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Editorial on the Research Topic 
Bioinformatics of Genome Regulation, Volume I

This “Bioinformatics of Genome Regulation” issue presents the studies in the field of bioinformatics of gene expression regulation. The materials were initially discussed in part at BGRS\SB-2020 (Bioinformatics of Genome Regulation and Structure\Systems Biology) multi-conference (https://bgrssb.icgbio.ru/2020) in Novosibirsk, Russia. The BGRS conference series is organized by the Institute of Cytology and Genetics SB RAS every other year since 1998. This issue consists of two parts—Volume I (https://www.frontiersin.org/research-topics/14266/bioinformatics-of-genome-regulation-volume-i) and Volume II (https://www.frontiersin.org/research-topics/17947/bioinformatics-of-genome-regulation-volume-ii). It continues the tradition of Research Topics at Frontiers in Genetics journal (https://www.frontiersin.org/research-topics/8383/bioinformatics-of-genome-regulation-and-systems-biology), which presents the works discussed at the BGRS-2018 meeting (Orlov et al., 2016; Tatarinova et al., 2019). Previous journal covering BGRS\SB conference were presented in the Journal of Bioinformatics and Computational Biology in 2012 (Orlov et al., 2015; Orlov et al., 2019a) and other platforms (Chen et al., 2017; Baranova et al., 2019; Orlov, 2019; Orlov, 2019b; Orlov et al., 2021a). Starting in 2018, actual research works on the mechanisms of gene expression regulation are presented in Frontiers in Genetics being extended as Volume II.
In Volume I of this Research Topic a total of 19 papers were arranged by two main areas—biomedical bioinformatics for human health and plant model studies. Biomedical papers start from bioinformatics applications to various cancers, including hepatocellular carcinoma, melanoma, brain tumors, prostate cancers, and paraganglioma.
Li et al. described a bioinformatics pipeline to reveal critical genes associated with hepatocellular carcinoma. The authors analyzed differentially expressed genes, followed by the Reconstruction of the protein-protein interaction (PPI) network. Eight hub genes significantly upregulated in carcinoma samples were highlighted and validated using GEPIA (Gene Expression Profiling Interactive Analysis) and Oncomine databases.
Fedorova et al. studied NETO2 gene (neuropilin and tolloid-like 2) upregulation in diverse tumors, including ones originating in breast, prostate, and colorectal tissues. In addition, the authors evaluated NETO2 functions in a short-lived fish model Nothobranchius furzeri.
Liu et al. consider how cutaneous melanoma involves ERBB tyrosine kinase family members (ERBB receptor family) in its progression.
Wang et al. studied immune surveillance within the microenvironment in glioma. The authors highlighted long non-coding RNA (lncRNA) as the key in glioma progression.
Pudova et al. showed how the gene expression landscapes change during the progression of prostate cancer to its advanced stages. They described relevant networks and pathways pertinent to early recurrence. Rare neuroendocrine tumors were studied in Snezhkina et al. for the frequencies of the mutations within susceptibility genes such as SDHx. This work aids in understanding the immunochemistry analysis of SDHx genes in carotid paragangliomas reported earlier (Snezhkina et al., 2020).
Mukushkina et al. applied bioinformatics tools to study how miRNAs interact with other genes’ products form atherosclerotic plaques.
Frontiers in Genetics’ publications on human disease biomarkers are continued by the Research Topic “High-throughput sequencing-based investigation of chronic disease markers and mechanisms” (https://www.frontiersin.org/research-topics/21036/high-throughput-sequencing-based-investigation-of-chronic-disease-markers-and-mechanisms). Thus, Shi et al. (2021) studied molecular mechanisms related to alternative polyadenylation in gastric cancer; Chang et al. (2021) analyzed platinum-drug resistance mutations in advanced non-small cell lung cancer.
In this “Bioinformatics of Genome Regulation” Topic Yao et al. have reported the results of a search for molecular markers associated with complications of systemic lupus erythematosus.
Skuratovskaia et al. described the mechanisms regulating carbohydrate metabolism in Type 2 diabetes mellitus using the bioinformatics framework.
The approaches for analysis of gene expression regulation in human diseases from the population genetics point of view were highlighted in the Research Topic “Association Between Individuals’ Genomic Ancestry and Variation in Disease Susceptibility” at Frontiers in Genetics (https://www.frontiersin.org/research-topics/15891/association-between-individuals-genomic-ancestry-and-variation-in-disease-susceptibility). Kamenova et al. (2021) analyzed gene expression regulation by miRNA in Parkinson’s disease. Zinchenko et al. (2021) studied rare hereditary diseases in Russia. Ramensky et al. (2021) discussed targeted sequencing of a set of clinically important genes associated with cardiovascular diseases.
Gozman et al. (2021) raised important actual problem of the role of genetic variance in disease severity in COVID-19 Patients. This problem is continuing to be actively discussed (Lu et al., 2021).
The following two articles in the Volume I highlight the mechanisms of epigenetic control revealed by gene network reconstruction in animal models. Shen et al.investigated the changes of DNA methylation and hydroxymethylation in mouse genome during puberty an emphasis on the activation of by hypothalamic gonadotropin-releasing hormone pathway.
Adonin et al. applied the methods of gene networks Reconstruction to a fascinating model organism—sea urchin Strongylocentrotus purpuratus.
The next group of articles in this Research Topic performed gene expression analysis in plants. This science field was presented at the bioinformatics conference series in Novosibirsk (Orlov et al., 2019b). In particular, Marla et al. performed the plant genome assembly from short sequencing reads of Pigeonpea (Cajanus cajan). Chakraborty et al. annotated miRNA functions in various millet species. Samarina et al. studied cold-resistance genes in the tea plant Camellia sinensis. Cold and drought stresses cause osmotic changes in the cells of the tea plant (Samarina et al., 2020). This study identified 45 stress-inducible candidate genes associated with cold and drought responses using homologous detection in related plant species. The gene network analysis revealed upregulated expression in the ICE1-related cluster of bHLH factors. Pavlinova et al. presents another application of network analysis in plant science; dynamical modeling of the core gene network controlling the transition to flowering in Pisum sativum was performed to extend previously developed non-linear regression models of the flowering in wild chickpea (Kozlov et al., 2019).
Finally, a set of novel computational techniques was developed for deciphering gene expression regulation in cells. Arega et al. presented a novel tool for 3D genomics modeling of long-range chromatin interactions, the ChIAMM algorithm, which utilizes ChIA-PET (Chromatin Interaction Analysis by Paired-End Tags sequencing) to estimate amounts of chromosome contacts (loops) mediated by a given transcription factor. The same authors’ group has also described a 3D genome structure in cervical cancer cells (Adeel et al., 2021). The topic of genome architecture prediction based on 3D interaction maps in cell nuclei was further advanced by Belokopytova and Fishman. The authors reviewed high-throughput genome-wide chromatin profiling and chromosome contacts mapping using chromosome conformation capture techniques (Hi-C and ChIA-PET). The Research Topic “The Role of High-Order Chromatin Organization in Gene Regulation” (https://www.frontiersin.org/research-topics/18088/the-role-of-high-order-chromatin7-organization-in-gene-regulation) has been put together at Frontiers in Genetics by Drs. Fishman and Pindyurin.
In their brief report, Glyakina and Galzitskaya discuss bioinformatics modeling of actin molecules. Biziukova et al. utilized Machine Learning–based analysis of the scientific texts in HIV treatment to systematize information on small molecules, proteins, and genes related to the disease.
Overall, we are proud of the continuing Research Topic at Frontiers in Genetics we collated. We hope that you will find this paper collection a stimulating reading and consider coming to the next BGRS\SB conferences in Novosibirsk, Russia (https://bgrssb.icgbio.ru/2022/), and read the next continuing Research Topics in Frontiers (https://www.frontiersin.org/research-topics/21036/high-throughput-sequencing-based-investigation-of-chronic-disease-markers-and-mechanisms).
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The involvement of genes and miRNAs in the development of atherosclerosis is a challenging problem discussed in recent publications. It is necessary to establish which miRNAs affect the expression of candidate genes. We used known candidate atherosclerosis genes to predict associations. The quantitative characteristics of interactions of miRNAs with mRNA candidate genes were determined using the program, which identifies the localization of miRNA binding sites in mRNA, the free energy interaction of miRNA with mRNA. In mRNAs of GAS6 and NFE2L2 candidate genes, binding sites of 21 miRNAs and of 15 miRNAs, respectively, were identified. In IRS2 mRNA binding sites of 25 miRNAs were located in a cluster of 41 nt. In ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A mRNAs, clusters of miR-466, ID00436.3p-miR, and ID01030.3p-miR BS were identified. The organization of overlapping miRNA binding sites in clusters led to their compaction and caused competition among the miRNAs. The binding of 53 miRNAs to the mRNAs of 14 candidate genes with free energy interactions greater than −130 kJ/mole was determined. The miR-619-5p was fully complementary to ADAM17 and CD36 mRNAs, ID01593.5p-miR to ANGPTL4 mRNA, ID01935.5p-miR to NFE2L2, and miR-5096 to IL18 mRNA. Associations of miRNAs and candidate atherosclerosis genes are proposed for the early diagnosis of this disease.

Keywords: gene, atherosclerosis, miRNA, mRNA, association, binding sites cluster, marker


INTRODUCTION

The diagnosis, prevention and treatment of atherosclerosis are important tasks of modern medicine (Byrne et al., 2014; Churov et al., 2019; Solly et al., 2019; Shoeibi, 2020). In most cases, polygenic diseases, including atherosclerosis, develop when the expression of different combinations of candidate genes changes. As a result of a review of various publications, it seems that the approaches used to search for markers for the diagnosis and treatment of atherosclerosis, including miRNA, have not yet solved the problem of diagnosing and treating atherosclerosis (Chen et al., 2020; Li et al., 2020; Ryu et al., 2020; Sun et al., 2020; Wang W. et al., 2020; You et al., 2020). In human, it is known about 7000 miRNA and more than 20,000 genes, and it is unknown how many miRNA and genes from them participate in the development of atherosclerosis (Byrne et al., 2014; Toba et al., 2014; Lu et al., 2018; Liu et al., 2020; Shi et al., 2020). As a rule, in publications several miRNA and some candidate genes are studied, so the combination of such attempts is large (Wang C. et al., 2020; Wang M. et al., 2020; Zhang et al., 2020). Considering the limitations of existing prediction methods, we can say that the establishment of adequate miRNA markers for diseases is unrealistic using existing approaches in the coming years. This statement is confirmed by the fact that over 20 years of studying miRNA participation in various diseases, diagnostic methods and therapeutic ways of treating diseases with miRNA are not used. Most researches study only the correlation between changes in miRNA concentration and expression of candidate genes, but this approach does not establish specific associations of miRNA and target gene. A number of publications argue that miRNA is the cause of disease without understanding that changes in miRNA concentration can occur through independent expression from intergenic regions or from host gene introns (Madrigal-Matute et al., 2013; Andreou et al., 2015; Feinberg and Moore, 2016; Solly et al., 2019). In all cases, miRNAs appear to modify the expression of target genes and not to cause the disease themselves. It is not taken into account that one miRNA can affect several or even 100s of genes, and one gene may be a target of several miRNAs (Atambayeva et al., 2017; Kondybayeva et al., 2018). In this article, we discuss what should be taken into consideration when reviewing the problem of miRNA interaction with candidate genes and show the need to use a systematic approach in establishing the most probable associations of miRNA and target genes.

It has been found that miRNAs, which are nanoscale regulatory biomolecules, are involved in many biological processes at all stages of the development of atherosclerosis, from early endothelial dysfunction to the erosion and rupture of an unstable atherosclerotic plaque (Cipollone et al., 2011; Madrigal-Matute et al., 2013; Andreou et al., 2015; Maitrias et al., 2015; Feinberg and Moore, 2016; Santovito et al., 2016; Chen et al., 2018; Ren et al., 2018; Wang et al., 2018). In addition, miRNAs are considered novel non-invasive biomarkers of the instability of atherosclerotic plaques and have been associated ischemic disorders (Churov et al., 2019). Their detection in the blood of patients may be a promising direction for the diagnosis of atherosclerosis complications such as ischemic stroke and myocardial infarction (Kanuri et al., 2018; Desjarlais et al., 2019; Moghaddam et al., 2019; Vargas-Alarcon et al., 2019; Velle-Forbord et al., 2019; Wiese et al., 2019; Kondybayeva et al., 2020). When the pathogenic role of a specific miRNA is confirmed, it can be considered a potential therapeutic target (Friedman et al., 2009; Fang et al., 2013; Moghaddam et al., 2019; Kazemi et al., 2020). According to the miRBase database, miRNAs have been found in many human tissues and are able to regulate the expression of more than 60% of all protein-coding genes (Kanuri et al., 2018; Ren et al., 2018; Wiese et al., 2019). Full complementarity between miRNA and mRNA results in degradation (Leidinger et al., 2012; Alagia and Eritja, 2016). However, incomplete complementarity is most often observed, in which case miRNAs suppress translation, generally by binding to the 3′-untranslated regions (3′ UTRs) of mRNAs (Ivashchenko et al., 2014a,c; Alagia and Eritja, 2016; Atambayeva et al., 2017). In addition, miRNAs can bind to other regions of target mRNAs, including the 5′-untranslated regions (5′ UTR) and coding sequence (CDS) (Orom et al., 2008; Forman and Coller, 2010; Ivashchenko et al., 2013; Zhou and Rigoutsos, 2014; Niyazova et al., 2015; Kondybayeva et al., 2018; Yurikova et al., 2019). We used a program that effectively determines the quantitative characteristics of the interaction of miRNA with mRNA and allows us to identify fundamentally new properties of the binding of miRNA to mRNA. The aim of this work was to identify associations between miRNAs and mRNA candidate genes of atherosclerosis for use as markers for the diagnosis of this disease.



MATERIALS AND METHODS

The nucleotide sequences of 2565 miRNAs (we name this set as ‘old miRNAs’) were downloaded from the miRBase database1 (Release 22.1) and 3707 miRNAs (we name this set as ‘new miRNAs’) obtained from a report by Londin et al. (2015). Due to this work the number of known miRNAs had more than doubled. The nucleotide sequences of genes were obtained from GenBank2. A database of 68 candidate genes including the names of the genes and publication sources was compiled, confirming the associations of these genes with atherosclerosis (Supplementary Table S1). A search for the target genes of miRNAs was performed using the MirTarget program (Ivashchenko et al., 2014b). This program determines the following binding characteristics: the start of the miRNA binding site (BS) of mRNA; the locations of miRNA BS (3′ UTR, 5′ UTR, CDS); the interaction free energy (ΔG, kJ/mole); and nucleotide interaction schemes between miRNAs and mRNAs. The ratio of ΔG/ΔGm (%) was determined for each BS, where ΔGm is equal to the free energy binding of miRNA with its full complementary nucleotide sequence. The MirTarget program found hydrogen bonds between adenine (A) and uracil (U), guanine (G) and cytosine (C), G and U, A and C. The distances between A and C were equal 1.04 nanometers, between G and C, and between A and U were equal 1.03 nanometers, between G and U equal to 1.02 nanometers (Leontis et al., 2002). The numbers of hydrogen bonds in the G-C, A-U, G-U, and A-C interactions were found to be 3, 2, 1 and 1, respectively (Kool, 2001; Lemieux and Major, 2002). The MirTarget program determines single miRNA BS in mRNA and miRNA BS which are in clusters (BS arranged with overlapping of nucleotide sequences of the same or several miRNAs) (Aisina et al., 2019). Predicted by the MirTarget program binding sites in over 30 genes were confirmed experimentally (Yurikova et al., 2019).



RESULTS

The BSs of the miRNAs and mRNAs of the target genes were not uniform along the length of the mRNAs. Both multiple and single BS were identified. BSs could be sequential or overlap with each other. Having overlapping nucleotide sequences in a cluster lead to the compaction of the mRNA sequence that is the target of several miRNAs. When the ΔG and ΔG/ΔGm values of miRNA BS are close to each other, it can be assumed that in the presence of equal miRNA concentrations, the miRNAs with a larger number of BS will be more likely to bind to the mRNAs of target genes. When the miRNA-mRNA interaction strength and the degree of their complementarity are similar, the miRNA has the highest concentration upon binding.


Characteristics of miRNA Interactions in the 5′ UTRs of the mRNAs of Atherosclerosis Candidate Genes

BSs of miRNAs were identified in the 5′ UTRs of 14 mRNAs. The GAS6 mRNA contains a large cluster with BS of 21 different miRNAs, half of which have two or three BS, while the rest represent single BS (Table 1). The cluster size is 39 nt, starting at the 11 nt position and ending at position 49 nt. The total BS length in the cluster is 824 nt, where the degree of compaction is 21. This compaction allowed this number of miRNA BS to be located in a 5′ UTR with a length of 153 nt. In an association analysis of seven miRNAs with the GAS6 mRNA the free energy interaction of the miRNAs with the mRNA is more than −130 kJ/mole, which indicates that these associations are promising markers of atherosclerosis.


TABLE 1. Characteristics of miRNAs interaction in the 5′ UTR of mRNA of GAS6, NFE2L2, and SCAP genes.
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To prove that the identified clusters are reliable, on the example of GAS6 gene showed that the cluster exists in the mRNA of orthological genes and is conservative in its nucleotide composition (Figure 1). There are mainly new miRNAs in the clusters of BSs in 5′ UTR region of mRNA of GAS6, NFE2L2 and SCAP genes. In mRNA of GAS6 gene the cluster includes 20 new miRNA and one old miRNA, in mRNA of NFE2L2 gene the cluster contains 15 BSs of new miRNA; in mRNA of SCAP gene there is a cluster for binding of 13 new and one old miRNA (Table 1). In the other 11 target genes, there are 28 new and one old miRNAs are linked in 5′ UTR region of mRNA (Supplementary Table S2). These data suggest that the use of new miRNAs significantly increased the number of effective gene expression modulators.
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FIGURE 1. The WebLogo schemes (https://weblogo.berkeley.edu/logo.cgi) of nucleotide sequences for BS clusters in mRNA of GAS6 (A), NFE2L2 (B), SCAP (C) orthological genes. Nucleotides of BS clusters are highlighted in blue. Nucleotides of BS clusters mRNA of GAS6 Ggo (Gîrillà gîrillà), Hsa (Homo sapiens), Mmu (Macaca mulatta), Pab (Pongo abelii), Pan (papio anubis), Ptr (pan troglodytes); nucleotides of BS clusters mRNA of NFE2L2 Ggo, Hsa, Pab, Pan, Ptr; nucleotides of BS clusters mRNA of SCAP Ggo, Hsa, Mmu, Pab, Pan, Ptr.


Some miRNAs have multiple BSs: ID00061.3p-miR, ID01155.3p-miR, ID01702.3p-miR, ID01804.3p-miR, ID02187.5p-miR, ID00296.3p-miR, ID01155.3p-miR by three, ID01641.3p-miR by four, ID00061.3p-miR, ID00296.3p-miR, ID01702.3p-miR by five BSs. These miRNAs are recommended as associations for the diagnosis of atherosclerosis considering the high free energy interaction with mRNA of candidate genes. ID01935.5p-miR has a complete complementarity interaction with mRNA of NFE2L2 gene, which suggests that ID01935.5p-miR and NFE2L2 association should be recommended as a marker. These miRNA correlations clearly demonstrate the predominant influence of new miRNAs on gene expression with BS in 5′ UTR. Consequently, researchers actually do not receive information about the regulation of gene expression by new miRNAs, the effect of which is high when only the old miRNAs are studied.

The following circumstances need to be considered when evaluating the effects of many miRNAs in a cluster of BSs in mRNA. Primarily, miRNA will bind with higher free energy interaction, so quantitative interaction characteristics are needed. The ratio of miRNA concentrations between alternative miRNAs has a significant importance (miRNAs, which bind in the cluster) and especially in relation to the concentration of mRNA. Obviously, the total concentration of alternative miRNAs should be lower than the mRNA concentration, otherwise the protein will not be synthesized. A decrease of concentration of any miRNA below mRNA concentration will not affect protein synthesis. At the same time, an increase of one miRNA above mRNA concentration can completely suppress gene expression. The mRNA of many genes contains clusters of BSs of several similar miRNAs. In this way, nature has optimized the expression of several genes under common miRNA control. It is necessary to consider that many genes are expressed in cells of different tissues to different degrees, which may affect the dependence of protein synthesis from miRNA. However, a large number of binding miRNA may not allow the target gene expression to increase significantly. Many miRNAs have been found in the blood and serum in combination with AGO proteins and within exosomes, which indicates their capability to circulate freely throughout the body and to reach many organs and tissues. It is necessary to remember that the synthesis of intronic miRNAs depends on the expression of host gene, while the synthesis of other miRNAs is made from transcripts of intergenic regions. The reasons for changes in the expression of such miRNA in case of disease should be known. There are known changes of miRNA expression by several orders. Considering the above information, the reports are perceived cautiously that some researchers have been able to detect marker miRNA in specific diseases.

The above examples of presence of BS clusters in mRNA of some genes for several miRNAs suggest that such genes are expressed under the common control of the miRNA group and, consequently, these genes form a network of interconnected genes controlling key metabolic processes. To confirm the reliability of found miRNA and their BSs, it is possible to use data about the presence of such BSs or their clusters in orthological genes (Figure 1).

With the given examples we show the inadequacy of miRNA BSs establishment by programs based only on a miRNA seed sequence. The whole miRNA nucleotide sequence is important, which is confirmed by the conservation of miRNA nucleotide sequences and corresponding BS during millions of years. The nucleotide sequences of miRNA and their BSs have been conserved in the mRNA genes of animal and plant organisms over 10s of millions of years of evolution (Bari et al., 2013; Ivashchenko et al., 2013, 2014b; Yurikova et al., 2019).

ID00061.3p-miR, ID00296.3p-miR, ID00457.3p-miR, ID00522.5p-miR, ID01041.5p-miR, ID01155.3p-miR, ID01641.3p-miR, ID01702.3p-miR, ID01804.3p-miR, ID01873.3p-miR, ID02187.5p-miR and ID03367.5p-miR interact not only with GAS6 mRNA but also with NFE2L2 mRNA, where they form a large cluster together with other miRNAs. The cluster of miRNA BS in the NFE2L2 mRNA is one of the largest clusters of miRNAs associated with atherosclerosis-related genes in which BS are formed in the 5′ UTR. The cluster consists of 14 different miRNAs, ranging from the 438 to 482 nt positions, with a size of 45 nt. The total size of all binding sites is 669 nt, resulting in a degree of compaction of 15. Due to compaction, this length of BS is a small fraction of the 5′ UTR length of 555 nt. A complete complementarity interaction of ID01935.5p-miR with NFE2L2 mRNA was identified. Eight miRNAs interact with NFE2L2 mRNA with a free energy of more than −130 kJ/mole. These associations are recommended as valuable markers of atherosclerosis. The above examples of associations of miRNAs and target genes show that determining the expression level of one or more miRNA without monitoring target gene expression will not provide adequate data on the specific association of these miRNAs with the disease.

The ADAM10 mRNA contains BS for ID02761.3p-miR with overlapping nucleotide sequences (Supplementary Table S2). The ADCY9 mRNA is characterized by the presence of two clusters, each of which is formed by two single BS. In addition to this gene, clusters were identified in the following mRNAs: IRS2 and PIN1, which contain BS for two miRNAs. The PNPLA3 and mRNAs have a cluster consisting of three single BS. The CXCL12 mRNA contains a cluster of four different miRNAs, of which ID02036.3p-miR, ID01293.5p-miR, ID00417.3p-miR and ID02066.5p-miR have two BS. The cluster starts at 65 nt and ends at 93 nt, with a length of 29 nt and an average ΔG/ΔGm of 93%. The sum of the BS lengths of these miRNAs was 170 nt and was six times longer than the cluster length. Due to this compaction, all BS were located in a 5′ UTR with a length of 92 nt. The MMP2 mRNAs contained a cluster of six miRNA BS with a total length of 136 nt and a 5′ UTR length of 311 nt. The PNPLA3 mRNA contains a cluster of three miRNA BS. Among the clusters in the 5′ UTRs of the target genes, one can distinguish the SCAP gene cluster formed by BS from 14 miRNAs from the 99 nt to the 136 nt position, in which both single BS and multiple BS are found, more specifically, seven multiple sites and seven single sites (Table 1). Of the 14 miRNAs with the exception of ID00756.3p-miR, ID01403.5p-miR, ID01652.3p-miR and ID03151.3p-miR all were in the group of miRNAs binding to the GAS6 mRNA. Furthermore, ID00061.3p-miR, ID00296.3p-miR, and ID01702.3p-miR had five BS each, which significantly increased the likelihood of their binding compared to that of competing miRNAs. The total length of miRNA BS was 735 nt, and the degree of compaction was 19. Without compaction, these sites could not be located in this 255 nt long 5′ UTR. This cluster is characterized by a maximum ΔG of −144 kJ/mole for the BS of ID00296.3p-miR and ID01702.3p-miR. Of all the interactions of miRNAs and the 5′ UTRs of target mRNAs, five had a free energy of more than −130 kJ/mole. Convincing evidence of the effectiveness of the MirTarget program in determining the characteristics of miRNA binding to the 5′ UTR, CDS and 3′ UTR of mRNA is given in Figure 2. The diagrams show the interaction of nucleotides along the entire length of the miRNA in the BS of the target mRNA and the characteristics of this interaction.
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FIGURE 2. Convincing evidence of the effectiveness of the MirTarget program in determining the characteristics of miRNA binding to the 5′ UTR, CDS and 3′ UTR of mRNA. The diagrams show the interaction of nucleotides along the entire length of the miRNA in the BS of the target mRNA and the characteristics of this interaction. Non-canonical base pairs are in bold.




Characteristics of miRNA Interactions With the CDS of mRNAs of Atherosclerosis Candidate Genes

Most genes contained more one BS for one miRNA in the CDS of mRNAs. There were some genes with several BS or multiple BS where clusters could form. It is worth noting that IRS2 is characterized by the presence of three clusters and a large number of BS compared to other genes. This suggests that this gene is more susceptible to regulation by miRNA (Table 2). The first cluster was composed of 25 different miRNAs, 13 of which had two or more BS (ID00061.3p-miR, ID00457.3p-miR, ID00756.3p-miR, ID01155.3p-miR, ID01702.3p-miR, ID01804.3p-miR, ID01873.3p-miR, ID01879.5p-miR ID02064.5p-miR, ID02187.5p-miR, ID03229.5p-miR, ID03367.5p-miR, miR-3960), and the rest were composed of single BS. The cluster was 41 nt long, starting at 2586 nt and ending at 2626 nt. The total length of the BS in the cluster was 1114 nt, while the degree of cluster compaction was 28. The 2-nd cluster was formed by single BS of seven miRNAs. The 3-day cluster consisted of the BS of nine different miRNAs. ID00296.3p-miR and ID01702.3p-miR had three binding sites. In general, the cluster was 41 nt long, extending from position 4304 to 4344 nt. The total length of all the BS of the three clusters was 1607 nt, which is 40% of the total CDS length of 4017 nt. Due to compaction, the total length of all clusters is 110 nt, that is, only 2.7%. Thirteen miRNAs interacted with the IRS2 mRNA with a free energy of more than −130 kJ/mole, which gives reason to recommend these interactions as diagnostic markers of atherosclerosis. Each of the three clusters in the MR of the orthologous IRS2 genes encoded different highly homologous oligopeptides (Supplementary Table S3).


TABLE 2. Characteristics of miRNAs interaction in the CDS of mRNA of IRS2 and KLF2 genes.
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Clusters consisting of single miRNA BS were found in the following genes (Supplementary Table S4): two BS in ACE with an average ΔG of −128 kJ/mole; five BS in ADRB3 for five miRNAs with an average ΔG of −115 kJ/mole and BS in FASLG for ID00061.3p-miR, ID00296.3p-miR, ID01641.3p-miR, and ID01702.3p-miR. SIRT1 contained two sites for ID03332.3p-miR and single BS for ID00278.3p-miR and ID00811.3p-miR, with an average ΔG of −129 kJ/mole.

TBC1D10B gene is involved in the functioning of cardiovascular endothelial cells (Li et al., 2017) and it is a target of miR-762 with fully complementary binding (Supplementary Table S4). This site encodes the APAPAPAPAPAPA oligopeptide, with the flanking oligopeptides AWVPGSAQTS and VTGSTVVVLTL (Supplementary Table S5).

MRNA of CDKN1C gene (Rodriguez et al., 2007) contains three clusters consisting of both single and multiple BS. The first cluster consists of two BS for miR-762 and ID03129.3p-miR and has a size of 36 nt, extending from 738 to 753 nt. The second cluster is composed of 17 miR-762 BS, 3 ID00099.3p-miR BS, and 1 ID02682.5p-miR BS. ID00036.3p-miR, ID01075.3p-miR and ID00411.5p-miR cover a region of 31 nt, extending from the 888 nt position to 918 nt with an average ΔG value of −125 kJ/mole. The mRNA of the candidate gene CDKN1C has 17 sequentially located binding sites for miR-762 that encode the oligopeptide (AP)18, which indicates a strong dependence of gene expression on this miRNA (Supplementary Table S4). Orthologous primate genes (Supplementary Table S6) encode similar oligopeptides with an AP dipeptide number up to 33. In all primate cases, miR-762 BSs are located between the conserved flanking nucleotide sequences that encode the conserved AAPVAVAVLA and DAAPQESAEQ oligopeptides (Supplementary Table S6). These animals can be used to study the role of miR-762 in the development of atherosclerosis. A similar type of organization of miRNA binding multiple sites has been found in the mRNAs of many genes involved in the development of cardiovascular and other diseases (Kondybayeva et al., 2018; Aisina et al., 2019; Yurikova et al., 2019).

KLF2 is characterized by the presence of two clusters consisting of the BS for 14 and 2 different miRNAs. The first of these clusters is formed by single BS starting from the 264 to 296 nt position with a size of 33 nt (Table 2). The total length of all BS is 305 nt. The degree of compaction of the binding sites in the cluster is nine. The second cluster of this gene is formed only by two single BS. In the CDS of KLF2 mRNA BS were detected for ID00061.3p-miR, ID00457.3p-miR, ID01155.3p-miR, ID01702.3p-miR, ID01804.3p-miR, ID02187.5p-miR, ID03367.5p-miR which have BS in the 5′ UTR of GAS6 mRNA. This indicates an overall control of these genes expression by these miRNAs. The maximum ΔG/ΔGm value (100%) among these genes was detected at the ID01593.5p-miR BS, which interact with the ANGPTL4 mRNA.

PDE4D formed two clusters. The first cluster contained the BS for ID00061.3p-miR, ID01155.3p-miR, ID03064.3p-miR, miR-3960 and ID01702.3p-miR, which had three BS with a free energy value of −134 kJ/mole. ID01641.3p-miR, miR-3960 and ID01702.3p-miR BS were found in the second cluster. The size of the first cluster was 34 nt, extending from position 336 to 369 nt. The second cluster consisted of five multiple BS and eight single BS; the cluster size was 49 nt, extending from 391 to 439 nt. The total length of miRNA BS was 491 nt, and the degree of compaction was 10 (Supplementary Table S4).

There were 39 BS for new miRNAs and two BS for old miRNA in IRS2 mRNA. Two clusters of binding sites in the KLF2 mRNA interacted with 14 new miRNAs and one old miRNA. In addition, there were 15 BS for new miRNA and two BS for miR-3960 in the PDE4D mRNA. A total in CDS mRNA of 40 target genes BS were identified for 148 new miRNAs and 32 old miRNAs.

Some miRNAs had more than two BS: ID01641.3p-miR, ID02064.5p-miR, ID02187.5p-miR, ID02770.5p-miR, ID03324.3p-miR, ID03367.5p-miR – 3 BS; ID00296.3p-miR, ID01377.3p-miR, ID01804.3p-miR, miR-3960 – 4 BS; ID00457.3p-miR, ID01155.3p-miR – 5 BS and ID00061.3p-miR, ID01702.3p-miR – 6 BS. Most of them had free energy interaction above −130 kJ/mole.

Three clusters of miRNA BS in CDS mRNA of orthologic genes encode different oligopeptides because they have different reading frames. Oligopeptides encoded by BS are clearly defined by conservative oligopeptides, which flank oligopeptides encoded by BS. Apparently, flanking oligopeptides carry out the important functional role of a protein, and oligopeptides coded by BS in the first and second clusters change for the reason of an acceptability of incomplete complementary interactions of miRNA and mRNA.



Characteristics of miRNA Interactions in the 3′ UTRs of mRNAs of Atherosclerosis Candidate Genes

The 40 genes involved in the development of atherosclerosis were characterized by BS in the 3′ UTRs. A feature of miRNA interactions with atherosclerosis candidate genes is the presence of BS for miR-466, ID00436.3p-miR, and ID01030.3p-miR in their mRNAs (Table 3 and Supplementary Table S7). The BS of these miRNAs can be single or multiple and could form a cluster. For example, CD36 mRNA contains six BS for ID00436.3p-miR and five BS for miR-466 and ID01030.3p-miR. FASLG mRNA contains six BS for miR-466 and ID00436.3p-miR and five BS for ID01030.3p-miR. The mRNA of the FLT1 gene contains eight BS for miR-466 and seven BS for ID00436.3p-miR and ID01030.3p-miR. Another feature of candidate genes is the presence of clusters of binding sites for miR-5095 and miR-619-5p in their mRNA. There are two clusters of BS of miR-5095 and miR-619-5p located 12 nucleotides apart in IL18 mRNA. In these clusters, the start sites of miR-5095 and miR-619-5p BS are located six nucleotides apart, which is probably due to their common origin. In the mRNAs of CD36 and ADAM17 completely complementary BS with miR-619-5p and BS between the mRNA of IL18 with miR-5096 were revealed. The BS of miR-1273f and miR-1273e form a cluster in the mRNAs of IGF1 gene (Supplementary Table S7). The 3′ UTRs of the mRNAs of many candidate genes contain only single miRNA BS that do not form clusters: ABO, ACE, ADAM17, ADAM33, ANGPT2, APOL1, CD59, FADS2, FOXP3, GPR132, HNF1A, IGF1R, LDLR, LPCAT3, NOS1AP, PNPLA3, PPARA, SOAT1, SOCS3, TFPI, TNC, and ZBTB46. Some genes are characterized by clusters consisting of two single BS: BRCA1, F11R, IGF1, ITGA2, and TNFSF10. Some genes were characterized by mixed clusters formed by both single and multiple BS. NR4A2 had a cluster consisting of both single BS of ID00470.5p-miR and multiple BS of ID02299.5p-miR (Supplementary Table S7).


TABLE 3. Characteristics of miRNAs interaction in the 3′ UTR of mRNA of atherosclerosis candidate genes.
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FASLG was characterized by a cluster formed from a miRNA with single BS (ID02868.3p-miR) and three miRNAs with multiple BS consisting of six BS for miR-466, five for ID01030.3p-miR and six for ID00436.3p-miR, extending from 1602 to 1637 nt with an average ΔG value of −108 kJ/mole. In the 3′ UTR of FLT1, there was a cluster of three multiple BS consisting of seven BS for ID01030.3p-miR, seven for ID00436.3p-miR and eight for miR-466, extending from 6909 to 6959 nt and with an average ΔG value of −107 kJ/mole. IL18 had a cluster of two miR-5095 and two miR-619-5p sequences, with a size of 41 nt and an average ΔG value of −114 kJ/mole. MTHFR mRNA contained one cluster, consisting of ID01811.5p-miR, miR-5095 and miR-619-5p with an average ΔG value of −114 kJ/mole. PPARGC1A contained a cluster formed by four different miRNAs, including two miR-466 BS and three ID00436.3p-miR, ID01030.3p-miR, and ID01727.5p-miR sequences. The size of this cluster was 43 nt, extending from 2806 to 2848 nt. There were some genes with more than one cluster. The PLA2G7 mRNA had a cluster that consisted of five miR-466, four ID01030.3p-miR and five ID00436.3p-miR sites and a length of 35 nt, extending from 1643 to 1677 nt, with an average ΔG value of −106 kJ/mole.

ICAM1 was characterized by the presence of two clusters, the first of which consisted of two single BS (ID01030.3p-miR and miR-466), extending from 2987 to 3011 nt. The second cluster consisted of three BS of different miRNAs. ID00470.5p-miR formed BS in OLR1 and NR4A2 mRNAs. The cluster of miR-1273f and miR-1273e BS was formed in IGF1 mRNA.

There were miRNAs that had BS for more than one mRNA. The unique miR-619-5p had BS in the mRNAs of ADAM17, ADAM33, APOL1, BRCA1, F11R, IL18, ITGA2, LDLR, MTHFR, PNPLA3, SOAT1, and TNFSF10. ID00436.3p-miR and ID01030.3p-miR formed clusters that consisted of multiple BS for ADRB3, F11R, FASLG, FLT1, PLA2G7, and PPARGC1A mRNA. ID01727.5p-miR had BS for NOS1AP and PPARGC1A mRNAs.

The CD36 mRNA cluster, consisting of BS to two different miRNAs, miR-619-5p and miR-5585-3p, extended from 4168 to 4197 nt. The CD36 mRNA cluster consisted of both single BS and multiple BS. In general, the cluster consisted of five ID01030.3p-miR, five miR-466, six ID00436.3p-miR and one ID01727.5p-miR sequences. The size was 38 nt, extending from 3529 to 3566 nt, with an average ΔG value of −106 kJ/mole.

Associations of miRNA and target genes having BS in 3′ UTR mRNA are very different from those in 5′ UTR and CDS. In the 3′ UTR mRNA there are no clusters of BS over four miRNAs. The number of old and new miRNAs is comparable. The total number of binding sites of new miRNA is 57 and 63 old miRNA per mRNA of 40 target genes. This is probably due to the fact that the GC content of old miRNAs is comparable to that of 3′ UTRs, while in 5′ UTR and CDS it is about 10% higher. In the new miRNA GC content is comparable to that in 5′ UTR and CDS, so the number of BS for new miRNA in these regions of mRNA is much larger.

The choice of miRNA-gene associations is difficult to offer as miRNAs such as miR-619-5p, miR- 5095-, miR-5096- and miR-5585-3p, which have targets in many genes and most likely play the role of stabilizers of protein expression. Similar to miR-466, ID00436.3p-miR and ID01030.3p-miR, which have multiple BS in the mRNA of many genes, which also gives them the role of stabilizing the expression of their targets. A significant increase in the concentration of any these miRNAs will lead to numerous metabolic disorders and to different diseases consequently. If about 100–200 key miRNAs are identified with miRNA-chips, the range of candidate genes will be significantly reduced because with bioinformatic approaches it could be done easily and quickly.



DISCUSSION

Since it would be advisable to have lower costs for the diagnosis of the disease, it is desirable to minimize the number of associations of miRNA and target genes. However, in the case of polygenic diseases, such methods could be difficult to develop because it is not known which gene and which miRNA cause a particular patient’s disease. Therefore, now it is necessary to select a list of priority genes for diagnosis and then check which miRNA could influence protein expression. With the MirTarget program, this is easily to install and, if alternative miRNAs are involved, it is also simple to identify miRNAs competitiveness. The results of the present research demonstrate the effectiveness of this approach.

It was found that the BS of some miRNAs formed clusters in the 5′ UTR and CDS sequences of mRNA, resulting in competition between these miRNAs for binding to mRNA and, accordingly, for suppressing the expression of the target gene. The quantitative characteristics of miRNA BS with mRNA make it possible to predict which miRNAs can more efficiently bind to mRNA at equal miRNA concentrations. At different concentrations of these miRNAs, kinetic equations can be used to predict their suppressive effect on the expression of the target gene. The revealed associations of several miRNAs that bind to mRNAs of different candidate genes make it possible to predict the effect of these miRNAs on the corresponding genes, which can be expressed to different degrees. For example, GAS6, NFE2L2, and IRS2 are targets of several identical miRNAs and bind with these miRNAs depending on their concentrations in the cell. In cells of different tissues, the ratio of miRNA and target gene concentrations will be different, and the effect of the miRNAs on these target genes will also be different. This brief discussion of the different interactions of miRNAs and candidate genes under different circumstances shows the complexity of these networks and begins to paint a picture of the interactions of miRNA groups with groups of target genes. Without this assumption, it is difficult to predict or evaluate the involvement of a single miRNA or a single gene in the development of a disease. From the identified interactions, it is necessary to choose those that control more genes and miRNAs and reflect the development of atherosclerosis. A number of mRNAs and miRNAs strongly interacting with each other are proposed in this study. For example, PDE4D and ID00296.3p-miR; SCAP and ID00296.3p-miR and ID01702.3p-miR; ADCY9 and ID00296.3p-miR; IRS2 and ID01702.3p-miR, ID03064.3p-miR, ID01804.3p-miR, and ID00296.3p-miR; NFE2L2 and ID01935.5p-miR, ID00296.3p-miR, ID01702.3p-miR, and ID01804.3p-miR. In addition, miRNAs that bind with mRNAs of candidate genes with complete complementarity are of interest. Within addition to this condition, it is necessary to consider miRNAs interacting with a large number of genes, since such miRNAs can simultaneously control the expression of many genes. Genes that are regulated by a large number of miRNAs can also be considered as effective markers. Unfortunately, our knowledge is still insufficient to determine which candidate genes play a key role in the development of the disease, and it is not known which miRNAs are the most likely signals for the development of atherosclerosis. However, one thing is obvious – it is necessary to simultaneously study miRNA and gene interactions in order to improve the likelihood of obtaining a valid result. From the established interactions, it is first necessary to consider the interactions between candidate genes with multiple miRNAs that form clusters of BS and miRNA interactions with high free energy. For example, IRS2 is the target of 41 miRNAs with BS located in the CDS, of which ID00061.3p-miR, ID00296.3p-miR, ID00457.3p-miR, ID01041.5p-miR, ID01155.3p-miR, ID01641.3p-miR, ID01702.3p-miR, ID01778.3p-miR, ID01804.3p-miR, ID01895.5p-miR, ID02052.5p-miR, ID02064.5p-miR, ID02950.3p-miR, and ID03064.3p-miR have free energy interactions above −130 kJ/mole. The mRNA of GAS6 interacts with 21 miRNAs, of which those with ID00296.3p-miR, ID01041.5p-miR, ID01106.5p-miR, ID01641.3p-miR, ID01702.3p-miR, ID01804.3p-miR, ID02084.3p-miR, and ID02294.5p-miR are more efficient. Associations of this type were observed for NFE2L2, ADCY9, PNPLA3, SCAP, KLF2 and PDE4D, which bind to many miRNAs with high free energy. Another type of association is the interaction of one or more miRNA with many genes. For example, miR-466, ID00436.3p-miR and ID01030.3p-miR bind with the mRNAs of ADRB3, CD36, FASLG, FLT1, PLA2G7, and PPARGC1A. In addition, miR-619-5p targets several candidate atherosclerosis genes: CD36, IL18, ADAM17, ADAM33, APOL1, BRCA1, F11R, ITGA2, LDLR, MTHFR, PNPLA3, SOAT1, and TNFSF10. The mRNA of ANGPTL4 is fully complementary with ID01593.5p-miR; the mRNAs of ADAM17 and CD36 with miR-619-5p; the mRNA of IL18 with miR-5096; and the mRNA of NFE2L2 with ID01935.5p-miR.

Here, miRNA interactions with candidate atherosclerosis genes have been established, which consist of one gene and several miRNAs, one gene and one miRNA, one miRNA and several genes, and two or more miRNAs with two or more candidate genes. The revealed cluster organization of miRNA BS in mRNA candidate genes contributes to a more accurate diagnosis of the participation of competing miRNAs in the development of atherosclerosis.
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Millets are the strategic food crops in arid and drought-prone ecologies. Millets, by virtue of nature, are very well-adapted to drought conditions and able to produce sustainable yield. Millets have important nutrients that can help prevent micro-nutrient malnutrition. As a result of the adverse effect of climate change and widespread malnutrition, millets have attained a strategic position to sustain food and nutritional security. Although millets can adapt well to the drought ecologies where other cereals fail completely, the yield level is very low under stress. There is a tremendous opportunity to increase the genetic potential of millet crops in dry lands when the genetics of the drought-tolerance mechanism is fully explained. MicroRNAs (miRNAs) are the class of small RNAs that control trait expression. They are part of the gene regulation but little studied in millets. In the present study, novel miRNAs and gene targets were identified from the genomic resources of pearl millet, sorghum, foxtail millet, finger millet, and proso millet through in silico approaches. A total of 1,002 miRNAs from 280 families regulating 23,158 targets were identified using different filtration criteria in five millet species. The unique as well as conserved structural features and functional characteristics of miRNA across millets were explained. About 84 miRNAs were conserved across millets in different species combinations, which explained the evolutionary relationship of the millets. Further, 215 miRNAs controlling 155 unique major drought-responsive genes, transcription factors, and protein families revealed the genetics of drought tolerance that are accumulated in the millet genomes. The miRNAs regulating the drought stress through specific targets or multiple targets showed through a network analysis. The identified genes regulated by miRNA genes could be useful in developing functional markers and used for yield improvement under drought in millets as well as in other crops.

Keywords: microRNAs, millets, drought stress, conserved genes, functional genes


INTRODUCTION

MicroRNAs (miRNAs) are small, single-stranded, non-coding, endogenous RNA of size varying from 21 to 24 nucleotides mainly involved in post-transcriptional gene regulation (Zhang et al., 2014; Aravind et al., 2017). They are highly conserved in matured form, and the conserved nature has made it a molecule of interest in several plant growth, development, and stress regulatory studies without any species boundaries. miRNAs regulate gene expression by targeting specific genes that are involved in biological processes, such as development and metabolic process, as well as target-specific transcription factors (TFs). Interaction between the miRNA–mRNA target is more important as it induces variation in the gene being expressed. Regulation of gene expression occurs in several ways, such as miRNA-directed mRNA cleavage, translational repression, chromatin remodeling, or epigenetic modification (Kumar et al., 2018). Single miRNA itself can target several genes involved in the same cellular signaling pathway (Alptekin et al., 2017).

Studies have shown that miRNAs and their targets are highly conserved across all major lineages of plant species, including dicots and monocots (Jones-Rhoades and Bartel, 2004). There are at least four theories about the origin of miRNAs: (1) inverted duplication events in the gene sequences; (2) duplication events from the protein-coding genes; (3) derived from the transposable elements, such as miniature inverted-repeat transposable elements (MITEs); and (4) accumulation of mutations in the inverted repeats and selection (Cuperus et al., 2011; Nozawa et al., 2012). Evolutionarily conserved miRNAs are mostly encoded by gene families. This, coupled with miRNA–mRNA target interaction, results in overlapping functions of miRNAs belonging to the same families (Jones-Rhoades et al., 2006).

miRNA families can be divided into two categories, based on the nature of their conservation and function. The first type is ancient in terms of evolution, highly conserved in the system with a high degree of expression. Conserved miRNAs are ubiquitous with low sequence variation and play an important role in basic biological functions through regulation of transcription factors and genes. The second type is relatively young in terms of evolution and expresses only when induced under specific conditions. Since they recently evolved to perform a specific function, the sequence variation is high in such types (Qin et al., 2014). Even though miRNA families are conserved among plants, they are more specific to the species of plant, physiological stages, type of organ/tissues, and stress conditions (Sun, 2012; Banerjee et al., 2016; Sunkar et al., 2017). This conserved nature over long evolutionary distances suggests the role of the evolutionarily conserved mechanism of miRNA in gene regulation (Molnar et al., 2007).

Abiotic stresses negatively impact plant growth, development, and productivity by altering the gene expression patterns. In order to cope with stress conditions, plants have developed several mechanisms over time, including the intricate interactions between stress-responsive elements and various molecular and biochemical factors affecting growth and development (Razmjoo et al., 2008). The plant molecular responses to abiotic stresses involve interactions and crosstalk with many molecular pathways, including miRNA-mediated regulatory pathways (Bej and Basak, 2014). miRNA-mediated regulation involves a change in self-concentration and modifying the mRNA expression. These regulations, in turn, change the protein expression when exposed to stress (Ding et al., 2009; Wang et al., 2014).

Under drought stress, plants have evolved a series of protective mechanisms to withstand adverse conditions (Jaworski et al., 2010). Plants produce an array of gene regulation responses, which include triggering the expression of several stress-related genes, accumulation of osmotically active metabolites, and biosynthesis of specific proteins (Nepolean et al., 2014; Mittal et al., 2017a,b). Many studies have shown that the miRNAs were important modulators of drought tolerance in plants, where they modify the translation of target mRNAs that contain sequences that are complementary to the mature miRNAs. A study conducted in wild emmer wheat produced differential expression patterns of 13 miRNAs in response to drought stress (Kantar et al., 2011; Aravind et al., 2017).

Millets are a group of small grain crops of the family Poaceae, widely grown in the arid and semi-arid tropical regions of Asia and Africa. They are highly favored for food sustainability, owing to climate-resilient features, such as diverse adaptation to arid, semi-arid, and humid conditions. They tend to be less prone to biotic and abiotic stresses, and they can be grown in marginal lands (Kole et al., 2015). Compared to other cereals, millets show exceptional tolerance toward diverse abiotic stresses including drought, salinity, and heat stresses (Bandyopadhyay et al., 2017). In earlier studies on pearl millet, miRNAs were identified using non-pearl millet genomes (Jaiswal et al., 2018; Kumar et al., 2018). miRNAs in sorghum for drought (Katiyar et al., 2015; Hamza et al., 2016) and foxtail for drought (Wang et al., 2016) and dehydration stress (Yadav et al., 2019) using NGS approaches gave rise to a group of differentially regulating miRNAs. In our experiment, we selected five important millet species, namely pearl millet, sorghum, foxtail millet, finger millet, and proso millet, to mine the miRNAs using the latest genomic resources and in silico approaches and to track their stress-responsive features at the cellular, molecular, and physiological levels. We structurally characterized the miRNAs and identified conserved domains, such as sequence signatures in mature miRNAs across millet species. We identified target mRNAs regulated by the miRNAs and annotated the functional genes and transcription factors. We explained comprehensively how specific miRNAs regulating various genes in response to drought stress can be used to increase the productivity of millets and other crops.



MATERIALS AND METHODS


miRNA Reference and Genomic Data

Known microRNAs and their precursor sequences from different plants were obtained from miRNA databases PNRD (Yi et al., 2015) and miRBase (http://www.miRbase.org/). Of the 16,436 miRNAs we obtained, a total of 5,906 plant miRNAs served as reference after removal of the redundant sequences. Most of these miRNAs were identified or verified by experiments, and others were computationally predicted as their close homologs.

Genomic sequences in the form of expressed sequence tags (ESTs), genome survey sequences (GSS), and whole-genome sequences (WGS) were retrieved from the NCBI (http://www.ncbi.nlm.nih.gov/) for five millet species: pearl millet [Pennisetum glaucum (L.) R. Br.], 5265 ESTs, 4105 GSS, and WGS; sorghum [Sorghum bicolor (L.) Moench], 80461 GSS and WGS; finger millet [Eleusine coracana (L.) Gaertn.], 2021 ESTs; foxtail millet [Setaria italica (L.) Beauv.], 66052 ESTs and 96975 GSS; and proso millet (Panicum miliaceum L.), 216 ESTs. The reference genome sequence assembly accessions used in our study for pearl millet, sorghum, finger millet, foxtail millet, and proso millet are GCA_002174835.2, GCF_000003195.3, GCA_002180455.1, GCA_000263155.2, and GCA_002895445.2, respectively (https://www.ncbi.nlm.nih.gov/assembly).



Pre-processing

Distinct pre-processing steps were taken to draw miRNA candidate sequences from the respective millet genomes. The BLAST version 2.6.0+ alignment tool was used for BLASTn to find the homologs. All known hairpin loop sequences were used as reference in the BLAST search against the genome with accurate parameters as follows: word-size 11 and E value cut-off 10−3 and 100 percent identity value, with a maximum three mismatches allowed and default settings for the remaining parameters. Flanking regions from both sides of the matched sequences were cut to a length of 70 nt and scanned by a sliding window of 100 nt (Wang et al., 2005). Duplicated sequences were discarded, and the remaining query sequences were searched using protein and nucleotide databases filtered to remove the presence of rRNA, tRNA, and mRNA, leaving the candidate sequences to be treated as miRNA precursors.



Structure Prediction

The secondary structure of the candidate precursor sequences was predicted by RNA fold (Hofacker et al., 1994) using the Vienna R package (Lorenz et al., 2011). The folding structures prediction uses the minimum free energy (MFE) algorithm and base pairing probability matrix. Sequences satisfying the criteria are as follows: (1) precursors having no more than three mismatches with previously known plant miRNAs; (2) the secondary structure should be folding into a perfect or near-perfect stem loop hairpin; (3) the mature sequence should be located in one of the arms of the stem loop; (4) presence of loop in the miRNA sequence is not allowed; (5) only the sequences with MFE lower than −20 kcal/mol are kept, and (6) A+U nucleotide content is 25–70% (Patanun et al., 2013).

The miRNAs position on the stem loop structure were predicted by the MirDup (Leclercq et al., 2013), using the training plant model for the candidate mature miRNAs. The classifier uses 10-fold cross validation. The ranking method was performed using the information gain evaluator in WEKA. The MirDup uses the random forest classifier trained with an unlimited maximum depth of the trees.



Potential Target Identification

Putative gene targets were identified by complementarity between miRNA and mRNA sequence. The targets against all miRNAs of five millet species were identified using the plant miRNA analysis psRNA Target Tool (http://plantgrn.noble.org/psRNATarget/analysis) (Dai and Zhao, 2011). The genome and EST sequences of the crops were taken as input, considering the seed region 2–13 nt, maximum UPE 25, and expectation value 5 at the most. miRNA and mRNA complementary sites were scored 0.5 or 1, according to the G:U match or non-match. Additionally, no more than two consecutive mismatches and no more than four mismatches between mature miRNA and potential target (Chai et al., 2015) were allowed. Due to lack of annotation of the millets, protein coding genes were identified from the putative target mRNAs using BLASTx from either the same crop or from other plants, such as Arabidopsis or rice.



Gene Ontology

The gene ontology (GO) base is continually evolving as biological knowledge increases and the curation of biological process develops. Target genes were subjected to functional annotation to reveal the miRNA-mediated gene regulatory network on biological processes, cellular components, and molecular functions. GO annotation was performed using DAVID (https://david.ncifcrf.gov/) for individual crops to understand the diverse function. The DAVID functional annotation clustering tool provided a module-centric approach for functional analysis of large gene lists. The grouping of data is based on functional categories and co-expression profiles, such as genes in the same pathway. A gene-term matrix gives different categorical clusters, such as GO biological process, GO molecular function, and GO cellular component and pathways (Huang et al., 2007). The calculation of over-representation of GO terms was done by applying the Fisher's exact test for count data and p-value (Benjamini and Hochberg, 1995). Figure 1 shows the comprehensive workflow used for miRNA.


[image: Figure 1]
FIGURE 1. The workflow describes the comprehensive in silico pipeline for the identification of miRNAs from millet genomic resources.




Gene Network

A network of drought targets of the miRNAs was created using Cytoscape (https://cytoscape.org/) (Shannon et al., 2003) to point out the hub genes of drought responsiveness.




RESULTS


Identification of Pre-miRNAs

The species-specific miRNAs were found by precise excision of the stem-loop precursor and single strands with a length of ~22 nt (Zhang et al., 2009). After BLASTn search against plant miRNAs from miRbase, the hits without protein coding sequences, tRNAs, and rRNAs were kept for secondary structure analysis. We identified 10,376, 9,064, 8,748, 8,173, and 3,055 homologous sequences in sorghum, foxtail, pearl, finger millet, and proso millet, respectively (Table 1). The homologous sequences were filtered by removing other RNA matches (tRNA, mRNA, rRNA), which resulted in the removal of 8,173, 3,493, 771, 478, and 27 candidate sequences from finger millet, sorghum, foxtail millet, pearl millet, and proso millet, respectively (Table 1).


Table 1. Pre- and mature miRNAs identified through in silico tools in five millet species.
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The stability of the hairpin must be high with the lowest free energy of all other alternative folds for that sequence, which were predicted by RNA fold (Mathews et al., 2010). The minimal folding free energy (MFE) index is a major feature to distinguish putative precursor miRNAs from other RNAs. It was observed that more than 90% of the miRNAs had an MFE value <-30 (Zhang et al., 2006). Stable fold structures with MFE −20 were sorted out from the remaining structures producing 1,615, 815, 804, 434, and 75 stable precursor miRNAs from foxtail, sorghum, pearl millet, proso millet, and finger millet, respectively (Table 1).



miRNA Clusters in Genome

Among the candidate miRNAs, unique mature miRNAs were identified from foxtail millet, pearl millet, proso millet, and sorghum (Figure 2). Of these families, some were frequently present in different chromosomal regions in respective millets. In foxtail millet, a maximum number of miRNAs was observed in chromosome 1 (145 miRNAs), followed by chromosomes 2, 3, and 4 (50 miRNAs). Of the families, miR156 and miR157 were observed 9 times higher in chromosome 1. In pearl millet, miR167 and miR169 were the most frequent families, located in chromosomes 2 and 1, respectively, and chromosome 1 had the maximum miRNA families count among all chromosomes. Chromosome 10 in proso millet was the largest contributor with 68 miRNA families, and the major families were miR396, miR167, and miR166. In sorghum, chromosome 5 had the highest number of families. In finger millet, 14 unique families were identified, but the chromosome-specific miRNA count could not be tagged since genome was distributed in scaffolds.


[image: Figure 2]
FIGURE 2. Distribution of miRNAs across chromosomes in pearl millet, foxtail millet, proso millet, and sorghum.




Sequence Characteristics of New miRNAs

Transformation from precursor to mature form includes one major feature, the presence of mature 5′ and 3′ stems. Tools, such as Mature Bayes and the MirDup tool were used to bring out the mature form from the stable precursor miRNA molecule (Gkirtzou et al., 2010). A total of 404, 373, 174, 34, and 17 mature miRNAs were obtained from proso millet, foxtail millet, pearl millet, sorghum, and finger millet, respectively (Table 1).

The conserved miRNA sequences identified were variable in length across families, and in some families, the members were of uniform size. There were two classes of precursors with different structural properties. The most abundant class included precursors that had only two strongly conserved regions or blocks that consisted of the miRNA and miRNA* (* = complementary sequence of hairpin loop). The foldbacks of these precursors contained a short stem, consisting mainly of the miRNA/miRNA duplex. The consensus structures of miRNA families, such as miR156, miR160, miR170, miR171, miR395, and others are shown in Figure 3. A second and less frequent class, which includes the miRNA families miR159/319 and miR394, displays four conserved sequence blocks (Dezulian et al., 2006).


[image: Figure 3]
FIGURE 3. Major miRNA family precursor structure based on MFE values and base–pair probabilities.




Conserved miRNAs Across Millets

The present study has revealed 77 miRNAs were observed commonly repeating in pearl millet, proso millet, and foxtail millet (Figure 4). A smaller number of identified miRNAs in finger millet was not included in the analysis. Previously known reference miRNAs from sorghum and foxtail millet were also considered, which infers only three were common between old and newly discovered miRNA in sorghum, while for foxtail millet, all the miRNAs were new. The frequently co-occurring families (66) showed a conserved sequence pattern and consensus folding in the secondary structure. In our study, foxtail millet, proso millet, and pearl millet showed 27.9% conserved pattern in identified miRNAs, whereas foxtail and proso millet had more than 50% similarity (Figure 4). About 28–37% of miRNA families were matching among foxtail millet, sorghum, and proso millet. There was no conserved found in all millets together. In finger millet, we found only two miRNA families (miR845 and miR1873) common between pearl millet and proso millet due to incomplete genome and lack of annotation.


[image: Figure 4]
FIGURE 4. Venn diagram showing common and unique miRNAs among five millet species.




Target Prediction

In all five millets, most of the genes were identified as a result of specific stress conditions, such as drought, cold, salt, and water deficit. A total number of 7,090, 4,063, 1,754, 238, and 121 unique targets were identified in foxtail, sorghum, pearl millet, finger millet, and proso millet, respectively (Table 2). In pearl millet, miR134 acts on translation initiation factor like 5A-1/2, miR164a on heat shock TF, and miR172 on TF SUI1, which are evolutionarily conserved proteins (Koia et al., 2013). Some miRNAs control different physiological functions, such as miR10302, which was observed for regulating MYR1 protein related to flowering time under low light intensity in Arabidopsis (Zhao and Beers, 2013) and miR34 functions in seedling salt stress in broccoli (Tian et al., 2014).


Table 2. miRNA-mediated genes, transcription factors, proteins, and enzymes identified in the genome of five millet species.

[image: Table 2]

Out of 121 mRNA targets, 104 played essential roles in stress responses in proso millet, which was mostly targeted by miR44, miR156, miR159, miR160, miR166, miR169, miR171, miR172, and miR177. Enzymes, such as dioxygenase, kinases, dehydrin, and malate translocator operating on heat shock and ripening pathways were controlled by miR81, miR148, and miR164. Sorghum had 4,063 unique mRNA targets, mostly involved in different binding proteins, transcription factors, stress-related HSPs, and dehydration stress-related proteins, along with aminopeptidases and kinases.

In all millets, the miRNAs were mostly targeting the TFs, stress-related genes, metal-deficit factors, enzymes, and pathogenic factors other than normal metabolic and physiological regulators. Although the majority of plant miRNA targets were captured by the cut-off of expectation value <5 and mismatches 0 to 3, several authentic targets were missed due to lack of annotation.



GO Annotation

The target gene sets were subjected to GO analysis, which covers three domains (biological process, cellular component, and molecular function) to interpret the underlying functions of miRNAs (Figure 5). The biological process category showed a maximum number of genes participated in cellular process (545, 424, 153, 150, and 48 in sorghum, pearl millet, foxtail millet, finger millet, and proso millet, respectively), followed by metabolic processes, biological regulation, and cellular component. In cellular component, most of the genes were grouped in the cell, cell part, organelle, and protein-containing complex (2685, 2219, 1281, 102, and 98 genes in sorghum, foxtail, pearl, proso millet, and finger millet, respectively). Molecular function revealed the underlying activity of the genes, such as binding, catalytic activity, transcription regulation, transporter activity, molecular function regulation, and structural molecule activity.


[image: Figure 5]
FIGURE 5. Significantly enriched GO terms for the target genes of the miRNAs across millets.





DISCUSSION


Conserved miRNAs Across Millets

Identification of conserved miRNAs families on evolutionary basis among plants has provided a powerful approach to understanding gene regulation among related species. Identical miRNA sequences exist in closely and distantly related plant species. Many of the miRNAs discovered were found in a wide range of plant groups, from mosses to angiosperms. Some miRNA families exist broadly within the angiosperms, including eudicots and monocots, dating back to at least the early Cretaceous. Several miRNA families also pre-date the divergence of gymnosperms and angiosperms (305 million years) and the divergence between vascular plants and mosses (490 million years). These results indicated that miRNA sequences are highly conserved across great phylogenetic distances and that similar selection pressures have been active in the regulation of gene expression in plant cells since the earliest stages of their evolution (Zhang et al., 2006).

Evolutionarily conserved miRNAs are mostly encoded by the same gene families, and the members of these families are physically clustered in the entire plant genome (Tanzer et al., 2005). The mature miRNA sequences are highly conserved among the same family members, and this extends to the entire stem-loop precursor duplex. Axtell and Bartel (2005) identified the occurrence of certain miRNA families (miRNA159 and miRNA319) common in ten different plant species and similarly the expression of miRNA165 and miRNA166 in nine plant species. We analyzed each millet with individually discovered potential miRNAs in other millets to find the orthologous candidates. All five millets species belong to same sub-family Panicoideae, in which pearl millet, finger millet, foxtail millet, and proso millet belong to the tribe Paniceae, while sorghum belongs to another tribe, Andropogoneae (Vetriventhan et al., 2020).

Similar to mature miRNA sequences that are conserved across different plant species, the targets are also specific and conserved within the plant families by possessing highly conserved sequences at their complementary sites as we found in millet species. Although there are many nucleotide changes among the targets of different plant species, the sequences of the complementary sites are highly conserved. This is consistent with the study conducted by Floyd and Bowman (2004), in which class III HD-Zip genes targeted by miRNA 166 had specific conserved target regions. It was observed that the sequence similarity of miRNA coupled with specific target results in overlapping functions of miRNAs belonging to the same families (Jones-Rhoades et al., 2006). Families, such as miR156, miR157, miR159, miR165, miR166, miR172, miR390, and so on were highly conserved in all vascular plants studied (You et al., 2017).

miRNAs are highly conserved in the plant kingdom, irrespective of the time of evolutionary divergence. Many families of miRNA are orthologous and homologous in different plant species spanning the breadth of green plant phylogeny (Dezulian et al., 2006). A comparative genomic experiment revealed that finger millet with sorghum produced 69 pairs of syntenic miRNA precursors, which were conserved between them, thereby indicating the evolutionary relationship of miRNA families across different species (Yi et al., 2013). Comparative analysis of miRNAs identified in A. trichopoda revealed that several miRNA families orthologous and paralogous with other crops. Among the conserved miRNAs identified in A. trichopoda, the miR407 family had three orthologs in A. thaliana, Zea may, and Gossypium hirsutum. Similarly, there were two orthologs for A. trichopoda miR417 with A. thaliana and Oryzae sativa (Hajieghrari et al., 2015). Relative to sorghum, proso millet and pearl millet are evolutionarily the closest species, with their supposed common ancestor dating back ~27 Mya, followed by ~8.3 Mya between pearl millet and foxtail (Singh et al., 2017). All millets possess considerable morphological differences but are evolutionarily well-related and thus share common structural and functional similarities.



miRNA and Genomic Targets

Prediction of the mRNA targets of the miRNAs identified from the millets will improve our understanding of the functions and regulation of these miRNAs. The conserved miRNAs, such as miR156, miR166, miR165, miR169, miR393, miR395, miR160, miR170, miR171, and miR172 were identified with 50–100 targets in different millets. We identified 902, 194, 24, and 14 TF targets in foxtail millet, sorghum, pearl millet, and finger millet, respectively, which were related to plant development, phase change in growth, and other molecular functions. A set of 74 miRNA families was identified, targeting different stress regulatory factors, such as drought stress, dehydration stress, oxidative stress, and salt stress. Another important functional group of the predicted targets of miR155, miR156, miR169, miR172, miR2180, and miR2118 families were associated with enzymes, such as kinases, phosphate synthase, acetyltransferase, acid dehydratase, and hydrolase. Most of the miRNA targets were classified into the binding category and appeared to be involved in membrane, steroid, nucleic acid, protein, and ion binding. Around 30 miRNA families were involved in diverse molecular functions, including DNA binding, zinc ion binding, oxidoreductase activity, catalytic activity, protein kinase activity, and transferase activity in all five crops. Our target prediction results confirmed the widely held view that most plant miRNA targets encode TFs, which operate different mechanisms in the millets.



Drought-Responsive Target Prediction

Our study on identification of miRNA families targeting drought-related factors revealed that 89 targets were found in pearl millet regulated by 29 miRNAs. In proso millet, 64 miRNAs were found targeting mRNAs related to stresses, including drought-related pathways. Around 400 drought-specific mRNA targets were found in sorghum and foxtail millet controlling diverse pathways. In finger millet, 25 mRNAs specific to drought and water-deficient stress were identified to target nine different miRNAs. It was observed that many of the miRNAs families were both functionally and structurally conserved among the species, indicating a broad conservation of the regulatory roles in millets.



Network of Drought-Responsive miRNA and Their Targets

Our prediction of target genes revealed that multiple genes can be targeted by one specific miRNA, which suggested that the miRNA research should focus on networks more than on individual connections between miRNA and strongly predicted targets. To investigate the relationship between drought-responsive miRNA and their targets, a network analysis was carried out using the Cytoscape platform. The analysis incorporated all the non-conserved and conserved miRNAs of millet species belonging to 22 families. Targets involved in stress tolerance or plant development, such as genes encoding transcription factors, protein kinases, and phosphatases, and hormone-responsive factors were considered in the network analysis (Figure 6). It was found that the conserved miR156, miR160, and miR167 targeted up to 4 mRNAs in pearl and proso millet, and 20 in sorghum and foxtail millet. miR2108, miR170, and miR171 targeted important genes, such as auxin response factors (ARFs), NTR/PTR, NAC domain, and heat stress factors. Important TFs, such as WRKY and bHLH were regulated by miR399 and miR396 in foxtail and sorghum, respectively. Analysis of the network showed that miR160, miR156 in sorghum, and miR155 in foxtail millet had maximum connectivity. Drought stress–related mRNAs were one of the hubs (high-degree node in network) in the network with 86 connectivity. ARFs and dehydration stress were observed with a connectivity of 46 miRNAs each. Different TFs, such as bHLH, nst1, and WRKY were identified as the semi-hub targets. Six to ten miRNAs were identified as cross-interacting with drought-responsive factors and ARFs and water-deficit stress. Approximately 10 cross-talking miRNAs were identified between dehydration stress and TFs (bHLH and WRKY).


[image: Figure 6]
FIGURE 6. Stress-specific interactions explained through miRNA-gene interconnected networks. The red circle indicates the drought mRNAs, the blue diamond indicates the miRNAs. The size of the red circle indicates the degree of connectivity of the target genes.




miRNA-Mediated Gene Regulation of Drought Tolerance

Plants respond to several environmental stresses, among which drought is the major stress that limits the yield of many crops. Regulation of gene expression through miRNA and its target complementarity has made plants that tolerate drastic effects caused by drought. In our study, different categories of targets were identified across millets as being specific to that particular family of miRNA. These include different enzymes, such as protein kinases, peroxidase, amino/carboxy peptidases, stress-associated proteins (HSPs, RNA binding proteins), and drought-specific TFs (ARF, NAC family, MAD box, WRKY, bHLH, and ZFs). The important miRNA families related to drought along with the millet-specific target genes are presented in Tables 3A, 3B.


Table 3A. Species-specific microRNA families associated with drought-responsive traits.
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Table 3B. Species-specific microRNA families associated with drought-responsive genes, transcription factors, and other molecules.
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During the stress conditions, excess concentration of ROS is accumulated within the cells, resulting in cellular oxidative damage. Studies have shown the involvement of peroxidase in ROS scavenging under drought-stressed conditions. In sorghum, the peroxidase family targeting six miRNA families under drought conditions were reported (Katiyar et al., 2015). We have also found sorghum (sbi-miR160), foxtail millet (sit-miR169p, sit-miR171n, and sit-miR395c), and pearl millet (pgl-miR156) miRNAs regulating different peroxidase families. Plants exposed to drought or heat stress produce HSPs, which play a crucial role in protecting from stress conditions (Wang et al., 2004). They function as molecular chaperones, facilitating in folding of proteins, which is important for plants to cope with drought stress (Ford et al., 2011). We found miRNAs pgl-miR156 and pgl-miR10347 mediating HSPs. In sorghum, miRNA families targeting HSP were under down-regulation during drought stress (Katiyar et al., 2015).

Our study identified that the pmi-miR164, pmi-miR399 were involved in targeting NCED protein. It encodes 9-cis-epoxycarotenoid dioxygenase, which is negatively correlated with ABA accumulation, whereas in some species, its expression increased along with ABA accumulation under water stress (Changan et al., 2018). The sbi-miR164a (sorghum) and sit-miR2118d (foxtail millet) regulating protein NRT1/PTR family in Arabidopsis was suggested as a tolerance mechanism for abiotic stress through reallocation of nitrate to plant roots (Corratge-Faillie and Lacombe, 2017). The pgl-miR155 regulating Cu/ZnSOD transcripts found in pearl millet had an antioxidant protector system under water stress conditions in L. corniculatus (Borsani et al., 2001).

The sit-miR156, sit-miR164, sit-miR166, sit-miR167, sit-miR171, and sit-miR393 in foxtail millet and sbi-miR169 and sbi-miR156 in sorghum were regulating the serine–threonine protein kinases (STPKs). It is observed that the phosphorylation state of several protein kinases changes when exposed to drought stress, implying their regulation in the drought-response signaling pathway. A change in concentration of free amino acid also has an impact on induction of drought stress in many plants. In Brassica leaves, the activities of alanine aminotransferase and aspartate amino transferase led to an overall decrease in protein synthesis under drought stress (Good and Zaplachinski, 1994). The pmi-miR399, pmi-miR2118, and pmi-miR167 from proso millet, sbi-miR169 from sorghum, pgl-miR167 and pgl-miR528 from pearl millet, and sit-miR393, sit-miR396d, sit-miR397a, sit-miR156a, sit-miR160a, sit-miR164a, sit-miR166, and sit-miR172 from foxtail millet were found potentially regulating different aminotransferases.

It was observed that during drought stress, miRNA target genes code for specific TFs, which mediate the regulation of drought tolerance (Nepolean et al., 2014; Tang and Chu, 2017; Mittal et al., 2018). TF-mediated gene regulation includes several physiological and signaling pathways, such as abscisic acid (ABA)-mediated response, auxin signaling, osmotic, and antioxidant production (Ding et al., 2013). We found that many miRNAs are involved in TF-mediated gene regulation in different millet species in response to drought stress. NAC factors played an important role in drought tolerance through ABA signaling pathways (Wang et al., 2016; Aravind et al., 2017). It was found that NAC factors in foxtail millet was controlled by miR164. In rice, the overexpression of stress-responsive NAC1 (SNAC1) in guard cells reduced the transpiration losses by increased stomatal closure (Singh et al., 2015). ARFs are the key elements mediated by auxins, which contribute to the drought stress tolerance. In cowpea, the upregulation of miR160a and miR160b targeted different ARFs, thereby resulting in drought tolerance. We also observed that sit-miR160a-3p especially targeted several ARF family members, including ARF10, ARF13, ARF18, and ARF22. The sbi-miR167 and sbi-miR156 targeting ARFs were found to play a major role in the process of plant growth and development. A study on sweet potato revealed that IbARF5 increased the contents of carotenoids and enhanced drought tolerance in transgenic Arabidopsis (Kang et al., 2018).

The role of bHLH57 in tolerance to drought, salt, and oxidative stresses was identified in finger millet (Babitha et al., 2015). The up-regulation of miRNA targeting bHLH when cowpea was exposed to drought stress (Barrera-Figueroa et al., 2011) was also observed. The expression of bHLH122 was recorded under drought and osmotic stress conditions in Arabidopsis (Liu et al., 2014). We also identified the regulation of bHLH by sit-miR156a, sit-miR164a, sit-miR168, sit-miR172m, and sit-miR396e (foxtail millet) and sbi-miR160f (sorghum). ZF proteins were associated with different developmental and other stress responses (Golldack et al., 2011). The miRNAs pgl-miR164 in pearl millet, sbi-miR169d in sorghum, and sit-miR167d, sit-miR2118d, sit-miR399j, sit-miR397a, and sit-miR395c in foxtail millet targeting ZFs were identified from our comparative study. Under drought conditions, the down-regulation of miRNA vun_cand030, which targeted ZF, was recorded in cowpea (Barrera-Figueroa et al., 2011).

Nuclear factor Y (NFY) is a major TF induced at the time of drought as we found in foxtail millet, in which the sit-miR169 family targeted NFYA 4, 5, 7, and 10. Li et al. (2008) reported that the NFYA was induced by ABA-dependent manner during drought stress. In Arabidopsis, miR169 targeting NFYA was down-regulated, but in cowpea, it induced the expression under drought stress (Barrera-Figueroa et al., 2011). In tomato, over-expressing miR169c exhibited better tolerance to drought due to reduced stomata opening (Zhang et al., 2011).

Kelch repeat-containing F-box proteins are known to be involved in response to both biotic and abiotic stresses (Sun et al., 2010). Studies conducted in sorghum revealed that the presence of several drought-responsive miRNAs targeting Kelch repeat-containing F-box protein (Katiyar et al., 2015). The expression of many F-box proteins was also noticed in cowpea under drought stress (Jia et al., 2012). sbi-miR156a, sbi-miR160f, sbi-miR169d, and sit-miR156a, sit-miR395b, and sit-miR164a were found targeting F-BOX proteins in our study. WRKY acts as positive regulators of ABA signaling in several stress responses. Its involvement in heat stress in sunflower was controlled negatively by miR396 (Giacomelli et al., 2012). We have also identified sbi-miR169d, sit-miR156, sit-miR160a, sit-miR164, sit-miR396, and sit-miR166 targeting the WRKY.

We identified pgl-miR155, pgl-miR156 specific to MADS box proteins. Several studies have started to identify various members of the MADS-box gene family as an important molecular component involved in different types of stress responses. Studies showed that the MADS-box genes act as critical negative regulators of growth, improving plant survival, while others function as positive regulators of stress tolerance, associated with regulating the maintenance of primary metabolism, ABA signaling, ROS homeostasis, and detoxification processes through antioxidant enzymatic activities (Causier et al., 2002; Jia et al., 2018; Castelán-Muñoz et al., 2019; Zhao et al., 2020).




CONCLUSION

Novel miRNAs were identified by exploring the genomic resources of pearl millet, sorghum, foxtail millet, finger millet, and proso millet, and by comparing the miRNAs among millet species through a series of in silico approaches. Structural and functional classification of the identified miRNAs explained the unique and common features among the five millet species. The gene targets of miRNA were identified, and based on the GO annotation, they were classified into several functional groups. The drought-responsive gene targets regulated by the miRNAs were identified, and their role in drought tolerance were comprehensively explained. The genes can be further explored in trait improvement programs to enhance the productivity of millets in arid and drought-prone ecologies. Considering the conservative nature of miRNAs, the results of our experiment can also be used in other crops to understand the drought stress mechanism.
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It is time to review all the available data and find the distinctive characteristics of actin that make it such an important cell molecule. The presented double-stranded organization of filamentous actin cannot explain the strong polymorphism of actin fibrils. In this work, we performed bioinformatics analysis of a set of 296 amino acid actin sequences from representatives of different classes of the Chordate type. Based on the results of the analysis, the degree of conservatism of the primary structure of this protein in representatives of the Chordate type was determined. In addition, 155 structures of rabbit actin obtained using X-ray diffraction analysis and electron microscopy have been analyzed over the past 30 years. From pairwise alignments and the calculation of root-mean-square deviations (RMSDs) for these structures, it follows that they are very similar to each other without correlation with the structure resolution and the reconstruction method: the RMSDs for 11,781 pairs did not exceed 3 Å. It turned out that in rabbit actin most of the charged amino acid residues are located inside the protein, which is not typical for the protein structure. We found that two of six exon regions correspond to structural subdomains. To test the double-stranded organization of the actin structure, it is necessary to use new approaches and new techniques, taking into account our new data obtained from the structural analysis of actin.

