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Editorial on the Research Topic

From Structure to Function in Neuronal Networks: Effects of Adaptation, Time-Delays, and

Noise

It is a fundamental challenge to understand how brain function is related to its functional and
structural organization, i.e., what shapes the neuronal activity patterns observed across scales that
define cognitive and behavioral processes, as well as their breakdown in mental health disorders
(Park and Friston, 2013). Few theories integrate the various dimensions in this ambitious endeavor
[such as Free Energy Principle (Friston et al., 2006) and Structured Flows on Manifolds (Jirsa and
Sheheitli, 2022)], but all acknowledge the multi-scale organization of brain function. Investigation
of the complex structure-function relationship can be performed at the macro- and meso-scopic
levels (Messé, 2020; Suárez et al., 2020), where dynamical modeling at large scales constitutes one
of the promising methodologies (Ghosh et al., 2008; Deco et al., 2009; Honey et al., 2009). At the
microscopic level, the dynamics of neuronal networks strongly depends on intrinsic properties
of the neuro-anatomical connectome and the functional relationships among neurons, and this
goes beyond the connectivity matrix. In particular, the adaptation of the strengths of the synaptic
connections through synaptic plasticity (Markram et al., 1997; Abbott and Nelson, 2000; Dan and
Poo, 2004), the evolution of the functional connectivity in time, the inevitable time delays resulting
from both neurophysiological time constants and finite propagation velocity, noise, and inherent
inhomogeneities play key roles in the emergent behavior of neuronal systems across spatial and
temporal scales (Deco et al., 2009). A detailed characterization of these effects on the collective
dynamics of neuronal networks is an important contemporary problem, which may thus provide
the means for studying the link between functional and structural connectivity and brain function
in health and disease (Cabral et al., 2017; Jirsa et al., 2017; McIntosh and Jirsa, 2019; Popovych et al.,
2019).

4

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2022.871165
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2022.871165&domain=pdf&date_stamp=2022-04-21
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:yanchuk@pik-potsdam.de
https://doi.org/10.3389/fnsys.2022.871165
https://www.frontiersin.org/articles/10.3389/fnsys.2022.871165/full
https://www.frontiersin.org/research-topics/14442/from-structure-to-function-in-neuronal-networks-effects-of-adaptation-time-delays-and-noise


Cabral et al. Editorial: From Structure to Function

This Research Topic focuses on the structure-function
relationship in neuronal networks at different temporal and
spatial scales. The latter range from fast-spiking and bursting
dynamics of individual neurons organized in recurrent networks
(Berner and Yanchuk; Protachevicz et al.; Rongala et al.; Sawicki
and Schöll; Sánchez-Claros at al.), to neuronal populations’
activity examined in terms of neural mass or neural field models
(Al-Darabsah et al.; Bi et al.; Hutt et al.; Laing et al.; Tavakoli and
Longtin) and to slow and ultra-slow fluctuations of neuronal and
metabolic activity at the whole-brain scale (Coronel-Oliveros et
al.; Gerster et al.).

Special attention is paid to the modeling of neuronal
plasticity (Berner and Yanchuk), to the impact of time delays
in coupling and intrinsic activity (Protachevicz et al.; Rongala
et al., Sánchez-Claros at al.; Tavakoli and Longtin), and to
the effects of noise or stochastic perturbations (Rongala et al.;
Sánchez-Claros at al.; Tavakoli and Longtin), as well as to
heterogeneity of individual and collective neuronal dynamics
(Berner and Yanchuk; Bi et al.; Coronel-Oliveros at al.; Gerster
et al.; Laing et al.; Tavakoli and Longtin; Zhou et al.).

A brief description of the contributions is reported below.
The experimental work of Zhou et al. investigates the

properties of the local field potential (LFP) in the hippocampus
and its spectra as energy is quenched from the system. The
authors examine rat LFPs recorded from the hippocampus
and entorhinal cortex during barbiturate overdose euthanasia.
The data obtained in this study support the energy cascade
theory where the energy flows from large cortical populations to
smaller loops.

All other contributions report numerical or theoretical studies
based on mean-field or network descriptions of neural systems.
In particular, the following papers deal with neural mass and
field models.

Laing et al. present a powerful method for studying the
influence of a network structure on its dynamics by employing
the reduction technique by Ott and Antonsen (2008). In
particular, the authors investigate large heterogeneous networks
of Winfree oscillators with various correlations in (meta-)
parameters, such as degree or parameter assortativity.

Gerster et al. exploit the predictive power of personalized
brain network models. The authors build multi-population
neural mass models for a cohort of 20 healthy subjects and 15
epileptic patients, implementing next generation neural masses
(Montbrió et al., 2015; Taher et al., 2020) for each brain region.
As paradigms for testing the spatio-temporal organization,
the authors systematically simulate the individual seizure-like
propagation patterns.

Al-Darabsah et al. investigate the impacts of delays by
modeling large interacting neural populations as neural-field
systems. Using a master stability function analysis and numerical
simulations, they find that delays can (1) stabilize brain
dynamics by temporarily preventing the onset to oscillatory
and pathologically synchronized dynamics and (2) enhance or
weaken synchronization depending on the underlying eigenvalue
spectrum of the connectivity matrix.

Bi et al. show that the E-I balance can cause various
regimes observable in the brain. The authors classify the

possible dynamical behaviors emerging in balanced E-I networks
with structural heterogeneity. Analytic results show that both
supra- and sub-threshold balanced asynchronous regimes are
observable in the limit of large in-degrees. The coherent rhythms
observed in the system can range from periodic and quasi-
periodic collective oscillations to coherent chaos. These rhythms
are characterized by regular or irregular temporal fluctuations
joined to spatial coherence, similar to coherent fluctuations
observed in the cortex over multiple spatial scales.

Hutt et al. derive a closed-form mean-field representation for
an Erdös-Rényi network with two populations of interconnected
neurons driven by additive noise. Considering Gaussian and
Poissonian stimulation to excitatory neurons, they observe
coherence resonance and show that partial stochastic stimulation
promotes coherence resonance compared to global stimulation.

Coronel-Oliveros et al. consider a whole-brain model based
on the Jasen and Rit neural mass Jansen and Rit (1995) and
a human structural connectivity matrix, to find out which
structural features of the human connectome network define the
optimal neuromodulatory effects. They simulate the effect of the
noradrenergic system as changes in filter gain, and studied its
effects related to the global-, local-, and meso-scale features of
the connectome.

Tavakoli and Longtin explore conditions under which
additional delays in high-dimensional chaotic neural networks
lead to a reduction in dynamic complexity, a phenomenon
recently described as multi-delay complexity collapse. In
particular, they observe that a global delayed inhibitory feedback
can induce such a collapse.

The following contributions deal with recurrent networks
based on spiking neurons or phase oscillators.

Protachevicz et al. study the effect of autapses by examining
a random network with adaptive exponential integrate-
and-fire neurons. They found that autapses can influence
synchronous behavior in neural networks with excitatory
synapses by either increasing or decreasing synchrony,
depending on the parameters. However, when only inhibitory
synapses are considered, synchronization does not suffer
significant changes.

Rongala et al. explore noise and stability issues arising in
recurrent neuronal networks. Their findings show that neuronal
dynamic leak protects recurrent neuronal circuits from self-
induction of spurious high-frequency signals. The authors test
a range of models, from a linear non-spiking summation
model to fully connected recurrent networks of excitatory
and inhibitory neurons with randomly distributed weights and
random sensory inputs.

Sawicki and Schöll discuss a minimal model that explains the
modalities of the influence of music on the human brain. They
report synchronization patterns induced by the sound frequency
in a network of FitzHugh-Nagumo oscillators with empirically
measured structural connectivity. The sound stimulus is modeled
by an input to brain areas related to the auditory cortex. It is
shown that the synchrony can be increased by properly adjusting
the frequency and amplitude of the sound.

Sánchez-Claros et al. study the information flows in a
canonical motif that mimics a cortico-thalamo-cortical circuit
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with three neuronal populations (V-motif). Through numerical
simulations, the authors determine how the amount of
information transferred between the populations depends on the
connection delays and frequency detuning. The results highlight
the role of the transthalamic V-motif in binding spatially
separated cortical computations and suggest an important
regulatory role of the direct cortico-cortical connection.

Berner and Yanchuk introduce a methodology for studying
synchronization in adaptive networks with heterogeneous
adaptation rules. The authors consider a network of phase
oscillators with distance-dependent adaptations. For such
system, the master stability function approach (Berner et al.,
2021) is extended to networks with heterogeneous adaptation.
Utilizing the proposed methodology, they explain mechanisms
leading to synchronization or desynchronization by enhanced
long-range connections.

The presented collection of papers in this Research Topic
is united by the common theme of how the structure-function
relationship contributes to our better understanding of this

complex issue and can inspire further investigations in this
direction.
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A great deal of research has been devoted on the investigation of neural dynamics

in various network topologies. However, only a few studies have focused on the

influence of autapses, synapses from a neuron onto itself via closed loops, on

neural synchronization. Here, we build a random network with adaptive exponential

integrate-and-fire neurons coupled with chemical synapses, equipped with autapses,

to study the effect of the latter on synchronous behavior. We consider time delay in

the conductance of the pre-synaptic neuron for excitatory and inhibitory connections.

Interestingly, in neural networks consisting of both excitatory and inhibitory neurons, we

uncover that synchronous behavior depends on their synapse type. Our results provide

evidence on the synchronous and desynchronous activities that emerge in random neural

networks with chemical, inhibitory and excitatory synapses where neurons are equipped

with autapses.

Keywords: synchronization, neural dynamics, integrate-and-fire model, excitatory and inhibitory neural networks,

synapses, autapses

1. INTRODUCTION

An important research subject in neuroscience is to understand how cortical networks avoid or
reach states of high synchronization (Kada et al., 2016). In normal activity, excitatory and inhibitory
currents are well balanced (Tatti et al., 2018; Zhou and Yu, 2018), while in epileptic seizures, high
synchronous behavior has been related to unbalanced current inputs (Drongelen et al., 2005; Avoli
et al., 2016). Nazemi and Jamali (2018) showed that the structural coupling strength is important for
the appearance of synchronized activities in excitatory and inhibitory neural populations. Various
studies discuss the relation between structure and function in microscale and macroscale brain
networks (Sporns, 2013a; DeBello et al., 2014; Sporns, 2016; Suárez et al., 2020). In a microscale
organization, local excitatory and inhibitory connections are responsible for a wide range of neural
interactions (Sporns, 2012; Feng et al., 2018). Bittner et al. (2017) investigated population activity
structure as a function of neuron types. They verified that the population activity structure depends
on the ratio of excitatory to inhibitory neurons sampled. The pyramidal cell (excitatory neuron)
exhibit spike adaptation, while the fast spiking cell (inhibitory neuron) have a small or inexistent
spike adaptation (Neske et al., 2015; Descalzo, 2005).
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The excitatory to inhibitory and inhibitory to excitatory
connections can change firing rates, persistent activities and
synchronization of the population of postsynaptic neurons
(Börgers and Kopell, 2003; Han et al., 2018; Hayakawa and
Fukai, 2020; Kraynyukova and Tchumatchenko, 2018; Mahmud
and Vassanelli, 2016). Deco et al. (2014) analyzed the effect of
control in the inhibitory to excitatory coupling on the neural
firing rate. Mejias et al. (2018) proposed a computational model
for the primary cortex in which different layers of excitatory and
inhibitory connections were considered.

A number of studies reported that excitatory synapses
facilitate neural synchronization (Borges et al., 2017; Breakspear
et al., 2003), while inhibitory synapses have an opposite effect
(Kada et al., 2016; Ostojic, 2014; Protachevicz et al., 2019).
The time delay related to excitatory and inhibitory synapses
influences the neural synchronization (Gu and Zhou, 2015;
Protachevicz et al., 2020). Further on, there is a strong research
interest in the investigation of how excitatory and inhibitory
synapses influence synchronization in neural networks (Ge and
Cao, 2019). On the other hand, different types of networks have
been used to analyse neural synchronization, such as random
(Bondarenko and Chay, 1998; Gray and Robinson, 2008), small-
world (Antonopoulos et al., 2015, 2016; Hizanidis et al., 2016;
Kim and Lim, 2013; Li and Zheng, 2010; Qu et al., 2014), regular
(Santos et al., 2019; Wang et al., 2007), and scale-free (Lombardi
et al., 2017; Wang et al., 2011).

Experiments showed that autapses are common in the brain
and that they play an important role in neural activity (Bekkers,
1998; Pouzat and Marty, 1998; Wang and Chen, 2015). An
autapse is a synaptic contact from a neuron to itself via a closed
loop (Bekkers, 2009; van der Loos and Glaser, 1972), i.e., an auto-
connection with a time delay on signal transmission (Ergin et al.,
2016). Although, autaptic connections are anatomically present
in vivo and in the neocortex, their functions are not completely
understood (Bacci et al., 2003). Experimental and theoretical
studies on excitatory and inhibitory autapses have been carried
out (Tamás et al., 1997; Saada-Madar et al., 2012; Suga et al.,
2014; Szegedi et al., 2020) and the results have demonstrated
that autaptic connections play a significant role in normal and
abnormal brain dynamics (Wyart et al., 2005; Valente et al., 2016;
Wang et al., 2017; Yao et al., 2019). The effects of autapses on
neural dynamics were studied for single neurons (Heng-Tong
and Yong, 2015; Herrmann and Klaus, 2004; Jia, 2018; Kim,
2019) and for neural networks (HuiXin et al., 2014). It has been
shown that excitatory autapses contribute to a positive feedback
(Zhao and Gu, 2017) and can maintain persistent activities in
neurons (Bekkers, 2009). It was also found that they promote
burst firing patterns (Wiles et al., 2017; Ke et al., 2019). The
inhibitory autapses contribute to a negative feedback (Bacci
et al., 2003; Zhao and Gu, 2017) and to the reduction of neural
excitability (Bekkers, 2003; Qin et al., 2014; Szegedi et al., 2020).
Guo et al. (2016) analyzed chemical and electrical autapses in the
regulation of irregular neural firing. In this way, autaptic currents
can modulate neural firing rates (Bacci et al., 2003). Wang et al.
(2014) demonstrated that chemical autapses can induce a filtering
mechanism in random synaptic inputs. Interestingly, inhibitory
autapses can favor synchronization during cognitive activities

(Deleuze et al., 2019). Short-term memory storage was observed
by Seung et al. (2000) in a neuron with autapses submitted to
excitatory and inhibitory currents. Finally, a study on epilepsy
has exhibited that the number of autaptic connections can be
different in her epileptic tissue (Bacci et al., 2003).

Here, we construct a random network with adaptive
exponential integrate-and-fire (AEIF) neurons coupled with
chemical synapses. The model of AEIF neurons was proposed
by Brette and Gerstner (2005) and has been used to mimic
neural spike and burst activities. Due to the fact that the
chemical synapses can be excitatory and inhibitory, we build
a network with excitatory synapses and autapses, a network
with inhibitory synapses and autapses, and a network with
both types of synapses and autapses. In the mixed network,
we consider 80% of excitatory and 20% of inhibitory synapses
and autapses. In this work, we focus on the investigation of
the influence of autapses on neural synchronization. Ladenbauer
et al. (2013) studied the role of adaptation in excitatory and
inhibitory populations of AEIF neurons upon synchronization,
depending on whether the recurrent synaptic excitatory or
inhibitory couplings dominate. In our work, we show that not
only the adaptation, but also the autapses can play an important
role in the synchronous behavior. To do so, we compute the
order parameter to quantify synchronization, the coefficient of
variation in neural activity, firing rates and synaptic current
inputs. In our simulations, we observe that autapses can increase
or decrease synchronous behavior in neural networks with
excitatory synapses. However, when only inhibitory synapses
are considered, synchronization does not suffer significant
alterations in the presence of autapses. Interestingly, in networks
with excitatory and inhibitory synapses, we show that excitatory
autapses can give rise to synchronous or desynchronous neural
activity. Our results provide evidence how synchronous and
desynchronous activities can emerge in neural networks due to
autapses and contribute to understanding further the relation
between autapses and neural synchronization.

The paper is organized as follows: in section 2, we introduce
the neural network of AEIF neurons and the diagnostic tools that
will be used, such as the order parameter for synchronization,
the coefficient of variation, the firing rates and synaptic current
inputs. In section 3, we present the results of our study
concerning the effects of autapses in neural synchronization, and
in section 4, we draw our conclusions.

2. METHODS

2.1. The AEIF Model With Neural Autapses
and Network Configurations
The cortex comprises mainly excitatory pyramidal neurons
and inhibitory interneurons (Atencio and Schreiner, 2008).
Inhibitory neurons have a relatively higher firing rate than
excitatory ones (Wilson et al., 1994; Inawashiro et al., 1999; Baeg
et al., 2001). In the mammalian cortex, the firing pattern of
excitatory neurons corresponds to regular spiking (Neske et al.,
2015), while inhibitory neurons exhibit fast spiking activities
(Wang et al., 2016). Furthermore, excitatory neurons show
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adaptation properties in response to depolarizing inputs and
the inhibitory adaptation current is negligible or nonexistent
(Foehring et al., 1991; Mancilla et al., 1998; Hensch and Fagiolini,
2004; Destexhe, 2009; Masia et al., 2018; Borges et al., 2020).
The fast spiking interneurons are the most common inhibitory
neurons in the cortex (Puig et al., 2008).

In the neural networks considered in this work, the dynamics
of each neuron j, where j = 1, . . . ,N, is given by the adaptive
exponential integrate-and-fire model. In this framework, N
denotes the total number of neurons in the network. The AEIF
model is able to reproduce different firing patterns, including
regular and fast spiking (di Volo et al., 2019). The network
dynamics is given by the following set of coupled, nonlinear,
ordinary differential equations

Cm
dVj

dt
= −gL(Vj − EL)+ gL1T exp

(

Vj − VT

1T

)

− wj + I + Ichemj (t),

τw
dwj

dt
= aj(Vj − EL)− wj, (1)

τs
dgj

dt
= −gj,

where Vj is the membrane potential, wj the adaptation current
and gj the synaptic conductance of neuron j. k and j identify the
pre and postsynaptic neurons. When the membrane potential of
neuron j is above the threshold Vthres, i.e., when Vj > Vthres

(Naud et al., 2008), the state variables are updated according to
the rules

Vj → Vr,

wj → wj + bj, (2)

gj → gj + gs,

where gs assumes the value gaute for excitatory autapses, ge
for synapses among excitatory neurons, gei for synapses from
excitatory to inhibitory neurons, gauti for inhibitory autapses,
gi for synapses among inhibitory neurons and gie for synapses
from inhibitory to excitatory neurons. We consider a neuron is
excitatory (inhibitory) when it is connected to another neuron
with an excitatory (inhibitory) synapse. The initial conditions of
Vj are randomly distributed in the interval Vj = [−70,−50] mV.
The initial values of wj are randomly distributed in the interval
wj = [0, 300] pA for excitatory andwj = [0, 80] pA for inhibitory
neurons. We consider the initial value of gj equal to zero for all
neurons. Table 1 summarizes the description and values of the
parameters used in the simulations.

The synaptic current arriving at each neuron depends on
specific parameters, including the connectivity encoded in the
adjacency matrices Mexc and Minh, i.e., in the excitatory and
inhibitory connectivity matrices. In particular, the input current
Ichemj arriving at each neuron j, is calculated by

Ichemj (t) = Iexcj (t)+ Iinhj (t), (3)

TABLE 1 | Description and values of the parameters in the AEIF system (1) and (2)

used in the simulations.

Parameter Description Value

N Number of AEIF neurons 1,000 neurons

Cm Membrane capacitance 200 pF

gL Leak conductance 12 nS

EL Leak reversal potential −70 mV

I Constant input current 270 pA

1T Slope factor 2 mV

VT Potential threshold −50 mV

τw Adaptation time constant 300 ms

τs Synaptic time constant 2.728 ms

Vr Reset potential −58 mV

Mexc
jk

Adjacency matrix elements 0 or 1

Minh
jk

Adjacency matrix elements 0 or 1

tini Initial time in the analyses 10 s

tfin Final time in the analyses 20 s

aj Subthreshold adaptation [1.9, 2.1] nS •

0 nS ⋆

bj Triggered adaptation 70 pA •

0 pA ⋆

VREV Synaptic reversal potential VexcREV = 0 mV •

V inhREV =-80 mV ⋆

gs Chemical conductances ge, g
aut
e , gei •

gi, g
aut
i , gie ⋆

ge Excitatory to excitatory [0,0.5] nS •

gaute Excitatory autaptic [0,35] nS •

gei Excitatory to inhibitory [0,5] nS •

gi Inhibitory to inhibitory [0,2] nS ⋆

gauti Inhibitory autaptic [0,100] nS ⋆

gie Inhibitory to excitatory [0,3] nS ⋆

dj Time delay dexc = 1.5 ms •

dinh = 0.8 ms ⋆

Values for parameters for excitatory and inhibitory connections are denoted by • and

⋆, respectively.

where

Iexcj (t) = Ieej (t)+ Ieij (t)+ Ie,autj (t)

= (Vexc
REV − Vj(t))

N
∑

k=1

Mexc
jk gk(t − dexc)

and

Iinhj (t) = Iiij (t)+ Iiej (t)+ Ii,autj (t)

= (V inh
REV − Vj(t))

N
∑

k=1

Minh
jk gk(t − dinh).

In this framework, the type of synapse (excitatory or inhibitory)
depends on the synaptic reversal potential VREV. We consider
Vexc
REV = 0 mV for excitatory and V inh

REV = −80 mV for inhibitory
synapses. The time delay in the conductance of the pre-synaptic
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neuron k (gk) assumes dexc = 1.5ms for excitatory and dinh = 0.8
ms for inhibitory connections (Borges et al., 2020). The influence
of delayed conductance on neural synchronization was studied in
Protachevicz et al. (2020). There are no spike activities in the time
interval t = [−dj, 0].

The first Nexc neurons are excitatory and the last Ninh

inhibitory. The connections that depart from excitatory and
inhibitory neurons are associated with the excitatory and
inhibitory matrices, Mexc and Minh, where each entry is denoted
Mexc

jk
andMinh

jk
, respectively. These adjacency matrices are binary

and have entries equal to 1 when there is a connection from
neuron k to neuron j, or 0 otherwise, as shown in Figure 1.

We consider Pexc = 80% excitatory and Pinh = 20%
inhibitory neural populations following di Volo et al. (2019)
and Noback et al. (2005), where the numbers of excitatory and
inhibitory neurons are given by Nexc = PexcN and Ninh = PinhN,
respectively. The connectivity probabilities are set to paute =

pauti = 0.25 for excitatory and inhibitory autapses, to pe = 0.05
and pi = 0.2 for connectivity within the same neural population
and to pei = pie = 0.05 for connectivity among different neural
populations (di Volo et al., 2019). The subscripts “e” and “i” stand
for “excitatory” and “inhibitory”, respectively and the superscript
“aut” stands for “autapses.” The terms pei and pie represent the
probabilities of connections from excitatory to inhibitory and
from inhibitory to excitatory neurons, respectively.

The probabilities of excitatory and inhibitory autapses are
defined by

paute =
Naut
e

Nexc
and pauti =

Naut
i

Ninh
,

where Naut
e and Naut

i are the number of autapses in the excitatory
and inhibitory populations, respectively. For a network with
only excitatory (inhibitory) neurons, the number of excitatory
(inhibitory) neurons is Nexc = N (Ninh = N). For
connections within the excitatory and inhibitory populations, the
corresponding probabilities pe and pi are given by

pe =
Ne

Nexc(Nexc − 1)
and pi =

Ni

Ninh(Ninh − 1)
,

where Ne and Ni are the number of synaptic connections
in the excitatory and inhibitory populations, respectively. For
connections among different populations, the corresponding
probabilities are given by

pei =
Nei

NexcNinh
and pie =

Nie

NexcNinh
,

where Nei and Nie are the number of synaptic connections from
the excitatory to the inhibitory and from the inhibitory to the
excitatory populations, respectively. Therefore, when only one
neural population is considered, pei and pie cannot be defined.
The resulting six connectivity probabilities are represented in
the connectivity matrix in Figure 1, where k and j denote the
pre- and post-synaptic neurons, respectively. Figure 1 shows the
connections associated to probabilities: (Figure 1A) in the same

population (pe and pi), (Figure 1B) for autapses (p
aut
e and pauti )

and (Figure 1C) among different populations (pei and pie).
Finally, we associate the conductances ge, gi, g

aut
e , gauti , gei,

and gie to the corresponding connectivity probabilities discussed
before. To solve the set of ordinary differential equations in
system (1), we used the 4th order Runge-Kutta method with the
integration time-step equal to 10−2 ms.

2.2. Computation of Neural
Synchronization
Synchronous behavior in neural networks can be quantified by
means of the order parameter R (Kuramoto, 1984)

R(t) =

∣

∣

∣

∣

∣

1

N

N
∑

j=1

exp
(

iψj(t)
)

∣

∣

∣

∣

∣

,

where R(t) is the amplitude of a centroid phase vector over time,
i the imaginary unit, satisfying i2 = −1, and | · |, the vector-norm
of the argument. The phase of each neuron j in time is obtained
by means of

ψj(t) = 2πm+ 2π
t − tj,m

tj,m+1 − tj,m
, (4)

where tj,m is the time of the m-th spike of neuron j, where
tj,m < t < tj,m+1 (Rosenblum et al., 1997). We consider that
spikes occur whenever Vj > Vthres (Naud et al., 2008). R(t) takes
values in [0, 1] and, is equal to 0 for completely desynchronized
neural activity and 1 for fully synchronized neural behavior. We
compute the time-average order parameterR (Batista et al., 2017),
given by

R =
1

tfin − tini

∫ tfin

tini

R(t)dt, (5)

where (tfin− tini) is the length of the time window [tini, tfin]. Here,
we have used tini = 10 s and tfin = 20 s. Similarly, we calculate
the synchronization of the non-autaptic neurons

Rnon(t) =

∣

∣

∣

∣

∣

1

Nnon

Nnon
∑

j=1

exp
(

iψnon
j (t)

)

∣

∣

∣

∣

∣

and autaptic neurons

Raut(t) =

∣

∣

∣

∣

∣

1

Naut

Naut
∑

j=1

exp
(

iψaut
j (t)

)

∣

∣

∣

∣

∣

,

where Nnon and Naut are the number of non-autaptic and
autaptic neurons, respectively. In this context, ψnon

j and ψaut
j are

the phases of the non-autaptic and autaptic neuron j and both
terms are computed using Equation (4) for the times of spiking
of the non-autaptic and autaptic neurons, respectively. Rnon and
Raut are then obtained according to Equation (5).
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FIGURE 1 | Representation of the connections: (A) in the same population, (B) for autapses, and (C) among different neural populations. Here, “pre” stands for

“pre-synaptic” and “post” for “post-synaptic.” We note that we have used Pexc = 80% excitatory (denoted red) and Pinh = 20% inhibitory (denoted blue) neural

populations which amounts to a total of N = 1, 000 neurons.

2.3. Mean Coefficient of Variation of
Interspike Intervals
We calculate the interspike intervals of each neuron to obtain the
mean coefficient of variation. In particular, the m-th interspike
interval of neuron j, ISImj , is defined as the difference between

two consecutive spikes,

ISImj = tj,m+1 − tj,m > 0,

where tj,m is the time of the m-th spike of neuron j. Using the

mean value of ISIj over allm, ISIj and its standard deviation σISIj ,
we can compute the coefficient of variation (CV) of neuron j,

CVj =
σISIj

ISIj
.

The average CV over all neurons in the network, CV, can then be
computed by

CV =
1

N

N
∑

j=1

CVj.

We use the value of CV to identify spikes whenever CV < 0.5
and burst firing patterns whenever CV ≥ 0.5 (Borges et al., 2017;
Protachevicz et al., 2018) in neural activity.

2.4. Firing Rates in Neural Populations
The mean firing-rate of all neurons in a network is computed by
means of

F =
1

N(tfin − tini)

N
∑

j=1

(

∫ tfin

tini

δ(t′ − tj)dt
′

)

,

where tj is the firing time of neuron j. In some occasions,
we calculate the mean firing frequency of neurons with and
without autapses,

Faut =
1

Naut
x (tfin − tini)

Naut
x
∑

j=1

(

∫ tfin

tini

δ(t′ − tautj )dt′

)

and

Fnon =
1

Nnon
x (tfin − tini)

Nnon
x
∑

j=1

(

∫ tfin

tini

δ(t′ − tnonj )dt′

)

,

where Naut
x and Nnon

x are the number of neurons with and
without autapses, and tautj and tnonj the firing times of neurons

with and without autapses. The subscript “x” denotes the
population of excitatory (“e”) or inhibitory (“i”) neurons.

Similarly, we calculate the firing rate of excitatory and
inhibitory neurons by means of

Fexc =
1

Nexc(tfin − tini)

Nexc
∑

j=1

(∫ tfin

tini

δ(t′ − texcj )dt′
)

and

Finh =
1

Ninh(tfin − tini)

Ninh
∑

j=1

(∫ tfin

tini

δ(t′ − tinhj )dt′
)

,

where texcj and tinhj are the firing times of the excitatory and

inhibitory neurons, respectively.
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FIGURE 2 | (A) Schematic representation of the neural network where ge is the intensity of excitatory synaptic conductance and gaute of the excitatory autaptic

conductance. Parameter space ge × gaute , where the color bars correspond to (B) R, (C) Rnon, (D) Raut, (E) CV, (F) F, and (G) Is. The raster plots of the parameters

indicated in (B–D) (circle, square, triangle, and hexagon) are shown in Figure 3. The vertical and horizontal white, dash, lines in (F) are used to vary gaute and ge in the

computations in Figures 4A,B, respectively. The closed loop in (A) corresponds to an autapse of excitatory autaptic conductance gaute .

2.5. Synaptic Current Inputs
In our work, we calculate the mean instantaneous input Ichem(t)
and the time average of the synaptic input Is (pA) in the
network by

Ichem(t) =
1

N

N
∑

j=1

Ichemj (t)

and

Is =
1

tfin − tini

∫ tfin

tini

Ichem(t)dt,

respectively, where Ichemj (t) is given by Equation (3). In this

respect, the values of Ichem change over time due to excitatory
and inhibitory inputs received by neuron j, where j = 1, . . . ,N.

3. RESULTS AND DISCUSSION

3.1. Network With Excitatory Neurons Only
Networks with excitatory neurons were studied previously by
Borges et al. (2017) and Protachevicz et al. (2019). These
studies showed that excitatory neurons can change firing patterns
and improve neural synchronization. Fardet et al. (2018) and
Yin et al. (2018) reported that excitatory autapses with few
milliseconds time delay can change neural activities from spikes
to bursts.Wiles et al. (2017) demonstrated that excitatory autaptic

connections contribute more to bursting firing patterns than
inhibitory ones.

In Figure 2, we consider a neural network with excitatory
neurons only, where ge corresponds to the intensity of excitatory
synaptic conductance and gaute to the intensity of excitatory
autaptic conductance. In our neural network, a neuron receives
many connections from other neurons with small intensity
of synaptic conductances. For the autaptic neurons, only one
synaptic contact from a neuron to itself via a closed loop is
considered. Due to this fact, to study the autaptic influence
on the high synchronous activities, we consider values of gaute

greater than ge. Figure 2A shows a schematic representation
of a neural network of excitatory neurons only with a single
autapse represented by the closed loop with excitatory autaptic
conductance gaute . Figures 2B–D give the mean order parameter
in the parameter space ge × gaute . We see that excitatory autapses
can increase or reduce the synchronization in a population of
excitatory neurons when the intensity of the excitatory synaptic
conductance is small. In these panels, the circle (ge = 0.05
nS and gaute = 10 nS), triangle (ge = 0.05 nS and gaute =

31 nS), square (ge = 0.1 nS and gaute = 15 nS), and
hexagon (ge = 0.1 nS and gaute = 22 nS) symbols indicate the
values of the parameters shown in Figure 3. We observe that
desynchronous firing patterns as seen in Figure 3A can become
more synchronous, as it can be seen in Figure 3B, due the
increase of the excitatory autaptic conductance. On the other
hand, the increase of the autaptic conductance can decrease
the level of synchronization in the network, i.e., from high in
Figure 3C to low synchronous activities in Figure 3D. However,
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FIGURE 3 | (A–D) Raster plots for the neural network with excitatory neurons only. The values of the parameters ge and gaute are indicated in Figures 2B–D by circle,

triangle, square, and hexagon symbols, respectively. The curly brackets in the upper right corner of the plots denote the autaptic neurons considered.

as shown in Figure 2D, the autaptic connections affect mainly the
synchronization of autaptic neurons.

For a strong excitatory synaptic coupling (ge ≥ 0.3),
autapses do not reduce neural synchronization significantly.
Figures 2E–G show the mean coefficient of variation (CV), firing
frequency (F), and synaptic current (Is), respectively. We verify
that the excitatory autaptic neurons promote the increase of CV,
F and Is in the network. In Figure 2E, we find that both synaptic
and autaptic couplings can lead to burst activities, as reported
by Borges et al. (2017) and Fardet et al. (2018). The burst and
spike activities are characterized by CV ≥ 0.5 (red region) and
CV < 0.5 (blue region), respectively. In addition, excitatory
autaptic neurons can change the firing patterns of all neurons in

the network from spike to burst activities. In Figures 2F,G, we
observe that excitatory autapses contribute to the increase of the
mean firing frequency and synaptic current.

Next, we analyse the influence of autaptic connections
on neural firing frequency. Figure 4 shows the mean firing
frequency of neurons without (Fnon) and with autapses (Faut), as
well as of all neurons in the excitatory network (F). In Figure 4A,
we consider ge = 0.3 nS varying gaute , while in Figure 4B, we use
gaute = 20 nS varying ge, as shown in Figure 2F with white, dash,
lines. We find that the autaptic connections increase the firing
frequency of all neurons in the network and mainly those with
autaptic connections. In our simulations, neurons with excitatory
autapses exhibit the highest firing rate.
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3.2. Network With Inhibitory Neurons Only
Synaptic inhibition regulates the level of neural activity and
can prevent hyper excitability (Fröhlich, 2016). Studies have

FIGURE 4 | Plot of Fnon (black curve), Faut (red curve), and F (green curve) for

(A) ge = 0.3 nS varying gaute and (B) gaute = 20 nS varying ge. Here, g
aut
e and ge

vary along the white, dash, lines in Figure 2F.

shown that neural networks can exhibit synchronous activities
due to inhibitory synapses (van Vreeswijk et al., 1994; Elson
et al., 2002; Franović and Miljković, 2010; Chauhan et al.,
2018). Here, we analyse the influence of inhibitory synapses
and autapses by varying gi and gauti , as shown in Figure 5A.
Figure 5B shows that inhibitory synapses and autapses do not
give rise to the increase of neural synchronization in the network.
Actually, neural synchronization due to inhibition is possible
when it is considered together with other mechanisms related to
neural interactions (Bartos et al., 2002), e.g., with gap junctions
associated to inhibitory synapses (Bou-Flores and Berger, 2000;
Beierlein et al., 2000; Kopell and Ermentrout, 2004; Bartos et al.,
2007; Pfeuty et al., 2007; Guo et al., 2012; Reimbayev et al., 2017).

In our simulations, we do not observe that inhibitory
interactions promote synchronization in the network. Although
this is not surprising, it helps to identify the role of inhibitory
autapses in neural synchronization. Figure 5C shows that there
is no change from spike to burst patterns, either. In Figure 5D,
we verify that both inhibitory synapses and autapses increase the
intensity of the mean negative synaptic current.

In Figure 5E, we see that inhibitory synapses contribute to the
decrease of F, while Figures 5F,G show the mean firing rate for
non-autaptic neurons, i.e., neurons without autapses (Fnon) and
for autaptic neurons (Faut), respectively. The autapses reduce the
firing-rate of the autaptic neurons, what can lead to an increase
of the firing rate of the non-autaptic neurons. This can be better
observed in Figure 6A, which shows the values of Fnon, Faut, and
F as a function of gauti for gi = 0.1 nS. Figure 6B shows the mean

FIGURE 5 | (A) Schematic representation of an inhibitory neural population connected with inhibitory synapses and autapses. Parameter space gi × gauti , where the

color bars encode the values of (B) R, (C) CV, (D) Is, (E) F, (F) Fnon, and (G) Faut. The vertical and horizontal black, dash, lines in (E–G) are used to vary the

corresponding parameters in the computations in Figures 6A,B. The closed loop in (A) corresponds to an autapse of conductance intensity gauti .
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FIGURE 6 | Plot of Fnon (black line), Faut (red line), and F (green line) for

(A) gi = 0.1 nS varying gauti and (B) gauti = 10 nS varying gi, indicated in

Figure 5 by the black, dash, lines.

firing rates as a function of gi for g
aut
i = 10 nS. The neurons with

inhibitory autapses have lower firing rates.

3.3. Network With a Mix of Excitatory and
Inhibitory Neurons
Desynchronous neural activities in balanced
excitatory/inhibitory regimes have been reported in Borges
et al. (2020) and Ostojic (2014). Based on these results, here we
study different combinations of ge, gi, g

aut
e , and gauti values in

the parameter space gei × gie (see Figure 7). The existence of
synchronous and desynchronous activities depend on the values
of these parameters which are related to the conductances. We
focus on a set of parameters for which synchronous activities
appear. Firstly, we consider ge = 0.5 nS and gi = 2 nS in a neural
network without autaptic connections.

Figure 7A shows a schematic representation of excitatory (red
circles) and inhibitory (blue circles) neurons, where gei (gie)
correspond to the conductance from excitatory to inhibitory
(from inhibitory to excitatory) neurons in the absence of
autapses. Figure 7B presents the mean order parameter (R) and
the circle, square and triangle symbols indicate the values of the
parameters considered in the computation of the raster plots
shown in the right hand-side. The values of the conductances
used to compute the raster plots are given by gei = 0.5 nS and
gie = 1.5 nS for the circle, gei = 1.8 nS and gie = 1.5 nS for
the square, and gei = 4.5 nS and gie = 0.5 nS for the triangle
symbols. The blue and red points in the raster plots represent
the firing of the inhibitory and excitatory neurons over time,
respectively. Kada et al. (2016) reported that synchronization can
be suppressed by means of inhibitory to excitatory or excitatory

to inhibitory connection heterogeneity. Here, we observe that
a minimal interaction between the excitatory and inhibitory
neurons is required to suppress high synchronous patterns.
In Figure 7C, we verify that F decreases when gie increases.
Figures 7D,E show that Fexc and Fini can decrease when gie
increases. In addition, Fexc decreases and Fini increases when gei
increases. When the neural populations are uncoupled (gei =

gie = 0), the firing rate difference in the excitatory and
inhibitory neurons are mainly due to the adaptation properties of
these cells.

Figure 8A shows a schematic representation of a network with
a mix of excitatory and inhibitory neurons in the presence of
excitatory autapses. In Figure 8B, we present the parameter space
gei × gie for gaute = 30 nS, where the color bar corresponds
to R. The white solid line in the parameter space indicates the
transition from desynchronous to synchronous behavior in the
network without excitatory autaptic conductance (gaute = 0),
as shown in Figure 7B. The raster plots in the right hand-side
of the figure are computed using the values of the parameters
indicated by the circle, square, and triangle symbols in Figure 7B.
In Figures 8C–E, we see that excitatory autapses can increase
the firing rate of all neurons, changing the mean firing rate
dependence on gei and gie.

4. CONCLUSIONS

In this paper, we investigated the influence of autapses on neural
synchronization in networks of coupled adaptive exponential
integrate-and-fire neurons. Depending on the parameters of the
system, the AEIF model exhibits spike or burst activity. In our
simulations, we considered neurons randomly connected with
chemical synapses in the absence or presence of autapses.

We verified that the type of synaptic connectivity plays
a different role in the dynamics in the neural network,
especially with regard to synchronization. It has been reported
that excitatory synapses promote synchronization and firing
pattern transitions. In our simulations, we found that excitatory
autapses can generate firing pattern transitions for low excitatory
synaptic conductances. The excitatory autaptic connections
can promote desynchronization of all neurons or only of the
autaptic ones in a network with neurons initially synchronized.
The excitatory autapses can also increase the firing rate of
all neurons. In a network with only inhibitory synapses, we
did not observe inhibitory synapses and autapses promoting
synchronization. We saw a reduction and increase of the firing
rate of the autaptic and non-autaptic neurons, respectively, due
to inhibitory autapses.

Finally, in a network with a mix of excitatory and inhibitory
neurons, we saw that the interactions among the populations
are essential to avoid high synchronous behavior. The excitatory
to inhibitory synaptic connectivities promote the increase
(decrease) of the firing rate of the inhibitory (excitatory)
populations. On the other hand, the inhibitory to excitatory
synaptic connectivities give rise to the decrease of the firing rate
of both populations. We observed that the excitatory autapses
can reduce the synchronous activities, as well as induce neural

Frontiers in Systems Neuroscience | www.frontiersin.org 9 November 2020 | Volume 14 | Article 60456315

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Protachevicz et al. Influence of Autapses on Synchronization

FIGURE 7 | (A) Schematic representation of a neural network with a mix of excitatory and inhibitory neurons without autapses. Parameter spaces gei × gie for

ge = 0.5 nS and gi = 2 nS, where the color bars correspond to (B) R, (C) F, (D) Fexc, and (E) F inh. The circle, square, and triangle symbols in (B) represent the values

of the parameters considered in the computation of the raster plots shown in the right side. The blue and red points in the raster plots indicate the firing of the

inhibitory and excitatory neurons over time, respectively.

FIGURE 8 | (A) Schematic representation of a neural network with a mix of excitatory and inhibitory neurons with excitatory autapses. Parameter spaces gei × gie for

ge = 0.5 nS, gi = 2 nS and gaute = 30 nS, where the color bars correspond to (B) R, (C) F, (D) Fexc, and (E) F inh. The circle, square, and triangle symbols in

(B) represent the values of the parameters considered in the computation of the raster plots shown in the right side. The blue and red points in the raster plots indicate

the firing of the inhibitory and excitatory neurons over time, respectively. The curly brackets in the upper left corner of the plots denote the autaptic neurons considered.

synchronization. For small conductances, excitatory autapses
can not change synchronization significantly. Consequently, our
results provide evidence on the synchronous and desynchronous
activities that emerge in random neural networks with chemical,
inhibitory and excitatory, synapses where some neurons are
equipped with autapses.

In a more general context, the role of network structure
upon synchronicity in networks with delayed coupling and
delayed feedback was studied, and very general classifications

of the network topology for large delay were given by Flunkert
et al. (2010, 2014), e.g., it was shown that adding time-
delayed feedback loops to a unidirectionally coupled ring enables
stabilization of the chaotic synchronization, since it changes the
network class.We believe that the absence or presence of autapses
has similar effects upon synchronization. In future works, we
plan to compute the master stability function of networks with
autapses to compare with the stability of synchronization in
delay-coupled networks.
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Franović, I., and Miljković, V. (2010). Phase plane approach to cooperative

rhythms in neuron motifs with delayed inhibitory synapses. Europhys. Lett.

92:68007. doi: 10.1209/0295-5075/92/68007

Fröhlich, F. (2016). Microcircuits of the Neocortex in

Network Neuroscience. Academic Press-Elsevier Inc., 85–95.

doi: 10.1016/B978-0-12-801560-5.00007-0

Ge, P., and Cao, H. (2019). Synchronization of Rulkov neuron networks

coupled by excitatory and inhibitory chemical synapses. Chaos 29:023129.

doi: 10.1063/1.5053908

Gray, R. T., and Robinson, P. A. (2008). Stability and synchronization of random

brain networks with a distribution of connection strengths. Neurocomputing

71, 1373–1387. doi: 10.1016/j.neucom.2007.06.002

Gu, H., and Zhao, Z. (2015). Dynamics of time delay-induced mutiple

synchronous behaviors in inhibitory coupled neurons. PLoS ONE 10:e0138593.

doi: 10.1371/journal.pone.0138593

Guo, D., Wang, Q., and Perc, M. (2012). Complex synchronous

behavior in interneural networks with delayed inhibitory and fast

electrical synapses. Phys. Rev. E 85:06190 5. doi: 10.1103/PhysRevE.85.

061905

Guo, D., Wu, S., Chen, M., Perc, M., Zhang, Y., Ma, J., et al. (2016).

Regulation of irregular neural firing by autaptic transmission. Sci. Rep. 6:26096.

doi: 10.1038/srep26096

Han, F., Gu, X., Wang, Z., Fan, H., Cao, J., and Lu, Q. (2018). Global firing

rate contrast enhancement in E/I neural networks by recurrent synchronized

inhibition. Chaos 28:106324. doi: 10.1063/1.5037207

Hayakawa, T., and Fukai, T. (2020). Spontaneous and stimulus-induced coherent

states of critically balanced neural networks. Phys. Rev. Res. 2:013253.

doi: 10.1103/PhysRevResearch.2.013253

Heng-Tong,W., and Yong, C. (2015). Firing dynamics of an autaptic neuron.Chin.

Phys. B 24:128709. doi: 10.1088/1674-1056/24/12/128709

Hensch, T. K., and Fagiolini, M. (2004). Excitatory-Inhibitory Balance, Synapses,

Circuits, Systems. New York, NY: Springer Science+Bussiness Media, 155–172.

doi: 10.1007/978-1-4615-0039-1

HuiXin, Q., Jun, M., WuYin, J., and ChunNi, W. (2014). Dynamics of electric

activities in neuron and neurons of network induced by autapses. Sci. China

Technol. Sci. 57, 936–946. doi: 10.1007/s11431-014-5534-0

Herrmann, C. S., and Klaus, A. (2004). Autapse turns neuron into

oscillator. Int. J. Bifurc. Chaos 14, 623–633. doi: 10.1142/S0218127404

009338

Hizanidis, J., Kouvaris, N. E., Zamora-López, G., Díaz-Guilera, A., and

Antonopoulos, C. G. (2016). Chimera-like states in modular neural networks.

