EMCAR), custom hardware for replicating
experimental techniques used in visual art, and an original
human-robot dance performance titled If/Then. We present
the outcomes of our artistic research, emphasizing the
systems theory models of creativity proposed by
Csikszentmihalyi and Getzels (2014) and Dahlstedt (2012).
We contextualize our findings in relation to other arts-
engineering collaborations as a way of thinking about the
relation between creativity and robotics. We try to avoid
reading creativity backwards from a finished product that
traces back to an initial idea or question (Ingold, 2009),
choosing instead to attend closely to the creative processes
and generative movements that marked our collaboration.
We reflect on the improvisational and spontaneous
dimensions of the process that informed the development of
an interactive system. Finally, we discuss the value of

transdisciplinary research teams and arts-led approaches for
designing and developing collaborative and creative interactive
systems.

2 BACKGROUND

2.1 Drawing and Creativity
Drawing is a hallmark of human creativity and one of the oldest
known forms of nonverbal communication. The caves in Lascaux
and Pindral feature paintings from c.13000B.C., and traditional
Indigenous rock art dates back even further (19,000 years). Earlier
still, ephemeral drawing practices in sand are part of oral
storytelling traditions by First Nations communities, where
storytellers combine oral and gestural narration during
storytelling rituals (Tafler, 2019). As an art form, drawing is
widely recognized as a “natural extension of the visualisation of
emotions, thoughts, and ideas” of human experience through the
figurative use of line and materials (Wells, 2013, p.36). As an
activity, drawing involves the physical act of an artist working
with and through materials and tools to arrive at some poetic
visual expression. We were interested in drawing as a way of
exploring human-machine creativity. Drawings are produced
through physical interaction with tools (a brush, charcoal, a
stick, the hand, a computer mouse) and different materials
(the canvas, oils or acrylic paints, sand, pixels on a computer
screen). Drawing involves tactile and sensuous knowledge—what
Tim Ingold calls textility—where the artist and materials engage
in an artful and responsive negotiation of feeling and form. For
Ingold, art works are never finished but works in progress and
involve emergent processes wherein the artist uncovers
possibilities by learning to “follow the materials.” In The
Textility of Making he writes, “As practitioners, the builder,
the gardener, the cook, the alchemist and the painter are not
so much imposing form on matter as bringing together diverse
materials and combining or redirecting their flow in the
anticipation of what might emerge” (Ingold, 2009, p.94). An
emergent view of art making holds that the material world is not
passively subservient to human designers and offers a view of
creative processes as a negotiation between the artist and
materials. Ingold’s characterisation of the relationship between
artist, tools, and materials invites parallels with Gilbert
Simondon’s view of how humans interact with machines
(Simondon, 2016). Simondon likens humans working with
technical machines to a musical conductor directing musicians
in performance, where the human operator acts as a coordinator
or organiser of a society of technical objects, determining the
tempo of performance and managing the margins of
indeterminacy inherent to machines. Ingold and Simondon’s
ideas about art making and human-machine interaction offer
new perspectives on the relationship between human artists,
machines, and creativity.

Assessing creativity in drawing usually involves an analysis of
the drawing itself as evidence of some kind of poetic feeling or
impulse that originates inside the artist. This limited
understanding that links creativity to either an individual trait,
cognitive process, or attribute of an art work has been eclipsed by
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systems theory models that conceive of creativity as a process
between cultural (symbolic) and social forces (Csikszentmihalyi
and Getzels, 2014; Csikszentmihalyi, 1998). Csikszentmihalyi
observed fine art students given a drawing task and developed
a systems-theory approach to describe the discovery-oriented
behavior as a model for understanding creative processes. Palle
Dahlstedt uses his own experiences as a music composer and
improvisational performer to develop a process-based model for
artistic creativity centered on the use of computational tools
Dahlstedt (2012). Dalhstedt defines creative practice as an
“exploration of a largely unknown space of possibilities” that
can be explored through an iterative process of interaction
between theoretical ideas, the attending material
representations achieved through implementation, and the
artist’s ongoing negotiation between these two processes
(Dahlstedt, 2012, p.210). The systems theory view of creativity
posits that technological tools can bemore thanmere instruments
for art making; they can embody complex behaviors and enable
new lines of thought that would not otherwise be possible. At the
same time, the nature of a tool sets the constraints for the
exploration. If we understand drawing as something more
than mere marks on a page (Walter, 1996) and instead regard
it as a creative activity predicated on processes that involve
human artists working with tools and materials, we can
recognize drawing as a dynamic and relational process.
Following Ingold, our intention is to move past the idea of an
artist imposing preconceived forms on inert matter and instead
consider human-machine interaction as a “looping,” generative
dialogue between the image in the artist’s mind and the tools and
materials at hand. Only then can we begin recognise how
tools—be it a paintbrush, a computer or a robot—can
negotiate the subtle and reciprocal relationships between the
artist and material and become part of the dynamic
assemblage that facilitates the creative endeavour.

2.2 Drawing Machines
Humans and tools are continually modifying each other (Stiegler,
1998; Hayles, 2012). This is true for tools developed for utilitarian
practices as well as those in service of artistic expression. N.
Kathrine Hayles explains the necessity of evaluating technical
objects, especially digital tools, not only according to their
function but as objects deeply embedded within larger social/
technical processes. Following Simonodon, Hayles refers to
“technical ensembles”: processes and practices through which
fabrication comes about, wherein the toolmaker herself is
embedded in both the practice and also in a society in which
the knowledge of how tomake tools is preserved, transmitted, and
developed (Hayles, 2012, p.88). The evolution of drawing
machines, devices that through analogue or digital means
engage in drawing with varying levels of human involvement,
are good examples of technical ensembles. In their introduction
to and edited collection of The Machine As Artist, Smith and Fol
Leymarie present an historical overview of drawing machines and
identify key conceptual frameworks and broader philosophical
questions that drawing machines pose (Smith and Fol Leymarie,
2017). The history of drawing machines includes analogue,
non programmable devices such as the pantograph and

pendulum-driven harmonographs, to programmable automata
capable of reproducing handwriting and drawing. Beginning in
the 1960s, artists like Desmond Paul Henry and Harold Cohen
pioneered the fields of machine and computer art. Henry’s works
with machine-generated effects are considered forerunners to
computer graphics, and Cohen’s AARON, an evolving, rule-
based software program has produced numerous drawings and
paintings for more than 40 years, mimicking the way that human
painters work with physical materials and developing an original
“style” of its own (Nake, 2012). These systems and art works
intersect in compelling ways with experiments in kinetic
sculpture, most notably Jean Tinguely’s spectacular drawing
machines. Tinguely built kinetic sculptures that produced
chaotic art works according to principles of chance and
unpredictability related to the mechanical designs of the
machine (Salter, 2010). Tinguely’s works were ultimately
valued more for their sculptural properties than the aesthetic
qualities of the drawings the machine produced, but they
succeeded in exploring creative possibilities of technical
ensembles.

Following Cohen’s pioneering work with AARON, numerous
HCI researchers and artists working in media art used practice-
led research to explore creative potential of computers for art
making. Within the field of computational creativity, artists
recognize the potential of software and other computer-based
tools to augment their creative processes, and, following systems
theory, identify those tools, methodologies and practices that can
support human creativity (Mamykina et al., 2002) (Quantrill,
2002). Michael Quantrill characterizes computers as “explorers,”
and uses drawing as a method of investigating human-computer
integration in artistic practice without de-centering the human
artist: “The idea is to use the properties of computing machines to
enable forms of expression that are unique to a human-machine
environment where the human is the focus, but the expression is a
composite of both human and machine, in this case a computing
machine environment” (Quantrill, 2002, p.218). Similarly, Oliver
Bown draws on the systems theory model and Alfred Gell’s
notion of primary and secondary agency in his theory of
computational creativity (Bown, 2012). Digital tools, like art
works, can be considered secondary agents, and hint at the
possibility of nonhuman agency that reveals “a gradient of
agency rather than a categorical division” (Bown, 2012, p.367).
While the subject of machine agency is compelling, we are more
interested in investigating robots as tools for facilitating creative
processes and artistic outcomes. To that end, the next section
considers examples of artists working creatively and
collaboratively with robots.

2.3 Robots and Art
The impact of computers on art making is well-established, but
only recently have researchers begun to seriously consider the
role of robots in art making. Given the connections between
computer art and robotic art, it is surprising how little overlap
there is in scholarship that addresses their entangled histories.
Our interest in drawing robots is motivated by a broader
interest in exploring how the performing and visual arts can
open up new pathways for robotics and embodied interaction
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(Jochum et al., 2017; Jochum and Derks, 2019). Following
Madeline Gannon’s work, we recognize how robots act as bridges
between virtual and physical worlds (“their minds are in the virtual,
but the bodies are in the physical”) and as such they are not
necessarily well configured or equipped for reacting to changing
environments or open-ended control (Gannon, 2018, p.138). A
robot’s physical embodiment and material instantiation give rise to
a particular set of concerns that computer art does not;
embodiment has practical implications for how robots perceive
and navigate the world and also for how we design systems to
control and operate robots (Fdili Alaoui et al., 2015) (Wainer et al.,
2006). We expand on the discussion of embodiment and
interaction in Section 6. Many pioneering experiments in art
and engineering collaborations are collected in (Salter, 2010),
which includes examples from early art and technology
performances (Loie Fuller’s work with dance, film and lighting)
and pioneering robot art works by Bill Vorn and Louis Philippe
Demers (Vorn, 2016) (Demers, 2016). Within the field of robotics,
Amy Laviers (Ladenheim et al., 2020), Catie Cuan (Cuan, 2021),
Petra Gemeinboeck (Gemeinboeck, 2021), and Marco
Donnarumma (Donnarumma, 2020) have experimented with
research strategies that explore dance and other forms of
corporeal expression between human and nonhuman
performers. While these works vary widely in aesthetics and
approach, they all share a commitment to exploring the
entanglement of human-machine interaction through the
staging of imaginative embodiments. Donnarumma uses the
term “configuration” to denote the “performative assembly of
human and nonhuman parts to create alternate forms of
embodiment” (Donnarumma, 2020, p.37). These are only a
handful of examples of trandisciplinary research investigations
that allow artists and engineers to explore creative processes
together towards new outcomes and insights.

Closer to the domain of visual arts, there are several examples
of sophisticated robots drawing systems that generate drawings
and dexterously work with physical materials to produce
impressive drawings and paintings, including (Gülzow et al.,
2018; Still and d’Inverno, 2019; Smith and Fol Leymarie, 2017;
Berio et al., 2016; Santos et al., 2020). In these instances, the
collaboration between artist and tools for the most part happens
via the software, and the human artist’s physical interaction with
the robot is not in focus. Other artists choose to work more
directly with the artist-tool-material frame, combining human
artists with robot tools in real-time interaction in shared physical
spaces. Sougwen Chun’s collaborative drawing performances
Chung (2015) and Patrick Tresset’s interactive portrait
drawing robot (Tresset and Deussen, 2014) are two examples
of drawing robots that account for tools as technical ensembles
and explore new art making practices between humans and
machines. Chun’s drawing performances with D.O.U.G.
(Drawing Operations Unit Generation 1) began with simple
mimicking gestures (similar to the pantograph), where a small
robot arm reproduced Chun’s physical gestures in real-time on a
shared canvas. It was the exploration of the materials, especially
the unintentional marks that punctured or slipped on the canvas,
and Chun’s improvised responses to these spontaneous and
unplanned actions that render the work compelling for the

artist. Similarly, Tresset’s performance installations with RNP,
a custom robot art and computer program for real-time portrait
drawing, interrogate the role of physical presence and
embodiment. The robot is programmed to draw in the artist’s
individual style, but the tools and materiality of the system
(ballpoint pen, canvas, writing desk, robot arm controlled by
servo motors, the webcam that observes the sitter and performs
small animations) all direct attention to the larger socio-technical
context in which the art work occurs. In both works, audiences do
not merely observe a robot that makes art but are invited to
observe the creative process of the technical ensemble at work,
watching how human artists and robot tools continually modify
and shape one another. Bruno Latour famously observed that tools
are “the extension of social skills to non-humans,” and these
performances poetically explore the implications of tools that
exhibit social and artistic agency (Casper and Latour, 2000). These
art works propose different models of interaction in robotic art that
account for the dynamic and temporal aspects of drawing and
evidence how artists and machines can work collaboratively and
creatively in ways that are not predetermined. We hope that a
discussion focused on processes of becoming and collaborative
creativity between artists and machines can help avoid dualistic
thinking of creativity as an either/or proposition (either a machine
can be creative or it cannot). We are less interested in replicating the
artist’s process than developing a better understanding of how robots
can meaningfully participate or intervene in creative processes and
designing tools that support such participation.

3 METHODS

The diverse methods used in this study reflect the
transdisciplinary nature of the research team. We draw equally
from the fields of arts and humanities, engineering, computer
science, and human robot interaction research (HRI).

3.1 Artist-in-the-Lab/
Researchers-in-the-Atelier
Somemodels of creativity consider creativity to be an internal and
solitary process, while others view creative processes as
collaborative, improvisatory, and social. We initiated a series
of workshops within the artist-in-the-lab framework. While every
member of the research team has some level of artistic
background, the named artist on the project, Valeria Rizzo
(Rizzo), was hired to work alongside academic staff. Other
members of the research team came from diverse
backgrounds: Carlos Gomez (Gomez) is formally the project
engineer and also a musician; Maros Pekarik (Pekarik) is a
creative technologist working with interactive media and
projections in live performance installations; and Elizabeth
Jochum (Jochum) is a human-robot interaction researcher
with formal training in theatre, dance and puppetry. The
project was assisted by Andreas Kornmaaler Hansen, a
graduate student in Engineering Psychology. The workshops
alternated between university laboratory facilities and the
artist’s studio. The workshops were characterized by an
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exploratory, generative view of art making. The collaborative
nature of our investigation acknowledges the significant role that
peers play in creativity (Csikszentmihalyi, 1998). In this case,
peers were not just the social environment or judges but included
other lab members involved in a related research project (Jochum
et al., 2020). Too often, we observe that artists are invited into
research labs as creative provacateurs or instigators but rarely
participate as full members of the research team. Our
collaboration revealed the very concrete institutional obstacles
when hiring artists to do research. It also revealed the challenges
of working across disciplinary borders, especially when working
with technologies that require specific knowledge or
competencies (for example, programming robots). It is worth
noting that these challenges are not rendered visible when artistic
outcomes are presented at festivals or museums; nor are they
traditionally discussed in literature. Despite the institutional and
conceptual challenges of trandisciplinary research, the possibility
of sharing material with multiple creative agents (e.g., other
researchers) from various domains allows for more complex
re-interpretations of the material. We wanted to create a rich
environment across different conceptual spaces where all
members of the research team could participate and contribute
equally. Therefore, the project involved close, sustained
collaboration where the researchers met regularly over the
course of several months. The frequent exposure to other
methods of working presented opportunities to participate
meaningfully and learn from one another.

3.2 Workshops
The first workshop was conducted in Rizzo’s studio, investigating
aspects of collaboration through collaborative drawing and
painting techniques and tools. We explored how these
techniques could be adapted to the context of robot-human
collaboration and attempted to better understand the artist’s
creative processes. The second workshop took place in a
robotics lab, with an emphasis on trying out new techniques
with the robot and observing the interaction between Rizzo and
the robot. Alternating between these two workshop formats and
locations, we explored working in two specific domains of
creative collaboration. The primary aim was to use all the
tools with similar capacity so the artist did not have to rely on
engineers to get things working, and the engineers did not rely on
the artist for specific instructions.

3.3 Video Cue Recall
Video cue recall (VCR) is an ethnographic method used in the
social sciences and humanities (Bentley et al., 2005). Originally
intended to help reduce bias in self-reporting protocols, this
qualitative method aims to elicit concrete feedback from
participants regarding their experiences or to conduct domain
analysis. VCR has also been used in human-centered computing
to gain insights into interaction behavior. We replayed the video
of the entire performance of If/Then (2020) in the presence of all
authors. First, Rizzo was asked to comment on her overall
reactions to the performance. Then Gomez, Pekarik, and
Jochum took turns posing questions and asked Rizzo to
comment on specific moments in the performance. The

session was recorded and transcribed using SonixAI
automated transcription and reviewed and corrected by
Jochum, Gomez, Rizzo and Pekarik. Jochum then reviewed the
transcripts and the authors coded them according to thematic
analysis. All first-person quotes from the research team that
appear in this paper were obtained in this manner.

4 MATERIALS

Collaborative robots, also known as cobots, are a special class of
machines. Cobots are an increasingly significant branch of
industrial robots with a particular advantage over other types
of industrial robots: they are designed to work in close proximity
with people and are equipped with security features that adjust
the force and speed of the movements to render them safe for
close interaction.

4.1 UR3
The main hardware is the UR3, a cobot manufactured by
Universal Robots. It is the smallest of the series, with 6° of
freedom and a reach of 50 cm. This high precision robot is
able to move at high speed while maintaining high levels of
accuracy.

4.2 Initial Software
The initial drawing software was developed by Hinwood et al.
(2018) and described in (Hinwood et al., 2018). The software was
initially developed as a tool to study human robot interaction
during a collaborative drawing task (Pedersen et al., 2020). The
program works as follows: first one calibrates the real world
coordinates of the canvas. Then raw images are entered as inputs
to the software where the contours of the objects are extracted
into key points, which are then translated to real-world
coordinates. These coordinates are sent to the robot
sequentially, so the program plots the contours that result in a
drawing. The software also allows one to store animations by
manually introducing a few select robot poses that the robot can
execute sequentially to make the robot appear expressive and
communicate with the drawer. The program uses a blocking
protocol to interface with the robot, which ensures controlled
speed and acceleration and making the robot safe to interact with.
One drawback of this system is that the interface is blocked until
each command is finished, meaning there is no possibility for
real-time control. Our experience with Section 4.2 informed the
development of the new software program EMCAR Section 4.3.

4.3 EMCAR
To overcome the limitations of the early system, we developed the
Embodied Controller for Animating Robots (EMCAR), a custom
software tool for controlling an industrial robot arm that offers
direct, embodied interaction for generating and programming
animation sequences by manipulating the robot freely. This
technique gives people with little technical knowledge the
opportunity to work directly and intuitively with the robot as
they would with other materials. EMCARmakes generating robot
performances easier by allowing people to directly puppeteer the
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robot, and also allowing for real-time teleoperation by using
different inputs. For example, a Wacom digital drawing
tablet allowed a person to control the motion of the robot
directly through a stylus, shown in Figure 1. The EMCAR
implementation is built on top of open-source software and
made available to the community2. EMCAR was subsequently
stress tested in the development of a human-robot dance
performance described in Section 5.2, where a dancer
interacts with a robot in two modes: one as a puppet with
pre-recorded movements and the second with her body,
making use of a depth camera and computer vision software
that maps the dancer’s body position into the robot task space.
Although it was developed as a tool for artistic performance,
EMCAR has potential for diverse applications beyond art.

4.3.1 Real Time Robot Interfacing
Interfacing with a robot typically involves using ROS (Robot
Operating System) or the robot’s individual API, using functions
that block the robot until it performs a certain action. This means
that the robot can be easily tele-operated, with the limitation that
the robot is prevented from doing any other movement until the

command is completed. This feature gives full control of different
parameters, such as speed or acceleration, while ensuring
millimeter precision. On the other hand, it means the robot
cannot adapt to rapid changes and fluid inputs as would be
expected in a performance. In other words, the system is not Real-
Time Controllable. RTDE, which stands for Real Time Data
Exchange, is a protocol recently implemented by Universal
Robots which allows to interface the robot in real-time. The
robot runs a loop with a short time of iteration from 0.4 to 2.0 s.
At the same time, an external device can stream to the robot a
target position, which is updated several times per second. At the
end of every iteration of the robot loop, it will try to reach the last
target position read. This leaves the robot free to adjust the speed
and acceleration to meet the target position in time, which can be
dangerous in close interactions with people and objects. Using a
short iteration time (i.e., 0.8 s), it can smoothly follow any
trajectory generated in real time which doesn’t contain abrupt
changes during the iteration time. It also introduces an intrinsic
latency of this time, which is noticeable when tele-operating the
robot and compromises the detail of the drawing in favor of
performance time.

4.3.2 Multimodal Robot Interfacing
As a result of the different workshops described in Section 3, two
different modes of interfacing with the robot were designed: X-Y

FIGURE 1 |Rizzo in the HRI lab, experimenting for the first time with teleoperating the UR3 using a stylus and digital tablet. The program had several modes: mirror,
follow, and replay.

2The complete code for the EMCAR system can be found in the following
repository: https://github.com/marospekarik/ur-interface.
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Painting and Puppeteering. All this was commanded using a
simple graphic user interface that allows access to all the
functionalities with a simple mouse click. The diagram of
the internal workflow of EMCAR is described in Figure 2
and is explained in the following paragraphs. For the X-Y
Painting mode, we designed an intuitive calibration process
that allows the artist to point the four corners of a canvas on a
horizontal table. This process stores the real-world coordinates
where the canvas is located. After calibration, EMCAR can
receive X-Y coordinates from an external device or software
(for example a stylus or another sensor) and map this position
into real world coordinates of the canvas and send them to the
robot. As a result, the artist can use, for instance, a drawing
tablet to draw together with the robot. As the X-Y input is
agnostic, any other input in this format is valid. During the
performance of If/Then the input was the X-Y coordinates of
the artist on the dance floor, extracted using a depth camera
with computer vision, so the robot could be controlled through
the artist’s movements.

For the puppeteering mode, another approach was used. Here
the robot is set to “free mode,” which releases the motors and
allows the artist to adjust the robot manually into a desired pose.
Position information for each pose during the sequence is
retrieved in samples by EMCAR and stored. Each sample is
composed by a time stamp and the endpoint of the end-
effector. While recording, the artist can puppeteer the robot in
an intuitive manner with instant feedback of what the animation
will look like. This technique provides a sensuous and tactile
experience for the human artist, allowing her to explore the
textility of making, as a puppeteer might. The process is
redolent of Ingold’s description of how an artist does not
impose form, but rather learns to “follow the forces and flows
of materials that bring the form of the work into being” (Ingold,
2009, p.97). The embodied controller has an added advantage in
that it saves an enormous amount of time and creates lifelike
movements that cannot be achieved as easily with other

animation methods. Once the animation is recorded, it can be
replayed: EMCAR sends the desired poses in real-time, using the
same time of iteration between samples used during recording.
We elaborate on the implications and assumptions of embodied
interaction in Section 6.

4.3.3 Recording and Playback
Following the puppeteering approach, X-Y Painting was also
developed to record and save a drawing as an animation. As a
result, the artist can store new drawings and puppetry
animations in different animation banks to be used later
when devising performances. These animations can be
replayed by the artist (or a second operator) during a
performance, moving between tele-operation on the fly and
pre-recorded animations, giving more flexibility to scripted
performances using both techniques.

4.4 Tablet
Graphic drawing tablets are widely used devices. They consist of a
sensitive surface and a special pen that digitizes the physical
strokes of a person drawing. The simplest dataset that can be
obtained is the real time X-Y position of the pen, which includes
information about whether the pen is touching or hovering over
the tablet, and the applied pressure and angle of approach. The
tablet provided a straightforward and embodied method to
control the robot and produce new drawings. At the same
time, it is an excellent tool for instantly obtaining X-Y
positions, and was used extensively during development and
troubleshooting. It quickly simulated any X-Y position
generator; for example, in the performance the X-Y position
was retrieved from a depth camera using motion tracking
software.

4.5 End Effectors
The end effector used for drawing is a 3D printed tool, shown in
Figure 3, that allows us to attach different drawing tools (e.g.,

FIGURE 2 |Diagram of internal functions of EMCAR.In the left are the different inputs, X-Y position and Puppeteering. In the right is the robot interface. In themiddle,
inside of the orange square is the internal modules of EMCAR that create its functionalities.
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pens, markers and brushes) to the robot and thereby expand the
artistic possibilities by allowing for a range of drawing and
painting instruments. It consists of a hollow cylinder with a
spring in the bottom and a cap that can be adjusted with a notch.
The cap has some millimeters of headroom, allowing a small
tolerance that allows for some give when drawing. The main
drawing instrument used during the workshops were a ball pen
with a ultra thin trace, different common white board markers
with a thicker trace, a Chinese ink brush that plotted a more
organic-looking stroke, and finally a professional thin white
marker over a black paper that created more striking contrast
and had a better finish. The strokes were unique to each
instrument, and we experimented with different tools (ink
brushes, pencils, markers, etc.) that each altered the
appearances of the drawings. For If/Then, we chose to use the
white marker on a black canvas, as it generates more aesthetically
appealing results in a dark performance space. Markers and ball
pens were used primarily in the workshops and development
because of their robustness and low cost.

4.6 Projections
During workshops, we experimented with floor projections.
Two ultra short throw projectors were mapped and aligned to
create an interactive display on the floor. The projectors were
positioned facing each other to create a seamless image by
eliminating shadows. A depth camera made it possible to track
the position of the performer in the space using simple
computer vision techniques such as background subtraction
and blob detection. The field of view of the camera was mapped
with the range of the projectors that allowed for the ability
to project objects at the artist’s feet according to either the
robot’s position on the canvas, or the artist’s position in the
room. Projection mapping and computer vision processing
were made in the TouchDesigner (Derivative, 2021), a node-
based programming language for real-time interactive
multimedia applications.

4.7 Limitations
It is important to acknowledge the specific limitations of both
hardware and software in our project. The main limitation we
experienced was the robot loop time, mentioned in Section 4.3.1.
The RTDE protocol has an intrinsic robot loop time, where the
robot tries to reach the position sent in the previous iteration.
This time lasts 0.8 s, which introduces a corresponding delay.
Most importantly, it overrides the data that is received between
iterations, meaning that positions with less than 0.8 s are lost,
introducing a “low pass filter” of the drawing strokes. Therefore, if
the artist draws a zig-zag line with a frequency higher than 0.8 s,
the robot won’t be able to draw in time. This limitation also
applies for the puppeteering function, but is less noticeable
because significant changes occurring in less than 0.8 s only
occur when moving the robot in a very aggressive manner.

5 RESULTS

Identifying which outcomes qualify as results can be
difficult—and perhaps even paradoxical—when reporting on
process-led (as opposed to product-driven) creative practice.
To narrow our focus, we include a summary of the workshops
wherein we identified specific artistic processes of visual art
making. We then report on some of the other tangible
outcomes, including a live dance performance. We also
include results from the video cue recall session we conducted
with the research team, as this yielded insights relevant to our
discussion.

5.1 Workshop Summary
As mentioned in Section 3.2, two types of workshops formed the
core of our research investigation. Both workshop formats were
inherently distinct and designed to move the research team out of
our comfort zones while also allowing space for knowledge
translation between the fields. Initial workshops aimed to be a

FIGURE 3 | (A) 3D representation of three of the objects used as an end effector to attach different drawing tools, such as markers or brushes. It contains a sprint in
the bottom to adjust the tool. The object at the right is cut in half to display the inside.(B) Image of the end effector with ink brush attached to the UR3.
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place for exchanging perspectives by introducing respective
processes to one another. Rizzo led workshops on
collaborative drawing and painting in her atelier. During these
participatory workshops, the research team was invited to work
together on a shared canvas (Figure 4) and to experiment with
different materials and tools that are part of the visual artist’s
toolbox. The team spent time with various tools, trying to
understand the internal process of what might encompass a
drawing experience through physical interaction with the
materials. The second series of workshops were conducted in
the HRI lab at the university, where the research team tried to
identify and translate the knowledge gained from the collaborative
drawing workshops to specific methods of collaborating and co-
creating with the robot (Figure 5). Gomez and Pekarik
demonstrated UR3 capabilities through an existing software for
collaborative drawing described in Section 4.2. As the software
only reproduces pre-made drawings, the interaction was simply
too narrow for Rizzo to work with. Thus, we decided to extend
the design requirements. Observing and experiencing first-
hand how human collaboration and co-creation developed
during the workshops in Rizzo’s atelier, the team understood
that the real-time human’s creative contribution as an input to
the system and applicable responsive output from the robot
might open more possibilities for creative encounters.
Therefore, we prioritized the development of a system
capable of real-time robot interfacing, eventually called the
EMCAR tool described in Section 4.3.

The combination of artists’ backgrounds in dance, circus
performance, theatre, puppetry, music and interactive art
influenced the next development stage. Consequently, we
expanded the activity outside the drawing format, which led us
to devise a performance for live audiences. We implemented tele-
operation features controlled with the stylus (described in Section
4.3.2 and seen in Figure 6), which gave Rizzo a sense of the ability
to control the robot and produce drawings. However, the full

control over the system had adverse effects on the aspects of co-
creation. Rizzo was less interested in having precise control over
the robot to intentionally make marks on the page, and more
interested in interfacing with the robot intuitively, the way she
worked with other tools and other artists in the first workshops.
What is important to note is the transition from visual art to
the study of physical motion. The experiences of co-creation
between human-partners through tools on a shared canvas
opened up a line of inquiry that we had not fully considered:
the movement of the artist and the negotiation between the
human artist and the robot was essential for creating an
experience of collaboration. From the second workshops, Rizzo
expressed an interest in moving together with the robot to
produce a drawing, and thus our focus shifted to creating an
interface that allowed Rizzo to work in a more physical, though
less deterministic, way with the system. We focused on ways to
translate Rizzo’s motions to the robot’s body, drawing on corporeal
empathy andmaking explicit the connection between human-robot-
tool (Fdili Alaoui et al., 2015; Sheets-Johnstone, 2011).

FIGURE 5 | (A)The research team engaged in several workshops at the
artists’ studio, exploring various painting tools and techniques with different
instruments (sponges, stencils, ink pens, pipettes, etc.). (B) Artist (Rizzo) at the
HRI lab, testing an initial drawing collaboration using EMCAR with the
UR3. EMCAR allows the artist to draw simultaneously on a shared canvas in
real time, as in the artist’s studio. The system was an improvement over the
pre-programmed drawings of the previous version of the software.

FIGURE 4 | The research team engaged in weekly workshops at the
artist’s studio, engaging in collaborative drawing and painting tasks, including
collaborating on a large physical canvas.
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Once we translated dance moves to the robot’s motion, we
began to conceptualize the entire physical space as a canvas. The
artist’s position and movement in the space were highlighted by
projected animations on the floor described in Section 5.2.3 and
seen in Figure 7, mirroring the stroke on the physical canvas
drawn by the robot. It was important to work with a technology
that would allow Rizzo to have freedom ofmovement without any
unencumbered body movement. Pekarik and Rizzo had
previously collaborated on an experimental performance
involving physiological sensors, motion tracking and dynamic
projection mapping3, and Jochum had previously developed an
improvised robot-dance performance (Jochum and Derks, 2019).
Given our shared background in performance technologies, we
decided to work with the combination of depth camera and
projection mapping techniques to make the material more
tangible for the performers and the audience.

The last workshops in our process focused mainly on devising
the performance of If/Then, incorporating sound, lights, live-feed
video cameras, and visuals that complement the performer’s
actions, shown in Figure 8. The choices concerning the
narrative are presented in Section 5.2.1. To further convey the
narrative aspects of the performance, the EMCAR tool was
extended with a puppeteering mode described in Section
4.3.2. The immediate recording and replaying of the
animations offered a high level of physicality and embodied
interaction which allowed the team to work together to
intuitively explore possible motions, illustrated in Figure 9.

5.2 Performance
The outcome of the workshops resulted in an original performance
staged three times at the Danish National Museum of Science and
Technology. The performance was conceived as a complementary
program for the interactive drawing installation that ran during the

day. The performance was not meant to be a final showing, but
rather a public demonstration of a work-in-progress. The duration
was around 15min, and was performed on the half hour, with three

FIGURE 7 | Interactive projections on the floor track the motion of the
Movement trajectory traces represented with a projection on the ground.

FIGURE 6 | The research team in a workshop at the HRI lab,
experimenting with an early prototype of teleoperating the UR3 using a stylus
and digital tablet.

FIGURE 8 | The research team iterating the design for the projection
animations and performer tracking during a workshop at the RELATE lab. On
the screen is projected a real-time feed of the performer and animations
captured from a video camera mounted above.

3Video of the In-Pulse performance at https://youtu.be/0nMKvoos6TQ
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performances in all.4 In Figure 10 is presented the setup used in the
performance. The initial agreement with the museum was to exhibit
an interactive drawing robot, similar to the one described in
(Pedersen et al., 2020), although this time with a smaller robot
(UR3 instead of UR10). The process of generating a public
performance in a space that was not designed for performance,
and with a producing partner with no prior experience with live
performance events, meant that the performance came into being
because of circumstances surrounding the installation rather than a
specific idea or pre-formulated script. In this way, it echoes the
process-oriented view of artmaking and technical ensembles view
described above. The narrative and dramaturgy of the performance
was a direct outcome of the practical necessity of running an
installation during the day that would seamlessly transition into a
performance without disrupting the museum. The public
presentation, although documented and recorded, was never
considered a finished product, but a material expression of the
investigation of the limits and possibilities of real-time human-
machine interaction, a process of becoming as described by Ingold.

5.2.1 Narrative
The ability to experiment physically with the robot and work with
the projection system inspired Pekarik and Rizzo to form a narrative
around the already existing research activity conducted with the
robot. Therefore, Rizzo’s role as a research assistant was integrated
into the final narrative in favour of our research continuation to
explore her partnership with the robot further. The narrative
followed the journey of a team of researchers undertaking a
routine examination of a robotic arm tasked with a routine
drawing operation (standard procedure during our investigative
practice). Arriving at the workplace, the researchers find the
robot stuck with an unexpected drawing output on the desk,
shown in Figure 11. The anomaly indicates a possible bug in the

robot’s system that could have occurred overnight. The operators
(members of the research team) restart the system and perform
check-ups that confirm the robot is ready to resume work. However,
during these procedures, the robot becomes distracted and breaks
away from the task to look around. The researcher tasked with
supervising the robot suddenly notices the strange behavior, and the
robot ceases the predefined drawing task and begins to create a new
drawing that is mapped to the researcher’s position in space. Taken
by surprise, the researcher responds with curiosity, and subsequently
engages in a movement exploration to investigate the mappings of
hermotions in space to the robot’s movement on the canvas, and the
corresponding light drawings that are projected in real time on the
floor. The exploration intensifies until the robot suddenly drifts off
the canvas, inadvertently scattering items across the table. The
performance ends with researcher and robot facing one another
in tableaux.

5.2.2 Puppetry
During the workshops, the performer recorded various robot
animations with EMCAR’s recording functionality described in

FIGURE 10 | Overview of the final of the system and implementation
details for the live performance. A projector mounted on the ceiling projected
real-time video capture from the performance from four different angels
(including a camera mounted directly on the robot) on one wall in the
gallery space. Two floor mounted projectors using sensor data from the
cameras and projected lines that corresponded to the movement patterns of
the dancer with lines on the floor.

FIGURE 9 | Rizzo works with the robot during a puppetry workshop at
the RELATE lab. Using physical manipulation, EMCAR allowed the artist to
work directly with the robotic arm to choreograph, record and playback
animation sequences.

4Video of the full performance If/Then available at https://vimeo.com/491681339
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Section 4.3.3. Two types of animations were recorded, using
puppeteering mode and drawing mode described in Section
4.3.2. In puppeteering mode, the artist recorded animations by
physically manipulating the robot to the desired sequence. This
made it possible to create expressive human-like animations for the
robot like the “hitting the cup” shown in Figure 12. The drawing
mode allowed the artist to recreate a real-time drawing process
captured on the tablet, and was used for the drawing loops on the
canvas. No attempt was made to hide or mask the operation of the
robot: during the performance, animations were cued and executed
by team members seated onstage and in full view of the audience.
The performance combined a mix of pre-recorded and live tele-
operated actions that, together with the performer’s improvisations,
meant a unique performance (and drawing) each time.

5.2.3 Interactive Projections
The system included three projectors, one that projected
composite, real-time images from four unique camera
angles, and two that projected on the floor overlaying each
other where the artist stood, creating an interactive “screen”
that was mapped with the tracking camera data and the robot
canvas. The floor then became a real-time visual feedback of
the movements of the robot showing the path that the robot
was following, shown in Figure 13. This setup allowed
moments for the artist to break “eye contact” with the
robot, shifting her attention and allowing more general
freedom of movement in the performance without breaking
the dialogue with the robot. Together, the multiple projections
created an interactive environment that created an immersive

FIGURE 11 | The team performs If/Then performance at the museum. Rizzo works with the robot and executing a choreographed sequence in front of the
audience. She controls the robot in “free mode” to get a drawing out of the drawing area.

FIGURE 12 | The robot after performing animation of hitting a cup from the table during the If/Then performance at the museum. EMCAR was used to record the
animations before the performance and replay them in the cue moments.
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space for both the performer, the operators, and the audiences,
inviting the possibility for multiple perspectives on the scene as
shown in Figure 14.

5.2.4 Sound and Movement
The sound for the performance was generated using a contact
microphone attached to the robot. The natural sound of the robot
motors are fed through a filter that produces a grating, crackly
sound that modulates with the movement of the robot. When the
robot draws, the noise from the sound of penmaking contact with
the paper is amplified, calling attention to the acoustic properties
of drawing. The sound is sent through two powerful speakers
positioned overhead, resulting in a loud and uncanny soundscape
that amplifies the presence of the robot. In addition, we used a
Korg Synthesizer Monotron to add two special effects, delay and
distortion, to enhance the sound at key moments during the
performance. A keyboard was used to add a simple melody in at
the climax of the performance. The sound was performed live by
Gomez, the team engineer who is also a musician. From the
outset, we knew that we wanted to explore the sounds of the
robot, rather than a separate score.We conducted some early tests
in the lab with contact microphones on the robot, that produced
sounds that were passed through filters to generate interesting
effects. This approach was inspired by previous work with contact
microphones on robots and also work by Schacher and Wei
(2019) that mapped brush gestures in Chinese calligraphy with
sounds processes during a live performance with two performers
on a shared canvas (Schacher and Wei, 2019). Our explorations
revealed that we can use the amplified signal from contact
microphones to achieve sonification of movement without any
synthesis techniques. The performer’s body movements would
facilitate the creation of mechanic sounds, strengthening the
robot’s presence and also making clear to the audience the
connection between the performer’s movements and the
robot’s motions that produced the drawing.

5.3 Video Cue Recall
We conducted a video cue recall session following the
performance. The topics of the conversation were not
limited to the performance. Rather, the video was used as a
baseline for generating a discussion about various aspects of
the collaboration, including the initial research stages. Thus,

FIGURE 13 | Projectors facing each-other, creating an interactive display. The display is mapped with the tracking camera and the robot canvas. The floor
becomes visual feedback of the artist’s movements controlling the robot.

FIGURE 14 | The artist performs If/Then performance at the museum.
The four channel projections on one wall of the gallery were comprised of four
real time cameras that alternated throughout, giving the audience a chance to
observe the performance from various perspectives. The video channels
were VJ’ed live by Pekarik. Jochum designed and operated the lights, and
Gomez performed live mixing of the real-time sound score.
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the video session evolved into a semi-structured interview. We
attempted to steer the conversation back to the performance,
which played continually on a loop throughout the interview.
We sometimes paused the playback, either slowing down or
speeding up sections to focus on specific moments and review
them. Loosely following the principles of thematic analysis, we
identified three themes from the session: Interaction as Game,
Improvisation as Dialogue, and Embodiment. Considerable
discussion was given to possibilities for revising the
performance or expanding it in other domains. We
summarize these three themes with the view that they
might be useful for facilitating creative expression for other
artist/researchers interested in human-robot collaboration.

5.3.1 Interaction as Game
Reviewing the performance, Rizzo described her interaction
with the robot both during the performance and during
the workshops. Gomez, Pekarik and Jochum were
impressed by Rizzo’s candor when expressing her lack of
enthusiasm for the original drawing software introduced
during Workshop #1 (Pedersen et al., 2020). She expressed
her dissatisfaction not only with the artistic quality of the
drawings, but primarily because she didn’t see any possibility
for real interaction with the system: “The very first drawing
program involving robots that you presented to me was totally
uninteresting. I was really in doubt about how it could be
useful to me as an artist. This machine that is making (and I’m
sorry to say it) but very stupid, simple and ugly drawings. And
I was like, well, “How useful is it for me?” and “How
entertaining is it for people looking at it?” “How
interesting is it for artists?”” Rizzo elaborated that while
the interaction with the first software program describe in
Section 4.2 was centered on a simple guessing game (image
recognition), the EMCAR tool allowed her to develop a more
complex game that was open-ended and playful, thereby
giving her more possibilities to explore as an artist: “If a
person is looking at a robot drawing an elephant, people
might say, ‘Ah, it kind of looks like an elephant.’ Or
‘Yeah, it kind of looks like an animal.’ And the game
finishes there. To attract interest from people, you have to
start a game. And the game finishes the moment people realize
what the robot is drawing. There is nothing else to guess,
there’s nothing else to see, or to imagine. You don’t want to
discover more. So I think that we should leave the game a bit
more open and unclear, open to investigation and
imagination, so the interest of the people stays high, at
least for a longer time. And with this one, I think it’s easier
to keep it open for longer time. And also, it’s more interesting
because every single person will see different things and will
be inspired in different ways.” Rizzo also referred to the entire
performance situation as a type of game, this time invoking
the suspension of disbelief that is intrinsic to all theatrical
productions: “There was this game (that obviously we know
was fake), but there was this game that it was looking like the
machine was still expressing itself, even though it was
following me. And in that way, I feel inspired and I feel
that I could work with it.”

5.3.2 Improvisation as Dialogue
When asked about generating improvisation during the
performance, Rizzo referred to improvisation as a kind of
dialogue centered on nonverbal communication: “For
improvisation as a solo performer, I believe you follow an
inner path. So there is a dialogue inside of you. And for the
dialogue you just decide who you are talking with. And
sometimes you’re talking with your audience, sometimes
you are just talking with yourself, in this case, sometimes I
was “talking” with the robot. But you decide where to go.
You decide which language you want to talk. You decide if
you want to stay silent. You decide if you want to laugh or
if you want to scream. So as a solo performer, life is easier.
If you are in a group, you constantly have to deal with
the others, to consider the others, look at the others,
listen to the others. That is why improvisation in a
group can be so difficult. Sometimes you lose inner
concentration, you lose the inner peace that allows you to
be clear in your intentions, in your dialogue intentions, what
you want to say. Because a performance is nothing but a
speech. You are saying something. And if you are in a
group it is very difficult. That is why normally group
improvisation, they have kind of boxes, or boundaries, or
pre-decided limits like, if all of the sudden one person is
doing this, then everybody follows that.”

5.3.3 Embodiment
When asked about working with EMCAR, Rizzo described the
software presented in the early workshops, which used pre-loaded
images and didn’t allow for the ability control the robot in real-
time. “I remember when I arrived in the lab, and you presented
me with the robot that drew from files that you physically put in
the computer, and I saw how the robot just recreated the drawing
in a very precise and ugly way. I thought, “You know that we have
printing machines, right?” Obviously I’m not trying to take down
all the work that was behind it, but as a person that doesn’t know
anything about programming, I believe that others would also
think the same thing that I did.”Without being prompted, Rizzo
compared the first software program to her experience working
with EMCAR, beginning with the tablet: “So now you have a
machine that I think any other person might find interesting.
Because, again, we have inputs that we can put through the tablet
[..] so it’s not drawing by itself, but it’s drawing through the hand
of another person, and creating amazing landscapes for
performers.” Rizzo was also excited about the expanded
possibilities offered by the puppeteering function: “Even a
robot that is a performer itself, because of the puppetry
movement, that is actually an awesome thing that I really got
inspired by. I thought, “Ohmy God, you could do so many things
with that!”And again, you also showed that it was very interesting
for people to try it out. Through the puppetry movements, people
also realize better how to express themselves. Like, if I want to
express anger, what should I do in order to be simple? If I want to
express sadness, what should I do? So people also realize more
how to express those feelings through clear movements made by a
machine that is absolutely without personality—no feeling, no
facial expression—just a machine. The robot doesn’t even have a
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fake face, it doesn’t even have eyes. But still, with the right
movements, that machine is alive and you turn it into a sad
machine, an angry machine, a happy machine. For me, on the
inside, it was very important because I was guided by the robot,
but I also felt that I was guiding the robot.”

6 DISCUSSION

Our project began with a custom software tool that allowed for
collaborative drawing with a robot. The first drawing tool was
rather naive, and the initial work did not include any
collaboration with artists. We assembled and engaged a
transdisciplinary team of researchers, including a
professional artist trained in classical painting, dance, and
circus performance, to explore the creative potential of
human-robot interaction. We did not have a predefined
goal or research question at the outset. Instead, we
proceeded from an arts-led, practice-based research
perspective to explore possibilities for human-robot
creativity. Our motivation was to identify creative processes
associated with visual art and understand where and how a
robot might meaningfully intervene in these processes to
support human creativity. When we began our project, we
had no idea that we would end up making a dance performance
nor did we have an idea of what tools would be necessary to
make that performance realizable. This is evidence for how
arts-led, practice based research can facilitate discovery-
oriented behavior through discovered-problem situations.
(Csikszentmihalyi and Getzels, 2014). The tools we
developed were those that the artist needed, born out of
exploratory practice and the textility of making and not
from some preconceived idea that originated in the
engineer’s or the artist’s head. The focus on process-led
discovery also called attention to the dynamic relations
between artistic team, tools, and materials, and eventually
the audience. In the systems theory model, creativity is not
an attribute inherent to a product or artefact, but depends on
the effect it is able to produce in others: “What we call
creativity, then, is a phenomenon that is constructed
through an interaction between producer and audience”
(Csikszentmihalyi, 1998, p.314). On the most basic level,
our project demonstrated how the robot as an interactive
system came to be regarded as creative because the
performer shifted in her response and reaction to it through
a constructivist approach. Through the tools and performance,
Rizzo gradually came to regard the system as interactive, as
something that she could actually work with. Rizzo’s
characterisation of both the performance and the
interaction with the robot as improvisatory and dialogic
echoes Ingold’s concept of creativity as a becoming process
that brings together diverse materials by “combining or
redirecting their flow in the anticipation of what might
emerge” (Ingold, 2009, p.94). The dialogue that emerged
was not only between the performer and the robot, but
involved the performance environment (projected light that
animated the floor in response to the performer’s movements),

materials (brushes and ink, canvas), sound, and the audience.
Like Simondon’s technical ensemble, Rizzo became a kind of
conductor during the performance, coordinating the action
and network of tools and materials as well as the activities of
the other members of the artistic team seated onstage at their
computers.

Observing her performance with robot, Rizzo described her
interaction with the robot as a kind of game. The strategy of
game as a concept for designing has been studied in the context
of interactive media art, (Kluszczynski, 2010), but has yet to be
taken up in human-robot interaction. According to
Kluszczynski, the Strategy of Game organizes events and
outcomes that emerge from the interaction itself. A basic
characteristic of this strategy involves a specific task to be
performed, where each participant has access to the rules and
tools of the game and a certain amount of space. The strategy
of game differs from games because it draws the attention of
participants “not only toward the tasks that are outlined, but
also toward the interaction’s course, its architecture, relations
between the game’s structure and its properties, and also the
other discourses included in the event.” Art works that utilize
the strategy of game “place in the discursive opposition not
only the player and the game, but also the process of playing, in
this way gaining the possibility to make all these aspects of the
game and the game world as understood generally debatable”
(Kluszczynski, 2010, p.8). Another feature of this strategy is
that it allows for the possibility to approach metadiscursive
issues that are not directly connected with the game or
outcome, thereby enabling the artwork/interaction to
develop discourses within its own structure that are critical
toward the game/task. One can imagine approaching
interaction design and interfaces for human-robot
interaction that allow for this kind of critical engagement.
The result could be an interface that aims at intuitive, natural
interaction while making clear the underlying logic and
limitations at work in the system.

Artists’ experimentation with conceptual and material
representation plays an integral part in the creative process
(Dahlstedt, 2012). The artist can explore more intuitively the
possibilities of what a robot can do when the system offers
interaction in a natural way that echoes her process of making,
not only the outcome or product. Embodied interaction is an
interaction with technology that offers an opportunity to interact
with the system naturally. As Dahlstedt (2012) points out, new ideas
are more likely to emerge from the iterative process where the artist
is directly engaged in a dialogue between conceptual and current
material manifestation. The important aspect is that the material
offers the possibility for this type of this communication—like a
sculptor working with marble. The advantage of a system that uses
embodied interaction is that the artist is empowered to refine
possible conceptual and material spaces with more ease. Working
through the material’s resistance can challenge the artist’s desire to
shape the form. As mentioned in Nake (2012), artistic expression
requires that the artist finds creative ways to work with or through
resistance of the material, in order to shape it. Physically, materials
occupy a spectrum of resistance. According to Dahlstedt (2012),
tools offers navigation in the limitless space of intrinsic material
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possibilities, but only along the paths that the tools provide. If
navigating those paths can become intuitive, the process of
exploration is accelerated, which results in an artist’s expression.
In this sense, our program stands apart from algorithmic and digital
art. Even though we were working with software, the nature of the
system, through its embodied interaction capabilities, influenced
how we navigate that space of possibilities. For instance,
programming robots using embodied control allows for greater
accessibility that makes working with robots more accessible for
people without engineering or computer science backgrounds. We
took inspiration from puppetry, where traditional puppeteers enjoy
immediate feedback by working directly with the material/puppet.
This creative process typically depends on immediate response and
force feedback of the animated object, which help the artist to design
choreography intuitively and create expressive movements/
animation. For artists not used to working with technology,
working without this direct feedback can be challenging. The
ability to control the robot with her body or through a stylus
gave Rizzo a completely new perspective on the machine: “It’s a
completely different machine. Now, it’s a colleague, it’s a pal that I
would like to work with. I’m looking forward to work again with it.”
The importance of embodied computing and its relevance for
meaning making and perception is well documented (Wainer
et al., 2006; Sheets-Johnstone, 2011; Fdili Alaoui et al., 2015).

Recent scholarship in HCI, informed by Disability Studies and
critical feminist scholarship, has highlighted the ways in which the
conventional approaches to design for embodied interaction are
highly problematic (Giaccardi andKarana, 2015; Shildrick, 2013). As
Katta Spiel notes in (Spiel, 2021), “bodies and how we design for
them are products of social norms,” and these norms contain
dangerous adverse consequences for bodies and people that do
not fit readily inside these normative categories. Much of HRI
and literature on embodied interaction equate being human with
white, male, non-disabled bodies. The implicit Western male
whiteness contained in the conceptualisations and artefacts in the
field of embodied computing are more than mere blindspots, they
materialize and encode bias and do not account of the experiential
differences in lived embodiments of women, BIPOC or people with
disabilities. The result is that practices in the field of embodied
computing fail to account for the “axes of oppression” that reify
certain forms of power, rendering it all but impossible to rethink or
design for bodies outside of normative categories. Unfortunately,
critical inquiries like Spiel’s do not feature prominently enough in
HCI or HRI research, although there are promising signs that this
practice is beginning to change. Design for embodied interaction that
allows for plurality and difference of human embodiments can and
should be considered when designing embodied controllers or
devices. In our project, we focused primarily on developing tools
for Rizzo that would not require programming skills or
understanding the underlying logics of the system. Rizzo is a
non-disabled dancer with decades of training in somatic and
dance practices. We were attentive to the lived, bodily experience
of the artist working with the tools and the difference in how she
encountered tools in her atelier versus the tools in the lab. Our
intention was not to encumber Rizzo with gadgets or tools, but to
provide an embodied experience that was reminiscent of the
tools and the way she worked with those tools in her own visual

art practice. The initial experiments with the drawing tablet
and stylus were familiar to Rizzo from her work with computer
drawing tools as a children’s book illustrator. However, the
drawing technique for controlling the robot motion did not do
much to inspire her. It wasn’t until Rizzo was presented with
the motion tracking technology and moving projections on the
floor, which allowed her to directly observe the link between
her physical movements and the movement of the robot, that
she began to feel inspired to work creatively and empathically
with the robot.

Gemeinboek (after Dautenhahn) problematizes the notion
of corporeal empathy and embodied interaction for designers:
how does one design for embodied interaction when there is no
such thing as “natural interaction”? (Gemeinboeck, 2021) As
shown by Fdili Alaoui et al. (2015) and Gannon (2018),
human-centered interfaces can enhance, augment, and
expand human capabilities through bodily extensions or
worn prosthesis. Typically these devices rely on sensors or
other wearable controllers that control or direct the movement
of the robot, usually through remote tele-operation. Such
devices can be read as prosthesis. Disability studies scholar
Margrit Shildrick has advanced critical perspectives that link
technologies and devices with affective experiences and
subjectivity. Shildrick’s notion of embodiment and
embodied interaction explores the “affective significances of
prosthesis and devices that transform the body, demonstrating
how corporeal transformations can work to undo the coventional
limits of the embodied self” (Shildrick, 2013). She identifies in
prosthetic devices a potential for a “celebratory reimagining of the
multiple possibilities of corporeal extensiveness” (Shildrick, 2013,
p.271).While the tracking technology we experimented cannot be
called a prosthesis, the fact that Rizzo was able to control the robot
and produce two sets of drawings—one on the canvas of the floor
through projected light, and the other through the robot and the
canvas on the desk, we can read the entire system as a kind of
technical ensemble, or a type of prosthesis that expanded the
conventional limits of Rizzo’s body and triggered her imagination.
The convergence of artist-tool-material-space brought about a
new corporeal configuration that begin tomake possible a creative
re-imagining of alternate forms of embodiment and artistic
expression (Donnarumma, 2020). It is also interesting to note
how the experience of working collaboratively and creatively with
the artist impacted the perspectives of the other members of the
research team in ways we could not have imagined beforehand.
For example, reflecting on the workshops, Gomez (an engineer)
commented that the entire experience changed his perspective on
how he would approach research problems in the future. For
example, his next project involves using a CNC machine to carve
mortar for facades. He remarked that before beginning
development on that project, he would begin by exploring the
technique by hand, in order to gain an embodied understanding
of working with and through the materials. Our arts-led, practice-
based investigation reconfirmed the necessity of tactile and
sensuous exploration and knowledge of materials, knowledge
that has long been considered tangential to cognitive theories
of creativity, but deeply entangled with creative artistic practice.
We learned that embodied exploration of material was not only
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important for the artist (Rizzo) when working with robots, but
also for programmer (Pekarik) and engineer (Gomez) responsible
for designing the interactive systems. During the weekly drawing
and painting workshops, the research team experimented
together using different tools and collaborating on a shared
canvas. The sustained interaction allowed the partners to delve
more deeply into each other’s world and material practice,
providing us with an embodied understanding of artistic
processes and tools that we would not otherwise have access
to. Positioning the canvas on the ground and collaborating
together on a shared canvas both defamiliarized the activity of
drawing and invited another way of knowing and relating to
materials and to one another.