Keywords: monomer, filamentous, polymorphism, actin, resolution, charge


INTRODUCTION

Actin was discovered in 1948 by the Hungarian biochemist Bruno Straub. This protein was named for its ability to activate (hence actin) ATP hydrolysis catalyzed by myosin. Actin is a muscle tissue protein, the polymerized form of which (F-actin) forms microfilaments—one of the main components of the cytoskeleton of eukaryotic cells. Actin makes up 5–15% of the total cellular protein and is the most important protein in eukaryotic cells (Lodish et al., 2000). Actin analogs have also been found in bacteria (Popp et al., 2008, 2010; Galkin et al., 2009) and archaea (Izoré et al., 2014; Braun et al., 2015). Actin monomer (G-actin) is a water-soluble globular structural protein with a molecular weight of 42 kDa, consisting of 375 or 374 amino acid residues. Differences in the amino acid sequences, both within the same species and between species, are extremely insignificant, no more than 25 amino acid substitutions. In vertebrates, depending on the isoelectric point, three actin isoforms are distinguished, α, β, and γ (Vandekerckhove and Weber, 1978). α-actin is mainly characteristic of muscle cells, while β- and γ-actin are characteristic of non-muscle cells. α-actin, in turn, is divided into three types: smooth muscle α-actin, α-actin of skeletal muscle and α-actin of cardiac muscle (Vandekerckhove and Weber, 1978; Gunning et al., 1983; Erba et al., 1988; Miwa et al., 1991).

Domains have historically been divided into large and small, although their sizes are almost the same. The N- and C-termini of the polypeptide chain are located in a small domain. Each of the domains has two subdomains. By definition, subdomain 1 (residues 1-32, 70-144, and 338-372) and subdomain 2 (residues 33-69) are part of a small domain. The large domain consists of subdomain 3 (residues 145–180 and 270–337) and subdomain 4 (residues 181–269) (Selby and Bear, 1956). The domains are separated by a deep cleft (Figure 1A). The actin monomer is rather flat and fits into a “parallelepiped” with dimensions of 55 Å × 55 Å × 35 Å.


[image: image]

FIGURE 1. (A) 3D structure of α-actin. Actin-bound ADP molecule and Ca2 + cation are shown. (B) Conservation of the actin amino acid sequences of representatives of different classes of chordates was built by the Chimera program (Pettersen et al., 2004). Highly conserved regions of the polypeptide chain are colored by red, non-conserved regions by blue. (C) Spatial alignment of two rabbit actin structures deposited in the Protein Data Bank in 1991 and 2019.


Actin is one of the main components of myofibrils and, together with myosin and titin, provides muscle contraction. In other types of cells, actin forms a system of microfilaments and, together with other filamentous structures (microtubules and intermediate filaments), makes up the cytoskeleton and performs various functions (movement, cell reshaping, cytokinesis, exo- and endocytosis, redistribution of surface receptors, and other processes) (Carlier et al., 1997; Silacci et al., 2004; Kovar et al., 2006; Ferron et al., 2007).

The actin polymerization and depolymerization process is regulated by special proteins. For example, profilin, forming a complex with globular actin, prevents actin polymerization. Cytochalasin D binds to actin and forms a kind of “cap” at one end of the polymerizing actin, thereby regulating the polymerization process. There are proteins (latrunculin A) that prevent the polymerization of globular actin and proteins that “cut” actin filaments into short fragments. Conversely, there are proteins that “cross-link” already formed actin filaments, thus forming ordered rigid bundles of actin filaments or flexible coarse networks (Carlier et al., 1997; Silacci et al., 2004; Kovar et al., 2006; Ferron et al., 2007).

Actin monomers can interact with each other to form F-actin. The polymerization process can be initiated by increasing the concentration of cations or by adding special proteins. The polymerization process becomes possible because actin monomers can recognize each other and form intermolecular contacts. In vitro, at physiological salt concentrations, G-actin polymerizes into filamentous F-actin (Page et al., 1998; Oda et al., 2009; Dominguez and Holmes, 2011; Thomasson and Macnaughtan, 2013).

Historically examining all the structural work of actin organization to find direct evidence of double-stranded actin organization, we have concluded that there is no direct evidence for the existence of a double helix. The authors of the work on X-ray diffraction could not give an unambiguous answer about the double helix organization of actin (Selby and Bear, 1956), and only the authors of the work (Hanson and Lowy, 1963), based on electron microscopy data, taking into account the data of the previous X-ray work, said that actin most likely has a double helix organization. Apparently, such a conclusion was nevertheless dictated by the recent discovery of the DNA double helix at that time. Over time, “the highly-likely model” became generally accepted and entered all textbooks (Jegou and Romet-Lemonne, 2020). A lot of data have been accumulated that is not suitable for the proposed organization. This model, on the one hand, cannot explain the strong polymorphism of filamentous actin, but, on the other hand, does not contradict the picture of interaction with partners, since the interaction sites are located on one side of the actin molecule. The aim of this work is to obtain more structural information about such important molecule as actin, to validate the structure of F-actin.



MATERIALS AND METHODS


Databases

A set of 296 amino acid sequences of actin from representatives of different classes of the Chordate type: mammals (Homo sapiens, Bos taurus, Mus musculus, Rattus norvegicus); aves (Gallus gallus, Anas platyrhynchos, Meleagris gallopavo); Reptiles (Chelonia agassizi, Pelodiscus sinesis, Anolis carolinensis); amphibian (Xenopus tropicalis); fish (Danio rerio, Tetraodon nigrovoridis, Oryzias latipes) were taken from the UniProt database.

A list of 155 protein structures of actin was taken from the UniProtKB database, record number P68135, gene ACTA1, wild rabbit species (Oryctolagus cuniculus). These structures were deposited in the Protein Data Bank between 1991 and early 2020. Half of these structures (72) are actin monomeric structures, the other half (83) are structures containing two or more actin monomers.

The canonical reviewed protein sequences (20,364 fasta records) were extracted from the human reference proteome (uniprot request reviewed:yes AND organism: “Homo sapiens (Human) [9606]” AND proteome:up000005640).



Structural Characteristics

Spatial alignment of 155 actin structures, calculation of the root-mean-square deviation (RMSD) of Cα atoms for each pair of superimposed structures, and calculation of the accessible surface area (ASA) for each amino acid residue in actin structures were performed using the YASARA program (Krieger et al., 2002). If pdb file had several actin structures, then only one (first) structure was taken for spatial alignment and RMSD calculation. ASA was defined as the surface area over which a water ball with a radius of 1.4 Å rolls. A residue was called external if its ASA was more than 50% of the maximum ASA observed in the Protein Data Bank for each type of amino acid residue.



RESULTS AND DISCUSSION


Conservation and Splicing Sites

The amino acid sequence of skeletal and cardiac muscle actin consists of 375 amino acid residues, including one unusual amino acid residue, 3-methylhistidine, which is formed post-translationally. The N-terminal amino acid of actin is acetylated. According to the results of the alignment of the actin amino acid sequences, a high degree of conservatism of the primary structure of actin was observed (Figure 1B). The spatial alignment of the two rabbit actin structures resolved in 1991 and 2019 is presented in Figure 1C. The RMSD for this pair is 0.6 Å, where the percent of amino acid residues aligned is 94%.

Cytoplasmic actins differ from vertebrate skeletal muscle actin only by 25 substitutions. It is essential that the region of the polypeptide chain containing residues 18–75 is stable, while regions 2–18 and 259–298 contain many substitutions. The high conservatism of the primary structure of actin, apparently, is a consequence of its high functional activity, which requires the preservation of the centers of interaction with both other actin molecules and actin-binding proteins. It should be noted that regions 18–25 and 259–298 do not belong to the F-actin core (Glyakina et al., 2020).

The data on the primary structure of actin in higher plant obtained on the basis of the analysis of nucleotide sequences of actin genes indicate that the variability of plant actin is much higher than that of animal actin. In particular, soybean isoactins contain 35–45 substitutions. In general, plant actin differs from animal actin by 55–65 amino acid residues. Actin substitutions in plants include significant number of charged residues; therefore, their isoelectric point can differ by almost one unit (pH 5.1–5.8) (Meagher and McLean, 1990).

Although more than 95% of the known protein sequences are derived from DNA translation, there is no single reference nucleic acid sequence for the given UniProtKB/Swiss-Prot protein sequence. To obtain splicing sites, we aligned the nucleotide sequence of human actin to the corresponding gene. There are only three substitutions in amino acid sequences between the human and rabbit actin sequences. Therefore, the splicing sites for the human gene will coincide with the splicing sites of the rabbit actin gene (Supplementary Figure S1).

If we compare the 3D actin structure with the splicing sites, we can see that exon IV (residues 205–269) is included in subdomain 4 (residues 181–269), and exon V (residues 270–329) is part of subdomain 3 (residues 270–337) (see Figures 1A, 2A).


[image: image]

FIGURE 2. (A) Six exons of α-actin are colored on the 3D structure: I (residues 1–42) exon is colored by blue, II (residues 43–151) – cyan, III (residues 152–204) – green, IV (residues 205–269) – yellow, V (residues 270–329) – orange, I (residues 330–375) – red. (B) Disordered regions (1–8, 51–54, 58–60, 101–120, 228–243, 365–377) calculated using the program IsUnstract (http://bioinfo.protres.ru/IsUnstruct/) (Lobanov et al., 2013).




Amino Acid Composition

To assess the increased and decreased content of one or another amino acid in the composition of α-actin from the skeletal muscles of rabbit, a comparison with the mean proteomic values of amino acid composition was carried out.

There is an increased content of amino acids such as Ile, Met, Thr, Tyr, and a decreased content of Cys, Leu, Gln compared to the average proteomic values for human, which are taken as a unit (Supplementary Figure S2).

Rabbit actin contains five cysteine residues (Cys10, Cys217, Cys257, Cys285, and Cys374). Smooth muscle actin contains another cysteine residue at position 17. Non-muscle actin contains two additional cysteine residues, Cys17 and Cys272. However, Cys10 is replaced by Val10 in actin, and the total number of cysteine residues is six. Only one of these residues, Cys374, is exposed on the surface of an intact ATP containing G-actin molecule. The availability of other cysteine residues is determined by the degree of nativeness of the molecule and the type of nucleotide. In a solution with a high concentration of ADP, in addition to Cys374, another cysteine residue, apparently, Cys10, becomes available for SH-reagents. However, there are no disulfide bonds in the structure of rabbit actin.



Characteristics of Actin Surface: Distribution of Charges and Ligand Sites

The distribution of charged amino acid residues in rabbit actin is shown in Supplementary Figure S3. The charged amino acid residues make up 24%: the number of Arg is 18, Lys – 19, Glu – 28, Asp – 22. Therefore, the charge of the G-actin molecule is negative (−13). The N-terminal segment of α-actin contains four acidic amino acid residues Asp-Glu-Asp-Glu, in the N-terminal segment of β- and γ-isoactins there are only three Asp and three Glu in β- and γ-isoactin, respectively. Substitutions of amino acid residues in the N-terminal segment of the polypeptide chain significantly affect the total charge of the molecule, changing the actin isoelectric point in the pH range 5.4–5.5. When analyzing the amino acid sequence of actin, attention is drawn to a large number of negatively charged groups, especially at the N-terminus of the chain. So, out of five N-terminal amino acid residues, four contain carboxyl groups in the side chains, and among the first 25 amino acid residues, seven are negatively charged.

Oztug Durer et al. (2010) try to investigate the constrains in D-loop (residues 39–50) plasticity as determined by its interactions with other dynamic elements of actin, including the C-terminus, the W-loop (residues 165–172), and the H-loop (residues 264–273). The involvement of these structural loops in contacts between monomers in the actin filament was predicted by the models of double-stranded organization of F-actin. The authors showed that introduction of disulfide bonds between residues 45, 47, 50 (D-loop), and residue 169 (W-loop) or 265 (H-loop) leads to the disruption of F-actin structure, which is expressed in the appearance of amorphous aggregates in the electron microscopy images (Oztug Durer et al., 2010). Consequently, the double-stranded model of F-actin maybe not the only one.

The fraction of charged amino acid residues of each type (Arg, Lys, Glu, Asp) in rabbit actin and bovine p450 (comparable to the size of actin, 475 amino acid residues) is shown in Supplementary Table S1. The fractions of charged amino acid residues in these proteins are practically the same and are close to the proteomic values (Supplementary Table S1 and Supplementary Figure S2). However, most of the charged amino acid residues in rabbit actin are found within the protein as compared to bovine p450.

Actin is a unique building material widely used by the cell to construct various elements of the cytoskeleton and contractile apparatus. This is due to the fact that the processes of actin polymerization and depolymerization can be easily regulated using special proteins that bind to actin. Thus, actin is involved in many protein–protein interactions. The number of interaction partners for yeast actin is 222 according to the STRING database (Szklarczyk et al., 2015) (Supplementary Figure S4). There are no interaction partners for human actin in this database.

The residues involved in the interactions with more than one of the ligands (actin, profilin, gelsolin, DBP, cofilin, DNaseI, myosin, leiomodin, fimbrin, vinculin, tropomyosin) (Tikhomirova et al., 2018) are shown in Figure 3. Interestingly, that such residues are located predominantly on one side of the molecule and are not located in subdomain 4, which includes exon IV (residues 205–269) (see Figures 2A, 3 and Supplementary Figure S1).
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FIGURE 3. Amino acid residues in the rabbit actin structure (2zwh) interacting with more than one of the 11 ligands (actin, profilin, gelsolin, DBP, cofilin, DNaseI, myosin, leiomodin, fimbrin, vinculin, tropomyosin) (Tikhomirova et al., 2018) are colored by magenta. Exon IV is colored by yellow.




Structural Alignments

Of the 155 three-dimensional (3D) structures of rabbit actin, 72 are monomeric and 83 are oligomeric. 100 structures were obtained by X-ray diffraction analysis with a resolution of 1.29–7.88 Å, 52 structures by cryo-electron microscopy with a resolution of 3.6–70 Å, and one structure by fiber diffraction with a resolution of 3.3 Å, and two model structures (1ALM and 1UY5).

We performed pairwise spatial alignments of 154 actin structures and calculated the RMSDs between the Cα atoms. The RMSDs for 11,781 pairs do not exceed 3 Å: 0–1 Å for 5461 pairs, 1–2 Å for 5522 pairs, and 2–3 Å for 798 pairs (Supplementary Figures S5A,C). The fraction of aligned amino acid residues in each pair is more than 50% (see Supplementary Figure S5B). It should be noted that the 3D structures of the actin monomer are very similar. It turns out that for almost 30 years the quality of the obtained actin structures has not improved, despite new technologies.

It should be noted that the RMSD between monomers in the structures of filamentous actin does not exceed 1.3 Å (Figure 4). It is very strange that the RMSD is zero for monomeric structures 2W49 and 1M8Q, since the actin structure contains flexible/disordered regions that will add polymorphism to the structural organization of actin (Figure 2B) (Lobanov et al., 2013).
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FIGURE 4. Structures of F-actin from the Protein Data Bank.




CONCLUSION

Bioinformatics analysis of actin showed that:


(1) The amino acid sequences of actin in representatives of different classes of chordates are highly conservative;

(2) Analysis of exons showed that exon IV (residues 205–269) corresponds to subdomain 4 (residues 181–269) and exon V (residues 270–329) corresponds to subdomain 3 (residues 270–337);

(3) The 3D actin rabbit monomer structures resolved from 1991 to 2020 (during 30 years) are very similar: the RMSD for 11,781 pairs does not exceed 3 Å, the RMSD is about zero for monomeric structures in the filamentous actin (2W49 and 1M8Q);

(4) Most of the charged amino acid residues are located within actin structure, which is unusual for a protein structure.



Due to the high polymorphism, it has not yet been possible to obtain the structure of filamentous actin using X-ray diffraction analysis. Thus, all hope for obtaining this structure is for new methods such as XFEL and cryo-electron microscopy. For further reconstruction of filamentous actin using cryo-electron microscopy, it is necessary to take into account the adjustment of monomers in the organization of filament, rather than simple copying of the “building block,” which gives a close to zero RMSD between monomers, which is observed for some filament structures from the Protein Data Bank.
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NETO2 Is Deregulated in Breast, Prostate, and Colorectal Cancer and Participates in Cellular Signaling
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The NETO2 gene (neuropilin and tolloid-like 2) encodes a protein that acts as an accessory subunit of kainate receptors and is predominantly expressed in the brain. Upregulation of NETO2 has been observed in several tumors; however, its role in tumorigenesis remains unclear. In this study, we investigated NETO2 expression in breast, prostate, and colorectal cancer using quantitative PCR (qPCR), as well as the effect of shRNA-mediated NETO2 silencing on transcriptome changes in colorectal cancer cells. In the investigated tumors, we observed both increased and decreased NETO2 mRNA levels, presenting no correlation with the main clinicopathological characteristics. In HCT116 cells, NETO2 knockdown resulted in the differential expression of 17 genes and 2 long non-coding RNAs (lncRNAs), associated with the upregulation of circadian rhythm and downregulation of several cancer-associated pathways, including Wnt, transforming growth factor (TGF)-β, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathways. Furthermore, we demonstrated the possibility to utilize a novel model organism, short-lived fish Nothobranchius furzeri, for evaluating NETO2 functions. The ortholog neto2b in N. furzeri demonstrated a high similarity in nucleotide and amino acid sequences with human NETO2, as well as was characterized by stable expression in various fish tissues. Collectively, our findings demonstrate the deregulation of NETO2 in the breast, prostate, and colorectal cancer and its participation in the tumor development primarily through cellular signaling.
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INTRODUCTION

NETO2 (neuropilin and tolloid-like 2) was first described in 2001 as a gene demonstrating significant similarity to NETO1 (Stohr et al., 2002). Both genes encode putative transmembrane proteins containing two CUB domains, followed by a low-density lipoprotein class A (LDLa) module in the extracellular region and conserved FXNPXY-like motif in the cytoplasmic region. This structure of NETO proteins suggested their possible role in intracellular signaling pathways. Furthermore, a series of reports have shown the expression of NETO2 in the brain, as well as its involvement in the modulation of most kainate receptors (KARs) (Straub et al., 2011) and N-methyl-D-aspartate (NMDA) receptors (Wyeth et al., 2014). Additionally, the interaction of NETO2 with other neuronal proteins, including glutamate receptor-interacting protein (GRIP) (Tang et al., 2012) and K(+)-Cl(−) cotransporter (KKC2), has been reported (Ivakine et al., 2013). Currently, NETO2 and its paralog NETO1 are widely recognized as the main auxiliary subunits of KARs.

More recently, NETO2 was shown to be involved in carcinogenesis. Increased expression of the NETO2 gene has been observed in proliferating infantile hemangiomas (Calicchio et al., 2009), hepatocellular (Villa et al., 2016) and nasopharyngeal carcinomas (He et al., 2019), as well as in renal (Snezhkina et al., 2018), lung (Oparina et al., 2012), colorectal (Hu et al., 2015; Fedorova et al., 2017), gastric (Liu et al., 2019), and pancreatic (Li et al., 2019) cancers. Hu et al. (2015) have revealed that NETO2 overexpression significantly correlates with advanced tumor stage, invasion, and metastasis, as well as increases the risk of patient death in colorectal cancer. In patients with gastric and pancreatic cancers, a similar correlation was observed between NETO2 expression and tumor progression and worse overall survival (Li et al., 2019; Liu et al., 2019). Reportedly, NETO2 is related to five-gene transcriptomic signatures predicting rapidly growing tumors and survival in patients with hepatocellular carcinoma (Villa et al., 2016). Furthermore, NETO2 has been observed in a macrophage-related gene signature predicting resistance to targeted therapeutics, as well as survival, in glioma patients (Sun et al., 2019). Additionally, NETO2 expression is reportedly associated with the deletion of the PTEN (Phosphatase and tensin homolog) gene and high intratumor heterogeneity in prostate cancer (Yun et al., 2019).

In this study, we analyzed NETO2 expression in prostate, breast, and colorectal cancer samples obtained from Russian patients. In these sample sets, both increased and decreased NETO2 expression were observed, with no significant correlation between its mRNA levels and primary clinicopathological tumor characteristics. Additionally, we performed shRNA-mediated NETO2 knockdown in the colorectal cancer cell line, HCT116, resulting in the differential expression of 17 genes and 2 long non-coding RNAs (lncRNAs), as well as deregulation of several cellular pathways, including tumor-associated Wnt, transforming growth factor (TGF)-β, Janus kinase (JAK)-signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathways. Moreover, we revealed a high similarity between human NETO2 and its ortholog in fish Nothobranchius furzeri, which demonstrate the shortest captive lifespan for a vertebrate (3 months), a novel model for investigating aging and aging-related pathologies, including cancer (Terzibasi et al., 2007). Additionally, we evaluated gene expression in different tissues of N. furzeri using quantitative PCR (qPCR). These results can help to generate unique fishes with gene overexpression/downregulation in the target tissues to establish its role in tumorigenesis [for example, using CRISPR activation (CRISPRa) or interference (CRISPRi) tools].



MATERIALS AND METHODS


Patients and Tumor Samples

In total, 74 colorectal, 40 prostate and 32 breast tumors, with paired adjacent normal tissues, were collected at the National Medical Research Radiological Center, Ministry of Health of the Russian Federation. No patient received chemotherapy, radiation, targeted therapy, and/or immunotherapy before surgery. Postoperative tumor and normal tissues were immediately frozen in liquid nitrogen and store at −80°C. This study was approved by the Ethics Committee of P.A. Hertsen Moscow Cancer Research Institute, Ministry of Health of the Russian Federation. All experiments were performed in strict accordance with the principles outlined in the Declaration of Helsinki (1964). The patients provided written informed consent to participate in this study. The clinicopathological characteristics of the patients and tumors are presented in Supplementary Tables S1–S3. Additionally, colorectal cancer samples were genetically characterized by mutations in KRAS, NRAS, and BRAF, as well as the microsatellite instability (MSI) status. Analysis of mutations in the “hot spots” of the KRAS, NRAS, and BRAF genes was performed in Evrogen (Russia) using the qPCR with following validation of the results with Sanger sequencing. The MSI detection was carried out in the same company using PCR amplification of microsatellite markers (BAT25, BAT26, D2S123, D5S346, and D17S250).



RNA Isolation and cDNA Synthesis

Tumor and normal tissues were homogenized in a lysis buffer using the MagNA Lyser Instrument (Roche, Switzerland). RNA was isolated from these tissues, as well as from cell cultures, using MagNA Pure Compact RNA Isolation Kit (Roche) on a MagNA Pure Compact System (Roche). The isolated RNA was quantified using a fluorometer, Qubit 2.0 (Thermo Fisher Scientific, United States). RNA quality was measured on an Agilent Bioanalyzer 2100 (Agilent Technologies, United States). Reverse transcription was performed from 1 mg of RNA using Mint Reagent Kit (Evrogen, Russia).



qPCR

Quantitative PCR was performed using TaqMan Gene Expression Assay (Thermo Fisher Scientific), primers and probes, for the NETO2 gene (Hs00983152_m1). GAPDH, GUSB, and B2M were used as reference genes for prostate, colorectal, and breast cancer samples, respectively. Primers and probes for reference genes are shown in Supplementary Table S4. qPCR was performed on an Applied Biosystems 7500 Real-Time PCR System (Thermo Fisher Scientific) according to the scheme described in Krasnov et al. (2015). Each reaction was performed in triplicate. Data obtained by qPCR were analyzed using the ddCt method and the original ATG software (Kudryavtseva et al., 2018). NETO2 expression was considered meaningful if at least a 2-fold expression was determined owing to potential variations in the reference gene expression.



Cell Culture

The human colorectal cancer HCT116 cell line was cultured in DMEM (Dulbecco’s Modified Eagle’s medium; PanEco, Russia) supplemented with 10% FBS (fetal bovine serum; Thermo Fisher Scientific) and 100 units of penicillin/streptomycin (Thermo Fisher Scientific) in a humidified incubator at 37°C and 5% CO2.



Cell Transfection

shRNA targeting the nucleotide residues 509–529 of the human NETO2 gene (NCBI Gene ID: 81831, location 16q12.1) protein-coding region was designed and synthesized as follows: Sense, 5′-GATCCGCGCCAAATTATCCTGACTCATCACGTGATGAG TCAGGATAATTTGGCGTTTTTG-3′, and antisense, 5′-AATTC AAAAACGCCAAATTATCCTGACTCATCACGTGATGAGTC AGGATAATTTGGCGCG-3′. This pair of oligonucleotides and non-specific control scrambled (SCR) shRNA were cloned into BamH and EcoR sites of pLSLP plasmid to establish the pLSLP-anti-NETO2 lentiviral vector. Lentiviral constructs were transfected into 293T cells using Lipofectamine LTX reagent (Thermo Fisher Scientific). Virus-containing supernatants were collected 24 h after the transfection and were used to infect target HCT116 cells in triple repeats with the addition of 5 μg/mL polybrene (Sigma, United States). Infected cells were selected using the regular growth medium containing 1 μg/mL puromycin (Sigma).



Western Blot Analysis

Western blot analysis was performed as previously described (Kudryavtseva et al., 2016). For NETO2 detection, the primary recombinant antibody EPR3497 (Abcam, United States) was used.



Transcriptome Sequencing and Analysis

For cDNA library preparation, we utilized RNA isolated from cell cultures with RIN (RNA integrity number) values ≥8. Libraries were prepared with TruSeq Stranded mRNA Library Prep Kit (Illumina, United States) according to the manufacturer’s recommendations. Transcriptome sequencing was performed on a NextSeq 500 System (Illumina) using 76 base pair single-end reads. At least 30M reads were obtained for each sample. The primary analysis of raw sequences was performed as previously described (Pudova et al., 2019). Then, data as transcripts per million (TPM) were imported in the R environment. Differential gene expression was analyzed using the DESeq2 package of Love et al. (2014). The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for pathway enrichment analysis.



Analysis of Orthologs

Nucleotide and amino acid sequences of NETO2 in human samples and fishes were aligned using Blastn and Blastp, respectively. Gene expression data were obtained from the Bgee database1.



Neto2b Expression Analysis in N. furzeri

The eggs of fish N. furzeri GRZ were obtained from a commercial supplier and were bred in the Aquatic Housing System (Aquaneering, United States) at the Center for Precision Genome Editing and Genetic Technologies for Biomedicine at the Engelhardt Institute of Molecular Biology. The study was approved by the Ethics Committee of the A.N. Severtsov Institute of Ecology and Evolution Russian Academy of Sciences (approval no. 27, 9.10.2019).

Eight tissue samples (brain, intestines, heart, head kidney, liver, stomach, muscles, and skin) from a female N. furzeri were subjected to RNA isolation using QIAzol lysis reagent (Qiagen, Germany), subsequently treated with DNase I (Thermo Fisher Scientific). Quantification of the isolated RNA was performed using the NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific). Reverse transcription was carried out with 500 ng of RNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). A pair of primers (forward: CCACCCAACAAGGAGTGTGT and reverse: CCCGTGGAGGTAACAAGACC) was designed for neto2b gene detection by qPCR, performed on the Rotor-Gene Q 5 plex HRM (Qiagen) using the following scheme: 95°C for 10 min, 40 cycles of 95°C for 15 s, and 62°C for 60 s.



Statistical Analysis

The significance of differences observed between two groups (tumors/normal tissues and control cells/treated cells) was assessed using the non-parametric Mann-Whitney U test. Correlation analysis was performed using Spearman’s rank correlation coefficient (rs). For transcriptome analysis, the Benjamini-Hochberg method was used to calculate the adjusted p-values [the false discovery rate (FDR)]. Differences and correlations were considered significant at a p-value of < 0.05.



RESULTS


NETO2 Expression in Breast, Prostate, and Colorectal Cancer

Using qPCR, we analyzed the relative NETO2 mRNA level in sets of breast (n = 32), prostate (n = 40), and colorectal (n = 74) cancer samples. In breast cancer, NETO2 gene expression was increased in 31% of cases (2–24-fold), with decreased mRNA levels detected in 44% of samples (2–18-fold) (Table 1). NETO2 expression was characterized by a 2–33-fold average increase in 40% of prostate cancer samples and a 2–7-fold average decrease in 22.5% of cases. In colorectal cancer, NETO2 mRNA levels were increased in 35% (2–14-fold) of investigated samples and decreased in 26% of cases (2–28-fold). The highest median value of altered gene expression was determined in prostate cancer (Table 1). In general, a similar trend of NETO2 expression was observed in investigated cancer types (Figure 1).


TABLE 1. Frequency of mRNA level changes in breast, prostate, and colorectal cancer.
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FIGURE 1. Box plots for NETO2 expression changes in breast, prostate, and colorectal cancer.


Furthermore, we performed a correlation analysis between several clinicopathological characteristics of tumors (stage for all cancers, differentiation for prostate and colorectal cancer, mutation, and MSI status for colorectal cancer) and NETO2 expression. The highest correlation coefficients were observed between NETO2 expression and pathological stage for breast cancer (rs = 0.15) and prostate cancer (rs = 0.25), tumor differentiation for prostate cancer (rs = −0.16), and BRAF mutation status (rs = 0.18) for colorectal cancer. Correlation coefficients of less than 0.1 were observed between the NETO2 mRNA level and other investigated clinicopathological characteristics.



Stable Knockdown of NETO2 in HCT116

The pLSLP lentiviral vector expressing shRNA targeting NETO2 (pLSLP-anti-NETO2) and the vector expressing non-targeting SCR shRNA were transfected into HCT116 in triplicate. Protein and mRNA levels of the NETO2 gene were measured in experimental and control HCT116 cells using western blotting and qPCR (Figure 2). The results obtained confirmed the NETO2 knockdown.
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FIGURE 2. shRNA-mediated knockdown of NETO2 in the HCT116 cell line. Relative NETO2 expression in HCT116 cells transfected with targeting shRNA and non-specific SCR shRNA was measured using qPCR at mRNA level (A) and western blotting (B) at the protein level.




Effects of NETO2 Knockdown on Gene Expression

Seventeen protein-coding differently expressed genes (DEGs) and two lncRNAs (DE lncRNAs) were revealed through the RNA-Seq analysis (Log2FC ≥ 1, Log2FC ≤ −1, CPM ≥ 1, FDR < 0.05) in treated HCT116 cells when compared with the control group. We detected the upregulation of eight genes (CYP2U1, NR1D1, ZNF804A, SEMA3C, DBP, NT5E, NAV3, and KDM5D) and one lncRNA (LINC02043), as well as the downregulation of nine genes (MUC16, KRT6A, ACVRL1, PTP4A1, HYAL1, CLIC3, TEX19, DES, and KCNK3) and one lncRNAs (AL355075.4) (Figure 3A).
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FIGURE 3. Differently expressed genes/lncRNAs and enriched KEGG pathways. (A) DEGs/DE lncRNAs (Log2FC ≥ 1, Log2FC ≤ −1, CPM ≥ 1, FDR < 0.05) identified between experimental and control HCT116 cells. (B) Enriched KEGG pathways (FDR < 0.05) with DEGs (CPM ≥ 1, FDR < 0.05). KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differently expressed genes.


Additionally, we performed KEGG pathway enrichment analysis using all DEGs with FDR < 0.05. Three significantly enriched pathways for downregulated genes and one pathway for upregulated genes were identified (Figure 3B). These included “Wnt signaling pathway,” “TGF-beta signaling pathway,” “signaling pathways regulating pluripotency of stem cells,” and “circadian rhythm.”



NETO2 Gene Ortholog in Fish N. furzeri

We analyzed the NETO2 ortholog in the short-lived fish N. furzeri, termed neto2b (NCBI Gene ID: 107381994, location sgr07). Alignment of cDNA sequences demonstrated 69% of identity, whereas amino acid sequence alignment revealed higher similarity with 85% of conservative substitutions (positives) and only 2% of gaps (Supplementary Figure S1). In comparison, 71% of nucleotide sequences (cDNA) and 74% of amino acid sequence (6% of gaps) similarities were observed in Danio rerio (Supplementary Figure S2). Using qPCR, we measured neto2b expression in different tissues of N. furzeri (female) to estimate its potential use as a fish model presenting gene tissue-specific overexpression/downregulation. As observed in humans, neto2b demonstrated the highest mRNA levels in the fish brain. The expression of neto2b in other investigated tissues is presented in Figure 4.
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FIGURE 4. Relative mRNA levels of the neto2b gene in different tissues of N. furzeri. The highest mRNA level of neto2b was detected in the brain tissue and was taken as 1. The expression of neto2b in other studied tissues was measured relatively this value. Darker red indicates higher expression. Gray color indicates tissues where the gene expression has not been measured. BR, brain; HE, heart; ST, stomach; SK, skin; IN, intestines; LI, liver; KI, head kidney; MU, muscles; SP, spleen; BL, bladder; GI, gills; GO, gonads.




DISCUSSION

A series of studies aimed at investigating the biological functions of NETO2 has reported its crucial role in neural glutamate signaling. However, NETO2 was also found to be upregulated in several tumors. Our research group was one of the first to reveal NETO2 overexpression in solid tumors (renal and lung cancer) (Oparina et al., 2012). Recently, it has been reported that elevated NETO2 expression was associated with tumor progression, poor prognosis, and reduced survival in cancer patients (Hu et al., 2015; He et al., 2019). In this study, we first demonstrated the deregulation of NETO2 expression in breast and prostate cancer. The NETO2 mRNA level was predominantly downregulated in breast cancer (44%), with elevated gene expression observed in 31% of samples. In prostate cancer, NETO2 mRNA levels were upregulated in 40% of cases, with a 1.8 median change. Negligible correlations were observed between the NETO2 expression and stage of breast and prostate cancer, as well as differentiation of prostate tumors. For colorectal cancer, we expanded a set of samples from a previous study (Fedorova et al., 2017) and confirmed that NETO2 expression was increased in about one-third of these tumors (41 and 35% in previous and current studies, respectively). Nevertheless, a study evaluating Chinese patients with colorectal cancer has revealed the upregulation of NETO2 in 52.6% of cases, reporting an association between expression and advanced tumor stage and invasion, poor differentiation, lymph node metastasis, and unfavorable prognosis in patients (Hu et al., 2015). In contrast, we failed to observe any significant correlations between the NETO2 mRNA level and tumor stage, as well as differentiation that can be explained by the difference of the studied cohorts. Also, no association of NETO2 expression with KRAS, NRAS, and BRAF mutations or MSI status were found.

Despite several studies indicating the involvement of NETO2 in tumorigenesis, the underlying mechanism remains unclear. Li et al. (2019) have investigated NETO2 functions in pancreatic cancer, and demonstrated that NETO2 knockdown reduced the proliferative capacity of pancreatic cancer cells and suppressed tumor growth in vivo; NETO2 overexpression conversely stimulated cell proliferation, invasion, and migration via the activation of the STAT3 pathway. Similar observations were reportedly documented following NETO2 knockdown in nasopharyngeal carcinoma cells (He et al., 2019). The depletion of NETO2 expression results in decreased proliferation, invasion, and migration of tumor cells and induced apoptosis via activating Caspase-3 signaling. Additionally, NETO2 overexpression promotes the invasion and metastasis of gastric cancer cells by inducing epithelial-mesenchymal transition (EMT) by upregulating TNFRSF12A, which mediates the activation of the PI3K/AKT/NF-κB/Snail axis (Liu et al., 2019). In the present work, we demonstrated that stable NETO2 knockdown in HCT116 cells resulted in the downregulation of Wnt and TGF-β signaling pathways, as well as signaling pathways regulating the pluripotency of stem cells. In the KEGG database, the “signaling pathways regulating pluripotency of stem cells” group comprises the Jak-STAT, MAPK, PI3K-Akt, Wnt, and TGF-β signaling pathways. All these stem cell-related pathways are extensively implicated in tumorigenesis (Dreesen and Brivanlou, 2007). Thus, our results demonstrated the participation of NETO2 in the deregulation of cell signaling in tumors and confirmed its relation to STAT and PI3K-Akt signaling as previously reported. Conversely, NETO2 reduction leads to an upregulation of the circadian rhythm pathway in colorectal cancer cells. Circadian rhythm is closely associated with the cell cycle and has been implicated in DNA-damage response (Hunt and Sassone-Corsi, 2007), with the disruption of this pathway considered a risk factor for carcinogenesis (Straif et al., 2007). According to literature, NETO2 is related to cell proliferation and apoptosis in tumor cells (He et al., 2019; Li et al., 2019). These processes could be connection points between the functions of NETO2 and the circadian rhythm pathway.

Furthermore, we determined 17 genes presenting more than a 2-fold change in expression following NETO2 knockdown. Increased expression was observed in genes involved in cell metabolism [CYP2U1 (arachidonic acid metabolism) and NT5E (metabolism of nucleotides)], circadian rhythm (NR1D1 and DBP), regulation of developmental processes (SEMA3C and NAV3), histone demethylation (KDM5D), and transcriptional regulation (ZNF804A). Decreased mRNA levels were noted for genes related to cell adhesion (MUC16), differentiation (TEX19), proliferation, and migration (ACVRL1, PTP4A1, and HYAL1), as well as cytoskeleton organization (KRT6A and DES) and ion transmembrane transport (CLIC3 and KCNK3). Most genes (CYP2U1, SEMA3C, NT5E, KRT6A, NAV3, ACVRL1, KCNK3, MUC16, PTP4A1, and HYAL1) were previously found to be implicated in the development of colorectal cancer. Interestingly, NETO2 is reportedly associated with the neuron navigator 3 (NAV3) gene, which is also predominantly expressed in the nervous tissue. Copy number changes in the NAV3 gene have been observed in colorectal cancer (Carlsson et al., 2012). Moreover, NAV3 is reportedly involved in the p73-mediated tumor suppression, as well as in Jak-STAT and GnRH signaling in colorectal cancer cells (Carlsson et al., 2012; Uboveja et al., 2020). Furthermore, the participation of NETO2 has been revealed in the Jak-STAT signaling pathway during cancer. Additionally, NETO2 silencing resulted in the altered expression of two lncRNAs, LINC02043, and AL355075.4, for which the functions and related cellular pathways have not been established. However, lncRNA LINC02043 was previously reported as a prognostic marker of recurrence-free survival in hepatocellular carcinoma (Luo et al., 2020). Notably, regulation of NETO2 expression with microRNAs and microRNA-lncRNA interaction has been recently shown in esophageal cancer. NETO2 was determined as a target of miR-206 and miR-143-5p, and participation of NETO2 tumor progression and angiogenesis through overexpression of lncRNA FAM225A absorbed miR-206 was revealed (Wada et al., 2020; Zhang et al., 2020). LncRNAs found in our study can also be potential regulators of NETO2 expression in colorectal cancer.

Although a wide range of studies has proposed increased NETO2 expression in several tumors, we revealed its deregulation in breast, prostate, and colorectal cancers (both decreased and increased mRNA levels). The function of NETO2 in tumorigenesis remains unclear; however, our findings and those obtained in previous studies indicate its participation in cancer-related signaling pathways. Moreover, all identified cancer-related signaling pathways (Wnt, TGF-β, STAT, MAPK, and PI3K-Akt) have previously been shown to be associated with breast, prostate, and colorectal cancer (Dhillon et al., 2007; Massagué, 2008; Pencik et al., 2016; Zhan et al., 2016; Jiang et al., 2020).

Finally, we analyzed the ortholog of the human NETO2 gene in the unique animal model, the short-lived fish N. furzeri. This fish is characterized by an extremely short captive lifespan of 3 months. The use of N. furzeri for genetic studies allows for the rapid generation of transgenic lines and short-term experiments. We showed that the ortholog neto2b had the high similarity with human NETO2 in nucleotide (69%) and amino acid (85%) sequences (even more than those for D. rerio), as well as stable expression in the majority of the fish tissues. These results confirm that NETO2 is a very conservative gene among vertebrates and indicate the possibility to use N. furzeri for the study of the gene function and its role in tumorigenesis at the organism level.
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Background: Pulsatile pituitary gonadotropin secretion governed by hypothalamic gonadotropin-releasing hormone (GnRH) is essential for the pubertal onset. The epigenetic mechanism underlying the activation of GnRH-dependent regulatory axis in hypothalamus remains elusive. This study aims to explore the potential correlation between the signature of DNA (hydroxyl)methylation and pubertal process.

Methods: Hypothalamic arcuate nucleus (ARC) of mouse at early (4-weeks) and late pubertal (8-weeks) stages underwent RNA-, RRBS-, and RRHP-seq to investigate the genome-wide profiles of transcriptome, differential DNA methylation and hydroxymethylation.

Results: A series of differential expressed genes (DEGs) involved in sexual development could be separated into three subgroups with the significant difference of DNA methylation or hydroxymethylation or both in promoter regions. Compared to DNA methylation, DNA hydroxymethylation partook in more signaling pathways including synapse morphology, channel activity and glial development, which could enhance transsynaptic change and glia-to-neuron communication to faciliate GnRH release. The correlation between transcription and these epigenetic modifications indicated that DNA hydroxymethylation impacted with gene transcription independently of DNA methylation spanning puberty.

Conclusion: Our results characterized the hydroxymethylation pattern and provided an insight into the novel epigenetic regulation on gene expression during pubertal process.
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INTRODUCTION

Pubertal development is a multi-factorial process accompanied by maturity of skeletal height, growth spurt, and a myriad of hormonal changes involving genetic, nutritional, socioeconomic, and environmental factors in a systematic manner leading to reproductive maturation. Pubertal development is governed by the hypothalamic–pituitary–gonadal (HPG) axis, and begins with hypothalamic gonadotropin-releasing hormone (GnRH) neurons. Usually, the dormant HPG axis presents the silencing GnRH, extremely low levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH), and estrogen or testosterone until ~8–9 years of age in human beings (Lee and Houk, 2006, 2008). The pulsatile secretion of GnRH from the hypothalamus stimulates on the gonadotroph cells of the pituitary gland to secrete gonadotropins, LH and FSH, and the gonadotropins then stimulate the production of estrogen from the ovaries in females, and testosterone from the testes in males (Chulani and Gordon, 2014). In turn, the secretion of GnRH in hypothalamus is majorly regulated by KiSS-1 metastasis suppressor (Kiss1) and Kiss1 receptor (Kiss1r, also known as GPR54). Kiss1 neurons of the arcuate nucleus (ARC) in the hypothalamus seem to be essential for pulsatile GnRH release in both sexes. Transcriptional activation of these genes was considered as a core mechanism underlying the puberty initiation, which was precipitated by epigenetic cues (Ojeda and Lomniczi, 2014).

Previous studies have indicated that hypothalamic DNA methylation is strongly implicated in the onset of puberty in mammals (Lomniczi et al., 2015; Yuan et al., 2019). Loss of DNA methylation or demethylation has been observed in specific contexts through active or passive mechanisms (Wu and Zhang, 2010). Active DNA demethylation is the enzymatic process that leads to the removal of the methyl group from 5-methylcytosine (5mC) via successive oxidation [5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC)] catalyzed by ten-eleven translocation (TET) family (Kohli and Zhang, 2013). TET2 has been determined to promote transcription and peptide release of GnRH, and consequently maintain reproductive function in in vitro and in vivo (Kurian et al., 2016). However, the roles of active DNA demethylation in transcriptional regulation in puberty onset is never elucidated.

Female mice have been widely used in multiple studies on pubertal development as they present the similar molecular behaviors in HPG axis and stable cycles of menstrual calendar like human (Pohl et al., 2007). Hypothalamic ARC underwent a huge epigenetic and genetic reprogramming to adapt to the response and feedback on sexual hormones during the stages of early pubertal (2–5-weeks of age) and late puberty (5–8-weeks of age). Here, we harvested 4- and 8-weeks hypothalamic ARC and employed RNA-seq, reduced representation bisulfite sequencing (RRBS) and hydroxymethylation profiling (RRHP) on a genome-wide scale. Given a large number of differential expressed genes (DEGs) and differential 5(h)mC signals across the whole genome, we discovered novel connections between DNA (hydroxyl)methylated modification and gene expression, emphasizing the importance of epigenetic alterations in regulating transcription during pubertal process.



MATERIALS AND METHODS


Experimental Animals

C57BL/6 female mice purchased from Shanghai SLAC Laboratory Animal Co., Ltd. (Shanghai, China) were housed in clean cages and maintained at 22 ± 2°C with a constant 12-h light/dark schedule. The animals were allowed free access to food and water. 4- and 8-weeks-old mice (n = 10 per group) were used in this study. Initially, preliminary experiment for dye injection was used to target the location of ARC using initial orientation (0.4 mm lateral, 1.60 mm posterior to bregma, 7.40 mm below the surface of the dura) as previously described (Greenwood et al., 2014; Hu et al., 2015). Mice were sacrificed via cervical dislocation, and the whole brains were isolated immediately. The hypothalamic ARC tissues in each group were harvested and gathered for the consequent experiments according to the previous dye staining (Supplementary Figure 1A). All the procedures were followed by the Institutional Animal Care and Use Committee of Shanghai Jiao Tong University.



RNA-seq Library Construction and Data Analysis

ARC tissues were stored in 1 ml TRIZOL (Thermo Fisher Scientific, Waltham, MA, USA) and grinded in liquid nitrogen, and were added 100 μl chloroform and fully mixed, then centrifuged with highest speed at 4°C for 10 min. The supernatant was moved into a new tube, and added the isopropanol with same volume, and centrifuged with highest speed at 4°C for 10 min. The precipitate was washed by 75% cold ethanol, and dissolved by appropriate DEPC water. The concentration and quality of RNA was measured by Nanodrop 2000 (Thermo Fisher Scientific) and Agilent bioanalyzer 2100 (Agilent, Santa Clara, CA, USA). 4 μg of RNA in each group were used for library preparation by NEBNext Ultra Directional RNA Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) following manufacturer's instructions and were sequenced on an Illumina Hiseq platform.

The raw data was trimmed adaptors and filter out low quality reads using Trimmomatic (non-default parameters: SLIDINGWINDOW:4:15 LEADING:10 TRAILING:10 MINLEN:35) (Bolger et al., 2014), and checked the quality of clean reads using Fastqc (Andrews, 2013). Next, clean reads were aligned to the latest mouse genome assembly mm10 using Hisat2 v2.0.5 (non-default parameters: –rna-strandness RF –dta) (Kim et al., 2015). The transcripts were assembled and the expression levels were estimated with FPKM values using the StringTie algorithm (non-default parameters: –rf) (Pertea et al., 2015). Differential mRNA and lncRNA expression among the groups were evaluated using an R package Ballgown (Frazee et al., 2015), and the significance of differences by the Benjamini & Hochberg (BH) p-value adjustment method were computed. Gene annotation was described by Ensembl genome browser database (http://www.ensembl.org/index.html). The R package ClusterProfiler was used to annotate the differential genes with gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (Yu et al., 2012).



RRBS and RRHP Library Construction and Data Analysis

Genomic DNA of ARC in two groups were extracted using the QIAquick Gel Extraction Kit (Qiagen, Hilden, Germany). The 200 ng high-quality DNA was then digested by restriction endonucleases MspI (NEB) and subjected to 3′-end blunting and single nucleotide (A) addition and adaptor ligation. For RRHP, 5hmC positions at the adapter junctions were modified by T4 phage β-glucosyltransferase (NEB), and non-glucosyl-5hmCs were removed by another round of MspI digestion. The 250–500 bp fragments were then selected and treated with bisulfite conversion using Epitect Bisulfite Kit (Qiagen) according to the manufacturer's instructions. Converted DNA were eluted and performed PCR amplification to enrich for fragments with adapters on both ends. The constructed libraries were quantified using Agilent Bioanalyzer 2100 (Agilent Technologies, Carlsbad, CA, USA) and subjected to high-throughput sequencing using the Illumina Hiseq 2500 platform with paired-end 50 bp sequencing (PE50).

For RRBS, Trim Galore v0.5.0 (non-default parameters: –max-n 0 –length 35 –rrbs) were used to filter adapters, short reads (length < 35 bp) and low quality reads. For RRHP, Cutadapt v1.18 (non-default parameters: –max-n 0 –minimum-length 35), and Trimmomatic v0.38 (non-default parameters: SLIDINGWINDOW:4:15 LEADING:10 TRAILING:10 MINLEN:35) were used to filter adapters, short reads (length < 35 bp) and low quality reads. FastQC (with default parameters) was used to ensure high reads quality. Trimed reads of RRBS data were aligned to reference genome (assembly GRCm38) using Bismark v0.7.0 (with default parameters) and analyzed DNA methylation profiles using methylKit package (Akalin et al., 2012). DMRs were selected by false discovery rate (FDR) < 0.05 and methylation percentage change between control and test groups are > 10%. For RRHP, clean reads were mapped to the mouse genome (assembly GRCm38) using the Bowtie2 v2.3.4.1 (with default parameters) software. Aligned reads with CCGG tag at 5′ end were counted. Differentially hydroxymethylated regions (DHMRs) were determined using the diffReps software. DHMRs were analyzed by log2 fold change (FC) >1 or <-1, FDR < 10−4.



Data Deposits

The raw sequencing data was deposited to ArrayExpress assigned with the accession number E-MTAB-9420 and E-MTAB-9421.




RESULTS


The Differential Expressed Genes During Pubertal Process

To investigate the changes of epigenome and transcriptome of hypothalamic ARC during puberty progression, we conducted 18 libraries for RNA, RRBS, RRHP-seq derived from hypothalamic ARC of C57BL/6 mice in two sexual developmental stages of early and late puberty. The alignment of data and the correlations within duplications in each group were summarized in Supplementary Table 1 and Supplementary Figure 2, which indicated a good quality of biological materials in this study. As previously described (Li et al., 2017), developmental stages of C57BL/6 mouse were roughly divided into prepuberty and early puberty periods (2–5-weeks of age), late puberty (5–8-weeks of age), and young adulthood (8–12-weeks of age). Here, we detected the vulva morphology and the changes of LH and FSH in sera of 4- and 8-weeks mice, and validated that 8-weeks mice displayed a phenotype of higher hormome levels and gonadal activation compared with 4-weeks mice (Supplementary Figures 1B,C).

A total of 5,778 DEGs were obtained among which 1,787 protein coding genes were up-regulated while 3,991 were down-regulated in 8-weeks group compared with 4-weeks one (log2FC >1 or < −1, FDR <10−3). Take an example of the well-acknowledged puberty associated genes, in contrast to the high expression of Kiss1, GnRH, and Adam7 in early pubertal stage of ARC, the presence of substantially decreased Cbx7, Kiss1r, and Nell2 was observed during pubertal process (Figure 1A). Moreover, the functional and signaling pathway enrichment analysis showed that DEGs majorly involved in neurodevelopment, synaptic behavior and transmembrane and extracellular signal transduction (Figures 1B,C), indicating that the specific functional neurons in ARC underwent a complicated process of signals communication and stimulation for maturation. We also observed a high correlation of glutamatergic synapse with puberty (p = 5.24 × 10−8) and the high expression of glutamate metabolism associated genes such as Grik, Grin and Adcy families in 4-weeks compared with 8-weeks ARC. Previous study indicates that the coordinated activity of glutamatergic neurons and GnRH neurons facilitates the sensitivity of GnRH secretion (Parent et al., 2005). Besides that, choline, aldosterone and endocannabinoid did synthesize and secrete, which likely had profound effects on puberty initiation (Wenger et al., 2002; Biasi, 2010; Genovesi et al., 2018). Taken together, these observations validated the known genetic signatures and indicated multiple activated signaling pathways during pubertal process.
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FIGURE 1. Expression profile of hypothalamic ARC in 4- and 8-weeks. (A) Scatter plot of gene expression of 4- /8-weeks. Orange dots represent genes with significant differential expression (q < 0.001). Ontology analysis of the involved enriched functions (B) and signaling pathways (C) of DEGs (p < 0.05).




Genome-Wide Landscape of DNA Methylation and Hydroxymethylation in ARC

To further investigate the regulatory machinery underlying transcription, RRBS and RRHP were employed to detect the altered genome-wide distribution of 5mC and 5hmC in 4- and 8-weeks old hypothalamic ARC. Our data showed that DMRs and DHMRs (RRBS: FC > or < 10%, FDR < 0.05; RRHP: log2FC >1 or < −1, FDR < 10−4) majorly occurred at the promoter, intron and intergenic regions (Figures 2A,B). Here, we focused on the CpG loci located at promoter region of DEGs and observed that these genes whose promoter showed the significantly differential DNA methylation levels between 4- and 8-weeks groups were functionally enriched in signaling pathways closely connected with sexual development and hormone secretion (Figures 2C,D). Likewise, DEGs whose CpG loci at promoter had the remarkable increasing or declining hydroxymethylation levels were majorly associated with the function of synapse morphology and channel activity including glutamatergic synapse (Figures 2E,F). In addition, we found that most of functions and pathways (86.8%) enriched by DHMRs overlapped with those of DEGs compared with DNA methylation (Figures 2G,H). Previous studies have determined that transsynaptic change and glial-neuronal connection attribute to GnRH neuron activation (Ojeda et al., 2010). Current data showed that DHMRs involoved in more genes enriching the functions of glutamate and gamma-aminobutyric acid (GABA) neuron as well as glia development rather than DNA methylation. Our results indicated that DNA methylation might impact with the more intuitive phenotype of hormone secretion while the functions related DNA hydroxymethylation were associated with various auxiliary neurons which were not the most obvious characteristics of sexual development, but were used to trigger and maintain the pubertal initiation. Taken together, the given 5(h)mC patterns in ARC suggested that DNA (hydroxyl)methylation was closely connected with gene expression in puberty onset.


[image: Figure 2]
FIGURE 2. DNA (hydroxy)methylation patterns of hypothalamic ARC in 4- and 8-weeks. The distribution of DMR (A) and DHMR (B) regions in genomic contexts of DEGs. DMR: differential methylated regions, FC > or < 20%, q < 0.05; DHMR: differential hydroxymethylated regions, log2FC >1 or < −1, q < 1e-4. Ontology analysis of the involved enriched functions (C) and signaling pathways (D) of differential methylated DEGs (p < 0.05). Ontology analysis of the involved enriched functions (E) and signaling pathways (F) of differential hydroxymethylated DEGs (p < 0.05). The Venn diagram view of enriched functions (G) and signaling pathways (H) among DEGs with differential (hydroxyl)methylation.




Independent Roles of DNA Hydroxymethylation and Methylation in Regulating Gene Expression

As well-acknowledgment that DNA methylation in promoters usually negatively correlated with transcription, while DNA hydroxymethylation in promoters displayed a positive correlation with gene expression, we observed the consistent epigenetic regulation of DNA hydroxyl(methylation) on DEGs in our system. Given the overlap of enriched functions between DNA (hydroxy)methylation and DEGs, we grouped three clusters of gene which are negatively correlated with DNA methylation, positively correlated with DNA hydroxymethylation as well as both (Figure 3A). The presence of nine genes including Bhlha15, Insl5, Msmp, Plcb2, Slc17a8, Sox3, Tnfaip2, Uck2, and Ypel2 in first cluster, 3,277 genes including Epb41, Pebp1 in second cluster, as well as 38 genes including Areg and Nr5a1 in third cluster was observed (Figure 3B). During pubertal development, the connection between DNA methylation and hydroxymethylation was seemingly not closed, maybe only in 38 genes of the third cluster.


[image: Figure 3]
FIGURE 3. The relationship between DNA hydroxymethylation and transcription. (A) Heatmap of 5(h)mC FC at promoter of DEGs between 4- and 8-weeks of hypothalamic ARC. (B) Gene browser views of transcription, 5mC and 5hmC profiles in 4- and 8-week of hypothalamic ARC for three clusters of gene regulated by DNA methylation (Scl17a8, Uck2), DNA hydroxymethylation (Epb41, Pebp1), and both (Nr5a1, Areg). (C) Comparison of FC of DEGs and D(H)MRs at promoter region. (D) The correlation between 5mC and 5hmC of the overlapped D(H)MR in promoter of DEGs.


Moreover, we obtained the FCs of transcription, 5mC and 5hmC between 4- and 8-weeks, and compared the FC of gene expression normalized by the FC of 5(h)mC, indicating that DNA hydroxymethylation could impact gene expression more powerful than DNA methylation (Figure 3C). To further investigate the relationshiop between differential 5mC and 5hmC from the overlapped D(H)MRs, we calculated correlation using Pearson's chi-squared test. Unexpectedly, we failed to observe any significant relativity between each other (r = 0.0543, p > 0.05) (Figure 3D). Although in consideration of 5hmC as an intermediate of demethylation, however, the results above suggested that DNA hydroxymethylation played a regulatory role in transcription independent of DNA methylation although they had the closely chemical connection.




DISCUSSION

Although mutations in multiple genes such as kisspeptin system, MKRN3, DLK1 have been identified in sporadic and familial cases of central precocious puberty (CPP), many factors involved in pubertal initiation and transition remain poorly understood (Aguirre and Eugster, 2018). Our data shows that the DEGs of hypothalamic ARC between 4- and 8-weeks include a number of well-acknowledged pubertal associated genes. However, we have meanwhile detected ARC of adult rat, and fail to observe any significant change of Kiss1 and GnRH compared with 4- or 8-weeks (data not shown), which suggests that the expressions of GnRH and other pubertal genes are fluctuant due to the pulsatile release of GnRH and periodic estrus cycle in adult individuals, but their expression changing law during the stages of puberty onset seems more stable than adult stage.

A large number of recent studies have suggested that CpG methylation changes are likely to show a crucial regulatory in controlling the transcription of the well-acknowledged pubertal genes related to GnRH and estrogen signaling pathways in mammalian hypothalamus (Mellen et al., 2012; Alves et al., 2017; Thompson et al., 2018). Although our omics data indicates that DNA methylation change is associated with the expression of a small proportion of genes on gonad development from early to later stages of puberty onset, however, the expressions of more genes are actually impacted by DNA hydroxymethylation at promoter including Kiss1 and Kiss1r. The secretion of GnRH in hypothalamus is majorly regulated by KiSS-1 metastasis suppressor (Kiss1) and Kiss1 receptor (Kiss1r, also known as GPR54). Kiss1 neurons of the arcuate nucleus (ARC) in the hypothalamus seem to be essential for pulsatile GnRH release in both sexes. We speculate that an accompanied genome-wide demethylation processes to facilitate synapse organization to accommodate to regulating the high-level hormone secretion in hypothalamus. 5hmC as a hallmark and an intermediate of demethylation process is determined to play an essential role in normal sexual development in central nervous system in this study. Furthermore, the differential DNA hydroxymethylated genes and their involved functions and pathways have no more than 15% overlap with the ones of DNA methylation, and differences of 5hmC at the promoter of DEGs affect transcription more robustly than 5mC even at the same “CG” loci, which implies that DNA hydroxymethylation exerts an epigenetic regulation independent of DNA methylation although they tightly connect with each other from the chemical basis. 5hmC, which is more than the intermediate of demethylation process per se, is likely to reverse the traditional repressive functions of MeCP2 (Mellen et al., 2012), and recruit multiple transcription factors to create an environment to facilitate gene transcription (Ichiyama et al., 2015).

Additionally, we focus on the associated regulatory networks of Kiss1 and GnRH, which seems to be the most important gene for puberty onset. We find that the enriched functions involving Kiss1 but not GnRH from DHMR associated genes and DEGs completely overlapped. We speculated that DNA hydroxymethylation is likely to govern the upstream GnRH regulatory axis in the early stage of puberty initiation. Our data reveals the dynamic DNA (hydroxy)methylation changes of genome of ARC during puberty process, not only indicates the gene expression regulation, but also provides the potential therapeutic targets by epigenetic drugs for puberty associated diseases treatment.



CONCLUSION

Overall, our data shows the dynamic change of genome-wide methylation and hydroxymethylation in hypothalamic ARC, and uncovers a novel characterization of DNA hydroxymethylation for regulating transcription during pubertal process. The outcomes advance the understanding on a novel mechanism of epigenetic regulation on gene, and contributes to improving therapeutic strategy for disorders of sex development.
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Supplementary Figure 1. The phenotype and morphology of pubertal femal mice. (A) Dye injection for ARC location. Left: the ventral view of hypothalamus; right: sectional view of coronal suture of hypothalamus. Red pentagon indicates the location of ARC. (B) Comparision of vulva morphology between 4- and 8-weeks mice highlighted by the red arrows. The serum levels of LH (C) and FSH (D) between 4- and 8-weeks mice. “**” represent p < 0.01.

Supplementary Figure 2. The repeatability and reliability of omics data. Correlation analysis of replicate data, including RNA-seq, RRBS-seq, and RRHP-seq for 4- and 8-weeks ARC samples. Correlations were calculated using whole genome data.
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Chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is an important experimental method for detecting specific protein-mediated chromatin loops genome-wide at high resolution. Here, we proposed a new statistical approach with a mixture model, chromatin interaction analysis using mixture model (ChIAMM), to detect significant chromatin interactions from ChIA-PET data. The statistical model is cast into a Bayesian framework to consider more systematic biases: the genomic distance, local enrichment, mappability, and GC content. Using different ChIA-PET datasets, we evaluated the performance of ChIAMM and compared it with the existing methods, including ChIA-PET Tool, ChiaSig, Mango, ChIA-PET2, and ChIAPoP. The result showed that the new approach performed better than most top existing methods in detecting significant chromatin interactions in ChIA-PET experiments.
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INTRODUCTION

Diverse high-throughput methods have been developed to detect genome-wide chromatin interactions, including chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) and high-throughput chromosome conformation capture (Hi-C) (Fullwood et al., 2009; Lieberman-Aiden et al., 2009). ChIA-PET was first introduced in 2009 as an essential experimental method for studying genome-wide chromatin interactions mediated by a specific protein of interest. It can discover many chromatin interactions at a higher resolution that are needed for studying gene transcription regulation. It has been widely used to study various proteins such as estrogen receptor alpha, RNA polymerase II (RNAPII), CCCTC binding factor (CTCF) in human and mouse genome (Fullwood et al., 2009; Handoko et al., 2011; Li et al., 2012; Tang et al., 2015), and H3K4me3, H3K9me2, and RNAPII in rice and maize (Peng et al., 2019; Zhao et al., 2019).

The processing of raw ChIA-PET data is not easy. ChIA-PET experiment will generate tens of millions of paired reads containing a tag and linker sequence (barcode). The tag can be short (generated by the original protocol, and it is about 20 base pairs) or long (generated by the improved protocol, and it is about 150–250 base pairs) (Li et al., 2017). The steps to process raw ChIA-PET data include linker trimming, read alignment, paired-end tag (PET) filtering, PCR duplicate removal, peak calling, and chromatin interaction calling. In ChIA-PET data, similar to other high-throughput sequencing data, there is a mixture of signals (fragment pairs from real chromatin interactions, termed as true pairs) and noise (fragment pairs from random ligation, termed as false pairs). Distinguishing the true interaction pairs from the random noise is not a simple task, and complicated computational tools are needed (He et al., 2016). Up to now, there are several published tools, and ChIA-PET Tool (Li et al., 2010), ChiaSig (Paulsen et al., 2014), Mango (Phanstiel et al., 2015), ChIA-PET2 (Li et al., 2016), and ChIAPoP (Huang et al., 2019) are the representative ones.

The ChIA-PET Tool is the first software package for the automatic processing of ChIA-PET sequence data, which uses hypergeometric distribution (HG) as the statistical method and accounts for the sequencing depth bias. It fails to correct the major source of bias (He et al., 2015; Phanstiel et al., 2015), such as the genomic distance between the interacting regions. ChiaSig (Paulsen et al., 2014) advanced the ChIA-PET Tool by incorporating genomic distance between interacting anchors. It uses non-central HG distribution for modeling the frequency of chromatin interactions, and the model considers the non-specific ligations that exist because of genomic distance proximity. As a limitation, ChiaSig has a high false-negative rate (He et al., 2015), it executes the final step in ChIA-PET Tool data analysis, and users are expected to write their programs (Phanstiel et al., 2015). Similar to ChiaSig, Mango (Phanstiel et al., 2015) is designed for correcting the primary source of biases from genomic proximity using the binomial model. As a limitation, Mango does not model the interactions between different chromosomes. Besides, it is too conservative at the significant loop calling step, just reporting a small number of interactions, which led to a high false-negative rate (Li et al., 2016). ChIA-PET2 (Li et al., 2016) is a complete analysis pipeline that uses a Bayesian mixture model to process both bridge and half-linker ChIA-PET data from raw sequencing reads to significant chromatin loop calls. As a limitation, it gives slightly different results for the same input (Huang et al., 2019). ChIAPoP (Huang et al., 2019) was proposed using zero truncated Poisson distribution for accounting for the genomic distance and sequence biases. It is designed for short-read ChIA-PET datasets only. ChIAPoP considers intra- and interchromosomal interaction as a separate model. Recently, ChIA-PIPE (Lee et al., 2020) was proposed by integrating the special functions related to the experiment types, data processing, and structural interpretation. ChIA-PIPE used ChiaSig (Paulsen et al., 2014) to calculate the statistical significance of interactions.

All the above existing tools considered only the genomic distance or anchor depth as biases. But in different studies, the GC content and mappability score are listed as systematic sources of biases (Yaffe and Tanay, 2011; Hu et al., 2012; Imakaev et al., 2012). Hence, the existing tools failed to address it. Besides, from the existing tools, except for ChIA-PET Tool V3 (Li et al., 2019), ChIA-PET2 (Li et al., 2016), and ChIA-PIPE (Lee et al., 2020), others are designed exclusively for short-read ChIA-PET data analysis.

Here, we present a new statistical method called chromatin interaction analysis using mixture model (ChIAMM) to distinguish signals from noise in ChIA-PET data. It considers the genomic distance between anchors, sequence depth, GC content, and mappability as systematic sources of bias. The model was tested on both RNAPII and CTCF ChIA-PET data from human K562 and MCF7 and RNAPII and H3K9me2 ChIA-PET data from rice MH63. The performance of the proposed method was evaluated with the aggregate peak analysis (APA) plot, CTCF coverage of anchors, and CTCF motif orientation analysis. The results showed that the new method performed better with the most top existing tools.



MATERIALS AND METHODS


Public Datasets Used

In this study, MCF7 and K562 RNAPII data in Li et al. (2012), MCF7 and K562 CTCF data in GEO with accession numbers GSM970215 and GSM970216, respectively, and MH63 RNAPII and H3K9me2 data in Zhao et al. (2019) were processed. For the CTCF enrichment and motif orientation analyses, the CTCF peak regions from ENCODE ChIP-Seq datasets ENCFF990LUT and ENCFF720OXG for MCF7, and ENCFF559HEE and ENCFF681OMH for K562 datasets were used.



Systematic Biases Considered in the Study

In this study, we used genomic distance, GC content, mappability, and enrichment as systematic biases of the ChIA-PET experiment. We used ChIA-PET Tool version 3 (V3) (Li et al., 2019) as the primary processing pipeline to find the anchor sites, genomic distance, interaction frequency, type of interaction, marginal count, and self-ligation PETs. It is known that regions close together along the genomic sequence will have a higher chance of forming random contacts. Thus, it is essential to integrate the genomic distance into the model (Paulsen et al., 2014), and we primarily considered the genomic distance as a bias. The second bias is the GC content, defined as the percentage of cytosine (C) and guanine (G) bases in a given region. In different studies, GC content has been reported as a systematic bias in next-generation sequencing (NGS) applications (Yaffe and Tanay, 2011; Hu et al., 2012), and the GC content of each anchor is calculated using bedtools nuc (Quinlan and Hall, 2010) function. The third bias is the mappability score, which is defined as the mappability of all possible k-mers in a given anchor site. The mappability track is downloaded from the UCSC Genome Browser website (Derrien et al., 2012), and the overlap of the mappability track with anchors was performed using bedtools. The last systematic bias is the local enrichment in a given region. It is well known that the anchors with more enrichment have a higher probability of forming interligation PETs by random chance. Different studies have considered enrichment as systematic bias in their analysis (Li et al., 2010, 2016; Paulsen et al., 2014; He et al., 2015; Niu and Lin, 2015; Phanstiel et al., 2015; Huang et al., 2019). In this study, we measured the anchor enrichment using the number of self-ligation PETs found by ChIA-PET Tool (V3).



Statistical Mixture Model

In many situations, like the ChIA-PET experiment, due to the complex nature of the observed data, using single parametric distribution is insufficient for inference. Here, we used a mixture model. It offers a solution to this problem by assuming that the frequency of chromatin interactions can be represented by a weighted sum of distributions, with each distribution representing a proportion contribution to the data.

We used a mixture model for modeling the interaction frequency of the ChIA-PET experiment. Let Y = {yi,i = 1,2,…….,n} represent the interaction frequencies for each observed anchor pair i from n unique anchor pairs (say, anchor AiandBi). The interaction frequency, yi, has a two-component mixture distribution, i.e., signal and noise. The mixture model integrates signal and noise interaction frequency as follows:

[image: image]

where Wji is the mixing probability (i.e., W0i and W1i represent the probability of pair i being a false pair and true pair, respectively), and W0i + W1i = 1.

It is well known that Poisson distribution is the most popular distribution for modeling NGS count data, and in the above model, p(.|λ) is the (k−1) truncated Poisson distribution. The model considers the interaction frequency, yi≥k (where k is a cut-off point). The cut-off point is used to decide a pair that is kept in the analysis. Most of the time, it is determined by the researcher. In this study, the cut-off value is ≥2, the same as in (Fullwood et al., 2009).

The probability mass function for Poisson distribution is written as:

[image: image]

and the probability mass function for k-1 truncated Poisson distribution is written as follow:
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[image: image]

Therefore, for k≥2, p(Y = y|λ) is written as:

[image: image]

In simplified form, we can express it using the cumulative distribution function (CDF) as follows:

[image: image]

For pair of i, 1≤i≤n,p(Y = y|λ) will be p(.|λ0i) and p(.|λ1i), which model the interaction frequency conditional on it being noise and signal, respectively, and F(1) = F(y≤1) represents the probability that the random variable takes a value ≤1. Besides, from the biological perspectives, the signals have more intensity than the noises (Rousseau et al., 2011), and thus, we put the requirements λ0i < λ1i.

From the listed biases, genomic distance has no explicit rule to measure in interchromosomal interaction data. Hence, we model the intra- and interchromosomal interaction data separately and have different rate parameters (λ) and biases (xi) as well. The rate parameters of intra- (λ)and inter chromosomal (λ′) interactions are connected with the biases using the link function. The listed biases in this study are GC percentage[image: image], mappability [image: image] and enrichment [image: image] for intra- and interchromosomal interaction, respectively. We considered the genomic distance only for intrachromosomal interactions. In the intrachromosomal analysis, we considered all the biases, but in the interchromosomal interaction analysis, we will remove out the distance from the statistical model.

The link functions of intra- and interchromosomal interaction are written as follows, respectively:
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In Bayesian inference, the prior distribution is a crucial part, representing the information about an uncertain parameter. The priors and model description of inter- and intrachromosomal interactions are similar. We used the prime symbol (′) for parameters in the interchromosomal interaction model. To simplify the next discussion, we will use the intrachromosomal interaction model parameters as an example.

A normal distribution is a natural prior choice for βj. Therefore, the coefficients of the Poisson regression model, βj,j = 1,2,3,4 have normal prior with mean zero and reasonable variance to enable large enough deviations,βj∼N(0, 32) (Carlin and Louis, 2008; Gelman et al., 2013; Halla-aho, 2015), and we declared λ1i = C + λ0i to show that the frequency of signal is greater than the noise, where C is a positive number that follows zero truncated normal distribution with reasonable variance, C∼N(0, 32). In (Halla-aho, 2015), different Ci were considered, but the estimated Ci has very small variance. Therefore, the researcher recommended others to use the same C for next work. This help us in the side of reducing computational time. The statistical approach considers the correlation between common anchor pairs (Niu and Lin, 2015). The dependency incorporated in the weights of the mixture model, i.e., the weight changes from common to pair-specific values, W1i∼Beta(mci,mc), where mci and mc is the marginal count of the i-th paired anchors and the mean of marginal count, respectively.

When we compute the marginal count, we considered the interaction frequency yi two times; hence, we subtracted one yi, i.e.,

[image: image]

where mcAiandmcBi are the marginal count of anchor Ai and Bi, respectively, and yi is the interaction count between anchors (Figure 1), and mc is the average of marginal counts and calculate as [image: image].


[image: image]

FIGURE 1. Illustration of interaction frequency in the ChIAMM model. Ai and Bi represent anchor regions with marginal PET counts mcA_i and mcB_i respectively, and yi is the number of inter-ligation PETs between specified anchors Ai and Bi.


Finally, we define the new latent variable Zi,i =  1,…,n that indicates the category of interaction groups, i.e., whether the interaction frequency is in the signal or noise group:

[image: image]

The indicator variable has two outcomes (0 and 1), and it follows the Bernoulli distribution, Zi∼Bernoulli(W1i), for i =  1, 2,…,n, and it is concluded that pair i is signal pair whenever P(Zi =  1|Y) is bigger than a cut-off value, 0.5 (Niu and Lin, 2015).



Aggregate Peak Analysis

Aggregate peak analysis is the standard and recommended plot that measures the aggregate enrichment of putative peaks in a contact matrix. It plots the sum of a series of submatrices around the interaction anchors derived from the contact matrix. The matrix is created by summing together all submatrices around each putative individual peak. The resulting APA plot displays the total number of contacts that lie within the entire putative peak set at the center of the matrix. It is recommended to use peak to lower left (P2LL) value to compare the interactions from different methods. We generate an APA plot with 5-kb resolution contact matrices for significant chromatin interactions. The BEDPE files from the ChIA-PET data were used to build interaction matrices.



RESULTS

Chromatin interaction analysis using mixture model used a mixture model to distinguish signals from noise in the ChIA-PET experiment using the Bayesian approach. To evaluate and compare the performance of ChIAMM with the top existing methods, we used four short and two long-read ChIA-PET datasets. The short reads are RNAPII- and CTCF-associated datasets from human K562 and MCF7 cells, and the long reads are RNAPII- and H3K9me2-associated datasets from rice Minghui 63 (MH63). We used human genome hg19 for K562 and MCF7 datasets and RS1 reference genome for rice datasets.


Convergence Diagnostics and Posterior Prediction

We used Stan statistical package (rstan) and checked the convergence of the algorithm with the trace plot and Rhat. The rstan package allows us to conveniently fit different models and access the outputs, including posterior inferences. In Bayesian inference, MCMC algorithms will draw a sample from the target posterior distribution after it has converged to equilibrium. However, there is no guarantee about whether it is converged or is close enough to the posterior distribution. Therefore, we have to check its convergence using a trace plot and Rhat. It is well known that trace plots are an essential tool for assessing the mixing of a chain. Trace plot is a time series plot of the Markov chains that shows the evolution of parameter vector over the iterations of one or many Markov chains. The Rhat produces the convergence diagnostic that compares the between- and within-chain estimates for model parameters. It is recommended to run at least four chains by default and use the sample if Rhat is <1.05 (Stan Development Team, 2016). The trace plot of intra- (βj,λ0i,W1i, and C) and inter- ([image: image], and C′) chromosomal interaction model parameters were checked. As we specified in the methodology, the parameters [image: image], and [image: image] are pair specific. The convergence was checked on the random taken values. Here, as an example, we tested the convergence diagnostic and posterior prediction on MH63 RNAPII datasets. Supplementary Figure 1 and Supplementary Table 1 show the trace plot and Rhat value of the model parameters in the given datasets. The Rhat value of all parameters is 1, and chains are mixed well. Therefore, these results proved to us the convergence of the MCMC algorithm.

Posterior prediction is used to assess the fit between a model and the data. The fitted model has been validated using posterior predictive checks (PPCs) through simulating data from the model using parameters drawn from the posterior. The posterior prediction analysis was checked using a graphical prior and PPC plot. The PPC plot gives the graphical display that compares the observed data to the simulated data from the posterior predictive distribution. In Supplementary Figure 2, the dark line shows the distribution of the observed outcomes, and the lighter line shows the first 100 kernel density estimate from the posterior predictive distribution in the MH63 RNAPII dataset. From the plot, the simulated data is overlapped with the actual data, or we assured that the fitted model recovered the data.



Comparing the Interactions of Short-Read Data From Different Methods

In this study, the ChIAMM found significant interactions using the value of W1i (the probability of pairi being a true pair). The significant interactions from HG, ChiaSig, Mango, ChIA-PET2, and ChIAPoP are found using the ChIA-PET Tool (V3), ChiaSig, Mango, ChIA-PET2, and ChIAPoP pipelines, respectively. In all methods, we used the same cut-off of interaction frequency ≥3. ChIAMM detected 1,465 and 3,679 potential pairs in MCF7 and K562 RNAPII datasets, respectively. These significant pairs are more than those identified by ChiaSig (828 in MCF7 and 1,828 in K562) and Mango (1,385 in MCF7 and 1,676 in K562). For CTCF-associated datasets, ChIAMM detected 719 and 2,085 significant pairs in the MCF7 and K562 datasets, respectively, which are more than those identified by ChiaSig (434 in MCF7 and 923 in K562). In contrast, some methods reported more interaction pairs than ChIAMM (Figure 2).
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FIGURE 2. Detected significant interactions in different tools in RNAPII and CTCF data sets. The red and blue vertical bars represent the significant interactions detected in K562 and MCF7 data sets.


Supplementary Figure 3 shows the overlapped results between ChIAMM and other existing tools. As an example, in the MCF7 RNAPII dataset, we found higher overlapped interactions with HG (1,465), ChiaSig (1,334), and ChIAPoP (1,113). Similarly, in the K562 CTCF dataset, it shows higher overlapped interactions with HG (2,084), ChIAPoP (1,852), and ChiaSig (1,886). Besides, we found 257, 381, 387, and 1,047 overlapped significant interaction pairs among the six tools in MCF7 RNAPII, K562 RNAPII, MCF7 CTCF, and K562 CTCF datasets, respectively.


Aggregate Peak Analysis of the Interactions Between Different Methods

We used the APA plots to compare interactions from ChIAMM and other existing methods. To generate APA plots, we built interaction matrices from BEDPE files, and the interaction counts were summed for all pairs of loci in 5-kb bins (Servant et al., 2015). Then, the APA score can quantify the level of a different set of interactions. In the APA plot, it is recommended to use P2LL value for comparison. P2LL is calculated as the ratio of the central pixel to the mean of the pixels in the lower-left corner of the interaction matrices. Higher scores indicate higher enrichment of interaction, and it is always good to find methods with higher P2LL value (Rao et al., 2014). For a fair comparison, in all methods, we considered the significant chromatin interactions with ≥3 supportive PETs. Then, we found the overlapped and unique significant interactions between ChIAMM and other existing tools.