Sci. Rep. 6:19845. doi: 10.1038/srep22314

Inawashiro, S., Miyake, S., and Ito, M. (1999). “Spiking neuron models for regular-

spiking, intrinsically bursting and fast-spiking neurons,” in 6th International

Conference on Neural Information Processing (Perth, WA: IEEE), 32–36.

doi: 10.1109/ICONIP.1999.843957

Jia, B. (2018). Negative feedback mediated by fast inhibitory autapse enhances

neural oscillations near a hopf bifurcation point. Int. J. Bifur. Chaos 28:1850030.

doi: 10.1142/S021812741850030X

Kada, H., Teramae, J.-N., and Tokuda, I. T. (2016). Effective suppression of

pathological synchronization in cortical networks by highly heterogeneous

distribution of inhibitory connections. Front. Comput. Neurosci. 10:109.

doi: 10.3389/fncom.2016.00109

Ke,W., He, Q., and Shu, Y. (2019). Functional self-excitatory autapses (auto-

synapses) on neocortical pyramidal cells. Neurosci. Bull. 35, 1106–1109.

doi: 10.1007/s12264-019-00391-8

Kim, S.-Y., and Lim, W. (2013). Sparsely-synchronized brain rhythm

in a small-world neural network. J. Korean Phys. Soc. 63, 104–113.

doi: 10.3938/jkps.63.104

Kim, Y. (2019). Autaptic effects on synchronization and phase response curves

of neurons with a chemical synapse. Korean Phys. Soc. 75, 167–175.

doi: 10.3938/jkps.75.167

Kraynyukova, N., and Tchumatchenko, T. (2018). Stabilized supralinear network

can give rise to bistable, oscillatory and persistent activity. Proc. Natl. Acad. Sci.

U.S.A. 115, 3464–3469. doi: 10.1073/pnas.1700080115

Kuramoto, Y. (1984). Chemical Oscillations, Waves and Turbulence. Berlin:

Springer-Verlag.

Kopell, N., and Ermentrout, B. (2004) Chemical and electrical synapses perform

complementary roles in the synchronization of interneural networks. Proc.

Natl. Acad. Sci. U.S.A. 101, 15482–15487. doi: 10.1073/pnas.0406343101

Ladenbauer, J., Lehnert, J., Rankoohi, H., Dahms, T., Schöll, E., and Obermayer, K.

(2013). Adaptation controls synchrony and cluster states of coupled threshold-

model neurons. Phys. Rev. E 88:042713. doi: 10.1103/PhysRevE.88.042713

Li, C., and Zheng, Q. (2010). Synchronization of the small-world

neural network with unreliable synapses. Phys. Biol. 7:036010.

doi: 10.1088/1478-3975/7/3/036010

Lombardi, F., Herrmann, H. J., and Arcangelis, L. (2017). Balance of excitation and

inhibition determines 1/f power spectrum in neural networks.Chaos 27:047402.

doi: 10.1063/1.4979043

Mahmud, M., and Vassanelli, S. (2016). Differential modulation of excitatory

and inhibitory neurons during periodic stimulation. Front. Neurosci. 10:62.

doi: 10.3389/fnins.2016.00062

Mancilla, J. G., Fowler, M., and Ulinski, P. S. (1998). Responses of regular spiking

and fast spiking cells in turtle visual cortex light flashed. Vis. Neurosci. 15,

979–993. doi: 10.1017/S0952523898155190

Masia, L., Micera, Silvestro, M., Akay, M., and Pons, J. L. (2018). “Converging

clinical and engineering research on neurorehabilitation III,” in Proceeings of

4th International Coneference on NeuroRehabilitation (ICNR2018) (Pisa), 21,

58–63.

Mejias, J. F., Murray, J. D., Kennedy, H., and Wang, X.-J. (2016). Feedforward and

feedback frequency-dependent interactions in a large-scale laminar network of

the primate cortex. Sci. Adv. 2:e1601335. doi: 10.1126/sciadv.1601335

Naud, R., Marcille, N., Clopath, C., and Gerstner, W. (2008). Firing patterns in

the adaptive exponential integrate-and-fire model. Biol. Cybern. 99, 335–347.

doi: 10.1007/s00422-008-0264-7

Nazemi, P. S., and Jamali, Y. (2018). On the influence of structural connectivity

on the correlation patterns and network synchronization. Front. Comput.

Neurosci. 12:105. doi: 10.3389/fncom.2018.00105

Neske, G. T., Patrick, S. L., and Connors, B. W. (2015). Contributions of diverse

excitatory and inhibitory neurons to recurrent network activity in cerebral

cortex. J. Neurosci. 35, 1089–1105. doi: 10.1523/JNEUROSCI.2279-14.2015

Noback, C. R., Strominger, N. L., Demarest, R. J., and Ruggiero, D. A. (2005). The

Human Nervous System: Structure and Function, 6th Edn. Totowa, NJ: Humana

Press.

Ostojic, S. (2014). Two types of asynchronous activity in networks of excitatory and

inhibitory spiking neurons. Nat. Neurosci. 17, 594–600. doi: 10.1038/nn.3658

Pfeuty, B., Golomb, D., Mato, G., and Hansel, D. (2007). Inhibition potentiates the

synchronizing action of electrical synapses. Front. Comput. Neurosci. 1:2007.

doi: 10.3389/neuro.10.008.2007

Pouzat, C., and Marty, A. (1998). Autaptic inhibitory currents recorder

from interneurones in rat cerebellar slices. J. Physiol. 509, 777–783.

doi: 10.1111/j.1469-7793.1998.777bm.x

Protachevicz, P. R., Borges, R. R., Reis, A. S., Borges, F. S., Iarosz, K. C.,

Caldas, I. L., et al. (2018). Synchronous behaviour in network model

Frontiers in Systems Neuroscience | www.frontiersin.org 12 November 2020 | Volume 14 | Article 60456318

https://doi.org/10.1152/jn.2002.88.3.1166
https://doi.org/10.1007/s11431-015-5984-z
https://doi.org/10.3389/fnins.2018.00041
https://doi.org/10.1021/acs.biochem.8b00313
https://doi.org/10.1103/PhysRevLett.105.254101
https://doi.org/10.1007/s10958-014-2078-6
https://doi.org/10.1152/jn.1991.66.6.1825
https://doi.org/10.1209/0295-5075/92/68007
https://doi.org/10.1016/B978-0-12-801560-5.00007-0
https://doi.org/10.1063/1.5053908
https://doi.org/10.1016/j.neucom.2007.06.002
https://doi.org/10.1371/journal.pone.0138593
https://doi.org/10.1103/PhysRevE.85.061905
https://doi.org/10.1038/srep26096
https://doi.org/10.1063/1.5037207
https://doi.org/10.1103/PhysRevResearch.2.013253
https://doi.org/10.1088/1674-1056/24/12/128709
https://doi.org/10.1007/978-1-4615-0039-1
https://doi.org/10.1007/s11431-014-5534-0
https://doi.org/10.1142/S0218127404009338
https://doi.org/10.1038/srep22314
https://doi.org/10.1109/ICONIP.1999.843957
https://doi.org/10.1142/S021812741850030X
https://doi.org/10.3389/fncom.2016.00109
https://doi.org/10.1007/s12264-019-00391-8
https://doi.org/10.3938/jkps.63.104
https://doi.org/10.3938/jkps.75.167
https://doi.org/10.1073/pnas.1700080115
https://doi.org/10.1073/pnas.0406343101
https://doi.org/10.1103/PhysRevE.88.042713
https://doi.org/10.1088/1478-3975/7/3/036010
https://doi.org/10.1063/1.4979043
https://doi.org/10.3389/fnins.2016.00062
https://doi.org/10.1017/S0952523898155190
https://doi.org/10.1126/sciadv.1601335
https://doi.org/10.1007/s00422-008-0264-7
https://doi.org/10.3389/fncom.2018.00105
https://doi.org/10.1523/JNEUROSCI.2279-14.2015
https://doi.org/10.1038/nn.3658
https://doi.org/10.3389/neuro.10.008.2007
https://doi.org/10.1111/j.1469-7793.1998.777bm.x
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Protachevicz et al. Influence of Autapses on Synchronization

based on human cortico-cortical connections. Physiol. Measure. 39:074006.

doi: 10.1088/1361-6579/aace91

Protachevicz, P. R., Borges, F. S., Lameu, E. L., Ji, P., Iarosz, K. C., Kihara, A. H.,

et al. (2019). Bistable firing pattern in a neural network model. Front. Comput.

Neurosci. 13:19. doi: 10.3389/fncom.2019.00019

Protachevicz, P. R., Borges, F. S., Iarosz, K. C., Baptista,M. S., Lameu, E. L., Hansen,

M., et al. (2020). Influence of delayed conductance on neural synchronisation.

Front. Physiol. 11:1053. doi: 10.3389/fphys.2020.01053

Puig, M. V., Ushimaru, M., and Kawaguchi, Y. (2008). Two distinct activity

patterns of fast-spiking interneurons during neocortical UP states. Proc. Natl.

Acad. Sci. U.S.A. 105, 8428–8433. doi: 10.1073/pnas.0712219105

Qin, H., Wu, Y., Wang, C., and Ma, J. (2014). Emitting waves from defects in

network with autapses. Commun. Nonlin. Sci. Numer. Simul. 23, 164–174.

doi: 10.1016/j.cnsns.2014.11.008

Qu, J., Wang, R., Yan, C., and Du, Y. (2014). Oscillations and

synchrony in a cortical neural network. Cogn. Neurodyn. 8, 157–166.

doi: 10.1007/s11571-013-9268-7

Reimbayev, R., Daley, K., and Belykh, I. (2017). When two wrongs make

aright: synchronized neural bursting from combined electrical and inhibitory

coupling. Phylos. Trans. A 375:20160282. doi: 10.1098/rsta.2016.0282

Rosenblum, M. G., Pikowsky, A. S., and Kurths, J. (1997). From phase to lag

synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196.

doi: 10.1103/PhysRevLett.78.4193

Saada-Madar, R., Miller, N., and Susswein, A. J. (2012). Autaptic Muscarinic self-

excitation and nitrergic self-inhibition in neurons initiating Aplysia feeding are

revealed when the neurons are cultured in isolation. J. Mol. Histol. 43, 431–436.

doi: 10.1007/s10735-012-9418-y

Santos, M. S., Protachevicz, P. R., Iarosz, K. C., Caldas, I. L, Viana, R. L., Borges,

F. S, et al. (2019). Spike-burst chimera states in an adaptive exponential

integrate-and-fire neural network. Chaos 29:043106. doi: 10.1063/1.5087129

Seung, H. S., Lee, D. D., Reis, B. Y., and Tank, D. W. (2000). The autapse: A simple

illustration of short-term analog memory storage by tuned synaptic feedback.

J. Comput. Neurosci. 9, 171–185. doi: 10.1023/A:1008971908649

Sporns, O. (2012). Discovering the Human Connectome. Cambridge, MA: MIT

Press, 63–84.

Sporns, O. (2013). Structure and function of complex brain networks.Dialog. Clin.

Neurosci. 15, 247–262. doi: 10.31887/DCNS.2013.15.3/osporns

Sporns, O. (2016). “Connectome networks: from cells to systems,” in Micro-, Meso-

and Macro-Connectomics of the Brain, Vol. 216, eds H. Kennedy, D. C. Van

Essen, and Y. Christen (Cham: Springer), 108–128.

Suárez, L. E., Markello, R. D., Betzel, R. F., and Misic, B. (2020). Linking structure

and function in macroscale brain networks. Trends Cogn. Sci. 24, 302–315.

doi: 10.1016/j.tics.2020.01.008

Suga, K. (2014). Isoproterenol facilitates GABAergic autapses in fast-spiking cells

of rat insular cortex. J. Oral Sci. 56, 41–47. doi: 10.2334/josnusd.56.41

Szegedi, V., Paizs,M., Baka, J., Barzó, P.,Molnár, G., Tamas, G., et al. (2020). Robust

perisomatic GABAergic self-innervation inhibits basket cells in the human and

mouse supragranullar neocortex. eLife 9:e51691. doi: 10.7554/eLife.51691

Tamás, G., Buhl, E. H., and Somogyi, P. (1997). Massive autaptic self-innervation

of GABAergic neurons in cat visual cortex. J. Neurosci. 17, 6352–6364.

doi: 10.1523/JNEUROSCI.17-16-06352.1997

Tatii, R., Haley, M. S., Swanson, O., Tselha, T., and Maffei, A. (2018).

Neurophysiology and regulation of the balance between excitation

and inhibition in neocortical circuits. Biol. Psychiatry 15, 821–831.

doi: 10.1016/j.biopsych.2016.09.017

Valente, P., Orlando, M., Raimondi, A., Benfenati, F., and Baldelli, P. (2016). Fine

tuning of synaptic plasticity and filtering by GABA released from hippocampal

autaptic granule cells.Cereb. Cortex 26, 1149–1167. doi: 10.1093/cercor/bhu301

van der Loos, H., and Glaser, E. M. (1972). Autapses in neocortex cerebri: synaptic

between a pyramidal cell’s axon and its own dendrites. Brain Res. 48, 355–360.

doi: 10.1016/0006-8993(72)90189-8

Vreeswijk, C. V., Abbot, L. F., and Ermentrout, G. B. (1994). When inhibition

not excitation synchronizes neural firing. J. Comput. Neurosci. 1, 313–321.

doi: 10.1007/BF00961879

Wang, Q. Y., Lu, Q. S., and Chen, G. R. (2007). Ordered bursting synchronized

and complex wave propagation in a ring neural network. Phys. A 374, 869–878.

doi: 10.1016/j.physa.2006.08.062

Wang, Q., Chen, G., and Perc, M. (2011). Synchronous bursts on scale-free

neural networks with attractive and repulsive coupling. PLoS ONE 6:e15851.

doi: 10.1371/journal.pone.0015851

Wang, H., Wang, L., Chen, Y., and Chen, Y. (2014). Effect of autaptic

activity on the response of a Hodgkin-Huxley neuron. Chaos 24:033122.

doi: 10.1063/1.4892769

Wang, H., and Chen, Y. (2015). Firing dynamics of an autaptic neuron. Chin. Phys.

B 24:128709. doi: 10.1088/1674-1056/24/12/128709

Wang, B., Ke, W., Guang, J., Chen G., Yin, L., Deng, S., et al. (2016).

Firing frequency maxima of fast-spiking neurons in human, monkey and

mouse neocortex. Front. Cell. Neurosci. 10:239. doi: 10.3389/fncel.2016.

00239

Wang, C., Guo, S., Xu, Y., Ma, J., Tang, J., Alzahrani, F., et al. (2017). Formation

of autapse connected to neuron and it biological function. Res. Article

2017:5436737. doi: 10.1155/2017/5436737

Wiles, L., Gu. S., Pasqueletti, F., Parvesse, B., Gabrieli, D. Basset, D. S., et al. (2017).

Autaptic connections shitf network excitability and bursting. Sci. Rep. 7:44006.

doi: 10.1038/srep44006

Wilson, F. A. W., O’Scalaidhe, S. P., and Goldman-Rakic, P. S. (1994).

Functional synergism between putative γ -aminobutyrate-containing neurons

and pyramidal neurons in prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 91,

4009–4013. doi: 10.1073/pnas.91.9.4009

Wyart, C., Cocco, S., Bourdieu, L., Léger, J.-F., Herr, C., and Chatenay, D. (2005).

Dynamics of excitatory synaptic components in sustained firing at low rates. J.

Neurosci. 93, 33700–3380. doi: 10.1152/jn.00530.2004

Yao, C., He, Z., Nakano, T., Qian, Y., and Shuai, J. (2019). Inhibitory-autapse-

enhanced signal transmission in neural networks. Nonlin. Dyn. 97, 1425–1437.

doi: 10.1007/s11071-019-05060-z

Yin, L., Zheng, R., Ke, W., He, Q., Zhang, Y., Li, J., et al. (2018). Autapses

enhance bursting and coincidence detection in neocortical pyramidal cells.Nat.

Commun. 9:4890. doi: 10.1038/s41467-018-07317-4

Zhao, Z., and Gu, H. (2017). Transitions between classes of neural

excitability and bifurcations induced by autapse. Sci. Rep. 7:6760.

doi: 10.1038/s41598-017-07051-9

Zhou, S., and Yu, Y. (2018). Synaptic E-I balance underlies efficient

neural coding. Front. Neurosci. 12:46. doi: 10.3389/fnins.2018.

00046

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Protachevicz, Iarosz, Caldas, Antonopoulos, Batista and Kurths.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 13 November 2020 | Volume 14 | Article 60456319

https://doi.org/10.1088/1361-6579/aace91
https://doi.org/10.3389/fncom.2019.00019
https://doi.org/10.3389/fphys.2020.01053
https://doi.org/10.1073/pnas.0712219105
https://doi.org/10.1016/j.cnsns.2014.11.008
https://doi.org/10.1007/s11571-013-9268-7
https://doi.org/10.1098/rsta.2016.0282
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1007/s10735-012-9418-y
https://doi.org/10.1063/1.5087129
https://doi.org/10.1023/A:1008971908649
https://doi.org/10.31887/DCNS.2013.15.3/osporns
https://doi.org/10.1016/j.tics.2020.01.008
https://doi.org/10.2334/josnusd.56.41
https://doi.org/10.7554/eLife.51691
https://doi.org/10.1523/JNEUROSCI.17-16-06352.1997
https://doi.org/10.1016/j.biopsych.2016.09.017
https://doi.org/10.1093/cercor/bhu301
https://doi.org/10.1016/0006-8993(72)90189-8
https://doi.org/10.1007/BF00961879
https://doi.org/10.1016/j.physa.2006.08.062
https://doi.org/10.1371/journal.pone.0015851
https://doi.org/10.1063/1.4892769
https://doi.org/10.1088/1674-1056/24/12/128709
https://doi.org/10.3389/fncel.2016.00239
https://doi.org/10.1155/2017/5436737
https://doi.org/10.1038/srep44006
https://doi.org/10.1073/pnas.91.9.4009
https://doi.org/10.1152/jn.00530.2004
https://doi.org/10.1007/s11071-019-05060-z
https://doi.org/10.1038/s41467-018-07317-4
https://doi.org/10.1038/s41598-017-07051-9
https://doi.org/10.3389/fnins.2018.00046
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


ORIGINAL RESEARCH
published: 10 February 2021

doi: 10.3389/fnsys.2021.631377

Frontiers in Systems Neuroscience | www.frontiersin.org 1 February 2021 | Volume 15 | Article 631377

Edited by:

Oleksandr Popovych,

Helmholtz-Verband Deutscher

Forschungszentren (HZ), Germany

Reviewed by:

Denis Goldobin,

Institute of Continuous Media

Mechanics (RAS), Russia

Ernest Montbrio,

Pompeu Fabra University, Spain

*Correspondence:

Carlo R. Laing

c.r.laing@massey.ac.nz

Received: 20 November 2020

Accepted: 18 January 2021

Published: 10 February 2021

Citation:

Laing CR, Bläsche C and Means S

(2021) Dynamics of Structured

Networks of Winfree Oscillators.

Front. Syst. Neurosci. 15:631377.

doi: 10.3389/fnsys.2021.631377

Dynamics of Structured Networks of
Winfree Oscillators
Carlo R. Laing*, Christian Bläsche and Shawn Means

School of Natural and Computational Sciences, Massey University, Auckland, New Zealand

Winfree oscillators are phase oscillator models of neurons, characterized by their phase

response curve and pulsatile interaction function. We use the Ott/Antonsen ansatz to

study large heterogeneous networks of Winfree oscillators, deriving low-dimensional

differential equations which describe the evolution of the expected state of networks of

oscillators. We consider the effects of correlations between an oscillator’s in-degree and

out-degree, and between the in- and out-degrees of an “upstream” and a “downstream”

oscillator (degree assortativity). We also consider correlated heterogeneity, where some

property of an oscillator is correlated with a structural property such as degree. We finally

consider networks with parameter assortativity, coupling oscillators according to their

intrinsic frequencies. The results show how different types of network structure influence

its overall dynamics.

Keywords:Winfree oscillators, coupled oscillators, neuronal networks, degree, assortativity, copula, Ott/Antonsen

1. INTRODUCTION

The behavior of networks of coupled oscillators is a topic of ongoing interest (Strogatz, 2000;
Pikovsky et al., 2001; Arenas et al., 2008). While an individual oscillator may have very
simple behavior, it is the emergent behavior such as synchronization that has gained much
attention (Winfree, 2001; Strogatz, 2003). Networks of coupled oscillators provide insights into
physiological systems such as neuronal or cardiac systems, where synchrony or lack thereof can
have profound implications (Fenton et al., 2002; Milton and Jung, 2013).

One of the first models for interacting oscillators was the Winfree model (Winfree, 1967;
Ariaratnam and Strogatz, 2001; Pazó and Montbrió, 2014; Ha et al., 2015; Gallego et al., 2017; Pazó
et al., 2019; Pazó andGallego, 2020). EachWinfree oscillator is described by a single angular variable
and when uncoupled is assumed to undergo periodic oscillations. Each oscillator is assumed to
have a phase response curve, a function of its own phase, which can be measured from individual
neurons, for example Schultheiss et al. (2011) and Netoff et al. (2005). This describes how an
oscillator’s phase changes as the result of input from other oscillators. The output from an oscillator
is assumed to be in the form of a non-negative pulsatile function of its own phase, and the inputs
to an oscillator are assumed to be additive.

A number of authors have studied networks of Winfree oscillators, but as far as we are aware,
only in the all-to-all coupled case. Although straightforward to assemble, such networks do not
reproduce complex network structures observed in real-world systems such as assortativities
between individual neurons (de Santos-Sierra et al., 2014; Teller et al., 2014). We are interested in
networks with far more varied structure, not just randomly connected. These networks are directed,
i.e., edges connect one oscillator to another, without necessarily having a reciprocal connection,
as occurs in networks of neurons. There are many ways to create structured networks and here
we consider the following: correlating the in- and out-degrees of an oscillator (i.e., the number
of inputs and the number of outputs of an oscillator, section 3), inducing degree assortativity
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(i.e., connecting two oscillators based on their in- and out-
degrees, section 4), correlating some local property of an
oscillator with either its in- or out-degree (section 5), and
inducing parameter assortativity (i.e., connecting two oscillators
based on the similarities of an intrinsic property of the two
oscillators, such as their free-running frequency, section 6).

Our main tool is the derivation and then numerical analysis of
moderately large sets of coupled ordinary differential equations
(ODEs). The derivation utilizes the Ott/Antonsen ansatz (Ott
and Antonsen, 2008, 2009), an exact technique for dimension
reduction in large networks of sinusoidally coupled phase
oscillators, of which Winfree oscillators are an example. Some
of the computational techniques used here have been presented
before (Bläsche et al., 2020; Laing and Bläsche, 2020) but for
networks of theta neurons (Ermentrout and Kopell, 1986) rather
than Winfree oscillators. In section 2, we present the general
model and its reduction using the Ott/Antonsen ansatz. The
results are presented in sections 3–6 and we conclude in section 7.

2. MODEL

We consider the network version of the model as presented
in Pazó and Montbrió (2014)

dθj

dt
= ωj + U(θj)

ǫ

〈k〉

N
∑

n=1

AjnT(θn) (1)

for j = 1, . . .N where the ωj are chosen from a distribution
g(ω), ǫ is the strength of coupling, 〈k〉 is the mean degree of
the network, and the connectivity of the network is given by the
adjacency matrix A, where Ajn = 1 if oscillator n connects to
oscillator j and zero otherwise. The function U is known as the
phase response curve and we choose it to be

U(θ) = sinβ − sin (θ + β) (2)

so that U(0) = 0. If β < π/2 then this function describes a type-
II oscillator whereas β = π/2 describes a type-I oscillator (Tsubo
et al., 2007).We consider only type-II oscillators in this work. The
pulsatile function T is given by

T(θ) = aq(1+ cos θ)q (3)

where q is a positive integer and aq = 2q(q!)2/(2q)! so that
∫ 2π
0 T(θ)dθ = 2π . The in-degree of oscillator j is

kin,j =

N
∑

n=1

Ajn (4)

and the out-degree of oscillator n is

kout,n =

N
∑

j=1

Ajn (5)

We consider large networks with all oscillators having large in-
and out-degrees. Following Chandra et al. (2017) and Laing and

Bläsche (2020), we assume that the network can be characterized
by two functions: the degree distribution P(k), where k =

(kin, kout), and kin and kout are the in- and out-degrees of an
oscillator, respectively, and an assortativity function a(k′ → k)
giving the probability that an oscillator with degree k′ connects
to one with degree k, given that such oscillators exist. Note that
we follow (Chandra et al., 2017; Laing and Bläsche, 2020) and
normalize P(k) such that

∑

k P(k) = N.
In the limit N → ∞ the network is described by the

probability density function f (θ ,ω|k, t) where f (θ ,ω|k, t)dθ dω
is the probability that an oscillator with degree k has phase in
[θ , θ + dθ] and value of ω in [ω,ω + dω] at time t. This function
satisfies the continuity equation

∂f

∂t
+

∂

∂θ
(vf ) = 0 (6)

where

v(θ ,ω, k, t) = ω + ǫU(θ)R(k, t) (7)

where

R(k, t) =
1

〈k〉

∑

k′

P(k′)a(k′ → k)G(k′, t) (8)

and

G(k′, t) =

∫ ∞

−∞

∫ 2π

0
f (θ ′,ω′|k′, t)T(θ ′)dθ ′ dω′ (9)

The nature of this system [specifically, havingU(θ) being a single
sinusoidal function of θ] means that it is amenable to the use
of the Ott/Antonsen ansatz (Ott and Antonsen, 2008, 2009). We
assume that

g(ω) =
1/π

(ω − ω0)2 + 12
(10)

where 1 is the half-width-at-half-maximum and ω0 the median
of the distribution of intrinsic frequencies. Using standard
techniques (Chandra et al., 2017; Laing, 2017) which rely on the
Ott/Antonsen theory, one can show that the long-time dynamics
of the network is described by

∂b(k, t)

∂t
=

ǫe−iβR(k, t)

2
+

[

iω0 − 1 + iǫ sinβR(k, t)
]

b(k, t)

−
ǫeiβR(k, t)

2
[b(k, t)]2 (11)

where

G(k, t) = aq



C0 +

q
∑

j=1

Cj

{

[b(k, t)]j + [b̄(k, t)]j
}



 (12)

where overline indicates complex conjugate and

Cj =

q
∑

k=0

k
∑

m=0

q!δk−2m,j

2k(q− k)!m!(k−m)!
(13)
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The quantity

b(k, t) =

∫ ∞

−∞

∫ 2π

0
f (θ ,ω|k, t)eiθdθ dω (14)

is the complex-valued order parameter for oscillators with
degree k.

Equation (11) is the general equation describing the dynamics
of the network and we use it as a base for analysing a number
networks with different types of structure. In section 3, we
consider correlations between an individual oscillator’s in-degree
and its out-degree, as described by the degree distribution P(k).
In section 4, we consider correlations between the degrees of
connected oscillators, effectively modifying the function a(k′ →
k). In section 5, we investigate the results of one of the parameters
intrinsic to an oscillator (ω0,1, or β) being correlated with
a network property of that oscillator (its in- or out-degree).
Section 6 considers the case when all oscillators have the same
in- and out-degrees, and the assortativity function a(k′ →

k) is replaced by a function describing the probability of
connecting oscillators based on the values of one of their intrinsic
parameters—in this case, ω0. We conclude in section 7.

3. WITHIN OSCILLATOR CORRELATIONS

We first consider the effects of correlating an oscillator’s in-
and out-degree. This general question has been considered by a
number of authors studying different types of oscillators (LaMar
and Smith, 2010; Vasquez et al., 2013; Martens et al., 2017;
Nykamp et al., 2017; Vegué and Roxin, 2019) and experimental
evidence for within-neuron degree correlations is given in Vegué
et al. (2017). Our derivation follows Laing and Bläsche (2020).

Assuming neutral assortativity we have (Restrepo and Ott,
2014)

a(k′ → k) =
k′outkin

N〈k〉
(15)

where we have assumed that the largest in- and out-degrees are
significantly smaller than N, so that a(k′ → k) ≤ 1. We will
write P(kin, kout , ρ̂) instead of P(k)/N, where ρ̂ is a parameter
controlling the correlation between kin and kout , explained in
detail below. Substituting (15) into (8) we have

R(kin, kout , t) =
N

〈k〉

∑

k′in

∑

k′out

P(k′in, k
′
out , ρ̂)a(k

′ → k)G(k′in, k
′
out , t)

=
kin

〈k〉2

∑

k′in

∑

k′out

P(k′in, k
′
out , ρ̂)k

′
outG(k

′
in, k

′
out , t)

(16)

This is clearly independent of kout , thus v must also be
independent of kout , the state of an oscillator with degree
(kin, kout) must be independent of kout , and thus G must be
independent of k′out . So we can write

R(kin, t) =
kin

〈k〉2

∑

k′in

Q(k′in, ρ̂)G(k
′
in, t) (17)

where

Q(k′in, ρ̂) ≡
∑

k′out

P(k′in, k
′
out , ρ̂)k

′
out (18)

Thus, the model equations of interest are

∂b(kin)

∂t
=

ǫe−iβR(kin)

2
+

[

iω0 − 1 + iǫ sinβR(kin)
]

b(kin)

−
ǫeiβR(kin)

2
[b(kin)]

2 (19)

where G is given by (12) but with the degree dependence being
on only kin. Note that the model equations are independent of N,
the total number of oscillators.

3.1. Generating Correlated Degrees
The correlations between an oscillator’s in- and out-degree are
controlled by the function P(kin, kout , ρ̂) and we now describe
how to generate these correlations. For simplicity we assume that
the distributions of the in- and out-degrees are the same, namely
uniform distributions betweenm andM, i.e.,

p(k) =

{

1
M−m m ≤ k ≤ M

0 otherwise
(20)

We introduce correlations between the in- and out-degree of an
oscillator while retaining these marginal distributions, using a
Gaussian copula (Nelsen, 2007). The correlated bivariate normal
distribution with zero mean is

f (x, y, ρ̂) =
1

2π
√

1− ρ̂2
e−(x2−2ρ̂xy+y2)/[2(1−ρ̂2)] (21)

where ρ̂ ∈ (−1, 1) is the correlation between x and y. The
variables x and y have no physical meaning and we use the copula
just as a way of deriving an analytic expression for P(kin, kout , ρ̂)
for which the correlations between kin and kout out can be varied
systematically. The cumulative distribution function for x is

C(x) = [1+ erf(x/
√
2)]/2 (22)

and the cumulative distribution function for degree k is

Ck(k) =

∫ k

m

1

M −m
ds =

k−m

M −m
(23)

The joint degree distribution for kin and kout is

P(kin, kout , ρ̂) = {C−1[Ck(kin)]}
′{C−1[Ck(kout)]}

′f {C−1[Ck(kin)],

C−1[Ck(kout)], ρ̂} (24)

where the superscript “−1” indicates the inverse of the
corresponding function. Now

C−1[Ck(kin)] =
√
2 erf−1

(

2(k−m)

M −m
− 1

)

(25)
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and

{C−1[Ck(kin)]}
′ =

√

π

2
exp

[

{

erf−1

(

2(k−m)

M −m
− 1

)}2
]

2

M −m

=

√

π

2

2

M −m
exp

[

(C−1[Ck(kin)])
2

2

]

(26)

So

P(kin, kout , ρ̂) =
1

(M −m)2
√

1− ρ̂2
exp

{

ρ̂C−1[Ck(kin)]C
−1[Ck(kout)

1− ρ̂2

}

× exp





−ρ̂2
(

{C−1[Ck(kin)]}
2 +

{

C−1[Ck(kout)]
}2

)

2(1− ρ̂2)



 (27)

=
p(kin)p(kout)

√

1− ρ̂2
exp

{

ρ̂C−1[Ck(kin)]C
−1[Ck(kout)]

1− ρ̂2

}

× exp





−ρ̂2
(

{C−1[Ck(kin)]}
2 +

{

C−1[Ck(kout)]
}2

)

2(1− ρ̂2)



 (28)

Note the special case P(kin, kout , 0) = p(kin)p(kout), as expected.
Several plots of this function are shown in Figure 1.

We also need to relate the parameter ρ̂ to ρ, the Pearson
correlation coefficient between the in- and out-degrees of a
neuron. We have

ρ =
6̃P(kin, kout , ρ̂)(kin − 〈k〉)(kout − 〈k〉)

√

6̃P(kin, kout , ρ̂)(kin − 〈k〉)2
√

6̃P(kin, kout , ρ̂)(kout − 〈k〉)2

(29)
where 6̃ indicates a sum over all kin and kout . This relationship is
numerically determined and shown in Figure 2A, and it is nearly
the identity. Note that the sums in (29) are over m + 1 ≤ k ≤

M − 1, since P(kin, kout , ρ̂) is undefined for k = m,M.
We can also calculate the function Q(kin, ρ̂) (Equation 18)

where P(kin, kout , ρ̂) is given in (28). This function is shown in

Figure 2B, where we see that increasing ρ̂ gives more weight to
high in-degree nodes and less to low in-degree nodes and vice
versa. This can be understood by realizing that Q(kin, ρ̂) is the
“weight” given to outputs from oscillators with in-degree kin. If,
for example, ρ̂ > 0, then oscillators with high in-degree will be
likely to have high out–degree, and thus their output should be
weighted more.

3.2. Results
We set q = 4 (so aq = 8/35 and C0 = 35/8,C1 = 7/2,C2 =

7/4,C3 = 1/2,C4 = 1/16), ω0 = 1, and consider four
different values of β : 0, 0.5, 0.7, and 1 (all corresponding to type-
II oscillators). There are two types of behavior typically seen
in such a network: synchronous and asynchronous (Pazó and
Montbrió, 2014), although the fraction of oscillators actually
oscillating can vary in the asynchronous states. Increasing ǫ (the
strength of coupling) tends to destroy synchronous behavior
through a saddle-node-on-invariant-circle (SNIC) bifurcation, as
many of the oscillators “lock” at an approximate fixed point.
Increasing 1 (the spread of intrinsic frequencies) tends to
destroy synchronous behavior through a Hopf bifurcation, as
the oscillators become too dissimilar to synchronize (Pazó and
Montbrió, 2014). Examples of typical behavior in a default
network are shown in Figure 3. The global order parameter for
a network of N phase oscillators is a measure of their synchrony,
and is defined as (Strogatz, 2000)

Z =
1

N

N
∑

j=1

eiθj . (30)

We see that its magnitude has large, nearly periodic oscillations
in the synchronous state, but is approximately constant in
the asynchronous state—note the different vertical scales in
Figures 3A,C,E. Note as well the high |Z| value reflects
a large fraction of quiescent oscillators in Figures 3C,D—a
“trivial synchrony.”

FIGURE 1 | Joint degree distribution P(kin, kout, ρ̂) for (A) ρ̂ = 0.5 and (B) ρ̂ = −0.5. The log of P is shown, with red corresponding to higher values and blue to lower.

Parameters: m = 100,M = 400.
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FIGURE 2 | (A) Correlation coefficient between the in- and out-degrees of an oscillator, ρ, as a function of the parameter ρ̂ used in the Gaussian copula. (B) The

function Q(kin, ρ̂) (Equation 18) for different values of ρ̂. Parameters: m = 100,M = 400.

FIGURE 3 | Dynamics of the system (1) with uncorrelated degrees. (A,B) Correspond to (ǫ,1) = (0.2, 0.05) (synchronous state), (C,D) to (ǫ,1) = (0.8, 0.05), and (E,F)

to (ǫ,1) = (0.2, 0.5) (asynchronous states). The left panels show the magnitude of the global order parameter, and the right show sin θj . Other parameters:

ω0 = 1,β = 0,m = 100,M = 400,N = 2000.

The network whose behavior is shown in Figure 3 was
created using the configuration model (Newman, 2003). Such a
network typically has both self-connections (i.e., an oscillator is

connected to itself) andmultiple connections from one particular
oscillator to another. We remove these in a random way as
shown in Figure 4. For a self-connection we randomly choose
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another connection and reconnect as in the top panel. For a
double connection we randomly choose another connection and
reconnect as in the bottom panel.

We now investigate the effects of varying ρ̂ and thus
ρ on the dynamics of Equation (19). As mentioned, it is

FIGURE 4 | (Top) We remove a self-connection to oscillator a (left) by rewiring

the randomly chosen connection from oscillator b to c, giving the configuration

at the right. (Bottom) we remove the double connection from oscillator a to b

by rewiring the randomly chosen connection from oscillator c to d, giving the

configuration at the right.

known that increasing 1 (making the intrinsic frequencies more
diverse) destroys the synchronous state in a supercritical Hopf
bifurcation (Pazó and Montbrió, 2014). In Figure 5A, we show
how the value of 1 at which this bifurcation occurs varies as
a function of ρ, for four different values of β . We vary ρ̂ but
interpolate the data shown in Figure 2A in order to plot the
curves in Figure 5A as functions of ρ. We see that increasing
ρ increases the value of 1 at which the bifurcation occurs, at
least for small β , and vice versa, but the effect is small compared
with that of varying β . Put another way, for a fixed value of
1, increasing ρ can cause macroscopic oscillations within the
network (at least for β close to zero).

We now fix 1 = 0.05 and consider the effects of varying
both ρ and ǫ (the strength of coupling between oscillators). It
is known that for an all-to-all coupled network increasing ǫ

destroys the synchronous state in a SNIC bifurcation (Pazó and
Montbrió, 2014). For our network this is also what happens
for β = 0, as shown in Figure 5B (blue circles joined by
line). However, for β = 0.5, 0.7, and 1, there is instead a
supercritical Hopf bifurcation as ǫ increases, in contrast with
the situation for all-to-all coupled network (for these values
of ω0,β and 1), illustrating a nontrivial effect of network
structure: even the type of bifurcation occurring is changed.
These curves of Hopf bifurcations are also shown in Figure 5B

and we see that increasing ρ decreases the value of ǫ at which
the synchronous solution is destroyed and vice versa. Note that
between β = 0 and β = 0.5, guided by the results for the
fully-connected network (Pazó and Montbrió, 2014), we expect
there to be several curves of Hopf, homoclinic, and saddle-node
bifurcations in Figure 5B organized around a Takens-Bogdanov
and a saddle-node separatrix-loop point (Gallego et al., 2017), but
we have not investigated them here. The results in Figure 5 have
been compared with those from simulation of the full network
(Equation 1) and found to agree very well (results not shown).

FIGURE 5 | (A) Hopf bifurcation curves of the fixed point of (19). A stable periodic orbit exists below the curve. Other parameters:

ǫ = 0.2,ω0 = 1,m = 100,M = 400. (B) SNIC bifurcation curve (β = 0, blue circles joined by line) and Hopf bifurcation curves (β = 0.5, 0.7 and 1) for (19). For each

value of β a stable periodic orbit exists below the curve. Other parameters: 1 = 0.05,ω0 = 1,m = 100,M = 400.
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4. BETWEEN NEURON DEGREE
CORRELATIONS

We now turn to the question of correlations between connected
oscillators based on their degrees, often referred to as degree
assortativity (Foster et al., 2010; Bläsche et al., 2020). Assortativity
has often been studied in undirected networks, where a node
simply has a degree, rather than in- and out-degrees (Restrepo
and Ott, 2014). Here we consider directed networks, which a
small number of previous authors have considered (De Franciscis
et al., 2011; Avalos-Gaytan et al., 2012; Schmeltzer et al., 2015;
Kähne et al., 2017), although they have often imposed other
structure on the network such as equal in- and out-degrees for
each model neuron.

Because we consider directed networks there are four possible
types of degree assortativity, between either the in- or out-degree
of the “upstream” (sending) oscillator and either the in- or out-
degree of the “downstream” (receiving) oscillator (see Figure 6).

Roughly speaking, degree assortativity can be thought of
in this way: given an upstream oscillator with specific in-
and out-degrees, and a downstream oscillator with specific
in- and out-degrees, one can calculate the probability of a
connection from the upstream to the downstream oscillator.

FIGURE 6 | Assortativity in undirected and directed networks. An undirected

network (left) is assortative if high degree nodes are more likely to be

connected to high degree nodes, and low to low, than by chance (top left).

Such a network is disassortative if the opposite occurs (bottom left). (Here, the

degree of a node is given by k.) In directed networks (right) there are four

possible kinds of assortativity. The probability of a connection (red) depends

on the number of red shaded links of the sending (left) and receiving (right)

node. (Here, either the in-degree, kin, or out-degree, kout, of a node is the

relevant quantity).

If this probability—averaged over the network—is other than that
expected by chance, and is further dependent on the degrees of
the oscillators, the network shows degree assortativity. One can
use this idea to create networks with assortativity, by creating
connections where they would typically not occur.

A measure of assortativity for a network with a given
connectivity matrix A is by way of calculating the four Pearson
correlation coefficients r(α, γ ) with α, γ ∈ [in, out] given by

r(α, γ ) =

∑Ne
e=1(

ukα
e −

〈

ukα
〉

)(dk
γ
e −

〈

dkγ
〉

)
√

∑Ne
e=1(

ukα
e −

〈

ukα
〉

)2
√

∑Ne
e=1(

dk
γ
e −

〈

dkγ
〉

)2
(31)

where

〈

ukα
〉

=
1

Ne

Ne
∑

e=1

ukα
e and

〈

dkγ
〉

=
1

Ne

Ne
∑

e=1

dk
γ
e , (32)

Ne being the number of edges and the leading superscript u
or d refers to the “upstream” or “downstream” oscillator of the
respective edge (Bläsche et al., 2020). For example the upstream
node’s in-degree of the second edge would be ukin2 . Note that there
are four mean values to compute.

To induce assortativity within a network we start by randomly
choosing in-degrees and out-degrees from the distribution given
in Equation (20). If the total number of out-degrees does
not equal that of the in-degrees (i.e., the network cannot be
created; Anstee, 1982) we choose again until it does. We then use
the configuration model (Newman, 2003) with these prescribed
degrees to create the network, and utilize the same procedure as
described earlier for removal of self- and multiple-connections
(see Figure 4).

To induce assortativity of the form (α, γ ) we randomly
choose two edges, one connecting oscillator j to oscillator i and
another connecting oscillator l to oscillator h. We calculate their
contribution to the numerator of (31)

c‖ =
(

kα
j −

〈

ukα
〉

) (

k
γ
i −

〈

dkγ
〉)

+
(

kα
l −

〈

ukα
〉)

(

k
γ

h
−

〈

dkγ
〉)

(33)
and the contribution if we replaced these two edges with one
connecting oscillator j to oscillator h and another connecting
oscillator l to oscillator i:

c\/ =
(

kα
l −

〈

ukα
〉)

(

k
γ
i −

〈

dkγ
〉)

+

(

kα
j −

〈

ukα
〉

) (

k
γ

h
−

〈

dkγ
〉)

(34)
If c\/ > c‖ wemake the swap, otherwise we do not.We then repeat
this process many times, storing A, and calculating the value of
r(α, γ ) at regular intervals.

We now discuss how to implement the system Equation (11).
Choosing m = 100,M = 400, kin, and kout take on values
in {100, 101, 102, . . . 400} and thus there are 301 × 301 possible
values of k. Considering that we use a network of size N = 2, 000
it is clear that there may be many values of k for which there is
not even one oscillator in the network. Thus, we coarse-grain
by degree: we divide the interval [100, 400] into 15 equal-size

bins with centers k̂in,1, k̂in,2, . . . , k̂in,15 and describe the state of an
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oscillator by the value of b associated with the 2D bin it is in (there
are 15 × 15 of these 2D bins). We can think of Equation (11) as
being amatrix-valued ODE, with the (i, j)th element of thematrix

being b(k̂out,i, k̂in,j, t). We can easily convert this to a vector-

valued ODE by stacking the columns of b(k̂out , k̂in, t), from left

to right, into a vector, b̂(t), where the sth entry is b̂s(t) =

b(k̂out,i, k̂in,j, t) and s = i+ 15(j− 1). Note that i, j ∈ {1, 2, . . . 15}
and s ∈ {1, 2, . . . 225}.

Dropping the hat on b we have

dbs(t)

dt
=

ǫe−iβRs(t)

2
+

[

iω0 − 1 + iǫ sinβRs(t)
]

bs(t)

−
ǫeiβRs(t)

2
[bs(t)]

2 (35)

for s ∈ {1, 2, . . . 225} where we define

Gs(t) = an



C0 +

n
∑

j=1

Cj

{

[bs(t)]
j + [b̄s(t)]

j
}



 (36)

We need to calculate Rs(t) from Gs(t) using the equivalent of (8).
We can write the analog of (8) as

Rs(t) =
1

〈k〉

225
∑

s′=1

E(s, s′)Gs′ (t) (37)

where E(s, s′) encodes the connectivity from the 2D bin with
index s′ to that with index s. Given the connectivity matrix A it is
straightforward to calculate E(s, s′) as explained in Bläsche et al.
(2020). E can be thought of as a 225 × 225 matrix, with (i, j)th
entry E(i, j), so we can write Equation (37) as

R(t) =
1

〈k〉
EG(t) (38)

where R and G are vector-valued variables and Equation (35) is
just the sth component of a vector-valued ODE.

Since we have recorded A at discrete values of the correlation
coefficient r, we can also calculate E at these values. To form a
parameterized family, E(r), we fit a quadratic to each entry of E
as a function of r, i.e., we write Eij(r) = Bijr

2 + Cijr + Dij for
i, j ∈ [1, 225], using linear least-squares. We can then efficiently
evaluate an approximation of E(r) as

E(r) = Br2 + Cr + D (39)

where the (i, j)th entry of B is Bij etc. In summary, we have a
parameterized set of ODEs, where r is one of the parameters.
Note that we only vary one of the four r(α, γ ) at a time.

4.1. Results
The results are shown in Figure 7, where we vary 1 and the
four r(α, γ ) for four different values of β , and Figure 8, where
we vary ǫ and the four r(α, γ ) for the same four values of

FIGURE 7 | (A–D) Hopf bifurcation curves as both 1 and one of the types of assortativity are varied. A stable periodic orbit exists below the curve. Other parameters:

ǫ = 0.2,ω0 = 1,m = 100,M = 400.
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FIGURE 8 | (A–D) SNIC bifurcation curve (β = 0, blue circles joined by line) and Hopf bifurcation curves (β = 0.5, 0.7 and 1) as both ǫ and one of the types of

assortativity are varied. For each value of β a stable periodic orbit exists below the curve. Other parameters: 1 = 0.05,ω0 = 1,m = 100,M = 400. In the top-left

panel, for β = 0.5 the curve terminates as r is decreased.