Thinking through the material is key when designing tools or
systems. Tools are, of course, extensions of the artist, although the
artist does not necessarily need to be able to produce the tool in order
to utilise it. Engineers, on the other hand, are specialized in creating
tools that allow others to explore thematerial creatively. The sustained
interaction among the members of the research team generated a
bond, that through iteration grew stronger and resulted in embodied
knowledge exchange and appreciation of different perspectives. The
different workshops helped to generate this bond and to find common
ground where the desires and expectations of the artist and engineers
met from functional, reliable and safe perspectives. Reflecting on the
co-creative aspect, Pekarik expressed that understanding the intrinsic
motivation of the drawing activity as a communication process
between artist and the material helped him to prioritize design
decisions towards embodiment qualities. The authors all agree that
this close collaboration enlightened the best practical possibilities and
positively influenced the research outcomes. Although the process
resulted in new software and hardware tools for artists to workwith, to
regard these tools as creative in themselves would be shortsighted.
These creative outcomes are not finished products, but artefacts that
open up new possibilities for creative exploration across new
topologies. Rather than products that signal creative outcomes,
they function as material evidence for creative processes. We plan
to continue working with these tools and processes to develop more
diverse tools for the artist-robot team to explore, both in the laboratory
and in the atelier. Current research exploring expressive robot
animations by Pakrasi et al. (2018) and real-time interaction with
“live” algorithms in performance by Blackwell et al. (2012) indicate
possible future directions. Through our investigation, we widened our
own conceptual models of human-machine interaction and co-
creation. Art involves generative processes that require negotiation
and interaction with physical materials and tools for art making.
Artistic and creative processes are not confined to human-tool
interaction, producer-audience relations, or product-audience
judgements. Artistic creativity is capacious: it extends to the
environment and involves an entire network of physical and digital
objects, organic and inorganic, artificial and natural, entangled in a
field of relations that is continually shifting, recompiling, and
interweaving between physical and virtual spaces, through planned
and unplanned actions. If live performance is where the planned and
the unexpected meet, we can imagine no better site for creatively
exploring new possibility spaces for robotics and human-robot
interaction.

7 CONCLUSION

Typically, problems in robotics take the form of presented
problem situations, where the problem and tools for solving
the problem are known at the outset. Our exploratory,
trandiscplinary research began with a different intention:
utilizing creative methods, we generated discovered-problem
situations to generate new ideas and approaches for
designing interactive systems and human-machine
interaction. Rather than focusing on a robot that could
produce artistic outcomes, we focused on drawing as an
activity that could help us explore more deeply “the
itinerant, improvisatory and rhythmic qualities of making”
(Ingold, 2009, p.99). Drawing is intrinsically dynamic and
temporal, and can be understood as a process of becoming, rather
than being: “You cannot be a mountain, or a buzzard soaring in the
sky, or a tree in the forest. But you can become one, by aligning your
own movements and gestures with those of the thing you wish to
draw. [. . .] As with the mountain path, the buzzard’s flight or the tree
root, the drawn line does not connect predetermined points in
sequence but ‘launches forth’ from its tip, leaving a trail behind.
[. . .] It has no end point: one can never tell when a drawing is
finished” (Ingold, 2009, p.99). Our project demonstrates the
possibilities of reimagining human-machine collaboration
and technical ensembles. We found strong links between
artistic creativity and discovered problem-solving
processes. Iterating and developing ideas in an open-ended
(as opposed to predefined) manner altered, evolved, and
expanded the outcome of our creative process in ways that
we could not have anticipated. This process was reminiscent
of what Ingold calls “looping” - the processes of an artist
working directly with tools and materials in a dialogic
manner. The concept of dialogue emerged as a salient
feature for both improvisation in performance, and the
human-robot interaction during the collaborative drawing
sessions. Transdisciplinary research facilitates creative
processes between humans and machines, allowing the
interactions to take shape with and through materials in
dynamic and collaborative encounters.
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Creativity in Generative Musical
Networks: Evidence From Two Case
Studies
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Deep learning, one of the fastest-growing branches of artificial intelligence, has become
one of the most relevant research and development areas of the last years, especially since
2012, when a neural network surpassed the most advanced image classification
techniques of the time. This spectacular development has not been alien to the world
of the arts, as recent advances in generative networks have made possible the artificial
creation of high-quality content such as images, movies or music. We believe that these
novel generative models propose a great challenge to our current understanding of
computational creativity. If a robot can now create music that an expert cannot
distinguish from music composed by a human, or create novel musical entities that
were not known at training time, or exhibit conceptual leaps, does it mean that themachine
is then creative? We believe that the emergence of these generative models clearly signals
that much more research needs to be done in this area. We would like to contribute to this
debate with two case studies of our own: TimbreNet, a variational auto-encoder network
trained to generate audio-based musical chords, and StyleGAN Pianorolls, a generative
adversarial network capable of creating short musical excerpts, despite the fact that it was
trained with images and not musical data. We discuss and assess these generative models
in terms of their creativity and we show that they are in practice capable of learning musical
concepts that are not obvious based on the training data, and we hypothesize that these
deep models, based on our current understanding of creativity in robots and machines,
can be considered, in fact, creative.

Keywords: generative models, music, deep learning - artificial neural network (DL-ANN), VAE (variational
AutoEncoder), GAN (generative adversarial network), creativity

1 INTRODUCTION

The field of deep learning (DL), one of the branches of artificial intelligence (AI), has become one of
the most relevant and fast-growing research and development areas of recent times, especially since
2012, when an artificial neural network (ANN) called AlexNet (Krizhevsky et al., 2012) surpassed the
most advanced image classification techniques to the date (Briot et al., 2020). This AI boom has
happened because of three factors: first, today there is much more data available, second, there are
much faster and more powerful computers available to researchers and third, technical advances. In
particular, breakthroughs in the theory of ANNs, such as new training methods, convolutional
networks, recurrent networks with short and long term memory, regularization techniques such as
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dropout, generative and transformer models, among others.
These advances have allowed for the design and
implementation of very sophisticated and complex AI models.

Indeed, DL models have been proven useful even in very
difficult computational tasks, such as solving very difficult inverse
problems with great precision (Goodfellow et al., 2016, 12). These
approaches have the advantage that all parameters are objectively
computed at the training stage, minimizing the error between
predictions and the results provided by the training data.
Training processes tend to be of high computational load, but
once the training is finished, ANN-based reconstructions are
extremely fast. However, classification and regression are perhaps
not the most impressive applications of DL. There is increasing
evidence showing that DL models can also generate very realistic
audiovisual content, apparently at the same level of expert
humans. In particular, variational auto-encoders (VAEs) and
generative adversarial networks (GANs) are the most widely
used generative strategies, yielding very interesting results,
especially in the form of deep-fakes or deep video portraits
(Kim et al., 2018).

Research in the field of robot musicianship has a rich history
(Rowe, 2004) and it has experienced an increasing interest in
recent times (Bretan and Weinberg, 2016). Currently there are
robotic performers that can achieve very expressive performance
levels, particularly with reinforcement learning approaches
(Hantrakul et al., 2018) and machines that can compose music
in real-time based on inference rules (Cádiz, 2020), or with direct
interaction with its environment and people (Miranda and
Tikhanoff, 2005). However, the question of creativity in robot
musicianship remains elusive. We would like to contribute to the
creation of better robotics composers or improvisers by studying
the creativity of DL generative musical networks and identifying
musical elements that could enlighten the discussion.

In this article, we study the use of generative models for
musical content creation by means of a literature survey as
well as by presenting two case studies and examining them
under the light of computational creativity theory. The first
use case describes the implementation and usage of a VAE
model to encode and generate piano chords directly in audio,
which we call TimbreNet. The second use case is a generator of
musical piano rolls based on the StyleGAN 2 network
architecture. Piano rolls are a widely used two-dimensional
representation of musical data, very similar to a musical score
in the sense that the x-axis represents time while pitches are
encoded in the y-axis. We believe that both generative models,
even though they have different architectures and music
representations, exhibit behavior that could be classified as
creative, as they can represent musical concepts that are not
obvious based on the training data, and also exhibit
conceptual leaps.

This article is structured as follows. In section 2, we discuss the
most important generative models and show how they are able to
create content. In section 3, we introduce the concept of
computational creativity and provide a state-of-the-art review
on the topic, including the most used ways for assessing creativity
in computational systems. In section 4, we provide two case
studies of generative networks that we think exhibit creative

behavior. In section 5, we describe a simple perceptual survey
we created to subjectively assess traits of creativity of the results of
one of our models. In section 6, we discuss these case studies
under the light of computational creativity theory and assess their
creativity. Finally, in section 7, we present our main findings and
layout ideas for future work.

2 DEEP GENERATIVE MODELS

According to Goodfellow et al. (2014), DL promises that we can
build models that represent rich and hierarchical probability data
distributions, such as natural images or audio, with great
accuracy. This potential of DL makes perfect sense for music,
being in essence very rich, structured, and also hierarchical
information encoded in either a two-dimensional format (a
score or a piano roll) or as one-dimensional array of audio
samples. It is no surprise then that this amazing growth of DL
in recent years has also greatly impacted the world of music and
of machine musicianship.

As we stated before, perhaps one of the most interesting
aspects that these networks can do now, apart from
classification and regression, is the generation of content. In
particular, ingenious network architectures have been designed
for the generation of images, text, paintings, drawings or music
(Briot et al., 2020). In the music realm, perhaps one of the most
relevant research devoted to music generation is being carried out
by the Magenta project.1, a part of Google Brain. The goals of
Magenta is not only to automatically generate new content, but to
explore the role of ML as a tool in the artistic and creative process.

One of the most important aspects of generative DL
approaches for music is their generality. As Briot et al. (2020)
emphasize: “As opposed to handcrafted models, such as
grammar-based or rule-based music generation systems, a
machine learning-based generation system can be agnostic, as
it learns a model from an arbitrary corpus of music. As a result,
the same system may be used for various musical genres.
Therefore, as more large-scale musical datasets are made
available, a machine learning-based generation system will be
able to automatically learn a musical style from a corpus and to
generate newmusical content”. Contrary to rule-based structured
representations, DL is very appropriate for handling raw
unstructured data, and to extract higher-level information
from it. We believe that this particular capacity makes DL a
suitable technique for novel musical content generation.

Almost exclusively, these efforts aimed towards musical
content creation are based on generative models, which are
unsupervised models that intend to represent probability
distributions over multiple variables (Goodfellow et al., 2016,
645). Some approaches estimate a probability distribution
function explicitly, while others support operations that
require some knowledge of it, such as drawing samples from
the distributions. Although several models can generate content,

1http://magenta.tensorflow.org.
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there are two that are the most promising and relevant today:
VAEs and GANs (Charniak, 2018, 137).

VAEs are a probabilistic type of ANNs known as auto-
encoders, which are functions whose output is nearly identical
to the input (Charniak, 2018, 137). They are encoders because to
generate the output, the network must have learned to represent
the input data in a much more compact way, more specifically a
low-dimensional space, known as a latent space. In a VAE,
samples are drawn from the latent space to generate new
outputs. As it is not possible to fill an entire latent space with
only training data, some points in this space will inevitably
generate outputs that were previously unknown to the
network, an apparent sign of creativity.

More specifically, the loss function of a VAE (Kingma and
Welling, 2014) can be described by the equation:

LVAE � Eq(z|x)[log p(x|z)] − KL(q(z|x) ‖ p(z)) (1)

The first term in Eq. 1 corresponds to the reconstruction loss,
which is the expectation over the log-likelihood of the
reconstructed data points using the decoder p(x|z), where z is
sampled from the encoder q(z|x). The second part of the equation
is considered a regularization term, the Kullback-Leibler (KL)
divergence between the encoder distribution q(z|x) and p(z). The
prior distribution is placed over the encoder and decoder
parameters and in this article we use a Gaussian prior with
mean zero and variance one, since it facilitates the generation
of new samples from the latent space, it has an analytical
evaluation of the KL divergence in the loss function, and the
non-linear decoder can mimic arbitrarily complicated
distributions if necessary starting from the prior Gaussian
distribution. This loss function of VAEs decreases as the input
and output data are alike, and in every iteration, a VAE network
learns to represent the input space in a more efficient and
compressed form. The decoder part of the network can thus
generate novel output that share a lot of the characteristics of the
input space.

Another promising research in DL is related to the
development of Generative Adversarial Networks (GANs),
which represent a significant shift from traditional DL
architectures. In GANs, two ANN work against each other in
adversarial training to produce generative models (Kalin, 2018,
9). More formally, GANs (Goodfellow et al., 2014) have provided
a new framework for estimating generative models via what is
called an adversarial process, in which two models are
simultaneously trained. In this approach, the input data
distribution is estimated by a generative model (G), while a
discriminator model (D) evaluates the probability that a
freshly generated output provenances is indeed from the
training data rather than from the generator G. The whole
idea of this approach is to make the generative model G so
good that eventually D might be fooled by a false input. If this
happens, it means that G is generating fake data that is
indistinguishable from real data, also a possible indication of
creativity.

This process can be summarized in Eq. 2, where the goal with
the adversarial training is to find the functionD which maximizes

the log probability of correct cases, while the generator G
minimizes the log-probability of the discriminator being correct.

min
G

max
D

V(D,G) � Ex ∼ pdata(x)[logD(x)] + Ez ∼ pz(z)[log(1 − D(G(z)))] (2)

Once trained, these networks can convert random noise
into highly realistic content, such as images or audio signals.
There are several advantages of this approach: GANs
generalize well with limited data and they can conceive new
scenes from small datasets, but perhaps, the most important
aspect is that they make simulated data look highly realistic
(Kalin, 2018, 10).

2.1 Musical Generative Networks
In the musical field, generative models such as the ones we
previously discussed have been gaining popularity in recent
times for the creation of audible content. We now provide a
literature review of the most relevant works for music creation
based on these two architectures.

Hadjeres et al. (2016) created DeepBach, a neural network
capable of modeling polyphonic music and pieces in the anthem
genre, which harmonizes Bach-style choral in a very convincing
way. Oord et al. (2016) created Wavenet, a network that renders
audio files at the sample level. Wavenet has been shown to
produce good results in human voice and speech. Engel et al.
(2017), using NSynth, a very large dataset of sound for digital
synthesis, were able to improve both the qualitative and
quantitative performance of WaveNet. Their model learns a
manifold of embeddings that allows for instrument morphing, a
meaningful way for interpolating timbre that results in new
types of realistic and expressive sounds. Sturm et al. (2016) have
used generative models for music transcription problems. They
specifically designed generative long short-term memory
(LSTM) models, for the task of music transcription and
composition. Roberts et al. (2018) created MusicVAE, a
network designed for the generation of compact latent spaces
that can be later interpolated for the generation of content. Yang
et al. (2017) created MidiNet, a convolutional adversary
generation network able to produce melodies in the MIDI
format. Dong et al. (2018a) created MuseGAN, an
adversarial network for symbolic music and accompaniment,
in this case in the rock genre. Roberts et al. (2017) designed a
VAE for the generation of a variety of musical sequences at
various bar scales: 2-bar, 16-bar or 32-bars. Yamshchikov and
Tikhonov (2020) propose a novel DL architecture labeled as
Variational Recurrent Autoencoder (VRASH), that used
previous outputs as additional inputs, forming a history of
the analyzed events. VRASH “listens” to the notes already
output and uses them as a feed for “historic” input. This is
the first application of such a generative approach to the
generation of music rather than text. Weber et al. (2019)
were able to generate novel melodies via a ANN model that
ensures, with high probability, consistency of melody and
rhythm with a target set of sample songs. A unique aspect of
this work is that they propose the usage of Perlin noise in
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opposition to the more widely used white noise in the context
of VAEs.

In the field of audio processing, impressive advances have been
made in the last two years. As an example, we can cite Spleeter
(Hennequin et al., 2019), a music source separation tool for up to
five simultaneous voices based on deep learning. This task is
extremely hard when tackled with traditional signal processing
approaches. Another interesting example is the Differentiable
Digital Signal Processing (DDSP) library (Engel et al., 2020),
created by Magenta, which enables direct integration of classic
signal processing elements with the power of deep learning. This
approach achieves high-fidelity audio generation without the
need for large models or adversarial architectures. DDSP
models are similar to vocoder systems, which are physically
and perceptually motivated, and directly generate audio with
oscillators, and do not work by predicting waveforms or Fourier
coefficients, as traditional methods do.

In section 4 we will elaborate on two generative models that
we have built aimed towards the generation of audio-based
musical chords and symbolic piano roll-based short musical
sequences. In the specific case of chords generation, a
significant amount of research is aimed towards chord
recognition (Humphrey et al., 2012; Zhou and Lerch, 2015;
Deng and Kwok, 2016; Korzeniowski and Widmer, 2016), in
detriment of chord generation. The first study case what we
present below is based on GanSynth (Engel et al., 2017), a GAN
model that when its latent vector is sampled, it generates a
complete audio excerpt, allowing for a smooth control of
features such as pitch and timbre. Our model is based on
GanSynth, but it was tuned for the specific case of chord
sequences. In terms of piano roll sequence generation,
MuseGAN (Dong et al., 2018a) is probably the most well-
know model targeted for this specific musical format. Our
second case study uses piano rolls instead of images in a
network previously trained with only real-world images.

3 COMPUTATIONAL CREATIVITY

A very important question in the field of artificial intelligence is
whether computers or robots can be creative. This is a very
difficult research topic, as scientists have only embraced the study
of human creativity in recent times (Sawyer, 2006, 3). According
to Brown (1989), four distinct approaches have dominated the
study of creativity: 1) an aspect of intelligence; 2) a largely
unconscious process; 3) an aspect of problem-solving; and 4)
an associative process. Nowadays, the study of creativity in
humans has settled into what is called the socio-cultural
approach, an interdisciplinary effort to explain how people are
creative and their social and cultural contexts (Sawyer, 2006, 4).

It is a consensus that creativity can be defined as “the ability to
generate novel, and valuable, ideas” (Boden, 2009). This
definition implies the generation of “something that is both
original and worthwhile” (Sternberg and Sternberg, 2012), or a
“conceptual leap” by the combination of existing knowledge
(Guzdial and Riedl, 2019). These “ideas” or “somethings” can
take the form of intangibles, such as a scientific theory, a

mathematical theorem, a musical composition, a neural
network, a poem, or a joke; or even tangible physical objects,
such as an invention, a robot, a mechanical tool, a chemical, a
printed literary work, a sculpture, a digital circuit, or a painting.
The notion of novelty is crucial for this understanding of
creativity. But in addition, as previously stated, Boden (2009)
emphasizes that creativity should be “valuable”. This implies a
subject-dependent evaluation, as what influences the assessment
we make of something is not only its features or objective
properties, but rather how such a thing is produced and
presented (Moruzzi, 2018). It is also worth emphasizing that
novelty often implies unpredictability and uncertainty, especially
in the case of musical creativity (Daikoku et al., 2021).

Carnovalini and Rodà (2020) observe that “the usual
experience with machines is that we humans give a set of
instructions to the machine along with some initial data (the
input), and we expect the machine to behave in a way that is fully
deterministic, always giving the same output when the same input
is given”. This idea of deterministic robots is apparently very
opposed to the whole notion of creativity, which supposes
something novel and valuable. This notion of “novelty” is
understood by Grace and Maher (2019) as “violated-
expectations” models. However, as Mumford and Ventura
(2015) point out, a “common misconception among non-
specialists is that a computer program can only perform tasks
which the programmer knows how to perform (albeit much
faster). This leads to a belief that if an artificial system exhibits
creative behavior, it only does so because it is leveraging the
programmer’s creativity”.

There are other ways of conceptualizing creativity. In
particular, the categories of combinatorial, exploratory and
transformational creativity, proposed by Boden (2004), are
very enlightening. The first one is about making unfamiliar
combinations of known ideas. The second one involves a
structured conceptual space that is explored. The third
category implies changing this conceptual space allowing new
ideas to become possible. All of these categories are related to the
conceptual leaps proposed by Sternberg and Sternberg (2012) in
different degrees.

Another important aspect of creativity is the ability to
autonomously evaluate outcomes, to “know when to stop”
(Moruzzi, 2021). This aspect of creativity is crucial to
determine whether the produced outputs work or not and
reminds us that the process of creativity requires hard work,
that it does not happen by pure magic. This autonomymeans that
the creative agent should be the one performing the assessment,
without external influence.

Creativity is usually attributed to humans. However, as Park
(2019) asks: When we regard something as artwork, should it be
exclusively created, selected, and combined by human beings?We
are used to the idea that humans can create things or ideas that
other humans judge to be “new”–this happens almost every day
in every domain. But computers can also produce outputs that
can be thought of being new. For example, Cope (1996) developed
computer algorithms which he labeled as “Experiments in
Musical Intelligence (EMI)”, that allowed computers to
generate novel compositions in a particular musical style, two
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decades before the rise of deep learning techniques. It is no
surprise, then, that the study of the phenomenon of creativity has
been extended to computers and machines, under the label
“Computational creativity”, which is a field of inquiry seeking
the modeling, simulation, or replication of creativity inside a
computer. This field is interdisciplinary by nature, with links to
traditional fields such as artificial intelligence, psychology, the
arts, or philosophy. It is also known as creative computation,
creative computing, or artificial creativity.

The goals of computational creativity are not only to design
and build computer systems capable of achieving or enhancing
human-level creativity, but also to better understand how human
creativity works. In the particular case of deep generative
networks, one of the most interesting and current theoretical
research trend is to determine if these generative networks are
creative or not and to what extent. Karimi et al. (2018) define
creative systems as those intelligent systems that are capable of
performing creative tasks in isolation or collaboration with other
systems. These systems are creative because their results are
judged as such by their human counterparts (Colton et al.,
2015; Elgammal et al., 2017). There even exist Turing-style
tests to assess creativity from machines that create artworks,
by asking machines to create art that is indistinguishable from
human-created works.

The question of how can machines and robots be creative is far
from settled. On the one hand, there are authors, such as
Hertzmann (2018), who argue that the current AI technology
is not yet able to create since to do it requires “intention,
inspiration, and desire to express something”. However, the
advances in AI open for music, as did photography with
paintings more than 100 years ago, the possibility of
generating new forms of artistic creation. It is possible to
understand AI as a technology that can increase and enhance
human capabilities (Carter and Nielsen, 2017). On the other
hand, authors such as Elgammal et al. (2017) have no problem in
considering their systems creative. As evidence, they have created
an architecture of ANNs labelled CAN (Creative Adversarial
Networks), which can look at visual art and learn the artistic style
inherent in the works with which they were trained. Then, by
modifying certain parameters of the network, the authors argue
that they become creative because they are capable of generating
new art that deviates from the styles that were previously learned.
Similarly, Guzdial and Riedl (2019) present a novel training
method for neural networks called Combinets, a more general
approach for reusing existing trained models to derive new ones
without retraining via recombination. In a sense, they can make a
DL network “creative”, in the sense that it is able to represent new
knowledge as a combination of particular knowledge from
previous existing cases. Another important evidence towards
the existence of creativity in machines is presented by Wyse
(2019), who examined five distinct features typically associated
with creativity, and provided examples of mechanisms from
generative DL architectures that give rise to each of these
characteristics, producing very strong evidence in favor of DL
architectures being creative.

Another unresolved topic in the computational creativity field
is the evaluation of generative systems in terms of their creativity

(Ritchie, 2019). As Moruzzi (2018) illustrates: “The subjective
judgments and biases which come with the evaluation of
something as creative make it impossible to objectively answer
the question “Can a computer be creative?” What we are
measuring when we provide an answer to this question, in
fact, are not the computer’s accomplishments but instead our
subjective evaluation of them. We can then try to analyze not just
the creativity exhibited by the outcome produced by the
computer but, instead, the intention of the computer in
producing it. In other words, we can judge whether the
computer produced its outcome intentionally, i.e., consciously
intending to produce exactly that outcome. We should then
rephrase the question and ask: “Can a computer be
intentionally creative?””.

We have identified four strategies for the evaluation of
creativity in robots and algorithms reported in the literature.
The first one follows what Jordanous (2019) calls a “creative-
practitioner-type approach, producing a system and then
presenting it to others, whose critical reaction determines its
worth as a creative entity”, even in real-time (Collins, 2007). The
second one is described by Carnovalini and Rodà (2020): “have
the author of the system describe the way it works and how it can
be considered creative or not, and to what degree.” A third one is
to evaluate artificially generated music in a concert setting, just as
normal auditors would assess a live musical situation (Eigenfeldt
et al., 2012; Sturm et al., 2018), or in a museum-like setting for the
case of the visual arts (Edmonds et al., 2009). Finally, a fourth
approach that we can identify is described in (Yang and Lerch,
2020), who propose “informed objective metrics” to complement
a subjective evaluation by a human. For example, some metrics
can determine how well a computer-generated music can “fit” a
particular musical genre.

In the following section we will describe two case studies and
discuss their creativity under the light of what we have presented
in this section. In particular, we will focus on the aspects of
novelty, in the sense that the models produce something that is
not expected, value, by assessing whether novel outputs make
sense and function well in their context, and conceptual leaps,
understood as the reuse of a particular type of knowledge to
produce a different kind. For the purposes of this article, we will
be using the second evaluation strategy, as we are the authors of
both models.

4 CASE STUDIES

We now present two case studies: TimbreNet, an ANN based on
the architecture of GanSynth (Engel et al., 2017) that can generate
novel chords directly in audio format and StyleGAN Pianorolls, a
generative model, based on StyleGAN 2 (Karras et al., 2020b),
that can create novel musical excerpts in the form of piano rolls.

4.1 TimbreNet: A Creative Chord Generator
The network architecture is presented in Figure 1. Our design
goal was to generate a useful tool for musical composition, by
means of the latent space exploration. A VAE-based model can
accept inputs directly from the user in contrast to GAN-based
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models where the input is random noise. Although it is possible to
mimic this behavior with conditional GANs, we opted for a VAE
to obtain an explicit latent space representation of the input data.
We based the encoder architecture on the discriminator structure
of GanSynth (Engel et al., 2017) and the decoder architecture
from its generator.

The encoder takes a MFCC (Mel Frequency Cepstral
Coefficients) image of dimensions (128,1024,2) and passes it
through one two-dimensional convolution layer with several
additional filters generating a (128,1024,32) output that is fed
to a series of 2 two-dimensional convolution layers with the same
size padding and a Leaky ReLU non-linear activation function in
cascade with 2 × 2 downsampling layers. This process keeps
halving the images’ size and duplicating the number of channels
until a (2,16,256) layer is obtained. Then, a fully connected layer
outputs a (2L,1) vector, the latent space, that contains L means
and L standard deviations for posterior sampling. We trained
models with different sizes for L (specifically 3, 4, 8, 16, and 32),
which is a meta-parameter that determines the dimension of the
latent space. Figure 1 displays the network structure for the
case L � 2.

The sampling process begins with a (L,1) mean vector and a
(L,L) standard deviation diagonal matrix that is used for
sampling the latent vector z from a normal distribution
with mean μ and standard deviation σ. The z latent vector
is fed to the decoder in cascade with a fully connected layer that
generates a (2,16,256) output that then is followed by a series of
two transposed convolutional layers in series with an 2 × 2
upsampling layer that keeps doubling the size of the image and
halving the number of channels until a (128,1024,32) output is
achieved. This output passes through a final convolutional
layer that outputs the (128,1024,2) MFCC spectral
representation of the generated audio. This spectral
representation can be converted into an audio excerpt by
inverse MFCC and STFT transformations.

4.1.1 Dataset and Model Training
Our dataset consisted on 43,200 recordings of tertian triads
played at different keys, dynamic levels and octaves,
performed by the second author on a piano. A triad is a chord
containing three notes and a tertian chord is constructed by
adding up notes separated by a major or minor third. Each
recording was done in Ableton Live with a duration of 4 s, and a
16 kHz sampling rate. Piano keys were pressed for 3 s and then
released during the last second. This dataset format has the same
structure as the one used in Engel et al. (2017).

The base notes of the chords were the twelve notes of the
western musical scale across three octaves giving a total of thirty-
six base notes. For each base note, we recorded four different
types of triads (major, minor, augmented, and diminished). We
also recorded chords at three different levels of dynamics: f
(forte), mf (mesoforte) and p (piano). For each combination,
we produced ten different recordings for data augmentation
purposes, as each recording is not an exact repetition of any
other one, producing a total of 4,320 data examples and then we
used data augmentation techniques to have a total of 43,200
examples. This dataset can be downloaded from the github
repository of the project.2.

We decided to use an MFCC representation of the audio
samples for the input and output data, a design decision that has
been proven to be very effective when working with convolutional
networks designed for audio content generation (Engel et al.,
2017). Magnitude and unwrapped phase appear codified in
different channels of the image.

Figure 2 displays the MFCC transform of a 4-s audio
recording of a piano chord performed forte. Figure 3 displays
the MFCC representation of a 4-s audio recording of the same

FIGURE 1 | Architecture of our VAE model for chord synthesis for the case L � 2. The encoder takes a (128,1024,2) MFCC image and passes it through several
downsampling layers until it compacts the data into a low-dimension latent space z. The decoding process samples the latent vector using a Gaussian distribution of
mean μ and standard deviation σ, and passes it through several upsampling layers until a (128,1024,2) output is obtained that is later converted to an audio signal.

2https://github.com/CreativAI-UC/TimbreNet/tree/TimbreNet2/datasets/
pianoTriadDataset.
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forte chord of Figure 2, but in this case, the chord was generated
by the network by sampling a trained position in the latent space,
the one where the original chord can be found. In both figures, 2
and 3, magnitude is shown on the top half while unwrapped
phase is displayed at the bottom part.

We used Tensorflow 2.0 to implement ourmodel. For training,
we split our dataset leaving 38,880 examples for training and
validation, and 4,320 examples for testing. We used an Adam
optimizer with default parameters and learning rate of
3 × 10−5. We chose a batch size of 10, and the training was
performed for a total of 250 epochs. The full training was
done in about 6 h using one GPU, a Nvidia GTX 1080Ti. We
used the standard cost function for VAE descried in Eq. 1, but
in practice the model was trained to maximize the ELBO
(Evidence Lower BOund) as proposed by Kingma and
Welling (2014); Ranganath et al. (2014). We divided the
250 training epochs in five groups of 50 epochs. We
started with a high reconstruction loss factor for the first
50 epochs and we decreased this factor across each epoch
group. The high reconstruction loss factor allows for a good
audio quality and then the later low reconstruction loss factor
orders and clusters the latent space without a loss in audio
quality (Higgins et al., 2017).

4.1.2 Latent Space
Figure 4 displays a three dimensional latent space generated
by the network. On a macro level, chords are separated
according to dynamic level as it can be observed on the
right-most figure. On a micro level, chords are grouped
with other chords with the same notes, and the nearest
neighbors corresponds to the chords which have the most
notes in common. This particular configuration of the latent
space is very interesting from a musical stand point, as it
appears that the networks learned to order the space based on
musical concepts that are very fundamental such as common
voicing, loudness and pitch.

One of the nice properties of latent spaces happens when one
samples the space in an untrained position, a point in the
plane that has not been previously trained by the network.
In Figure 5 we show the MFCC coefficients of a completely
new chord generated by the network. Since different
chords are clustered in the latent space, it is interesting
to listen to chords that are generated in the space
between clusters. We find out that the model is able to
generate new chords with musical meaning that the
model has never seen in the training dataset. Figure 6
shows some examples of new chords generated by the

FIGURE 2 | MFCC representation of a forte chord used for training. The horizontal dimension represents time while the vertical dimension encodes frequency
coefficients. Brighter yellow colors represent higher sound intensities. The top graph shows the magnitude of the frequency representation and the bottom displays
its phase.

FIGURE 3 | MFCC representation of the same forte chord of Figure 2 generated by the network’s decoder. The horizontal dimension represents time while the
vertical dimension encodes frequency coefficients. Brighter yellow colors represent higher sound intensities. The top graph shows the magnitude of the frequency
representation and the bottom displays its phase.
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network. The top three chords can be found in the
dataset while the bottom three chords are four note
chords that the model has never seen before during
training.

We have created an interactive web-based tool for the
exploration of this latent space, called Timbreplay.3, in the
same spirit of Moodplay (Andjelkovic et al., 2016, 2019) One
nice feature of this tool is the generation of chord trajectories than
the user can save for later use in musical compositions. In
addition, audio examples of TimbreNet can be listened in the
repository of the project.4.

4.2 StyleGAN Pianorolls: A Creative Musical
Excerpts Generator
Our second case study is based on the newly developed StyleGAN
2 (Karras et al., 2020b), which achieved state-of-the-art results in
image generation, specifically on creating human faces that do not
exist, but look highly realistic. Considering this results for
generating images, which are a 2D representation of visual
information, we experimented to see if this network could
generate piano rolls, which are also a 2D representation, but
in this case of a musical composition, with one axis representing
time, and the other representing pitches, as it can be seen in
Figure 7 where both the input and output of the network are
piano rolls represented as binary images. Even though we are fully
aware that piano rolls are conceptually very different from human
faces, we wanted to see if certain properties of visual information
that they might have in common could be useful for training a
musical generator model.

FIGURE 4 | Three dimensional latent space representation of the input dataset. Left: Chords colored by volume (forte, mesoforte, and piano). Right: chords colored
by base notes. It can be appreciated that the latent space is segmented based on relevant musical properties.

FIGURE 5 | MFCC of a new chord generated by the network’s decoder by sampling an untrained point in the latent space. The horizontal dimension represents
time while the vertical dimension encodes frequency coefficients. Brighter yellow colors represent higher sound intensities. The top graph shows the magnitude of the
frequency representation and the bottom displays its phase.

3http://timbreplay.ml.
4https://github.com/CreativAI-UC/TimbreNet/tree/TimbreNet2/generated_
chords/paper_examples.
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4.2.1 Dataset and Model Training
We used the implementation of StyleGAN2-ADA in Tensorflow
1.14 provided by Karras et al. (2020a) that has an adaptive
discriminator augmentation to better train with limited data.
As inputs, we used the MAESTRO dataset V2.0.0 (Hawthorne
et al., 2018), that consists of over 200 h of piano performances,
which include raw audio and midi, 1,282 in total. We only used
midi files, which can be very easily transformed to piano rolls. For
each performance, its midi file was binarized and split into
segments of 4 bars divided into 32 time steps each. After
removing empty splits this processing resulted in 269,719
pianoroll images of shape (128, 128), this decision was made
because the StyleGAN architecture has a constraint of using
squared shape images. Although this constraint implies shorter
musical segments, there’s still interesting information to be
captured in the training data. We used the same loss function
of Eq. 2. The model was trained on a Tesla V100 in Google Colab
from a previously trained checkpoint on the FFHQ Dataset
(Karras et al., 2018) which consists of human faces from

Flickr. Surprisingly, even though the network previously knew
human faces only, it was relatively easy to have it recognize and
generate musical excerpts, as we detail below.

4.2.2 Latent Space
One of the creative features of using the StyleGAN 2 architecture
is that its random noise input is mapped into a disentangled latent
space, called thew-space, throughmultiple fully connected layers.
This new latent space is much richer to explore than the
traditional latent space usually used in GANs, known as the
z-space. The objective of using this disentangled w-space was to
better separate different characteristics of the network’s output,
allowing a much finer control of the generation process when
producing new content.

For notated music this space has a lot of potential for further
exploration. For example, one appealing idea is finding
trajectories in the latent w-space that can change a specific
characteristic of the output without changing other features,
which means keeping other musical features constant. Some

FIGURE 6 | New chords generated by the TimbreNet model. The top three chords are new but they are similar to chords that can be found in the training set. The
bottom three chords are completely novel, with different number of notes and representing different tonal functions, such as a dominant seventh or minor-minor seventh
chords..

FIGURE 7 | Representation of input and output of the StyleGAN 2 network with piano rolls. A symbolic representation of a musical excerpt in the form of a 128 ×
128 × 3 piano roll is used to train the network. The output is another piano roll, which can later be transformed into midi or audio.
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examples of desiredmusical changes can be the number of pitches
in the excerpt, its tonal key, the amount of silences, or the amount
of polyphony, among other interesting musical features that can
be described in a piano roll representation.

In Figures 8, 9 there’s a comparison of several real input
images against fake ones that were generated by our network. A
first visual inspection of the images reveal that the fake images
look very similar to the real ones. In terms of musical structures
and motifs. the network is able to generate a great variety of
musical ideas, ranging from pointillistic short events, as it can be
observed in Figure 10A, to long chordal structures such as in

Figure 10F. By interpolation of the latent space, it is also possible
to generate a musical progression from one sample to another,
with a variable number of intermediate steps, as Figure 10
depicts. For a more musical evaluation, we published a folder.5

with some selected samples to examine what this approach can
potentially generate. There are single samples, which are the
direct output of the network translated to MIDI and transformed

FIGURE 8 | 24 examples of real piano rolls used to train StyleGAN Pianorolls arranged in 4 rows and 6 columns. The examples exhibit great variation in their musical
structure.

FIGURE 9 | 24 examples of fake piano rolls generated by StyleGAN Pianorolls arranged in 4 rows and 6 columns. The generated excerpts exhibit great variation in
their musical structure, as it is the case of the input data.

5https://drive.google.com/drive/folders/1cj-Y38GMxg4m0REWyU3ZvIUtWtp-
TiOS?usp�sharing.
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to an audio file using Timidity++, and also sequence samples that
are the concatenation of multiple outputs interpolated from two
points in the w-space, further explanation of the types of
generation will be explained in the next section.

4.2.3 Generation
The process of generating an audio file from the output image of
StyleGAN 2 has two parts: 1) defining a threshold and tempo for
the generated piece, and 2) transforming the image to a numerical
matrix. The first step is needed because the model returns a
grayscale image, where the pixel values are between 0 and 255,
and has three channels. With the threshold defined, we took the
mean of the three channels and binarized the image using this
threshold to determine which pixels correspond to played notes,
thus, obtaining the numerical matrix which can be transformed to
a pianoroll using the pypianoroll package developed by Dong
et al. (2018b) to later convert it to a MIDI file. For listening to
these files we used Timidity++ to convert them to a wave file.

We can generate new musical excerpts using this model
through exploration of the latent w-space, changing the input
values to get new pieces. Another interesting musical application
is to interpolate between two examples generated by the network,
defining the number of steps we can generate a sequence of
concatenated outputs while moving from one point in the latent
space to another, as shown in Figure 10. In the supplemented
folder there’s examples of different sequences from two random
sampled points in the latent space, showing how the trained
model evolves one excerpt into another in a series of steps.

5 PERCEPTUAL EVALUATION

We designed a very simple survey to obtain a first approximation
to the perceptual validity of our results aimed towards
determining whether our StyleGAN piano rolls network was
able to generate musical excerpts that could be judged to be
creative by human beings. Given the well-known ability of GANs
to create realistic portraits, we created two videos.6 based on
StyleGAN2 content. The visual content was generated by a
StyleGAN 2 neural network trained with publicly available
images of portraits of the Chilean National Art Museum

(Museo Nacional de Bellas Artes), in the same fashion
described in Karras et al. (2020b). The audio content was
generated using two versions of the StyleGAN piano rolls
model, one trained with different instruments from the LAKH
MIDI Dataset (Raffel, 2016), and the other with the MAESTRO
dataset (Hawthorne et al., 2018). We curated different musical
excerpts from these networks to assemble the complete musical
pieces. Our work consisted mainly in organizing the different
fragments generated to create longer structures with multiple
instrumentations, instead of focusing on a single instrument. It is
important to clarify that the audiovisual content was completely
generated by StyleGAN 2 networks, that none of those faces that
appear in video exist in reality and neither do the musical
structures that can be heard, they were completely created by
a machine. Only the temporal organization of the music was done
with human intervention. Finally, to achieve the final audiovisual
results we used the Lucid Sonic Dreams.7 library, which uses a
StyleGAN2model to explore its latent space by synchronizing the
transitions with a given audio, creating interesting movements to
the rhythm of the music.

We asked participants to assess the creativity of each of the
videos in terms of their audiovisual, visual only and audio only
content, by selecting a number in a Likert scale from 1 to 5. 1
corresponded to the label “Disagree”, while five indicated
“Agree”. 3 indicated no preference towards any side. For both
videos, we evaluated the level of agreement/disagreement with the
following statements:

1) The audiovisual content of the video is creative
2) The visual content of the video is creative
3) The audio content of the video is creative

Forty-four participants responded the survey over the internet.
The results are shown in Figures 11, 12, respectively. It is very
clear, for both videos, that the majority of the subjects were in
agreement with the statement that the content was creative. All
three type of contents: audiovisual, visual only and audio only,
especially in the second video, were judged to be creative by a
great majority of participants.

FIGURE 10 | StyleGAN Pianorolls is able to generate a variety of musical ideas (A–F). The latent space can also be interpolated between 2 outputs to generate a
musically-meaningful sequence. In this case, the generated sequence exhibits how the network morphs from sample A to sample F in 4 steps, visually divided by a red
line for easier differentiation.

6https://youtu.be/THxEOvRG4Ss, https://youtu.be/6CVAzQiMPlM. 7https://github.com/mikaelalafriz/lucid-sonic-dreams.
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6 DISCUSSION

We believe that both of the case studies that we have presented
exhibits certain aspects of computational creativity. In particular,
both networks can generate novel musical excerpts or chords
different from the ones contained in their respective training sets,
a clear signal of novelty, but that also make musical sense and can
function very well in their musical context at the same time, a
probable sign of value. In TimbreNet, the network is trained with
only tertian triad chords, consisting of only three notes arranged
by thirds, and exclusively major, minor, diminished or
augmented chords. However, as Figure 6 shows, the network
can generate seventh chords, chords that are still tertian, but that

contain four notes and that play a fundamental role in Western
music, as their function within an harmonic context can be, for
example, the dominant leading the way to the tonic, as in the case
of the dominant seventh. If a chord-generating neural network
trained with tertian triads exclusively can generate, after training,
a dominant or minor-minor seventh chord, musical entities that
the network had no clue they existed at all, does that make it a
creative artificial intelligence? We believe that the answer must be
yes, as the concept of a seventh chord is at the core of musical
knowledge, and it is not trivial to derive from only regular tertian
triads. In terms of value, it is interesting to notice that the network
kept the configuration of new chords based on thirds, which
makes musical sense. It could have simply generated lots of

FIGURE 11 | Perceptual evaluation of Video #1. Forty-four participants responded the survey over the internet. All three type of contents: audiovisual, visual only
and audio only, were judged to be creative by a great majority of participants.

FIGURE 12 | Perceptual evaluation of Video #2. Forty-four participants responded the survey over the internet. All three type of contents: audiovisual, visual only
and audio only, were judged to be creative by a great majority of participants.
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cluster chords, without any specific interval configuration, which
would make them less coherent from a traditional Western
harmonic point of view.

In general, a generative model is satisfactory if: 1) it can
generate examples that appear to be drawn from the same
distribution as the training dataset, a concept known as
fidelity, and 2) the examples are suitably different from the
examples shown during training, in other words, diversity
(Naeem et al., 2020). In musical terms we can relate fidelity
with adhesion to musical standards and diversity related to
novelty and unexpectedness, all aspects of musical creativity
(Daikoku et al., 2021). In the case of our experiments we
found different degrees of achievement in fidelity and diversity
depending on the number of dimensions of the latent space. For
models with smaller latent space (3 or 4 dimensions) we found
that the new chords were very similar to the chords in the dataset
and no new different chords were generated, achieving fidelity but
not diversity. For models with eight dimensions the chords were
similar to the chords in the dataset but new chords with 4 or five
notes were found. These new chords are suitably different from
the training examples and they still have musical meaning and
sense. We can say that this model achieved both fidelity and
diversity. For models with bigger latent spaces (16 and 32
dimensions) new chords can be very different from those
contained in the training set and they start loosing musical
meaning and sense, achieving diversity, maximizing
unexpectedness, but minimizing fidelity.

This network generates new chords when its latent space is
sampled at coordinates that were not explicitly explored during
training. It is indeed this sampling of uncharted territory that
gives the possibility of something new and novel. This latent space
is very similar to Boden’s idea of a structured conceptual space,
and this process of exploration is very congruent with the concept
of exploratory creativity (Boden, 2004). This idea is also
supported by Franceschelli and Musolesi (2021) and Basalla
and Schneider (2020), who claim that VAEs are the best
possible computational examples of exploratory creativity, as
their main goal is to create a structured compressed space
open to further exploration.

How is it possible that the network learned the concept of a
seventh chord? We don’t exactly know that at this point, but we
propose that the fact that it learned that is a clear sign of creativity.
One thing is being able to generate new audio based on chords,
but a totally different thing is the ability to generate new chords,
directly in audio, that fulfill a different tonal function with a
different number of notes, but keeping its internal interval
arrangement. In order to do that, TimbreNet must have
learned the idea that a chord contains notes, that it can
contain a variable number of them (even though it only saw
tertian triads at training), and that these notes must be separated
bymajor or minor thirds, in order to form a seventh chord. These,
we insist, are not trivial concepts in music theory.

The fact that GANs possess a non-directly generated latent
space, because the generator never sees real examples, implies that
the sampling process in these kind of networks is from a
conceptual space that could be indeed different from the
original one, leading not only to exploratory creativity, but

possibly also to transformational creativity (Franceschelli and
Musolesi, 2021; Basalla and Schneider, 2020).

In effect, in StyleGAN Pianorolls, as it can be seen in Figure 9
and heard in the audio examples, a network originally trained on
images of human faces learned how to generate musical excerpts.
Representations and features from the spatial domain of images
were somehow transformed into musical ideas, a clear conceptual
leap, and an example of transformational creativity (Boden,
2004). These musical ideas are also novel and posses musical
value, a fact that strengthens the creative aspects of this network.

This network also exhibits self-evaluation, another critical
aspect of creativity according to Moruzzi (2021). The
discriminator does not allow “false” examples to survive,
relying only on true examples to improve its performance. In
a sense, these networks know “when to stop”, without any need of
external feedback.

The understanding of how the StyleGAN 2 model can learn to
map different musical features, such as chords, scales and
repeating motifs, to a new latent space to generate musical
ideas that were not explicitly included in the training data,
provides a new investigation opportunity to further explore
how to use the disentangled space to get more control over
the output of these models, so composers can use this as a tool for
getting creative new ideas to overcome writers block for example.

In terms of the perceptual evaluation of the StyleGAN 2
model, we are aware that this is not a complete and rigorous
perceptual evaluation of the creativity of our case studies. We also
acknowledge that were are not comparing the results of these
networks with those of a human counterpart, and that there is still
some human intervention in the video production stage.
Nevertheless, these results tend to confirm our hypothesis that
these networks exhibits some traits of creativity, as their products
were judged by a majority of our human subjects to be creative.

In summary, we have provided evidence that combined
suggest that deep generative neural networks, can be,
effectively, considered to be creative, or at least as creative as
we consider humans are, based on our current understanding and
knowledge on the topic. These networks generate valuable and
novel outputs, and can conceptually leap, by using existing
knowledge from a particular domain to generate knowledge in
another domain. In the particular case of robot-generated music,
these findings are particularly appealing and open a wide door for
future creative possibilities.

7 CONCLUSION AND FUTURE WORK

The spectacular development of DL has not been alien to the
world of the arts, as recent advances in generative models have
made possible the creation of deep creative networks. As an
example, we presented two case studies of our own: TimbreNet, a
VAE network trained to generate audio-based musical chords,
and StyleGAN Pianorolls, a GAN capable of creating short
musical excerpts. We discussed and assessed these generative
models in terms of their creativity and we show that they are
capable of learning musical concepts that are not obvious based
on the training data, they exhibit novelty, diversity, self-
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assessment, they can also produce conceptual leaps, and
exploratory and transformational creativity. We have shown
that these deep models, based on our current understanding of
creativity in robots and machines, can be considered, in fact,
creative.

In particular, we focused on the aspects of 1) novelty, in the
sense that these models should produce something that is not
expected, 2) value, by assessing whether novel outputs function
well in a musical context, 3) exploratory creativity as they can
represent complex ideas in a compact conceptual space, 4) self-
assessent, in the sense that they do know when to stop, and 5)
diversity transformational creativity and conceptual leaps, where
one type of knowledge is used to produce a different kind.

For the purposes of this article, we used an evaluation strategy
based both on the first and second strategies proposed by
Jordanous (2019): first a creative-practitioner-type approach,
i.e., perceptual evaluations by humans, and second, based on
the assessment of the authors, as we were the creators of both
models. In future work, we would like to incorporate more
evaluation strategies in order to strengthen the argument that
these networks can exhibit creative behavior, and a more
complete subjective evaluation by humans. And also, we
would like to dive in more depth into the exploration of the
latent spaces of both modes, not only to show that these networks
can be creative, but to understand why: what have they learned

and how they acquired that knowledge and why it is that they can
consider creative.
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Social Robots as Creativity Eliciting
Agents
Safinah Ali *, Nisha Devasia, Hae Won Park and Cynthia Breazeal

MIT Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States

Can robots help children be more creative? In this work, we posit social robots as creativity
support tools for children in collaborative interactions. Children learn creative expressions
and behaviors through social interactions with others during playful and collaborative
tasks, and socially emulate their peers’ and teachers’ creativity. Social robots have a
unique ability to engage in social and emotional interactions with children that can be
leveraged to foster creative expression. We focus on two types of social interactions:
creativity demonstration, where the robot exhibits creative behaviors, and creativity
scaffolding, where the robot poses challenges, suggests ideas, provides positive
reinforcement, and asks questions to scaffold children’s creativity. We situate our
research in three playful and collaborative tasks - the Droodle Creativity game (that
affords verbal creativity), the MagicDraw game (that affords figural creativity), and the
WeDo construction task (that affords constructional creativity), that children play with Jibo,
a social robot. To evaluate the efficacy of the robot’s social behaviors in enhancing creative
behavior and expression in children, we ran three randomized controlled trials with 169
children in the 5–10 yr old age group. In the first two tasks, the robot exhibited creativity
demonstration behaviors. We found that children who interacted with the robot exhibiting
high verbal creativity in the Droodle game and high figural creativity in the MagicDraw game
also exhibited significantly higher creativity than a control group of participants who
interacted with a robot that did not express creativity (p < 0.05*). In the WeDo
construction task, children who interacted with the robot that expressed creative
scaffolding behaviors (asking reflective questions, generating ideas and challenges, and
providing positive reinforcement) demonstrated higher creativity than participants in the
control group by expressing a greater number of ideas, more original ideas, and more
varied use of available materials (p < 0.05*). We found that both creativity demonstration
and creativity scaffolding can be leveraged as social mechanisms for eliciting creativity in
children using a social robot. From our findings, we suggest design guidelines for
pedagogical tools and social agent interactions to better support children’s creativity.
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INTRODUCTION

Children’s creativity–their ability to generate novel, surprising,
and valuable ideas–is known to contribute to their learning
outcomes, personal growth, and well-being. Creativity
facilitates children’s problem solving, adaptability, self-
expression and health (Carterette et al., 1994). Even though
the benefits of creativity are widely recognized, classrooms are
not able to sufficiently support children’s creative development.
Gardner and Art, 1982 posited that children start to show creative
abilities as early as preschool, and Smith and Carlsson (1983)
found that the level of developmental maturity necessary for
creative expression occurs around 5–6 yr of age. However, as they
enter elementary school, children’s creativity slumps, especially
around the fourth grade (Torrance, 1966, 1968; Claxton, 2005).
As school curricula become more structured, children lose the
aspect of creative play that is a significant part of kindergarten. To
be successful in our AI-powered world, where mechanical and
repetitive jobs are becoming automated, we must empower
children to generate new artifacts and solve complex problems,
which will require imaginative and novel thought.

In classrooms, social interaction plays a key role in children’s
creative growth. Children learn creativity from teachers and peers
who act as models for creative expression. They can scaffold
children’s creativity through social interactions such as
collaborating, posing challenges, asking questions, providing
positive reinforcement, and generating ideas. Participating in
collaborative tasks is one of the most effective external
influencers of creativity (Kafai et al., 1995). In addition,
classrooms today see increasing numbers of digital pedagogical
tools and learning aids that have proven to be beneficial for
cognitive learning due to their ability to personalize instruction
for every student. Games and play-based learning approaches
have been successful in fostering creative expression in children
(Henriksen, 2006; Bowman et al., 2015). However, most
educational technologies do not have the ability to foster social
interaction with students. Exceptions include socially interactive
AI agents such as conversational agents and social robots, which
are highly effective in promoting learning and engagement (Chen
et al., 2020). Previous work has demonstrated how social robots
can influence children’s learning behaviors such as curiosity,
growth mindset, and empathy through social emulation
(Gordon et al., 2015; Park et al., 2017). Notably, the presence
of a social robot can also affect adults’ creativity (Kahn et al., 2016;
Alves-Oliveira et al., 2019). In this work, we explore how social
robots can foster creativity in young children through
collaborative, playful interactions.

Social robots are increasingly being used as learning peers and
tutors (Adamson et al., 2021), and their unique ability to socially
interact with children while being co-located has situated them
well as creativity support tools (CST). Previous work has shown
that robots are more effective than other mediums used for CSTs,
such as screen-based interfaces (Kahn et al., 2016; Ali, 2019). We
do not seek to compare robots to other mediums of CSTs in this
work; rather, we intend to demonstrate the efficacy of creativity
stimulating interactions designed for social robots. Furthermore,
while social interaction is not a prerequisite for creativity,

creativity literature informs us that social interactions with
peers and tutors can foster creativity in children. Previous
work has shown how situating the robot as a collaborative
peer that offers ideas or helps with the creative process have
benefitted creative expression (Louis and Peter, 2015; Rond et al.,
2019). In this work, we explore whether a social robot’s capability
for social interaction patterns can stimulate children’s creativity,
while acknowledging that there are other stimulants of creativity.
Learning from the effect of sociality on creativity in classrooms,
we explore whether the effect can be replicated in pedagogical
tools, specifically social robots. We suggest two interaction
patterns in which intelligent embodied agents can help
children think more creatively: 1) creativity modeling, where
the social robot models or demonstrates desired creative
behaviors, and 2) creativity scaffolding, where the robot offers
scaffolding to the child in the form of asking reflective questions,
validating novel ideas, and engaging in creative conflict. The
robot used in this work is Jibo -- a child-friendly, tabletop, socially
expressive robot.

We position our research in three playful and collaborative
tasks, where children and the robot collaborate to create artifacts.
These one-on-one interactions afford different forms of creative
expression.