For each dataset, we plotted five pairs of APA plot for overlapped interactions and four pairs of APA plot for unique interactions (no unique interactions found between ChIAMM and HG). In all datasets, in the overlapped interactions, ChIAMM has shown higher P2LL values with other tools. As expected, ChIAMM shows similar P2LL values with HG and ChiaSig tools (Figure 3 and Supplementary Figure 4). Besides, for unique interactions, ChIAMM has shown better pair ranking with other existing methods, with some exceptions, except Mango in K562 RNAPII, Mango in MCF7 and K562 in CTCF, ChiaSig in K562 RNAPII, and ChIAPoP in MCF7 CTCF ChIA-PET datasets (Figure 4 and Supplementary Figure 5).
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FIGURE 3. Aggregate peak analysis (APA) plots for overlapped significant interactions between ChIAMM and existing methods in the K562 CTCF ChIA-PET data set. Each row in the plot represents the comparison of interactions between ChIAMM and one other method.



[image: image]

FIGURE 4. Aggregate peak analysis (APA) plots for significant unique interactions between ChIAMM and existing method in the K562 CTCF ChIA-PET data set. Each row in the plot represents the comparison of interactions between ChIAMM and one other method.




Comparison of CTCF Enrichment for Overlapped and Unique Interactions

In different studies, CTCF is a ubiquitously expressed and essential protein, and the DNA interactions are directly related to this protein (Ohlsson et al., 2010). For comparing enrichment of proteins in anchors, we used different CTCF peak files, i.e., the CTCF-peak regions from ENCODE ChIP-Seq datasets ENCFF720OXG and ENCFF990LUT for MCF7, and ENCFF681OMH and ENCFF559HEE for K562 cell line. For the CTCF coverage computation, we considered the overlapped and unique interactions between ChIAMM and other existing methods with chromatin interaction frequency ≥3. A comparison of CTCF enrichment means how many anchors are covered with the peak file. For both overlapped and unique interactions, we found the anchors that covered with the CTCF peak file. Supplementary Figure 6 shows the percentage of CTCF enriched and non-enriched anchors of the overlapped and unique interactions between ChIAMM and other methods in CTCF associated datasets. In these figures, ChIAMM shows equal CTCF enrichment with HG and ChiaSig in the overlapped interactions and shows a minimal difference with others. To ensure that this difference is statistically significant or not, we computed the Fisher’s exact test. According to the p-value, in all datasets, the proportion difference of enriched anchors is statistically insignificant, except for ChIAPoP in the overlapped interactions.



Comparison of CTCF Motif Orientation for Overlapped and Unique Interactions

It is well known that CTCF is an essential architectural protein to mediate long-range interactions. Different studies have shown that CTCF motif orientations at chromatin loop anchor regions are expected to have more convergent orientation than in other orientations (Zhang et al., 2018). Here, we compared the CTCF motif orientation of significant interactions (intrachromosomal) of ChIAMM with the existing tools. If the interaction is a real signal, it is expected to have convergent orientations more often than in other orientations. For the motif orientation analysis, a webserver https://ccg.epfl.ch/pwmscan/ was used for scanning the reference genome (hg19), and the predicted CTCF motif was filtered and kept only the overlap result with CTCF peak regions. The CTCF peak files are the same as that we used in the previous CTCF enrichment comparison. Then, we found the overlapped result between the filtered predicted CTCF motif and significant chromatin interactions that we found using different tools. After that, we counted the number of significant pairs with convergent and other motif orientations. Figure 5 and Supplementary Figure 7 show the CTCF motif orientation analyses results for the overlapped and unique interactions in K562 and MCF7 CTCF datasets. The red color represents convergent motif orientation, and the blue color represents the other motif orientation. Fisher’s exact p-values are given at the top of each bar. The p-value shows the test of a proportion of convergent motif orientation between ChIAMM and other existing methods. For each dataset, we performed five and four pairs (no unique interaction between ChIAMM and HG) of CTCF motif orientation analysis for overlapped and unique interactions between ChIAMM and existing methods, respectively. From these plots, in all datasets, ChIAMM showed equal motif orientation with ChiaSig (only in overlapped interactions) and HG. Statistically, the proportional difference in convergent orientation between methods was tested. Based on the p-value, in the overlapped interactions, the proportion of ChIAMM motif orientation is not significantly different from other existing approaches, except ChIAPoP. Likewise, in the unique interactions, it is statistically insignificant from others, except for Mango and ChIA-PET2.
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FIGURE 5. CTCF motif orientation analyses in the K562 CTCF ChIA-PET data set between overlapped and unique interactions in ChIAMM and existing tools. The Fisher’s exact p-values are given at each the top of the figure.




Comparing the Interactions of Long-Read Data From Different Methods

From the existing tools, only ChIA-PET Tool V3 and ChIA-PET2 can analyze long-read ChIA-PET data. Hence, we examined the result of ChIAMM with these two existing tools using the H3K9me2 and RNAPII datasets from rice MH63 variety. We used RS1 as the reference genome. In all methods, for a fair comparison, we considered the interaction frequency ≥3. Similar to the short-read ChIA-PET datasets, we validated the interactions using the APA plot.

Chromatin interaction analysis using mixture model and other existing tools found the different amounts of significant chromatin interactions. Supplementary Figure 8 shows the detected interactions in each tool; besides, it also shows the overlap interactions between ChIAMM and existing tools. HG found maximum significant chromatin interactions (63,745 and 6,242); ChIAMM found the next largest interactions (23,966 and 12,448); and ChIA-PET2 detected the smallest significant chromatin interactions (5,143 and 6,183) in MH63 RNAPII and H3K9me2 datasets, respectively. ChIAMM found maximum overlapped interactions with HG (23,821 and 2,903). The three tools found 2,744 and 969 overlapped significant chromatin interactions in MH63 RNAPII and MH63 H3K9me2 datasets.


Aggregate Peak Analysis of the Interactions Between Different Methods

To compare and evaluate ChIAMM in long-read ChIA-PET datasets, we generated the APA plot. Still, for the sake of fair comparison, we considered the chromatin interaction frequency ≥3. We plotted the APA plots for overlapped and unique significant interactions between ChIAMM and other existing tools. We plotted two pairs of APA plot for overlapped and unique interactions. Figure 6 and Supplementary Figure 9 show the APA plot for overlapped and unique interactions. In unique interactions, ChIAMM has shown higher P2LL values in both datasets. Besides, in the overlapped interactions, ChIAMM shows similar P2LL values with HG and lower P2LL values with ChIA-PET2 in H3K9me2 and RNAPII MH63 datasets.
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FIGURE 6. Aggregate peak analysis (APA) plots for overlapped and unique significant interactions between ChIAMM and existing method in rice MH63 H3K9me2 ChIA-PET data set. Each row in the plot represents the comparison of interactions between ChIAMM and one other method.




DISCUSSION AND CONCLUSION

Chromatin interaction analysis by paired-end tag sequencing is a genome-wide, high-throughput, and high-resolution method to detect chromatin interactions associated with a specific protein of interest. Here, we described a new statistical approach called ChIAMM that corrects for non-specific interactions as a function of genomic distance, enrichment, GC content, and mappability score. It is designed for both short- and long-read ChIA-PET datasets. Using the RNAPII- and CTCF-associated data from human K562 and MCF7 cell and RNAPII- and H3K9me2-associated data from rice Minghui 63 (MH63), we demonstrated that our approach is better with the most effective top existing tools.

In various studies, enrichment, genomic distance, GC content, and mappability score were listed as systematic sources of bias. All the preexisting ChIA-PET tools considered only the genomic distance or enrichment as systematic biases. Therefore, all tools failed to address the possible biases in their study. Some are designed exclusively for short-read and only for intrachromosomal interaction ChIA-PET datasets. In this study, we filled all the above gaps using the Poisson regression model. We considered the genomic distance, enrichment, GC content, and mappability score in the model, and we noticed its effect on the interaction frequency. Supplementary Table 1 shows the estimated Poisson regression coefficients of biases in the MH63 RNAPII dataset. Each bias coefficient has a different sign and magnitude that tells the relationship type (positive or negative) and the degree of its effect, respectively. Enrichment and GC content, and mappability and genomic distance have a positive and negative effect, respectively. Besides, in the intrachromosomal interaction dataset, mappability and enrichment, and in the interchromosomal dataset, the GC content show a higher effect on loop detection.

Furthermore, some tools like Mango examined only intrachromosomal interaction. They removed all interchromosomal interactions in their model because they thought that interchromosomal interactions are the source of biases; besides, they could not find a technique that measures the genomic distance on different chromosomes. In this study, we dealt with these challenges via modeling inter- and intrachromosomal interaction data separately. This technique considered all four biases in the intrachromosomal interaction model and the three biases (we left out the genomic distance) in the interchromosomal interactions model. Using this technique, we salvaged essential significant interchromosomal interactions data rather than removal. Thus, this technique is a novel idea to consider interchromosomal interaction data into the study instead of total eradication.

Supplementary Table S2 shows the significant intra- and interchromosomal interaction (≥3) in various tools. Except for Mango and ChiaSig, other tools detected different amounts of significant interchromosomal interactions. Comparatively, ChIAPoP found the largest interchromosomal interactions; ChIAMM found 24, 28, 24, and 11 significant interchromosomal interactions from MCF7 RNAPII, K562 RNAPII, MCF7 CTCF, and K562 CTCF datasets, respectively. Therefore, discarding all interchromosomal data from the model is not a proper technique. It is considered as removed potential chromatin interaction from the analysis.

We compared ChIAMM results with the other five top existing tools using APA plot, CTCF coverage of anchors, and CTCF motif orientation. In the APA plot, we showed the performance of ChIAMM using overlapped and unique interaction frequency data. In all datasets, ChIAMM showed the highest enrichment of interaction with other existing methods, except Mango, an exceptionally conservative method, and it reports very few chromatin interactions. In the overlapped interactions, ChIAMM showed equal P2LL values with HG and ChiaSig, as expected, because ChIAMM and ChiaSig used ChIA-PET Tool as a primary processing pipeline, and this is also true for CTCF coverage and CTCF motif orientation analysis results. In CTCF coverage and motif orientation analysis, the new approach showed equal CTCF coverage and motif orientation with HG and ChiaSig in the overlapped interactions and relatively minimal differences with others. However, in almost all comparisons, the difference is statistically insignificant.

We compared the running time of ChIAMM with other preexisting methods. As an example, we analyzed the MCF7 CTCF ChIA-PET with threads, 12; RAM, 64 GB; cluster operating system, CentOS 6.6; central processing unit, Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz. ChIAMM took 48.1 min and showed better performance. ChIA-PET Tool, ChiaSig, Mango, ChIA-PET2, and ChIAPoP took 17, 37, 36, 31, and 23 h, respectively. Overall, ChIAMM is the outperformed novel, fastest, and user-friendly tool than the most existing methods.
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Genome assembly of short reads from large plant genomes remains a challenge in computational biology despite major developments in next generation sequencing. Of late several draft assemblies have been reported in sequenced plant genomes. The reported draft genome assemblies of Cajanus cajan have different levels of genome completeness, a large number of repeats, gaps, and segmental duplications. Draft assemblies with portions of genome missing are shorter than the referenced original genome. These assemblies come with low map accuracy affecting further functional annotation and the prediction of gene components as desired by crop researchers. Genome coverage, i.e., the number of sequenced raw reads mapped onto a certain location of the genome is an important quality indicator of completeness and assembly quality in draft assemblies. The present work aimed to improve the coverage in reported de novo sequenced draft genomes (GCA_000340665.1 and GCA_000230855.2) of pigeonpea, a legume widely cultivated in India. The two recently sequenced assemblies, A1 and A2 comprised 72% and 75% of the estimated coverage of the genome, respectively. We employed an assembly reconciliation approach to compare the draft assemblies and merge them, filling the gaps by employing an algorithm size sorting mate-pair library to generate a high quality and near complete assembly with enhanced contiguity. The majority of gaps present within scaffolds were filled with right-sized mate-pair reads. The improved assembly reduced the number of gaps than those reported in draft assemblies resulting in an improved genome coverage of 82.4%. Map accuracy of the improved assembly was evaluated using various quality metrics and for the presence of specific trait-related functional genes. Employed pair-end and mate-pair local libraries helped us to reduce gaps, repeats, and other sequence errors resulting in lengthier scaffolds compared to the two draft assemblies. We reported the prediction of putative host resistance genes against Fusarium wilt disease by their performance and evaluated them both in wet laboratory and field phenotypic conditions.
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INTRODUCTION

Recent rapid developments in genome sequencing technologies have facilitated the generation of several draft assemblies in plants. These are valuable resources for elucidating genetic information and understanding the biology of the crop. However, each of these draft assemblies have strengths and weaknesses as they were sequenced and assembled based on different technologies and algorithms (Singh et al., 2012; Varshney et al., 2012). Draft assemblies differ depending on the sequencing technology and the assembly software employed. One assembly may be conservative in its selection of reads resulting in low genome coverage with many gaps. Another assembler may be vigorous, yielding more contigs but with many errors. Draft genomes are typically sets of a large contingent of assembled contigs and scaffolds that are often fragmented due to the presence of a large number of gaps interlaced by repetitive regions. Often in a misassembly different contigs are improperly joined. The contig mis-join problem arises due to inversions, relocation, or a translocation. Gaps arise also due to incorrect insertion or deletion of a particular sequenced read. These changes often result in the wrong placement of a contig onto a scaffold belonging to a different chromosome. Hence, the annotation of unfinished and partially assembled genomes creates ambiguities while accessing complete genetic information as desired by biologists.

Some reasons for incompleteness include: 1. gaps appearing due to polymorphisms in complex genomes where reads on either side of a gap represent two haplotypes that belong to two separate chromosomes, 2. an abundance of repeat elements that confuse the assembler and leave some gaps unfilled, and 3. lack of a sufficient number of reads to cover the part of the genome, requiring an additional library of reads to fill the gaps. Besides, in draft genome assembly base call errors, variations in read coverage depth also cause gaps and pose serious computational challenges while connecting nodes in a De Bruijn graph (Guizelini et al., 2016).

Complex eukaryotic genomes are known to contain a large volume of nearly identical copies of DNA repeats and fragments. Various types of repeats present in genomes of wheat, pigeonpea, maize, or potato include transposable elements, highly conserved gene clusters, and segmental duplications. The presence of identical DNA fragments further complicates computational assembly. During pre-assembly, short reads of equal sizes tend to be masked together and complicate the construction of a De Bruijn graph (Compeau et al., 2011). Recently introduced third generation single molecule real time technologies (Ardui et al., 2018) and Oxford nanopore technologies (Brown and Clarke, 2016) generate large sized reads which can readily be inserted to fill gaps caused by repetitive elements. Despite virtues, such as low levels of sensitivity and the high sequencing error rates of long read technologies, many plant researchers are opting to use short read sequencing technologies for financial reasons.

Two draft de novo genomes compared in the present study are short read assemblies generated from second generation sequencing technologies. Apart from assembly complexity due to smaller reads, repeat abundance also obviates gap closing and is often responsible for the resulting low levels of genome coverage reported in draft assemblies. Modern sequencing platforms generate paired end or mate-pair read libraries. The mate-pair libraries are generated in different sizes and orientations (ranging from 3 to 5 bp and even up to 0.5 kb). They serve as potential inserts while filling gaps. Mate-pair libraries are recommended as a potential approach to mitigate repeats in computational genome assembly (Wetzel et al., 2011; Wang et al., 2012; Grau et al., 2019). In the present work, we demonstrated the application of mate pairs for gap closing during meta-assembly, that resulted in significant improvement of both the genome coverage and quality of the improved pigeonpea assembly.

Major techniques recommended for gaining contiguity and higher coverage in draft genomes broadly include, use of long inserts for gap filling (Wetzel et al., 2011), assembly reconciliation, hybrid assembly (Wang et al., 2012), filtering repeats, and iterative mapping using short reads to close the remaining gaps (Tarailo-Graovac and Chen, 2009; Tsai et al., 2010). The use of paired end or mate pairs for filling the gaps is a robust computational approach. The reconciliation approach (Alhakami et al., 2017) for closing gaps and correcting misassemblies involves comparing available data sets from different draft genomes of the same or related species, mapping their common reads, and finally merging them together to gain improved scaffold lengths with higher contiguity (Kumar et al., 2018; Mishra et al., 2019).

Pigeonpea [Cajanus cajan (L.) Millsp.] is a major food legume grown in India and is a diploid (2n = 22) with a genome size of 833.07 Mbp (Varshney et al., 2012). It is a widely cultivated pulse crop and a major source of dietary proteins in India with an annual production of 2.31 mt and productivity of 678 kg/ha (Pande et al., 2013). Prevailing low crop productivity may be attributed to the absence of high yielding cultivated varieties possessing resistance to various pests and diseases. In plants, resistance genes (R genes) play important roles in the recognition and protection from invading pests and pathogens. A few sources of resistance to biotic stresses can be found in available germplasm collections. Resistance genes are identified and found primarily organized in individual clusters that are strictly linked across the genome (David et al., 2009). Modern plant breeding techniques include marker-assisted breeding and genomic selection-accelerated development of superior crop varieties with the use of genomic resources and genetic information emitting from sequenced genome projects. The pigeonpea genome was de novo sequenced independently by two research groups (Singh et al., 2012; Varshney et al., 2012). These draft assemblies were made available in the public domain (GCA_000340665.1 and GCA_000230855.2), and are valuable resources for breeders. However, both the assemblies are incomplete with a sizable number of fragmented contigs and existing gaps. The lack of accurate genetic information is a major limitation for the prediction of gene compliment components associated with desirable traits. Hence, the primary objective of the present work is to generate a more contagious and complete assembly with improved genome coverage. We report an improved version of a improved assembly based on the genome reconciliation approach that first compares the two available draft assemblies, and scores the matching blocks at each location followed by their merger. The meta-assembler tool employed in the present study detected a significant number of gaps and filled them iteratively using right-sized inserts from local pair-end and mate-pair libraries. The correctness of the mate pairs chosen by the meta-assembler during error correction was further validated by the mapping and alignment algorithm BIMA (Drucker et al., 2014). Completeness and map accuracy of the reconstructed assembly was verified for the presence of conserved plant resistance genes (R genes). Here we report the prediction of putative R genes, their isolation, and PCR screening of a known resistant cultivar against Fusarium wilt disease in both laboratory and field conditions.



RESULTS


Improvement of the Draft Genome Assemblies Employing the Reconciliation Algorithm

The reconciliation assembly approach was employed in the present work to refine the incomplete draft genome assemblies, A1 and A2. The assembly tool hybridSPAdes (Antipov et al., 2016) was employed for the selection of optimum k-mers, with evaluated combinations ranging from 21 to 55. We observed that k-mer sizes of 21, 33, 55, and 77 yielded superior assemblies with few fragmented sequences, a smaller number of contigs with high N50, and mean and median scaffold lengths in superior assemblies. The meta-assembler was employed for merging the two assemblies. Merged Illumina HiSeq sequences resulted in 46,979 reads with the N50 length of 24,087. The meta-assembler implemented the reconciliation algorithm to refine and obtain a reconstructed genome. In order to capture the suitable reference assembly set for alignment during the merger process, we examined the required order in which assemblies A1 and A2 were to be chosen as the master set (GCA_000230855.2) and slave sets for alignment with the former (GCA_000340665.1). We observed that choosing A1 as the master set with A2 as the slave set resulted in a highly contiguous superior assembly. The superiority of the merged meta-assembly was systematically evaluated with compression-expansion (CE) statistics. Gaps present in the scaffolds were closed using mate pairs. Gap sizes estimated by the LG_Gapcloser (Xu et al., 2019) were passed on to the next round of alignment. To locate suitably sized inserts, gaps were compared with mate-pair libraries employing BLAST (Altschul et al., 1990) and the single highest scoring mate-pair sequences were chosen. Gap closing mate pairs for gap closing ranged from 200 bp (lower side) to 1,350 bp with 500 bp as the mean size. Mate pairs used by the meta-assembler for gap closing were further validated by mapping and the alignment algorithm BIMA (Drucker et al., 2014).

The remaining gaps were filled by searching unique contig end sequences against unused reads. Analysis of the repeat composition and the identification of their size variations in turn aided the significant reduction of gaps and contributed to the prediction of specific genes. The improved assembly had 46,979 contigs with a total size of 548.2 Mb covering 82.4% of the genome with high contiguity (Table 1).


TABLE 1. Genome assembly statistics of draft assemblies A1, A2 and improved A3 assembly.
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Read Mapping

Read mapping increased in the improved meta-assembly from 75.6 to 72.7% in the two compared misassemblies to 82.4% in the improved meta-assembly. A higher number of reads were found to be mapped to the merged assembly compared to those in the A1 and A2 misassemblies. Mapping depth is a measure of the number of reads used for aligning the improved genome. It also helps to estimate the extent of similarity between the improved assembly and the compared misassemblies. Among the two draft assemblies, A2 was superior to A1 in the depth of read coverage. A relatively higher read depth in the A2 misassembly can be attributed to the high-identity Illumina reads used both in the initial assembly and in the later polishing steps. Our final assembly in terms of depth of coverage was superior to A2, with more gaps filled. In addition, the refined assembly had more GC-rich regions (Table 1) with improved gene component predictions. Many gap sequences with high AT composition were eliminated. The total GC content in the A1 and A2 assemblies were 37.2 and 32.8%, respectively and were enhanced to 45.5% in the meta-assembly reported in the present work. The improvement in GC rich fraction and of the N50 values in both contigs and scaffolds in the improved genome were achieved largely due to the application of mate-pair read sequence libraries for gap filling. High GC content is known to be associated with the concentration of coded genes in certain regions in a genome (Rao et al., 2013). In the present study, observed high GC content was obtained in the refined assembly A3 which appeared to be related to an increased number of predicted genes in the improved genome of pigeonpea.



Meta-Assembly, Annotation, and Quality Assessment

Two draft assemblies were compared, merged, and reassembled employing the two approaches as described above. We initially used unpaired reads for the assembly adopting an overlapping read approach. As no significant improvement was observed in read mapping depth, and eventual coverage, we resorted to available mate paired libraries to close the gaps. We used variable mate pairs during different alignment steps in the meta-assembly and succeeded in resolving repeat problems.

We wanted to ascertain which type of mate-pair libraries effectively resolved the repeat problem. In the assembly, we employed a meta-assembler (Wences and Schatz, 2015). In the first experiment, we only used a 648 Mb library and in the second experiment a 605 Mb and a 548 Mb library were taken together. Initially we used all the single paired read data sets available (minus two mate-pair data sets) of A1 along with all the data sets from A2. In the second treatment, we included two mate-pair data sets from A1 along with all the data available from A2. At the end, all the output values and statistical metrics were collected for comparative performance analysis. We observed that all the available pigeonpea mate-pair libraries taken together resulted in the improvement of genome coverage. It is presumed that the incorporation of variable size mate-pair inserts helped in gap closing during the assembly.

In our final assembly, the contig N50 increased to 24,087, and scaffold N50 increased by 574,622. The total number of gaps decreased across the genome by 50.23% (Table 1). It was observed that the order in which the input draft assemblies were inputted into the meta-assembler drastically influenced the alignment quality and the resulting read coverage (Lindner et al., 2013). In the primary assembly, we treated assembly A1 as the master and aligned it with assembly A2. In the other variant, we used assembly A2 as the master and aligned it against assembly A1. The output resulted in a primary assembly that yielded us a scaffold length of 548,600,000.



Closure of Repeat-Derived Gaps

For each round of alignment undertaken between the A1 and A2 misassemblies, the meta-assembler built a graph, with vertices of the above alignments and edges joining the two alignments. If both had the same direction, they were readily rearranged into a single block thus providing contiguity. In this case, where the examined genomic segments from two misassemblies did not share the same direction, it indicated that there was an existing distance between them and the prevailing gaps needed to be filled. In such cases, variable size local pair-end and mate-pair libraries could offer right inserts to fill these gaps. While building the graph, the meta-assembler searched the mate-pair library for right sized inserts in order to complete the shortest path between any two of the contigs to fill a gap.

We evaluated the closure performances of the LR Gapcloser (Xu et al., 2019) and Gapfiller (Boetzer and Pirovano, 2012) tools on the repeat-derived gaps. We first tested the performance of each tool using the raw mate-pair reads. Both the above tools used first raw pair-end and mate-pair libraries. We monitored the gap closure efficiency by evaluating the number of gaps closed applying indexed and hashed mate-pair libraries (Drucker et al., 2014). In the merged pigeonpea assembly, we estimated 37,145 repeat-derived gaps of which 584 gaps and 322,780 nucleotides out of a total 34,511,651 were closed. The gap sizes ranged from 20 to 15,510 bp. LR Gapcloser was more efficient in filling most of the gaps, achieving 82.4% and with low error rates.

We achieved improved contiguity by using long mate pairs to fill the gaps in the assembly and thereby achieved higher coverage in the improved assembly. Draft assembly A1 had 360,028 contigs with an N50 and L50 of 5,341 and 30,054, respectively. The reported genome coverage was 199× with a similarity of 75.6%. Draft assembly A2 had 72,923 contigs with an N50 and L50 of 22,480 and 7,254, respectively. A2 had 592,970,700 scaffolds and reported a genome coverage of 160× with a similarity of 72.7%. We presented an improved reference assembly of the pigeonpea genome.



Completeness of the Merged Assembly

BUSCO (Simao et al., 2015) was employed to evaluate the completeness of the conserved proteins in all three assemblies. The A3 assembly was found to be 94.02% complete. Of the total 1,440 BUSCO groups that were searched, the meta-assembly was found to contain 1,321 complete single-copy (S) BUSCOs, 33 complete duplicated (D) BUSCOs, 57 fragmented (F) BUSCOs, and 29 missing (M) BUSCOs. Whereas comparatively the A1 and A2 assemblies were 85.27% (S:76.87%, D:8.40%, F:5.62%, M:9.09%) and 87.9% (S:80.9%,D:7%,F:5%,M:7.1%) complete, respectively (Supplementary Table 1). The gene completeness score as measured by BUSCO relatively increased in the improved assembly, while the numbers of fragmented and missing BUSCO genes were reduced. This genome comparison can be used to help such draft assemblies toward becoming finished.



Functional Annotation of Predicted Gene Content

The FGENESH module of the Molquest v.4.5 software package1 and Augustus were employed and 51,737 genes were predicted for the improved meta-assembly. The number of predicted genes was less compared to A1 but higher than A2.

In the total gene component prediction, we found 1,303 disease resistance related genes in pigeonpea. The improved assembly yielded a total of 51,737 genes which was less than A1 but more than those reported in the A2 assembly. The variable number of predicted genes observed in the draft assemblies can be attributed to split genes and overestimation during gene finding (Denton et al., 2014). The overestimation of gene numbers often result when fragmented single genes are present on multiple contigs or scaffolds (Pozzi and Salamini, 2007). Improvements in gap filling and read mapping depth resulted in the reduction of the number of genes in meta-assembly A3. The predicted total gene number was less in A3 than in A1 but was slightly higher than the A2 draft assembly (Table 2). In the predicted gene set 54-resistance single copy putative genes containing known conserved domain NBS LRR were selected and in silico mapped onto the corresponding chromosomes (Supplementary Table 2).


TABLE 2. Repetitive sequences of draft assemblies A1, A2, and the improved A3 assembly.
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Identification of Repetitive Sequences and Transposable Elements in the Improved Assembly

Repeat elements are extra copies of DNA sequences generated and planted at various locations in the genome to meet certain challenges and improve the fitness of the organism during the course of evolution. Repetitive elements in pigeonpea occupy nearly half of the genome of Cajanus cajan (Macas et al., 2015). Repeats pose many computational challenges in read alignment and assembly (Xu et al., 2019), such as the creation of gaps and overlaps and leads to many mapping inaccuracies in misassemblies. One can always filter and exclude the reads but it is essential to map them onto chromosomal locations where gaps exist. Mate-pair libraries were used for resolving repeat problems and obtaining contiguous scaffolds in both prokaryotic (Wetzel et al., 2011) and eukaryotic organisms (Grau et al., 2019). Meta-assembler searches for contigs that can be placed in the gap using mate pairs, and then again checks to see if there exists a recorded shortest path between any of these contigs. In an assembly, overlapping reads are used as edges to connect reads belonging to the same region of the genome. However in complex genomes like pigeonpea, the abundance of repeats cause coverage gaps and read errors thus leaving numerous gaps to fill between contigs while scaffolding. The filling of gaps requires the adoption of robust computational approaches to affectively address repeat problems. Sequenced pair-end and mate-pair reads can potentially bridge gaps efficiently in order to orient contigs by estimating the gap lengths to the edges while filling the scaffolding graph (Ghurye and Pop, 2019).

A high level of assembly was achieved using mate-pair reads in wheat, a genome ridden with a large number of repeats (Clavijo et al., 2017). We analyzed the repeat content in comparison to the A1 and A2 assemblies and divided them into various classes (Table 3). Among the different classes identified, transposable elements were found to be rich in AT elements in A3. In the course of the iterative use of reads during assembly, we observed transposon-derived repeats collapse against identical reads resulting in the closure of significant portions of gaps. Similar observations were reported on gap filling using retro transposon-related repeats in human genome assembly (Marin et al., 2018).


TABLE 3. Results of gene search.
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Identification of Microsatellites

The improved pigeonpea assembly was mined for simple sequence repeats (SSR). A total of 297,294 were simple repeats out of the total 298,732 repeats and the remaining 1,438 belonged to complex types (Table 4). Mononucleotide repeats were abundant with 56.05% of the total SSRs mined. Dinucleotides occupied 33.45% (99,949), 8.72% (26,069) were trinucleotides, and 1.27% were tetranucleotides (3811) repeats. The remaining SSRs were of the complex type, 0.25% were hexa nucleotides and 0.22% were penta.


TABLE 4. Results of microsatellite search in the improved pigeonpea assembly A3.

[image: Table 4]Among the 167,465 mononucleotide repeats, the mononucleotide motifs were in majority with A/T repeats of 98.25 and 1.74% were occupied by C/G types. Among the 99,949 dinucleotides microsatellites, the AT/AT type (77.34%) of microsatellites were most common in the genome followed by the AG/CT type (13.21%), and the AC/GT type (9.40%). The CG/CG type dinucleotides microsatellites were present in a very low proportion (0.03%). In trinucleotide SSRs repeats (26,069), around 66.71, 12.31, 8.07, and 5.98% of SSRs were of AAT/AAT, AAG/CTT, ATC/ATG, and AAC/GTT types, and were most abundant, respectively. Among the other types of repeats, the ACG/CGT type was lowest (0.36%) in the genome of pigeonpea. The highest distribution (68.06%) of tetra nucleotides microsatellites was present in the genome of pigeonpea. The maximum numbers of predominant SSRs repeats were of the A/T type followed by AT/AT, AG/CT, AAG/CTT, AAT/ATT, and AAAT/ATTT (Supplementary Table 3). The overall analysis showed that the relative abundance of tetra, penta, and hexa SSRs types were low as compared to mono, di, and tri SSRs types in pigeonpea genome sequences (Figure 1).
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FIGURE 1. SSR distribution frequency. (A) Distribution of different repeats type classes. (B) Frequency of classified predominant repeats.




Characterization and Synteny Analysis of Pigeonpea NBS-LRR Like Resistance Gene Analogs

We verified the presence of already known conserved disease resistance gene families in the refined meta-assembly. The reported resistance (R) genes containing nucleotide-binding site (NBS)-leucine rich repeat (LRR) protein sequences from other important legume genomes were downloaded from Phytozome (Goodstein et al., 2012). The comparison of the predicted coding sequences against bean (Phaseolus vulgaris) clusters resulted in the identification of more than 100 resistance gene analogs (RGA). An annotation of the mined predicted genes revealed the presence of known disease resistance domains, such as ARC-NBS-LRR, transmembranes, and kinases. Nucleotide-binding sites (NBS) containing disease resistance genes play an important role in defending plants from a variety of pathogens and insect pests. Many R genes have been identified in various plant species including the pigeonpea genome (Singh et al., 2012; Varshney et al., 2012). However, functional R genes targeting specific diseases in pigeonpea have not been reported. In this study, an improved A3 meta-assembly using computational analysis of the refined genome identified NBS-LRR resistance (R) proteins. The 1,301 mined putative resistance gene analogs were shown to share up to 78% of their homology with soybean, chickpea, barrel clover, field bean, and other species (Supplementary Table 4). Of them, 251 NBS-LRR domains containing pigeonpea resistance gene analogs were selected. The RGAs had a high amino acid identity in the identified putative pigeonpea disease resistance genes, which showed a high level of proteins in Glycine max with several sequences with high homology up to (77–98%) (Supplementary Table 5). We identified 54 NBS-encoding single copy genes and characterized them on the basis of structural diversity and conserved protein motifs.

Synteny analysis revealed significant relationships among the selected legume genomes. Glycine max and Medicago truncatula genomes revealed the presence of a high level of extensively conserved regions among pigeonpea and other legumes. We observed that nearly 89–91% of the pigeonpea assembly showed significant signs of RGA conservation with other legumes, viz., 41 NBS-LRR orthologs in Glycin max and 73 NBS-LRR orthologs in Medicago truncatula. A total of 57% of NBS-LRR pigeonpea genes were identified for the closely related organisms. Glycine max was found to share the largest number of extended conserved syntenic blocks with Cajanus cajan indicating its recent ancestry, followed by Medicago truncatula. The reported A3 meta-assembly of pigeonpea comprises 251 R gene homologs of the disease resistance gene, of which 229 are anchored to different pseudomolecules of pigeonpea. Of these, 23 genes are distributed to 57 collinear blocks between pigeonpea and the Glycine max genomes displaying a high level of collinearity (Figure 2). Overall, all pigeonpea RGAs displayed extensive collinearity with the different chromosomes of Glycine max and Medicago truncatula. Synteny analysis revealed homologous blocks connecting chr4 in C. cajan with chr4 of G. max; chr11 of C. cajan with chr20 and chr17 of G. max; and chr3 of C. cajan with chr19 in G. max. Similarly, comparative analysis reported in draft assembly A2 (Varshney et al., 2012) confirms the presence of homologous blocks connecting chr3 in C. cajan with chr19 of G. max (Varshney et al., 2012).
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FIGURE 2. Circos diagram presenting syntenic relationships between NBS-LRR containing R gene proteins in pigeonpea (Cc), Glycin max (Gm), and Medicago truncatula (Mt) pseudomolecules. Pseudomolecules of the two target species were labeled as Gm01-20 and Mt1–8. Pigeonpea pseudomolecules are labeled in different colors and labeled as Cc01-11. Collinear blocks are colored according to the color of the corresponding pigeonpea pseudomolecules. Each ribbon radiating block from a pigeonpea pseudomolecule represents a NBS-LRR similarity block between pigeonpea and other legumes.




Cloning, Isolation, and PCR Amplification of Identified Putative R Gene Analogs (RGAs)

The genomic DNA samples from 25 known pigeonpea cultivars were scanned for presence of identified putative R genes. EPrimer (Spapé et al., 2014) was employed for designing the PCR primer sets. A list of the primer sequences used in PCR amplification are given in Supplementary Table 7. Eluted PCR amplificons were sequenced by the Sanger sequencing method. Isolated pigeonpea resistance gene analogs were deposited to NCBI (Supplementary Table 6).



DISCUSSION

In the present work, we chose two available incomplete draft assemblies and employed a reconciliation algorithm to correct any errors. The two compared draft assemblies A1 and A2 had low genome coverage with several repeats and gaps causing disjoints between contigs. A meta-assembler was employed in the present work based on the genome reconciliation algorithm. The computational framework included a merger between the two draft assemblies, A1 and A2, aligning them by selecting common homologous sequence matches and mismatches present in both, resolving gaps, and other sequence errors, to obtain a consensus and complete assembly.

To begin with we wanted to select the order in which the input draft assemblies were to be merged to gain a subsequent superior alignment with higher read depth and read mapping. After several permutations, we observed that treating assembly A1 as the master and aligning it with assembly A2 yielded better read mapping and lengthier scaffolds of 592,970,700 mb. Merging the two draft assemblies, in course of alignment, the meta-assembler yielded matched and mismatched portions in the merged assembly by identifying homologous genomic regions with a shared set of reads. Mismatches included gaps that had to be filled with right sized read sequences.

The meta-assembler initially utilized all available raw reads from both draft assemblies using conventional read overlapping techniques to fill the existing gaps and join the contigs. However, no notable success was observed in gap filling and repeat resolution. Alternatively, we employed local pigeonpea pair-end and mate-pair libraries to fill the gaps. The meta-assembler generated statistics comparing the distances between the mapped mates and the required sizes of insert reads to fill a gap. For example, gaps measuring <500 mb were filled by pair-end reads while mate-pair reads were utilized for filling gaps measuring 3–5 KB. Mate-pair sizes selected by the meta-assembler were further compared and validated using indexed and hashed mate libraries employing the alignment tool BIMA (Drucker et al., 2014). There are reports on the use of large sized mate-pairs for filling bigger gaps in assembly (Potato Genome Sequencing Consortium, 2011). In the present study, we employed pair-end and mate-pair reads which contributed significantly to filling gaps and thereby in joining the contigs to the full length scaffolds. Further, iterative use of pair-end and mate-pair libraries during successive alignments resulted in the identification of maximal portions shared by the same library of reads. This in turn contributed to the dramatic improvement of genome coverage in the resultant A3 assembly. The quality of the A3 assembly was judged using metrics—contig number, scaffold lengths, N50 and L50, and genome coverage of 160× with a similarity of 72.7%. The genome similarity score can also be used in estimating the extent of redundancy present in both genomes.

Draft assembly A1 had 360,028 contigs with an N50 and L50 of 5,341 and 30,054, respectively. We obtained genome coverage of 199× with a similarity of 75.6%. Draft assembly A2 had 72,923 contigs with an N50 and L50 of 22,480 and 7,254, respectively. A2 had 592,970,700 scaffolds with a reported genome coverage of 160× with a similarity of 72.7%.

FGENESH predicted 51,737 genes using the improved meta-assembly. The predicted number of genes was less in our improved assembly (Supplementary Table 2) compared to A1 but was higher than A2 (Table 2). An annotation of the improved assembly yielded 51,737 predicted genes. Wet lab PCR amplification is the gold standard for verifying predicted gene presence and their functionality. For PCR-based gene amplification, 23 primer sets were designed to screen 34 pigeonpea cultivars. Out of the 34 genotypes screened, 14 were found to be Fusarium wilt resistant (Supplementary Table 8), 6 were F. wilt tolerant, 5 were F. wilt susceptible, and 5 had yellow mosaic susceptible genotypes (Figure 3). Data on yellow mosaic disease reaction are not presented here. PCR amplified genes were isolated, cloned, and submitted to NCBI (Supplementary Table 6). Genotype environment interaction in the field determines the phenotypic performance of isolated plant genes. The phenotypic evaluation of predicted resistance genes in field trials is also required for the transfer of obtained results to pigeonpea downstream breeding programs for the development of disease resistant cultivars. Field experiments were conducted to assess the disease reaction of the predicted R genes to Fusarium wilt taking cv. Asha (object of the present study) as control with 25 pigeonpea cultivars. The replicated field experiments were conducted at Ranchi (Jharkhand state) and Rahuri (Maharashtra state), India during the rainy season of 2011 and 2012. Of the 25 cultivars screened along with check cv. Asha, 14 resistant and six tolerant disease reactions at the Ranchi farm and eight resistant, one tolerant, and six susceptible disease reactions at the Rahuri farm were observed for the F. wilt disease of pigeonpea. The observed variation in disease incidence reflects the natural agro-climatic conditions prevailing at the individual trial sites.
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FIGURE 3. PCR amplification of resistant gene analog from pigeonpea germplasm accessions with differential resistance reaction for Fusarium wilt disease. Field evaluation of 25 accessions at two locations in two years showed 14, 6 and 5 accessions as resistant, tolerant and susceptible respectively (Supplementary Table 8).




CONCLUSION

In the present work, a genome reconciliation algorithm was adopted to merge and reconstruct draft assemblies to produce an accurate and near complete genome assembly of pigeonpea. We demonstrated the successful implementation of our reassembly framework by merging two chosen draft assemblies employing pair-end and mate-pair libraries to correct gaps and other sequencing errors. The resulting reconstructed meta-assembly was superior compared to the two draft assemblies in terms of measured assembly quality statistics, viz., N50 and scaffold lengths. The quality of the improved assembly was assessed for the presence of known conserved resistance gene loci (imparting resistance to Fusarium wilt disease in pigeonpea). An annotation of the improved assembly yielded a prediction of 1,303 resistance genes (including six extra genes gained from the meta-assembly). PCR screens and field experiments validated the resistance reaction of isolated genes against Fusarium wilt thus making the results available to pigeonpea breeders.



MATERIALS AND METHODS

We developed a workflow model (Figure 4) based on a reconciliation algorithm, that includes: 1. A merger of the two misassemblies, 2. finding matches and mismatches and other sequencing errors, 3. gap closing using pair-ends and mate-pair libraries, and 4. the assessment of improved assembly quality, and the prediction, isolation, and characterization of disease resistance gene families.
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FIGURE 4. Experimental framework depicting the reconstruction steps of the pigeonpea genome.



Retrieval of Pigeonpea Genome Datasets

Complete data sets belonging to two whole genome sequences of pigeonpea and the associated 23 SRA reads were downloaded from the National Center for Biotechnology Information (NCBI)2 to local storage—GCA_000340665.1 (SRA accessions SRR5922904-SRR5922907) and GCA_000230855.2 (SRA accessions SRR6189003-SRR6189021) for the cv Asha.



PCR Amplification

Genomic DNA from 15-day-old seedlings of 34 pigeonpea cultivars was extracted employing the CTAB method. The purity and concentration of DNA was estimated with Nanodrops ND-1000. Nine primers were selected for the polymorphism study (Supplementary Table 7). Polymerase chain reaction (PCR) was performed on a total volume of 20 μl containing 60 ng of template DNA, 200 μM of dNTPs, 2.5 mM of MgCl2, 1× PCR buffer, 0.4 μM of each primer, 0.75 U of Taq DNA polymerase, and water to make the final volume up to 20 μl. For designing the primer sets for the PCR amplification of predicted resistance gene (R) orthologs, BLASTN was employed against the soybean genome. EPrimer (Goodstein et al., 2012) was employed for designing PCR primer sets. A list of primer sequences used in PCR amplification are given in Supplementary Table 7. Eluted PCR amplificons were sequenced by the Sanger sequencing method.

Amplifications were carried out using the Bioer Gene Pro thermocycler and PCR conditions were set as an initial denaturation at 94°C for 5 min, 30 cycles of denaturation at 94°C for 30 s, primer annealing at 50°C for 30 s, primer extension at 72°C for 2 min, and a final extension step at 72°C for 7 min. The amplified products were visualized by ethidium bromide-stained 1.5% agarose gels in a SYNGENE G-Box gel documentation unit (Figure 3).



Genome Reconstruction and Quality Assessment

Illumina pair-end and mate-pair library sequence reads of pigeonpea and cv Asha were quality checked using FASTQC v0.11.83. Contaminated reads were removed to obtain error-corrected reads. Reads with sequence quality Phred scores of less than Q30 (base calling accuracy with less than 99.99%) were removed using PRINSEQ v0.20.44 and reads were repaired using BBmap v37.665.

Reported pigeonpea draft assemblies A1 (Singh et al., 2012) and A2 (Varshney et al., 2012) were both sequenced using Illumina technology and assembled with the SoapDenovo v2.3.1 assembler. In the present work, data sets A1 (GCA_000340665.1 consisting of 4 SRA read sets) and A2 (GCA_000230855.2 of 19 SRA read sets) were analyzed employing a reconciliation algorithm (Tarailo-Graovac and Chen, 2009). The work flow included the steps: (1) the merger of the two misassemblies, (2) finding matches, mismatches, and other structural errors, (3) closing gaps using pair-end and mate pair libraries, (4) the validation of mate-pair sizes used in the meta-assembly using indexed and hashed mate-pair library sets, (5) an assessment of the quality of the improved assembly, and (6) a prediction of disease resistance gene families, their isolation, and characterization.

A1 consisted of 360,028 initial contigs (N50 5341, 648 Mb) with 30% of gaps within contigs. A2 contained 72,923 scaffolds (N50 22480, 605 Mb) with 20% intra scaffold gaps. We used all the read datasets available belonging to A1 and A2 with NCBI. All the computations including read pre-processing, quality control, comparison of the two draft assemblies, their alignment, gap filling, assembly merger, map accuracy, quality assessment, and putative gene prediction were performed on a HPC server employing a meta-assembler (Wences and Schatz, 2015).

LG_Gapcloser and GapFiller (Boetzer and Pirovano, 2012; Xu et al., 2019) were employed to find the existing gaps (A1 30%; A2 20%). Mate-pair libraries were hashed and gap sizes were validated using the alignment tool BIMA (Drucker et al., 2014). Initially short reads were used for filling gaps, resulting in a genome size of 648 Mb in A1 and 605 Mb in the A2 draft assembly.

Draft assembly A1 was sequenced in 2011 and had a genome coverage of 199× (Singh et al., 2012). However, using the same raw read data, assembly A3 reported a gain of coverage, i.e., an increase of ∼15% (from 60.0 to 75.6%), and was then resubmitted to NCBI. In our present work, we used this recent assembly set and A1 and A2 assembly data (Varshney et al., 2012) for reassembly and improvement (Figure 4).

We observed that in our reassembly, pair-end insert read sizes below 500 bp in our library were utilized for filling smaller gaps. Although mate-pair sizes up to 5.0 kb are available in our library, a 1,350 kb size was the largest used insert. In our meta-assembly, these mate pairs were employed affectively for closing medium and long-distanced gaps (even up to 20–25 kb). Similar results on the use of large sized mate-pairs for filling bigger gaps was reported in the assembly of large genomes (Ghurye and Pop, 2019).



Merging Misassemblies and Gap Closure

Draft assembly sequences A1 and A2 were merged into a single sequence. The alignment and merger of the A1 and A2 assemblies resulted in a total scaffold length of 548 Mb. The resulting merged assembly was compared to the A1 and A2 draft assemblies (75.6 and 72.7%, respectively) and had an improved genome coverage of 82.4%. Yet the merged sequence contained 10% of gaps.

To improve further contiguity and accuracy of the merged sequence, existing intra scaffold gaps were filled. Repeat content and existing gaps were estimated by Gapcloser (Xu et al., 2019) and Gapfiller (Boetzer and Pirovano, 2012). In the second round of gap filling, various computational approaches, such as paired end, mate-pair libraries, and remaining unused short reads were used. The gap content and the estimation of repeats is shown in Table 1. Iterative use of the leftover short reads (300 bp) contributed to filling nearly 20% of the gaps. After polishing and another round of reassembly, a scaffold length of 13,348 (scaffolds of N50 574,622) with a coverage of 174× was yielded.



Improved Genome Assembly and Quality Assessment

Increased N50, maximum scaffold length and minimum number of contigs, increased N50 values together with longer scaffolds contributed to improving the genome coverage. In the misassemblies, the number of gaps and Ns caused by repeats were measured. In the course of meta-assembly, we strived to minimize gaps and other sequencing errors. We employed Quast v4.5 (Gurevich et al., 2013) to gather extensive assembly statistics. BUSCO v3.2 (Simao et al., 2015) was employed for assessing the genome completeness, and the annotation and sets of predicted genes. Mapping accuracy and the identification of resistant gene analog loci were assessed (Supplementary Table 1). In addition, 75% of unigenes were aligned to the reassembled genome.



Gene Prediction and Function Annotation

The meta-assembly was first repeat-masked using the Repeat Modler and Repeat Masker tools (Smit et al., 2013), followed by ab initio gene prediction using the FGENESH module of the Molquest v4.5 software package6. The predicted genes were annotated using the BLASTX (E < 106) search against the NCBI non-redundant (nr) protein database using the Blast2GO software (Conesa et al., 2005). Synteny blocks between the genomes of pigeonpea and other legumes were computed by blastp combined with the Circos (Krzywinski et al., 2009) to understand homology to the NBS-LRR gene from Glycin max (Gm) and Medicago truncatula (Mt) pseudomolecules.



Identification of Genome Wide SSR

The refined genome sequence of pigeonpea was analyzed to identify various simple sequence repeats (SSR) types using the Microsatellite Identification tool (MISA)7. The minimum length for SSR motifs per unit size was set to 10 for mono, 6 for di, and 5 for a tri, tetra, penta, and hexa motifs. We calculated the total lengths of all mono-, di-, tri-, tetra-, penta-, and hexa-nucleotide repeats in terms of base pairs of SSR per mega base pair (Mb) of DNA.



Gene Validation

The genome similarity score recorded a set of sequenced reads originating from one draft genome correctly mapped onto a second genome. To check the accuracy in the improved pigeonpea genome, we wanted to verify the location of certain genomic regions or loci present in the inputted two assemblies. A set of genes imparting resistance against various pests and diseases were located in the B4 cluster on chromosomes in the two examined draft assemblies of pigeonpea (Cajanus cajan) Asha. As a test case, the location of B4 gene cluster syntenic regions were verified in the present study to estimate the accuracy of read mapping achieved in the improved assembly.



Computational Resources

We ran all reassembly and merging operations using HPC Cluster with CentOS-Linux version 7,2.93 GHz 2× Intel Xeon 8 core processors and 2 TB of RAM. The majority of the running time was spent on the assembly process and about 1/4 of the time was spent on graph construction and analysis. However, Reconciliator used more than 1.5 TB of RAM to merge the pigeonpea draft assemblies.
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Lupus nephritis (LN) is a well-known complication of systemic lupus erythematosus and is its leading cause of morbidity and mortality. Our study aimed to identify the molecular markers associated with the pathophysiology and treatment of LN. The renal tissue gene expression profiles of LN patients in the GSE32591 dataset were downloaded as a discovery cohort from the Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified; weighted gene co-expression network analysis (WGCNA) was used to identify the co-expression modules of DEGs; and gene function enrichment analysis, molecular crosstalk analysis, and immune cell infiltration analysis were performed to explore the pathophysiological changes in glomeruli and tubulointerstitia of LN patients. The crosstalk genes were validated in another RNA-sequencing cohort. DEGs common in RNA-sequencing dataset and GSE32591 were uploaded to the Connectivity Map (CMap) database to find prospective LN-related drugs. Molecular docking was used to verify the targeting association between candidate small molecular compounds and the potential target. In all, 420 DEGs were identified; five modules and two modules associated with LN were extracted in glomeruli and tubulointerstitia, respectively. Functional enrichment analysis showed that type I interferon (IFN) response was highly active, and some biological processes such as metabolism, detoxification, and ion transport were impaired in LN. Gene transcription in glomeruli and tubulointerstitia might affect each other, and some crosstalk genes, such as IRF7, HLA-DRA, ISG15, PSMB8, and IFITM3, play important roles in this process. Immune cell infiltration analysis revealed that monocytes and macrophages were increased in glomeruli and tubulointerstitia, respectively. CMap analysis identified proscillaridin as a possible drug to treat LN. Molecular docking showed proscillaridin forms four hydrogen bonds with the SH2 domain of signal transducer and activator of transcription 1 (STAT1). The findings of our study may shed light on the pathophysiology of LN and provide potential therapeutic targets for LN.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and systems, and its pathophysiology remains unclear (Mu et al., 2015). Lupus nephritis (LN) is a well-known complication of SLE; about 80% of children and 40% of adults are affected by LN (Brunner et al., 2008), which is the leading cause of morbidity and mortality in SLE patients. We performed a retrospective study for 491 LN patients in China and found that the cumulative probability of survival at 10 and 20 years are 77 and 45%, respectively (Zheng et al., 2012). At present, for the treatment of SLE and LN, most clinicians use high-dose glucocorticoids and immunosuppressants to induce remission, followed by long-term maintenance with small doses. However, only 30–50% of the patients achieve remission, and 10–20% of LN patients progress to end-stage renal disease (ESRD) (Maria and Davidson, 2020). Therefore, the treatment and prognosis of LN are generally not optimistic. It is necessary to strengthen the study of its pathophysiology further and find new treatment methods to improve the survival rates of patients with LN.

In recent years, the combination of molecular biology and information technology has led to the emergence of bioinformatics (Li et al., 2018), which has been used to reinterpret disease at the gene level and has revealed many clinical markers that may be used to diagnose disease or evaluate prognosis, especially in cancer (Zhang et al., 2018). However, there are few studies on bioinformatics in LN. Although the etiology of LN remains uncertain, it is strongly believed that the incidence of LN is associated with genomic and epigenomic mechanisms (Kwon et al., 2019). The various gene expression profiles and their regulatory mechanisms in LN remain to be illuminated.

Here, we obtained the differentially expressed genes (DEGs) of 32 LN renal tissues and 15 healthy renal tissues from the GSE32591 dataset. Functional enrichment analysis, weighted gene co-expression network analysis (WGCNA), molecular crosstalk analysis, and immune cell infiltration analysis were performed to explore the pathophysiological changes in glomeruli and tubulointerstitia of LN patients. The crosstalk genes were then validated in another cohort. Moreover, the DEGs common in an RNA-sequencing dataset and GSE32591 were uploaded to the Connectivity Map (CMap) database to find LN-related drugs. Molecular docking was used to verify the association between candidate small molecular compounds and their potential targets. The analysis of DEGs may shed light on the pathophysiology of LN and provide potential biomarkers for its treatment.



MATERIALS AND METHODS


Subjects and Samples

Six renal tissues were obtained from biopsies of three untreated patients with LN and three patients with renal cancer from the First Affiliated Hospital of Zhengzhou University. The diagnosis of patients with LN met the 1997 American Rheumatology Association SLE Classification Criteria and international renal pathology criteria. Healthy renal tissues at least 5 cm from the tumor were taken for controls, and their unaffected status was confirmed by microscopic examination. This study was approved by the Ethical Committee of the First Affiliated Hospital of Zhengzhou University (2018-KY-22), and informed consent was obtained from the patients.



Next-Generation Sequencing

Total RNA was extracted from the renal tissues using the TRIzol LS Reagent (Invitrogen, CA, United States). After total RNA quality check, the rRNA was removed using the Ribo-ZeroTM rRNA removal kit (Illumina, CA, United States), and purification and fragmentation of RNA were performed at the same time (the fragment length was between 100 and 300 bp to facilitate sequencing). First-strand cDNA was synthesized via reverse transcription, followed by second-strand cDNA synthesis. After terminal repair and purification, the cDNA library was amplified through PCR. Finally, samples were sequenced using a 2 × 150 base paired-end configuration with the Illumina Hiseq 2500 (Illumina, CA, United States).



Gene Expression Omnibus Data Preprocessing

The renal tissue gene expression profiles of GSE32591 from LN patients and healthy controls were downloaded from the Gene Expression Omnibus (GEO) database. GSE32591 is a microarray dataset generated by the Affymetrix GeneChip Human Genome HG-U133A Custom CDF (Berthier et al., 2012). It included 32 patients with SLE and LN and 15 healthy controls. Then, the annotation document of corresponding platforms was used to annotate the gene expression profiling in each dataset. Finally, the matrix with row names as sample names and column names as gene symbols was obtained for subsequent analysis.



Differentially Expressed Gene Analysis

For GSE32591, the DEGs in glomeruli and tubulointerstitia were defined by p < 0.05 and log2| fold change| > 1.0 using the “limma” package in R software 4.0.0. All the DEGs in glomeruli and tubulointerstitia were defined as total DEGs in GSE32591. For RNA-sequencing data, Deseq2 software was used to analyze the DEGs by comparing the case and control groups. The DEGs were defined by p < 0.05 and log2| fold change| > 1.0.



Weighted Gene Co-expression Network Analysis

To explore the function of the DEGs more accurately, we identified the co-expression modules in glomeruli and tubulointerstitia using WGCNA, which is an algorithm that can specially screen genes related to the clinical traits and obtain co-expression modules with high biological significance (Langfelder and Horvath, 2008). For glomeruli, to obtain a sufficient number of genes for WGCNA analysis, the genes were ranked by their log2| fold change| value. Finally, the genes with log2| fold change| > 0.589 (| fold change| > 1.5) and p < 0.05 were selected from the final ranked gene list. For the tubulointerstitia, the genes with log2| fold change| > 0.380 (| fold change| > 1.3) and p < 0.05 were selected. The WGCNA was performed using the R package “WGCNA” (Langfelder and Horvath, 2008). First, the appropriate soft powers β was selected according to the standard of scale-free network using the algorithm “pickSoftThreshold.” Second, the adjacency coefficient aij was calculated by the formula: aij = | Sij| β. The Sij was the Pearson correlation coefficient of gene i and gene j, β represents soft powers value. Third, a topological overlap matrix (TOM) and the corresponding dissimilarity (1-TOM) were calculated according to the adjacency coefficient. Then, a hierarchical clustering dendrogram built based on 1-TOM matrix was used to divide co-expressed genes into different modules. Fourth, the module eigengene (ME) that represented the expression patterns of each module was calculated and performed a Pearson correlation analysis with the clinical trait to obtain the modules that were significantly associated with LN.

In this study, the soft threshold was defined as 12 in WGCNA analysis of glomeruli and 18 in WGCNA analysis of tubulointerstitia. The other parameters were the following: minModuleSize = 20, networkType = “unsigned,” deepSplit = 2, and mergeCutHeight = 0.25.



Functional Enrichment Analysis

Gene Ontology (GO) analysis was used to describe the attributes of genes and gene products, including biological process (BP), molecular function (MF), and cellular component (CC). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis was used to obtain pathways at the gene level.

For the co-expression modules obtained from the WGCNA, we focused on the DEGs with log2| fold change| > 1 and p < 0.05 due to their significant changes and performed the GO and KEGG analyses on DEGs using DAVID1. The results of the GO analysis related to BP and KEGG pathways were focused, and the p-value represented the significance of the GO terms and pathways; the smaller the p-value, the higher the significance.



Molecular Crosstalk Analysis Between Glomeruli and Tubulointerstitia

As the glomeruli and tubules are closely related anatomically, we wanted to know whether the DEGs in the glomeruli and tubulointerstitia can influence each other. First, we extracted the gene expression data of DEGs from the modules identified from WGCNA and reconstructed the matrices with row names as sample names and column names as DEG symbols. Second, to obtain the correlation among these matrices, we used the principal component analysis (PCA) in SPSS 25.0 to obtain the first principal component of each matrix. Pearson correlation analysis was used to calculate the correlation between these first principal components. The whole analysis process is similar to the WGCNA “relating modules to clinical trait” analysis. Third, to further explore the mechanism of interaction between the glomerulus and tubulointerstitia, we selected the hub genes in each first principal component of matrices based on the following standards: (a) the eigengene connectivity (kME) of genes in modules > 0.9; and (b) the correlation coefficient with the first principal component in factor loading matrix > 0.8. Then, we used the Search Tool for the Retrieval of Interacting Genes (STRING) database to construct a protein–protein interaction (PPI) network of the hub genes at the protein level. We focused on the interaction between the hub genes located in different modules. The hub genes with the highest degree in the network were defined as crosstalk genes.



Immune Cell Infiltration Analysis

The CIBERSORT algorithm is an analytical tool used to estimate the proportion of various types of immune cells in complex tissues (such as large solid tumors) (Ali et al., 2016). Panousis et al. (2019) have successfully used this algorithm to estimate the proportion of blood immune cell subsets for SLE patients. Therefore, we uploaded the gene expression data of glomeruli and tubulointerstitia to the CIBERSORT website2 and obtained the landscapes of immune cells in these tissues, which encompassed T cells, B cells, monocytes, eosinophils, natural killer (NK) cells, macrophages, plasma cells, neutrophils, dendritic cells, and mast cells. Wilcoxon rank sum test was used to compare the proportion of immune cells between LN renal tissues and healthy renal tissues; p < 0.05 was considered significant. Pearson correlation was used to evaluate the correlation between the interferon (IFN)-induced genes and immune cells with significantly different proportions.



Validation of Crosstalk Genes

Next-generation sequencing (NGS) technology has developed rapidly in the past decade. It has great advantages for discovering unknown transcripts and comparing alternative splicing microarrays (Levy and Myers, 2016). Our team has performed deep sequencing of three cases of LN renal tissues and normal renal tissues and obtained a large number of DEGs. Therefore, we used the RNA-sequencing dataset to further validate the expression levels of crosstalk genes according to their fold change value.



Connectivity Map Analysis and Molecular Docking

The CMap database is a database of drug-related gene expression profiles, and it consists of a large amount of genome-wide transcriptional expression data of cell lines treated with small molecular compounds to reveal the correlation among genes, diseases, and drugs (Lamb, 2007). Based on the gene expression profiles, researchers could quickly find the drugs with high relevance to diseases.

To improve the accuracy of drug screening further, we selected the common DEGs that had the same expression trend in both GSE32591 and RNA-sequencing dataset. Then, the common DEGs were converted to probe number HG133A through Affymetrix3. The prober numbers of upregulated genes and downregulated genes were transferred into the CMap website for analysis. The p < 0.05 and Enrichment < 0 indicated that the changes in the gene expression profiles caused by drugs were opposite to those caused by diseases, and these drugs might have a therapeutic effect.

Molecular docking was performed using the Swissdock website to explore whether there was a targeting association between candidate small molecular compounds and DEGs (Grosdidier et al., 2011). The UCSF Chimera software 1.14 was used to visualize the binding interactions between small molecular compounds with three-dimensional (3D) models of the target.



Statistical Analysis

The data in this article were collated from two independent experiments. SPSS 25.0 and R software 4.0.0 were used for statistical analysis; p < 0.05 was considered statistically significant.



RESULTS


The Expression Profile of Differentially Expressed Genes in GSE32591

From the GSE32591 dataset, 361 DEGs were identified in glomeruli, including 254 upregulated genes and 107 downregulated genes. In addition, 130 DEGs were identified in tubulointerstitia, including 105 upregulated genes and 25 downregulated genes. Hierarchical clustering heat map was used to reveal the differences in the expressions of the DEGs between LN and control groups (Figure 1A). Among these DEGs, 58 genes were upregulated and 13 genes were downregulated in both glomeruli and tubulointerstitia (Figure 1B). In all, there were 420 DEGs in GSE32591, including 301 upregulated genes and 119 downregulated genes. Furthermore, the DEGs in the RNA-sequencing dataset were also identified. There were 1,089 DEGs in the RNA-sequencing dataset, including 565 upregulated genes and 524 downregulated genes (Supplementary Figure 1).


[image: image]

FIGURE 1. The hierarchical clustering heat maps and Venn diagrams. (A) The heat map above represents the differentially expressed genes (DEGs) in glomeruli; the heat map below represents the DEGs in tubulointerstitia; red represents upregulation and green represents downregulation. (B) The Venn diagram of the upregulated genes and downregulated genes in glomeruli and tubulointerstitia. LN, lupus nephritis; HCs, healthy controls; Glom, glomeruli; Tub, tubulointerstitia.




The Co-expression Modules in Glomeruli and Tubulointerstitia

According to the previously set criteria, there were 998 genes and 955 genes in the glomeruli and tubulointerstitia, respectively, into the WGCNA analysis. With each module assigned a color, a total of five modules were identified in glomeruli (excluding a gray module that was not assigned into any cluster). Then, a heat map was generated regarding module–trait relationships to evaluate the association between each module and two clinical features (LN and control). As shown in Figure 2, The two modules “brown” and “black” were positively associated with LN, and three modules “red,” “yellow,” and “blue” were negatively associated with LN (Figure 2B). Similarly, two modules in tubulointerstitia were identified; the module “brown” was positively associated with LN, and the module “red” was negatively associated with LN (Figure 2D).
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FIGURE 2. Weighted gene co-expression network analysis (WGCNA) analysis. (A) The cluster dendrogram of co-expression genes in glomeruli. (B) Module–trait relationships in glomeruli. Each cell contains the corresponding correlation and p-value. (C) The cluster dendrogram of co-expression genes in tubulointerstitia. (D) Module–trait relationships in tubulointerstitia. Each cell contains the corresponding correlation and p-value. LN, lupus nephritis; HCs, healthy controls; Glom, glomeruli; Tub, tubulointerstitia.




Gene Ontology and Kyoto Encyclopedia of Genes and Genomes Pathway Enrichment Analyses

In glomeruli, the DEGs in the brown module and the black module positively correlated with LN were significantly enriched in immune response, especially against virus infection mediated by type I IFN, such as “response to virus,” “defense response to virus,” and “type I interferon signaling pathway.” The KEGG pathway analysis revealed that the abnormal signaling pathways induced during some infectious diseases, such as those caused by influenza A, herpes simplex, and Staphylococcus aureus, were similar to the pathways deployed during the development of LN. The red module was negatively related to LN, and the enrichment analysis showed some biochemical reactions and metabolic pathways are impaired in LN, such as cellular oxidant detoxification, sodium-independent organic anion transport, biosynthesis of amino acids, and protein digestion and absorption. Furthermore, the enrichment analysis for the blue module negatively related to LN also showed the regulation of muscle contraction, response to toxic substances, and Rap1 signaling pathway were also abnormal (Table 1).


TABLE 1. GO and KEGG enrichment analysis of DEGs in co-expression modules of glomeruli.

[image: Table 1]In tubulointerstitia, the black module positively related to LN was enriched in the type I IFN pathway, as in the glomerulus. In the red module negatively related to LN, the enrichment analysis showed the DEGs were mainly enriched in cellular response to hormone stimulus, response to cAMP, transcriptional action, and osteoclast differentiation (Table 2).


TABLE 2. GO and KEGG enrichment analysis of DEGs in co-expression modules of tubulointerstitia.
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Gene Transcription in Glomeruli and Tubulointerstitia Was Affected by Each Other

As shown in Figure 3A, there was a high correlation between the various modules. The black module in the tubulointerstitia had different effects on almost every module in the glomeruli. Positive correlation in the glomeruli was found with the brown module and the black module, but negative correlation with the blue, yellow, and red modules. Similarly, the brown module in glomeruli is positively correlated with the black module but negatively correlated with the red module in the tubulointerstitia. The strong correlation between these modules suggested that the genes transcribed in glomeruli and tubulointerstitia may interact with each other. The PPI network between these modules suggested some hub genes acted as bridges between these modules (Figure 3B). We calculated the degree of each hub gene using the “Network analysis” tool in Cytoscape 3.7.2. The top 10 genes with the highest degrees were obtained, including IRF7, HLA-DRA, ISG15, PSMB8, IFITM3, GBP2, OAS2, SLC27A2, SLC15A3, and IFI44; hence, these genes were defined as crosstalk genes.


[image: image]

FIGURE 3. Molecular crosstalk analysis. (A) The correlation between modules in glomeruli and tubulointerstitia. (B) The interaction of hub genes located in various modules. Glom, glomeruli; Tub, tubulointerstitia; PC1, first principal component. Blue lines represent inclusion relationship of modules to hub genes; red lines represent the interaction between the hub genes located in different modules; magenta lines represent the interaction between various modules; red represents upregulation; blue represents downregulation. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001.




Performance of Immune Cell Infiltration Analysis

As mentioned above, the type I IFN response was very significant in LN. Considering that some immune cells play salient roles in the type I IFN response, we used the CIBERSORT algorithm to estimate the proportion of various types of immune cells in the kidney and explore their relationship with IFN-induced genes. The results showed that the number of monocytes increased significantly in the glomeruli of the LN group compared with that in the control. Moreover, the number of activated NK cells was also increased. On the contrary, the number of memory B cells, T follicular helper cells (Tfh cells), T regulatory cells (Tregs), resting NK cells, resting dendritic cells, and resting memory CD4 T cells was decreased (Figure 4A). In the tubulointerstitia, the number of M1 and M2 macrophages, gamma delta T cells, and resting mast cells was increased, whereas that of CD8 T cells, Tfh cells, and resting dendritic cells was decreased (Figure 4B).
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FIGURE 4. Immune cell infiltration analysis. (A) The proportion of the immune cell infiltration in glomeruli. (B) The proportion of the immune cell infiltration in tubulointerstitia. (C) The correlation between the crosstalk genes and eight types of immune cells in glomeruli. (D) The correlation between the crosstalk genes and seven types immune cells in tubulointerstitia. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001.


The Pearson correlation analysis showed that the IFN-induced genes, IRF7, ISG15, IFITM3, OAS2, and IFI44, in the crosstalk gene set were associated with immune infiltration. In glomeruli, these hub genes were positively correlated with monocytes but negatively correlated with memory B cells and Tregs (Figure 4C). In the tubulointerstitia, the IFN-induced genes were positively correlated with M1 and M2 macrophages (Figure 4D).



Validation of Crosstalk Genes by Next-Generation Sequencing

To verify our analysis, we extracted the expression level of these crosstalk genes using NGS and found that most crosstalk genes had the same changes in the RNA-sequencing dataset (Table 3), illustrating a satisfactory reliability of the result. The expression levels of HLA-DRA, GBP2, and SLC27A2 did not differ in our sequencing (p > 0.05), but they showed the same trends as microarray sequencing. In the future, we will expand the sample size to validate these crosstalk genes.


TABLE 3. The FC value of crosstalk genes in GSE32591 and RNA-sequencing dataset.
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Candidate Lupus Nephritis-Related Small Molecular Compounds

To identify LN-related small molecular compounds accurately, we integrated the DEGs between GSE32591 and RNA-sequencing dataset and obtained 50 common DEGs, including 38 upregulated genes and 12 downregulated genes (Table 4). Most of the common DEGs were IFN-induced genes, and their biological processes are mainly related to type I IFN signaling pathway (Supplementary Figure 2). Then, we queried the CMap database using the upregulated and downregulated genes and identified some compounds that might influence LN; the 10 compounds are shown in Table 5. Doxorubicin and H-7 were the first two small-molecule drugs with the highest enrichment score, and proscillaridin was the small molecular drug with the lowest enrichment scores; their 3D chemical structures were also downloaded from Pubchem database (Figures 5A–C).


TABLE 4. The common DEGs in GSE32591 dataset and RNA-sequencing dataset.
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TABLE 5. Ten small molecular compounds for lupus nephritis obtained from the Connectivity Map (CMap) database.
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FIGURE 5. Three-dimensional (3D) chemical structures of the three molecules. (A) Doxorubicin. (B) Proscillaridin. (C) H-7.




Targeting Association Between Signal Transducer and Activator of Transcription 1 and Proscillaridin via Molecular Docking

Proscillaridin was reported to inhibit signal transducer and activator of transcription (STAT)3, and the protein STAT1 encoded by the upregulated DEG STAT1 has been shown to have a structure similar to that of STAT3. We speculated that proscillaridin could also inhibit STAT1. Molecular docking was performed to preliminarily verify whether there is direct targeting between compounds and the protein. The results showed that the ARG586, HSD675, and ALA676 residues form hydrogen bonds with proscillaridin, which indicated that proscillaridin mainly interacts with the SH2 domain of STAT1 (Figure 6).
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FIGURE 6. The docking simulation result showing hydrogen bonding between proscillaridin and the ARG586, HSD675, and ALA676 residues in the SH2 domain of signal transducer and activator of transcription 1 (STAT1).




DISCUSSION

In recent years, with the wide use of immunosuppressants and biological agents, the prognosis and survival rate of patients with LN have improved; however, 10–20% of the patients with LN progress to ESRD, which is linked to a heavy burden and morbidity (Aljaberi et al., 2019). So, there is a need to study the pathophysiology and discover new therapeutic methods to prevent LN progression and prolong patient survival. Therefore, we performed sequencing in LN renal tissues and healthy renal tissues to identify DEGs and explore their roles in LN.

Through GO and KEGG pathway enrichment analyses of DEGs, we found that innate and adaptive immune response, especially against virus infection mediated by type I IFN, was highly active in both glomeruli and tubulointerstitia, such as the brown module and the black module in glomeruli and the black module in tubulointerstitia. Besides, the results also showed that the metabolism process of carbohydrate, protein, and lipid in LN patients was disordered, and some biochemical reactions involving detoxification were impaired. Interestingly, we found the blue module in glomeruli was enriched in the regulation of muscle contraction, which indicated that the contraction of mesangial cells (Jankowski et al., 2003), podocytes (Saleem et al., 2008), and capillaries might be dysregulated. This may lead to a decrease of the glomerular filtration rate (GFR) and might be one of the causes of urine protein in LN patients (Stockand and Sansom, 1998). In the tubulointerstitia, the red module was enriched in response to hormone stimulus and cAMP. Many types of ion transport are mediated via cAMP, such as Na+, K+, Ca2+, and Cl– (Li et al., 2008). The dysregulation might affect the tubules, then the filtration and reabsorption of tubules would be impaired in LN patients.

Glomerular lesions and tubulointerstitial lesions often occurred together in LN (Cimbaluk and Naumann, 2017), so we wanted to explore whether the two lesions were related at the genetic level. Therefore, we further used PCA and correlation analysis to explore the interaction between glomeruli and tubulointerstitial modules. There was a high correlation between the various modules that suggested that the gene transcription in glomeruli and tubulointerstitia may interact with each other. Combined with gene enrichment results, clearly, the high IFN response in glomeruli and tubulointerstitia revealed a mutual promotion. For a long time, we focused on the fact that IFN could result in autoimmune inflammation in LN (Eloranta et al., 2013); however, our molecular crosstalk analysis showed that the IFN response might also affect some biological processes, such as metabolic pathways, muscle contraction, and detoxification process in glomeruli. In the tubulointerstitia, the cellular response to hormone stimulus and cAMP and transcriptional activation were highly negatively correlated with IFN response, which indicated that the IFN response might have adverse effects on these biological processes in the tubulointerstitia. Most crosstalk genes interpreted from the PPI analysis were IFN-induced genes, which also indicated that IFN-induced genes played an important role in the transcription of each module. Except the IFN-induced genes, we also found some new genes, such as SLC27A2, SLC15A3, HLA-DRA, and PSMB8, which also might be important in kidney gene transcription.

To further explore the relationship between type I IFN response and immune cells in kidney, immune cell infiltration analysis was performed, and the results showed monocytes were the prominent differentially expressed cells in glomeruli and were positively correlated with IFN-induced genes. Monocytes are important subsets of immune cells, participate in various types of immune responses, thereby playing an important role in autoimmune diseases (Auffray et al., 2009). Uccellini and García-Sastre (2018) observed high IFN response in inflammatory monocytes during infection. Monocytes also have been reported to produce IFN and mediate tissue damage in H1N1 IAV-infected mouse models (Lin et al., 2014). Therefore, we speculated that there might be a mutual promotion between the monocytes and the high IFN response in glomeruli. However, we found that these IFN-induced genes seemed to be negatively correlated with Tregs and memory B cells. The function of Tregs is that they suppress autoreactive lymphocytes, especially CD8+ T cell and B cell activation, and maintain self-tolerance (Ohl and Tenbrock, 2015). It has been reported that the defects in Tregs or a lack of Tregs is associated with SLE pathogenesis (Ohl and Tenbrock, 2015). So we speculated that the decrease of Tregs in LN leads to the weakening of the inhibitory effect on B cells, thereby enhancing the B cell intrinsic effect for the augmentation of IFN. Besides, the reduction of memory B cells caused by the disturbance of B cell homeostasis has been observed in active SLE (Odendahl et al., 2000). We speculated that the decreased memory B cells might be related to the abnormal activation of B cells. The activated B cells circulate in the peripheral blood and participate in the formation of autoantibodies and IFN response (Eloranta et al., 2013). Therefore, there is a negative correlation between memory B cells and IFN-induced genes. Macrophages were found to be mainly elevated in the tubulointerstitia and positively correlated with IFN-induced genes. There are two major polarization states for macrophages; “M1” macrophages produce a lot of pro-inflammatory cytokines including IFN-α to cause tissue damage. On the contrary, “M2”-type macrophages can repair tissue damage by secreting anti-inflammatory cytokines such as IL-10 and CCL18 (Wen et al., 2019). The increased numbers of M1 and M2 macrophages will cause repeated injury and repair of the tubulointerstitia, leading to the fibrosis of tubulointerstitia.

Through CMap analysis, 10 drugs (geldanamycin, tanespimycin, proscillaridin, H-7, lisuride, 5155877, meclocycline, doxorubicin, lycorine, lomustine) were identified that might induce the development of LN (enrichment score > 0) or which may be potential drugs for the treatment of LN (enrichment factor < 0). Doxorubicin and H-7 were the first two small-molecule drugs with the highest enrichment scores, which indicated that the use of these small molecules or their analogs might induce or aggravate LN. Huang et al. (2004) reported a patient with SLE developing lupus-like symptoms, such as fever, erythema, and exfoliative dermatitis, with a positive lupus band test after using doxorubicin. Yang et al. (2009) found that doxorubicin treatment in mice significantly increased albuminuria and decreased podocytes. These results showed that patients with LN should be cautious when using doxorubicin. H-7 is a protein kinase inhibitor (Steele and Brahmi, 1988) and has not been reported to be associated with LN. Proscillaridin was the first small molecular drugs with the lowest enrichment score, indicating that it might be a potential therapeutic strategy for LN. In short, the abovementioned drugs might affect LN through a variety of small molecular pathways.

The DEG STAT1 was upregulated in the common DEGs (Table 2). STAT1 is known to occupy a central position in the type I IFN signaling pathway. If drugs that can inhibit STAT1 and change the high IFN-response signature are identified, they may be considered as potential candidate drugs for LN treatment. Proscillaridin belongs to cardiac glycosides (Maryam et al., 2018), and Ye et al. (2011) have reported that cardiac glycosides could potently inhibit the induction of the IFN genes induced by virus, double-stranded RNA, and double-stranded DNA, which was consistent with our analysis. Proscillaridin was also reported to have an inhibitory effect on STAT3 (Maryam et al., 2018). As STAT1 and STAT3 belong to the STAT protein family and have similar structures, and proscillaridin reverses the high IFN-response signature, we speculated that it could also inhibit STAT1. Through molecular docking, we found that proscillaridin formed four hydrogen bonds with the SH2 domain of STAT1. The SH2 domain is the most critical and conserved domain in STAT1, located between amino acid residues 577 and 683; it is vital for the activation and function of STAT1 (Levy and Darnell, 2002). Proscillaridin might inhibit the activation of STAT1 and the type I IFN signaling pathway by binding to the SH2 domain. However, more details of the specific interactions between proscillaridin and STAT1 need to be confirmed by future experiments.