β . As was seen in Bläsche et al. (2020), assortativities of the
type r(out,out) and r(out,in) have no discernable effect on the
bifurcations, whereas the other two types do. We can understand
this by realizing that the dynamics of an oscillator depend only on
its inputs. Since an oscillator’s dynamics are independent of its
downstream oscillators, neither the r(out,out) nor the r(out,in)
assortativities influence the overall network dynamics as shown
in all the traces of Figures 7C,D. Note, this dynamic interplay is
quite different for a network with strong preferential attachment
between high in-degree and high out-degree oscillators as when
r(in,out) is positive (Figure 7B). The influence of the upstream
oscillator (with high in-degree, receiving multiple inputs) is
amplified or “passed on” to more oscillators via its downstream
companion with high out-degree. This pair with high input
and high output is thus far more influential than, say, a pair
of oscillators preferentially attached according to the upstream
node’s out-degree. In that scenario, the upstream node of an
attached pair may only integrate a small number of inputs (low
in-degree), whose behavior is strikingly distinct from an oscillator
with many inputs (high in-degree).

Analogously, a positive r(in,in) assortativity demonstrates
preferential attachment between high in-degree upstream and
downstream pairs of oscillators. In this case, they are relatively
potent integrators and concentrators of upstream impulses.
We see in Figure 7A, the influence of high r(in,in) where

the parameter space in which stable periodic orbits exist
shrinks, increasing sensitivity to the destructive influence of 1

on synchrony.

5. CORRELATED HETEROGENEITY

We have so far assumed that the parameters ω0 and 1 (the
mean and width, respectively, of the distribution of intrinsic
frequencies, see Equation 10) and β (the parameter in the
phase response curve, see Equation 2) are the same for each
oscillator, but now consider the case of them being correlated
with a structural property of an oscillator such as its in-
degree or out-degree. Correlating an oscillator’s frequency with
its degree is known to cause “explosive” synchronization in
undirected networks of coupled phase oscillators, for example Liu
et al. (2013), Gómez-Gardeñes et al. (2011), and Boccaletti
et al. (2016), and we are interested in whether similar effects
occur in networks of Winfree oscillators. For simplicity we
will use linear relationships between a parameter and its
relevant degree.

5.1. In-Degree
We first consider the case of correlation with in-degree.
Assuming neutral assortativity and independence between an
oscillator’s in- and out-degree, following the reasoning in
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section 3 the dynamics of b depend only on in-degree and are
governed by

∂b(kin)

∂t
=

ǫe−iβR(kin)

2
+

[

iω0 − 1 + iǫ sinβR(kin)
]

b(kin)

−
ǫeiβR(kin)

2
[b(kin)]

2 (40)

for kin = m,m+ 1, . . .M where

R(kin, t) =
kin

〈k〉2

∑

k′in

∑

k′out

p(k′in)p(k
′
out)k

′
outG(k

′
in, t)

=
kin

〈k〉

∑

k′in

p(k′in)G(k
′
in, t) (41)

where G is given by (12) but with the degree dependence being
on only kin.

We define a scaled in-degree

k̂in = 2

(

kin −m

M −m

)

− 1 (42)

which varies linearly from −1 to 1 as kin goes from m to M,
respectively. We first consider the case where ω0 is a function of

kin. We write ω0(kin) = 1 + σ k̂in where σ controls the strength
of dependence between kin and ω0. (Recall that we previously
set ω0 = 1.) Setting β = 0, ǫ = 0.2, and 1 = 0.05 we find
that when σ = 0 the network is attracted to a stable periodic
orbit. However, increasing or decreasing σ causes the oscillations
to cease through a Hopf bifurcation as shown in Figure 9A. To
visualize the oscillations we define the complex order parameter
for (40) as

Z(t) =
1

M −m+ 1

M
∑

kin=m

b(kin, t). (43)

This is an appropriate definition since the distribution of in-
degrees is uniform; if it were not we would have to weight
the contributions from different kin values. Figure 9A shows
the maximum and minimum over one period of Im(Z) for
oscillatory solutions, and just Im(Z) for fixed points. Simulations
of a finite network are shown in the lower panels of Figure 9
(transients not shown) which confirm the results in Figure 9A.
The small amplitude oscillations seen in Figures 9A,C are a result
of finite size fluctuations about the fixed point of Equation (40),
the linearization about which has complex eigenvalues. The
amplitude of these oscillations decreases as the number of
oscillators used increases (not shown).

One might think that having ω0 depend on in-degree
broadens the distribution of intrinsic frequencies in the network,
which is equivalent in some sense to increasing 1. However,
it is not completely equivalent for several reasons. Firstly, the
distribution of all intrinsic frequencies is no longer Lorentzian
(although for each oscillator we choose the frequency from a
Lorentzian), and depends on both the form of dependence of
ω0 on kin (linear in this case) and the distribution of the kin

FIGURE 9 | Intrinsic frequency dependence ω0(kin) = 1+ σ k̂in. (A) Solid line:

stable fixed point of Equation (40); dashed line: unstable fixed point. Circles:

maximum and minimum over one period of Im(Z). Im(Z) calculated using (30)

for (B) σ = −0.1, (C) σ = 0, and (D) σ = 0.2. Other parameters:

1 = 0.05,β = 0, ǫ = 0.2,m = 100,M = 400,N = 2, 000.

(uniform in this case). Secondly, the intrinsic frequency of each
oscillator now depends on a structural property: its in-degree.
But for comparison, the oscillations seen in Figure 9 for σ = 0
are destroyed in a Hopf bifurcation as 1 is increased through
∼ 0.085 (not shown).

Next consider β being a function of kin. In order to not have

negative β we set β = σ (k̂in + 1). We choose ω0 = 1, ǫ =

0.8,1 = 0.05. For these parameters the network is attracted to a
stable fixed point. However, increasing σ first induces oscillations
through a SNIC bifurcation and then destroys them through a
Hopf bifurcation, as shown in Figure 10A. Simulations of a finite
network are shown in the lower panels of Figure 10 and these are
consistent with the results in Figure 10A.

As a third possibility we let 1 depend on kin. 1 (the width of
the distribution of intrinsic frequencies) cannot be negative so we

set1 = 0.09+σ k̂in and consider only−0.09 ≤ σ ≤ 0.09. We set
other parameters ω0 = 1,β = 1 and ǫ = 0.6. A Hopf bifurcation
occurs as σ is increased as shown in Figure 11A. Simulations
of a finite network are shown in the lower panels of Figure 11.
Significant oscillations are seen for σ = 0, and the amplitude
of oscillations for σ = 0.09 is less than expected. However, we
repeated this type of simulation with N = 5, 000 and found that
the amplitude of oscillations with σ = 0.09 better matched the
results in Figure 11A (i.e., were bigger than seen for N = 2, 000)
and that the amplitude of oscillations for σ = 0 were slightly
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FIGURE 10 | Phase dependency β(kin) = σ (k̂in + 1). (A) Solid line: stable fixed

point of Equation (40); dashed line: unstable fixed point. Circles: maximum and

minimum over one period of Re(Z). Re(Z) calculated using (30) for (B) σ = 0,

(C) σ = 0.4, and (D) σ = 0.8. Other parameters:

1 = 0.05,ω0 = 1, ǫ = 0.8,m = 100,M = 400,N = 2, 000.

smaller than seen for N = 2, 000 (results not shown), suggesting
that this apparent disagreement is a finite-size effect.

5.2. Out-Degree
Now consider the possibility that one of ω0,1, and β are
correlated with an oscillator’s out-degree. From Equation (11), it
is clear that even for neutral assortativity, b will depend on both
kin and kout . Thus, the relevant equations are

∂b

∂t
=

ǫe−iβR

2
+ [iω0 − 1 + iǫ sinβR] b−

ǫeiβR

2
b2 (44)

where b is a function of both kin and kout , but R is a function of
kin only:

R(kin, t) =
kin

〈k〉2

∑

k′in

∑

k′out

p(k′in)p(k
′
out)k

′
outG(k

′
in, k

′
out , t) (45)

where G is given by Equation (12).

5.2.1. Computational Approach

If J = M −m + 1 is the number of distinct in-degrees (and out-
degrees) then b can be thought of as a J× J matrix with J2 entries.
This is too many to deal with computationally, so we discretize in
degree space. In the same way that one can approximate a definite

FIGURE 11 | Heterogeneity dependency 1 = 0.09+ σ k̂in. (A) Solid line:

stable fixed point of (40); dashed line: unstable fixed point. Circles: maximum

and minimum over one period of Im(Z). Im(Z) calculated using (30) for (B)

σ = 0 and (C) σ = 0.09. Other parameters:

β = 1,ω0 = 1, ǫ = 0.6,m = 100,M = 400,N = 2, 000.

integral using Gaussian quadrature, it is possible to approximate
a double sum like that in (45) using a double sum over far fewer
points (Engblom, 2006). The theory is explained in Laing and
Bläsche (2020), but put briefly we define an inner product on
either degree space

(f , g) =

M
∑

k=m

f (k)g(k) (46)

and assume that there is a corresponding set of orthogonal
polynomials {qn(k)}0≤n associated with this product. We choose
a positive integer s and let {ki}i=1,...s be the roots of qs, found using
the Golub-Welsch algorithm, and {wi} be the weights associated
with these roots. The approximation of the double sum in (45)
is then

∑

k′in

∑

k′out

p(k′in)p(k
′
out)k

′
outG(k

′
in, k

′
out , t) ≈

s
∑

i=1

s
∑

j=1

wiwjkjG(ki, kj, t)

(47)
Note that the ki are not integer-valued. We thus solve (44) on
the non-uniform 2D grid of s2 “virtual” degree. An example for
s = 10 is shown in Figure 12.
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The convergence with s is observed to be geometric (not
shown) and we use s = 20 to calculate the results below.

5.2.2. Results

We write

k̂out = 2

(

kout −m

M −m

)

− 1. (48)

Setting ω0(kout) = 1+ σ k̂out and varying σ we obtain the results
in Figure 13. TwoHopf bifurcations are seen, as in Figure 9A but

FIGURE 12 | Non-uniform 2D grid of degrees as explained in section 5.2.1

with m = 100,M = 400, s = 10. The color shows the weight, wiwj , associated

with each point.

FIGURE 13 | Intrinsic frequency dependence ω0(kout ) = 1+ σ k̂out. Solid line:

stable fixed point of (44); dashed line: unstable fixed point. Circles: maximum

and minimum over one period of Im(Z). Other parameters:

1 = 0.05,β = 0, ǫ = 0.2,m = 100,M = 400.

at different values of σ from in that figure. Writing β(kout) =

σ (k̂out + 1) and varying σ we obtain the results in Figure 14.
The bifurcations are the same as in Figure 10A, but again, at
different values of σ . Using the parameters shown in Figure 11A,

setting 1 = 0.09 + σ k̂out and varying σ ∈ [−0.09, 0.09] (as 1

cannot be negative) the fixed point was always stable (not shown).
Simulations of a discrete network of N = 2, 000 oscillators
confirmed all of the results in this section (not shown).

6. PARAMETER ASSORTATIVITY

We now consider assortativity by a parameter other than degree,
in this case ω0 value. We first describe how to create a network
with such assortativity, then derive the relevant continuum
equations. We follow Skardal et al. (2015) in our derivation.

To create a particular network we first create a network
where the in- and out-degrees of all oscillators are the same,
in order that degree not affect the dynamics. To do this we
use the configuration model (Newman, 2003), then remove all
self-connections and multi-edges as before. With N oscillators
we randomly choose N target values of ω0 from a distribution
p(ω0), which is non-zero only if ω0 ∈ [ω0,ω0], i.e., ω0 is the
minimum value of ω0 and ω0 is the maximum, and assign these
to oscillators. We can calculate the assortativity of the network
using similar ideas as those in section 4. We calculate the Pearson
correlation coefficient

r =

∑Ne
e=1(ω

′
0,e −

〈

ω′
0

〉

)(ω0,e − 〈ω0〉)
√

∑Ne
e=1(ω

′
0,e −

〈

ω′
0

〉

)2
√

∑Ne
e=1(ω0,e − 〈ω0〉)2

(49)

where ω′
0,e is the value of the target ω0 associated with the

oscillator at the start of edge e and ω0,e is the value of the target

FIGURE 14 | Phase shift dependence β(kout ) = σ (k̂out + 1). Solid line: stable

fixed point of (44); dashed line: unstable fixed point. Circles: maximum and

minimum over one period of Re(Z). Other parameters:

1 = 0.05,ω0 = 1, ǫ = 0.8,m = 100,M = 400.
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ω0 associated with the oscillator at the end of edge e, andNe is the
number of edges. The means are

〈

ω′
0

〉

=
1

Ne

Ne
∑

e=1

ω′
0,e 〈ω0〉 =

1

Ne

Ne
∑

e=1

ω0,e (50)

Initially the network will have r ≈ 0. We induce assortativity
in a similar way to that described in section 4. We randomly
chose two edges, one connecting oscillator j to oscillator i and
another connecting oscillator l to oscillator h. We calculate
their contribution to the numerator of Equation (49) and the
contribution if we replaced these two edges with one connecting
oscillator j to oscillator h and another connecting oscillator l to
oscillator i. If performing this swap increases r wemake the swap,
otherwise we do not. We then repeat this process many times,
storing A and calculating the value of r at regular intervals. (To
decrease r from its initial value of 0 we just consider whether
making the swap decreases r). As a last step, in order to use
the Ott/Antonsen ansatz, we then randomly assign to oscillator
i a value of ωi chosen from a Lorentzian with mean equal to
the target ω0 for that oscillator and with half-width-at-half-
maximum 1. This will result in the creation of a network in
which all oscillators have the same in- and out-degree, but those
with high ω0 are more likely to connect to those also having high
ω0 and vice versa.

To derive the continuum equations we see that the state of an
oscillator can only depend on itsω0 value.We discretize the range
of ω0 values, [ω0,ω0], intom equal-sized bins, and thus we have

dbs(t)

dt
=

ǫe−iβRs(t)

2
+

[

iωs − 1 + iǫ sinβRs(t)
]

bs(t)

−
ǫeiβRs(t)

2
[bs(t)]

2 (51)

for s = 1, 2, . . .m, where ωs is the value of ω0 in the center of the
sth bin. The analog of Equation (8) is

Rs(t) =
1

〈k〉

m
∑

u=1

EsuGu(t) (52)

where 〈k〉 is the degree of each oscillator,

Gs(t) = aq



C0 +

q
∑

j=1

Cj

{

[bs(t)]
j + [b̄s(t)]

j
}



 (53)

and the matrix E encodes the connectivity of the network, i.e., Esu
is proportional to the number of oscillators in the uth bin which
connect to oscillators in the sth bin, which can be determined
from the connectivity matrix A. As in section 4, we record A at
discrete values of the correlation coefficient r, so can construct
E(r) at those values. We fit a quadratic through each entry of E as
a function of r and thus write

E(r) = Br2 + Cr + D (54)

where B,C, and D arem×m constant matrices.

As an example we choose β = 0,1 = 0.01, and p(ω0)
to be the uniform distribution on [0, 2]. (p(ω0) must have
bounded support so we can discretize its domain into a finite
number of bins.) We compare the results of simulating a full
network from Equation (1) with those from the reduced model
in Equation (51). We use a network of N = 2, 000 with
each oscillator having degree 〈k〉 = 100. We have stored the
connectivity matrix A at 101 values of r, and vary both ǫ and r.
At each point in this parameter space we solve Equation (1) for
100 time units, discard the first 50 as transients, then calculate the
order parameter using Equation (30). The difference between the
maximum of |Z| over the final 50 time units and the minimum of
|Z| over this time is shown in Figure 15.

When this difference is close to zero, most of the oscillators
are “locked” at zero frequency, but for ǫ = 0.8 there is a
transition at r ≈ 0 where some the oscillators start unlocking,
with those having largest ω0 unlocking first. Note that this is not
a “classical” bifurcation, as the system is not at fixed point before
this transition. However, solving the reduced Equations (51) we
find that there is a stable fixed point to the left of the red curve
in Figure 15 which is destroyed in a Hopf bifurcation, leading
to periodic and then quasiperiodic behavior as r is increased.
Thus the reducedmodel provides an explanation for the observed
behavior of the full model (1).

The results in Figure 15 are an example of the types of
results we can obtain using the framework presented here. We
could vary parameters other than ǫ, or introduce assortativity
by another intrinsic parameter, β . In this case we would have to
use a different measure of correlation between the β values for
connected oscillators, as β is an angular variable (Fisher and Lee,
1983).

FIGURE 15 | Difference between the maximum of |Z| over the last 50 time

units out of 100 and the minimum, having already discarded the first 50 as

transient. p(ω0) is uniform on [0, 2]. The red curve shows the Hopf bifurcation

of the steady state of (51) which is stable to the left of this curve. Other

parameters: β = 0,1 = 0.01, 〈k〉 = 100,N = 2, 000. We use m = 20 bins to

calculate the blue curve.

Frontiers in Systems Neuroscience | www.frontiersin.org 13 February 2021 | Volume 15 | Article 63137732

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Laing et al. Dynamics of Winfree Oscillators

7. CONCLUSION

We studied large directed networks of Winfree oscillators under
the assumption that the expected dynamics of an oscillator
in such a network is determined by its degree: either its in-
degree, out-degree, or both (apart from the homogenous degree
networks in section 6). Using the Ott/Antonsen ansatz we find
that the dynamics are given by Equation (11). Correlations
between the in- and out-degree of an oscillator were introduced
using a Gaussian copula in section 3, where we investigated the
influence of these correlations on the position of bifurcations
destroying stable periodic orbits. In section 4, we investigated
four types of degree assortativity, as in Bläsche et al. (2020), and
found similar results, viz. two types of assortativity have no effect
on the network dynamics, while the other two do. Correlations
between an oscillator’s intrinsic parameter and either its in- or
out-degree were examined in section 5. Parameter assortativity
was considered in section 6. The framework presented here is
quite general, and we believe it to be a powerful method for
investigating the general issue of the influence of a network’s
structure on its dynamics.

The main tool used was numerical continuation and
bifurcation analysis of a large number of coupled ODEs (Laing,
2014), which enabled the determination of bifurcation points as
parameters were varied—including correlations between various
network properties. Following such bifurcations shows the
influence of network properties in their dynamics.

The influence of these correlations and assortativities on
network synchrony is complex, nuanced, and multi-faceted.
Introducing degree correlations within oscillators subtly shapes
sensitivity of the network to oscillator parameters such as
variability of intrinsic frequencies, 1, and coupling strength,
ǫ. Assortativities between the degrees of connected oscillators
can have similar effects for in-degree correlations—r(in,·)—or
none at all—r(out,·). More dramatically, for the parameters
considered, inducing correlations between oscillator degree (in or
out) and intrinsic frequency, ω, destroys oscillatory synchrony.
Similarly, if the degree and phase offset, β , are correlated,
this may cause or destroy synchronized oscillations. The theme
continues with assortativities between intrinsic frequencies,
where if they are excessively assortative, oscillators in the network
unlock from the population—requiring a higher coupling level
to stay locked. Conversely, correlating an oscillator’s degree with
the width of the distribution from which its intrinsic frequency is
chosen, 1, has little effect.

Network structure such as preferential attachment between
similar (or dissimilar) oscillators and the influence we have
observed here in idealized systems may reflect structural
influences in physiological networks of neurons. Intrinsic

connectivity preferences observed of neurons grown in culture—
e.g., similar numbers of synaptic or dendritic processes
connected to each other in groups—results in strong assortativity
patterns (de Santos-Sierra et al., 2014; Teller et al., 2014) further
inferred in the human cerebral cortex (Hagmann et al., 2008).
Our observations of network structure influencing the overall
synchrony of a network may be a structural means of calibrating
the dynamics of physiological neurons.

Regarding section 5, correlating degree with intrinsic
frequency is known to cause explosive synchronization,
characterized by bistability between asynchronous and partially
synchronized states, in undirected networks of Kuramoto phase
oscillators (Gómez-Gardeñes et al., 2011; Liu et al., 2013). We
did not observe such behavior but we only considered uniform
degree distributions (not power law; Gómez-Gardeñes et al.,
2011; Liu et al., 2013) and have directed connections, not
undirected. Also, there are many ways to correlate an intrinsic
parameter with a degree (Skardal et al., 2013); our form of
modification keeps the parameter for nodes with mean degree
the same and increases/decreases the parameter for those with
degrees above/below mean (or vice versa) in a linear way.

We certainly do not yet have a full understanding of the
possible dynamics of the network (1). Possible extensions of
the work here include simultaneously having more than one
type of structure present in the network (for example, both
within-oscillator degree correlations and degree assortativity) or
correlating an oscillator’s intrinsic parameter with some other
network property such as the oscillator’s centrality (Newman,
2018) or local clustering coefficient (Watts and Strogatz, 1998).
More detailed knowledge about the connectivity in networks
of neurons of interest would provide motivation to study these
extensions, and help verify some of our results.
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Influence of Sound on Empirical Brain
Networks
Jakub Sawicki 1,2* and Eckehard Schöll 1,2
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We analyze the influence of an external sound source in a network of FitzHugh–Nagumo
oscillators with empirical structural connectivity measured in healthy human subjects. We
report synchronization patterns, induced by the frequency of the sound source. We show
that the level of synchrony can be enhanced by choosing the frequency of the sound
source and its amplitude as control parameters for synchronization patterns. We discuss a
minimum model elucidating the modalities of the influence of music on the human brain.

Keywords: synchronization, coupled oscillators, neuronal network dynamics, pattern formation, external driven

1 INTRODUCTION

Synchronization phenomena are well-known regarding dynamical activities of the brain. A high
degree of synchronization is related to (slow-wave) sleep [1, 2] or transitions from wakefulness to
sleep [3, 4]. Recently, partial synchronization has become a clue to explain the first-night effect [5]
and unihemispheric sleep [1, 6–8]. Moreover, synchronized dynamics play an important role in the
dynamics of epileptic seizures [9], where the synchronization of a part of the brain causes dangerous
consequences for the persons concerned. In contrast, synchronization is also used to explain brain
processes which subserve for development of syntax and its perception [10–12]. In general,
synchronization theory is highly important to analyze and understand musical acoustics and
music psychology [13–17]. While the neurophysiological processes when listening to music
remain ongoing research, it is presumed that a certain degree of synchrony can be observed
while listening to music and building up expectations. Event-related potentials (ERPs), measured by
electroencephalography (EEG) of participants while listening tomusic, show synchronized dynamics
between different brain regions [18, 19]. These studies indicate that the increase of synchronization
represents musical large-scale form perception. Moreover, it has been observed that areas of the
whole brain are involved regarding neuronal dynamics during perception [10]. Therefore, we
propose to investigate the general influence of sound on empirical brain networks. We model the
spiking dynamics of the neurons by the paradigmatic FitzHugh–Nagumo model, and investigate
possible partial synchronization patterns induced by an external sound source, which is connected to
the auditory cortex of the human brain. Furthermore, It is a well-known fact that an important
feature of musical sound perception is tonal fusion [20]. Although sound has in general a rich
overtone spectrum, subjects perceive only one musical pitch which is a fusion of all partials of the
spectrum. Against this background, we concentrate our general study on an external sound source
with an amplitude and a single frequency, neglecting the complexity of music and its distinct effects
in different frequency bands within the brain oscillations. Within the scope of this work, we have
restricted ourselves to a minimal model with no node-specific behavior to reveal the impact of a
periodic perturbation.

An intriguing synchronization phenomenon in networks is relay (or remote) synchronization
between layers which are not directly connected, and interact via an intermediate (relay) layer
[21]. The simplest realization of such a system is a triplex network where a relay layer in the
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middle acts as a transmitter between the two outer layers.
Remote synchronization, a regime where pairs of nodes
synchronize despite their large distances on the network
graph, has been shown to depend on the network
symmetries [22–26]. Recently the notion of relay
synchronization has been extended from completely
synchronized states to partial synchronization patterns in
the individual layers of a three-layer multiplex network. It
has been shown that the three-layer structure of the network
allows for (partial) synchronization of chimera states in the
outer layers via the relay layer [27–31]. Going towards more
realistic models, time-delay plays an important role in the
modeling of the dynamics of complex networks. In brain
networks, the communication speed will be affected by the
distance between regions and therefore a stimulation applied
to one region needs time to reach a different region. In such
delayed system, it is possible to predict if the effects of
stimulation remain focal or spread globally [32]. More
generally, time delays due to propagation over the white-
matter tracts have been shown to organize the brain
network synchronization dynamics for different types of
oscillatory nodes [33]. Within the scope of this paper, we
focus on the requirements for a simple model to exhibit partial
synchronization patterns, which have been experimentally
observed [18, 19]. Therefore, we defer the consideration of
time delays for now.

2 MODEL

We consider an empirical structural brain network shown in
Figure 1 where every region of interest is modeled by a single
FitzHugh–Nagumo (FHN) oscillator.

The weighted adjacency matrix A � {Akj} of size 90 × 90,
with node indices k ∈ N � {1, 2, . . . , 90} was obtained from
averaged diffusion-weighted magnetic resonance imaging
data measured in 20 healthy human subjects. For details of
the measurement procedure including acquisition parameters,
see [34], for previous utilization of the structural networks to
analyze chimera states see [7, 9, 35]. The data were analyzed
using probabilistic tractography as implemented in the FMRIB
Software Library, where FMRIB stands for Functional
Magnetic Resonance Imaging of the Brain (www.fmrib.ox.
ac.uk/fsl/). The anatomic network of the cortex and
subcortex is measured using Diffusion Tensor Imaging
(DTI) and subsequently divided into 90 predefined regions
according to the Automated Anatomical Labeling (AAL) atlas
[36]. Each node of the network corresponds to a brain region.
Note that in contrast to the original AAL indexing, where
sequential indices correspond to homologous brain regions,
the indices in Figure 1 are rearranged such that k ∈ NL �
{1, 2, . . . , 45} corresponds to left and k ∈ NR � {46, . . . , 90} to
the right hemisphere. Thereby the hemispheric structure of the
brain, i.e., stronger intra-hemispheric coupling compared to
inter-hemispheric coupling, is highlighted (Figure 1).

The structural connectivity matrices serve as a realistic
input for modeling, rather than as exact information
concerning the existence and strength of each connection in
the human brain. The pipeline for constructing such
connectivity information using diffusion tractography is
known to face a range of challenges [37]. While some
estimates of the strength and direction of structural
connections from measurements of brain activity can in
principle be attempted, the relation of these can vary
dramatically with (experimentally unknown) parameters of
the local dynamics and coupling function [38].

The auditory cortex is the part of the temporal lobe that
processes auditory information in humans. It is a part of the
auditory system, performing basic and higher functions in
hearing and is located bilaterally, roughly at the upper sides of
the temporal lobes, i.e., corresponding to the AAL indexing k �
41, 86 (temporal sup L/R). The auditory cortex takes part in the
spectrotemporal analysis of the inputs passed on from the ear.

Each node corresponding to a brain region is modeled by the
FitzHugh–Nagumo (FHN) model with external stimulus, a
paradigmatic model for neuronal spiking [39–41]. Note that
while the FitzHugh-Nagumo model is a simplified model of a
single neuron, it is also often used as a generic model for excitable
media on a coarse-grained level [42, 43]. Thus the dynamics of the
network reads:

FIGURE 1 | (color online) Model for the hemispheric brain structure:
Weighted adjacency matrix Akj of the averaged empirical structural brain
network derived from twenty healthy human subjects by averaging over the
coupling between two brain regions k and j. The brain regions k, j are
taken from the Automated Anatomic Labeling atlas [36], but re-labeled such
that k � 1, . . . ,45 and k � 46, . . . , 90 correspond to the left and right
hemisphere, respectively. After [9].
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ε _uk � uk − u3
k

3
− vk

+ σ∑N
j�1

Akj[Buu(uj − uk) + Buv(vj − vk)]
+ Ckc cosωt

(1a)

_vk � uk + a

+ σ∑N
j�1

Akj[Bvu(uj − uk) + Bvv(vj − vk)], (1b)

where ε � 0.05 describes the timescale separation between the fast
activator variable (neuron membrane potential) u and the slow
inhibitor (recovery variable) v [40]. Depending on the threshold
parameter a, the FHN model may exhibit excitable behavior
(|a|> 1) or self-sustained oscillations (|a|< 1). We use the FHN
model in the oscillatory regime and thus fix the threshold
parameter at a � 0.5 sufficiently far from the Hopf bifurcation
point. The external stimulus is modeled by a trigonometric
function with frequency ω and amplitude γ and is applied to
the brain areas k � 41, 86 associated with the auditory cortex, i.e.
Ck � 1 if k � 41 or 86 and zero otherwise. The coupling between
the single regions is given by the coupling strength σ. As we are
looking for partial synchronization patterns we fix σ � 0.6 similar
to numerical studies of synchronization phenomena during
unihemispheric sleep [7] and epileptic seizures [9] where
partial synchronization patterns have been observed. The
interaction scheme between nodes is characterized by a
rotational coupling matrix:

B � (Buu Buv

Bvu Bvv
) � ( cos ϕ sinϕ

−sinϕ cos ϕ
), (2)

with coupling phase ϕ � π
2 − 0.1, causing primarily an activator-

inhibitor cross-coupling. This particular scheme was shown to be
crucial for the occurrence of partial synchronization patterns in
ring topologies [44] as it reduces the stability of the completely
synchronized state. Also in the modeling of epileptic-seizure-
related synchronization phenomena [9], where a part of the brain
synchronizes, it turned out that such a cross-coupling is
important. The subtle interplay of excitatory and inhibitory
interaction is typical of the critical state at the edge of
different dynamical regimes in which the brain operates [45],
and gives rise to partial synchronization patterns which are not
found otherwise.

3 METHODS

We explore the dynamical behavior by calculating the mean
phase velocity ωk � 2πMk/ΔT for each node k, where ΔT
denotes the time interval during which M complete rotations
are realized. Throughout the paper we use ΔT � 10, 000. For all
simulations we use initial conditions randomly distributed on the
circle u2k + v2k � 4. In case of an uncoupled system (σ � 0), the
mean phase velocity (or natural frequency) of each node is
ωk � ωFHN ≈ 2.6. Furthermore we introduce hemispheric
measures that characterize the degree of synchronization of

the sub-networks and give complementary information. First,
the spatially averaged mean phase velocity is:

ω � 1
90

∑N
k�1

ωk, (3)

Thus ω corresponds to the mean phase velocity averaged over
the left and right hemisphere. Second, the Kuramoto order
parameter:

R(t) � 1
90

∣∣∣∣∣∣∣∣∣∑
N

k�1
exp[iθk(t)]

∣∣∣∣∣∣∣∣∣, (4)

is calculated by means of an abstract dynamical phase θk that can
be obtained from the standard geometric phase ~ϕk(t) �
arctan(vk/uk) by a transformation which yields constant phase
velocity _θk. For an uncoupled FHN oscillator the function t(~ϕk) is
calculated numerically, assigning a value of time 0< t(~ϕk)<T for
every value of the geometric phase, where T is the oscillation
period. The dynamical phase is then defined as θk � 2πt(~ϕk)/T ,
which yields _θk � const. Thereby identical, uncoupled oscillators
have a constant phase relation with respect to the dynamical
phase. Fluctuations of the order parameter R caused by the FHN
model’s slow-fast time scales are suppressed and a change in R
indeed reflects a change in the degree of synchronization. The
Kuramoto order parameter may vary between 0 and 1, where R �
1 corresponds to complete phase synchronization, and small
values characterize spatially desynchronized states.
Additionally, we calculate the temporal mean of the Kuramoto
order parameter

〈R(t)〉 � 1
ΔT ∫ΔT

0
R(t)dt (5)

to estimate the general dynamical behavior of the system over
time. Similarly, the temporal mean 〈Ω(t)〉 of the collective
frequency Ω of the mean field [46], defined by

Ω(t) ≡ _ψ(t), R(t)eiψ(t) � 1
90

∑N
k�1

exp[iθk(t)] (6)

can be considered, and compared with the spatially averaged
mean phase velocity.

4 SYNCHRONIZATION REGIONS

We investigate synchronization scenarios emerging from an
external periodic stimulus in the auditory cortices of both
hemispheres (k � 41, 86). Figure 2 shows synchronization
scenarios of an empirical structural brain network in
dependence of the frequency ω and amplitude γ of the external
stimulus. The light colored regions in Figure 2A indicates
synchronized dynamics, whereas the darker colors indicate
desynchronized dynamics. There is a light colored stripe for ω
� 2.6 which indicates a Kuramoto order parameter 〈R〉 ≈ 0.8 and a
light colored tongue starting at ω � 2.4, c � 0.04. The hatched
region in Figure 2A stands for a low standard deviation < 0.1 of the
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temporal mean of the Kuramoto order parameter 〈R〉. It indicates
the absence of strong fluctuations of R(t) and therefore a constant
high level of synchrony in time. Figure 2B shows the drop of the
spatially averaged mean phase velocity ω in case of coherent
dynamics in the synchronization regions of Figure 2A. In the
upper region, ω takes over the value of the frequency ω of the
external stimulus, whereas in the synchronization tongue ω keeps
its value of ω � 2.4.

It turns out that by taking the frequency ω of the external
stimulus as a control parameter, one can change the level of
synchrony of the system. Figure 3 depicts the details of the
transition to synchronization for increasing values of the

frequency ω of the external stimulus. Fixing the amplitude
c � 0.06, we take a closer look on the temporal evolution of R
and the mean phase velocities in the system for different regions in
Figure 2: In Figure 3A the temporal evolution of the Kuramoto
order parameter is similar to the system behavior without external
stimulus, i.e., it exhibits large temporal fluctuations. In the right
column the phase velocities of all nodes are plotted, the horizontal
grey dotted line indicates the temporal average of the collective
mean-field frequency Ω. Only the phase velocity of the auditory
cortex follows the frequency of the external driving stimulus ω �
2.3 and therefore is lower than the frequency of the other nodes
ωk ≈ 2.8. Increasing the external frequency to ω � 2.4 yields an

FIGURE 2 | (color online) Synchronization tongues in brain network with external stimulus: (A) The temporal mean of the Kuramoto order parameter 〈R〉 for
simulation time ΔT � 10,000 and (B) the spatially averaged mean phase velocity ω in the parameter plane of the frequency ω of the external stimulus and its amplitude γ.
The light color in panel (A) stands for synchronization and the darker color for desynchronization. In the hatched region the standard deviation of 〈R〉 is less than 0.1,
which indicates the absence of strong fluctuations of R in time. The dynamics of the four marked dots in each panel are shown in Figures 3A–D, 4A–D. Other
parameters are given by σ � 0.6, ϵ � 0.05, a � 0.5, and ϕ � π

2 − 0.1.

FIGURE 3 | (color online) Dynamical scenarios: dynamics inside and outside the synchronization regions (marked as black dots in Figure 2) by the Kuramoto order
parameter R (left column) and the mean phase velocities ωk (right column) for increasing values of the frequency ω of the external stimulus ω � 2.30 (A), ω � 2.44 (B), ω �
2.50 (C), and ω � 2.60 (D) for fixed amplitude c � 0.06. The vertical dashed line in the right column separates the left and right hemisphere; the horizontal grey dotted line
indicates the temporal average of the mean-field frequency ω. The red dots mark the nodes of the auditory cortical regions (k � 41, 86). Other parameters are as in
Figure 2.
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abrupt transition to a synchronized state. In Figure 3B the
Kuramoto order parameter R ≈ 0.95 and the mean phase
velocities indicate a synchronous dynamical behavior, which
agrees with the collective frequency Ω of the mean-field (grey
dotted horizontal line). With a further increment to ω � 2.5, the
system loses synchrony (see Figure 3C) and enters the region
between the two synchronization regions in Figure 2A. For ω � 2.6
in Figure 3D, which corresponds to the natural frequency of the
uncoupled oscillators, the system regains synchronization, though
the Kuramoto order parameter with R ≈ 0.8 is lower than in the
synchronization tongue. Remarkable is the fact of a dynamical
asymmetry shown by themean phase velocities.While the nodes of
the right hemisphere exhibit an equal mean phase velocity, a part of
the left hemisphere exhibits a faster dynamic similar to dynamics of
unihemispheric sleep studied in [7]. In such states one hemisphere
is synchronized, whereas the other hemisphere is partly
desynchronized.

For a better insight, Figure 4 shows the space-time plot of the
variable uk for the corresponding parameter values in Figure 3. In
Figures 4B,D, the dynamics inside the two synchronization
regions is depicted. The perturbation in the mean phase
velocity profile in the right panel of Figure 3D, can be
detected also in the corresponding perturbations in Figure 4D.
Comparing Figures 4A,C, we can see an increase of synchronized
time segments. This increase will be analyzed quantitatively in
more detail in the inset of Figure 5.

5 TRANSITION TO SYNCHRONIZATION

There are two frequencies which play an important role for the
dynamics of the system. On the one hand, in Figure 2A a broad
synchronization region is located at a frequency ω ≈ 2.6, which is

the frequency of the uncoupled FHN oscillator ωFHN. Although
the external stimulus effects only the two auditory nodes (k �
41,86), we can observe a transition to synchronization of the
whole system approaching ω ≈ 2.6 already for small values of the
amplitude c> 0.004. On the other hand, we can detect a
synchronization tongue with a lower boundary at ω ≈ 2.4 and
an upper boundary increasing linearly with the amplitude γ. In
contrast to the first, smooth transition, we can find here a sharp
transition to synchronized dynamics, similar to a first order
transition, depicted by the high contrast of the boarder of the
synchronization tongue in Figure 2A. In this synchronization
tongue, the nodes oscillate with an equal mean phase velocity (see
Figure 3B), but there are phase differences between them, as
indicated by 0.95<R(t)< 1 and shown in the phase-time plot in
Figure 4B. Using the fact that uj/vj and uk/vk are on the same
limit cycle in the phase space and have the same mean phase
velocity, the phase differences in the coupling term of Eq. 1 can be
effectively summed up in following way:

∑
j

AkjB( uj − uk

vj − vk
) ≈ Δteff B( _uk

_vk
), (7)

where Δteff ≪ 1 denotes the effective sum of the time intervals of
all phase differences. Neglecting cosϕ≪ 1 and setting sinϕ ≈ 1,
Eq. 1 reads for k≠ 41, 86:

ε _uk � uk − u3
k

3
− vk − σΔteff _vk

_vk � uk + a + σΔteff _uk

(8)

FIGURE 4 | (color online) Synchronized and desynchronized dynamics:
Shown are the space-time plot of the variable uk inside and outside the
synchronization regions (marked as black dots in Figure 2) for increasing
values of the frequency ω of the external stimulus ω � 2.30 (A), ω �
2.44 (B), ω � 2.50 (C), and ω � 2.60 (D) for fixed amplitude c � 0.06. The
panels correspond to the panels in Figure 3. Other parameters are as in
Figure 2.

FIGURE 5 | (color online) Transition scenarios: (A) temporal mean of the
Kuramoto order parameter 〈R〉 (dark blue) and the spatially averaged mean
phase velocities ω (light orange) in dependence on the frequency ω of the
external stimulus for a fixed amplitude c � 0.052. The vertical bars
indicate the standard deviation of the temporal mean of the Kuramoto order
parameter and the spatially averaged mean phase velocities, respectively. As
input nodes, the auditory cortices k � 41, 86 are chosen. In case of a different
input (k � 1, 45) the corresponding light grey curves are shown in panel (A).
The inset in panel (A) depicts ρs � Ns

ΔTL, the number Ns of synchronized time
intervals (R(t)> 0.8∀t) divided by a simulation time of ΔTL � 30, 000 for values
of the frequency ω between the two synchronization regions. The vertical bars
denote the standard deviation of the length of these synchronized time
intervals. (B) 〈R〉 for a larger range of driving frequencies ω, showing higher
resonance tonges. Other parameters are as in Figure 2.
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The local dynamics of Eq. 1 is governed by a slow-fast system
(FitzHugh-Nagumo oscillator), where the slow part essentially
determines the period of the oscillations. Hence, considering the
slow motion on the falling branches of the u-nullcline ( _uk � 0) by
inserting the second equation into the first one

vk � uk − u3
k

3
− σΔteff (uk + a), (9)

the time derivative of the falling branches yields with _vk from
Eq. 8

vk � uk − u3
k

3
− σΔteff (uk + a), (10)

The separation of the variables gives

dt � 1 − u2k − 2σΔteff
uk + a

duk, (11)

where dt can be integrated over one oscillation period T. As
shown in [47], this leads in case of synchronization to a linear
dependence of the oscillation period Tsync � ∫T

0
dt on the effective

sum of the phase differences proportional to Δteff . For incoherent
distribution of the phases of each node k (see Figure 4D), the
phase differences between the single nodes are also strongly
distributed and thus Δteff ≈ 0. In this case, the natural
frequency of the uncoupled system plays an important role,
provided that the mean phase velocity of all oscillators is still
almost equal as in case of Figure 2D.

This could explain on one side the fact that we observe a
synchronization tongue at ω ≈ 2.4 (which is smaller than the
frequency of an uncoupled oscillator ωFHN ≈ 2.6), and on the
other side, the linear boundaries of the synchronization tongue
for increasing amplitude γ. The increase of γ yields an increase of
the sum of the phase differences in the coupling term of Eq.1 and
therefore an increase of the effective sum of the time intervals
Δteff .

In Figure 5A, both transitions are depicted in dependence on
the frequency ω for a fixed amplitude c � 0.052. We can see an
abrupt increase and decrease of the temporal mean of the
Kuramoto order parameter 〈R〉 before and after ω ≈ 2.4,
respectively. In contrast, in approaching the upper
synchronization region starting from ω ≈ 2.6, 〈R〉 increases
more slowly than at the transition to the synchronization
tongue (ω ≈ 2.4). In case of synchronization the standard
deviation of 〈R〉, displayed by the vertical bars, is smaller than
in case of desynchronized dynamics. That holds also for the
spatially averaged mean phase velocities ω, which in case of
synchronization takes over the lower value of the frequency ω
of the external stimulus. Also for ω> 2.6, ω is equal to ω, whereas
the standard deviation of ω increases linearly with ω. In contrast,
there is no effect on the system for ω< 2.4. Neither 〈R〉 nor ω
show a different behavior for such values of ω. The high value of
the standard deviation of 〈R〉 stands for dynamics as shown in
Figure 3A, where the Kuramoto order parameter R(t) is
fluctuating over its whole bandwidth R ∈ [0, 1]. Simulations
show that for ω > 3.0 the dynamical behavior of the system
becomes similar to that with ω � 2.3. For both parameter intervals
of ω, there is no effect on the system. Simulations show also that a
similar transition to synchronization at ω � 2.6 can be found for
higher harmonics, i.e., multiple values ofω � 2.6. In Figure 5B, we
can identify synchronization regions for ω � 5.2, 7.8, and 10.4
becoming less pronounced for increasing ω, i.e., having a smaller
extension in the plane of ω and γ. In contrast, we could not detect
repeated synchronization tongues of ω for multiple values of ω �
2.4. This indicates the existence of two different synchronization
mechanisms.

The existence of two synchronization regions depends on the
choice to which nodes the external stimulus is supplied. In case of
a different input, for instance k � 1,45 in contrast to k � 41,86, the
light grey curves in Figure 5A depict the corresponding
dependence of the Kuramoto order parameter 〈R〉 and the

FIGURE 6 | (color online) Transition scenarios: The increase of the regularity and duration of synchronized time intervals shown by the temporal evolution of the
Kuramoto order parameter R (left column) and themean phase velocities ωk (right column) for increasing values of the frequency ω of the external stimulus ω � 2.47 (A), ω
� 2.49 (B), ω � 2.51 (C), and ω � 2.53 (D) for fixed amplitude c � 0.06. The vertical dashed line in the right column separates the left and right hemisphere, and
the horizontal grey dotted line indicates the temporal average of the mean-field frequencyΩ. The red colored dots indicate the nodes of the auditory cortical regions
(k � 41,86). Other parameters as in Figure 2.
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spatially averaged mean phase velocities ω upon the frequency ω
of the external stimulus. The synchronization region at ω ≈ 2.4 is
missing here and only one synchronization region
remains (ω> 2.5).

In the following, we analyze the region between the two
synchronization areas in more detail. Figure 6 depicts the
dynamical behavior when we approach the synchronization
region by increasing the frequency ω of the external stimulus
in the neighborhood of the synchronization region at ω � 2.6.
For ω � 2.47 in Figure 6A, the time series of the Kuramoto
order parameter shows familiar temporal fluctuations with only
short episodes of synchronization (R(t)> 0.8). In [9] the
authors define the threshold R � 0.8 as the onset of an
epileptic seizure. By increasing the frequency ω, one can
increase the quantity of these episodes, as well as their
duration. Figure 6D with ω � 2.51 features much longer
duration of synchronized episodes, moreover the duration of
the single episodes are comparable in length. This transition in
Figures 6A–D can be also seen in Figure 5A. The inset of
Figure 5A confirms the increasing regularity between the two
synchronization regions by depicting ρs � Ns

ΔTL
vs. ω, where Ns is

the number of synchronized time intervals (R(t)> 0.8∀ t) and
ΔTL � 30, 000 is the simulation time. The vertical bars
denote the standard deviation of the length of these
synchronized time intervals. With increasing ω not only the
number of synchronized time intervals is increasing, but
the standard deviation of their duration is decreasing. For
ω � 2.6 we enter the synchronization region, where the
value of ρs drops due to the nearly consistently synchronized
dynamics.

Finally, the mean phase velocities in the right column of
Figure 6 display the transition to frequency synchronization.
While the frequency of the two driven nodes (k � 41, 86)
converges to the frequency of an uncoupled FHN oscillator
ωFHN ≈ 2.6, also the frequencies of all the other nodes are
adjusted, especially those with a much higher frequency (k �
18, 63).