In the first two tasks, outlined in our previous research (Ali
et al., 2019; Ali et al., 2020), we designed the behavior of the robot
to artificially emulate human creativity:

1. The Droodle Creativity game, where children and the robot
generate humorous titles for abstract images to express verbal
creativity.

2. TheMagic Draw game, where children and the robot co-create
drawings on a tablet screen to express figural creativity.

In this work, we introduce the third task, where the robot
scaffolds children’s creative thinking by asking questions,
validating novel ideas, and engaging in creative conflict:

3. The WeDo Construction activity, where children and the
robot co-create WeDo LEGO models to encourage
constructional creativity.

We outline previous research, where we demonstrated that
children can emulate a social robotic peer’s creative expression
during collaborative gameplay. We ran two randomized
controlled trials with 126 children: verbal creativity (n � 48)
and figural creativity (n � 78) in the 5–10 yr old age group.
Participants in the intervention group interacted with the robot
exhibiting creative behaviors and participants in the control
group interacted with the robot that did not exhibit these
behaviors. We observed that children who interacted with the
robot exhibiting high verbal creativity (in the Droodle Creativity
game) and high figural creativity (in the MagicDraw game)
exhibited higher verbal and figural creativity themselves. We
then introduce our third study, where the robot offers
creativity scaffolding behaviors in the WeDo Construction
task. We ran a randomized controlled trial with 42 students in
the 6–10 yr old age group. We observed that when the robot
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offered creativity scaffolding in the construction task, children
expressed higher creativity.

In sum, we provide consistent evidence that the performance
of creativity inducing behaviors by social robots can foster
creativity in young children. Further, in all three studies,
children in the high creative robot conditions perceived the
robot as more creative and fun as compared to the low
creative conditions. By showing that a social robot can
successfully foster different kinds of creative expression, we are
able to articulate more generalized social mechanisms that can be
leveraged to support creativity in children. We contribute novel
design guidelines and new methods for designing interactions
with social agents that aim to promote creative thinking. With
new developments in generative modeling techniques, robots can
participate in several co-creative tasks with children, and can be
leveraged as creativity support tools in a wide range of creative
activities. We discuss implications for the field of HRI, digital
creativity support tools, co-creative agents, and
transformative games.

BACKGROUND

Creativity
Creativity is often referred to as the ability to generate artifacts or
ideas that are both novel and appropriate to the problem at hand
(Carterette et al., 1994). Novelty is the ability to generate ideas
that are different from one’s own ideas, and different from the
group’s ideas. The appropriateness of a solution refers to solving
problems using the least amount of time and resources. The
definition of creativity has evolved from a function of the
individual to an interaction between aptitude, environment,
and process by which an individual produces a tangible
product (Plucker et al., 2004). Depending on the nature of the
task and the medium of creative expression, creativity presents
itself in different forms; for example, figural creativity (drawing,
painting, sketching) and verbal creativity (writing, storytelling,
composition, discourse) (Guilford, 1957). In addition,
construction (building, tinkering) is described as a form of
creativity in which students can draw their own conclusions
through creative experimentation and the creation of artifacts
(Harel and Papert, 1991). A commonmeans for fostering creative
learning in classrooms is through construction and maker based
activities, which we refer to as constructional creativity in
this work.

Early creativity researchers defined creativity as the
embodiment of thought in the form of external behavior,
consisting of three characteristics: fluency, flexibility, and
originality (Guilford, 1950). Fluency refers to the ability to
generate several ideas, flexibility refers to the variation in
themes between several generated ideas, and originality refers
to the novelty of the ideas generated in comparison to those of the
group’s. For the purpose of this work, we define the ability to
generate ideas with greater fluency, flexibility and originality as
creative thinking. Metrics of fluency, flexibility and originality are
dependent on the choice of tasks made for each type of creativity.
We also take divergent thinking into account as a component of

creativity, and categorize activities that involve the creation of
artifacts as activities that afford creativity.

Extrinsic Factors Influencing Creativity
Researchers have identified several factors that may serve as
“situational influences” of creativity: freedom, autonomy, good
role models and resources, encouragement for originality, little
criticism, and “norms in which innovation is prized and failure
not fatal” (Amabile and Gryskiewicz, 1989; Witt and Beorkem,
1989). In our work, we utilize the following factors to design
effective creative interactions.

Emulation
Emulation is described as “[when] children achieve common
goals to those modelled, but do so by using idiosyncratic means
that were never observed” (Bornstein and Bruner, 2014). Indeed,
children are predisposed to social emulation (Yando et al., 1978),
and learn from other creators in their environments, such as
teachers and classmates, through mechanisms of social emulation
(Whiten et al., 2009). Within classroom settings, researchers have
suggested that the traditional educational model, which
emphasizes rote problem solving, can be overcome by
providing students with more diverse models of creativity to
emulate (Root-Bernstein and Root-Bernstein, 2017). Social
emulation may even be at the heart of innovation itself; one
study showed that in a tower building task, children performed
poorly at the task independently, but after observing one or two
models building a tower, they were able to emulate the
demonstrated elements and spontaneously recombine them,
producing a novel tower of an optimal height (Subiaul and
Stanton, 2020).

Social Interactions in the Classroom
The importance of the social environment to creativity is well
researched (Kaufman and Sternberg, 2010). For children, the
primary social environment is the classroom. Several factors
that influence creativity, such as emulation, play, and
collaboration, are heavily integrated into early education
classroom curricula (Halverson and Sheridan, 2014; Kafai
et al., 1995). Question-asking during creative activities
stimulates their creativity (Zheng et al., 2013), and creative
learning research outlines how game-based learning
environments must facilitate reflective thinking (generating
ideas and evaluating them) in order to foster creativity
(Henriksen, 2006; Bowman, et al., 2015).

Collaboration
Creativity has typically been understood as an individualistic
pursuit. However, it is now widely accepted that creativity stems
from the confluence of diverse perspectives and ideas, and that
the nature of collaboration stimulates creative problem solving
(Kafai et al., 1995). For children in particular, several studies
emphasize the importance of friendship and peership in fostering
effective creative collaboration (MacDonald et al., 2000; Miell and
MacDonald, 2000; Bass et al., 2008). The studies described in this
work utilize a social robot as a peer in order to stimulate creative
collaboration with children.
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Play
Play-based learning tools and game-like activities have been
repeatedly shown to promote creativity (Henriksen, 2006;
Garaigordobil, 2006; Baggerly, 1999; Dansky, 1980; Howard-
Jones et al., 2002; Mellou, 1995; Russ, 2003; Berretta and
Privette, 1990). They are effective for teaching concepts to
children since their entertainment value ensures higher
engagement levels. Furthermore, several behaviors that
constitute creativity can be promoted via gameplay behaviors,
such as developing multiple solutions to a problem, generating
novel and appropriate solutions, metacognition, question-asking,
and cross-contextual thinking (Henriksen, 2006). Games
designed to specifically alter players’ behaviors, attitudes, or
knowledge during and after play are known as
transformational games, which can be used as tools to support
meaningful learning. Digital games in particular provide players
with the opportunity to find many creative solutions within a
singular play space (Bowman et al., 2015), especially in the case of
well-known sandbox games such as Minecraft (Duncan, 2011). In
our work, we utilize transformational digital games with game
mechanics that allow for creative expression and creative
problem-solving.

Creativity Support Tools
Given the many extrinsic influencers of creativity, it is no surprise
that HCI researchers have attempted to engineer creativity
support tools (CSTs) “that empower users to be not only
more productive but also more innovative” (Shneiderman
et al., 2006). Since the framework’s proposal (Shneiderman,
2002), researchers have developed a wide range of CSTs. The
vast majority of CSTs were built for digital devices, with the most
common being a laptop or a personal computer (Frich et al.,
2019). Previous work has demonstrated how creativity is also
facilitate through analog toolkits such as Scratch Coding Cards
(Scratch Team, 2017) and robotic construction kits such as Lego
Mindstorms, Popbots, and Cozmo (Anki, 1999; Williams et al.,
2019).

Social Robots as CSTs
Despite creativity’s social nature, little work has been conducted
on the benefit of utilizing social agents as CSTs. Previous work has
demonstrated how verbal and non-verbal social robot behavior
can serve to engage adults in a creative activity for longer and aid
their own creative ideas (Kahn et al., 2016; Alves-Oliveira et al.,
2019), and children will emulate a social robot’s expressed verbal
and figural creativity, resulting in a higher level of creative
expression (Ali et al., 2019; Ali et al., 2020). Alves-Oliveira
et al. (2020) demonstrated how interacting with the robotic
system YOLO when it displayed social and creative behaviors
simulated children’s creative abilities. Robots with light patterns
have also benefited children’s storytelling experiences (Ligthart
et al., 2020). Another study showed how people spent more time
creating music with drums while collaborating with theMortimer
robot (Louis and Peter, 2015). Rond et al. (2019) found that adult
improve performers viewed a simple robot as a supportive
teammate who positively inspired the scene’s direction. A
majority of previous work utilized social robots as peers or

partners. However, all mentioned works are specific to one
creative task.

Social robotic agents are proven to be effective learning
companions (Belpaeme et al., 2018), and children form
relationships with them through social interactions (Westlund
et al., 2018). There lies a unique opportunity in being able
leverage these social and interactive agents as creativity
fostering mechanisms for children. In this work, we
demonstrate the efficacy of social robots as CSTs through
three creative tasks that focus on three different kinds of
creativity: verbal, figural and constructional. Further, we utilize
game-based interactions since play is known to benefit creativity
and it helps situate the robot as a collaborative playful peer. Like
previous work, we situated the robot as a collaborative peer (Rond
et al., 2019). Similar to Ali et al. (2019) and (Ali et al., 2021), we
utilize the robot’s creativity demonstration as a creativity eliciting
mechanism. Similar to Alves-Oliveira et al. (2019) and Kahn et al.
(2016), we made use of the robot’s social verbal and non-verbal
interactions during child-robot interaction. Through the three
game interaction, and the robot assuming different social
behaviors, we studied how creativity demonstration and
creativity scaffolding through social interactions benefited
children’s creative expression. We suggest interaction patterns
of social robots specific to a computational learning setting that
aim to foster creativity (described as Creativity Scaffolding
interactions) that are generalizable to other creative tasks for
children. Through this work, we aim to contribute to the
literature of using social interactive agents as creativity support
tools, through both their social interactions scaffolding children’s
creativity, and their creativity demonstrations acting as a model
for children to emulate.

ROBOT PLATFORMS

For the three creativity activities, we used Jibo, a socially
embodied robot, as our robotic platform (Jibo, 2015). Jibo is
an expressive tabletop social robot (Figure 1) that can speak,
respond to children’s speech, track faces, gaze toward the person,
attend to sound andmovement in its environment, and physically
express emotion through its display and three degree-of-freedom
body. Jibo can communicate with an Android tablet that serves as
a shared drawing surface or to display information for the child.
Prior to each study, the experimenters discussed with children
that Jibo uses WiFi to see, talk, draw, and interact with objects
displayed on the tablet, and that it doesn’t need physical hands to
do so. Such discussion is important to building a believable
experience for children that the robot knows what is displayed
on the tablet and can draw on the tablet, too.

During the interaction, Jibo provides explanations and
encouragement to the child, and expresses joy, curiosity, and
pride. Between the high creative (C+) and low creative (C−) robot
conditions, we carefully controlled the amount of verbal and non-
verbal robot behaviors; however, the robot’s speech differed based
on the study condition. In the C+ condition, the robot exhibited
greater creativity; in the C− condition, it demonstrated
substantially lower creativity.
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We developed three game-based and interaction child-robot
tasks which we introduce in the following sections.

EXPERIMENT 1: DROODLE CREATIVITY
GAME

Previous work in HRI demonstrated how children emulate robots’
learning behaviors such as curiosity and growth mindset (Gordon
et al., 2015; Park et al., 2017). Motivated from this literature, we
explored whether this social emulation phenomenon extends to
verbal creativity. Verbal creativity, defined as the ability to create
verbal artifacts such as stories, prose and poetry has three indicators:
fluency, or the ability to produce a large number of ideas; flexibility,
or the aptitude for changing from one approach to another or from
one line of thinking to another; and originality, or the capacity for
bringing new ideas or solutions that are far from obvious, common,
or established. Development of verbal creativity in children is
pivotal to their learning, writing and thinking skills and helps
them reflect their feelings, emotions, opinions, reactions, and
notions to others (Shorofat, 2007; Rababah et al., 2017). In this
work we explore whether a social robot’s creative verbal expression
is emulated by children, for which we created theDroodle Creativity
game (Ali et al., 2019), inspired by the Droodle Creativity Task, a
verbal creativity task that draws upon people’s ability to creatively
use language to describe an abstract image or figure known as a
droodle (Kahn et al., 2005). The Droodle Creativity Task has been
previously validated as a means to measure people’s verbal
creativity, and is based on the cartoon book Droodles by Roger
Price (1982), thus making it appropriate for a children’s game. The
Droodle game encourages children to think creatively, express their
thoughts and encourage humor.

Game Design
In the Droodle Creativity Game, two players take turns to
generate Droodle titles (Figure 1). The active player is
presented with droodles on a tablet screen and they come up

with droodle title(s) in 30 s. Then the turn shifts to the other
player until each player has played five turns each. The Droodle
Task coding system, developed by Kahn et al. (2005), provides a
metric for ranking the titles as “non-droodle,” “low-,” “medium-,”
or “high-droodle” based on the participant’s initial reaction,
pattern matching to the image in question, and reasoning for
providing such an answer. Droodles used in our study were taken
from Droodles: The Classic Collection (Price and Lovka, 2000)
which also includes a library of droodle titles.

Interaction Scenario
When the interaction starts, Jibo explains to the child how the
Droodle task works and engages the child in a practice round.
When the child generates a creative droodle title, the robot praises
the child by using phrases such as, “Great job,” “I would not have
thought of that,” or “You are doing great.” When the robot is
“thinking” of a Droodle idea, it expresses curiosity through
questioning sounds, swaying movements, and looking upwards.

Experiment Design
Participants
We recruited 51 subjects in the 5–10 yr age range as a part of the
Somerville after-school activities program at the public schools in
Somerville, MA. All students had basic knowledge of robotics and
artificial intelligence taught to them as a part of another module of the
after-school program. Three students were excluded due to
technologicalmalfunctions or a rudimentary understanding of English.

All participants and their guardians signed an informed assent
and consent form to participate in the study and permit us to
collect demographic, assessment, audio and video data. The
recruitment materials, study protocol, and data collection
protocol were reviewed and approved by the Institute
Research Board at Massachusetts Institute of Technology.

Pre-test
All students completed the Torrance Test of Creative Thinking
(TTCT) assessment as a part of the pre-test activity (Torrance,

FIGURE 1 | Interaction Scene. (A) A child is playing the Droodle Creativity Game on an Android Tablet with social robot Jibo. (B) Example of a Droodle Image. 10
Droodles were used in the Droodle Creativity Game (five per player).
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1968). The TTCT is a paper-based evaluation that consists of two
sets of assessment activities: a verbal creativity test and a figural
creativity test. The purpose of conducting the TTCT before the
study was to drive a quasi-random assignment into groups such
that their creativity scores are counterbalanced across the two
conditions, described in the following section.

Study Conditions
Forty-eight participants were divided into two study condition
groups, one that interacted with the high creative robot (C+) and
one that interacted with the low creative robot (C−). The groups
were divided such that the participants in the two groups were
balanced in terms of their mean and standard deviations of TTCT
scores (C+: 42.16 ± 7.17; C−: 40.66 ± 6.01), age (C+: 7.78 ± 1.92; C−:
8.38 ± 1.85), and gender (C+: F � 9, M � 15; C−: F � 13, M � 11).

The robot exhibits high or low creativity during gameplay
depending on the study condition (Table 1). We use Boden’s
framework of creativity to design creative behaviors in gameplay
(Boden, 2004), and Kahn et al.’s Droodle Task Coding system
(Kahn et al., 2005) to determine the creativity of Droodle titles.

Hypotheses
H1: Participants interacting with the high creative robot (C+)
generate a larger number of ideas than participants interacting
with the low creative robot (C−).
H2: Participants interacting with the high creative robot (C+)
explore more themes of ideas than participants interacting
with the low creative robot (C−).
H3: Participants interacting with the high creative robot (C+)
generate more creative ideas than participants interacting with
the low creative condition (C−).

Data Collection and Measures
Children’s speech and video data was recorded. We used Google
Cloud’s Speech API (Google, 2020), as well as manual
transcribing by three researchers blind to the study to
transcribe children’s phrases. We used the TTCT to assess
children’s verbal and figural creativity prior to all study
interactions, and to divide them into balanced study groups.

We measured participants’ creativity in three parts:

• Fluency. The number of ideas that the participants
generated.

• Novelty. The number of unique themes explored through
the ideas. Each idea is associated with theme tags, which
include all concepts and keywords included in the idea.

• Value. The droodle creativity scores of the ideas generated.
Droodles are graded on a scale from 0 to 3, mapping to non-

droodle, low-droodle, medium-droodle, and high-droodle
respectively (Kahn et al., 2005).

For instance, one participant came up with the following ideas
for the droodle image in round 1 (Figure 1): “It’s peppa pig”; “It’s
peppa pig’s hands”; and “It’s frog hands.” This would be analyzed
as: Number of ideas (fluency) � 3; Unique themes (novelty) �
“peppa pig,” “hands,” “frogs”; Droodle scores (value): 2, 3, 2.

Results
We calculated numerical values for each of the three creativity
measures, then further determined the mean and standard
deviation of the Novelty and Value scores for every Droodle
image for each participant. For instance, if a participant generated
three ideas for Droodle #1, the Novelty and Value would be the
mean score of the three individual Novelty and Value scores. We
then conducted unpaired T-tests between the high creative and
low creative study participants to determine any between group
differences for each of the three metrics.

H1: Participants interacting with the high creative robot (C+)
generate a larger number of ideas than participants interacting
with the low creative robot (C−).

To test our first hypothesis, we analyzed the number of ideas
generated by the participants in the two study conditions. We
observed that participants who interacted with the robot
expressing high levels of creativity (C+) generated significantly
more ideas (t(29) � 1.699, p < 0.01**) compared to the
participants who interacted with the robot expressing low
levels of creativity (C−) (Table 2).

H2: Participants interacting with the high creative robot (C+)
explore more themes of ideas than participants interacting
with the low creative robot (C−).

To understand the novelty of the themes that participants
generated, we used the Rapid Automatic Keyword Extraction
algorithm (Rake NLTK), a natural language processing library, to
analyze the themes explored in each title (Mumford, 2001). We
observed that participants in the C+ condition explored
significantly more overall unique themes (t(29) � 1.699, p <
0.01**) as compared to the participants who interacted with the
robot expressing low levels of creativity (Table 2).

H3: Participants interacting with the high creative robot (C+)
generate more creative ideas than participants interacting with
the low creative condition (C−).

TABLE 1 | A gameplay comparison of the high creative and low creative study conditions.

Fluency Novelty Value

High creative
robot (C+)

Robot generated four to five ideas
per Droodle

Robot explored three or more
different themes

Robot picks Droodle titles that are tagged medium/high in creativity

Low creative
robot (C−)

Robot generated one to two ideas
per Droodle

Robot explored one to three
different themes

Robot picks Droodle titles that are tagged low/medium in creativity (e.g. the
literal description of an image)
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Three coders blind to the study conditions were trained using
the Droodle creativity coding scheme. They then coded all
Droodle titles generated by the participants as “non-,” “low-,”
“medium-“ and “high-droodle.” To determine inter-rater

reliability between researchers, Cohen’s kappa (Hallgren, 2012)
was calculated using 67% of the coded transcripts coded
independently by a team member after an initial coding by
other two coders. Cohen’s kappa was 0.82, which is within the

TABLE 2 | Droodle Creativity game t-test results per condition for each study hypothesis.

SG Ideas generated (H1) Themes explored (H2) Creativity scores per
Droodle (H3)

C+ (n � 24) 3.325 ± 1.16 4.983 ± 1.25 1.73 ± 0.21
C− (n � 24) 2.417 ± 0.96 3.842 ± 1.66 1.532 ± 0.25
p t(29) � 1.699, p � 0.006 t(29) � 1.699, p � 0.010 t(29) � 1.699, p � <0.015

Participants in the C+ condition generated more ideas, explored more themes, and overall received higher creativity scores than participants in the C− condition.

FIGURE 2 | Interface screenshots of the Magic Draw game explaining the child-robot gameplay. (A) The child draws a starting prompt (cat ears). (B) The child
selects a target category (cat). (C) The robot tries to convert the starting prompt (circle) into the target category (cat). (D) Players switch turns and the robot gives the child
a starting prompt. (E) The robot selects the category (bird). (F) The child converts the starting prompt to a bird. (order: left to right starting top-left).
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range for substantial agreement considered acceptable for inter-
rater reliability.

An overall analysis of creativity scores for every idea revealed
that participants in the creative condition scored significantly
higher in creativity score per title than participants in the low
creative condition (t(29) � 1.699, p < 0.01**) (Figure 2).

EXPERIMENT 2: MAGICDRAW

Similar to verbal creativity, we aimed to explore whether children
also emulate a robots’ expressed figural creativity. Generative
models such as GANs make it possible for AI models to generate
creative drawings (Ha and Eck, 2017; Ge et al., 2020).

FIGURE 3 | (top) (A) Child constructing models with Jibo. (bottom) (B) Model of interaction for the WeDo construction game where the robot provides creativity
scaffolding.
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Collaboration with both humans and digital interfaces has also
been known to benefit figural creativity (Kim et al., 2016).
Collaborative digital CSTs have been constantly evolving to
support the creativity needs of people, and have the ability to
contribute to the drawing itself. In human-human creative
collaborations, creators can socially interact with one another,
provide feedback and comment on their drawings, an interaction
style that is lost in digital CSTs. In this work, we explore whether
collaborating with a robot that also interacts with the creators
socially, in a figural co-creation activity benefits children’s
creativity. We explore whether children emulate the robot’s
expressed figural creativity through a co-doodling task.

Game Design
To investigate whether children model a social robot’s figural
creativity, we designed the MagicDraw game, which involves a
collaborative drawing interaction on an Android tablet between
the child and the robot (Ali et al., 2020). The gameplay requires
one player to start a drawing with a stroke, and the other player
completing the drawing. After the drawing is complete, the
players switch turns. When it is the robot’s turn to complete
the drawing, we utilize the Sketch-RNN model (Ha and Eck,
2017), which generates drawing strokes to convert a starting
stroke into a meaningful illustration (Figure 3).

Interaction Scenario
The collaborative figural activity utilized Jibo for similar reasons
to the collaborative verbal activity, and its interactions were
designed to evoke an autonomous “artistic” peer,
collaboratively creating drawings with the child. Even though
Jibo does not have appendages, it conveys interest and intent by
looking at the tablet while it “draws,” and vocalizes relevant
phrases, such as “OK, a cat. I think I can make that drawing into a
cat.” “Here I go!,” or “Watch me convert your doodle into a cat.”
The robot can also ask the child for feedback, e.g. “What do you
think about my drawing?,” increasing the credulity of the
interaction. We verified in the post-test that children perceived
Jibo was drawing on the tablet with them. Similar to the Droodle
Creativity Game, subjects and Jibo played the figural creativity
game by taking turns on an Android tablet.

Experiment Design
Participants
We recruited 78 children in the 5–10 yr age range as a part of the
Somerville after-school activities program at the public schools in
Somerville, MA. Eleven students in the figural creativity study
were excluded due to incomplete data collections or network
errors.

Pre-test
All students completed the TTCT assessment as a part of
the pretest activity. As with the prior study, the purpose of
conducting the TTCT was to drive a quasi-random
assignment into groups such that their creativity scores are
counterbalanced across the two conditions, described in the
following section.

Study Conditions
Participants were divided into two study condition groups: one
that interacted with the high creative robot (C+) and one that
interacted with the low creative robot (C−). The groups were
divided such that the participants in the two groups were
balanced in terms of their TTCT scores (C+: 43.33 ± 6.30; C−:
42.91 ± 5.16), age (C+: 7.89 ± 1.91; C−: 7.09 ± 1.96) and gender
(C+: F � 14, M � 23; C−: F � 20, M � 21).

The robot in the C+ condition produced more creative
drawings as defined by the metrics of the Test of Creative
Thinking - Drawing production (TCT-DP) -- a figural
creativity test (Urban, 2005). During the robot’s turn, we
adjusted the drawing model to reduce the randomness in
drawing. We kept the speed of drawing to the default speed
(60 fps). The robot always drew true to the selected category.
This led to higher quality drawings with a better model match
to the category that the child selects. The length and number of
interactions were controlled for across the two conditions. We
validate this hypothesis of these drawings being rated as more
creative in the following section.

In the low creative robot condition, the robot system was
configured to produce less creative drawings as measured by the
TCT-DP figural test parameters. We adjusted the generative
model to increase the randomness of the drawing, thereby
producing lower quality drawings with a lower model match
to the category that the child selects. Further, we adjusted the
frame rate of rendering to 30 frames per second to generate the
drawings more slowly. We also made the model periodically
select an incorrect category to make the drawing not match the
selected theme.

Hypotheses
H1: The drawing model produces more creative drawings in
the C+ condition than in the C− condition.
H2: Children who played the Magic Draw with the high
creative Jibo (C+) will exhibit higher levels of creativity in
their own drawings than children that play with the low
creative Jibo (C−).

Data Collection and Measures
The MagicDraw application logged the drawings done by the
child from all three rounds, the drawings done by the robot in
all three rounds, and the time taken for each drawing onto a log
file downloaded to the Android tablet. We also used an
overhead GoPro camera to take a birds-eye video of the
interaction, as well as for recording audio and participants’
post-test interviews.

To assess figural creativity from children’s drawings in the
MagicDraw interaction, we used the Test of Creative
Thinking - Drawing Production (Urban, 2005). Three
coders blind to the study’s hypothesis and the participants’
study condition reviewed the drawings and rated them. These
scores were then used for calculating the TCT-DP measures
of the drawings. Some participants did not make any
drawings, and some drawings were not saved due to
network errors.
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Results
We conducted unpaired t-tests comparing the creativity scores of
drawings generated by participants in the control condition (C−)
and the experimental condition (C+), as measured by the TCT-
DP test.

H1: The robot’s drawing model produces more creative
drawings in the C+ condition than in the C− condition.

To test this hypothesis, we compared the TCT-DP scores of
the robot drawings generated by the creative model and by the
low creative model. An unpaired t-test showed that the model
type had a significant effect (p < 0.01**) on the generated
drawing’s corresponding creativity score (Table 3). This
dataset was notably smaller than the children’s drawing
dataset since we did not collect all of the drawings generated
by the model. This significant difference helped establish that the
creative model was indeed generating drawings that were more
creative than the low creative model. Hence, manipulating certain
parameters of the model led to a change in the drawing’s
creativity.

H2: Children who played the Magic Draw with the high
creative Jibo (C+) will exhibit higher levels of creativity in
their own drawings than children that play with the low
creative Jibo (C−).

To test this hypothesis, we compared the TCT-DP scores of
all participants in all the conditions. An unpaired t-test test
revealed that the study condition had a significant effect on
children’s figural creativity, and showed a significant
difference between the High creative robot (C+) and Low
creative robot (C−) (p < 0.01**) (Figure 4). We could hence
validate our second hypothesis.

EXPERIMENT 3: WEDO CONSTRUCTION
TASK

Physical construction, or the ability to make new artifacts by
combining other artifacts, is a key indicator of children’s
creativity. Furthermore, unique ways of combining and using
the creations also indicates divergent thinking. Physical
construction kits facilitate playful learning, open-ended
making and creativity, and often creates co-creation space
with others (Alimisis, 2013). Robotic toolkits and
environments have been successfully leveraged to afford
construction by children (Mioduser and Levy, 2010). When
children construct with others, their creativity is scaffolded by
other children acting as models to emulate, providing ideas,
brainstorming, challenging and asking questions. In this
experiment, we explore whether this social support can be
offered by a social robotic collaborator in a construction activity.

TABLE 3 | MAGICDRAW figural creativity game one-way ANOVA results per condition for each study hypothesis.

Model Condition Robot Drawing TCT-DP
scores (H1)

Children’s Drawing TCT-DP
scores (H2)

High creative model (C+) (n � 37) 28.91 ± 6.69 42.27 ± 14.30
Low creative model (C−) (n � 41) 20.33 ± 7.86 32.88 ± 9.64
Result (unpaired t-test) t(26) � 1.60, p � 0.0064 t(56) � 1.67, p � 0.0023

One way ANOVA tests revealed that the study condition has a significant effect on participants’ figural creativity.

FIGURE 4 | (A) Version 1 of the Jibo control interface for generating Jibo speech commands and emotional expressions. (B) A teacher using the remote control
interface to control the robot.
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To afford constructional creative expression through making,
we designed a third activity in which children and Jibo collaborate
building models using the LEGO Education WeDo 2.0 Core Set
(2020). The set consists of LEGO bricks and electronics that can
be programmed using a visual programming interface on a tablet
application with the aim of introducing children to
computational thinking and engineering principles in a fun
and engaging way.

The interaction involved children making construction
projects using the WeDo 2.0 kit in the presence of a social
robot, which assumed the role of a tutor and provided
scaffolding to the child. In order to get acquainted with the
programming interface, children were first guided by the robot to
build a rover using LEGO blocks, and to program the rover such
that it could detect obstacles and respond to their commands
using the WeDo Android tablet application. Children could
utilize WeDo 2.0 standard construction kit items, including a
Bluetooth enabled controller, LEGO bricks, motors and
supporting construction materials and motion sensors. This
guided activity was conducted through a step-by-step verbal
exchange between the child and the robot and lasted for
6 min, with the robot taking the instructor role (Figure 5).
The activity introduced the child to sequential commands,
condition statements, delays, and loops. Then, children were
given 20 min for free play, where they could explore different
functions of the WeDo app, add new LEGO blocks, and make
their models perform new actions. The idea generation process
was guided by both the child and the robot. The role of the robot
was to scaffold the child’s creative learning through verbal and
non-verbal behaviors. Throughout the interaction, children could
ask the robot questions and receive dynamic troubleshooting
guidance. The robot also engaged in active creativity scaffolding
which involved asking the child reflective questions, challenging
their ideas and assumptions, and suggesting alternate ideas for
creations with the rover. The robot also provided feedback and
positive affirmation after children generated new ideas.

While the Droodle Creativity game and MagicDraw game
utilized a fully autonomous Jibo interaction, in this activity,
the robot was controlled by a human instructor using a
dynamic and predictive Graphical User Interface (GUI) on
the desktop to provide quality scaffolding at the right time and
also to respond to the child appropriately. This GUI controller
was iteratively co-designed in tandem with the instructors,
with the goal of assisting them in providing creativity
scaffolding to the children. This iterative process of
designing the GUI is outlined in Section 3.4.2. The desktop
GUI application communicated with the robot using Robot
Operating System (ROS, 2021). Children programmed the
WeDo controllers using an Android application on a tablet
screen. Figure 5 illustrates the system components and
communications between them.

Interaction Scenario
Introduction
Jibo guides the activity with the child, starting with a self-
introduction and then engaging in a short ice-breaker
activity. Jibo begins by looking at the child and saying,
“Hi. My name is Jibo. What is your name?.” When the
child responds with their name, Jibo replies with an
affectionate expression while saying, “It is so nice to meet
you. My favorite activity is to do my favorite dance! What
activities do you like?”

Jibo explains the activity to the child: “Today, we will be
programming this rover robot to do cool things. [looks down at
the tablet] Are you ready to begin?” When the child says “yes,”
Jibo responds with excitement, “Let’s go!”

Child-robot Co-play
Jibo then begins a step-by-step guided activity to help the children
learn how to program a rover with the LEGO WeDo kit. This
activity ensures that children understand how to use the WeDo
construction kit. After this guided activity, children are free to

FIGURE 5 | (A) The Jibo control interface. The questions, creative prompts, and positive reinforcement prompts only appeared for the instructors in C+ condition.
(B) A teacher using the remote control interface to control the robot.
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explore and build new models with the WeDo kit. Jibo provides
creativity scaffolding to help children generate novel ideas by
using verbal phrases like “Can you think of another way to do
this?”

Robot Interactions
Jibo acts as an instructor by: 1) assisting children in learning how
to use the WeDo construction kit, and 2) scaffolding children’s
creativity while they construct models. While the tone of

FIGURE 6 | Participants in the C+ condition group generated significantly more Droodle titles, more unique titles and highly creative titles as compared to the
C− group.
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interaction is collaborative -- for instance, Jibo says, “Today, we
will be building a rover together” -- Jibo primarily takes on the
role of a tutor that is helping children to create something. Jibo
interacts with children through speech prompts and emotional
expressions. Jibo’s behaviors are remote controlled by a human
instructor in a Wizard-of-Oz (WoZ) manner.

Actions for creativity scaffolding are inspired by how human
instructors and peers scaffold children and enable them to be
more creative by asking reflective questions, generating multiple
diverse ideas, challenging assumptions, providing feedback, and
appreciating the value of the child’s ideas. Creativity and
divergent thinking literature elaborates on how asking
reflective questions, presenting challenges, and positive
reinforcement fosters creativity in children and adults (Kafai
et al., 1995; Halverson and Sheridan, 2014). Collaboration with
peers and tutors is also beneficial for creative thinking (Rojas-
Drummond, et al., 2008). In this activity, instructors use a remote
control GUI that has preset suggestions for prompts.We gathered
the prompts from collecting and categorizing interaction data
from human instructors scaffolding children’s creativity using an
open-ended WoZ interface. The design of the interface is
described in detail in the following section.

WoZ Creativity Scaffolding Interface Design
The goal of designing a robot control interface was to provide
instructors with a user-friendly tool to remotely control Jibo while
enabling them to provide creativity scaffolding to children. First,
three instructors were given a fully flexible desktop interface
which contained a text box where they could freely create
dialogues and buttons to choose from preset animations for
Jibo, while overseeing the interaction using a birds-eye camera
view (Figure 6). All instructors were trained collectively to
understand the task and the WeDo construction kits. The
instructors were told that their task was to guide the children
to build a simple rover, and then to assist children in thinking
creatively about building other WeDo models. Further, all

instructors were given a detailed protocol guide for the
graphical interface to control Jibo. We evaluated the interface
with three instructors and eight participants (6–10 yr old).

An affinity diagramming method was used to categorize all of
the prompts that were used by the instructors. And resulted in the
following categories:

• Instructions: Construction and programming instructions
with the goal of teaching children how to use the WeDo
construction kits and build their rover. Instructors tended to
use the same language of instruction that was provided to
them in the protocol.

• Questions: Reflective questions that the instructors asked
children. For example, “Can you tell me why you did that
(last action)?,” “Can you think of another way to do that
(last action)?,” or “How will you do that?”

• Creativity prompts: All prompts that were not direct
instructions to children but were focused towards helping
them come up with creative ideas. These included new ideas
and challenges. Prompts included “Can you think of
another way to use that block?” or “What else can you
make with the same blocks?”

• Feedback: All responses to children’s actions. These were
mostly positive feedback, such as, “Good job,” but also
involved encouragement prompts such as “Let’s try again.”

• Frequently asked questions (FAQ): There were times when
children asked the robot questions to help them
troubleshoot problems. Some patterns that arose were
difficulty connecting the rover to Bluetooth, or not being
able to find a part. The responses were first grouped by
topics such as “Bluetooth,” or “Missing parts” and then all of
the instructors’ responses to these questions were grouped
under FAQ.

We then provided teachers with a more structured GUI for
interaction, where frequently used speech prompts were made

FIGURE 7 | Participants who interacted with the high creative robot scored significantly higher on the TCT-DP test compared to the low creative robot
condition (H2).
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into buttons in order to reduce time delays, and organized by
their categories, as shown in Figure 7. Instructors could also
input custom speech if needed. We evaluated the interface using a
think-aloud evaluation protocol (Ericsson and Simon, 1980),
where the instructors spoke about what actions they want to
perform, how they use the interface to perform it, and what the
interface does not allow them to do. At the end of the interaction,
the instructors were asked the following questions:

• What worked in the interface to help you give instructions
and scaffold for creativity?

• What did not work in the interface?
• Were there parts of the interface that you did not
understand the functionality of?

• What will you change in the interface to better suit your
needs?

Based on their interactions with the interface and feedback
post interaction, we iterated on the interface design. For instance,
an instructor expressed that the interface was too cluttered, and
short “clues” to the prompts would be preferable compared to the
entire prompt for ease of use. Another instructor expressed how
getting a sense of time elapsed on the screen can better prepare
them in planning the activity.We stopped the iteration loop when
the instructors reported that the interface presets were sufficient
for their needs barring some outlier interactions. The final set of
creativity scaffolding prompts used in the interface buttons are
listed below.

Reflective Questions:

• Can you tell me why you did that?
• What will you be doing next?
• What are you trying to make?
• How are you going to do that?
• What are the materials you would be needing for that?
• Do you have any questions about this?
• Is that the best way to do that?

Creative Prompts (Ideas and Challenges):

• What are some other things you can make the rover do?
• What else can youmake the rover do when an object is near?
Can you make it have a different output?

• What are some other uses for the [motor/sensor]?
• Let’s think of some fun uses of the rover.
• There might be a better way to program that.
• I have an idea!
• Let’s try to make an obstacle for the rover’s sensor to detect.
You can use LEGO blocks to make an obstacle.

• Let’s try to make the rover move when you wave your hand
in front of the sensor, and stop when you wave your hand
again?

Positive Reinforcement:

• That is such a great idea! Good job.
• You think of some really cool use of the robot.

• Well done. That was so creative.
• Great job!
• You are doing so well.
• I would not have thought of that. Good going.

We conducted 20 playtests, logged instructor’s interactions with
the GUI, and coded them with: 1) the previous GUI interaction,
and 2) the child’s actions that led to the interaction. We then
calculated the probability of each GUI interaction following each
child action, or preceding GUI interaction. For instance, the child
connecting the sensor to the rover body had the highest probability
to be followed by the prompt “Instruction: try out the sensor by
waving your hand” (Prob. � 0.58). We used these probabilities to
predict what the instructor’s next interaction with the GUI would
be based on the child’s actions and the instructor’s previous GUI
interaction.We developed a dynamic predictive suggestions feature
where the interface would prompt the instructor with GUI
elements to use when the child performed a certain action.
Instructors could choose to use the predicted prompt or create
a new one.

Experiment Design
Participants
A total of 43 participants in the 6–10-yr-old age group were
recruited for our third study (19 female, 24 male). All students
completed the TTCT as a part of the pretest activity. The average
age of the participants was 8.11 (S.D. � 1.68). The subjects were
recruited as part of the Somerville after-school activities program
at the public schools in Somerville, MA. All participants and their
guardians signed a consent form to participate and for audio and
video data collection. Three adult instructors were also recruited
for the study. All instructors were given preliminary training of
WeDo construction kits, the programming interface, and a study
protocol.

Pre-test
Participants were administered the first part of the verbal and
figural module of the TTCT.

Study Conditions
Participants were divided into two study-condition groups: one
that interacted with the robot offering creativity scaffolding (C+
condition) and one that interacted with the robot not offering
creativity scaffolding (C− condition). The groups were divided
such that the participants in the two groups were counterbalanced
in terms of their mean and standard deviations of TTCT scores,
age and gender (Table 4).

In both study conditions, the robot was controlled by a human
instructor (blind to the study condition) using a WoZ desktop

TABLE 4 | Study groups for WeDo Construction task.

Study Groups n TTCT scores Gender Age

High creative (C+) 23 42.16 ± 7.17 F � 11 M � 12 8.3 ± 1.57
Low creative (C−) 20 40.66 ± 6.01 F � 8 M � 12 7.65 ± 1.85

43 participants were divided in balanced groups based on TTCT scores, gender and age.
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interface (Figure 7). In both conditions, instructors were
instructed to start with providing the same set of basic
instructions to help the child build and program a rover
model that incorporates a sensor and a motor, after which
they are left to explore and make their own models.
Instructors sent construction commands provided in the
WoZ interface after the child completed the previous
instruction, as was indicated by the live camera field.
Instructors in the creativity scaffolding condition (C+) were
instructed to ask reflective questions, challenge the
participants, and collaboratively ideate with them. In order
to facilitate this scaffolding, they are equipped with the
creativity scaffolding interface, which in addition to the
construction instructions, also consisted of questions,
creative prompts and positive reinforcement prompts (as
outlined in Section 3.4.2). In contrast, in the C− condition,
the robot prompted the child to explore and make new things
in the beginning of the free exploration period, and the
instructors were instructed to only participate to answer
questions beyond that. In the C− condition, the scaffolding
interface also lacked the questions, creative prompts and
positive reinforcement prompts. The three instructors were
paired with an equal number of C+ and C− condition
participants to control for experimenter bias.

Hypothesis for the Creativity Scaffolding Study
In order to understand the effect of creativity scaffolding on
children’s creativity, we hypothesize that participants who
interacted with the robot offering creativity scaffolding exhibit
higher levels of creativity in the WeDo construction task. We
divide our hypothesis in these parts derived from the three ways
of assessing creativity behaviors during the task:

H1: Participants who interact with the robot offering creativity
scaffolding (C+) generate a greater number of ideas and use
cases for the rover than those who interact with the robot
without creativity scaffolding (C−).
H2: Participants who interact with the robot offering creativity
scaffolding (C+) use a higher number of new programming
blocks (excluding the blocks used in the instructions) than
those who interact with the robot without creativity
scaffolding (C−).
H3: Participants who interact with the robot offering creativity
scaffolding (C+) generate more uncommon ideas than those
who interact with the robot without creativity
scaffolding (C−).

Post-test
We conducted an open-ended descriptive post-test interview with
all participants in order to understand how they perceived the
creation process.

Q1. Can you describe what you made today?
Q2. How do you think Jibo was helpful to you?
Q3. How do you think Jibo can be of more help?
Q4. Do you think Jibo had any creative ideas?

In order to provide transparency about the robot’s abilities,
participants were briefed about the WoZ nature of the study and
how the robot was being controlled by human instructors.

Data Collection and Measures
All interactions by the instructors on the desktop app were logged
on to the computer along with time stamps. All tablet interactions
on the WeDo application by the child were logged on to the
Android tablets. We used a birds-eye view camera to record the
video and audio of the interaction.

Two reviewers watched videos of the interaction and reported
the creativity exhibited and the novelty of ideas. The reviewers
were blind to the child’s study condition as well as the hypotheses,
but were familiar with the WeDo construction activity. We used
the fluency of ideas, novelty of ideas, the Unusual Uses task (Silvia,
2011), and divergent thinking as bases for measuring creativity in
this task. The following three behaviors were used as metrics of
creativity:

1. Number of use cases for the rover. We counted the number of
unique applications children came up with in the free
exploration time as a measure of creativity. For instance,
children utilized the toolkit robot’s motion sensor and
programmed an obstacle course, or used the waving of
their hand to display their image. This measure is inspired
by the fluency and originality of ideas measured (Runco and
Acar, 2012), and was calculated by observing the video stream
of the interaction.

2. Number of new programming blocks used. The instructions
teach children how to use some blocks, such as the condition,
motor, sensor, start and stop. Additionally, the WeDo
programming interface has many different blocks that can
be used in different ways, such as the image block, the sound
block, other motor blocks, the text block, loops, etc. This
measure is inspired by originality as a measure of creativity,
and was calculated by analyzing the datalog of the tablet
interactions.

3. Commonality. For each of the new use cases or application
ideas of the rover, we determined how uncommon the idea
was. We grouped and coded all ideas that were identical or
similar, such as “obstacle course” and “lego path.” We then
looked at the frequency of that idea in the data. For
participants with multiple applications of the rover, we
took an average of the two frequencies to report
commonality. If an idea is uncommon, or deviates from
the typical ideas of the group, they count as more creative
(Runco and Acar, 2012). The frequencies of each
application idea are inversely proportional to creativity.
This measure is inspired by divergent thinking measures,
which look at deviations from the group’s trends.

For condition analysis, we calculated numerical values for each of
the three metrics by coding the video recording of each interaction.
We conducted the Shapiro-Wilk test to check for normal distribution
of the data collected, and then conducted an unpaired t-test between
the study conditions for each of these measures.
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Results
We tested for normality using the Kolmogorov-Smirnov test of
normality on all three measures for both groups ({Number of
ideas, number of new blocks, frequency of ideas}×{C+, C−}). We
found that none of the groups of data differed significantly from
that which is normally distributed (p � 0.22, p � 0.57, p � 0.55, p �
0.36, p � 0.26, p � 0.053). Levene’s test showed that the variances
for the number of ideas were not equal, F(1,41) � 7.96, p � 0.007,
and the variances for number of new blocks, and frequency of
ideas were equal, F(1,41) � 0.312, p � 0.602 and F(1,41) � 0.277,
p � 0.579. For the number of ideas, we conducted the Welch’s test
assuming unequal variances, which revealed that participants
expressed higher fluency by generating a significantly greater
number of ideas for the rover (M � 1.42, SD � 1.12, t(36) �
1.688, p � 0.018). An unpaired parametric t-test revealed that
participants in the C+ condition expressed significantly higher
originality by using significantly more number of unique

programming blocks (M � 5.40, SD � 1.80, t(41) � 1.682, p �
0.013) in the C+ condition as compared to the C− condition
(Table 5; Figure 8). While participants in the C+ condition
demonstrated divergent thinking and found unusual uses of the
same blocks by expressing less common ideas, or more novel
ideas, than the C− condition, this difference was not found to be
statistically significant (M � 1.02, SD � 0.96, t(41) � 1.68, p �
0.076). Creativity scaffolding offered by the robot influenced the
number of ideas that children generated and the number of
unique programming blocks used. Scaffolding offered by the
robot led to more uncommon or atypical ideas by children,
but the effect of scaffolding was not significant.

In addition to comparing participants’ creativity, we gained an
insight into their perception of their creations and the robot’s role
as a collaborative peer through the post-test questionnaire.

Q1. Can you describe what you made today?

TABLE 5 | WeDo construction task results comparing the fluency and originality of idea, and divergent thinking expressed by participants in the three study groups.

SG Number of ideas for
the rover

Number of new blocks Frequency of ideas

High creative robot (C+) (n � 23) 1.74 ± 1.28 5.96 ± 1.77 0.82 ± 1.03
Low creative robot (C−) (n � 20) 1.05 ± 0.76 4.75 ± 1.65 1.21 ± 1.08
Result t(36) � 1.688, p � 0.018 t(41) � 1.682, p � 0.013 t(41) � 1.68, p � 0.076

Participants in the High creative robot condition came up with a significantly higher number of ideas, and used a significantly higher number of programming blocks than the Low creative
robot (C–) condition.

FIGURE 8 | Participants in the High creative robot condition (C+) generated a significantly higher number of ideas than in the Low creative robot (C−) condition (H1).
Participants in the C+ condition used a significantly higher number of programming blocks than participants in the C− condition (H2). There was no significant difference
in the frequency of ideas generated in the two conditions (H3).
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We asked participants to reflect on their creations, what they
used and what they learned. One participant said, “I made him
drive, make music and show an image.” Another participant said,
“I made a LEGO robot that when you put your hands to it it’ll go
back but without you touching it, and then I made a sensor and I
made it make a noise.” One participant said they made “a spaghetti
one-eyed snail cricket thing.” These questions helped us unpack not
only what their ideas were andwhich bricks they used, but also what
their perceptions of their constructions were. Some participants also
spoke about ideas they had but could not construct due to time
constraints. One participant said, “I wanted to make the rover move
around and find all the walls, but there was no time.”We also used
participants’ narratives of what they made to match with the
number of ideas metric that was reported by the blind reviewer.

Q2. Was Jibo helpful to you? How?

Eighteen participants responded with “yes, he was helpful.”
Nine participants provided no reasoning. Five participants said
“no” (non-creativity scaffolding conditions). The most common
reasoning response in both study conditions was that Jibo helped
them construct the rover by providing instructions. Some
participants in the creative condition pointed out how, “Jibo
had cool ideas” and “He helped me think of other uses for the
sensors.” Multiple participants pointed out how Jibo “told me
when I was doing well, or when he liked my ideas.”Hence, children
did notice the positive reinforcement provided by the scaffolding
robot. One participant in the C− condition said, “He kind of was
[helpful], but he’s super rude. Because half the time I tried to say
Jibo, can you help me? He will interrupt me with something else. I
tried to say good morning but he didn’t reply. it takes him a while
to respond like he’s not listening.” This highlighted some technical
difficulties such as speech delays in implementing this scaffolding
model. We also learned that rapport-building utterances, such as
greeting utterances in the beginning, can help the children
establish common ground with the robot and also help them
to get acquainted with speech delays.

Q3. How do you think Jibo can be of more help?

Participants had very valuable feedback about how tomake the
interaction better. The most common response from both robot
conditions was that it would be nicer if the robot displays the
blocks to be used on his screen, and that it is difficult to
understand which block he is talking about using speech
alone. Unlike a human instructor, Jibo cannot point, so visuals
would be very helpful. One participant in the C− condition said,
“He could have shown me other things that the rover can do.” One
participant in the C+ said, “He could have told me what a
microphone was.” We observed that it is essential to unpack
difficult terms that children might not have previously heard.

Q4. Do you think Jibo had any creative ideas?

79% of participants in the C+ condition, and 35% of
participants in the C− condition, responded with “yes.” Hence,
participants successfully perceived the expressed creativity of the

robot. Some participants went on to explain why they thought
that Jibo was creative. One participant said, “Yes, he told me to
make the [rover] move and can put more than one thing on the
screen.” Another participant said, “He had cool ideas like playing
music. He played fun games with me and he had great ideas and he
knows that he’s smart.” One participant also said, “Jibo thought
that I had cool ideas, and that made me happy”, and another one
said, “Yes, he told me I can make what I want and told me my idea
was great.” Among participants that responded with “No” or
“Maybe” there was typically no reasoning. One child in the C−
condition said, “Jibo knew what to do but he was not really
creative.”

DISCUSSION

In this work, we demonstrate how a social robotic peer’s socio-
behavioral patterns can influence creativity in children in the
5–10 yr old age group. Specifically, we highlight two robot
interaction patterns: 1) creativity demonstration, where the
robot itself demonstrates artificial creativity, and 2) creativity
scaffolding, where the Jibo robot supports and encourages the
child’s creative thinking by asking reflective questions, providing
challenges and positive reinforcements. We designed three game-
based interactions that afforded different types of creativity. The
robot’s interaction patterns were inspired by children’s creativity-
eliciting social interactions with their peers and tutors. These
interactions serve as playful ways of measuring creativity, as well
as supporting children’s creative expression. In order to assess the
efficacy of these interaction patterns, we conducted an
accompanying investigative study for each of our game-based
interactions: the Droodle Creativity game that affords children’s
verbal creativity, the MagicDraw game that affords children’s
figural creativity, and the WeDo construction task that affords
children’s constructional creativity.

In the Droodle Creativity game, children emulated artificial
verbal creativity exhibited by Jibo during gameplay. Participants
who interacted with the high creative robot expressed more ideas,
more diverse ideas, and highly creative ideas in the Droodle
Creativity game, as compared to participants that interacted with
the low creative robot. Similarly, in the Magic Draw Game,
children emulated artificial figural creativity exhibited by Jibo
in a co-drawing task, which led to their drawings being measured
as more creative by the TCT-DP test for figural creativity.
Participants also perceived the high creative robot as highly
creative. Through these two studies, we verify our first
hypothesis: that children adeptly socially emulate the creative
behavior of peer-like robot playmates, and this in turn fosters
children’s own creative behavior. Importantly, this is a sufficiently
robust enough finding that we could replicate it for two different
kinds of creative expression: verbal and figural creativity.

In the second investigation, we demonstrated how a robot
offering creativity scaffolding in the form of asking reflective
questions, challenging the participants, and providing positive
reinforcement had a positive effect on children’s creativity.
Participants engaged in an open-ended activity involving
constructing and programming a rover using the WeDo
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construction kit. Creativity was measured by the ideas that
children came up with for the rover, the number of different
tools (programming bricks) they used, and how unique their
ideas were. Children interacting with the robot that offered
creativity scaffolding scored significantly higher on the number
of different ideas and different programming bricks used. They
also scored higher in the uniqueness of their ideas; however, that
difference was not statistically significant. Hence, we could
establish evidence that children can learn creativity from a
social agent by emulating the agent’s creative behaviors and by
the agent scaffolding their creative learning, which informs the
design of pedagogical embodied tools to foster creativity.

The WeDo construction task utilized a predictive scaffolding
model. This paves the way toward the development of fully
autonomous robot scaffolding systems for tailoring
personalized learning to different students and contexts. Over
time and over several playtests, the model is able to reinforce itself
depending on whether the instructor accepts or rejects its
suggestions, eventually leading to minimal error rates.
Replicating a human instructors’ scaffolding into an artificial
agent can be beneficial for personalized assistance when the
teacher is not present or when there are many students per
teacher. This scaffolding paradigm could be used in the context of
other activities.

It is important to be wary of the shortcomings of such a
suggestion based system for instructors. While these
recommendations make it easy for instructors to provide help
and scaffold children’s creative learning, they also inhibit the
instructor’s original thought and manner of scaffolding, which
holds high value. A more autonomous model would be built from
data collected from multiple instructors with a diverse set of
backgrounds and expertise, all of whom could instruct several
students from a diverse set of backgrounds. Further, the model
should be able to adapt based on an instructor’s usage while
allowing enough space for original thought. While the current
interface does allow instructors to reject the model’s
recommendation and instead generate new Jibo utterances, it
can still influence the instructors’ decision making process, and
cause them to conform to commonly used instructions, which
may be counterintuitive to promoting creativity. In our work we
suggest two interaction patterns of social robots that effectively
foster creativity in young children: creativity demonstration and
creativity scaffolding using questions, questions and ideations.
We position social robots as CSTs in collaborative activities with
children that can leverage the benefits of having a co-located peer
to create and socially interact with, and a digital CST that adapts
to the person’s creation style. We also add to the literature of HRI
suggesting that children emulate a robot’s learning behavior and
extend it to verbal, figural and constructional creativity. Through
our observations from playtests, iterative game design, study
results and post-test questionnaires, we formulated evidence-
based design guidelines as well as additional recommendations
from researchers’ reflections for designing creativity supporting
social agents that we have outlined in the next section. These
recommendations could benefit pedagogical researchers,
educators and HRI and HCI practitioners designing social
agents for stimulating creativity, especially in children.