However, there remain several limitations that need to be resolved in the future. For example, our research was a bioinformatic analysis based on sequencing data; therefore, further verifications by cell and animal experiments are needed. Besides, whether the small molecular compounds screened in our study could influence LN and the specific interactions and mechanisms between proscillaridin and STAT1 need further confirmation. Next, better-designed experiments need to be carried out based on our findings.

In conclusion, we found that type I IFN response was highly active, and some biological processes such as metabolism, detoxification, ion transport were impaired in LN through the WGCNA analysis of DEGs. The gene transcription in glomeruli and tubulointerstitia might affect each other, and some crosstalk genes, such as IRF7, HLA-DRA, ISG15, SLC15A3, and IFITM3, play important roles in this process. Monocytes and macrophages may be associated with high IFN response in kidney tissues. Proscillaridin may play a therapeutic role by targeting STAT1. Therefore, the analysis for DEGs provided a new perspective for the pathophysiology and treatment of LN.
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Background: The tumor immune microenvironment is closely related to the malignant progression and treatment resistance of glioma. Long non-coding RNA (lncRNA) plays a regulatory role in this process. We investigated the pathological mechanisms within the glioma microenvironment and potential immunotherapy resistance related to lncRNAs.

Method: We downloaded datasets derived from glioma patients and analyzed them by hierarchical clustering. Next, we analyzed the immune microenvironment of glioma, related gene expression, and patient survival. Coexpressed lncRNAs were analyzed to generate a model of lncRNAs and immune-related genes. We analyzed the model using survival and Cox regression. Then, univariate, multivariate, receiver operating characteristic (ROC), and principle component analysis (PCA) methods were used to verify the accuracy of the model. Finally, GSEA was used to evaluate which functions and pathways were associated with the differential genes.

Results: Normal brain tissue maintains a low-medium immune state, and gliomas are clearly divided into three groups (low to high immunity). The stromal, immune, and estimate scores increased along with immunity, while tumor purity decreased. Further, human leukocyte antigen (HLA), programmed cell death-1 (PDL1), T cell immunoglobulin and mucin domain 3 (TIM-3), B7-H3, and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) expression increases concomitantly with immune state, and the patient prognosis worsens. Five immune gene-related lncRNAs (AP001007.1, LBX-AS1, MIR155HG, MAPT-AS1, and LINC00515) were screened to construct risk models. We found that risk scores are related to patient prognosis and clinical characteristics, and are positively correlated with PDL1, TIM-3, and B7-H3 expression. These lncRNAs may regulate the tumor immune microenvironment through cytokine–cytokine receptor interactions, complement, and coagulation cascades, and may promote CD8 + T cell, regulatory T cell, M1 macrophage, and infiltrating neutrophils activity in the high-immunity group. In vitro, the abnormal expression of immune-related lncRNAs and the relationship between risk scores and immune-related indicators (PDL1, CTLA4, CD3, CD8, iNOS) were verified by q-PCR and immunohistochemistry (IHC).

Conclusion: For the first time, we constructed immune gene-related lncRNA risk models. The risk score may be a new biomarker for tumor immune subtypes and provide molecular targets for glioma immunotherapy.

Keywords: tumor immune microenvironment, immune gene sets, lncRNA, glioma, risk score


INTRODUCTION

Glioma is a primary malignant tumor derived from glial cells in the central nervous system. Its annual incidence rate is 7.08 per 100,000 people, and accounts for about 75% of whole brain and other central nervous system malignancies (Lapointe et al., 2018; Ostrom et al., 2019). Clinically, gliomas are often divided into low-grade gliomas (LGGs) and glioblastomas, which have different treatment methods and prognoses. For example, LGGs are slow growing and are mainly treated by total surgical resection. The patient prognosis is relatively good (Sturm et al., 2017). However, the median survival period is less than 2 years with malignant glioblastoma progression, even with standard treatment (surgical resection, adjuvant radiotherapy, and chemotherapy) (Tan et al., 2020). In 2016, the WHO classified gliomas into five categories based on their morphology and molecular characteristics (Louis et al., 2016). Recently, immunotherapy has been used in clinical applications. However, the overall prognosis of glioblastoma patients varies greatly. This may be due to the formation of unique tumor microenvironments during long-term tumor formation and limited molecular markers that distinguish tumor subtypes (Hanahan and Weinberg, 2011). Therefore, it is important to understand the glioma immune microenvironment and screen new molecular markers, which will guide future glioma treatment.

The extracellular matrix, soluble molecules, and tumor stromal cells are the basic components of the tumor microenvironment (Cui et al., 2017). Immune cells and stromal cells are the most common non-tumor cells. Macrophages are the most abundant immune cells in brain tumors (Quail and Joyce, 2017). Glioma often recruits T cells, bone marrow-derived suppressor cells, and macrophages through several pathways to promote immune cell accumulation and transformation into different cell types (Gieryng et al., 2017). Microglia and macrophages are often activated to control anti-tumor immune responses, promote tumor cell proliferation and invasion, and achieve immune escape (Hambardzumyan et al., 2016). Human leukocyte antigen (HLA) (Machulla et al., 2001), programmed cell death-1 (PDL1) (Jackson et al., 2019), cytotoxic T lymphocyte-associated antigen-4 (CTLA4) (Nduom et al., 2015), T cell immunoglobulin and mucin domain 3 (TIM-3) (Das et al., 2017), and other immune-related genes participate in the immune escape process. Therefore, treatments targeting immune checkpoints, microglia, and macrophages are used in the clinic (Poon et al., 2017). However, some patients are in a state of immune tolerance. To improve the quality of medical care and increase the understanding of the immune microenvironment, tumor immune gene analysis is common. Considering tumor-associated immune genes, investigating immune gene sets with guided evolutionary simulated annealing (GESA) can more comprehensively reflect the glioma immune microenvironment in vivo to better establish a prognostic model, find effective molecular markers, and perform effective targeted treatment (Molinaro et al., 2019).

With the development of high-throughput technology and the establishment of public databases, the molecular understanding of tumors has rapidly developed (Serratì et al., 2016), leading to improved understanding of tumor pathogenesis and improved biomarker screening. Importantly, some long non-coding RNA (lncRNA) has been identified as potential glioma biomarkers (Peng et al., 2018). Previously, lncRNAs were hypothesized to have no coding function and were regarded as transcriptional noise. However, lncRNAs play an important regulatory role in gene transcription and post-transcriptional modification. Indeed, lncRNA can regulate inflammation and participate in immune gene expression, thus affecting the tumor immune microenvironment (Chen, 2016; Mathy and Chen, 2017). For example, lincRNA-Cox2 regulates chromatin complex remodeling and participates in inflammatory gene expression (Hu et al., 2016). lncRNA nuclear-enriched abundant transcript 1 (NEAT1) participates in the regulation of interleukin (IL)-8 transcription, thus affecting cytokine response, and induces immune gene expression (Hirose et al., 2014). High HOTAIR lncRNA expression promotes the secretion of monocyte chemoattractant protein-1 (MCP-1/CCL2) by tumor cells and promotes the proliferation of tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC) in the immune microenvironment (Botti et al., 2019). The complex relationship between lncRNAs and the tumor immune microenvironment has been gradually revealed, and the mechanism of immune-related lncRNA in a variety of tumors has been reported (Hu et al., 2019). However, the relationship between lncRNAs and the glioma immune environment remains unclear.

We analyzed glioma samples downloaded from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA), to examine the glioma immune microenvironment using the single-sample GSEA method. Then, we screened lncRNAs related to the analyzed immune gene set. Using survival curve and Cox regression analysis, a five-lncRNA prognosis model related to the immune gene set was constructed, and the relationship between the risk score and the glioma patient prognosis was explored. Our results provide new ideas for the clinical immunotherapy of glioma.



MATERIALS AND METHODS


Patient and Glioma Samples

This study was approved by the patients and the Ethics Committee of the First Affiliated Hospital of Harbin Medical University. All glioma tissue samples were obtained from the surgical resection tissue of glioma patients (n = 18); non-tumor brain tissue was used as the negative control group (n = 5). Tissue samples are stored separately in liquid nitrogen and paraffin embedded.



Data Extraction

Sequencing data collected from glioma patients were downloaded from public databases. We excluded samples with incomplete clinical information. In total, we downloaded 697 (168 GBM, 529 LGG) glioma RNA-seq and 669 (510 LGG, 159 GBM) clinical sample information datasets from the TCGA database1, 1018 (375 GBM, 643 LGG) glioma RNA-seq and 971 (596 LGG, 375 GBM) clinical sample information datasets from the CGGA database2 (Jiang et al., 2016; Hu et al., 2018), and 1152 normal brain RNA-seq datasets from the Genotype-Tissue Expression (GTEX) database3 (GTEx Consortium, 2015).



Immune Grouping and Correlation Analysis

In the single-sample GSEA method, each sample was scored according to 29 immune gene sets and divided into three groups by hierarchical clustering (Molinaro et al., 2019). We used Estimate package to calculate the tumor microenvironment indicators for each sample and analyze the tumor purity (Yoshihara et al., 2013). Then, we used the R-x64-4.0.2 language package to analyze the three immune-related gene and patient prognosis groups. Finally, we analyzed immune cell infiltration in each tumor sample using the CIBERSORT method (Newman et al., 2015) (p < 0.05).



Risk Model

Nine lncRNAs were screened based on the correlation between identified lncRNAs and the immune gene sets (R2 ≥ 0.62) in CGGA. An additional five prognosis-related lncRNAs were identified using univariate and multivariate survival analyses by Cox regression model (Malinchoc et al., 2000). We divided the samples from the CGGA database into high- and low-risk groups according to the median risk score (Risk score = correlation_lncRNA1 × expression_lncRNA1 + correlation_lncRNA2 × expression_lncRNA2 + correlation_lncRNAn × expression_lncRNAn) (Chen et al., 2007; Zhang et al., 2020b). Survival curve and Cox regression analysis were used to construct the immune gene set-related lncRNA risk model.



Risk Model Assessment

We used cor.test function to detect the relationships between lncRNAs (Zhang et al., 2020a). Then, we evaluated the accuracy of the risk model using univariate, multivariate, and receiver operating characteristic (ROC) curves. ggpubr package was used to show the relationship between lncRNAs, clinical symptoms, and immune status. Then, we use principal component analysis for model clustering through scatterplot3d package (Ma and Dai, 2011).



GSEA for Enrichment Analysis

We used clusterProfiler, colorspace, and enrichplot package to perform GO and KEGG analysis based on the sequence of genes which was sorted each gene in descending order of log2FoldChange [log2 (Mean of high immune group genes/Mean of low immune group genes)], and drew a bubble chart (p < 0.05) through ggplot2 package (Cheng et al., 2019).



Quantitative RT-PCR (qRT-PCR)

Total RNA was prepared using TRIzol Reagent (Invitrogen, Carlsbad, CA, United States) according to the manufacturer’s instructions. The concentration of the total RNA was detected by NanoDrop 2000 (Thermo ScientificTM). Total RNA (1000 ng) was reverse transcribed into cDNA using qPCR RT Kit (TOYOBO, Japan). Relative expression of target gene to the housekeeping gene GAPDH was determined by qRT-PCR using FastStart Universal 96 SYBR Green Master (ROX) (Roche, Germany). All primer sequence used in this study is listed in Supplementary Table 1. Analysis between the two groups was performed by an unpaired t-test; P < 0.05 was considered statistically significant.



Immunohistochemistry (IHC)

The tissue sample immersed in formalin is wrapped in paraffin and sliced into 5 μm thick sections. Then sample sections were incubated for PDL1, CTLA4, CD3, CD8, and INOS primary antibodies at 4°C overnight and secondary antibodies at 37°C for 30 min. Next, samples were visualized by using the diaminobenzidine (DAB) substrate kit for 10 min. After intensive washing, samples were counterstained with hematoxylin, then dehydrated and coverslipped according to manufacturer’s protocol. The results of immunohistochemistry (IHC) were taken with Leica microscope.



Statistical Analysis

All analyses were performed with GraphPad Prism 7, R version 3.6.1 and corresponding packages. For all data, the statistical significance is: ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001.




RESULTS


The Tumor Immune Microenvironment Reflects Tumor Purity

Normal brain tissue maintains a low-medium immune state, while gliomas are clearly divided into low-immunity groups (immunity_L), medium-immunity groups (immunity_M), and high-immunity groups (immunity_H) (Supplementary Figure 1A and Figures 1A,B). From immunity_L to immunity_H, the stromal score, immune score, and estimate score (stromal score combined with immune score) increase, and the tumor purity decreases. We further quantified different immunity groups scores and drew violin plots. The changes of immune stromal cells in the tumor microenvironment and the decrease in tumor purity are consistent with Figures 1C,E, Supplementary Figure 1B, Figure 1G (TCGA, p < 0.001), Figures 1D,F, Supplementary Figure 1C, and Figure 1H (CGGA, p < 0.001). In order to better understand the tumor microenvironment and find potential therapeutic targets, whether there are differences in immune-related genes is worthy of our further study.
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FIGURE 1. The tumor immune microenvironment is related to the expressed immune genes. Heatmaps of the tumor immune microenvironment in the TCGA (A) and CGGA (B) datasets. Violin plots of the stromal cell scores among immune groups in the TCGA (C) and CGGA (D) datasets. Violin plots of the immune scores among the immune groups in the TCGA (E) and CGGA (F) datasets. Violin plots of tumor purity in the TCGA (G) and CGGA (H) datasets, ***P < 0.001.




Immune Gene Expression in the Three Groups

We generated boxplots to evaluate the expression of immune-related genes during the immune response. As shown in Figures 2A,B, HLA-related gene expression gradually increased from the immunity_L to immunity_H groups (p < 0.001). We also found that PDL1 (Figure 3A, TCGA; Figure 3B, CGGA), CTLA4 (Figure 3C, TCGA; Figure 3D, CGGA), CD96 (Figure 3E, TCGA; Figure 3F, CGGA), TIM-3 (Figure 3G, TCGA; Figure 3H, CGGA), and CD276 (Supplementary Figure 1D, TCGA; Supplementary Figure 1E, CGGA) expression levels also increased from the immunity_L to immunity_H groups. However, HLA-related gene expression promotes immune responses to clear tumors, while immune checkpoint genes (PDL1, CTLA4, TIM-3, and CD276) suppress immune responses and facilitate tumor proliferation and metastasis. Therefore, we further analyzed patient outcomes.
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FIGURE 2. The correlation between HLA-related genes and immune groups. (A) TCGA. (B) CGGA.
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FIGURE 3. The correlation between immune groups and immune checkpoints. PDL1 expression is based on TCGA (A) and CGGA (B), CTLA-4 expression is based on TCGA (C) and CGGA (D), CD96 expression is based on TCGA (E) and CGGA (F), TIM-3 expression is based on TCGA (G) and CGGA (H), ***p < 0.001.




Patient Prognosis in the Different Immune Groups

To analyze the effect of gene expression on patient prognosis in the different immune groups, we drew survival curves for the TCGA (669 samples: 510 LGG and 159 GBM samples) and the CGGA (971 samples: 596 LGG and 375 GBM samples) (Figure 4). Among the glioma patients, patients in the immune_L group had the best prognosis, followed by the immune_M group, and the immune_H group had the worst prognosis (Figure 4B, p < 0.001). Among LGGs, prognosis in the different immune groups was similar (Figures 4C,D, p < 0.001). In GBM, the prognosis in the immune_H group tended to be worse than in the immune_L group, but the difference was not statistically significant (p > 0.05).
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FIGURE 4. Correlation between immune grouping and survival time of glioma patients. (A) TCGA and (B) CGGA in all glioma patients. (C) TCGA and (D) CGGA in low-grade glioma patients. (E) TCGA and (F) CGGA in GBM patients.




Risk Models of Five lncRNAs Related to the Immune Gene Sets

Nine lncRNAs were screened based on their coexpression with immune-related genes. The nine lncRNAs we screened were AC084018.1, AP001007.1, DICER1-AS1, HCP5, LBX2-AS1, LINC00515, MAPT-AS1, USP30-AS1, and MIR155HG. After univariate (Figure 5A) and multivariate (Figure 5B) analyses, AP001007.1, MIR155HG, and LBX2-AS1 were identified as independent risk factors [hazard ratio (HR) > 1, P < 0.05], and LINC00515 and MAPT-AS1 were identified as independent protective factors (HR < 1, P < 0.001). All the lncRNAs were related to prognosis in CGGA-mRNAseq_325 and CGGA-mRNAseq_625 samples (Supplementary Figure 2, p < 0.001). Then, five lncRNAs (AP001007.1, MIR155HG, LBX2-AS1, LINC00515, and MAPT-AS1) were used to construct a risk model and draw survival (Figure 5C, p < 0.001) and risk curves (Figure 5D). The results show that as the patient risk increases, the survival time decreases, and the overall death rate increases. Finally, correlation analysis showed that the primary, recurrent, and secondary (PRS) type, World Health Organization (WHO) grade, isocitrate dehydrogenase (IDH)-mutant, 1p/19q co-deleted, age, and risk score were independent prognostic factors (Figures 5E,F, p < 0.05). Importantly, the risk score [area under the curve (AUC) = 0.732] and WHO (AUC = 0.747) had potential diagnostic value (Figure 6A). Thus, our risk model has clear diagnostic value.
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FIGURE 5. Construction of a five-lncRNA risk model based on CGGA. Univariate (A, p < 0.001) and multivariate (B, p < 0.001) survival model analysis of lncRNA related to immune gene set. Survival curves of glioma patients with different risk factors (C, p < 0.001). The risk curve of five-lncRNA model (D). Univariate (E, p < 0.001) and multivariate analysis (F, p < 0.025) of multiple clinical indicators of the risk model.
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FIGURE 6. The clinical characteristics of the risk model are based on CGGA. (A) Roc curves of multiple clinical indicators. WHO grade (B), 1p19q status (C), IDH status (D), MGMT methylation status (E), PRS type (F). (G) Principal component analysis of lncRNA related to immune gene set. (H) The expression of lncRNAs in different immune groups, *P < 0.05, **P < 0.01, ***P < 0.001, ns: not statistically significant.




Clinical Characteristics of the Five lncRNAs

We next clarified the correlation between lncRNAs and clinical characteristics based on CGGA database. The results indicated that as the WHO level increased, AP001007.1, LBX-AS1, and MIR155HG expression also increased, while MAPT-AS1 and LINC00515 expression decreased (Figure 6B, p < 0.001). In addition, 1p19q no-codeletion (Figure 6C), IDH1 wildtype (Figure 6D), MGMT un-methylated (Figure 6E), and recurrent glioma (Figure 6F) compared with 1p19q deletion (Figure 6C), IDH1 mutant (Figure 6D), MGMT methylated (Figure 6E), and primary glioma (Figure 6F), AP001007.1, LBX-AS1, and MIR155HG also was high expression, while MAPT-AS1 and LINC00515 were also low in CGGA (except for LINC00515 in Figure 6E and MAPT-AS1 in Figure 6F, p > 0.05). Then, principal component analysis also showed that the risk model could divide the high- and low-risk groups into different subgroups (Figure 6G).



The Correlation Between lncRNA and Immunity

Using correlation analysis, we found that the lncRNAs in the risk model are associated (Supplementary Figure 3A). The risk score is closely related to the lncRNAs, PDL1, TIM-3, and B7-H3 (Supplementary Figures 3B–I). In addition, we found that AP001007.1, LBX2-AS1, and MIR155HG had the highest expression, while MAPT-AS1 and LINC00515 expression was the lowest in the immune_H group. In contrast, the expression of AP001007.1, LBX-AS1, and MIR155HG were relatively low, while the expressions of MAPT-AS1 and LINC00515 were relatively high in the immune_L group (Figure 6H). We next analyzed the immune-infiltrating cells in each group. In the immune-H group, we found that naive B cells, plasma cells, CD8 + T cells, regulatory T cells (Tregs), M1 macrophages, M2 macrophages, resting mast cells resting, and infiltrating neutrophils increased. CD4 + naive T cell, inactivated CD4 + memory T cell, monocyte, inactivated natural-killer (NK) cell, and activated NK cell infiltration decreased (Figure 7A, TCGA; Figure 7B, CGGA p < 0.05).
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FIGURE 7. Functional enrichment analysis of genes related to immune gene set by GSEA. The correlation between immune grouping and infiltrating immune cells is based on TCGA (A) and CGGA (B). The GO analysis of differential genes is in TCGA (C) and CGGA (D), and the results are visualized in TCGA (E) and CGGA (F), *P < 0.05, **P < 0.01, ***P < 0.001.




GO Enrichment and KEGG Pathway Analysis

We used GSEA to analyze enriched differential genes in the immune_H and immune_L groups. We observed that the differential genes were enriched in immunoglobulin complex, circulating, immunoglobulin receptor binding, and MHC protein complex (Figures 7C–F). Further KEGG function analysis (Figure 8A and Supplementary Figure 3J) showed allograft rejection, asthma, intestinal immune network for IgA production, and cytokine–cytokine receptor interaction may be activated cell signaling pathways. The intersection of the two data sets revealed 81 cell signal pathways involved in glioma (Figure 8B). The five lncRNA we identified may regulate the immune microenvironment through cytokine–cytokine receptor interaction, antigen processing and presentation, complement and coagulation cascades, and intestinal immune network for IgA production (Figures 8C,D).
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FIGURE 8. Function enrichment of genes related to immune gene set by GSEA. (A) KEGG in TCGA. (B) The intersection of related pathways is based on TCGA and CGGA. The bubble chart of the enrichment pathway is in TCGA (C) and CGGA (D).




In vitro Validation of the Risk Model

Through qRT-PCR, we confirmed that AP001007.1, MIR155HG, and LBX2-AS1 are highly expressed, while LINC00515 and MAPT-AS1 are low expressed in gliomas compared to the control group (Figure 9A). Then, we further found that the risk score was positively correlated with the expression of PDL1, CTLA4, CD3, CD8, and INOS (Figure 9B, cor > 0.5). Finally, the immunohistochemical results also confirmed that the expression of PDL1, CTLA4, CD3, CD8, and INOS in the high risk group was significantly higher than low risk group base on protein level (Figure 9C).
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FIGURE 9. In vitro experiment based on riskScore model. (A) The abnormal expression of five lncRNAs in gliomas was confirmed by qRT-PCR. (B) The correlation between riskScore and immune indicators is verified by qRT-PCR. (C) Immunohistochemical results of patients in different risk groups, *P < 0.05.





DISCUSSION

Glioma cells form a complex regulatory network via the extracellular matrix, stromal cells, and infiltrating immune cells (Hanahan and Coussens, 2012). Some cells secrete factors and lncRNAs to promote inflammation and angiogenesis in tumors, thereby promoting malignant tumor progression and immune escape (Pitt et al., 2016; Dagogo-Jack and Shaw, 2018). It is critical to understand the tumor immune microenvironment and screen new markers to enable targeted glioma therapy for glioma. Abundant research on immune cells has been performed (Charoentong et al., 2017; Jia et al., 2018). However, the cell types, functions, and pathways associated with glioma remain unclear. Therefore, we analyzed 1715 glioma and 1152 normal brain tissue samples using the single-sample GSEA method. We found that the immune environment in gliomas was very different from the immune environment in normal brain tissues. In the immune_H group, the tumor immune cell, and stromal cell content increases, the tumor purity decreases, and tumor heterogeneity becomes greater. These conclusions are in line with previous findings (Hanahan and Coussens, 2012; Pitt et al., 2016; Dagogo-Jack and Shaw, 2018) indicating that this method can accurately reflect the basic conditions of the tumor microenvironment.

Human leukocyte antigens and immune checkpoints are an indispensable regulator of the immune microenvironment (Topalian et al., 2016; Pereira et al., 2019). In the immune_H group, PDL1, CTLA4, TIM-3, and CD96 expression were increased. Immune checkpoints act to negatively regulate immune regulation. Normal immune surveillance and cell killing ability are weakened in many tumors. Further, tumors often have immune escape or immunotherapy resistance mechanisms, leading to ineffective clinical treatment (Field et al., 2017; Qian et al., 2018). We also observed that among all the glioma samples, the immune_H group had the worst prognosis, followed by the immune_M group, and the immune_L group had the best prognosis. This conclusion also supports previous results. Moreover, GSEA has been used in many studies and has a certain degree of credibility (Ma et al., 2020; Wang et al., 2020). Therefore, the single-sample GSEA method based on expressed immune genes can distinguish the biological characteristics of the immune microenvironment between different gliomas, which provides the possibility for screening the immune microenvironment-related biomarkers.

Long non-coding RNAs can regulate the tumor immune microenvironment and can be used as biomarkers. For example, NF-kappaB interacting lncRNA (NKILA) can promote the immune escape of tumor cells by regulating T cell activity (Huang et al., 2018). Further, SATB2-AS (the antisense transcript of SATB2 protein) can directly combine with WDR5 (WD repeat containing protein 5) and GADD45A (growth arrest and DNA damage protein 45A) to regulate SATB2 expression, thereby inhibiting tumor cell metastasis and regulating the tumor immune microenvironment (Xu et al., 2019). Immune-related lncRNAs have carcinogenic effects in several tumors, and can be used as biomarkers (Li et al., 2020). Thus, it is very important to determine whether lncRNAs related to the immune gene set have clinical diagnostic and prognostic value. We screened five lncRNAs using the Cox regression method and constructed a prognostic model. We found that the risk score is related to prognosis and is an independent factor that can be used for clinical diagnosis. We further observed that five lncRNAs interact and are closely related to the clinical symptoms of glioma patients (WHO grade, IDH1 status, 1q19q status, and MGMT). Principle component analysis (PCA) analysis showed that subgroups within the high- and low-risk groups can be well distinguished using our method. These conclusions show that the risk scores of the five lncRNAs related to the immune gene set can predict patient prognosis and clinical characteristics, and can be used as a new biomarker to inform clinical diagnosis and treatment.

We used boxplots to visualize lncRNA expression in each immune group. In the immune_H group, we found that AP001007.1, LBX2-AS1, and MIR155HG were highly expressed, while LINC00515 and MAPT-AS1 expression was low. The immune_L group showed the opposite trend. Survival analysis showed that AP001007.1, LBX2-AS1, and MIR155HG were risk factors, and their high expression predicted poor patient outcomes. LINC00515 and MAPT-AS expression were protective indicators, and low expression predicted poor patient prognosis. LBX2-AS1 produces malignant behavior in gliomas by conferring resistance to cell apoptosis (Chen et al., 2020). MIR155HG promotes immune cell infiltration and immune resistance (Peng et al., 2019). In contrast, MAPT-AS1 expression indicates a good prognosis for cancer patients (Wang et al., 2019). Therefore, the immune gene set-related model we constructed has considerable credibility.

We found that the five lncRNAs we analyzed may promote immune cell infiltration through cytokine–cytokine receptor interaction, antigen processing and presentation, complement and coagulation cascades, and may contribute to immune resistance and tolerance, ultimately leading to poor patient prognosis. However, this study also has some limitations. First, because there was no information regarding MGMT, 1p19q, and other related molecules in the TCGA dataset, only a single CGGA cohort was used for statistical analysis. The CGGA sample information is mainly clinical sample information from Chinese patients, which may only indicate region-specific effects. Second, basic experiments have also verified the important role of some immune gene-related lncRNAs in regulating glioma development. However, the mechanism underlying our prognostic model remains unclear and requires additional experiments to verify our in silico results. Third, we confirmed that the five lncRNA have potential clinical value to identify risk factors, but more factors should be considered, especially considering multimodal glioma development.



CONCLUSION

Immune-related genes can reflect the characteristics of the immune microenvironment. To reveal the mechanism of partial resistance or treatment resistance within a new risk model, five immune-related lncRNAs were analyzed and shown to have good stability and feasibility (AP001007.1, LBX-AS1, MIR155HG, MAPT-AS1, and LINC00515). Thus, our study reveals biomarkers that distinguish specific glioma groups and can be used in the clinical diagnosis and treatment of glioma.
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Supplementary Figure 1 | (A) The heatmap of the immune microenvironment of normal brain tissue base on GTEX. The relationship between immune grouping and ESTIMATEScore in TCGA (B) and CGGA (C). The correlation between CD276 and immune grouping in TCGA (D) and CGGA (E).

Supplementary Figure 2 | Survival curve of glioma patients in CGGA mRNAseq_693 and CGGA mRNAseq_325. (A) ap0001007.1, (C) LBX2-AS1, (E) LINC00515, (G) MAPT-AS1, (I) MIR155HG in CGGA mRNAseq_325. (B) ap0001007.1, (D) LBX2-AS1, (F) LINC00515, (H) MAPT-AS1, (G) MIR155HG in CGGA mRNAseq_325 database.

Supplementary Figure 3 | Correlation analysis of risk score, lncRNA, and immune checkpoint. (A) Correlation analysis of lncRNAs related to immune gene set. (B) KEGG in CGGA. (C) Analysis of the correlation between risk scores and lncRNAs or immune checkpoints in (B) LINC00515, (C) MIR155HG, (D) LBX2-AS1, (E) MAPT-AS1, (F) ap0001007.1 or (G) TIM-3, (H) B7-H3, (I) PDL1, (J) KEGG in CGGA.


FOOTNOTES
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Head and neck paragangliomas (HNPGLs) are rare neuroendocrine tumors that have a high degree of heritability and are predominantly associated with mutations in ten genes, such as SDHx, SDHAF2, VHL, RET, NF1, TMEM127, MAX, FH, MEN2, and SLC25A11. Elucidating the mutation prevalence is crucial for the development of genetic testing. In this study, we identified pathogenic/likely pathogenic variants in the main susceptibility genes in 102 Russian patients with HNPGLs (82 carotid and 23 vagal paragangliomas) using whole exome sequencing. Pathogenic/likely pathogenic variants were detected in 43% (44/102) of patients. We identified the following variant distribution of the tested genes: SDHA (1%), SDHB (10%), SDHC (5%), SDHD (24.5%), and RET (5%). SDHD variants were observed in the majority of the patients with bilateral/multiple paragangliomas. Thus, among Russian patients with HNPGLs the most frequently mutated gene was SDHD followed by SDHB, SDHC, RET, and SDHA.

Keywords: head and neck paragangliomas, carotid and vagal paragangliomas, susceptibility genes, SDHx, mutation frequency, pathogenic mutations


INTRODUCTION

Head and neck (HN) paragangliomas (PGLs) are rare neuroendocrine tumors of four distinct localizations: carotid, vagal, laryngeal, and middle ear PGLs. Carotid paragangliomas (CPGLs) arise from the carotid glomus at the carotid artery bifurcation and are the most common form of HNPGLs (60%) (El-Naggar et al., 2017). Middle ear and vagal paragangliomas (MEPGLs and VPGLs) are less frequent than CPGLs and account for 29% and 13%, respectively; laryngeal PGLs are very rare (El-Naggar et al., 2017). All the HNPGLs are often characterized by slow growth and non-aggressive behavior, but exhibit metastatic potential. The overall metastatic rate for HNPGLs vary depending on the site of tumor localization: 2% for larynx and middle ear, 4–6% for carotid, and up to 16% for vagal PGLs (Williams, 2017). HNPGLs can also develop as bilateral or multiple tumors and pose significant treatment challenges.

HNPGLs can as familial or sporadic forms (Dahia, 2014). Familial HNPGLs together with pheochromocytomas (PCCs) account for about 40% and are associated with four types of hereditary paraganglioma syndromes (PGL1–5) caused by mutations in the following genes: SDHD (PGL1), SDHAF2 (PGL2), SDHC (PGL3), SDHB (PGL4), and SDHA (PGL5) (Burnichon et al., 2010; Boedeker et al., 2014). Patients with hereditary HNPGLs less frequently harbor germline mutations in TMEM127 (Bausch et al., 2017), RET (Kudryavtseva et al., 2019), MAX (Burnichon et al., 2012), FH (Castro-Vega et al., 2014), and SLC25A11 (Buffet et al., 2018). Germline mutations in VHL, NF1, and MEN2 have been detected in HNPGLs in association with other tumoral and clinical features (Boedeker et al., 2009).

In this study, we aimed to assess the frequency of variants in the main susceptibility genes for HNPGLs, such as SDHx, SDHAF2, VHL, RET, NF1, TMEM127, MAX, FH, MEN2, and SLC25A11, among a representative set of Russian patients with CPGLs and VPGLs.



MATERIALS AND METHODS


Patients

In total, 102 Russian patients with HNPGLs, including 82 patients with CPGLs and 23 with VPGLs, were enrolled at the Vishnevsky Institute of Surgery, Ministry of Health of the Russian Federation. Informed consent was obtained from all patients. This study was approved by the Ethics Committee of Vishnevsky Institute of Surgery with ethics committee approval no. 004-2020, 03.07.2020, and was performed in accordance with the Declaration of Helsinki (1964) (World Medical Association, 2001). The clinicopathologic characteristics of the patients are presented in Table 1.


Table 1. Clinicopathologic characteristics of patients with HNPGLs.
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Exome Library Preparation and Sequencing

DNA was extracted from formaldehyde fixed-paraffin embedded (FFPE) tumor tissues using High Pure FFPET DNA Isolation Kit (Roche, Basel, Switzerland) and quantified with a Qubit 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). DNA quality was assessed by quantitative PCR (qPCR) using QuantumDNA Kit (Evrogen, Moscow, Russia). Exome libraries were prepared from DNA using Rapid Capture Exome Kit (Illumina, San Diego, CA, USA) or TruSeq Exome Library Prep Kit (Illumina) according to the manufacturer's recommendations. High-throughput sequencing of the exome libraries was performed on a NextSeq 500 System (Illumina) in a paired-end mode of 76 × 2 bp. The average coverage for each sample was at least 300X. Sequencing data are available at NCBI Sequence Read Archive (SRA) BioProject PRJNA639937.



Mutation Analysis

Raw sequencing read quality was assessed using FastQC (v. 0.11.9). The reads were trimmed for quality (less than Q20), and adapter sequences were removed using Trimmomatic (v. 0.39) (Bolger et al., 2014). Alignment of reads to the reference human genome GRCh37.75/hg19 was performed with Burrows-Wheeler Aligner (v. 0.7.17) (Li and Durbin, 2010). To report alignment statistics and determine read duplicates, we applied SAMtools (v. 1.10) (Li et al., 2009) and Picard-tools (v. 2.23.4). Base quality score recalibration was carried out with GATK4 (v. 4.1.2) (McKenna et al., 2010) and dbSNP (common variants 2015-06-05) (Sherry et al., 2001). Variant calling was performed with GATK HaplotypeCaller (McKenna et al., 2010). We excluded false positives using StrandBiasBySample, StrandOddsRatio, and BaseQualityRankSumTest annotations, as well as mis-sequenced single-nucleotide variants in polyN motifs, such as GGGTG > GGGGG, CCCCG > CCCCC, and others. For functional annotation of variants, ANNOVAR (v. 20200316) (Wang et al., 2010) was used. Annotations included allele frequency data [gnomAD (Karczewski et al., 2020), Kaviar (Glusman et al., 2011), and ESP-6500 (http://evs.gs.washington.edu/EVS/)], information about reported genomic variations and its association with human pathologies [ClinVar (Landrum et al., 2018), dbSNP, and COSMIC (Tate et al., 2019)], score for the conservation of mutated sites [PhastCons (Siepel et al., 2005) and PhyloP (both PHAST v. 1.5) (Pollard et al., 2010)], localization of variants in protein domains [InterPro (v. 81.0) (Mitchell et al., 2019)], as well as pathogenicity prediction score [SIFT (v. 6.2.1) (Vaser et al., 2016), PolyPhen2 (v. 2.2.2) (Adzhubei et al., 2010), MutationTaster (v. 2013-03-20) (Schwarz et al., 2014), LRT (v. 0.2) (Chun and Fay, 2009), PROVEAN (Choi and Chan, 2015), MetaSVM and MetaLR (Dong et al., 2015), CADD (v. 1.6) (Kircher et al., 2014), and DANN (Quang et al., 2015)].



Sanger Sequencing

To validate the whole exome sequencing data, Sanger sequencing was performed in Evrogen. Primer sequences are available on request.




RESULTS

A representative set of HNPGL samples were collected from 102 Russian patients diagnosed with CPGLs (n = 82) and VPGLs (n = 23), including 76 patients with single CPGL, 20 patients with single VPGL, and 6 patients with bilateral/multiple PGLs (three of them had both carotid and vagal paragangliomas) (Table 1). These tumor samples were analyzed for the presence of pathogenic/likely pathogenic variants in the main susceptibility genes for HNPGLs: SDHx, SDHAF2, VHL, RET, NF1, TMEM127, MAX, FH, MEN2, and SLC25A11. Variants were classified as pathogenic or likely pathogenic according to the annotations in the ClinVar database or by using the criteria of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) (Richards et al., 2015).

Pathogenic/likely pathogenic variants were revealed in 44 out of 102 (43%) patients with HNPGLs (Supplementary Table 1). The prevalence of variants was as follows: SDHA (1%, 1/102), SDHB (10%, 10/102), SDHC (5%, 5/102), SDHD (24.5%, 25/102), and RET (5%, 5/102). Almost all patients with bilateral/multiple paragangliomas (except a patient with no variants in any of the main susceptibility genes tested) demonstrated pathogenic variants in SDHD (Table 2). A pathogenic variant NM_003002: c.A305G, p.H102R (chr11: 111959726, rs104894302) was the most frequent SDHD mutation detected among the Russian patients. This variant has been found in nine patients with CPGLs and three with VPGLs, including two patients with bilateral/multiple paragangliomas (one patient among them had both tumors subjected to genetic testing). In addition, it is noteworthy that only one variant NM_020975: c.A2372T, p.Y791F (chr10: 43613908, rs77724903) was determined among all RET-mutated HNPGLs indicating its high frequency in this population.


Table 2. Types of HNPGLs and number of patients with identified pathogenic/likely pathogenic variants.
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Also, we analyzed the frequency of variants in the main susceptibility genes separately for CPGLs and VPGLs. In CPGLs, pathogenic/likely pathogenic variants were detected in 38 of 82 (46%) patients and were distributed as follows: SDHA (1%, 1/82), SDHB (8.5%, 7/82), SDHC (6%, 5/82), SDHD (28% 23/82), and RET (5%, 4/82) (Supplementary Table 1, Table 2). The majority of patients had pathogenic/likely pathogenic variants in one of these genes, however, in two patients, a likely pathogenic variant NM_020975: c.A2372T, p.Y791F (chr10: 43613908, rs77724903) in RET were corepresented with SDHA (Pat16) and SDHB (Pat142) variants. The same variant in RET was identified in two other patients (Pat35 and Pat155) with CPGLs. A likely pathogenic variant NM_003001: c.G149A, p.R50H (chr1: 161298257, rs769177037) in SDHC were also detected simultaneously in two patients (Pat102 and Pat152). Nine patients with CPGLs carried one pathogenic variant NM_003002: c.A305G, p.H102R (chr11: 111959726, rs104894302) in SDHD, including two patients (Pat1 and Pat5) with bilateral/multiple paragangliomas.

Pathogenic/likely pathogenic variants in SDHB, SDHD, and RET genes were found in 9 out of 23 (39%) patients with VPGLs (Supplementary Table 1, Table 2). The frequency of variants had the following distribution: SDHB (13%, 3/23), SDHD (22%, 5/23), and RET (4%, 1/23). All the patients with VPGLs carried pathogenic/likely pathogenic variants only in one of these genes. Notably, a likely pathogenic variant NM_020975: c.A2372T, p.Y791F (chr10: 43613908, rs77724903) in RET identified in four patients with CPGLs was also found in a patient with VPGL (Pat158). Moreover, three patients with VPGLs harbored the pathogenic variant NM_003002: c.A305G, p.H102R (chr11: 111959726, rs104894302) in the SDHD gene detected with high frequency in a set of CPGLs.

Next, we analyzed the age at diagnosis and sex ratio for SDHB, SDHC, SDHD, and RET variants within the cohort of patients with HNPGLs (Table 3). Variants in the SDHC and SDHD genes were diagnosed with approximately equal frequency in males and females taking into account 1:3 male to female ratio among the studied cohort. SDHB variants were found third-fold more frequent in females when RET variants were detected about two-fold more frequent in males. Variants in SDHB, SDHC, and SDHD were observed in all age groups and were more often detected in patients aged between 19–40 and 41–60 years. RET variants were identified in two groups of patients aged 19–40 and 41–60 years. Notably, frequency of variants in all the genes was the lowest in patients aged 61–80 years.


Table 3. Age and sex of patients with SDHB, SDHC, SDHD, and RET variants.
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DISCUSSION

In HNPGLs, the occurrence and frequency of mutations in the SDHx genes are extensively studied and are of importance for the diagnosis and management of the disease. The prevalence of mutations in other susceptibility genes has been poorly investigated. Notably, most studies have been focused on germline variants. In this work, we cannot establish germline and somatic mutation status for identified variants, since we used the archival collection of tumors for which blood or other normal tissues were not available. We obtained data on the overall frequency of pathogenic/likely pathogenic variants in the main susceptibility genes that allows to better understand molecular basis of the tumor development in Russian patients. A more similar study was performed for 24 Spanish patients with HNPGLs, who were subjected to genetic testing for germline and somatic mutations in the SDHx genes (Curras-Freixes et al., 2015). In contrast to our data, the majority of mutations were detected in SDHB (33%, 8/24) followed by SDHD (21%, 5/24) and SDHC (4%, 1/24). Two patients with SDHB mutations and one patient with SDHD mutation were characterized by metastatic tumors but no SDHA variants were detected.

In Russian patients, we revealed the likely pathogenic variant in RET in 5% of cases (5/102), including four patients with CPGLs and one patient with VPGL. Activation mutations in the proto-oncogene RET lead to the development of an autosomal dominant syndrome called multiple endocrine neoplasia type 2 (MEN2). Up to 50% of patients with MEN2 develop PCCs (Pedulla et al., 2014). HNPGLs have been rarely described in patients with MEN2 syndrome (Boedeker et al., 2009). However, several studies have reported RET mutations in HNPGLs without any association with MEN2 syndrome. A RET mutation was previously detected in a patient with multiple paragangliomas (Ding et al., 2019). Moreover, the likely pathogenic germline variant NM_020975: c.A2372T, p.Y791F (chr10: 43613908, rs77724903) in RET was identified in two out of four members of a family with multiple and malignant paragangliomas (Choi Jdo et al., 2014). All four members carried pathogenic SDHD mutations. In addition, in this family, the RET mutation was observed in the male adult with bilateral carotid body and jugulotympanic paragangliomas and his son with unilateral CPGLs. Here, we also detected this RET variant in all RET-mutated tumors. Moreover, this variant co-occurred with the pathogenic start-loss variant in SDHA and the pathogenic splice site variant in SDHB. Collectively, data from our study and previous studies suggest that this RET variant can occur both alone and together with SDHD, SDHA, and SDHB pathogenic variants. However, according to the ClinVar database, this RET mutation was annotated as pathogenic variant associated with the MEN2 syndrome and its pathogenicity has not been proved by any functional studies. Thus, the role of the RET variant in the development of HNPGLs is controversial taking into account that we detected this variant in patients, who were not diagnosed with the MEN2 syndrome.

No pathogenic/likely pathogenic variants in SDHAF2, VHL, MAX, MEN2, NF1, FH, TMEM127, and SLC25A11 were identified among the Russian patients. Variants in all the genes were previously reported only as germline at a very low frequency in HNPGLs (Boedeker et al., 2009; Burnichon et al., 2012; Castro-Vega et al., 2014; Bausch et al., 2017; Buffet et al., 2018; Guha et al., 2019).

In the study, we also analyzed male to female ratio and age groups for identified variants in the SDHx and RET genes. Currently, clinic-genetic correlations in association with mutations in these genes in HNPGLs have been poorly investigated. Moreover, reported data are related to germline mutations and can be compared only conditionally with our results. Thus, Mario Hermsen with colleagues studied 23 males and 51 females and with HNPGLs and found 8:6 and 5:9 ratios for SDHB and SDHD mutations, respectively (Hermsen et al., 2010). Taking into account the initial male to female ratio approximately 1:2, we can see that SDHD mutations were detected about equally in males and females that is concordance with our data. SDHB mutations were more frequently revealed in males compared with females, while we obtained opposite results. In addition, it was observed that SDHB and SDHD mutations were diagnosed predominantly in patients aged <50 years. We showed that patients aged <61 years carried variants in these genes more frequently. Also, age-related penetrance for SDHB and SDHD mutations was shown to be increased by 50 years in HNPGLs (Neumann et al., 2004). In our study, we also observed higher number of patients aged 41–60 years with SDHB and SDHD variants.
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Text analysis can help to identify named entities (NEs) of small molecules, proteins, and genes. Such data are very important for the analysis of molecular mechanisms of disease progression and development of new strategies for the treatment of various diseases and pathological conditions. The texts of publications represent a primary source of information, which is especially important to collect the data of the highest quality due to the immediate obtaining information, in comparison with databases. In our study, we aimed at the development and testing of an approach to the named entity recognition in the abstracts of publications. More specifically, we have developed and tested an algorithm based on the conditional random fields, which provides recognition of NEs of (i) genes and proteins and (ii) chemicals. Careful selection of abstracts strictly related to the subject of interest leads to the possibility of extracting the NEs strongly associated with the subject. To test the applicability of our approach, we have applied it for the extraction of (i) potential HIV inhibitors and (ii) a set of proteins and genes potentially responsible for viremic control in HIV-positive patients. The computational experiments performed provide the estimations of evaluating the accuracy of recognition of chemical NEs and proteins (genes). The precision of the chemical NEs recognition is over 0.91; recall is 0.86, and the F1-score (harmonic mean of precision and recall) is 0.89; the precision of recognition of proteins and genes names is over 0.86; recall is 0.83; while F1-score is above 0.85. Evaluation of the algorithm on two case studies related to HIV treatment confirms our suggestion about the possibility of extracting the NEs strongly relevant to (i) HIV inhibitors and (ii) a group of patients i.e., the group of HIV-positive individuals with an ability to maintain an undetectable HIV-1 viral load overtime in the absence of antiretroviral therapy. Analysis of the results obtained provides insights into the function of proteins that can be responsible for viremic control. Our study demonstrated the applicability of the developed approach for the extraction of useful data on HIV treatment.

Keywords: text mining, data mining, named entity recognition, NER, virus-host interactions, HIV, viremic control


INTRODUCTION

Scientific publications represent the main source of knowledge for researchers in different fields of biology and medicine. Besides, the more pressing the problem for humanity is, the more articles devoted to this problem can be found in the repositories of scientific publications. The extraction of records from scientific publications provides the opportunity to analyze the information derived from primary sources; therefore, such an approach helps to obtain the most contemporary information (Cash, 2004; Tarasova et al., 2015, 2019; Saik et al., 2016). Currently, text-mining technologies aimed at rapid automated extraction of specific information are under rigorous development.

Analysis of interactions between named entities (NEs) representing proteins, genes, and chemical compounds can help investigate the particular molecular mechanisms of disease progression, the effect of drugs, and reveal the drug-drug interactions important for efficacy of therapy (Chen et al., 2014; Tannenbaum and Sheehan, 2014; Lim et al., 2016; Szklarczyk et al., 2019).

Identification of associations between NEs in the texts of scientific publications includes two steps: (i) extraction of named entities from the texts, and (ii) recognition of associations. This is the focus of the Named Entity Recognition (NER) methods. There are two main groups of approaches used for NER: (i) based on rules and dictionaries and (ii) based on machine learning methods. The main disadvantage of rule and dictionary-based algorithms is the inability to extract information about entities not included in dictionaries. Another drawback is the requirements for the allocation of memory for storing dictionaries.

Machine learning methods require sets of texts, in which the names of proteins, genes, chemical compounds, and so on are labeled by an expert or a group of experts. Then, using such texts as a training set, it is possible to adjust the algorithm to recognize NEs in a large number of articles. Finally, it is possible to identify relationships between the NEs extracted. Machine learning methods have advantages over dictionary-based methods because they provide the recognition of new NEs not included in dictionaries and, therefore, are the best option for the careful extraction of information. At present, many novel text corpora are constantly developing for the purposes of the scientific community and provide the possibility to extract information about a variety of NEs: genes, proteins and chemicals names, symptoms and syndromes of the diseases, side effects and toxicity of drugs, revealed during the clinical trials or as a result of medical studies, cases studies, etc.

There are methods aimed at NER that have been developing during the last years (Kaewphan et al., 2018; Korvigo et al., 2018; Hemati and Mehler, 2019; Hong and Lee, 2020; Huang et al., 2020; Kilicoglu et al., 2020). Most of them are based on algorithms for NER related either to chemicals or biological objects. In this study, we aim to develop and test an algorithm for the extraction of named entities of genes/proteins and chemical compounds and identify associations between them. Our method of NER is based on the conditional random fields and uses a set of originally developed word features that allow for context consideration. Thus, we suggest selecting a set of publications strictly relevant to the subject and extracting a set of chemical NEs, proteins, and genes to derive the NEs associated with one another. After that, their functions in a particular molecular mechanism of the disease can be analyzed.

Human immunodeficiency virus (HIV) still remains one of the challenges for humanity (Rojas-Celis et al., 2019; Tarasova et al., 2020). The number of new HIV cases per year reached 1.7 million (WHO, HIV incidence)1 while is, Number of People (All Ages) Living With HIV2 is around 38 million (WHO). Antiretroviral therapy (ART) helps to reduce viral load and disease progression, but antiretroviral medicine should be taken by a patient for term of life. The risk of HIV drug resistance and side effects of antiretroviral medicines decrease the effectiveness of ART (Iyidogan and Anderson, 2014; Tarasova and Poroikov, 2018). At the same time, an effective HIV vaccine does not exist (Ventura, 2020).

Taking into account the importance of the problem, we consider two main approaches for the HIV/AIDS treatment as case studies: (1) the usage of antiretroviral drugs and (2) studies of the ways of HIV/AIDS development in different groups of patients and attempts to affect the key proteins of the pathways providing a long period of disease progression. The mechanisms identified can be used for the development of novel strategies of HIV treatment and vaccine development. We have validated and tested our algorithm on the tasks of identification of (i) chemicals that can be considered as HIV inhibitors and (ii) groups of proteins that may be important for the different velocity of HIV/AIDS. To reach these purposes, we used the abstracts of publications relevant to HIV/AIDS treatment for case studies of HIV inhibition and HIV viremic control. More specifically, the algorithm developed is aimed at extracting (a) the names of HIV reverse transcriptase (RT) inhibitors and (b) the protein (gene) names described in articles relevant to the studies of HIV elite controllers, i.e., the group of HIV-positive individuals with an ability to maintain an undetectable HIV-1 viral load overtime in the absence of antiretroviral therapy.



MATERIALS AND METHODS

The extraction of the NE names includes several stages. First, we collected text corpora and made their preprocessing. Second, we developed an algorithm of NER and its parameter optimization. Third, we carried out validation and testing of an algorithm and analysis of the information obtained.

To extract NEs, we used annotated text corpora and applied an algorithm based on conditional random fields (CRF). Text annotation in the corpus implies an indication of NE position inside the text.


Text Corpora

We used the CHEMDNER3 (Krallinger et al., 2015) and ChemProt4 as annotated corpora. Both corpora consist of freely available abstracts of articles.

CHEMDNER consists of three sets (training, evaluation, and development sets) and includes 10,000 abstracts. It has been developed for the purpose of chemical NER (Krallinger et al., 2015). Annotations include the position of NE in the text and also the NE type: ABBREVIATION (as ATP), FAMILY (as steroid hormones), FORMULA [as S or C (sulfur or carbon)], IDENTIFIER (as GRN-529), MULTIPLE (as nucleoside tri- and di-phosphates), SYSTEMATIC (as sphingosine-1-phosphate), TRIVIAL (as progesterone).

ChemProt also consists of three sets—training, development, and test—and includes 2,482 abstracts in total. It also includes annotations of genes, proteins, and chemical compounds. ChemProt includes the following types of NEs: (i) GENE-Y is for proteins/genes that can be normalized or associated with a biological database identifier, (ii) GENE-N is for proteins/genes that cannot be normalized or associated with a biological database identifier and (iii) CHEMICAL is for chemical compounds4. The proteins and genes are not considered in ChemProt separately, but search in the databases containing data on genes and proteins can help identify protein names and names of genes.



Text Preprocessing

Algorithms for entity recognition in texts require tokenization. It is the process of splitting the whole text into elementary text units. As a result of tokenization, the text is presented as a set of tokens. Words, symbols, numbers, can be used as tokens. Thus, we used this method for all symbols and spaces implemented in the “wordpunct_tokenize” function of the NLTK Python library.

Tokens can be divided into groups: those that belong and do not belong to NEs. If an NE originally consists of two words (for example, reverse transcriptase) or includes any symbols (for example, sphingosine-1-phosphate), then after tokenization it will be presented by a list or array of tokens rather than a simple string. We used the labeling system SOBIE (Rocktäschel et al., 2012; Batista-Navarro et al., 2015; Dai et al., 2015; Leaman et al., 2015) to indicate the position of the term associated with a particular token.

SOBIE is an abbreviation for tags: “S” (Single)—if a token belongs to NE and NE consists of one token, “O” (Out)—if a word doesn't belong to NE, “B” (Begin) is a label of the first word of composite NE if NE consists of two or more words, “E” (End)—is a label of the last word of composite NE, if NE consists of two or more words and I (Inside)—is a label of words belong to NE that are between “B” and “E” if NE consists of three or more words. The example of labeling text by SOBIE is presented in Supplementary Figure 1.

Tokenized corpora texts with a set of SOBIE labels were placed to the database managed by PostgreSQL DBMS. The schema of the database is provided in Supplementary Figure 2.

We compiled a features set for each word to train a model. For NER, it is essential to take into account the context, which means the words should follow one another in order without mixing. In our model, each word W is characterized by its features along with the features of one word before and after W. Each token was described with a triple set of features (Table 1) - the features of a particular token and the features of two tokens: one before and one after the considered one.


Table 1. The set of features used for CRF.
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We have compiled a list of non-specific terms and used the belonging of a token to one of them as a feature. Non-specific terms are general words that can indicate the presence of the term in the proximity to NEs of a protein (gene) or a chemical compound in the text. For example, such terms may include the words “inhibit,” “chemical” for the names of chemical compounds and “target,” “genes” for the names of proteins and genes. The list of all these non-specific terms for NEs of proteins/genes and chemical compounds is presented in Supplementary Materials. We used marks “C” for non-specific terms used for chemical compounds and mark “G” – for proteins and genes. If a non-specific term was used in both lists, it received both labels: “C” and “G.”

All the features were obtained using scripts prepared using Python 3.7. The features were represented as dictionaries to be able to access each feature individually by its keyword. Finally, the data were represented in the format that is shown in Figure 1.


[image: Figure 1]
FIGURE 1. Scheme for the organization of data that are input for the models.




Algorithm Realization

As the next step, we built a model. For our approach, we used an algorithm named CRF in realization using Python 3.7 and SciKitLearn library. This library provides a lot of algorithms using machine learning, different metrics, etc. The CRF algorithm allows us to take the context of a phrase into account. We suggest that the set of features developed can help to improve the recognition of context near the NEs. We used the hyperparameter optimization function, which is included in the SciKitLearn to achieve the highest accuracy of the model.

We built several models. The first model (i) was built to provide the recognition labels of chemical entity mentions. The second model (ii) aimed at recognizing names of proteins and genes. The third model (iii) allowed recognition of types (ABBREVIATION, FORMULA, IDENTIFIER etc.) of chemical entity mentions. Based on the models (i–iii), we built the fourth model (iv) to extract chemical compounds and proteins/genes. This model combines algorithm for recognizing the names of chemical compounds and proteins and identifying the types of chemical compounds. Thus, the models (i) and (iii) were built based on CHEMDNER as a training corpus. The model (ii) was built using ChemProt. And the model (iv) was built using both CHEMDNER and ChemProt. Initially, models were tested using 5-fold cross-validation (Stone, 1974).

We used precision, recall, and F1-score to assess the quality of model recognition.

Precision is the proportion of positive identifications that was actually correct. It is calculated as the ratio of the number of true positive identification to the sum of true positive and false-positive identifications (1).

[image: image]

Recall is the proportion of actual positive NE mentions that were identified correctly. It is calculated as the ratio of the number of true positive identifications to the sum of true positive and false negative decisions.

[image: image]

F1-score is the harmonic mean of precision and recall.
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The test set was formed based on the idea that if an article is strictly relevant to reverse transcriptase inhibition and our algorithm is able to recognize the NE of a protein and a name of a chemical compound or drug then there is a high probability that the chemical named entity identified is the name of HIV reverse transcriptase inhibitor.

We used the set of 148 publications abstracts collected from NCBI PubMed. We used the workflow developed earlier (Tarasova et al., 2019). In this workflow we were focused on the publications that included the description of HIV inhibitors and included the details of biological experiments used for their testing. Using the Python script, we automatically extracted over 15,000 abstracts of articles from PubMed using the query “HIV AND reverse transcriptase AND inhibitors.” Then, using the Lingpipe 4.1.2 tool (Carpenter, 2007), we selected a set of over 1,000 abstracts strictly relevant to the development, synthesis, and testing of HIV RT inhibitors. We used Lingpipe 4.1.2 since it provides the possibility of building the models of text classification into the classes according to the content, and the selection of the texts strictly relevant to the particular subject. Earlier we used Lingpipe 4.1.2 to perform selection of the abstracts of publications, which included the description of HIV-1 reverse transcriptase inhibitors including the details of their biological testing (Tarasova et al., 2019) with mean accuracy over 0.83. We assume that the data on the biological experiment details in the publication text can help to confirm its relevance to the inhibition of HIV-1 RT.

After that, we manually selected 148 of them, which consisted the description of HIV-1 reverse transcriptase inhibitors and the details of their biological testing. This set of abstracts was used to evaluate the accuracy of extracting the names of reverse transcriptase inhibitors.

The texts of abstracts can include the NEs of such chemical compounds as ATP, various ions, DNA, etc. If we want to extract the small drug-like compounds mainly, we would like to filter out ions and biological molecules remaining only drug-like compounds with molecular weight ranged from 300 to 700 (Da). So, to filter them out, we have additionally introduced filters for the classes of chemical compounds obtained based on the results of recognition using CRF. The classes FORMULA and FAMILY were excluded because the class FORMULA is mainly represented by ions, and the class FAMILY contains groups of chemical compounds that do not include the specific names of small molecule inhibitors of HIV RT.

Once we have developed an algorithm providing recognition of proteins (genes) names, we also tested the applicability of our algorithm to the extraction of proteins and genes responsible for the slow disease progressions of HIV-positive patients. To perform this analysis, we have collected a set of abstracts of publications from NCBI PubMed and NCBI PubMed Central (PMC) databases. We collected the abstracts strictly relevant to (1) the HIV elite controllers (ECs), a group of patients who do not progress into HIV/AIDS for years in the absence of antiretroviral therapy, and (2) the whole cohort of HIV-positive patients. The first set related to HIV elite controllers was obtained based on the query “(HIV[Title/Abstract] OR “human immunodeficiency virus”[Title/Abstract] OR “HIV”[Mesh] OR AIDS[Title/Abstract] OR “acquired immunodeficiency syndrome”[Title/Abstract] OR “Acquired Immunodeficiency Syndrome”[Mesh]) AND (“elite control*”[Title/Abstract] OR “Elite suppress*”[Title/Abstract]).” We obtained over 840 abstracts strictly relevant to the HIV elite controllers. The second set of abstracts was collected using the query “HIV positive AND HIV/AIDS” and included over 30 thousand of abstracts. We excluded from the group (1) the abstracts belonging to the group (2) because the group (2) may include HIV-positives ECs and we are interested in the differences between the protein profiles of groups (1, ECs) and (2, HIV-positives excluding ECs) mainly. The abstracts of groups (1) and (2) were processed using the NER algorithm developed, and names of proteins (genes) were extracted from them. Then, we excluded the proteins found in the abstracts of the group (2) from a list of proteins obtained for the group (1). We suggest that it provides the opportunity to compile a list of proteins responsible for the slow HIV/AIDS disease progression.

The results of our computational experiments are described and discussed below.




RESULTS


Extraction of Chemical Named Entities

In our study, we performed several computational experiments using CHEMDNER and ChemProt corpora and the texts related to (i) the inhibition of HIV-1 reverse transcriptase and (ii) HIV ECs. Earlier (Tarasova et al., 2019), we collected a set of papers consisted mainly of those relevant to the development and testing of HIV reverse transcriptase (RT) inhibitors, the “HIV-RT-inhibitors corpus.” In the current study, we curated this corpus carefully and enlarged it with publications strictly relevant to the inhibition of HIV RT. The chemical compounds extracted were supposed to be inhibitors of reverse transcriptase based on a specific selection of texts for the test set described below.

We built the models for chemical and protein/gene NER based on CHEMDNER and ChemProt corpora, respectively, and calculated their accuracy using five-fold cross-validation. We performed several computational experiments for predicting SOBIE labels of belonging a token to a chemical and protein/gene named entity (NE) as well as prediction of certain types of chemical entity mention (ABBREVIATION, FORMULA, IDENTIFIER etc.). We evaluated the best way of NER using the features of text developed. The detailed description of text corpora and our computational experiments are provided in the section Materials and Methods.

First, we built a model to predict SOBIE—the labels for the parts of chemical NE: S - Single—for NE that contains one token; B, E—Begin, End—as the labels for the first and the last token of NE, respectively, if NE contains at least two tokens; I—Inside—as a label for the tokens that located between B and E, if NE includes three or more words; O—Out—as a label for the words that does not belong to NE. The results of five-fold cross-validation for annotated corpora CHEMDNER and ChemProt are represented in Table 2.


Table 2. Precision, recall, and F1-score for model that predicts SOBIE for chemical entity mentions.
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Table 2 displays that the recognition of chemical entity mentions occurs with reasonable accuracy (F1-score is 0.89). We carried out an experiment combining the CHEMDNER and ChemProt to recognize the names of chemical compounds. The volume of training set increased by more than two thousand articles (more than 25%). However, this did not lead to a significant increase in accuracy.

We assumed that the next task might require filtering the names of chemical compounds by their type. Thus, for example, the texts may contain the names of ions (Ca2+, Mn2+), which can be filtered out in case if we are focused on the small drug-like compounds only with molecular weight range from 300 to 700 (Da). Based on this conclusion, we built a model identifying the types of recognized names of chemical compounds. Accuracy was assessed with five-fold cross-validation and is presented in Table 3.


Table 3. Precision, recall, and F1-score for predicting types of chemical entity mentions.

[image: Table 3]

From the values of precision, recall, and F1-score displayed in Table 3, one can conclude that filtering by the types of NEs of chemical compound can be used for the selection of the particular type of chemical NE of interest.

The algorithms obtained for recognition of the names of chemical compounds and their types and names of proteins (genes) were then combined and applied on a test set of texts devoted to inhibition of HIV reverse transcriptase. The prediction of genes and proteins names was obtained using the SOBIE labels only. The principle of the combined algorithm was the sequential recognition of the names of chemical compounds, their types, and then the names of proteins.

As a result, the names of proteins and chemical compounds were obtained. The rule for extraction of NEs of HIV RT inhibitors was the presence in the abstract of at least one recognized protein name and one named entity of chemical compound. So, in addition to the names of potential reverse transcriptase inhibitors, it is possible to extract NEs of chemical compounds that can interact with two HIV proteins, for instance, reverse transcriptase and protease.

Evaluation of the results was carried out so that if the recognized chemical compound is not an actual inhibitor of reverse transcriptase, then the number of false positives (FP) increased by one. If an inhibitor was encountered in the text and was not recognized, then the number of false negatives (FN) also increased by one.

Also, we evaluated the accuracy of the recognition of all chemical compounds in the text. The results are shown in Table 4.


Table 4. Precision, recall and F1-score obtained when testing the algorithm on a sample of texts devoted to the inhibition of HIV reverse transcriptase.
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Based on the value of the recall metric, we can conclude that, in general, we managed to extract almost all names of reverse transcriptase inhibitors and chemical compounds from the test set. However, there are wrong recognized inhibitors and chemical compounds too. This is in agreement with the overall value of accuracy of NEs recognition in the text according to the results of 5-fold cross-validation. As we have mentioned earlier, we applied filters on classes of chemical compounds to reduce the number of false-positive results. This step allowed us to increase the precision of value to 0.85. We built automatic queries to PubChem database5. For all recognized chemical named entities we obtained PubChem identifiers, if PubChem identifier was found.

We also tried to extract the names of chemical compounds from a set of texts dedicated to elite HIV/AIDS controllers. We assumed that if the texts contain proteins (genes) responsible for the non-progression of HIV/AIDS, then they can also indicate chemical compounds that slow down the progression of HIV/AIDS by influencing the protein (gene). Thus, using model (i), we recognized the names of chemical compounds in texts related to the non-progression of HIV/AIDS and then manually checked the presence of chemical compounds that slow down the progression of HIV/AIDS. Unfortunately, there are few texts of the set in which such chemical compounds are mentioned. We provide some examples of extracted chemical compounds in the Discussion section.



Extraction of the Protein and Gene Names

As the next step, we aimed at testing the algorithm for the extraction of protein and gene names from the texts. We built CRF using SOBIE labels similar to the algorithm for the extraction of chemical named entities. The results of protein (gene) recognition based on ChemProt are provided in Table 5.


Table 5. Precision, recall, and F1-score for model that predicts SOBIE for names of proteins/genes.
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Despite the fact that the recognition of the named entities of genes and proteins is carried out with a slightly lower accuracy than the recognition of the NEs of chemical compounds, the prediction accuracy still remains reasonable.

We tested the algorithm developed for evaluation a performance of extraction of proteins responsible for HIV/AIDS control and non-progression. To obtain the results, we applied the developed algorithm and the model (ii) to the set of papers, relevant to (1) ECs and (2) the whole cohort of HIV-positive patients retrieved from NCBI PubMed and NCBI PMC databases. The number of proteins and genes extracted from the texts of group (1) and group (2) abstracts is given in Table 6. The full list of proteins extracted for each of the groups represented in Table 6 is given in the Supplementary Materials.


Table 6. Numbers of proteins (genes) names associated with different velocity of HIV/AIDS progression.
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As Table 6 displays, there are different protein profiles of the names of genes and proteins extracted from the set of abstracts relevant to the ECs (group 1) and the overall group of HIV-positive patients. For further analysis, we automatically obtained the synonyms of protein (gene) names and UniProt6 identifiers for each name of gene or protein extracted from group 1 of abstracts (i.e., articles relevant to ECs). We also identified the main functions of the proteins of this group. The interpretation of our results is given below in the Discussion section.




DISCUSSION


Comparison of the NER Algorithm With Earlier Developed Approaches

We have compared the models obtained for NER of chemical compounds and proteins/genes with those developed earlier by other authors. Earlier NER approaches reached on average F1-score between 77.70 and 88.06% before post-processing (Campos et al., 2015; Khabsa and Giles, 2015; Xu et al., 2015; Korvigo et al., 2018), and for recognizing proteins/genes. Taking into account the results provided, one can conclude that the accuracy of NER for our method is comparable with that of some methods developed earlier. We suggested modifying the text features that lead to an increase in the recognition accuracy: in particular, we expanded the list of non-specific terms used for the recognition of genes and proteins.

We tried to merge two corpora, CHEMDNER and ChemProt, to improve the accuracy of chemical compounds recognition. Despite the assumption that if we increase the number of examples to train the model, the accuracy may increase, this did not happen in our case. A detailed comparison of the precision, recall, and F1-score values for the recognition of chemical NE (i) based on CHEMDNER and (ii) merged CHEMDNER and ChemProt corpora and (ii) recognition of proteins and genes NE based on ChemProt corpus is provided in Supplementary Figure 1.

The lower recognition accuracy of chemical compounds based on the combined corpus may be due to ChemProt was primarily aimed at finding relationships between proteins and genes. Therefore, chemical NEs in ChemProt are less common in the texts compared to CHEMDNER.

The algorithms obtained for recognizing the names of chemical compounds and proteins (genes) were examined on the test sets of abstracts related to (i) the inhibition of HIV reverse transcriptase (ii) the identification of proteins associated with HIV control and non-progression.



Extraction of Chemicals Names That Can Be Considered as Potential Medicines for HIV Treatment: A Case Study for HIV Reverse Transcriptase Inhibitors

From the texts relevant to the inhibition of HIV reverse transcriptase, we were able to extract inhibitors that actually exist and are currently used for the therapy. This allows us to conclude that using our method we can extract the names of chemical compounds considered as new inhibitors and can be used to treat HIV infection. The examples of the names of HIV reverse transcriptase inhibitors extracted from the texts of abstracts with their PubChem identifiers and their chemical structures are shown in Supplementary Figure 4.



Identification of the Chemical Compounds Responsible for the Velocity of HIV/AIDS Progression: A Case Study for HIV Elite Controllers

Many of extracted compounds from elite controllers test set were parts of HAART or names of amino acids. But among all extracted compounds we were able to detect some that influenced HIV/AIDS progression.

For example, the article by Bermejo et al. (2016) describes the effect of the tyrosine kinase inhibitor dasatinib. During T-cell activation phosphorylation of SAMHD1 allows HIV infection. Dasatinib stopped SAMHD1 phosphorylation, which led to disruption of HIV reverse transcription.

Joshi et al. (2016) reported the relationship between heat shock protein 90 (Hsp90) inhibitors and HIV transcription. It has been shown that administration of Hsp90 inhibitors tanespimycin [17- (allylamino)−17-demethoxygeldanamycin] and AUY922 durably prevented viral rebound in mice.

As was mentioned above (in Results section) there were not plenty recognized chemical compounds that may lead to HIV/AIDS non-progression. But some of them were extracted, it demonstrates the usefulness of the approach developed and the possibility of working out this direction in the future.



Identification of the Proteins and Genes Responsible for the Velocity of HIV/AIDS Progression: Case Study for HIV Elite Controllers

Once we were able to extract the set of protein and gene names from the texts relevant to HIV/AIDS ECs, we aimed to automatically identify the main biological processes and functions associated with them based on Gene Ontology (Gene Ontology Consortium, 2015) terms available from UniProt.

Automated queries to the UniProt database allow us to identify the belonging of a protein or a gene to either organism “homo sapiens” or a virus. There were some NEs associated with HIV, such as “gag-pol protein” or “pol peptide.” Also, we found that 11 names were not associated with any proteins, they represent false-positive results of our algorithm. Therefore, the automated verification using a database or a dictionary of proteins can help filter out the named entities that represent false positive results and therefore improve the recognition accuracy obtained using CRF (Song et al., 2015; Perera et al., 2020). It also helps select the names of protein belonging to the species of interest. We selected only proteins that were found in UniProt database and included the names of a protein extracted as one of the synonyms of names presented in UniProt. Therefore, some of proteins were filtered out because they were not associated with one unique record in UniProt.

As a result of automated processing of the files with gene/protein identifiers and their GO terms, we collected the most important biological processes associated with proteins extracted. They can be can be associated with HIV infection and can have an impact on the velocity of HIV/AIDS disease progression. We divided them into several groups according to the function most important for HIV-progression (see Table 7).


Table 7. The main functions of some proteins and genes found in the Uniprot database by the search using named entities extracted from abstracts of publications selected by their relevance to the description of HIV elite controllers.
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For some proteins, the names of which had been extracted from the texts of publications relevant to the studies of HIV ECs, we found direct associations of these proteins with the HIV progression (Taylor et al., 2000; Oleksyk et al., 2009; Marras et al., 2013; Slavov et al., 2015; Roy et al., 2017; Parodi et al., 2019; Hersberger et al., 2020; Wendel et al., 2020). We provide a few examples of the association between biological processes known for the proteins identified and their possible role in HIV disease progression. For instance, H. Fausther-Bovendo and co-authors reported that the increased expression of NKp44L was observed in CD4+ T cells of HIV-positive patients (Fausther-Bovendo et al., 2009); that leads in an increased sensitivity of NKp44LCD4 T cells to the NK lysis activity. The cd85j receptor (LIR-1) was extracted from abstracts and is found to be associated with negative regulation of CD8-positive T cell activation according to UniProt data (Table 7). Also, there are data on its role in the control of HIV-1 replication in autologous dendritic cells (Scott-Algara et al., 2008). Also, we found the studies aimed at the identification of the interactions between S100A9 protein (a calcium-binding protein of the S100 family) and cd85j receptor. In particular, it was shown that HIV-1 infection modulates S100A9 expression on the surface of the monocyte-derived dendritic cells. Interaction between S100A9 protein and cd85j receptor, in turn, can have an impact on the anti-HIV activity of human NK (natural killer) cells (Arnold et al., 2013). Vincent Arnold, and co-authors suppose that an exogenous peptide S100A9 can be considered as the potential ligand for the control HIV-1 replication by NK cells (Arnold et al., 2013). Therefore, we can identify the existing novel approaches for HIV infection control that can be useful for the development of novel strategies to cure HIV. It also can help to create new hypotheses about potential mechanisms of HIV control leading to the development of new approaches to HIV treatment.

For some other proteins, there was no direct evidence of their role in HIV infection control and progression. But the analysis of their functions led to understanding that the differences in the expression of these proteins in the CD4+ or CD8+ T cells and some other immune cells may be associated with the velocity of HIV/AIDS progression. For instance, since HIV-1 glycoprotein 41 (gp) 41 prefers to interact with the cell-surfaced human leukocyte elastase (Bristow et al., 2003), one can suggest that the low levels of HLE expression can slow down the dissemination of HIV particles and therefore have an important role in HIV/AIDS progression.

There are experiments that provide the insights into CD8+ T cell response associated with the function of carcinoembryonic antigen-related cell adhesion molecule 1 (Khairnar et al., 2018). Base on the experiments carried out with lymphocytic choriomeningitis virus it was shown that carcinoembryonic antigen-related cell adhesion molecule 1 is essential for activation of CD8+ T cells. However, such results should be considered with awareness and more experiments are needed to adopt these hypotheses to HIV-1 viremic control.

Based on the text and data mining, we have earlier identified a set of proteins and discussed some molecular mechanisms shared by a novel coronavirus SARS-CoV-2 and HIV-1 (Tarasova et al., 2020). There were a few molecular pathways, including those related to immunology, autophagy, cell cycle regulation, shared by these two viruses if they infect humans. The present study is focused on the possibilities of text mining to extract data from the strictly relevant publications and investigate whether such an approach can address questions related to the aspect of biological studies. Our approach is based on a particular set of proteins that can be associated with the slow HIV/AIDS disease progression.

The two case studies aimed at the extraction of chemical names from the texts relevant to HIV reverse transcriptase inhibition, proteins and genes from the texts relevant to HIV control allow us to determine the advantages and disadvantages of text mining approaches to new information. The main advantage of text mining approaches is the possibility of covering the huge amount of textual data (Ruusmann and Maran, 2013; Capuzzi et al., 2017, 2018; Kandhro et al., 2017; Azam et al., 2019; Gambardella and di Bernardo, 2019; Guin et al., 2019; Ivanisenko et al., 2019; Alves et al., 2020). Text mining approaches allow retrieving the most recent and important information about chemicals, proteins, and genes associated with HIV treatment including their tissue-specific expression level (Ivanisenko et al., 2019). The main disadvantage is that our approach does not consider the expression level of the proteins extracted; this is due to the incomplete description of expression data in abstracts. On the other hand, we have evaluated the fully automated workflow for the purposes of extraction and analysis of the proteins or genes names that can be associated with the investigation of HIV ECs. Our study demonstrates that automated analysis of protein functions associated with HIV elite controllers allows us to hypothesize about the role of this protein in the HIV/AIDS progression. These observations and hypotheses may help to plan new experiments and develop new methods for HIV/AIDS treatment including the search for novel chemical compounds that can modulate the level of expression of target proteins, and vaccine development. We suppose that the suggested approach can be applied to an analysis of other viral infections, including those that have been affecting humanity for the last years (Basak et al., 2019; Tarasova et al., 2020; Tworowski et al., 2020). In addition it may help provide the possibility to analyze other various pathological processes non-related to viral infections that can involve the changes in gene expression (Kovalenko et al., 2016; Kandhro et al., 2017; Bizzarri et al., 2020) and find possible strategies to combat pathological conditions.




CONCLUSIONS

In our study, we have developed and tested a new approach for automated extraction of named entities representing proteins and chemical compounds from the texts of scientific publications. Our method is based on the conditional random fields algorithm. We have developed a set of text features providing the reasonable accuracy of named entity recognition. We proposed the retrieval of named entities from the set of papers strictly relevant to (i) HIV reverse transcriptase inhibition and (ii) to the control of HIV/AIDS progression to test the ability of the algorithm developed to extract both the names of chemicals and proteins (genes). Our algorithm was tested on the retrieval of data on inhibitors of HIV reverse transcriptase. We were able to identify the HIV RT inhibitors with the precision 0.80 and recall 0.94. Then, we tested the applicability of our algorithm to identify a set of proteins potentially responsible for slow HIV/AIDS disease progression and HIV control. For this purpose, we collected a set of abstracts strictly relevant to the HIV elite controllers, a group of HIV positive patients who did not progress into HIV/AIDS for years in the absence of antiretroviral therapy. The extraction of proteins unique for the studies of HIV elite controllers allows us to identify the set of proteins responsible for the velocity of HIV/AIDS disease progression. Investigation of these proteins and their functions can provide insights into novel approaches for HIV/AIDS treatment.
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Cold and drought are two of the most severe threats affecting the growth and productivity of the tea plant, limiting its global spread. Both stresses cause osmotic changes in the cells of the tea plant by decreasing their water potential. To develop cultivars that are tolerant to both stresses, it is essential to understand the genetic responses of tea plant to these two stresses, particularly in terms of the genes involved. In this study, we combined literature data with interspecific transcriptomic analyses (using Arabidopsis thaliana and Solanum lycopersicum) to choose genes related to cold tolerance. We identified 45 stress-inducible candidate genes associated with cold and drought responses in tea plants based on a comprehensive homologous detection method. Of these, nine were newly characterized by us, and 36 had previously been reported. The gene network analysis revealed upregulated expression in ICE1-related cluster of bHLH factors, HSP70/BAM5 connected genes (hexokinases, galactinol synthases, SnRK complex, etc.) indicating their possible co-expression. Using qRT-PCR we revealed that 10 genes were significantly upregulated in response to both cold and drought in tea plant: HSP70, GST, SUS1, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. SnRK1.2, HXK1/2, bHLH7/43/79/93 were specifically upregulated in cold, while RHL41, CAU1, Hydrolase22 were specifically upregulated in drought. Interestingly, the expression of CIP was higher in the recovery stage of both stresses, indicating its potentially important role in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed significantly negative correlations between the cold and drought responses. Our results provide valuable information and robust candidate genes for future functional analyses intended to improve the stress tolerance of the tea plant and other species.