6 CONCLUSION

We have investigated the influence of an external sound source
on the dynamics of a network with empirical structural
connectivity. It has been found that depending on the
frequency and amplitude of the sound source,
synchronization can be induced in the dynamics of the
system. We have shown that two frequencies play an
important role for synchronization, particularly the natural
frequency of the uncoupled oscillator and the frequency of
the coupled system. Moreover, the degree of synchronization
is gradually increased when the frequency of the uncoupled
oscillator or multiple values of it are approached. Furthermore,
we have analyzed the linear dependence of the synchronization
borders upon the amplitude of the external sound, which can
also be characterized as the volume of the sound. This has

resulted in the observation that the synchronization region can
be enlarged by increasing volume. We have demonstrated the
dynamical behavior of the system in the transition to
synchronization. By tuning the frequency of the external
sound appropriately, we have shown that the level of
synchrony can be increased.

These results are in accordance with experiments of Bader’s
group [18, 19] that music induces a certain degree of synchrony in
the human brain. This group has shown that listening to music
can have remarkable influence on the brain dynamics, in
particular, a periodic alternation between synchronization and
desynchronization. Moreover, such an alternation reflects the
variability of the system; this can be seen as a critical state between
a fully synchronized and a desynchronized state. It is known that
the brain is operating in a critical state at the edge of different
dynamical regimes [45], exhibiting hysteresis and avalanche
phenomena as seen in critical phenomena and phase
transitions [48–50]. By choosing appropriate parameters, we
have reported an intriguing dynamical behavior regarding the
transition to synchronization, and have observed the induced
alternation between high and low degrees of synchronization. To
sum up, an external sound source connected to the brain allows
for synchronization dynamics, which may be used to model the
effect of music on the human brain.
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The hippocampal local field potential (LFP) exhibits a strong correlation with behavior.

During rest, the theta rhythm is not prominent, but during active behavior, there are strong

rhythms in the theta, theta harmonics, and gamma ranges. With increasing running

velocity, theta, theta harmonics and gamma increase in power and in cross-frequency

coupling, suggesting that neural entrainment is a direct consequence of the total

excitatory input. While it is common to study the parametric range between the LFP

and its complementing power spectra between deep rest and epochs of high running

velocity, it is also possible to explore how the spectra degrades as the energy is

completely quenched from the system. Specifically, it is unknown whether the 1/f slope

is preserved as synaptic activity becomes diminished, as low frequencies are generated

by large pools of neurons while higher frequencies comprise the activity of more local

neuronal populations. To test this hypothesis, we examined rat LFPs recorded from the

hippocampus and entorhinal cortex during barbiturate overdose euthanasia. Within the

hippocampus, the initial stage entailed a quasi-stationary LFP state with a power-law

feature in the power spectral density. In the second stage, there was a successive

erosion of power from high- to low-frequencies in the second stage that continued until

the only dominant remaining power was <20 Hz. This stage was followed by a rapid

collapse of power spectrum toward the absolute electrothermal noise background. As

the collapse of activity occurred later in hippocampus compared with medial entorhinal

cortex, it suggests that the ability of a neural network to maintain the 1/f slope with

decreasing energy is a function of general connectivity. Broadly, these data support the

energy cascade theory where there is a cascade of energy from large cortical populations

into smaller loops, such as those that supports the higher frequency gamma rhythm. As

energy is pulled from the system, neural entrainment at gamma frequency (and higher)

decline first. The larger loops, comprising a larger population, are fault-tolerant to a point

capable of maintaining their activity before a final collapse.
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1. INTRODUCTION

For over five decades, it has been evident that hippocampal local-
field potential (LFP) activity is strongly correlated with behavior
(Vanderwolf, 1969; Buzsaki, 2005). The most prominent feature
of hippocampal LFP, the 8–9 Hz theta rhythm, is reported to

increase in power with increasing running speed (Whishaw and
Vanderwolf, 1973; Morris and Hagan, 1983) and change its shape
from sinusoidal to sawtooth waves (Green and Petsche, 1961;
Stumpf, 1965; Buzsaki et al., 1983; Terrazas et al., 2005) associated
with the development of high order theta harmonics during faster
movement (Leung, 1982; Leung et al., 1982; Sheremet et al.,
2016; Zhou et al., 2019). Apart from theta, the power of the
higher frequency gamma rhythm (60–120 Hz) also increases with
respect to running speed (Chorbak and Buzsaki, 1998; Chen et al.,

2011; Ahmed andMehta, 2012; Kemere et al., 2013). The increase
in gamma power at faster running speeds is also associated with
enhanced theta-gamma coupling (Sheremet et al., 2018). These
studies imply that when the rat is in an active behaving state,

the hippocampus receives strong barrages of synaptic input (Shu
et al., 2003), giving rise to an organization of activity across all
spatial and temporal scales (Sheremet et al., 2020).

The hippocampal LFP is often decomposed through Fourier
analysis, providing the power spectral density. The power spectra
density takes the form of Amplitude = 1/frequency^α, where
alpha falls is a value between zero and two (characteristic of
a pink noise spectra; Buzsaki, 2006). While this decomposition
treats different frequency bands as independent signals, the
theta and gamma oscillations are not isolated rhythms. In
addition to being coupled to each other, theta and gamma
also exist against a “background” of activity. The nature of
this background is not well-understood, it is often attributed
to either the result of interacting oscillators (Buzsaki, 2006)
or the consequence of a broadband, arrhythmic activity
that is distinct from oscillations (Hesse and Thilo, 2014).
Importantly, similar to theta and gamma, the slope of the
spectra that is attributed to the background has also been
found to change with increasing running speed (Sheremet
et al., 2019b), suggesting that it is sensitive to increased
synaptic currents and may be interrelated with the rhythms
that are often ascribed as being independent from the
background spectra.

One explanation for why power is lower at higher frequencies
is the energy cascade across multiple oscillators. Precisely, axonal
conduction delay and synaptic time constants determine the
frequency in which the populations of neurons can rhythmically
engage. Faster oscillations require rapid communication,
suggesting that a rhythm like gamma would be local, generated
by a small population of neurons. The organization of a larger
pool of neurons is rate-limited by communication. Global
oscillations, like the theta rhythm which engages a larger pool
of neurons, will take the form of reciprocal volleys or traveling
waves at a slower frequency. As theta engages a larger neuronal
population relative to the mechanisms that support gamma, the
slow rhythm is approximately one order of magnitude larger
than gamma (Buzsaki and Draguhn, 2004). Importantly, these
oscillators—among many others- are not independent but one

and the same as synapses do not segregate transmembrane
currents to specific frequencies but contribute to many bands
simultaneously (Bullock et al., 1995; Sheremet et al., 2019a). The
intertwining of the rhythmic mechanism, with the large loops
(low frequency) providing then energy for the smaller loops
(high frequency), gives rise to spatio-temporal interactions that
manifest as a 1/f “pink” power spectral density (Buzsaki, 2006).
This “energy cascade” hypothesis has roots in self-organized
criticality (Bak et al., 1988) and was formalized by Buzsaki
concerning mammalian LFP. Within the last few years, the
energy cascade hypothesis has been recovered in terms of the
classical physics description of turbulence (Sheremet et al.,
2019b; Deco and Kringelbach, 2020) which has been cleverly
wrangled into a simple verse: Big whorls have little whorls Which
feed on their velocity, And little whorls have lesser whorls And
so on to viscosity (Richardson, 2007). However, other theories
regarding the organization of the power spectra suggest that
there are two independent biological processes that support
aperiodic noise (the 1/f slope) and the rhythmic frequencies,
the “peaks” above the slope (He, 2014; Donoghue et al., 2020).
These studies consider the log-log linear components of the
power spectra where no clear peak above the slope is evident as
being carried by either the occurrence of spikes relative to non-
preferred LFP oscillation phases (Tort et al., 2010; Lepage et al.,
2011) or the desynchronization of spikes within a population of
cells (Pozzorini et al., 2013; Voytek and Knight, 2015; Voytek
et al., 2015). In sorting out these theories, it should be considered
that perhaps the field has placed too much emphasis on the
literal interpretation of the power spectral density (calculated
by Fourier, Wavelet, or otherwise), which ascribes a single
power-to-frequency value suggesting an independence between
sinusoidal oscillations of different frequencies. Rather, we
should be reminded that the LFP represents the propagation
and distribution of activity into densely recurrent networks of
neurons, generating the spatial-temporal dynamics responsible
for the organization of behavior (Hebb, 1949; Northoff et al.,
2019; Atasoy et al., 2020; Nadel and Maurer, 2020). As the
nervous system does not work in the currency of pure rhythms
vs. noise, but rather dynamics spatio-temporal patterns, this
challenges the degree to which we can interpret and make
divisions of neurobiological processes based on parameterizing
power spectral densities.

Nevertheless, both visual observations and power spectral
densities reveal that low-frequency rhythms are larger in
amplitude than higher frequency oscillations. Moreover, the 1/f
slope of the spectra is a consistent feature of the LFP with the 1/f
slope present during sleep and quiescent periods (for instance,
see Figure 4 of Buzsáki et al., 2003). The persistence of the 1/f
slope across all behavioral states suggests that the nervous system
is constantly propagating activity, with large populations of
reentrantly connected populations perpetually cascading activity
into smaller recurrent networks. Thus, manipulating the spectra
require approaches that alter a large swath of synaptic inputs,
such as localized cooling (Petersen and Buzsáki, 2020), focal brain
lesion (Mitchell et al., 1982; Buzsaki et al., 1987; Bragin et al.,
1995; Fyhn et al., 2004), and study the dying brain. In the current
study, we investigated the spectra against the background of
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euthanasia by barbiturate overdose, in which the spectra degrades
to a complete collapse.

Prior studies on LFP changes with euthanasia have observed
a surge of global and highly coherent gamma oscillation after
cardiac arrest (Borjigin et al., 2013). This has led to studies
exploring hippocampal physiology in the context of near-
death experience (Parnia and Fenwick, 2002), theoretically
supported by bursts of high-frequency activity (Zhang et al.,
2019). While near-death experience is interesting, this topic is
beyond the scope of the present study. Rather, we explored
the changes from the perspective of the turbulence hypothesis
(Sheremet et al., 2019b; Deco and Kringelbach, 2020). If slow
frequency perturbations provide the energy to drive higher
frequency oscillations, then we predicted that when the system
is significantly challenged, the high-frequency rhythms and
the 1/f slope will be the first to be compromised. Low
frequency activities, being generated by larger more distributed
populations, will be more robust, maintaining power for an
extended period of time. In accord with this, we observed a
steepening of the 1/f carried by a recession of high-frequency
power. At end stage, the LFP was mainly characterized by low
frequency, high amplitude activity prior to the final collapse of all
activity. This phenomenonwas observed across the hippocampus
and entorhinal cortex, although the spectral integrity persisted in
the hippocampus for relatively longer.

2. MATERIALS AND METHODS

2.1. Subjects and Behavioral Training
All behavioral procedures were performed following protocols
approved by the Institutional Animal Care and Use Committee
at the University of Florida as well as those set forth by the
National Institute of Health. The present study consisted of five
male hybrid Fisher344-Brown Norway rats (Taconic) ranging
from 4 to 10 months of age (r730, r782, r829, r889, and r1074).
Animals were singly housed and allowed to acclimate for 1
week after arrival. The colony room maintained a reversed 12–
12 h light-dark cycle with all behavior taking place during the
dark period. Behavioral shaping began with training animals to
run counterclockwise on a circular track one meter in diameter
for a food reward (pieces of cereal marshmallow, Medley Hills
Farm, Ohio). During this time, the animal’s weights were slowly
reduced to 85% of their ad lib. weight. Once a criterion of at
least 30 laps in 15 min was reached, animals were implanted
unilaterally with silicon probes. One probe was implanted in the
dorsal hippocampus (HPC) in all the three rats. As to rat 730 and
rat 782, another probe was implanted in the medial entorhinal
cortex (MEC). The probes used for r730, r782, r829, and r889
were custom single shank, 32 channel probes (NeuroNexus; Ann
Arbor, MI) with an area of 177 µ m2 and a site spacing of 60 µ

m. Rat 1074 received single shank 64 channel probe (L3 series;
Cambridge NeuroTech; Cambridge, UK) with an area of 165 µ

m2 and a site spacing of 50 µ m. Prior to surgery, all probes were
cleaned by soaking in a solution of 7% detergent (Contrad 70
Liquid Detergent; Decon Labs; King of Prussia, PA) in deionized
water followed by rinsing with deionized water.

2.2. Surgical Procedures
All surgical procedures were performed following protocols
approved by the Institutional Animal Care and Use Committee
at the University of Florida as well as those set forth by the
National Institute of Health. Animals were placed in an induction
chamber and sedated with 3–5% Isoflurane. After loss of muscle
tone, they were moved to a nose cone and the top portion of the
head was carefully shaved to avoiding cutting any whiskers. Next,
the animal was transferred to the nose cone of the stereotaxic
frame, where the head was gently secured with using ear and
incisor bars. During this portion and for the remainder of the
procedure, anesthesia was maintained using an Isoflurane dose
between 1 and 2.5% while periodically monitoring respiration.
Body temperature was maintained using an electric heating pad
with feedback via rectal thermometer. The eyes were protected
by applying ophthalmic ointment and shielding from direct light.
Prior to the initial incision, the top of the head was cleaned using
several cycles of povidone-Iodine and alcohol. An incision was
made starting just behind the eyes and continuing to the back of
the skull. The skin was retracted, and blunt dissection was used
to expose the surface of the skull. Bleeding was managed using
a cautery pen (Bovie Medical; Clearwater, FL). After thoroughly
cleaning the skull, measurements from a stereotaxic arm were
used to ensure that the skull was leveled. Next, bregma and
the electrode implant locations were marked on the skull with
the cautery pen for visual reference. A total of seven anchor
screws were placed into the skull to serve as attachment points
for the headcap. One screw over the cerebellum and one screw
over the cortex were attached to wires that would serve as the
reference and ground locations, respectively. A small amount
of luting cement (C&B Metabond; Parkell Inc; Edgewood, NY)
was applied to the screws to provide a foundation for the rest
of the headcap. Care was taken to avoid covering bregma and
the implant sites. Craniotomies were drilled at the implant sites
and the dura was removed, taking care to not damage the cortex.
Bleeding was managed using saline irrigation or sterile gauze.
Probes targeting the dorsal HPC were implanted at −3.2 mm
AP; 1.5 mm ML to bregma; −3.7 mm DV to dura. Coordinates
targeting the MEC were −0.5 mm AP to the transverse sinus,
4.6 mm ML to bregma, angled 30◦ posteriorly, and −5.78 mm
DV to dura. After implantation, the craniotomies were sealed
with a surgical silicone adhesive (Kwik-Sil; World Precision
Instruments; Sarasota, FL). Dental acrylic [Grip Cement, 675571
(powder) and 675572 (solvent); Dentsply Caulk; Milford, DE]
was then applied to secure the probes and connectors in place.
The ground and reference wires were soldered to the appropriate
wires on the probe connectors and the reference wire was isolated
using dental acrylic. Lastly, copper mesh was shaped into a small
bowl around the headcap to serve as physical protection and
secured with dental acrylic. The ground wires were soldered
to the copper mesh to minimize the danger of electrostatic
discharge. Immediately following the removal of the anesthetic,
10 ml of sterile saline and a dose of 1.0 mg/kg meloxicam
(Boehringer Ingelheim Vetmedica, Inc; St. Joseph, MO) were
administered subcutaneously. The animals were placed on a
heating pad and monitored until fully mobile and capable of
eating. Post-surgical care included a second dose of meloxicam
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24 h later as well as 5 ml of oral antibiotics (40 mg/ml
Sulfamethoxazole and 8 mg/ml Trimethoprim Oral Suspension;
Aurobindo Pharma Inc; Dayton, NJ) mixed into their food for
7 days. Animals were monitored for 1 week following surgery
to ensure no physical or behavioral abnormalities were observed
before testing began.

2.3. Euthanasia Electrophysiology
After completing all other behavioral experiments, animals were
recorded from for 15 min in the usual resting container to
establish a baseline for the LFP data and then received a
lethal dose of SomnaSol (390 mg/ml pentobarbital sodium,
50 mg/ml phenytoin sodium; Henry Schein; Melville, NY)
injected intraperitoneally. LFP recording continued throughout
the injection and for 10–15 min after the animal no longer
exhibited a nociceptive withdrawal reflex. The animal was then
immediately perfused with 4% paraformaldehyde, and the brain
extracted and prepared for histology to verify electrode locations.

2.4. Data Process and Spectral Analysis
The LFP data were analyzed in MATLAB (The MathWorks,
Natick, MA) using custom-written code as well as code imported
from the HOSAtoolbox (Swami et al., 2000). Raw LFP records
sampled at 24 kHz (Tucker-Davis system) were low-pass filtered
down to 1 kHz. The spectrogram were calculated based on
discrete Fourier transform with window length of 1 s and 50%
overlap. The power correlograms for each evolution stage were
obtained by estimating the correlation coefficients between all the
frequency pairs in the result of spectrogram. The power spectra
during the euthanasia were estimated for every 100 s.Within each
LFP interval, the power spectrum was obtained via the standard
Welch’s method (Welch, 1967) with window length of 1 s and
50% overlap. The power law exponential was obtained by linearly
fit the log-log power spectrum in the frequency range from 20 to
80 Hz to diminish the influence of EMG noise.

The coherence between two time series is the modulus of their
cross-spectrum normalized by their power spectra. The cross-
spectrum and power spectra were estimated with window length
of 1 s and 50% overlap. To demonstrate the time evolution of
coherence, a sliding window with a length of 20 s and a step
increment of 5 s was applied. In each window, the coherence
between two time series in frequency range from 2 to 128 Hz
were estimated.

The asymmetry and skewness of LFP were obtained from
the bispectral analysis with a window length of 1 s and 50%
overlap. The bispectrum (the Fourier transform of the third-
order cumulant) has been thoroughly reviewed in terms of both
statistical and mathematical background (Harris, 1967) as well as
its application to non-linear wave interaction (Kim and Powers,
1979). In the field of neuroscience, bispectral analysis was used to
quantify the degree of phase coupling between the frequencies of
the LFP, whereas the bicoherence quantifies the degree of cross-
frequency coupling independent from the amplitude (Barnett
et al., 1971; Ning and Bronzino, 1989; Sigl and Chamoun, 1994;
Bullock et al., 1997; Muthuswamy et al., 1999; Hagihira et al.,
2001; Li et al., 2009; Sheremet et al., 2016; Wang et al., 2017;
Avarvand et al., 2018). The cross-bispectrum analysis is similar

with the bispectrum analysis but the frequency components are
from two time series (Lii and Helland, 1981; Sheremet et al.,
2020). In our study, as the lengths of stage 2 differ across regions,
the cross-bicoherence between HPC and MEC were estimated
over the shorter stage length.

The decay rate of each frequency component was derived
from the power time series. Power time series of frequency
component ω was defined as the variance of filtered LFP in the
frequency band [ω − 0.5Hz,ω + 0.5Hz]. The power time series
was calculated with a window length of 10 s and a step increment
of 2 s (Figure 3C). The decay/grow constant was defined as the
ratio of the time derivative of the power time series to the power
time series itself. The obtained result was smoothed with the
time window of 20 s to eliminate fast power oscillations, and
was plotted every 5 s. The transition period from the first to the
second stage is defined as the moment with the fastest averaged
decay rate over 100 Hz. The transition period from the second to
the third stage is defined as the moment with the fastest averaged
decay rate from 4 to 60 Hz.

3. RESULTS

3.1. Three Stages During Spectrum
Degradation
After the injection of SomnaSol, LFP exhibited three
distinguishable stages with two rapid transition periods
between these stages in all the animals.

3.1.1. Pre-effective Stage

The first stage (marked as blue box in Figure 2) was described as
the pre-effective stage,or stage 1. This stage was indistinguishable
from baseline (pre-injection).Thus in Figures 1, 3, both the pre-
injection (t < 0) and the pre-effective stages were marked as
stage 1. In this stage, LFP was dependent on the behaving state
of the rat where there were strong theta and gamma rhythms at
high running velocity (Whishaw and Vanderwolf, 1973; Morris
and Hagan, 1983; Chen et al., 2011; Ahmed and Mehta, 2012;
Kemere et al., 2013; Zheng et al., 2015; Sheremet et al., 2019a).
A sample of hippocampal LFP from stage 1 (Figure 1B) reveals
that theta can express significant deviations from a sinusoid
(Buzsaki et al., 1983; Terrazas et al., 2005). This non-sinusoidal
waveform is related to high order theta harmonics due to the
non-linearity of hippocampal LFP (Scheffer-Teixeira and Tort,
2016; Sheremet et al., 2016; Zhou et al., 2019). In statistical
analysis, the lowest order non-linear character of the system
can be described by bispectrum (Hasselmann et al., 1963). The
real and imaginary part of the bispectrum characterizes the
skewness (an example being a cnoidal wave) and the asymmetry
(“sawtooth” shaped wave) of the distribution. The sawtooth
aspect of the theta wave, with steep wave front (from trough
to peak), corresponded to the negative asymmetry (Figure 1C)
at the [8, 8, 16 Hz] frequency triad (8 Hz at x-axis, 8 Hz at
y-axis and their sum 16 Hz). Apart from that strong negative
asymmetry region, the [8, 16, 24 Hz] frequency triad exhibited
strong positive asymmetry and supported the existence of third-
order theta harmonic (Schomburg et al., 2014; Zhou et al., 2019;
Cowen et al., 2020).
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FIGURE 1 | LFP examples at different stages along with their asymmetry and skewness. (A) The raw LFP trace recorded in CA1 pyramidal layer after the injection

(t = 0) which showed the overall neural activity evolution during euthanasia. (B) LFP samples of 1 s selected from three stages. The corresponding windows were

indicated in (A). (C,D) The asymmetry and the skewness of LFP at three stages obtained from bispectral analysis (Haubrich and MacKenzie, 1965; Masuda and Kuo,

1981; Sheremet et al., 2016). Both the horizontal axis and the vertical axis represent frequency. Each point in the plot was the asymmetry or skewness estimated for

the frequency triad
(

fx , fy , fx + fy
)

. Only the first octant (fx ≥ 0, fy ≥ 0, fx ≥ fy ) is presented as it contained all the non-redundant information due to the symmetry of

bispectrum. The first octant is bounded by the dashed line fx + fy = 120 Hz indicating the upper bound of frequency range of interest. An oscillation has asymmetry if

the wave peak or trough doesn’t stand at the center of adjacent zero-across points. An oscillation has skewness if the wave height distribution is not symmetric about

its mean value. Both asymmetry and skewness indicate cross-frequency coupling. Data from rat 782.

In the spectrogram of hippocampal LFP (Figure 1B) during
stage 1, there was a strong theta oscillation along with
intermittent but distinguishable second and third harmonics.
Apart from high power activities in theta and its harmonics
bands, intermittent high-frequency events were identified by
looking at spectrogram at frequency range over 128 Hz (marked
as blue asterisks in Figures 2B,C). Although the frequency
range overlaps with epsilon rhythms described by others Canolty
et al., 2006; Freeman, 2007; Sullivan et al., 2011; Belluscio
et al., 2012, we make the conservative interpretations that is it

caused by abnormal muscle contractions. High-frequency neural

events tend to be local as they are supported by interactions
within a specific brain region (Buzsaki and Draguhn, 2004;
Buzsaki, 2006; Sheremet et al., 2019a), but the high-frequency
intermittent bursts during stage 1 were highly coherent and

had almost zero phase lag between HPC and MEC regions
(Supplementary Figure 3). Therefore, the intermittent high-
frequency bursts are plausibly related to muscle activities (EMG
noise; Muthukumaraswamy, 2013; Nottage and Horder, 2015)
as pentobarbital is known to include abnormal contractile
activity (Nayler and Szeto, 1972; Khan, 1980; Taylor et al., 1984;
Eikermann et al., 2009). This activity subsided after stage 1 due to
pentobarbital sodium injection (Altura and Altura, 1975).

3.1.2. Quasi-Stationary Decay Stage

The second stage (marked as red box in Figure 2) was described
as the quasi-stationary decay stage, or stage 2, after the sudden
disappearance of theta and >128 Hz bursts (at 100 ± 33 s
after SomnaSol administration). The hippocampal LFP in this
quasi-stationary stage exhibited slow power decay over a period
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FIGURE 2 | Spectrum evolution during barbiturate overdose euthanasia. (A) The development of spectra estimated every 50 s. Spectra estimated within other time

intervals were indicated as gray lines for comparison. (B) The spectrogram of hippocampal LFP where the injection time was marked as a dashed line at 0 s. The

power in spectrogram was normalized by the maximum power during the euthanasia process. Based on the spectrogram and the development of power spectrum,

we identified three stages during euthanasia: stage 1 was the pre-effective stage which included the pre-injection period and a short period after injection. This

demarcated in the spectrogram as a blue box and in spectra, blue lines; stage 2 was the quasi-stationary decay stage marked as a red box in spectrogram and red

lines in spectra; stage 3 was the quasi-white noise stage marked as a magenta box in spectrogram and magenta lines in spectra. Between these stages there were

two rapid transition periods marked with blue and red arrows. (C) The spectrogram of LFP recorded in MEC. During stage 1, there were instances with strong

high-frequency power (>128 Hz) both can be observed in HPC and MEC. Four of these instances were marked as blue asterisks. Given the consistency across

regions, these high frequency bursts are most-likely related to sodium pentobarbital related muscle contractions (EMG artifact, see Supplementary Figure 3). (D)

The development of spectra in MEC. Data from rat 782. (E) Cartoon illustrate the spectrum evolution during euthanasia. The spectra from the first to the third stages

were marked as blue, red and magenta lines. The power spectra exhibits different slopes across stages. (F) Power-law exponents evolution of five rats estimated with

window length of 40 s and time increment of 5 s. The spectrum slopes were estimated for the frequency range from 20 to 80 Hz in the log-log plot. Three stages can

be identified with α1 ≈ 1.5, α2 ≈ 3.5, and α3 ≈ 0.5. Note that rat 889 had longer stage 2 compared with other rats (see Supplementary Figure 6).

of ∼100 s without obvious intermittent structures (Figure 1A).
Within a narrow time frame, the LFP appeared to be nearly
stationary, although of lower amplitude compared with stage 1.
Traditional 8 Hz theta activity was no longer evident via visual

inspection. Rather, a surge in lower frequency band activity (1–
4 Hz) occurred and this event has been reported previously
(Schramm et al., 2020). As the power in this lower frequency, 1–
4 Hz activity dissipated, a 10 Hz oscillation became prominent,
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FIGURE 3 | (A) Coherence between CA1.Pyr and LM in HPC. The x-axis was the time and the y-axis was the frequency. Two transition periods were marked with

blue and red arrows in the plot. Coherence is the modulus of the normalized cross-spectrum with a value between 0 and 1. High coherence indicates there is a

consistent phase difference between two time series at that frequency. In terms of spectral analysis of LFP, high coherence within a narrow frequency band is a sign of

the existence of oscillatory rhythm, and there is a phase difference either because the rhythm is a traveling wave or due to the bipolar nature of neurons. (B) The

development of coherence between HPC and MEC. (C) The energy evolution of theta band in HPC and MEC, the variances were calculated with a window length of

10 s and a step increment of 2 s. (D) Average auto-correlation coefficients of Fourier transform estimated at three stages. As the auto-correlations are symmetric, only

one half was presented. Positive correlation indicates the power of those two frequency components tend to grow or decay simultaneously, while negative correlation

demonstrates that the power in some frequencies is lost as others increase (see Masimore et al., 2004, 2005). During stage 1, the positive correlation can be identified

in three regions: The correlation between theta and theta harmonics represented by significant dots with frequency under 32 Hz; The correlation between gamma

(>60 Hz) and theta (or theta harmonics) represented by horizontal strips. During stage 2, the power of 10 Hz frequency components was negatively correlated with

other frequency components, while all other frequency components had positive power correlation. (E) Cross-bicoherence between HPC and MEC. Each point in the

plot represented the cross-frequency coupling of the frequency triad
(

fx , fy , fx + fy
)

where fx and fy were frequency components in HPC and fx + fy was frequency

component in MEC. Octant 1 and Octant 8 contained all the non-redundant information. Two inclined dotted lines indicated 8 and 16 Hz in MEC. During the stage 1,

there were significant regions representing cross-region cross-frequency coupling of theta and its harmonics between HPC and MEC [(8, 8, 16) Hz, (16,−8, 8) Hz and

(24,−8, 16)Hz]. Data from r782.

characterized by a wide-flat peak and narrow-deep trough
(Figure 1B). This waveform expressed a negative skewness in
the frequency region from 10 to 30 Hz via bispectrum analysis
(Figure 1D).

The spectrogram of LFP during stage 2 was consistent with
observations of the time-series. There were no intermittent
high-frequency structures (EMG artifacts), but there was the
development of a 10 Hz oscillation at the end of stage 2.
In terms of the spectrum evolution, except for the frequency
components <10 Hz, there was a structured power decay over
a wide frequency band.The power-law distribution persisted over
the entire stage with a slope of −α2 ≈ −3.3, but with a decaying
total variance (Figures 2E,F). There was a progressive recession
of power, where the power in the 20–120 Hz decreased at the
same logarithmic rate. This degradation is evident in the straight
power contour lines in the spectrogram plot (contour lines were
not directly plotted but can be identified from the transition of
colors) (Figure 2B). As a result, during stage 2 the spectrum
experienced a “parallel” evolution that can be interpreted as
the entire spectrum having a decay in power along with a
shift toward lower frequency. By comparing across animals, we
observed a “parallel” spectrum evolution in HPC and MEC
regions (Figure 2 and Supplementary Figures 4–7). However,

although the onsets of stage 2 were synchronized, their lengths
varied between HPC and MEC. In the HPC region, the power-
law spectrum kept evolving after the LFP spectrum in MEC had
collapsed to a low power-containing state.

3.1.3. Collapse Stage

In the HPC region, the LFP collapsed at 320 ± 101 seconds
after SomnaSol administration, marking the spectral transition
into stage 3, or collapse stage (marked as a magenta box in
Figure 2). Oscillation amplitude was small (Figure 1B) with
occasional large “LFP-spikes” (Figures 1A, 2B). This oscillation
has been described previously as the “wave of death” (WoD;
Kaminogo et al., 1998; Van Rijn et al., 2011; Zandt et al.,
2011), which is proposed to reflect the massive and simultaneous
depolarization of a large number of neurons. This phenomenon
most-likely shares a high degree of similarity with cortical
spreading depression (Dreier and Reiffurth, 2015), accounting
for why the event was not highly correlated between brain
regions (Figures 2B,C). Pani et al. (2018) reported this brain
activity could persist for about 120 min after cardiac arrest,
maintained by a slow spreading depolarization caused by
irreversible degenerative processes at the cellular level. Apart
from the transient spikes, LFP in stage 3 did not show significant
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asymmetry or skewness in the bispectral analysis (Figures 1C,D).
The power spectrum during stage 3 was flat with a slope of
−α3 ≈ −0.75 and represented the least power containing state of
our LFP measurement (Figures 1E,F). Given the low power level
during stage 3, it is possible that the spectrum reflected more of
the electro-thermal noise in the physical recording environment
surrounding the data acquisition system than neural activities.

3.2. Degradation of Theta After the First
Stage
In the previous section, we stated the stage 1 of spectrum
degradation ended with the erosion of observable theta and
the disappearance of the intermittent high-frequency activity.
Comparing HPC and MEC spectrograms, we observed that the
transition from stage 1 to stage 2 was synchronized across these
regions (Figure 2, Supplementary Figures 4B,C). Although the
typical theta oscillation along with its harmonics was no longer
visually observable in the raw LFP after stage 1 (Figures 2B,C),
the power in theta band (6–10 Hz) only exhibited a limited
decrease from stage 1 to stage 2 in the HPC and MEC regions
(Figure 3C and Supplementary Figures 8–11). Therefore, to
determine if the 6–10 Hz frequency component is a degenerate
form of theta or due to a different mechanism, we sought
to determine if the band shared features generally associated
with theta.

A linear and non-linear spectral analysis was conducted to
investigate the coupling in theta band within HPC and across
regions. During stage 1, strong coherence existed at theta and
theta harmonics frequency range across HPC layers (Figure 3A).
The high coherence was consistent with the observation that
the hippocampal LFP was dominated by theta waves, and the
theta oscillation experienced a phase reversal at hippocampal
fissure (Winson, 1974). The coherence at theta rhythm can also
be observed between HPC andMEC regions, which was expected
given the strong reciprocal connections between these structures
and the observation of traveling theta waves in both regions
(Lubenov and Siapas, 2009; Hernández-Pérez et al., 2020). To
identify the fundamental frequencies of the LFP and determine
any potential interactions across different oscillatory bands, a
power correlation analysis (Masimore et al., 2004, 2005) was
conducted. The analysis revealed that during stage 1, the power
of theta, the power of theta harmonics, and the gamma rhythm
(60–120 Hz) were all positively correlated (Figure 3D). In terms
of non-linear cross-frequency coupling. the non-linearity of
theta can be investigated through the use of the bispectrum,
expressed as a significant region at the frequency triad (8, 8, 16)
Hz (Figure 1). The cross-frequency coupling existed not only
within the hippocampal region, but also between HPC and MEC
regions. Figure 3E showed the cross-region cross-frequency
coupling for the frequency triad

(

fx, fy, fx + fy
)

where fx, fy
belonged to CA1.Pyr and fx+y belonged to MEC. The cross-
bispectral analysis revealed that theta and theta harmonics were
cross-frequency coupled across HPC and MEC regions during
stage 1. To summarize, theta rhythm in stage 1 had the following
features: (1) The oscillations at theta range were coherent within
HPC, and between HPC and MEC. (2) The power of theta is

positively correlated with power of gamma. (3) When the power
of theta was strong, theta was phase-coupled with high order
theta harmonics.

After stage 1, there was considerable power persisting in
the 6-10 Hz frequency band at the end of stage 2. Specifically,
there was high coherence around 10 Hz within the hippocampus
(Figure 3A). However, the across region coherence was weak
(Figure 3B). Moreover, as the majority of frequencies degraded
together, the power correlation during the second stage- except
for the 10 Hz oscillation- were positive. That was consistent
with the “parallel” spectrum degradation where all the frequency
components experienced power decay. The 10 Hz oscillation,
however, had a negative power correlation due to the power
increase at the end of stage 2 (Figure 3D). The cross-bicoherence
also showed that the cross-frequency coupling between HPC and
MECwas weak during stage 2 compared with stage 1 (Figure 3E).
Although the oscillation had a frequency close to theta and high
coherence within HPC region, it was not coherent between HPC
and MEC, nor correlated with other frequency bands. Therefore,
it is most-likely distinct from theta as it does not engage a
large population of neurons across brain regions, but is perhaps
related to a local hippocampal network dynamic (e.g., O’Keefe
and Recce, 1993).

3.3. Uniform Exponential Power Decay in
the Second Stage
In the previous section we have shown that during stage
2, except for the 10 Hz oscillation, the power of all the
frequency components were positively correlated in that their
power receded together. In this section, we investigated how
power of different frequency components evolved during the
entire euthanasia process (Figure 4A). According to the power
evolution plot there are two periods of rapid change: (1) In
the transition from stage 1 to stage 2, there was a marked
divergence between low and high frequencies, potentially carried
by the development of 10 Hz power and the loss of power in
higher frequencies. (2) From stage 2 to stage 3, low frequency
components experienced another rapid decay because of the
collapse of power-law spectrum (red arrow in Figure 4A).
Between these two transition periods, the power evolution of
frequency components from 20 to 120Hz can be approximated as
straight lines. In the semi-log plot the straight line evolution can
be interpreted as exponential decay (stage 2 indicated as red box
in Figures 4A,B). The slopes of these power lines reflected the
decay rates of corresponding frequency components, and during
stage 2 the power evolution were almost parallel which indicated
that frequency components shared a similar decaying rate.

The decaying rate (in the unit of Hz) can be quantified
by differentiating power time-series with respect to time, and
normalizing the time derivative by the power (Figure 4B).
During stage 2 of spectrum degradation, the frequency
components over 20 Hz decayed at similar rate with a decay
constant around 0.03 Hz. This exponential decay of high-
frequency components lasted shorter amounts of time as
their power reached the low background energy plateau and
experienced limited power decay afterwards. Stage 2 ended with
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a rapid decay of low frequency components with decaying rat of
0.06 Hz corresponding to the collapse of the power-law spectrum.

Similar rates of power decay during stage 2 were observed
across animals and regions (Figure 4C). The decay rates of
frequency components lower than 20 Hz were small due to the
development of a 10 Hz rhythm at the end of stage 2. The
spectrogram in Figure 2 indicated that the 10 Hz frequency
was a degraded form of a 20 Hz rhythm presented earlier in
the degradation process. In the spectra evolution (Figure 2A
and Supplementary Figures 4–7) the 10 to 20 Hz oscillation
acted as a spectrum front, but the reason of its generation
and development is unknown. Apart from that, other frequency
components had a exponential decay with decay constant at the
magnitude of 0.03 Hz in HPC in MEC. One exception is rat 889
which had a longer stage 2 and the decay rates were significantly
lower than other rats.

The exponential decay occurred within the gamma range
(Bragin et al., 1995; Chorbak and Buzsaki, 1998), defined here
as 60–120 Hz based on the power-power couplings observed
in Figure 3D and based on prior publications (Sheremet et al.,
2019a; Zhou et al., 2019). As the gamma oscillations are short-
lived and typically emerge from the coordinated interaction of
excitation and inhibition (Buzsaki andWang, 2012), the patterns
of gamma rhythm is closely related to local circuit connections
and thus have layer specification. To investigate whether the
development of gamma rhythm during barbiturate overdose
euthanasia is dependent on layers, the evolution of gamma power
in layer pyramidal layer (Pyr), radiatum (Rad), lacunosum-
moleculare (LM), and MEC layer were plotted (Figure 5A). The
hippocampal electrode location was confirmed by current source
density (CSD) analysis of hippocampal sharp-wave ripple events
(Supplementary Figure 2). During stage 2, MEC gamma rhythm
experienced a faster decay compared with that in HPC strata,
which was reflected as a steeper slope in the semi-log gamma
power plot. Within the HPC region, however, the degradation
of the gamma rhythm did not exhibit strong layer dependence.
The gamma power curves were almost parallel during stage 2,
with the initial gamma power being the primary difference. The
power decay rates of frequency components in gamma range also
exhibits strong correlation within and across layers (Figure 5B).
Apart from the low frequency range which was influenced by
the development of 10 Hz oscillation during stage 2, most of
the frequency pairs had a correlation coefficient in decay rate
over 0.4, and the correlation coefficients grow as approaching the
diagonal. The strong correlated decay rates across frequency pairs
implied that during stage 2, the frequency components in gamma
band experienced a uniform power deprivation. As the cross layer
decay rate correlation had similar magnitude with same layer
correlation, we reported that no significant layer dependence of
gamma evolution was observed during stage 2 of barbiturate
overdose euthanasia.

4. DISCUSSION

The current manuscript investigated the degradation of the
hippocampal power spectral density over the course of

euthanasia. Perhaps the most outstanding result is the magnitude
of power loss across all frequency bands. Comparisons of power
spectral densities between sleep and wake states (e.g., Figure
4 of Buzsáki et al., 2003; Supplementary Figure 1) reveal that
the overall “1/f” is well-preserved even in quiescence. The
dramatic collapse over euthanasia suggests that the brain is in
a persistent state of near-maximal activity, a conclusion arrived
upon in perhaps the earliest characterization of the 1/f power
spectral density: “Our theory outlined above claims that the sum
of energy is held at the maximum even in the passive state of
consciousness...” (Motokawa, 1949). This is to emphasize that, as
the LFP is primarily shaped by synaptic transmembrane current
(Buzsaki et al., 2012), the normal functioning brain is constantly
maintaining baseline activity far from equilibrium. And although
the slope of the spectra has been known to change as a function
of running speed (Sheremet et al., 2019b), the parametric space in
which the 1/f slope changes is small relative to power in specific
frequency bands, such as theta. Therefore, examining the LFP
over the course of euthanasia offers a larger parametric space to
explore the mechanisms that support the 1/f spectra.

We observed three states of spectral degradation. Stage 1,
or pre-effective stage, can be described as a typical “active,”
theta-dominate state where the 7–10 Hz rhythm is readily
identifiable in the LFP and the power spectrum. In stage 2, or the
quasi-stationary decay stage, the theta peak above the 1/f slope
degraded. This was associated with a reduced theta coherence
between the medial entorhinal cortex and hippocampus. This
suggests that, in the early part of stage two, the ability of
the medial entorhinal cortex and hippocampus to interact is
impaired but not absent. As stage two progressed, the spectrum
displayed a “parallel” degradation that can be interpreted as the
entire spectrum having a decay in power along with a shift toward
lower frequency. Interestingly, the erosion in higher frequency
bands (including the 60–120 Hz gamma band) was accompanied
by the appearance of a 10 Hz peak in the power spectral density.
The duration of stage 2 persisted longer in the hippocampus
relative to the medial entorhinal cortex (which did not exhibit
a 10 Hz peak). The end of stage 2 and start of stage 3 was
marked by a complete collapse of the power in all spectral bands,
with low activity in nearly all bands and occasional large spikes
that plausibly related to spreading depolarization (Pani et al.,
2018). Finally, the activity reached a minimum, credibly being
the electro-thermal noise in the physical recording environment
surrounding the data acquisition system.

As it would be a rare instance for a single experiment to
comprise a full test of any hypothesis, it is first necessary
to discuss the limitations of the current study before making
theoretical extensions. The most-outstanding limitation of the
study was the use of the pharmacological agent to induce
euthanasia. The action of SomnaSol is systemic, making it
difficult to infer the spectral decline mechanism. We cannot
expressly state that the lack of perfusion, the action of the
barbiturate on the GABAergic system, the combination thereof,
etc., is exclusively responsible for the recession in power seen in
specific frequency bands. Furthermore, pentobarbital is known
to augment the contractile activity of muscle fibers and reduce
the cells’ ability to maintain appropriate calcium homeostasis,
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FIGURE 4 | Power decay of frequency components over the euthanasia process. (A) The power evolution for frequency component from 10 to 120 Hz. Each line

corresponded to the power decay of one frequency component. Low frequency components were indicated by cold colors and high-frequency components by warm

colors. Note the power were normalized by their value at the time of injection (t = 0), and the 10 Hz frequency component experienced a growth at the end of stage 2.

Data from rat 782. (B) The percentage power change rates of different frequency components over the entire spectrum degradation process. To obtain the percentage

power change rate, the power time series for each frequency component was first estimated and the percentage power change rate was defined as the ratio of the

time derivative of power time series to the power time series. If a frequency component experiences a exponential decay or grow eαt, the percentage power change

rate will be a constant with value α. Data from rat 782. (C) The decay constant vs. the frequency during the exponential decay stage. The left panel were the decay

constants in HPC among rats and the right panel were decay constants in MEC. The decay constant were estimated by averaging over the entire stage 2 period. Note

that the overall decay rate of rat 889 was smaller compared with other rats because rat 889 had a longer stage 2 (see Supplementary Figure 6).

thus initiating a contracted state (Nayler and Szeto, 1972;
Khan, 1980; Taylor et al., 1984; Eikermann et al., 2009). We
observed high-frequency bursts above 128 Hz, most-likely being
an EMG artifact as the rhythm is phase-locked across regions
(see Supplementary Figure 9). Unfortunately, this precludes the
ability to either examine high-frequency rhythms or action
potential activity of the neurons. Moreover, the large LFP spikes
between stages 2 and 3 could be a filtered version of cortical
spreading depression due to AC-coupled amplifiers. Future
studies should address these limitations by using alternative

forms of euthanasia, attempt to minimize EMG artifacts, and
implement a DC-coupled recording to explore the cortical
spreading depression.

Nevertheless, the use of SomnaSol resulted in a total
spectral collapse, with a recession in power from high to low
frequencies. We interpret these results from the perspective
of the energy cascade hypothesis, where low frequency, high
power rhythms are a function of large-scale activity extending
beyond a single brain region and high-frequency, low amplitude
oscillations are small-scale interactions (Buzsaki and Draguhn,
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FIGURE 5 | Gamma decay during stage 2. (A) The evolution of LFP variance band-passed in gamma range (60–120 Hz) in different layers. The durations of stage 2

are different in HPC and MEC regions, and are marked with shaded rectangles in the plot. Data from rat 782. (B) Averaged auto- and cross correlation coefficient of

decay rate during stage 2. The decay rate (defined as in Figure 4B) of each frequency component was computed and treated as a time series. Then the correlation

coefficients were estimated for time series pairs from either the same layer or different layers. Within a region, the correlation of a frequency’s decay rate with itself is

equal to one. Furthermore, as the autocorrelations are symmetric, only one half is presented. The cross-correlation of decay rate, however, can vary across unity and

is not necessarily symmetric. For instance, the bottom right panel represents the correlation of the decay rates in pyramidal (y axis) to that in MEC layer (x axis). Note

that for the MEC-related panels (the rightmost column), the data were averaged between rat 730 and rat 782, and the decay rates were estimated over the MEC

stage 2 period. For other panels, the results were averaged across all the five rats. P, pyramidal layer; Rad, radiatum; LM, lacunosum-moleculare; MEC, medial

entorhinal cortex.

2004; Buzsaki, 2006; Sheremet et al., 2019a). Relative to the more
extensive networks, smaller networks are less fault-tolerant as
they are fewer in number and have fewer supporting synaptic
connections. Thus, as there is less degeneracy/redundancy in
small networks, compromising the function of a few neurons
would be more catastrophic. The large number of neurons and
extensive connectivity in a network supporting slower frequency
rhythms would be more fault-tolerant, allowing it the ability
to suffer a more significant loss prior to collapsing. This idea
is supported by the observation of a progressive recession of
power throughout stage 2. As more neurons succumb, there
is a progressive loss of power from high to low frequencies
that continues until the final remnants of rhythmic activity is
supported by the most robust network.