Design Recommendations
Evidence-based Design Guidelines
In this section, we suggest the following interaction design
recommendations for social agents to support children’s
creativity based on our empirical findings:

1. The social agents should demonstrate the creativity behaviors
that the designers aim to foster. We observed that children can
learn verbal and figural creativity by emulating a social robot’s
creative behaviors across all three tasks. Hence, while
designing social robots as pedagogical tools, we must
ensure that they express the desired creative behavior that
researchers aim to foster in children. The expression of
creativity is context-dependent (such as generating creative
drawings) and can be supported by social behaviors such as
reflecting on the artifact generated, or making the creative
process transparent through dialogue.

2. Make use of reflective questioning and challenges. Asking
reflective questions about the children’s actions aids their
metacognition and creative thinking. Through the scaffolding
study, we learned that instructors who were controlling the
robot remotely chose to use many reflective questions as robot
speech prompts to provide creativity scaffolding for children.
Providing children with optimal levels of difficulty encouraged
them to solve problems creatively. In the WeDo construction
activity, the scaffolding robot provided challenges to the child,
such as, “Can you think of other uses of the same sensor?” or
“Do you think that’s the best way to do it?”These questions were
followed by students exploring creative uses of the objects
beyond the first use that they imagined which encouraged
flexibility. For instance, one child utilized the motion sensor’s
ability to detect motion and turn to create an obstacle path for
her rover. We observed that children who interacted with the
creativity scaffolding robot, which asked reflective questions,
exhibited higher levels of creativity in the task.

3. The agent should generate unique and frequent ideas during
the interaction. In addition to asking reflective questions
and posing challenges, the robot could also demonstrate
new idea generation. During the WeDo task, when the robot
suggested, “You can use the picture icon to display images
when the robot senses an object,” the child subsequently
used the feature to display the preset images. The child then
uploaded their own image and made the rover move
towards them. When the rover detected the child as the
obstacle, it displayed the child’s photograph. Children not
only incorporated the robot’s ideas, but also built upon
them. In the Droodle Creativity game, we observed that the
robot’s idea generation behaviors were emulated by the
child, both in terms of the fluency and originality of ideas
generated.

4. Provide positive reinforcement to children when they create.
Children in all three tasks commented how the robot said
“Good job!” or other similar positive comments after they
completed the task. Positive reinforcement after creative
behaviors has a strong influence on children. Children
often form relationships with social robots, which lead to
increased learning gains (Westlund et al., 2018) and getting
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positive validation upon exhibition of creativity encourages
them to be more creative.

Additional Recommendations From Researcher’s
Reflections
We incorporated several design principles from background
research in CSTs and iteratively designing our child-robot
interactions. While we found these design decisions to be
beneficial for children’s creativity and had a positive combined
effect, we did not analyze the effectiveness of each of these
recommendations, and future work is required to
disambiguate individual effectiveness. We present these as
additional design recommendations for designing creativity
scaffolding interventions for children:

1. Co-design interactions with instructors. Co-designing
scaffolding robot interactions with instructors helped us
personalize interactions for the students, and incorporate
instructors’ teaching experience into the robot’s behaviors.
Instructors were particularly helpful in designing the
interaction GUI; while the pre-set GUI speech prompts
were grounded in historic scaffolding commands used by
other instructors, we found that teachers often needed to
personalize interactions during unique occurrences. Having
the option of typing new commands in the GUI text-box
afforded instructors that flexibility. This hybrid interface
equipped teachers with historically useful commands,
reducing their cognitive load during the task, and gave
them the ability to create their own.

2. Scaffolding must be grounded in tasks and materials. In the
creativity scaffolding task, we started with providing teachers
with generic scaffolding prompts such as “What else can you
make?” or “What is another way to do that?” However,
teachers provided us with feedback that the scaffolding
prompts needed to be specific to the task (construction)
and materials (blocks). For instance, they used the prompt,
“How else can you use that sensor to make the rover move?”
This grounding in the collaborative task portrayed the robot as
a context-aware scaffolding agent. Hence, while designing
scaffolding interactions such as challenges or reflective
questions, we found it beneficial to ground the interactions
in the task’s context instead of generic interactions. However,
this reduces the scalability of these interactions across tasks.

3. Agents must scaffold, but not impose. Scaffolding through
social interactions can be powerful but has the potential to
inhibit creativity. Interactions such as idea generation in
collaborative tasks must be designed such that the agent
does not impose their ideas on the child, nor intrude upon
the children’s creative space. For instance, in the WeDo
scaffolding tasks, we observed that teachers who controlled
the robot suggested ideas related to the child’s working idea,
and while the child worked on an idea, they did not interfere.
This delicate scaffolding can be a challenge to execute in fully
autonomous interactions. Providing scaffolding only when the
child asks, or when the child is stuck, could be a beneficial
approach. Further, care should be taken to not interrupt
children’s creative process; in the MagicDraw interaction,

where players had a fixed time to draw for each turn, one
participant reported displeasure for the robot interrupting
their drawing.

4. Design game-based interactions with peer-like social agents.
Designing game-based child-robot interactions enabled us to
position the robot as a collaborative playful peer. This made
the interaction fun for children as reported in the post-test,
and children were engaged throughout the games. We
designed game tasks with no fail state in order to provide
an outlet for unconstrained creative thinking and encourage
divergent thinking. Since assessment is shown to hinder
creativity, we refrained from providing any assessment
during the interaction. Game-like interactions made the
tasks engaging for young children and allowed for a safe
space for failure.

5. Center task around creation of artifacts. In order to maximize
space for creative thinking, we designed the tasks around the
creation of artifacts rather than the completion of a specific
deliverable. In accordance with literature showing evaluation’s
negative effect on creativity, these artifacts were designed to
have no set of “correct” answers, supporting creative
exploration without an end goal. To ground robotic
scaffolding in the context of the task, we provided a limited
set of materials that can be used creatively to produce an
unlimited number of artifacts. For instance, in the WeDo
construction task, one student wanted to create two rovers but
was limited to one controller. They wired the sensor of the
second rover from the first rover’s controller and called it a
“parasite” rover.

6. Leverage collaboration as an agent behavior and game
mechanic. Since collaboration has a positive influence on
creativity, we must ensure that the child-agent interactions
are collaborative in nature and the robot acts as a collaborative
peer instead of a competitive one, which hinders creativity in
children. The collaborative nature of the interaction was made
explicit in robot speech, such as, “Today we will program a
robot together.” Within our tasks, we framed the social robot
agent as a peer helping the child do their best creative work,
and the majority of children perceived Jibo as a collaborator
rather than a competitor. Collaboration is among the most
prominent social factors that positively influence creativity.
Careful consideration must be given to interactions with the
agent in particular, in order to ensure that children see it as a
partner rather than as a competitor, which can hinder their
creativity. Introduction of the robot and the task can be
leveraged to position the robot as a collaborative peer.

CONCLUSION

In this work, we posit social robots as CSTs for children in
collaborative tasks. We studied the effects of an autonomous
social robot’s verbal and nonverbal interactions on children’s
creativity as measured by three collaborative game-based child-
robot interactions. We observed that both creativity
demonstration and creativity scaffolding offered by the social
robot had a positive effect on children’s creativity in verbal, figural
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and constructional creativity tasks. This work contributes to the
design of game-based child-robot interactions that afford
creativity, provides evidence for the efficacy of these
interactions and provides guidelines for designing social
embodied agents to foster creativity in young children. These
findings are valuable to game designers creating game-based
interactions to foster children’s creativity, as well as HRI and
HCI practitioners leveraging social agents as CSTs.

Since robots are already being used in classroom settings as
learning peers and personalized tutors, it is imperative to
think about how their behaviors can influence children’s
learning behaviors, such as creative thinking. While social
robots are not the only way to provide creativity support
through behavioral modeling, they certainly are a compelling
way given their social nature. Effort must go into designing
the agents’ behavior such that they exhibit creativity and
scaffold the child’s creativity as a peer or a tutor.
Embodied AI agents have the potential to use generative
modeling techniques to express different forms of creativity
through generating media such as drawing, poetry, art styles,
patterns, physical body movements, etc. They are also socially
emotive and can express the social interactions that
accompany creativity such as reflection, inquisitiveness and
positive affect. This work opens up opportunities to explore
how these different forms of artificial creativity can be
embedded into tools that children use and interact with,
and help them be more creative.

Recent works have demonstrated how robots can help
creativity, as a co-present partner and through social
interactions. In this work, we suggest two interaction patterns
of social robots that we observed to effectively foster creativity in
young children: creativity demonstration and creativity
scaffolding using questions, questions and ideations. We add
to the literature of HRI suggesting that children emulate robots’
learning behaviors, and that this phenomenon extends to
creativity. We also contribute to the field of Creativity Support
Tools by positioning social peer-like robots as a creativity support
peer in collaborative activities. This contribution is not only
valuable for HRI practitioners, but also other interactive AI
agents, such as conversational agents. Creativity supporting
social robots combine the benefits of having a co-located peer
to collaboratively create with and socially interact with, and a
digital CST that adapts to the user’s creation style. Leveraging
generative AI models now allow for expressing creativity in
several modalities, which robots can successively leverage.
Further, we elaborate the design of a scaffolding mechanism
by learning from human scaffolders through one construction
activity. This approach can be generalized to other activities.

While introducing an extrinsic factor in the form of a social
robot, we must ensure that it does not come across as an
evaluator; classroom research has demonstrated how extrinsic
factors such as evaluation, competition and unrealistic
expectations can potentially inhibit creativity, instead of
fostering it (Torrance, 1967). In the scaffolding GUI design,
we provide instructors with a predictive interface that helps
them scaffold the child for creative learning; however, this
suggestion model also limits creativity and personalization of

teaching style from the instructors. To tackle this issue, we must
also aim to build personalized scaffolding models that take input
from every teacher and personalize over time in both the content
and style of learning.

In our work, we chose a wide age range (5–10 yr) and we did
not analyze differences across age ranges. This is a limitation of
the current work, and future analysis needs to be run with
narrower age ranges to determine the efficacy of the
intervention on different age groups. Another limitation of
this work is that these robot interactions lead to an increase
in creativity within the narrow constructs of these tasks, and
may not scale to every creative task, or to students’ life outside of
these tasks. There are also countless ways of expressing
creativity such as poetry, storytelling, painting, music, etc.,
that are not explored in these tasks. This work also defines a
limited scope of creativity in terms of fluency, novelty and value
of ideation. Creativity encompasses a much wider array of
behaviors (such as divergent thinking) that can be explored
using other interactions. Furthermore, while all these
interactions currently focus on one-on-one child-robot
interaction, we must strive towards designing interactions
that involve multiple children because collaboration with
peers forms a major part of creative learning.

Finally, while this work evaluates the role of the robot’s
creativity fostering behaviors, it does not evaluate the benefits
of embodiment over other non-embodied agents such as
computers or voice agents. Previous research has found that
adults did not show significant gains in creativity merely in the
presence of a social robot (Alves-Oliveira et al., 2019). In
future work, we aim to study the combined effect of
embodiment and creativity scaffolding behaviors by running
a 2 × 2 study ({embodied, non-embodied}×{scaffolding, non-
scaffolding}) (Devasia et al., 2020). In order to evaluate
whether robots are really that social, future work is
required to assess the creativity effects of human peers vs
robots.

While this work makes use of Jibo as the social agent, these
interactions are learning tools that can foster creativity in
classrooms and homes independent of Jibo. These games also
serve as game-based creativity assessment measures.

We designed a creativity scaffolding paradigm for the WeDo
construction task. This model currently supports a semi-
autonomous scaffolding system, where a human controls the
robot using a remote control desktop program. In the current
version of the robot control interface, which lets instructors
control the robot remotely, we can incorporate ASR to use the
instructors’ speech to control the robot’s speech. Moreover,
collecting more data about how instructors use the program
can help us build a fully autonomous model of scaffolding.
While this approach can be used to design interactions for an
autonomous or semi-autonomous system, the timing of the
interactions and during-study improvisation are reliant on
children’s actions in the task and interactions with the robot.
Current status of natural language understanding and computer
vision limit a complex understanding on the scene, and hence a
similar fidelity of robotic interactions are challenging to currently
implement in a fully autonomous system. However, as we
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demonstrated, a semi autonomous system (where the system
suggests interactions and the human decides the timing of the
prompts) is feasible.

Another limitation of this work is that all activities are self-
contained and involve single interactions. In future work, it would
be valuable to evaluate creativity transfer from one activity to
another, and even in the absence of the robot in the long-term.
Design recommendations from this work can be incorporated in
several creativity support tools such as computer games, voice
agents, tablet apps, embodied tools, space design, etc. Finally,
advances in generative modeling techniques enable us to create
child-robot interactions supporting multiple modalities of
autonomous creative expression.
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The Sounds of Softness. Designing
Sound for Human-Soft Robot
Interaction
Jonas Jørgensen* and Mads Bering Christiansen

Center for Soft Robotics, SDU Biorobotics, University of Southern Denmark, Odense, Denmark

In this article, we report on research and creative practice that explores the aesthetic
interplay between movement and sound for soft robotics. Our inquiry seeks to interrogate
what sound designs might be aesthetically engaging and appropriate for soft robotic
movement in a social human-robot interaction setting. We present the design of a soft
sound-producing robot, SONŌ, made of pliable and expandable silicone and three sound
designs made for this robot. The article comprises an articulation of the underlying design
process and results from two empirical interaction experiments (N � 66,N � 60) conducted
to evaluate the sound designs. The sound designs did not have statistically significant
effects on people’s perception of the social attributes of two different soft robots.
Qualitative results, however, indicate that people’s interpretations of the sound designs
depend on robot type.

Keywords: soft robotics, human-robot interaction, sound design, social robotics, practice-based artistic research

INTRODUCTION

Both in real life and in science fiction movies, there exist several examples of different nonverbal and
nonlinguistic sounds that robots emit as they move about or manipulate objects. Often these sounds
are of a mechanical character and result from e.g. the rotations of an electrical motor, the grinding of
metal parts in a joint or in a linear actuator, or the hydraulic extension of a piston.Within the cultural
imaginary, robotic sounds resulting from actuation andmovement thus arguably comprise their own
separate category with certain established expectations and conventions associated. But what
happens if the functional rigid mechanical parts responsible for these emissions of sound are
replaced by pliable and soft components?

In the past two decades, soft robotics has become a rapidly expanding research field with an
increasing number of publications each year (Bao et al., 2018). Soft robotics research seeks to
replace conventional components used for building robots with pliable and elastic ones, to gain
functional advantages such as energy efficiency, increased maneuverability in unstructured
environments, and increased safety through passive compliance for tasks that require close
human-robot interaction (Abidi and Cianchetti, 2017; Luo et al., 2017; Santina et al., 2017; Wang
et al., 2017).

At present, most soft robots are pneumatically actuated with electrical pumps or compressors, but
actuators without mechanical sound based on e.g. dielectric elastomers, shape memory alloys and
polymers, or biological cells are gradually becoming more common (El-Atab et al., 2020; Walker
et al., 2020). Hence, in the future, soft robots may become practically devoid of sound. With which
sounds should a soft robot’s movements and actions then be made audible to ensure safe, intuitive,
and enjoyable interactions with humans?
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In this article, we report on research and practice that explores
the interplay between movement and sound in relation to how
people experience a soft robot. More specifically, our inquiry
seeks to interrogate what sound designs might be aesthetically
engaging and appropriate for soft robotic movement within a
social human-robot interaction setting. We present the design of
a soft sound-producing robot made of pliable and expandable
silicone and methods that we have used to design sound for soft
robots anchored in practice-based artistic research. The article
comprises an articulation of the underlying design process and
two empirical experiments that examine what effect different
sound designs have on people’s social perception of two different
types of soft robots.

This article thus addresses the following three research
questions:

• RQ1: What does a soft robot sound like and what is “soft”
sound?

• RQ2: What effect does “soft” sound have on people’s social
perception of a soft robot?

• RQ3: Are “soft” sounds a more appropriate match for a soft
embodiment?

In relation to the wider theme of this special issue, the article
contributes methodologically by illustrating and detailing how
creative approaches and artistic methods can be integrated into
human-robot interaction (HRI) research and contribute to
articulating other questions and provide paths to novel
insights. In addition, it presents a technical system designed to
generate sounds to accompany soft robotic movement as a means
of nonverbal signaling to human users. Finally, we report the
results from a user study conducted to shed light on how sound
affects people’s assessment of a soft robot’s sociality.

RELATED WORK

We position the work in the context of research on soft
robotics, human interaction with soft robots, and sound
design for robots.

Soft robots can be defined as systems that are capable of
autonomous behavior and primarily composed of materials
with elastic moduli in the range of that of soft biological
materials (Rus and Tolley, 2015). Soft robots are claimed to
offer inherently safer interactions with humans (Laschi et al.,
2016), yet only a few publications have addressed how humans
experience soft robots and how intuitive and engaging human
interaction with them might be designed (Jørgensen, 2017a;
Zheng, 2017; Boer and Bewley, 2018; Hu et al., 2018; Jørgensen,
2018; Shutterly et al., 2018; Zheng, 2018; Milthers et al., 2019;
Jørgensen and Ploetz, 2020; Jørgensen et al., 2021; Zheng and
Walker, 2019). Soft robotics technology has recently made its
way into art, design, and architecture projects (Jørgensen,
2017b; Jørgensen, 2019). Yet adding sound to soft robots
has not been explored within academic research and, to the
best of our knowledge, only once within another creative
practice project (Budak et al., 2016).

Sound has been argued to be a vital element of human
communication and interaction, which should be supported in
HRI. A number of HRI publications have called for more focus on
sound, but robot sound design is still a nascent field of research.
The addition of sound to robots has been argued to potentially
improve human communication with robots and allow for more
complex and meaningful interactions (Duffy, 2003; Cha et al.,
2018; Jeong et al., 2017). Sound signals may also be more effective
than visual cues for conveying emotional states in social robotics
(Jee et al., 2009) and in HRI sound can be used to engage, inform,
convey narratives, create affect, and generate attention (Schwenk
and Arras, 2014). Research on robot sound design has taken
many different forms including the voice-based teacher robot,
Silbot (Jee et al., 2010), interactive sound generation with the
humanoid Robot Daryl (Schwenk and Arras, 2014), Breazeal’s
sociable infant robot Kismet with childlike sounds (Breazeal,
2002), as well as studies investigating people’s aural
impressions of servo motors (Moore et al., 2017).

While many research efforts have centered on recreating
human or animal sounds and human speech artificially (Duffy,
2003), recent research also exists that challenges this approach. It
has been argued, for instance, that mimicking human or animal
sounds could raise false expectations about a robot’s abilities
(Schwenk and Arras, 2014).

Prior studies on nonlinguistic utterances (NLUs) as
communicative and affective means of social robotics
(Read and Belpaeme, 2010; Read and Belpaeme, 2012;
Read and Belpaeme, 2013; Read and Belpaeme, 2014a;
Read and Belpaeme, 2014b; Rosenthal-von der Pütten and
Straßmann, 2018; Wolfe et al., 2020) have used highly varied
sets of discrete machine-sounding audio cues, similar to the
blips and bleeps of robots in sci-fi movies. Unlike these, the
sound-producing system we use here was designed to
generate a coherent soundscape to accompany and
augment the robot’s movements and behaviors. Moreover,
albeit using synthesizers for audio generation, our sound
designs were purposely designed to embody both organic and
machine-like qualities, and in these respects differ from
research on NLUs (see Design detailing the design).

MATERIALS AND METHODS

Methodology
We designed and fabricated a custom pneumatically actuated
soft robot, SONŌ (Figure 1), and set up two interaction
experiments that investigate how different sound designs
influence people’s perception of a soft robot’s social
attributes.

The design of the SONŌ robot and its sound is anchored in
practice-based artistic research drawing on both authors’
practices within robotic art, electronic music, and sound
design. Artistic research has, within the past two decades, been
theorized as a specific mode of knowledge production. It can
broadly be described as research in and through art practice that
seeks to make present and communicate aesthetic experiences
gained in creative practice and embodied in artistic products
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(Borgdorff, 2010). Artistic research diverges from artmaking in
general, as it encompasses an ambition to contribute toward
thinking and understanding and not just the development of an
art practice in itself. It is linked to and engages with wider research
communities, areas, or issues and hence by definition entails more
than just the production of artworks. Methodologically, artistic
research differs from traditional types of academic research in a
number of respects. For instance, the requirement that a research
study sets out with well-defined questions, topics, and problems, is
at odds with the experimental character of art. Artistic research is
instead undertaken on the basis of intuition, guesses, and hunches
and is characterized by being open to serendipitous discoveries
made along the way. Moreover, the exploration and navigating of
unknown aesthetic and conceptual territories is facilitated by tacit
understandings, accumulated experience, and artistic sensitivities
rather than by pursuing answers to explicitly stated, rigorous, and
unambiguous research questions via formalized methods. Hence,
artistic research is discovery-led and not hypothesis-led in
character (Borgdorff, 2010; Borgdorff, 2013).

We utilized practice-based artistic research methodology to
address RQ1 (“What does a soft robot sound like and what is
“soft” sound?”). We conducted an empirical user study, using
established human-robot interaction methods and tools to
evaluate the artistic outcomes in the context of HRI research
and answer RQ2 (“What effect does “soft” sound have on
people’s social perception of a soft robot?”) and RQ3 (“Are
“soft” sounds a more appropriate match for a soft
embodiment?”). The article thus extends prior work that has
studied or evaluated robotic artworks and robot prototypes
made by artists through empirical HRI experiments and prior
work on leveraging the embodied meaning-making skills of artists
to design robots (Demers, 2014; Vlachos et al., 2016, 2018; Levillain
et al., 2017; LaViers et al., 2018; Cuan et al., 2018a; Cuan et al.,
2018b; Gemeinboeck and Saunders, 2018; Gemeinboeck and
Saunders, 2019; Herath et al., 2020).

Design
The practice-led research started out from the speculative
question “What does a soft robot sound like?”. Our
intention was to experiment with how incorporating sound
into a soft robot could add to its qualities and to explore how sound

might support the inherent aesthetic qualities of soft robotics
technology [early work has previously been reported in a Late-
Breaking Report and a video (Bering Christiansen and Jørgensen,
2020a; Bering Christiansen and Jørgensen, 2020b)]. As research
shows people to have a better impression and understanding of
products and designs where two or more sensuous modalities are
coupled (Langeveld et al., 2013), we chose to focus on how sound
might augment soft robotic movement.

Design and Fabrication of the SONŌ Robot
In our design of the robot morphology we aimed for a design
that would be perceived as organic yet unfamiliar. We chose
a non-anthropomorphic and non-zoomorphic form and
used abstract rounded shapes and a main color similar to
Caucasian skin with reddish colorations to give the robot
organic connotations. We opted for a simple design with
only three independent pneumatic channels that each
connect 4 chambers that can expand upon inflation and
are located across the morphology (Figure 2). We deemed
this design to provide sufficient possibilities for variation in
realizable expressive movement.

The soft morphology was cast from Ecoflex 00-30 silicone
colored with Silc-Pig pigments in a 3D printed mold
(Figure 2B), using the following fabrication procedure. Three
different containers with liquid silicone were mixed and
degassed in a vacuum chamber. The first contained a light
Caucasian skin tone-like pigment, the second a delicate pink
pigment, and the third uncolored semitransparent silicone. The
three liquid silicones were mixed directly inside the mold. A
coloring with similarities to the faux marble paint effect was
created by switching between the three liquid silicones when
pouring them into the mold. Finally, smaller dots of deep red/
purple pigmented silicone were dripped into the uncured silicone
surface from a 20 cm distance with a small brush. The cured top
part was removed from the mold and cast onto a strain limiting
bottom piece consisting of precured silicone-coated nonwoven
mesh (Vlieseline S13). Finally, three transparent supply tubes in
PVC with a length of 90 cm each and 1.5 mm/3mm ID/OD were
inserted into each pneumatic channel of the soft morphology from
below and the robot was coated with talc powder to prevent lint
and dust from adhering to it.

FIGURE 1 | The SONŌ robot. Side view (A) and top view (B).
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System Overview and Technical Setup
Figure 3 shows an overview of the system. The three physical
main components are the soft robot morphology, an Arduino
UNOmicrocontroller, and a laptop PC with a connected active
speaker. The Arduino is equipped with a custom-made motor
shield that drives three low noise pumps (MITSUMI R-14
A213) and three solenoid valves (Uxcell Fa0520D 6V NC) to
control the soft robot’s inflation and release of air.

The SONŌ robot does not currently possess any sensors for
feedback control. It uses an open-loop control and switches
between preprogrammed movement sequence that are
executed by activating the three pumps and three valves
with manually programmed time delays (Arduino code
available as Supplementary Material). This creates bulges
on the top part where the compartments are found.
Expressive movement primitives of the morphology were
discovered empirically through aesthetic experimentation
with the robot and were combined to form programmed
movement sequences. In parts of the movement sequences
only one pneumatic channel is actuated, whereas in others two
or all three channels inflate or deflate simultaneously. The

movements performed by this and the other robot used for the
interaction experiments are demonstrated in the
accompanying video (Youtube link: https://youtu.be/
vKHTJe8t-R0).

Frequency Modulation Synthesis
We used frequency modulation (FM) synthesis to design sound
for the robot due to this technique’s customizability and
malleability and because it is argued to recreate natural sounds
better than other forms of analogue synthesis (Jenkins, 2007). FM
synthesis is based on pitch modulation of one or more oscillators
(Jenkins, 2007). An FM synthesizer consists of operators, a term
used to describe individual oscillators with separate amplitude
envelopes. The amplitude of one or more modulator operators
affects the frequency of the carrier operator through an algorithm,
i.e. the configuration of how multiple operators interact.
Depending on the algorithm, an operator can modulate other
operators, be modulated by other operators or both, which has a
substantial effect on the synthesizer’s sound and timbral qualities
with no use of filters. With FM synthesis it is possible to generate
sound designs with rich complex harmonics that are impossible

FIGURE 2 | SONŌ air chamber overview (A) and CAD rendering of the mold (B).

FIGURE 3 | Diagram of the technical system. Gray boxes indicate physical elements and red boxes software applications and protocols.
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to create with other synthesis techniques (Chowning and Bristow,
1987).

Audio Generation
Audio to accompany the robot’s movements is generated in real
time by the software synthesizer Operator running within the
digital audio workstation (DAW), Ableton Live, on a laptop
computer. The microcontroller sends MIDI signals to the
DAW by utilizing a serial connection-to-MIDI-bridge, Hairless
MIDI, and a virtual loopback MIDI-port, LoopMIDI (detailed
setup guide included as Supplementary Material). The MIDI
signals are sent via serial connection over USB when a pump or
valve is switched on which triggers a note on the FM synthesizer.
When an air chamber inflates, the frequency of the carrier
operator and modulator operator(s) increases, and it decreases
when an air chamber deflates. In the current setup, the robot
switches between preprogrammed movement sequences, and
accompanying MIDI messages sent from the microcontroller
trigger “MIDI dummy clips.” Dummy clips are silent MIDI
clips within Ableton Live that contain an automation for
modulating certain parameters of one or more devices—in this
case the Operator FM synthesizer’s oscillator and filter cutoff
parameters. Different dummy clips have been created to contain
actions that fit both inflation and deflation of the soft robot: if an
air chamber inflates, a dummy clip containing inclining oscillator
curve manipulation is triggered, and if an air chamber deflates,
another clip containing declining oscillator curve manipulation
will play. Multiple dummy clips to each sound design have been
added to the DAW to allow for a less static sound image. The
dummy clips have different lengths and are triggered selectively
in the microcontroller control code so that they match the time a
specific inflation or deflation takes, i.e. the sound does not stop
abruptly.

Three sound designs were made as individual patches,
preconfigured combinations of oscillators, filters, and envelope
settings (Roland, n.d.), for the FM synthesizer. Technical details
on the three patches and Ableton patch files are included as
Supplementary Materials.

First Sound Design: “Movies”
A sound’s identity—its spectro-temporal characteristics such as
pitch, timbre, duration, and level—and the location of its source
allows people and animals to extract relevant information from
audio (Carlile, 2011). Auditory perception relies on information
derived from these features that is recombined in the brain into
useful and decodable signals (Carlile, 2011). Every sound and
acoustic event can be understood as a decodable sign carrier that
communicates information (Jekosch, 2005). For living creatures,
a distinction can be made between internal and external auditory
cues (Cha et al., 2018). Internal auditory cues are sounds entirely
generated by the creature’s own body such as breathing, snoring,
or sighing, while external auditory cues are produced by its
physical interaction with the environment. Echoing this
distinction, commercial sound designers differentiate between
consequential sounds and intentional sounds (Langeveld et al.,
2013). Consequential sounds occur due to the mechanical
functioning of a product’s parts, intentional sounds are

auditory instances meant to be triggered when products
interact with their surroundings (Langeveld et al., 2013).
Consequential sounds, e.g. actuation sound coming from
electrical motors, are often regarded as noisy and are restricted
by the physical design and properties of the product. Intentional
sounds, on the contrary, are deliberate and designed.

As we did not want our initial sound design to directly
mimic animal and human sounds, we started out by studying
sounds made by imaginary soft characters portrayed in
movies. We sought to familiarize ourselves with this
existing pop-cultural frame of reference, to gain an
understanding of what soft entities have been imagined to
sound like and to attain insight into how their sound designs
have been generated. We chose this approach as we reasoned
that aligning our “soft” sound design with the formal traits of
this existing repertoire of “soft” sounds could yield
recognizability and make the listener associate the sound
design with (fictional) soft beings. Initially, movies that
contain characters with soft bodies and/or morphing/
deformable soft tissue were identified by searching the
internet and going through user lists on the online movie
database IMDb (https://www.imdb.com/). Summaries and
trailers for relevant movies were screened and based on this
process we identified 10 movies wherein sound was a
prominent feature of a soft imaginary character [Alien
(Scott, 1979), Alien vs. Predator (Anderson, 2004), Flubber
(Mayfield, 1997), Night of the Creeps (Dekker, 1986), Slither
(Gunn, 2006), Spiderman 3 (2007), Terminator 2 (Cameron,
1991), The Blob (Yeaworth and Doughten, 1958), The Thing
(Carpenter, 1982), and Venom (Fleischer, 2018)]. Both authors
studied clips of each of these movie characters and wrote notes
on what characterized their sound and how it changes upon
interaction, differentiating between internal and external
auditory cues. We discussed these notes and mapped shared
defining features of the characters’ sounds that could be
considered vectors spanning the sound design space of the
soft movie characters. We made the following general
observations:

• Sound is dynamic (there are often rapid changes in the
sound)

• Two strategies for generating sound are prevalent: 1.
Recorded sounds from animals are layered, 2. Layered
sounds from synthesizers are used

• Sounds are often manipulated by raising or lowering pitch
or using filters. This creates “wet” or “slippery” sounds,
which change in accordance with the character’s
movements

• Internal auditory cues convey the character’s state of mind
and mood. External auditory cues provide information
concerning the character’s movements and physical
interaction with the environment

Utilizing the above observations as design guidelines, we
created the SONŌ robot’s first sound design patch named
“Movies.” The patch uses two square wave modulator
operators, whose frequencies are modulated in opposite
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directions through a dynamic lowpass filter when movement
occurs. The FM synthesizer is routed through a virtual tape echo
delay with a short delay time and a high feedback percentage,
which results in frequency fluctuations and overall frequency
manipulation.

Second Sound Design: “White Noise”
For the second sound design, we wanted to design a “soft” sound
using a different approach. We started by discussing what we
understand a “soft” sound to be, in order to articulate our
accumulated tacit understandings gained through experience
in creative sound practice, and came to agree on some general
characteristics (long envelope, timbre/spectrum not high-pitch,
gradual/slow changes, lowpass filter smoothing). From this
starting point, we further researched how “soft” sound is
described in the literature.

In relation to sound, there are different ways in which “soft”
can be understood. Dictionaries describe “soft” sound as “quiet
in pitch or volume” (Merriam Webster, 2021), “gentle” and
“not forceful” (Cambridge Dictionary, 2021), something “not
harsh,” or “low and pleasing” (Collins Dictionary, 2021).
Within psychoacoustics, loudness is understood as an
attribute of auditory sensation ranging on a scale from
“soft,” which describes low amplitude sounds, to “loud,”
which describes high amplitude sounds (Lentz, 2020; Fastl
and Zwicker, 2007). In relation to pitch and timbre, a “soft”
sound is usually low-frequency (Cook, 1999) and has less
brightness than a loud sound (Cook, 2011). However,
simple tones with no timbral harshness and a lack of power
in the low-frequency domain, such as sine tones, have equally
been described as “soft” (Howard and Angus, 2009; Seidenburg
et al., 2019). The word “piano,” which translates as “soft,” is
also used within music theory to describe a decrease in a
musical score’s intensity achieved by playing an instrument
more gently, whereby not only the sound’s amplitude is
changed, but also its timbral qualities (Cook, 1999).

As the above usages of the word “soft” illustrate, different
meanings persist that each point to different physical
characteristics of soft sound. In our design of the second
“soft” sound we chose to disregard soft as the opposite of
loud, and instead focus on soft sound as the opposite of hard
or harsh sound.

The patch for the second “soft” sound, named “White Noise,”
is based on a white noise signal. It produces a fizzing high-pitch
sound with a dynamic filter cutoff. This gives the patch
similarities to natural sounds such as wind or ocean waves.
Based on the movements of the soft robot, the filter cutoff
frequency, filter envelope percentage, and filter end position
percentage are modulated in the sound design.

Third Sound Design: “Glass Attack”
As the third sound, we wanted to make a “hard” sound to contrast
and compare the two “soft” sounds against. We came up with the
idea to construct a sound design which sounds similar to a sound
that can be produced by a hard object.

The third patch is a midtone sine wave with a relatively short
amplitude attack time that includes many high-frequency

harmonics, which contribute to a bell-like or glass-like sound,
hence we gave it the name “Glass Attack.” It sounds somewhat
similar to the sound emitted by a drinking glass when the glass is
brought to resonate by gently rubbing a wet finger along the rim
of the glass. When the robot moves, the synthesizer uses gliding
pitch manipulation to indicate inflation and deflation. This
produces a sound with similarities to the resonance or impact
sounds of objects made from glass or metal, with a gliding pitch
manipulation added to prevent the sound from becoming static.

User Studies
We conducted two interaction experiments to test the impact of
the sound designs on people’s social perception of a soft robot. In
the first (Experiment 1) the three sound designs were tested on
the SONŌ robot, and in the second (Experiment 2) they were
tested on another soft robot (Figure 4). This second robot is a
pneumatically actuated soft silicone tentacle hanging from an
aluminum frame, which was used in another study (Jørgensen
et al., 2021). A four fingered soft robotic pneunets gripper cast in
Ecoflex 00-30 was added to the tip of this tentacle (Finio, 2013). In
the following, we will refer to this robot as the Tentacle robot.

We chose to test the sound designs on two different soft robot
types to gain insight into whether the sound designs had similar
effects, when used on soft robots in general, or if there were
differences related to the type of robot using them. Both
experiments had three conditions corresponding to the three
sound designs, and in each experiment each robot performed the
same preprogrammed movement sequence in every experiment
condition (only the sound differed). We used a between-subjects
design to gauge people’s first impressions of the robots and avoid
bias due to carry-over effects. The experiments took place over
4 days at the University of Southern Denmark (Odense) in a
classroom in the main university building.

Participants
Participants were a convenience sample of people present, of
whom all but one participant turned out to be university students.
Demographic information for each condition is given in Table 2
and Table 3 under 4 Results. Participants did not receive any
compensation for their participation. Experiment 1 had a total of
66 participants and Experiment 2 had 60 participants.

Data Collection
We used the Robotic Social Attributes Scale (RoSAS) to measure
people’s impressions of the robot’s sociality and added additional
questions to obtain information about their perception of the
robot’s sound. The RoSAS scale is a validated tool that can be used
to measure people’s impressions of a robot’s sociality (Carpinella
et al., 2017). The scale measures three main constructs, with 6
subitems each: Competence (Reliable, Competent, Knowledgeable,
Interactive, Responsive, Capable), Warmth (Organic, Sociable,
Emotional, Compassionate, Happy, Feeling), and Discomfort
(Awkward, Scary, Strange, Awful, Dangerous, Aggressive).
Participants were asked: “Using the scale provided, how
closely are the words below associated with the robot you have
just experienced?”. Ratings were given on a 7-point scale (1—not
at all, 7—very much so). We aimed to have at least 20 participants
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per condition as other studies using the RoSAS scale with a
similar number of conditions have found this to give sufficient
statistical power (Pan et al., 2018).

Before filling out the RoSAS scale, participants were asked to
“Write the first three words that come to mind to describe the
robot that you have just experienced,” following the method
proposed by Damholdt et al. (2019). Another scale question was
added after the RoSAS scale: “Using the scale provided, please
indicate to which extent you agree with the following statement
about the robot: ‘The robot has a sound that is appropriate for it’”
(1-Strongly agree, 7-Strongly disagree). This question was
followed by an open question asking people to elaborate on
their choice of answer.

As the experiments took place on the campus of a Danish
university, we translated the questionnaire into a Danish version.
We pretested the Danish questionnaire with five participants who
experienced a video equivalent of condition 1 of Experiment 1.
We changed two translated words (“kapabel” to “duelig,”
“responsiv” to “reaktionsdygtig”) that participants expressed
difficulty in understanding.

Procedure
The procedures for Experiment 1 and Experiment 2 were
identical, only difference being the robot used and the pre-
experiment briefing given to participants.

We asked people if they would like to participate in a research
study on human-robot interaction, and upon acceptance they
were accompanied to the classroom where the experiment would
take place. Participants received information about the project
and the experiment verbally and were given an information sheet
and provided opportunity to ask questions. We did not specify to
participants that the study’s focus was on sound, to avoid a bias in
the RoSAS ratings of the robots, as the RoSAS scale is designed to
assess the overall sociality of a robot and not a single aspect of it
such as its sound. Withholding this information was approved by
the university’s ethics committee, on the condition that it be
provided in the debriefing. Written informed consent was
obtained from participants, who were all above the Danish
legal age of 18, both for participation in the experiment and
for the collection of personal data.

In the experiments, one of the robots was placed on a table
covered in dark gray cloth (Figure 5). In Experiment 1 that used
the SONŌ robot, the electro-pneumatic actuation and control
system was hidden underneath the table inside a small enclosure

made from mattress foam (to dampen mechanical sound), and
only the soft morphology was clearly visible on the table. The
Tentacle robot instead had the actuation and control system
hidden inside an integrated white acrylic enclosure (Figure 4).

FIGURE 4 | The tentacle robot. Front view (A) and top view (B).

FIGURE 5 | Photo of the experiment settings.

TABLE 1 | Average and maximum sound levels (in decibel) for the sounds
occurring in the two experiments. The sound levels of the sound designs have
been measured without the robot moving. The mechanical sound of the robots
themselves has been measured without any sound playing on the loudspeaker.
The measurements were done with the robots and the loudspeaker
positioned on the table and cloth as described above. A sound meter was
positioned at a fixed distance of 1 m to the robot corresponding to the
approximate distance and height at which the sound would be heard by a
participant.

Avg Max

1-SONŌ-White (only sound design) 66.4 77.6
2-SONŌ-Glass (only sound design) 57.0 68.6
3-SONŌ-Movies (only sound design) 60.1 72.9

4-Tent.-White (only sound design) 63.0 71.2
5-Tent.-Glass (only sound design) 59.3 73.5
6-Tent.-Movies (only sound design) 58.5 68.2

SONO robot (no sound design) 43.7 56.9
Tentacle robot (no sound design) 38.7 45.1
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For sound, we used a portable active speaker, which was placed
under the table for the SONŌ robot and on the table behind the
Tentacle robot (Figure 5). We adjusted the volume of the speaker
to compensate for the dampening of the sound when placed
under the table, so that the loudness of each sound design was
experienced as approximately the same in the two experiments.
We also made adjustments to ensure that the three sound designs
were experienced as being of approximately the same loudness,
with sound levels as given in Table 1. As can be seen from
Table 1, the mechanical sounds produced by the robots
themselves were lower than the sound designs playing on the
loudspeaker and we estimate that they were barely noticeable
during the experiments.

We instructed participants that we would show them a robot,
and that they should observe it and let us know when they felt
ready to answer some questions about it. Participants experienced
the robot individually or in groups of up to five persons for
2–6 min. Groups were formed as we recruited passersby on a
hallway, where people were often walking in groups. We allowed
a group of people to enter the premises together when several
volunteered to participate at the same time. Owing to the Covid-
19 pandemic we could not allow physical interaction with the two
robots, hence the robots performed preprogrammed movements
accompanied by sound and did not respond to participants. We
encourage the reader to consult the accompanying video to get an
impression of the robots and the three sound designs (Youtube
link: https://youtu.be/vKHTJe8t-R0). For the SONŌ robot,
participants were additionally asked to imagine that the robot
was communicating and expressing itself through its movements
and sound. We did this to frame this robot as a social robot. For
the Tentacle robot, we instead briefed people to imagine that they
were to solve a practical task, such as packing or moving small
goods or products, together with this robot. We also explained
that the attached soft gripper could grasp and pick up objects. We
did this to frame the Tentacle robot as a soft collaborative robot
(cobot).

Following exposure, participants filled out the questionnaire
and provided selected demographic data (age, gender, level of
familiarity with robots, prior human-robot interaction
experience, field of study if a student at the university).
Participants could choose freely between the Danish and the
English version of the questionnaire, with 110 choosing the
Danish version and 16 the English version. Finally,
participants received a debriefing and were provided the
opportunity to ask questions.

Hypotheses
We hypothesized that a sound design with “soft” qualities would:

• Result in higher warmth and competence ratings and lower
discomfort ratings, than one without these qualities.

• Be deemed more appropriate for a soft robot.
• Elicit word associations with a higher rate of positive
sentiments.

RESULTS

Robotic Social Attributes Scale Ratings and
Appropriateness
The internal consistency of the RoSAS data was confirmed by two
internal reliability tests performed on the complete data set. We
calculated Cronbach’s alpha, a commonly used measure of the
internal consistency reliability among a group of items that form
a scale. We additionally calculated the mean inter-item
correlation, a more appropriate measure of internal
consistency for scales with less than ten items (Briggs and
Cheek, 1986). Cronbach’s alpha values of 0.75 for competence,
0.73 forwarmth, and 0.75 for discomfortwere obtained, which are
above the standard 0.70 threshold, indicating an acceptable
internal consistency. The mean inter-item correlations were
0.33 for competence, 0.33 for warmth, and 0.34 for discomfort
and fall within the optimal range of 0.2–0.4.

We used one-way between-groups analysis of variance
(ANOVA), χ2 test for independence, and Welch test, as
appropriate, to assess whether age, gender, and mean values
of each the three RoSAS scale main constructs differed for the
three conditions in each experiment. The same methods were
used to determine if there were differences in how appropriate
the sound designs were rated to be for the two robots. The
results for the two experiments are given in Table 2 and
Table 3.

We found that with respect to familiarity with robots,
participants in condition 4 differed significantly from those in
conditions 5 and 6 (p � 0.050 and p � 0.005 respectively). As the
assumption of homogeneity was violated when comparing mean
age between conditions for both experiments, we used the Welch
test for this instead of ANOVA.

We found no statistically significant differences in
competence, warmth, and discomfort ratings between the
different sound design conditions in either Experiment 1 or
Experiment 2.

In secondary exploratory analyses, we compared ratings
for each of the RoSAS subitems between the three sound
design conditions within each experiment. For experiment 1
we found a statistically significant difference (p � 0.023) for
responsive between condition 2 (M � 2.86) and condition 3
(M � 4.28). A statistically significant difference (p � 0.000) for
aggressive between condition 3 (M � 3.60) and both condition
1 (M � 2.05) and condition 2 (M � 1.81) was also found. For
experiment 2 we found borderline statistically significant
differences for reliable (p � 0.052) between condition 5
(M � 4.21) and condition 6 (M � 3.05) and for awkward
(p � 0.067) between condition 4 (M � 3.30) and condition 6
(M � 4.80). We also compared how appropriate each of the
three sound designs were rated to be with the SONŌ robot
and the tentacle robot respectively, using T tests and data
from both the experiments. We found no significant
differences (p > 0.05) despite differing mean values
(Table 2 and Table 3).

Frontiers in Robotics and AI | www.frontiersin.org October 2021 | Volume 8 | Article 6741218

Jørgensen and Christiansen The Sounds of Softness

158

https://youtu.be/vKHTJe8t-R0
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


TABLE 2 |Results and demographic data from Experiment 1. Groups under “Faculty” indicate under which faculty the participant studies if a student at the university (HUM �
humanities, NAT � natural sciences, SOC � business and social sciences, HEA � health sciences, TEC � technical sciences).

1-SONŌ-White (N = 20) 2-SONŌ-Glass (N = 21) 3-SONŌ-Movies (N = 25) N P-value(ANOVA/χ2/Welch)

Competence M: 3.48 SD:1.01 M: 3.00 SD:1.05 M: 3.47 SD:1.11 66 0.25
Reliable M: 3.65 SD:1.50 M: 3.33 SD:1.32 M: 2.76 SD:1.13 66 0.08
Competent M: 3.40 SD:1.47 M: 2.95 SD:1.66 M: 3.36 SD:1.35 66 0.56
Knowledgeable M: 2.65 SD:1.50 M: 2.76 SD:1.76 M: 3.32 SD:1.55 66 0.32
Interactive M: 3.50 SD:1.96 M: 2.95 SD:1.80 M: 3.56 SD:1.83 66 0.50
Responsive M: 3.75 SD:1.68 M: 2.86 SD:1.68 M: 4.28 SD:1.75 66 0.02
Capable M: 3.90 SD:1.52 M: 3.14 SD:1.28 M: 3.56 SD:1.45 66 0.24

Warmth M: 3.19 SD:0.99 M: 3.14 SD:1.38 M: 3.49 SD:1.13 66 0.56
Organic M: 5.35 SD:1.50 M: 4.67 SD:2.22 M: 4.36 SD:2.02 66 0.24
Sociable M: 2.35 SD:1.39 M: 2.29 SD:1.38 M: 2.92 SD:1.55 66 0.27
Emotional M: 2.75 SD:1.52 M: 3.48 SD:1.86 M: 3.44 SD:1.92 66 0.34
Compassionate M: 2.55 SD:1.32 M: 2.52 SD:1.72 M: 2.76 SD:1.39 66 0.84
Happy M: 2.85 SD:1.42 M: 2.43 SD:1.75 M: 3.12 SD:1.62 66 0.35
Feeling M: 3.30 SD:1.98 M: 3.48 SD:2.09 M: 4.32 SD:1.75 66 0.17

Discomfort M: 3.15 SD:0.98 M: 3.19 SD:1.08 M: 3.65 SD:1.14 66 0.22
Awkward M: 3.75 SD:1.34 M: 3.29 SD:2.00 M: 3.48 SD:1.36 66 0.64
Scary M: 3.30 SD:1.92 M: 3.43 SD:1.91 M: 3.64 SD:2.00 66 0.84
strange M: 6.00 SD:1.56 M: 5.95 SD:1.16 M: 6.00 SD:1.35 66 0.99
Awful M: 2.10 SD:1.65 M: 2.48 SD:1.60 M: 2.84 SD:1.60 66 0.32
Dangerous M: 1.70 SD:1.41 M: 2.19 SD:1.44 M: 2.36 SD:1.60 66 0.33
Aggressive M: 2.05 SD:1.43 M: 1.81 SD:1.25 M: 3.60 SD:1.68 66 0.00

Appropriateness of sound M: 4.25 SD:1.71 M: 3.95 SD:1.63 M: 4.68 SD:1.63 66 0.33

Age M: 23.5 SD:5.23 M: 23.9 SD:2.90 M: 22.1 SD:1.49 66 0.04
Gender (female/male) (10/10) (6/15) (11/14) 66 0.35
Familiarity w. robots M: 3.35 SD:1.73 M: 3.33 SD:1.91 M: 3.04 SD:1.97 66 0.82
Faculty (HUM/NAT/SOC/HEA/TEC) (8/2/0/8/5) (1/4/2/2/11) (6/3/4/8/4) 66 —

TABLE 3 | Results and demographic data from Experiment 2

4-Tent.-White (N = 20) 5-Tent.-Glass (N = 20) 6-Tent.-Movies (N = 20) N P-value(ANOVA/χ2/Welch)

Competence M: 3.48 SD:1.02 M: 3.69 SD:1.07 M: 3.23 SD:0.84 60 0.34
Reliable M: 3.50 SD:1.40 M: 4.21 SD:1.65 M: 3.05 SD:1.32 59 0.05
Competent M: 3.55 SD:1.43 M: 4.05 SD:1.50 M: 3.45 SD:1.47 60 0.39
Knowledgeable M: 2.60 SD:1.27 M: 3.00 SD:1.26 M: 2.60 SD:1.43 60 0.55
Interactive M: 3.85 SD:1.60 M: 3.75 SD:2.10 M: 3.10 SD:1.29 60 0.32
Responsive M: 3.20 SD:1.24 M: 3.45 SD:1.43 M: 3.40 SD:1.67 60 0.85
Capable M: 4.20 SD:1.44 M: 3.90 SD:1.48 M: 3.80 SD:1.58 60 0.68

Warmth M: 2.78 SD:1.01 M: 2.28 SD:0.68 M: 2.58 SD:1.06 60 0.23
Organic M: 3.90 SD:2.02 M: 3.35 SD:1.95 M: 3.15 SD:1.84 60 0.45
Sociable M: 2.50 SD:1.54 M: 1.68 SD:0.95 M: 2.25 SD:1.86 59 0.23
Emotional M: 2.05 SD:1.32 M: 1.55 SD:1.00 M: 2.05 SD:1.47 60 0.37
Compassionate M: 2.20 SD:1.51 M: 1.50 SD:1.00 M: 1.85 SD:0.99 60 0.22
Happy M: 3.20 SD:1.58 M: 2.40 SD:1.73 M: 2.95 SD:2.14 60 0.37
Feeling M: 2.85 SD:1.46 M: 3.25 SD:1.83 M: 3.25 SD:1.71 60 0.69

Discomfort M: 2.61 SD:1.18 M: 2.73 SD:1.07 M: 3.12 SD:1.11 60 0.33
Awkward M: 3.30 SD:1.78 M: 3.85 SD:2.23 M: 4.80 SD:2.02 60 0.07
Scary M: 2.80 SD:1.96 M: 2.20 SD:1.85 M: 2.50 SD:1.76 60 0.60
strange M: 4.15 SD:1.95 M: 4.80 SD:1.99 M: 5.00 SD:2.10 60 0.39
Awful M: 2.10 SD:1.45 M: 2.35 SD:1.69 M: 2.80 SD:1.64 60 0.38
Dangerous M: 1.75 SD:1.12 M: 1.50 SD:0.83 M: 1.70 SD:1.34 60 0.76
Aggressive M: 1.55 SD:1.00 M: 1.70 SD:0.33 M: 1.90 SD:1.21 60 0.68

Appropriateness of sound M: 4.30 SD:1.92 M: 4.58 SD:1.81 M: 3.75 SD:2.12 59 0.41

Age M: 22.6 SD:1.76 M: 23.0 SD:2.20 M: 25.0 SD:4.95 59 0.14
Gender (female/male) (5/15) (8/11) (8/12) 59 0.47
Familiarity w. robots M: 4.35 SD:2.16 M: 3.00 SD:1.53 M: 2.55 SD:1.47 59 0.01
Faculty (HUM/NAT/SOC/HEA/TEC) (0/2/0/6/12) (2/3/10/0/4) (2/3/3/0/12) 59 —
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Sentiment Analysis of Descriptive Words
Following the method described in (Damholdt et al., 2019), we
used logistic regression to determine if the words used to describe
the robots had different distributions of sentiment in the three

sound conditions for each robot. We used this method of analysis
to determine if the sound design condition could predict the
likelihood that respondents would report a word with a positive
sentiment.

FIGURE 6 | Stacked bar graph showing proportional distributions of positive, neutral, and negative sentiment words.

FIGURE 7 | Most frequent words used by participants. The y-axis gives percentage of word occurrence frequency (%).
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A total of 378 responses were obtained, corresponding to 3
word entries from each of the 126 participants. The three
response items from one participant who had used the three
words to form one coherent entry (“star,” “wars,” “sounds”) were
reduced to two items (“star wars” and “sounds”) and a blank
entry, yielding a reduction to 377 items. As the next step, all
Danish items were translated into English and items containing
more than one word were shortened to one word, following the
procedure in (Damholdt et al., 2019). Two coders then coded all
words as being of either negative, neutral, or positive sentiment.
Cohen’s κ was run and yielded a substantial interrater reliability
of κ � 0.736, the percentage of agreement was 85.9% with 324 out
of 377 words categorized identically by the two coders. The
identically categorized words were included for further
analysis (proportional distributions for each condition are
visualized in Figure 6 and most frequent words, mentioned by
two or more participants, are visualized in Figure 7).

Neutral words were subsequently excluded, which yielded a
total of 114 either negative or positive words that were included in
the logistic regression. Direct logistic regression was performed to
assess the impact of a number of factors on the likelihood that a
word listed by a respondent would have a positive sentiment. The
model contained 5 independent variables (condition, gender, age,
familiarity with robots, faculty).

For Experiment 1, the full model was statistically significant χ2
(15, N � 53) � 31.6, p � 0.007, indicating that the model was able
to distinguish between words with a positive and negative
sentiment. The model explained between 44.9% (Cox and
Snell R square) and 65.6% (Nagelkerle R squared) of the
variance in positive and negative words, and correctly
classified 84.9% of cases. However, none of the independent
variables made a unique statistically significant contribution to
the model, with only gender (p � 0.054) and age (p � 0.066) being
trend level significant.

The full model was also statistically significant χ2 (15, N �
61) � 31.34, p � 0.005, for Experiment 2, indicating that the
model was able to distinguish between words with a positive
and negative sentiment. The model explained between 40.2%
(Cox and Snell R square) and 54.0% (Nagelkerle R squared) of
the variance in positive and negative words, and correctly
classified 82.0% of cases. However, none of the independent
variables made a unique statistically significant contribution to
the model.

Thematic Analysis
In the questionnaire, participants were asked to indicate to
which extent they agreed with the following statement: “The
robot has a sound that is appropriate for it.” To gain further
insights into people’s perceptions of the different sound
designs, we also asked people to elaborate on their chosen
answer. We analyzed the replies by thematic analysis, using an
inductive coding to allow for unexpected themes to emerge
(Braun and Clarke, 2006).