Keywords: gene expression regulation, homologs detection, genetic markers, principal component analysis, expression profile, candidate genes, abiotic stress, tea plant


INTRODUCTION

Cold and drought reduce the yield and geographical distribution of most horticultural crops worldwide. Both can lead to decreased water potential of tissues and induce reactive oxygen species accumulation, which causes severe damage to various cellular components (Minhas et al., 2017). Plant responses are complex, particularly in perennial woody crops, and hundreds of genes are involved in them (Chaves et al., 2003; Hao et al., 2018; Xia et al., 2019a). Earlier studies showed that plants have specific and non-specific responses to both stresses (Beck et al., 2007). Cold and drought induce common stress-inducible genes, while one of the stresses specifically induce some genes (Zhou et al., 2019). It is important to identify these common and unique responses under cold and drought stress for understanding the cross-talk mechanisms. To develop cultivars that are tolerant to both cold and drought, it is necessary to reveal the genes that are involved in both stresses and elucidate their response mechanisms to develop genetic markers that can help facilitate breeding programs (Minhas et al., 2017).

The tea plant (Camellia sinensis L.) is one of the most important economic crops in China, India, Sri Lanka, Kenya, and certain Caucasian countries (Turkey, Georgia, Russia, and Azerbaijan). This perennial woody evergreen crop is grown in more than 60 countries on five continents, from 49°N in Ukraine to 33°S in South Africa (Turkozu and Sanlier, 2017). Caucasus tea germplasm collection (44°36′40″ N, 40°06′40″ E) is located in the border region of the possible tea production and can be the source of the most tolerant cultivars; some genotypes here survive −15–17°C (Tuov and Ryndin, 2011). In most countries, tea plantations are affected by drought and cold stress that significantly reduces the yield and decreases the distribution of the crop in colder areas. Due to out-breeding and its long gestation period, the tea plant requires next-generation breeding strategies to improve its drought and cold tolerance through a deeper understanding of key regulators and their variants for precision introgressions to have better yield and quality under stress conditions. Therefore, efforts are needed to elucidate the global transcriptomic dynamics of multiple tea genotypes in drought and cold stress to critically discern key molecular players (Parmar et al., 2019).

Many transcription factors and metabolite-related genes have been shown to be involved in both the cold and drought responses of plants. For example, the key cold regulators ICE, CBF, and DHN transcription factors participate in both cold and drought and in other abiotic stresses (Liu et al., 2015; Liu S.-C. et al., 2016; Yin et al., 2016; Ban et al., 2017; Hu et al., 2020). The genes involved in the ABA-independent responsive pathway and the bZIP-mediated ABA-dependent pathway (Wang et al., 2012; Ban et al., 2017) also participate in tolerance to cold and drought. The overexpression of CsbZIP6 in Arabidopsis resulted in hypersensitivity to several abiotic stresses (Cao et al., 2015). In addition, many other transcription factors (WRKY, bHLH, NAC, HSP, LEA, CML, and others) have been shown to be activated in tea plants in response to cold and drought (Yue et al., 2015; Wang Y.-X. et al., 2016; Chen et al., 2018; Cui et al., 2018; Ma et al., 2019). Recently, Li Y. et al. (2019) revealed that the genes LEA2, HSP70, PRP, CIPs, PEIs, TLPs, and ChiA were more strongly expressed under cold stress in tolerant cultivars than in susceptible cultivars. Recent transcriptomic data on tea plant showed that 12 TF families (AP2/EREBP, bHLH, bZIP, HD-ZIP, HSF, MYB, NAC, WRKY, zinc-finger protein TFs, SCL, ARR, and SPL) might play crucial roles in tea plant responding to drought (Liu S.-C. et al., 2016). In Arabidopsis thaliana, forty three transcription factor families (primarily, WRKY, NAC, MYB, AP2/ERF, and bZIP) were found to regulate 56% of common genes expressed in drought and cold stress (Sharma et al., 2018).

However, we continue to lack a complex picture of the interactions between the core network and their downstream-regulated target proteins. Additionally, comparison of molecular profiles of an organism under different stresses would make it possible to identify the conserved stress mechanisms (Amrine et al., 2015; Muthuramalingam et al., 2017; Chamani Mohasses et al., 2020). Thus, we have to continue searching for new evolutionarily conserved and species-specific genes related to the stress response. In this study, we combined literature data with interspecific transcriptomic analyses (A. thaliana and Solanum lycopersicum) to select genes that are related to cold tolerance. We built a network of candidate genes to reveal their interactions with the corresponding homologs for A. thaliana. We phenotypically screened a panel of Caucasian tea genotypes for cold and drought tolerance. Further expression analyses of 45 genes were performed in the most tolerant genotype under long-term stress induction and during the following recovery. The cold and drought expression profiles for each gene were compared to analyze overlapping responses in tea plant to both stresses, and correlations between cold and drought were revealed. Our results provide valuable information and robust candidate genes for future functional analyses intended to improve the stress tolerance of the tea plant and other species.



MATERIALS AND METHODS


Candidate Genes Selection

To evaluate the cross-talk of the genetic response between cold and drought, cold responsive genes were selected as described below. The same genes have been tested in response to drought conditions.

We performed the interspecific analysis of transcriptomic data from the NCBI GEO database (ncbi.nlm.nih.gov/geo/, Barrett et al., 2012) for revealing candidate genes with increasing expression during cold. Using the datasets GSE103964, GSE112225, GSE116964 for A. thaliana and GSE78154 for S. lycopersicum the fold changes of gene expression under cold were calculated and ranks of genes were assigned according to their upregulation quartile (from 1 to 4) (Supplementary Table 1). Next, we compared top quartile genes between A. thaliana and S. lycopersicum using standalone BLAST (Camacho et al., 2009). As a result, nine orthologs were detected as genes with the highest rank in both species, and their nine corresponding orthologs of Camellia sinensis were added in experiment.

Further corresponding homologs in tea plant were characterized using BLAST against the Tea Plant Information Archive database (Xia et al., 2019b, Supplementary Table 2). The corresponding A. thaliana orthologs of C. sinensis were also identified from Li Y. et al. (2019) using the best-scored BLAST result. The selected genes (Table 1, Supplementary Table 2) were further annotated by the blast to the A. thaliana TAIR database (Lamesch et al., 2012). Primers were designed using PrimerQuest (eu.idtdna.com/Primerquest) with default parameters and amplicon size between 100 and 250 bp. The quality of the primers was revised using service Multiple Primer Analyzer by Thermofisher Scientific and PCR electrophoresis.


Table 1. Candidate cold responsive genes in tea plant.

[image: Table 1]


Analysis of Relevance of Selected Genes and Their Interactions

A combined scored method was used to rank the identified genes from 1 to 9 points. In particular, we valued from 2 to 4 if genes have GO terms related to cold response [GO:0009409 Response to cold (“4”), GO:0006979 response to oxidative stress (“3”), GO:0050896 response to a stimulus (“2”)]. Also, we added a score from 1 to 4 if corresponded ortholog was detected in an upregulated cluster according to A. thaliana and S. lycopersicum data. Finally, we added 1 point if the gene was presented in related articles. Therefore, genes were ranked (Supplementary Table 2) from 1 to 9 points using a combined criterion.



Gene Network Reconstruction and Layout

The data from the literature sources and transcriptome analysis (see Supplementary Table 2) were used for the gene network reconstruction. Since most of the data for plant protein-protein interactions were obtained for A. thaliana, we identified the best-hit orthologs for Arabidopsis (Supplementary Table 2, column “AT ID”) and used them as source for building the corresponding gene network.

The network was reconstructed using the String database (https://string-db.org; Szklarczyk et al., 2019) with the following attributes: Textmining/Experiments/Databases interactions and threshold of interaction score = 0.15. For further layout and visualization, we used the Cytoscape (cytoscape.org; Shannon et al., 2003) and algorithm Radial Layout by yFiles.




Plant Material

Three-year-old plants of ten elite tea genotypes obtained by vegetative propagation in FRC SSC RAS (Federal Research Center the Subtropical Scientific Center of the Russian Academy of Sciences) were used for leaf samplings. Ten genotypes of the local breeding were included in this study: Quimen, Gruzinskii7, GP, Sochi, Clone#22, M#527, M#855, Form#62, Kolkhida, Karatum. Among them, Quimen, Gruzinskii7 were earlier showed to be the cold- and drought-tolerant genotypes; Kolkhida and Karatum were earlier showed to be cold-susceptible and drought-susceptible genotypes. Other clones and mutant forms showed medium cold-tolerance of drought-tolerance (Gvasaliya, 2015). Plants were grown in 2-liter pots filled with brown forest acidic soil (pH = 5.0) (Figure 1). Only healthy plants were selected for these experiments. Ten plants of each genotype were included in the study. For each assessed parameter, 2nd, 3rd, and 4th mature leaves were used for samplings. Experimental treatments with these plants were replicated twice in the period 2019 to 2020.


[image: Figure 1]
FIGURE 1. Three-year old tea plants used for the cold and drought treatments. Pot diameters−20 cm, plant heights 40–55 cm.




Stress Induction and Phenotypical Screening for Tolerance

Control treatment: Before the stress treatments, plants were grown for 3 months in control conditions with the temperature of +22–25°C (with an illumination regime of 16 h of light and 8 h of dark, with the light intensity of 4000 lux with normal irrigation).

Cold treatment: Cold stress was induced in cold chambers HF-506 (Liebherr, Denmark) as follows: decreasing the temperature by 0- +2°C for 10 days to reveal the cold acclimation responses. After that, the temperature was gradually increased to +10°C during 10 days (Recovery-Cold treatment). Drought treatment: Drought stress was induced in a laboratory climatic chamber by gradually decreasing the watering till 15–17% of water content in soil (comparing with control 28–30%) during 10 days (drought treatment) to reveal the drought acclimation response. After that, watering was gradually increased until 28–30% for 10 days (Recovery-Drought treatment). During the treatments, the illumination regime was the same as in the control conditions.

For phenotypical evaluation of the tolerance to stress relative electrical conductivity was measured before the stress induction and after the stress inductions. Relative electrical conductivity was measured using a portable conductivity meter ST300C (Ohaus) to assess the electrolyte leakage indicating the damage of leaf tissues. The leaf sample was immersed in 150 ml of deionized water. The measurement of electrical conductivity was done immediately after immersion (L1) and 2 h later (L2). The relative electrical conductivity (REC, %) was calculated as: [image: image] (Bajji et al., 2001).



Gene Expression Analysis

Total RNA was extracted from the third mature leaf in three biological replicates by the CTAB method (Doyle and Doyle, 1991) with minor modifications. The concentration and quality of RNA were determined using BioDrop μLite spectrophotometer and integrity was assessed by agarose gel electrophoresis. RNA samples were treated with DNase I and reverse transcription was performed using the MMLV-RT kit (Biolabmix, Russia). The efficiency of DNaseI treatment and reverse transcription were tested by agarose gel electrophoresis and by qRT-PCR. The results of this verification were evaluated by the presence/absence of a PCR product in RNA samples before and after DNaseI treatment, and by observing the size of PCR fragments in RNA samples before treatment and its cDNA synthesis. Only those samples that confirmed the absence of genomic DNA contamination were included in further analysis of gene expression. Actin (F: 5′-CCATCACCAGAATCCAAGAC-3′; R 5′-GAACCCGAAGGCGAATAGG-3′) (Hao et al., 2014) was taken as a reference gene and results were quantified using a Light Cycler 96 analyzer (Roche, Japan). The relative gene expression level was calculated by the Livak and Schmittgen (2001) using the following algorithm: 2−ΔΔCq, where:

[image: image]



Statistical Analysis

All analyses were repeated twice with three biological replications in each. Statistical analyses were carried out using XLSTAT software. Student t-test, principal component analysis, and Pearson's correlation tests and Wards-clusterization were performed to evaluate data and confirm the significant differences (at the level p ≤ 0.05) between the genes expression profiles and respective treatments.




RESULTS


Reconstruction of the Cold Stress Response Gene Regulation Network in Tea Plant for Selection of Priority Targets for Experimental Expression Profiling

A set of 52 genes was involved in the analyses, including nine de novo predicted genes from transcriptomic data analyses and 43 from recent articles related to the cold tolerance of C. sinensis. The following genes were drawn from the literature: bHLH factors (9), GsSRK (2), SnRK1 (3), HXKs (3), ERF (3), WRKY (2), dehydrins (2), late embryogenesis abundant proteins (2), and others (CBF1, ICE1, ZAT, HSP70, PRP, CIP, PEI54, TLP, POD, GST, BMY, ALE2, and FLS2). In addition, using interspecies transcriptome analyses we stressed nine orthologs that were highly upregulated in both species (A. thaliana and S. lycopersicum) using cold treatment: two galactinol synthases (GOLS1 and GOLS3), glycine-rich RNA-binding protein 3 (GR-RBP3), xyloglucan endotransglucosylase/hydrolase protein 22 (XTH22, Hydrolase22), zinc finger protein RHL41, histone methylase SKB1, pectinesterase inhibitor PME41, dehydration response element-binding protein DREB26, and protein kinase superfamily protein ARCK1. For a better overall understanding of the interactions and to verify our chosen gene set, the gene network was reconstructed using A. thaliana data (Figure 2). The core gene network was classified using the three indicated clusters and had 42 genes with 111 edges between them, which indicate their tight interconnection. Interestingly, 30 of 46 genes were upregulated, and seven genes were downregulated.


[image: Figure 2]
FIGURE 2. Core gene network of the stress-involved candidate genes. (A) Venn diagram of matched orthologs between top quartile of upregulated genes from transcriptomic analysis; (B) Reconstructed gene network using corresponding orthologs genes of A. thaliana. Red color gamut refers to upregulation by experimental data during cold treatment, blue color gamut refers to downregulation. Thickness of node border is proportional to combined score of gene. (C) Table of gene network legend and matches between CS (C. sinensis) and AT (A. thaliana) genes sorted by their combined rank (CR) score.




Phenotypical Selection of Tolerant Genotype Under Cold and Drought Treatments

Cold resulted in increased relative electrical conductivity (REC) that reached 50–60% in most genotypes. Maximum REC was observed in three genotypes: Clone#22, Form#62, and cultivar Kolkhida. The lowest REC was observed in two cold-tolerant genotypes, Gruzinskii7 and Quimen, at 39 and 31%, respectively. Drought stress resulted in increased REC, which reached 40–49% in most genotypes. The highest REC, 54%, was observed in cv. Kolkhida. The lowest REC, 31%, was observed in cv. Quimen. The recovery stage showed no significant differences among the ten genotypes. Thus, the lowest REC under drought and cold induction was observed in Quimen, indicating the lowest damage of leaf tissues under cold and drought stress (Figure 3). This cultivar showed a similar REC for cold and drought treatment, which produced equal damage to tissues in both stresses, so this cultivar was used as the tolerant one in further gene expression analyses.


[image: Figure 3]
FIGURE 3. Relative electrical conductivity of leaf tissues during stress induction (dark blue color–tolerant cultivar selected for gene expression analysis) in ten tea germplasm accessions.




Relative Expression Levels of the Studied Genes in Response to Cold and Drought

Of the 45 studied genes, the highest level of expression (hundred- fold) was observed in the four candidate genes in response to a given stress treatment: HXK2 (Cold), HSP70 (Cold, RecCold, Drought, and RecDrought), SUS1, and GST (Cold and RecCold) (Figure 4).


[image: Figure 4]
FIGURE 4. Heat map, hierarchical clustering and relative expression levels of studied genes in response to four treatments (Cold, Recovery-cold, Drought, Recovery-drought). The mean values of three replicates ± standard error (SE); asterisks and letters indicate significant differences at P < 0.05.


A heat map and hierarchical clustering revealed several clusters characterized by similar gene expression profiles (Figure 4). Cluster 1 combined the two genes DHN1 and SnRK1. 2 with an over 30-fold induced expression in Cold. DHN1 was also significantly upregulated in Drought and RecCold, indicating its importance in both stress responses.

The other two distant clusters with the most elevated expression were Cluster 3 and Cluster 4, including genes with a 10- to 19-fold upregulation in Cold and RecCold. Cluster 3 included the genes GOLS3, LEA2, bHLH7, and bHLH93, with a 13- to 19-fold upregulation under cold stress. Among these, GOLS3 was also significantly upregulated in RecCold and Drought. Cluster 4 combined five genes (SnRK1.1, SnRK1.3, LEA3, TLP, and FLS2) that were significantly upregulated under Cold and RecCold, but no elevation in Drought or RecDrought was observed.

The most abundant cluster, Cluster 2, contained 30 genes separated into six sub-clusters. The first subcluster included two genes (BMY5 and bHLH102) with the highest expression level in Drought (7- to 15-fold higher), and significantly induced expression in Cold (3- to 4-fold higher), and no elevated expression in recovery treatments. The second sub-cluster combined eight genes (CBF1, PEI54, HXK1, bHLH43, bHLH79, WRKY42, PRP, GR-RBP). These genes showed 3- to 9-fold upregulation in Cold. Of these, WRKY42, CBF1, and PEI54 were significantly elevated in RecCold and RecDrought. In addition, four were downregulated in Drought and RecDrought: PRP, HXK1, bHLH43, and bHLH79. The third sub-cluster included eight genes (AP-ERF-AP, EGASE11, CRK45, PME, DREB26, RHL, Hydrolase22, and CAU1), which were significantly upregulated in Drought with 2- to 4-fold change, but most were not elevated in Cold. Four genes of the bHLH family composed the fourth sub-cluster and were characterized by decreased expression in most treatments: bHLH12, bHLH21, bHLH45, and bHLH95. DHN3, POD73, and HXK3 combined in the fifth sub-cluster, with about a 2- to 3-fold greater expression under Cold and RecCold but very little expression in Drought and RecDrought. The last sub-cluster was formed by ICE1, GOLS1, WRKY2, and ZAT and showed 2-fold greater expression in Cold and Drought, as well as being slightly elevated in Recovery treatments.

In summary, the genes significantly upregulated in both Drought and Cold were HSP70, SUS1, GST, DHN1, BMY5, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3, indicating that they may have important roles in both types of stress response. The genes that were specifically upregulated in Cold were SnRK1.2, HXK1, HXL2, bHLH43, bHLH79, bHLH7, and bHLH93. The genes that were specifically upregulated in Drought were RHL41, CAU1, and Hydrolase22. The transcripts of CIP were mostly accumulated in RecCold and RecDrought, and the transcripts of PME41 were mostly accumulated in RecDrought indicating the possibly important role of these two candidate genes in plant recovery after stress. Generally, the cold response was more active in our study than the drought response. More genes with the highest expression levels were induced in response to cold than to drought.



PCA Analyses and Correlations in Different Responses

Pair comparison of treatments showed that the gene data points were clearly distributed between the two principal components Cold and RecCold. Most genes were densely grouped and showed similar expression profiles in Cold and RecCold, indicating a systemic response to cold stress. On the other hand, more genes were related to the principal component Cold. The RecCold cluster combined eight genes grouped distantly, which were strongly expressed in the recovery stage: SnRK1.1, SnRK1.3, TLP, LEA2, LEA3, FLS2, EGase11, and CIP. The genes SnRK1.2, DHN1, GOLS3, and bHLH7 clustered distantly around the principal component Cold (Figure 5A).


[image: Figure 5]
FIGURE 5. PCA analysis of expression profiles of candidate-genes distributed around treatments: (A) Cold/RecCold, (B) Drought/RecDrought, (C) Cold/Drought.


The biplot Drought/RecDrought showed that most genes were densely grouped together with a similar expression pattern during both treatments. However, nine genes were distantly clustered around the RecDrought principal component: CRK45, PME41, CBF1, CIP, PEI54, WRKY42, DREB26, ZAT, and ICE1. Another eight genes were distantly clustered around the principal component Drought: EGase11, RHL41, GOLS3, BMY5, bHLH102, DHN1, Hydrolase 22, and CAU1 (Figure 5B).

Finally, in the Cold/Drought biplot, most data points were clearly divided between the two principal components and showed the different characters of expression in the two stress responses. The two clusters with the greatest distances between Cold and Drought PCs were obtained. The first combined the six genes with the highest expression level in Drought: GOLS3, BMY5, bHLH102, RHL41, CRK45, and GR-RBP3. The second one combined the six genes with the highest expression level in Cold: SnRK1.2, DHN1, FLS2, LEA2, SnRK1.1, and bHLH7. Most of the other genes were also clearly divided between the principal components Cold and Drought (Figure 5C).

The correlation analyses of responses to Drought, Cold, RecDrought, and RecCold resulted in three large clusters of candidate genes (Figure 6). The first, the largest cluster, included 18 genes with the highest positive and significant correlations between the treatments. This cluster combined three main subclusters. The first included the genes ICE1 and bHLH7, which had a high positive correlation between RecCold and RecDrought. The second sub-cluster combined four genes that had a high positive correlation between Cold/RecCold and Drought/RecDrought: POD73, bHLH79, AP-ERF-AP, and LEA3. The third sub-cluster included genes with high positive correlations between Drought/Cold (PEI54, SnRK1.2, SnRK1.3, and Hydrolase22) and Drought/Recovery (Hydrolase22, SnRK1.2, CRK45, BMY5, and bHLH93).


[image: Figure 6]
FIGURE 6. Correlation heat map and corresponding gene subnetworks (A. thaliana) of clusters marked by numbers 1–3. D-Drought, C–Cold, RD–Recovery drought, RC–recovery cold. Values in bold are different from 0 with a significance level alpha = 0.05.


The second large cluster combined nine genes. Of these, DHN3 showed a positive correlation between Cold and Drought. PRP and HXK1 showed a high positive correlation between Cold and RecCold. Three genes showed a strong negative correlation between Drought and RecDrought: DHN1, CBF1, and GOLS1. Additionally, DHN1 was negatively correlated in Cold and RecCold; CBF1 and GOLS1 were negatively correlated in Drought and Cold.

The third big cluster combined 16 genes, divided into two big sub-clusters. One sub-cluster included eight genes, of which three showed a significant negative correlation between RecCold and RecDrought: HXK2, DREB26, and bHLH45. However, another three of these genes showed high positive correlations in Drought and RecDrought. Finally, the second small sub-cluster of Cluster 3 included six genes, of which four showed significant negative correlations between Cold and RecCold (SnRK1.1 and SUS1) RecCold and RecDrought (SUS1), and Cold and Drought (HXK3 and CIP).

In summary, the following genes were significantly positively correlated between Cold and Drought: DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22. On the other hand, CBF1, GOLS1, HXK2, and HXK3 showed significant negative correlations. Many genes were positively correlated between Drought and RecDrought, namely, POD73, bHLH79, AP-ERF-ERF, LEA3, Hydrolase 22, SnRK1.2, CRK45, BMY5, bHLH93, bHLH95, DREB26, and HXK2. Three genes showed negative correlations: DHN1, CBF1, and GOLS1. Six genes were positively correlated between Cold and RecCold: bHLH79, AP-ERF-ERF, LEA3, PRP, HXK1, and TLP1. Three genes were negatively correlated: SnRK1.1, SUS1, and DHN1. Finally, RecCold and RecDrought analyses resulted in four positively correlated genes (ICE1, bHLH7, POD73, and CBF1) and four negatively correlated genes (bHLH45, DREB26, HXK2, and SUS1).




DISCUSSION


Reconstruction of the Cold Stress Response Gene Regulation Network in Tea Plant

To develop tolerant genotypes, breeders need reliable sets of informative genetic markers to select donors from germplasm collections. The homolog databases of candidate genes can be an efficient tool for finding these markers with in silico searches in model plant species. In our study, we used this approach to identify new possible candidate genes and their homologs in tea plants. We selected possible candidate genes and built a core network for 42 genes with 111 edges between them, which indicates their tight interconnection. DREB26, GOLS1, GOLS3, GR-RBP3, Hydrolase22, PME41, and RHL41 are commonly found in A. thaliana and S. licopersicum. It is known that the evolutionary distance between A. thaliana and S. lycopersicum is very similar to distance between A. thaliana and C. sinensis (timetree.org). Thus, we proceeded from the assumption that nine identified genes may have a similar role for C. sinensis. Based on the constructed gene network we revealed that eight of the nine candidate genes are linked to the main network of the stress response. So it can be suggested that they belongs to the core part of the stress response, their functions are evolutionarily conservative and these genes can be predicted for the other plant species based on interspecific analysis. The hypothesis of the strong upregulation of galactinol syntases (GOLS1 and GOLS3) and GR-RBP3 and DREB26 in tea stress responses was confirmed experimentally in our study (Figure 4).

We combined bioinformatics and experimental approaches to test nine new candidate genes that could be relevant for different plant species. However, among their orthologs in C. sinensis, only GOLS3 and GR-RBP3 were found to be upregulated during cold treatment. On the other hand, CIP, which has the highest score according to bioinformatics data (Figure 2), is highly upregulated during recovery. This can indicate a large difference between woody crops and grasses in responses to stress. In addition, well-known regulators such as DHN1, HXK1, PEI, and CBF1 were confirmed to be highly upregulated during cold treatment. Therefore, experimental testing of well-known regulators with their new target genes for particular genotypes may be a useful and iterative approach for evaluating complex regulatory networks of stress adaptation in plants.

The gene-regulatory networks for cold and drought response remain an open topic for investigation due to the complex nature of genetic interactions and their genotype-specific character. For example, the divergence and specialization of gene networks involved in trichome development may be connected with the emergence of the plant taxa (Doroshkov et al., 2019). In our study, many regulators were connected to HSP70 and tightly interconnected among each other. The ICE1-related bHLH cluster and WRKY factors were mostly upregulated, similarly to the SnRK complex, hexokinases, and galactinol synthases. However, XTH22-PME41-DREB26, and bHLH12-bHLH45 were downregulated, which may indicate their coordinated repression.



Phenotypical Selection of Tea Under Cold and Drought Treatments

North-Western Caucasus in Russia is the one of the northernmost regions of commercial tea growing in the World. Tea plantations in the region are not of a large scale, but the climate here is colder that is why tea growth without chemical plant protection because there is no pest and diseases. Seeds of tea plant were introduced to Caucasus in nineteenth century from China, Japan, India, Sri Lanka and Indonesia and represent a wide range of hybrid genetic diversity. Domestication of the tea plant in the Caucasus occurred within 150 years, during which the tea crop moved from the southern regions of Ozurgetti in Georgia (41°55′27″ N, 41°59′24″ E) to the Northern region in Maykop in Russia (44°36′40″ N, 40°06′40″ E) (Tuov and Ryndin, 2011). Tea breeding was conducted here from 1950th and as the result many local cultivars were developed, such as Kolkhida, Qimen, Gruzinskii7, Karatum, Sochi, and many others. Also the set of mutant forms such as M#527, M#855, F#62, Clone #22 and many others were developed by UV and chemical mutagenesis (Gvasaliya, 2015). The genotypes included in our study characterized by high yield and quality in the local conditions. Phenotyping of the tolerance was done using the common approach – the measurement of the relative electrical conductivity (see for example, Ban et al., 2017), that help to assess the electrolyte leakage caused by stress. The results confirmed that genotypes with large and thin leaf (for example, Karatum, Kolkhida) are less tolerant to cold and drought than the genotypes with small and thick leaf blades (such as Quimen and Gruzinskii7) (Figure 1). Our results on phenotypical evaluation correspond with the other studies on several plant species in which the drought-resistant genotypes showed tolerance to cold as well (Zheng et al., 2016; Lu et al., 2017; Li X. et al., 2019).



Relative Expression Levels of the Studied Genes in Response to Cold, Drought and Recovery


Genes Upregulated in Response to Both Cold and Drought

In the tolerant genotype the expression levels of the genes HSP70, DHN1, GST, SUS1, bHLH102, BMY5, GR-RBP3, ICE1, GOLS1, and GOLS3 were significantly higher in both Cold and Drought than in control, suggesting shared upstream pathways for signal transduction and regulation under these stimuli.

Among the nine bHLH genes included in this study, only bHLH102 was increasingly expressed in both stress treatments, and we suppose that this new candidate gene can also be an important marker for abiotic stress tolerance in tea. In A. thaliana, this gene encodes positive brassinosteroid-signaling protein, and functional validation is necessary in tea plant.

The Hsp70s are highly conserved and widespread and important for protein folding, protein translocation, and the stress response in almost all subcellular compartments (Su and Li, 2008). The HSP70 genes are upregulated in drought-tolerant Indian tea cultivars that are subjected to water stress (Maritim et al., 2016). In our study, the highest level of expression for HSP70 (several hundred-fold) was observed in all experimental treatments (Cold, RecCold, Drought, and RecDrought) (Figure 3); however, it was more actively induced by Cold compared to Drought, indicating its possible importance in preventing the dehydration of cell compartments during low temperatures.

Another gene that was upregulated in cold and drought was GST. GSTs are a superfamily of enzymes that are notable for their role in phase-II detoxification reactions of quenching reactive molecules by adding glutathione (GSH) and protecting the cell from oxidative damage (Kumar and Trivedi, 2018). In previous work, GST and POD were upregulated in a tolerant tea cultivar under cold stress (Li Y. et al., 2019), which corresponds with our results. However, these genes were more strongly induced by cold, and we suppose that the cold response is characterized by stronger ROS-scavenging activity than the drought response.

The next gene with a multi-fold change in Cold and RecCold and significant upregulation in Drought was SUS1. It encodes sucrose synthase (Sus), a key enzyme of sucrose metabolism. Previous studies reported that the transcription levels of Sus1 increased after exposure to cold and drought (Dejardin et al., 1999; Stein and Granot, 2019). However, based on the expression profile of SUS1, we speculate that sucrose–raffinose conversion is more strongly induced by cold than by drought in tea plant. Also, the bulk degradation of sucrose into glucose and fructose maybe a strategy employed by tea plants to double its osmotic contribution in response to severe drought and cold stress (Zheng et al., 2016).

Another new gene that was significantly overexpressed in response to both drought and cold was GR-RBP3, a class-IV GRP (RBP), which is involved in alternative splicing, transcriptional regulation, and developmental processes (Czolpinska and Rurek, 2018). Some GRPs have been described as proteins that mainly enhance plant tolerance to low temperatures. Here, we suppose that they may also be an important genetic marker of both cold and drought tolerance, with a functional role in the tea plant that it is necessary to clarify.

One more gene that was significantly upregulated during drought and cold stress was BMY5. BMYs degrade starch to soluble sugar, which leads to increased maltose, glucose, fructose, and sucrose levels after further conversion. We suggest that starch degradation is an important mechanism in tea, not only for cold tolerance but also for drought tolerance. This is consistent with the results recently published by Yue et al. (2019), who found that BMY genes contain many stress-related cis-acting elements, such as drought stress-related ABRE, DRE1, MBS, and STRE; cold stress-related LTR; and stress phytohormone-related ERE and TCA. Taken together, these results suggest that BMY genes are involved in the response of tea plants to multiple challenging environmental conditions and may be an important marker for the tea plant.

The last two genes that feature strong upregulation in response to drought and cold are GolS1 and GolS3. GolS is a key enzyme in the synthesis of raffinose family oligosaccharides that function as osmoprotectants in plant cells. GolS1- or GolS2-overexpressing Arabidopsis has high intracellular levels of galactinol and raffinose in transgenic plants, which correlates with increased tolerance to drought and chilling stress (Panikulangara et al., 2004; Nishizawa et al., 2008; Li Y. et al., 2019). Our results support these findings and confirm that the mechanism of protecting salicylate from attack by hydroxyl radicals mediated by galactinol and raffinose is important for drought and cold defense.



Genes Specifically Upregulated in Drought

The genes specifically upregulated to a higher level in Drought were RHL41, CAU1, Hydrolase22, CRK45, PME41 which suggests that these genes are conservative and may play vital specific roles in response to drought stress.

RHL41, which relates to the zinc-finger protein Zat12, is a representative of the small group of genes that respond similarly to many different environmental stresses (Iida et al., 2000; Davletova et al., 2005). A recent study of transgenic plants suggested that Zat12 plays a role in different stress responses in Arabidopsis (Rizhsky and Liang, 2004; Vogel et al., 2005). Some authors have reported that Zat12 acts as a suppressor of CBF transcription (Davletova et al., 2005; Vogel et al., 2005). We observed increased accumulation of Zat12 (RHL41) transcripts during drought, indicating that this gene may have a specific function for drought stress responses in tea plant.

CAU1 encodes an H4R3sme2-type histone methylase and acts as an immediate upstream suppressor of the CAS gene (encoding a putative Ca2+ binding protein that is proposed to be an external Ca2+ sensor). Elevated extracellular calcium decreases CAU1 protein levels and consequently the methylation level of H4R3sme2 in the CAS chromatin, thus derepressing CAS expression to close stomata (Fu et al., 2013). Our results indicate the specific activation of CAU1 under drought. It may be that stomata closure mediated by CAU1 is an important mechanism of defense against drought in tea plant. This corresponds with previous studies that have reported increased drought tolerance and stomatal closure in cau1 mutants of Arabidopsis (Fu et al., 2013).

Hydrolase22 was also specifically upregulated during drought stress. This gene encodes proteins that maintain the plasticity of the cell wall and increase its thickness by reinforcing the secondary wall with hemicellulose and lignin deposition (Le Gall et al., 2015). We thus consider that the adjustment to the cell wall mediated by this enzyme is an important mechanism in adaptation to drought in tea plant.

Different families of protein kinase had positive regulatory roles in responding to drought stress in tea plant, leading to maintain homeostasis of drought stress and water signal transduction (Liu S.-C. et al., 2016). Our result showed that CRK45 was upregulated in Drought and RecDrought but not in Cold. It is a member of the membrane-anchored receptor-like protein kinases (RLKs), which recognize extracellular signals at the surface of the cell and activate a downstream signaling pathway by phosphorylating specific target proteins (Tanaka et al., 2012). CRKs make up a large subgroup of the RLKs family and play important roles in plant growth, development, and the stress response (Afzal et al., 2008; Wrzaczek et al., 2010; Tanaka et al., 2012). Thus, negative ABA-signaling mediated by CRK45 may play a specific and important role in the drought response of the tea plant.

Increased PME41 expression was observed in the tea plant in Drought and RecDrought but not in Cold. PME participates in pectin remodeling, which keeps cells from separating, maintains plasma membrane integrity, and prevents cellular leakage. However, distinct genotype-, species- or tissue-dependent mechanisms of temperature control of PME activity have been found (Le Gall et al., 2015). For example, the overexpression of Arabidopsis PME5 and PMEI3 resulted in softer and harder shoot apical meristem cell walls, respectively (Peaucelle et al., 2011). We suppose that the mechanism of demethylesterification of pectin may be more important for drought defense rather than for cold defense in the tea plant. Further studies with more cultivars are necessary to check the involvement of PME41 in the cold response of the tea plant.



Genes Specifically Upregulated in Cold

The genes specifically upregulated to a higher level in Cold were SnRK1.2, HXK1, HXK2, bHLH43, bHLH79, bHLH7, and bHLH93, which suggests that these genes are conservative and may play vital specific roles in response to cold stress.

HXKs phosphorylate glucose and fructose and participate in sugar signal transduction by modulating the abundances of diverse gene transcripts and integrating stress response substrates, including ABA and ethylene (Yue et al., 2015). In cold stress, HXKs are more induced in tolerant tea cultivars than in susceptible ones (Yue et al., 2015; Li Y. et al., 2019), which is consistent with our results. Another signaling intermediate, SnRK1, is involved in Suc, G6P, and T6P sensing and plays an important role in the plant response to sugar starvation (Wang Y. et al., 2019). Yue et al. (2015) found that CsSnRK1.2 was induced by cold in the tea plant, whereas CsSnRK1.1 was not elevated, and CsSnRK1.3 was sharply suppressed. In our study, these three genes were activated in Cold and RecCold, but none was induced in Drought. These results indicate that sugar signal transduction and phosphorylation are more important defense mechanisms for cold tolerance in tea plant than for drought tolerance. However, more genotypes must be examined to confirm this conclusion.

Among the nine studied bHLH genes, some were specifically upregulated in response to cold stress. Cui et al. (2018) studied the bHLH family and proposed the following stress-related members in tea plant: CsbHLH007, CsbHLH012, CsbHLH021, CsbHLH043, CsbHLH045 (ortholog of ICE2), CsbHLH079, CsbHLH093, and CsbHLH095. In our study, some of the genes were specifically upregulated in Cold, namely, bHLH93, bHLH79, bHLH43, and bHLH7, and these may play an important specific role in cold defense in the tea plant. We also observed that CsbHLH012, CsbHLH021, CsbHLH045, and CsbHLH095 were downregulated in tea in Cold and/or Drought or did not differ from the control (Figure 4). This contradiction with Cui et al. (2018) can be explained by the variance in stress conditions: we evaluated long-term stress responses, whereas they evaluated 24 h stress induction (Cui et al., 2018). It may be that the mentioned TFs are more strongly induced by short-term cold stress.

Other genes that were upregulated in both Cold and RecCold were WRKY42, ZAT30, POD73, LEA2, LEA3, TLP1, and FLS2. Among them, the LEA proteins protect plant metabolism against abiotic stresses, marshaling properties that include antioxidant activity, metal ion binding, membrane and protein stabilization, hydration buffering, and DNA and RNA interactions (Chen et al., 2019). They also play an important role in stress acclimation (Ling et al., 2016). Liu Y. et al. (2016) investigated a maize LEA3 gene expressed in E. coli and reported enhanced tolerance to low temperature. In rice, the LEA2, LEA3, and DHN groups have been found to show strong responses to osmotic stress (Yu et al., 2016). Our results on the tea plant showed no enhanced expression of LEA2 and LEA3 in Drought or RecDrought; however, Cold and RecCold greatly induced expression of both genes, indicating that these two genes can have specific functions on regulating cold tolerance in the tea plant.

WRKY42 and ZAT30 (CCCH) are zinc-finger proteins involved in the ABA-mediated stress response. We observed specific upregulation of WRKY42 and ZAT30 during cold and recovery in the tea plant. The WRKY genes are involved in stress and hormone signaling (Phukan et al., 2016; Jiang et al., 2017) during the drought stress response (Wang et al., 2016) and cold response (Samarina et al., 2020) in the tea plant. ZAT30 (CCCH) is a zinc finger protein that is involved in developmental processes, responses to cold and osmotic stress (Pi et al., 2018), and participates in signal transduction. Both of these TF families are of particular interest, as they are involved in various biotic/abiotic stress responses and in developmental/physiological processes (Jiang et al., 2015). Maybe further studies are needed to confirm the role of the both genes in tea plant.

TLP is another gene with no elevated expression in Drought but greatly induced in Cold and RecCold. It is a member of the TLPs, made up of five pathogenesis-related proteins that are responsive to biotic and abiotic stress. The previous results indicate potential applications of TLP for crop improvement through a genetic transformation with applications in both biotic and abiotic stress protection, with strong evidence for a role in the crosstalk between the stress types. Transgenic plants that overexpress the TLP gene in different plant crops showed resistance to pathogens and tolerance to salinity and drought (Jesus-Pires et al., 2019). Our data confirm the possibly important role of TLP1 in the cold stress response and in recovery in tea plant.

FLS2, which encodes receptor-like protein kinase, was also highly upregulated during Cold and RecCold in our study. FLS2 is representative of the RLK family, playing an important role in mediating early flagellin signaling (Lu et al., 2010) upregulated in the cold response and recovery to stress. Our results are consistent with those of Li Y. et al. (2019), who found that FLS2 exhibited a higher level of expression in tolerant tea cultivars with many-fold change under cold. We also speculate that plant-pathogen-related immunity mediated by FLS2 may be important specifically for cold tolerance rather than for drought tolerance.

PRP and GRP, are covalently linked with pectin or hemicellulose and thus contribute to the strengthening of the cell wall in response to abiotic stress (Hijazi et al., 2014). In our study, significantly elevated expression of both GRP and PRP was observed in response to cold stress, which could indicate that the cell wall strengthening through pectin remodeling may be an important mechanism of tea plant cold tolerance. Earlier investigations also showed that one of the specific mechanisms of cold response in plants is the strengthening the cell wall, in contrast to the drought response (Beck et al., 2007).



Genes Upregulated at Recovery Treatments

Interestingly, some stress-inducible genes were seen to have higher transcript abundance during the recovery stages than had been seen in previous stress treatments. In RecCold, these genes were AP-ERF-AP, LEA3, GST, SnRK1.3, SUS1, CIP, EGASE11, and TLP1. In RecDrought, they were WRKY42, CBF1, DREB26, ZAT, PEI54, CIP, CRK45, and PME41. This indicates that the recovery of the tea plant after stress is a complex process and is important for defensive responses, and its regulation pathways differ from those for Cold and Drought. Moreover, we observed that RecCold and RecDrought produce very different responses, and CIP was the only gene upregulated in both recovery treatments in the tea plant. CIP belongs to the dehydrin family, and functional predictions suggest that this protein protects the membranes and prevents macromolecular coagulation or sequestration of calcium ions by association or disassociation with membrane under low-temperature conditions (Liu et al., 2006). We conclude that this gene may have a specific important function in recovery in tea plant.

Among the upregulated transcription factors, AP-ERF-AP, DREB26, and CBF1 are representatives of the AP2/ERF family and mediate the transcriptional regulation of osmotic stress-responsive genes (Licausi et al., 2013; Parmar et al., 2019). Our results demonstrate that these genes are not only involved in the stress response but also in the recovery of the tea plant after cold and drought stresses. Previous gene expression studies have reported that most AP2/ERFs are expressed at low levels under normal conditions, but their expression can be induced or repressed at certain growth stages by hormones and stress stimuli (Xie et al., 2019). The DREB subfamily may be a key candidate for future exploration of a means to enhance drought and cold tolerance in tea (Ban et al., 2017; Parmar et al., 2019; Wang et al., 2019; Hu et al., 2020). It has been classified into six subgroups (A1–A6) (Sakuma et al., 2002). Among these, DREB08 and DREB26, the A5 subgroup, encode repressor proteins inhibiting the expression of other DREB TFs (Dong and Liu, 2010). This means that they can suppress defense and stress-inducible genes in the absence of stress. In our study, increased expression of DREB26 was observed during drought stress and also during recovery. This partly contradicts previous results that indicated that transcription levels of DREB26 were hardly changed under drought and cold in Vitis vinifera (Zhao et al., 2014). Further studies of this gene in the tea plant are necessary for a comprehensive understanding of its role in stress responses.

Out of the other studied genes, with the pronounced expression profile during Recovery two genes are related to the cell wall remodeling, these are EGases and PEI. EGases are important cell wall-related proteins that modulate cell wall extensibility, which mediates cell enlargement and expansion. The EGase11 gene in the tea plant was significantly upregulated in RecCold, Drought, and RecDrought, indicating cellulase growing activity. This result is not easy to explain, and further investigation is necessary. Earlier studies of these genes reported that increased hydrolases activity is evidence of cell wall degradation (Le Gall et al., 2015). PEIs are invertase inhibitor-related proteins and play an important role in the regulation of metabolic enzymes and viscoelastic properties of the cell wall (Wu et al., 2010). In our study, the elevated expression of PEI54 observed in Cold, RecCold, and Rec Drought indicates that pectin methylesterification in cell walls is activated in these stress treatments. These results showed that the cell wall remodeling activity is enhanced not only during the stress response but also during the recovery in tea plant. The genes encoding the cell wall remodeling enzymes can be further studied more comprehensively in tea plant as they might play a very important role in the responses to abiotic stresses and recovery after stress.




Correlations in Different Responses

Based on expression profiles we tried to find correlations between responses to drought and cold. Highly correlated gene modules with specific expression patterns can help illustrating the framework of stress transcriptome. This analysis provides evidences about common and unique stress mechanism components under cold and drought stress in C. sinensis. In A. thaliana gene co-expression network analysis revealed 21 and 16 highly inter-correlated gene modules with specific expression profiles under drought and cold stress respectively (Sharma et al., 2018). In oil palm the significant correlations were found between cold-responsive genes and physiological parameters that helped to better understand the regulation networks (Li J. et al., 2019).

In our study, six genes (DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22) were correlated positively and four genes (CBF1, GOLS1, HXK2, and HXK3) were correlated negatively in response to Cold and Drought. This indicated that the mentioned genes have the similar expression character during cold and drought. Under drought induction in tea plant we found twelve genes (POD73, bHLH79, AP-ERF-ERF, LEA3, Hydrolase 22, SnRK1.2, CRK45, BMY5, bHLH93, bHLH95, DREB26, and HXK2) that were positively correlated and three genes (DHN1, CBF1, and GOLS1) that were negatively correlated between Drought and RecDrought. On the other hand, under cold induction in tea plant we found six genes (bHLH79, AP-ERF-ERF, LEA3, PRP, HXK1, and TLP1) that were positively correlated and three genes (SnRK1.1, SUS1, and DHN1) that were negatively correlated between Cold and RecCold. Based on these results it can be speculated that recovery stage after drought is more similar to Drought response than RecCold–to Cold response.

In general, our results showed that more genes were activated in response to cold rather than drought in tea plant. These results corresponds with the transcriptomic studies reported that much more DEGs were upregulated under cold rather than drought in tea plant (Zheng et al., 2016), apple (Li X. et al., 2019) and in maize (Lu et al., 2017). Cold induces an extensive activation of transcription, drought stress, however, induced fewer transcriptional changes (only 15% as many), than cold in maize (Lu et al., 2017) suggesting that the more sensitive response to cold rather than drought would be a conserved mechanism in many plant species.

In other studies, an overlap between the expression patterns of stress-responsive genes in several plant species was observed after drought and cold stress induction (Li X. et al., 2019). In apple they found evidence of crosstalk between drought and cold stress signaling, with 377 commonly upregulated and 211 commonly downregulated genes (Li X. et al., 2019). In tomato, only about 10% of the drought-inducible genes were also induced by cold indicating different molecular strategies in their reaction to the two stresses (Zhou et al., 2019). In maize, only 194 DEGs were shared in cold and drought and, nearly 90% among them are regulated in a similar manner by both stresses, indicating that there is a shared network to regulate the cold and drought induced responses (Lu et al., 2017). On the other hand, specific regulations in response to cold or drought were also clearly visible in these crops. Nevertheless, in some plant species, the induction of cold resistance also promotes drought resistance and high-salinity tolerance, which is consistent with an increase in the levels of osmo-regulatory compounds and antioxidant enzyme activities (Hossain et al., 2013).

The effects of drought and cold reported here have arisen from a limited range of potential types and severities of stress. A greater range of treatments for (e.g., timing, severity, frequency) need to be examined in future studies to provide more clues for understanding the adaptation and tolerance mechanisms in tea plant.




CONCLUSION

Using an in silico approach combined with an experimental approach, we confirmed the involvement of the nine new genes in the cold and/or drought response of tea plant: GOLS1, GOLS3, GR-RBP3, HYDROLASE22, RHL41, CAU1, PME41, DREB26, and CRK45. We hypothesized that many genes have similar expression profiles between the cold and drought responses of the tea plant. However, of 45 genes studied, only ten were significantly upregulated in response to both cold and drought: HSP70, GST, SUS1, DHN1, BMY, bHLH102, GR-RBP3, ICE1, GOLS1, and GOLS3. These genes can be considered as genes of non-specific stress response. SnRK1.2, HXK1/2, and bHLH7/43/79/93 were upregulated in response to cold only, and the expression levels of RHL41, CAU1, and Hydrolase22 were increased in the drought response. Interestingly, we found that the expression of CIP was higher in the recovery stage of both stresses, indicating its potentially important role in plant recovery after stress. In addition, some genes, such as DHN3, bHLH79, PEI54, SnRK1.2, SnRK1.3, and Hydrolase22, were significantly positively correlated between the cold and drought responses. CBF1, GOLS1, HXK2, and HXK3, by contrast, showed significantly negative correlations between the cold and drought responses. Because overexpression of many new candidate genes can confer stress tolerance, these proteins may play a promising role in agriculture in the context of plant genetic engineering. The isolation, cloning, characterization, and functional validation of novel candidate genes in response to diverse stress conditions are expected to be growth areas of research in coming years. In addition, the identification of the interaction partners of these proteins and the factors affecting these interactions is necessary to understand their role in conferring protection against different stress conditions in tea plants. These results provide valuable information and robust candidate genes for future functional analyses to improve the stress tolerance of the tea plant.
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The purple sea urchin Strongylocentrotus purpuratus has been used for over 150 years as a model organism in developmental biology. Using this model species, scientists have been able to describe, in detail, the mechanisms of cell cycle control and cell adhesion, fertilization, calcium signaling, cell differentiation, and death. Massive parallel sequencing of the sea urchin genome enabled the deciphering of the main components of gene regulatory networks during the activation of embryonic signaling pathways. This knowledge helped to extrapolate aberrations in somatic cells that may lead to diseases, including cancer in humans. Furthermore, since many, if not all, developmental signaling pathways were shown to be controlled by non-coding RNAs (ncRNAs), the sea urchin organism represents an attractive experimental model. In this review, we discuss the main discoveries in the genetics, genomics, and transcriptomics of sea urchins during embryogenesis with the main focus on the role of ncRNAs. This information may be useful for comparative studies between different organisms, and may help identify new regulatory networks controlled by ncRNAs.
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INTRODUCTION

The first use of animals for experimental purposes dates back to Ancient Greece. “Generation of Animals” of Aristotle (1942) describes the first systematic study of embryonic development as a phenomenon, which recognizes the key questions about the emergence and relations between hierarchically organized parts of an organism.

Model organisms help in the testing of novel biological hypotheses, which come from in cellulo observations and need to be tested at the whole organism level. Hence, model organisms represent a very important tool in modern biology. Currently, the list of model organisms includes over 100 species of animals, plants, protozoa, and viruses. The most popular model species include the frog, zebrafish, сhicken, mouse, fruit fly, and nematode (Rzepnikowska et al., 2017; Kuo et al., 2018; Chatterjee and Deng, 2019; Marques et al., 2019; Nielsen, 2019; Tang et al., 2019). All these species are used by researchers in a wide range of molecular biological applications, but, unfortunately, none of them are versatile enough to satisfy various experimental needs.

In this review, we focus on the main discoveries in genetics and genomics that were made using a popular model object – the purple sea urchin Strongylocentrotus purpuratus, which has been used in biology for over 150 years (Stimpson, 1857). The species was chosen as a model object for several objective reasons: sea urchins are easy to propagate in the laboratory; it is easy to get synchronous embryo cultures and induce rapid embryogenesis; the embryo is transparent and has a simple structure. Genome sequencing and the description of complex gene regulatory networks during the sea urchin embryogenesis made this model object indispensable for the study of gene expression regulation.

Echinoderms are a sister group of the Chordate phylum. This group has branched out from Chordate before the Cambrian period (more than 500 million years ago, Figure 1; McClay, 2011). Other studies, based on the multigene and multiprotein studies, indicate a more accurate time of divergence (Hedges, 2002; Zaidel-Bar, 2009).

[image: Figure 1]

FIGURE 1. Truncated phylogenetic tree of popular model organisms based on combined analyses of morphology and molecular data (Laumer et al., 2015; Telford et al., 2015; Torruella et al., 2015; Cannon et al., 2016). The tree illustrates the evolutionary relationship between Homo sapiens and Strongylocentrotus purpuratus as members of the deuterostome branch of the animal kingdom. Caenorhabditis elegans and Drosophila melanogaster are members of the protostome branch. (Branch lengths are not proportional to time).


The first studies, which describe the normal embryogenesis of a sea urchin, date back to the middle of the 19th century. Since then, sea urchin embryos have become a popular model in developmental biology. The normal life cycle of sea urchins is shown in Figure 2. At present, certain echinoid species (e.g., S. purpuratus, Strongylocentrotus droebachiensis, Strongylocentrotus intermedius, Hemicentrotus pulcherrimus, Lytechinus variegatus, Paracentrotus lividus, and Mesocentrotus franciscanus) are widely used as experimental models in developmental biology (McClay, 2011). The early stage of embryogenesis of the purple sea urchin was used for studying intercellular communication and cell adhesion (Horstadius, 1939; Giuduce, 1962; McClay and Fink, 1982), cell cycle control mechanisms (Evans et al., 1983), calcium signaling (Whitaker, 2006), fertilization (Briggs and Wessel, 2006), cell differentiation (Giudice, 1973), and cell survival and death (Chiarelli et al., 2016).

[image: Figure 2]

FIGURE 2. Simplified S. purpuratus life cycle, stages of which are connected by black arrows. The name of each stage is shown in the picture. The beginning of the life cycle is fertilization, which is marked by a black dotted line. In the center, the black and gray time scale represents hours and days after fertilization, correspondingly. The red circular gradient line represents the degradation of the general maternal transcripts. The circular blue gradient shows the beginning of zygotic genome activation and increases in transcribed gene numbers.


The genome size of the purple sea urchin is only a quarter of the human genome, despite it having about the same number of genes. Genome analysis has shown that most of its genes are common to representatives of deuterostomes, which has in turn uncovered an unexpectedly close relation to humans among all used invertebrate model species (Davidson, 2006; Sea Urchin Genome Sequencing Consortium et al., 2006; Cameron, 2014). For example, the sea urchin genome contains orthologs of human disease-associated genes, which are expressed in sea urchin embryogenesis.

The sea urchin genome was shown to contain more than 400 genes, whose products are involved in the regulation of cell homeostasis. Most of these genes display a remarkable conservation of their sequences during the evolution (Goldstone et al., 2006; Rast et al., 2006). The sea urchin genome contains 65 genes of the ATP-binding cassette transporter superfamily (Hamdoun et al., 2004; Goldstone et al., 2006), while, in humans, only 48 members of this family are known to date (Dean and Annilo, 2005). Mutations in these genes lead to several pathologies in humans, including degeneration of the retina, cystic fibrosis, neurological diseases, cholesterol transport disorders, anemia, and many others (Dean et al., 2001). The sea urchin as an experimental model is also frequently used in toxicology and in environmental human health science since it allows an accurate estimate of cancer risk before any epidemiologic evidence is available (Bellé et al., 2007).

Furthermore, sea urchin embryos are used by scientists as a convenient object for elucidating common cellular molecular mechanisms involved in human health and disease. In particular, the sea urchin is used as a model system for studying neurodegenerative disorders that can cause dementia and memory loss (Nakajima et al., 2004).

In the past, it was hypothesized that certain signaling pathways involved in the embryo’s morphogenesis could be aberrantly activated during tumorigenesis. Unfortunately, to develop this idea further, scientists did not have an appropriate human experimental model. This is due to various ethical aspects that restricted human embryo studies (De Wert et al., 2002; De Wert and Mummery, 2003; Holm, 2003; Lo and Parham, 2009). Therefore, an early embryogenesis of sea urchins could be a good model for cancer research.

The normal processes of cell proliferation and differentiation are controlled by several developmental gene regulatory networks. Disunity in these networks leads to the initiation and progression of tumors (Hanahan and Weinberg, 2000; Reya et al., 2001; Pires-daSilva and Sommer, 2003).

Notch, Wnt, and Hedgehog (Hh) signaling pathways are highly conserved from sea urchins to humans. The current model of these pathways, including general components shown on Figure 3 and their main roles in embryogenesis and cancer, is described on Table 1.

[image: Figure 3]

FIGURE 3. Simple outline of the current models of the canonical Notch, WNT, and Hh pathways. NOTCH: Delta, delta-like ligand, Notch, ADAM, ADAM-family metalloprotease; γ-sec, γ-secretase; NICD, notch intracellular domain; Co-A, transcription coactivator; MAM, conserved and essential nuclear factor mastermind; CSL, DNA-binding transcription factor. WNT: Frizzled; WNT, wingless-type MMTV integration site; LRP, low-density lipoprotein receptor-related protein; APC, adenomatous polyposis coli; Disheveled, cytoplasmic phosphoprotein; GSK3ß, glycogen synthase kinase-3; CK1α, casein kinase 1 alpha; TCF, T-cell-specific transcription factor; LEF, lymphoid enhancer-binding factor. Hedgehog: Hh, hedgehog; PTCH, patched; SMO, smoothened; SUFU, suppressor of fused; GLI, GLI-family zinc finger.




TABLE 1. Major Notch, WNT, and Hedgehog (Hh) pathways roles in multicellular organisms’ embryo development and cancer.
[image: Table1]

The Hh pathway plays a crucial role in many fundamental processes of metazoan organisms, including tissue homeostasis and their embryonic development. In the development of the sea urchin, this pathway controls the establishment of the left–right asymmetry in embryos (Warner et al., 2016). According to the previously proposed model, this signaling pathway, similar to vertebrates, provides an asymmetrical expression of Nodal, which is an important cytokine of the TGF beta superfamily. Moreover, in humans, the aberrant activation of this signaling pathway is increasingly associated with various cancers. For example, Hh was shown to control proliferation, malignancy, and metastasis (Sari et al., 2018). In particular, while the Hh signaling pathway is mainly repressed during mammary embryonic development, overexpression of some components (PTCH1, GLI1/2) of the Hh are up-regulated in tumor stem cells of human breast cancer (Liu et al., 2006).

The key components of Notch signaling are present in all metazoan organisms (Gordon et al., 2008). The canonical Notch pathway begins when a ligand of the Delta/Serrate/LAG-2 (DSL) family binds to the transmembrane receptor protein, Notch (Fehon et al., 1990). The schema of all stages of the process is shown in Figure 3 (part NOTCH). It is well established that the Delta/Notch signaling pathway is intimately involved in mesoderm formation. Subsequently, deregulation of this pathway leads to the elimination of mesoderm derivatives during the embryogenesis of sea urchins (Sherwood and McClay, 1999, 2001; Sweet et al., 2002; Croce and McClay, 2010). In humans, members of the Notch signaling pathway play a key role in embryonic vasculature development (Patel et al., 2005). Notch can in fact be either oncogenic or tumor suppressive depending on the tissue and cellular context. In addition, this pathway is one of the most activated in cancer cells and contributes to metastasis (Venkatesh et al., 2018). For example, the development of squamous cell carcinomas in various epithelial tissues is directly related to mutations in members of the Notch family. These mutations represent the most common cause of misregulation of this signaling pathway (Nowell and Radtke, 2017).

The Wnt signaling pathway regulates the embryogenesis and homeostasis of multicellular organisms. In sea urchin embryos, the Wnt signaling pathway contributes to the activation of the endomesodermal gene regulatory network, whose genes start their expression on the 16-cell stage of embryos (Kumburegama and Wikramanayake, 2008). Also, this pathway regulates the formation of the animal–vegetal (A–V) axis in sea urchin and sea anemone embryos.

In humans, cancer, obesity, and diabetes are the result of the Wnt pathway dysregulation (Langton et al., 2016; Mzoughi et al., 2017). It is shown that the pathway is involved in the regulation of the metabolism of cancer cells, which facilitates tumor progression (Lu et al., 2010; Wang and Kunze, 2015; Poli et al., 2018; Sun et al., 2018).

In the comparison analysis, it was shown that the sea urchin genome contains about 90% of the described homologous components of Wnt signal transduction pathways (Croce et al., 2006; Robert et al., 2014). However, from 13 known Wnt subfamilies, S. purpuratus has only 11: it is missing only Wnt2 and Wnt11 homologs. Meanwhile, last year Croces’ group identified a gene encoding Wnt2 ortholog in the genome of a related sea urchin P. lividus. However, they found no evidence of a bona fide wnt2 gene in S. purpuratus when they reanalyzed its genome (Robert et al., 2019). A consortium of scientists was able to find only about half of the Wnt transcriptional target genes that were reported in the literature.

The purple sea urchin can also be considered as a model of gene expression in the normal developmental processes and is used now as an in vivo model to evaluate the Epithelial/Mesenchymal Transition (EMT; Romancino et al., 2017). In humans, reactivated EMT drives organ fibrosis and tumor progression (Lim and Thiery, 2012; Wu et al., 2012; Nieto et al., 2016). The process of EMT is regulated by a cohort of specific transcription factors that includes Zeb1/Zeb2, Snail, Slug, and Twist (Tulchinsky et al., 2019). Together with chromatin-modifying enzymes, these factors exert both repressive and activating functions. For example, Zeb1, by binding to the E-box consensus site in the DNA, inhibits the transcription of the CDH1 gene, whose product plays a critical role in forming cell-cell junctions. On the other hand, when Zeb1 complexes with Yap1, a member of the Hyppo pathway, it becomes a transcriptional activator to control the transcription of CTGF and AXL genes (Lehmann et al., 2016).



THE POSTGENOMIC ERA IN SEA URCHIN-RELATED RESEARCH


Sea Urchin Genome Sequencing and Analysis

As mentioned before, the sea urchin genome reveals striking similarities to humans and shares with the latter a lot of common gene regulatory pathways.

The first assembly and annotation of the sea urchin genome results were published in 2006 (Sea Urchin Genome Sequencing Consortium et al., 2006) and initiated an active exploration of its genomics and transcriptomics. Over the past 14 years, researchers refined the assembly and annotation of the sea urchin genome. Additional genomic and transcriptomic resources were created, for example, EchinoBase.1

The primary assessment of the purple sea urchin genome was estimated as ∼800 Mb in size (Hinegardner, 1971). After the deep-sequencing refinement, the purple sea urchin genome was predicted to contain 23,300 genes (Sea Urchin Genome Sequencing Consortium et al., 2006). The current genome analysis revealed 33,491 genes (and 556 pseudogenes) that encode 38,439 proteins.2

A comparative analysis of the sea urchin genome with vertebrates revealed an unprecedented complexity relative to other animals in terms of their innate immune recognition receptors (Rast et al., 2006). The SUGSC research team assumed that about 4–5% of all the sea urchin genes identified are involved directly in the immune functions (Sea Urchin Genome Sequencing Consortium et al., 2006).

Around 222 members of the Toll-like receptor family and 203 genes of the NACHT domain–LRR family were described in the sea urchin genome in addition to genes from a large family of cysteine-rich receptor proteins (Rast et al., 2006). The sea urchin immune system showed the presence of a complement system similar to the chordate (Hibino et al., 2006).

Since transcriptional networks are regulated by transcription factors, it is important to mention the work of Howard-Ashby’s team that described the main families of genes coding for transcription factors in the S. purpuratus genome (bHLH, Nuclear Receptor, Basic Leucine Zipper, T-box, Smad, Sox, and other smaller families). The number of genes encoding transcription factors of each family in the sea urchin is comparable to that found in the Drosophila genome, but it is almost twice less than the number of such genes found in the human genome. A similar result was obtained when analyzing the situation with HomeoBox genes (Howard-Ashby et al., 2006). The evolvement of new genes during the evolution since branching Echinodermata from the common Deuterostome branch is associated with the adaptation process, increasing the level of complexity and/or changing the key cellular mechanisms.

During the course of genome analysis, the SUGSC team identified more than 1,200 genes involved in signal transduction. The S. purpuratus genome contains 353 protein kinases (Sea Urchin Genome Sequencing Consortium et al., 2006) and 14 lipid kinases (Bradham et al., 2006). The number of sea urchin protein kinases is higher than that described in the Drosophila genome (about 230 members) but less than in the human kinome (518). Although most of the sea urchin kinase subfamilies are often represented by only a single member, their diversity is surprisingly high and corresponds to approximately 97% of the whole human kinome. Only four subfamilies of kinases are missing (Axl, FastK, H11, and NKF3) in the sea urchin compared to the human kinome, whereas the fruit fly kinome lacks 20 of those, and the kinome of worms misses 32 subfamilies (Bradham et al., 2006). Importantly, it has been shown that approximately 88% of described kinases are expressed during embryogenesis (Bradham et al., 2006; Byrum et al., 2006).

To follow the compilation of similarities in the gene ontology of the sea urchin and of humans, it is important to note that they share common mechanisms of cell cycle control. Perhaps, not surprisingly, a number of genes involved in cell cycle control and DNA metabolism have been described for the sea urchin, although its number is lower compared to the human genome. In addition, a few cases of echinoderm-specific gene diversifications have been described (Fernandez-Guerra et al., 2006). Notably, the sea urchin genome contains orthologs of almost all cyclin-dependent kinases, except CDK3. Members of the NIMA-related kinases family (NEK proteins) are, judging by their complexity, close to vertebrates, whereas the complexity of Polo and Aurora mitotic kinase families are close to those found in the worm (Fernandez-Guerra et al., 2006).

Furthermore, a number of known genes involved in DNA replication, repair, and the mitotic checkpoint were also found in the sea urchin. Interestingly, the sea urchin has a single p63/p73 hybrid homologous to the p53, p63, and p73 members of the p53 family of tumor suppressors (Belyi et al., 2010). In addition, the sea urchin contains two homologs of the pRB tumor suppressor and also one homolog of the p21/p27 family of CDK inhibitors (Fernandez-Guerra et al., 2006). Furthermore, the sea urchin genome shares four families of RAS GTPases with humans: Ras, Rho, Rab, and Afr, although 90% of all small GTPases are expressed during embryogenesis (Beane et al., 2006).



Gene Regulatory Networks

As early as in the pre-genome era, common features, and concepts, of the gene regulatory network (GRN) were described by researchers who used the S. purpuratus sea urchin as a model organism. Genome sequencing and annotation made it possible to structure the information, which led to the creation of one of the most complete networks for the regulation of genes during the early embryogenesis (Davidson et al., 2002; Sea Urchin Genome Sequencing Consortium et al., 2006; Oliveri et al., 2008; Peter and Davidson, 2010, 2017; Peter et al., 2012; Martik et al., 2016).

The key step toward the understanding of basic mechanisms of embryogenesis and global GRN was the deep sequencing of RNA. This allowed the accumulation of data on gene expression networking during the embryogenesis of S. purpuratus (Rafiq et al., 2014; Tu et al., 2014; Barsi et al., 2015; Gildor et al., 2016; Israel et al., 2016; Janies et al., 2016; Pérez-Portela et al., 2016). The described schemes of the GRN became the best tool for the analysis of the development of the genetic control (Peter and Davidson, 2017).

In the study by Tu et al. (2014), the expression profiles of more than 16,000 genes were measured during embryogenesis. For a clearer presentation of the expression profiles of embryonic genes, the authors performed a cluster analysis. The clusters were grouped into four main groups according to their overall dynamics: “off,” “on,” “transient,” and “other” (Tu et al., 2014). They showed that complex expression patterns of many genes underlie embryonic development, especially in the early stages preceding gastrulation.

A study of Rafiq (2014) sets a basis for understanding the genomic regulatory control of a major morphogenetic process – skeletal morphogenesis for embryogenesis. The authors have identified 420 transcripts whose expression levels in primary mesenchymal cells (PMC) were significantly different from other samples. Most of these genes are transcribed at relatively low levels at the stage of mesenchymal blastula. They were targeted at Ets1 and Alx1, key transcription factors that provide regulatory inputs at the top of the PMC regulatory differentiation network.

It was shown that more than half of the identified transcripts received essential inputs from Ets1 and/or Alx1, most of which were positive. All these data point to their key role in the cell-specific identity of PMCs (Rafiq et al., 2014). Additionally, the authors described about 200 transcripts that were not significantly affected by Ets1 or Alx1 knockdown.

The name of the GRN concept implies that exons play a major role in gene cascades. However, The Human Genome Project and the subsequent deciphering of a large number of genomes made it obvious that the bulk of the genome consists of sets of repetitive DNA (Lander et al., 2001). Coding DNA fragments (exons) occupy no more than 2–3% of the genome (Carey, 2017). The major components of the genome are represented by two groups of repetitive DNA sequences: tandem repeats and dispersed repeats or transposons [transposable elements, (TE); Paço et al., 2019]. Almost all eukaryotic genomes contain TE, for example, it occupies about half of the human genome (Wang and Kunze, 2015).



Non-coding RNA in the Sea Urchin

It is well established that almost all of the human genome is transcribed into RNA. Surprisingly, most of the transcribed RNA does not code for proteins and is called non-coding RNA (ncRNA; Lander et al., 2001; Carninci et al., 2005; ENCODE Project Consortium et al., 2007; Djebali et al., 2012; Laurent et al., 2015; Carey, 2017), including microRNA (miRNA, 22–25 bp) and long non-coding RNA (lncRNA, <200 bp). NcRNAs are involved in the transcription regulation of genes and other ncRNA (Li and Liu, 2019). The primary source of all kinds of ncRNA in the genome is transposons (Hadjiargyrou and Delihas, 2013).

MicroRNAs control gene expression via multiple modes (Cai et al., 2009; Steitz and Vasudevan, 2009). In general, the 5' proximal “seed” region (nucleotide 2–8) of miRNAs exhibits imperfect complementarity to the 3’UTR of the target mRNA (Lewis et al., 2005). Subsequently, this newly formed double-stranded RNA is destroyed by dsRNAse, RISC. However, a few cases have been reported when miRNAs regulated the expression by binding the 5'UTR of mRNAs, thereby interfering with the binding of translation initiation factor, eIF4 (Lee et al., 2009; Brümmer and Hausser, 2014).

To date, several models have been proposed describing the consequences of the interaction between the miRNA complex and their targets. The miRNA-dependent gene silencing can be achieved at three stages, including pre-translational, co-translational, and post-translational steps (Finnegan and Matzke, 2003; Garneau et al., 2007; Grewal and Elgin, 2007; Fabian et al., 2010; Carroll et al., 2014).

The lncRNA-driven transcriptional regulation is more complex and includes several mechanisms: (1) lncRNA can recruit a regulatory protein complex to a gene or an entire chromosome; (2) the binding of a transcriptional factor is inhibited by lncRNA; (3) transcription of lncRNAs regulates the transcription of adjacent protein-coding genes; and (4) the heterochromatic or euchromatic organization of regions in close proximity stabilizes these territories and controls the spreading of post-translational modifications to nearby chromatin (Long et al., 2017). Furthermore, lncRNAs play a key role in stem cell differentiation, immune response, epigenetic regulation, inflammation-related diseases, and tumor development (Briggs et al., 2015; Huarte, 2015; Boon et al., 2016; Chen et al., 2017).

Description and analysis of ncRNA regulatory networks could provide new insights into gene transcription regulation not only during the embryonic development, but also in cancer, when specific developmental programs are aberrantly reactivated. Thus, understanding the complexity of these regulatory networks will make it possible to determine the consequences of their disruption in the course of various diseases.




REGULATORY NETWORKS BASED ON NON-CODING RNAS

After the publication of the sea urchin genome annotation, miRNAs were identified (Peterson et al., 2009; Wheeler et al., 2009; Campo-Paysaa et al., 2011). These studies revealed that a few, very conserved, miRNAs are also present in humans (Song et al., 2012). The authors had cloned and sequenced small RNAs (18–40 nucleotides) from different embryo stages, ranging from unfertilized eggs to larva pluteus. Around 49 miRNAs were identified, in which three of these were novel miRNAs (not annotated in miRBase previously). Most of the miRNAs are present in the egg and have dynamic accumulation profiles, with the majority of these being upregulated during gastrulation.

To test the function of miRNA during the embryonic development, authors decided to suppress the dsRNA processing enzyme, Dicer, with Dicer morpholino antisense oligonucleotides (MASO). The majority of injected embryos successfully developed to the stage of blastula. However, at the stage of 48 h p.f., embryos that expressed Dicer MASO failed to enter the gastrulation stage (Song et al., 2012). Developmental defects varied from general retardation to cell death.

One interesting example of opposing functions exerted by one micrRNA is miR-31. Importantly, it is expressed during the embryogenesis of S. purpuratus and suppresses several components of PMC GRN (Pmar1, Alx1, Snail, and VegfR7). Knockdown of miR-31 causes a disturbance of the function of PMC that forms the embryonic skeleton (Stepicheva and Song, 2015). Meanwhile, in humans, miR-31 is considered as a tumor suppressor. Yet, it can affect several signaling pathways that have opposite effects on the proliferation: RAS/MARK and PI3K/AKT stimulate growth, whereas RB/E2F inhibits it. Unfortunately, specific molecular mechanisms that regulate miR-31 in the sea urchin are not known at the moment.

The latest analysis of the sea urchin genome showed that known transposons3 occupy about 15% of the genome, including the major class DNA transposons (Figure 4; Lebedev et al., 2019). The percentage of genome occupied by transposons is higher than that of the worm Caenorhabditis elegans but less than that of fruit fly or human (Kazazian and Moran, 2017).

[image: Figure 4]

FIGURE 4. The percent content of transposable elements (TE) in genomes of the sea urchin S. purpuratus and other invertebrates. TE classes are marked with a color: nonLTR SINE – blue; LINE – red; LTR TE – yellow; DNA transposons – green; non-annotated repeats – lilac (from Lebedev et al., 2019).


The development of new sequencing techniques, such as RNA-Seq, has greatly advanced our understanding and knowledge of new RNAs. In one of the latest studies on this, Hezroni and co-authors, using a PLAR-algorithm, predicted more than 5,000 new sequences of lncRNA in sea urchin transcriptomes (Hezroni et al., 2015).

Genes that code for lincRNAs are more species-specific and less conserved than the gene encoding proteins. In the genome of the sea urchin, synthenic (homologous genes situated on the same chromosomes but in different species) lncRNA genes were identified for more than 2,000 human lincRNA genes. This suggests that the sea urchin likely contains a lot of conserved functional vertebrate lincRNA homologs (Hezroni et al., 2015). Of all detected syntenic lincRNAs, only 18 were found in other amniotes.

One example is LINC00261, located downstream of the Foxa2 gene, which codes for a transcription factor. In all vertebrates, this lincRNA is expressed in endodermal tissues, and in sea urchins, it is expressed in the gut. LINC00261 plays the tumor suppressive role being involved in the regulation of DNA damage (Shahabi et al., 2019).

Another syntenic lincRNA (partially annotated as LINC01122 and LOC101927285 in humans) is expressed in the brain and reproductive tissues across vertebrates. In sea urchins, it is expressed in the adult ovary. Unfortunately, the specific functions of both orthologs are unknown. However, this region is located between the Fancl and Bcl11a loci and one can assume that ncRNA expressed from this locus, at least in humans, may participate in the regulation of DNA damage response and/or apoptosis possibly through the p53 regulatory network.

Well-known embryogenesis signaling pathways conserved between different species can serve as the starting point for understanding the complex network of development organization. In recent years, ncRNAs have rapidly emerged as crucial regulators of main signaling pathways in embryo development and cancer (Fu et al., 2019). Regulation takes place at different levels: from the transcriptional to the post-transcriptional and translational levels, for example, LncRNA is involved in the regulation of WNT, Notch, and other signaling pathways in cancer (Li and Kang, 2014; Trimarchi et al., 2014; Yuan et al., 2014; Ong et al., 2017; Peng et al., 2017; Shen et al., 2017).



FUTURE OF THIS MODEL ORGANISM FOR GENE EXPRESSION STUDIES

Embryogenesis is regulated by complicated mechanisms to ensure that different types of cells and tissues develop from one cell. All processes of embryogenesis are strictly coordinated by signaling pathways. Next-generation sequencing and bioinformatics methods have made it possible to describe the main components of these pathways (Figure 3) and the branched gene regulatory networks.

Studying the regulatory networks of development and its organization on all levels requires experimental models. It seems to us that this model object – the purple sea urchin S. purpuratus – is the most suitable system for studying the regulation system based on ncRNAs. Further deep bioinformatic analysis of the genome, and the transcriptomic profiling of embryogenesis stages of this model object, will promote important discoveries in gene networking.

Spontaneous alterations in these coordinated gene expression programs can lead to the development of an unhealthy embryo. Furthermore, reactivation of these pathways in somatic cells can cause many diseases, including cancer in humans (Table 1).

Interestingly, the history of modern cancer research begins with the sea urchin: in the first decade of the 20th century, the German biologist Boveri discovered that unproper fertilization of sea-urchin eggs with two sperm rather than one led to chromosomal aberrations and to the failure of proper development (Laubichler and Davidson, 2008). Furthermore, purple sea urchins and some other urchin species (L. variegatus, M. franciscanus) retain the ability to regenerate lost or damaged tissues with age (Bodnar and Coffman, 2016).

However, cancers have not been detected in sea urchins. In fact, the life span of some sea urchin species reaches 100 years (Ebert, 2010; Kober and Bernardi, 2013). How such genomic stability is achieved and what the regulatory transcription mechanisms involved in the longevity of these organisms are require further investigation. Thus, sea urchins can provide insights into the processes in cases of serious human diseases associated with the regulation of transcription.
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FOOTNOTES

1http://legacy.echinobase.org/Echinobase/
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Prostate cancer (PC) is one of the most common cancers among men worldwide, and advanced PCs, such as locally advanced PC (LAPC) and castration-resistant PC (CRPC), present the greatest challenges in clinical management. Current indicators have limited capacity to predict the disease course; therefore, better prognostic markers are greatly needed. In this study, we performed a bioinformatic analysis of The Cancer Genome Atlas (TCGA) datasets, including RNA-Seq data from the prostate adenocarcinoma (PRAD; n = 55) and West Coast Dream Team – metastatic CRPC (WCDT-MCRPC; n = 84) projects, to evaluate the transcriptome changes associated with progression-free survival (PFS) for LAPC and CRPC, respectively. We identified the genes whose expression was positively/negatively correlated with PFS. In LAPC, the genes with the most significant negative correlations were ZC2HC1A, SQLE, and KIF11, and the genes with the most significant positive correlations were SOD3, LRRC26, MIR22HG, MEG3, and MIR29B2CHG. In CRPC, the most significant positive correlations were found for BET1, CTAGE5, IFNGR1, and GIMAP6, and the most significant negative correlations were found for CLPB, PRPF19, ZNF610, MPST, and LINC02001. In addition, we performed a gene network interaction analysis using STRINGdb, which revealed a significant relationship between genes predominantly involved in the cell cycle and characterized by upregulated expression in early recurrence. Based on the results, we propose several genes that can be used as potential prognostic markers.

Keywords: prostate cancer, gene expression, PFS, TCGA, PRAD, WCDT-MCRPC


INTRODUCTION

Prostate cancer (PC) is the second most common cancer in men worldwide (Rawla, 2019). Advanced PC presents as locally advanced and castration-resistant tumors. Locally advanced PC (LAPC) is characterized by the spread of the tumor beyond the prostate capsule and is more aggressive than localized PC. Androgen deprivation therapy aimed at reducing the level of circulating testosterone is often used in LAPC treatment (Yap et al., 2016). However, despite rapid patient responses to this therapy, after 18–36 months, the disease frequently progresses to castration-resistant PC (CRPC; Yap et al., 2016). Metastatic CRPC is a prognostically unfavorable disease that requires regular systematic examination and monitoring and significantly impairs quality of life.