At the end of stage 2, the erosion of high-frequency power
appears to temporarily stop at ∼10 Hz in the hippocampus.
Theoretically, this “last stop” in rhythmicity may be a function
of the dense anatomical connectivity within the hippocampus
(Lorente de No, 1938), with a frequency that reflects the intrinsic

membrane resonance properties of the pyramidal cells and
a subpopulation of interneurons (O’Keefe and Recce, 1993;
Kamondi et al., 1998; Yamaguchi and McNaughton, 1998; Bose
et al., 2000; Magee, 2001; Lengyel et al., 2003; Maurer et al.,
2005, 2006; Geisler et al., 2007). Finally, when either there is a
critical loss of hippocampal neuron function or the excitatory
input into the hippocampus declines to the point that it is no
longer able to excite a sufficient proportion of the hippocampal
population, there is a complete collapse of the spectrum to
quiescent levels. Notably, the medial entorhinal cortex exhibited
a collapse in the faster rhythms prior to the collapse of the same
frequencies across the hippocampal layers. This suggests that the
mechanisms that support the higher-frequency rhythms in the
hippocampus, such as gamma, are not necessarily relayed into the
hippocampus but are most-likely generated locally (Buzsaki and
Wang, 2012). As interneurons are prevalent across hippocampal
layers (Klausberger and Somogyi, 2008), it is tenable that
GABAergic circuits support the gamma rhythm observed across
layers, with oriens lacunosum moleculare interneurons plausibly
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playing a major role in shaping the high frequency power in the
lacunosum moleculare layer of CA1.

Up to this point, we have used a heuristic in which specific
bands are described as “rhythms” or “oscillations,” which implies
the converse features “noise” and “arrhythmia” exist. While there
has been immense utility in using this approach, there are distinct
differences between biology and the imperfect analogy that leads
to ambiguity or misunderstanding in the scientific interpretation
of the results (Chapter 2 of Başar 2012). This has been briefly
mentioned before by Wang and Buzsaki “. . . although the word
‘rhythm’ readily conjures up the picture of a clock, gamma
rhythms occur in relatively short bursts and are quite variable
in frequency. . . ” (Buzsaki and Wang, 2012). The notion of a
rhythm-to-clock relationship is most likely tied to the power-
frequency representation in time-series decompositions. This
was initially described as the “Fourier Fallacy” in which one
assumes, based on the power spectra, that all the necessary
frequencies in the power spectra occur as periodic sine waves in
the brain (Jasper, 1948; n.b., this applies to any method which
provides a “one power to one frequency” relationship). Indeed,
the concept of a unique neurobiological generator ascribed to
each Fourier frequency is more magic than reality (He, 2014).
However, the gap between the abstract representation of a
spectral decomposition and neurobiology has yet to be fully
fleshed out. Therefore, the field reaches a crossroads where
we are either left to (1) expand on the notion of Wang
and Buzsaki (2012) and explore the idea that the interrelated
frequencies in the LFP are primarily the consequence of synaptic
transmembrane currents from a local network when receiving a
barrage of input or (2) whole-heartedly buy into the idea that
there are divisions to be made between neural rhythms and
neural noise.

The power spectral density is a low-dimensional abstraction
of the actual raw time series, collapsing the underlying time-series
to a decimation of sine waves. Any such transformation requires
significant consideration regarding the relationship of the raw
data to the algorithmic lens (Rosen, 1991). One hypothesis
suggests the peaks above the 1/f slope are true neurobiological
oscillators, whereas the slope itself is the consequence of a
distinct broadband, arrhythmic activity (He, 2014) or similarly,
rhythmicity superimposed onto a wide-band, noisy background
(Bullock et al., 2003). Along these lines, analytical toolboxes
have been released that claim to dissect the periodic components
from the aperiodic components of the LFP (Donoghue et al.,
2020). However, this perspective falls to a different sort of
Fourier Fallacy in which a dichotomous “periodic” vs. “aperiodic”
division based on the idea that the underlying neurobiology
has two opposing physiological patterns: one that makes a
pure rhythm (peaks in the power spectra) and another that
makes noise (the 1/f slope; Voytek et al., 2015). The major
flaw in this perspective is that it over interprets the abstract
representation of a power spectral density plot, assuming that
it provides more information than what can be observed in
the raw LFP trace. Specifically, any measure of “rhythmicity”
in the nervous system should not only measure power, but
the degree to which their phase assignment of each sine wave
aligns. As an exercise, conduct a Fourier decomposition on a

musical concerto, maintain the power across each sine wave but
randomize their phases and listen to the time-series recovered
using the inverse Fourier transform. The composition falls into
discord. Any rhythmicity in the musical time-series is effectively
destroyed while the power spectral density retains the same exact
form. Therefore, it becomes evident that the power spectral
density is an incomplete tool to make a rhythm vs. noise
division in any time series. With respect to neurophysiology, the
division misinterprets the abstract decomposition for a literal
representation, obfuscating the biophysics of the system.

Wang and Buzsaki provided a glimpse into an alternative
hypothesis in which the nervous system works through evolving
unique spatio-temporal patterns (Buzsaki and Wang, 2012).
These spatio-temporal patterns may sometimes manifest as easy-
to-identify rhythms. However, the nervous system did not evolve
to perfect “clockwork operations”. It should be appreciated
that a single synaptic event can have rhythmic entrainment to
both “theta” and “gamma” bands, challenging the heuristic of
independence across rhythms. Instead, the dynamic patterns in
the LFP are closely related to how the activity spatio-temporally
evolves a reentrant network (Berg et al., 2019; Maurer and Nadel,
2021). While there is comfort in giving independence to specific
patterns like theta and gamma, neurobiology makes no such
distinction. To the neuroscientist, the Greek letters have meaning
with respect to biophysical scale and the neurotransmitter
shaping their interactions (among other features). The nervous
system however is not self-aware of actions within a single
frequency band. To relate a specific band to a behavior or
cognitive function first and foremost requires a neurobiological
description (what neurobiological or synaptic events lead to
the increase in 80 Hz activity?) rather than a psychological,
correlational answer (attention caused the increase in the 80
Hz band). The Greek letter-defined rhythms, while helpful in
colloquial discussion, gave a platform to assign them individual
tasks, such as synchronizing, entraining, buffering memory,
and/or being a physiological readout of psychological function—
a personification of sorts that speaks to the danger of taking
the “rhythm” heuristic too far. Instead, it should be appreciated
that the LFP is related to the non-linear spatio-temporal
patterns that occur within a network of densely interconnected
neurons, or more specifically, the LFP is primarily a biophysical
product of the synaptic transmembrane currents associated with
these dynamic patterns. In this reinterpretation, theta is the
propagation of activity along a large “macroscale” loop. Nested
within this large loop aremany smaller loops in which the activity
can be reciprocally coordinated on the mesoscale, supporting
faster rhythms, such as gamma (Buzsaki and Draguhn, 2004;
Buzsaki, 2006). The scales—and the names that define them-
are not orthogonal but intricately coupled. The nervous system,
however, does not care should a “peak” appear in the power
spectra of the LFP.

Therefore, we offer to replace one heuristic (“rhythms,”
“oscillators,” “noise,” “arrhythmia”) with another system defined
by forcing and nested loops of multiple scales: the cardiovascular
system. Should one measure the velocity of a red blood cell
in a capillary, the time-series itself will exhibit the dominant
frequency of the heartbeat (macroscale forcing event). As
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heartbeats are “slow charge, rapid discharge” event, the large
amplitude changes in velocity will exhibit a significant deviation
from a sinusoid. Furthermore, this forcing occurs as a cascade
from macro to micro scale, from arteries through arterioles
to capillaries. Thus, blood cell velocity will be subjected to
other influences, such as friction as a result of running into
the other blood cells or the vascular walls or even form high-
frequency turbulent eddies (e.g., partial occlusion). This jostling
can be identified in the velocity profile as being a repeatable,
low amplitude-high-frequency event coupled to the macroscale
heartbeat frequency. Finally, decomposing the red blood cell
velocity would reveal a power spectra density eerily similar
to the hippocampus, complete with a fundamental frequency,
harmonics, and a 1/f background (see Figure 2B of Harlepp
et al., 2017). In fact, one may suspect that the influence of
pentobarbital on the power spectra of red blood cell velocity
would parallel the degradation observed in the LFP, with the
highest frequencies succumbing first. Therefore, while Fourier
decomposition is certainly a useful tool in time-series analysis,
defining the presence of an oscillation as a peak above the
background and the absence as having no peak along the
1/f background as “aperiodic” from the power spectra has a
peculiar and contracted relevance. The cardiovascular system
never evolved to make rhythms or arrhythmic activity but takes
advantage of a turbulent energy cascade across scales to move
blood cells (Saqr et al., 2020).

As “...the EEG reflects the ‘average’ behavior of neurons”
(Buzsaki, 2006, p. 129), the analogy above has a direct relation
to neurophysiological theories incorporating the classical
physics theory of turbulence into the description of the LFP
(Sheremet et al., 2019b; Deco and Kringelbach, 2020). An
action potential of a single neuron represents the smallest
spatio-temporal event, the microscale component, that resides
in nested loops of multiple scales. The LFP is the aggregate
activity related to activity moving through multiple loops of
different scales simultaneously. The movement of the activity
through the nervous system is, from this perspective, a unitary
process where activity “chases is own tail” through reentrant
loops (Hebb, 1958). Cross-frequency dependence becomes
the rule rather than the exception. Certainly, there may be
activity that expresses as a peak above the 1/f background,
such as theta, which comprises the movement of activity
on the macroscale. However, oscillations like gamma rarely
peak above the background (Zhou et al., 2019) and yet
also describe the mesoscale volleys of activity governed by
interneurons. Rather than making false dichotomies between
“non-rhythm/rhythm,”“present/absent,”“periodic/aperiodic” a
new appreciation is required in which the LFP is a reflection of
the underlying evolution of spatio-temporal patterns within a
densely interconnected network of neurons.
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Supplementary Figure 1 | Background spectrum of hippocampal LFP. The

background spectrum is indicated as the gray dashed line. Theta, theta

harmonics, gamma, and ripple will develop on the background spectrum at

different behaving states.

Supplementary Figure 2 | Hippocampal lamination of five rats with current

source density (CSD) analysis. The CSD analyses were triggered on the maximum

positive-going ripple in the pyramidal cell layer. DOF, Degree of freedom, indicating

the number of ripple events. Strong sharp wave sources and sinks can be

observed at pyramidal layer (Pyr), stratum radiatum (Rad), lacunosum-moleculare

(LM), and upper granule layer (G). Embedded high-frequency ripples can be

spotted at strata Pyr and Rad.

Supplementary Figure 3 | Coherent high-frequency bursts (>128 Hz) during

stage 1. (A) Power evolution of frequency components over 128 Hz during early

stage of euthanasia. Four instances with strong (2nd and 3rd) or weak (1st and

4th) high-frequency power were marked with dashed lines. (B) Raw LFPs of four

layers (Pyr, Rad, LM, and MEC) at instances marked by dashed lines in (A). (C)

LFPs band-pass filtered in frequency range 140–160 Hz at instances marked by

dashed lines in (A). At instances with strong high-frequency power (2nd and 3rd

columns), synchronized wave envelopes can be observed across layers. (D)

Evolution of coherence between Pyr and LM. (E) Evolution of coherence between

Pyr and MEC layer. (F) Evolution of phase lag between Pyr and LM. (G) Evolution

of phase lag between Pyr and MEC layer. According to (D–G), during the stage 1

of degradation, the cross-spectrum at high-frequency range (>128 Hz) is

dominated by zero phase-lag high-coherent events.

Supplementary Figure 4 | Similar with Figure 2. Data from rat 730.

Supplementary Figure 5 | Similar with Figure 2. Spectrum degradation in

hippocampus. Data from rat 829.

Supplementary Figure 6 | Similar with Figure 2. Spectrum degradation in

hippocampus. Data from rat 889.

Supplementary Figure 7 | Similar with Figure 2. Spectrum degradation in

hippocampus. Data from rat 1074.
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Supplementary Figure 8 | Similar with Figure 3. Data from

rat 730.

Supplementary Figure 9 | Similar with Figure 3 without cross region coherence

and bicoherence. Data from rat 829.

Supplementary Figure 10 | Similar with Figure 3 without cross region

coherence and bicoherence. Data from rat 889.

Supplementary Figure 11 | Similar with Figure 3 without cross region

coherence and bicoherence. Data from rat 1074.
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Recurrent circuitry components are distributed widely within the brain, including both
excitatory and inhibitory synaptic connections. Recurrent neuronal networks have
potential stability problems, perhaps a predisposition to epilepsy. More generally,
instability risks making internal representations of information unreliable. To assess the
inherent stability properties of such recurrent networks, we tested a linear summation,
non-spiking neuron model with and without a “dynamic leak”, corresponding to the low-
pass filtering of synaptic input current by the RC circuit of the biological membrane. We
first show that the output of this neuron model, in either of its two forms, follows its
input at a higher fidelity than a wide range of spiking neuron models across a range
of input frequencies. Then we constructed fully connected recurrent networks with
equal numbers of excitatory and inhibitory neurons and randomly distributed weights
across all synapses. When the networks were driven by pseudorandom sensory inputs
with varying frequency, the recurrent network activity tended to induce high frequency
self-amplifying components, sometimes evident as distinct transients, which were not
present in the input data. The addition of a dynamic leak based on known membrane
properties consistently removed such spurious high frequency noise across all networks.
Furthermore, we found that the neuron model with dynamic leak imparts a network
stability that seamlessly scales with the size of the network, conduction delays, the
input density of the sensory signal and a wide range of synaptic weight distributions. Our
findings suggest that neuronal dynamic leak serves the beneficial function of protecting
recurrent neuronal circuitry from the self-induction of spurious high frequency signals,
thereby permitting the brain to utilize this architectural circuitry component regardless of
network size or recurrency.

Keywords: neuron model, recurrent networks, dynamic leak, spurious high frequency signals, non-spiking,
excitation, inhibition

INTRODUCTION

Recurrent excitatory loops are a common feature in the central nervous system, such as in
neocortical circuits (Binzegger et al., 2004; Song et al., 2005; Koestinger et al., 2018; Kar and
DiCarlo, 2020), thalamocortical loops (Steriade, 1997; Hooks et al., 2013), cerebrocerebellar and
spinocerebellar loops (Allen and Tsukahara, 1974; Jörntell, 2017). Inhibitory interneurons have
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been described to provide lateral inhibition (Zhu and Lo, 2000;
Douglas and Martin, 2009; Obermayer et al., 2018; Rongala
et al., 2018) and feed-forward inhibition (Swadlow, 2003;
Isaacson and Scanziani, 2011), but they also make synapses on
other inhibitory neurons, thereby potentially forming recurrent
disinhibitory loops as well (Jörntell and Ekerot, 2003; Pi et al.,
2013; Sultan and Shi, 2018). Furthermore, such excitatory
and inhibitory connectivity has been reported to be balanced
(Anderson et al., 2000; Wehr and Zador, 2003; Okun and Lampl,
2008). Functionally, recurrent connections enable a network to
use preceding states to impact the processing of the present
state. Such state memory can, for example, improve learning
performance (Sutskever et al., 2014). However, due to the
many potential positive feedback loops in larger networks with
extensive recurrent connections, imbalances in excitatory (E) and
inhibitory (I) synaptic activity could lead to activity saturation
(Brunel, 2000; Vogels and Abbott, 2005), such as observed in
epilepsy (Chakravarthy et al., 2009; Liou et al., 2020), or, in milder
cases, a noise-like perturbation of the information content of
internal signals, which would be disadvantageous for learning.

We explored potential noise and stability issues that could
arise in recurrent neuronal networks. In order to focus on the
network architecture aspect of this problem, we used a non-
spiking neuron model designed to be simple and computationally
efficient, while embodying fundamental properties of Hodgkin-
Huxley conductance-based models. The relevance of a non-
spiking neuron model stems from the stochasticity inherent
in neuronal spike generation (Naundorf et al., 2006; Saarinen
et al., 2008; Spanne et al., 2014; Nilsson and Jörntell, 2021),
which renders the spiking output of the individual neuron
to some degree unreliable in terms of information content.
To compensate for such unreliability, the brain could encode
each representation across a population of neurons (below
referred to as an ensemble of redundant neurons), as has been
observed in the brain in vivo (Spanne and Jörntell, 2015).
The input-output relationships across a range of neuron types
in the central nervous system in vivo indicate that overall,
each neuron’s spike output is a probability density function
(PDF) of the underlying membrane potential of the neuron
(Spanne et al., 2014). That PDF thereby approximates the
membrane potential and could be considered to correspond
to the spike output of an ensemble of neurons with similar
inputs. Thus, simulating a non-spiking neuron and providing
the PDF of the neuron as its output avoids the extreme resource
demands of both simulating the highly complex spike generation
stochasticity (Saarinen et al., 2008) and compensating for
that stochasticity by simulating large populations of redundant
neurons. Synaptic input creates modulation of the neuronal
membrane potential, hence its PDF, by temporarily activating
conductances that are added to the static leak conductances.
The synaptic conductances and currents can modulate very
rapidly but the membrane capacitance together with the
static leak channels forms an RC circuit that constitutes
a low-pass filter (herein, dynamic leak) for the resultant
membrane potential. We hypothesized that this dynamic
leak would improve network stability without compromising
information transfer.

To test this hypothesis, we constructed a highly recurrent, two-
layer neuronal network, with five excitatory and five inhibitory
neurons in the first layer and four excitatory and four inhibitory
neurons in the second layer. All neurons in both layers
were reciprocally connected with randomized gains. All first
layer neurons were provided with six randomized and broadly
distributed input signals. A striking finding was that for all tested
network configurations, synaptic weight distributions, various
conduction delays and input density of sensory inputs, recurrent
networks tended to generate high frequency components that
were not present in the sensory input data. In all cases these
transients were eliminated by incorporating a dynamic leak in
the neuron models without compromising the representation of
the input signals.

We note that the fully reciprocal connectivity employed in
the networks described herein encompasses the wide range of
connectivity that has been identified experimentally in cortical
and other central neural structures (see above). The strictly
layered connectivity of many popular neural network models
for deep learning reflects only a small subset of the known
complexity of biological networks. Attempts to add limited
recurrency into such models have encountered stability problems
(Brunel, 2000; Vogels and Abbott, 2005), for which dynamic
leak appears to offer substantial mitigation. Chowdhury et al.
(2020) demonstrated that a leaky component (a low-pass filter
effect) in a spiking neuron model (Leaky-Integrate and Fire,
LIF, model) eliminates the high-frequency components from the
input, which resulted in improved robustness against random
noise in a multi-layer feed forward network trained with back-
propagation.

MATERIALS AND METHODS

Neuron Model
Linear Summation Neuron Model (LSM)
The neuron model implemented for this study was a non-spiking,
linear input summation model with an additional dynamic leak
component. For the version without dynamic leak, the activity
(ANoDyn ) was given by the total weighted input activity (w∗a)
(where a is the activity of each individual input and w is the
weight of that input) across all individual synapses (i) (Eq. 1).
Electrotonic compactness in the neuron is assumed, so that
all synapses have equal impact on the activity of the neuron.
This simplified model of synaptic input activity integration
can be shown to be closely related to a Hodgkin-Huxley (H-
H) model (see Appendix 1), for example resulting in the
preservation of two key dependencies of EPSPs and IPSPs on
membrane biophysics: (i) input response magnitude depends on
the difference between the membrane potential and the reversal
potentials for the relevant corresponding “ion channels” (i.e.,
depending on if the input is provided through an excitatory or
an inhibitory synapse); (ii) input response magnitude depends on
relative shunting of synaptic currents by conductances resulting
from the background of synaptic input activity (Eq. 1). The
responsive properties of the LSM and the H-H neuron model are
shown to be highly similar in Supplementary Figure 1.
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The LSM implemented a degree of activity normalization
(denominator of Eq. 1) by introducing a static leak, which was
calculated as the product of a constant (kstatic) multiplied by the
number of synapses on the neuron, plus a term reflecting the total
number of open channels, which is activity dependent.

To mimic the effect of the RC circuit created by the ion
channels and the capacitance of the membrane, we added a
dynamic leak function to the neuron. To test the impact of the
dynamic leak on network dynamics, we compared the networks
composed of neurons with the dynamic leak with the same
network when the neuron model did not include this dynamic
leak. The neuron activity for the neuron model variant with
dynamic leak (ADyn) is given by the linear summation model
with an additional leak time constant (τDyn). Larger neurons
with more synapses tend to have longer time constants (Zhang,
2004), so we tried various ways of scaling τDyn with number of
synapses i. Thereby, the dynamic leak integrates the function of
the capacitance in the RC circuit of the biological neuron into the
LSM (Eq. 2). The neuron activity of this model is given by the
following equations,

ANoDyn =

∑
(wi∗ai)

(kstatic∗i)+
∑
|wi∗ai|

(1)

τDyn∗ dADyn

dt
= −ADyn (t)+ANoDyn (t) (2)

0 ≤ ANoDynand 0 ≤ ADyn (3)

Figure 1 illustrates the output activity of individual LSM
neurons (Eqs. 1–3), which were isolated in the sense that
they were not connected to any neuronal network other
than the provided inputs, for different input combinations
(from left to right in Figure 1) of emulated excitatory and
inhibitory synaptic inputs (Figures 1A,B). The input spike
trains were convoluted using a kernel function in order to
emulate post-synaptic-potential inputs (detailed below, Eq. 6),
that were fed to the LSM neuron (Figures 1C–E). The LSM
activity without dynamic leak (ANoDyn , Figure 1F) shows the
activity normalization resulting from the static leak constant
(kstatic = 1, for this illustration), along with the effect of
the neuron output activity threshold at zero (Eq. 3). The
activity of the LSM neuron would also be expected to fall
back toward this zero level of activity without any external
or internal input. This level hence corresponds to a threshold
for spike initiation among a population of similarly connected
neurons that are typically represented by the one modeled
neuron. The output activity for the LSM neuron with dynamic
leak (ADyn, Figure 1G) exhibits a low pass filtering effect on
the output activity, which is reflective of the effect of the
RC component integrated in the LSM neuron model with
the dynamic leak.

Figure 2 illustrates the impact of various static and dynamic
leaks. As indicated in Figure 2A, the static leak constant
acts as a normalization factor for the total neuron activity,
without diminishing the underlying dynamics of that activity
(Supplementary Figure 2). At very low values of the static

FIGURE 1 | LSM responses to emulated synaptic inputs. (A) The activation
times of three different excitatory synaptic inputs are indicated as spike trains.
(B) The activation times of one inhibitory synaptic input. (C,D) The excitatory
and inhibitory sensory input spike trains were convoluted using a kernel
function (see section “Materials and Methods”) to create input that resembles
post-synaptic potentials. Note that the input to the LSM neuron can exceed 1
a.u., while the output of the LSM neuron cannot. Calibration applies to (C–E)
(traces in the shaded region). (E) The input from summation of the excitatory
and inhibitory inputs. (F) LSM (without dynamic leak, kstatic = 1) output activity
for the given PSP inputs. Calibration applies to (F–G). (G) LSM (with dynamic
leak, kstatic = 1, τ dyn = 1/100 s) output activity for the given PSP inputs.

leak constant, the mean activity reached sufficiently high
levels for the reversal potential to start having a significant
dampening effect on the activity dynamics (see uppermost trace
in Figure 2A), substantially reducing the coefficient of variation
(CV in Figure 2B). Figures 2C,D illustrates the additional impact
of various values of the dynamic leak constant. Figure 2C
and Supplementary Figure 3 demonstrate the filtering effect
of the dynamic leak constant on the total neuron activity.
A high value of this dynamic leak constant substantially
smoothens the activity dynamics, which was reflected in the
resulting low CV value (Figure 2D). The dynamic leak constant
(τDyn) was set to 1/100 for the rest of this study, unless
otherwise specified.

In Appendix 1, we show that the LSM neuron model can
be derived from a simplified H-H type conductance-based
neuron model. In the H-H model, the leak is proportional
to the membrane voltage and the synaptic currents are scaled
depending on the membrane voltage, so that the voltage is
limited to a fixed range. The differential equation describing
this model suffers from numerical instability, therefore we
solve it with the implicit Euler method. The model is simple
enough so that an analytical solution can be obtained. Key
H-H model features that are captured by the LSM neuron:
(i) the response to a given input scales with the difference
between the current activity level (membrane potential, V)
and the reversal potentials of the excitatory/inhibitory inputs
(which have been normalized to +1 and -1, respectively); and
(ii) the impact of a given input is scaled by the degree of
the shunting caused by the total synaptic activity the neuron
receives at that time.
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FIGURE 2 | Impact of static leak (kstatic) and dynamic leak constant (τ dyn) in LSM. (A) Impact of the value of kstatic in the LSM (for τ dyn = 1/100) for a given
pseudo-random sensory input at 50 Hz for each of six sensors (see Figure 3). (B) The perseverance of dynamics in the neuron activity (A) for varying kstatic value as
assessed by the coefficient of variation [CV = σ(A)/Á]. A higher value of CV indicates a higher activity variance relative to the mean activity. (C) Impact of the value of
τ dyn in the LSM (for kstatic = 1) for the same pseudo-random sensory input as in (A). (D) The CV as a function of the value of the dynamic leak (τ dyn) in the LSM.
The arrow indicates the value of τ dyn used in rest of this paper unless otherwise specified.

Izhikevich Neuron Model (IZ)
For the Izhikevich neuron model (Izhikevich, 2003), the
membrane potential (IZv) and the adaptation variable (IZu)
were updated via the following nonlinear differential equations
discretized using Euler’s method.

˙IZv = IZAIZ2
v +IZBIZv +IZC−IZu +(IZinput∗IZk) (4)

˙IZu = IZa(IZbIZv−IZu)

When the membrane potential reached the spike depolarization
threshold of 30 mV , one spike was produced followed by a reset:

if IZv ≥ 30mV,then
{

IZv ← IZc
IZu ← IZu +IZd

(5)

The IZA, IZB, andIZC parameters and the spiking threshold were
the standard ones of the Izhikevich artificial neuron model,
whereas the parameters IZa, IZb, IZc, and IZd were selected
(Table 1 and Figures 3E,F) to mimic a regular spiking behavior
(Izhikevich, 2003, 2004). IZinput was the input current to the
neuron model, that was weighted synaptic activity (w∗a) in this
article and IZk is the input gain factor.

Further, to analyze the IZ model behavior across different
spiking and bursting behaviors, we have explored the parametric
space (Table 2 and Figure 3G) of IZa, IZb, IZc, IZd, and IZk
(parameters in Eqs. 4, 5) within the boundaries identified in
Izhikevich, 2003. We investigated the IZ neuron model responses
(Figure 3G) across 405 different parameter settings for each given

input spike frequency. The parameter space was defined by the
possible combinations of parameters listed in Table 2.

Network Connectivity
Our network was a two-layer fully connected neuronal network
that comprised both inhibitory neurons (IN) and excitatory
neurons (EN) (Figure 4A). This network configuration provides
a simple system that includes the critical element of recurrency.
The network architecture is defined based on the following
two rules: (a) The sensory inputs are projected as excitatory
synapses to all neurons in layer 1 only; (b) All excitatory and
inhibitory neurons were fully reciprocally connected both within
and between layers. Most of the analysis reported here utilized
a "5 × 4" network architecture (five ENs and five INs in layer 1
and four ENs and four INs in layer 2). In the analysis of Figure 8,
where different network sizes were explored, we simply scaled up
the number of neurons in each layer using the same connectivity
rules (Figure 8).

A two-layer, fully reciprocally connected neuronal network
architecture with self-recurrent connections (autapses) was also
investigated. In this specific network architecture, in addition to
the network connectivity defined above, the excitatory neurons

TABLE 1 | Izhikevich neuron model parameters used in the evaluation of this study
(for the IZ model responses presented in Figures 3EâĂŞ-F and
Supplementary Figure 3).

IZA IZB IZC IZa IZb IZc IZd IZk

0.04 5 140 0.02 0.2 −65 8 300
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FIGURE 3 | Comparing the properties of different neuron models in isolation. (A) Pseudo-random input spike trains (six spike trains corresponding to the six sensory
inputs, with an average spike frequency of 50 Hz in each sensor). (B) The sensory input spike trains were convoluted using a kernel function (see section “Materials
and Methods”). The convoluted input responses were fed as weighted (randomly generated, mu = 0.4) EPSP inputs to the neuron model. (C) Output responses of
the LSM without dynamic leak. The red line is the mean across 50 presentations (each presentation made different by adding Gaussian noise, black lines). In this and
all panels below, tests were made for the neuron in isolation, without network connections. (D) Similar display as in (C), but for LSM with dynamic leak. (E) Similar
display as in (C), but for output responses of Izhikevich neuron model. The spike output of the Izhikevich neuron model were convoluted using a kernel function
(same kernel parameters setting as in (B). (F) Cross-correlations between the sensory input and the output responses of neuron models (illustrated in C–E).
(G) Cross-correlation between different sensory input frequencies and neuron model outputs across a range of IZ model settings, compared to the LSM with
dynamic leak. Thin blue lines indicate the cross-correlation with the sensory input for the IZ neuron model responses for each of the 405 IZ model parameter settings
(IZa, IZb, IZC, IZd , and IZk ; see section “Materials and Methods”) tested. Thick blue line indicates the mean of those cross-correlations. The red line indicates the
cross-correlation between the sensory inputs and the LSM outputs. Asterisk indicates the cross-correlation measure for the parameters chosen in Figure 3F.

projected excitatory synaptic connections onto themselves, and
inhibitory neurons projected inhibitory synaptic connections
onto themselves (Supplementary Figure 7A).

Sensory Inputs
In this article, we investigated the individual neuron responses
(Figures 2, 3 and Supplementary Figures 1–4) and network
dynamics (Figures 4–8 and Supplementary Figures 6, 7,
except Figures 7C,D) based on six sensory inputs. These
sensory inputs were pseudo-randomly generated (see below)
and provided as excitatory input to both excitatory and
inhibitory neurons. We also tested our recurrent networks
with higher input sensor density (#sensors = 6, 15, 30, and
50, Figures 7C,D), the inputs of which were also pseudo-
randomly generated.

Pseudo-Random Inputs
For the sensory inputs to the LSM and the IZ neurons,
we generated pseudorandom spike trains for several different
average frequencies (50, 100, 150, and 200 Hz, Figure 3A and
Supplementary Figure 4) with uniform normal distributions.
We used an inbuilt MATLAB function “randi” to generate the
spike time distributions in these spike trains. Furthermore, these
spikes were convoluted to resemble post-synaptic-potentials

TABLE 2 | Izhikevich neuron model parametric space explored in the evaluation of
this study (for the IZ model presented in Figure 3G).

IZa 0.02 0.07 0.1 – –

IZb 0.2 0.225 0.25 – –

IZc −65 −55 -50 – –

IZd 2 4 8 – –

IZk 100 200 300 400 500

(time continuous activity) using the following kernel equation
(Mazzoni et al., 2008),

ai =
τkm

τkd−τkr
∗

[
exp

(
−t−τkl−t∗

τkd

)
−exp

(
−t−τkl−t∗

τkr

)]
(6)

Where, t∗ is the input spike time,τkd is the decay time (4 ms),τkr
is the rise time (12.5 ms) and τkm is the constant to calculate
ration between rise time and decay time (21.3 ms), and τkl is
the latency time which is zero in this case. These values were
chosen based on the previous work (Rongala et al., 2018). The
convoluted sensor signal was then provided as synaptic input to
the neuronal network.

In order to analyze the network dynamics, we provided
50 presentations of the same pseudorandom spike trains
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FIGURE 4 | Activity dynamics in a sample recurrent network. (A) Principles of
the connectivity structure in the recurrent network studied. Note that the
default network, and the one used in panels (B–I) of this figure, contained
excitatory neurons (five in the input layer, four in the output layer) and inhibitory
neurons (same numbers) with the same connectivity, whereas only the
neurons in layer 1 also received sensory inputs (the same six sensory inputs to
each neuron) with all synapses having randomly generated Gaussian weights
(mu = 0.4). (B) Frequency plot of the activity in an excitatory neuron.
(C) Similar plot for an inhibitory neuron. (D) Raw data plots for sample signals
in the excitatory neuron generated at the indicated presentation #. (E) Similar
plot for the inhibitory neuron. (F–I) Similar plots as in (B–E) but when all the
neurons were modeled to include the neuronal dynamic leak.

(for each given average frequency). Each input presentation
differed by an addition of random noise of ±10 ms to
individual spike times (Figures 3C–E, black lines) to the
reference pseudorandom spike train (Figure 3A, for spike

frequency of 50 Hz). These presentations were concatenated
without pause or reset between them, so the input subdivided
into 50 presentations was in effect one long presentation
lasting for 50,000 ms.

To allow a comparison with the output of the LSM, we
convoluted the output spike trains also of the spiking neuron
model (IZ). The process of convolution emulated a post
synaptic response that would have been generated in a receiving
neuron, whereas the LSM output itself directly corresponded
to such a signal.

Synaptic Weights
All excitatory and inhibitory synaptic weights in the network
were randomly distributed, including the excitatory sensory
inputs to only the layer 1 neurons. The synaptic weight
distributions were either normal, lognormal or binary. The
normal and the log-normal distributions were generated for
different mean weights (µ) (values between 0.1 and 0.5) each
with a fixed coefficiency of variation (cv) of 20% [where sigma
(σ) = (cv / 100)∗µ]. For binary distributions, we tested different
probabilities of high weight synapses (w = 1) (probability varied
between 10 and 50%), whereas the remainder of the synapses
were set to zero weight (Figures 5A–C).

Statistical Analysis
Cross-Correlation
The correlation index measure was used to compute the
similarity of the responses of the neuron models (Figures 3F,G
and Supplementary Figure 4E). The correlation between two
signals was computed with an inbuilt MATLAB function “xcorr”
(with zero lag), which produces values from 0 (uncorrelated)
to 1 (identical).

Frequency Analysis
We performed a continuous wavelet transform (using an inbuilt
MATLAB function “cwt”) in order to define the frequency
composition of the input signal over time. The wavelet transform
was used to extract the power of each frequency band as a
function of time for the continuous neuron activity signal. Here,
we reported (Figures 4–8 and Supplementary Figures 5–7), for
each frequency band, the maximum power of the signal within
each input presentation time window (1 s).

In Supplementary Figure 5, the frequency analysis was
performed on the sensory input signals (on the convoluted
signal for each given average spiking frequency) across all the 6
sensory inputs for all 50 presentations (see section “Materials and
Methods”). The maximum power was computed for each sensory
input and each presentation, and the average across all six input
sensors was reported in this figure.

In Figure 4, the frequency analysis was performed on
the activity of one excitatory and one inhibitory neuron
in layer 1 (Figures 4B,C,F,G) across all frequencies and
presentations. Supplementary Figure 6 display the frequency
analysis performed on the activity of all excitatory and inhibitory
neurons in the network of Figure 4A. A similar frequency
analysis was carried out in Figures 5–8 and Supplementary
Figure 5, which show the average maximum power calculated
across all neurons in all layers and across all 50 presentations.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2021 | Volume 15 | Article 65640166

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-15-656401 May 19, 2021 Time: 14:7 # 7

Rongala et al. Neuron Leak Stabilizes Recurrent Networks

FIGURE 5 | High frequency components and the effect of dynamic leak across different synaptic weight distributions. (A–C) The three types of synaptic weight
distributions that were explored (Gaussian, Log-Normal, and Binary) and the average weight distributions for each mean weight value (five weight distributions were
generated for each mean weight). (D) The frequency power distributions across all the above synaptic weight distributions. Color keys for the different average
synaptic weights are in (A–C). (E) Similar display as in (C), for the same networks but with the neuron model with dynamic leak. Dashed orange traces in (D,E) show
the corresponding frequency power distribution for the sensory inputs at 50 Hz, averaged across the six sensory inputs, for comparison.

RESULTS

Comparison to Spiking Neuron Models
We first characterized the input-output relationship of the
neuron model in isolation (Figure 3) for a standardized sensor
input, consisting of randomized spike times in six sensor
neurons that were convoluted to time-continuous input signals.
These were synaptically integrated by a single modeled neuron
(Figures 3A,B). The activity of the non-spiking LSM (linear
summation neuron model) was compared with that of a spiking
neuron model (Izhikevich, IZ), in terms of how well their
output (Figures 3C–E) correlated with the input (Figure 3F).
The IZ neuron model was chosen for this comparison, as it
was created to mimic a rich neuronal response dynamics with
computational efficiency (Izhikevich, 2003). The spikes generated
by the IZ neuron model were convoluted (see section “Materials
and Methods”) to a time continuous signal (Figure 3E) in order
for it to be comparable with the output of the LSM.

Both neuron models (LSM and IZ) were provided with the
same pseudo-random sensory inputs (average firing frequency of
50 Hz in each of six sensors, see section “Materials and Methods”)
connected via six different synapses (Figure 3B). The IZ neuron
model parameters for this particular comparison (Figures 3E,F)
were chosen to mimic the regular spiking behavior (hypothesized
to be a common neuron behavior in cortex; Izhikevich, 2003,
2004). The LSM neuron without dynamic leak reproduced on
average a close representation of the source convolution signal
for the input but the individual traces were considerably noisier
without dynamic leak (Figure 3C) than with dynamic leak
(Figure 3D). The main difference between the LSM and the IZ
neuron model responses was that the IZ neuron model tended
to create output dynamic behavior that was not present in the
input signal (Figures 3B,E), a consequence of the binary nature
of the spike output. A cross-correlation analysis between the
neurons’ responses (Figure 3F) showed that the IZ neuron model
reflected the input signal less faithfully than the LSM. Note that
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FIGURE 6 | Impact of conduction delays on the frequency distribution. (A) Frequency distributions for the same network (network settings as in Figure 4) with
different average conduction delays between neurons. The vertical dashed lines indicate the supplementary frequency peaks (frequency peaks that were not present
in the input sensory data / network dynamics without conduction delays) of the high-frequency component for addition of a mean conduction delay to the network.
(B) Data for the same networks and delays when the neuron model included dynamic leak.

the cross-correlation is slightly poorer for the LSM with dynamic
leak than without, which is due to that the some of the fine-timing
details of the high frequency components of the underlying
convoluted signal is slightly filtered by the dynamic leak.

We tested if this observation depended on the frequency of
the spiking in the sensory inputs. The LSM consistently showed
a higher correlation with the input signal than the IZ neuron
model across a range of input spike frequencies (Supplementary
Figure 3). Next we tested if the specific parameters chosen for
the IZ neuron model (Figure 3E, also indicated by an asterisk
in Figure 3G) were responsible for these results (Figure 3F).
Therefore, we tested a range of parameter settings (405 different
parameter combinations), which are known to reproduce specific
output dynamics (bursting, for example) observed in a variety of
neuron types in vitro (Izhikevich, 2003). The correlation analysis
showed that LSM was more consistent than the IZ model in
maintaining high correlation with the sensory inputs across the
full range of sensory input spike frequencies (Figure 3G). The
exception was the highest sensory input frequencies, but that can
be explained by that the dynamics of the sensory input diminishes
due to the density of the inputs (Supplementary Figures 3A–
D), as previously described also for neurons in vivo (Bengtsson
et al., 2011). This effect, which we will refer to as the input density
problem, is also evident in Figure 3G.

Network Dynamics (With and Without
Neuronal Dynamic Leak)
We next investigated the activity dynamics of a standardized
recurrent neuronal network implemented using the LSM
(Figure 4A). The sensory input was fed as excitatory input to
both the excitatory and inhibitory neurons of the first layer

for 50 presentations, where the sequential presentation differed
by added Gaussian noise to the sensory signal (see section
“Materials and Methods”). In the network with the neuron model
without dynamic leak, there was initially a gradual increase in
the power across the higher frequency components of the activity
in both excitatory and inhibitory neurons (Figures 4B,C) (more
extensively illustrated in Supplementary Figure 6, where the
first few presentations of sensory input evoked a lower power
response). These high frequency components were not present in
the sensory input (Supplementary Figure 5A) and were therefore
generated by the network, most likely as a consequence of the
parallel excitatory and inhibitory connections, which would be
expected to lead to some degree of signal derivation (Wehr
and Zador, 2003). Interestingly, in the illustrated IN1 the high
frequency components gradually built up (until presentation #10,
approximately) and then faded away (after presentation #20,
approximately), despite that the average intensity of the sensory
input did not vary over time, which suggests a relatively rich
internal dynamics in this type of recurrent network, despite its
limited size. In neurons of the second layer, high frequency
components typically faded away more slowly (Supplementary
Figure 6). The appearance of these high frequency components
was sometimes associated with the appearance of transients in
the neuron activity (Figures 4D,E). In contrast, in the same
network but with the neuron model including the dynamic leak,
the transients and the high-frequency components of the neuron
activity disappeared (Figures 4F–I). Hence, the low-pass filtering
effect of the dynamic leak “rescued” the recurrent network from
generating spurious high-frequency components.

The recurrent connections of the network were likely
strongly contributing to these high-frequency components. An
extreme case of recurrent connectivity is when a neuron
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FIGURE 7 | Network activity dynamics increased when sensor input density
decreased. (A) The high frequency components became more prominent with
lower average spike frequencies in the sensor input. (B) Neuronal dynamic
leak resulted in disappearance of the high-frequency components across all
input spike frequencies. (C) The high frequency components also became
more prominent with lower number of sensory inputs, while a very high
number of sensor inputs substantially reduced overall neuron activity
dynamics. (D) Introduction of neuronal dynamic leak resulted in
disappearance of the high-frequency components irrespective of the number
of sensory inputs. The network settings for this analysis were similar to
Figure 4, except for sensory input.

makes synapse on itself (autapse). It is not clear to what
extent autapses exist in adult neuronal circuitry, but they
have been shown to be present in early development (Lübke
et al., 1996; Tamás et al., 1997) and they are widely used in
the field of RNN/computational neuroscience (Graves, 2012).
To explore the impact of autapses we used the exact same
network architecture used in Figure 4 but added autapses to all
neurons (Supplementary Figure 7A). In this scenario, the high-
frequency components were strongly amplified (Supplementary
Figures 7B–E). However, in the same network with the
neuron model with the dynamic leak, the transients and the
high-frequency components of the neuron activity were again
effectively removed (Supplementary Figures 7F–I). We did not
explore networks with autapses any further.

We next compared the frequency power distributions of
the neuronal activity in this recurrent network across a range
of different synaptic weight distributions (Figure 5). We
studied three different types of synaptic weight distributions
(Gaussian, log-normal, and binary distributions). For each
type of distribution, we tested five different mean synaptic
weights (Figures 5A–C). Moreover, for each given synaptic
weight distribution and mean weight, we generated five random
weight distributions. The average signal of these five random

weight distributions was used to calculate each frequency
power distribution illustrated (Figures 5D,E), where each line
represents the average activity across all the neurons of the
network (Figures 5D,E). In the network with the neuron model
without dynamic leak (Figure 5D), the relative power of the
high-frequency components was amplified for synaptic weight
distributions at mean synaptic weights of 0.3–0.4 or above
(µ ≥ 0.4 for Gaussian and µ ≥ 0.3 for log-normal distributions)
and for p > 10% for binary distribution, compared to the
sensory input (Supplementary Figure 5). For other synaptic
weight distributions (µ = 0.1 for Gaussian and log-normal
distributions and for p = 10% for binary distributions, for
example), there was much lower overall activity in the network,
which could be the reason why the high frequency components
were not induced in these networks. In the network with the
neuron model with the dynamic leak component, the transients
and the high-frequency components of the neuron activity
disappeared for all settings (Figure 5E), though the setting of
the dynamic leak component used also appeared to over-dampen
the sensory input dynamics between 20 and 200 Hz. Note that
each curve in Figures 5D,E represents the mean across five
randomized repetitions. Supplementary Figure 8 instead shows
the frequency power distribution of the neuronal activity for each
individual network sorted by synaptic weight distribution. The
overlap between these frequency power distribution curves across
randomized weights and different distribution means implies that
there was no simple linear relationship between the network
structure and the spurious high frequency components.

To further explore if the high-frequency components observed
were induced by the recurrent network, we tested if we could
affect the “center of gravity” of the high-frequency components
by introducing different conduction delays in signal transmission
between the neurons (Figure 6). In the brain in vivo, these
would correspond to the axonal conduction delays and synaptic
delays combined. The delays were randomized between all
the neurons, and several different mean delays were tested in
different simulations. Interestingly, a supplementary frequency
peak component (frequency peaks that were not present in
the input sensory data / network dynamics without conduction
delays, indicated with dashed vertical lines in Figure 6A) was
observed without dynamic leak. These supplementary frequency
peaks were approximately inversely proportional to the mean
conduction delay. From previous studies (Jirsa and Stefanescu,
2011; Petkoski et al., 2018) we know that conduction delays could
introduce such additional dynamics into the recurrent networks.
These peaks were removed by adding dynamic leak (Figure 6B).

The high frequency components also appeared for lower
average sensor input spike frequency (50 and 100 Hz, Figure 7A)
and for lower number of sensory inputs per neuron (nSensors = 6
and 15, Figure 7C). In contrast, for higher input spike
frequencies (150 and 200 Hz) and higher number of sensory
inputs (nSensors = 30 and 50) the increased density of the
inputs resulted in a paradoxical decrease in the power of the
neuron activity across all frequencies analyzed (i.e., as shown in
Supplementary Figure 1), most likely due to the large number
of randomized inputs regressing toward the constant mean
frequency of each sensory signal. In each case, in the network
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FIGURE 8 | Activity frequency distributions altered with the scale of the networks. (A,E) For networks with Gaussian synaptic weight distribution of mean weight
mu = 0.3 and 0.4, respectively, the high frequency components could appear without dynamic leak, regardless of network size. (B,F) Introduction of the neuronal
dynamic leak (τ dyn = 1/100) “rescued” the networks from these high-frequency components. (C,G) The dynamic leak constant was adapted based on the square
root of number of synapses (i). (D,H) The dynamic leak constant was adapted based on the total number of synapses (i). Dashed orange traces in all plots show the
corresponding frequency power distribution for the sensory inputs at 50 Hz, averaged across the six sensory inputs, for comparison.

with the neuron model with the dynamic leak component, the
high-frequency components of the neuron activity disappeared
for the sensor input configurations where it had been present
(Figures 7B,D).