Two coders read through all replies obtained in both
experiments and respectively identified 6 and 8 codes for
recurrent utterances. The coders shared their codes with each
other (of which 5 were overlapping) and merged them into a

coding scheme with 9 codes capable of adequately capturing
and differentiating salient participant utterances. We chose
to include all codes because of the thematic analysis having
an exploratory aim. A codebook (included as Supplementary
Material) was created and both coders coded the data using
this coding scheme. Data items (individual participant
responses) were assigned from 1 to 3 matching codes each
and then exported into separate lists for each code. Finally,
the first coder inductively constructed 6 recurrent themes
from the lists of items, which we describe below and illustrate
with exemplary quotes.

Theme #1: Loud Sound
15 participants mentioned the sound’s loudness or described it as
shrilling or noisy. Some (N � 8) explicitly expressed positive or
negative opinions about the sounds. The positive comments (N �
2) focused on how the sound was loud but suited the robot and
did not cause irritation:

“The sound is a bit loud, but not noisy or unpleasant”
(Participant 94, 5-Tent.-Glass)

The negative comments (N � 6) expressed annoyance, stress,
and discomfort upon experiencing the sound:

“The sound was disturbing and a bit too loud, which I felt did
not suit the robot” (Participant 39, 2-SONŌ-Glass).

The majority (N � 9) of the 15 items in the theme come from
“Glass Attack” sound design conditions [2-SONŌ-Glass (N �
4); 5-Tent.-Glass (N � 5)]. 8 of these describe this sound design
as being too loud or annoying.

Theme #2: Othering Robot/Sound
Nearly a quarter of all participants (N � 30) described the robot
and/or its sound through what we refer to as “othering.” By this
term we describe utterances that position the robot or its sound as
something that differs from or falls outside of what is deemed to
be normal and relatable. This encompasses descriptions of it as
either 1) strange, weird, or mystical or 2) alien-like, science fiction
(sci-fi)-like, otherworldly, or futuristic. While there were 20
instances of this for the SONŌ robot [1-SONŌ-White (N �
5); 2-SONŌ-Glass (N � 8); 3-SONŌ-Movies (N � 7)], there were
only 10 for the Tentacle robot [4-Tent.-White (N � 2); 5-Tent.-
Glass (N � 3); 6-Tent.-Movies (N � 5)].

12 participants described the robot or its sound as strange,
peculiar, mystical, or weird and most (N � 7) commented
negatively on this:

“The sound is strange and so is the robot. But a more pleasant
sound could be more suiting” (Participant 23, 2-SONŌ-Glass).

“I found it strange, maybe unnecessary, to add an artificial
sound to the actions” (Participant 90, 5-Tent.-Glass).

Only 2 participants described the “White Noise” sound design
as strange [1-SONŌ-White (N � 2)]. The “Glass Attack” and
“Movies” sound designs, on the other hand, were described as
such 6 and 4 times respectively [2-SONŌ-Glass (N � 5); 5-Tent.-
Glass (N � 1); 3-SONŌ-Movies (N � 3); 6-Tent.-Movies (N �
1)]. Descriptions that refer to the sound as strange principally
came from Experiment 1 that used the SONŌ robot (N � 10),
and of these, 4 additionally described the robot’s appearance as
strange.
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18 participants instead found the robot or its sounds to be
otherworldly, futuristic, or conjure up aliens or sci-fi. Some found
the sound “too futuristic” (participant 99, 5-Tent.-Glass) or
“overly scifi (sic) sounding” (participant 112, 6-Tent.-Movies)
or stated that:

“The sound is okay, perhaps a bit UFO like” (Participant 124, 6-
Tent.-Movies)

Others referenced specific examples from popular culture
including the Alien movies. A third group pointed out that it
was only some qualities of the sound that made it appear “alien”
whereas other qualities contributed to the experience of the robot
as being a living, autonomous, or even sentient creature.

Comments relating to sci-fi, aliens, and the future
predominantly concern the “Movies” sound design [3-SONŌ-
Movies (N � 4); 6-Tent.-Movies (N � 4)]. Hence, it appears that
some participants were able to trace back the connection to this
sound design’s original sources of inspiration.

Theme #3: Associations to Other Sounds
22 participants associated the sound designs with sounds emitted
from familiar man-made objects, living creatures, or natural
phenomena.

Such responses for the “White Noise” sound design largely
concern sounds of wind, breath, or air [1-SONŌ-White (N � 6);
4-Tent.-White (N � 4)]. One participant associated 2-SONŌ-
Glass with the sound of breathing, but no other associations to
wind, breath, or air were present for the “Glass Attack” and
“Movies” sound designs.

Interestingly, in conditions with the “White Noise” sound
design, associations differ markedly for the SONŌ and the
Tentacle robot. For SONŌ the sound reminded participants of
the robot breathing in sync with the robot’s movements (N � 3).
Or participants on the contrary stated that the sound of wind was
not appropriate for the robot and that it instead should have had
more “breathing sounds” (N � 3):

“It has a breathing sound” (Participant 4, 1-SONŌ-White)
“My first thought was not the sound of ?wind? when I saw it”

(Participant 6, 1-SONŌ-White).
For the Tentacle robot, 1 participant argued that the

“blowing sound” made the robot “more repulsive”
(Participant 79, 4-Tent.-White), while another participant
believed the sound to be the actual sound of the pressurized
air actuating the robot and not a designed sound. Two other
participants connected the sound to hydraulics, vacuum, and
air-controlled machinery:

“Because I was thinking of vacuum and the sound seems
hydraulic, I find it well-suiting” (Participant 75, 4-Tent.-White)

Some participants instead described the sound as “robot-like”
(N � 7), mainly in the 3-SONŌ-Movies condition (N � 4).
However, 2 participants in 5-Tent.-Glass also argued that this
sound is how one would imagine a robot to sound like, and 1
participant in 6-Tent.-Movies believed that the robot “(. . .) does
not say words like humans and therefore it sounds like a robot”
(Participant 116), 6-Tent.-Movies).

While most participants did not elaborate on why or
how the sound was robot-like or what a “typical” robot

sounds like, 1 participant did mention specific movie
examples:

“It sounds like what one always imagines a robot to sound like.
Very mechanical and a sound one has heard in Star wars/
terminator [sic]” (Participant 82, 5-Tent.-Glass).

Remaining answers within the theme (N � 5) associated the
sound with various living creatures or objects. One participant
experiencing the SONŌ robot, for instance, argued that the “(. . .)
sound was stressful, sounded like a whale” (Participant 37, 2-
SONŌ-Glass). Four participants experiencing the Tentacle robot
instead associated its sound with technical equipment including
an airplane (Participant 87, 5-Tent.-Glass), a car (Participant 126,
5-Tent.-Glass), a robotic arm in a factory (Participant 105, 6-
Tent.-Movies), and medical equipment (Participant 77, 4-Tent.-
White).

Theme #4: “Organic” Appearance vs. “Mechanical”
Sound
14 participants answered by evaluating the connection between
the robot’s visual appearance and its sound, with a majority
invoking a dichotomy between organic and mechanical qualities.

For the SONŌ robot, comments (N � 10) predominantly
described the sound as more “mechanical” or “electronic” than
the “natural” or “organic” appearance of the robot (N � 7), and
were distributed nearly evenly among the three sound
designs—1-SONŌ-White (N � 3), 2-SONŌ-Glass (N � 2), and
3-SONŌ-Movies (N � 2):

“It inflated with a sound that sounded more mechanical than
what I would expect from something organic” (Participant 5, 1-
SONŌ-White)

“It sounds more electronic than the organic feeling it emanates”
(Participant 59, 3-SONŌ-Movies)

Only 1 of the 4 comments for the Tentacle robot invoked a
distinction between “organic” and “mechanical” (in condition 4-
Tent.-White). But 7 participants commented on this for the
SONŌ robot irrespective of sound design, which indicates that
the SONŌ robot’s embodiment or its framing as a social robot
may have contributed to participants hearing the sound as
mechanical.

Theme #5: Does Sound Match Appearance?
15 participants evaluated the fit between the robot’s appearance
and its sound for the SONŌ robot [1-SONŌ-White (N � 5); 2-
SONŌ-Glass (N � 5); 3-SONŌ-Movies (N � 5)].

A majority of participants (N � 9) stated that the sound suits
the robot’s looks or matches what is expected for the robot’s
appearance, with “Glass Attack” having the highest prevalence
[1-SONŌ-White (N � 2); 2-SONŌ-Glass (N � 4); 3-SONŌ-
Movies (N � 3)]. Others (N � 6) argued that the sound design
was surprising or inappropriate for the robot’s appearance [1-
SONŌ-White (N � 3); 2-SONŌ-Glass (N � 1); 3-SONŌ-
Movies (N � 2)]:

“The sound’s accentuated (sic) is a bit surprising compared with
the robot’s appearance” (Participant 62, 3-SONŌ-Movies).

“I think the sound correlates well with its appearance, sort of
innocent and a bit sad” (Participant 22, 2-SONŌ-Glass).
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Theme #6: Synchronized Movement and Sound
For the Tentacle robot, instead of appearance, we found a focus
on the connection between movement and sound in responses.
Where 6 participants commented on this connection for the
SONŌ robot [1-SONŌ-White (N � 2); 2-SONŌ-Glass (N � 1); 3-
SONŌ-Movies (N � 3)], nearly twice as many (N � 11) did so for
the Tentacle robot [4-Tent.-White (N � 5); 5-Tent.-Glass (N � 3);
6-Tent.-Movies (N � 3)]. 10 of these found the sound to
accompany the movements well or to be e.g. “(. . .) in
harmony with the movements” (participant 120, 6-Tent.-
Movies). The remaining participant, by contrast, described the
sound as erratic, unnecessary, and not matching the robot’s
movements (participant 70, 4-Tent.-White). For the SONŌ
robot, all 6 participants evaluated the sound designs as fitting
the robot’s movement:

“There was an adequate synchronization between the
movement and the sound” (Participant 7, 1-SONŌ-White)

“It (the sound) accompanied the movements well, and it gave
a sense of reliability to the machine” (Participant 97, 5-Tent.-
Glass).

A possible explanation for why appearance is in focus for the
SONŌ robot andmovement in focus for the Tentacle robot could be
that the latter has more visible movement. The tentacle changes
position and bends in three dimensions, whereas the SONŌ robot’s
surface only inflates somewhat upward, which might to some
participants not be sufficient to be regarded as “movement” and
is therefore categorized as a change in the robot’s appearance instead.

DISCUSSION

In this article we have explored the potentials of augmenting soft
robotics with sound for human-robot interaction through the
design of the SONŌ robot and its associated sound designs,
and presented a system to generate sound to accompany the
movements of a pneumatically actuated soft robot. Our
approach was based in creative practice and artistic research
methodologies combined with empirical HRI methods for testing.

Surprisingly, the quantitative results from the user study indicate
that we must reject our three hypotheses; the two “soft” sound
designs did not lead to higher warmth and competence ratings and
lower discomfort ratings than the third “hard” sound design. Neither
were the “soft” sounds deemed more appropriate for the two soft
robots and they did not elicit a higher rate of words with positive
sentiment to describe the robots.

Comparing results from both experiments, we found that
there was no difference in how appropriate the three sounds
designs were rated to be when comparing between the two robots,
i.e. none of the sound designs were deemed a better fit for one or
the other of the two robots. Hence, from this result we cannot
conclude that one of the designs is especially fit for a
communicative soft social robot, such as SONŌ, or a soft
cobot, such as the Tentacle robot.

In exploratory analyses, however, we found that in Experiment
1, the “Movies” sound design made the SONŌ robot appear
significantly more responsive than “Glass Attack.” “Movies” also
made this robot appear significantly more aggressive than both

other two sound designs. Similarly, in Experiment 2, we obtained
trend level statistically significant differences for individual
RoSAS subitems: for “Movies” there was a trend toward it
making the Tentacle robot less reliable than “Glass Attack,”
and more awkward than “White Noise.” These results indicate
that the sound designs do impact people’s perception of very
specific qualities of the robots, such as responsiveness, aggression,
reliability, and awkwardness, but perhaps not the broad high-level
main RoSAS constructs. Moreover, that these effects differed for
the two experiments suggests that sound interacts with context or
morphology in determining how specific aspects of a soft robot’s
sociality are evaluated.

In logistic analyses of word sentiment, we found some
unexpected effects, not related to the sound designs. In
Experiment 1, gender (p � 0.054) and age (p � 0.066) had
marginal effects on whether a participant used a word with a
positive sentiment to describe the robot. Male participants appear
less likely to use a word with positive sentiment and the direction
of the latter relationship matches the results obtained by
Damholdt et al. (2019), where an increase in age led to a
higher probability that participants would use a word with
positive sentiment. This marginal effect might become
significant with a wider age range, and not all but one
participant being university students, as in our cohort. These
effects could be interesting to study further with respect to how
they compare with other effects of age on perception of and
attitudes toward robots. A possible explanation for this result
could be the so-called positivity effect, which describes a shift
from a negativity bias in young people to a preference for positive
information later in life (Carstensen and DeLiema, 2018). From
Figure 6, which shows the proportional distributions of positive/
neutral/negative words, we can equally observe a trend toward
different ratios of positive-negative words in the different
conditions, which might become significant with more
statistical power.

In Figure 7, which shows bar graphs of the most used words, it
can be seen that more nouns feature as recurrent descriptive
words for the SONŌ robot than for the Tentacle robot, which has
mostly evaluative adjectives (however, “alien” could be counted as
both a verb and noun). This matches well with that the Tentacle
robot was framed as a robot made for a specific practical purpose,
which it is evaluated for, whereas the SONŌ robot was presented
in amore open-ended scenario as a socially communicative robot.

Comparing word use between the three conditions for each
robot more closely, we can see that for the SONŌ robot, the words
“alien” and “strange” are both among the top three words
mentioned in all conditions. Therefore, it is likely that these
descriptions are independent of the three sound designs. This also
matches that descriptions of this robot itself as “strange” or
“alien”, are prevalent in Theme 2 of the thematic analysis.
Moreover, on the RoSAS scale, “strange” is rated to have a
higher association with the SONŌ robot (M:5.95-6.00) than
the Tentacle robot (M:4.15-5.00), and using T-tests we could
verify that these differences in mean values between the robots
were significant in both the “White” and “Glass” condition (p �
0.002, p � 0.032) and close to significant for “Movies” (p � 0.075).
Based on this we conclude that it is likely that the SONŌ robot’s
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embodiment or contextual framing creates the impression of the
robot as being “strange” and not differences between the sound
designs.

When looking at words that are used for individual sound
designs for both robots, similarities are also apparent. For both
conditions that used the “Movies” sound design, the word
“sound” is among the two most frequently mentioned words
(and the word “sounds” is additionally present for one condition).
This suggests that the “Movies” sound design draws more
attention to itself, than the other sound designs, which are less
obtrusive and perhaps easier to integrate into the overall
impression of the robot. However, either the word “noisy” or
“sound” was mentioned by two or more participants in all
conditions except two. That the sound of “Movies” is
perceived as more dominating or assertive, aligns well with
that this sound design contributed to the robot appearing
more aggressive in Experiment 1.

In the thematic analysis, we uncovered 6 recurrent themes,
and found differences within these in how the three sound
designs were assessed qualitatively. For instance, it was
predominantly the “Glass Attack” sound design that was
mentioned as being loud, which the majority of participants
experienced negatively (and “Noisy” and “Loud” were also
among the most frequently used words to describe the
Tentacle robot when it is used “Glass Attack”). Perhaps more
interestingly, the thematic analysis equally showed that the three
sound designs were described differently when they were used by
each of the two robots. A main takeaway from the thematic
analysis is thus that robot type, i.e. the robot’s embodiment
combined with its specified use context, appears to affect how
a sound design is understood and how the specific sounds made
by a soft robot are interpreted. For instance, the associations to
other well-known sounds were different for the “White Noise”
sound design for the two robots: While it was associated to air for
both robots, for the SONŌ robot it was associated with breathing
and live organisms, whereas for the Tentacle robot it was instead
pneumatics and technical equipment that was mentioned. This
observed difference aligns with prior work showing that
embodiment affects emotional response to nonlinguistic
utterances (Wolfe et al., 2020). Yet, our study design does not
allow us to determine if this difference is an effect of embodiment
or of context. Further work is needed to separate and distinguish
between the effects of each of the two.

Returning to the research questions posed at the outset of
our inquiry, “What effect does ‘soft’ sound have on people’s
social perception of a soft robot?” and “Are ‘soft’ sounds a
more appropriate match for a soft embodiment?”, the
conclusion to draw is that these questions need to be
asked with more nuance. Differences in sound design we
authors, as creative practitioners active in the fields of
electronic music and robotic art, picked up on and
deemed to have a marked effect on our own perception of
the soft robots, might not have enough impact on people in
general, so as to make a difference with respect to how they
rate impressions of high-level constructs such as warmth,
competence, and discomfort. As we have explored through
our practice-based artistic research, different kinds of “soft”

sound exist and as the empirical tests showed, there were
qualitative differences in how the robots were perceived when
utilizing the three different sound designs. In further work, it would
be relevant to study, that if different sound designs do not have
marked effects on a soft robot’s general sociality, then could sound
perhaps affect other more basic perceived qualities of the robot?
Studies have shown, for instance, that humans and animals are able
to infer what material an object is made from by using visual
information and impact sounds, i.e. the sound an object makes
when being struck by e.g. a hammer, and that there are strong
audio-visual interactions in material-category perception (Fujisaki
et al., 2014). In one study, the appearance of glass combined with
the impact sound of a bell pepper was thus perceived as transparent
plastic (Fujisaki et al., 2014). This phenomenon is worthy of further
study in relation to soft robotics, with a view to determining if
sound could alter people’s perceptions of a soft robot’s affordances
or stiffness, for instance. In a previous study (Jørgensen et al., 2021)
we found that in interactions with humans, soft robots are
sometimes spontaneously subjected to a more forceful handling
than traditional robots, sometimes even to the point of them
breaking. A possible way to prevent this, could be to add a
sound to the robot that makes it appear softer or more fragile,
and this way nudge the user to handle it more carefully.

As further work, we plan to develop the SONŌ robot and the
system into a finished artwork and to conduct further user tests
during its exhibition. This will allow us to gauge if the change of
setting from a university classroom to an art exhibition
contributes to different sound designs having more impact on
people’s perceptions of the robot, e.g. due to a heightened
aesthetic awareness induced by the latter context.

LIMITATIONS

Despite offering design advantages in terms of variation, flexibility,
and adaptability, FM synthesis might not be the most appropriate
technique to generate “soft” sounds. Perhaps the sounds that can
be created with FM synthesis are not “soft” enough, and the
differences between the three sound designs are not
pronounced enough to have significant effects. A limitation to
the study is, that we, following common practice within artistic
research, did not test whether the “soft” sounds were perceived as
“soft” by lay users, or how lay users define “soft” sound, which
could be done as further work. This limits the generalizability of the
user study’s results to the two specific definitions of “soft” sound
embodied in the “Movies” and “White Noise” sound designs.
Under Theme 4 in the thematic analysis, for instance, we found
that for the SONŌ robot participants remark on all three sound
designs that they are more “mechanical” or “electronic” than what
would be expected from this robot’s “organic” appearance. This
could indicate that more “organic” sounds, such as e.g. recorded
sounds, could be a better fit for this embodiment.

Another limitation of the user study is that the sounds which
are generated by our system are synchronized with the
movements being performed. Hence the sounds produced by a
specific sound design change somewhat, due to varying durations
between the two robots, but they do share the same characteristic
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overall quality. The movements of the tentacle, for instance, are
based on sequences with longer inflation times; hence, the sounds
emitted are also made longer with this robot.

In the thematic analysis it is evident that the “Glass Attack”
sound design is perceived as loud by several participants. This
could be due to that some frequencies are perceived as louder
than others (Cook, 1999), and that this sound design made more
use of these. To account for this, we could have asked people to
rate the loudness of the sounds in a pretrial and adjusted to the
perceived loudness in each condition of the experiments based on
the pretrials, rather than doing this based on our own perception
of the sound.

With respect to the RoSAS scale, there are several scale items
that rely on interactivity, and due to the Covid-19 pandemic we
were only able to display the robots to participants and the robots
would not respond to them. This makes the assessments of e.g.
competence less relevant and reliable.

A limitation could also result from the choice made to not
prime participants to focus on sound. It is possible that the
unfamiliar appearance of the soft robots contributed a novelty
effect that trumps the effect of the sound design in the
evaluations. I.e. the quaint looks of the robots might have
stolen the focus from the sound and contributed to lessening
the effect of differences in sound, which might have been more
pronounced with a more common robot.
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Modeling and Learning Constraints for
Creative Tool Use
Tesca Fitzgerald 1*, Ashok Goel 2 and Andrea Thomaz 3

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, United States, 2School of Interactive Computing, Georgia Institute
of Technology, Atlanta, GA, United States, 3Department of Electrical and Computer Engineering, University of Texas at Austin,
Austin, TX, United States

Improvisation is a hallmark of human creativity and serves a functional purpose in
completing everyday tasks with novel resources. This is particularly exhibited in tool-
using tasks: When the expected tool for a task is unavailable, humans often are able
to replace the expected tool with an atypical one. As robots become more
commonplace in human society, we will also expect them to become more skilled
at using tools in order to accommodate unexpected variations of tool-using tasks. In
order for robots to creatively adapt their use of tools to task variations in a manner
similar to humans, they must identify tools that fulfill a set of task constraints that are
essential to completing the task successfully yet are initially unknown to the robot. In
this paper, we present a high-level process for tool improvisation (tool identification,
evaluation, and adaptation), highlight the importance of tooltips in considering tool-
task pairings, and describe a method of learning by correction in which the robot
learns the constraints from feedback from a human teacher. We demonstrate the
efficacy of the learning by correction method for both within-task and across-task
transfer on a physical robot.

Keywords: tool manipulation, tool transfer, learning from corrections, human-robot interaction, cognitive robotics

1 INTRODUCTION

The abundant use of tools for a large range of tasks is a hallmark of human cognition (Vaesen, 2012).
Design of new tools for accomplishing novel tasks, as well as improvisation in the absence of typical
tools and use of tools in novel ways, are characteristics of human creativity. Consider for example, the
design of a paperweight to hold a sheaf of papers, or the use of a paperweight to hammer in a nail if an
actual hammer is not available. Both require reasoning about complex relationships that
characterizes human cognition and creativity (Penn et al., 2008): The latter task, for instance,
requires reasoning about the relationships among the force required to hammer in a nail, the surface
of the nail’s head, the surface of the paperweight bottom, the weight of the paperweight, and so on.

A robot situated in human society will also encounter environments and tasks suited for human
capabilities, and thus it is important for a robot to be able to use human tools for human tasks (Kemp
et al., 2007). While a robot may learn to complete a new task with a new tool via demonstrations by a
human teacher (Argall et al., 2009; Rozo et al., 2013), the demonstration(s) provided for that tool
cannot prepare the robot for all variations of that tool it is likely to encounter. These variations can
range from different tool dimensions (e.g., different sized spoons, hammers, and screwdrivers) to tool
replacements when a typical tool is not available (e.g., using a measuring cup instead of a ladle, or a
rock instead of a hammer). An additional challenge is that tools are often used to manipulate other
objects in the robot’s environment. Given that the shape of a tool alters its effect on its environment
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(Sinapov and Stoytchev, 2008), a tool replacement may
necessitate a change in the manipulation of that tool in order
to achieve the same task goal (Brown and Sammut, 2012).

One aim of developing creative robots is to enable robots to
exhibit creative reasoning in a similar manner as humans in order
to enhance human-robot collaboration. Recently, Gubenko et al.
(2021) have called for an interdisciplinary approach that
synthesizes conceptual frameworks from diverse disciplines
such as psychology, design, and robotics to better understand
both human and robot creativity. In human cognition, creative
reasoning is exemplified by improvised tool use; particularly, our
ability to use analogical reasoning to identify replacement tools or
methods that may be used to achieve the original goal, as well as
reason over the differences between the original and replacement
approaches in order to adapt the replacement to the task (Goel
et al., 2020). In design, for example, there is the notion of intrinsic
functions and ascribed functions (Houkes and Vermaas, 2010): In
the latter, the user can use the object or tool for an ascribed
function. Our goals for creative robots are similar: to be able to
reason over the suitability of possible tool replacements when the
original tool is unavailable, and reason over how the robot’s
execution of the task must be adapted for the replacement tool.

There are several key challenges in enabling robots to
creatively use new tools. First, the robot must explore novel
tool replacements that support the task constraints. Second, the
robot must be able to evaluate a novel tool’s suitability for a
particular task, which involves learning a model of the
interactions between the robot’s gripper, the tool, objects in
the robot’s environment that are manipulated by that tool,
and how those interactions affect the completion of the task
goals. Finally, the robot must adapt its task model to the novel
tool in order to fulfill these constraints. Prior work has addressed
these first two challenges by constructing or identifying creative
tool replacements (Choi et al., 2018; Sarathy and Scheutz, 2018;
Nair and Chernova, 2020). In this paper, we identify and model
the tooltip constraints that play a role in all three of these
challenges. In particular, we focus on the third challenge of
adapting a robot’s task model to a novel tool. The
contributions of this paper are as follows:

1) An exploratory analysis of the manipulation constraints that
must be fulfilled when using a tool to complete three tasks in
simulation.

2) Two models that represent the relationship between the
orientation and position constraints when manipulating
a tool.

3) An algorithm for training these models using interaction
corrections provided by a human teacher, first proposed in
Fitzgerald et al. (2019).

4) A discussion of the generalizability of these models when
applied to new tools and/or tasks.

We organize the rest of this paper as follows. Section 2
presents a summary of related work in cognitive science,
computational creativity, and robotic tool use. Section 3
defines the tool transfer problem in terms of constraints on
the tooltip pose, which we then explore in Section 4 via an

extensive evaluation of the effect of tooltip perturbations on task
performance in simulation. In Section 5, we discuss how a robot
may learn these constraints through corrections provided via
interaction with a human teacher. Finally, we summarize this
paper in Section 6.

2 BACKGROUND

2.1 Defining Creative Reasoning
What does it mean for a robot to be “creative”? Prior work in
creative robotics has often fallen under one of two categories of
creativity: 1) Producing a creative output involving creative
domains such as music (Gopinath and Weinberg, 2016) and
painting (Schubert and Mombaur, 2013), or 2) Invoking a
creative reasoning process. Within the latter category, several
criteria for creative reasoning have been proposed, such as
autonomy and self-novelty (Bird and Stokes, 2006), in which
the robot’s creative output is novel to itself but not necessarily to
an outside observer. Another definition of a creative reasoning
process is one that emphasizes both the variation of potential
solutions considered by the agent, as well as the process used to
consider and select from those options (Vigorito and Barto,
2008).

Creative reasoning may also be defined in an interactive
setting. Co-creativity is a process for creative reasoning in
which an agent interacts with a human to iteratively improve
upon a shared creative concept. In doing so, co-creativity fosters
creative reasoning and may improve the quality of the resulting
output (Yannakakis et al., 2014). In prior work, we have defined
co-creative reasoning in the context of a robot that collaborates
with a human teacher to produce novel motion trajectories, while
also aiming to maximize its own, partial-autonomy (Fitzgerald
et al., 2017). In the context of a robot reasoning over how it may
execute a task in a new environment, this co-creative process
allows the robot to obtain the contextual knowledge needed to
adapt its task model to meet the constraints of the novel
environment.

Creative reasoning has been defined in other relevant
domains, such as design creativity. Analogical reasoning is said
to be a fundamental process of creativity in design (Goel, 1997).
In design by analogy, a new design is created by abstracting and
transferring design patterns from a familiar design to a new
design problem, where the design patterns may capture
relationships among the abstract function, behavior, structure,
and geometry of designs. Design also entails discovery of problem
constraints (Dym and Brown, 2012) including making implicit
constraints in a design problem more explicit (Dabbeeru and
Mukerjee, 2011). Fauconnier and Turner (2008) introduced
conceptual blending as another process for creative reasoning.
This approach addresses analogical reasoning and creativity
problems by obtaining a creative result from merging two or
more concepts to produce a new solution to a problem.
Abstraction is enabled by mapping the merged concepts to a
generic space, which is then grounded in the blend space by
selecting aspects of either input solution to address each part of
the problem. Applied to a robotic agent that uses this creative
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process to approach a new transfer problem, the robot may
combine aspects of several learned tasks to produce a new
behavior.

Overall, these methods for creative reasoning highlight
two important components of creative reasoning: The
exploration of novel solutions to a problem, and an
evaluation of each candidate solution’s effectiveness. Prior
work in creative reasoning (e.g., analogical reasoning,
interactive co-creativity, and conceptual blending) have
addressed these challenges, but not yet in the context of
creative tool use by an embodied robot. This domain
requires additional considerations, in that it is grounded in a
robot’s action and perception (Fitzgerald et al., 2017). First, the
robot has imperfect perception of its environment and/or tools,
and thus may not have a complete model of the tool(s) it may
use. Second, its solution must be in the form of a motion
trajectory that utilizes the tool to achieve the task goals. As a
result, not only is the choice of tool a creative one, but the usage
of that tool is creative as well. We now review relevant literature
that addresses these challenges within the robotic tool use
domain.

2.2 Identifying Novel Tool Candidates
Existing work typically focuses on identifying the affordances of
potential tool candidates. Affordances represent the “action
possibilities” that result from the relationship between an
object and its environment (Gibson, 1979). Once the
affordances of candidate tools have been identified, a robot
can reason over the most suitable tool for a particular task
and integrate it into its motion plan (Agostini et al., 2015;
Choi et al., 2018). However, identifying tool affordances is a
non-trivial challenge. Recent work in computer vision has applied
deep neural networks to this problem in order to visually predict
the affordances for a particular tool (Do et al., 2018). The UMD
Part Affordance Dataset (Myers et al., 2015) is intended to
support further work on visual affordance detection. This
dataset contains RGB-D images for 105 tools, grouped into 17
object categories. Each tool is photographed at roughly 75
orientations, each of which corresponds to a pixel-wise
labeling according to 7 possible affordances (e.g., cutting,
grasping, pounding). Other, physics-based features such as the
dimensions or material of an object may also be used to judge
their effectiveness as potential tools, such as when identifying a
pipe as a makeshift lever to pry open a door (Levihn and Stilman,
2014). Prior work has shown that, in addition to using
demonstrations to learn a task, a robot may also use
demonstrations to learn to recognize the affordance-bearing
subparts of a tool such that it can identify them on novel
objects (Kroemer et al., 2012).

When a suitable tool replacement is not already available in
the robot’s environment, it may be necessary to assemble one
(Sarathy and Scheutz, 2018). Choi et al. (2018) extends the
ICARUS cognitive architecture to assemble virtual tools from
blocks. Nair et al. (2019) describes a method for tool construction
by pairing candidate tool parts and then evaluating each pair by
the suitability of the shape and attachability of the two parts. Later
work (Nair and Chernova, 2020) integrates this process into a

planning framework such that the task plan includes both the
construction and use of the required tool.

While candidate tool identification is not the focus of this
article, it is an essential step in our eventual goal of creative tool
use. Overall, prior work on this topic demonstrates the task-
specific requirements for identifying novel tool candidates, and
the importance of identifying the salient features of a tool within
the context of the current task. We now consider how these
features affect the tool’s suitability when evaluating them for a
particular task.

2.3 Evaluating Novel Tool Candidates
The shape of a tool alters its effect on its environment (Sinapov
and Stoytchev, 2008), and thus a tool replacement may necessitate
a change in the manipulation of that tool in order to achieve the
same task goal (Brown and Sammut, 2012). For tasks involving
the use of a rigid tool, the static relationship between the robot’s
hand and the tooltip is sufficient for controlling the tool to
complete a task (Kemp and Edsinger, 2006; Hoffmann et al.,
2014). These methods assume a single tooltip for each tool, and
that this tooltip is detected via visual or tactile means. For tasks
involving multiple surfaces of the tool, the task model can be
explicitly defined with respect to those segments of the tool, and
repeated with tools consisting of similar segments (Gajewski et al.,
2018). However, this assumes a hand-defined model that
represents the task with respect to pre-defined object
segments, and that these object segments are shared across
tools. Given enough training examples of a task, a robot can
learn a success classifier that can later be used to self-supervise
learning task-oriented tool grasps and manipulation policies for
unseen tools (Fang et al., 2018). We similarly aim to situate a new
tool in the context of a known task, but eliminate the assumptions
that 1) the new tool is within the scope of the training examples
(which would exclude creative tool replacements) and 2) that the
tool features relevant to the task are observable and recorded by
the robot.

2.4 Adapting Task Models to Novel Tools
The aim of transfer learning for reinforcement learning domains
is typically to use feedback obtained during exploration of a new
environment in order to enable reuse of a previously learned
model (Taylor and Stone, 2009). In previous work, we have
shown how interaction can be used to transfer the high-level
ordering of task steps to a series of new objects in a target domain
(Fitzgerald et al., 2018). Similarly, the aim of one-shot learning is
to quickly learn a new task, often improving learning from a
single demonstration by adapting previous task knowledge. Prior
work in this space focuses on learning a latent space for the task in
order to account for new robot dynamics (Srinivas et al., 2018) or
new task dynamics (Fu et al., 2016; Killian et al., 2017). “Meta-
learning” approaches have succeeded at reusing visuomotor task
policies learned from one demonstration (Chelsea et al., 2017)
and using a new goal state to condition a learned task network
such that it can be reused with additional task objects (Duan et al.,
2017). We address the problem of a robot that has not yet been
able to explore these relationships, aiming to enable rapid
adaptation of a task model for unseen task/parameter
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relationships. The tool transform models learned by our
approach are not specific to any task learning algorithm or
representation, and thus can compliment or bootstrap
methods for reinforcement, one-shot, and meta learning.

2.5 Summary of Related Work
Through prior work, we have identified three key steps for
creative tool use: Exploring novel tools, evaluating novel tools,
and adapting task models to novel tools. These stages are not
entirely separable from each other, as evaluating reflects how well
the robot anticipates being able to adapt its task model for a
particular tool, and exploration results in a set of tools that meet
some criteria such that they may be evaluated in the context of the
task. A common theme through all three steps is the importance
of constraints (e.g., tool shape, segments, or visual features) that
dictate how a task model may be adapted to a particular tool, and
as a result, play a role in the exploration and evaluation steps
as well.

In the rest of this paper, we focus on this challenge of identifying
and modeling constraints, and demonstrate how these constraints
may be used in the evaluating and adapting steps of creative tool
use.While we do not explicitly address creative tool exploration, we
aim for this work to support future research on identifying these
constraints visually to enable this exploration.

3 TOOLTIPS AS CONSTRAINTS

Suppose that a robot has learned a trajectory Ta � [p(0)
a ,p(1)

a , ... ,p(n)
a ]

consisting of end-effector poses p(i)
a for a particular task using

tool a, and now must complete the same task using a different
tool b. Our goal is to transform each pose individually for tool
b. Representing an original pose for tool a in terms of its 3 × 1
translational vector ta and 4 × 1 rotational vector ra, we
transform it into a pose pb for tool b as follows:

pb � ϕb
a pa( ) � 〈ta + t̂, ra · r̂〉 (1)

Here, ra · r̂ refers to the Hamilton product between the two
quaternions. This definition relies on a known transform between

tools a and b, which requires knowledge of the appropriate
“reference” point for both tools such that their transform can
be computed. Neither reference point is initially known by the
robot, however, nor can it be extracted from the trajectory which
is represented according to the robot’s end-effector, and not
according to any point on the tool itself.

Identifying the “reference point” for a tool is non-trivial. While
prior work has addressed the problem of identifying affordance
regions of a tool, these regions are too broad to characterize the
transform between two tools. Figure 1 illustrates examples of
these labeled affordance regions based on the UMD Part
Affordance Dataset (Myers et al., 2015). While this dataset is
relevant to identifying similar regions on two separate tools, it
does not address the problem of specifying the equivalent points
of a tool that may be used to transform the trajectory for a
particular task from one tool to another. For example, the full
blade of a knife may be labeled as enabling the “cutting”
affordance (Figure 1), even though a cutting task is likely to
be performed with respect to only the edge of the blade.
Furthermore, since affordance data is presented in the form of
pixel-wise image labels, it does not provide any data concerning
the kinematic implications of using this tool. Since the tool is
observed and labeled from a static, overhead perspective,
affordance data is only available along a single 2D plane, and
thus does not indicate the orientation at which each affordance is
or is not valid.

This is essential for manipulating the tool properly; even if the
robot were to determine that the relevant surface of a knife is
located along the edge of its blade, the blade must still be oriented
carefully with respect to the cutting target for the task to be
completed successfully. We refer to the acting surface of the tool
(e.g., a singular point along the edge of the knife blade, or a
singular point on a mallet’s pounding surface) as a tooltip that is
defined by a pose containing both the position and orientation of
that tooltip. In summary, we expect that successful task
completion relies on the robot having a model of the
composite transform between 1) the end-effector, 2) its
grasp of the tool (highlighted in red in Figure 1), and 3) the
tooltip position and orientation.

FIGURE 1 | Affordance regions may be broad, spanning multiple possible tooltips. As a result, predicting the affordance region is not sufficient to plan with respect
to that tool’s tooltip. For example, the full blade surfaces of the saw and knife are labeled as enabling the “cutting” affordance (highlighted in green) and the “grasping”
affordance (highlighted in red); however, cutting is only performed using the edge of the blade, and requires that the blade be oriented toward the cutting target. Similarly,
different points of a hammer headmay enable different tasks (e.g., pounding versus prying), and thus detecting a task-independent affordance region (highlighted in
purple) is not sufficient to plan a task trajectory.
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While we may mathematically represent a tooltip as a
singular pose, practically, however, there are likely many
possible tooltips that may lead to successful task execution.
Additionally, the constraint over the tooltip may also differ
depending on the context in which it is used: The orientation of
a hammer is constrained along two axes when hammering a nail,
but the hammer may still be rotated around the nail (e.g., its
“yaw” rotation) without affecting task performance. This
example supports the notion of a one-to-many relationship
between 1) a tooltip and 2) the tool poses that enable that
tooltip to be used.

In the remainder of this paper, we explore this one-to-many
relationship. In Section 4, we demonstrate how a single tooltip
can be expanded into a set of effective tool poses, thus
highlighting the challenges of learning tooltip constraints. In
Section 5, we consider this relationship in the opposite
direction, and present two models for deriving a single tooltip
from a set of valid poses demonstrated by a human teacher.

4 CHARACTERIZING TOOL CONSTRAINTS

We first explore the effect of tooltip constraints by expanding a
single tooltip into a set of tool poses that result in successful task
execution. To do so, we transform a trajectory that results in
successful task execution (and thus the tooltip is implicitly-
defined) such that the tooltip’s trajectory is perturbed slightly.
In doing so, we can evaluate the effect of that perturbation on task
performance, and ultimately model the constraints that dictate
which poses result in successful use of the tooltip.

In this section, we address two key research questions:

1) How do changes in tool pose affect task performance?

2) How do the constraints on tool pose differ across tools and/or
tasks?

4.1 Evaluating Tool-Task Constraints in
Simulation
We address these research questions by evaluating the
performance of a large set of trajectory perturbations using a
simulated 7-DOF Kinova Gen3 robot arm situated on a round
table in a Gazebo simulated environment. We evaluated the effect
of trajectory perturbations on three tools: A hammer, a mug, and
a spatula (Figure 2). We fixed the robot’s grasp as a static
transform between the robot’s gripper and the tool, and thus
did not evaluate the effects of the robot’s grasp strength or
stability on tool use.

For each tool, we provided a demonstration of three tasks:
Hooking (Figure 3A), lifting (Figure 3B), and sweeping
(Figure 3C). Each demonstration was provided in a Gazebo
simulator as a set of end-effector keyframes. Depending on the
tool being demonstrated, this resulted in 5-7 keyframes for
hooking, 4-6 for lifting, and 13-18 for sweeping. These end-
effector keyframes were then converted to keyframe trajectories
represented in the robot’s joint-space. We used the MoveIt
(Coleman et al., 2014) implementation of the RRTConnect
planner to plan between joint poses during trajectory
execution. We simulated a trajectory perturbation by altering
the rigid transform between the robot’s gripper and the tool itself,
according to a pre-determined set of position and orientation
alterations that are consistent across all tools and tasks. As a
result, each trajectory perturbation is identical with respect to the
robot’s end-effector, but differ with respect to the trajectory of the
tool itself. This allowed us to use the same joint-space trajectory

FIGURE 2 |We performed an evaluation across three tools: a spatula, mug, and hammer. For each tool, we perturbed the trajectory of the tooltip by adjusting the
robot’s grasp of the tool. These pose variations are just a small set of the 729 perturbations we evaluated for each tool-task pairing.
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for all perturbations of a single tool-task pairing, thus reducing
the likelihood of planning errors across all perturbations and also
minimizing any changes in the robot’s joint motion that might
affect task performance. Despite the same trajectory being
executed across all perturbations of a single tool-task pairing,
planning errors may still occur when a perturbation results in the
tool colliding with its environment, thus preventing the rest of the
trajectory from being executed.

Each perturbation resulted from a unique permutation of
changes applied to the tool’s demonstrated position along the
x, y, and z axes and demonstrated orientation along the roll,
pitch, and yaw axes. The tool’s x, y, and z positions were each
configured at one of three distances from the demonstrated
tool position: [ − 0.01, 0, 0.01] meters. The tool’s roll, pitch,
and yaw rotations were each configured at one of three angles
from the demonstrated tool orientation: [− π

16, 0,
π
16] radians.

These position and orientation perturbations were empirically
chosen such that, when combined, their effect on task
performance can be observed on a spectrum. We observed
that larger ranges of pose or orientation changes would be less
likely to result in completion of any aspect of the task, whereas
smaller ranges may not fully explore the range of successful
perturbations. However, as we note later in Section 4.3, we
observe that different tools vary in their sensitivity to these
perturbations, and thus a more fine-grained set of
perturbations should be explored in future work.

Overall, the permutation of these configurations resulted in a
total of 36 � 729 perturbations for each tool-task pairing. We

executed each perturbation twice in simulation (to account for
the non-deterministic effects of the simulator dynamics) and
recorded the average performance of the two trials, with
performance being measured according to task-specific
measures. All performance metrics were scaled to a 0–1 range.
In the hooking task, performance was measured as the distance
(in meters) between the box and the robot’s base, with less
distance correlating to higher performance. The initial and
goal states of this task are shown in Figure 3A. In the lifting
task, the robot’s performance was measured as the green bar’s
height above the table (in meters). A small number of trials
resulted in the bar being removed from the support structure
entirely. In these cases, we recorded the performance as that of the
task’s initial state (i.e., a failure case). Figure 3B shows the initial
and goal states of this task. In the sweeping task, performance is
measured as the number of spheres that were swept off the table,
with maximum performance being 16 spheres. The initial and
goal states of this task are shown in Figure 3C.

4.2 Results
Our evaluation measured how sensitive each tool-task pairing is
to perturbations of the tooltip’s trajectory: The more sensitive the
tool-task pairing is to perturbations, the more likely that a
perturbation will lead to a task failure. Low task performance
may be caused by the tooltip no longer contacting any relevant
objects in the task (and thus leaving the task in its initial state), or
by collisions between the tool’s new configuration and its
environment that prevent the robot from executing the full

FIGURE 3 | Initial and goal states for the (A) hooking, (B) lifting, and (C) sweeping tasks.
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FIGURE 4 | (A) Percentage of failed trials (performance ≤ 0.05). Darker cells indicate higher percentage of failed trials. (B) Mean and standard deviation
performance of thresholded (performance > 0.05) trials. Darker cells indicate higher mean performance.

FIGURE 5 | Performance distributions over all tool-task pairings, with all trials with performance ≤ 0.05 excluded. X- and Y-axes are consistent across all graphs.
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trajectory. We set a threshold performance of 0.05 (on a 0–1
scale), and report the percentage of perturbations that fail to
exceed this threshold in Figure 4.

We include only the set of perturbations that exceed this
threshold in the histograms in Figure 5, which illustrate the
performance distributions over the set of perturbations exceeding
this threshold. Since the original, unperturbed pose is already
known to achieve near-optimal task performance, these graphs
illustrate how many perturbations of that original pose still fulfill
the tooltip constraints and result in high performance (i.e., the
perturbations resulting in the peak observed near x � 1.0 on each
graph). We report the mean and variance over these performance
results in (Figure 4B).

Figure 6 shows the distribution over the mean performance
over all three tasks; that is, the performance metric for each
perturbation is the average of its performance on the sweeping,
hooking, and lifting tasks. We again only consider datapoints
above a performance threshold > 0.05 in order to focus on the set
of valid tooltip constraints for each tool.

4.3 Discussion
Research Question #1: How do changes in tool pose affect task
performance? The relationship between performance and
tool pose may be non-linear. If this relationship were linear,
we would expect Figure 5 to primarily contain Gaussian-like
performance distributions, such that as the robot evaluates
trajectory perturbations further from the original trajectory, its
performance resulting from those perturbations decreases
proportionally. While this is the case in some tool-task pairings
(e.g., all tools used for the sweeping task, and the lifting task using
the hammer), other performance distributions appear to be bi-
modal in nature (e.g., using the hammer in the hooking task or
using the spatula for lifting) or contain several peaks (e.g., using the
mug for hooking). This suggests that there is a non-linear
relationship between changes in the tool pose, and its resulting
effects on task performance. Note that in our evaluation, we applied
trajectory perturbations according to the single tooltip that was
demonstrated for each tool-task pairing. An opportunity for future
research is the identification of alternate tooltips based on the tool’s
shape or structure.

Research Question #2: How do the constraints on tool pose
differ across tools and/or tasks? Tools differed in their sensitivity
to pose changes. For example, using the spatula tool resulted in
the highest percentage of failed trials (35.11–35.8%) across all
three tasks, while the mug resulted in the lowest (3.29–4.25%)
across all three tasks. One hypothesis for this performance
difference is that since the mug was the smallest tool, changes
in the tool pose had a smaller effect on its tooltip pose in
comparison to the taller tools (spatula and hammer). We
observed widely varying failure rates when using the hammer,
ranging from 9.19 to 10.01% on the hooking and sweeping tasks,
respectively, and 45.27% on the lifting task. One reason for this
performance difference may be that a different tooltip was used
for the lifting task compared to the hooking and sweeping tasks.
In the former, the robot uses a “corner” of the hammer to lift the
bar (Figure 3B), whereas the hooking and sweeping tasks use a
wider surface area of the hammer as a tooltip. This may provide
more tolerance to pose perturbations. Overall, this suggests that
the sensitivity of tooltip constraints depends on the surface of
the tool being used.

Figure 6 also supports this hypothesis. These distribution
graphs reflect the consistency in tooltip constraints across tasks.
While the geometry of the tool itself remains constant across
tasks, the same tooltip is not necessarily used across tasks (e.g.,
using separate surfaces of the hammer for sweeping vs lifting).
The reduced performance shown in these graphs (in comparison
to Figure 5) indicates that the tooltip constraints applied to one
task may not be generalizable to other tasks using the
same tool.

We now consider the challenge of how a robot may quickly
learn these constraints in the context of a new tool, and whether
we can model the instances in which a robot can reuse a learned
tooltip model in the context of another task. While a robot can
learn to use a tool through demonstrations, the one-to-many
mapping between tooltip constraints and the set of tool poses that
meet those constraints means that there are many possible
demonstrations that a robot may receive for a tool/task
pairing. Learning the underlying tool constraint is therefore a
challenge, as the teacher is providing demonstrations that sample
from an unknown, underlying relationship between the end-

FIGURE 6 |Mean performance distributions using each tool for all tasks, with all trials with mean performance ≤ 0.05 excluded. X- and Y-axes are consistent across
all graphs.
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effector and the tooltip. In the next section, we explore how a
robot can utilize corrections in order to model and learn the
underlying tooltip constraint.

5 LEARNING CONSTRAINTS FROM
INTERACTIVE CORRECTIONS

In the previous section, we evaluated the one-to-many mapping
between tooltips constraints and end-effector poses that meet
those constraints. In order to adapt the robot’s task model to
a novel tool, however, we also need to analyze this mapping
in the reverse direction: inferring the underlying tooltip
constraint that has resulted in a set of corresponding end-
effector poses.

We address this challenge in the context of a robot that learns
from demonstrations by a human teacher who is familiar with the
task and tool that the robot aims to use. By comparing two
trajectories, each using a separate tool to complete the same task,
we aim to model the relationship between the two tooltips
constraints such that it can be reused in the context of
another task.

While a robot can quickly receive demonstrations (Argall
et al., 2009; Chernova and Thomaz, 2014) using a new tool, these
demonstrations may not be sufficient to learn the underlying
tooltip constraints. Due to the unstructured nature of task
demonstrations, the two demonstrations (each provided
using a different tool) may vary in ways that do not reflect
how the task should be adapted based on which tool is used. For
example, the teacher may choose a different strategy for
completing the task with the second tool, or the robot may
be starting from a new arm configuration when the teacher
demonstrates the task with the second tool. For these reasons,
we utilize corrections of the robot’s behavior, which have been
shown to be effective interface for adapting a previously-learned
task model (Argall et al., 2010; Sauser et al., 2012; Bajcsy et al.,
2018). Rather than have the teacher provide a new
demonstration using the new tool, the robot attempts to
complete the task on its own and is interrupted and
corrected by the teacher throughout its motion. As a result,
this interaction results in a series of correction pairs, where each
pair represents the robot’s originally-intended end-effector pose
and its corresponding, corrected pose that was indicated by the
teacher.

Our research questions are as follows:

1) How can we model a tooltip constraint using data provided
via sparse, noisy corrections?

2) Under what conditions can the tooltip constraints learned
from corrections on one task be used to adapt other task
models to the same replacement tool? What characteristics of
the tool and task predict whether a previously-learned tooltip
constraint can be applied?

In the following sections, we address these research questions
using the Transfer by Correction algorithm, which we first
described in Fitzgerald et al. (2019).

5.1 Problem Definition
We assume that each demonstration consists of a series of
keyframes (Akgun et al., 2012). The robot receives corrections
by executing a trajectory planned using the original task model,
pausing after a time interval defined by the keyframe timings set
during the original demonstration. The teacher then moves the
robot’s gripper to the correct position, after which the robot
resumes task execution for the next time interval, repeating the
correction process until the entire task is complete. Each resulting
correction at interval i consists of the original pose Ci

a (using tool
a) and the corrected pose Ci

b (using new tool b) at keyframe i. A
collection ofK corrections (one for each ofK keyframes) results in
a K x 2 correction matrix:

C �
C0

a C0
b

C1
a C1

b

. . .
CK

a CK
b

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

Each corrected pose Ci
b provides a sample of the transfer

function value with the original pose Ci
a at keyframe i as

input, plus some amount of error from the optimal correction
pose:

Ci
b � ϕb

a Ci
a( ) + ϵ ϵn ∼ N 0, σ2n( ) (3)

We assume ϵ is sampled from a Gaussian noise model for each
axis n ∈ [1. . .6] of the 6D end-effector pose. Our aim is to learn a
transfer function ϕ that optimally reflects the tooltip constraints,
using a correction matrix C.

5.2 Approach: Transfer by Correction
Given a task trajectory T for tool a consisting of a series of t
poses in task space such that T � [p0, p1, . . ., pt], we transform
each pose individually for tool b. Representing an original pose
for tool a in terms of its 3 × 1 translational vector ta and 4 × 1
rotational vector ra, we transform it into a pose pb for tool b as
follows:

pb � ϕb
a pa( ) � 〈ta + t̂, ra · r̂〉 (4)

Here, ra · r̂ refers to the Hamilton product between the two
quaternions. The goal is now to estimate the optimal rotational r̂
and translational t̂ transformation components from the
corrections matrix C, and then apply these transformations to
the trajectory T. Our approach addresses this goal by (1)
modeling C, particularly the relationship between each
correction’s translational and rotational components, 2)
sampling a typical translational transformation t̂ and
rotational transformation r̂ from this transform model, and 3)
applying t̂ and r̂ to transform each pose in the task trajectory
according to Equation 4.

5.3 Task Constraints
We observe that corrections indicate constraints of the tooltip’s
position and/or orientation, and that these constraints are
reflected in the relationship between the translation and
rotation components of each correction. Broadly, each
correction may primarily indicate:
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• An unconstrained point in the trajectory, and thus should be
omitted from the tool transform model.

• An orientation constraint, where the rotation of the tooltip (and
thus the end effector) is constrained more than its position (e.g.,
hooking a box is constrained more by the orientation of the
hook than its position, as in the left of Figure 7).

• A center-of-rotation constraint, where the position of the
tooltip is constrainedmore than its rotation (e.g., sweeping a
surface with a brush). Note that the tooltip position is the
center of this constraint rather than the end-effector itself,
and thus the range of valid end-effector poses forms an arc
around the tooltip, and its orientation remains angled
toward the tooltip (e.g., Figure 7B).

We define two tool transform models, first presented in
Fitzgerald et al. (2019), each reflecting either orientation or
center-of-rotation constraints. We fit the corrections matrix to
each tool transform model, using RANSAC (Fischler and Bolles,
1981) to iteratively estimate the parameters of each model while
discarding outlier and unconstrained correction data points. Each
iteration involves 1) Fitting parameter values to a sample of n
datapoints, 2) Identifying a set of inlier points that also fit those
model parameters within an error bound of ϵ, and 3) Storing the
parameter values if the inlier set represents a ratio of the dataset >
d. The RANSAC algorithm relies on a method for fitting
parameters to the sample data, and a distance metric for a
datapoint based on the model parameters. These are not
defined by the RANSAC algorithm, and so we specify the
parameterization and distance metric according to the tool
transform model used, which we describe more in the
following sections. We define an additional method to convert
the best-fitting parameters following RANSAC completion into a
typical transform that can be applied to poses.

5.4 Linear Tool Transform Model
Based on the orientation constraint type, we first consider a linear
model for correction data, where corrections fitting this model

share a linear relationship between the translational components of
the corrections, while maintaining a constant relationship between
the rotational components of corrections (Figure 8A). We model
this linear relationship as a series of coefficients obtained by
applying PCA to reduce the 3D position corrections to a 1D space.

5.4.1 RANSAC Algorithm Parameters
The RANSAC algorithm is performed for k iterations, where we
use the estimation

k � log(1.0 − p)
log 1.0 − wn( )) (5)

with desired confidence p � 0.99 and estimated inlier ratio w �
0.5. Additional parameters are as follows: n � 2 is the number of
data points sampled at each RANSAC iteration, ϵ � 0.01 is the
error threshold used to determine whether a data point fits the

FIGURE 7 | Posesmeeting the same orientation constraint share similar orientations but vary more in their position (A), whereas posesmeeting the same center-of-
rotation constraint rotate around the tooltip (B).