During therapy, in some patients, PC has an aggressive course, leading to metastasis, while in others, the disease has an indolent course, with a low tendency for progression. For prognostic assessment of the disease course, various clinical parameters are used, such as the level of prostate-specific antigen (PSA) and/or Gleason score; however, these parameters are not sufficiently informative (Keyes et al., 2013). To solve this problem, new molecular markers are needed that are highly associated with disease progression, which, when used in combination with existing clinical parameters, have a high predictive value. Currently, a promising area in the search for potential markers is the analysis of the most significant and consistent changes in the tumor transcriptome (Larkin et al., 2012; Cao et al., 2019; Pudova et al., 2019; Song et al., 2019).

An important criterion in the study of cancer data is progression-free survival (PFS). This parameter is the time from a random assignment in a clinical trial to disease progression or death from any cause (Forsythe et al., 2018). The study of PFS-specific molecular events will help to identify the major changes associated with the onset of disease progression.

This study aimed to analyze the transcriptome profiles of LAPC and CRPC based on the RNA-Seq data from the prostate adenocarcinoma (PRAD) and West Coast Dream Team – metastatic CRPC (WCDT-MCRPC) projects in The Cancer Genome Atlas (TCGA), respectively. We analyzed the changes in gene expression and molecular pathways related to PFS. The results of this study improve our understanding of the mechanisms underlying PC progression and identify molecules with potential as prognostic markers.



MATERIALS AND METHODS


Data Collection

The study included RNA-Seq data for LAPC samples from the PRAD project (n = 55) and CRPC samples from the WCDT-MCRPC project (n = 84), which were donated to the TCGA consortium. We focused on the study of Caucasian patients (Caucasians were identified as “white” in the databases). The trimmed mean of M-values (TMM) method was used to normalize the RNA-Seq data of each dataset. Ethical approval was not available for the study as our data were revealed from the public database.



Relative Gene Expression and Downstream Analysis

RNA-Seq data from the TCGA project (read counts per gene evaluated by HTSeq) were downloaded from the repository of GDC Data Portal1 and then analyzed in the statistical environment R.2 Data normalization and gene expression analysis with generalized linear models was performed using edgeR package (Robinson et al., 2010). The obtained results were considered statistical significance when the p-value of the quasi-likelihood F-test (QLF test) of <0.05. We did not use Benjamini-Hochberg (BH) p-value adjustment here because very few genes pass the threshold after it is applied.

In order to identify the genes whose expression change is most strongly associated with PFS, we evaluated Spearman’s rank correlation coefficient between the normalized gene expression level and PFS. Here, the obtained results were also considered statistically significant when both Spearman’s p < 0.05 and QLF test p < 0.05. For this analysis, we pre-filtered genes by the following parameters: read counts per million (CPM) > 8 and gene expression fold change is two- or (LogFC) > 1.

Next, we performed KEGG (Kyoto Encyclopedia of Genes and Genomes database) pathway enrichment analysis using the clusterProfile package (Yu et al., 2012). Additionally, we performed interaction network reconstruction and Gene Ontology (GO) pathway enrichment analysis using the STRINGdb (Szklarczyk et al., 2017). For enrichment analyses, BH adjustment to calculate the false discovery rate (FDR) was applied. The obtained results of this analysis were considered statistically significant when the FDR-value of <0.05. When constructing the networks, only data on direct protein-protein interactions were used (other associations such as co-expression, co-occurrence, gene fusions, and neighborhood, which are set by default, were excluded).




RESULTS

Using PRAD and WCDT-MCRPC datasets, we analyzed changes of the relative gene expression associated with PFS (the number of days to recurrence) and found 889 genes for the LAPC and 1,889 genes for CRPC with the p < 0.05 according to the QLF test (Supplementary Tables S1 and S2).


Pathways Enrichment Analysis

First, we focused on the pathways enrichment analysis (KEGG database) to identify the major pathways, the expression of whose members may be positively or negatively associated with PFS (Figure 1). For this analysis, we selected top-80 genes, increased expression of which was positively associated with PFS (further – “upregulated genes”) and top-80 genes with negatively associated expression (further – “downregulated genes”). In LAPC, the most statistically significant enrichment with upregulated genes was noted for “Transcriptional misregulation in cancer” pathway (hsa05202). The analysis of downregulated genes showed a significant enrichment for the “Cell cycle” pathway (hsa04110; Table 1).

[image: Figure 1]

FIGURE 1. Dotplot showing the results of KEGG pathways enrichment analyses performed for top-80 upregulated (A) and downregulated (B) genes associated with PFS in LAPC. The x-axis indicates k/n ratio (“gene ratio”), where k is the number of genes participating in the current KEGG pathway in the top-80 list and n is the total number of genes that participate this pathway. Dot color indicates the false discovery rate (FDR) values according to the Fisher’s exact test.




TABLE 1. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that are significantly enriched with genes associated with progression-free survival (PFS) in locally advanced prostate cancer (LAPC).
[image: Table1]

For CRPC, a pathway enrichment analysis (top-250 up- and downregulated genes) revealed two pathways, “Complement and coagulation cascades” (hsa04610) and “Drug metabolism-cytochrome P-450” (hsa00982), which were enriched with genes that have expression positively associated with PFS. When considering pathways negatively associated with PFS, we have seen an overrepresentation of genes participating in such cancer-associated pathways as the “TGF-beta signaling pathway” (hsa04350), “Hippo signaling pathway” (hsa04390), and others (Figure 2; Table 2).

[image: Figure 2]

FIGURE 2. Dotplot showing the results of KEGG pathways enrichment analyses performed for top-250 upregulated (A) and downregulated (B) genes associated with PFS in CRPC. The x-axis indicates k/n ratio (“gene ratio”), where k is the number of genes participating in the current KEGG pathway in the top-250 list and n is the total number of genes that participate this pathway. Dot color indicates the FDR values according to the Fisher’s exact test.




TABLE 2. KEGG pathways that are significantly enriched with genes associated with PFS in castration-resistant prostate cancer (CRPC).
[image: Table2]



Correlation Analysis Between Gene Expression and PFS

Further, a correlation analysis between the gene expression and PFS was performed in LAPC and CRPC using Spearman’s rank correlation calculation.

For the LAPC, 34 genes were found to be correlated with PFS (p < 0.05); an equal number of genes had positive (17/34) and negative (17/34) correlation with PFS (Figure 3).

[image: Figure 3]

FIGURE 3. List and heatmap demonstrating log relative expression level of genes with significant Spearman’s rank correlation coefficient relative to PFS for LAPC. Cell colors (blue-white-orange gradient) correspond to the binary logarithm of the ratio of the expression level in a current sample to the average level across all the samples (per each gene). Blue – expression level is below the average, orange – above the average. LogFC – binary logarithm of the ratio of GLM-approximated expression values between samples with maximal and minimal PFS; LogCPM – binary logarithm of read counts per million (CPM); p-value (QLF test) – p-value according to quasi-likelihood F-test (edgeR); Spearman r – Spearman’s rank correlation coefficient between gene expression level and PFS; p-value (Spearman) – p-value according to Spearman’s rank correlation test.


For the CRPC, 118 genes were found, including 81 genes with positive correlation and 37 genes with negative correlation with PFS (Figure 4).

[image: Figure 4]

FIGURE 4. List and heatmap demonstrating log relative expression level of genes with significant Spearman’s rank correlation coefficient relative to PFS for CRPC. For comments, see the Figure 3 legend.



Interaction Network Analysis Using STRINGdb

To analyze the LAPC, we examined 190 genes, expression of which is negatively, and 115 genes – positively associated with PFS. These genes passed a threshold of p < 0.05 (both QLF test and Spearman’s rank correlation analysis), irrespectively of CPM and abs(LogFC) values. A statistically significant result was obtained for genes with a negative correlation. For these genes, the network has a strong enrichment of protein-protein interactions (PPI) with p < 1.0e-16 (Figure 5).

[image: Figure 5]

FIGURE 5. The protein-protein interaction network of 190 genes with a significant negative expression correlation with PFS in LAPC. Circle colors indicate proteins participating in the cell cycle regulation (red), organelle organization (green), and response to stress (dark blue). If a gene does not belong to these categories, it is marked with gray. The thickness of lines indicates the reliability of evidence of the interaction between two proteins (direct or indirect experimental confirmation, predictions from homologues, etc.).


The genes shown in Figure 5 encode for proteins participating in such processes as the “Cell cycle” (GO: 0007049; enrichment FDR = 2.24e-15), “Organelle organization” (GO: 0006996; FDR = 8.53e-06), “Response to stress” (GO: 0006950; FDR = 0.0490) terms. We have also noted the cluster with the highest number of interactions, including RAD21, SGOL1, DYNC1LI1, CKAP5, CENPI, PPP2R5C, SKA2, SPC25, MAD2L1, CENPL, BUB1, ERCC6L, SGOL2, and CDCA8 genes. Most of them participate cell cycle process.

Next, we performed a protein-protein interaction network analysis using 196 genes with negative expression correlation with PFS for CRPC. The analysis (PPI enrichment p = 0.000112) revealed involved enrichment in genes participating the “Cell cycle” (GO: 0007049; enrichment FDR = 0.0207), “Regulation of gene expression” (GO: 0010468; FDR = 0.0215), and “Metabolic process” (GO: 0008152; FDR = 0.0345) terms (Figure 6). The interaction network formed with genes positively correlated with PFS did not pass the PPI enrichment p-value threshold.

[image: Figure 6]

FIGURE 6. The protein-protein interaction network of 196 genes with a significant negative expression correlation with PFS in CRPC. Circle colors indicate proteins participating in the cell cycle regulation (red), metabolic process (yellow), and regulation of gene expression (light blue). The thickness of lines indicates the reliability of evidence of the interaction between two proteins (direct or indirect experimental confirmation, predictions from homologues, etc.).






DISCUSSION

In the present study, we examined RNA-Seq data from the two most advanced stages of PC, LAPC and CRPC, with an aim to reveal the major changes in the transcriptome associated with disease progression within each analyzed category. The pathological manifestation of LAPC is invasion of the prostatic capsule as well as invasion beyond it, whereas CRPC, which is the next progressive stage, is characterized by the presence of distant metastases.

Using KEGG pathway enrichment analysis, we found several pathways, activation of which is possibly associated with PFS period, either positively or negatively. In LAPC, the most prominent associations were the increased expression of the participants of “TNF signaling pathway” and “Transcriptional misregulation in cancer.” Transcriptional misregulation involves an extensive network of processes that play dual roles in cancers, and probably in LAPC.

In CRPC, we identified putative activation of “Complement and coagulation cascades” and “Drug metabolism-cytochrome P-450” KEGG pathways to be associated with increased PFS time. According to various studies, the expression levels of complement system genes vary in different cancers. In PC, upregulated expression of complement system genes in both the classical and alternative pathways is associated with a good prognosis and long-term patient survival (Roumenina et al., 2019). Based on our results, putative activation of the complement pathway increased the relapse time in CRPC. Therefore, in patients with activation of the complement pathway genes, a longer response to therapy is expected, which may lead to the elimination of tumor-induced immunosuppression and increased antitumor immunity. Among the identified pathways enriched with genes negatively associated with PFS in CRPC, we noticed several cancer-associated pathways such as the “Hippo signaling pathway” and “TGF-beta signaling pathway” as well as “Transcriptional misregulation in cancer.”

Next, we performed PPI network and GO enrichment analysis using the STRINGdb. We examined the interaction networks for sets of genes that were positively and negatively correlated with PFS. In both datasets, statistically significant results were obtained only for genes with negative correlations. In LAPC, an extensive network of protein-protein interactions was identified for downregulated genes, which suggests close biological relationships among the genes and proteins under study. We observed significant enrichment with participants of several biological processes such as “Cell cycle,” “Organelle organization,” and “Response to stress.” In CRPC, we observed strong enrichment with genes involved “Cell cycle,” “Regulation of gene expression,” and “Metabolic process.” This suggests that the activation of the cell cycle and an increase in the expression of cell cycle-related genes may be behind the formation of more aggressive tumor phenotype and shortened PFS period, for both LAPC and CRPC. This is to be expected. Needless to say once again, the cell cycle, in particular cellular mitosis, and cancer are closely related, as cancer cells undergo abnormal, uncontrolled mitosis, which supports tumor growth and metastasis, two processes that are integral to disease progression (Weaver and Cleveland, 2005).

In our study, we also focused on identifying potential prognostic markers among the genes that have the strongest correlations with PFS. In LAPC, KIF11 (Spearman’s rank correlation coefficient, rs = 0.41), ZC2HC1A (rs = −0.41), and SQLE (rs = −0.40) had the greatest negative correlations with PFS, while SOD3 (rs = 0.36) and LRRC26 (rs = 0.34) had the highest positive correlations. We reviewed the literature regarding the role of these genes in cancer, especially PC.

The kinesin family member 11 (KIF11) gene encodes mitotic kinesin, which plays a central role in mitosis (Wojcik et al., 2013). In PC, assessment of tumor cell differentiation, which is recorded as the Gleason score, is an important prognostic parameter. A value of 8 or higher corresponds to a poorly differentiated tumor and is associated with an unfavorable prognosis (Gordetsky and Epstein, 2016). A value of 8 or higher corresponds to a poorly differentiated tumor and is associated with an unfavorable prognosis. It was shown that KIF11 gene expression was higher in PC tumor samples with a Gleason score of 8 (poorly differentiated tumors) than in tumor samples with a Gleason score of 7 (moderately differentiated tumors; Piao et al., 2017). In our study, we found that KIF11 gene expression was negatively correlated with an increase in the number of days before recurrence, which confirms the relationship of this gene with unfavorable prognosis in PC.

There are few data regarding zinc finger C2HC-type containing 1A (ZC2HC1A). However, Zhu et al. (2019) showed that overexpression of the ZC2HC1A gene was associated with unfavorable prognosis in hepatocellular carcinoma. In our study, ZC2HC1A expression was increased in PC samples with early onset recurrence.

The SQLE gene encodes squalene epoxidase, which is involved in cholesterol synthesis. Cholesterol is an essential component of cell membranes and a precursor for the synthesis of androgens (Pelton et al., 2012). According to previous data, the SQLE gene is expressed in aggressive PC, and its expression is correlated with the Gleason score. It has been suggested that the progression of PC depends on the de novo synthesis of cholesterol catalyzed by SQLE (Stopsack et al., 2017). In our study, we observed higher SQLE gene expression in samples with early onset relapse.

Prostate cancer can also progress due to oxidative stress, which produces reactive oxygen species (ROS; Shiota et al., 2011). Cells are protected against ROS by antioxidant enzymes, such as superoxide dismutase (SOD), which functions as a first line antioxidant enzyme. The SOD3 gene encodes an extracellular isoform of the enzyme, and data suggest that SOD3 acts as a tumor suppressor in PC (Faraci and Didion, 2004). Thus, the effect of SOD3 gene expression on cell proliferation, migration, and invasion of PC-3 cells was assessed, and the results showed that overexpression of SOD3 inhibits these processes (Kim et al., 2014). Our data also demonstrate that SOD3 gene expression was increased relative to time to relapse and was lower in tumor samples from patients with an unfavorable prognosis.

Studies on the function of LRRC26 gene in LNCaP cell culture have shown that its overexpression leads to suppression of the NF-κB pathway, which is involved in cancer progression and metastasis (Liu et al., 2012). Thus, decreased expression of the LRRC26 gene is associated with an unfavorable prognosis in PC, which is consistent with our results.

Correlation analysis of gene expression with PFS in CRPC revealed that the following genes had the strongest Spearman correlation coefficients: CLPB (rs = −0.49), PRPF19 (rs = −0.43), MPST (rs = 0.41), IFNGR1 (rs = 0.44), CTAGE5 (rs = 0.42), GIMAP6 (rs = 0.40), and BET1 (rs = 0.40).

The caseinolytic mitochondrial matrix peptidase chaperone subunit B (CLPB) is an ATPase associated with a variety of cellular processes. Currently, there are no data on the role of this gene in cancer. Our study showed that an increase in expression was associated with an unfavorable prognosis, as evidenced by the strong correlation and high statistical significance.

The pre-mRNA processing factor 19 (PRPF19) gene encodes the hPrp19 protein, which is involved in many physiological processes, such as the ubiquitin-proteasome system, DNA damage response, proliferation, and apoptosis (Yin et al., 2012). The hPrp19 protein has been reported to play a potential pro-oncogenic role due to its proliferation-promoting activity. hPrp19 is also required for the expression of p21, which has an intense cell cycle arrest-promoting effect (Chen et al., 2011). The mechanism of hPrp19 in cancer is still unclear; however, its involvement in DNA repair is expected to be correlated with tumor progression. According to our results, in CRPC, increased expression of the PRPF19 gene is associated with early relapse.

The mercaptopyruvate sulfurtransferase (MPST) gene encodes an enzyme involved in the catalysis of endogenous hydrogen sulfide from L-cysteine. Various studies have shown that endogenous hydrogen sulfide can regulate the occurrence and development of tumors and can participate in cancer progression by stimulating angiogenesis and cell growth in colon and ovarian cancer (Bhattacharyya et al., 2013; Szabo et al., 2013; Hellmich and Szabo, 2015). In CRPC, we observed an increase in MPST expression at relapse, which suggests the involvement of this gene in PC progression.

Interferon-gamma receptor 1 (IFNGR1) encodes a subunit of the IFN-γ receptor that acts in IFN-γ pathways and regulates the immune response. Reduced expression of this gene was observed in MYC-dependent metastatic PC. Experiments that activate IFNGR1 gene expression demonstrated strong activation of tumor-suppression signaling and sustained apoptosis (Wee et al., 2014). We observed similar results in CRPC, which showed decreased expression of the IFNGR1 gene in tumor samples with early relapse.

The CTAGE family member 5 (CTAGE5) gene product (an ER export factor) is involved in the transport of collagen VII in the endoplasmic reticulum. In PC, the CTAGE5 gene is involved in tumor-specific splicing (Ren et al., 2012). Our study showed a decrease in the expression of CTAGE5 in samples with early relapse.

The GTPase, IMAP family member 6 (GIMAP6) gene encodes a protein belonging to the GIMAP family of proteins, which are mainly expressed in immune system cells and contribute to the development of thymocytes, apoptosis of peripheral lymphocytes, and T-helper differentiation (Filen et al., 2009). Dysregulation of GIMAP6 expression is observed in non-small cell lung cancer, where the GIMAP6 gene expression is decreased in tumor samples (Shiao et al., 2008). Decreased expression of the GIMAP6 gene has also been noted in hepatocellular carcinoma (Huang et al., 2016). In CRPC, we also observed that decreased expression of GIMAP6 was associated with the onset of disease relapse.

Bet1 Golgi vesicular membrane trafficking protein (BET1) is a membrane protein associated with the Golgi complex that is involved in vesicular transport. There are few published studies on the function of this gene in cancer. There is a report that BET1 was identified as part of a gene expression signature associated with a favorable prognosis in glioblastoma (Cai et al., 2020). We showed that decreased BET1 expression was associated with early relapse in CRPC. In addition to the identified protein-coding genes, in our correlation analysis, we also found long non-coding RNAs (lncRNAs) with altered expression patterns. LncRNAs are involved in the regulation of various biological processes, including many cancer-associated pathways (Spizzo et al., 2012; Flynn and Chang, 2014; Quinn and Chang, 2016). Aberrant lncRNAs expression has been observed in a variety of cancers, and many studies have shown a link between these molecules and cancer development and progression. In LAPC, we found changed expression of the following lncRNAs that were associated with PFS: MIR22HG (rs = 0.27), MEG3 (rs = 0.27), and MIR29B2CHG (rs = 0.31).

Regarding the role of MIR22 host gene (MIR22HG) in PC, decreased MIR22HG expression has been shown to be significantly associated with a higher Gleason score and shorter PFS time, highlighting its prognostic potential (Shen et al., 2019). In our analysis, we also observed an association between decreased MIR22HG expression and early onset of disease recurrence.

Studies on maternally expressed 3 (MEG3) have shown that this lncRNA inhibits the proliferation and metastasis of gastric cancer through p53 signaling (Wei and Wang, 2017). In PC, MEG3 is characterized by a downregulated expression, and increased expression has an inhibitory effect on tumor growth (Wu et al., 2019). Therefore, our results are consistent with the published data.

There are currently no data on the role of MIR29B2 and MIR29C host gene (MIR29B2CHG) in cancer. Therefore, we report here, for the first time, the involvement of MIR29B2CHG in the progression of LAPC.

In CRPC, we identified an association between an increase in the expression of LINC02001 (small nucleolar RNA host gene 30 [SNHG30]; rs = −0.38) and early onset of disease relapse. No studies on the involvement of LINC02001 in cancer have been reported.

Summing up, in this study, genes and pathways associated with PFS in advanced-stage PC (LAPC and CRPC) were identified. Our results are consistent with the previous studies that reported the participation of KIF11, SQLE, SOD3, LRRC26, IFNGR1, MIR22H6, and MEG3 in the carcinogenesis and progression of PC. The possible association with the progression of PC was first shown for genes ZC2HC1A, CLPB, PRPF19, MPST, GIMAP6, BET1, MIR29B2CH6, and LINC02001. All listed genes showed strong correlations with PFS and thus could be considered as potential prognostic markers.
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Genome architecture plays a pivotal role in gene regulation. The use of high-throughput methods for chromatin profiling and 3-D interaction mapping provide rich experimental data sets describing genome organization and dynamics. These data challenge development of new models and algorithms connecting genome architecture with epigenetic marks. In this review, we describe how chromatin architecture could be reconstructed from epigenetic data using biophysical or statistical approaches. We discuss the applicability and limitations of these methods for understanding the mechanisms of chromatin organization. We also highlight the emergence of new predictive approaches for scoring effects of structural variations in human cells.
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STUDYING GENOME ARCHITECTURE: METHODS AND MECHANISMS

The human genome has a three-dimensional structure, which folds in the nucleus, producing specific chromatin interactions. These chromatin interactions can be experimentally assessed by modern microscopy methods (reviewed in Boettiger and Murphy, 2020) or sequencing approaches, such as genome-wide modifications of chromatin conformation capture (Hi-C) (Lieberman-Aiden et al., 2009; Rao et al., 2014), split-pool recognition of interactions by tag extension (Quinodoz et al., 2018), and genome architecture mapping (Beagrie et al., 2017). These methods are covered by comprehensive reviews (Kempfer and Pombo, 2020) and comparative studies (Fiorillo et al., 2020). Here, we focus mainly on the Hi-C technique and its results because this method was most widely applied in various genomic studies during the last decade, allowing the accumulation of a huge amount of experimental data. Both methodological aspects of the Hi-C technique (Fiorillo et al., 2020) and biological principles revealed by applying this method to study genome architecture (Szabo et al., 2019) are discussed in detail in several recent reviews. We refer readers to Box 1, where we briefly discuss the main concepts of this field for the sake of completeness.

BOX 1. Start of Box 1 Hi-C technology uncovers principles of genome organization.

Hi-C includes crosslinking and digestion of chromatin, followed by proximity ligation and sequencing of ligation products (Lieberman-Aiden et al., 2009; Rao et al., 2014). During the proximity ligation step, only those genomic regions that spatially co-localize have a chance to be ligated. Thus, counting ligation products by next-generation sequencing allows deciphering the spatial proximity of loci. Although several single-cell Hi-C methods are published (Flyamer et al., 2017), the technique is most often applied to large cell populations, and ligation event frequency (also referred to as interaction or contact frequency throughout this review) should be interpreted as the average frequency of loci co-localization among the studied cell population. This snapshot of averaged chromatin contacts in a population, typically represented by a matrix of pairwise interaction frequencies, is known as a Hi-C map.

Using Hi-C and other methods, several important principles of genome architecture were recently discovered. At the largest scales, chromosomes occupy distinct territories, showing only limited intermingling (Tavares-Cadete et al., 2020) and characterized by an exponential decay of contact frequencies with the genomic distance between loci (Lieberman-Aiden et al., 2009). Within the territories, one can distinguish compartments that correspond to different chromatin types (Lieberman-Aiden et al., 2009). Mechanisms underlying compartment formation are actively debated, and there is a growing body of theoretical and experimental pieces of evidence suggesting the essential role of liquid–liquid phase separation in these processes (Kantidze and Razin, 2020; Razin and Gavrilov, 2020; Razin and Ulianov, 2020). At a finer scale, specific loci may preferentially interact with each other, forming topologically associated domains (TADs) (Dixon et al., 2012), stripes (Vian et al., 2018), cliques (Petrovic et al., 2019), and loops (Rao et al., 2014). Although the terminology is not well established in this field (de Wit, 2020), the current mechanisms underlying the formation of these structures fall into two categories.

First is a recently proposed loop extrusion mechanism (Sanborn et al., 2015; Fudenberg et al., 2016). It is considered that ring-shaped cohesin and condensin proteins bind chromatin and form and continuously extend loops in an ATP-dependent manner. Extrusion stops encountering another extrusion complex or, in the case of cohesins, when reaching CTCF protein bound to DNA in a specific orientation. This results in increased interaction frequency between loci bound by cohesin, displayed on Hi-C maps as loops (two-point interactions) (Rao et al., 2014) or stripes (one-to-many-points interactions) (Vian et al., 2018). The chromatin interaction patterns arising from loop extrusion mechanisms could be qualitatively described by the landscape of CTCF binding and also depend on the loading and processivity of cohesin (Fudenberg et al., 2016). Moreover, loop extrusion results in increased proximity of all loci located between convergently oriented CTCF sites, which is captured by the formation of looping domains (Rao et al., 2014).

The second mechanism responsible for the formation of loops and cliques is mediated by the formation of regulatory protein complexes, for example, polycomb complexes (Eagen et al., 2017), and certain transcription factors (Petrovic et al., 2019). This mechanism is at least partially independent of cohesin-mediated extrusion because the subset of loops remains stable upon degradation of the cohesin complex (Rao et al., 2017).

It is important to note that profiles of chromatin interactions captured by the Hi-C experiment are formed by the joint action of different mechanisms. For example, the formation of TADs, which represent self-interacting regions in the genome, is affected both by loop extrusion and compartmentalization processes (Szabo et al., 2019; de Wit, 2020), which is consistent with both convergent CTCF sites and chromatin state transition enrichment at TAD boundaries (Dixon et al., 2012; Rao et al., 2014; Huang et al., 2015).



WHY MODELING 3-D GENOME FOLDING?

The models and algorithms predicting genome architecture can be used in different ways. First, we can apply modeling to get new insights or test our hypotheses of molecular mechanisms underlying 3-D genome folding. Polymer modeling is used more often for this purpose, but convolutional neural networks, such as, for example, Akita (Fudenberg et al., 2020) and DeepC (Schwessinger et al., 2020), also enable identifying the main chromosome features contributing to genome architecture. Such approaches give remarkable results. During the last few years, we gained a significant amount of data describing the main features of 3-D genome folding and understanding the molecular mechanisms underlying these data, including loop extrusion and phase separation, which was largely facilitated by biophysical modeling and statistical analysis of chromatin properties. This field of research is well described in reviews (Imakaev et al., 2015; Lin et al., 2019). However, known mechanisms do not explain all 3-D chromatin features, which limits hypothesis-driven models and further research is required to explain them.

Second, 3-D genome models can be used to predict functional consequences caused by changes in 3-D genome folding. It is shown that alterations of chromatin topology accompanying genomic variations, especially large structural variations, can cause changes of gene expression (Franke et al., 2016; Rodríguez-Carballo et al., 2017; Kraft et al., 2019). One can find examples of such gene expression changes and their underlying mechanisms in the last part of this review. In these cases, modeling of 3-D genome architecture is essential for accurate prediction of the consequences of the genomic mutations.

Last, one can use modeling for predicting the 3-D genome architecture of new data. It is possible to predict chromatin interactions for different cell types lacking experimental Hi-C data (Belokopytova et al., 2020). Machine learning methods often gain applicability in this way.



WHICH 3-D GENOME STRUCTURES CAN BE PREDICTED, AND WHY THEY ARE RELEVANT?

Chromosome-capturing methods, such as Hi-C, allow deciphering the main features of chromatin folding. Since the first Hi-C experiments, chromatin structures as compartments, TADs, and loops were revealed (see Box 1 for details of mechanisms underlying these structures). In the following, we describe the main Hi-C map features and algorithms used to predict them. Also, it may be helpful for readers new to the field to use the table of algorithms (Table 1) containing algorithms for predicting different 3-D genome features.


TABLE 1. Tools for modeling and predicting chromatin interactions.
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Promoter–Enhancer Interactions

Interactions between promoters and enhancers are essential for expression regulation. Pioneering attempts to find such regulatory connections rely on either the correlation of epigenetic marks of promoters and enhancers across different cell types or evolutionary conservation of promoter–enhancer proximity in the linear DNA molecule (Spicuglia and Vanhille, 2012; Andersson and Sandelin, 2020). With the advent of genome-wide 3C-methods, we gain the ability to measure spatial proximity between genomic segments. The question about the exact role of spatial contacts between regulatory elements in the control of gene expression is still under active debate; however, much research defines “interacting” enhancers and promoters as pairs of loci belonging to the anchors of one Hi-C loop. Although we argue that using this loop-based definition of interacting promoters and enhancers might be confusing (see Box 1 and limitations section below for additional discussion), several algorithms are designed to predict enhancer–promoter pairs located within the anchors of one loop (Whalen et al., 2016).



Loops

Instead of predicting whether promoters and enhancers overlap loop anchors, some algorithms, such as Lollipop (Kai et al., 2018), 3DEpiloop (Al Bkhetan and Plewczynski, 2018), and EpiTensor (Zhu et al., 2016), are designed to directly infer all loop positions using epigenetic data. In mammals, most of the looping interactions are formed due to the cohesin-mediated loop extrusion process (see Box 1 for details). Thus, some algorithms, such as CTCF-MP (Zhang et al., 2018) or Lollipop (Kai et al., 2018), are focused exclusively on the prediction of CTCF-mediated interactions or separately access quality of prediction for CTCF-mediated and all other loops as in the DeepMILO algorithm (Trieu et al., 2020).



TADs

TADs have the shape of triangles on Hi-C maps, which indicates an increase of chromatin interaction frequency within TADs and insulation at TAD borders. These structures are largely dependent on the extrusion process and also influenced by other mechanisms (see references provided in Box 1 for discussion of the TAD definition and current views on mechanisms explaining TAD formation). TADs are also relevant for promoter–enhancer interactions as the majority of the functional interactions occur within the same TAD. It is known that TAD boundaries are enriched by CTCF binding sites (usually in convergent orientation) and different epigenetic marks (Dixon et al., 2012). Based on these observations, Huang et al. (2015) use ChIP-seq data for different proteins in a computational model predicting TAD boundaries and chromatin interaction hubs.



Compartments

Chromatin compartments are the main features of distant contacts revealed by chromosome conformation capture. Hi-C maps show that interactions occur more often within each compartment rather than across compartments (Lieberman-Aiden et al., 2009). The presence of compartments results in a checkerboard-like (or “plaid-like”) pattern of contacts on Hi-C maps. It is shown that compartments reflect the clustering of different types of chromatin (see Box 1 for details). Seminal work proposed binary division of the genome into eu- and heterochromatin, which correspond to A- and B-compartments. Subsequent research extends this view, suggesting that multiple chromatin states exist, each described by a unique profile of spatial interactions (Rao et al., 2014). In accord with this, several models are proposed, allowing the prediction of compartmental interactions based on epigenetic data (Di Pierro et al., 2017; MacPherson et al., 2018). Most of these algorithms utilize physical modeling to infer spatial chromatin interactions. Machine learning methods are often used as a part of the algorithm to attribute genomic loci to a certain compartment based on its epigenetic signatures.



Hi-C Maps

Predictions of all aforementioned features require similar epigenetic information. Thus, it should be possible to develop an algorithm predicting all topological structures simultaneously. Because it is widely assumed that biologically relevant interactions do not occur at a distance above several megabases, most of the algorithms limit their prediction to these distances, which reduces computational time and resources. For instance, machine learning algorithms, such as 3Dpredictor (Belokopytova et al., 2020), HiC-Reg (Zhang et al., 2019), Akita (Fudenberg et al., 2020), and DeepC (Schwessinger et al., 2020), predict all interactions within an ∼1–3 Mb window. In addition, some polymer modeling approaches, such as Hip-Hop (Buckle et al., 2018) and PRISMR (Bianco et al., 2018), could be used to predict the whole Hi-C heat map.



From Contact Frequencies to 3-D Models

Hi-C and other 3C-based methods provide a snapshot of pairwise interactions between loci. Although we call this “3-D” information, it cannot be trivially transformed into 3-D structures. An approach known as restraint-based (RB) modeling interprets the 3C-based data as a set of spatial restraints to build a 3-D model of the chromatin fiber by satisfying the input restraints. The chromatin fiber is represented as a polymer of consecutive monomers, and several computational optimization strategies can be employed to find 3-D models of chromatin (Dekker et al., 2013; Serra et al., 2015). The challenge of predicting 3-D genomic structures from high-resolution chromosome conformation capture data was recently taken by several groups, and we refer the reader to the recent review by Kimberly MacKay and Anthony Kusalik describing problems and solutions in this field (MacKay and Kusalik, 2020) and to the articles collected in the recently published book Modeling the 3D Conformation of Genomes (Tiana and Luca, 2019).



HOW DO THE MODELING ALGORITHMS WORK? PROBLEMS AND LIMITATIONS

All models and algorithms that are currently used to infer chromatin contacts from epigenetic data could be divided into two categories. First are the models derived from the physical simulation of chromatin behavior, i.e., polymer modeling. The second includes statistical algorithms searching for interdependencies between genetic and epigenetic properties and patterns of 3-D contacts. Here, we described the principles and limitations of both approaches.



POLYMER MODELING

The physics of chromatin has been the subject of intense research over many decades. Seminal studies by de Gennes and Witten (1980) provide basic rules describing polymer behavior under different conditions. Importantly, these studies show that, when a polymer is large (i.e., its size increases the size of individual monomers significantly), its physical properties do not depend on the monomer’s chemical structure. Instead, the behavior of a polymer depends on several physical parameters, such as monomer concentration, solvent quality, and temperature. For different combinations of these parameters, the polymer would exist in one of the well-described equilibrium states, such as the random coil, the swollen coil, the equilibrium globular state, and others (Fudenberg and Mirny, 2012). Thus, knowing the key parameters and using the laws of polymer physics would allow the description (and prediction) of chromatin behavior within the nucleus. These ideas gave rise to the first physical models of chromatin architecture.

Development and validation of physical models during recent decades are linked to the development of experimental techniques measuring genome architecture (Figure 1). The presence of chromosome territories as well as measures of mean distances between defined loci by FISH disagree with basic swollen coil or random coil polymer properties (Hahnfeldt et al., 1993). There were multiple attempts to improve these disagreements, of which the fractal globule (Mirny, 2011) is currently the most accepted. This model, originally proposed by Grosberg et al. (1988) suggests that chromatin exists in a highly unknotted fractal-like non-equilibrium state, and the predictions obtained using this model fit well with the experimentally measured scaling of Hi-C contacts (Lieberman-Aiden et al., 2009).
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FIGURE 1. Modeling and predicting the main features of the 3-D-genome organization using physical and statistical approaches. The features row contains a schematic representation of the main features of 3-D-genome organization: scaling of contacts with genomic distance, compartments, TADs, loops, and inter-cell variability of genome architecture (from left to right). The 3C methods row shows that contact scaling and compartments could be found using low-resolution Hi-C data, whereas identification of loops and dissection of TAD structure requires high resolution. Studying inter-cell variability is challenging and could be done using single-cell Hi-C approaches (scHi-C). Microscopy methods shown in the second row include conventional 3D-FISH (fluorescent in situ hybridization) to measure spatial distances; electron microscopy, which is helpful to visualize segregation of eu- and heterochromatin; and modern super-resolution microscopy methods, which, in combination with oligopaints, allow dissection of the internal structure of TADs in individual cells (Boettiger and Murphy, 2020; Szabo et al., 2020). Physical description of chromatin interactions (fourth row) includes generic models such as the fractal globule as well as locus-specific models. For the latter, researchers employ block-copolymer models and models with chromatin binders, such as strings and binders switch (SBS) and diffusive transcription factor (TF) models and concepts of liquid–liquid phase separation (LLPS). All these physical models allow studying the dynamics and inter-cell variability of 3-D structures, providing ensembles of possible chromatin conformations (this is schematically shown in the last cell of the physical models row). Statistical methods (the last row) could utilize interconnections between epigenetic data and chromatin organization using different approaches. This includes approaches in which explicitly defined algebraic expressions contain free parameters, which could be fit from the data, hidden Markov models (HMM), and various machine learning (ML) algorithms. TADs, loops, and compartments were predicted using these methods. However, for single-cell data, these approaches are not applicable, mainly due to the large amount of data required for the implementation of these algorithms.


Although the fractal globule recapitulates the experimentally observed scaling of chromatin contacts better than the equilibrium globule state, it is still far from a complete description of chromatin folding in a real cell. Not to mention all disagreements (see Grosberg, 2016, for a detailed review), the fractal globule represents a pictorial description of the chromatin structures and does not include locus-specific features. Thus, to build a more comprehensive description of chromatin conformation and dynamics in a real cell, active (energy-consuming) locus-specific mechanisms should be introduced into the system.

One such mechanism, which maintains the structure of chromatin, is a loop extrusion process (see Box 1 for details on this mechanism). This process was recently introduced into physical models of chromatin by Fudenberg et al. (2016) and Sanborn et al. (2015), and later experimentally validated by Ganji et al. (2018), Davidson et al. (2019), and Kim et al. (2019). A recent preprint from Banigan et al. (2020) shows another impressive application of polymer modeling in which it helps to investigate if a one- or two-sided loop extrusion model works in the cell and to identify a class of one-sided extrusion models that can reproduce in vivo experiments. The models of loop extrusion show good agreement with the experimental Hi-C data. Importantly, loop extrusion models use epigenetic information about CTCF binding to account for CTCF-mediated extrusion barriers. This allows making the model locus-specific; moreover, modifying CTCF anchors in silico results in different chromatin packaging as revealed by the models (Sanborn et al., 2015). Thus, such physical models allow predicting chromatin packaging and its perturbations knowing CTCF-binding sites.

Another class of locus-specific models is designed to study and predict the packaging of different chromatin types. Distinct types of chromatin differentially interact with themselves and surrounding proteins. This can be imagined as a polymer composed of several distinct units or blocks. Such polymers are called block copolymers, and their behavior could be modeled knowing the interaction potential between blocks (Bates and Fredrickson, 1990). Several attempts have been made to apply this logic for modeling chromatin interactions in Drosophila and Human (Jost et al., 2014; Di Pierro et al., 2016; Ulianov et al., 2016). These models predict that specific preferences of interactions between similar blocks of chromatin result in spatial segregation of distinct chromatin domains in the process of liquid–liquid phase separation (Nuebler et al., 2018).

Block copolymer models rely on the epigenetic information about histone modifications and/or architectural factor binding to assign DNA segments to specific chromatin types. Once developed, these models could be used to predict chromatin architecture if epigenetic data is available. Indeed, several studies show that such prediction recapitulates Hi-C data very well (Di Pierro et al., 2017), especially when accounting for the loop extrusion process (Nuebler et al., 2018; Qi and Zhang, 2019).

To further extend block copolymer models, one should consider the physical nature of interactions between blocks. In a nucleus, these interactions are mediated by specific factors, such as polycomb-group proteins (Plys et al., 2019; Eeftens et al., 2020), BRD-domain containing proteins (Gibson et al., 2019), HP1 (Larson et al., 2017; Sanulli et al., 2019), mediator and RNA polymerase II (Cho et al., 2018), or interactions between DNA and nuclear lamina proteins (Chiang et al., 2019; Ulianov et al., 2019). The above-described block copolymer models account for these interactions implicitly by setting specific interaction potentials between different block types. Other models explicitly introduce binder proteins that mediate interactions in the system.

There are multiple ligand-binding theories applied to model DNA–protein interactions in chromatin, reviewed, for example, in Teif and Rippe, 2010. Among recent models that aim to explain genome-wide interaction profiles revealed by 3C-based methods, several consider specific chromatin binders, such as HP1 (Teif et al., 2015; MacPherson et al., 2018), lamina proteins (Chiang et al., 2019; Ulianov et al., 2019), or generic active and inactive complexes (Brackley et al., 2016b), whereas others describe binders, such as abstract molecules with defined physical properties but unknown biological nature (Nicodemi and Prisco, 2009; Barbieri et al., 2012; Brackley et al., 2013, 2017; Chiariello et al., 2016). Mechanistically, chromatin clustering may be reproduced by these models either due to the affinity of binders or because of multivalent interactions between binders and chromatin, which results in bridging-induced attraction (Brackley et al., 2013, 2017; Johnson et al., 2015). In addition to compartmentalization, these mechanisms could explain TAD and loops formation (Brackley et al., 2016b). For more details on these and other physical models, we refer the reader to a recently published extensive review (Brackey et al., 2020) and a collection of articles provided with the book (Tiana and Luca, 2019).

Here, it is pertinent to note that the binder positions are inferred from epigenetic data even in those models that use “abstract” binders. This allows predicting chromatin folding in normal and mutated genomes, knowing epigenetic data with high accuracy (Scialdone et al., 2011; Bianco et al., 2012, 2018; Brackley et al., 2016a,b; Barbieri et al., 2017; Chiariello et al., 2017; Kragesteen et al., 2018). For example, the Hip-Hop model (Buckle et al., 2018) infers binder positions based on H3K27 acetylation data and/or chromatin accessibility, and the authors show that this epigenetic information is sufficient for prediction of chromatin interactions. In the PRISMR model (Bianco et al., 2018), Hi-C data obtained from wild-type cells are used to define the number of binder types and their affinities, and this information can be further used to model chromatin conformation after a deletion or duplication event occurs.

The examples mentioned above show that physical modeling could be a powerful tool for both validation of proposed molecular mechanisms underlying chromatin architecture and predicting spatial interactions based on epigenetic data. In the following, we discuss some limitations that should be addressed to allow a comprehensive description of genome organization by physical modeling.


Limitations of Physical Models


Physical Modeling Is Hypothesis-Driven

As was mentioned above, physical models rely on an explicitly defined set of rules to describe polymer behavior. However, we are still far from a complete understanding of all biophysical processes involved in chromatin organization. Thus, it is clear that none of the currently developed models can accurately explain all details of genome architecture and dynamics.

For example, PRISMR and Hip-Hop models introduce specific binders whose positions and affinity could be inferred from experimental Hi-C or ChIP-seq data. The problem is not only that we do not know the correspondence between the model’s abstract binders and real proteins. The major concern is that these abstract binders might not be given the same physical properties as real proteins. Biochemical dissection of regulatory complexes, such as PRC1 or Mediator, show the complexity of their structural organization and regulation, which is not described by current models. This limits modeling approaches to qualitative predictions of trends rather than quantitative comparison with contact maps.



Inferring Key Physical Parameters Might Be Challenging

There are many biophysical parameters that are currently unknown but essential for modeling. This includes affinity constants and concentrations of chromatin binders, the position of boundaries, and processivity of loop extruders and other factors. One solution to this problem is extracting the missing parameters from available ChIP-seq data. For example, in the MEGABASE + MiChroM model developed by Di Pierro and colleagues, chromatin states are first inferred from epigenetic data using a machine learning approach and then used in a block copolymer model optimized to fit Hi-C data (Di Pierro et al., 2017). However, in many cases, available ChIP-seq data is only indirectly connected to the affinity and concentration of the key architectural factors, and the dependence between ChIP-seq signals and biophysical properties of chromatin may vary in different cell types. Thus, the model developed using one cell type might not be well transferable to another.

There are also models that fit their parameters directly using Hi-C data. This is, for example, the PRISMR model (Bianco et al., 2018), which defines binder types and positions based on Hi-C maps. The transferability of this model to other cell types or loci without knowing corresponding experimental Hi-C data could be problematic.

There are also several technical parameters of simulation that could influence the results, including the finite volume effect, polymer conformation used for model initialization, equilibration time, sampling size, etc. We refer those readers interested in this subject to a recent review describing potential pitfalls and methods developed to overcome these limitations (Gartner and Jayaraman, 2019).



Physical Modeling Is Computationally Intensive and Often Requires Coarse-Graining

Using a polymer modeling approach is computationally intensive. Technically, the vast majority of the physical models describe chromatin as a string with beads. Ideally, each bead should represent a single nucleosome as histone octamers are monomers of chromatin organization. However, this leads to a huge number of beads required to simulate chromosome-scaled loci. The behavior of beads is typically simulated using LAMMPS software, which is computationally intensive for such a large number of objects. Great computational resources are needed for every modeling attempt, and these are not always accessible. Although it is possible to model only a particular chromosomal region, whole chromosome or whole genome modeling is computationally too expensive.

One solution could be to decrease the resolution and use more coarse-grained models, with which several atoms or molecules are grouped and represented by a single simple object. However, this comes at a cost of the inability to resolve fine patterns of interactions. There are multiple levels of chromatin coarse-graining, starting from atomic resolution and up to hundreds of thousands of base pairs, each suitable for the specific problem of interest (see Table 1 in the recent review published by Brackey et al., 2020). The choice of coarse-graining should be considered carefully in order to find a balance between the detail of the model and computational cost.

To sum up, physical modeling is essential for validating hypotheses about mechanisms driving chromatin organization. When using epigenetic data to infer properties of chromatin monomers, it is easy to repurpose a physical model from hypothesis validation to prediction of locus-specific chromatin organization. However, there are several limitations of these predictions, and we next describe another class of approaches based on machine learning techniques that have the potential to overcome some of the aforementioned limitations.



STATISTICAL APPROACH

It is known that different epigenetic marks and transcriptional factors correlate with various regulatory elements, chromatin states, and other genomic features. For example, histone modification H3K9me3 correlates well with constitutive heterochromatin, which correlates with the B compartment (Strom et al., 2017), TAD boundaries are enriched by CTCF protein (Dixon et al., 2012; Rao et al., 2014), and open chromatin regions are enriched by specific histone modification. Thus, one can simply use regression to predict 3-D genome features based on epigenetics data. For example, correlation-based methods are used for the prediction of enhancer–promoter interactions using histone modifications, CAGE, ChIP-seq, and other chromatin features as input (Xu et al., 2020).

Although linear models could explain 3-D organization to some extent, it is clear that certain dependencies between genetic features and chromatin interactions are not linear. The most prominent example of such non-linearity is the scaling of the average chromatin contact frequency with genomic distance, which could be well described as a power law. This dependence, P(s) ∼ s^x, has only one free parameter x, which could be easily obtained by fitting experimental data. Of course, it is not enough to account for distance dependence to obtain accurate estimations of contact frequencies. One should also describe locus-specific insulation, compartmentalization, and other features of genome organization. This description should be done in the form of algebraic expressions with some free parameters that could be fit from the data. This was utilized recently by Rowley et al. (2017), who proposed an algebraic expression combining linear and exponential terms to predict genomic contacts based on GRO-seq transcription data, CTCF binding, and genomic distance. As a result, Rowley et al. simulate Hi-C maps including main 3-D structures, such as TADs and loops with high accuracy.

However, there might be multiple non-linear dependencies between histone modifications, transcription factor binding, and chromatin interactions, which cannot be defined analytically as an algebraic expression, such as a power law. These dependencies could be found by sophisticated machine learning algorithms, such as logistic regression, gradient boosting, random forest regression, neural networks, and others (Eraslan et al., 2019; Figure 2).
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FIGURE 2. In designing a machine learning–based algorithm, one should carefully choose the main “ingredients” required for good prediction.


Machine learning algorithms operate with a numerical representation of input information (features): nucleotide sequence; genomic distance or epigenetic marks; and experimentally measured target feature values, such as contact frequency between loci, positions of loop anchors, etc. The main result of machine learning training is a function that transforms input features into predictions of target values. The similarity between predictions and experimental data is measured using a user-defined loss function. During a training step, the portion of available data called the training subsample is used to optimize the transforming function so that the loss function is minimal; this is how the algorithm finds interdependencies between features and target values. These interdependencies might represent general biological mechanisms or be subsampling artifacts specific to the training subsample. Moreover, the function transforming the input features into predictions of target values typically has numerous adjustable parameters. This could allow fitting the detail and noise in the training data to the extent that it negatively impacts the performance of the model on held-out data. In this case, the developed algorithm is of no use even if prediction accuracy is high as it cannot generalize over unseen samples. This problem is well known in the machine learning field under the name of “overfitting.” To verify that any increase in accuracy over the training subset is generalizable, an evaluation of the algorithm using a portion of unseen data (validation subset) should be done. It is essential that the validation subset does not contain samples presented in the training subset. However, during the design of training and validation subsets, one should note that genomic objects that are not equivalent from a mathematical point of view might share a large amount of biological information. For example, nested chromatin loops might share a large portion of epigenetic information encoded by the window spanning loop anchors although the anchors themselves do not overlap and formally represent different pairs of genomic regions. Such indirect overlapping results in the sharing of information between training and validation data sets, leading to the overestimation of prediction accuracy (Belokopytova et al., 2020). To overcome this problem, one can use different chromosomes for training and validation data sets.

It is considered that machine learning–based algorithms can find complex non-linear patterns when fitting the model. Machine learning is used for binary classifiers for regression-based models, enabling the prediction of structures ranging from two-point interactions to whole Hi-C maps. Several algorithms employing these methods for promoter–enhancer interaction prediction were recently developed, including TargetFinder (Whalen et al., 2016), DeepTACT (Li et al., 2019), 3DPredictor (Belokopytova et al., 2020), and HiC-Reg (Zhang et al., 2019). We refer the reader to the informative review of Xu et al. (2020) describing different algorithms for the prediction of enhancer-promoter interactions. Other spatial chromatin structures, such as loops (Zhu et al., 2016; Al Bkhetan and Plewczynski, 2018; Kai et al., 2018; Zhang et al., 2018; Trieu et al., 2020) and contact probabilities (Zhang et al., 2019; Belokopytova et al., 2020; Fudenberg et al., 2020; Schwessinger et al., 2020) also can be predicted by machine learning–based algorithms (see the section above). Furthermore, a machine learning–based approach enables revealing biological features underlying 3-D genome folding, which improves our understanding of biological mechanisms. For example, extracting matrix positional weights from layers of convolution neural networks helps to find the main features, in particular, sequences giving the main contribution to the prediction and consequently to the 3-D chromatin structure. Another example is the analysis of feature importance in a gradient-boosting algorithm that gives the ranked list of features that helps to find the best feature. Anyway, analysis of features and algorithm parameters can inspire thoughts of biological mechanisms underlying the studying process.


Challenges and Limitations


Defining Target Features and Their Properties

The development of a predictive algorithm should start from a clear statement of biological features one wants to predict. Clear definitions of the features are important for the selection of positive and negative samples as well as for the choice of the machine learning algorithm.

Let us consider the goal of the prediction of interacting promoter–enhancer pairs. How would one define positive cases, i.e., interacting pairs? Now, it is clear that the majority of loops (see Box 1 for details of mechanisms underlying these structures) observed on Hi-C maps are due to the synergetic activity of cohesin and CTCF proteins. These complexes form loops that might facilitate interactions of promoters and enhancers located within the looping region by reducing the spatial distance between them but do not necessarily directly mediate contacts between these regulatory elements. In accord with this, direct functional tests based on targeted enhancer deletions or CRISPR-interference approaches (Gasperini et al., 2019) indicate that the vast majority of interacting enhancer–promoter pairs do not overlap with loop anchors although they are often located within a reasonable distance from them (Belokopytova et al., 2020). Thus, functionally interacting enhancer–promoter pairs might show only a slight increase in contact frequency. It is worth noting that the NG Capture-C approach (Davies et al., 2015) provides more sensitive and robust quantitation and enables detecting more significant interactions than Hi-C; however, typical Hi-C data are more widespread and available. At the same time, the majority of algorithms predicting 3-D genome structures are classifiers, so they solve the question of whether the promoter and enhancer interact, answering yes or no. We argue that quantitative measurement and prediction of spatial enhancer–promoter interactions are more informative than qualitative attribution to the loop anchors, and regression-based methods are more suited for such predictions.

Another example of varying feature definition is loop prediction. In this case, authors often use loops called by specific algorithms as positive samples. A large proportion of loop calls varies between algorithms and visually assessed loops (Belokopytova et al., 2020; Salameh et al., 2020). Methods for loop detection, such as for TAD detection, are constantly improving. For example, the last published method Peakachu for loop calling can detect more loops than previous algorithms (Salameh et al., 2020). The same applies to TAD calling: Zufferey et al. (2018) compared 22 different TAD caller algorithms and found that TAD sizes and numbers vary significantly among callers and data resolutions.

To sum up, it is very important to consider the nature and biological properties of target features and carefully design positive and negative samples if using classifiers for prediction.



Predicting Single-Cell Data

The statistical approach is well applicable for 3-D genome structure prediction and investigation, but it uses population data. It allows getting a prediction that is actually a mean value for a cell population, which does not provide information about the 3-D genome organization of a single cell and differences of spatial contacts between distinct cells. Conversely, physical modeling always produces ensembles of single-cell chromatin configurations. Nevertheless, it does not mean that this prediction matches a real biological cell exactly even if its average matches population Hi-C data. However, recently Conte et al. (2020) show the consistent agreement between the predicted structures and independent single-cell super-resolution microscopy data, which provides evidence that, at least in the studied loci, polymer physics approaches accurately capture single-cell chromatin conformation. This issue is under active debate, however.



Understanding Mechanisms Underlying Prediction

Another limitation is that one cannot extract a simple algebraic formula transforming features into target feature values from a trained machine learning model. Therefore, the statistical dependencies found by machine learning algorithms are difficult to interpret in biological terms. Nevertheless, it is possible to evaluate the feature’s contribution to prediction. We have already discussed several approaches for estimation of feature importance above; in addition, modifying features in silico and accessing how the modifications impact prediction could provide insights about the role of biological features used for prediction (Fudenberg et al., 2020).



Choosing Data Parameterization Function

To train a machine learning model, input data should be represented in a specific format, typically as a numeric vector of fixed length. The process of conversion of the input data into the desired format is called parameterization, and choosing the parameterization function might not be trivial. For example, ChIP-seq data is often used for the prediction of spatial chromatin contacts. There are several ways to submit these data to the algorithm: as a sum of ChIP-seq signals in the interval between two genome loci of interest, the total number of peaks in this region, the signal value of the nearest ChIP-seq peaks, or the p-values of peaks, etc. In our experience, differences in parameterization could significantly affect prediction accuracy. Thus, the most challenging part is to choose the best way of parameterization to achieve the best performance of the algorithm.



Input Data Quality

Another important issue is the quality of the training data. Some machine learning algorithms are sensitive to outliers presented in the data. In this case, data smoothing should be performed before training the model. For example, for Hi-C and RNA-seq data, it is often useful to log-transform values.

Recently, high-resolution Hi-C maps were published (Hsieh et al., 2015, 2020; Krietenstein et al., 2020). They reveal chromatin structures in more detail and thereby improve predictions. Moreover, we noticed that the prediction of higher resolution heat maps is more accurate than the prediction of the same heat map but with a lower resolution (Belokopytova et al., 2020). This aspect is explained by features used for prediction. We gain lots of information from ChIP-seq data, in which the protein-binding event is attributed to a small locus (usually less than 200 base pairs). In this case, using an ultra-high resolution of Hi-C maps provides a better correspondence between protein-binding sites and interacting loci, allowing the model to learn effects mediated by specific proteins in a more direct way.



Overfitting

Another problem of machine learning approaches is overfitting. In this case, the model performs well on the training data set but does not perform well on a holdout sample, actually not capturing real complex patterns underlying the 3-D genome structure. Non-overlapping subsets for training and validation help to detect overfitting. There are two main ways to minimize overfitting: training the network on more examples and changing the complexity of the network. However, in the case of biological data, it is not always possible to have enough training samples. To increase the number of samples, it may be necessary to combine data from multiple sources. This leads to the next challenge: to normalize data from different sources that require rigorous data preprocessing (Xu and Jackson, 2019).



WHAT DO WE CONSIDER A GOOD PREDICTION?

Any data type has its data specificities, and this is also true for the Hi-C maps discussed below. It should be remembered that, usually for 3-D chromatin architecture, prediction binary classifiers or regression-based methods are used. There are some common metrics to access the binary classifier’s performance, such as f1-score, AUC, and others. These metrics do not have any special characteristics related to genomic data.

The performance estimation of regression-based methods is more specific for Hi-C maps. How can we understand that one heat map is similar to another? Actually, a Hi-C map is a matrix of numbers, so we can apply any metrics for matrices comparison.

The basic metric is Pearson’s correlation. Let us consider, for instance, a Pearson’s correlation equal to 0.8: Does this correspond to a good or bad prediction? Intuitively, it seems that a Pearson’s correlation equal to 0.8 indicates accurate prediction. However, using absolute values is not a good idea. As we discussed above, contact probability shows prominent dependence from distance, and even very simple prediction algorithms efficiently capture this dependence. Even when the distance between loci is not directly provided, it could be inferred from many epigenetic features. For example, cumulative ChIP-seq signals scale with the length of the genomic region, allowing prediction of contact probability. As we show in Figure 3, using randomly shuffled ChIP-seq signals, which have no biological meaning, allows the generation of predictions highly correlating with experimental data. Also, the whole-map correlation coefficient does not reflect the prediction of specific topological structures, such as TADs, loops, or compartments.
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FIGURE 3. The choice of the baseline plays a key role in assessing the prediction accuracy. Experimental data are from Rao et al. (2014); predictions generated using 3DPredictor (Belokopytova et al., 2020) supplemented with following data: genomic distance, CTCF, and RNA-seq (model 1) (Qi and Zhang, 2019) (model 2).


There are several workarounds allowing the comparison of Hi-C maps using correlation coefficients. First, one can compare the correlation between predicted and experimental data with the correlation between experimental replicates. Ideally, the prediction should be as similar to the experimental data as replicates among themselves. However, replicates are not always available; in addition, Tao Yang et al. show that Pearson’s correlation between unrelated samples sometimes is equal to differences between replicates (Figure 3 in Yang et al., 2017).

Another baseline could be obtained by scoring differences of Hi-C maps between distinct cell types. Chromatin organization is moderately conserved between different cell types (Dixon et al., 2012; Battulin et al., 2015) and even between different species (Fishman et al., 2019; Nuriddinov and Fishman, 2019), thus predicting cell type–specific features might be more challenging than an overall 3-D organization. For a high-quality algorithm, one would expect the difference between prediction and experimental data on the target cell type to be less than between different cell types. Besides this, one should carefully select data sets for comparison, accounting for their noise level. The lower noise level in the experimental data on target cell type results in higher measures of prediction accuracy, whereas a high noise level in a cell type used for baseline results in low baseline metrics, thus overestimating predictive power.

To overcome the limitations of standard correlations as measurements of Hi-C map similarity, Tao Yang et al. propose a framework that minimizes the effect of noise and biases by smoothing the Hi-C matrix, and then it addresses the distance-dependence effect by stratifying Hi-C data according to their genomic distance (Yang et al., 2017). This SCC metric distinguishes subtle differences between closely related cell lines, biological replicates, and pseudoreplicates, which was shown in the paper (Figure 3 in Yang et al., 2017).

Besides Pearson’s correlation and SCC standard metrics for comparison of matrices, such as MAE, MRE and others can be used for algorithm performance estimation. Similar to Pearson’s correlation, understanding the values of these metrics requires a comparison with the baseline. Overall, we recommend using several metrics and several baselines for the optimal assessment of prediction accuracy (Figure 3).

Nevertheless, it is useful to visualize the predicted Hi-C map for empirical assessment to be confident that the chosen metric correctly reflects the differences between heat maps. Another way is to estimate the prediction of 3-D chromatin structures, such as TADs and loops. For some statistics, one can call loops or insulator boundaries at experimental and predicting maps and then compare and overlap detected structures.

The selection of metrics for prediction accuracy estimation is an important issue for every algorithm. It should correctly reflect differences of 3-D chromatin features.



PREDICTION OF FUNCTIONAL CONSEQUENCES OF REARRANGEMENTS

Some rearrangements have been known to change the 3-D chromatin structure, causing diseases. Several works show the importance of chromatin folding in the gene regulation process (Franke et al., 2016; Rodríguez-Carballo et al., 2017; Kraft et al., 2019). Inversions, duplications, and other rearrangements can lead to TAD disruption, changing of promoter–enhancer interactions, and the emergence of new interactions between regulatory elements and genes. These insights are significant for medical genetics because the interpretation of chromosomal rearrangements in non-coding regions remains a big challenge. Zepeda-Mendoza et al. (2018) suggest detailed instructions on how to run a computational pipeline that identifies relevant candidates of non-coding balanced and apparently balanced chromosomal abnormality position effects. This pipeline includes analysis of TADs and the possibility of changing enhancer–promoter interactions due to rearrangement. Hence, the analysis of chromosomal rearrangement consequences in the context of the 3-D genome structure becomes a routine assay. The recently published machine learning algorithm TADA (Hertzberg et al., 2020) can prioritize large chromosomal alterations, such as copy number variants (CNVs) based on their pathogenicity.

Besides the prediction of the overall rearrangement effect, it is possible to predict changes in 3-D genome structures as TADs and loops. The 3D-GNOME algorithm (Sadowski et al., 2019; Wlasnowolski et al., 2020) generates chromatin 3-D structures using a Monte Carlo approach based on chromatin conformation capture (3C) data. It uses high-quality CTCF or RNA polymerase II ChIA-PET data as a reference chromatin interaction pattern. For rearrangement prediction, it applies a series of simple rules to recover chromatin interaction patterns. The 3D-GNOME algorithm can visualize alterations emerging in genomic structures after the introduction of SVs1. Another approach is to predict changes in chromatin loops by a machine learning–based DeepMilo algorithm (Trieu et al., 2020). The algorithm can extract features directly from DNA sequences of loop anchors not using information about the presence and orientation of CTCF motifs. It allows predicting true Hi-C loops not having a CTCF signal at their anchors. DeepMILO can predict effects even of small mutations, and authors identified insulator loops predicted to change in multiple cancer patients and genes affected by these loops.

The aforementioned algorithms predict the perturbation of specific chromatin structures, such as loops and TADs. Other tools are capable of predicting a complete Hi-C map of the mutated locus. Algorithms such as Akita (Fudenberg et al., 2020), DeepC (Schwessinger et al., 2020), 3DPredictor (Belokopytova et al., 2020), PRISMR (Bianco et al., 2018), and others can predict alterations of 3-D chromatin architecture induced by structural variants.

An area of increasing interest and active research is the effect of small INDELs and single base pair variants on chromatin architecture. It is known that even single nucleotide replacement can lead to changes in 3-D genome structure, for example, by modifying CTCF binding sites (Schmiedel et al., 2016; Sun et al., 2020). A separate mission of predictive algorithms is to foresee the consequences of such mutations. Some algorithms, such as DeepMILO (Trieu et al., 2020), Akita (Fudenberg et al., 2020), and DeepC (Schwessinger et al., 2020) use a nucleotide sequence as the main feature for prediction. These algorithms are very powerful in predicting changes induced by small mutations because the mutations directly affect input features. On the other hand, training these algorithms requires knowledge of 3-D chromatin organization in wild-type cells of the same type because a nucleotide sequence does not provide cell type–specific epigenetic information.

Other algorithms do not use nucleotide sequences for prediction directly. In this case, it is important to model changes in input features caused by SNP or small INDEL. For instance, in the case of polymer modeling, it needs to change binder position or to remove the part of the polymer corresponding to the mutated DNA. All the same is about statistical approaches not using nucleotides as features for the prediction.



CONCLUSION

The mechanisms that underlie genome organization are intensively studied. Multiple groups developed computational algorithms to explain mechanisms underlying genome architecture and predict chromatin folding in normal and mutated cells. However, there is still no approach that is able to completely describe the whole complexity of the nuclear organization. Physical models are limited by incomplete knowledge of mechanisms and relevant system parameters, such as interaction affinities and concentrations. Statistical methods do not allow understanding of the exact mechanisms underlying captured dependencies. And for both methods, it is not clear whether developed algorithms trained and validated using several cell types could be broadly and efficiently transferred to other cell types and conditions.

The latter question could be answered using the rapidly growing number of high-resolution Hi-C data sets. There are multiple published experimental data studying 3-D genome structure in normal and rearranged genomes. Such experiments provide detailed Hi-C maps of mutated regions that can be used as validation data for predictive algorithms. We believe that benchmarking and comparing existing predictive algorithms using these data sets would help to describe their power and limitations and to develop new, comprehensive approaches for the prediction of chromatin organization and dynamics in the future.
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Background: The four ERBB tyrosine kinase family members [ERBB1 (epidermal growth factor receptor, EGFR), ERBB2 (HER2), ERBB3 (HER3), and ERBB4 (HER4)] (ERBB receptor family) have been shown, according to previous studies, to be related to the cutaneous melanoma. ERBB3 is the only member of the ERBBs that lacks tyrosine kinase activity and thus needs to dimer with other tyrosine kinases receptors to trigger the signaling pathway, while ERBB3 may dimer with all members of the ERBB family. Melanoma progression depends on activation of ERBB signaling, especially the ERBB3/ERBB2 cascade. There are lymphocytes and T cell infiltrates in melanoma. Numerous pieces of evidences indicate that local immune status plays an important role in the formation of anti-tumor immune responses. However, the relationship between the ERBBs and prognosis and immune infiltration in cutaneous melanoma is not completely clear.

Methods: The expression of the ERBBs was analyzed through the Oncomine database, Gene Expression Profiling Interactive Analysis (GEPIA), respectively. Immunohistochemistry of ERBBs was obtained from the Human Protein Atlas is increased before HPA database. ERBBs genes expression and mutation analysis in cutaneous melanoma from the cBioPortal. Functional annotation and Kyoto Encyclopedia of Genes and Genomes is increased before KEGG pathway enrichment analysis from the Metascape. Correlations between ERBBs and 31 genes that were close to each other and frequently altered were explored by GEPIA. Using the GEPIA database, we also investigated the relationship between ERBBs and myeloid-derived suppressor cells (MDSC) in cutaneous melanoma. The disease-free survival and different tumor stages of ERBBs were evaluated by GEPIA. The correlation of ERBBs and tumor-infiltrating immune cells and prognostic(5 years survival rates) was tested by the Tumor Immune Estimation Resource (TIMER).

Results: In general, the expression levels of ERBB1/2 in cutaneous melanoma were lower than those in normal skin tissue. By contrast, the ERBB3 expression level was higher in cutaneous melanoma than in normal skin tissue. Low expression of ERBB1/2 and high expression of ERBB3 were detrimental to the 5 years survival of cutaneous melanoma patients (ERBB1: log-rank P: 0.03; ERBB2: log-rank P: 0.008; ERBB3: log-rank P: 0.039). ERBB4 expression may not affect the prognosis of patients with cutaneous melanoma. ERBBs may not play a role in the tumor stage and disease-free survival in cutaneous melanoma patients. The relationship between the ERBB family and 31 genes that were close to each other and frequently altered is demonstrated as the genes regulated by the ERBB family being mainly concentrated in the RAS/RAF/MEK/ERK signaling pathway. ERBB2 can induce infiltration of CD8+ T cells and B cells, while ERBB3 can induce infiltration of CD4+ T cells, CD8+ T cells, and Neutrophil cells. ERBBs are more significantly associated with M1 macrophages, dendritic cells, Th1, Th2, Th17, and Treg cellular immune markers (Cor > 0.2). ERBB2/3 were related to MDSC in cutaneous melanoma, including human mononuclear myeloid-derived suppressor cells (M-MDSC) and polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC), and may influence the progression of cutaneous melanoma through MDSC, but the conclusion needs further probing.

Conclusion: This study investigated the prognosis and immune infiltration of the ERBB family in cutaneous melanoma. Our results suggest that ERBB1/2/3 may serve as early prognostic markers and potential therapeutic targets in cutaneous melanoma.

Keywords: ERBB family, immunochemistry, immune infiltrates, prognostic, cutaneous melanoma


INTRODUCTION

Melanoma originates from melanocytes and accounts for the highest proportion of skin cancer-related deaths. At present, the treatment of melanoma metastasis is still difficult, although researchers have explored a variety of methods. The 5 years overall survival (OS) of patients with early melanoma is higher, ranging from 24 to 29%, but the 5-year OS of patients with stage IIIC and IV is only 10–19%. In recent years, biological immunotherapy has gradually emerged, which can prolong the survival period of patients (Homet Moreno and Ribas, 2015). Therefore, further searching for potential pathogenic factors and pathogenic mechanisms can help identify potential prognostic markers and drug targets in melanoma.

The ERBB family belongs to the tyrosine kinase I subfamily and is composed of four closely related transmembrane tyrosine kinase receptors, all of which are encoded by the proto-oncogene HER1–4: ERBB1 (EGFR), ERBB2 (HER2), ERBB3 (HER3), and ERBB4 (HER4). They all have tyrosine kinase activity and play a key role in signal transduction. The tyrosine kinase active domain of each member of the ERBBs family is highly conserved, with a high degree of homology in structure and function. It is mainly expressed during human embryonic development and regulates the growth, survival, transformation, and apoptosis of normal (Jørgensen and Hersom, 2012; Griffin and Ramirez, 2017).

The overexpression and activation of the ERBB family are closely related to the clinicopathological characteristics and prognosis of various cancers, including melanoma, lung cancer, gastric cancer, breast cancer, etc. (Bittoni et al., 2015; Oudard et al., 2015). It is generally believed that abnormally functional carcinogenic pathways lead to melanoma. These pathways may include the EMT signaling pathway (Pietraszek-Gremplewicz et al., 2019), PI3K signaling pathway (Mujoo et al., 2014; Song et al., 2015), and so on. ERBBs can enhance the ability of tumor cells to migrate and invade, promote tumor angiogenesis, and inhibit tumor cell apoptosis (Iqbal and Iqbal, 2014) through these pathways.

Previous studies have shown that ERBBs disorders are closely related to the clinicopathological characteristics and prognosis of human cutaneous melanoma. However, the potential role of ERBBs family members in cutaneous melanoma remains unintelligible. In this study, we analyzed the expression, mutation, prognosis, and immune infiltration of ERBBs family members in cutaneous melanoma through a variety of databases.



MATERIALS AND METHODS


Oncomine Database Analysis

Oncomine1 is an online bioinformatics analysis tool that includes 18,000 cancer gene expression microarrays (Rhodes et al., 2007). Through the Gene Summary view in the Oncomine database, we determined the expression level of ERBB in cutaneous melanoma. Use the following values: P-value 0.01, fold change 2, top 10% of the gene ranking, and mRNA data type to determine the threshold.



GEPIA Database Analysis

Online database GEPIA2 is an online database utilized to analyze the expression data of RNA sequencing in TCGA and GTEx projects. It can also generate gene Expression profiles, the expression in the box plot, and the main stages of pathology (Tang et al., 2017). The expression of ERBB was determined by the SKCM data set of GEPIA. The following values were used to determine the threshold: the P-value was 0.01, the multiple changes were 2, and it matched the normal value of TCGA and GTEx data.



Human Protein Atlas Database Analysis

The HPA (version 19.3)3 (Navani, 2016) is a large-scale research project, the database will help researchers to explore protein expression in human tissue and cells. In this study, immunohistochemical images were used to analyze ERBBs protein expression in cutaneous melanoma and normal tissues.



cBioPortal Database Analysis

cBioPortal4 was used to further analyze the expression of ERBB (Gao et al., 2013) through the skin melanoma data set, which included 479 pathological reports. Co-expression and network analysis were performed based on the online instructions of cBioPortal.



Functional Annotation and KEGG Pathway Enrichment Analysis

Gene function annotation and KEGG pathway analysis were used to uncover the underlying mechanism of cutaneous melanoma. MetaScape5 (Zhou et al., 2019) was updated in 2018 and is a web-based tool that provides gene function annotation and enrichment analysis.



TIMER Database Analysis

The TIMER6 is used to study the expression characteristics of tumor-immune interaction genes in more than 30 cancer types (Li et al., 2017) to evaluate various the clinical impact of different immune cells of immune type. We analyzed the relationship between the expression of ERBBs and immune infiltration in cutaneous melanoma through the TIMER database.



Statistical Analysis

The results we generate using Oncomine were displayed by P-values, fold changes, and ranks (p < 0.05, fold change > 2). P-value and fold change were used to show the outcomes of GEPIA (p < 0.01, fold change > 2). Also, the Spearman correlation analysis is used to evaluate the relationship between genes and determine the strength of the correlation between genes by absolute value. P < 0.05 were considered statistically significant.



RESULTS


Transcriptional Levels of ERBBs in Cutaneous Melanoma and Other Cancers

The transcription levels of ERBBs were compared in cutaneous melanoma and normal samples by the ONCOMINE database (Figure 1A and Table 1). ERBB3 was upregulated in cutaneous melanoma in two datasets. In Riker’s and Talantov’s datasets (Talantov et al., 2005; Riker et al., 2008), ERBB3 is overexpressed compared with the normal samples: cutaneous melanoma with a fold change of 4.667 and 2.264, respectively. In Riker’s dataset (Riker et al., 2008), ERBB1 (EGFR) is under-expressed in cutaneous melanoma with a fold change of −8.110. Talantov’s dataset (Talantov et al., 2005) revealed another mRNA expression ERBB1 with a fold change of −7.657; that is, ERBB2 has a fold change of −3.952 and −2.229 in cutaneous melanoma compared with normal skin tissues in Riker’s and Talantov’s datasets, respectively. Based on the information afforded by the GEPIA database, a comparative study of ERBBs mRNA expression in normal skin tissue and cutaneous melanoma tissue was carried out. The results showed that, compared with normal skin tissue, cutaneous melanoma tissue had lower expression levels of ERBB1/2 and a higher expression level of ERBB3 (Figure 1B). In the immunohistochemistry supplied by the HPA data set, we discovered that ERBB1 was moderately expressed, ERBB2 was lowly expressed, and the ERBB3/4 proteins were highly expressed in cutaneous melanoma (Figure 2).
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FIGURE 1. Expression of the ERBB receptor family in different types of human cancers. (A) High or low expression of ERBB receptor family in different human cancer tissues compared with normal tissues (ONCOMINE). The mRNA expression levels of ERBB1 and ERBB2 were decreased, but the mRNA expression level of ERBB3 was increased in cutaneous melanoma. (B) The expression of ERBBs in cutaneous melanoma (GEPIA) is consistent with ONCOMINE.



TABLE 1. Conspicuous variation of ERBBs expression in transcription level between cutaneous melanoma and skin tissues (ONCOMINE database).
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FIGURE 2. Expression of ERBB receptor family in the cutaneous melanoma (HPA). (A) The expression of ERBB1 protein was moderate in the cutaneous melanoma tissues, and (B) ERBB2 was lower in the cutaneous melanoma tissues. (C,D) The expression of ERBB3/4 proteins were higher in the cutaneous melanoma tissues than that in the normal skin tissues by the HPA database (N: normal; T: tumor).


Further,we explored the expression of the ERBBs in other cancers models by ONCOMINE database (Figure 1A) showed that ERBB1 mRNA level was significantly higher in the bladder, brain and CNS, head and neck, kidney, lung, lymphoma cancer tissues, and markedly lower in the breast, colorectal, gastric, myeloma, ovarian, and sarcoma cancers compared with the corresponding normal tissues. The ERBB2 mRNA level was observably higher in the bladder, brain and CNS, breast, and pancreatic cancer tissues and signally lower in the colorectal, esophageal, head and neck, kidney, lung, lymphoma, and sarcoma cancers compared with the corresponding normal tissues. The ERBB3 mRNA level was dramatically higher in bladder, colorectal, kidney, lung, ovarian, and prostate cancer tissues and significantly lower in the brain and CNS, esophageal, head and neck, lymphoma, myeloma, and sarcoma cancers compared with the corresponding normal tissues. The ERBB4 mRNA level was higher in the breast and colorectal cancer tissues and observably lower in the bladder, brain and CNS, head and neck, kidney, and lung cancers compared with the corresponding normal tissues. These results show that ERBB1/2 are of low expression, and ERBB3 is of high expression, which suggests that ERBB1/2/3 may be potential prognostic markers in cutaneous melanoma.



ERBBs Mutation Rates, Their Influence on Neighboring Genes, and Their Correlation in Cutaneous Melanoma

cBioPortal is used to analyze the changes and network of ERBBs in cutaneous melanoma. In 479 cases, ERBBs were changed in 158 samples (33%), and two or more changes were detected in 53 samples (11%) (Figure 3A). Besides, we analyzed the mRNA expression of ERBBs (RNA Seq V2 RSEM) through Pearson correlation to calculate the relationship between ERBBs, and the results showed that ERBB1 and ERBB2 are positively correlated (Figure 3B). Subsequently, we established a network of ERBBs through the 31 most frequently changing neighbor genes [The Network TAB provides interaction analysis and network visualization of cancer changes in cBioPortal, the network includes Pathway, HPRD (human reference protein database), Reactome, NCI (National Cancer Institute)—Nature Pathway Interaction Database, Memorial Sloan Kettering Cancer Center (MSKCC), map of cancer cells7, From The Open Source Pathway Commons Project. By default, cBioportal automatically generates a network containing all queries about the genetic neighbors (adjacent nodes), sequenced according to the alternating frequency of the genome of the selected cancer]. This shows that there is a close pertinence between changes of ERBBs and cell proliferation or differentiation, Fibroblast growth factor receptor (FGFR), including FGFR1/2/3/4, as well as MAPK pathways-related genes, including MAPK1, MAP2K1, and MAP2K2 (Figure 3C). Evaluate the function of clustering genes through GO and pathway analysis, and these enriched pathways are closely interrelated to each other. Figure 4 provides the consequence of the functions and pathways of the markedly enriched genes. We discovered that the enriched genes are related to multiple pathways, such as MAPK family signal cascade, MAPK cascade regulation, EGFR tyrosine kinase inhibitor resistance, receptor tyrosine kinase signal transduction, and transmembrane receptor protein tyrosine kinase signal transduction pathway, etc.
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FIGURE 3. ERBBs genes expression and mutation analysis in cutaneous melanoma (cBioPortal). (A) ERBB1, ERBB2, ERBB3, and ERBB4 mutation rates were 10, 8, 10, and 14%, respectively. (B) Calculate the pertinence of the ERBB receptor family with each other by analyzing their mRNA expression, positive correlations were detected in ERBB1and ERBB2. (C) Network for ERBB receptor family and the 31 most frequently altered neighbor genes.
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FIGURE 4. GO and KEGG analysis of ERBB receptor family (Metascape). (A) Bar graph of enriched terms across these enriched genes in patients with cutaneous melanoma, colored by p-values. (B,C) A network of enriched terms: (B) colored by cluster-ID, where nodes that share the same cluster-ID are typically close to each other; (C) Protein–protein interaction network and MCODE components identified in the genes enriched in patients with cutaneous melanoma.