We also explored if the size of the network could be a
factor for the appearance of the high frequency components.
We found that these high frequency components appeared for
different network sizes and that in those cases the network
activity was “rescued” when the LSM was implemented with the
dynamic leak (Figure 8). Depending on the specific synaptic
weight distribution, the high frequency components became
unequally dominant for different network sizes (Figures 8A,E)
according to unclear relationships. The largest network as a
rule had the weakest overall dynamics, which could be due
to the same input density problem discussed above, where
the density of synaptic input increased as the larger network
has a higher number of recurrent synaptic inputs per neuron,
which caused the dynamics of the neuron activity to go down.
As there is a tendency for membrane time constants to grow
with the size of the neuron (Zhang, 2004), we scaled the
τDyn with the network size (as the neurons of the larger
networks had a higher number of synapses) (Figures 8C,D,G,H,
for two different weight distributions). A moderate scaling of
the τDyn (with the square root of the number of synapses,
Figures 8C,G) actually increased the dynamics of some network
sizes, while eliminating high frequency components. In contrast,
a linear scaling (Figures 8D,H) instead appeared to dampen such
dynamics and, unsurprisingly, low pass-filtered also signals well
below 100 Hz for the largest networks.

DISCUSSION

We explored the properties of a non-spiking neuronal model
derived from the differential conductance-based H-H model
when deployed in various recurrent neuronal networks. We
found that in these recurrent networks, many different factors
would tend to trigger network induction of high frequency
signal components of a somewhat unpredictable magnitude and
distribution (i.e., Figures 5–8 and Supplementary Figure 8).
These signal components were not present in the input data
(Supplementary Figure 5) and sometimes peaked to create
overt spurious transients (Figures 4B,C). The dynamic leak in
our neuron model invariably “rescued” the recurrent networks
from their tendency to self-generate these high-frequency
signal components (Figures 4–8 and Supplementary Figure 7).
Corresponding to the capacitive component and the ion channels
of the membrane circuit, dynamic leak is an inevitable feature of
real neurons. Furthermore, this low-pass filter component made
the behavior of recurrent networks more predictable for networks
of different sizes.

We worked under the scenario that neuronal networks in
the brain are recurrent and that excitatory and inhibitory
connections are both pervasive, without any a priori assumed
structure. Our network architecture contained the circuitry
elements of previously reported “classical” network connectivity
patterns (feedback and feedforward inhibition, for example).
Feed-forward and feedback inhibition running in parallel with
excitatory connections was likely the main network feature
that caused the signal derivation effects/the high frequency
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components in the networks without the dynamic leak. The
inclusion of autapses in the recurrent network strongly amplified
these high frequency components (Supplementary Figure 7),
presumably primarily through self-amplification of excitatory
neurons. But note that in a recurrent network, any local circuity
feature will at the global level automatically result in other
functional network features as well. Hence, in contrast to a
non-recurrent, feed forward neuronal network, in a recurrent
network these circuitry features will hence become less clear-cut
from a functional point of view, which could cause additional
dynamic network effects that for example could explain our
observations of gradual build-up of high frequency power
components (Figure 4 and Supplementary Figure 5) while there
was steady sensory input level to keep the network activity up.
However, understanding such network dynamics at a deeper
level was outside the scope of this paper, but would need to be
addressed if such networks are to be used in a functional setting.

In our recurrent networks, apparently spurious high
frequency components could be induced for different types
of synaptic weight distributions, delays between neurons,
sensory input densities and network sizes. It was hard to predict
under what exact conditions such high frequency components
would become more or less dominant (i.e., Figure 8 and
Supplementary Figure 8), but in each case the dynamic leak
effectively canceled them out. From the point of view of the
functionality of a processing recurrent network, the fact that
the frequency distribution of any given network did not match
that of the sensory input is not automatically to be considered
a disadvantage because the goal of a processing network would
not be to perfectly replicate the sensory input. However, the fact
that these high frequency components sometimes took the shape
of clear-cut transients with no obvious counterpart in the sensor
signal suggests that, at least in part, they should be considered
spurious, i.e., noise injected into the signal due to the dynamics
of the specific network.

In some cases, the activity of the network became highly
suppressed relative to the sensory input (i.e., for low mean
weights in Figure 5 and for the largest network in Figure 8).
This effect can be ascribed to the input density problem, i.e.,
when too many unrelated but continuously active synaptic inputs
converge on the same neuron, their signal dynamics would
tend to cancel out, leaving the neuron with very little signal
dynamics (Bengtsson et al., 2011). As these signals, due to
the network structure, are paralleled by inhibitory connections,
when the signal dynamics is lost, inhibition and excitation
cancel each other out and the activity dynamics is lost in the
network as a whole.

How would spiking neuron networks fare with respect to
rescuing a recurrent network from spurious high frequency
components? The phasic nature of discrete spike output would
be expected to worsen the problem, whereas refractoriness would
tend to dampen it. Refractoriness could certainly rescue the
system from the extreme transients observed in networks that
included autapses. Refractoriness, however, would not rescue
the system from high frequency components generated through
longer range recurrent excitatory loops.

Global stability has long been a concern in recurrent neural
networks (RNNs) due to the non-linear dynamics that can arise

within such networks due to the recurrency and the resulting
feedback loops (Shen and Wang, 2011; Zhu and Shen, 2013).
Periodic oscillations and stability issues in RNNs can arise,
for example, as a consequence of input noise (Pham et al.,
1998) and neuron activation delays (Gopalsamy and Leung,
1996). Moreover, such oscillations are inherent to any dynamical
system with recurrency and amplification, such as parasitic
oscillations in electronics and steady-state error in control
theory. Apparently, the central nervous system, with prodigious
recurrent loops (see section “Introduction”) and intrinsic noise,
found a way to avoid such oscillations. In this study we explored
the possibility that neuronal leak dampens such oscillations in a
recurrent neuronal network.

Recurrent neuronal networks with balanced excitatory and
inhibitory synaptic connections have been extensively studied
previously (Brunel, 2000; Vogels and Abbott, 2005; Vogels
et al., 2011; Rubin et al., 2017), using spiking neuron
models (employing integrate-and-fire or related mechanisms
for the spike generation). In these studies, the recurrent
connections were sparsely distributed with an overall connection
probability of 1–2%, and a ratio of 4:1 excitatory to inhibitory
interneurons. These studies point out that factors such as high
connection probability and unbalanced excitation-inhibition
tend to produce network instability (Rubin et al., 2017) and
in some cases failure in signal propagation across the layers
of those neuronal networks (Vogels and Abbott, 2005). From
the stability we observed across a wide range of recurrent
network configurations, always at 100% connection probability
(though weighted), it would seem that the LSM with dynamic
leak would be beneficial for ensuring stable recurrent neuronal
network behavior across a range of network sizes and density
of connectivity.

The present findings suggest that the biological feature of
neuronal dynamic leak, which causes the polarization (i.e., the
activity) of the neuron to settle toward resting potential with a
time constant, is an important functional feature. It allows brain
networks to fully utilize recurrent neuronal network architectures
with variable numbers of participating neurons without risking
self-generated noise embodied as high frequency components
and spurious transients.
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Supplementary Figure 1 | Signal similarity between the LSM and H-H model.
A comparison between the output responses for LSM (green line is the mean
across 50 presentations) and the H-H (derived using backward Euler method, blue
line is the mean across 50 presentations), for a given pseudo-random sensory
input at 50 Hz for each of six sensors (see Figure 3). The responses of the LSM
output were offset by 0.1 activity (a.u.) in order to visualize the coherence between
the responses of both neuron models. The cross correlation (with
zero lag) was 0.99.

Supplementary Figure 2 | Impact of the value of kstatic on the internal activity of
the LSM for a given sensory input.

Supplementary Figure 3 | Impact of the value of τdyn on the internal activity of
the LSM for a given sensory input.

Supplementary Figure 4 | Comparison of the non-spiking and the spiking
neuron model outputs for different sensory input frequencies. (A–D) Neuron
outputs in response to different sensory input frequencies. (E) Cross-correlation
between sensory inputs and the neuron model outputs.

Supplementary Figure 5 | Frequency analysis of the sensory inputs. (A)
Time-continuous frequency power analysis for each of the six sensory inputs
(spike frequency = 50 Hz) across the 50 presentations used in the analysis of the
network activity. (B) Frequency power analysis (using continuous wavelet
transform, see section “Materials and Methods”), of sensory inputs. The plots
show the average power of the activity across all the six sensors, for each of the
four mean sensor firing frequencies, across all 50 presentations used in the
analysis of the network activity.

Supplementary Figure 6 | Frequency analysis plots of the activity in all excitatory
neurons (EN1 − EN9) and inhibitory neurons (IN1 − IN9) for the network shown in
Figure 4A.

Supplementary Figure 7 | Activity in recurrent networks with autapses.
(A) Principles of the connectivity structure in the recurrent network studied. The
network presented here is a fully connected network as in Figure 4, with the
addition of self-recurrent excitatory and inhibitory synapses (in excitatory and
inhibitory neurons, respectively). (B) Frequency plot of the activity in an excitatory
neuron. (C) Similar plot for an inhibitory neuron. (D) Raw data plots for sample
signals in the excitatory neuron generated at the indicated presentation #. (E)
Similar plot for the inhibitory neuron. (F–I) Similar plots as in (B–E) but when all the
neurons were modeled with the dynamic leak.

Supplementary Figure 8 | High frequency components and the effect of
dynamic leak across different specific synaptic weight distributions. The synaptic
weight distributions used were as shown in Figures 5A–C, but instead of
representing the five random simulations for each setting as an average, we here
show them individually. (A) The frequency power distributions across all indicated
synaptic weight distributions for five randomized repetitions each. Color keys for
the different average synaptic weights are the same as in Figures 5A–C. (B)
Similar display as in (A), for the same networks but with the neuron model
with dynamic leak.

Supplementary Table 1 | H-H Model variable definitions (for the H-H neuron
model derivation, presented in Appendix 1).
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APPENDIX 1

Neuron Model Derivation From H-H Model
We first describe the rationale for our Linear Summation neuron model (LSM). In brief, the LSM aims to provide a simple and
computationally efficient neuron model, while capturing important characteristics of H-H conductance models (Hodgkin and Huxley,
1952; Rongala et al., 2018). The membrane potential in the LSM model is normalized between +1 and -1 with a resting potential of
zero. The output of an LSM neuron is a continuous, non-spiking signal that reflects the portion of the membrane potential that exceeds
some threshold, which we assumed to be the zero resting potential. This would be suitable to represent one neuron or a population
of similarly connected neurons that is biased by background activity to be at or near spontaneous activity (such as is hypothesized for
stochastic resonance to prevent dead bands) (Tougaard, 2002). This continuous output signal is intended to reflect the mean spike
rate that a population of similarly connected neurons would transmit to other centers in the nervous system.

In H-H models the various ion channels associated with ionic pumps and leaks define a resting membrane potential where there are
no net currents. Any change in membrane potential away from this resting potential will settle back to the resting potential according
to the combined conductance of all of these ion channels, which is called the static leak. Synaptic activation leads to opening of specific
ion channels, which in the H-H models as a change of synaptic conductance. The ion(s) that are made permeable by the synapse have
a reversal potential that is different from the resting membrane potential. When the ion channels of a particular synapse are open,
the membrane potential will be driven toward that reversal potential, with a strength that depends on the strength of the synaptic
conductance relative to the static leak conductance.

The synaptic currents charge the neuron, which is modeled as a single capacitor (assuming that the electrotonic distances between
different parts of the neuron are negligible). Various synaptic signals are thus integrated and converted into a dynamically changing
membrane potential. The static leak is in parallel with this capacitor, thereby defining a time-constant τ for these dynamic changes.
The effect is that of low-pass filtering of the integrated synaptic currents (Lindner, 2014) to produce the membrane potential that
defines the output state of the neuron. In an H-H model, the output state is created by converting the membrane voltage into patterns
of spike output, with the help of a threshold for spike generation. Spike generation is omitted in the LSM model and the output of the
neuron is instead the part of the membrane potential that exceeds some threshold (herein equal to the resting membrane potential).

First, we describe a conductance-based model similar to previously presented models (Hodgkin and Huxley, 1952; Rongala et al.,
2018) and then show how a model similar to the LSM model can be derived. In this category of ion channel conductance-based
models, the dynamics of one type of ion channel is lumped together into one single conductance. Compared to other conductance-
based models, no spike generation is modeled and the neurons resting potential is set to zero. The neuron is modeled as a capacitor
with capacitance (C) and is charged by excitatory (Isyn,exc) and inhibitory synaptic currents (Isyn,inh) and discharged by a leak current
(Ileak). Therefore, the neurons membrane potential (V) measured across the capacitor follows the following equation.

C
dV
dt
= Ileak +Isyn,exc+Isyn,inh (A1)

The leak current is set proportional to the membrane potential by constant conductance gL according to Ohm’s law:

Ileak = −gLV (A2)

If the synaptic currents are zero, the neuron’s membrane potential will decay to zero. Therefore, this model neuron’s resting
membrane potential is zero. At each excitatory synapse i the firing rate of the presynaptic neuron (v+i ) produces a current. The
synapse has a baseline conductance (w+i ), called synaptic weight. This conductance is scaled by the presynaptic neuron’s firing rate.
The direction and magnitude of the current is determined by the difference between the constant reversal potential (Eexc) and the
neuron’s membrane potential. For an excitatory synapse, the current would reverse if the membrane potential rose above the positive
reversal voltage, so synaptic activity can never produce a membrane potential about the reversal potential. Therefore if the neuron has
already reached this voltage, the neuron’s voltage cannot increase further. The current contributed by an individual synapse can be
modeled as

Isyn,exci = −(V−Eexc)w+i v+i (A3)

The same model is applied for the current generated by an inhibitory synapse i, with reversal potential (Einh), synaptic weight (w−i )
and presynaptic firing rate (v−i ). The reversal potential of an inhibitory synapse is set so that the neurons potential cannot decrease
below this potential.

Isyn,inhi
= −(V−Einh)w−i v−i (A4)
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Summing all synaptic currents and plugging in the current equations into the membrane potential equation we obtain

C
dV
dt
= −gLV−

∑
i

(V−Eexc) w+i v+i +
∑

i

(V−Einh) w−i v−i (A5)

where the first sum is over all excitatory synapses and the second sum over all inhibitory synapses. In order, to show the relationship
of this equation to the LSM model, we set the leak conductance to one and replace leak conductance and membrane capacitance by
a time constant τ. The reversal potentials are set to +1 and -1 for the excitatory and the inhibitory synapses, respectively. Hence the
range of possible membrane potential is between +1 and -1, assuming that the initial voltage is also in that range.

The resulting differential equation is

τ
dV
dt
= −V+ (1−V)

∑
w+j v+j + (1+V)

∑
w−k v−k (A6)

This equation can be solved by applying the implicit Euler method. Let Vt be the membrane voltage in timestep t and h the stepsize.
The following equation must be solved for Vt+1

Vt+1 = Vt+h
1
τ

(
−Vt+1+ (1−Vt+1)

∑
w+j v+j + (1+Vt+1)

∑
w−k v−k

)
(A7)

In this case an analytic solution is possible:

Vt+1 =
Vt+

h
τ

∑
wivi

1+ h
τ
+

h
τ

∑
|wi| vi

(A8)

where both sums are over all synapses.
The parameters of this model are also listed in Supplementary Table 1. This new system has components not commonly found in

neuron models. The reason is that usually the differential equation describes an instantaneous effect of the inputs and the state of the
neuron. In this system the effect of the input on how the input is processed by the neuron in a future time step is already considered.

From the above derivation (Eq. A8) we could observe that the excitatory (Isyn,exc) and inhibitory (Isyn,inh) synaptic currents from

a conductance based neuron model (Eq. A1), can be reduced to a total synaptic weight summation
( ∑

wV
1+
∑
|w|V

)
, and that the leak

current (Ileak) (Eq. A1), which is a dynamic leak because it occurs across capacitor, can be reduced to h/τ (a dynamic leak constant,
Eq. A8; if this constant is larger than zero and smaller than one, it can be disregarded in this expression). Based on this neuron model
derivation, we propose the simplified linear summation neuron model (LSM, A10) to capture the essential dynamics of the original
H-H conductance-based model (Supplementary Figure 1). The LSM is given by two equations: LSM without dynamic leak (Eq. A9)
and LSM with dynamic leak (Eq. A10).

ANoDyn =

∑
(wiai)

1+
∑
|wiai|

(A9)

τDyn∗dADyn

dt
= −ADyn (t)+ANoDyn (t) (A10)
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The human brain constitutes one of the most advanced networks produced by

nature, consisting of billions of neurons communicating with each other. However, this

communication is not in real-time, with different communication or time-delays occurring

between neurons in different brain areas. Here, we investigate the impacts of these delays

by modeling large interacting neural circuits as neural-field systems which model the

bulk activity of populations of neurons. By using a Master Stability Function analysis

combined with numerical simulations, we find that delays (1) may actually stabilize

brain dynamics by temporarily preventing the onset to oscillatory and pathologically

synchronized dynamics and (2) may enhance or diminish synchronization depending

on the underlying eigenvalue spectrum of the connectivity matrix. Real eigenvalues with

large magnitudes result in increased synchronizability while complex eigenvalues with

large magnitudes and positive real parts yield a decrease in synchronizability in the delay

vs. instantaneously coupled case. This result applies to networks with fixed, constant

delays, and was robust to networks with heterogeneous delays. In the case of real brain

networks, where the eigenvalues are predominantly real, owing to the nearly symmetric

nature of these weight matrices, biologically plausible, small delays, are likely to increase

synchronization, rather than decreasing it.

Keywords: synchronization, time delay, Wilson-Cowan network, homeostatic synaptic plasticity, master stability

function, network neuroscience, connectomes

1. INTRODUCTION

Biological systems often form intricate and highly interconnected networks. Examples include
the chemical reaction networks present within a single cell at the small scale (Kitano, 2002), the
spread of disease through social networks (Keeling and Eames, 2005) or ecological networks across
entire biomes or even the planet itself at the large scale (Montoya et al., 2006). Yet, one of the
critical defining features in these networks is that communication from putative nodes is seldom
instantaneous, and is often plagued by delays. Nowhere is this clearer than in the human brain, an
intricate network of neurons limited by the slow propagation speed of action potentials or spikes,
which can take up to milliseconds to transmit information across areas (Roxin et al., 2005; Ghosh
et al., 2008; Deco et al., 2009).
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This seems unusual when we consider the readily
synchronizable nature of brain matter. For example,
pathologically strong synchrony exists in neurological disorders
such as epilepsy despite the presence of time-delays (Uhlhaas and
Singer, 2006). Beyond pathological states, weakly synchronized
brain areas are normal and even necessary states for the
functioning of brain networks during a variety of tasks (Varela
et al., 2001). Indeed, the presence of delays alone can have
variable impacts on synchronization with synchronizability
determined by (1) the topology of the network, (2) the dynamics
of the nodes, and (3) the nature of the delays.

We investigated how these three forces would interact with
computational modeling in networks of homeostatically-coupled
Wilson-Cowan (WC) nodes (Wilson and Cowan, 1972; Destexhe
and Sejnowski, 2009; Vogels et al., 2011; Cowan et al., 2016;
Hellyer et al., 2016; Nicola et al., 2018). In this model, each
node can be interpreted as a population of excitatory and
inhibitory neurons. The nodes are stabilized onto a steady-state
equilibrium with a homeostatic, dynamically adjusted weight
which strives to maintain a stable firing rate in each population
(Nicola et al., 2018; Nicola and Campbell, 2021). However,
the homeostatic adjustment of weights can also lead to more
complex dynamics, such as mixed mode oscillations and chaos,
which and lead to desynchronization of the nodes (Nicola
et al., 2018; Nicola and Campbell, 2021). Here, we show how
the presence of small time delays in the coupling influences
dynamic behavior and synchronization in comparison to the
instantaneously coupled networks.We limit our study to delay
magnitudes that are biologically relevant; these are small in
comparison with other time scales in the model. First, we find
that the induction of oscillations (via a Hopf bifurcation) requires
larger global coupling strengths in the delay coupled network
vs. the instantaneously coupled system. Second, we find that
for a sufficiently large delay, the system readily loses all non-
relaxation oscillator solutions (period doubling cascades, mixed-
mode dynamics, chaos) past the Hopf-bifurcation. Third, by
applying a master-stability formalism to these networks, we
find that synchronization is dependent on the underlying graph
and the nature of the time-varying synchronized solutions.
The delays decreased the synchronizability of graphs with large
complex eigenvalues (with postive real parts) while increasing the
synchronizability of graphs with purely real eigenvalues, as in the
case of DTI-derived connectomes (Bullmore and Sporns, 2009).
For small delays, synchronization could occur for chaotic or other
complex solutions as in the nondelayed case. For sufficiently
large delays, however, synchronization was always associated
with oscillatory solutions. This general portrait of the interactions
between network topology, dynamics, and delays was also robust
to delay heterogeneity throughout the network. Thus, we find
that rich dynamics and variable synchronizability with different
graph structures.

2. MATERIALS AND METHODS

2.1. Model Equations
To model the system we use a Wilson-Cowan network with
homeostatic regulation of the inhibitory connection weight due

to Vogels et al. (2011), Hellyer et al. (2016), Nicola et al. (2018),
and Nicola and Campbell (2021). We introduce a time delay in
the excitatory connections between the nodes (Figure 1A).

τ1
dEk

dt
= −Ek + φ

(

∑N
j=1W

EE
kj
Ej(t − ǫkj)−WEI

k
Ik

)

dIk

dt
= −Ik + φ(WIEEk)

τ2
dWEI

k

dt
= Ik(Ek − p)

(1)

Ek is the activity of the excitatory population of neurons within
the kth node, Ik is the activity of the inhibitory population in the
kth node, WEI

k
is the homeostatically adjusted inhibitory weight

of the kth node and WIE is the fixed excitatory weight of the kth
node. WEE

kj
> 0 are the (fixed) excitatory weights and ǫkj is the

time delay between nodes. The function φ is a sigmoidal transfer
function which we take to be the logistic function:

φ(x) =
1

1+ exp(−ax)
(2)

where a controls the steepness of the sigmoid, while the sigmoid
itself determines the proportion of the population of neurons
which is active in node k.

We use the parameter values as described in Nicola et al.
(2018): p = 0.2, a = 5, τ1 = 1, τ2 = 5. The values of WIE

andW
EE
kj

are varied. To choose an appropriate value for the time

delay, ǫ, note that in Equation (1) time has already been scaled
by the timescale of the inhibitory population, τI (Nicola et al.,

2018). This means that the delays are also scaled ǫij =
Tij
τI
. From

Hellyer et al. (2016) we find values of Tij in the range 1 − 14 ms
and τI = 20 ms, which yields ǫij in the range 0.05− 0.7.

In our work, we consider two primary constraints on this
system (Figure 1B). First, the row-sum of the weight matrixWEE

is constant:

N
∑

j=1

W
EE
kj = WE, k = 1, 2, . . .N (3)

where the parameter WE acts as the global coupling strength of
the entire system. The second constraint is that the delays are
homogeneous throughout the network:

ǫkj = ǫ, ∀k, j (4)

However, in Figure 4 we consider the impact of heterogeneous
delays by choosing the delays ǫkj value from a Beta distribution
with an average of ǫ.

2.2. The Synchronous Solution and the
Single, Self-Coupled Node
The model (Equation 1) with the constraints (Equations 3, 4)
admits a synchronous solution (Ek, Ik,W

EI
k
) = (Es(t), Is(t),

WEI
s (t)), k = 1, . . . ,N. The functions (Es(t), Is(t), W

EI
s (t))
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FIGURE 1 | (A) Communication delays in neural networks are caused by the non-instantaneous transmission of an action potential down an axon. The spike is

initiated at the axon hilock and arrives at the terminal bouton after a period of time. (B) The primary constraints in system (Equation 1), the row-sum of the weights

normalizes to WE and all the delays are constant. (C) Randomly-coupled networks with constant delay. (D) Simulation for increasing WE (E) Phase portrait of [E(t), I(t)]

for the network after synchronization for WE = 2.25. (F) Ring networks. (G) Simulated ring network with N = 8 nodes for increasing WE (H) Same as (E) except for

ring topology. (I) The single, delay coupled node. (J) Simulations of the single, delay coupled node. (K) Same as (E,H) only for the single, delay coupled node. For all

simulations, the parameter values were: ǫ = 0.1, p = 0.2, τ1 = 1, τ2 = 5, W IE = 1, and a = 5.

satisfy the equations for a single, isolated node with delayed,
self-coupling

τ1
dE

dt
= −E+ φ

(

WEE(t − ǫ)−WEII
)

(5)

dI

dt
= −I + φ

(

WIEE
)

(6)

τ2
dWEI

dt
= I(E− p) (7)

The self-coupling arises from the analysis of the synchronous
solution and is independent of whether there is self-coupling
in the full model. See Supplementary Materials Section 1

for details.
Thus, the synchronous solution of Equation 1 can be described

by analyzing the behavior of model for a single, self-coupled node
(Equations 5–7). For example, this model has an equilibrium
solution which yields the following equilibrium solution of the
full model

(Ēk, Īk, W̄
EI
k ) =

(

p,φ(WIEp),
WEp− φ−1(p)

φ(WIEp)

)

, k = 1, . . .N.

Analysis of the linearization of Equation 1 about this equilibrium
point shows that a Hopf bifurcation occurs for a sufficiently
strong global coupling strength, WE, as a function of the
excitatory-to-inhibitory coupling parameterWIE,

WE
Hopf = g(WIE)

This Hopf-bifurcation curve can be approximated via a
perturbation analysis in the limit of small delays (ǫ ≪ 1, see
Supplementary Materials Section 2).

2.3. Master Stability Function
The Master stability function was first developed to study
synchronization in large networks of coupled oscillators without
time delay (Pecora and Carroll, 1990). The derivation for
systems with time delays has been described in Dhamala
et al. (2004), Choe et al. (2010), and Flunkert et al.
(2010). The application to the model (Equation 1) is almost
identical to that described in Nicola and Campbell (2021) (see
Supplementary Materials Section 3).

Assuming that WEE is diagonalizable, the linear (local)
stability of the synchronized solution (Ek, Ik,W

EI
k
) =

Frontiers in Systems Neuroscience | www.frontiersin.org 3 July 2021 | Volume 15 | Article 68851778

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Al-Darabsah et al. Time Delay and Brain Synchrony

(Es(t), Is(t),W
EI
s (t)), k = 1, . . . ,N of the model (Equation

1) can be determined by studying the three dimensional linear
system

τ1
dηx

dt
= −ηx +Ms1(t)

(

r̂ηx(t − ǫ)− Is(t)ηz −WEI
s (t)ηy

)

dηy

dt
= −ηy +Ms2(t)ηx

τ2
dηz

dt
= (Es(t)− p)ηy + Is(t)ηx

(8)
where Ms1(t) = φ′(WEEs(t − ǫ) − WEI

s (t)Is(t)) and Ms2(t) =

WIEφ′(WIEEs(t)), and r̂ is an eigenvalue of WEE. The Master
stability function, λ(r) is typically defined as follows. For a given
r ∈ C if the trivial solution of (Equation 8) asymptotically stable,
then λ(r) < 0. If it is unstable then λ(r) > 0. A standard approach
is to define λ(r) be the maximal Lyapunov exponent of the system
(Equation 8). The MSF is then used to define a region of stability
in the complex plane, corresponding to all values of r for which
λ(r) < 0. If all eigenvalues of WEE lie inside this region then
the synchronous solution of Equation 1 is locally asymptotically
stable. Finally, we remark that we primarily consider the scaled

eigenvalues, rk =
r̂k
WE for all numerical simulations and plots,

thereby allowing us to compare eigenvalues on the unit circle
across global coupling strengths.

2.4. Numerical Methods
We use the commands ParametricNDSolveValue in Wolfram
Mathematica andNDSolveValue to simulate the system (1) with
homogeneous and heterogeneous delays. We used the numerical
continuation package DDE-Biftool (Engelborghs et al., 2001) to
compute Hopf bifurcation curves and period doubling curves for
the model (Equations 5–7) in theWIE,WE parameter space.

Numerically Implementing the Master
Stability Function for a Delay Differential
System
TheMaster Stability Function (MSF) approach for a generic delay
differential system

dx

dt
= F(x(t − ǫ), x(t)) (9)

is performed by first discretizing the delay-differential system:

dx1

dt
= F(xm, x1) (10)

dxn

dt
= (xn+1(t)− xn−1(t)) ·

m

2ǫ
, n = 1, 2, . . .m− 1 (11)

dxm

dt
= (xm−1(t)− xm(t)) ·

m

ǫ
, (12)

as in Farmer (1982) and Lakshmanan and Senthilkumar (2011).
This approximation is applied to the linearized system with

delays (Equation 8) which reduces the original system of
3N delay differential equations to a system of 3Nm ordinary
differential equations. Then, the classical MSF approach via

computing the Lyapunov exponents of the reduced variational
equations is now immediately applicable as the resulting network
consists of coupled ordinary differential equations. Details of
the implementation can be found online (see Code Availability
Statement). The value ofm = 10 discretization points was taken.

To supplement this approach, we performed numerical
simulations of the linear delay differential equation system
(Equation 8) and tracked whether solutions decayed to zero or
not. This was then used to define the MSF. This yielded results
consistent with those from the discretized DDE.

3. RESULTS

Delay Coupled Wilson-Cowan Systems
Can Still Synchronize
With the initial network constructed, we first sought to determine
what impacts the delay would have, if any, by comparison
with results for the instantaneously coupled network. To
assess this, we conducted an initial barrage of simulations
with randomly-coupled networks (Figures 1C–E), ring networks
(Figures 1F–H), and the single, self-coupled node with delay
(Figures 1I–K). Simulations for larger delay (ǫ = 0.3, 0.5)
showed similar behavior. First, we found that when the
networks did synchronize, they synchronized to solutions of
the self-coupled node with delay with an identical WE value
(Figures 1J,K), given by Equations 5–7. This is indeed, similar
to the instantaneously coupled network case where networks
with a coupling strength of WE can synchronize to solutions
of Equations 5–7 with ǫ = 0 (Nicola et al., 2018; Nicola and
Campbell, 2021).

However, the delay-coupled network did exhibit differences
from the instantaneously coupled network, in both the
synchronization and the nature of the attractors. For
example, the ring network considered in Figures 1F–H

would desynchronize at different parameter values (e.g., smaller
rings) in the delay-coupled case vs. the instantaneous case.
As the delay was increased further, smaller networks could
desynchronize. In contrast, the randomly-coupled networks
remained synchronized for all parameter values and delay
values we considered. Thus, the preliminary simulations display
some link to qualitative behaviors of the instantaneous case
(synchronization to the self-coupled node) but with differences
in the behavior of the delayed vs. non-delayed networks for
otherwise identical parameter values.

The Single, Delay Coupled Node
Given the synchronization to the delayed, self-coupled node
in Figure 1, we sought to investigate the bifurcation structure
of the corresponding model (Equations 5–7). First, we found
that as in the instantaneously coupled case, the self-coupled
node displayed a supercritical Hopf bifurcation at a critical
value of the coupling strength parameter WE (Figure 2A).
As WE is increased, this Hopf bifurcation is followed by
a period-doubling cascade to chaos (Figures 2B–D) provided
that the delay is not too large. These results were confirmed
using numerical simulation, numerical bifurcation analysis and
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FIGURE 2 | (A) The Hopf bifurcation boundary for the single, delayed self-coupled node, estimated analytically (dashed coloured lines) via a perturbation theory and

numerically (solid lines, DDE-Biftool). (B) The phase portraits in the (E(t), I(t)) space for the single node for increasing values of WE . (C) The single self-coupled node

undergoes period-doubling bifurcations for sufficiently small delay, (ǫ = 0.1). (D) A period-doubling cascade is present for small delays (ǫ = 0.1, green) but not large

delays (ǫ = 0.4, blue). For all simulations, the parameter values were: p = 0.2, τ1 = 1, τ2 = 5, W IE = 1 and a = 5.

by analytically approximating the Hopf-bifurcation curve (see
Supplementary Materials Section 2).

As the delay, ǫ, in Equation 5–7 increased, we found that the
critical value of the coupling strength WE required to induce
a Hopf bifurcation increased, thereby pushing the system into
the more strongly coupled regime (Figure 2A). At the level of
the single node, this is the primary factor that can eliminate the
rich single node dynamics. In particular, for sufficiently large
delays, the period doubling cascade is eliminated (Figure 2D),
with the only remaining dynamics being a putative Canard-type
explosion in limit cycle amplitude (see Nicola et al., 2018). Thus,
for small delays, the single self-coupled node maintains many of
the rich dynamical states of the instantaneously coupled system.
However, for sufficiently large delay in the self-coupling, the

rich-dynamical repertoire of the single node system is largely
eliminated as the Hopf-bifurcation is only induced at strong
coupling (WE) values.

Master Stability Function Analysis of the
System With Delays
With the dynamics of the single self-coupled node largely
resolved, we sought to determine how networks would
synchronize to non-equilibrium (e.g., limit cycle or chaotic
attractor) solutions. First, we applied the Master Stability
Function approach (MSF) for the system with a constant fixed
delay (Figure 3A, see Methods). Briefly, the Master Stability
Function, λ(r), is a function which is evaluated at the eigenvalues
of a connectivity matrix. If λ(ri) < 0 for all i = 1, 2, . . .N
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FIGURE 3 | (A) The full Master-Stability Function (MSF) computed for WE = 2.05 and ǫ = 0.1. (B) The sign-change boundaries for the MSF for no delay (blue) and

delay ǫ = 0.1 (black) withWE = 2.05 (top),WE = 2.115 (middle),WE = 2.25 (bottom) for the full unit-circle region (left) and a zoom (right). (C) Simulated ring networks

for N = 2 (left), N = 7 (middle) and N = 8 (right) rings with the values of WE as in (B). For all simulations, the parameter values were: ǫ = 0.1, p = 0.2, τ1 = 1, τ2 = 5,

W IE = 1, and a = 5.

eigenvalues, then synchronized solutions are stable for anymatrix
with eigenvalues r1, r2, . . . rN . If, however, λ(ri) > 0 for any i,
then the synchronized solution is unstable.

First, we find that for a fixed delay, the change in the MSF in
the delay-coupled vs instantaneously coupled case is dependent
on the connectivity matrix and global coupling strength WE.
In particular, connectivity matrices with complex-eigenvalues
that are large in magnitude with postive real parts are likely
to lose stability of the synchronized solution when the network
communication is delayed, as opposed to when it is instantaneous
(Figure 3B top, middle). In contrast, connectivity matrices with
purely real eigenvalues, as is the case with symmetric matrices,
can gain stability (Figure 3B, middle). This is the differential
impact of the delay on the connectivity.

An example of the former situation is a uni-directional
ring. The spectrum of the connectivity matrix in this case lies

on the unit circle and the second largest eigenvalue increases
as the size of the ring increases. Thus delay will tend to
destabilize larger networks before smaller networks. This can
be seen in Figure 3B where the eigenvalues for unidirectional
rings with N = 7 and N = 8 are displayed with the
MSF. The MSF analysis predicts that both networks will be
synchronized for ǫ = 0, but the larger network can be
desynchronized for large enough delay. This was verified using
numerical simulations of the full network (Figure 3C), where
the ring of N = 8 nodes is desynchronized by the delay
while that with N = 7 is not. Networks with random
coupling also have complex eigenvalues, but the distribution
tends to be clustered near the origin, especially for larger
networks. See Figure 4E for some example distributions. Thus,
for our model, these networks should exhibit synchronized
solutions, largely unaffected by the presence of delays. Numerical
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FIGURE 4 | (A) Ring network with heterogeneous delays, where each delay is drawn from a beta-distribution (see Methods) with the finite sample also renormalized to

have a sample mean of ǫ = 0.1. (B) Phase portrait of the ring in [E(t), I(t)] space, for N = 6 (left), N = 7 (middle) and N = 8 (right). (C) The time series of simulations. (D)

A randomly-coupled network with heterogeneous delays, drawn as in (A–C). (E) The phase portrait in the [E(t), I(t)] space with the eigenvalue spectrum of the

sample-weight matrix drawn as an inset for randomly-coupled networks with N = 6 (left), N = 7 (middle) and N = 8 (right). (F) Time series of the simulations. For all

simulations, the parameter values were: WE = 2.115, p = 0.2, τ1 = 1, τ2 = 5, W IE = 1, and a = 5.

simulations of some specific networks confirm this (see
Supplementary Figure 1).

An example of a symmetric network is a lattice. Here the size
of the second largest eigenvalue increases with the size of the
network N. It was shown in Nicola and Campbell (2021) that for

the model (Equation 1) with no delay (ǫ = 0) andWE = 2.115 a
lattice ofN = 15 nodes is synchronized while that withN = 16 is
desynchronized. Figure 3B indicates that with delay ǫ = 0.1 and
the same value ofWE the lattice will be synchronized up to much
larger values of N.
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Heterogeneous Delays Largely Mirror
Homogeneous Delay Case
Finally, we investigated how robust our results would be if the
delays in our network were not homogeneous, but different
for each connection. Here, the MSF approach does not extend,
and thus, we opted to use numerical simulations for certain
simple connectivity matrices (Figure 4). The only constraints in
constructing these networks were that 1) all delays generated
were positive and drawn from a beta-distribution and 2) the
delays were re-scaled to force the sample mean of the delay
to exactly match the nominal delay value we considered in
Figures 1–3 (ǫ = 0.1).

First, we found that for ring networks, heterogeneity in
the delays does not appreciably alter the synchronization
characteristics of the network for the same fixed value of the
coupling strength (WE) as in the homogeneous delay network
(Figures 4A–C). In fact, even the attractors themselves were
minimally altered (compare Figures 3C, 4B).

Second, we found that for all-to-all connected, row-sum
normalized randomly-coupled networks, the solutions once
again synchronized to identical attractors as for the ring
networks (Figures 4C,F). Note that for systems which are all-
to-all coupled, and with randomly chosen, row-sum normalized,
the eigenvalues of the connectivity matrix shrink with the
network size (aside from the dominant eigenvalue), which is a
consequence of random matrix theory (Pastur and Shcherbina,
2011).

Of course the solutions cannot be perfectly synchronized since
the delays are different. Close inspection shows that the different
nodes have phase differences on the order of the size of the
delay. Since the timescale of the delay is much smaller than the
timescale of the oscillations in the WC system, these difference
are not apparent in longer simulations. This can be explained by
the analysis of Lücken et al. (2013) which determines conditions
under which the distribution of delays in a network may be
changed but still give equivalent dynamical behavior. The results
of Lücken et al. (2013) apply directly to our ring networks and
indicate that the system with heterogeneous delays will have
the same attractor as that with homogeneous delays, but the
phase relationships between the neurons will be different. A
synchronized solution for the system with homogeneous delays
becomes desynchronized in the system with heterogeneous
delays, with the timescale of the desynchronization between
neurons determined by the size of the delays.

Thus, numerically we find that the MSF results are robust for
this WC system even with a heterogeneous distribution of delays,
so long as the system with heterogeneous delays is compared to
the homogeneous system with a delay equal to the sample mean
of the heterogeneous system.

4. DISCUSSION

The impact of delays on a network cannot be readily disentangled
without simultaneously considering both the network topology,
and the dynamics of individual nodes. Here, we considered all

three in networks of delay-coupled, homoeostatically controlled
Wilson-Cowan nodes with the Master Stability Function
formalism. First, we find that when networks do synchronize,
they synchronize to the single self-delay coupled node. The
single node itself undergoes a Hopf-bifurcation to induce
oscillations which requires a stronger global strength with
larger delay. For small delays, the behavior of the network is
similar to the non-delay coupled case, and to the behavior
of other neural systems (see Keane et al., 2012 for example).
For larger delays, the shift in the Hopf-bifurcation to stronger
coupling values has a secondary impact: all mixed-mode,
period doubled, and chaotic solutions are no longer present.
Next, by applying the MSF approach, we found that the
impacts of a delay are dependent on the network structure.
Networks with large magnitude, complex eigenvalues (like rings)
are likely to lose stability in their synchronous solution(s)
while networks with large magnitude, purely real eigenvalues
are likely to gain stability in their synchronous solutions.
For a sufficiently large delay, which pushes up the global
coupling strength necessary to induce oscillations, synchrony is
the norm.

The size of delay in our study was chosen so that the ratio
of the delay (ǫ) to the synaptic time constants was < 1, as
synaptic delays are typically in the sub-millisecond tomillisecond
range (Roxin et al., 2005; Ghosh et al., 2008; Deco et al., 2009).
Nevertheless, delays in this biologically plausible range could still
be large enough to induce the effects discussed above.

Our work highlights the importance of considering the
network structure when considering the effect of time delay
on synchronization behavior. In all cases we considered, the
delay decreases the size of the region where synchronization is
stable, however the region of stability also changes shape. In
general, the region of stability near the right half of the unit
circle decreases. This means that structured networks (such as
unidirectional rings) are easier to desynchronize with larger
delay. This is consistent with studies of structured networks
that show that increasing the delay can lead to desynchronized
cluster-like solutions (Choe et al., 2010; Kyrychko et al., 2014;
Wang and Campbell, 2017; Kaslik and Mureşan, 2020; Kaslik
et al., 2020). However, the synchronization region near the real
axis was largely unchanged when the nodes exhibit periodic
solutions. This means that networks with symmetric or near
symmetric coupling are resistant to desynchronization by the
delay. This is consistent with the results of studies across a
variety of coupled networks with time delay (Dhamala et al.,
2004; Choe et al., 2010; Flunkert et al., 2010, 2014; Kyrychko
et al., 2014). For both the delayed and instantaneously coupled
networks, the key determining factor for synchronization is
the second-largest eigenvalue of the normalized connectivity
matrix (Nicola and Campbell, 2021). Networks that generate
larger eigenvalue distributions (e.g., more sparsely coupled
networks) are more likely to desynchronize than networks that
generate smaller eigenvalue distributions (e.g., more densely
coupled networks).

A novel observation in our work was the influence of
chaotic node behavior on synchronization. For networks
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with symmetric or near-symmetric coupling, a region of
desychronization occurs when the nodes exhibit chaotic or
irregular behavior. As discussed above, delays decrease the
size of this region of desynchronization due to the fact
that increasing the delay can destroy the chaotic behavior.
If one considers coupling strengths were increasing the
delay creates or preserves the chaotic behavior of the nodes
then the delay can increase the size of the region of
desynchronization. Nevertheless, we always observe the ultimate
loss of the chaotic solutions for sufficiently large delay.
This is a subtle effect of the model setup where the
type of synchronized solution that occurs depends on the
coupling strength.

The fact that time delays can influence synchronization
behavior has long been understood (Crook et al., 1997;
Ermentrout and Kopell, 1998; Ko and Ermentrout, 2007; Choe
et al., 2010; Lehnert et al., 2011; Pérez et al., 2011; Dahms et al.,
2012; Panchuk et al., 2013; Sun and Guofang, 2017). Here we
have contributed to this understanding through our study of
Wilson-Cowan networks with homeostatic adjustment of the
inhibitory weight. Our work builds on and extends prior work
on Wilson-Cowan networks with time delays, which focussed
primarily on small networks (one or two nodes) and/or networks
without the homeostatic adjustment (Coombes and Laing, 2009;
Pasillas-Lépine, 2013; Kaslik and Mureşan, 2020; Kaslik et al.,
2020).
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The structural connectivity of human brain allows the coexistence of segregated and

integrated states of activity. Neuromodulatory systems facilitate the transition between

these functional states and recent computational studies have shown how an interplay

between the noradrenergic and cholinergic systems define these transitions. However,

there is still much to be known about the interaction between the structural connectivity

and the effect of neuromodulation, and to what extent the connectome facilitates

dynamic transitions. In this work, we use a whole brain model, based on the Jasen and

Rit equations plus a human structural connectivity matrix, to find out which structural

features of the human connectome network define the optimal neuromodulatory effects.

We simulated the effect of the noradrenergic system as changes in filter gain, and studied

its effects related to the global-, local-, and meso-scale features of the connectome.

At the global-scale, we found that the ability of the network of transiting through a

variety of dynamical states is disrupted by randomization of the connection weights.

By simulating neuromodulation of partial subsets of nodes, we found that transitions

between integrated and segregated states are more easily achieved when targeting

nodes with greater connection strengths—local feature—or belonging to the rich club—

meso-scale feature. Overall, our findings clarify how the network spatial features,

at different levels, interact with neuromodulation to facilitate the switching between

segregated and integrated brain states and to sustain a richer brain dynamics.

Keywords: whole brain model, neuromodulation, integration and segregation, network topology, noradrenaline,

rich club organization

1. INTRODUCTION

The human brain generates a rich repertoire of spatiotemporal dynamics characterized by the
integrated and segregated functional states (Tononi, 2004). Information processed in parallel by
domain-specific systems (segregated) is brought together (integrated) to guide adaptive behavior
(Dehaene and Changeux, 2011). The balance between segregation and integration is essential to
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coordinate the local and global communication of neural
information, it is needed to support a wide variety of cognitive
functions, and has been proposed as a prominent organizational
principle of the brain (Sporns, 2013; Cohen andD’Esposito, 2016;
Shine, 2019; Wang et al., 2021). The dynamics and flexibility of
brain activity, necessary for the coherent global functioning of the
brain, enables the coexistence of segregated and integrated brain
states (Kelso, 2012; Tognoli and Kelso, 2014; Wang et al., 2021).

Neuroimaging recording techniques such as
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI) allow the characterization of
functional connectivity (FC) of the brain, from which the
functional integration and segregation can be quantified using
network theory tools (Bullmore and Sporns, 2009; González
et al., 2016). The observed patterns of FC reflect the diversity
of neuronal dynamics that emerge, among others, from the
nonlinear dynamics of brain regions interconnected through
structural connectivity (SC) (Deco and Jirsa, 2012; Lord et al.,
2017; Guan et al., 2020). FC continuously evolves even in resting
conditions (Allen et al., 2014; Hansen et al., 2015; Cabral et al.,
2017), moreover, it changes across several tasks, highlighting the
flexible nature of brain dynamics (Cohen and D’Esposito, 2016;
Shine et al., 2016, 2019; Wang et al., 2021).