FIGURE 8 | Each plot represents one set of corrections for a task. The
position of each arrow represents the change in < x, y > position, and points in
the direction of the change in orientation introduced by that correction.
Orientation constraints can be seen in (A), where the majority of
corrections on this tool have low variance in their orientation, but higher
variance in their x-y position. Center-of-rotation constraints can be seen in (B),
where the majority of corrections arc around a singular center of rotation, and
orientation is dependent on the x-y position. Unconstrained keyframes
(colored grey) are located near (0,0).
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model, and d � 0.5 is the minimum ratio between inlier and
outlier data points in order for the model to be retained.

5.4.2 Model Parameter Fitting
Model fitting during each iteration of RANSAC consists of
reducing the datapoints to a 1D model using PCA, returning
the mean translational correction and the coefficients for the first
principal component of the sample S:

Θlinear(S) � 〈θμ, θu〉 θμ � 1
|S| ∑p∈S pt (6)

where pt is the 3 × 1 translational difference indicated by the
correction p, S is the subset of the corrections matrix C sampled
during one iteration of RANSAC such that S ⊂ C, and θu is the
eigenvector corresponding to the largest eigenvalue of the
covariance matrix Σ � 1

|S|S
T
t St.

5.4.3 Error Function
Each iteration of RANSAC calculates the total error over all
data points fitting that iteration’s model parameters. We define
the error of a single correction datapoint p as the sum of its
reconstruction error and difference from the average orientation
correction, given the current model parameters θ:

δlinear(p, θ) � ‖pt − θμ + pt − θμ( )TθuθTu+( )‖ + c 1 − �qnp
T
n( )2( )

(7)

where x+ indicates theMoore-Penrose pseudo-inverse of a vector,
pn is the unit vector representing the orientation difference
indicated by the correction p, �qn is a unit vector in the
direction of the average rotation sampled from the model
(defined in the next section), and c is the weight assigned to
rotational error (c � 1 in our evaluations).

5.4.4 Sampling Function
After RANSAC returns the optimal model parameters and
corresponding set of inlier points Î ⊂ C, the rotation and
translation components of the transformation are sampled
from the model. We define the sampling function according to
the estimated “average” rotation �q:

Ψ(Î, θ̂)linear � 〈�q,�t〉 �q � argmax
q∈S3

qTMq M � 1

|Î| ∑
p∈Î

pi
qp

i
q
T

(8)

The solution to �q for this maximization problem is the
eigenvector corresponding to the largest eigenvalue of M
(Markley et al., 2007). The sample translation �t is the 3D offset
corresponding to the mean value �z from the 1D projection space:

�t � θ̂μ + �zθ̂u
T+

�z � 1

|Î| ∑
p∈Î

pt − θ̂μ( )Tθ̂u (9)

5.5 Rotational Tool Transform Model
We now consider a model for corrections reflecting a center-of-
rotation constraint, in which we make the assumption that

corrections indicate a constraint over the tool tip’s position.
Since the tool tip is offset from the end-effector, the position
and rotation of the end-effector are constrained by each other
such that the end-effector revolves around the tool tip
(Figure 8B). We model this relationship by identifying a
center-of-rotation (and corresponding rotation radius) for the
tool tip, from which we can sample a valid end-effector position
and rotation.

5.5.1 RANSAC Algorithm Parameters
We use the same parameters for k, w, d as in the linear
model. We sample n � 3 points at each iteration, and use the
error threshold ϵ � 0.25. We define functions for model
parameterization, error metrics, sampling, and variance in
the following sections.

5.5.2 Model Parameter Fitting
We define the optimal model parameters for each iteration of
RANSAC as the center-of-rotation (and corresponding rotation
radius) of that iteration’s samples S:

Θrotation(S) � 〈θc, θr〉 (10)

where θc is the position of the center-of-rotation that
minimizes its distance from the intersection of lines
produced from the position and orientation of each correction
sample:

θc � argmin
c

∑|S|
i�1

D c; ai,ni( )2 (11)

where ai and ni are the position and unit direction vectors,
respectively, for sample i in S:

ai � xi, yi, zi[ ]T ni � qi · [0, 1, 0, 0]T( )) · q′ (12)

Here, q1 · q2 refers to the Hamilton product between two
quaternions, and q′ is the inverse of the quaternion q:

q′ � [w, x, y, z]′T � [w,−x,−y,−z]T (13)

We solve for the center-of-rotation by adapting a method for
identifying the least-squares intersection of lines Traa (2013). We
consider each sample i to be a ray originating at the point ai and
pointing in the direction of ni. The center-of-rotation of a set of
these rays is thus the point that minimizes the distance between
itself and each ray. We define this distance as the piecewise
function:

D(c; a,n) � ‖(c − a) − d · n‖2 if d> 0
‖c − a‖2 otherwise

{ (14)

where d is the distance between a and the projection of the
candidate centerpoint c on the ray:

d � (c − a)Tn (15)

We solve for θc using the SciPy implementation of the
Levenberg-Marquardt method for non-linear least-squares
optimization, supplying Equation 14 as the cost function. We
then solve for the radius corresponding to θc:
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θr � 1
|S| ∑

|S|

i�0
‖ai − θc‖ (16)

5.5.3 Error Function
We define the error of a single data point p as its distance from the
current iteration’s center-of-rotation estimate:

δrotation(p, θ) � D c; ap,np( )
dp

( )2

(17)

Where dp is defined in Equation 15.

5.5.4 Sampling Function
After RANSAC returns the optimal model parameters and
corresponding set of inlier points Î ⊂ C, the rotation
component of the transformation is first sampled using the
“average” rotation �qc from θ̂c to all inlier points:

�qc � argmax
q∈S3

qTMq M � 1

|Î| ∑
p∈Î

rpr
T
p (18)

Where rp is the quaternion rotation between θ̂c and the position
of p, defined by normalizing the quaternion consisting of the
scalar and vector parts:

rp � 〈‖a‖2 + baT, bT × a〉 (19)

a � pt − θ̂c b � [‖a‖, 0, 0] (20)

The optimal �qc is the eigenvector corresponding to the largest
eigenvalue of M; this represents the sampled rotation from θ̂c.

We then sample �t by projecting the point at distance θ̂r from θ̂c
in the direction of �qc:

�t � θ̂c + �qc · 0, θ̂r, 0, 0[ ]T( ) · �qc′[ ]
1‥3

(21)

Where x1‥3 indicates the 3 × 1 vector obtained by ommitting the
first element of a 4 × 1 vector x. Finally, we return the sample
consisting of the translation �t and the normalized rotation �q
between �t and θ̂c:

Ψ(Î, θ̂)rotation �〈 �q
‖�q‖ ,�t〉 �q�〈θ̂r‖a‖+baT,bT ×a〉 a� θ̂c −�t b� θ̂r,0,0][

(22)

5.6 Best-Fit Model Selection
The linear and rotational tool transformmodels represent two different
relationships between the translational and rotational components of
corrections. We now define a metric for selecting between these two
models based on how well they fit the correction data:

Ψ(C)best−fit �
Ψ Îl, θ̂l( )

linear
if Δlinear <Δrotation

Ψ Îr, θ̂r( )
rotation

otherwise

⎧⎨⎩ (23)

Where Îl, θ̂l, Îr, θ̂r represent the optimal inlier points and
parameter values from the linear and rotational models,
respectively. The fit of the linear model is calculated as its
range of values z projected in the model’s 1D space:

Δlinear � range(z) z � pt − θ̂μ( )Tθ̂u|∀p ∈ Î{ } (24)

The fit of the rotational model is calculated as the range of unit
vectors in the direction of each inlier point as measured from the
center-of-rotation:

Δrotation � 1 − 1

|Î| ∑
p∈Î

rp · [0, 1, 0, 0]T( ) · rp′[ ]
1‥3

�����������
�����������2

(25)

where rp is defined in Equation 19.

5.7 Evaluation
We evaluated the transfer by correction algorithm results on a 7-
DOF Jaco2 arm equipped with a two-fingered Robotiq 85 gripper
and mounted vertically on a table-top surface (Figure 9D). Each
evaluation configuration consisted of one task that was 1)
demonstrated using the original, “source” tool, and 2)
corrected to accommodate a novel, replacement tool. We
describe data collection for each of these steps in the following
sections.

5.8 Demonstrations
Three tasks (Figure 9) were demonstrated using three
prototypical, “source” tools (Figures 10A–C), resulting in a
total of nine demonstrations. Demonstrations began with the
arm positioned in an initial configuration, and with the gripper
already grasping the tool. Each tool’s grasp remained consistent
across all three tasks. Objects on the robot’s workspace were reset
to the same initial position before every demonstration. We
provided demonstrations by indicating keyframes (Akgun
et al., 2012) along the trajectory, each of which was reached
by moving the robot’s arm to the intermediate pose. At each
keyframe, the 7D end effector pose was recorded; note that this is
the pose of the joint holding the tool, and not the pose of the tool-
tip itself (since the tool-tip is unknown to the robot).We provided
one keyframe demonstration for each combination of tasks and
source tools in this manner, each demonstration consisting of
7–12 keyframes (depending on the source tool used) for the
sweeping task, 10–11 keyframes (depending on the source tool
used) for the hooking task, and 7 keyframes for the
hammering task.

We represented each demonstration using a Dynamic
Movement Primitive (DMP) (Schaal, 2006; Pastor et al.,
2009). A DMP is trained over a demonstration by
perturbing a linear spring-damper system according to the
velocity and acceleration of the robot’s end-effector at each
time step. By integrating over the DMP, a trajectory can then
be generated that begins at the end-effector’s initial position
and ends at a specified end point location. Thus, after training
a DMP, the only parameter required to execute the skill is
the desired end point location. By parameterizing the end
point location of each DMP skill model according to object
locations, the overall task can be generalized to accommodate
new object configurations. We re-recorded the demonstration
if the trained DMP failed to repeat the demonstration task
with the source tool.
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5.9 Corrections
Following training, the arm was reset to its initial
configuration, with the gripper already grasping a new tool
(Figures 10D,E). Note that these replacement objects have
several surfaces that could be utilized as a tooltip (depending
on the task). For example, any point along the rim of the mug
(Figure 10D) would serve as the prototypical tooltip during a
scooping or pouring task. In the context of the hooking and
hammering tasks used in our evaluation, however, the bottom
of the mug serves as a tooltip. Alternatively, the side of the mug
provides a broad surface to perform the sweeping task. This
range of potential tooltips on a single object highlights the
benefit of using corrections to learn task-specific tooltips,
rather than assume that a prototypical tooltip is appropriate
for all tasks.

Objects on the robot’s workspace were reset to the same initial
position as in the demonstrations; this allowed us to ensure that
any corrections were made as a result of the change in tool, rather
than changes in object positions. The learned model was then
used to plan a trajectory in task-space, which was then converted
into a joint-space trajectory using TracIK (Beeson and Ames,
2015) and executed, pausing at intervals defined by the keyframe
timing used in the original demonstration. When execution was
paused, it remained paused until the arm pose was confirmed. If
no correction was necessary, the pose was confirmed
immediately; otherwise, the arm pose was first corrected by
moving the arm to the correct position. Note that this form of
corrections assumes that each keyframe constitutes a statically
stable state. For tasks involving unstable states, another form of
interaction may be used to provide post-hoc corrections, such as
critiques (Cui and Niekum, 2018).

Two poses were recorded for each correction: 1) the original
end-effector pose the arm attempted to reach (regardless of
whether the goal pose was reachable with the new tool), and
2) the end-effector pose following confirmation (regardless of
whether a correction was given). Trajectory execution then
resumed from the arm’s current pose, following the original
task-space trajectory so that pose corrections were not
propagated to the rest of the trajectory. This process
continued until all keyframes were corrected and executed,
resulting in the correction matrix C (Equation 2).

5.10 Measures
For each transfer execution, we measured performance according
to a metric specific to the task:

• Sweeping: The number of pom-poms swept off the surface of
the yellow box.

• Hooking: The final distance between the box’s target
position and the closest edge of the box (measured in
centimeters).

• Hammering:A binary metric of whether the peg was pressed
any lower from its initial position.

5.11 Results
We highlight two categories of results: Within-task and across-
task performance.

5.11.1 Within-Task Transfer
Within-task performance measures the algorithm’s ability to model
the corrections and perform the corrected task successfully. Transfer
was performed using the transform model learned from corrections

FIGURE 9 | (A) hooking task, (B) sweeping task, (C) hammering task, and (D) the experimental setting.

FIGURE 10 | Tools (A–C) were used to demonstrate the three tasks shown in Figure 9, later transferred to use tools (D,E). These tools exhibit a wide range of
grasps, orientations, dimensions, and tooltip surfaces.
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on that same tool-task pairing. For example, for the sweeping task
model learned using the hammer, corrections were provided on the
replacement tool (e.g., a mug) and then used to perform the sweeping
task using that same mug. For each source tool, we evaluated
performance on all three tasks using each of the two replacement
objects, resulting in 18 sets of corrections (one for each combination of
task, source tool, and replacement tool) per tool transform model
(linear and rotational).

Using the better-performing model resulted in ≥ 85% of
maximum task performance in 83% of cases. The better-
performing model was selected using the best-fit metric in
72% of cases. Figure 11 lists the percentage of transfer
executions (using the best-fit model) that achieve multiple
performance thresholds, where best-fit results were recorded as
the performance of the model returned by Equation 23.

We scaled the result of each transfer execution between 0 and
1, with 0 representing the initial state of the task and 1
representing maximum performance according to the metrics
in Section 5.10. Figure 12 reports the performance distribution
aggregated over all tasks, transferred from each of the three

source tools to either the scrub-brush (Figure 10E, results in
Figure 12A) or mug (pictured in Figure 10D, results in
Figure 12B) as the replacement tool. The mean performance
results are reported in Figure 13A, with darker cells indicating
better performance. Overall, the transform returned using the
best-fit metric resulted in average performance of 6.9x and 5.9x
that of the untransformed trajectory when using the scrub-brush
and mug, respectively, as replacement tools.

5.11.2 Across-Task Transfer
Across-task transfer performance measures the generalizability of
corrections learned on one task when applied to a different task
using the same tool, without having received any corrections on that
tool-task pairing. For example, the hooking task was learned using the
hammer, and transferred to themug using corrections obtained on the
sweeping task. We evaluated 36 total transfer executions (one per
combination of demonstration task, source tool, correction task
(distinct from the demonstration task), and replacement tool) per
tool transform model (linear and rotational).

Figure 14 reports the performance distribution aggregated
over all tasks, transferred from each of the three source tools to
either the scrub-brush (Figure 14A) or mug (Figure 13B) as the
replacement tool. The mean performance results are reported in
Figure 13B, with darker cells indicating better performance.
Overall, the transform returned using the best-fit metric
resulted in average performance of 1.6x and 0.94x that of the
untransformed trajectory when using the scrub-brush and mug,
respectively, as replacement tools. The performance distribution
is improved when using the transform learned from corrections,
resulting in 2.25x as many task executions achieving ≥ 25% of
maximum task performance.

In order to understand the conditions under which a
transform can be reused successfully in the context of another
task, we also report the mean performance results for a subset of
the across-task executions (Figure 13C). This subset consists of
only the task executions where the relative orientation is the same
between 1) the source tool’s tooltips used for the source and target

FIGURE 11 | Percentage of within-task transfer executions (selected by
best-fit model) and untransformed trajectories achieving various performance
thresholds (defined as the % of maximum performance metric for that task,
described in Section 5.10). Our proposed models result in a higher
percentage of transfer executions that complete the task to a high
performance threshold (e.g., sweeping ≥ 85% of the objects off the table).
Furthermore, while the untransformed baseline produces all-or-nothing
performance behavior, our models degrade gracefully, resulting in partial task
completion (represented by lower % performance thresholds) even when the
learned transform is non-optimal.

FIGURE 12 | Aggregate performance results for within-task transfer using the scrub-brush (A) and mug (B) as the replacement tool. Performance was measured
for each task according to the metrics in Section 5.10, and are scaled between 0–1. These results highlight the need for multiple tool transform models; while both
models greatly outperform the baseline task performance (when no transform is used), note that neither model results in the best performance over all tasks and
replacement tools. Using the best-fit metric to select the more appropriate model for each tool-task pairing resulted in the best overall performance.
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tasks and 2) the replacement tool’s tooltips used for the same two
tasks. This subset consisted of 10 executions for the scrub-brush,
and 12 for the mug. Overall, for this subset of executions, the
transform returned using the best-fit metric resulted in average
performance of 12.6x and 1.7x that of the untransformed
trajectory when using the scrub-brush and mug, respectively,
as replacement tools.

5.12 Discussion
Our within-task transfer evaluation tested whether we can model
the transform between two tools in the context of the same task
(represented by the solid blue arrow in Figure 15) using
corrections. Our results indicate that one round of corrections
typically is sufficient to indicate this relationship between tools;
collectively, the linear and rotational models achieved ≥ 85% of
maximum task performance in 83% of cases. Individually, the
models selected by the best-fit metric achieved this performance
threshold in 72% of cases. This indicates that, in general, the fit of
the model itself can be used to indicate the relationship between
end-effector position and orientation for a given tool/task
combination.

Aside from analyzing high task performance, we are also
interested in whether our approach enables graceful
degradation; even if the robot is unable to complete the task
fully with a new tool, ideally it will still have learned a transform
that enables partial completion of the task. The results shown in
Figure 11 demonstrate that Transfer by Correction offers robust
behavior such that even when it results in sub-optimal
performance, it still meets lower performance thresholds in
nearly 90% of cases. In contrast, the untransformed baseline
does not meet lower performance thresholds, and thus produces
all-or-nothing results that lack robustness.

The primary benefit of modeling corrections (as opposed to
re-learning the task for the new tool) is two-fold: First, the robot
learns a transformation that reflects how the task has changed in
response to the new tool, which is potentially generalizable to
other tasks (as we discuss next). We hypothesize that in future
work, this learned transform could be parameterized by features
of the tool (after corrections on multiple tools). Second, since we
do not change the underlying task model, but instead apply the
learned transform to the resulting trajectory, the underlying task
model is left unchanged. We expect that this efficiency benefit

FIGURE 13 |Mean performance of (A)within-task and (B) across-task transfer to the brush andmug replacement tools over all 18 transfer executions for each tool.
(C) Mean performance of across-task transfer to the brush and mug replacement tools over the subset of transfer executions in which the transformation between
source and correction tasks is similar for the source and replacement tool (10 executions for the brush, 12 for the mug). Darker cells indicate higher average performance.

FIGURE 14 |Results for across-task transfer using the scrub-brush (A) andmug (B) as the replacement tool. Performance wasmeasured according to the metrics
in Section 5.10, scaled between 0–1. These results represent the generalizability of a transform model learned on one task and then applied to a different task using the
same tool. Each point represents the performance of a single transfer execution.
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would be most evident when transferring a more complex task
model trained over many demonstrations; rather than require
more demonstrations with the new tool in order to re-train the
task model, the transform would be applied to the result of the
already-trained model.

We have also explored how well this transform generalizes to
other tasks. Different tooltips on the same tool may be used to
achieve different tasks, such as how the end and base of the
paintbrush are used to perform sweeping and hammering tasks,
respectively, in Figure 15. While we do not explicitly model the
relationship between tooltips on the same tool (represented by the
top grey arrow in Figure 15), they are inherent to the learned task
models. A similar relationship exists for the replacement tool
(represented by the bottom grey arrow in Figure 15). Our across-
task evaluation seeks to answer whether the relationship between
tools in the context of the first task (solid blue arrow) can be
reused for a second task (represented by the dashed blue arrow)
without having received any corrections on that tool/task
combination (tool 2 and task 2). While we see lower
performance in across-task evaluations compared to the
within-task evaluations, it does improve transfer in 27.8% of
across-task transfer executions (in comparison to the
untransformed trajectory).

In the general case, our results also indicate that we cannot
necessarily reuse the learned transformation on additional tasks,
as average performance in across-task transfer is slightly worse

than that of the untransformed trajectory when the mug is used as
a replacement tool. This presents the question: Given a transform
between two tools in the context of one task, under what
conditions can that transform be reused in the context of
another task without additional corrections or training? We do
see that across-task performance is best when considering only
the subset of cases where the relationship between the tooltips
used in either task is similar for the source and replacement tools
(in our evaluation, this is 10 of 18 executions using the brush, and
12 of 18 executions using the mug). Within this subset, across-
task transfer improves performance in 41% of transfer executions.
From this we draw two conclusions: 1) the transform applied to a
tool is contextually dependent on the source task, target task, and
tooltips of the source and replacement tool, and 2) a transform
can be reused when the relationship between tooltips used in
either task is similar for the source and replacement tools.

Overall, our evaluation resulted in the following key findings:
Insight #1: Corrections provide a sample of the constrained

transform between the tooltip and the robot’s end-effector. This
underlying constraint is task-dependent; our best-fit model
results indicate that multiple constraint types should be
modeled and evaluated for each task, with the best-fitting
model used to produce the final transform output.

Insight #2: While the tooltip transform is task-specific, it can
be applied to additional tasks under certain conditions. This is
dependent on a second transform: the transform between

FIGURE 15 | Corrections indicate the transform from tool 1 to tool 2 for the same task (indicated by the solid blue arrow). Our within-task transfer evaluation tested
whether we can use corrections to sufficiently model this relationship. Different tasks may use different tooltips from the same tool (such as the different tooltips used to
complete tasks 1 and 2). Our across-task evaluation tests whether the transform learned from corrections (solid blue arrow) can be reused as the transform between the
two tools for another task (indicated by the dashed blue arrow).
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multiple tooltips on the same tool. A tooltip transform can be
reused for an additional task when the transform between the
tooltips used to complete 1) the corrected task and 2) the
additional task are similar for the two tools.

6 CONCLUSION

Tool use is a hallmark of human cognition and tool improvisation
is a characteristic of human creativity. As robots enter human
society, we expect human-like tool improvisation from robots as
well. This paper makes three contributions to robot creativity in
using novel tools to accomplish everyday tasks. First, it presents a
high-level decomposition of the task of tool improvisation into a
process of tool exploration, tool evaluation, and adaptation of task
models to the novel tool. Second, it demonstrates the importance of
tooltip constraints in guiding successful tool use throughout this
process. Third, it describes a method of learning by correction:
repeating a known task with an unknown tool in order to record a
human teacher’s corrections of the robot’s motion.

We focused on how the relationship between the robot’s
gripper and the tooltip dictates how the robot’s action model
should be adapted to the new tool. A challenge in identifying this
relationship is that 1) there are many candidate tooltips on each
tool, and 2) for each tooltip, there exists a one-to-many
relationship between the tooltip and end-effector poses that
fulfill the tooltip constraint.

In this paper, we validated this one-to-many mapping through
a simulated experiment in which we demonstrate a relationship
between pose variations and task performance. Our experimental
results indicate that the sensitivity of tooltip constraints depends
on the surface of the tool being used, and that as the tool pose
deviates from these constraints, the resulting effect on task
performance is nonlinear.

We then examined the opposite mapping: A many-to-one
mapping between pose feedback provided by a human teacher,
and the optimal, underlying tooltip constraint. We developed the
Learning by Correction algorithm, and demonstrated that a
human teacher can indicate the tooltip constraints for a
specific tool-task pairing by correcting the robot’s motion
when using the new tool. We modeled the underlying tooltip
constraint in two ways, using a linear and rotation model, and
also present a metric for choosing the better-fitting model for a set
of corrections. We demonstrated how this model of the tooltip
constraint can then be used to successfully plan and execute the
task using that tool with high task performance in 83% of task
execusions. We also explored how this tooltip constraint model
can be generalized to additional tasks using the same novel tool,
without requiring any additional training data.

Overall, we expect that a focus on identifying novel tools,
evaluating novel tools, and adapting task models to novel tools
in accordance to tooltip constraints is essential for enabling creative
tool use. Our results indicate that successful task adaptation for a
new tool is dependent on the tool’s usage within that task, and that
the transform model learned from interactive corrections can be
generalized to other tasks providing a similar context for the new
tool. Put together, these results provide a process account of robot

creativity in tool use (tool identification, evaluation and adaptation),
a content account (highlighting the importance of tooltips), as well
as an algorithmic account of learning by correction.

6.1 Open Questions
In this paper, we have presented a corrections-based approach to
sampling and modeling the transform resulting from a tool
replacement. In doing so, we model a single, static transform
for a particular tool/task pairing. We have evaluated how well this
model transfers to other tasks using the same tool replacement.
An extension of this work would consider transfer across tools.

We envision that a robot could not only model the transform
samples obtained by interactive corrections, but also learn to
generalize that model to other, similar tools. For example, after
receiving corrections for one ladle for a scooping task, the robot
would ideally be able to model those corrections such that it
would apply to ladles of different shapes or proportions as well.
We anticipate that a robot could learn an underlying relationship
between visual object features (such as dimensions or concavity)
and the resulting transform for that tool.

Meta-learning has been successfully applied to learning
problems in computer vision domains and fully-simulated
reinforcement learning problems (Duan et al., 2017; Chelsea
et al., 2017). When applied to the domain of tool transfer,
meta-learning would ideally enable a robot to use extensive
background training to learn the common relationships between
visual features and tooltips that are shared by tools within their
respective categories (e.g., cups, knives, scoops). When presented
with a novel category of tools, the robot would then only need
demonstrations using a small number of tools within the new
category in order to learn the relationship between visual features
and tooltips within that category. However, as demonstrated in this
paper, tooltips are task-specific; within a single tool, the tooltip used
to complete one task (e.g., the surface of a hammer used to hammer
a nail) is not necessarily the same as the tooltip used to complete
another task (e.g., the side of the hammer may be used to sweep
objects off a surface, or the claw-end of the hammer may be used to
remove a nail). This lack of task-specific training data presents a
challenge for future work, as relying on a dataset containing a
single, canonical tooltip for each tool would fail to capture the task-
contextual nature of tool use.

Finally, this paper has explored one method of interaction to
enable a human teacher to provide corrections to the robot.
However, in human-in-the-loop learning problems, the ideal
interaction type is dependent on the teacher’s role in the
learning system, and the context in which the robot is used
(Cui et al., 2021). For example, the teacher may not have time
to correct every step of the robot’s action, or may instead prefer to
provide corrections only after the robot has tried and failed to
complete a task. We anticipate that future workmay enable a robot
to obtain correction data from a broader set of interaction types.
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Creative AI and Musicking Robots
Craig Vear*

Institute of Creative Technologies, De Montfort University, Leicester, United Kingdom

This article discusses the creative and technical approaches in a performative robot project
called “Embodied Musicking Robots” (2018–present). The core approach of this project is
human-centered AI (HC-AI) which focuses on the design, development, and deployment
of intelligent systems that cooperate with humans in real time in a “deep and meaningful
way.”1 This project applies this goal as a central philosophy from which the concepts of
creative AI and experiential learning are developed. At the center of this discussion is the
articulation of a shift in thinking of what constitutes creative AI and new HC-AI forms of
computational learning from inside the flow of the shared experience between robots and
humans. The central case study (EMRv1) investigates the technical solutions and artistic
potential of AI-driven robots co-creating with an improvising humanmusician (the author) in
real time. This project is ongoing, currently at v4, with limited conclusions; other than this,
the approach can be felt to be cooperative but requires further investigation.

Keywords: music, robots, creativity, human-centered AI, creative AI

INTRODUCTION

The Goal
The aim of this practice-based research project was to investigate the technical solutions and artistic
potential of AI-driven robots co-creating with a human musician in real time. This research extends
and enhances existing research in this area, specifically that of computational creativity (e.g.,
McCormack and d’Inverno (McCormack and d’Inverno, 2012)), AI and music (e.g., Miranda
(Miranda, 2021)), and robotic musicianship (e.g., Bretan et al. (Weinberg et al., 2020)), with a specific
focus on the embodied relationship among agent- robot, sound presence, human musician, and the
flow of co-creativity, with the aim of enhancing the creativity of humans. This is a rich and emerging
area withmany solutions which are currently being developed, most of which are dealing with in-the-
loop solutions for human–robot music interaction. For example, the cooperative AI at the heart of
“In A Silent Way” (McCormack et al., 2019) is trained using performance data and communicates
with the human musicians through real-time sound generation and emoticons in order to generate a
sense of trust. Additionally, in Design Considerations for Real-Time Collaboration with Creative
Artificial Intelligence, McCormack (McCormack et al., 2020) offers a framework for maximizing the
human–AI creative interaction, which can be migrated to human–robotic musicking.

The Embodied Musicking Robots (EMR) project contributes to this discussion by asking the
following research question:

If we want robots to join us inside the creative acts of music, then how do we design and
develop robot systems that prioritize the relationships that bind musicians inside the flow
of music-making?
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This question comes from deep and meaningful experiences that
I had as a high-level professional musician for over 30 y and support
the core goal of HC-AI. As such, its focus is to seek solutions for the
stimulation of the relationships generated inside the real-timemusic-
making, which I outlined in detail in Vear (2019) with its basic
structure being split into these two domains:

1) Taking in: within the flow, musicians make connections with
the AI as they reach out, suggest, offer, and shift through the
tendrils of affordance experienced through the notions of.
⁃ Liveness: the sensation that the AI is cooperating in the real time
making of music, and this meaningful engagement feels “alive.”

⁃ Presence: an experience that something is there or I am there.
⁃ Interaction: the interplay of self with environments, agents,
and actants.

2) Taken into: the AI can establish a world of creative possibilities
for exploration through the flow through the domains of.
⁃ Play: the pure play of musicking happens inside a play-sphere
in which the idea and musicking are immutably fused.

⁃ Time: the perception of time (of now, past, future, and the
meanwhile of multiple convolutions of time) insidemusicking
plays a central role to the experience of the musician

⁃ Sensation: is an esthetic awareness in the experience of an
environment (music world) as felt through their senses.

However, I must stress that the EMR project is ongoing and so
far relatively unfunded, with the limitations imposed by COVID
and repeated lockdowns, and has only had the author in-the-loop.
Therefore, this article should be read as more a hopeful, position
statement, with some (autobiographical) evidence to support the
authors understanding that this system feels like it is stimulating
relationships inside music-making, rather than simulating the
movements and sounds of a robotic musician.

Definitions
Before I describe the solutions that I designed and deployed in the
EMR project; I need to simply define what I mean by the following
terms within the context of this project. This defining process also
helped consolidate the design and development of the Creative AI
and robotic systems with the goals of HC-AI.

Musicking is the creative acts of real-time music-making.
Musicking is a term first created by Christopher Small to
define a perspective that “to music is to take part” (Small,
1998). Small wrote that “taking part can happen in any
capacity” (Small, 1998) such as performing, composing, and
listening (and dancing). It crucially means formation through
musicking is formed in the relationships that are established
within the realm of taking part with agents, sounds, spaces, and
presences that are encountered here.

Flow is the experience of musicking from inside the activity.
Within the context of this project, the flow of musicking defines
how “musicians become absorbed in the music through a sense of
incorporation within their environment (the sound world), a
shared effort (with the digital, virtual, AI, and robotic agents), and
a loss of awareness of their day-to-day wakefulness and bodily
self-consciousness (embodiment with their instrument and into
their music)” (Vear, 2019).

Embodiment (in music) is the process in musicking of drawing
the musician’s sound into their bodily sense of being. This
presumes that when musicians make music, it is not a process
of outputting sound into the world but an embodied experience of
becoming the sound they create in the flow of musicking. Equally,
it describes the process of the musician reaching out from this
sense of becoming and drawing in the sounds of others so they
feel their presence as sound. This is a dance of sorts: to touch, to
feel, to sense, to work with, to play with, and to hide and seek and
flirt and subvert with others through the flow.

Creativity: I recognize creativity when play turns into invention
within the flow of musicking. As a musician, creativity has to be of
value and meaning to me. It needs to be “greater than the sum of its
parts” (Vear, 2019); (Boden, 2003; Zedan et al., 2008; Iacoboni,
2009; Pearce, 2010; Thomsom and Jaque, 2017; Zedan et al., 2017)
and go beyond merely creating music (manufacturing sound using
one’s skills). It also goes beyond recognizing that something is new,
or novel, or that I have innovated in a given situation. Creativity is
felt to be fundamentally new—to my mind—and emergent from
my playfulness within the flow. It takes effort and needs feeding, and
goes beyond “adhering to a list of ingredients and/or instructions
within a prescribed situation; emergent creativity—that is,
genuinely original—cannot be replicated by simply repeating a
set of rules or prescribed circumstances” (Vear, 2019).

Creativity is giving in to a playful situation thatmight return
with a creative spark. Creativity is not constant, reliable, or
automatic; it needs nurturing with open, generous, and
cultivating energy. On the other hand, it can sustain bold
and mischievous challenges or seemingly disruptive
engagement designed to rail-road ongoing trains of thought,
so long as these are still giving in their nature.

In this article, I define three sub-domains of creativity to
highlight the human–robot relationships. These are based on my
general experience as an improvising musician and are used to
identify the types of co-creativity within musicking from the
human musician’s perception (note: this project does not deal
with notions of machine consciousness or perception):

• Concurrent: a sense that both agents (human and robot) are
playfully inventing in isolation but within the shared flow of
musicking

• Collaborative: a sense that both agents are contributing to a
shared play idea, feeding a sense of collective invention
through individual contribution and perspective

• Co-creative: a sense that the robot and human agents are
collectively inventing through a stimulated sense that each
is in inside the other’s head. By this, I mean that the robot/
AI, as perceived by the human musician, is in the loop with
the human, and together, they are inventing on a singular
idea, feeding each other’s play as if it were one train of
thought.

Creative AI not only includes practices that have AI embedded
into the process of creation but also encompasses novel AI
approaches in the realization and experience of such work. I
define AI as the design, development, and deployment of
intelligent agents that respond with insights from their
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environment and perform actions. Each agent is mainly
concerned with a rational action within a given situation
[taken from AI a modern approach]. The focus of behavioral
and embodied AI emphasizes the close-coupled relationship
between the situation that an intelligent agent is operating in
and the behavior that it exhibits to cope inside such a situation. As
such, the focus on intelligent behavior is on the coping systems
that are required to maintain a balance of existing within such a
situated environment.

With these definitions in mind, the goal of the EMR project is
to design and develop a creative AI system that enhances human
musician creativity by stimulating, inspiring, interacting, and
cooperating in the flow of embodied live improvised music-
making. Therefore, to build a robot driven by a Creative AI
system, it must

1) continually improve by learning from humans and
2) create an effective and fulfilling human–robot interaction

experience.

THE PROJECT

My hypothesis to the research question posed before involved the
design, development, and deployment of a robotic creative AI
that would have a presence within the co-creativity of the flow of
musicking and not be an AI zombie. This approach reinforces the
personal understanding that when a musician enters the world of
musicking, the “I” is coping in a very different world of concern
than if they were walking down a street. In a sense, “I” becomes a
different creature with a different set of priorities and concerns,
outlooks, and sensorial inputs than my normal, human
wakefulness. The technical and artistic solution for EMR
focused on a robot that was first and foremost a coping entity
in this specific world of concern (the flow of musicking).

The solution was to develop a system based on these three
principles, expanded below:

1) Coping: EMR needed to cope in real time within the realm of
musicking and be present as sound whose movements are
embodied within such flow. This required a non-
representational approach to how it related to the flow as
the coping mechanisms needed to be open and dynamic
enough to cooperate in any given musicking realm.
Limiting the robot to a single representation of what
musicking is, or might be, imposed onto the system by the
human designer(s), would only work in a number of instances.

2) Creative AI dataset and experiential learning: these concepts
needed to be designed from within the realm of musicking,
prioritizing the phenomena of being inside this realm and
capturing an essence of what it means to be embodied within
the flow. The concept of experiential learning was designed to
support this (discussed later).

3) Belief: the robot needs to believe in its view of the
musicking world through limitations, embedded
esthetics, and behavioral traits, even with glitches and
bugs in the system.

From the human-centered artistic perspective, EMR needed to
address the following:

- The robot was not an extension of the musician but should
extend its creativity.

- The robot should not be an obedient dog or responsive insect
jumping at my commands or impetus but a playful other.

- It should not operate as a simulation of play but as a
stimulation of the human’s creativity.

- It is not a tool to enhance the human’s creativity but a being
with presence in the world that they believe to be co-creating
with them.

- It should prioritize emergence, surprise, and mischiefbut not
expectation.

TECHNICAL SOLUTION

[Not] The Solution
Before I describe my solution, I would like to describe what it is not
using relativelywell-known examples (NB is not the current state of the
art). First, it is not an instrument-performing robot. For example,
TeoTronico (2012) is a pianist-robot, designed and built by Matteo
Suzzi. This robot plays the piano with dynamic control and
articulation, moving 53 levers (described as fingers by Suzzi) with
“great accuracy and speed” (Prosseda, 2014). In one example on
YouTube, it plays a piece composed by Mozart, extremely well. It
seems to have sensitivity about its performance, and even though the
designers state that it usesMIDI files or be a “mirror pianist” (Prosseda,
2014), it does not sound like it is driven by a standard quantizedMIDI
file, so some form of human capture was used that stored a human
performance as a MIDI file, which TeoTronico replayed. Its flow has
been prepackaged and then regurgitated. Its sound is in the now, but its
musicking is responding neither responding to the now nor to its
environment. As such, to achieve the main aim of the EMR project, a
technical and artistic approach such as this pianist-robot would fail as it
simply could not cooperate with the human.

Second, it is not a goal-specific humanoid robot. For example,
environmentally aware and goal-cognizant robots such as those
being developed for the human–robot World Cup in 2050
(Robocup, 2015) are sophisticated robots employing the AI that
make them aware of their world. In general, these systems use
computer vision and sensors to navigate through this world; they
have real-time awareness of here and now and are interacting with
that in their goal to get the ball and score. The problem of using this
kind of approach with the EMR project is in the nature of an
embodied interaction. In musicking, the embodied relationships
with other musicians are with the presence of the others as sound
and not with them as human flesh. This relationship goes beyond
relating to their physical presence and their movement, although it
does play a part in varying degrees and at varying times, in my
ongoing relationship-building process. So, an EMR needs to create
relationships with human musicians through its presence as sound
yet also has some physical presence and movement to inform this.
Using these football robots as an analogy, it is not the physical
movement of the robot moving toward the ball, or kicking, that
creates the relationships required for this project but the relationship
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with the flow of the movement of the ball. As such, it is not the
movement that incites the sound that is being related to inmusicking
but the presence of that sound in the flow.

The Solution: EMRv1
The solution developed for EMRv1 consists of the following three
main concepts.

Coping
The design of EMR was informed by two early articles by the
robot innovator Rodney Brooks, specifically Intelligence without
Reason (Brooks, 1991) and Intelligence without Representation
(Brooks, 1987). In these, he lays out the foundation of his
approach to designing and building robots that are first and
foremost able to cope and therefore adapt to a dynamically
changing environment within the parameters of specific and
multiple goals. This research eventually led to his robots being
used for space and sea exploration, military and medical
application, and the iRobot Roomba vacuum cleaner series.
These Roombas are designed with iAdapt AI to be “creatures”
that cope in a specific world of concern in real time. They neither
have a model of representation of their world (such as building a
3D model of the space through computer vision and object
analysis) nor do they make one as it goes about its business,
but use goals and strategies to cope with whatever that world can
throw at it (static furniture, steps, or chairs that get moved 1 day
to the next).

Brooks’ foundational theories, and observations of my own
Roomba, guided the developed for my EMR and generated this set
of principles (adapted from Brooks (Brooks, 1987)):

- EMR must cope in an appropriate musical manner and in a
timely fashion, with the dynamic shifts inside the musicking
world;

- EMR should be robust to the dynamic environment of
musicking; it should not fail to minor changes in the
properties of the flow of musicking and should behave
appropriately to its ongoing perception of the flow;

- EMR should maintain multiple goals, changing as required and
adapting to its world by capitalizing on creative opportunity;

- EMR should do something in the world of musicking; “it
should have some purpose in being” (Brooks, 1987).

Creative AI Dataset and Experiential Learning
This project innovated a different approach to computational
learning that involved a human-in-the-loop and in-the-groove
approach. This experiential learning (EL) approach trained the AI
on the job and crucially inside the flow of embodied musicking.
Furthermore, the EL process collaborated with a humanmusician
who was equally learning about this new musicking system. This
approach supported both the human and the AI to automatically
learn and improve from experience.

The EL process (see Figure 1) focused on capturing the
physical phenomena of an improvising human musician in the
flow of creative musicking. The sensing mechanism used 3D
depth tracking of the human musician’s body using a Kinect
sensor (simply x, y, and z movement of both hands, body center,

and head) and the fast Fourier Transfer (FFT) analysis of the live
sound (fundamental frequency and amplitude).

The resulting dataset reflected the position and rotation of an
embodied musicking body in motion together with the amplitude
and frequency analysis of the actual soundmade by suchmovement,
without preserving the performer’s mass, musculature, melodic
shape, or music. Thus, the embodied musicking movement is
extracted from the performer’s body while they are making
music; in a poetic sense, the dataset contains the meta-level
DNA of musicking without the specifics or a representation of
themusic or the human. Recorded audio–video capture of themusic
performance would always anchor the dataset to a specific person
and point in time, whereas the meta-level data could become the
building blocks for the virtual composition (see Figure 2). Data
phrases can be edited, treated, and repurposed by the robot’s AI
again and again without the risk of repetition.

The initial process involved seeding the Creative AI dataset by
capturing the live performance of an improvising musician. Once
a small set had been generated, this musician then worked with
the robot through a series of training sessions, with these new live
data being added to the Creative AI dataset. The more they
worked together, the more meta-level DNA of their shared
creativity would be put back into the dataset system, thereby
improving the AI’s knowledge base of the shared experience of
embodied musicking.

The EL process was used in two ways: first, as a set of raw data
that were called upon by the robot AI during a performance (see
below), and second, as data for training the four neural networks.
These separated the data into four body parts (head, body, right
hand, and left hand) and trained amultilayered perceptron neural
network using the body parts’ x, y, and z data to correlate with its
amplitude for each line. Amplitude was decided as being the
generator for the neural networks as the proposed application for
EMRv1 was non-idiomatic improvisation, and therefore, sonic
impetus was determined to be a more appropriate factor.

The EL approach learns through an embodied interaction
inside the flow of musicking. It utilized the meta-level DNA of its
improvising partner—the human musician—and extracted
elements from the dataset (any data randomly chosen by the
system as it is all endowed with meta-level creativity) into its AI
processing and then outputs the resultant sound as music. This
EL process enhances the dataset through experience by its
embodied coping inside the flow of musicking. The human
musician perceives meaning in the robot’s musicking who in
turn cooperates in the making of music (generally perceiving the
relationship through one of the perspectives of creative
cooperation discussed earlier) and responds with a creative
solution through music. This is then captured using the
sensing mechanisms and stored back into the Creative AI
dataset. Thus, the cycle of EL continues to enhance and
improve the dataset and enlarge the creative AI memory bank
of deep and meaningful interactions between humans and robots
which in turn forms the basis for future interactions.

Belief
It might seem odd to implement belief into the AI of a robot,
given that this term usually refers to religious or spiritual faith,
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but it is the broader definition of this word that I am particularly
interested. Specifically, EMR has an acceptance that something is
true, or that it has trust or confidence in something from the

perspective of the role its belief system plays in the behavior of
EMR. I am not suggesting that EMR is sentient or has perception
of the world but that the robot’s operational systems are

FIGURE 2 | Image of a performance/training session between the author improvising on table-top electric guitar (A) and EMRv1 (B). The image collages the real-
time tracking of the Kinect (the ghost image C.), and the data-logging page of Max/MSP patch (D). A video of this session can be found online.7

FIGURE 1 | Experiential learning process. This image overviews the basic technical/data structure at play in EMRv1 and also is the foundation for further iterations of EMR.
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embedded with structures that it can accept as guiding beliefs.
They are:

1) Movement behavior: The robot’s movement operates within a
behavioral system, designed to react openly to the dynamic
sound world, and moves the wheels accordingly. The robot AI
makes choices determined by whichever goal (listed before) is
driving the wheels at any given point but within fixed
parameters. The Embodied Robot for Music has freedom of
choice to operate within such a field of response possibility.
These are based on human preferences and outline a range of
creative choices which have been determined over several
decades. These are personal and subjective, and if these
parameters were to be shifted or changed, then a different
set of musicking characteristics would emerge. Within this
structure, the robot has been embedded with a sense of
esthetic that it can trust (believe to be true) and that the
choices it makes are appropriate to it, co-creating inside the
flow of musicking and unique to itself.

2) Sound world: The robot has a fixed sound library of roughly
1,000 short sounds, which were recorded through live
improvisation, thereby embedding them with an essence of
musicianship. These are triggered only when the wheels move.
These are then either presented to the world in their raw state
or treated in some way (time stretch, pitch shift, or both) using
the Creative AI dataset as controlling parameters. The robot
does not have the whole possible world of sounds, synthesis,
and composition at its fingertips, but its sounds have a
character and an esthetic basis which it can use to express
its behavior and be unique to itself.

3) Creative AI: At the core of the creative AI, dataset is a world of
embodiedmusicking captured through the EL process (described
before) and through live interaction. These data are used to
control every aspect of the AI, movement, sound production
choice, and interaction goal. The dataset is also used to make
choices about how the dataset is to be recalled and read by the
algorithms (e.g., the read rate and ramp speed for each instance of
wheel movement; discussed later). This means that the direct
application of data intowheelmovement and also the translations
of that into sound object choice and therefore asmusic in the flow
is imbued with the essence of embodied musicking that has been
embedded in the core of the dataset. The version of the dataset in
this application was a crude and small proof of concept. This has
since been superseded by a larger project and a more
comprehensive embodiment approach to the dataset.

But really these embedded belief structures are there so that
the human musician can believe that the robot’s behavior and
responses are truly emanating through musicking, and to draw
attention to that fact, this robot is a valuable co-creative presence
inside a shared flow. We all know that this robot is really an
assembly of plastic and metal components together with a couple
of motors and a processor. But because the human musician can
trust it believes in certain things and has been embedded with a
certain notion of its world of concern through concepts such as
affectual response, its range of sonic choices, and its behavior, the
human musician can believe in it as a co-creative collaborator

inside musicking, which in turn can lead to deep and meaningful
human-centered interactions.

Technical Design
Hardware
The robot used in EMRv1 was a Dexter Go-Pi-Go 12 with a
Raspberry Pi3 model B3 as the controlling computer. This system
was used as the hardware was cheap, both the Dexter and the Pi
had good online support and community forums, and there were
plenty of ancillary peripherals available, such as cameras, which
were equally cheap and supported. The Go-Pi-Go also came with
an expanded version of the Raspian operating system (a Linux
distribution) and included the libraries and dependencies tomove
the Go-Pi-Go completely with example scripts.

The robot was controlled remotely by the embodied AI in a
black box system (discussed later) that broadcast movement
parameters to the Pi. Onboard, the Pi was a simple script that
received the transmitted parameters, translated them into wheel
movement, and looked after the collision avoidance goal (below).

The embodied AI was built in Max/MSP4 on a MacBook Pro
and transmitted to the Go-Pi-Go using Open Sound Control
(OSC)5 protocols over wireless. Max/MSP is a graphical
programming language for multimedia development. It is
quick and simple to use and is specifically designed for real-
time editing and interactivity. This made software development
quick and simple and facilitated rapid prototyping. Max/MSP
also organizes threading and concurrency internally.

EMRv1 Subsumption Architecture
The technical design of EMRv1 was influenced by robotic
subsumption architecture. This is a control architecture
innovated by Rodney Brooks as an alternative to traditional
AI, or GOFAI. Instead of guiding the robotic behavior by
symbolic mental representations of the world, subsumption
architecture “is a parallel and distributed computation
formalism for connecting sensors to actuators in robots. A
traditional way of describing these connections would be to
say the subsumption architecture provides a way of writing
intelligent control programs for mobile robots” (Brooks, 1986).

The subsumption architecture was designed to support
multiple goals. These were (in order of priority) given as follows:

1) Self-preservation: The robot must avoid obstacles and not
crash into the other musician or fall off the stage.

2) Instinctual behavior: If left alone, the robot wouldmakemusic.
This was driven by the Creative AI dataset (discussed before),
which operated as its DNA of musicking creativity.

3) Dynamic interaction: The robot can, in certain conditions, be
affected by the sound of the live musician. Using a process of
simulated affect linking, the Creative AI could leap between

2Go-Pi-Go. Available at: https://www.dexterindustries.com/gopigo3/ (Accessed 2020/
10/23).
3Raspberry Pi. Available at: https://www.raspberrypi.org/products/raspberry-pi-3-
model-b/?resellerType�home (Accessed 2020/10/23).
4Max/MSP. Available at: https://cycling74.com/ (Accessed 2020/10/23).
5Open Sound Control. Available at: http://opensoundcontrol.org/introduction-osc
(Accessed 2020/10/23).
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related, abstracted, or unexpected datasets. Metaphorically,
the robot’s internal trains of thought would be triggered by
phrasing (short-term temporal limits) and the dynamic
impetus of the human.

A critical feature of the design of EMR is that each of these
goals directly moves the wheels. It was essential that each goal is
not part of an elaborate, logically flowing representation of a
thought process, mimicking some kind of mind. As such, the
overall design of the robotic system was modular, with each
system directly accessing the wheels when in operation.

The overall modular design of the data flow is given as follows:

1) Live data sensors
2) Data wrangler
3) Affect mixing
4) Smoothing and deviation
5) Wheels move. Make sound

Although this may appear to be a linear flow based on a
hierarchy, the subsumption design is embedded in module 2Data
wrangler module. With module 3 Affect mixing, enhancing the
non-hierarchical approach. The code for EMRv.1 is freely
available as open-source on GitHub.6

The design of each module is as follows:

1) Live data sensors

This module coordinates and streams the live sensor data to
various modules across the system. The live input consists of a line
input signal from the collaborating musician (human or robot),
and a stream of OSC data from the Kinect (x, y, and z coordinates
of the head, body, left hand, and right hand). The audio from the
line input was analyzed for dominant (fundamental) frequency
and amplitude. These were then concatenated together as a series
of lists and stored as dataset files for immediate use and access in
later training sessions, and performances. The sample rate was
flexible and was triggered by the incoming Kinect data. Table 1
illustrates how these were saved as .csv files.

The operational processes of 1. live data sensors module were
given as follows:

i) capture the live sensor data and concatenate it into data lists;
ii) package the data lists as .csv files in the dataset local directory;
iii) stream each of the fields to other modules for use in real-time

decision-making processes.
2) Data wrangler

This module generated the metaphorical trains of thought for
EMRv1 in the following two ways:

1) querying and reading from the files stored in the Creative AI
dataset directory

2) generating outputs from four neural networks trained on the
Creative AI dataset (discussed before).

The basic process for the querying and reading from the files
stored in the Creative AI dataset directory was designed to
symbolically represent the shifting nature of trains of thought
as proposed by (Gelertner, 1994). The symbolic process was
constructed as follows:

i) Choose a dataset file from the directory for a random
duration (6–26 s)

ii) If an affect signal is received (see below), change the file
immediately [goto 1]

iii) Choose a random line to start reading from the dataset file
iv) Start reading from this line for the random duration (3–13 s)
v) Read at a random procession rate (300–1,300 ms)
vi) Loop if triggered
vii) Parse and smooth all fields from the dataset as individual

data atoms and send them to next module

The basic process for generating outputs from the four neural
networks trained on the Creative AI dataset was triggered by the
amplitude data received from three sources: 1) the live audio
input (after FFT separation), 2) from the querying process before,
and 3) from a short-term memory buffer that looped and
recorded the live improvisation, and randomly read the audio
from any point. Each of these was mixed and routed into each of
the four neural networks, from which was generated x, y, and z
data, which were streamed to the next module.

3) Affect mixing

This module received all the data streams from the dataset
query, parsing process, and the neural networks and mixed
them into the following two outputs: left wheel data and right
wheel data. The mixing was controlled by a special process
designed to symbolically represent affect and affect-linking
(Gelertner, 1994) of a musician. In Vear 2019, I defined
affect as “the mind’s connecting response between sensorial
input of external events with the internal perception of
causation such as emotion or feeling, through time.” This
module translated this definition symbolically, the streams of
amplitude data from the live input, the dataset parsing, and a
randomly generated “drunk walk,” would be used to trigger 1)
local changes in the module such as mix and 2) global conditions
such as dataset file selection. The basic process was given as
follows:

i) randomly switch between input streams (1–4 s, or with a loud
affect trigger)

ii) if amplitude is <40%, do nothing
iii) else if amplitude is between 41 and 80%, trigger a new mix

(see below)
iv) else if amplitude is >80%, trigger condition changes across

the architecture (new mix, new file read, restart reading rate,
change smoothing rate, and change audio read in following
modules)

6GitHub. Craig Vear. Available at: https://github.com/craigvear/Seven_Pleasures_
of_Pris (Accessed 2020/10/23).
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The mix function randomly selected which of the incoming
data streams (x, y, and z from dataset read, x, y, and z, from
live Kinect, x, y, and z from the neural network prediction) to
be the output to the following module for the wheel
movement. It was desirable that this involved multiple
elements from these incoming streams being merged,
metaphorically fusing different trains of thought into a
single output.

4) Smoothing and deviation

The final stage in the dataflow process smoothed the output
for each wheel using random slide properties of 15–450 ms.
This would introduce a sense of push and pull in the final
wheel response and sound generation, and like the other
random processes were symbolic and metaphorical
representations of rhythm and phrase generation. The last
part of this process looked for deviations in changing data
using a delta change function !(n - n-1). This was then sent to
the wheel module.

5) Wheels move. Make sound

The left-wheel and right-wheel data outputs from the
aforementioned module were rescaled and then sent via
OSC and wireless to the Go-Pi-Go robot, which parsed
them and moved the wheels. Simultaneously, these data
were sent to the Make Sound module, which made
independent sounds for each wheel. The data were rescaled
between 0 and 1,177 so that it would trigger one of the minute
samples held in its belief system (discussed before). These
samples were then projected from speakers attached to the
laptop.

DISCUSSION

The debate on whether intentionality is needed for creativity is still
ongoing in the literature (Paul and Kaufman, 2014). EMRv1 does not
have a module in its subsumption architecture that deals with
intentionality. Yet, I perceived moments of it intentionally
responding to musicking, and also not responding to keys and
triggers such as sonic impetus. This malleability in its response
was intentional as I wanted to be surprised by what it did and did not
respond to, in the same way that another human musician can
choose to react to a musickingmoment or not. This approach acts as
a metaphor for my surprise when in musicking I make an
unexpected response. In these moments (which happen regularly),
I did not intend to respond, but something inside my being emerged.
I cannot explain this, but I am aware of it, and the possibility of this is
embedded in the experiential learning process and the Creative AI
dataset with the symbolic AI making space for this to happen, or not.