Further, through the GEPIA database (Supplementary Table 1), in cutaneous melanoma, we examined the association between the ERBBs and 31 genes were close to each other and frequently altered and observed that all the genes except KIT, ALK, NTRK1, FGFR4, and MET were affected by the changes of some ERBB family members. In this network, ERBB-regulated genes are mainly concentrated in the RAS-RAF-MEK-ERK signaling pathway, while the ERBB family may have no direct regulatory relationship with SOS, NF1, PDGFRA, FGFR1, RASA1, ROS1, FGFR3, RAC1, PTPN11, NTRK2, FLT3, FGFR2, ERRFI1, and RIT1 genes.



Immune Cell Infiltration of ERBBs in Cutaneous Melanoma

ERBBs affect the clinical prognosis of patients by participating in the inflammatory response and immune cell infiltration. TIMER displays the relationship between ERBBs and immune infiltrating cells. There was a positive pertinence between ERBB1 expression and the infiltration of CD4+ T cells (Cor = 0.152, p = 1.30e-03), Macrophages (Cor = 0.258, p = 2.66e-08), and Neutrophils (Cor = 0.143, p = 2.36e-03; Figure 5A). ERBB2 expression was negatively related to the infiltration of B cells (Cor = −0.116, p = 1.42e-02) and CD8+ T cells (Cor = −0.109, p = 2.24e-02) and positively associated with the infiltration of CD4+ T cells (Cor = 0.19, p = 5.39e-05; Figure 5B). ERBB3 expression was positively interrelated to the infiltration of CD8+ T cells (Cor = 0.121, p = 1.15e-02) and CD4+ T cells (Cor = 0.148, p = 1.72e-03) and Neutrophil (Cor = 0.147, p = 1.69e-03; Figure 5C). There was a positive correlation between ERBB4 expression and the infiltration of CD8+ T cells (Cor = 0.141, p = 3.12e-03) and neutrophils (Cor = 0.122, p = 9.21e-03; Figure 5D). These results reveal that ERBB2/3 are more closely related to immune infiltration in cutaneous melanoma, which suggests that the role of ERBB2/3 in regulating tumor immunity.
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FIGURE 5. The Cox proportional hazard model of ERBBs and six tumor-infiltrating immune cells in cutaneous melanoma (TIMER). (A) ERBB1 (EGFR) expression had noteworthy positive interrelated to infiltrating levels of CD4+ T cells, Macrophage, and Neutrophil. (B) ERBB2 was negatively correlative with the infiltration of B cells and CD8+ T cells but positively related to the infiltration of CD4+ T cells. (C) ERBB3 expression was positively associated with the infiltration of CD8+ T cells, CD4+ T cells, and Neutrophil. (D) ERBB4 expression was positively related to the infiltration of CD8+ T cells and neutrophils. The correlation between ERBBs and immune cells were used to analyze by Spearman’s correlation.




ERBBs CNV Is Correlated With Immune Infiltration Levels in Cutaneous Melanoma

ERBB CNV has a signal related to infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells. ERBB 1 (EGFR) induces the infiltrating levels of B cells, CD4+ T cells, Neutrophils, and Dendritic Cells in cutaneous melanoma (Figure 6A). ERBB2 induces the infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells (Figure 6B). ERBB3 induces the infiltrating levels of B cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells (Figure 6C). ERBB4 induces the infiltrating levels of B cells, CD4+ T cells, and Dendritic Cells (Figure 6D). ERBB1/2/4 CNV are correlated with arm-level deletion. ERBB3 CNV is connected with arm-level gain. These results suggest that ERBBs CNV induces immune infiltration in cutaneous melanoma.
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FIGURE 6. Relationship between ERBBs CNV and invasion levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells in cutaneous melanoma. (A) ERBB 1(EGFR) affects the infiltrating levels of B cells, CD4+ T cells, Neutrophils, and Dendritic Cells in cutaneous melanoma. (B) ERBB2 affects the infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells. (C) ERBB3 affects the infiltrating levels of B cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells. (D) ERBB4 affects the infiltrating levels of B cells, CD4+ T cells, and Dendritic Cells.




Correlation Analysis Between ERBBs and Markers of Immune Cells in Cutaneous Melanoma

We further evaluated the relationship between the ERBBs levels and immune infiltrating cells through the TIMER database and according to the expression levels of immune marker genes in cutaneous melanoma tissues. The immune cells analyzed by the TIMER database include CD8+ T cells, CD4+ T cells, B cells, monocytes, tumor-associated macrophages (TAM), M1 and M2 macrophages, neutrophils, dendritic cells, and different subgroups of T cells, namely, T helper 1 (Th1), Th2, Tfh, Th17, regulatory T (Tregs), and T cell exhaustion. Because tumor purity will affect the level of immune infiltration of clinical samples, the purity of the relevant analysis was adjusted (Table 2).


TABLE 2. Correlation analysis between ERBBs and related markers of immune cells.

[image: Table 2]Specifically, ERBB1 expression displayed dramatically interrelated to the expression of specific immune cells markers, such as B cell marker, CD79A, Monocyte marker, CD115, TAM marker, CCL2, M1 macrophage marker, iNOS and COX2, M2 Macrophage marker, CD163, Neutrophils marker, CD11B, Dendritic cell marker, BDCA-1 and BDCA-4.Th1 markers, STAT4 and TNF-α, Th2 markers, GATA3 and STAT6, the Tfh marker, BCL6, Th17 and STAT3, Treg markers, CCR8, STAT5 and TGFβ, T cell exhaustion markers, PD-1, LAG3, and GZMB. The memorable pertinence between ERBB2 expression and the expression of specific immune cells markers is shown, such as the B-cell marker, CD19 and CD79a, Monocyte marker, CD115, Dendritic cell marker, HLA-DPB1 and HLA-DPA1, Th1 marker IFN-γ, Th2 marker, STAT5A, Tfh marker, BCL6, Th17 marker, STAT3, Treg marker, CCR8, STAT5B, and TGFβ, T cell exhaustion marker, CTLA4, and GZMB. ERBB3 expression indicated significantly related to the expression of specific immune cells markers, such as the CD8+ T cell marker, CD8A, T cell (general) marker, CD2, TAM marker, CD68, Neutrophils, CD66b, Dendritic cell, HLA-DPB1, HLA-DRA and HLA-DPA1, Th1 marker, STAT4, STAT1 and IFN-γ, Th2 marker, STAT6 and STAT5, Th17 marker, STAT3, Treg marker, CCR8, STAT5B, and TGFβ. ERBB4 expression manifested memorably relevant to the expression of specific immune cells markers, such as the CD8+ T cell marker, CD8A, T cell (general) marker, CD2, B cell marker, CD19, CD79A, Monocyte marker, CD86, CD115, TAM marker, CCL2, M1 Macrophage marker, COX2, M2 Macrophage marker, CD163, VSIG4, MS4A4A, Neutrophils marker, CD11b, and CCR7, Dendritic cell marker, BDCA-1 and BDCA-4, Th1 marker, T-bet, STAT4 and STAT1, Th2 marker, GATA3 and STAT5A, Tfh marker, BCL6 and IL21, Th17 marker, STAT3, Treg marker, CCR8 and STAT5B, T cell exhaustion marker, and TIM-3. The study shows that the ERBBs and M1 Macrophage, Dendritic cell, Th1, Th2, Th17, and Treg cells have a more significant relationship (Cor > 0.2) in cutaneous melanoma.



Expression of ERBBs With Tumor Stage and Survival Outcome in Cutaneous Melanoma

We analyzed the relationship between ERBBs expression and tumor stage and disease-free survival, whereas ERBBs may not affect tumor stage and disease-free survival in cutaneous melanoma (Figures 7A,C). Also, we found that ERBB1/2/3 and immune infiltration cells (B cells, CD4+ T cells of CD8+ T cells, macrophages, neutrophils, and dendritic cells) influenced the 5 years survival of patients with cutaneous melanoma, while ERBB4 may not affect the 5-year survival of cutaneous melanoma patients (Figure 7B). These results show that the expression of ERBB1/2/3 in early cutaneous melanoma have prognostic significance.
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FIGURE 7. Relationship between ERBB receptor family and tumor stage and survival outcome in cutaneous melanoma. (A) The ERBB receptor family may not affect the tumor stage in cutaneous melanoma patients (GEPIA). (B) Kaplan-Meier analysis uncovers that immune cells (B cells, CD8+ T cells, CD4+ T cells, Macrophages, Neutrophils, and Dendritic Cells), ERBB1 (EGFR), ERBB2, and ERBB3 impact the 5 years survival rates of patients with cutaneous melanoma (TIMER). (C) ERBB receptor family may not influence disease-free survival in cutaneous melanoma.




ERBB2/3 Are Associated With Myeloid-Derived Suppressor Cells (MDSC) in Cutaneous Melanoma

In the GEPIA database, we found that ERBB2 was positively correlated with Human monocytic myeloid-derived suppressor cell(s) (M-MDSC) markers CD14 (Table 3), while ERBB3 was negatively related to Human M-MDSC markers CD11b and CD14. ERBB1 was positively correlated with Human PMN-MDSC markers ARG1, CXCR2, and negatively relevant to CD63. ERBB2 was negatively connected with Human PMN-MDSC markers CD62L and CD63 and positively correlated with ARG1 and CXCR2. ERBB3 was negatively correlated with Human PMN-MDSC markers, CD62L, CD274, CXCR2, and CXCR4 and positively correlated with CD63. ERBB4 was positively associated with Human PMN-MDSC marker CD54. These results suggest that ERBB2/3 may be closely related to MDSC (Human M-MDSC and Human PMN-MDSC) in cutaneous melanoma. In terms of specific mechanisms, further research is needed in the future.


TABLE 3. ERBB2/3 is associated with myeloid-derived suppressor cells (MDSC) in cutaneous melanoma.
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DISCUSSION

Previous studies have shown (Alaoui-Jamali et al., 2015; Elster et al., 2015) that ERBB family members can encode a type I transmembrane protein with common structural properties and be activated by homo-or hetero-dimerization with ERBB family members. For example, when ERBB3 binds to its specific ligand NRG1, it can form a heterodimer with other ERBB partners. Ng et al. (2014) found synergistic activation of ERBB2 and ERBB3 as well as synergistic activation of ERBB3 and ERBB4 in cutaneous melanoma cell lines after NRG1 stimulation. This dimerization activates PI3K/AKT and MAPK/ERK signal transduction pathways. It has been widely recognized that ERBB family members participate in tumorigenesis and tumor therapeutic resistance by activating PI3K and MAPK signaling pathways (Elster et al., 2015). ERBB3 is often highly expressed in primary melanoma and metastatic tumors, and high levels of ERBB2 and ERBB3 are often detected in BRAF WT and mutant cells. Other studies have shown that ERBB4 detected in human melanoma cells (Gordon-Thomson et al., 2005) is mainly a truncated type (120 kD) rather than a full-length protein. So far, ERBB4 has not been widely studied in melanoma. Although the significance of ERBBs has been confirmed, it is still necessary to clarify the function of ERBBs in cutaneous melanoma.

ERBB1 expression is upregulated in many cancers, but gene expression is inconsistent in cutaneous melanoma. Some studies have stated that ERBB1 over-expression often occurs in advanced stages of melanoma. The expression of ERBB1 in cutaneous melanoma tissues was lower than that in normal tissues. However, in immunohistochemistry, ERBB1 showed moderate expression. ERBB1 autophosphorylation is the key to the PI3K/AKT and MAPK pathways. ERBB1 participates in regulating cell proliferation, apoptosis, and promoting cell invasion through these cascade reactions. We found that ERBB1 is the low expression and may not be associated with tumor stage and disease-free survival but is with 5 years survival.

ERBB2 is a HER2-receptor tyrosine kinase that can cause uncontrolled cell proliferation and tumorigenesis through various mechanisms (Hynes and Lane, 2005). ERBB2 is a vital cancer marker, and no ligand for ERBB2 has been found yet. ERBB2 forms a heterodimer with another ERBB family member to form a more stable and strong signaling function and is considered to be an important therapeutic target for cancer (Giroux, 2013; Milik et al., 2017; Khanjani et al., 2018). ERBB2 is associated with poor clinical prognosis, even though its expression is low (Gilcrease et al., 2009). In our study, it was found that ERBB2 is the low expression in cutaneous melanoma tissues, but this expression may not affect tumor stage and disease-free survival; however, it is related to the 5 years survival rates of cutaneous melanoma patients.

ERBB3 plays a meaningful role in cell proliferation and survival (Yarden and Pines, 2012). Because ERBB3 lacks tyrosine kinase activity, which cannot initiate a signal cascade through autophosphorylation, it must heterodimerize with ERBB1 or ERBB2 to phosphorylate tyrosine in the C-terminal domain of ERBB3 (Campbell et al., 2010). Ueno et al. (2008) found that ERBB3 and ERBB1 dimerized in melanoma cells and promoted the metastasis of melanoma to a certain extent. ERBB3 is overexpressed and activated in a variety of cancers. The regulation of ERBB3 expression and signaling involves many HER3 interacting proteins, including PI3K, Shc, and E3 ubiquitin ligases NEDD4 and Nrdp1 (Mujoo et al., 2014). In our report, we confirmed that ERBB3 exhibits high expression and influences the 5 years survival rates of cutaneous melanoma patients but may not play role in the tumor stage and disease-free survival.

ERBB4 has been shown to have a crucial role in the normal growth of the central nervous system, breast, and fetus (Chuu et al., 2008; Liu et al., 2010; Iwakura and Nawa, 2013). However, the role of ERBB4 in human cancer is still debatable. ERBB4 tyrosine kinase activates through ligand-bound dimerization and induces activation of mitogen-activated protein kinases (MAPKs) and phosphatidylinositol kinase (PI3K)/AKT pathway (Prickett et al., 2009). Prickett et al. (2009) reported that somatic mutations of ERBB4 in malignant melanoma are widespread and proved that ERBB4 mutations are new drug targets for the treatment of metastatic melanoma. However, Zhou et al. (2013) and others reported that ERBB4 hotspot mutations were not detected in melanoma patients in southern China, suggesting that in Chinese melanoma patients, ERBB4 mutations can only play a limited role. These conclusions prove that there may be geographical differences in mutations of susceptibility genes in melanoma (Casula et al., 2009). In this chapter, we found that ERBB4 is the highest mutation rate in the ERBB family, but it may not impact the tumor stage, disease-free survival, and 5 years survival rates of melanoma patients.

We analyzed the relationship between the ERBB family and 31 genes that are close and frequently altered. In melanoma, KIT, ALK, NTRK1, FGFR4, and MET may not be regulated by the ERBB family, while the genes regulated by the ERBB family are mainly concentrated in the RAS-RAF-MEK-ERK signaling pathway (Wee and Wang, 2017), which is one of the core pathways in the pathogenesis of melanoma (McCubrey et al., 2007) and also a pharmacological target for cancer treatment. CBL, as a ubiquitin ligase, can ubiquitinate ERBB1 to activate downstream signaling pathways (Levkowitz et al., 1998; Grøvdal et al., 2004). The heterodimer combination of ERBB2 and ERBB1 or ERBB3 has strong signal activity (Pinkas-Kramarski et al., 1996), which activates downstream Ras/Raf/MEK/ERK cascade reaction pathway under the stimulation of external factors (Djerf Severinsson et al., 2011). Among them, RAS family genes include HRAS, NRAS, and KRAS; RAF family genes include ARAF, BRAF, and RAF1. ERK signaling pathway includes MAPK1, MAPK2P1, and MAPK2P2. Besides, ERBB1/IGF-1R/CRAF can reduce the proliferation of melanoma cells by inhibiting MAPK and/or PI3K/AKT signaling pathways (Sun et al., 2016). In cutaneous melanoma, the direct association of the ERBB family with other genes (SOS, NF1, PDGFRA, FGFR1, RASA1, ROS1, FGFR3, RAC1, PTPN11, NTRK2, FLT3, FGFR2, ERRFI1, and RIT1) had not been reported, and so the relationship between ERBB family and these genes remains to be further studied and determined.

In some studies, the presence of tumor-infiltrating lymphocytes (TIL) in melanoma is associated with better prognosis and has been interpreted as an indicator that the host promotes a more effective immune response to the tumor (Clemente et al., 1996; Anichini et al., 2012). However, the significance of TIL remains to be further demonstrated. Gooden et al. (2011) conducted a meta-analysis on the impact of TIL on cancer prognosis in 2011 and found that the presence of CD3+ and CD8+ cells had a beneficial impact on the survival of patients. In our study, ERBB2 can induce infiltration of CD8+ T cells and B cells, while ERBB3 can induce infiltration of CD4+ T cells, neutrophils cells, and CD8+ T cells. CD8+T cells combine antigens and MHC I molecules to form complexes. Once CD8+T cells are fully activated, they can induce the apoptosis of melanoma cells by releasing perforin and granules (Giavina-Bianchi et al., 2017; Zhang et al., 2017). Forsthuber et al. (2019) found that neutrophils play an environmentally dependent role in melanoma in a mouse tumor transplantation model and can be actively switched to an anti-tumor model. CD4+ T cells with MHC class II molecules present antigens; the combination of cytokines in the microenvironment under the action of cells can differentiate into various kinds of effects and can be turned into CD4+ T helper cells (Th) to activate CD8+ T cells, B cells, and natural killer cells (NK) to tumor cells to play an antitumor immune response (Giavina-Bianchi et al., 2017).

We investigated the relationship between ERBB and immune-infiltrating cell markers (Cor > 0.2). The downstream of EGFR, the MAPK pathway, stimulates the activation of NF-KappaB heteromorphs and homodimers to drive the expression of iNOS, thus supporting the occurrence of melanoma. COX2, as the downstream of the NF-kappa B pathway, plays a pro-oncogenic role in the NF-kB-iNOS-COX-2 signaling pathway (Uffort et al., 2009). Neuropilin-1 (NRP1, BDCA-4) induces a c-Jun N-terminal kinase (JNK)-dependent signaling cascade that leads to the upregulation of EGFR or IGF1R, thereby promoting cancer cell growth (Rizzolio et al., 2020). Studies have shown that the TGF-β pathway can initiate EGFR expression (Sun et al., 2014), making EGFR fully pathogenic. Epidermal growth factor binds to receptors and triggers a variety of signal transduction pathways, one of which activates signal transduction and transcriptional activator (STAT) (Olayioye et al., 1999). From the table we can see that ERBBs are closely related to STAT1, STAT3, STAT5A, STAT5B, and STAT6 (Cor > 0.2). ERBB1 induced low expression of STAT3, STAT5B, and STAT6. ERBB2 induced low expression of STAT3, STAT5A, and STAT5B. ERBB3 induced high expression of STAT1, STAT3, STAT5A, and STAT6. ERBB1/2 can induce low expression of STAT3 and STAT5B may be related to the formation of heterodimer combination. In malignant melanoma, Insulin-like growth factor binding protein 2 (IGFBP2) regulates the expression of PD-L1 by activating the EGFR-STAT3 signaling pathway (Li et al., 2020). The irreversible inhibition of Canertinib on ERBB1-3 was more effective in inhibiting Akt, ERK1/2, and STAT3 signaling pathways (Djerf Severinsson et al., 2011). Phosphorylated STAT5 is regulated by rEGF in melanoma, and inhibition of STAT5B expression can significantly reduce the expression of BCL-2, resulting in decreased cell survival rate and increased apoptosis (Mirmohammadsadegh et al., 2006). Studies have shown that high STAT1, STAT3, and STAT5B expression and low STAT6 expression are associated with better prognosis in SKCM patients. These studies suggest that ERBBs may be closely related to the STAT signaling pathway in cutaneous melanoma. Also, the direct relationship between ERBBs and immune-infiltrating cell markers (COR > 0.2) BDCA-1, GATA3, and BCL6 has not been supported in the literature and requires further study. In conclusion, our study shows that ERBBs and M1 Macrophage, Dendritic cell, Th1, Th2, Th17, and Treg cells have a more significant relationship (Cor > 0.2) in cutaneous melanoma. Together, these findings uncover that ERBBs may play an essential role in recruitment and supervision.

MDSCs are the heterogeneous population of immature bone marrow cells derived from bone marrow (Dumitru et al., 2012), which are composed of bone marrow progenitors, immature macrophages, immature granulocytes, and immature dendritic cells. MDSCs play a strong immunosuppressive role (Goh et al., 2013; Ostrand-Rosenberg et al., 2017) through their involvement in infection, inflammation, and cancer and have a significant ability to inhibit the T cell response (Gabrilovich and Nagaraj, 2009; Scapini et al., 2016). In addition to inhibiting the adaptive immune response, MDSCs also regulate the innate immune response by regulating the production of cytokines in macrophages. MDSC also has non-immune functions that promote tumor growth and metastasis by paracrine stimulation of tumor cell proliferation, movement, and angiogenesis (Veglia et al., 2018). Macrophages and myeloid-derived suppressor cells (MDSC), further subdivided into monocytic MDSC (M-MDSC) and polymorphonuclear MDSC (PMN-MDSC) (Cassetta et al., 2019). Human M-MDSC is present in the same density fraction as monocytes but differs from monocytes by the low presence or absence of HLA-DR expression. They are further characterized as lymphocyte lineage marker negative cells with the following phenotype CD11b+HLA–DR–CD14+CD15–. It is possible to use a CD33 myeloid cell marker instead of a CD11b. Human PMN-MDSC are typically described as CD66b+ CD15+CD14–/dim CD33dim HLA-DR–cells. CD66b or CD15 can be used as lineage markers. PMN-MDSC have been shown to also express other markers, including chemokine markers (e.g., CXCR2, CXCR4), activation markers (e.g., Markers including CD274/PD-L1, CD54/ICAM-1, CD62L, CD63), and functional markers [e.g., arginase 1(ARG1)], at variable levels depending on the disease type and severity (Dumitru et al., 2012; Scapini et al., 2016; Cassetta et al., 2019). MDSCs are associated with a poor prognosis of human melanoma (Meyer et al., 2014). In this study, we found that ERBB2/3 may be closely related to MDSC (Human M-MDSC and Human PMN-MDSC) in cutaneous melanoma. Further experimental studies are needed to support this conclusion, which may be studied by our laboratory in appropriate circumstances, due to the lack of evidence in literature for the direct effects of ERBBs and MDSCs markers in cutaneous melanoma.

In summary, we systematically analyzed ERBBs expression, prognosis, immune infiltration, and its relationship with MDSC. In cutaneous melanoma, ERBB3 high expression and ERBB1/2 low expression were strongly associated with 5 years survival rates of cutaneous melanoma patients but may not affect tumor stage or disease-free survival. ERBB1/2/3 are associated with infiltration of multiple immune cells, especially the M1 Macrophage, Dendritic cell, Th1, Th2, Th17, and Treg cells, which suggests that ERBBs may affect survival rate in cutaneous melanoma patients by affecting immune cell infiltration. Besides, ERBB2/3 are closely related to MDSC, but the role of ERBB2/3 in the cutaneous melanoma population with MDSC remains to be further studied. According to current studies, ERBB1/2/3 may serve as potential therapeutic targets in cutaneous melanoma.
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Background: Hepatocellular carcinoma (HCC) is a type of primary liver tumor with poor prognosis and high mortality, and its molecular mechanism remains incompletely understood. This study aimed to use bioinformatics technology to identify differentially expressed genes (DEGs) in HCC pathogenesis, hoping to identify novel biomarkers or potential therapeutic targets for HCC research.

Methods: The bioinformatics analysis of our research mostly involved the following two datasets: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). First, we screened DEGs based on the R packages (limma and edgeR). Using the DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were carried out. Next, the protein-protein interaction (PPI) network of the DEGs was built in the STRING database. Then, hub genes were screened through the cytoHubba plug-in, followed by verification using the GEPIA and Oncomine databases. We demonstrated differences in levels of the protein in hub genes using the Human Protein Atlas (HPA) database. Finally, the hub genes prognostic values were analyzed by the GEPIA database. Additionally, using the Comparative Toxicogenomics Database (CTD), we constructed the drug-gene interaction network.

Results: We ended up with 763 DEGs, including 247 upregulated and 516 downregulated DEGs, that were mainly enriched in the epoxygenase P450 pathway, oxidation-reduction process, and metabolism-related pathways. Through the constructed PPI network, it can be concluded that the P53 signaling pathway and the cell cycle are the most obvious in module analysis. From the PPI, we filtered out eight hub genes, and these genes were significantly upregulated in HCC samples, findings consistent with the expression validation results. Additionally, survival analysis showed that high level gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2 were connected with the poor overall survival of HCC patients. Toxicogenomics analysis showed that only topotecan, oxaliplatin, and azathioprine could reduce the gene expression levels of all seven hub genes.

Conclusion: The present study screened out the key genes and pathways that were related to HCC pathogenesis, which could provide new insight for the future molecularly targeted therapy and prognosis evaluation of HCC.

Keywords: hepatocellular carcinoma, bioinformatics, differentially expressed genes, survival, biomarker, GEO, TCGA


INTRODUCTION

Accounting for 75-85% of all primary liver cancer, hepatocellular carcinoma (HCC) is the main histological classification of liver cancer, which is the fourth most frequent cause of cancer-related death globally (Harris et al., 2019; Yang J.D. et al., 2019). The liver is the second most common cancer-prone organ, after the lungs, as was shown by the recent cancer study in China (Fu and Wang, 2018). On the whole, the estimated morbidity of HCC per 100,000 world standard population is 40.0 in males and 15.3 in females (Zhu et al., 2016). Major risk factors for HCC include genetic predisposition, epigenetic variation, chronic hepatitis B infection, hepatitis C virus infection, smoking, obesity, aflatoxin exposure, and diabetes (Puszyk et al., 2013; Baecker et al., 2018). Transplantation is the most useful way to treat HCC; however, after the transplantation process, the tumor recurrence and metastasis rates are high (Au and Chok, 2018; Aufhauser et al., 2018). More than 70% of patients at advanced stage are not suitable for transplantation, whether due to the tumor burden or liver dysfunction (Wang et al., 2019). Therefore, it is urgent to recognize new biomarkers that can act as molecular targets for therapy, and predictors of the prognosis of HCC. With the development of times and technological progress, microarray and high-throughput sequencing technologies have matured and become more reliable, and public databases are improving, such as the Gene Expression Omnibus (GEO)1 and the Cancer Genome Atlas (TCGA)2. The advancement of microarray (Yang X. et al., 2018) and high throughput sequencing technologies (Weinstein et al., 2013) has provided a highly efficient tools to explore key genetic or epigenetic changes in disease to identify biological markers that can be applied to disease diagnosis, therapy, and prognosis (Weinstein et al., 2013; Wang et al., 2018; Yang X. et al., 2018; Li et al., 2019). Additionally, the application of integrated bioinformatics methods in cancer research can solve the problem of different results due to errors caused by different technical platforms or small sample size, thus finding much valuable biological information (Liu X. et al., 2018; Deng et al., 2019; Yan et al., 2019; Yang K. et al., 2019).

In this research, by analyzing and distinguishing genes in human HCC samples and normal hepatocyte samples using TCGA and GEO datasets, we firstly screened out differentially expressed genes (DEGs). Then, GO and KEGG pathway enrichment analyses were applied in the further exploration of the main biological functions, which regulated by the DEGs. After that, the final step is to utilize a protein–protein interaction (PPI) network, survival analyses and drug-gene interaction network analyses to ascertain crucial genes and pathways which affecting the pathogenic mechanism and prognosis of HCC patients.



MATERIALS AND METHODS


Gene Expression Datasets

The microarray gene expression dataset of GSE121248, which comprises 70 hepatocellular carcinoma samples and 37 normal liver samples, was obtained from the GEO website and exploited as discovery dataset to identify DEGs. The included dataset met the following criteria: (1) dataset included human HCC samples and normal liver samples. (2) they contained at least ten samples. (3) dataset was obtained from the Affymetrix Human Genome U133 Plus 2.0 Array [HG-U133_Plus_2] microarray platform. The raw RNA sequencing data, which comprises 374 HCC samples and 50 normal liver tissue samples, was selected from the TCGA liver hepatocellular carcinoma (TCGA-LIHC) dataset and used as a validation dataset.



Identification of DEGs

We used the R language to analyze the original CEL files of the GSE121248 dataset.

The preprocessing procedures: using the “affy” R package to RMA background correction, Log2conversion, Quantile normalization, and Median polish algorithm summarization (Bolstad et al., 2003; Gautier et al., 2004). Using the bioconductor annotation package to convert microarray data probes into gene symbol. If multiple probes were mapped to a gene symbol, take the average value as the final expression value of the gene (Zhang et al., 2018). Next, | log2fold change (FC)| > 1 and adjusted p value <0.05 were used to select the DEGs between tumor and normal tissues using the LIMMA package (Ritchie et al., 2015; Nagy et al., 2018).



DEGs Validation Using the TCGA Dataset

The DEGs from the GSE121248 dataset were validated using the TCGA-LIHC dataset.

The edgeR package of R software was applied to normalize and analyze the TCGA-LIHC dataset (Robinson et al., 2010). | log2fold change (FC)| > 1 and p-value <0.05 were considered significant differences. The overlapping DEGs between GSE121248 and TCGA-LIHC datasets were clustered using the pheatmap and were retained for further study. The overlapping DEGs were analyzed using VennDiagram and ggplot2 packages in R software to draw Venn diagrams and volcano plots, to visualize the identified DEGs (Chen and Boutros, 2011).



Functional Enrichment Analysis of Overlapping DEGs

We used the Database for Annotation, Visualization and Integrated Discovery (DAVID version 6.8)3 to elucidate potential GO function [including biological processes (BP), molecular functions (MF), cellular components (CC)] and signaling pathways (KEGG) related to the overlapping DEGs (Dennis et al., 2003; Kanehisa et al., 2017). We used threshold p-value 0.05.



Protein–Protein Interaction Network Construction and Module Analysis

The Search Tool for the Retrieval of Interacting Genes (STRING version 11)4 database was one of the largest online databases of known protein-protein interactions covering the largest number of species (Szklarczyk et al., 2017). The parameter of interactions was set with a confidence score >0.7. The confidence score refers to the strength of data support in terms of the thickness of the line. Confidence score >0.7 means high confidence. Overlapping DEGs were entered into Cytoscape software (version 3.7.2)5 to construct and analyze PPI network (Shannon et al., 2003). Moreover, the Cytoscape plug-in MCODE was used to screen crucial clustering modules in the entire network (Bader and Hogue, 2003).



Identification of Hub Genes

The Cytoscape plug-in CytoHubba was used to calculate the protein node degree (Chin et al., 2014; Cao et al., 2018). The top three methods [(Maximal Clique Centrality (MCC), Maximum Neighborhood Component (MNC), and Density of Maximum Neighborhood Component (DMNC)] were selected to provide the analyzed results. Each method displayed their top ten genes. A Venn diagram was generated to visualize common hub genes based on these three methods.



Expression Analysis of Hub Genes in Multiple Databases

The hub genes mRNA expression levels were finally validated in two databases, Gene Expression Profiling Interactive Analysis (GEPIA)6 (Tang et al., 2017) and Oncomine. Oncomine (Version4.5)7 is an online database that has the comprehensive cancer mutation spectrum, gene expression data and related clinical information, which can be used to discover new biomarkers or new therapeutic targets (Rhodes et al., 2004). In addition to detecting the mRNA expression levels of the hub genes, we also investigated the protein levels in HCC tissues and normal liver tissues using the human protein atlas database (HPA v19)8 (Thul and Lindskog, 2018).



Survival Analysis

Gene Expression Profiling Interactive Analysis is a newly developed online database for cancer and normal gene expression profiling. In the current study, the overall survival of each hub gene was analyzed using LIHC dataset in the GEPIA database. The patients were divided into two groups (the high- and low-expression group) according to the median expression level of each hub gene. This division method could evaluate the difference in overall survival probability between these two groups. We were drawn the overall survival curves of each hub gene using the GEPIA database, with a p-value <0.05.



Drug-Gene Interaction Network Analysis

The Comparative Toxicogenomics Database (CTD)9, an online database providing information on the interactions between gene products and chemotherapeutic drugs, and their relationships to diseases) was used to construct the chemotherapeutic drug-gene interaction network (Davis et al., 2019). The networks were visualized by Cytoscape software 3.7.210.




RESULTS


Identification of DEGs

The gene expression dataset of GSE121248, which contains 70 LIHC samples and 37 normal liver samples, was analyzed in the limma package using | logFC| > 1 and corrected p-value <0.05 of R software. In total, 1,518 DEGs (557 high expression genes and 961 low expression genes) were identified between HCC tissue samples and normal liver tissue samples. The volcano map and heatmap of all DEGs are shown in Figures 1A,C. Additionally, compared with normal liver tissues in the TCGA-LIHC dataset, 2,898 DEGs were obtained in LIHC tissues, comprising 1,299 upregulated genes and 1,599 downregulated genes (Figure 1B). Furthermore, 763 overlapping DEGs (247 high expression genes and 516 low expression genes) were identified between the GSE121248 and TCGA-LIHC datasets using a Venn diagram (Figure 1D). Figure 1E shows clustering analysis results of the 763 overlapping DEGs based on the TCGA-LIHC dataset.
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FIGURE 1. Identification of DEGs. (A,B) show the volcano maps of DEGs for (A) GSE121248 dataset, (B) TCGA-LIHC dataset. (C) The heatmap of the top 50 DEGs in dataset GSE121248. The green color and red color in the heatmap indicate low and high expression of DEGs. (D) Venn diagrams of the DEGs between the GSE121248 dataset and the TCGA-LIHC dataset. (E) The heatmap of the top 100 overlapping DEGs according to the value of | logFC| in TCGA-LIHC dataset. The color in heatmaps from green to red shows the progression from down-regulation to up-regulation.




Enrichment Analysis of Overlapping DEGs

We conducted GO and KEGG pathway enrichment analysis to further elucidate potential biological functions associated with the 763 overlapping DEGs of HCC. The GO analysis results of the DEGs were classified into molecular functions, biological processes and cellular components. For molecular functions, the overlapping DEGs were mainly associated with oxidoreductase activity, monooxygenase activity, heme binding and oxygen binding (Figure 2A). In the BP category, the epoxygenase P450 pathway, oxidation-reduction process, response to drug and cell division were enriched (Figure 2B). In the CC category, they were enriched in extracellular regions, such as extracellular exosomes and the extracellular space (Figure 2C). The pathway enrichment analysis results showed that overlapping DEGs mainly participated in multiple metabolism pathways, such as fatty acid degradation, glycine, serine and threonine metabolism, and tryptophan metabolism (Figure 2D).
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FIGURE 2. Enrichment analysis of the overlapping DEGs. (A–C) illustrate the GO enrichment analysis results: (A) molecular function, (B) biological process and (C) cellular components. (D) KEGG pathway enrichment analysis results.




PPI Network Establishment and Module Analysis

To further reveal the potential relationships between proteins encoded by DEGs, a PPI network was constructed using the STRING database. Network analysis of overlapping DEGs revealed 526 nodes and 4,173 edges in the PPI network. Additionally, we conducted module analysis using the MCODE plug-in to detect crucial clustering modules. In total, 29 clusters were obtained in MCODE, and the top three modules with the highest scores were selected as hub modules. Module 1 contained 63 nodes and 1,752 edges with the highest score of 56.516 and was mainly enriched in cell cycle, oocyte meiosis, P53 signaling pathway and progesterone-mediated oocyte maturation (Figure 3A). Module 2 contained 17 nodes and 80 edges with a score of 10 and mainly participated in PPAR signaling pathway and glycerolipid metabolism (Figure 3B). Module 3 comprised 28 nodes and 100 edges with a score of 7.407 and was mainly implicated in Chemical carcinogenesis, Peroxisome, Metabolic pathways and Drug metabolism cytochrome P450 (Figure 3C).
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FIGURE 3. Venn diagram and the top three clustering modules of PPI network. (A) Module 1 with an MCODE score of 56.5. The red nodes are the hub genes. (B) Module 2 obtained a score of 10.0 from MCODE. (C) Module 3 with an MCODE score of 7.4. Edges represent the protein-protein associations. The higher the module score, the more important the module is in the PPI network. (D) Venn diagrams of the hub genes between three methods (MNC, MCC, and DMNC).




Hub Genes Selection From the PPI Network

The Cytoscape plug-in cytoHubba including the top three algorithms (MCC, MNC, and DMNC) was applied to select hub genes, and the top 10 genes were selected by each of the three methods. The Venn diagram identified eight overlapping hub genes based on these three methods (Figure 3D): cell division cycle protein 20 homolog (CDC20), cyclin-dependent kinase1 (CDK1), mitotic spindle assembly checkpoint protein MAD2A (MAD2L1), threonine-protein kinase BUB1 (BUB1), threonine-protein kinase BUB1 beta (BUB1B), mitotic-specific cyclin-B1 (CCNB1), mitotic-specific cyclin-B2 (CCNB2) and cyclin-A2 (CCNA2). These eight hub genes were used for further analysis.



Validation of Hub Genes in Multiple Databases

Oncomine and GEPIA were applied to validate the differentially expression levels of 8 hub genes between HCC tissues and normal liver tissues in HCC. These eight hub genes were all remarkably overexpressed in HCC samples (Figure 4). Moreover, a summary of hub genes in multiple tumors indicated that hub genes were significantly overexpressed in HCC (Figure 5). Furthermore, we also investigated the protein expression levels in HCC tissue samples and normal liver tissue samples using the human protein atlas database. Because the HPA dataset could not provide immunohistochemical information on BUB1 and BUB1B, we showed the results of the remaining six staining pairs in Figure 6. The protein expression levels of hub genes were agreed with the mRNA expression results, and most genes were overexpressed in HCC tissue (Figure 7). These findings indicate that the overexpression of these hub genes may play a critical role in HCC mechanism.
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FIGURE 4. Validation of eight hub genes mRNA expression levels in HCC tissues vs. normal liver tissues using the GEPIA database (A–H). The red color represents the tumor samples and the gray color represents the normal liver samples.
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FIGURE 5. An summary of mRNA expression results of 8 hub genes in multiple tumors using the Oncomine database. The numbers in colored cells show the quantities of datasets with high (red) or low (blue) mRNA expression of the hub genes.



[image: image]

FIGURE 6. The OS analysis of 8 hub genes in the HCC patients using the GEPIA database. The red curve is the high expression group and the blue curve is the low-expression group. p-value < 0.05.
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FIGURE 7. Immunohistochemical staining analysis of hub genes (CCNA2, CCNB1, CCNB2, CDC20, CDK1, and MAD2L1) in HCC tissues and normal liver tissues.




Survival Analysis

We further used the GEPIA database to analyze the prognostic value of these 8 hub genes in HCC patients. The survival analysis of patients in the GEPIA database was based on the TCGA-LIHC data set. We used threshold p-value 0.05 and calculated the hazards ratio based on Cox PH Model (Xu et al., 2020). The relatively higher expression of CDC20 (HR = 2.3; P = 3.8e-06), CDK1 (HR = 2; P = 0.00017), MAD2L1 (HR = 1.7; P = 0.0047), BUB1 (HR = 1.8; P = 0.001), BUBIB (HR = 1.7; P = 0.0028), CCNB1 (HR = 2; P = 0.00015), and CCNA2 (HR = 1.7; P = 0.0037) were associated with a poor prognosis in HCC patients, while only CCNB2 (HR = 1.4; P = 0.052) showed no statistical significance in the overall survival of patients (Figure 6).



Drug-Gene Interaction Network Analysis

To investigate the potential information on the interactions between hub genes and cancer chemotherapeutics drugs, we used the CTD database to construct chemotherapeutics drug-gene interaction network. Various drugs could influence the mRNA expression level of seven hub genes, namely, CDC20, CDK1, MAD2L1, CCNA2, CCNB1, BUB1, and BUB1B (Figure 8). However, only topotecan, oxaliplatin and azathioprine could reduce expression levels of all seven hub genes.
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FIGURE 8. Drug-gene interactions network with chemotherapeutic drugs and seven hub genes was constructed using the CTD database. (A–G) shows the relationship between existing chemotherapeutic drugs and the expression levels of hub genes. (A) BUB1, (B) BUB1B, (C) CCNA2, (D) CCNB1, (E) CDC20, (F) MAD2L1, and (G) CDK1. The red and green arrows represent that the chemotherapy drugs will increase or decrease the expression of the hub genes. The number of arrows between hub genes and chemotherapy drugs indicates the number of references supported by previous studies.





DISCUSSION

Hepatocellular carcinoma is a type of primary liver tumor with poor prognosis and high mortality, and the progress in its diagnosis and treatment has always attracted widespread attention from researchers around the world. Because the high recurrence and metastasis rate of HCC remains a challenge, identifying new molecules as biological markers is urgently needed. Integrated bioinformatics analysis, which focuses on screening of DEGs, discovering hub node of network-based and doing survival analysis, which has been diffusely used to recognize latent biological markers related to cancer diagnosis, therapy, and prognosis estimation. In recent years, increasing researches have demonstrated that abnormal gene expression is a factor in the tumorigenesis and development, so it is feasible to screen differential genes as biomarkers to assist diagnosis and treatment. In 2017, by developing an integrated approach including GO and KEGG analysis, PPI network creation, hub gene identification, and overall survival analysis, Li L. et al. (2017) picked out 16 hub genes for HCC from three GEO datasets, five of which may be playing a part in the occurrence, development, invasion, metastasis or recurrence of HCC. In 2018, Zhang L. et al. (2018) used bioinformatics methods to select 10 genes from the GEO dataset GSE64041 for the identification of hub genes and pathways of HCC. Gu et al. (2020) recognized 13 crucial genes correlated with progression and prognosis of HCC from the TCGA-LIHC dataset by weighted gene coexpression network analysis. Compared with previous similar studies, our study not only integrated a large sample size of mRNA expression data from the GEO database but also analyzed RNA sequencing result and clinical data from the TCGA-LIHC database to screen out potential hub genes in HCC. And in the second place, this study validated the DEGs through multiple databases. Finally, we explored the relationship between seven hub genes and existing drugs for cancer therapy, which may provide some guidance for the molecular targeting therapy of HCC in the future.

In our research, DEGs in HCC based on the GEO expression profile of GSE121248 (70 HCC samples and 37 normal samples) and TCGA-LIHC RNA sequencing data (374 HCC samples and 50 normal samples) were identified by bioinformatics analysis. In total, 763 significantly robust DEGs, including 247 upregulated DEGs and 516 downregulated DEGs, were identified. The enrichment analysis results of GO indicated that the DEGs were mostly relevant to “oxidoreductase activity, acting on paired donors,” “monooxygenase activity,” “arachidonic acid epoxygenase activity,” “oxidation-reduction process,” “epoxygenase P450 pathway,” “response to drug,” “extracellular exosome,” “extracellular region,” and “cytosol.” The analysis of KEGG pathway showed that the DEGs were mainly concentrated in the following: “fatty acid degradation pathway,” “metabolic pathways,” “chemical carcinogenesis pathway,” “cell cycle pathway,” and “biosynthesis of antibiotics pathway.” Previous studies have reported that the arachidonic acid-derived metabolites and cytochrome P450 epoxygenase CYP2J2 possibly play vital roles in regulating malignant tumor, stimulating tumor cell growth, and inhibiting tumor cell apoptosis (Liu L. et al., 2011; Xu et al., 2011; Yarla et al., 2016). Additionally, metabolic pathways are important for cancer cell survival because the metabolic demands of cancer cells are often expressed as increased, and HCC shows a significant alteration in lipid metabolism (Pope et al., 2019). Moreover, dysregulation of the cell cycle processes and mitotic cell cycle plays a vital role in the tumorigenesis and progression (Williams and Stoeber, 2012; Wlodarchak and Xing, 2016). These theories are consistent with our results in GO and KEGG enrichment analysis.

Through building PPI network and analyzing it, we identified crucial hub genes in the PPI network, including CDC20, CDK1, MAD2L1, BUB1, BUB1B CCNB1, CCNB2, and CCNA2. Using Oncomine and GEPIA validation, the mRNA expression of these eight hub genes in HCC samples was higher than normal liver samples, the finding that was in accord with the microarray results. Subsequently, HPA database data displayed that the protein and mRNA expression of hub genes were consistent, and most genes were overexpressed in HCC tissue. To inquire prognostic biological markers of HCC, we applied the GEPIA to analyze the influence of hub genes expression level on survival of HCC patients and found that, except CCNB2, the high level gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2 were related to HCC patients poor overall survival. Therefore, these seven genes may be functional in HCC occurrence and development.

It was reported that high expression of CDC20 (cell division cycle protein 20) is associated with poor survival in astrocytoma (Ding et al., 2017), cutaneous squamous cell carcinoma (Chu et al., 2019) and pancreatic ductal adenocarcinoma (Dong et al., 2019). CDC20 promotes the progression of prostate cancer by stabilizing hypo-catenin in tumor-like dry cells (Zhang et al., 2019). However, the expression of cell division cycle protein 20 in HCC still lacks accurate experimental data. As a part of the Ser/Thr protein kinase family, CDK1 (cyclin-dependent kinase 1) is a key molecule that controls the eukaryotic cell cycle. By phosphorylating Bora, Cyclin A/cdk1 could facilitate the phosphorylation, activation and mitotic entry of Aurora A-dependent Plk1 (Vigneron et al., 2018). It is reported that CDK1 overexpression has been found in colorectal cancer, pancreatic ductal adenocarcinoma and thyroid cancer (Zhang P. et al., 2018; Piao et al., 2019; Zheng et al., 2019). It was also reported that CDK1 amplification rate in HCC tissues was usually up to 46% (18/39), which was meaningfully related to poor overall survival (p = 0.008) (Wu et al., 2018). These results were in accord with our study findings.

As a pro-oncogene upregulated in gastric cancer, MAD2L1 (mitotic arrest deficient 2-like protein 1) can be downregulated expression by miR-30a-3p, resulting in inhibition of the proliferation of gastric cancer cells (Wang et al., 2019). Besides, by restraining MAD2L1, miR-200c-5p can inhibit HCC cells proliferation, migration and invasion (Li Y. et al., 2017), suggesting that MAD2L1 can be used in HCC patients prognostic evaluation and targeted therapy. As a cyclin controlling the G1/S and G2/M phases in the cell cycle, CCNA2 (cyclin-A2) is more expressed in CRC samples than in normal samples. The reduction of CCNA2 gene expression would disrupt cell cycle progression and induce apoptosis, thus significantly inhibiting the growth of CRC cells (Gan et al., 2018). By maintaining the expression of CCNA2 protein and the production of arginine, arginine metabolic enzyme argininosuccinate lyase (ASL) can promote the production of nitric oxide synthase, thus promoting the formation of HCC (Hung et al., 2017).

As a mitotic checkpoint serine/threonine kinase, BUB1 is related to tumorigenesis in many cancers. shRNA silencing inhibits the expression of BUB1 gene in glioblastoma tumor cells, thereby reducing the proliferation and tumorigenicity of tumor cells in vivo and in vitro (Yu et al., 2019). Increased BUB1 expression signally facilitates cell proliferation, while decreased BUB1 expression restrains liver cancer cells proliferation (Zhu et al., 2020). The proliferation, migration, and invasion of PCa cell lines can be enhanced via BUB1B overexpression (Fu et al., 2016). Worse OS and DFS of HCC patients can be predicted by the high expression of BUB1B (Zhuang et al., 2018). CCNB1, an important protein regulating the G2/M (mitotic) cell cycle, is activated by Chk1, exerting its oncogenic role in colorectal cancer cells growth in vivo and in vitro (Fang et al., 2014). Abnormal FOXM1 expression can transcriptionally activate CCNB1 expression, thereby promoting the proliferation of HCC cells (Chai et al., 2018).

After exploring the potential information about the interactions between the seven hub genes and existing chemotherapeutic drugs, we found that various drugs could influence the expression levels of these hub genes. However, only topotecan, oxaliplatin and azathioprine could simultaneously reduce the expression level all seven hub genes. And it should be noted that further experiments are needed to support whether HCC patients with hub gene overexpression can benefit from hub gene inhibition or whether these key genes may be targets of drug treatment of tumor need ulteriorly biological experiments support.

In the current study, we have discussed that the development of HCC is associated with the overexpression of seven hub genes, which lead to poor overall survival, indicating that they may be considered as potential prognostic biomarkers for HCC. However, our study has several limitations: (1) some important clinical information (for example, different age, tumor size, TNM stage and grade) were not considered; (2) biological experiments must be carried out in the future to verify the results of our research; (3) the molecular mechanism of hub gene upregulation remains unclear. Therefore, the verification of hub genes will be the focus of our next work.



CONCLUSION

Adopting a series of bioinformatics analysis methods, the current study identified 763 DEGs and seven hub genes (CDC20, CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2) that may be involved in hepatocellular carcinoma tumorigenesis and progression. Additionally, multiple database analysis and survival analysis demonstrated that these seven hub genes may regard as a latent prognostic biomarker and the overexpression of these seven hub genes might lead to reduced overall survival in HCC patients. These results provide a theoretical basis for the molecularly targeted therapy and prognosis evaluation of HCC.
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Transition to flowering is an important stage of plant development. Many regulatory modules that control floral transition are conservative across plants. This process is best studied for the model plant Arabidopsis thaliana. The homologues of Arabidopsis genes responsible for the flowering initiation in legumes have been identified, and available data on their expression provide a good basis for gene network modeling. In this study, we developed several dynamical models of a gene network controlling transition to flowering in pea (Pisum sativum) using two different approaches. We used differential equations for modeling a previously proposed gene regulation scheme of floral initiation in pea and tested possible alternative hypothesis about some regulations. As the second approach, we applied neural networks to infer interactions between genes in the network directly from gene expression data. All models were verified on previously published experimental data on the dynamic expression of the main genes in the wild type and in three mutant genotypes. Based on modeling results, we made conclusions about the functionality of the previously proposed interactions in the gene network and about the influence of different growing conditions on the network architecture. It was shown that regulation of the PIM, FTa1, and FTc genes in pea does not correspond to the previously proposed hypotheses. The modeling suggests that short- and long-day growing conditions are characterized by different gene network architectures. Overall, the results obtained can be used to plan new experiments and create more accurate models to study the flowering initiation in pea and, in a broader context, in legumes.
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INTRODUCTION

Flowering is associated with a significant physiological change in plant development which manifests the transition from vegetative growth to reproductive development. For the reproductive success of plants, it is important for this transition to occur at the most appropriate moment. Various exogenous and endogenous pathways contribute to the control for the flowering time, and these pathways are best studied for the model plant Arabidopsis thaliana (Srikanth and Schmid, 2011; Andrés and Coupland, 2012; Khan et al., 2014). The key factor in the activation of the photoperiodic pathway of flowering initiation in Arabidopsis is the protein encoded by the FLOWERING LOCUS T (FT) gene. The FT, a phosphatidylethanolamine binding protein (PEBP), is a mobile signal transported from the leaves to the top of the shoot apex, where it promotes the plant’s transition to flowering. Expression of the FT gene depends on the influence of external and internal signals, which allow the plant to regulate the flowering initiation time (Kardailsky et al., 1999; Kobayashi et al., 1999; Jaeger et al., 2013). After synthesis in the leaves, the FT protein moves to the shoot apical meristem and forms a complex with the bZIP-type transcription factor FLOWERING LOCUS D (FD; Abe et al., 2005), which belongs to the 14-3-3 protein family (Taoka et al., 2011). Main target genes of the FT-FD complex are the flower meristem identity gene AP1 (APETALA1; Wigge et al., 2005) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1; Yoo et al., 2016). The latter is an activator of the gene LEAFY (LFY), which also controls the transition of shoot apical meristems to flower meristems (Lee et al., 2008). The flower meristem identity genes AP1 and LFY transcriptionally activate each other (Jaeger et al., 2013).

The balance between activation and repression of flowering initiation is important for plants with indeterminate inflorescence architecture, in which newly forming flowers do not stop further plant growth (Benlloch et al., 2015). The key repressor of flowering initiation in Arabidopsis is the gene TERMINAL FLOWER1 (TFL1), which is a close relative of FT and encodes a protein belonging to the PEBP family. This protein is expressed during floral transition in the center of the shoot apical meristem and maintains it in the vegetative state by suppressing the expression of LFY and AP1 (Jaeger et al., 2013; Goretti et al., 2020). In turn, AP1 represses TFL1 by directly binding its regulatory elements (Kaufmann et al., 2010). This mutual repression between TFL1 and LFY/AP1 explains the inflorescence meristem maintenance and flower meristem formation on its flanks (Benlloch et al., 2015). The minimal graph summarizing the genetic control of the photoperiod pathway in flower transition in Arabidopsis is shown in Figure 1A.
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FIGURE 1. Schemes for genetic control of floral initiation in (A) Arabidopsis and (B) pea (Pisum sativum). (A) The core gene network controlling floral transition in Arabidopsis thaliana (Jaeger et al., 2013). IM, inflorescence meristem; FM, flower meristem. (B) The core gene network controlling floral transition in pea. FTb2 is expressed in plant leaves under LD conditions; it then moves to the apex, where it interacts with VEGETATIVE2 (VEG2). The resulting complex VEG2-FTb2 stimulates the formation of the primary inflorescence meristem (I1M) by activating the meristem identity gene DETERMINATE (DET). Within the apex, FTb2 also activates FTa1 and FTc and downregulates LF. FTa1 is expressed both in the leaves and in the apex. By means of the complex with VEG2, FTa1 probably stimulates FTc expression and activates VEGETATIVE1 (VEG1). The latter activation leads to higher expression of VEG1, enhanced by the reduced repression from LF, and this expression initiates the secondary inflorescence meristem formation (I2M). FTa1-VEG2 also activates the floral meristem (FM) identity gene PROLIFERATING INFLORESCENCE MERISTEM (PIM). The mutual repression between the three meristem identity genes (DET, VEG1, and PIM) ensures a spatial separation of the corresponding developmental compartments, maintaining the indeterminate inflorescence development. Dashed arrow-headed lines indicate movement of proteins from leaves to apex and protein complex formation within the apex. Red solid arrow-headed lines correspond to transcriptional activation, and blue solid T-like lines indicate transcriptional repression. The regulation scheme is based on a figure by Sussmilch et al., 2015.


During evolution of legumes, the floral transition regulation has become more complex. This class of plants is characterized by the formation of a more complicated, the so-called compound, inflorescence architecture (Benlloch et al., 2015). In the process of growth, two meristems (primary and secondary) are successively formed. Moreover, multiple copies of the PEBP genes were identified in legumes homologous to FT and TFL1, associated with multiple genome duplication events during evolution (Hecht et al., 2011). The legume FT-like genes are subdivided into three subclasses: FTa, FTb, and FTc. Five FT-like genes from these subclasses were identified in pea (Pisum sativum; FTa1, FTa2, FTb1, FTb2, and FTc). These genes are characterized by variable expression patterns under different conditions. Under long day (LD) conditions, FTa1 and FTb2 are expressed in the leaves, while under short day (SD) conditions only decreased expression of FTa1 is observed. In the plant apex, only FTc and FTa1 are expressed. Such differences indicate distinct functions of the FT genes in floral initiation in pea (Hecht et al., 2011).

Pea homologues of the flower meristem identity genes AP1 and LFY are PROLIFERATING INFLORESCENCE MERISTEM (PIM/PEAM4) and UNIFOLIATA (UNI), respectively (Hofer et al., 1997; Taylor et al., 2002). Homologues of the floral repressor TFL1 in pea include DETERMINATE (DET), which is a marker of the primary inflorescence meristem (Berbel et al., 2012), and LATE FLOWERING (LF), whose function is not entirely clear (Foucher et al., 2003). The secondary inflorescence meristem is under control of VEGETATIVE1 (VEG1; Berbel et al., 2012). A pea homologue of FD is VEGETATIVE2 (VEG2), which is thought to form the complex with FTs similarly to Arabidopsis (Sussmilch et al., 2015).


Hecht et al. (2011) qualitatively analyzed the expression of these genes in pea, both in the leaves and in the shoot apical meristem, under different growth conditions and genotypes. Later, Sussmilch et al. (2015) proposed a scheme for regulations underlying the compound inflorescence development and floral transition in pea, as depicted in Figure 1B. In our study, we apply modeling to test whether the proposed regulation scheme fits the expression data quantitatively.

Methods of mathematical modeling are widely applied to the analysis of gene networks. These methods include Boolean models, ordinary differential equations (ODEs), neural networks, Bayesian networks, and stochastic modeling (Chai et al., 2014; Le Novère, 2015). The choice between different modeling approaches depends on the type of data used to calibrate the model.

Various modeling techniques were used for the quantitative analysis of gene networks involved in plant growth and development (Haque et al., 2019), in particular, in the photoperiodic pathway of floral transition. A method of neural networks was applied to study the transition to flowering of Arabidopsis (Welch et al., 2003). This model had a prescribed neural network architecture and described the interaction of the main genes responsible for various pathways of flowering initiation in the plant. The model was trained on values of such phenotypic parameters as the daylight length and the number of days after sowing. Later, the main regulatory elements underlying the photoperiodic pathway of Arabidopsis transition to flowering were identified using a dynamical model based on differential equations, which was applied to the data on flowering time of the wild and mutant genotypes (Jaeger et al., 2013). It was shown that the dynamics of flowering initiation can be explained by dividing the gene network into several feedback and forward loops with specific functional roles (Pullen et al., 2013). A more advanced model was developed later by Leal Valentim et al. (2015), in which additional regulators (SOC1 and AGL24) were added into the activation of LFY by the FT-FD complex, and the model was fitted to gene expression data. This approach allowed to test various hypotheses about LFY regulation by SOC1 and AGL24 and elucidated a nonlinear nature of the flowering network. Wang et al. (2014) investigated different approximations used to formulate model equations and compared their influence on the model performance in describing floral initiation in Arabidopsis. Apart from Arabidopsis, similar models of floral transition were also elaborated for chickpea (Cicer arietinum), which is a member of the legume family. Like pea, it has multiple homologous of the FT and TFL1 genes (Ridge et al., 2017). A dynamical model of the flowering gene network was developed and used for testing various hypotheses on how the FT- and TFL1-like genes combine in regulating the flower meristem identity genes in the ICCV 96029 chickpea cultivar (Gursky et al., 2018). The same model was not successful for CDC Frontier, which is another chickpea cultivar. A machine learning-based modeling approach was developed and applied for this cultivar, predicting that SD and LD growing conditions may be associated with different architectures of the flowering gene network (Podolny et al., 2020). Extending a classical qualitative model for the control of flowering initiation, Wenden et al. (2009) elaborated a quantitative model of flowering in pea (Wenden and Rameau, 2009). This model was used to formulate new hypotheses about the signals controlling flowering. More sophisticated modeling and software platforms were proposed taking into account mechanical processes during flower development and, more generally, morphogenesis in plants, and using advanced data quantification methods (Barbier de Reuille et al., 2015; Boudon et al., 2015).

We extend the previous modeling attempts to floral transition in pea. We construct several dynamical models and apply them to the previously published data on the photoperiodic pathway of flowering initiation in pea (Hecht et al., 2011; Sussmilch et al., 2015). We specifically investigate the compatibility of the network from Figure 1B to the data at the quantitative level.



RESULTS

We calibrated our models on the previously published dynamic expression data of genes responsible for flowering initiation in pea (cultivar NGB5839; Hecht et al., 2011; Sussmilch et al., 2015). We extracted the expression data for three FT-like genes (FTa1, FTb2, and FTc), two homologues of the TFL1 gene (DET and LF), one homologue of the FD gene (VEG2), a homologue of the flower meristem identity gene AP1 (PIM), and the VEG1 gene responsible for secondary meristem formation. For all genes except VEG1, data were available for the SD and LD growth conditions in the wild type; VEG1 expression data were available only for LD. In addition, expression data for the same genes were extracted for three mutant genotypes: late1-2, dne-1, and gigas-2. late1-2 is a mutant for gene LATE1, which has delayed flowering under LD. dne-1 represents a mutant for gene DNE1, which starts flowering under SD at the same time as a wild-type plant under LD. gigas-2 is the FTa1 null mutant.


Dynamical Models Based on the Proposed Regulation Scheme

We developed a dynamical model describing gene expression according to the regulation scheme shown in Figure 1B. We formulated ODEs implementing the Michaelis–Menten kinetics for the expression of each gene under the influence of its regulators and fitted this model to the expression data, in order to understand how the proposed regulation scheme matches the data at the quantitative level. We first investigated a baseline model [the MM model; equations (1)–(11) in Materials and Methods] which includes only regulations shown in Figure 1B and, in particular, considers the competitive binding of VEG2 by FTa1, FTb2, and FTc. We found values of free parameters by fitting this model to the wild-type expression data. In order to reduce the probability of overfitting, we analyzed all solutions resulted from a series of the numerical optimization runs (Figure 2). These solutions qualitatively match the data dynamics but have several quantitative discrepancies. In SD, insufficient repression at early times and insufficient activation at later times of PIM and FTc are observed. As data for VEG1 were absent in SD, the solution for this protein was not fitted to data. As a consequence, most of the VEG1 solutions have unrealistically high expression values in SD. The defects in LD include deficient activation at later times in most solutions for PIM, FTc, and apical FTa1, and deficient activation of LF at early times. Testing the model on the data from mutants also showed a qualitative correspondence between the model and the data, but with quantitative defects (Supplementary Figures 1, 2).
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FIGURE 2. Solutions in the baseline MM model in comparison with the wild-type data. The model solutions (red curves) corresponding to all parameter sets found by multiple optimization runs are shown for six genes and for the short day (SD, right panels) and long day (LD, left panels) conditions. The black dots and error ranges are the mean expression data and standard deviations, respectively, extracted from (Hecht et al., 2011; Sussmilch et al., 2015). The arrows indicate the most significant discrepancies between the solutions and data.




Testing Alternative Hypotheses About Gene Regulations

To improve the baseline model, we tested several alternative hypotheses about additional interactions in the gene network. TFL1 inhibits floral initiation in Arabidopsis by repressing expression of AP1. Among two pea homologues of the TFL1 gene (DET and LF), only DET was suggested as a repressor of PIM, which is the pea homologue of AP1 (Figure 1B). We assumed that LF also represses PIM and that this repression would reduce overexpressed PIM at early times in SD. To test this hypothesis, we formulated the MM_LF model by adding the new regulation into equations of the baseline MM model [see equation (12) in Materials and Methods] and fitted the new model to the wild-type data. The MM_LF model showed a slightly better performance as compared to the MM model in SD, but the performance became worse in LD (Figure 3A). Taking into account that the early dynamics of PIM is not improved essentially (Supplementary Figure 3) and MM_LF is much worse than MM on data from the gigas-2 mutant (Supplementary Figure 4), we can reject the hypothesis about PIM repression by LF.
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FIGURE 3. Normalized root-mean-square error (NRMSE) calculated on the wild-type data and solutions obtained from multiple optimization runs in various models. NRMSE is shown for the following couples of a baseline and alternative models: (A) MM and MM_LF, (B) MM and MC, (C) MC and MC_PIM. The model names are introduced in the text. The Mann–Whitney–Wilcoxon test was applied to check that the alternative model provides better performance (smaller NRMSE) than the baseline model; p-values: (ns) 0.05 < p ≤ 1, (*) 0.01 < p ≤ 0.05, (****) p ≤ 10−4.


On the next step, we tested whether the competitive binding of VEG2 by FTa1, FTb2, and FTc is essential. We adjusted the MM model by assuming that the binding is uncompetitive, so that the concentrations of the complexes were taken equal to the product of the concentrations of the corresponding proteins [equations (13)–(15) in Materials and Methods]. This new alternative model (MC model) demonstrated a better performance on the wild-type data as compared to the MM model, both in SD and in LD (Figure 3B), and was also better than the MM model on the data from mutant genotypes (Supplementary Figure 4; Supplementary Table 3). The wild-type solutions in the MC model are less variable than in the MM model and show improvement in expression dynamics of PIM and FTc in LD (Supplementary Figure 5). VEG1 in the MC model also has a more reasonable expression dynamics range in SD (Supplementary Figure 5). These results suggest that the binding of VEG2 by the FT proteins is uncompetitive.

In SD, the MM and MC models both have solutions with an overstated early and understated late expression of PIM. One possible solution to this problem is to make the dynamical curve of PIM respond in a more nonlinear way to the monotonically increasing expression curve of the complex VEG2-FTa1, which is the only activator of PIM. This nonlinearity can be achieved by adding a cooperativity parameter into the model, responsible for the putative cooperative binding of VEG2-FTa1 to the PIM promoter. It was shown that homologues of the FD (VEG2) and FT proteins form a complex consisting of several subunits in rice (Oryza sativa), thus sustaining the hypothesis about cooperative regulation by the VEG2-FT complexes (Taoka et al., 2011; Tsuji et al., 2013). We implemented the cooperativity hypothesis into the MC model by assuming that the cooperativity parameter n (n > 1) in the term responsible for the regulation of PIM by VEG2-FTa1 is an additional free parameter (MC_PIM model). However, the new model neither improved the total performance as compared to the MC model (Figure 3C) nor fixed the PIM expression dynamics in SD (Supplementary Figure 6), thus suggesting that the regulation of PIM is noncooperative.



Models Trained on Full Data

The models described above were trained on the wild-type data and tested on the mutant data. In these computational experiments, the MC model outperformed other alternative models on both the wild-type and mutant data (Figure 3; Supplementary Figure 4). However, most of the defects shown for the baseline MM model persisted in the MC model. In order to increase the amount of data used to optimize parameter values, we used the same equations as in the MC model and fitted them to gene expression data for all genotypes (wild type, dne-1, late1-2, and gigas-2). Since we used all the available data to fit the model, we aimed to investigate the maximal possible performance of the model in this computational experiment. Later, we will split both the wild-type and mutant data into training and testing subsets when modeling with neural networks.

We refer to this model trained on the complete data set as MC_Cdata. In terms of the normalized error, the MC_Cdata model expectedly outperforms MC on the mutant data but has a bit worse performance on the wild-type data (Supplementary Figure 7). However, the wild-type expression dynamics is qualitatively similar in the two models (Supplementary Figures 5, 8).

One of the defects observed in all models is a low FTa1 concentration at later times in the wild type (Figure 2; Supplementary Figures 5, 8). According to the proposed regulation scheme, FTa1 in the apical meristem is activated only by the VEG2-FTb2 complex. In order to add activation to the FTa1 expression, we suggested that FTa1 activates its own production in the apex. We tested this hypothesis by inserting an additional term into the equation for FTa1 that characterized FTa1 activation by the VEG2-FTa1 complex [equation (16) in Materials and Methods] and fitting the resulted model to the complete data set (MC_Cdata_FTa1 model). The new model did not show improved performance as compared to the MC_Cdata model (Figure 4), thus rejecting the hypothesis.

[image: Figure 4]

FIGURE 4. NRMSE in models trained on the full data (MC_Cdata and MC_Cdata_FTa1) or on the SD and LD portions of the full data (MC_SDdata and MC_LDdata, respectively). The Mann–Whitney–Wilcoxon test was applied to check that the alternative models provide better performance (smaller NRMSE) than the MC_Cdata model; p-values: (ns) 0.05 < p ≤ 1, (**) 0.001 < p ≤ 0.01, (****) p ≤ 10−4.


It was shown for soybean (Glycine max); another representative of legumes, that activation of flowering initiation under LD conditions involves different regulatory blocks than under SD conditions (Wu et al., 2019). We investigated whether the model performance can be improved if we use the same proposed regulatory scheme for pea but fit the model to the SD and LD data separately (MC_SDdata and MC_LDdata models, respectively). The SD data comprise the SD part from the wild type and data from the dne-1 mutant, and the LD data include the LD portion of the wild-type data and data from the late1-2 and gigas-2 mutants. MC_SDdata and MC_LDdata showed better performance than the MC_Cdata model for the SD and LD growing conditions, respectively (Figure 4). It should be noted that the comparison between these models is not a rigorous test, because the MC_SDdata and MC_LDdata models were fitted to fewer data points than MC_Cdata for the same number of parameters. However, this computational experiment shows that it is possible to reduce the modeling error by narrowing the model to either SD or LD. This suggests that it may be not feasible to use uniform regulatory assumptions under the two growing conditions. The analysis of individual genes reveals that the MC_LDdata model most significantly improves the expression dynamics of PIM and FTc (both in the wild type, LD), while MC_SDdata improves the expression dynamics of DET (wild type, SD, and dne-1) and FTa1 in the apex (dne-1; Supplementary Figures 9–13).



Dynamical Models Based on Neural Networks

The previously described dynamical models were based on the suggested regulation scheme underlying floral initiation in pea (Figure 1B), so studying these models was aimed at answering the question about the quantitative correspondence between this scheme and the expression data. In the next stage of the study, we developed models without prescribing a specific topology of the gene regulatory network, thus trying to answer the question of what regulations can be inferred from the expression data ab initio. Along with changing the question, we also changed the formalism of ODEs to the neural network method to formulate new models, so as not to be dependent on only one modeling method and, thus, increase the robustness of conclusions.

We developed three models (NN, NN_SDdata, and NN_LDdata) based on neural networks, all of which were constructed on the same principles and differed from each other only by the data used for their training. The models were formulated as dynamical regression models in which the apical expression of all genes on the current day was determined by the apical expression of the same genes and the expression of the FT-genes from the leaves from the previous day (Podolny et al., 2020). As VEG1 data were present only in LD, we excluded VEG1 from the model for simplicity; we also considered VEG2 as an independent variable. The NN model was trained on the full data (wild-type, dne-1, late1-2, and gigas-2), NN_SDdata on the SD portion of the full data (wild-type, SD, and dne-1), and NN_LDdata on the LD portion of the full data (wild-type, LD, late1-2, and gigas-2). For the NN and NN_SDdata models, we separated data from several days for each condition (daylight and genotype) as the testing dataset, and all data from the late1-2 mutant were used as the testing dataset for the NN_LDdata model.

The solutions in the NN_SDdata and NN_LDdata models show better correspondence to the wild-type data compared to the models based on the proposed regulation scheme (Figures 5–6). There are improvements in expression dynamics of DET, LF, and FTa1 in the apex under the LD conditions and of PIM, FTc, and FTa1 in the apex under the SD conditions (arrows in Figure 5). The solutions in the NN model is close to NN_SDdata and NN_LDdata but have defects for FTa1 and DET in LD and for LF and FTc in SD. In contrast to the wild-type data, the neural network models do not show a definite difference with the ODE-based models on the mutant data (Figure 6). NN and NN_LDdata are better for gigas-2, while the comparison is in favor of the ODE-based models for the other two mutants. A worse performance of NN_LDdata for late1-2 can be explained by the fact that the whole data from this mutant were used as a testing set in this model.

[image: Figure 5]

FIGURE 5. Best solutions in the neural network models (NN, NN_SDdata, and NN_LDdata) in comparison with the models based on the proposed regulation scheme and ordinary differential equations (ODEs; MC_Cdata, MC_SDdata, and MC_LDdata), for the wild type and two growing conditions. The black dots and error ranges are the mean expression and standard deviation, respectively, in the data. The arrows indicate the improvements in expression dynamics achieved in the neural network models.


[image: Figure 6]

FIGURE 6. NRMSE for neural network models (NN, NN_SDdata, and NN_LDdata) and models based on ODEs (MC_Cdata, MC_SDdata, and MC_LDdata), for different genotypes and growing conditions. NRMSE was calculated for five genes shown in Figure 5. For gigas-2, PIM was excluded from the NRMSE calculation in NN and NN_LDdata as PIM was also excluded from the ODE-based models by construction. The two-tailed Mann–Whitney–Wilcoxon test was applied to check the performance difference between the indicated models; p-values: (ns) 0.05 < p ≤ 1, (**) 0.001 < p ≤ 0.01, (***) 10−4 < p ≤ 0.001, (****) p ≤ 10−4.


In order to understand what interactions were restored in the neural network models, we simulated gene knockouts in the models. In these knockouts, we set a potential regulator protein concentration to zero in the model and calculated how the area under the dynamic expression curve changed for each potential target as the result of such perturbation. We kept the concentrations of all other proteins fixed at their values from the data during this simulation in order to estimate the direct influence of the regulator on the target, excluding possible feedbacks from other genes whose dynamics may also be altered by the perturbation. The resulted gene network topology exhibits some deviations from the proposed regulation scheme from Figure 1B and is qualitatively different in SD and LD (Figure 7). In the proposed regulation scheme, FTa1 is the only activator of the floral meristem identity gene PIM, while the neural network models predict FTc as an additional activator both in SD and LD. Other noticeable differences include strong FTa1 self-activation in LD and FTc self-activation in SD.

[image: Figure 7]

FIGURE 7. Gene interactions predicted by the neural network models on the wild-type data. The heatmaps show gene knockout simulations in (left) the NN_LDdata and (right) NN_SDdata models; similar results for the NN model and for all three models but on the mutant data are shown in Supplementary Figures 14, 15. Gene knockouts were simulated as described in Materials and Methods. Values below 1 mean activation, above 1 mean repression, and equal to 1 mean no interaction.


Concerning differences between LD and SD, the regulatory topology exhibits more activation on the whole in LD compared to SD (Figure 7). Interestingly, VEG2 and FTa1 are predicted to be independent activators. VEG2 is the main activator in SD, with FTa1 almost not influencing other genes. FTa1 serves as the main activator in LD, while VEG2 is either non-active or even shows some repressive potential under this growing condition. Overall, these results show that the improvement in the solution quality demonstrated by the neural network models comes at the price of perturbations to the regulation scheme from Figure 1B.




DISCUSSION

The classical approach to elucidating functional regulations in a gene network consists in obtaining and qualitatively analyzing the expression patterns of genes involved in the network in various genetic backgrounds. As more data are collected on the genes controlling floral initiation in legumes (Hecht et al., 2011; Sussmilch et al., 2015; Ridge et al., 2017; Cheng et al., 2018), more quantitative approaches are required to infer the interactions in the gene regulatory network underlying this process (Jaeger et al., 2013; Leal Valentim et al., 2015; Gursky et al., 2018). Just as it has successfully been done for Arabidopsis, modeling gene networks responsible for the transition to flowering in legumes can be used for testing various hypotheses about the network structure and other properties of the process, in order to better understand the mechanism or to find possible flaws in the current understanding. In this study, we elaborated several models of the core gene network involved in flowering initiation in pea and applied them to the previously obtained expression data in the wild type and in mutants. In order to make our results more robust, we used two different methods to construct models. We showed that both formalisms, ODEs and neural networks, can be utilized to formulate dynamical models suited for the gene expression data used in the study.

Our modeling results indicate that the regulation scheme that was previously proposed by analyzing the expression data qualitatively does not fully correspond to these expression data at the quantitative level. There are two types of evidence in our results for this conclusion. Firstly, the best models implementing the proposed gene regulations (the MC and MC_Cdata models) consistently generated solutions with defects in the expression dynamics of several genes. These defects comprise wrong expression dynamics of PIM and FTc in SD, LF in LD, and inconsistent apical expression of FTa1. Moreover, we showed that this picture cannot be fixed by targeted and fine-tuned modifications of the regulation scheme. The rejected alternative interactions include repression of PIM by LF, cooperative activation of PIM by the VEG2-FTa1 complex, and FTa1 self-activation. As a floral meristem identity gene, PIM is of a special interest. One of the strongest constrains for introducing new potential activators of PIM for testing in the model is in the fact that PIM expression is almost zero in FTa1 mutant gigas-2 (Hecht et al., 2011). Therefore, more complicated regulatory modules have to be devised to provide an additional activation to PIM, so that they can be deactivated in the absence of FTa1.

Secondly, gene interactions reconstructed from the data by the neural network-based dynamical models contain new regulations compared to the proposed scheme. It is interesting that one of these new regulations was FTa1 self-activation, which was rejected at the stage of fine-tuning the proposed scheme with the help of the ODEs-based modeling. This is an example of a hypothesis about a new regulation that does not work when implemented alone but fits in when the regulation acts in concert with other modifications. Another such new regulation is PIM activation by FTc. The solution for PIM in the neural network model with this regulation is not zero on the gigas-2 data but is small enough to stay within error ranges (Supplementary Figure 16), i.e., the activation by FTc is compensated by all other PIM’s regulators in the absence of FTa1.

Our modeling results also support the possibility that different regulatory modules are active in SD and LD. The models based on the proposed regulation scheme show the best performance when fitted to the SD and LD data separately. The use of these data in the neural network models lead to qualitatively different regulatory topologies. In SD, VEG2 acts as the main activator, while FTa1 does not play a significant role, and the opposite situation is observed in LD. This possible activating role of VEG2 is in accordance with a previously obtained result showing that the model of floral initiation in Arabidopsis is effective under the assumption that FD (VEG2) can activate AP1 (PIM) as a monomer (Leal Valentim et al., 2015). However, it is also possible that this VEG2 and FTa1 decoupling somehow reflects the activating role of the VEG2-FTa1 complex captured by the model differently for different daylight conditions. Another finding about VEG2 concerns cooperative binding in the formation of complexes between VEG2 and FT proteins, which appears to be less favorable than the assumption about binding without constraints. This result can indicate that FTa1, FTb2, and FTc bind VEG2 without essential competition.

Not all regulations predicted by the neural network approach should be considered as real, so that conclusions about those regulations should be made with caution. The inconsistencies observed in the models based on the prescribed regulation scheme most probably mean that some important regulators are missing. A nonlinear response of the gene network to the unknown dynamic expression of these unknown regulators can be encoded in spurious interactions between the genes in the current version of the network. The defects in the model solutions highlight possible genes involved in missing regulations and, thus, can be used to plan further experimental searches.



MATERIALS AND METHODS


Flowering Gene Expression Data

For model calibration, we used previously published dynamic expression data of genes responsible for flowering initiation in pea (cultivar NGB5839; Hecht et al., 2011; Sussmilch et al., 2015). The expression data in the wild type and in mutants were extracted from the published sources using the web-based tool WebPlotDigitizer (Rohatgi, 2018). The data represent the means and SDs of the expression levels of the following genes: FTa1, FTb2, FTc, DET, LF, VEG1, VEG2, and PIM. The wild type data comprise the expression dynamics from 7 to 35th days after sowing under LD conditions and from 7 to 56th days under SD. Only LD data in the wild type were available for VEG1. The mutant data contain the gene expression dynamics from the mutants dne-1 (mutation in the DNE1 gene; 7–35 days after sowing under SD), late1-2 (mutation in LATE1; 14–56 days under LD), and gigas-2 (mutation in FTa1; 7–56 days under LD).