A plausible mechanism to facilitate—and regulate—
transitions between different FC patterns are neuromodulatory
systems. Neuromodulators do not directly excite neurons.
Instead, they change their excitability and response to
neurotransmitters, increasing or decreasing the probability
of firing action potentials (Thiele and Bellgrove, 2018). The
role of the cholinergic and noradrenergic systems in managing
the segregation/integration balance has been evidenced in
experimental (Shine et al., 2016, 2018b; Pfeffer et al., 2020), and
theoretical frameworks (Shine et al., 2018a; Pfeffer et al., 2020;
Coronel-Oliveros et al., 2021).

The noradrenergic system is involved in arousal when
subjects engage in high-load cognitive tasks (Aston-Jones and
Cohen, 2005; Shine et al., 2016, 2018b). For example, in
fMRI recordings during an N-back task (for assessing working
memory), the pupil diameter—a marker of noradrenergic tone
(Reimer et al., 2016)—increases (Shine et al., 2016, 2018b).
The principal source of noradrenaline in the cerebral cortex
comes from the locus coeruleus (LC) (Fuxe et al., 2010). The
GANE model of gain modulation (Mather et al., 2016; Lee
et al., 2018), proposes that the noradrenergic system modulates
neural response through an excitatory feedback loop between
glutamate receptors on varicosities of LC projections and
adrenergic β receptors on presynaptic glutamatergic neurons. At
the same time, less activated neurons are suppressed through
the action of adrenergic α2 autoreceptors expressed on the
varicosities. The overall result comprises an increase of the
neuron responsivity above a threshold, and a decrease of the
responsivity below this threshold. This is equivalent to increasing
the slope of the input-output sigmoid function, also named
filter gain, as proposed in Servan-Schreiber et al. (1990) and
Aston-Jones and Cohen (2005).

In a recent article (Shine, 2019), the noradrenergic system
was considered to promote an integrated functional network

configuration increasing the filter gain (Servan-Schreiber et al.,
1990; Aston-Jones and Cohen, 2005; Mather et al., 2016; Thiele
and Bellgrove, 2018). Computational studies (Shine et al., 2018a;
Coronel-Oliveros et al., 2021) have also shown how the interplay
between cholinergic and noradrenergic systems can regulate the
segregation/integration balance. While recent theoretical articles
point out that a non-uniform neuromodulation can explain
better the effects of neuromodulatory systems in brain dynamics
(Deco et al., 2018; Kringelbach et al., 2020), most studies so far
have considered homogeneous neuromodulation, i.e., acting in
all nodes in the same way.

There is evidence about the importance of network properties
of the human connectome (Cabral et al., 2014; Zamora-López
et al., 2016; Wang et al., 2019; Castro et al., 2020). For example,
its hierarchical modular organization is needed to sustain a
richer brain dynamics (Zamora-López et al., 2016; Wang et al.,
2019). Then, the repertoire of network configurations, as a
way to conceptualize the dynamical richness, can be affected
by neuromodulation. Using a neural mass model to simulate
neural activity, Shine et al. (2018a) showed that rich club regions
were strongly neuromodulated compared with non-rich club
members, especially between the transition from functional
segregation to integration. This work notably suggests that some
particular brain regions play a key role in the switching between
different functional states via neuromodulation. Here, instead
of quantifying what regions would be strongly neuromodulated,
we studied how much the impact would be on integration and
segregation when neuromodulating specific subsets of nodes, and
analyzed the structural features that define the nodes that, upon
modulation, have the largest effect on the network dynamics as
a whole.

To investigate this issue, we built a whole-brain model based
on the Jansen and Rit equations (Jansen et al., 1993; Jansen and
Rit, 1995) coupled to a human SC matrix, that allows us to
simulate the effect of the noradrenergic system on the functional
integration and segregation features of the network (Coronel-
Oliveros et al., 2021). The interaction between neuromodulation
and structural connectivity was studied at three levels: at
the global-scale, we used random surrogate connectomes that
preserve the number and strength of connections but disrupt
the global patterns. At the meso-scale, we determined whether
the modulation of a node subset containing the anatomical
rich club (Opsahl et al., 2008; Van Den Heuvel and Sporns,
2011) or the critical s-core (Garas et al., 2012; Eidsaa and
Almaas, 2013), is optimal to produce a change in network
dynamics, compared to randomly chosen subsets. At the local-
scale, we explored which local properties define the set of
nodes that, when being neuromodulated, maximize the effect on
network dynamics.

We found that when we selectively neuromodulated the brain
regions by the rich club (meso-scale property) or the high
strength criteria (local-scale) the whole-brain network dynamics
is most effectively modified. Additionally, we observed that
surrogate connectomes reduced FC richness, compared with
human SC, when neuromodulated. Overall, our findings clarify
how the neuromodulation interacts with the anatomical network
features at local-, meso-, and macro-scale levels in a whole-brain
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FIGURE 1 | Whole-brain neural mass model with neuromodulation. (A) The Jansen and Rit model is composed of a population of pyramidal neurons with excitatory

and inhibitory feedback mediated by interneurons. A series of constants Ci connect each population. The outputs are transformed from average pulse density to

average postsynaptic membrane potential by an excitatory (inhibitory) impulse response function hE (t) [hI (t)]. Then, a sigmoid function S performs the inverse

operation. Pyramidal neurons project to distant brain areas and receive both uncorrelated Gaussian-distributed inputs p(t) and inputs from other regions z(t), scaled by

a global coupling parameter α. (B) Each node represents a cortical region, whose dynamics are ruled by the Jansen and Rit equations. The structural connectivity

matrix, M, is the map of the connections (and their weights in the color bar) between cortical regions (row and columns of the matrix). The noradrenergic system

increments pyramidal neuron responsivity to relevant stimuli with respect to noise, as a filter, by increasing the slope r0 of their sigmoid function. (C) The whole-brain

model comprises 90 cortical and subcortical regions linked by a human connectome. For each region, the model produces both EEG-like and BOLD-like signals. The

brain figure was obtained using the BrainNet Viewer (Xia et al., 2013).

model to facilitate switching between segregated and integrated
brain states.

2. RESULTS

To study the effect of neuromodulatory systems on the
integrative/segregative capacities of the human connectome, we
used a whole-brain model of brain activity (Coronel-Oliveros
et al., 2021). In this model, each node corresponds to a brain area
represented by a neural mass, which consists of three populations
(Jansen et al., 1993; Jansen and Rit, 1995): pyramidal neurons,
excitatory, and inhibitory interneurons (Figure 1A). We used
the same parameters as in Jansen et al. (1993) and Jansen and
Rit (1995), except the connectivity constant from inhibitory
interneurons to pyramidal neurons C4, which we modified to
C4 = 0.5C, being C the original intra-area connectivity constant
of the model. The nodes are connected through a weighted
undirected structural connectivity matrix derived from human
MRI data (Deco et al., 2018), parcelated in 90 cortical and
sub-cortical regions with the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002; Figure 1B). Pyramidal
neurons connect regions (or nodes) because it is considered that
long-range projections are mainly excitatory (Gilbert et al., 1990;
McGuire et al., 1991). The simulations generate firing rates in
each node of the network, which was used as an input to a
generalized hemodynamic model (Stephan et al., 2007). In this

way, we obtained fMRI BOLD-like signals (Figure 1C) from
which we built the FC matrices.

We modeled the influence of the noradrenergic system
through the manipulation of the filter gain (Aston-Jones and
Cohen, 2005; Shine, 2019; Figure 1B). The filter gain r0 modifies
the sigmoid function slope of pyramidal neurons, increasing their
responsivity to relevant stimuli, decreasing the response to low
amplitude stimuli, and boosting the signal-to-noise ratio.

2.1. Human Structural Connectivity
Enhances Dynamical Richness
First, we analyzed how neuromodulation depends on the
connectivity pattern of the human connectome by using different
randomized surrogate connectomes. We employed a degree- and
strength-preserving randomization (DSPR), which randomizes
the structural connectivity while preserving original degree and
strength distributions (Figure 2B); in this way we can study the
effect of disrupting the global connectivity without altering the
local nodal properties. In addition, we employed a complete
randomization of the structural connectivity (Figure 2C), which
does not preserve the degree and strength distributions.
Finally, a homogenization (binarization) of the connectome was
considered (Figure 2D); this surrogate preserves the topology,
disrupting the non-uniform weight distribution. We simulated
EEG-like and fMRI BOLD-like signals from the Jansen and Rit
model at different combinations of α ∈ [0, 1] and r0 ∈ [0, 1]
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FIGURE 2 | Effects of network structure in neural synchronization and integration. From top to bottom: structural connectivity matrix, phase synchrony R̄, global

efficiency Ew (a measure of integration), and modularity Qw (measure of segregation), obtained in the model with different structural connectivities. R̄ was obtained

from EEG-like simulated activity, while Ew and Qw were calculated using the FC obtained from the corresponding fMRI BOLD-like traces. (A) Human structural

connectivity (Human). (B) Degree- and strength-preserving randomized version of Human (DSPR). (C) Randomized version of Human, where weight values were

shuffled across the full matrix (Random). (D) Homogeneous version of Human, having the same weight in all connections (Homogeneous).

parameters. Here, the value of the parameters is equal for all the
nodes, and we refer to this case as uniform neuromodulation.
We computed the mean of the Kuramoto order parameter, also
known as phase synchrony R̄, the global efficiency, Ew, and the
modularity, Qw, as measures of global phase synchronization,
integration, and segregation, respectively. Global efficiency is a
measure of integration defined as the inverse of the characteristic
path length (Rubinov and Sporns, 2010). High values of Ew

represent an efficient coordination between all pairs of nodes in
the network, a signature of integration. Modularity is a measure
of segregation based on the detection of network communities,
or modules (Rubinov and Sporns, 2010); high modularity Qw is
associated with segregation and vice-versa.

Figure 2A shows how neuromodulation of the human
connectome causes a shift of the model toward a synchronized
and integrated state, with maximum integration observed in
an intermediate region of the parameter space, as previously
reported in Shine et al. (2018a) and Coronel-Oliveros et al.
(2021). The synchrony R̄ has an upper bound of 0.76, that
is, the network never fully synchronizes. The transition is
gradual, with many regions showing an intermediate behavior
characterized by higher metastability and richer dynamics

(Zamora-López et al., 2016; Shine et al., 2018a; Coronel-Oliveros
et al., 2021). Moreover, the region of the parameter space where R̄
increasesmatches the increment in global efficiency, Ew, verifying
a link between the fast dynamics of EEG and the slower one
of fMRI-BOLD.

We repeated the same exploration using the DSPR surrogate
connectome (Figure 2B; Rubinov and Sporns, 2011). The area of
synchronized activity in the parameter space (r0, α) is reduced,
and a spot of over-synchronized activity can be appreciated.
Most importantly, the area of intermediate values of synchrony
and integration is largely reduced, suggesting a reduction of
dynamical richness. When the connectivity matrix is completely
randomized (Figure 2C), or made homogeneous by assigning
equal weights to all connections (Figure 2D), neuromodulation
produces a large area of over-synchronized activity in the
parameter space and fewer regions with intermediate behavior.

The dramatic decrease in Ew in Figures 2C,D is a consequence
of the over-synchronization (R̄ ≈ 1) triggered by randomization.
When signals are highly synchronized in our model, the envelope
in the alpha band of the EEG (between 8 and 13 Hz) becomes
flat, and so does the BOLD-like signal calculated with the
hemodynamic model (Foster et al., 2016). For this reason, this
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FIGURE 3 | Partial noradrenergic neuromodulation. (A) The (α, r0) parameter space showing phase synchrony R̄, global efficiency Ew, and modularity Qw, for the

Human connectome (same as in Figure 2A). Blue and red dots are references for (B–D). (B–D) BOLD-like signals, FC and FCD matrices obtained when all nodes

have α = 0.65 and (B) r0 = 0.33; (C) 45 nodes have r0 = 0.33 and 45 nodes have r0 = 0.67; and (D) all nodes have r0 = 0.67. In (C), the 45 nodes with the highest

strength were modified to r0 = 0.67.

drop in Ew should not be interpreted as a reduction of integration
but a limitation of the hemodynamic model we employed in
input simulations. Nevertheless, an over-synchronized regime
of activity is a feature never found in the healthy brain
(Miron-Shahar et al., 2019).

Thus, in line with several previous reports (Cabral et al.,
2014; Zamora-López et al., 2016; Wang et al., 2019; Fukushima
and Sporns, 2020), disrupting the organization of the human
connectome (or the weight relationships between nodes) causes
over-synchronization, and highly metastable regimes can not be
easily reached employing neuromodulation.

In the following, we will study which local- or meso-scale
organization features are determinant in the effect of
neuromodulation of human connectome by evaluating the
network behavior when changing the r0 parameter in subsets of
network nodes.

2.2. Neuromodulation of High-Strength
Nodes Promotes Better Functional
Integration
In this section, we investigate the impact on functional
integration when an increasing number of nodes are
neuromodulated. The order in which nodes are modulated is
defined considering nodal measures obtained from the structural
matrix M. We calculated, for each node i ∈ [1 . . . n]: node

strength, Kw
i , nodal efficiency, Ewi , and clustering coefficient, Cw

i
(Rubinov and Sporns, 2010). The superscript w indicates the use
of the weighted versions of the measures. Then, for each metric,
nodes were ordered either from high to low or from low to high.
We fixed the global coupling α = 0.65, and swept r0 ∈ [0.33, 1]
and the number of nodes being neuromodulated in [0, 90] in
steps of three. As before, we used the EEG-like and BOLD-like
signals to extract synchrony, integration, and segregation.

A particular example of partial neuromodulation is shown
with some detail in Figure 3. The (α, r0) parameter space is
shown in Figure 3A depicting global phase synchrony R̄, global
efficiency Ew and modularity Qw in a uniform neuromodulation
scenario (all nodes identical). Figure 3B shows sample BOLD
traces, the functional connectivity (FC) and the functional
connectivity dynamics (FCD) matrices for α = 0.65, r0 = 0.33
(red dot in Figure 3A). The FCD matrix visually represents
the dynamical richness of the network, by computing time-
dependent FCs using sliding windows (Cabral et al., 2017; Orio
et al., 2018). Then, FCs are vectorized and compared to each
other using the Clarkson distance (Clarkson, 1936), resulting in
a matrix of time vs. time. At the bottom, Figure 3D shows the
same analysis for α = 0.65, r0 = 0.67 (blue dot in Figure 3A). In
the middle, Figure 3C shows the results when only half of the
nodes have been neuromodulated to r0 = 0.67 while the rest
remain with r0 = 0.33. As the number of nodes with r0 = 0.67
increases, the FC matrices become more integrated (high Ew
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FIGURE 4 | Incremental neuromodulation based on node strength. (A) Effect of the neuromodulation on phase synchrony R̄, global efficiency Ew, and modularity Qw,

at different combinations of r0 and number of neuromodulated nodes. Nodes were affected by neuromodulation according to their strength, from low to high. (B)

Effect of the neuromodulation of nodes sorted from high to low strength. (C) Metrics as a function of the number of neuromodulated nodes, for r0 = 0.67 as target

value. Blue curves for neuromodulation of nodes with low strength, orange the opposite, and green for a random ordering of the nodes. Shaded areas correspond to

95% confidence intervals, for 10 realizations.

and low Qw values). Similarly, the FCD matrices change from
incoherence (red FCD), to exhibit multi-stable behavior (FCD
with yellow-green patches), and finally to show correlated FC
patterns (blue FCD). In summary, the increment of the number
of neuromodulated nodes increases phase synchrony, functional
integration, and the time correlation of FCs captured by the FCD.

Figure 4 shows the result of neuromodulating r0 with a
target value in the [0.33, 1] interval and with the number of
neuromodulated nodes ranging from 0 to 90. The order in
which nodes are neuromodulated is either from low to high
Kw
i (Figure 4A) or viceversa (Figure 4B). When the number of

neuromodulated nodes is large, R̄ and Ew raise markedly in both
cases; the opposite can be observed for Qw. However, picking
the nodes of high strength first (Figure 4B) has greater impact in
the change of those metrics. The difference is best appreciated in
Figure 4C, where we selected a target r0 value of 0.67. There, the
curves for the high to low Kw

i sorting (in orange) present a larger
effect at the beginning, compared with the low to high Kw

i sorting

(in blue). We can conclude that nodes with higher strength have
a greater impact on functional integration, and inspection of the
colormaps of Figures 4A,B reveals that this is true for almost all
values of target r0. The results were also compared with a random
selection of nodes for neuromodulation (green curves). As the
blue curve is mainly below the green curve, neuromodulation of
nodes with low Kw

i produces less synchronized and integrated
dynamics than expected by a random neuromodulation. In
contrast, choosing high Kw

i nodes is not different from random
selection, when looking at the measures of integration and
segregation. In consequence, there is a range (or possibly a set) of
nodes that produce a robust integration when neuromodulated,
compared to a random choice of nodes.

We compared the results of sorting the nodes based on
strength Kw

i , with ranking the nodes based on nodal efficiency
Ewi or clustering coefficient Cw

i (Figure 5). A node with a high
Ewi has many short paths to the rest of the nodes of the network,
while a high Cw

i is expected for nodes whose neighbors are
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FIGURE 5 | Incremental neuromodulation based on nodal efficiency and clustering coefficient. (A,B) Phase synchrony R̄, global efficiency Ew, and modularity Qw as a

function of the number of neuromodulated nodes, for r0 = 0.67 as target value. In (A), nodes were sorted according to nodal efficiency, Ewi , and in (B) according to

the clustering coefficient, Cw
i . Blue curves for sorting of nodes from low to high (of the particular metric), orange is from high to low, and green for a random sorting of

the nodes. (C) Difference between the area under the curve (AUC) of high vs. low sorting, averaged over the 10 realizations. Shaded areas in (A,B) correspond to 95%

confidence intervals, and barplots were built using the mean ± standard deviation. ***p < 0.001.

also connected between them. Figure 5A shows the result of
modulating an increasing number of nodes from a basal r0 =

0.33 to a target r0 = 0.67, when the nodes are ordered
from low to high or high to low Ewi . The results are similar
to the ones obtained using the strength Kw

i : neuromodulation
of nodes of high Ewi has a greater impact in synchronization
and integration, compared with the nodes of low Ewi . Here,
the random sorting of nodes is similar to the high to low Ewi .
However, when the nodes are sorted according to their clustering
coefficient Cw

i (Figure 5B), there is little difference compared to
random sorting.

When comparing the results in Figures 5A,B with the
neuromodulation of a random subset of nodes (green
curves), there is no clear advantage of selecting the nodes
with high Ewi or Cw

i . Despite the increase in R̄ being
slightly higher for the orange curves, compared with the

green curves, the difference in Ew is unnoticeable, except
in Qw when ordering the nodes from high to low Ewi .
These results contrast with the ones in Figure 4C, where
the neuromodulation of nodes with high Kw

i produced an
increase in synchronization and integration higher than
random neuromodulation.

To summarize these results, we computed the difference
between the area under the curve (AUC) for the high-to-low
minus low-to-high (orange minus blue AUCs; Figure 5C). A
larger difference implies a higher impact of neuromodulating
first the nodes with a higher value of the chosen metric
in synchronization, integration, and segregation. The mean
difference in the AUCs for the measures 1R̄, 1Ew, and −1Qw

(note that the sign is inverted for visualization purposes), is lower
for Cw

i than for Kw
i and Ewi (p < 0.001 for all comparisons using

Student’s t-test).
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FIGURE 6 | Neuromodulation based on the rich club organization. (A) Normalized and weighted rich club coefficient φw
norm(K) (blue curve), as a function of the

degree-based threshold K. This coefficient was calculated as the ratio between the human rich club coefficient (purple solid curve) and the mean coefficient for

random surrogates (DSPR, purple dashed curve). The red arrow marks the point in which φw
norm (K) is maximal; rich club nodes were found at that point. (B) Schematic

depiction of the rich club, feeders (not belonging to the rich club, but connected with it) and local nodes, (connected only to feeders). At the right, we show a glass

brain with the nodes identified as rich club (n = 17 nodes), feeders (n = 60), and local (n = 13). (C) Changes in synchrony R̄, global efficiency Ew and modularity Qw

when neuromodulating 24-node sets containing the rich club (blue), local nodes (green), or only feeders (orange). The results are shown as the difference with respect

to a random subset of nodes of equal size (null case). The bottom row summarizes the area under the curve (AUC) for each metric and nodal category, averaged over

the 10 realizations. Shaded areas correspond to 95% confidence intervals, and bar plots were built using the mean ± standard deviation. **p < 0.01, ***p < 0.001.

2.3. Neuromodulation of Rich Club Nodes
Strongly Impacts Functional Integration
Node strength, nodal efficiency and clustering coefficient are
considered local-scale properties, i.e., they belong to each node.
Several meso-scale network properties have been described as
being determinant for network dynamic too, such as the rich club
organization (Van Den Heuvel and Sporns, 2011) and the s-core
(Hagmann et al., 2008; Garas et al., 2012; Eidsaa and Almaas,
2013; Castro et al., 2020). We identified the nodes belonging to
the “rich club,” using the weighted rich club coefficient φw(K),
where K is a threshold based on degree (Opsahl et al., 2008).
The rich club comprises a subset of the graph, thresholded

at K, in which nodes are more strongly interconnected than
expected by chance (Van Den Heuvel and Sporns, 2011). The

coefficient is normalized using random surrogates φw
rand

(K), in

our case DSPR surrogates (Rubinov and Sporns, 2011). If the
normalized coefficient φw

norm(K) is greater than 1, the network

has a rich club organization at threshold K. Figure 6A shows

a plot of φw
norm(K) (blue) as a function of K. The red arrow

marks the point in which the normalized coefficient is maximal

[φw
norm(K) = 1.367, p < 0.002]. Then, we identified feeder

nodes—nodes that do not belong to the rich club but are

connected to at least one of its members—and local nodes—
connected to feeders but not to the rich club (Figure 6B). We
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found 17 nodes belonging to the rich club, 60 feeders and 13 local
nodes (Figure 6B). The rich club members are the brain regions
in Table 1.

As the analysis of the rich-club properties of the human SC
defines sub-networks, instead of sorting the nodes, we chose
a different approach than the neuromodulation of increasing
subsets of nodes. Here, we simulated neuromodulation of a
fixed-size subset of nodes, that included all nodes belonging
to a certain category (rich club, feeders, or local). Because
the categories differ in size, we complemented the rich club
and local nodes with 7 and 11 nodes, respectively, selected
randomly from the feeders. For the last one, we randomly chose
24 feeder nodes. Also, we had a null case, composed of 24
nodes randomly selected from the complete set of nodes. We
repeated the random selection of nodes with 10 realizations,
always using subsets of 24 nodes. The nodes started with a basal
r0 value of 0.33, and r0 was swept up to 1 but only in the
designated subset of nodes. For each r0 increment, we measured
R̄, Ew, and Qw. Then, we subtracted to each measurement the
result of the null case. The results are shown in Figure 6C.
Neuromodulation of the rich club nodes produces an increase in
synchronization and integration, and a decrease in modularity,
above chance. The difference becomes more pronounced with
further increments of r0. Opposite results were observed for
the subsets containing local nodes. Finally, neuromodulation
of subsets containing only feeder nodes produce no difference
compared to random selection of nodes. As a summary index,
we calculated the AUC for each nodal category (Figure 6C).
Considering the three measurements, the AUC is higher (lower
in the case of modularity Qw) for the rich club respect to feeders
and local, and higher (lower in the case of Qw) between feeders
and local (p < 0.001 for all comparisons using Student’s t-
test). Our results show that noradrenergic neuromodulation of
a subset including the rich club nodes has a greater impact
on integration compared to the feeders, locals, and a random
selection of nodes.

As previously shown, functional integration is also achieved
by neuromodulation of highest strength nodes. To highlight
the difference between the local and meso-scale approaches, we
quantified the overlap between the rich club nodes and the 17
nodes with higher strength. We found that only 8 members of
the rich club belong to the subset of 17 nodes with higher strength
(Table 1). Thus, there are some high-strength key nodes that do
not belong to the rich club, that promote functional integration
via neuromodulation.

To explore a second meso-scale network organization, we
performed a s-core decomposition (Garas et al., 2012; Eidsaa
and Almaas, 2013) that classifies nodes according to their core-
periphery organization (Hagmann et al., 2008; Figure 7A). We
defined three categories considering a range of critical s-core
values: S3 with 10 nodes (1.54 < s < 1.78), S2 with 56 nodes
(1.48 < s < 1.54), and S1 with 24 nodes (s < 1.48; Figure 7B).
The critical s-core is defined as the maximal value of s at which
nodes are still connected to the network. Thus, S3 are nodes
connected within them with highest strength, S2 middle-strength
nodes, and S1 the nodes with the lowest strength. The S3 subset
comprises the brain regions shown in Table 1.

TABLE 1 | List of regions belonging (X) to the rich club, the S3 category, and the

17 nodes with highest strength.

Brain regions Rich club S3 core Top strength

Posterior cingulate gyrus (L, R) X X X

Precuneus (L, R) X X X

Calcarine fissure (L, R) X X

Cuncus (L, R) X

Cuneus (L, R) X X

Caudate nucleus (R) X

Hippocampus (L, R) X

Insula (L) X

Middle occipital gyrus (L) X X

Pallidum (L, R) X

Putamen (L, R) X X

Rolandic Operculum (L) X

Superior dorsal gyrus, dorsolateral (L, R) X

Superior frontal gyrus, orbital (L) X

Superior occipital gyrus (L, R) X

Superior frontal gyrus, medial (L) X X

Thalamus (L, R) X

L, left hemisphere; R, right hemisphere. The regions listed here are the same displayed in

the glass brains of Figures 6, 7.

We simulated the neuromodulation in subsets of 24 nodes,
containing either the S3 or the S1 category, and complementing
S3 with 14 random nodes from S2 as done with the rich club. A
third group was built with 24 nodes randomly selected from S2,
and all groups were compared to a random selection of 24 nodes
from the whole set. As shown in Figure 7C, the selection of S2
nodes for neuromodulation shows the largest effect in 1R̄, 1Ew,
and 1Qw, compared with S1 nodes (p < 0.001 using Student’s t-
test) and compared to the selection of S3 nodes (p < 0.001, except
for 1Ew with p = 0.106). Thus, nodes belonging to the highest
s-core (nodes of the highest within-strength sub-network) do
not behave like the rich club, as their neuromodulation does
not have the highest impact on network synchronization and
integration/segregation properties.

3. DISCUSSION

In this work, we sought to identify the relationship between
structural features of the human connectome and the specific set
of regions that, when neuromodulated in a biologically realistic
whole-brain model, produce a significant increase in functional
integration. We found that the global organization of the
connectome sustains rich metastable and partially synchronized
states, essential to the effects related to neuromodulation. At the
meso- and local-scales, nodes belonging to the anatomical rich
club, and those having high nodal strength, produce a marked
increase in functional integration (and a decrease in segregation)
when neuromodulated.

Our results show that the whole-brain model exhibits over-
synchronized behavior when using surrogate connectomes,
restricting the dynamic features of the model. This result is in the
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FIGURE 7 | Neuromodulation based on the s-core decomposition. (A) s-core decomposition. At the left, example based on degree (k-core). Nodes are recursively

removed based on a degree threshold. The remaining nodes form a subgraph or core where all nodes have a within-degree above the threshold. For example, the

three-core of the figure corresponds to a subgraph where all nodes have a degree of three or more. The numbers on the circles correspond to nodes’ degree. The

right plot shows the number of remaining nodes in s-core after applying the strength-based threshold s. (B) Brain regions identified using the s-core decomposition.

We defined three categories, considering a range of s values: S3 (n = 10 nodes), S2 (n = 56), and S1 (n = 24). (C) Changes in synchrony R̄, global efficiency Ew and

modularity Qw when neuromodulating 24-node sets containing the S3 nodes (blue), S1 nodes (olive green), or only S2 nodes (pink). S1 and S3 sets were

complemented with random nodes from S2 to obtain sets of 24. Results are shown as the difference with respect to a random subset of nodes of equal size (null

case). The bottom row summarizes the area under the curve (AUC) for each metric and nodal category, averaged over the 10 random seeds. Shaded areas

correspond to 95% confidence intervals, and bar plots were built using the mean ± standard deviation. ***p < 0.001.

same line as other previous findings (Cabral et al., 2014; Zamora-
López et al., 2016; Wang et al., 2019; Fukushima and Sporns,
2020). Here, we show this behavior in the (α, r0) parameter
space, where simulations with randomized connectomes show
either incoherent or over-synchronized activity. Using a whole-
brain model to simulate and fit magnetoencephalography (MEG)
resting-state recordings, Cabral et al. (2014) found not only
that randomized and homogenized versions of the human
structural connectivity did not fit empirical data; moreover,
they found that the fit was maximal in the metastable region
of the parameter space, when unsynchronized (segregated)
and synchronized (integrated) regimes of activity coexist. In
the same way, Fukushima and Sporns (2020) using more

complex surrogate data in the context of whole-brain models,
found features of the human connectome that better capture
the dynamic fluctuations in fMRI resting-state recordings.
Additionally, computational studies conducted by Zamora-
López et al. (2016) showed that the human connectome better
maximizes functional complexity in fMRI recordings, compared
with different surrogate connectomes. Finally, Wang et al. (2019)
analyzed how the hierarchical modular structure of the human
connectome enables the coexistence of segregated and integrated
functional states, also with the use of network surrogates in
which hierarchical levels were controlled. Our study interpret the
explorations of the parameter space as levels of neuromodulation,
that allow the brain to tune its integration or segregation levels
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to environmental demands. However, neuromodulation cannot
bring back a dynamically rich regime to a network without a
structural connectome that sustains it.

At the local level, the effects of neuromodulation strongly
depend on the characteristics of the nodes in the human
connectome. In our model, the nodes with high strength
are the ones that better facilitate functional integration when
neuromodulated. This result resonates with a recent work by
Herzog et al. (2020), who studied a whole-brain model fitted
to reproduce the effects of lysergic acid diethylamide (LSD) in
resting-state brain dynamics. In their model, the serotonergic-
induced changes in nodal entropy correlated positively with
node strength. Notably, the correlation disappears when the
human connectome was randomized without preserving the
strength distribution, emphasizing the importance of the specific
organization of the human connectome in shaping brain
dynamics. Interestingly, the entropy changes described by
Herzog et al. (2020) are poorly explained by the 5HT2A receptor
density map, obtained by PET (Beliveau et al., 2017), and
depends on both node strength and receptor density. Thus, the
interaction between the structural connectivity, receptor density,
and neuromodulation is not straightforward. A similar complex
picture arises when our results are contrasted with receptor maps
of noradrenergic receptors (see below).

Network hubs, or nodes belonging to the rich club or
network’s ignition core, can be critical elements for binding
information of segregated brain regions, that is, to integrate
information across brain areas (Griffa and Van den Heuvel, 2018;
Castro et al., 2020). Considering the relevance of integration
for the brain function (Tononi, 2004), and the noradrenergic
influence on integration (Shine, 2019), we hypothesized that
anatomical network hubs are pivotal elements for promoting
functional network integration. Our results confirmed this
hypothesis, being the neuromodulation of rich club nodes the
one that most effectively facilitates functional integration and
synchronization of brain activity. This result agrees with findings
reported in a fMRI resting-state model of the brain by Deco
et al. (2017), where removing the rich club nodes causes a larger
decrease in integration compared to the removal of the non-rich
club members. Similar results have been found in computational
models of noradrenergic neuromodulation where rich club nodes
are strongly neuromodulated causing functional networks to
switch from segregation to integration (Shine et al., 2018a).

Notably, neuromodulation of nodes belonging to the critical
s-core (the maximally inter-connected core) does not promote
integration as the rich club nodes do. Both meso-scale analyses
rely on sets of nodes organized with strong connection weights.
However, they do it differently. The rich club coefficient threshold
is based on degree, and rich club members are highly connected
between them as well as with the non-rich club members. In
contrast, the s-core decomposition find subsets of nodes highly
interconnected at strength s, but not necessarily well connected
to the rest of the network. Thus, the whole-network changes are
more easily achieved if the set of nodes to be neuromodulated
is highly connected both between them and with the rest of
the network. The rich-club organization captures additional
information that is missing in the local (weight) analysis. For

example, the 17 rich club nodes have an overlap of ≈50% with
the 17 highest strength nodes. In contrast, nodes belonging to the
S3 category are the nodes of the highest strength in the network;
however, they cannot boost functional integration to the same
extent as the rich club nodes.

Part of the brain regions we found in the rich club
support high order brain functions. For example, frontoparietal
regions play an important role in cognition, and are markedly
activated when subjects engage in cognitive tasks (Cavanna,
2007). Precuneus has been associated with consciousness, and
a decrease in its activity was reported in sleep, anesthesia, and
vegetative states (Lückmann et al., 2014). Thalamus, the brain
“relay station,” strongly connects several networks that comprise
multiple cortical regions (Hwang et al., 2017). Multi-task fMRI
recordings in humans suggest a robust role of the anatomical rich
club as facilitating elements of functional integration in overall
tasks (Shine et al., 2019). An extended analysis and discussion
about the role of the rich club, in both health and disease, can be
found in Griffa and Van den Heuvel (2018).

The non-uniform expression of receptors across several
brain areas suggests that the brain uses selective or partial
neuromodulation. In this way, the effect of the noradrenergic
system on filter gain may be modeled as proportional to
adrenergic receptor expression. Experimentally, the optogenetic
activation of the LC in mice increased average functional
connectivity, which correlates with the expression of α2, α1,
and β1 adrenergic receptors (Zerbi et al., 2019). Thus, a future
research avenue in computational models may include a density-
dependent noradrenergic neuromodulation with the addition of
some receptors maps, obtained by positron emission tomography
(PET), or even gene expression maps (Shen et al., 2012) that
correlate with receptor density maps (Komorowski et al., 2017).
Surprisingly, using the Allen Human Brain Atlas database (Shen
et al., 2012) we found that some adrenergic receptor genes,
i.e., the ADRA2A and ADRB1, are less expressed in the rich
club nodes than in feeders and local nodes (Figure 8). As a
consequence, the noradrenergic-mediated increase in filter gain
could have a lower impact on rich club nodes. It is possible that
this reduced expression constitutes a compensation for the high
connectivity of rich club nodes, specially considering the higher
metabolism of rich regions that exposed them to oxidative stress
and neuroinflammation (Griffa and Van den Heuvel, 2018). On
the other hand, receptor expression can itself be compensated by
a specific sub-cellular localization or other excitability factors that
may enhance the effect of noradrenaline.

It has been suggested that the effect of noradrenaline
in functional connectivity is context-dependent (Shine et al.,
2018b; Pfeffer et al., 2020). In that line, modeling the effect
of noradrenaline in resting-state and task conditions could
untangle the mechanisms behind this context-dependent effect
of noradrenaline. The anatomical backbone and other dynamical
parameters of this model can be substituted to study themouse or
monkey brain and to any other species for which the whole-brain
white-matter connectivity is available.

Our work considers an arbitrary basal value of r0. Despite
this, we reported a clear effect of the selective noradrenergic
neuromodulation on functional integration, that is, some brain
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FIGURE 8 | Expression of some noradrenergic receptors genes in brain regions. Genes ADRA2A, ADRA2C, and ADRAB1 are related to noradrenergic receptors α2A,

α2C, and β1, respectively. The normalized expression was obtained from the Allen Human Brain Atlas using the AAL parcelation. Bar plots were built using the mean ±

standard deviation. ***p < 0.001, **p < 0.01, *p < 0.05, ∼p < 0.1.

regions have a greater impact in the noradrenaline-mediated
effect on brain function. A further improvement to our approach
constitutes the use of a different benchmark, e.g., fitting
the model to reproduce the empirical FC in resting-state,
and then apply a homogenoeus or selective neuromodulation.
Furthermore, the addition of receptors maps may be considered,
as commented above.

Overall, our results offer new insights into the key regions
of the human brain that, when neuromodulated via the
noradrenergic system, promote transitions to integrated
functional states. Our results highlight the importance of the rich
club and high-strength connections in producing changes related
to neuromodulation. We hope that our theoretical framework
inspires new research toward clinical applications or treatments
of human brain disorders caused by or associated with changes
in functional and structural brain connectivity.

4. METHODS

4.1. Whole-Brain Neural Mass Model
We simulated neuronal activity using the Jansen and Rit neural
mass model (Jansen et al., 1993; Jansen and Rit, 1995). In this
model, a brain area consists of three populations of neurons:
pyramidal neurons, excitatory and inhibitory interneurons.
The dynamical evolution of the three populations within the
brain area is modeled by two blocks each. The first block
transforms the average pulse density in average postsynaptic
membrane potential (which can be either excitatory or inhibitory;
Figure 1A). This block, denominated post synaptic potential
(PSP), is represented by an impulse response function. For the
excitatory outputs:

hE(t) =

{

Aate−at , t ≥ 0

0, t < 0
(1)

and for the inhibitory ones

hI(t) =

{

Bbte−bt , t ≥ 0

0, t < 0,
(2)

The constants A and B define the maximum amplitude of the
PSPs for the excitatory (EPSPs) and inhibitory (IPSPs) cases
respectively, while a and b represent the inverse time constants
for the excitatory and inhibitory postsynaptic action potentials,
respectively. The second block transforms the postsynaptic
membrane potential in average pulse density, and is given by a
sigmoid function of the form

S(ν, r) =
ζmax

1+ er(νth−ν)
, (3)

with ζmax as the maximum firing rate of the neuronal population,
r the slope of the sigmoid function, νth the half maximal
response of the population, and ν their average PSP. Additionally,
pyramidal neurons receive an external stimulus p(t), whose
values are taken from a Gaussian distribution with mean µ =

2 impulses/s and standard deviation σ = 2. In this model
(Figure 1A), each node i ∈ [1 . . . n] represents a single brain
area. The global coupling is scaled by a parameter α, and nodes
are connected by a normalized structural connectivity matrix ˜M
(Figure 1B). This matrix is derived from a human connectome
(Deco et al., 2018) parcelated in n = 90 cortical and subcortical
regions with the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002); the matrix is undirected and
takes values between 0 and 1. Because long-range connections
are mainly excitatory (Gilbert et al., 1990; McGuire et al., 1991),
only links between the pyramidal neurons of a node i with
pyramidal neurons of a node j are considered. We applied a
global normalization procedure to the structural connectivity
matrix M. The normalization consisted of dividing all the values
of the matrix by the mean strength of the nodes. The resulting
normalized matrix ˜M is defined as

˜M =
M

1
n

∑n
i=1

∑n
j=1,j6=iMij

(4)
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The set of equations, for a node i, includes the within and between
nodes activity

ẋ0,i(t) =y0,i(t)

ẏ0,i(t) =Aa
[

S(C2x1,i(t)− C4x2,i(t)+ Cαzi(t), r0)
]

− 2ay0,i(t)− a2x0,i(t)

ẋ1,i(t) =y1,i(t)

ẏ1,i(t) =Aa
[

p(t)+ S(C1x0,i(t), r1)
]

− 2ay1,i(t)− a2x1,i(t)

ẋ2,i(t) =y2,i(t)

ẏ2,i(t) =Bb
[

S(C3x0,i(t), r2)
]

− 2by2,i(t)− b2x2,i(t)

ẋ3,i(t) =y3,i(t)

ẏ3,i(t) =Aā
[

S(C2x1,i(t)− C4x2,i(t)+ Cαzi(t), r0)
]

− 2āy3,i(t)− ā2x3,i(t)

(5)

where x0, x1, x2 correspond to the outputs of the PSP blocks of the
pyramidal neurons, and excitatory and inhibitory interneurons,
respectively, and x3 the long-range outputs of pyramidal neurons.
The constants C1, C2, C3, and C4 scale the connectivity
between the neural populations (see Figure 1A). The first pair
of equations, x0 and y0, are related to the outputs of pyramidal
cells to both interneurons; the second pair, x1 and y1, represent
all the local excitatory inputs that the pyramidal neurons receive;
x2 and y2 constitute the inhibitory contribution to pyramidal
cells. An additional pair of equations (x3 and y3) are introduced
to represent long-range (inter-area) connections, as they target
the apical dendrites of pyramidal neurons and thus their EPSP
have a larger characteristic time constant. We used the original
parameter values of Jansen and Rit (Jansen et al., 1993; Jansen
and Rit, 1995), except for C4: ζmax = 5 s−1, νth = 6 mV,
r0 = r1 = r2 = 0.56 mV−1, a = 100 s−1, b = 50 s−1, A = 3.25
mV, B = 22 mV, C1 = C, C2 = 0.8C, C3 = 0.25C, C4 = 0.5C,
and C = 135. Changing C4 from 0.25 C to 0.5 C allowed the
model to sustain oscillations in a wider range of α values. The
parametersA, B, a, and bwere selected to produce IPSPs longer in
amplitude and latency in comparison with the EPSPs. The inverse
of the characteristic time constant for the long-range EPSPs was
defined as ā = 0.5a. This choice was based on the fact that long-
range excitatory inputs of pyramidal neurons target their apical
dendrites, and consequently this slows down the time course of
the EPSPs at the soma (Branco and Häusser, 2011).

The input from brain areas j 6= i to the region i is given by

zi(t) =

n
∑

j=1,j6=i

˜Mijx3,j(t) (6)

The average PSP of pyramidal neurons in region i characterizes
the EEG-like signal in the source space; it is computed as (Jansen
et al., 1993; Jansen and Rit, 1995)

ν(t)i = C2x1,i(t)− C4x2,i(t)+ Cαzi(t) (7)

The firing rates of pyramidal neurons ζi(t) = S[ν(t)i, r0] were
used to simulate the fMRI-BOLD signals.

4.2. Neuromodulation
The effect of the noradrenergic system was simulated controlling
the parameter r0 (filter gain; Figure 1B), which represents
the sigmoid function slope of the pyramidal population, and
increases the signal-to-noise ratio of pyramidal cells (Servan-
Schreiber et al., 1990; Thiele and Bellgrove, 2018). Details about
the relationship between the noradrenergic system and filter
gain can be found in the Introduction section. Further analysis
about this relationship has been presented previously in Mather
et al. (2016) and Shine (2019). We analyzed the effect of the
noradrenergic neuromodulation in three scenarios:

Macro-scale: Noradrenergic neuromodulation was studied in
interaction with the cholinergic system, represented by the
parameter α. The parameters were the same for all nodes. We
changed the features of the connectivity matrixM (see Figure 2)
to study the combined effect in neural coordination.

Meso-scale: nodes were classified in different categories, either
according to the rich club organization (Van Den Heuvel and
Sporns, 2011) or s-core decomposition of the network (see
section 4.5; Garas et al., 2012; Eidsaa and Almaas, 2013). Global
coupling was fixed in α = 0.65, and the basal value of r0 was
0.33 for all nodes (Figure 3). We incremented r0 in a subset
of 24 nodes belonging to a particular category, and compared
the results with the neuromodulation of a equal-length random
subset of nodes.

Because the categories differ in the number of nodes, a fair
comparison must considered subsets of equal size. To achieve
that, we complemented the rich club with seven randomly
selected feeder nodes, while the local nodes were complemented
with 11 randomly selected feeders. Likewise, we complemented
the S3 category with 14 randomly selected S2 nodes. From both
the feeders and S2 nodes we selected 24 nodes randomly. All
subsets consisted on 24 nodes, were generated 10 times with
different random seeds and the results averaged.

Local-scale: Nodes were sorted using one of three metrics:
node strength Kw

i , nodal efficiency Ewi , or clustering coefficient
Cw
i (Rubinov and Sporns, 2010). We neuromodulated—

increasing r0—node by node in increments of three, considering
the metric from high to low and vice-versa (Figure 3).

4.3. Simulations
Following Birn et al. (2013), we ran simulations to generate
the equivalent of 11 min real-time recordings, discarding
the first 60 s. The system of stochastic differential equations
(5) was solved with the Euler-Maruyama method, using an
integration step of 1 ms. We used 10 random seeds (realizations)
which controlled the initial conditions and the stochasticity
of the simulations. We simulated neuronal activity sweeping
the parameters α ∈ [0, 1] and r0 ∈ [0, 1], for the macro-
scale scenario. In the local- and meso-scale scenarios, we
swept r0 ∈ [0.33, 1] for a susbset of nodes, considering
a basal value of r0 = 0.33 and a fixed α = 0.65. All
the simulations were implemented in Python and the codes
are freely available at: https://github.com/vandal-uv/Structural_
Neuromod_2021.git. The graph analysis was performed using
the Brain Connectivity Toolbox for Python (https://github.com/
fiuneuro/brainconn; Rubinov and Sporns, 2010).
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4.4. Simulated fMRI-BOLD Signals
We used the firing rates ζi(t) to simulate BOLD-like signals using
a generalized hemodynamic model presented in Stephan et al.
(2007). In this model, an increment in the firing rate ζi(t) triggers
a vasodilatory response si, producing blood inflow fi, changes
in the blood volume vi and deoxyhemoglobin content qi. The
corresponding system of differential equations is

ṡi(t) =ζi(t)−
si(t)

τs
−

fi(t)− 1

τf

ḟi(t) =si(t)

v̇i(t) =
fi(t)− vi(t)

1/κ

τv

q̇i(t) =

fi(t)(1−(1−E0)
1/fi(t))

E0
−

qi(t)vi(t)
1/κ

vi(t)

τq
,

(8)

where τs = 0.65, τf = 0.41, τv = 0.98, τq = 0.98
represent the time constants for the signal decay, blood inflow,
blood volume, and deoxyhemoglobin content, respectively. The
stiffness constant (resistance of the veins to blood flow) is given
by κ , and the resting-state oxygen extraction rate by E0. We used
κ = 0.32 and E0 = 0.4. The BOLD-like signal of node i, denoted
Bi(t), is a non-linear function of qi(t) and vi(t)

Bi(t) = V0

[

k1(1− qi(t))+ k2

(

1−
qi(t)

vi(t)

)

+ k3(1− vi(t))

]

,

(9)
where V0 = 0.04 represents the fraction of venous blood
(deoxygenated) in resting-state, and k1 = 2.77, k2 = 0.2, k3 =

0.5 are kinetic constants.
The system of differential equations (8) was solved using the

Euler method with an integration step of 1 ms. The signals were
band-pass filtered between 0.01 and 0.1 Hz with a 3rd order
Bessel filter. These BOLD-like signals were used to build the
functional connectivity (FC) matrices fromwhich the subsequent
analysis of functional network properties was performed.