It could be argued that this AI system is a passive passenger along
the flow of musicking privileging the human musician as the central
driver for all musicking decisions. And this is true, on a superficial
level. All perceived interactions are from the human perspective, who
in turn responds with a human-orientated decision. However, the
embodied presence of the robot (in contrast with the presence of only
a computer/non-anthropomorphic artificial system) did influence
my human responses as I recognized its movements as being in the
groove, due to them being based on my movements. This sense of
familiarity with the movement (which in turn begat the sound)
contributed to a sense that this EMRv1was inside its flow. This led to
a sense of “meaning” as I felt that we were journeying together
through a shared flow. Any points where I felt that the relationship
was concurrent, collaborative, or co-creative further reinforced this,
leading to a heightened sense of togetherness. I should add here that if
EMRv1was left to perform a solo, it would do so without the need for

TABLE 1 | Example of the Creative AI dataset.

Id Limb X Y z Freq Amp

35 /Hand_Left −0.31917 −0.295,487 1.376,182 161.538,467 0.322,659
36 /Hand_Right −0.264,689 −0.213,074 1.28068 161.538,467 0.322,659
37 /Body −0.397,107 0.106,659 1.222,754 161.538,467 0.322,659
38 /Head −0.246,853 0.314,369 1.072035 161.538,467 0.166,799
39 /Hand_Left −0.372,583 −0.077763 1.275,277 161.538,467 0.166,799
40 /Hand_Right −0.256,269 −0.215,644 1.274,499 161.538,467 0.166,799
41 /Body −0.387,607 0.108,567 1.23542 161.538,467 0.166,799
42 /Head −0.239,018 0.316,554 1.083863 114.248,703 0.11613
43 /Hand_Left −0.375,174 −0.039334 1.263,249 114.248,703 0.11613
44 /Hand_Right −0.248,108 −0.212,755 1.270,422 114.248,703 0.11613
45 /Body −0.365,129 0.119,221 1.260,812 114.248,703 0.11613
46 /Head −0.23085 0.319,204 1.095646 31.987,429 0.131,989
47 /Hand_Left −0.396,978 0.060928 1.210,986 31.987,429 0.131,989
48 /Hand_Right −0.223,919 −0.181,981 1.253,668 31.987,429 0.131,989
49 /Body −0.356,796 0.122,125 1.268,893 31.987,429 0.131,989
50 /Head −0.227,154 0.319,129 1.099726 31.987,429 0.131,989
51 /Hand_Left −0.456,557 0.253,543 1.086275 31.987,429 0.131,989
52 /Hand_Right −0.208,468 −0.130,853 1.233,942 31.987,429 0.10922
53 /Body −0.342,327 0.127,401 1.279,092 31.987,429 0.10922
54 /Head −0.227,208 0.318,383 1.099777 31.987,429 0.10922
55 /Hand_Left −0.323,183 −0.030516 1.199,504 31.987,429 0.10922
56 /Hand_Right −0.173,354 −0.011939 1.149,591 31.987,429 0.10922
57 /Body −0.332,003 0.131,065 1.283,651 31.987,429 0.10922
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human intervention. This was part of its “purpose of being.”
Similarly, when I placed two robots together, they performed a
duet (Patabots, 2019a) (Patabots, 2019b).

It is a limiting factor here that due to lockdown and COVID
pandemic restrictions, this research was unable to engage with other
musicians and so remains anecdotal. But there is something in the
way that EMRv1 responds inside musicking that brought me closer
to the improvisational relationships I have with other musicians.
This is due to the goals and purpose embedded into the AI and
robotic architecture of EMRv1 being loose, and focused on surprise
and novelty, as opposed to some elaborate mind-based model.

For me, this type of creativity happens inside a system that
propagates principles of play and invention but is also bound by
limits and parameters. Even the notion of free improvisation is
bound to an individual’s imagination and technique. Notions of
“meaning” and “purpose” are therefore bound to enabling this
system to operate within such parameters and limits. Meaning is
the preserve of the human who recognizes that the system is in the
flow, believes that its system is playing and inventing, and responds
with creative playfulness. The robot AI has purpose, which is to play
and invent within this system. Together, these create a system that
can lead to emergent creativity. But this is not guaranteed; but neither
is it guaranteed between human–human improvised musicking.

The consequence of this study is that it could signify a fruitful
way forward of interpreting the concept of natural and artificial co-
creativity. Considering playful creativity in AI as a defined system
with a purpose, rather than a set of ingredients might unlock small-
c creative projects. However, this also opens these applications to
moments of failure as the system cannot be guaranteed to be
creative all the time due to its inbuilt freedom, the integrity of the
dataset, and the reliance of the human to comprehend what is
understood as “meaning” in the flow.

CONCLUSION

Using the principles outlined earlier, the EMRv1 project has created
a co-creative system that responds to the interaction with a human
musician through a cyclical relational process. It is important to
note that the interaction with the musician begets movement as its

primary goal for musicking and that this movement is embedded
with the essence of embodiedmusicking because of the experiential
learning process. Following this, the movement begets sound,
which begets music such that all relationships between humans
and AI are informed by phenomenon data captured within the
embodied flow of music-making: either from the Creative AI
dataset or through live interaction.

The subsumption architecture appeared to create a solution
for an intelligent coping that followed the principles of the
project (listed before). But due to COVID lockdown
restrictions and budgetary factors, the testing of EMRv1 was
restricted to the author. However, these improvisations were
presented on multiple occasions in front of the general public
and peers, with encouraging responses and requests to try
it out.

The design of EMR supported simple changes to its internal
belief system that resulted in a change of behavior and
esthetics. For example, swapping the source audio files for
another set made the robot sound different. Changing some of
its internal random parameters, especially in module 2 Data
wrangler and module 4 Affect mixing, had a significant effect
on its internal rhythmic and phrasing structures, thereby
responding to the live improvisation with a different feel.

The ultimate goal of this research is not to find solutions to
replace human creativity but to enhance it and move it forward
into discoveries. In short, this research is seeking to find
experiences like those emergent through DeepMind and
Alpha Go’s interaction with the professional Go players. In
the 2019 film (AlphaGo, 2017), several of these professionals
reflected that when they played with AlphaGo, they “see the
world different [. . .] Maybe it’s beautiful,” and “like move 37,
something beautiful occurred there”; “in a broad sense move
37 begat move 78 begat a new attitude, a new way of seeing the
game he improved through this machine, his humanness was
expanded after playing this inanimate creation” (AlphaGo,
2017).

I am hopeful, given the current trajectory and generation
(v4) that this foundational work outlined in this article has
proven to be a viable solution for such emergent creativity
between musicking humans and robots. But as we are all still
managing the COVID pandemic, and the limitation of face-
to-face research, it may be a while before I am able to test EMR
with another unbiased collaborator. However, as EMR grows
with each iteration, the feeling of stimulated relationships in
musicking grows. At a recent public talk/performance for the
Art-AI festival 2021, I gave a demo performance of EMRv48

and I playing together (see Figure 3). It is interesting to note
how the movement begets sounds and how the movement
emits a sense of musicking, regardless of the sound produced
[https://www.youtube.com/watch?v�LryGSo7MK74&t�3370s].
But, as mentioned before, this phenomenon needs a

FIGURE 3 | A screengrab from an online performance of EMRv4 and the
author as part of the Art-AI festival 2021.

8EMR v4 has now been migrated to Python and uses a hive of neural networks
trained using the TensorFlow library, cooked using a dataset from the “embodied
musicking dataset” repository. Available at: https://github.com/Creative-AI-
Research-Group/embodiedMusickingDataset/tree/master/dataset.
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considerable amount of further testing and validation and so
remains only a mere hopeful conclusion.
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Exploring Behavioral Creativity of a
Proactive Robot
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Creativity, in one sense, can be seen as an effort or action to bring novelty. Following this,
we explore how a robot can be creative by bringing novelty in a human–robot interaction
(HRI) scenario. Studies suggest that proactivity is closely linked with creativity. Proactivity
can be defined as acting or interacting by anticipating future needs or actions. This study
aims to explore the effect of proactive behavior and the relation of such behaviors to the
two aspects of creativity: 1) the perceived creativity observed by the user in the robot’s
proactive behavior and 2) creativity of the user by assessing how creativity in HRI can be
shaped or influenced by proactivity. We do so by conducting an experimental study, where
the robot tries to support the user on the completion of the task regardless of the end result
being novel or not and does so by exhibiting anticipatory proactive behaviors. In our study,
the robot instantiates a set of verbal communications as proactive robot behavior. To our
knowledge, the study is among the first to establish and investigate the relationship
between creativity and proactivity in the HRI context, based on user studies. The initial
results have indicated a relationship between observed proactivity, creativity, and task
achievement. It also provides valuable pointers for further investigation in this domain.

Keywords: proactive robot, creative behavior, self-initiated behavior, human–robot interaction, social robot

1 INTRODUCTION

Robots are becoming more and more a part of our lives. We encounter robots in our houses as
assistants, at schools as tutors or peers, and at marketplaces as guides or shopping assistants. Robots
appear not as tools but as social agents with a voice and a mind in our daily lives. Robots are
producing behaviors that are intended to be supportive or helpful to the user. However, there is a
need to investigate how such behaviors might be related to the users’ expectations, causing some kind
of confusion, or even related to the user’s creativity. This will help in crafting the right level of
behavior and suggestions that the robot should be providing. Robots can have different strategies to
interact, such as reactive, when it acts only if there is a demand from the user, or proactive, where it
acts even if there is no explicit request from the user. This study focuses on the proactive behavior of a
robot with the intention to support the user in performing a task.

In organizational psychology, proactive behavior is defined as anticipatory, self-initiated, change-
oriented, and future-focused behaviors (Grant and Ashford, 2008). Proactivity is described as a
process of individuals influencing their environments (social, non-social, and physical) (Bateman
and Crant, 1993) by intentionally taking initiatives (Bateman and Crant, 1999), by utilizing the
combination of knowledge, perception, and ability to predict others’ actions and consequences
(Tomasello et al., 2005). Most human–robot interaction (HRI) studies are based on this definition
from organizational psychology to define proactive robot behavior where robots must be
anticipatory, self-initiated, and change-oriented toward future changes (Peng et al., 2019). In
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this study, we analyze the notion of proactive action as perceived
from the user’s perspective. Therefore, any act by the robot needs
to be fulfilling the following two conditions for it to be perceived
as proactive action (as opposed to reactive action) by the user: 1)
there is an anticipation of the future situation. This can be either
by a human controller or autonomously by the reasoning
mechanism. 2) Based on the anticipation, if the robot is
behaving without any explicit request from the user, it is self-
initiated behavior of the robot from the user perspective. Again,
such acts by the robot are instantiated either by a remote operator
or autonomously. This situation is enough for us to perform our
studies of proactive behavior from the user perspective. We are
interested in understating the effect of such behaviors on the user,
not how such behaviors should be created.

On the other hand, there is a notion of creativity, which refers
to the novel product of value (Weisberg, 1993) or a person who
expresses novel thoughts (Csikszentmihalyi, 2009). Being creative
is the ability to change existing perspectives (Goncalo, 2019). In
that sense, to be creative and proactive, both carry the similar
notions of anticipatory, self-initiated, and future-driven
behaviors. Therefore, in one sense, proactivity and creativity
are highly coupled. Creativity, as the ability to produce novel
ideas, is argued to be a necessity for proactive behaviors, and
proactive personality is positively associated with creative
behaviors (Joo and Bennett, 2018). In order to be creative, it is
essential to have the ability to view things from different
perspectives and generate new possibilities or alternatives in a
unique way (Franken, 1994).

The majority of the examples we saw in robotics use
interaction patterns to support users’ creativity. Robots adopt
the role of either a supportive agent that facilitates the user’s
creativity (Elgarf et al., 2021; Alves-Oliveira et al., 2019) or a
creative peer that is collaborating with the user on a creative task
(Law et al., 2019; Lin et al., 2020; Hu et al., 2021). In that sense, all
of the examples put creative thinking of the user as an aim of the
robot. Even some researchers claim that there is a positive effect
of robot usage in education on a child’s creative thinking (Ali
et al., 2019).

In reality, life is not focused on creative thinking, even to
the extent that educationalists complain that the current
education system is blocking creative thinking. Ken
Robinson stated in his TED talk that school kills creativity.
The current education system depends on convergent
thinking, asking for the answer to a question, rather than
divergent thinking, asking how to reach that answer (Ritter
et al., 2020). If we think about the task-based robotics system,
which is popular in robotics systems, how could they cope
with supporting the user’s creativity?

In our study, on the proactive side, we focus on the robot being
proactive toward the user who is completing the task of cooking
recipes. The robot exhibits proactive actions by predicting what
users try to achieve without the user asking for information or
support and instantiates a set of verbal communications with the
user. On the creativity side, we focus on the two aspects of
creativity: creativeness observed by the user in the robot
proactive behavior and the creativity of the user while leading
toward a task of reaching a cooking recipe.

Our motivation is to understand the effect of proactive
behavior and the relation of such behaviors to the two aspects
of creativity discussed above. This study aims to present the
results of a set of pilot studies of different behaviors of the robot.
The idea is to understand and explore the limitations and pointers
for conducting a full-scale research project. To our knowledge, it
is the first study of its kind, which is trying to explore the
connections between observed proactivity, creativity, and task
achievement, in a setup of users with mixed backgrounds. The
initial results have indicated some interesting relations among
various attributes. At the same time, it is hinted that it would be
too early to draw a definite guideline and conclusive relations
about the optimum behaviors of the robot. Nevertheless, our
findings suggest various parameters, which need further
investigation when such social robots will serve people in day-
to-day activities, where a series of actions are needed.

2 BACKGROUND

Creative thinking is defined as a skill that produces novel and
valuable ideas (Sternberg, 2010). It is a way to consider things
from a different perspective, be creative, and have a different look
at daily life problems. It depends on the knowledge of the
individuals. There is no prior way to define creativity.
Although the creative contributions are classified under eight
headings (Sternberg, 2010), evaluating the amount of creativity is
not clearly defined. Some types could have greater amounts of
novelty than others. Creative thinking is not the equivalent of
divergent thinking. However, divergent thinking tests can be used
for estimating creative thinking (Runco, 1993). Divergent
thinking is defined as the ability to produce diverse ideas
(Runco, 1993).

Producing creative ideas is affected by the environment.
However, creativity requires a moderate level of focus.
Therefore, when a person is interrupted or the attention
process gets disturbed, it might affect the creativity
performance (Woodman et al., 1993; Wang et al., 2014). In
that sense, potential interruptions by the robot to the human
performing a task, which might occur because of the proactive
interactions, might have effects on the creativity of the person.
Furthermore, interruptions might also come from the
environment and/or other agents during the interaction.

Several human–human interaction studies are providing an
interesting understanding of the relationship between receiving
interruptions and being creative. Different types of moods on the
interruptions are highly studied in the cognitive science
domain—most of them are based on variations of the tone of
the interruptions. Studies have shown the positive effect of a
positive mood of the interruptions on creativity (Baas et al., 2008;
De Dreu et al., 2008) to generate new ideas. Another study shows
the strong relationship of receiving different types of interactions
and being creative. Studies have shown the positive effect of
positive feedback on creativity to generate new ideas (George and
Zhou, 2007; Gong and Zhang, 2017). The positive interruptions
carry combinations of positive feedback—validating or praising
the user—and constructive feedback—question users’ actions and
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lead them to think about the solution they find (Gong and Zhang,
2017). The effect of negative feedback in connection with the
frequency of positive feedback is also studied. For example, if the
level of positive feedback is high, then negative feedback
positively affects the creativity performance (George and Zhou,
2007; Gong and Zhang, 2017). Different studies are highlighting
the effects of interruptions’ tone, type, and frequency to be
creative.

2.1 Proactivity in Robotics
The previous aggregated definitions of proactivity align with many
of the recent studies in robotics for defining a robot’s proactivity as
the anticipatory action initiated by the robot to impact itself or
others (Peng et al., 2019). It is defined as acting before it is
requested (Ujjwal and Chodorowski, 2019). The proactivity of
robots is studied in different implementation methods by using
different initiations. The most related ones are as follows: 1)
anticipating user needs, which is when the robot understands
the user’s needs and offers its support (by acting or interacting)
for clarifying confusion (Pandey et al., 2013) or for providing
suggestions (Peng et al., 2019; Baraglia et al., 2016; Grosinger et al.,
2016;Myers and Yorke-Smith, 2007; Bader et al., 2013; Zhang et al.,
2015; Ujjwal and Chodorowski, 2019), 2) for anticipating possible
plan failure and plan repair (White et al., 2017), 3) for preventing
future hazards (Bremner et al., 2019), 4) improving the robot’s
knowledge & seeking information, such as the robot asking the user
for validation or the robot asking the user to identify gaps in the
robot’s knowledge (Lemaignan et al., 2010) (Moulin-Frier et al.,
2017), 5) seeking engagement and interaction, such as proactively
seeking the user for interaction (Garrell et al., 2013) or continuing
interaction (Liu et al., 2018), 6) adapting to the user, such as the
user’s action while working together (Awais and Henrich, 2012),
following the speed of the robot while considering constraints that
the user needs to meet (Fiore et al., 2015), or considering the user’s
habits and arranging the robot’s action not to become annoying
(Rivoire and Lim, 2016) or enacting humanlike behaviors while
reaching the object (Cramer et al., 2009; Han and Yanco, 2019),
and 7) adapting robot roles, such as changing the robot from the
leader to the follower during cooperative manipulation tasks
(Thobbi et al., 2011; Bussy et al., 2012).

There are various modalities to exhibit proactive behaviors,
from manipulation to verbal suggestions. However, while
considering the limitations of social robots, it is already
challenging to manipulate the shared environment physically
since social robots’ manipulation capabilities are not as precise
as those of collaborative robots or industrial lightweight robots.
On top of that, some HRI studies show that humans are more
accepting of the robot’s proactivity when the robot includes the
human in the decision instead of the robot applying the decision
itself (Kraus et al., 2020). Therefore, to simplify the complexity of
the experiment and to avoid imposing a decision, we chose to
instantiate communicative actions, thus limiting other modalities
to make the robot proactive.

2.2 Creativity in Robotics
Creativity is studied in different areas of robotics. The
majority of the task definitions are inspired by figural and

verbal creativity. For instance, users are assigned to tell a
story (Elgarf et al., 2021) or draw a figure (Alves-Oliveira
et al., 2019). Robots produce behaviors for supporting the
user’s creativity. Robots present a collaborative behavior
where they study social aspects and engagements of robots
with turn-taking principles. The robot’s role depends on
supporting the user’s creative behavior, where the robot is
most likely asking the user to think about their decision and
lead them to be creative. As in the example of Kahn’s Zen
Garden (Kahn et al., 2016), the robot follows a pattern of
interaction to foster the user’s creativity.

The robot’s creativity is also explored in various studies.
For example, the study of human–robot collaborative design
(Law et al., 2019) aims to facilitate creativity of the user and
be creative as a robot. Both the robot and the human are
playing creative roles in the task. So, the robot supports the
user and tries to be creative in the decision process to design a
pattern. In their study, the robot’s and the human’s creativity
share the same definition of being unexpected, novel product
creation. Meanwhile, in the study of co-creativity (Lin et al.,
2020), the focus is on facilitating the robot’s creativity by
getting feedback from the user while collaborating to draw a
figure. The main point is to lead the robot to more creative
outcomes (Hu et al., 2021), since the robot mostly creates
ideas during collaboration.

The creativity process requires an environment of help or
individual effort to develop ideas for self-initiated projects
(Apiola et al., 2010). In this sense, a robot’s creativity depends
upon the robot’s ability to produce helpful information. In this
study, the creativity of the robot focuses on the definition of
creating useful help. This created help is communicated to the
user without being asked for it and is hence used as a proactive
robot behavior. As such proactive behaviors are interrupting the
users, they have a potential effect on the creativity of the user
as well.

Thus, this study explores the behavioral aspects of creativity,
inspired by our previous study of creativity and proactivity
(Buyukgoz et al., 2020), which hinted about the possible
relationship between these two aspects, and also suggested the
need to investigate the duality of creativity: creativity of the robot
and creativity through the robot. More specifically, in that work,
we developed a study to experiment with the robot’s proactive
behavior when there is no task explicitly assigned. The behavior
occurs as a set of verbal interruptions toward the users as a result
of anticipation of the situation. The study was for understanding
how the robot’s proactive behavior is perceived as a creativity of
the robot and its effects on the user’s creativity in the HRI
scenarios. Although, as discussed earlier, the frequency of
interruptions also has a role to play in creativity, we also
instantiated different levels of proactive interactions to explore
the effects.

3 DESIGN OVERVIEW

This study explores the behavioral aspect of creativity during
HRI using a robot as a proactive agent, creatively engaging in a
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FIGURE 1 | Activity diagram of interaction flow indicates the actions of the task, the robot, and the user. Black rectangle boxes represent the pages of the task and
diamond boxes show the decisions of the task for general flow of phases. Robot responses are indicated with red boxes. Red boxes with black arrows represent the
sentence that will be created. The user’s actions are represented with hexagon boxes.

Frontiers in Robotics and AI | www.frontiersin.org November 2021 | Volume 8 | Article 6941774

Buyukgoz et al. Proactivity and Creativity in HRI

200

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


task performed by the user and generating suggestions as
communicative behavior to guide the user while achieving
their intended goal. In this regard, proactive behavior of the
robot is defined as instantiating behavior for suggesting the
users, where the robot’s intervention is not necessary or not
requested by the user. We have considered a common home
scenario task—cooking a recipe—that is explained below.

3.1 Task Definition
We have chosen a task in which the user could be creative and
would not necessarily need the robot’s help to complete the given
assignment. Generating cooking recipes can be seen as a creative
task, in which the users could converge toward different recipes
by using a similar set of ingredients.

Most likely, users have differing knowledge about the typical
recipe. That is why users were provided with seven recipes with
the dish’s name and ingredients to set the expected ground for the
cooking recipe scenario. Each dish has six different ingredients.
The recipes are different. However, each dish shares one or more
ingredients with other dishes. In total, twenty-two ingredients
were given in alphabetical order from different categories:
proteins; chicken, foie-gras, ham, lardon. Vegetables; garlic,
pumpkin, spinach, truffle, onion, pepper, nutmeg. Dairy
products; milk, cheese, butter, eggs. Processed stuff; bread,
barbecue sauce, stock, wine. Sugary stuff; sugar, honey. Basics;
flour. Typical French recipes such as quiches, soups, and toasts
were chosen to eliminate the hassle of learning new recipes. The
whole task is divided into two phases to first study the effect of
proactive behavior for a predefined recipe and then give the user a
chance to be creative by eliminating the predefined recipe. With
each user, the experiment starts with Phase 1 and continues with
Phase 2.

Phase 1: a dish is assigned to the user. The participant should
select the exact ingredients for the given recipe. Thus, the
participant and the robot both know which recipe is targeted.
Phase 2: the user is asked to create a dish by using the given
ingredients. The robot does not know about the target dish.

3.2 Design of the Proactive Behavior
In this study, the proactive behavior of the robot uses shared
principles of creativity and proactivity. Those principles consist of
1) being anticipatory, based on a particular state, 2) self-initiated,
producing proactive suggestions without them being explicitly
demanded by the user, and 3) future-driven, trying to converge
toward the needs of the goal. A rule-based system is developed for
the robot to instantiate verbal suggestions depending on the user’s
task. Rules are selected based on the task’s needs and the
understanding of intention recognition. With the help of the
rules, reasoning occurs to instantiate the parameters of the
proactive suggestions. The robot’s knowledge and this
reasoning result are proactive robot communication (see
Figure 1). The decision flow of instantiating the proactive
robot communication (aka proactive suggestion) is shown in
Figure 2.

The set of rules varies according to the need of the task. The
tone of the proactive behavior slightly differs depending upon

whether there is a target dish assigned by the system (Phase 1) or
not (Phase 2). The decision-making processes to instantiate the
proactive interaction, for Phase 1 and Phase 2, are shown in
Figures 2A,B, respectively. In both cases, instantiating the
proactive robot communication starts with intention
recognition of the user actions. Intention recognition is the
recognition of the user’s target dish by interpreting the robot’s
knowledge of the dishes and the ingredients that the user has
selected so far. The recognition process is a simple rule-based
mechanism that checks how close the user is to achieving one
goal. The user’s intention is based on the least number of
ingredients left from the set of known dishes. The intention is
either the list of dishes or a single dish, depending on the situation
of the selected ingredients so far. The user is also free to move
away from the set of dishes that the robot knows and create their
own dish by selecting a new list of ingredients. The user is
assumed to be reliable and collecting ingredients to complete a
dish. The user willingly performing a faulty behavior to deviate
the intention recognition is not handled in this recognition
mechanism. In the beginning, the intention of the user is all
the dishes that the robot knows. Then, the recognition
mechanism updates the user’s intention for every change in
the state (adding or removing an ingredient). Respectively, the
system initiates the new proactive suggestion.

Different sets of rules are used to instantiate the sentences’
templates, depending on whether the goal is assigned (phase 1) or
not (phase 2). In phase 1 (see Figure 2A), it is crucial to
accomplish the assigned dish by selecting the exact ingredients
of the target dish. That is why intention recognition responds to
each change in the state by updating the list of intentions.
Updating the intentions triggers the process of instantiating
the sentences’ templates. The next step of “Goal in Intent” (as
shown in Figure 2A) is to check if the targeted dish (which is the
goal as shown in Figure 2A) is part of the intention list or not.
This reasoning gives the impression that the user is on the right
track. Then, the length of the intention list is checked to elaborate
more on whether the user follows one specific dish or there are
still multiple possibilities. For the cases in which the goal is in the
intention list, the robot gives feedback type of suggestions that
give the information about the status of the action. The action
represents the selected ingredient and is denoted by < a > . The
action status could be True or False depending on whether the
played action complies with the goal’s recipe. For example, say
Fois Gras Toast is assigned as a target dish, and the user has
already collected foie-gras and truffle. The recognized intention is
Fois Gras Toast. Now the user collects butter: this action is False
because collecting butter does not comply with Fois Gras Toast’s
recipe since the recipe does not include butter. Therefore, the
instantiated interaction will look like “You lost a bit. You should
remove butter.” Here, it is interesting to note that such feedback
was not requested by the user. Therefore, from the user’s
perspective, it is a proactive action, as the robot is acting by
itself by anticipating the future situation.

In phase 2 (see Figure 2B), it is crucial to keep up with the user
to assist the user in accomplishing the user’s goal. The difference
from phase 1 is that the robot is unaware of the goal: the user
chooses it. The robot uses intent recognition to predict the goal of
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the user. The rules of the proactive suggestion focus more on the
user’s consistency than on assisting. That is why the current
intention list (which is the intent as shown in Figure 2B) and the
previous intention list (which is the preint as shown in Figure 2B)
are used for reasoning. After updating the intention list, it is
checked whether or not the user’s intention is a specific dish. This
means the length of the intention list is equal to one; therefore, a
single intent is recognized. This case is treated similarly to a
supposed target goal. That is why the status of the action is
checked, as explained for the similar situation of Phase 1. If there
is no specific intent, the system tries to lead the user by
suggestions. The reasoning about suggestions starts with
checking if there is any intent in the intention list or not. If
the length of the intention list is equal to zero, the system tries to
lead the user by suggesting the most frequent ingredient. If there
is an intention whichmeans the length of the intention list is non-
zero, the length of previous intent is checked to be equal to one to
determine if the user had a goal. In that case, the suggestion
instantiates for explaining its reasoning and objectives of the
previous goal. For example, in this situation, the robot said, “I
thought you were selecting ingredients for Fois Gras Toast so you
should select truffle.”Otherwise, the suggestion relates to the most
popular element in the list.

3.3 Implementation Details
The Pepper humanoid robot [description can be found in the
work of Pandey and Gelin (2018)] interacted with the participants
during the experiment. The robot followed the actions of the
participants from a web-based interface and instantiated
interactions from the Android application of the robot. The
task was presented on the laptop with a web-based interface.
The participant can only take actions and decisions with the
laptop. The graphical user interface (GUI) that the participants
faced is shown in Figure 3. The connection between the robot
application and the web application is made using a Firebase
database (Moroney and Moroney, 2017).

The interaction flow is shown in Figure 1. The diagram shows
the combination of web-based task flow, the robot interruptions,
and the participant’s actions. The task and behavior system are
separated from each other to divert the participants’ focus from
the robot to the task.

4 EVALUATION

The in-person experiment was designed and conducted at the
SoftBank Robotics Europe facility.

FIGURE 2 |Diagram of proactive robot communicative is showing how proactive suggestions are initiated. It is starting with recognizing the user’s intention. The list
of the user’s intent passes to the reasoning mechanism which is based on layers of rules. Red boxes show the robot response. In boxes, the template is given to create a
sentence. Between curly brackets of ${. . .} filled with symbolic representation of action (${action}), object–ingredient (${ing}) or dish (${dish})–or the result of system
(${status}). Each box concatenates to each other on the road to create proactive behavior of the robot.
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4.1 Participants
A total of 30 participants (11 female and 19 male, average age
32.23, standard deviation 6.76) participated in this
experiment. All of them were employees of SoftBank
Robotics Europe, Paris. They had some experience with
the Pepper robot. However, they had different
backgrounds: technical (hardware and software) and non-
technical (marketing, communication, and welcome desk).
The participants were also fluent in the language of the
experiment: English. All participants gave their consent
and signed a form giving permission to use and share their
anonymous data for scientific purposes.

4.2 Hypotheses
We aim to study how the robot’s creativity (which is instantiated
through the proactive interaction) affects 1) the perceived
creativity of the robot and 2) the creative process of the
human during an HRI task scenario. Recall that creativity is
seen as bringing novelty, and proactivity is anticipatory behavior
aiming to help in the task. Therefore, we developed the following
hypotheses to study their relation and effects on the user’s
perception.

H1: Proactivity and perceived creativity of the robot; the
proactivity of the robot behavior will affect the perceived

FIGURE 3 |GUI of cooking recipe task; diagram combines the pages of the web-based task application. After the robot connected—additional pages omitted, (A)
is welcoming the user and explaining about the aim of the task. (B) is only visible for 1 min, and it presents the examples of recipes. (C) is changed according to phases of
the task, (C1) is phase 1, where a dish is assigned, and (C2) is phase 2, where the participant has freedom of choice. (D) is the page where phases of the task occur,
where the robot proactive behavior is activated. It is identical for all phases. (E) is the result pages after each selection process. (E1) has a specialized view for phase
1 which provides more information. (E2) is the result page for phase 2 which only shows the recent information of selection. (F) is the page that comes after phase 2 and
lets the participants continue to create more dishes or finalize the task.
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creativity. Proactivity in the robot behavior and its perceived
creativity are related.

H2: Proactivity and the user’s creativity; there exists a link
between the robot’s proactivity and the resulting creativity
in the user (measured by the novelty of the products that the
user creates in the HRI task). That is, proactivity of the robot
and the facilitated creativity in the user are potentially
related.

H3: Proactivity and goal achievement; there is a relationship
between the robot’s proactivity and the success of the HRI
task. That is, the proactive behavior of the robot can help to
achieve the goal of the task.

H4: Proactivity level and user perception; different levels of
proactivity of the robot will have different user
experiences on the perceived attributes, including
perceived and facilitated creativity.

4.3 Study Design
A between-subjects study was conducted with one independent
variable, the proactive behavior of the robot, which has three
conditions: high, medium, and no proactive. The different
conditions of proactive behavior aim to change the frequency
of exhibiting proactive interactions. Under full proactive
conditions, it is expected that the robot will provide feedback
after each action of the user. On the other hand, under no
proactive condition, the robot is not providing any feedback.
An intermediate condition (medium proactivity) is detailed
below, along with details of the other conditions. The robot
also talks at the start and between each phase of the task.
Participants were randomly assigned to different conditions.

4.4 Conditions
The robot followed the general flow of the interaction with the
participant, as shown in Figure 1. The main aim of the added
interactive behavior is to balance the frequency of the robot’s talk
between different conditions. In a between-subject study, the
participants only interacted with one of the conditions. Three
different conditions of the robot’s interactive behaviors are
instantiated for this experiment. These conditions are as follows:

Condition 1: no proactive behavior. The robot does not
provide any explicit or implicit directions to the user in
terms of the status of the action. After each step of the
ingredient selection process, the robot simply utters, “oh1.”
We choose “oh” because it is a “knowledge state marker,” that
is, when “oh” is uttered by the robot, it informs the user that
the action they have undertaken is understood by the robot but
does not give (either positive or negative) feedback on this
action. Thus, as a knowledge state marker [as described in
Heritage (1984)], “oh” is used as a neutral token to
acknowledge to the user that their action has occurred.
Condition 2: medium proactive behavior. Under this
condition of the experiment, the robot provides

communicative proactive action at every third action of the
participants and utters “oh” in other steps. The frequency of
interventions is decided based on the approximate number of
actions played in each phase. If everything goes well, the
participants need to play six actions to accomplish the goal.
It is decided that the robot acts at least every third action to (at
minimum) have support at half of each phase. The proactive
actions are instantiated through a response trigger mechanism
described in Section 3.2.
Condition 3: high-level (full) proactive behavior. Under this
condition, the robot instantiates and provides communicative
proactive action after each action of the participants.

Thus, the kind of information the robot provides under
medium and high proactive conditions is related to the
ingredients selected by the user for a dish. At the end of each
phase of the task, which is supposed to result in a recipe, the robot
provides a summary of the selections. The response of the robot is
instantiated by a matching mechanism using the database of
known recipes, their ingredients, and the selection of ingredients
by the user. If the participant created a new recipe (mainly by
selecting a novel set of ingredients) that the robot could not find a
matching recipe for, the robot asked the name of the potentially
“new” recipe of selected ingredients to use this information for
interaction purpose.

4.5 Setup
The experiment was conducted in the various meeting rooms of
SoftBank Robotics Europe. The experimental setup is shown in
Figure 4. The participant sat in front of a laptop to get engaged in
the task. A Pepper robot was placed relatively to the left or right of
the user. Participants manipulate the task environment on the
screen of the laptop through a mouse or track pad. A self-report
questionnaire is attached to the task and automatically pops up
once the task is over. As a part of COVID 19 guidelines, all
equipment was sanitized before and after each session.
Participants were left alone in the room with the robot during
the study.

4.6 Procedure
Procedures for all conditions are identical except the robot’s
interruption frequency during the execution of the phases of the
task. After signing the informed consent form, participants are
informed about the experiment. Participants were given the
choice of suggesting as many recipes as they wished for the
upcoming hypothetical company event. The way to suggest is by
using the online platform. They were informed that the online
tool would guide them on how to proceed. Sample recipes were
given to remind them how ingredients may be used. They could
list as many recipes as they wanted while the Pepper robot
accompanies them. They were reminded to be aware of the
existence of the Pepper robot. Then, the experimenter left the
room. Each participant interacted with one condition of the
proactive robot behavior (condition 1: no proactive, condition
2: medium proactive, and condition 3: high proactive), which was
assigned randomly and maintained during both the phases of the
task. As a result, each participant can generally work on two kinds

1In the implementation using a Pepper robot, the exact token used was “oo,” as
“oh” sounded unnatural given Pepper’s text-to-speech component.
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of dishes: one that is assigned to them and one that they created.
Participants were also allowed to proceed without selecting any
ingredient by submitting the result without collecting any
ingredients at the execution of the phases in page (in
Figure 3D). The proactive robot behavior is initiated
depending on the robot’s knowledge. In this experiment, the
task space and the participant’s action in the task space were used
to enrich the knowledge of the robot. The robot stayed ignorant of
the other possible actions from the participant or the shared
environment. After each participant had completed the task, the
self-report questionnaire was submitted. The self-report
questionnaire is attached to the task interface. It automatically
pops up when the task has been completed. After the participants
completed the task and the self-report questionnaire, the
experimenter came back to the room for a small interview.

4.7 Measurement
Different evaluation metrics are used to investigate different
aspects of proactivity and creativity. Our measures are divided
into three sections to assess the following:

Creativity of the user; to define and evaluate the participants’
creativity, metrics were inspired by divergent thinking. Thus, the
creative thinking of the user often links with divergent thinking
tests. Traditional methods of scoring divergent thinking
(i.e., fluency, originality, and flexibility) are the most used
methods for assessing the potential of creativity (Runco, 1992).
In this study, we created an assessment influenced by the
Torrance Test of Creative Thinking (Torrance, 1974) by
focusing on fluency in the task—How many dishes were
achieved?—and originality—How many new dishes were
created?. These two scores are used to measure the creative
thinking of the user. The total number of dishes is summed at
the end of each task. It included phases 1 and 2 and repetitions of
phase 2. The number of new dishes is the count of all dishes
created in phase 2 and repetitions of phase 2. Dishes in the list of
ingredients that have the same recipe as dishes in the recipe list
are extracted.

Creativity of the robot; to assess some creative aspects of the
robot’s behavior, a different self-report questionnaire was used to
assess the participants’ perception of the robot. The questionnaire

is a combination of different sections to assess demographic
information, participants’ personality and creativity using a
Likert Scale, acceptance of social robots from the ALMERE
questionnaire (Heerink et al., 2010), comprehensive
impression of user experience from the User Experience
Questionnaire (UEQ) (Schrepp and Thomaschewski, 2019),
and some specific questions directly related to engagement,
proactivity, task, and overall interaction. In this study, we did
not include all the scales from the questionnaire, such as
ALMERE and UEQ. Instead, we included the scales that could
be applicable to the defined situation such as perceived adaptivity,
perceived enjoyment, attitude, perceived usefulness, trust, and
dependability. The scales assess the participants’ perception about
the robot’s creativity on generating proactive actions that are
task-oriented.

Effect of proactivity; to assess the effects of different conditions
of proactive behavior on the task, we check the success rate of
phase 1. In phase 1, a random dish is assigned to the participants,
and it is expected of the participants to select the exact ingredients
which were shown to them earlier. We also analyzed the time that
they spent during the selection process in phase 1. The spent time
is calculated by the time that passed since the user started to select
ingredients until they submitted their selection by clicking the
submit button.

5 RESULTS AND DISCUSSIONS

This section presented an evaluation for our four hypotheses
(outlined in Section 4.2). We take the user study from 30
participants, 10 for each condition (no, medium, and high
proactive behavior of the robot). We conducted a one-way
analysis of variance (ANOVA) in each of our hypotheses to
see if they are different for the three conditions: no (n � 10),
medium (n � 10), and high (n � 10) proactive behavior with a post
hoc t-test to compare differences in paired conditions. To test our
hypotheses, recall that we use a combination of qualitative and
quantitative measures (as is further illustrated in the following
sections). For the qualitative data, we analyze the results of the
questionnaire as the post test given to the participants. For

FIGURE 4 | Set up of the experiment. Participant sits in front of a laptop and the robot is placed next to the user. They share the space as the robot is looking at the
screen over the participants.
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quantitative data, we use the meta data generated from the results
of the task (such as the number of times a dish was created). The
data are presented as the mean and the standard deviation.

Before conducting the ANOVA test, we check that the
following assumptions are not violated: 1) no significant
outliers, 2) test for normality (by Shapiro–Wilk’s test), and 3)
homogeneity of variances2 (by Levene’s test). We do not check for
the independence of observations, as each participant belongs
only to one condition/group. For the test to detect outliers, we
check outliers for our quantitative data collected, but we keep the
data since we manage to figure out the reason for the outlier. That
is discussed in the following section. However, the qualitative data
outliers are subjective reports and are essential for our analyses
(e.g., how was the perceived adaptivity of the robot?). However,
we do report this range of differences in the user’s opinion. The
results are shown according to each hypothesis in the following
sections. The significance of p is denoted by stars *, from high
impact (***p < 0.001) to low impact (*p < 0.05), and
nonsignificance is denoted by (ns p > 0.05). Qualitative
observations are discussed in the following section, along with
various attributes and pointers for further investigation.

5.1 Proactivity and Creativity
The Novelty scales of UEQ (User Experience Questionnaire)
measures how much the design of the robot’s behavior is
perceived as creative. The user is asked to rate from dull to
creative, with the statement “In my opinion, the idea behind the
robot’s behavior and design is –” on a 7-point scale (-3: dull to 3:
creative). We conduct a one-way ANOVA test to see if the
perceived creativity of the robot was different in our 3 group
conditions. We run tests before conducting the one-way ANOVA
test on the dependent variable (creativity) to check that the

assumptions are met. We only have one outlier which is not
extreme; one user in the medium condition rated the perceived
creativity of the robot as dull ( − 1) compared to theMEAN � 1.2
of the group. The variable was normally distributed (p > 0.05) for
each group, as assessed by Shapiro–Wilk’s test of normality. We
can assume the homogeneity of variances in the different
proactive conditions (p > 0.05 by Levene’s test).

The results of the one-way ANOVA test on perceived
creativity of the robot and our 3 conditions are given as (ns),
F(2, 27) � 2.28, p � 0.12, ges � 0.14, as presented in Figure 5
(where F is the result of the test, and ges is the generalized effect
size). Given the value of p, we cannot conclude on the difference
between the group conditions and the perceived creativity of the
robot. As shown in the figure, the mean and standard deviation
(SD) of the conditions are the following: high proactive condition
with MEAN � 1.3, SD � 0.90, medium proactive condition with
MEAN � 1.2, SD � 1.08, and no proactive condition withMEAN
� 0.3, SD � 1.27. What is interesting to see is that the means of all
three conditions of the robot’s proactive behavior are perceived as
creative (with values above 0 in the UEQ). The two levels of
proactivity (medium–high) are perceived as more creative
(MEAN � 1.2 and MEAN � 1.3, respectively) than the no
proactive condition (MEAN � 0.3). In the case of the
no proactive condition, the mean is close to zero with
MEAN � 0.3, SD � 1.27, suggesting that participants may not
have been able to assign a clear verdict about creativity in the
robot’s behavior. This shows that there is some perceivable
difference to the user between the no proactive conditions and
the proactive conditions, though not statistically significant
according to the method used. Looking deeper into the
generalized effect size, we see that ges � 0.14 (14%). This
means that 14% of the change in the perceived creativity of
the robot could be affected by the proactive conditions.

Thus, even without a statistically significant difference
(according to this method), as part of an exploratory analysis,
we looked at the means of each condition and effect size and

FIGURE 5 | Analysis result of novelty from UEQ; the graph is scaled on positive as creative and negative as dull. It shows that in each version of proactive behavior,
the robot rated as creative; however, there is a visible difference on the mean from full to no proactive behavior.

2Based on the practices as outlined in this resource https://www.datanovia.com/en/
lessons/anova-in-r/#check-assumptions.
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found that there still could be links with the proactivity of the
robot and the perceived creativity of the robot. It is plausible that
the users hesitated to rate the robot’s creativity as dull so as to not
seem harsh, given the positively skewed labels. During the post-
experiment interviews, the participants indicated that the simple
acknowledgment from the robot (the knowledge state marker
“oh”) was seen as better than no acknowledgment at all. For
future work, it may be better to consider no verbal feedback
whatsoever from the robot to test no proactivity.

Additionally, we did not find a statistically significant
difference between the two levels of proactivity according to
this method (medium with MEAN � 1.2, SD � 1.08 and full
with MEAN � 1.3, SD � 0.90). Therefore, it is too early to
establish any relationship between the frequency of proactive
behavior and the scale of perceived creativity in the behavior.
Therefore, H1 is not completely supported, in the sense that
both parts are not validated (H1: proactivity and perceived
creativity of the robot; the proactivity of the robot behavior will
affect the perceived creativity. Proactivity in the robot
behavior and its perceived creativity are related). The
exploratory results suggest that the proactive condition is
affecting the perceived creativity of the robot. But we could
find statically significant links between the perceived creativity
of the robot and the proactive condition robots to establish any
relation. That is why there is a need for further investigation in
this direction.

5.2 Observed Creativity in the User
To further explore the factors associated with the user’s creativity,
we conducted various analyses on the quantitative data from the
study, such as the following: how many recipes were completed
successfully? How many new recipes were created?

The design of the experiment was to encourage participants to
complete at least one dish in phase 1 and then to complete or
create at least one dish in phase 2. After that, participants were
free to continue further iterations of phase 2 and complete or
create more dishes. Participants can also skip a phase without
completing or creating a dish.

We conduct a one-way ANOVA test to see if the total number
of dishes that the user completed was different in our 3 group
conditions. We run tests before conducting the one-way ANOVA
test on the dependent variable (total number of completed dishes)
to check that the assumptions are met. We have three outliers
which are extreme; three users under the full condition completed
(2,5,2) dishes compared to the MEAN � 3.0 of the group. The
variable was normally distributed (p > 0.05) for medium and no
proactive group conditions but was not normally distributed (p <
0.05) for the full proactive group condition, as assessed by
Shapiro–Wilk’s test of normality. We can assume the
homogeneity of variances in the different proactive conditions
(p > 0.05 by Levene’s test). The results of the one-way ANOVA
test to see if the total number of dishes that the user completed
was different in our 3 group conditions are given as (ns), F(2, 27)
� 0.10, p � 0.9, ges � 0.007 as presented in Figure 6. Given the
value of p, we cannot conclude on the difference between the
group conditions and the total number of dishes that the user
completed. As shown in the figure, an almost straight trend line is

observed between the conditions of the mean and standard
deviation (SD) as follows: high proactive condition with
MEAN � 3.0, SD � 0.81, medium proactive condition with
MEAN � 3.1, SD � 1.28, and no proactive condition with
MEAN � 3.2, SD � 0.78.

However, we found interesting observations when we
conducted a one-way ANOVA test to see if the number of
new dishes created was different in our 3 group conditions.
We run tests before conducting the one-way ANOVA test on
the dependent variable (number of created new dishes) to check
that the assumptions are met. We have two outliers which are
extreme; two users under the full condition created (1,2) new
dishes compared to the MEAN � 0.3 of the group. The variable
was normally distributed (p > 0.05) for medium and no proactive
group conditions but was not normally distributed (p < 0.05) for
the full proactive group condition, as assessed by Shapiro–Wilk’s
test of normality. We can assume the homogeneity of variances in
the different proactive conditions (p > 0.05 by Levene’s test). The
results of the one-way ANOVA test to see if the number of new
dishes created was different in our 3 group conditions are given as
(***), F(2, 27) � 10.62, p < 0.0003, ges � 0.44 as shown in Figure 7.
This graph is related to phase 2 of the experiment, where the
participants were free to converge toward a dish from the list or
proceed toward creating a new dish. Given the value of p, creating
new dishes had a statistically significant difference between the
proactive behavior conditions. We followed up with post hoc tests
(t-test) to multiple pairwise comparisons between groups. It can
be seen from Figure 7 that there is a statistically significant
difference between the no proactive condition and the full
proactive condition with p � 0.000019(***) and between the
no proactive and the medium proactive condition with p �
0.0045(**). There is no statistically significant difference
(according to this method) between no and medium proactive
conditions with p � 0.7(ns). Thus, it is observed that the number
of new dishes which is created per person is significantly lower in
full proactive conditions than in no and medium proactive
conditions. Even in the no proactive condition with MEAN �
2.2, SD � 0.78 and the medium proactive condition withMEAN
� 2, SD � 1.41, it shows that the number of new dishes which is
created per person is lower in the medium proactive condition
than in the no proactive condition. Hence, the analysis results
support our hypothesis H2 (H2: proactivity and the user’s
creativity). Once the robot is very proactive and heavily
interrupting the user toward achieving a goal, participants can
complete the task (as shown in Figure 6) but are not flexible and
free enough to create new recipes, as shown in Figure 7, hence
being less creative.

Another interesting observation is that the medium
proactivity condition has the maximum number of created
new dishes per person (at most 5), whereas for no proactivity,
most of the participants stopped after creating a maximum of 3
new dishes. In medium proactivity conditions, the highest
number of new dishes created per person is observed. This is
fascinating and suggests a need for a balance. It hints that
balanced proactivity could encourage prolonged creativity. It
needs further studies to define the boundaries of the balanced
proactivity.
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In summary, there is no strong observation about different
frequencies of proactive behavior on constructing a recipe. From
Figure 6, it is shown from the bump in full and no proactive
conditions that the majority of the people tend to create three
dishes. So, the proactivity has not affected their motivation of
creating recipes. However, it is also observed that when there is a
space between interruptions, it kind of encourages the users to
play more. On the other hand, when the robot proactively creates
suggestions for the users, the users’ creativity decreases. The users
tend to follow the robot suggestions and reduce their creativity
process. As shown in the no proactivity case, since there is no help
from the robot, users tend to be creative on constructing a recipe.
However, in medium and, even heavily, in full proactive cases,
when the robot is starting to help, the user’s flexibility for being

creative seems to be reducing, as the users mostly go with the flow
that the robot suggested. However, further study is needed to
explain the reason for the changes in the user’s behavior.

5.3 Goal Achievement and Proactivity
To explore the benefits of proactive behavior on task
accomplishment, we focus on phase 1 of the task and
conducted the analysis of the comparison between each
condition. How many times have recipes been done
successfully? (see Figure 8) and how much time does the user
spend while reaching the successful result? (see Figure 9) are used
for analysis.

Figure 8 shows the successful completion of phase 1 of the
experiment by the participants. As we can recall, in phase 1, the

FIGURE 6 |Comparison results of total number of completed or created recipes to the effects of different versions of robot behavior to be creative on completing or
creating recipes by increasing number of recipes that is created in total is not shown as significantly changed.

FIGURE 7 | Comparison results of creating new recipe to the effects of different versions of robot behavior to be creative on creating new recipes. It clearly shows
that the balanced proactivity (version of medium proactive robot) is supporting a greater number of new recipes to be created by the users.
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goal is assigned, and the target goal is known to the robot and the
user. Hence, there is a joint goal to achieve. As we can see, all the
participants exposed to the full proactive robot have successfully
completed phase 1, whereas all the participants of the no
proactive robot condition have failed. Furthermore, the failure
rate was less in the medium proactivity condition, which shows
30% of success and 70% of failure. Pearson’s chi square test of
independence is applied to statistically analyze the correlation
between different proactive behavior conditions and successfully
completing phase 1. The result shows that there is

significant relation between different conditions and success,
X2(2, N � 30) � 21.44, p < 0.000022(***). This supports our
hypothesis H3 (H3: proactivity and goal achievement; there is a
relationship between the robot’s proactivity and the success of the
HRI task. That is, the proactive behavior of the robot can help to
achieve the goal of the task).

Furthermore, we conduct a one-way ANOVA test to see if the
time spent between participants who achieved phase 1
successfully was different in group conditions. We run tests
before conducting the one-way ANOVA test on the dependent

FIGURE 8 |Distribution of successfully achieving to assigned dish; graph groups the counts of number of participants who achieved the assigned goal successfully
during phase 1 to the experiment. It shows the absolute dominance of success in full proactive behavior and failure in no proactive behavior of the robot. In the medium
proactive behavior of the robot, variations were observed to have success or failure.

FIGURE 9 | Detailed analysis of time spent on the correct result of different levels of proactive behavior; the graph aims to show the difference between how much
time the users spend while reaching the correct results in phase 1.
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variable (time spent) to check that the assumptions are met. We
only have one extreme outlier; one user in the full proactive
condition spent 152 s to reach success compared to the
MEAN � 84.38 of the group. The variable was normally
distributed (p > 0.05) for each (full and medium) condition.
We can assume the homogeneity of the variances in different
proactive conditions (p > 0.05 by Levene’s test). The results of the
one-way ANOVA test on time spent between participants who
achieved phase 1 successfully and our proactive conditions are
given as (*), F(1, 11) � 4.84, p � 0.05, ges � 0.3 as shown in
Figure 9. Given the value of p, we can observe a significant
difference in time spent between participants who achieved phase
1 successfully. It should be noted that phase 1 does not include the
creation of new recipes. Therefore, these two findings combined
also indicate that participants are more successful and spend less
time in reaching the goal, with robots having a higher frequency
of proactive behaviors.

5.4 Proactivity Level and Effects on
Perceived Attributes
Figure 10 shows the overall impression of the participants about
the robot’s behavior in different versions. Although we did not
find statistically significant differences (according to this method)
to reach any conclusion or establish any solid relation for each
scale, we are pointing out some of the findings for further
investigation. The summary of the analysis for each scale is as
follows:

Perceived adaptivity is one of the scales of the ALMERE
questionnaire that measures users’ perception of providing

appropriate support by the robot. The user is asked to rate
from 1: Do not Agree to 5: Totally Agree, with the statement
“I think the robot will help me when I consider it to be necessary”
on a 5-point Likert scale. We conduct a one-way ANOVA test to
see if the perceived adaptivity of the robot was different in our 3
group conditions. We run tests before conducting the one-way
ANOVA test on the dependent variable (perceived adaptivity) to
check that the assumptions are met. We only have one extreme
outlier; one user in the medium condition rated the perceived
adaptivity of the robot as less not agreed (2) compared to the
MEAN � 3.2 of the group. The variable was normally distributed
(p > 0.05) for medium and no proactive conditions but was not
normally distributed (p < 0.05) for the full proactive condition, as
assessed by Shapiro–Wilk’s test of normality. We cannot assume
the homogeneity of variances in the different proactive conditions
(p < 0.05 by Levene’s test). The results of the one-way ANOVA
test on perceived adaptivity of the robot and our 3 conditions are
given as (ns), F(2, 27) � 1.43, p � 0.25, ges � 0.09. Given the value
of p, we cannot conclude on the difference between the group
conditions and the perceived adaptivity of the robot. As shown in
the figure, the mean and standard deviation (SD) of the
conditions are the following: high proactive condition with
MEAN � 3.8, SD � 0.63, medium proactive condition
with MEAN � 3.2, SD � 0.78, and no proactive condition
with MEAN � 3.4, SD � 0.96. In that sense, it is observed that
participants found the full proactive condition of the robot the
most adaptable. However, it is interesting to see the robot which
did not give any suggestions be seen as more adaptable than the
robot which is giving sparse suggestions (in the medium proactive
condition). It might be because of various factors ranging from

FIGURE 10 | Analysis of questionnaire; the graph visualizes the united results of the questionnaire with ANOVA and post hoc t-test analysis. The scale is a 5-point
Likert scale (ALMERE), except for Dependability, which was part of another subset of the questionnaire using a 7-point Likert scale (UEQ).
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frustration of not getting enough suggestions (in case of the
medium proactive condition) to the robot acknowledging
behaviors being seen as completely supporting to the user
action (in the no proactive condition). Therefore, this is
another interesting direction for further investigations.