Dynamical Model Based on Differential Equations

We use the same methodology to construct the model as in Gursky et al. (2018). We model the expression of DET, PIM, VEG1, LF, FTc, and FTa1 in the apex with the following set of ODEs:
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where [image: image] describes protein concentrations. The concentrations of complexes of VEG2 with the FT proteins are denoted as [image: image] in the case of FTa1, and similarly for other FTs. As FTa1 is expressed both in the leaves and in the apex, the concentration of apically expressed proteins is written as [image: image]. The parameters vi
 are the maximal protein synthesis rates, and Ki
 are the Michaelis–Menten constants, which can be interpreted as equilibrium dissociation constants for regulator-promoter binding in the case of direct transcriptional regulation. The Hill constant n is used to account for the potential cooperative binding effect in PIM regulation by the VEG2-FTa1 complex; n = 1 in all versions of the model except the MM_PIM model, in which n was a free parameter. The parameters [image: image] are protein degradation constants. The translation process is not explicitly considered in these equations; we assume that protein concentrations are proportional to the concentrations of corresponding mRNAs.

FTb2 in the apex comprises the protein transported from the leaves, while FTa1 in the apex additionally include the apically expressed fraction. Considering a time delay 𝜏 for the transport process, we write the total apical concentrations [image: image] and [image: image] of FTa1 and FTb2, respectively, as follows:
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where [image: image] and [image: image] are the concentrations of corresponding proteins expressed in the leaves.

The baseline model considers competitive binding between VEG2 and FTa1, FTb2, and FTc. Under equilibrium competitive binding conditions, the concentrations of VEG2 complexes with the corresponding FT proteins are as follows:

[image: image]

[image: image]

[image: image]

Therefore, the baseline model MM consists of the equations (1)–(11).



Model Modifications to Test Alternative Hypotheses

The MM_LF model is equivalent to MM but with an additional repression of PIM by LF, introduced by adding a repressive term into equation (2) as follows:
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The MC model is equivalent to MM but with the binding between VEG2 and FT proteins assumed to be noncompetitive. Under this assumption, the concentrations of complexes are written as follows:
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It is not necessary to add free constants of proportionality into ([image: image])–([image: image]), since they can be effectively scaled into free Ki already present in equations (1)–(6).

The MC_PIM model is equivalent to MC but leaves the Hill parameter n free in equation (2). This value, together with values of all other parameters, is found by parameter optimization. A value n larger than one would suggest the cooperative binding of the VEG2-FTa1 complex to the promoter of PIM.

The models described above were fitted to the wild type data. The MC_Cdata model is the model MC in which the values of free parameters were found by fitting to combined data, which join the wild-type data and data from dne-1, late1–2, and gigas-2 mutants. The MC_Cdata_FTa1 model is equivalent to MC_Cdata but with added FTa1 self-activation in the apex, which was introduced by changing equation (6) to the following one:

[image: image]

The MC_SDdata model is the MC model in which free parameters were found by fitting to the combined SD data, consisting of the SD part of the wild type data and dne-1 mutant data. Similarly, MC_LDdata is the MC model fitted to the combined LD data, consisting of the LD part of the wild type data together with late1-2 and gigas-2 mutant data. Supplementary Table 1 summarizes all the models investigated in the study with their main characteristics.

Numerical solutions of the model equations were obtained using the ode23s solver in Octave. The concentrations of all regulators on the right-hand side of the equations were replaced by data interpolated in time. The initial conditions for all proteins were set to the data values at the first day.



Parameter Optimization

The parameter values were found by minimizing the following weighted residual sum of squares (wRSS):

[image: image]

where the difference between the model solution [image: image] and the data [image: image]for gene g is summed over all genes and times for which the data is available; [image: image] and [image: image] are the maximum and minimum concentrations in the data for gene g. Since VEG1 data was absent in SD, the numerical solution for this protein was calculated in the model but did not participate in the cost function ([image: image]). The data portion (wild type, mutant, SD, and LD) used in equation (17) depended on a model, as described above. This cost function was minimized using the DEEP software, which implements an entirely parallelized version of the differential evolution optimization method (Kozlov et al., 2016).

To reduce the number of free parameters in the models, we set λi
 = 0.199 for all proteins based on an experimental estimate of 3.49 days for the protein half-life in Arabidopsis grown at 20°C (Ishihara et al., 2015). To further reduce the possibility for overfitting, we applied an ensemble approach (Samee et al., 2015; Gursky et al., 2018). The optimization for each model was performed 20 times, and the judgment about the model performance was made by analyzing the resulted distribution of the wRSS values.

We compared the models using the normalized root-mean-square deviation:
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The Mann–Whitney–Wilcoxon test was used to compare the normalized root-mean-square error (NRMSE) distributions resulted from the parameter optimization in the models.



Neural Network Models

The neural network models were constructed as described in full details elsewhere (Podolny et al., 2020). The data set was expanded to 1,000 gene expression values per time point by sampling from normal distributions with the mean and variance taken from the initial data. The expanded data set was used for training and testing the models. The models were constructed as dynamical regression models in which the apical expression levels of six target genes (DET, PIM, FTc, FTa1, LF, and VEG2) on the current day was determined by the apical expression levels of seven genes (DET, PIM, FTc, FTa1, LF, VEG2, and FTb2) taken from the expanded data on the previous day.

The models were trained using the multilayer-perceptron regressor “MLPRegressor” of the Scikit-learn package (Pedregosa et al., 2011), with [image: image] as the activation function and the Adam stochastic method as the parameter optimization method (Kingma and Ba, 2015). The network architecture was chosen by training the models with different topologies and picking up the best one. Each model was trained 20 times using 5-fold cross-validation, and the ensemble approach was applied for the performance analysis, as described above.

The NN model is the neural network model trained on the combined data (wild type and all mutant conditions). The NN_SDdata model was trained on the SD data (SD wild type data and mutant dne-1 data). For these two models, the testing sample was constructed by taking data values from the last day of each separate condition. The NN_LDdata model was trained on the portion of the LD data that included the LD wild-type data and the gigas-2 mutant data, while data from the late1–2 mutant served as a testing sample for this model. Supplementary Table 2 summarizes the neural models with their main characteristics.



Simulating Knockouts in Neural Network Models

In order to find out which interactions between genes are restored in the neural network models, a gene knockout analysis was performed. The models were tested on the wild type data in which the expression of one regulator gene was set to zero. Then the AUC of a target gene expression dynamics was calculated in this simulation (S
knock_out) and in the non-perturbed case (S
wt). The ratio of these quantities provides information on the influence type that the regulator directly exerts on the target, as follows:
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Type 2 diabetes mellitus (T2DM) is one of the most prominent and socially significant problems. The present study aimed to identify the mechanisms of interaction of critical regulators of carbohydrate metabolism using bioinformatics and experimental methods and to assess their influence on the development of T2DM. We conducted an in silico search for the relationship of hormones and adipokines and performed functional annotation of the receptors for ghrelin and incretins. Hormones and adipokines were assessed in the plasma of obese patients with and without T2DM as well as after laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB) surgeries. Incretin- and ghrelin-associated functions and metabolic processes were discovered. Low ghrelin levels were observed in obese patients without T2DM compared with healthy volunteers and the other groups. The highest ghrelin levels were observed in obese patients with T2DM. This defense mechanism against insulin resistance could be realized through the receptors G-protein-coupled receptor (GPCR), growth hormone secretagogue receptor (GHSR), and growth hormone-releasing hormone receptor (GHRHR). These receptors are associated with proliferative, inflammatory, and neurohumoral signaling pathways and regulate responses to nutrient intake. Signaling through the GPCR class unites ghrelin, glucagon, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide (GLP)-1. Ghrelin impairs carbohydrate and lipid metabolism in obese patients. Ghrelin is associated with elevated plasma levels of insulin, glucagon, and leptin. Specific activation of receptors and modulation by posttranslational modifications of ghrelin can control IR’s development in obesity, which is a promising area for research.
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is one of the most prominent and socially significant problems (Dedov et al., 2017; Statistics About Diabetes | ADA, 2020). T2DM and associated diseases, in particular, abdominal obesity, occupy a leading position among the causes of mortality in the population (WHO | Raised fasting blood glucose, 2020). T2DM is characterized by the impaired metabolic response of insulin-dependent tissue [e.g., muscle, adipose tissue (AT), liver] to insulin, which leads to an increase in its concentration in human plasma (Finan et al., 2013). It is known that gastroduodenal zone hormones and mediators of AT, namely, adipokines, regulate carbohydrate metabolism components and play an important role in the pathogenesis of IR in T2DM (Finan et al., 2013; Vejrazkova et al., 2017). Different parts of the intestine secrete many hormones, and the key role belongs to incretin glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) (Skow et al., 2016; Brandt et al., 2018).

The main function of incretins is to stimulate insulin secretion by the pancreatic β-cells of the islets of Langerhans (Yabe and Seino, 2011; Campbell et al., 2016). GLP-1 promotes the normalization of carbohydrate metabolism and decreases body mass index (BMI) (Hong et al., 2016), while GIP has multidirectional effects on carbohydrate metabolism. The role of GIP in incretins is still controversial (Finan et al., 2013). It has been demonstrated that incretins are interrelated with the regulation of leptin and ghrelin production, the main modulators of carbohydrate metabolism (Kim and Egan, 2008; Karim et al., 2015; Ronveaux et al., 2015). Ghrelin is an orexigenic hormone that increases ingestion by activating agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons (Yanagi et al., 2018). Fasting plasma ghrelin level increases, then ghrelin activates gluconeogenesis in the liver, suppresses insulin production, and maintains glucose levels within control parameters. Postprandial hormone production decreases when there is a glucose-stimulated increase in insulin secretion.

In addition to metabolic functions, leptin is a pleiotropic inflammatory mediator and modulates glucose homeostasis and insulin release by reducing glucagon secretion (Hong et al., 2016; Vejrazkova et al., 2017). Glucagon stimulates glucose production in the liver, preventing hypoglycemia under normal physiological conditions; hyperglucagonemia is an indicator of T2DM (Vejrazkova et al., 2017; Brandt et al., 2018). It has been established that resistin also promotes the development of IR (Stofkova, 2010; Vejrazkova et al., 2017). Visfatin has pro-inflammatory and immunomodulatory properties and has insulin-sensitizing and insulin-mimetic effects. Thus, visfatin is of interest as a possible target for modulating blood glucose (Stofkova, 2010; Vejrazkova et al., 2017).

Incretin-stimulated insulin secretion accounts for approximately 50% of the total insulin production (Kim and Egan, 2008). Insulin biosynthesis and secretion are closely related to incretin receptors (Kim and Egan, 2008). In patients with T2DM, the sensitivity of cells to insulin is reduced, and glucose-dependent secretion of insulin is impaired (Nielsen et al., 2015). It has been established that in patients with T2DM, the absence and decrease in response to incretin therapy may be associated with dysregulation of expression or defects in incretin receptors (Yabe and Seino, 2013). Therefore, incretins play an important role in the regulation of insulin production. Consequently, studies of the causes of impaired secretion of incretins and decreased insulin-dependent receptor sensitivity in T2DM are relevant.

The present study aimed to identify the mechanisms of interaction of critical regulators of carbohydrate metabolism using bioinformatics and experimental methods, and to assess their influence on the development of T2DM complicated by obesity.



MATERIALS AND METHODS


Experimental Research Methods

The study included 225 obese patients. Of these, 113 obese patients had T2DM (45.18 ± 8.29 years; 45.69 ± 10.51 kg/m2; 46 men and 67 women), and 115 obese patients did not have carbohydrate metabolism disorders (46.41 ± 9.3 years; 46.31 ± 7.56 kg/m2; 41 men and 74 women). The presence of arterial hypertension was noted in 43% of patients. Obese patients with T2DM underwent surgery with two types of surgical treatment: laparoscopic sleeve gastrectomy (LSG) (48.53 ± 6.13 years; 40.59 ± 6.55 kg/m2) and Roux-en-Y gastric bypass (RYGB) (46.08 ± 10.63 years; 33.52 ± 6.08 kg/m2). The results of these patients were recorded 6 months after surgery. The control group of healthy volunteers included 102 apparently healthy donors with normal anthropometric and biochemical parameters (39.3 ± 6.51 years; 22.82 ± 2.18 kg/m2; 61 men and 41 women). Venous blood was obtained before and 60 min after the test breakfast. In the test breakfast, the protein content was 9.1 g, the carbohydrate content was 88.1 g, and the fat content was 10.6 g. In 45% of the patients, essential hypertension was diagnosed according to the classification of arterial hypertension by the arterial pressure level (EHS/ESC 2003–2013).

All the study participants provided informed consent to participate in the research study. The study was carried out according to the World Medical Association (WMA) Declaration of Helsinki (2000) and the Protocol to the Convention on Human Rights and Biomedicine (1999). The Local Ethics Committee approved the study protocol of the Innovation Park of the Immanuel Kant Baltic Federal University (protocol no. 4 from October 23, 2013).

The analysis of biochemical parameters in the blood serum was carried out on a Furuno CA-180 automatic biochemical analyzer (Furuno Electric Company, Japan) using DiaSys test systems (DiaSys Diagnostic Systems, Germany). Plasma hormone levels were assessed by flow fluorimetry (Bio-Plex Protein Assay System, Bio-Rad, United States) using commercial test systems (Bio-Plex Pro Human Diabetes 10-Plex Assay, Bio-Rad, United States). In obese patients and healthy donors, the concentrations of mediators (hormones: ghrelin, GIP, GLP-1, insulin, C-peptide, and glucagon) and the mediator SERPINE1 (PAI-1) and adipokines (resistin, leptin, and visfatin) were assessed in plasma.

A block diagram of the research is presented in Figure 1.
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FIGURE 1. A block-diagram of the research.




Bioinformatic Research Methods

Interactions of the studied proteins (nodes: proteins; edges: cooperations between them) were evaluated using the Cytoscape version 3.2.1 (United States) network.

Initial data on protein–protein interactions were obtained from the Human Protein Reference Database (HPRD). Protein–protein interactions from the HPRDs were used to construct a network of interactions for the proteins under study (Keshava Prasad et al., 2009). In the resulting network, proteins from the HPRDs interacting with these proteins and common bonds were identified. All studied proteins were applied to the protein–protein interaction HPRD network and then extracted together with the associated proteins.

The functional annotation of the gastric inhibitory polypeptide receptor (GIPR) and glucagon-like peptide-1 receptor (GLP-1R) genes and the analysis of their representation in the signaling and metabolic pathways were carried out using the algorithm implemented in the ClueGO Cytoscape version 3.2.1 plugin (Bindea et al., 2009) based on the use of the hypergeometric test (p < 0.05). The value of the kappa statistic, reflecting the functional relationships between genes, was set at 0.4. The functional characterization of genes was carried out based on the terminology of Gene Ontology within the categories of “biological process” and “molecular function” (Ashburner et al., 2000; Rivals et al., 2007). In this study, the functions were described from the third to the eighth levels of the hierarchy. The representation of genes in signaling and metabolic pathways was determined using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and Reactome pathway analyses.



Statistical Analysis of Experimental Data

The normal distribution of quantitative indicators was checked using the Kolmogorov–Smirnov test. If the normal law of distributing a feature in the studied samples was consistent, the hypothesis about the average sample values’ equality was tested using Student’s t test. If the data distribution did not obey the normal distribution law, further assessment of the sample differences was calculated using the non-parametric Mann–Whitney test for pairwise comparisons. According to the Spearman method, a relationship between the studied parameters was carried out using correlation analysis. Differences were considered significant at a significance level of p < 0.05. Statistical processing of the obtained results was carried out using the R statistical software (version 3.3.1).



RESULTS


Ghrelin Is Related to Insulin

Body mass index and biochemical parameters of carbohydrate metabolism (glucose and insulin) and lipid metabolism (cholesterol, triglycerides, HDL, and LDL) were measured in obese patients. Predictably, we observed a disturbance in carbohydrate and lipid metabolism parameters in obese patients with T2DM (Supplementary Table 1). We investigated a comparison group of obese patients without T2DM to look for the involvement of mediators in maintaining normal glucose levels. These obese patients had a high BMI, but carbohydrate and lipid metabolism were within normal limits, and hormone levels were comparable or lower than healthy volunteers. We did not find any sex differences in parameters between groups.

Disorders of carbohydrate and lipid metabolism can inhibit various compensatory mechanisms. A likely compensation mechanism could be an abnormal decrease in the total ghrelin level in obese patients without T2DM relative to healthy volunteers and obese patients with T2DM (Figure 2).
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FIGURE 2. Plasma levels of the studied mediators in obese patients with type 2 diabetes mellitus (T2DM) before and after laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB). (A) Plasma level of C-peptide. (B) Plasma level of ghrelin. (C) Plasma level of GIP. (D) Plasma level of GLP-1. (E) Plasma level of insulin. (F) Plasma level of resistin. (G) Plasma level of leptin. (H) Plasma level of visfatin. (I) Plasma level of PAI-1. (J) Plasma level of glucagon. ∗p < 0.05; differences in significance level were determined using one-way ANOVA. 1 – healthy volunteers before breakfast; 2 – healthy volunteers after breakfast; 3 – obese patient without T2DM before breakfast; 4 – obese patient without T2DM after breakfast; 5 – obese patient with T2DM before breakfast; 6 – obese patient with T2DM after breakfast; 7 – 6 months after LSG before breakfast; 8 – 6 months after LSG after breakfast; 9 – 6 months after RYGB before breakfast; 10 – 6 months after RYGB after breakfast.


We analyzed patients after LSG surgery to determine the importance of lowering ghrelin levels in maintaining normal carbohydrate metabolism in obese patients. This surgery removes the fundus of the stomach (the main area of food addiction) that produces ghrelin. Basal ghrelin level was lower in patients operated on LSG than that in healthy donors and in patients before surgery. Thus, a low plasma total ghrelin level is a compensatory mechanism for IR in obese patients.

After eating, ghrelin levels increased in patients after LSG surgery. This may seem contradictory if we do not consider the correlation results and data from Gene Ontology and compare them in patients with T2DM before and after LSG surgery. The ghrelin level was positively correlated with insulin before surgery (r = 0.420) (Figure 3C) and negatively correlated in patients after LSG surgery (r = −392) (p < 0.05) (Figure 3D). We showed in silico that ghrelin was associated with insulin, leptin, glucagon, and CRP (Figure 4). In particular, we found in silico connections between ghrelin and insulin through several pathways: GHRL–MLNR–GPRASP1–LRP2–INS, GHRL–HK3–LEP–A2M–CTSE–INS, GHRL–HK3–LEP–CLU–CPE–INS, and GHRL–HK3–LEP–LEPR–CLU–CPE–INS (Figure 4). These pathways can be activated depending on the microenvironment. The high levels of insulin after breakfast and the associated mediators stimulated ghrelin production in an endocrine manner.
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FIGURE 3. Correlation of mediators. (A) Correlation in the healthy volunteers; (B) Correlation in an obese patient without T2DM; (C) Correlation in an obese patient with T2DM; (D) Correlation in patients 6 months after LSG; (E) Correlation in patients 6 months after RYGB. The analysis was performed using Pearson’s test correlation.
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FIGURE 4. Subnetwork of the proteins insulin, ghrelin, glucagon-like peptide-1 (GLP-1), leptin, and their nearest neighbors. Light nodes represent the proteins under study; dark nodes are their nearest neighbors.


Ghrelin level negatively correlated with BMI and glucagon in patients with T2DM (Figure 3C) and with insulin after LSG (Figure 3D). Stimulation of ghrelin can occur not only by irritating the stomach’s fundus but also at the endocrine level.



Ghrelin Is Associated With Incretins

Laparoscopic sleeve gastrectomy is an effective weight loss surgery with the removal of the central ghrelin production gastric zone. Ghrelin levels were negatively correlated with BMI and decreased in patients after surgery. Ghrelin levels were lower in patients after LSG than in patients after RYGB. The reason for the differences is the peculiarities of the surgery themselves. In patients after surgery, BMI decreased, and lipid metabolism indicators returned to normal but not glucose and CRP levels. Despite this, the patients, after LSG and RYGB, are characterized by low insulin levels.

The association of ghrelin and incretins confirms the revealed positive correlations between ghrelin and GIP in obese patients with T2DM (Figure 3C); in patients after LSG, positive correlations were noted between ghrelin and GLP-1 (Figure 3D). In silico, ghrelin has been shown to bind GLP-1 (Figure 4) via insulin or glucagon. In this regard, ghrelin is associated with GLP-1 and may affect GLP-1 levels after LSG in obese patients (r = 0.401) (Figure 3).



Functional Annotation of Ghrelin and Its Receptors

The effects of ghrelin are multidirectional and depend on its isoforms and the activation of the corresponding receptors. There are several receptors for ghrelin. With the functional annotation of these receptor names, only one was found: G protein-coupled receptor (GPCR). This gene is designated FZD4 in the search results. The following functions were revealed in GO terms (Supplementary Table 4). The participation of FZD4 in the regulation of the morphogenesis of the organs of vision and the brain and the regulation of the secretion of steroid hormones, including progesterone, has been shown.

Enrichment analysis of the pathways for this receptor showed that GPCR (FZD4) belongs to the following signaling pathways:

R-HSA: 4641263 Regulation of FZD by ubiquitination;

R-HSA: 5099900 WNT5A-dependent internalizations of FZD4;

R-HSA: 5340588 RNF mutants show enhanced WNT signaling and proliferation.

Figure 4 shows that ghrelin is associated with the growth hormone secretagogue receptor (GHSR). The functional annotation of the GHSR gene is provided in the Supplementary Material (Supplementary Table 5). GHSR is associated with food responses and negative appetite regulation. In the gastrointestinal tract, the GHSR receptor is associated with food transit through the intestine and intestinal musculature contraction. GHSR is associated with the synthesis of neurotransmitters, norepinephrine, and catecholamines to synthesize growth hormones. GHSR negatively regulates the apoptosis of macrophages and myeloid cells and is associated with blocking inflammation: it inhibits tumor necrosis factor-alpha (TNF-a) and interleukin-6 (IL-6) functions.

Ghrelin is also associated with the growth hormone-releasing hormone receptor (GHRHR) (Figure 4). Functional annotation of GHRHR revealed the functions (signaling pathways were also not identified) and are listed in Supplementary Table 8. GHRHR was associated with the activation of the growth hormone-releasing receptor, regulating the production of growth hormone, and insulin-like growth factor. Additionally, receptor activation has been associated with the regulation of the sleep/wake cycle.

Thus, activation of GHSR has protective effects on carbohydrate and lipid metabolism.



Functional Annotation of the Gastric Inhibitory Polypeptide Receptor and Glucagon-Like Peptide-1 Receptor Incretin Receptors

Incretins mediate their effects through the receptors GIPR and GLP-1R. According to our earlier data (Skuratovskaia, 2018), a special role in the disturbance of carbohydrate metabolism in obesity is played by the occurrence of polymorphisms in the GIPR and GLP-1R genes. To identify possible mechanisms of these genes’ participation in metabolic processes, functional annotation and analysis of their involvement in metabolic and signaling pathways were carried out (Supplementary Table 9).

Based on the functional annotation results, the GIPR gene was assigned to the following terms in the Gene Ontology category “biological process”: realization of mechanisms of development of many diseases, including those associated with digestion processes. GIPR has been associated with the development of a response to fatty acids, as well as with the processes responsible for the development of the pancreas from its formation to a mature structure, including islet cells that produce insulin, glucagon, and somatostatin.

Molecular functions corresponding to these biological processes were also identified: selective non-covalent interaction with a protein with hormonal activity (GO: 0017046, peptide hormone binding) and activity of the GIP receptor, that is, binding to GIP and signal transduction across the membrane to activate the G-protein (GO: 0016519, gastric inhibitory peptide receptor activity) (Usdin et al., 1993).

The functional annotation of GLP-1R was performed, which showed the participation of the GLP-1R gene in the regulation of adenylate cyclase activity (category “biological process”) (Supplementary Table 6).

In this regard, the effects of GLP-1R are not only implemented through glucose-dependent stimulation of insulin but are also associated with many other metabolic processes. Thus, GLP-1R activation can participate in the regulation of adenylate cyclase activity and cAMP-mediated signaling. Additionally, the relationship between GLP-1R and glucagon was shown, which was reflected in experimental studies: the level of glucagon positively correlated with GLP-1 in patients in the healthy donors (r = 0.527, p < 0.05) and negatively correlated with GLP-1 in patients with T2DM (r = −0.343, p < 0.05).



Contribution of C-Peptide, Insulin, Leptin, PAI, Glucose-Dependent Insulinotropic Polypeptide, Glucagon-Like Peptide-1, Ghrelin, Resistin, and Visfatin to the Formation of Insulin Resistance

The data obtained indicate a change in carbohydrate and lipid metabolism, as the content of cholesterol, triglycerides, and LDL increased in both groups of patients (Supplementary Table 1).

The levels of hormones of the gastroduodenal zone, adipokines, and PAI-1 on an empty stomach (odd numbers of groups) and after a test breakfast (even numbers of groups) were studied in the following groups of patients: 1 and 2 – healthy volunteers, 3 and 4 – a comparison group of obese patients without T2DM, 5 and 6 – obese patients with T2DM, 7 and 8 – obese patients with T2DM 6 months after LSG, and 9 and 10 – obese patients with T2DM 6 months after RYGB (Figure 2). We measured mediator levels on an empty stomach and 60 min after the test breakfast, as the intensity of their production depends on the amount of nutrient intake.

Postprandial dynamics of mediators were observed only in patients with T2DM (groups 5 and 6). Significant differences between hormones (ghrelin, C-peptide, GIP, GLP-1, insulin, leptin, and resistin) and PAI-1 from other study groups were found in patients with T2DM. Thus, in patients with T2DM on an empty stomach and/or after a test breakfast, C-peptide, insulin, GIP, GLP-1, glucagon, ghrelin, leptin, PAI-1, and resistin were higher than those in obese patients without T2DM. The same changes in C-peptide levels, insulin leptin, PAI, and GIP were revealed; the maximum value was found in patients with T2DM after a test breakfast compared with the other groups.

Simultaneously, changes in the concentration of these mediators (C-peptide, insulin, GIP, GLP-1, glucagon, ghrelin, leptin, PAI-1, resistin, and visfatin) before and after the test breakfast did not depend on food intake. The GLP-1 and ghrelin levels reached maximum values in patients with T2DM relative to the other groups, but their change was associated with food intake.

In patients without T2DM, significant differences from the healthy volunteers were revealed only with respect to the ghrelin level, which was significantly lower. In general, in obese patients without T2DM, C-peptide, insulin, leptin, PAI, GIP, GLP-1, ghrelin, and resistin were significantly lower than those in obese patients with T2DM.

We investigated hormone and adipokine levels in patients with T2DM 6 months after LSG and RYGB bariatric surgeries.

In our study, all patients had hyperglycemia, normalization of lipid metabolism, and decreased body weight after 6 months.

Thus, in patients after LSG and RYGB surgeries, there was a decrease in C-peptide levels, insulin, leptin, PAI, GIP, GLP-1, ghrelin, resistin, and visfatin compared with obese patients with T2DM before surgery (Figure 2). After LSG, it was found that the level of ghrelin on an empty stomach and after breakfast was significantly lower than that in the other groups. The ghrelin level after the test breakfast was higher than the fasting values in LSG patients.

After RYGB, it was found that the level of GLP-1 did not change relative to the obese patients with T2DM before surgery, and the level of GIP after the test breakfast was lower compared with obese patients with T2DM (Figure 2). However, after RYGB, fasting, and the test breakfast, GLP-1 levels were higher than those in obese patients without T2DM (Figure 2).

The ghrelin level in patients after RYGB was higher than that in patients after LSG but lower than that in patients with T2DM before surgery (Figure 2). This finding indicates the regulatory role of these hormones on plasma glucose.

Visfatin levels changed only after RYGB. The concentration of visfatin in patients after RYGB was higher than obese patients without T2DM and compared with obese patients with T2DM (Figure 2).

Thus, C-peptide, insulin, leptin, PAI, GIP, GLP-1, ghrelin, resistin, and visfatin are closely related to carbohydrate and lipid metabolism and BMI. It contributes to the formation of IR in obese patients. However, the nature of these relationships is unclear.


Enrichment Assay for GIPR, GLP-1R, Insulin, Ghrelin, GIP, GLP-1, Leptin, and Resistin

Identifying the functions of the studied genes correlates with the data on participation in the corresponding processes of signal transduction in cells. The following pathways were identified in which the GIPR and GLP-1R genes are involved: the cAMP signaling pathway, GPCR ligand binding, G alpha(s) signaling events, and glucagon-type ligand receptors (Supplementary Table 9).

Thus, activation of GIPR and GLP-1R is associated with the following signaling pathways: cAMP, neuroactive interaction, secretin family receptor class B/2, glucagon-type ligand receptors, G alpha(s) signaling events, and GPCR ligand binding. It was shown that GIP was negatively correlated with glucagon in patients with T2DM (r = −0.283, r = −0.343, p < 0.05) (Figure 3C). In patients with T2DM after RYGB, glucagon levels negatively correlated with GLP-1 (r = −0.420, p < 0.05) (Figure 3E).

Interestingly, the GPCR receptor can also interact with ghrelin. In obese patients with T2DM, ghrelin positively correlated with GIP (r = 0.305), insulin (r = 0.420), and resistin (r = 0.313) and negatively correlated with BMI (r = −0.318), glucagon (r = −0.426), and visfatin (r = −0.319) (p < 0.05) (Figure 3C).

Pathway enrichment analysis for the remaining proteins under study was performed to assess the possible mechanisms of the involvement of key regulators of carbohydrate metabolism in metabolism and intracellular signaling processes. These were the identified pathways: FOXO-mediated transcription of oxidative stress, metabolism, and neuronal genes; synthesis, secretion, and deacylation of ghrelin.

The results obtained demonstrate the joint participation of the studied regulators of carbohydrate metabolism in incretin-mediated and ghrelin-mediated functions and metabolic processes. In this case, these factors’ mutual influence is implemented through a network of direct and indirect interactions.



DISCUSSION

C-peptide, ghrelin, GIP, GLP-1, insulin glucagon, PAI-1, resistin, leptin, and visfatin have been studied for assessing insulin sensitivity after bariatric surgery. It has been shown that these hormones have glucose-dependent secretion, have close relationships with each other, and have indicators of carbohydrate and lipid metabolism (Goktas et al., 2013; Pérez-Pevida et al., 2019). However, the results are multidirectional, and some relationships have not yet been deciphered. In our study, we combined an in silico and in vivo analysis unit.

Analyzing the data obtained, in obese patients with T2DM, the function of β-cells and the mechanism of substrate regulation works were not impaired, i.e., the higher the glucose level was, the more insulin the β-cells of the pancreas produced.

Interestingly, changes in the concentration of ghrelin were observed in various pathological conditions. Ghrelin is metabolically active with a negative metabolic balance (Al Qarni et al., 2017). At the excess intake of nutrients in obesity, the pathways that control energy balance became dysfunctional (Pöykkö et al., 2003; Al Qarni et al., 2017).

We showed in silico that ghrelin was associated with insulin, leptin, glucagon, and CRP. In particular, we found in silico connections between ghrelin and insulin through several pathways: GHRL–MLNR–GPRASP1–LRP2–INS, GHRL–HK3–LEP–A2M–CTSE–INS, GHRL–HK3–LEP–CLU–CPE–INS, and GHRL–HK3–LEP–LEPR–CLU–CPE–INS.

The level of ghrelin in obese patients with T2DM significantly increased relative to the other groups. The high levels of ghrelin may be due to the influence of high insulin levels in obese patients with T2DM, and its level depends on the level of other hormones.

The levels of C-peptide, insulin, GIP, GLP-1, leptin, and PAI-1 increased only in patients with T2DM. We have shown several links of ghrelin with hormones in silico: leptin, glucagon, insulin, GLP-1R, and PAI-1. Overall, this was consistent with our findings in obese patients.

The levels of total ghrelin and acyl-ghrelin are reduced in obese patients. The diacyl-ghrelin/acyl-ghrelin balance may change in obesity. The presence of one form or another can bind to different receptors and contribute to a change in ghrelin’s effects. Interestingly, ghrelin levels were lower in obese patients without T2DM than in obese patients with T2DM and healthy volunteers. We emphasize this as a compensatory mechanism for maintaining normal carbohydrate and lipid metabolism in obesity. In patients after LSG and RYGB, against the background of a decrease in BMI, the blood plasma content of ghrelin was less than that in obese patients with T2DM before surgery.

Other authors have shown that ghrelin deficiency does not prevent diet-induced obesity (McFarlane et al., 2014). This proves that all patients showed hyperglycemia after 6 months, in contrast to our previous results (Skuratovskaia et al., 2019), where normoglycemia was noted after 12 months. Patients 6 months after LSG and RYGB are in an adaptive rehabilitation period, as evidenced by high glucose and C-reactive protein levels, indicating an acute phase of inflammation.

We believe that the compensation mechanism consists of the activation of specific receptors.

To elucidate the interaction pathways, we performed an in silico analysis of ghrelin receptors. It is known that preproghrelin undergoes posttranslational processing to form at least five products. Acyl-ghrelin is biologically active and interacts with the GHSR, and deacyl-ghrelin acts independently of GHSR1 (Gray et al., 2019). Acyl-ghrelin stimulates food intake, gastrointestinal motility, lipogenesis, and glycemia and reduces energy expenditure and insulin secretion/sensitivity (Gray et al., 2019). Deacyl-ghrelin inhibits food intake, gastrointestinal motility, and glycemia and stimulates insulin secretion through an as yet unknown receptor (Cui et al., 2017). Deacyl-ghrelin prevents the development of obesity and positively affects insulin sensitivity (Cui et al., 2017).

According to the latest data, the ghrelin receptors are GPCRs, GHSR1a, GHSR1b, ghrelin receptor-like receptor, and seven- and five-transmembrane GPCR to motilin (Sanger and Furness, 2016).

According to the functional annotation of ghrelin receptors, it is known that it activates three receptors: GPCR, GHSR, and GHRHR (Sanger and Furness, 2016). GPCRs have been associated with FZD4 modifications and the proliferative Wnt signaling pathway. GHSR has been associated with food responses, gut muscle contraction, and neurotransmitter and growth hormone synthesis. The role of GHSR in the immune response is interesting. GHSR blocks TNF-a and IL-6 functions and apoptosis of macrophages and myeloid cells (Cabral et al., 2017). GHRHR is associated with the production of growth factors, somatotropin, and insulin-like growth factor. Additionally, receptor activation is associated with the regulation of the sleep/wake cycle (Sanger and Furness, 2016).

It has been shown that ghrelin stimulates appetite by activating the hypothalamus and activates lipogenesis, leading to obesity (Qader et al., 2005). However, in our study, there was no relationship with lipid metabolism indicators.

It has been suggested that ghrelin and its receptor expressed in α-cells of the pancreas affect glucose metabolism not only by directly inhibiting the stimulation of insulin secretion by glucose (Qader et al., 2005) but also by stimulating glucagon secretion by α-cells (Chuang et al., 2011). In patients with T2DM, ghrelin positively correlated with insulin (r = 0.402, p < 0.05) and negatively correlated with glucagon (r = −0.426, p < 0.05), which indicates a violation of the relationship between hormones.

Thus, the predominance of one form or another of ghrelin and the activation of its receptors determine the fate of many links in the pathogenesis of IR in obesity. Our study measured total ghrelin; however, all its posttranslational modifications and effector pathways are of interest.


Association of Ghrelin With Incretins

In healthy people, the effects of ghrelin and GLP-1 on glucose metabolism are oppositely directed, but ghrelin can modulate postprandial GLP-1 secretion (Gagnon et al., 2015; Tong et al., 2016, 1; Gray et al., 2019) in silico. It was found that ghrelin interacts with GLP-1 and glucagon: GHRL–HK3–LEP–CRP–GLP2R–GCG, GHRL–HK3–LEP–LEPR–CLU–CPE–GCG, and GHRL–NPY–MEP1B–GCG. The incretin receptors GIPR and GLP-1R have been implicated in the regulation of the cAMP signaling pathway.

We obtained earlier data on the important role of defects in incretin receptors in IR development. Thus, it was shown that the genotypes associated with an increased risk of developing T2DM, CC rs1042044, and AA rs6923761 of the GLP-1R gene polymorphism, are characterized by an increase in the plasma level of incretin in the group of obese patients with T2DM and serum glucose levels in the group of obese patients without T2DM (Skuratovskaia, 2018). Impaired activation of GIPR and GLP-1R contributes to a decrease in the secretion of insulin and ghrelin and, on the contrary, to an increase in leptin and glucagon in the circulation, which contributes to the formation of insulin resistance in obese patients with T2DM.

Glucagon-like peptide-1 receptor is involved in the glucagon-type ligand-receptor family signaling pathway, which regulates the activity of GPCRs from the class II/B secretin receptor subfamily (Yabe and Seino, 2011). GLP-1R is synthesized in intestinal L cells in response to the presence of glucose and fatty acids (Tong et al., 2016). Most GLP-1 is in the GLP-1 (7–36) amidated form; some are the GLP-1–GLP-1 (7–37) form (Farr et al., 2016). GLP-1 circulates to the pancreas, where it binds to GLP-1R (Tong et al., 2016). GLP-1R is a transmembrane protein and a member of the B family of GPCRs with an N-terminal extracellular domain (Gagnon et al., 2015).

We performed functional annotation and analysis of the involvement of the GLP-1R gene in the signaling pathways, indicating its participation in the initiation of cAMP signaling, neuroactive interaction, and the provision of cell response to a stimulus in the form of glucagon, which was reflected in experimental studies: in patients of the healthy volunteers, the glucagon level positively correlated with GLP-1 (r = 0.527, p < 0.05). In obese patients with and without T2DM, as well as in healthy volunteers, GLP-1 and insulin levels were positively correlated. However, after RYGB surgery, no such relationship was found. GLP-1 and glucagon levels were negatively correlated.

Although GLP-1 and glucagon are formed from a common precursor (Hayashi, 2019), glucagon levels did not change among the study groups.

We have shown the dependence of the total ghrelin content on other mediators, such as insulin, leptin, GIP, GLP-1, and PAI-1. Our data suggest the cooperative interaction of mediators associated with ghrelin, which realizes their obesity effects, depending on the presence or absence of IR. However, the effects of ghrelin may depend on how its effects are realized.

We used models of different surgeries to study in detail the mutual regulation of hormones. LSG removes most of the ghrelin-producing zone in the stomach. Unusually, the ghrelin level after the breakfast test did not decrease but was significantly higher than the fasting values in patients after LSG. This fact may indicate that other additional stimulatory signals exist for the secretion of ghrelin, acting differently from the mechanical stimulation of the cells of the fundus of the stomach and depending on remote regulation by the intake of nutrients. Moreover, it is believed that the return of insulin sensitivity is facilitated by a decrease in the inhibitory effect of ghrelin on insulin (McFarlane et al., 2014), which is consistent with our results on the construction of a network of interactions of the studied proteins. We found an indirect interaction of ghrelin and insulin (through three nodes: MLNR, GPRASP1, and LRP2). Of interest is the study of some links of this pathway: MLNR is a motilin receptor involved in hormone binding, GPRASP1 promotes the degradation of G protein-coupled receptors in lysosomes (Whistler et al., 2002), and LRP2 is required for insulin-dependent internalization of IR (Seo et al., 2020).

According to the results of the study, two groups of pathways were identified in which the studied molecules are involved: FOXO-mediated transcription of genes for oxidative stress, metabolism, and neurons (through the participation of INS and RETN) and the synthesis, secretion, and diacylation of ghrelin (with the involvement of GCG, GHRL, INS, LEP, and GIP). The results obtained demonstrate the joint participation of the studied regulators of carbohydrate metabolism in incretin-mediated and ghrelin-mediated functions and metabolic processes. Simultaneously, the mutual influence of these factors is realized through a network of direct and mediated interactions.

Interestingly, the GPCR can also interact with ghrelin. Moreover, this same receptor can be activated by GLP-1 and GIP (Abdullah et al., 2016). In obese patients with T2DM, ghrelin positively correlated with GIP (r = 0.305), insulin (r = 0.420), and resistin (r = 0.313) and negatively correlated with BMI (r = −0.318), glucagon (r = −0.426), and visfatin (r = −0.319) (p < 0.05). Thus, C-peptide, insulin, leptin, PAI, GIP, GLP-1, ghrelin, resistin, and visfatin are closely associated with carbohydrate and lipid metabolism and BMI in obese patients, which contributes to the formation of IR in obesity.

The use of ghrelin receptor antagonists is effective in correcting carbohydrate metabolism. There is one clinical trial in humans that promoted glucose-dependent insulin secretion by blocking the GHSR1a receptor (Schalla and Stengel, 2019). Despite the significant effect, ghrelin did not have the desired effect in treating metabolic disorders, and the drug is currently used to treat insomnia (Schalla and Stengel, 2019).

The animal models have recently shown that GHS-R1b antagonists lead to decreased food intake (Schalla and Stengel, 2019). The development of GHSR antagonists leads to unpredictable results and requires a detailed study of the mechanisms of action. The predominance of one form or another of ghrelin and the activation of its receptors determine the fate of many links in the pathogenesis of IR in obesity. The search for new receptors for ghrelin and the study of posttranslational modifications of ghrelin will make it possible to study the regulation of metabolic disorders more closely. Further studies can help identify the mechanisms of participation of ghrelin in metabolic disorders in patients.



CONCLUSION

A decreased level of total ghrelin before and after breakfast is typical only for obese patients without insulin resistance. Its increased level is typical for obese patients with T2DM. Ghrelin exerts its effects through the receptors GPCR, GHSR, and GHRHR, which are associated with proliferative, inflammatory, and neurohumoral signaling pathways and regulate responses to nutrient intake. The signaling pathway for realizing the effects of ghrelin, GIP, GLP-1, and GCG lies through the class of GPCRs. This demonstrates common regulatory mechanisms and cross-talk between ghrelin and incretins. This will help draw attention to posttranslational modifications and the associated ghrelin and incretin receptors for use in targeted therapy of insulin resistance.

The results obtained demonstrate the joint participation of the studied regulators of carbohydrate metabolism in incretin-mediated and ghrelin-mediated functions and metabolic processes. Simultaneously, the mutual influence of these factors is realized through a network of direct and mediated interactions. A cooperative exchange of ghrelin and mediators associated with it, such as insulin, leptin, GIP, GLP-1, glucagon, and PAI-1, was revealed, which realizes their effects on obesity. Insulin, leptin, GIP, GLP-1, glucagon, and PAI-1 are linked directly or indirectly (see the “Results” section for more details). Thus, ghrelin and incretins can modulate insulin, leptin, glucagon, and PAI-1.

This does not exclude the influence of insulin and glucose on the joint change in mediators due to other factors not included in the study. The influence of the microenvironment on the production of these mediators should be taken into account.
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The types of chemical compounds are explained in Supplementary Material
(Supplementary Table 1). The average values of precision, recall and Fi-score are

given in bold.
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Characteristic Number of patients, n (%)

Total patients 102
Tumor localization

CPGLs 82 (80%)
VPGLs 23 (22.5%)
Sex

Male 25 (24.5%)
Female 77 (75.5%)
Age at diagnosis

>40 71(70%)
<40 31(30%)
Mean 48 (16-79)
Tumor characteristics

Single 96 (94%)
Bilateral/multiple 6(6%)
Recurrent 8(8%)

Metastasis 1(1%)
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SDHA SDHB SDHC SDHD RET

CPGLs 82 38 1 7 5 23 4
VPGLs 23 9 ] 3 0 5 1
Bilateral/multiple 6 5 0 0 0 5 0

PGLs
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Gene Age at presentation Sex (M:F)

19-40 yr 41-60 yr 61-80yr

SDHB 4 5 1 19
SDHC 2 2 1 1:4
SDHD 8 12 5 7:18
RET 4 1 0 24

M, males; F, females.
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Parameter A1 assembly A2 assembly A3 assembly

No. of genes predicted 56,888 48,680 51,737

Putative resistance gene NA NA 54
analogs against Fusarium wilt
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Total number of sequences examined

Total size of examined sequences (bp)

Total number of identified SSRs

Number of SSR containing sequences

Number of sequences containing more than 1 SSR
Number of SSRs present in compound formation

13,101
584,435,790
298,732
6,494
4,603
41,002
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1-11: Ewilt Resistant: 12-18: Ewilt tolerant: 19-23: Fwilt susceptible: 24-25: vellow mosaic resistant
M: 500 bp ladder.  Primer ID: 06, 1-25 Pigeon Pea genotypes. Product size 0.7 kb
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Parameter A1, assembly GenBank A2, assembly GenBank A3, improved assembly

accession: accession: GenBank accession:
GCA_000340665.1 GCA_000230855.2 GCA _015227855.1

Number of contigs 360,028 72,923 46,979
Contig N50 5,341 22,480 24,087
Contig L50 30,054 7,624 6,925
Number of scaffolds NA 36,536 13,101
Scaffold N50O NA 555,764 574,622
Scaffold L50 NA 72 &7
Total scaffold length NA 592,970,700 548,600,000
Number of gaps NA 72,774 36,561
Range of mate-pair sizes used NA NA 20-1,350 bp
Mean size of mate pairs used in gap closure NA NA 500 bp
Number of Ns NA* 34,435,295 34,188,871
Genome coverage 199x 160x 174x
Percentage mapping 75.6% 72.7% 82.4%
GC content 37.2% 32.8% 45.5%
File size (Mb) 648 Mb 605 Mb 548 Mb

Data source: https://www.ncbi.nlm.nih.gov. **N’s masked.
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Modules The GO andKEGG terms: p-value
number of
DEGs
Black 106 GO00BO3AT: Type  intereron signaling  2.92E-34
modue pathiay.
G0:0009615: Response to vius 124821
GO:0051607: Defense responsato  2.99E-21
vins
G0:0006955; Immune response 847610
G0:0045071: Negative reguiation o 3.31E-18
vial genome replcation
hsa05168: Herpes simplex infoction  5.31E-15
hsa5332: Graftvs. host disease 161614
hsa5G30: Alograf refection 592614
hsa5150: Staphylococcus aureus  8.926-14
infection
hea04940: Type | dbetes mefitus 2.436-13
Red 16 GOO032870: Celuiarresponseto 323610
mode hormone stimulus,
G0:0051591: Responso to cAMP 6.586-08
G0:0006366: Transcrption fom ANA  3.126-06
polymerase Il promoter
G0:0045044: Positve reguiaionof  9.676-06
transcription fom ANA polymerase I
promoter
G0:0035914: Skeletal muscle cell 1.046-05
difeentiaton
hsa05166: HTLV- inection 3.196-04
hsa04380: Osteoclast iferentation  7.04E-04
hsa5031: Amphetamine addiction 0004
hsa04010; MAPK signaling pathway 0,005

“If GO or KEGG terms were more than fve, only the top 5 terms were
dispiayed. DEGs, difrentialy expressed genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase.
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Glom Tub Kidney
FC p-value FC p-value FC p-value
IRF7 3.138 < 0.00 1.579 < 0.001 1.989 0.004
HLA-DRA 1.876 < 0.00 2.152 < 0.001 1.015 0.915
ISG15 6.561 < 0.00 9.980 < 0.001 5732 < 0.00
PSMBS 1.543 0.004 2.836 < 0.001 1780 < 0.00
IFITM3 2.530 < 0.00 3.278 < 0.001 1.707 0.004
GBP2 3.706 < 0.00 1.509 0.007 1.042 0.878
OAS2 5.979 < 0.00 1.911 < 0.001 3.621 0.00
SLC27A2 0.401 < 0.00 0.988 0.895 0.655 0.607
SLC15A3 2.359 < 0.00 1.173 < 0.001 2228 < 0.00
IF144 9.088 < 0.00 7.989 < 0.001 3997 < 0.00

FC, fold change; Glom, glomeruli; Tub, tubulointerstitia.
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Expression Genes

Up STAT1, IFI44L, MX1, IFl44, RSAD2, IFI6, MX2, HERCG,
ISG15, OAS2, OASS3, OAS1, HERCS, XAF1, IFI27, IFIT1,
IFITM1, IFIT3, PARP12, SAMSN1, RTP4, HLA-DQAT,
NNMT, PTGER2, LTF, SRGN, PSMB9, TFPI2, SLC15A3,
UCP2, ARPC1B, DDX60, LY6E, BST2, MMP7, CFB,
UBE2L6, CLU

Down ATF3, EGR1, ZFPM2, FOS, EGR3, CHISL1, MYL9, TNNCT1,
FOSB, JUNB, JUN, ZFP36

DEGs, differentially expressed genes.
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Control group
Obese patient without T2D
Obese patient with T2D
Obese patient with T2D after LSG
Obese patient with T2D after RYGB
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Immune response

Autophagy

inflammatory response

Negative regulation of T cell
mediated cytotoxicity

Negative regulation of
CD8-positive, alpha-beta T cell
activation

Regulation of gene expression

The list of proteins

Human leukocyte elastase; nkg2a; nkg2d receptor; nkpa0; nkpdd; antileukoproteinase (ALP), apalipoprotein A-l, cdb-binding protein
alpha chain (C4bp), complement C4-B (Basic complement C4), interferon-gammay;

Calcitonin gene-related peptide 1 (Alpha-type CGRP); Antileukoproteinase (ALP);

Cab-binding protein alpha chain (C4bp); Complement C4-B (Basic complement C4);

HLA class | histocompatibiity antigen (HLA-B27K protein) (MHC class | antigen) (Major histocompativiity complex); HLA-B alpha
chain (B*5703GB) (MHC class | antigen); Interferon beta (IFN-beta) (Fibroblast interferon),

Apolipoprotein A-l (Apo-Al); Interferon beta (IFN-beta) (Fibroblast interferon)

Alpha-1A adrenergic receptor; putative peripheral benzodiazepine receptor-related protein; forkhead box protein O8; interferon
gamma;

micotubule-associated proteins 1A/1B; microtubule-associated protein 1S (MAP-1S); microtubule-associated protein tau
(Neurofibrilary tangle protein); Platelet-activating factor acetylhydrolase I subunit beta; Microtubule-associated proteins 1A;
Nicotinamide phosphoribosyltransferase (NAmPRTase)

Adenosine deaminase (EC 3.5.4.4) (Adenosine aminohydrolase); angiotensin-converting enzyme 2; antithrombin-IIl (ATI) (Serpin C1);
calcitonin; 5'-nucleotidase (5'-NT); Integrin beta-2; human leukocyte antigen bS7;

interferon-gamma; tumor necrosis factor(nf)- alpha, interleukin (i)-2, C-reactive protein;

Interferon gamma (IFN-gamma) (Immune interferon); Platelet factor 4 (PF-4); prostaglandin F2-alpha receptor (PGF receptor)
(PGF2-alpha receptor) (Prostanoid FP receptor); prothrombin (EC 3.4.21.5) (Coagulation factor Il

Carcinoembryonic antigen-related cell adhesion molecule 1; leukocyte immunoglobulin-like receptor subfamily B member 1 (CD85
antigen-like family member J); leukocyte immunoglobuiin-like receptor subfamily B member 1 (LIR-1); HLA class | histocompatibiity
antigen, alpha chain G (HLA G antigen)

Leukocyte immunoglobuiin-like receptor subfamily B member 1 (LIR-1) (cd8S] receptor)

Progonadoliberin-1 (Progonadoliberin 1), Ihth, Prostaglandin F2-alpha receptor (PGF receptor); Angiotensin-converting enzyme (ACE);
Myc proto-oncogene protein (Proto-oncogene c-Myo); Calcitonin receptor (CT-R); Leukocyte immunoglobuiin-fike receptor subfamily
B member 1 (LIR-1); Core histone macro-H2A.2, C-reactive protein; Estrogen receptor (ER); Pro-epidermal growth factor (EGF);
Fibronectin (FN); Interferon gamma (IFN-gamma)
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ECs (group 1 of papers abstracts)
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The number of proteins (genes)
unique names retrieved

478
1,443
7%
403
1,368





OPS/images/fgene-11-611283/fgene-11-611283-g004.gif





OPS/images/cover.jpg
P frontiers Research Topics





OPS/images/fgene-11-613162/fgene-11-613162-t002.jpg
KEGG ID

Pathway name

Enrichment p-value

Enrichment FDR

Genes

hsa04610

Gomplement and coagulation cascades
Drug metabolism - cytochrome P450
Transcriptional misreguiation in cancer

Hippo signaling pathway
TGF-beta signaling pathway

8,14E-05
1,45E-04
3,28E-03

1,04E-02
1,45E-02

1,88E-02
1,88E-02
3,65E-01

5,17E-01
5,17E-01

CPB2, SERPIND1, CFI, VTN, KNG1,
SERPINGT, SERPINAT, C3

ADH6, ADH1B, CYP3A4, CYP2ET,
CYP2C8, GSTP1

HISTIH3C, TAF15, ASPSCR1, NCORT,
EYA

BMP4, TGFB2, BMP5, NKD1

BMP4, TGFB2, BMP5
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KEGG ID

Pathway name

Enrichment p-value

Enrichment FDR  Genes

hsa05202
hsa04668
hsa04975

Transcriptional misregulation in cancer
TNF signaling pathway
Fat digestion and absorption

Hepatitis C
Cell cydle
Influenza A
Oocyte meiosis
Measles

1,53E-05
1,12E-04
8,31E-04

2,81E-05
1,17E-04
5,08E-04
1,57E-03
2,07E-03

1,98E-03
7,29E-03
3,60E-02

2,84E-03
5,89E-03
1,71E-02
3,96E-02
4,17E-02

CEBPB, RARA, GADD458, CDKN1A, NR4A3, IGF1, SUPTSH
BCL3, CEBPB, JUNB, SOCS3, IRF1
PLA2GS5, CD36, PLA2G2A

RSAD2, IFIT1, MX1, DDX58, OAS3, EIF2AK2
E2F5, CCNB1, RAD21, CCNB2, BUB1
RSAD2, MX1, DDX58, OAS3, EIF2AK2
CALML3, CCNB1, CCNB2, BUBT

MX1, DDX58, OAS3, EIF2AK2
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NOTCH

WNT

Hedgehog

Functions in
development

Role in
cancer

The Notch pathway is a major determinant of cell
fate across all metazoans (Artavanis-Tsakonas
and Muskavitch, 2010; Bray, 2016; Henrique and
Schweisguth, 2019; Lioyd-Lewis et al., 2019)

Notch plays an oncogenic role: it is
overexpressed in breast cancer (<ontomanolis
etal, 2018), gastric cancer (Zhou et al,, 2013),
pancreatic cancer (Ma et al, 2013), and
colorectal cancer (Vinson et al., 2016).

Notch acts as a tumor suppressor gene: ts
‘expression is downreguiated in skin cancer (Lefort
et al., 2007), iver cancer (Viatour et l, 2011),
non-small celllung cancer (Konishi et al., 2010),
‘and some breast cancers (Par et al, 2004).

The Wit signaiing pathway regulates many cell
functions, including prolferation, migration,
apoptosis, and differentiation. It also plays a
key role in controling body axis formation. It is
essential during embryonic development and
also in the homeostasis of several adult tissues
including the Gl tract (Flanagan et al, 2015,
2017), liver, breast, and skin (Nusse and
Clevers, 2017).

Mutations of Wit pathway members cause
cancer development in humans (Segditsas
and Tomiinson, 2006). It is known that Wnt
signaling is deregulated in gastric tumors
(Clements et al., 2002; Flanagan et al., 2017).
The WNT pathway plays criical roles in
epithelial ovarian cancer development
(Nguyen et al., 2019), colorectal cancer
(Wang et al., 2018), and thyroid
carcinogenesis (Ely et al., 2018).

‘The Hedgehog signaling pathway plays a significant
role in the normal embryonic development of
invertebrates and vertebrates (Skoda et al, 2018).
The Hh genes are played in organization of the
polarity of the organism and the development of
many tissues and organs. The pathway is involved
in the maintenance of somatic stem cells and
pluripotent cells important for tissue repair (Beachy
et al,, 2004; Karhadkar et al., 2004; Zhou et al.,
2006; Stecca et al., 2007; Lowry et al., 2008).

Hh signaling is involved in the development of
pancreatic, and esophageal cancer (Bailey et al.,
2009), gastric, and prostate cancer (Sheng et al.,
2004), as well as basal cel carcinoma (Gutzmer
and Solomon, 2019) and medulloblastoma
(Gordon et al., 2018).
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Source Gene ID

Best hit of interspecies top ranked genes  TEA003328
TEA006793
TEAO30611
TEA021045
TEA020473
TEA010353
TEA003997
TEAO04079
TEA024722

Upregulated cold responsive gene (Li Y. CSA032195

etal., 2019) CSAOB1147
CSA001565
CSA020614
CSA000608
CSA000348
CSA034862
CSA023474
CSA033910
CSA002423
CSA003726
CSA031822
CSA012537
CSA014200
CSA016010
CSA001876
CSA035791
CSA000129
CSA028426
CSA006422
CSA010521
CSA000011

Description

Galactinol synthase 1

Galactinol synthase 3

Glycine-rich RNA-binding protein 3

Endotransglucosylase

Responsive to high light 41

Calcium underaccumulation 1

Pectin methylesterase 41

Dehydration response element-binding protein 26

Aba- and osmotic-stress-inducible

Grtype lectin S-receptor-like serine/threonine-protein kinase Atdg27290 [Vis vinifera)
G-type lectin S-receptor-like serine/threonine-protein kinase RKS1(Theobroma cacao)
LRR receptor-like serine/threonine-protein kinase FLS2-lke

Receptor-like serine/threonine-protein kinase ALE2 [Nicotiana sylvestris]
Ethylene-responsive transcription factor ERFO21[Arabidopsis lyrata subsp. Lyrata]
Ethylene-responsive transcription factor SHINE 2-like [Cucumis melo]

Ethylene response factor 6

Bhih transcription factor bhih102

Probable WRKY transcription factor 42

PREDICTED: zinc finger CCCH domain-containing protein 30 [Ricinus communis]
Late embryogenesis abundant protein 3L-1 [C. sinensis]

Late embryogenesis abundant protein [C. sinensis)

Heat shock 70 kda protein, mitochondrial-like

36.4 kda proline-rich protein-lie [alus domestica)

Putative colc-inducible protein [C. sinensis)

Probable pectinesterase/pectinesterase inhibitor 54

Endoglucanase 11-like [atropha curcas)

thaumatin-like protein 1b

Peroxidase 73 Vitis vinifera)

Glutathione S-transferase [Camellia japonica)

Beta-amylase 5 [C. sinensis]

Sucrose synthase 1 [C. sinensis]

The genes are retrieved from the TPIA database and the study from Li Y. et al. (2019). For detailed information please see Supplementary Table 2.

Trivial name

GOLS1

GOLS3
GR-RBP3
HYDROLASE 22
RHL41

CAUT

PME4T
DREB26
ARCK1, CRK45
GsSRK
GsSRK1

FLS2

RPK2
AP2/ERF-AP21
AP2/ERF-ERF2
AP2/ERF-ERF6
bHLH102
WRKY42
ZAT30

LEA3

LEA2

HSP70

PRP

e/

PEI54

EGasel1

TLP1

POD73

GST

BMY5

Ssust
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miRNA

miR104, miR105, miR1120, miR123,
miR150, miR154, miR158, miR163, miR38,
miR41, miR6, miR156, miR171, miR2108,
miR164, miR395, miR167, miR170, miR160,
miR319, miR169, miR172, miR165

miR396

miR1873, miR10095

miR399

miR160, miR164, miR167, miR169, miR171
miR165, miR395

miR2108, miR1432, miR159, miR160,
miR162, miR168, miR169, miR319, miR390,

miR393, miR408, miR167, miR1566, miR171,
miR172, miR399

miR167, miR10294, miR156, miR169,
miR156, miR396
miR10290

miR11947

miR10110, miR10133, miR10157, miR10376

miR2108, miRg1

miR156, miR169, miR160, miR10403
miR167, miR77

miR845, miR8770, miR7748

miR166

Stress-related
mRNAs function

Dehydration stress

Dehydration stress
Drought stress
Drought stress
Drought stress
Drought stress

Drought stress

Drought stress

Drought stress,
oxidative stress,
water-deficit stress
Drought stress,
oxidatively
stressed leaves,
water-deficit stress
Drought stress,
oxidatively
stressed leaves,
water-deficit stress
Drought stress,
water-deficit stress
Oxidative stress
Oxidative stress,
water-deficit stress
Water-deficit
stress
Water-deficit
stress

Species

Foxtail millet

Sorghum
Finger millet
Foxtail millet
Pearl millet

Pearl millet,
proso millet

Proso millet

Sorghum

Finger millet

Pearl millet

Sorghum

Finger millet

Sorghum
Sorghum

Finger millet

Sorghum
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miRNA

miR166

miR160
miR162
miR164

miR165
miR167
miR168
miR169

miR170
miR171
miR172
miR2108
miR319
miR397
miR399

miR10347
miR155
miR166
miR159
miRd4
miR166
miR164
miR167
miR168
miR172
miR399

miR10403
miR166

miR160

miR167
miR167
miR169

miR396

Drought-responsive genes, transcription factors, and enzymes Species

ARF, E2F, HSP, nst1, EAT1, EMB1444, LRBPK, BIG, bHLH, WRKY, HIPP, SRPK, kinase byr2-like, SAUR, BRG3, LAZ1, ANK, GLYR1, Foxtail millet
NCA1, NRT1/PTR, Znf, STK

Serine carboxypepticase, KN1, YUCCA4, STK, NSP1, Znf, WRKY, XET, ARF
BIG, 14-8-3-protein, NAC, HSP, STK, SRPK, GrpE

Carboxylesterase, F-box, GAUT, ANK, GLDC, HPRS, TLG, DMP, LRR receptor, NRT1/PTR, PBL, STK, bHLH, NAC, SRPK, Znf, SWI/SNF,
syntaxin, BIG, LAMP1, WSD1, WRKY, XET, 118 globuiin seed storage protein

AMOT, ARF, NDR1/HIN1, GSTUS, PBL, Znf, WNK1, parC, STK, TIP41, LRR receptor, carboxylesterase, WRKY, NAC
LRBPK, LAZ1, Znf, IAA, NRT1/PTR, ARF, NAC, HS1, LRR receptor, SRPK, SAC3, PBL, STK
bHLH, carboxylesterase, ARF, NAC, serine carboxypeptidase, DMP, NRT1/PTR

12-oxophytodienoate reductase, NAC, NDR1/HIN1, PIX, STK, serine carboxypeptidase, YLS3, YUCCA4, BAT1, GSTUS, HHL1, LRR
receptor, PLS1, Znf, nst1, LAMP1, Rsgle

GAUT, argininosuccinate lyase, NAC, Rsgl6
ANK, ARF, SAUR, carboxylesterase, LRBPK, SKIP35, SPIKE 1, Znf, LRR receptor, RIBA 2, GAUT, NRT1/ PTR
ARF, bHLH, Znf, STK

GAUT, TPD1, STK, ARF, HSP, LRR receptor, NRT1/ PTR, ANK, Znf, SKIP35, TSJT1

Carboxylesterase, kinase byr2-like, NDR1/HIN1, aminotransferase, SRPK, PMT, Znf, ITN1

2Znf, auxin, HSP, LRR receptor

LRBPK, NAC, syntaxin, TBC1, MKS1, WRKY, DPH, Znf, PBL, SAUR, STK

HSP Pear millet
Gu-Zn superoxide dismutase, elF-4A

Glutathione S-transferase mRNA, HSP, RCI2A

Purothionin, NBS-LRR, superoxide dismutase, VATPG, protein kinase
OlpX1, NBS-LRR

Lov

NCED1

Alanine aminotransferase, aspartate aminotransferase, LOV
Dehydrin mRNA

LOV, aspartate aminotransferase

NCEDT, LOV, aspartate aminotransferase, KN1

WRKY, Oxidatively stressed Sorghum

Cyclin-T1-4, F-box, FERONIA, STK, FERONIA, GRX11, NKAP, HSP, cyclin-T1-4, F-box, MEL1, methyimalonate-semialdehyde
dehydrogenase, PBL, PHOX4, RALF, RIC10, RING-H2 finger

ARF, ACT domain-containing protein ACR4, aspartyl protease, HSP, HKT8, L-ascorbate oxidase, LECRK91, LRBP, CP12, F-box, NIR1,
MYOB, NCS, NRT1/ PTR, TBL

Agmatine deiminase, arogenate dehydrogenase 2, HSP
ANK, ARF

BoGH3B, flotilin-like protein 2, MAN2A, alpha-taxilin, ATG6, METTL13, MYOB, STK LECRK4, HSP, WRKY, aconitate hydratase,
arginine/serine-rich protein

ARF, NEP1, IAA, Lr10, NBR, KN1, LRR receptor, NRT1/ PTR, nst1, bHLH, disulfide isomerase, WRKY, YLS7, BRG3, XET, E2F
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Crop

Finger millot
Foxtail millet
Pearl millet
Proso millt
Sorghum

Blast matches

8,173
9,084
8,748
3,056
10,376

Filtered-off tRNA,
RNA, and mRNA
homologs

8,173
7
478
27

3,493

Entries without
duplication

8,293
8,270
3,028
6,883

Stable match

75
1,615
808
464
815

Rejected miRNA candidates

58
1,242
626

21
781

Final mature miRNAs

17
373
178
404
34
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Feature

Genome size (mbp)

Total gene target

Unique gene target
Transcription factor
Enzymatic activty

Stress regulatory

Carier protein
Growth/physiological factor

Foxtail
millet

423
13,714
7,090
902
1,445
62
43
39

Sorghum Proso

666
5,882
4,083

193

763

516

10

millet

851
319
121

19
253
21

Pearl
millet

1,817

2977

1,754
24
87
621
102

Finger
millet

1,196
266
238

14
64
28
21
92
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SKCM

Description Gene markers ERBB1 ERBB2 ERBB3 ERBB4
Cor P Cor P Cor P Cor P

Human M-MDSC CD11b 0.038 0.41 0.068 0.14 —0.093 * 0.061 0.19
CD14 0.026 0.57 0.099 * —-0.19 0.023 0.61

Human PMN-MDSC CD66b 0.032 0.49 —0.032 0.49 —0.026 0.58 —0.023 0.62
CD33 —0.0095 0.84 0.072 0.12 —0.013 0.77 0.076 0.1
che2L —0.0065 0.89 —0.14 o —0.19 —0.0089 0.85
CD54 —0.077 0.1 —0.022 0.64 —0.054 0.25 Q.15 .
CD63 —0.13 * —-0.12 o 0.26 —0.075 Q.41
CcD274 0.024 0.6 —0.035 0.46 —-0.12 & —0.0075 0.87
ARG1 0.14 e 0.28 —0.019 0.68 —0.03 0.52
CXCR2 0.21 0.28 —0.15 o —0.051 0.28
CXCR4 0.015 0.75 —0.083 0.076 —-0.19 0.038 0.41

*P<0.05, *P<0.01, **P<0.001.
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Description Gene markers SKCM
Purity
ERBB1 ERBB2 ERBB3 ERBB4
Cor P Cor P Cor P Cor P
CD8™ Tcell CD8A —0.053 2.62e-1 —0.045 3.37e-01 0.133 A 0.1 *
CD8B -0.078 9.74e-02 —0.066 1.61e-01 0.086 6.62e-02 0.086 6.65e-02
T cell (general) CD3D —0.041 3.85e-01 —0.088 5.90e-02 0.047 3.18e-01 0.08 8.59-02
CD3E -0.029 5.32e-01 —0.05 2.85e-01 0.047 3.11e-01 0.087 6.26e-02
CD2 -0.015 7.48e-01 —0.066 1.58e-01 0.102 * 0.107 *
B cell CD19 —0.007 8.85e-01 -0.117 % 0.021 6.57e-01 0.155
CD79A —0.094 * —0.111 * 0 9.98e-01 0.13 *
Monocyte CD86 0.072 1.22e-01 —0.001 9.85e-01 0.062 1.85e-01 0.151 *
CD115 0.175 0.102 % 0.08 8.57e-02 0.123 A
TAM CCL2 0.128 > 0.009 8.52e-01 —0.021 6.57e-01 0.11 *
CD68 -0.015 7.50e-01 —0.041 3.77e-01 —0.147 > —0.054 2.49e-01
IL10 0.063 1.77e-01 —0.016 7.27e-01 0.002 9.63e-01 0.056 2.31e-01
M1 Macrophage iINOS —0.205 0.012 8.01e-01 0.044 3.43e-01 —0.006 8.92e-01
IRF5 0.073 1.21e-01 0.033 4.86e-01 —0.076 1.07e-01 —0.006 8.94e-01
COx2 0.215 0.043 3.57e-01 —0.006 8.94e-01 0.127 a
M2 Macrophage CD163 0.124 > 0.045 3.40e-01 0.047 3.17e-01 0.148 *
VSIG4 0.063 1.77e-01 0.073 1.20e-01 0.05 2.84e-01 0.106 %
MS4A4A 0.091 5.30e-02 —0.007 8.74e-01 0.044 3.43e-01 0.139 *
Neutrophils CD66b 0.049 2.94e-01 —0.062 1.88e-01 -0.116 * 0 9.94e-01
CD11b 0.104 A 0.062 1.84e-01 0.085 7.00e-02 0.102 *
CCR7 0.042 3.73e-01 —0.076 1.07e-01 0.06 2.01e-01 0.1 *
Dendritic cell HLA-DPB1 0.036 4.42e-01 0.113 * 0.107 * 0.052 2.65e-01
HLA-DQB1 0.05 2.91e-01 0.039 4.11e-01 0.066 1.58e-01 0.068 1.46e-01
HLA-DRA 0.046 3.26e-01 0.055 2.42e-01 0.115 * 0.084 7.19e-02
HLA-DPA1 0.027 5.67e-01 0.1 " 0.119 " 0.064 1.69e-01
BDCA-1 0.214 —0.01 8.26e-01 0.084 7.32e-02 0.162
BDCA-4 0.434 0.079 9.06e-02 0.053 2.59¢-01 0.182
CD11c 0.011 8.17e-01 —0.029 5.41e-01 —0.059 208e-01 0.067 1.54e-01
Thi T-bet -0.017 7.22e-01 —0.06 2.02e-01 0.066 1.56e-01 0.121 *
STAT4 —-0.114 * 0.007 8.83e-01 0.181 o 0.172 o
STAT1 —0.01 8.25e-01 0.043 3.56e-01 0.242 0.107 i
IFN-y —0.068 1.45e-01 -0.102 * 0.107 * 0.084 7.22e-02
TNF-a 0.106 * 0.026 5.73e-01 0.046 3.25e-01 0.026 5.85e-01
Th2 GATA3 0.327 . 0.089 5.76e-02 0.015 7.42e-01 0.144 >
STAT6 0.141 * 0.228 8.32e-07 0.337 0.069 1.40e-01
STATEA —0.045 3.33e-01 0.159 0.326 0.103 A
IL13 0.049 2.93e-01 —0.052 2.68e-01 -0.018 7.06e-01 0.007 8.80e-01
Tth BCL6 0.255 0.158 x 0.023 6.27e-01 0.158
IL21 0.08 8.66e-02 0.077 1.01e-01 0.057 2.27e-01 0.179
Th17 STAT3 0.282 e 0.331 e 0.29 e 0.195 o
IL17A 0.034 4.63e-01 0.079 9.02e-02 0.003 9.50e-01 —0.037 4.28e-01
Treg FOXP3 0.072 1.22e-01 -0.013 7.76e-01 —0.004 9.28e-01 0.044 3.44e-01
CCR8 0.138 * —0.039 4.09e-01 0.145 * 0.133 *
STATEB 0.174 K 0.235 s 0.331 s 0.174 e
TGFB 0.276 0177 —0.1 * 0.048 3.02e-01
T cell exhaustion PD-1 —0.099 * —0.048 3.01e-01 0.065 1.66e-01 0.063 1.78e-01
CTLA4 —0.086 6.49e-02 —0.171 —0.076 1.05e-01 0.071 1.29e-01
LAG3 -0.129 > —0.034 4.65e-01 0.058 2.19e-01 0.053 2.59¢-01
TIM-3 0.036 4.42e-01 0 9.94e-01 0.069 1.41e-01 0.118 A
GZMB —0.097 i -0.132 i —0.011 8.17e-01 0.016 7.31e-01

TAM, tumor-associated macrophage; Th, T helper cell; Tth, Follicular helper T cell; Treg, regulatory T cell; Cor, R-value of Spearman’s correlation; Furity, correlation

adjusted by purity. *P < 0.05, *P < 0.01, **P < 0.001.
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miRNA Start of site, nt AG, kd/mole AG/AGm, % Length, nt

GAS6
IDO0061.3p-miR 1723 (3) —129 94 22
ID00296.3p-miR 17 —144 92 25
ID00457.3p-miR 1420 (2) —123+-127 91+94 22
ID00522.5p-miR 17 —125 89 23
IDO1041.5p-miR 20 132 90 24
ID01106.5p-miR 21 132 89 24
ID01155.3p-miR 1723 (3) —129 94 22
ID01641.3p-miR 17 —134 90 24
IDO1702.30-miR  16+21 (3) —186+-—142 8691 25
IDO1804.3p-miR 1120 (3) —186+-—142 85-93 25
ID01873.3p-miR  20+23 (2) —123+-125 9495 21
ID01879.5p-miR 22 —123 91 22
ID02064.5p-miR 24 —123 94 21
ID02084.3p-miR  22+25 (2) —129+-132 8687 24
ID02187.5p-miR  15+19 (3) —123 89 23
ID02294.5p-miR 1619 (2) —132+--136 9093 24
1D02538.3p-miR 24 —123 92 22
1D02950.3p-miR 13 —125 89 23
ID03367.50-miR 1723 (2) —117 93 20
miR-3960 23 —115 92 20
NFE2L2
ID01935.5p-miR 271 —142 100 24
IDO0061.3p-miR  444+450 (3)  —125-—134 91+97 22
ID00296.3p-miR 441448 (3)  —134+—140 85-89 25
ID00457.3p-miR 444 123 91 22
ID00522.5p-miR 438 —125 89 23
IDO1041.50-miR  444+445(2)  —129+—134 8891 24
IDO1155.30-miR ~ 444+450 (3)  —125-—134 91+97 22
IDO1641.30-miR  444+448 (2) —136 91 24
ID01702.30-miR  444+450(3)  —138+—144 8692 25
IDO1804.3p-miR  438+444 (3)  —138+—144 87+91 25
ID01873.30-miR  444-447 (2)  —121+—123 9294 21
ID02187.50-miR  439+-445 (2) —123 89 23
ID02770.5p-miR 462 —115 92 20
1D02890.3p-miR 458 —119 89 23
ID03367.50-miR ~ 441+453 (2) 115 92 20
SCAP
IDO0061.3p-miR 102114 (5)  —125+—-132 91+95 22
ID00296.3p-miR 99106 (5)  —140+—144 89+92 25
ID00756.30-miR ~ 105+-106 (2) —123 89 23
ID01041.5p-miR 108 —129 88 24
ID01403.5p-miR 107 —121 89 23
IDO1641.30-miR  102+108 (4)  —132+—134 89-+90 24
ID01652.3p-miR 112 —125 89 23
ID01702.30-miR ~ 105+112(5)  —138+—144 92-96 24
ID01804.3p-miR 109 —134 91 23
ID01873.3p-miR 108 —125 95 21
1D02294.5p-miR 101 —129 88 24
ID03151.3p-miR 103 —115 93 20
ID03367.50-miR  108=-111 (2) —117 93 20
miR-3960 104+106 (2) —117 93 20

In the Table 1 and other Tables in parentheses indicate the number of
miRNAs binding sites.
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Tool name

See review by Xu et al. (2018)

MacPherson et al. (2018) model
MichroM + MEGABASE (Di Pierro et al
Huang et al. (2015) model

3Disease Browser (Li et al., 2016)

Lolipop (Kai et al, 2018)

3DEpioop (Al Bkhetan and Plewczynski, 2018)
CTCF-MP (Zhang et al., 2018)

EpiTensor (Zhu et al., 2016)
DeepMILO (Tiieu et al., 2020)

3D-GNOME (Sadowski et al., 2019)
3DPredictor (Belokopytova et al., 2020)

Hi-C Reg (Zhang et al., 2019)

Akita (Fudenberg et al., 2020)

DeepG (Schwessinger et al., 2020)

Yifeng Qi and Bin Zhang model (Qi and Znang,
2019)

HiP-HOP (Buckle et al., 2018)

Rowley et al. (2017) model
PRISMR (Bianco et al., 2018)

Input features
Histone marks, TFs binding, DHS
HP1, HaKImed

Histone marks, TFs binding
Histone marks

Enhancers and TAD boundaries
Chip-seq data, CTCF directionality
Histone marks, TFs binding

CTCF binding, DHS, nucieotide
sequence

Histone marks, TFs binding
Sequence of loop anchors
CTCF GhiA-PET
CTCF, RNA-seq

Histone marks, TFs binding, DHS
Sequence

Sequence

GTCF binding, Chromatin states.

GTCF and cohesin binding, Histone
marks or DHS.

GRO-seq + CTCF binding
Wild-type Hi-C data

Target features

Promoter-enhancer
interactions.

Compartments
Compartments
TADs
Rearranged TADs
Loops.

Loops.

Loops.

Loops.
Rearranged loops.
Rearranged loops.
Whole hi-c map
Whole hi-c map
Whole hi-c map
Whole hi-c map
Whole hi-c map

Whole hi-c map

Whole hi-c map

Method/algorithm

See review by Xu et al. 2018)

Polymer modeling
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BART

Linear model

ML ensemble classifier (random forest)
ML ensemble iassifer (random forest)

ML ensemble classifier/NN (Boosted
trees/word2vec)

Tensor modeling + PCA

NN and RNN

inear models

ML ensemble regression (gradient boosting)
ML ensemble regression (random forest)
ONN

ONN

Polymer modeling

Polymer modeling

Expliit algebraic model

Whole hi-c map in mutated ~ Polymer modeling

cells

DHS, DNAse | hypersensitivity sites; TFs, transcription factors; TADs, topologically associated domains; ML, machine leaming; NN, neural network; CNN, convolutional
neural network; RN, recurrent neural network; BART, Bayesian additive regression trees; PCA, principle component analysis.
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Breast cancer 31 (10/32) 44 (14/32) 1
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