Perceived enjoyment is one of the scales of the ALMERE
questionnaire that measures the level of enjoyment of the user
while interacting with the robot. The user is asked to rate from 1:
Do not Agree to 5: Totally Agree, with the statement “I enjoyed
the robot talking to me” on a 5-point Likert scale. We conduct a
one-way ANOVA test to see if the perceived enjoyment of the
robot was different in our 3 group conditions. We run tests before
conducting the one-way ANOVA test on the dependent variable
(perceived enjoyment) to check that the assumptions are met. We
have eight extreme outliers; four users in the full proactive
condition, two of whom rated the perceived enjoyment of the
robot as totally agree (5) and the other two rated as less not agree
(2) compared to theMEAN � 4.00 of the group, and four users in
the no proactive condition, two of whom rated the perceived
enjoyment of the robot as totally agree (5), one of whom rated
slightly agree (3), and the other rated less not agree (2) compared
to the MEAN � of the group. The variable was normally
distributed (p > 0.05) for full and no proactive conditions but
was not normally distributed (p < 0.05) for the medium proactive
condition, as assessed by Shapiro–Wilk’s test of normality. We
can assume the homogeneity of variances in the different
proactive conditions (p > 0.05 by Levene’s test). The results of
the one-way ANOVA test on perceived enjoyment of the robot
and our 3 conditions are given as (ns), F(2, 27) � 1.23, p � 0.30, ges
� 0.08. Given the value of p, we cannot conclude on the difference
between the group conditions and the perceived enjoyment of the
robot. As shown in the figure, the mean and standard deviation
(SD) of the conditions are the following: high proactive condition
withMEAN � 4.00, SD � 0.66, medium proactive condition with
MEAN � 4.4, SD � 0.69, and no proactive condition withMEAN
� 3.9, SD � 0.87. The results show that participants found the
medium proactive behavior condition of the robot to be a more
enjoyable companion. This might be because such behavior
might not constrain the flow of the task very much with
overload of suggestions or not seem engaged enough because
of no suggestion.

Attitude is one of the scales of the ALMERE questionnaire that
measures the user’s attitude toward the particular technology
behind the version of robot behavior they have been exposed to.
The user is asked to rate from 1: Do not Agree to 5: Totally Agree,
with the statement “The robot would make my life more
interesting” on a 5-point Likert scale. We conduct a one-way
ANOVA test to see if the attitude toward the robot was different
in our 3 group conditions. We run tests before conducting the
one-way ANOVA test on the dependent variable (attitude) to
check that the assumptions are met. We only have three extreme
outliers; three users in the medium condition, one of whom rated
the attitude toward the robot as less not agree (2), one of whom
rated as slightly agree (3), and the other rated as totally agree (5)
compared to the MEAN � 3.8 of the group. The variable was
normally distributed (p > 0.05) for full and no proactive
conditions but was not normally distributed (p < 0.05) for the

medium proactive condition, as assessed by Shapiro–Wilk’s test
of normality. We can assume the homogeneity of variances in the
different proactive conditions (p > 0.05 by Levene’s test). The
results of the one-way ANOVA test on attitude toward the robot
and our 3 conditions are given as (ns), F(2, 27) � 1.82, p � 0.18, ges
� 0.11. Given the value of p, we cannot conclude on the difference
between the group conditions and the attitude toward the robot.
As shown in the figure, the mean and standard deviation (SD) of
the conditions are the following: high proactive condition with
MEAN � 3.7, SD � 0.67, medium proactive condition
with MEAN � 3.8, SD � 0.78, and no proactive condition
with MEAN � 3.2, SD � 0.78. The responses show that the
medium proactive robot behavior is the most appreciated
behavior.

Perceived usefulness is one of the scales of the ALMERE
questionnaire that is another key aspect about the relevance of
a particular behavior of the robot. The user is asked to rate from 1:
Do not Agree to 5: Totally Agree, with the statement “I think the
robot can help me with many things” on a 5-point Likert scale. We
conduct a one-way ANOVA test to see if the perceived usefulness
of the robot was different in our 3 group conditions. We run tests
before conducting the one-way ANOVA test on the dependent
variable (perceived usefulness) to check that the assumptions are
met. We only have one outlier which is not extreme; one user in
the full condition rated the perceived usefulness of the robot as
totally agree (5) compared to the MEAN � 3.2 of the group. The
variable was normally distributed (p > 0.05) for each condition, as
assessed by Shapiro–Wilk’s test of normality. We can assume the
homogeneity of variances in the different proactive conditions
(p > 0.05 by Levene’s test). The results of the one-way ANOVA
test on perceived usefulness of the robot and our 3 conditions are
given as (ns), F(2, 27) � 0.73, p � 0.48, ges � 0.05. Given the value
of p, we cannot conclude on the difference between the group
conditions and the perceived usefulness of the robot. As shown in
the figure, the mean and standard deviation (SD) of the
conditions are the following: high proactive condition with
MEAN � 3.2, SD � 0.91, medium proactive condition
with MEAN � 3.6, SD � 0.84, and no proactive condition
with MEAN � 3.2, SD � 0.78. Again, the responses show that
the medium proactive robot behavior is preferred by the users.

Trust is one of the scales of the ALMERE questionnaire that
measures the user intentions to comply with the robot’s advice.
The user is asked to rate from 1: Do not Agree to 5: Totally Agree,
with the statement “I would follow the advice the robot gives me”
on a 5-point Likert scale. We conduct a one-way ANOVA test to
see if the trust toward the robot was different in our 3 group
conditions. We run tests before conducting the one-way ANOVA
test on the dependent variable (trust) to check that the
assumptions are met. We do not have an outlier. The variable
was normally distributed (p > 0.05) for medium and no proactive
conditions but was not normally distributed (p < 0.05) for the full
proactive condition, as assessed by Shapiro–Wilk’s test of
normality. We can assume the homogeneity of variances in
the different proactive conditions (p > 0.05 by Levene’s test).
The results of the one-way ANOVA test on trust toward the robot
and our 3 conditions are given as (ns), F(2, 27) � 1.92, p � 0.16, ges
� 0.12. Given the value of p, we cannot conclude on the difference
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between the group conditions and the trust toward the robot. As
shown in the figure, the mean and standard deviation (SD) of the
conditions are the following: high proactive condition
with MEAN � 4.3, SD � 0.82, medium proactive
condition with MEAN � 3.6, SD � 1.07, and no proactive
condition with MEAN � 3.6, SD � 0.84. The results show that
even the full proactive condition lead the user to rely more on the
robot with the full proactive condition.

Dependability is one of the scales of UEQ (User Experience
Questionnaire) that measures how much the reactions to the
robot’s behavior are predictable. The user is asked to rate from
dull to dependable, with the statement “Inmy opinion, the reactions
of the robot’s behavior to my input and command is –” on a 7-point
scale (-3:Unpredictable to 3:Predictable ). We conduct a one-way
ANOVA test to see if the dependability of the robot was different in
our 3 group conditions. We run tests before conducting the one-
way ANOVA test on the dependent variable (dependability) to
check that the assumptions are met. We have three outliers which
are not extreme; two users in themedium proactive condition rated
the dependability of the robot one as ( − 2) and one as dependable
(3) compared to theMEAN � 0.80 of the group and one user in the
no proactive condition rated the dependability of the robot as ( − 1)
compared to the MEAN � 1.20 of the group. The variable was
normally distributed (p > 0.05) for medium and no proactive
conditions but was not normally distributed (p < 0.05) for the full
proactive condition, as assessed by Shapiro–Wilk’s test of
normality. We can assume the homogeneity of variances in the
different proactive conditions (p > 0.05 by Levene’s test). The
results of the one-way ANOVA test on dependability of the robot
and our 3 conditions are given as (ns), F(2, 27) � 2.3, p � 0.11, ges �
0.14, (where F is the result of the test, and ges is the generalized
effect size). Given the value of p, we cannot conclude on the
difference between the group conditions and the trust toward the
robot. As shown in the figure, the mean and standard deviation
(SD) of the conditions are the following: high proactive condition
with MEAN � 2.0, SD � 1.33, medium proactive condition with
MEAN � 0.8, SD � 1.31, and no proactive condition withMEAN �
1.2, SD � 1.13. The initial findings suggest that the participants
listened more to the robot, which generated more advice than the
full proactive condition of the robot.

It will be interesting to investigate further in these directions to
find the factors behind these observations and to further explore
the right level of proactivity for the interaction to be more
enjoyable, adaptive, useful, and establishing the necessary trust
and dependability at the same time.

Such differences in the perception of different attributes in
different versions of robot behavior support our hypothesis H4:
proactivity level and user perception different levels of proactivity of
the robot will have different user experiences on the perceived
attributes.

6 DISCUSSION ON QUALITATIVE
OBSERVATIONS

The interaction with the robot was not always so smooth. There
were some problems related to the robot’s vocal feedback such as

some participants confusing the verb “egg” with “ice.” So, they
spent more time on understanding the robot’s suggestion.

There were some cases in which the dish’s name was the same
as that known to the robot, but the participants selected different
ingredients to create their own version of the dish. Those cases
need to be investigated in future studies. However, it created an
interesting interaction pattern as follows:

Robot: I thought you are selecting ingredients for < ‥dish‥ >
but I don’t know this recipe.
Robot: Could you please tell me the name of it?
Participant: I know but this is my < ‥dish‥ > that’s why it’s
different.

In the current analysis, if the dish’s ingredients are different, it
is classified as a new dish since creativity assessment depends on
knowledge.We classify the novelty of recipe creation according to
what is provided by the task and what is known from the robot. It
is important not to forget that the robot could only help with the
limitation of its knowledge.

Participants of experiments are the employees of SoftBank
Robotics Europe. They had experience with the Pepper robot.
However, their background is mixed between technical (hardware
and software) and non-technical (marketing, communication,
and welcome desk). Nevertheless, this can introduce bias in terms
of a more positive attitude toward the robot. In the future, we aim
to experiment with more diverse users, hopefully, once the Covid-
19 restrictions are over.

Some participants listened to the robot’s feedback for the first
phase but not very much during the second phase onward. Later,
they stated, “I knew what I was doing, so I did not listen to the
robot’s advice” or “I already asked the robot for help, it did not help
me. Then, it offered some help. This time, I refused it.” Such
feedback indicates that in addition to considering the goal and
future needs, the robot should also incorporate social signals and
some aspects of reactiveness while generating its proactive
behavior. It will be interesting to explore such factors and
develop an inclusive computational model for behavior
generation.

The effect of agency and embodied presence of the robot was
observed strongly. For example, some participants perceived the
“oh” response as positive, while others perceived negatively as
respond proved as a neutral response to not reflect any opinion.
It is expected from the extraction of previous research (Heritage,
1984) that involuntary interruption means anything. Some
participants also think that the robot is enjoying the
selections, so they continue to create a recipe process.
Participants were so eager to get any reaction from the robot
that they tried to put different naming. Some participants also
played tricks to validate their perception about “oh” behavior at
a medium proactive condition of the robot. This suggests that
even some involuntary interruptions will keep participants
motivated in a task, which might contribute to their
prolonged creative “experiments.” We believe that these
differences in perception are related to participants’ tendency
to extract the meaning of each noise from the robot. It is not
incontrovertible of the familiarity of participants with the robot.
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This is another exciting direction for further studying the
connection between robots’ behavior and its effect on
creativity in the user.

It is observed that sometimes the ingredients were limited to
create an entirely new recipe. In those cases, the task-oriented
proactive verbal communicative actions of the robot also
confused some participants, as they stated that “I was not sure
should I create a new recipe or try to create one of the given ones.”
Also, as some of the participants mentioned that they were not
very good with cooking and recipe knowledge, that might be
contributing to participants following the feedback from the
robot. Such observations need further investigation on
understanding the more in-depth relation between proactivity
and creativity in an open-ended and domain-independent
scenario.

7 CONCLUSION

This study attempts to explore the behavioral aspect of creativity
in robots in the context of human–robot interaction. We
hypothesized the dimension of bringing novelty in behavior by
proactive actions by letting the robot initiate a suggestive
interaction for a task that humans are supposed to do. We
have presented the creative cooking experiment and analysis
with the humanoid robot, Pepper. As this is an exploratory
study, the preliminary finding hints toward the proactive
behaviors of the robot somewhat affecting the perceived
creativity of the robot. We have also provided pointers such as
proactive behaviors not only leading users but also helping to
keep achieving the goal of the task. We have shown that different
levels of proactive behaviors have different effects and relations
with various aspects of perceived attributes. To our knowledge,
this is the first study of its kind on understanding the creativity
and proactivity aspects together in a human–robot interaction
context, from the perspective of achieving a goal and from the
perspective of supporting creativity in the user. We have
discussed and pointed out various aspects needing further
investigation to strengthen our knowledge in this domain,
including the finding that there seem to be trade-offs to find
the right level of proactivity that will help to achieve the goal but
leave space for the user to be creative, which we think is very
important for the real-world deployment of social robots in day-
to-day tasks and companionship.

7.1 Limitation of the Study
Due to the COVID-19 lockdown in France, it was not possible to
conduct a physical experiment with potential end users. That is why
we conduct a physical experiment with SoftBank Robotics Europe
employees who have special allowance to enter the working area.
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Creativity in social robots requires further attention in the interdisciplinary field

of human–robot interaction (HRI). This study investigates the hypothesized

connection between the perceived creative agency and the animacy of social

robots. The goal of this work is to assess the relevance of robot movements in

the attribution of creativity to robots. The results of this work inform the design

of future human–robot creative interactions (HRCI). The study uses a

storytelling game based on visual imagery inspired by the game “Story

Cubes” to explore the perceived creative agency of social robots. This game

is used to tell a classic story for children with an alternative ending. A 2 ×

2 experiment was designed to compare two conditions: the robot telling the

original version of the story and the robot plot twisting the end of the story. A

Robotis Mini humanoid robot was used for the experiment, and we adapted the

Short Scale of Creative Self (SSCS) to measure perceived creative agency in

robots. We also used the Godspeed scale to explore different attributes of social

robots in this setting. We did not obtain significant main effects of the robot

movements or the story in the participants’ scores. However, we identified

significant main effects of the robot movements in features of animacy,

likeability, and perceived safety. This initial work encourages further studies

experimenting with different robot embodiment and movements to evaluate

the perceived creative agency in robots and inform the design of future robots

that participate in creative interactions.

KEYWORDS

creative robots, robot games, story cubes, creative interactions, short-scale creative
self scale, storytelling, the ugly duckling
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1 Introduction

An important dimension in social interaction is how agents

perceive the intelligence and creativity of other agents. However,

creativity is an under-explored area in the study of human–robot

interaction (HRI) (Saunders et al., 2013). Creativity can be

defined as the capacity to imagine alternative futures. Despite

its relevance in shaping everyday interactions, we have a limited

knowledge of how creativity is perceived and attributed by

humans to self and others. Furthermore, the display of

creativity is a subjective phenomenon that is challenging to

study using experimental methods of inquiry (Svanæs, 2013).

This study is drawn from work in the area of self-assessment of

creativity to evaluate the possible connections between the

perceived creative agency and the animacy and kinesthetics of

social robots.

In artificial agents such as social robots or screen-based

avatars, the attribution of creativity has remained largely

unaddressed in the field of HRI until recently (Alves-Oliveira

et al., 2017, 2020). While artificial intelligence has been

investigated extensively, and artificial creativity defined as the

creativity attributed to artificial agents remains to be addressed

particularly in experimental studies. Some creative behaviors

have been simulated using language, pattern recognition, and

evolutionary generative systems as shown (Pham et al., 2017;

Gizzi et al., 2019; Myoo, 2019; Uneeq Ltd, Digital Humans, 2021;

OpenAI, 2021). Similarly, some work has been performed on

users’ non-verbal behavior, self-presence, social presence, and

interpersonal attraction in one-to-one human–agent interaction

on collaborative virtual environments using realistic humanoid

avatars (Herrera et al., 2020). However, in artificial agents such as

social robots that rely on physical embodiment to interact with

the users and the real-world, artificial creative behavior will need

to be communicated to users verbally and kinesthetically,

namely, using movement as part of their communicative

means. To our knowledge, the display of creative behavior via

physical movement (animacy) in robots is an area requiring

further investigation by human–robot interaction researchers.

In human–human interaction (HHI), the study of non-verbal

behavior in creative and collaborative tasks has been extensively

studied. For instance, Won et al. (2014) suggest that there is a

significant correlation between synchronized movements of a

pair of humans and creative outcomes. Hence, the display of

creative behavior viamovement is likely to be of high relevance to

determine the ultimate value and usefulness of social robots

interacting with humans in everyday settings.

The impact of robots’ physical presence and their movements

has been studied previously across contexts (Vignolo et al., 2017).

However, more research is needed to better understand how

social robots can effectively use movement in everyday

interactions, especially in light of screen-based smart

applications and disembodied products that use voice

interfaces. What may physical robots offer in terms of

functionality and usability that screen and voice agents

cannot? What are the design affordances enabled by their

physicality and movement possibilities that are not available

on screen or voice interaction? The work presented in this article

seeks to contribute to the future design of social robots by

analyzing how humans perceive the robots’ movement when

these perform a task that requires creative behavior, such as play.

We propose an adapted scale to measure the perceived

creativity in social robots in the context of games and playful

activities such as creative storytelling. This scale is inspired in the

work of Karwowski et al. (2018) and Karwowski (2014) and is

modified here to capture how participants rate the creative skills

of robots. We are particularly focused on the domain of creative

collaborative interactions that could be eventually implemented

using social robots.

The work with social agents as robots is relevant because

excessive screen time is associated with ergonomic, visual, and

behavioral issues. Furthermore, excessive use of screens for

entertainment negatively impacts people at the level of being

recently classified as “gaming addiction” (WHO, 2018) and

influences people’s overall mood, among other effects. At the

moment, users intensively use screen-based devices for both

work and entertainment services, resulting in extended

periods of eye strain and sedentary lifestyle (Aboujaoude and

Starcevic, 2015; Alter, 2018; Desmurget, 2020).

This work is an early exploration of HRI that does not rely on

a screen to interact with users. We aim to study alternatives to

screen and audio interactions using physical robots for

interactive creative activities, relying on more natural

interactions with artificial agents. We consider that creativity

is a central part of HRI due to its importance in the cognitive and

social processes involved in playful interactions. Finally, we

expect to contribute in the near future in the design of robots

encouraging natural, long-term interactions with cognitive and

social gains.

2 Background

The design of social robots has shown initial evidence of

their potential value for usability and functionality to assist

users in everyday life. So far, the main applications of notable

market success have been to carpet and floor robot cleaners

and toys including robotic pets for therapeutic purposes. For

the last 2 decades, researchers and companies have searched

for the “killer app” that builds on the affordances of physical

robots to transform the lives of users around the world. In that

time, screen-based devices and home assistants that use audio

interfaces have made substantial gains in market penetration.

Currently, there is a need to understand if and how physical

robots will be of value for users in their everyday tasks as

suggested by the fiction (Miller, 2021). However, to our

knowledge, there are no sufficient studies using social
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robots aiming to study creative interactions between humans

and robots, creative performance by the robot, or human’s

creativity enhancement. In contrast, there are numerous apps,

software, and websites for this purpose of screen-based

devices.

2.1 Robot’s embodiment and movement

Arguably, the most salient affordance that gives social robots

an edge over screen and voice assistants is their physical presence.

The importance of physicality and movement in communication

is evident from “body language” to 4E cognition, that is, the

principle that all human cognition is embodied, embedded,

enactive, and extended (Lindblom and Alenljung, 2015). In

other words, people are not “brains in jars” but rely heavily

on their bodies, the physical world around them, other humans,

and their contexts to be able to think, communicate, and be fully

human.

There have been studies on issues relevant to the design of

robots with movement in mind like the study developed by

Hoffman and Ju (2014). In the early stages of research in

human–robot interaction researchers as Van Breemen (2004)

understood that body gestures are a natural channel to

communicate robot’s agency and social behaviors.

Furthermore, the motion of robot agents (mechanic and

organic), as one of the main features differentiating robots

from AI or computers, has been explored to highlight its

relevance from robot esthetic and functional context by Harris

and Sharlin (2011). Similarly, Bainbridge et al. (2011) explored

how the physical presence of a robot affects human judgments of

the robot as a social partner. Looking for the effects of form and

motion in robotic agents, Castro-González et al. (2016) studied

the attributions of animacy and investigated how the

combination of robot’s bodily appearance and movement can

alter attributions of animacy, likability, trustworthiness, and

unpleasantness in the users. Apparently, a Baxter robot

executing mechanistic movement was perceived as inanimate.

However, the same robot performing naturalistic movements

was unpleasant. However, all these previous works have not been

placed in the context of creative expressiveness of the robot

agents.

Our work aims to explore and understand how animacy

plays a role in the perception of social robots in the future

design of interactive tasks related to creativity. According to

the Oxford English Dictionary, animacy is “. . .the quality or

condition of being alive or animate” (Animacy, 2021) while

kinesthetics refers to “. . .the effort that accompanies a

voluntary motion of the body” (Kinaesthesis, 2021). In the

context of this research, kinesthetics and animacy refer to the

study and perception of body motion, and the kinetic design

refers to the use of movement as a design material (Sosa et al.,

2015).

2.2 Games as a setup in HRI

We are interested to examine the physicality and moving

affordances of social robots (their animacy qualities), and their

potential advantages over traditional board games or interactive

games such as mobile apps and voice assistants. It may be

possible to combine the best of digital and physical

affordances to design social robots that can meaningfully

augment social games. To this end, studies are needed to

assess the impact of the physical presence and movement of

robots in these contexts of use.

Social and creative games represent interesting settings to

study the interaction with social robots as they create a space for

playful semi-structured interactions. In many social games, clear

rules exist but significant open-endedness is supported to

exercise and enjoy the creativity of oneself and others.

Creative games with open rules as Story Cubes have not been

used often in HRI. However, games are a popular setup in HRI.

For instance, Leite et al. (2009) used chess (to some extent a

creative game) as a setup to understand how social presence of

robots is perceived. Similarly, interactive storytelling in HRI has

been reported as a promising scenario for children’s social skills

development (Leite et al., 2015, 2017). Storytelling games have

the potential to support creative social interactions. We thus

select social games, and particularly storytelling games such as

the popular “Story Cubes” (Ros and Demiris, 2013; Eladhari

et al., 2014; Bae et al., 2016; Gordon and Spierling, 2018) as the

site of research for this study.

2.3 Displaying robot creativity

Creativity is an important component of social interaction

(Rogers, 1954). Movement has communicative properties that

make it an essential part of social interaction between humans

(Goldman, 2004), and it is widely regarded as central to

embodied experiences including everyday creativity (Svanæs,

2013). Social robots assisting develop creative capacities that

have been proposed before demonstrating the importance of

physical movement in this type of applications (Hoffman and Ju,

2014). Similarly, storytelling is a creative and social activity that

has an entertainment value but is also used to support learning

(Sadik, 2008) and health (Plaisant et al., 2000).

Kinesthetic creativity has been studied mostly in artistic

performance by humans (Ros and Demiris, 2013; Tan et al.,

2018). To our knowledge, this work represents an early approach

to the study of kinesthetic creativity in social robots. The research

methodology for this study is an experimental design based on

previous studies as the ones performed by Salem et al. (2011);

Hoffman and Ju (2014); Hoffman et al. (2015); Tung (2016). The

effects of robot movement are thus evidenced by their perception

of how movement is perceived as a cue, indicating creative

agency in social robots.
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2.4 Motivation for this exploratory study

In this study, we chose Story Cubes as an experimental

setup. This is a game where players create or re-create stories

to share with others, thus requiring to some extent creative skills

found universally (Brent, 2014). Our study asks whether social

robots will have an edge based on their physicality and their basic

animacy features to engage in creative activities such as

storytelling games. More specifically, it seeks to assess to what

extent movement may make a difference in such settings. If the

answer to this question is positive, then further work will be

needed to identify and evaluate the kinetic principles for the

design of playful and creative social robots more specifically. If

the answer is negative, then it is more likely that screens and voice

interaction devices will be more adequate and arguably even

easier to develop, deploy, maintain, and operate in this type of

activities rather than robots that use physical bodies to move and

reinforce non-verbal interactions. To this end, our study

addresses the research gap in how robot movement is

perceived when they perform a creative storytelling activity.

In sum, with studies like this, we aim to contribute to the

emergent exploration of human–robot creative interaction (HRCI).

Thus, here we set to identify the hypothesized connection between

the perceived creative agency and the animacy of social robots. Our

goal is to evaluate the relevance of robot movements to attribute

creativity to social robots. At this stage, we aim to provide a

benchmark for future experiments using non-choreographed

robot movements. Similarly, we use storytelling games supported

by visual cues to study how movement shapes human’s perception

of creative agency in robots. We need to highlight that most social

robots present limitations in terms of dexterity when manipulating

objects on a human scale.

3 Methods

3.1 Research goals and questions

This study aims to assess the connection between perceived

creative agency and the animacy of social robots. We evaluate the

relevance of robot movements to how observers attribute

kinesthetic creativity to social robots and the verbal delivery

of a story as a creative act. The aim of this experiment is to

explore the extent to which robots’ movement supports the

display of a creative act.

With this exploratory study, we aim to respond the following

research questions without proposing any hypotheses due to the

complex nature of the interaction and the exploratory nature of

the study:

(1) To what extent do humans perceive creative agency in robots

when these tell a story as part of a game (display of a

creative act)?

(2) To what extent do humans perceive creative agency in robots

when these display movements accompanying the delivery of

the story?

(3) How are robots perceived as creative agents compared with

humans?

3.2 Materials and implementation

3.2.1 The robot
To evaluate the research questions, we programmed a

Robotis Mini humanoid robot (See Figure 1A) to play our

own version of Story Cubes (storytelling game) in a Wizard of

Oz setup. The robot used a female voice in English language

(Karen) generated in Mac OS 10.15.7 and played at slow speed

(25%) using a bluetooth speaker next to the robot. We chose this

robot due its small dimensions for transport and suitability to be

used for future experiments using board games. The robot was

animated using the Robotis Mini app in iOS 14.4. According to

the work of Bernotat et al. (2021) and Kuchenbrandt et al. (2014),

the robot design can lead to a male or female perception of the

social robot. Hence, we decide to use a female voice to neutralize

the possible male perception of the robot considering the very

sharp and angular design of the mini humanoid. The robot

movements were presented but not choreographed as they were

just a stimulus to indicate robot animacy rather than supporting

the delivery of the story.

3.2.2 The game
The Story Cubes game is a collaborative board game using six

or more dice with adaptable rules and an indeterminate number

of players. The goal of the game is to create a story with the

contribution of all participants. We designed our Story Cubes for

this experiment with a set of six oversized dice that could be

visible in the video recordings. After five design iterations using

different materials, we used a 30mm, solid white, PDA, 3D-

printed dice, which was laser engraved and hand painted. We

modified publicly available icons under Creative Commons

license for our experiment. Thirty six icons were engraved

and six icons were used to reveal “The Ugly Duckling” story

for the two different versions used in the experiment.

3.2.3 The story
We use the well-known literary tale titled “The Ugly

Duckling” by the Danish author Hans Christian Andersen

(Andersen et al., 1995) and a modified version of that story

with an alternative ending. Stories are an effective way to connect

with other humans and social agents. The creative act of telling a

story associated with the movement could possibly lead to

significant different perceptions by users of the creative

agency of robots. Similarly, a universal story as The Ugly

Duckling helps us to reach a significant and diverse pool of

participants for this experiment. Finally, the twist plot leading to
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a different end of the story is a creative act performed by a robot,

which could be or not perceived by the user.

3.3 Setup

The standard version of The Ugly Duckling was split in six

short sections to match with the six icons shown in Figure 1B and

two additional sections for Introduction and Wrap-up. The

creative story was deeply discussed by the authors and

validated by four experts in creative writing, English literature,

and film scripts in its early and latest versions. The latest version

uses dinosaur references, which were considered unexpected and

perceived as creative without the controversy and the risk of

unintentionally offend or hurt feelings of a particular community

as the ethics committee suggested (Application HC200985). This

last version was validated by one of the specialists in English

literature. Both versions, namely, the standard and the creative

stories can be read as follows:

Original Story:

-Ok, let us start. Once upon a time [Introduction].

-There was a mama duck who was very surprised with one of

her ducklings [1].

-Everyone thought it was very ugly and rejected the poor little

duckling [2–3].

-She could not understand why everyone was so cruel only

because she was different [3–4].

But a year later, the “ugly duckling” grew into a beautiful

swan [5]!

-Then she flew away with a flock of swans and every year

returned to say hello to her foster mum [6].

-She, her mum, and siblings celebrate with a happy party

around the lake [7].

-Themoral of the story is that some people take longer to develop

and find their true beauty [Wrap-up and Robot Reflection].

Creative Story (The bold font indicates the creative twist vs.

the original story):

-Ok, let us start. Once upon a time [Introduction].

-There was a mama duck who was very surprised with one of

her ducklings [1].

-Everyone thought it was very ugly and rejected the poor little

duckling [2–3].

-She could not understand why everyone was so cruel only

because she was different [3–4].

-But a year later, the ‘ugly duckling’ grew into a beautiful

flying dinosaur [5.1]!

-A pterosaurs called Quetzalcoatlus [5.2].

-She discovered that she was different, not ugly [5.3].

-Then she flew away with a flock of happy pterosaurs and

every year returned to say hello to her foster mum [5.4].

-Then she flew away with a flock of swans and every year

returned to say hello to her foster mum [6].

-She, her mum, and siblings celebrate with a happy party

around the lake [7].

-The moral of the story is that some people take longer to

develop and find their true beauty [Wrap-up and Robot

Reflection].

FIGURE 1
Robot and Story Cubes used for this experiment. (A) Robot mini was the robot used for this experiment due to this small dimensions (Robotis
website, 2021) (B) 3D printed and laser engraved dice designed for this experiment.
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The robot, the dice, and the speaker (not visible) were

allocated in a photo tent in order to isolate them from the

external stimuli, avoid distractions for the users and make

possible the replication of the experiment. A high contrast,

red carpet was used to highlight the dice and the robot. After

several tests, we decided to use the video, which was recorded in

from the top-left corner of the photo tent using an iPhone

12 mini with 0.8x digital zoom. This setup allows to the

viewers to have a full view of the robot and dice. We consider

that using this point of view allows the user to understand the

creation of the story by the robot. See Figure 2. The length of the

videos was shorter when the standard story was displayed due to

the three extra sentences used in the creative story. These three

extra sentences in the creative story aim to reinforce the novel

character of the story and assure that the participant noticed the

plot twist. This setup was implemented by the suggestions of the

experts in writing and literature.

Four videos were displayed to the participants showing two

different robots performing a creative task. The creative task

consists of storytelling performed by the robot. The method to

tell the story is supported by visual cues in the form of icons on

dice and the robot manipulating them. Once the bowl covering

the dice was removed, the robot started one of the proposed

stories with the movements depending on the conditions.

In sum, we programmed a humanoid robot to tell the original

version of the “The Ugly Duckling” and a modified version of the

same story (creative story) under the experimental condition

using cubes with visual imagery such as those used in the “Story

Cubes” creative game. Under the control condition, the robot

remains static while telling the story, while under the

experimental condition the robot performs movements to

accompany telling the story kinesthetically. These interactions

were video recorded, and participants were requested to fill a

survey evaluating the creative agency of the robot.

4 Experimental design

We designed a 2 × 2 between-subject online study. The

factors are the story and robot movements. The robot can tell the

standard story or the creative story (dinosaur plot twist), and the

robot can display movements or not (still) during the storytelling.

Hence, we test four conditions displayed by the robot: still robot

and standard story (SS), still robot and creative story (SC),

moving robot and standard story (MS), and moving robot

and creative story (MC). As a between-subject study, the

participants of this online study were exposed to one of the

conditions mentioned earlier, that is, a participant under the

condition MC would see a robot gesticulating and telling The

Ugly Duckling story with the plot twist of the dinosaur. The dice

and videos of this experiment can be requested contacting the

corresponding author. The videos are unlisted in YouTube but

can be reviewed using the next links: Video MS condition, Video

MC condition, Video SC condition, and Video SS condition. See

Table 1.

4.1 Online survey and measurements

This study was approved by the human ethics committee

of the University of New South Wales, application

HC200985 reviewed by the HREAP Executive. Similarly,

this study was funded using the Scientia Fellowship (PS-

46183) development package provided by the UNSW. We

implemented the survey on Qualtrics licensed for the UNSW.

A survey flow was created to assign the participants under the

four conditions randomly, see Figure 3. The survey was

distributed using prolific.co. The survey was designed as

follows: First, the participant information and then the

consent form. Once the participant agreed to participate in

the studio, he/she was directed to the next page, and

demographic information and confirmation of the Prolific

ID was collected. The identity of the participants is

anonymous, and demographic information was collected

such as age, gender, occupation, location, and level of

education.

Once the demographic information was collected, the Short

Scale of Creative Self (Karwowski et al., 2018) questionnaire was

applied. The questionnaire is confirmed by eleven questions

measuring creative self-efficacy (CSE) and creative personal

identity (CPI). The questions are as follow:

(1) I think I am a creative person (CPI).

(2) My creativity is important to who I am (CPI).

(3) I know I can efficiently solve even complicated

problems (CSE).

(4) I trust my creative abilities (CSE).

(5) Compared to my friends, I am distinguished by my

imagination and ingenuity (CSE).

FIGURE 2
Snapshot of the video showed to the participants. The setup
used under the four different conditions of the experiment is the
same (cubes, robot, and microcontroller in the shot).
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(6) Many times I have proven that I can cope with difficult

situations (CSE).

(7) Being a creative person is important to me (CPI).

(8) I am sure I can deal with problems requiring creative

thinking (CSE).

(9) I am good at proposing original solutions to

problems (CSE).

(10) Creativity is an important part of me (CPI).

(11) Ingenuity is a characteristic which is important to

me (CPI).

TABLE 1 Four experimental conditions. Each condition shows the factorial combination displaying a particular performance of the robot.

Experimental design Standard story (control
condition)

Creative story (experimental
condition)

Still robot Still standard condition (SS) Still creative condition (SC)

Moving robot Moving standard control (MS) Moving creative condition (MC)

FIGURE 3
Experimental procedure. We applied the questionnaire using Qualtrics. We distributed it using Prolific.co.
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Questions one, two, seven, ten, and eleven gauge CPI and

questions three, four, five, six, eight, and nine are assigned to the

CSE. Following the questions, the participants watched one of the

four videos.We confirmed that the video was watched via a check

button and requesting a brief description of the video by the

participant. Next, the two first authors proposed a modified

version of the SSCS to be applied to robots playing creative task.

In this case, the task is framed in the playing of our version of

Story Cubes. As the original SSCS, our Likert scale goes from one

to five. The anchors are definitely not 1) and definitely yes (5).

We will validate this adapted scale in a following article. The

questions proposed are listed as follow.

(1) I think that the way the robot played Story Cubes shows it is

a creative robot.

(2) The creativity of the robot playing Story Cubes is important

to how it behaves.

(3) The robot efficiently plays Story Cubes.

(4) I trust the robot’s creative abilities to play Story Cubes.

(5) Compared to other players of Story Cubes, the robot is

distinguished by its imagination and ingenuity.

(6) I think that the robot can consistently create good stories

when playing Story Cubes.

(7) Being creative is important for a player of Story Cubes.

(8) The robot can deal with problems requiring creative

thinking.

(9) The robot is good at proposing original stories in Story

Cubes.

(10) Creativity is an important part of how the robot plays Story

Cubes.

(11) Ingenuity is a characteristic which is important to how the

robot plays Story Cubes.

(12) I think that the robot can consistently create good stories

when playing Story Cubes. Additional question:

In addition, we added a 12th question. The aim of this

question is to summarize the general impression of the

participant in just one score. The Godspeed questionnaire was

applied after the SSCS and general impressions over the study

were requested to the participant. The survey concludes

confirming the end and providing a code that will allow the

compensation for the participant by Prolific. The content of the

survey is available by request to the corresponding author.

4.2 Participants

A total of 297 participants were recruited using the

platform Prolific. All participants were over 18 years, and

there were no restrictions on gender, formal education,

income, or other demographics. Due to technical issues,

just 242 participants were exposed to one of the four

conditions and compensated by completing the

questionnaire. We used the data of 239 participants as the

SSCS score as three of their data were not recorded.

Participants were paid the equivalent of 1.27 British

pounds (or 2.2 Australian dollars) for their participation.

The first half of the study was run in February 2021, and

the second part was 1 week later. One fourty five participants

were male, 89 female, three non-binary, and two did not

specify. The average age was 26.9 years (SD = 8.58).

Participants came from a range of locations; 38.5% from

North America (Canada, United States, and Mexico), 34.7%

from Europe, 13% from the United Kingdom, 7.5% from

South America, 4.2% from Oceania, and 2.1% from Africa.

The education levels are distributed as follows: 42.7%

university degree, 38.5% high school, 9.6% masters, 1.7%

PhD, 5.4% vocational education, 1.7% primary education,

and 0.4% other. In terms of occupation, 42.3% were

students, 38.9% employed (6.3% IT and software, 3.3%

artist, 2.5% freelance, 1.3% researcher, and 25.5% other),

12.1% were unemployed, 2.5% homemakers, 0.4% retired,

and 1.3% did not specify.

The average time to fill the survey was 9 min 20 s. We

suggested to the participants to use a device with a large

screen to have a better user experience and show the video

and survey consistently; 72.8% used Windows 10, 8.4% used

Macintosh, and 18.8% used other platform (Android 10 5.4%,

iPhone 4.2%, Windows 6.1 3.8%, Windows 6.3 1.7%, Android

11 1.3%, Android 9 1.3%, Linux x86 0.8%, and Ubuntu 0.4%).

We aimed to allocate at least 60 participants per condition.

We did not fully record data as three subjects lost in the SSCS

score. Participants were randomly allocated as follows: (SS) =

62 participants (minus two missed SSCS scores), SC =

61 participants, MS = 61 participants (minus one missed

SSCS score), and MC = 58 participants. The average

human SSCS score was 3.89 (SD = 0.66), no significant

differences were found among the different experimental

conditions (ANOVA). Participant’s results are stored in a

standard online spreadsheet, and the statistical analysis was

made using IBM SPSS.

5 Results

In order to address the exploratory questions of this study,

we performed multiple 2 × 2 factorial analyses of variance

(ANOVA); the factors were the story (standard vs. creative)

and movements (still vs. moving). We defined seven

dependent variables: the SSCS, the question twelve, and the

five Godspeed items (anthropomorphism, animacy,

likeability, perceived intelligence, and perceived safety). In

addition, we performed a Pearson’s correlation present among

the humans and robots CPI, CSE, and SSCS scores to check the

internal consistency and possible human–robot significant

correlations among the scores.
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5.1 Short Scale of Creative Self (SSCS)
score applied to the robots

This variable is our main indicator to assess how participants

perceive robots as creative agents. The average SSCS score of the

robots under the four different conditions are as follows: SS =

3.48 (SD = 0.74), SC = 3.66 (SD = 0.61), MS = 3.58 (SD = 0.68),

and MC = 3.53 (SD = 0.80). As the original SSCS, our Likert scale

goes from one to five. The anchors are definitely not 1) to

definitely yes (5).

We ran a two-way ANOVA with the SSCS score as a

dependent variable and the story and movements as factors.

Residual analysis was performed to test for the assumptions of

the two-way ANOVA. The assumption of homogeneity of

variances was not violated, as assessed by Levene’s test for

equality of variances, p = 0.122. Data were normally

distributed as assessed by the Kolmogorov–Smirnov test (p =

0.200). There were six outliers as assessed as being located less

than 3 box-lengths from the edge of the box in a boxplot. They

were not removed from the following ANOVA and showed that

they did not affect the results even without them. Neither

significant main effects nor interaction effects were found. See

Figure 4. Similarly, pairwise comparisons were run aiming to find

simple main effects. However, non-significant effects were found

again.

Hence, as suggested in Laerd (2021), a further robust

ANOVA was run. We used SigmaPlot to run a

Kruskal–Wallis non-parametric ANOVA. Once again, neither

main effect nor interaction effect was found. KW = 2.11, df = 3,

and p = 0.550.

5.2 Question twelve and Godspeed items

A similar procedure was followed for the analysis of the rest

of the dependent variables. The effects were found only for the

items of animacy, likeability, and perceived safety. Data were

normally distributed, as assessed by the Kolmogorov–Smirnov

test for animacy (p = 0.200) and likeability (p = 0.200) but not for

perceived safety (p <0 .001) and Q12 (p <0 .001). The assumption

of homogeneity of variances was not violated for animacy

(0.989), perceived safety (p = 0.173), and Q12 (p = 0.909) as

assessed by Levene’s test for equality of variances. However, it

failed for likeability (p = 0.006).

We decided to maintain the outliers assessed as those being

located less than 3 box-lengths from the edge of the box in a

boxplot. The results indicate that movement has a main effect on

how participants perceive the robots under the different

conditions. Animacy F (3,235) = 39.777, p <0 .001, likeability

F (3,235) = 12.824, p <0 .001, and perceived safety of the robot F

(3,235) = 19.127, p <0 .001. Due to the violation of the

assumption of homogeneity for likeability, a robust non-

parametric Kruskal–Wallis ANOVA was run for this variable.

Movement has a significant main effect. KW = 10.205, df = 3, and

p = 0.017. See Table 2.

5.3 Person’s correlations among CPI, CSE,
and SSCS in humans and robots

A Pearson’s 1-tailed correlation was carried out to assess the

relationship between the human CPI, CSE, and SSCS scores and

FIGURE 4
Boxplot per group of the SSCS applied to the robot with outliers. No significant differences were found among the means of the groups.
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similar scores granted to the robot. We aimed to find if

correlations between people perceiving themselves as highly

creative project this on the robot’s creative act. The scores of

the 239 participants were analyzed. There were statistically

significant, moderate, and strong positive correlations between

CPI–CSE, SSCS–CSE, and SSCS–CPI in humans, and similar

pattern of correlations among the robot scores suggesting

consistency in our proposed scale and its internal scores.

However, no significant correlation appeared between human

scores and robot scores. We should highlight that overall the

means of the human scores were higher than that of the robot

scores under all the experimental conditions and all the scores.

See Table 3.

6 Discussion

This study aims to explore the design of future social robots

using a quantitative approach and qualitative insights from the

users. With this study, we want to encourage a discussion in the

domain of robot’s perceived creativity and explore robot

movement supporting the delivery of a creative act. However,

studying creativity using quantitative approaches presents a

number of challenges. We frame our findings in the context

of games as a mean to sustain long-term, meaningful

human–robot creative interactions and several considerations

should be taken.

To answer the first research question: to what extent do

humans perceive creative agency in robots when they tell a story

as part of a game (display of a creative act)? We assured that

participants watched the video requesting a checkbox validation

and a brief description of what they saw. Participants frequently

used the word “story” or even specifically “ugly duckling story” in

these descriptions; 92.5% of the participants mentioned the word

“story” or similar (tale, history, story line, and fable) when

describing the video. In few cases typos were present and

derivations such as history, story, or study were used but the

intention was taken as the same. Furthermore, 100% of the

TABLE 2 Bold font means this item had a significant main effect on the movement condition.

Means and SD
for Question 12 and
Godspeed items under
the movement main
effects condition

Still
robot standard story

Still
robot creative story

Moving
robot standard story

Moving
robot creative story

Q12 3.27 (1.06) 3.25 (1.06) 3.57 (0.98) 3.45 (1.08)

Anthropomorphism 2.16 (0.73) 1.99 (0.77) 2.27 (0.76) 2.15 (0.76)

Animacy 2.36 (0.76) 2.33(0.74) 3(0.68) 2.84(0.66)

Likeability 3.49(0.96) 3.61(0.96) 3.96(0.62) 3.89(0.73)

Perceived intelligence 3.48 (0.87) 3.47 (0.75) 3.67 (0.70) 3.45 (0.72)

Perceived safety 2.88(0.61) 2.74(0.37) 3.12(0.54) 3.10(0.56)

TABLE 3 Pearson’s correlations among the CPI, CSE, and SSCS scores. The scores are internally consistent.

Pearson’s Correlations
among the
CPI, CSE,
and SSCS
scores for
humans and
robots (p <0
.001)

Human CSE Human CPI Human SSCS Robot CSE Robot CPI Robot SSCS

Human CSE 1

Human CPI 0.573 1

Human SSCS 0.883 0.891 1

Robot CSE 1

Robot CPI 0.673 1

Robot SSCS 0.931 0.896 1
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participants referred directly or indirectly to the act of telling a

story even when they did not use the word in their descriptions.

For instance, “it is about a robot that tells ugly duck that turns

into swan,” “the process to find the real beauty,” or “It is about a

robot that tells ugly duck that turns into swan.”

We highlight the fact that the SSCS scores of the robots, even

when they are not significantly different, were above the mean

(2.5) of the 1–5 scale of the SSCS score as indicated in section 5.1.

Even though the robot scores were lower that the human scores,

the minimal score was above 3.4 for the still robot standard story

condition. The scores per condition were: SS = 3.48 (SD = 0.73),

SC = 3.66 (SD = 0.61), MS = 3.58 (SD = 0.68), and MC = 3.53

(SD = 0.80). Hence, we can claim that participants were aware

that the robot was performing a creative act delivering a story.

Future work can involve further statistical analysis comparing

with a specific benchmark, indicating a minimal score that a

social agent considered for a creative agent. Similarly, a face-to-

face setup could be more appropriate to perform an experiment

of this nature since it is likely that the robot embodiment has a

significant impact in the participant’s perceptions compared to

virtual agents.

For the second question: to what extent do humans perceive

creative agency in robots when these display movements

accompanying the delivery of the story? We considered that

robot movement would be a variable moderating the effect of the

story on how people perceive robots. The marginal means graph

can wrongly lead to conclude that movements moderate the SSCS

score. However, when inspecting the boxplot, it is clear that

means among all the experimental conditions are not significant.

See 4. Although we did not notice main or interaction effects in

the SSCS score, we did notice significant effects in three of the

items of the Godspeed scale. These items are animacy, likeability,

and perceived safety.

In the case of animacy, we observed that participants in this

study could notice the movements of the robot as they score

significantly highly in animacy to the moving robots

independently of which story the robot is telling. This shows

that participants are aware of the movement and how the

movement impacts participant’s perceptions in terms of

likeability as they rank moving robots MS = 3 (0.68) and

MC = 2.84 (0.66) significantly higher than still robots SS =

2.36 (0.76) and SC = 2.33 (0.74). See Table 2.

The robot movements were not mentioned frequently in the

description of the video as the story. However, some participants

used anthropomorphic terms, that is, “a creepy robot gives its

version of The Ugly Duckling by Hans Christian Andersen. It

also does a decent MC hammer impression.”. . .The movements

of the robot were however a bit erratic and did not match that

well with the story it was telling. “In a way I feel like I was

arranged to tell that story but I liked the movements and the

appearance of the robot.”

In terms of likeability, as shown in Table 2, participants

scored significantly higher to the moving robots in terms of

likeability. MS = 3.96 (0.62) and MC = 3.096 (0.62) significantly

higher than still robots SS = 3.49 (0.96) and SC = 3.61 (0.96). The

significant main effect of the movements in likeability is aligned

with previous studies using games (Sandoval et al., 2016b; a,

2020). Apparently, humanoid robots tend to be likeable when

they perform unexpected tasks that can be interpreted as social or

creative. Future studies could test other robot embodiment

perceived as less humanoid. An illustrative comment in how

some participants perceive the robot was: “how this robot looks

like and how it feels like compared to a human being. By his

movements, he looked really happy, but by talking only

sometimes we cannot understand how smart a robot can be.

He was very smart, and we can definitely see that his voice was

not recorded at some point.”

At the beginning of this experiment we considered that the

factor of movement would be a moderating variable, supporting

the delivery of the story by the robot. In other words, robot

movement would lead to higher scores for the robots in both

kinds of stories or at least in one of the stories. However, evidence

for this were not registered, a possible reason for that is the type

of the robot’s movement. For this experiment, we intentionally

designed a set of robot movements that are part of the standard

programming of the robot but are not synchronized with the

delivery of the story. The reason for this is that in future

applications using robots for social games, it is unlikely that

robot movements will always be customized to their dialogs.

Better synchronized and choreographed movements would be an

obvious stimulus that could cause significant main effects in the

SSCS score and how people perceive robots as creative agents.

This type of movements can be tested in future studies. In terms

of perceived safety, moving robots were perceived as safer than

still robots. This is a result worth considering further, especially

taking into account that this study is an online experiment and

not a face-to-face setup.

Question twelve in the survey: “I think that the robot can

consistently create good stories when playing Story Cubes” was

added to allow the participants to summarize their impressions

from the previous SSCS questions. The movement main effect

was not significant (p = 0.64) when the participants answered this

question. However, this provides an intriguing result to be

explored in future studies as the comments of the participants

suggest. Certainly, the participants perceived the movement of

the robot but not necessarily the novelty of the story.

Independently of the story, participants rated slightly higher

for the moving robots than still robots as agents, which can create

good stories when playing Story Cubes. Even as a marginal result,

this finding points to the importance to study a range of robot

movement approaches in future work. Further qualitative

analysis is required to explore.

For question three in the survey: how are robots perceived as

creative agents compared with humans? In all the experimental

conditions robots scored lower than humans for the SSCS scores.

Robot scores can be seen in Section 5.1 and human SSCS scores
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are as follow SS = 3.88(SD = 0.68), SC = 3.85 (SD = 0.83), MS =

3.88 (SD = 0.70), and MC = 3.95 (SD = 0.66). Pearson correlation

does not suggest any significant correlation among the human

and robot scores. However, there are significant correlations

among the sub-scores CPI and SCE in both human and robot

scores, which could suggest that the internal consistency of the

original scale and our adaptation for assessing robot creativity

have potential as measurement tools for future studies in

human–robot creative interactions. See Table 3.

Some of the participants’ comments suggest that a further

exploration of this question could be relevant as they were

enthusiastic about the capabilities of the robots comparing

with previous human creative experiences. To illustrate, first

of all, the participants’ adored the robot. they thought it was cute

plus they were impressed with its abilities, too! they meant they

can probably kind of guess how it works, but still exclaimed that

it was just mind-blowing! The participants’ loved that the

message of the story told by the robot was so wholesome! As

a musician and somewhat a songwriter, they find it astonishing

that how it can come up with a good story in such a quick amount

of time, and they wished keep it up. As for the study itself, they

liked the way the text lighted up when the mouse hovered over it,

they have not seen it a lot, if anytime. In addition, they had to

check up on two of the English words used in the study, which

they highly value as an educational feature. They thoroughly

enjoyed the experience. “This was an interesting concept to

consider, and the participants’ would honestly like to see

more content involving AI and Story Cubes.” They are

impressed how robot can tell people a story based on random

images.

7 Conclusion

Creativity can be considered an aspect of autonomy and agency

in social agents that is different from intelligence, logic, and strategy.

The current understanding on how creativity is displayed by robots

is still limited. This study aimed to inform the design possibilities of

human–robot creative interaction (HRCI) and provides a reference

for future studies exploring the main factors involved in the creative

interaction between humans and robots. Our findings show that the

setup used in this study does not trigger higher scores in the SSCS,

differentiating the robots as creative agents. However, movement

does show main effects in the scores of animacy, likeability, and

perceived safety of the Godspeed scale. Furthermore, the scores of

the moving robots were above the media in all the cases (although

they were lower than the SSCS scores in humans). In terms of how

robots are perceived as good storytellers (question 12 in the robot

SSCS), even when the scores are not significantly different, the

results provide an important insight in how to continue the

development of future experimental studies, for instance, the

need to perform similar study in a face-to-face setup and using

other robot embodiments beyond humanoid robots.

The study of creativity in robots shows a research gap when

addressed in playful, creative, and collaborative activities such as

board games. We chose a playful task (a storytelling game) to

empirically evaluate the extent to which a robot’s physical

embodiment may cause humans to attribute creative agency

to a robot. The Story Cubes game offers a means to further

assess the display of creativity in robots considering the

applicability of this setup as entertainment and for the

development of cognitive skills, spacial memory, decision

making, and collaborative skills (Wu et al., 2012; Unbehaun

et al., 2019).

Furthermore, we consider that our approach is useful in

aiming strategies for long-term interaction and as an alternative

to avoid screen addiction and contribute to a better mental health

in the digital age (Aboujaoude and Starcevic, 2015; Sandoval,

2019). Even in the Story Cubes mobile app, the user experience is

visibly compromised when compared to the physical cubes.

Considering this, we highlight the importance of perceived

creativity in social robots to further develop the early work in

artificial creativity. It looks like it is critical to explore advantages

and disadvantages among robotic interfaces that display and

support creative interactions. To this end, when users are

exposed to stimuli related to creative robots it seems critical

to set their expectations in this type of studies. One participant

said, for instance: “the study itself was fine. The premise,

however, is something that has not been fully explained.” For

example, is this a prototype of a children’s toy? Is it a learning

device? Is it a diagnostic tool?” Finally, one of the comments of

the participants is encouraging to continue the development of

studies in creative robots playing storytelling games. Assuming

the robot really came up with the story using its own creativity

and it was not programmed into it, the participant was very

impressed with the level of depth which the story had. In that

sense, the robot could even be more creative than a lot of humans.

The participant also thinks that its use of words and its manner of

speech is properly human-like, that is not to say, we could not feel

the robotic nature behind it at all. In my opinion, some work

should be performed on the robot’s movement, and how it

connects to whatever it is saying in a way that makes more

sense. The participant wished us good luck with the study and

with further development of creative robots.”

7.1 Limitations and future work

The main technical limitations to implement a robot board

game have been discussed before by Sandoval et al. (2021). The

game Story Cubes in particular has a significant element of

improvisation and randomness, and the translation of the

cubes to create a consistent story is a technical challenge for

robots that genuinely synthesize stories from these stimuli.

Similarly, the vision system required to read the cubes

accurately under a range of lighting conditions and angles
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would require significant technical work. We are currently

working on an implementation where participants and robots

play Story Cubes in a shared physical setup for a future study.

Choreographic movements of the robots will be programmed

and displayed on a bottom-up strategy that starts by

incorporating movements in an increasing level of

sophistication and detail. Then, we will compare with the

random movements of this experiment. We consider that this

would inform robot designers to incorporate movement that

achieves a balance between creating a meaningful human–robot

creative interaction (HRCI) while drawing from a library of

gestures, postures, and body movements suitable for fluid

communication. In terms of data collection and analysis, we

plan to conduct a thematic analysis of participants’ comments.

Furthermore, future experimental designs could include different

robot embodiments (humanoid vs. non-humanoid), variants of

Story Cube games, and different stories (original stories vs. well-

known stories). Finally, a more exhaustive validation of our

version of the SSCS (performing factorial and reliability

analysis) may be required to assess future interaction face-to-

face setup in a more robust manner.
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