4.5. Structural Metrics
4.5.1. Macro-Scale

To compare different Macro-scale features of the connectome
we used four connectivity matrices (see Figure 2). The first
matrix corresponds to the original human connectome matrix
(Human, Figure 2A) (Deco et al., 2018). The second to a
degree and strength preserving randomization of the matrix
(DSPR, Figure 2B; Rubinov and Sporns, 2011). The third to a
randomization, which only preserves the weight distribution of
the original matrix (Random, Figure 2C). The fourth matrix was
built setting to 0 all entries of Mij < 0.05, and 1 otherwise
(Homogeneous, Figure 2D).

4.5.2. Meso-Scale

We identified the nodes belonging to the “rich club” sub-network
of the graph (Van Den Heuvel and Sporns, 2011). Nodes were
ranked according to degree, and then a subgraph was built using
a threshold K, retaining the nodes with a degree greater than K.

For eachK value the weighted rich-club coefficient was computed
as (Opsahl et al., 2008).

φw(K) =
W>K

∑E>K

l=1
wrank
l

(10)

where W>K is the sum of the weighted edges of the subgraph
of nodes with a degree greater than K, E>K represent the total
number of edges of the subgraph, andwrank

l
a vector that contains

all the weighted edges of the entire network sorted from high to
low values. If φw(K) = 1, then the sum of the weights of the
“rich nodes” is maximal. Otherwise, φw(K) < 1 indicates the
proportion of the weighted edges of network that are into the
sub-network, and then some of the stronger connections were
missed when applying the threshold K. The rich club coefficient
was normalized in relation to DSPR surrogate graphs.

φw
norm(K) =

φw(K)

φw
rand

(K)
(11)

being φw
norm(K) the normalized rich club coefficient, and φw

rand
(K)

the mean rich club coefficient for a set of 1,000 random
surrogates graphs. Values of φw

norm(K) > 1 indicates a rich-club
organization, and nodes retained at K are defined as “rich club”
nodes (Figure 6A). The nodes that do not belong to the rich
club, but are connected with these nodes are called “feeders.” The
remaining nodes correspond to “local” nodes (Figure 6B). For
a maximum φw

norm(K) = 1.367 (p < 0.002), we identified 17
“rich club” nodes, 60 feeder nodes and 13 local nodes (Figure 6B).
Because the high density of the structural matrix M (≈ 40%)
hindered the discerning of the local nodes from feeders, we
identify these nodes applying an absolute threshold of 0.05 to
M. We selected this value as the maximum threshold that,
when applied, preserves the fitting of the model to the empirical
resting-state FC matrix.

The core-periphery organization (Hagmann et al., 2008) was
analyzed performing a s-core decomposition (Garas et al., 2012;
Eidsaa and Almaas, 2013), which identifies the cores of densely
interconnected nodes in the network. The method consists in
removing recursively a shell of nodes with strength less than s
to obtain the network core nodes. The nodes were assigned to a
category that corresponded to the maximal s value at which they
are still connected to the network, defined as the critical s-core
(Figure 7A). We defined three categories for different s values: s1
with 24 nodes (s < 1.48), s2 with 56 nodes (1.48 < s < 1.54), and
s3 with 10 nodes (1.54 < s < 1.78; Figure 7B).

4.5.3. Local-Scale

We employed three different metrics to characterize individual
nodes. Node strength (weighted degree) was computed as

Kw
i =

∑

j∈N,j6=i

wij, (12)

where N is the set of nodes and wij the weighted edge of the
matrix M (Rubinov and Sporns, 2010). We computed the nodal
efficiency as
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Ewi =

∑

j∈N,j6=i(d
w
ij )

−1

n− 1
, (13)

where dwij is the shortest path between the nodes i and j. Shortest

paths were calculated from the sum of the inverse of the weights
of M; the shortest path between two nodes (i, j) is the path
that minimizes this sum (the distance). Using the shortest paths,
nodal efficiency Ewi was computed. Nodes with high values
of Ewi are those with high proportion of short paths to the
rest of the nodes of the network (Rubinov and Sporns, 2010).
Finally, we calculated the clustering coefficient for each node
(Rubinov and Sporns, 2010)

Cw
i =

2twi
ki(ki − 1)

, (14)

where twi is the proportion of triangles around the node i,
calculated as

twi =
1

2

∑

j,h∈N

(wijwihwjh)
1/3. (15)

A node with a high Cw
i is highly connected with adjacent

(local) nodes.

4.6. Phase Synchronization
As a measure of global synchronization, we calculated the
Kuramoto order parameter R(t) (Acebrón et al., 2005) of the
EEG-like signals ν(t) derived from the Jansen and Rit model.
First, the raw signals were filtered with a 3rd order Bessel band-
pass filter using their frequency of maximum power (usually
between 4 and 10 Hz) ±3 Hz. Then, the instantaneous phase
θ(t) was obtained using the Hilbert transform. The global phase
synchrony is computed as:

R̄ =

〈∣

∣

∣
〈ejθi(t)〉N

∣

∣

∣

〉

t
, (16)

where θi(t) is the phase of the oscillator i over time, j =
√
−1 the

imaginary unit, |•| denotes the module, 〈〉N denotes the average
over all nodes, and 〈〉t the average over time.

4.7. Functional Integration and Segregation
Functional Connectivity (FC) matrices were built from Pearson
correlations of the entire BOLD-like time series. Instead
of employing an absolute or proportional thresholding, we
thresholded the FC matrices using Fourier transform (FT)
surrogate data (Lancaster et al., 2018) to avoid the problem of
introducing spurious correlations (Fornito et al., 2013). The FT
algorithm uses a phase randomization process to destroy pairwise
correlations, preserving the spectral properties of the signals (the
surrogates have the same power spectrum as the original data).
We generated 500 surrogate time series of the original set of
BOLD-like signals, to obtain the surrogate sFCs matrices. For
each one of the (n2 − n)/2 possible connectivity pairs (with
n = 90) we fitted a normal distribution of the surrogate values.
Using these distributions, we tested the hypothesis that a pairwise
correlation is higher than chance (that is, the value is at the right
of the surrogate distribution).

To reject the null hypothesis, we selected a p-value equal
to 0.05, and corrected for multiple comparisons with the
FDR Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) to decrease the probability of making type I errors (false
positives). The entries of the sFC matrix associated with a p >

0.05 were set to 0. The result is a thresholded, undirected, and
weighted (with only positive values) sFC matrix.

Integration was evaluated over the thresholded FC matrices.
We employed the weighted version of the global efficiency
(Latora and Marchiori, 2001). This measure of integration is
based on paths over the graph: it is defined as the inverse of the
average shortest path length. This metric is computed as

Ew =
1

n

∑

i∈N

∑

j∈N,j6=i(d
w
ij )

−1

n− 1
, (17)

being N the set of all nodes, n number of nodes, and dwij the

shortest path between the nodes i and j.
Segregation was quantified using modularity Qw, a metric for

the detection of the network’s communities (Rubinov and Sporns,
2010). The detection of so-called communities or network
modules in the thresholded FC matrix, was based on the
Louvain’s algorithm (Newman, 2006; Blondel et al., 2008). We
used the weighted version of the modularity (Newman, 2004)
defined as

Qw =
1

lw

∑

i,j∈N

[

wij −
kwi k

w
j

lw

]

δmi ,mj (18)

where wij is the weight of the link between the nodes i and j, lw

is the total number of weighted links of the network, mi (mj) the
module of the node i (j), and kwi (mj) the weighted degree (named
also strength) of i (j). The algorithm assigns a module to each
node in a way thatmaximizes themodularity (18). The Kronecker
delta δmi ,mj is equal to 1 when mi = mj (that is, when two nodes
belongs to the same module), and 0 otherwise.

Because the Louvain’s algorithm is stochastic, we employed
the consensus-clustering algorithm (Lancichinetti and
Fortunato, 2012). We ran the Louvain’s algorithm 200 times
with the resolution parameter set to 1.0 (this parameter controls
the size of the detected modules; larger values of this parameter
allows the detection of smaller modules). Then, we built an
agreement matrix G, whose entries Gij ∈ [0, 1] indicates the
proportion of partitions in which the pairs of nodes (i, j) share
the same module. Then, we applied an absolute threshold of 0.5
to the matrix G, and ran the Louvain’s algorithm again 200 times
using G as input, producing a new consensus matrix G′. This last
step was repeated until convergence to a unique partition.

4.8. Functional Connectivity Dynamics
The FCD matrix captures the evolution of FC patterns and,
consequently, the dynamical richness of the network (Hansen
et al., 2015; Cabral et al., 2017). We used the sliding window
approach (Hansen et al., 2015; Orio et al., 2018), with windows
of 100 s length and a displacement of 2 s between consecutive
windows. The length was chosen on the basis of the lower limit
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of the band-pass filter (0.01 Hz), in order to minimize spurious
correlations (Leonardi and VanDeVille, 2015). For each window,
a FC matrix was calculated from the Pearson correlation of
BOLD-like signals.We obtained 251 weighted and undirected FC
matrices from the 600 s simulated BOLD-like signals. The upper
triangular of each FC matrix is unfolded to make a vector, and
the FCD is built by calculating the Clarkson distance λ(x, y) =

1√
2

∣

∣

∣

∣

∣

∣

x
||x|| −

y
||y||

∣

∣

∣

∣

∣

∣
between each pair of FCs (Clarkson, 1936).

FCDij = λ(FC(ti), FC(tj)) (19)

4.9. Gene Expression Maps
To quantify the expression of some noradrenergic receptor
genes in brain regions, we used the microarray expression
data of the Allen Human Brain Atlas (Shen et al., 2012). The
dataset was processed and normalized employing the Abagen
library for Python (https://github.com/rmarkello/abagen/tree/0.
1; Arnatkevicute et al., 2019), and then parcellated using the AAL
atlas (Tzourio-Mazoyer et al., 2002).We compared the expression
of the ADRA2A, ADRA2C, and ADRB1 genes in rich club,
feeders and local nodes. Statistical comparison was performed
with a Student’s t-test for independent samples.
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Synchronization in Networks With
Heterogeneous Adaptation Rules and
Applications to Distance-Dependent
Synaptic Plasticity
Rico Berner1,2* and Serhiy Yanchuk1

1Institut für Mathematik, Technische Universität Berlin, Berlin, Germany, 2Institut für Theoretische Physik, Technische Universität
Berlin, Berlin, Germany

This work introduces a methodology for studying synchronization in adaptive networks
with heterogeneous plasticity (adaptation) rules. As a paradigmatic model, we consider a
network of adaptively coupled phase oscillators with distance-dependent adaptations. For
this system, we extend the master stability function approach to adaptive networks with
heterogeneous adaptation. Our method allows for separating the contributions of network
structure, local node dynamics, and heterogeneous adaptation in determining
synchronization. Utilizing our proposed methodology, we explain mechanisms leading
to synchronization or desynchronization by enhanced long-range connections in
nonlocally coupled ring networks and networks with Gaussian distance-dependent
coupling weights equipped with a biologically motivated plasticity rule.

Keywords: synaptic plasticity, adaptive networks, phase oscillator, synchronization, distance-dependent synaptic
plasticity, nonlocally coupled rings, master stability approach

1 INTRODUCTION

In nature and technology, complex networks serve as a ubiquitous paradigm with a broad range of
applications from physics, chemistry, biology, neuroscience, socioeconomic, and other systems [1].
Dynamical networks consist of interacting dynamical units, such as neurons or lasers. Collective
behavior in dynamical networks has attracted much attention in recent decades. Depending on the
network and the specific dynamical system, various synchronization patterns with increasing
complexity were explored [2–5]. Even in simple models of coupled oscillators, patterns such as
complete synchronization [6, 7], cluster synchronization [8–11], and various forms of partial
synchronization have been found, such as frequency clusters [12], solitary [13–15], or chimera
states [16–20]. In particular, synchronization is believed to play a crucial role in brain networks, for
example, under normal conditions in the context of cognition and learning [21, 22], and under
pathological conditions, such as Parkinson’s disease [23–25], epilepsy [26–29], tinnitus [30, 31],
schizophrenia, to name a few [32].

The powerful methodology of master stability function [33] has been a milestone for the
analysis of synchronization phenomena. This method allows for the separation of dynamic
and structural features in dynamical networks. It greatly simplifies the problem by reducing
the dimension and unifying the synchronization study for different networks. Since its
introduction, the master stability approach has been extended and refined for various
complex systems [34–42], and methods beyond the local stability analysis have been
developed [43–47]. More recently, the master stability approach has been extended to
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another class of oscillator networks with high application
potential, namely adaptive networks [48].

Adaptive networks are commonly used models for various
systems from nature and technology [49–57]. A prominent
example are neuronal networks with spike-timing dependent
plasticity, in which the synaptic coupling between neurons
changes depending on their relative spiking times [58–61].
There are a large number of studies investigating the dynamic
properties induced by this form of synaptic plasticity [62].
However, analysis is usually limited to only one or two forms
of spike timing-dependent plasticity within a neuronal
population. On the other hand, experimental studies indicate
that different forms of spike timing-dependent plasticity may be
present within a neuronal population, where the form depends on
the connection structure between the axons and dendrites [63].
Among all structural aspects, an important factor for the specific
form of the plasticity rule is the distance between neurons
[64–66]. More specifically, it has been found that the plasticity
rule between proximal or distal neurons, respectively, can change
from Hebbian-like to anti-Hebbian-like [67, 68].

This work introduces a methodology to study synchronization
in adaptive networks with heterogeneous plasticity (adaptation)
rules. As a paradigmatic system, we consider an adaptively
coupled phase oscillator network [69–75], which is proven to
be useful for predicting and describing phenomena occurring in
more realistic and detailed models [76–79]. More specifically, in
the spirit of the master stability function approach, we consider
the synchronization problem as the interplay between network
structure and a heterogeneous adaptation rule arising from
distance- (or location-)dependent synaptic plasticity. For a
given heterogeneous adaptation rule, our master stability
function provides synchronization criteria for any coupling
configuration. As illustrative examples, we consider a
nonlocally coupled ring with biologically motivated plasticity
rule, and a network with a Gaussian distance-dependent
coupling weights. We explained such intriguing effects as
synchronization or desynchronization by enhancement of
long-distance links.

We introduce the model in Section 2. Building on findings
from [48], we develop a master stability approach in Section 3
that takes a heterogeneous adaptation rule in account. In Section
4.1, we provide an approximation of the structural eigenvalues
that determine the stability of the synchronous state. We then
consider two different setups: a nonlocally coupled ring in
Section 4.2 and a weighted network with Gaussian distance
distribution of coupling weights in Section 4.3. Both systems
are equipped with a biologically motivated plasticity rule. In
Section 5, we summarize the results.

2 MODEL

In this work, we study the synchronization on networks with
adaptive coupling weights, where the adaptation (plasticity) rule
depends on the distance between oscillators (neurons). We
consider the model of adaptively coupled phase oscillators,
which has proven to be useful for understanding dynamics in

neuronal systems with spike timing-dependent plasticity [77, 79,
48]. The model reads as follows:

d
dt
ϕi � ω +∑

j�1

N

aijκijg(ϕi − ϕj), (1)

d
dt
κij � −ϵ(κij + hij(ϕi − ϕj)), (2)

where ϕi ∈ S1 � R/2πZ (i � 1, . . . ,N) is the phase of the ith
oscillator, κij (i, j � 1, . . . ,N) is the dynamical coupling weight
from oscillator j to i, ω denotes the natural frequency of each
oscillator, and aij ∈ [0, 1] are the entries of the weighted
adjacency matrix A describing the network connectivity. The
time scales of the “fast” phase oscillators and “slow” coupling
weights are separated by the parameter ϵ, which we assume to be
small 0< ϵ≪ 1. The functions g and hij denote the coupling and
the N2 plasticity functions, respectively. For illustrative purposes,
the coupling function is set throughout the paper to g(ϕ) �
−sin(ϕ + α)/N with the phase lag parameter α [80]. Such a
phase lag can account for a small synaptic propagation delay
[81, 48]. For formal derivations, however, a generic coupling
function is used. Note that the system Eqs. 1, 2 is shift-symmetric,
i.e., invariant under the transformation ϕi 1ϕi + ψ for any
ψ ∈ S1. This allows us to restrict our consideration to the case
ω � 0 by introducing a new “co-rotating” coordinate system
ϕi,new � ψi − ωt.

The main difference of system Eqs. 1, 2 from the models
considered previously in the literature [40, 70, 71, 74, 82], is that
the plasticity functions hij can be different for each network
connection j→ i.

A solution to Eqs. 1, 2 is called phase-locked if, for all
i � 1, . . . ,N , the phases evolve as ϕi � Ωt + ϑi with some
collective frequency Ω ∈ R and ϑi ∈ S1. If ϑi � ϑ for all
i � 1, . . . ,N , the phase-locked state is called in-phase
synchronous or, short, synchronous state.

In the case of in-phase synchronous state, we can set ϑi � 0 for
each oscillator due to the shift symmetry of Eqs. 1, 2. The in-
phase synchronous state is given as

ϕs(t) � −wg(0)t, (3)

κsij � −hij(0), (4)

where we assume that the weighted row sum w � ∑N
j�1aijhij(0) is

constant for all. Such an assumption of constant row sum is
necessary for the existence of the synchronous state. Moreover, it
is satisfied for commonly considered cases of global or nonlocal
shift-invariant coupling.

In the following section, we show how the stability of the
synchronous state is determined in a master-stability-like
approach.

3 MASTER STABILITY APPROACH

In Section 2, we have introduced a general class of models
and the synchronous state, that are considered throughout
this paper. In this section, we derive a framework for the local
stability analysis of the synchronous states. We note that the
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master stability approach for homogeneous adaptations hij � h
was introduced in [48, 83]. Here we extend the methodology to
heterogeneous adaptation rules.

To describe the local stability, we introduce the variations ξi �
ϕi − ϕs and χij � κij − κsij. The linearized equations for these
variations can be written in the following matrix form

d
dt

( ξ
χ
) � J( ξ

χ
) � (Dg(0)Lh g(0)B

−ϵC −ϵIN2
)( ξ

χ
), (5)

where ξ � (ξ1, . . . , ξN)T is N-dimensional vector containing the
perturbations ξi � δϕi of the phases and χ � (χ11, χ12, . . . , χNN)T
areN2- dimensional vectorized perturbations of coupling weights
χ � vec[δκij], respectively. The N × N weighted Laplacian matrix
Lh has the following elements

lhij �
⎧⎨⎩ −∑N

m�1,m≠ i
aimhim(0), i � j,

aijhij(0), i≠ j.
(6)

The time-independent matrices B and C are

B � ⎛⎜⎝ a1
1

aN

⎞⎟⎠,

C � ⎛⎜⎜⎜⎝ (Dh)T1
1

(Dh)TN
⎞⎟⎟⎟⎠ −⎛⎜⎝ diag (Dh)1

«
diag (Dh)N

⎞⎟⎠,

where ai � (ai1, . . . , aiN), (Dh)i � (Dhi1(0), . . . ,DhiN(0)), and

diag (Dh(0))i � ⎛⎜⎝Dhi1(0)
1

DhiN(0)
⎞⎟⎠.

Note that due to the shift symmetry of Eqs. 1, 2, the Jacobian J
in Eq. 5 is time independent. Therefore, the real parts of the
N(N + 1) eigenvalues λ of J are the Lyapunov exponents of the
synchronous state and hence determine its local stability. In the
following proposition, we exploit the fact that J contains a large
diagonal block −ϵIN2 to reduce the dimension of the eigenvalue
problem for J.

PROPOSITION 1. Suppose ϕi � Ωt is an in-phase synchronous
state of Eqs. 1, 2. Then its linear stability is determined by the
2N-dimensional linear system

d
dt

v � (Dg(0)Lh g(0)IN
ϵLDh −ϵIN )v, (7)

where Dg(0) and Lh are as in Eq. 5 and the N × N weighted
Laplacian matrix LDh possesses the following elements

lDhij � ⎧⎨⎩ −∑N

m�1,m≠ i
aimDhim(0), i � j,

aijDhij(0), i≠ j.
(8)

PROOF. We remind that system Eq. 5 determines the spectrum
(Lyapunov exponents) of the synchronous state. The Jacobian
matrix in Eq. 5 is sparse with a large N2 × N2 block given by the
simple diagonal matrix −ϵIN2 . This implies that Eq. 5 possess
N2 − N stable directions with Lyapunov exponents −ϵ. To find

these directions, we substitute (ξ, χ) � e−ϵt(ξ0, χ0) into Eq. 5 and
obtain the linear system

(Dg(0)Lh + ϵIN g(0)B
−ϵC 0

)( ξ0
χ0

) � 0. (9)

This system has at leastN2 − N linearly independent solutions, since
thematrix in Eq. 9 is degenerate due to the largeN2 × N2 zero block.
The structure of the invariant subspaces in system Eq. 5 allows for
introducing new coordinates, which separate the N2 − N stable
directions (corresponding to the eigenvalues −ϵ) from the
remaining 2N directions. Explicitly, this transformation is given by

( ξ
χ
) � R( ξ

χ̂
), R � ( IN 0 0

0 (1/r)BT K
)

with (N2 + N) × (N2 + N) matrix R. Here K is an (N2 − N) ×
(N2 − N) orthogonal matrix with BK � 0. Applying this
transformation, we obtain the following system

d
dt

⎛⎜⎜⎝ ξ
χN

χN2−N

⎞⎟⎟⎠ � ⎛⎜⎜⎝Dg(0)Lh g(0)IN 0
ϵLDh −ϵIN 0

−ϵKTC 0 −ϵIN2−N

⎞⎟⎟⎠⎛⎜⎜⎝ ξ
χN

χN2−N

⎞⎟⎟⎠,

(10)

where (ξ, χN , χN2−N)T � (ξ, χ̂)T , with χN and χN2−N are an N and
N2 − N-dimensional vectors, respectively, and theN × N weighted
Laplacian matrix LDh as given in Eq. 8. For more details on the
transformation, we refer the reader to [48, 83]. We observe that the
variables (ξ, χN ) are independent on χN2−N . Hence, separating the
master from the slave system, the resulting coupled differential
equations that determine the stability of the synchronous state are
given by system Eq. 7. This concludes the proof.

Proposition 1 reduces the problem’s dimension significantly
fromN(N + 1) to 2N . In the spirit of the master stability approach
[33], we aim for further decomposition of the 2N- dimensional
coupled system Eq. 7 into dynamically independent blocks of
dimension 2. For this, we restrict our consideration to the case
when Lh can be diagonalized Sh � Q−1LhQ by a nonsingular
complex-valued matrix Q. Note that the eigenvalues μi of L

h lie
on the diagonal of Sh. In general, the matrices Lh and LDh do not
commute. Therefore, Q−1LDhQ is not necessarily of upper
triangular shape. Regardless of this fact, the following
proposition provides an explicit form for the eigenvalues of J in
Eq. 5 in the limit of slow adaptation, i.e., ϵ≪ 1.

PROPOSITION 2. Assume that Lh is diagonalizable, with Sh �
Q−1LhQ being the associated diagonal matrix and Q the
corresponding transformation. Let ϕi � Ωt be an in-phase
synchronous state of Eqs. 1, 2 Then, the local stability of this state
is determined by the solutions of N quadratic equations, which are
given up to the first order in ϵ as

λ2 + (ϵ − Dg(0)μi)λ − ϵ(Dg(0)μi + g(0)]i) � 0, i � 1, . . . ,N ,

(11)

where μi are the eigenvalues of L
h located on the diagonal of Sh and ]i

are the corresponding diagonal elements of Q−1LDhQ. If Lh and LDh

commute, then Eq. 11 is exact, and ]i are the eigenvalues of LDh.
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PROOF. Due to Proposition 1, the eigenvalues of the Jacobian in
Eq. 5 are given by

det(Dg(0)Lh − λIN g(0)IN
ϵLDh −(ϵ + λ)IN )

� det(Dg(0)Sh − λIN g(0)IN
ϵQ−1LDhQ −(ϵ + λ)IN ) � 0,

where we have used the transformation Q that brings Lh to the
diagonal form Sh � Q−1LhQ. Making further use of the Schur
complement [84], we obtain

det(Dg(0)Sh − λIN g(0)IN
ϵQ−1LDhQ −(ϵ + λ)IN )

� det( (λ + ϵ)(λIN − Dg(0)Sh) − ϵg(0)Q−1LDhQ ) � 0. (12)

The latter equation is almost diagonal. The only off-diagonal
components remain from Q−1LDhQ and scale with ϵ. Let
us consider the Leibniz formula for the determinant of an
N × N matrix F with entries fij, that reads
det(F) � ∑σ∈Perm(N)sgn(σ)∏N

i�1 fiσ(i). In the latter expression
Perm(N) denotes the set of all permutations σ of the
integer numbers 1, . . . ,N and sgn(σ) ∈ {−1, 1} is the sign
of the permutation. Since all off-diagonal terms of the
matrix considered in Eq. 12 scale with ϵ, for any but
the identical permutation each term ∏N

i�1 fiσ(i) scales with ϵ2
or higher. Hence, we are left with det(F) � ∏N

i�1 fii +O(ϵ2)
and find

det ((λ + ϵ)(λIN − Dg(0)Sh) − ϵg(0)Q−1LDhQ )
� ∏

i�1
(λ2 + (ϵ − Dg(0)μi)λ − ϵ(Dg(0)μi + g(0)]i)) +O(ϵ2)

� 0,

(13)

where μi are the eigenvalues of L
h, ]i are the diagonal elements

of Q−1LDhQ and O(ϵ2) denotes higher order terms (ϵm,m> 1).
If Lh and LDh commute, both matrices share the same set of
eigenvectors and hence they can be brought to the diagonal
form with the same transformation Q. In this case, the
diagonal elements ]i are the eigenvalues of LDh and the
higher order terms O(ϵ2) in Eq. 13 vanish.

The 2N solutions λi of the N Eq. 11 determine the stability
of the synchronous state. More precisely, the real parts of
theses solutions determine the Lyapunov exponents. If
Λ � maxiRe(λi)< 0, then the synchronous state is locally
stable, while for Λ> 0 it is locally unstable. The case Λ � 0
provides the stability boundary.

Note that for a fixed time scale parameter ϵ≪ 1, the Eq. 11
and hence its solutions depend on the coupling function g,
the connectivity, and the adaptation structure. This
dependence, however, is only encoded in the two complex
parameters Dg(0)μ and g(0)]. Therefore, we define the master
stability function Λ : C2 →R with Λ(Dg(0)μ, g(0)]) �

maxiRe(λi(Dg(0)μ, g(0)])) that maps each pair of
parameters (Dg(0)μ, g(0)]) to the corresponding Lyapunov
exponent.

For an illustration, we consider a cross-section of
(Dg(0)μ, g(0)])- space by setting Im(μ) � 0 and Im(]) � 0.
This cross-section is of particular interest in cases of symmetric
matrices Lh and LDh since their eigenvalues are real. In Figure 1, we
present the master stability function for the coupling function
g(ϕ) � −sin(ϕ + α)/N and different values of the parameter α. In
case of real μ and ], we obtain two explicit stability conditions from
Eq. 11: The synchronous state is locally stable (Λ< 0) if

c1(α, μ) � cos(α)μ> − ϵ, (14)

c2(α, μ, ]) � cos(α)μ + sin(α)]> 0. (15)

These conditions agree with the black dashed lines in Figure 1
and are used subsequently to describe stability for certain
network models.

4 SYNCHRONIZATION ON NETWORKS
WITHDISTANCE-DEPENDENTPLASTICITY

In the previous section, we established a generic analytic tool for
studying stability of synchronous states. In this section, we focus
on the application of the tool to certain network models. For the
rest of the work, we restrict our attention to the following
generalization of the Kuramoto-Sakaguchi system with
distance-dependent synaptic plasticity

d
dt
ϕi � ω − 1

N
∑
j�1

N

aijκijsin(ϕi − ϕj + α), (16)

d
dt
κij � −ϵ(κij + h(ϕi − ϕj, dij)). (17)

The plasticity function h depends on the phase differenceϕi − ϕj and
on thedistancedij. In thiswork,we associate the distance to the difference
of indices by dij �

∣∣∣∣j − i
∣∣∣∣. For the plasticity function, we consider

hij(ϕ) � h(ϕ, dij
N
) �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ĥ(ϕ, dij
N
) dij ≤N/2,

ĥ(ϕ, 1 − dij
N
) dij >N/2.

(18)

With this form of the adaptation function, we have a
symmetric hij(ϕ) � hji(ϕ) and a circulant hi+l,j+l(ϕ) � hij(ϕ)
structure of the corresponding matrix with entries hij.
Particularly, for the numerical analysis, we use

ĥ(ϕ, dij/N) � sin(ϕ + β(dij/N)), (19)

where the distance dependence is encoded in the phase shift function

β(dij
N
) �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
( 2
N
dij − 1)π, N even,

( 2

(N + 1)dij − 1)π, N odd.
(20)
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In Figure 2A, we illustrate the distance-dependent plasticity
function Eqs. 18–20 for a network of N � 12 nodes. The
illustration shows the different plasticity functions depending
on the distance between the nodes dij. The plasticity function
changes from a Hebbian to anti-Hebbian rule for proximal and
distal node, respectively. This change, particularly in the
proximity of ϕ � 0, is in qualitative agreement with the
experimental findings in [67]. Note the symmetry of the
plasticity function that renders the matrix with elements hij
circulant.

If not indicated differently, we consider the coupling structure
given by

aij � a(dij/N), (21)

where a : [0, 1]→ [0, 1] is a bounded and piece-wise continuous
function. This corresponds to a distant-dependent coupling, and
it results to a dihedral symmetry in the coupling structure (ring-
like).

In the following section, we provide an approximation for the
eigenvalues of Lh and LDh for large networks with circulant

FIGURE 1 | The master stability function Λ(Dg(0)μ, g(0)]) for the coupling function g(ϕ) � −sin(ϕ + α)/N and real μ and ν (Im(μ) � 0, Im(]) � 0). The values of the
master stability function are color-coded in all panels (A–E). The dashed black line describes the border between regions corresponding to local stability and instability,
respectively. Parameters: ϵ � 0.01, (A) α � −0.8π, (B) α � −0.4π, (C) α � 0, (D) α � 0.4π, and (E) α � 0.8π.

FIGURE 2 | Panel (A) shows the plasticity function h1j given in Eqs. 18–20 depending on the distance d1j exemplified for node i � 1 in a network withN � 12 nodes.
Note that the colors of the links in the network (left) correspond to the colors of the depicted plasticity function (right). Panel (B) displays the connectivity structure of a
nonlocally coupled ring network with N � 12 nodes and a coupling range P � 3. Panel (C) displays the weighted connectivity structure of a network with N � 12 nodes
(left) with distance-dependent Gaussian weight distribution (right). Note that the colors of the links in the network (left) correspond to the colors of the bars in the
weight distribution (right).
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connectivity and plasticity structure. Using this approximation,
we subsequently analyze the stability of the synchronous state on
nonlocally coupled networks and on isotropic networks with
Gaussian weight distribution.

4.1 Approximation of the Eigenvalues for
Large Systems With Circulant Structure
In the previous part, we have defined the plasticity functions hij in
such a way that the structures of Lh and LDh inherit important
properties from the underlying network structure a(dij/N). In
particular, assuming that the adjacency matrix is circulant,
renders Lh and LDh to be circulant, as well.

In this section, we briefly recall how one can derive the
eigenvalues μk and ]k (k � 0, . . . ,N − 1) in case of a circulant
structure. It is well-known that for a circulant matrix the
eigenvalues are determined by applying a discrete Fourier
approach [85]. More precisely, suppose L is a circulant N × N
matrix where the elements of the first row are given by the entries
lj with j � 1, . . . ,N . Then the kth eigenvalue is explicitly given by

μk � l1 +∑
j�2

N

lj exp(i 2πN (j − 1)k).
For the case of Lh as in Eq. 6, aij and hij as in Eqs. 18 and 21, we

obtain

Re(μk) � Re(lh11) + 1
N
∑
j�2

N

a(xj)h(0, xj)cos(2πxjk), (22)

with xj � d1j/N and Re(lh11) � − 1
N ∑N

j�2a(xj)h(0, xj). Since the
adjacency matrix A is assumed to be symmetric, the
eigenvalues of Lh are real. Therefore, we omit considering the
imaginary part of μk. Eq. 22 provides exact expressions for the
eigenvalues. However, the values depend on the total number of
oscillators N that makes it harder to study the influence of other
system properties, such as the coupling structure or the plasticity
function. To remove this N-dependence, we consider the
continuum limit N→∞ (compare with [86]) and obtain

Re(μk) � Re(lh11) + ∫1

0
a(x)h(0, x)cos(2πxk)dx,

Due to the definition of h and the symmetry of a(x), we find

Re(μk) � 2∫1/2

0
a(x)h(0, x)(cos(2πxk) − 1)dx (23)

for any k. This explicit expression allows studying the distribution
of the eigenvalues μk for a given plasticity function h and coupling
structure a. Note that a similar expression as (23) can be
analogously derived for the eigenvalues of LDh and reads

Re(]k) � 2∫1/2

0
a(x)Dh(0, x)(cos(2πxk) − 1)dx. (24)

We note that μ0 � ]0 � 0 due to the Laplacian structure of Lh

and LDh.
The results from Eqs. 23 and 24 are applied in the next

sections to analyze different networks.

4.2 Synchronization on Nonlocally Coupled
Ring Networks
In this section, we analyze the effect of long distance
connections on the stability of synchronous states in
nonlocally coupled ring networks. We consider the coupling
structure given by

aij � a(dij/N) � ⎧⎪⎨⎪⎩
1 for 0< dij ≤ P,
1 for 0<N − dij ≤ P,
0 otherwise.

(25)

This means that any two oscillators are coupled if they are
separated at most by the coupling range P. The coupling Eq. 25
defines a nonlocal ring structure with coupling range p to each
side and two special limiting cases: local ring for P � 1 and
globally coupled network for P � N/2 (if N is even, else
P � (N + 1)/2). The matrix of the form Eq. 25 is circulant
[85] and has constant row sum, i.e., ∑N

j�1aij � 2P for all
i � 1, . . . ,N . An illustration for N � 12 adn P � 3 is presented
in Figure 2B.

In order to study the influence of the coupling range, we use
the approximations for the eigenvalues μk and ]k derived in
Section 4.1. The nonlocally coupled ring structure is expressed by
the piecewise continuous function a(x) � 0 for p< x < 1 − p and
a(x) � 1 otherwise with relative coupling range p � P/N . Thus,
for a nonlocally coupled ring Eq. 25 and plasticity function Eqs.
18–20, we find

Re(μk) � −2∫p

0
sin(2πx)(cos(2πkx) − 1)dx

� (1 − cos(2πp))
π

+ 1
π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2
(cos2(2πp) − 1) k � 1

1

(1 − k2) (k sin(2πp)sin(2πkp) + cos(2πp)cos(2πkp) − 1) k≠ 1

(26)

for the eigenvalues μk of Lh. Analogously, we obtain

Re(]k) � −2∫p

0
cos(2πx)(cos(2πkx) − 1)dx

� sin(2πp)
π

− 1
π

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
pπ + sin(4πp)

4
k � 1

1

(1 − k2) (sin(2πp)cos(2πkp) − k cos(2πp)sin(2πkp)) k≠ 1

(27)

for ]k of LDh.
In Figure 3A, we provide an error analysis of

the approximations Eqs. 26 and 27 compared to the
exact eigenvalues given by Eq. 22. As expected, the errors
tend to zero as the number of oscillators increases.
Additionally in Figures 3B,C, we display μk and ]k for
several values of k depending on the relative coupling
range p. We observe that μk ≥ 0 for all k. This is due to
given plasticity function Eqs. 18–20, for which the update is
positive (or equal to zero) for all distances at ϕ � 0,
i.e., h(0, dij)≥ 0 for all dij.

It is important to note, that our choice of the circulant
adaptation functions imply that the matrices Lh and LDh are
diagonalizable and commute. Hence, Proposition 2 holds with the
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master stability Eq. 11 being exact. Therefore, the stability
criterium Eq. 14 is also exact.

Combining the fact μk ≥ 0 with the stability criterium Eq. 14, we
find cos(α)> 0 as a necessary condition for the stability of the
synchronous state for ϵ→ 0. This yields, that the synchronous state
can be stable only for α ∈ (−π/2, π/2). In contrast to Lh, the LDh is
in general neither positive nor negative definite, hence the
eigenvalues ]k may take positive or negative values. This is due
to the fact that the plasticity functionmay change sign at the origin,
i.e., Dhij may change signs depending on the distance dij. In
particular, we find that only the eigenvalue ]1 changes the sign,
see Figure 3C. This change may lead to a destabilization of the
synchronous states as we show in the subsequent analysis. Finally,
note that there exist μ∞ � (1 − cos(2πp))/π and ]∞ �
−sin(2πp)/π to which the eigenvalues converge for large values
of k. These limits are displayed in Figures 3B,C as black lines.

In Figure 4, we show different scenarios for the stability of the
synchronous state depending on the phase lag parameter α and the
coupling range p. Due to the necessary condition cos(α)> 0 as
ϵ→ 0, we consider α ∈ (−π/2, π, 2) only. Figures 4A,B show that
for −π/2< α< 0, the second stability condition Eq. 15 is only fulfilled
for p larger than a critical value of the coupling range pc(α). In these
cases, a higher coupling range stabilizes the synchronous state. Note
that pc(α)→ 0 as α→ 0 with α< 0. The results seen in Figures 4A,B
are in agreement with the results for a network of N � 200 coupled
phase oscillators. For this network, we calculate the Laplacian
eigenvalues and plot them along with the master stability
function in Figures 4E,F. The outcomes from numerical
simulations are presented in Figures 4I,J.

The situation changes for 0< α< π/2, as shown in Figures 4C,D.
Here, for a large range of α, all nonlocally coupled networks lead to a
stable synchronous state. However, closer to π/2, long distance
connections destabilize the synchronous state. In particular, this
destabilization can be traced back to the single negative eigenvalue ]1
of the Laplacian LDh, see Figure 4H. Hence, the unstablemanifold of
the synchronous state is only one-dimensional. This finding is in
agreement with the example of N � 200 phase oscillators presented

in Figures 4G,H,K, L. Particularly in Figure 4L, the low dimension
of the unstable manifold manifests itself as follows: The black
trajectory first tends to the synchronous state along the N(N + 1) −
1 stable directions before it is repelled along the direction
corresponding to ]1.

We have shown that long distance interactions may stabilize
or destabilize the synchronous state depending on the phase lag
parameter α. In this section, all links have the same weight
independent of the corresponding distance. In the next
section, we analyze a network with a more realistic structure
with a distance-dependent distribution of weights.

4.3 Synchronization on Isotropic and
Homogeneous Network With Gaussian
Distance Distribution
In the previous section, we used the prototypical example of a
nonlocally coupled rings to study the effects of long-range
interaction on synchronization. In this setup, however, all
links are equally weighted. In realistic systems, in contrast,
the number of links with a certain distance are distributed,
see [67] for details. To incorporate this into our network model,
we weight the links with respect to a distance distribution.
Measurements suggest that the distance distribution can be
estimated by a mean and a distribution width [67]. The
Gaussian distributions is a paradigmatic distribution that
allows for studying effects emanating from the mean and the
distribution width. For the remainder of the section, we consider
the link distance distribution given by a Gaussian distribution,
and weight the links of the network connectivity structure A
accordingly, i.e.

aij(dij/N) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

e−
(dij/N−ξ)2

2σ2 dij ≤N/2,

e−
(1−dij/N−ξ)2

2σ2 dij >N/2.
(28)

FIGURE 3 | Panel (A) shows the errors e(μ) (black) and e(]) (blue) with e(c) �
������������∑ ​ N−1

k�0 (cexactk −ck )2
N

√
of the approximations Eqs. 26, 27, respectively, where cexactk are the

exact eigenvalues derived by a discrete Fourier transformation, see Eq. 22. The errors are displayed in dependence of the system size N (number of oscillators). The
relative coupling range is set to p � 0.1. Panel (B) and (C) show the approximated eigenvalues given by Eqs. 26, 27, respectively, depending on the relative coupling
range p for different values of k.
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where ξ and σ are the mean value and the standard
deviation, respectively. Note that the standard deviation
characterizes the width of the distribution. For the numerical
simulations, we normalize each row of A by ∑N

j�1aij. Here, we
further make the assumption that the network is
homogeneous and isotropic. This means that in any direction
from a node and at each node the network looks the same. Hence,
we obtain a circulant connectivity structure. An illustration of the
weight distribution for N � 12 is presented in Figure 2C.

As we know from Eqs. 14 and 15, for ϵ≪ 1, the values of
c2(α, μk, ]k) determine the stability of the synchronous state. In
particular, the synchronous state is stable if cmin �
mink∈1,N−1c2(α, μk, ]k)> 0 for a given N and unstable
otherwise. In Figure 5A, we display cmin for α � −0.4π and
different mean values ξ and standard deviations σ of the
weight distribution. In agreement with the finding in Section
4.2, the synchronized state stabilizes due to an increase of long
distance interaction expressed by an increase of σ.

Complementing the finding in Section 4.2, here, we note that
the stability can be also achieved by distributions with peaks at
long distance links alone. In this case, the width of the distribution
is not important. Figure 5B shows how the boundary between
regions corresponding to stable and unstable synchronization
change for different values of α. As in the case of nonlocally
coupled ring networks, with α→ 0 (with α< 0) the boundary
tends to the limiting point (σ, ξ) � (0, 0). On the contrary, if
α→ − π/2 (with α> − π/2), the width of the distribution has to
increase to have stable synchronization for small values of the
mean ξ.

An opposite scenario is shown in Figure 5C for α � 0.4π.
Here, an increase of the weights for long distance links
destabilizes the synchronous state, as in Figures 4D,H,L. We
also note that for small values α, the synchronous state is stable
for almost all values of σ and ξ, see Figure 5D. Only in cases of
distribution sharply peaked at long distances, i.e., ξ close to 1/2
and σ close to 0, the synchronous state is unstable. This effect

FIGURE 4 | Stability analysis of the synchronous state of system Eqs. 16, 17 with plasticity rule Eqs. 18–20 and coupling structure Eq. 25. Panels (A–D)
show the function c2(α, μk(p), ]k(p)) for different α, see Eq. 15, calculated with the approximations Eqs. 26, 27 depending on the relative coupling range p. In each
panel, c2 is displayed for different values of k. The gray shaded regions refer to unstable synchronous states. Panels (e,f,g,h) show the master stability function
Λ(Dg(0)μ, g(0)]) for the cross-section Im(μ) � 0 and Im(]) � 0 for different values of α with color code as in Figure 1. The crosses and dots correspond to
two sets of eigenvalue pairs (μk , ]k) (k � 0, . . . ,N − 1) for relative coupling range p � 0.1 (blue crosses) and p � 0.45 (black points), respectively. Panels (I–L) show

the synchronization error E(t) �
�����������������∑N

i�1(ϕi(t) − ϕ1(t))2
√

for simulations with relative coupling range p � 0.1 (blue) and p � 0.45 (black). Each simulation is initialized at

a slightly perturbed synchronous state. Parameters: N � 200, ϵ � 0.01, (A, E, I) α � −0.4π, (B, F, J) α � −0.2π, (C, G, K) α � 0.2π, (D, H, L) α � 0.4π.
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could not be found in networks with nonlocally coupled rings, see
Section 4.2.

5 CONCLUSION

In summary, we have investigated the phenomenon of
synchronization on adaptive networks with heterogeneous
plasticity rules. In particular, we have modeled systems with
distance-dependent plasticity as they have been found in
neuronal networks experimentally [64–67] as well as
computational models [68]. For the realization, we have used
a ring-like network architecture and associated the distance of
two nodes with the distance of their placement on the ring.

In Section 3, we have developed a generalized master stability
approach for phase oscillator models that are adaptively coupled
and where each link has its own adaptation rule (plasticity). By
using an explicit splitting of the time scales between fast dynamics
of the phase oscillators and slow dynamics of the link weights,
we have established an explicit stability condition for the
synchronous state. More precisely, we found that the stability
is governed by the coupling function and the eigenvalues of two
structure matrices. These structure matrices Lh and LDh are
determined by the connectivity of the network and the
plasticity rules of the link weights. Note that for the structural
matrices, the plasticity rule needs only to be known in the vicinity
of 0, which greatly facilitates the application of the approach to
realistic forms of synaptic plasticity. Thus, we have extended
previous work on the master stability function of adaptive
networks [48, 83] and broaden the scope of potential future
applications for this methodology.

In Section 4, we applied the novel technique to a system of
adaptively coupled oscillators with distance-dependent plasticity.
Here, we have used a ring-like network structure to study
the impact of long- and short-distance connections on the
stability of synchronization. For this purpose we introduced an
approximation of the eigenvalues for the structure matrices in

Section 4.1. This approximation allows for a comprehensive
analysis of the stability as a function of various system
parameters. Moreover, it enables us to identify critical
eigenvalues that govern the stability of the synchronous state.
In Sections 4.2 and 4.3, we have brought together all
methodological findings and applied them to systems with a
nonlocally coupled ring structure and with a Gaussian
distribution of link weights. The latter structure accounts for
the fact that in realistic neuronal populations the number of links
with different distances are not uniformly distributed [67]. We
found that long-distance connections can stabilize or destabilize
the synchronous state, depending on the coupling function
between the oscillators. A remarkable fact with respect to
neuronal applications relates to the destabilization scenario.
Here we observed that the destabilization can be attributed to
the pronounced change of the plasticity rule from Hebbian to
anti-Hebbian. For more realistic connectivity structures, we
found that weight distributions of the connectivity structure
with sharp peaks at long distances lead to destabilization for a
wide range of the coupling function.

All in all, in this article, we have provided a general framework
to study the emergence of synchronization in neuronal system
with a heterogeneous plasticity rule. The developed methodology
is not limited to distance-dependent types of plasticity and can
also be used for non-symmetric setups. For the latter case, we
have provided the necessary analytical result. In this work, we
have restricted our attention to the case of phase oscillators, but
the methods can be extended to more realistic neuron models by
using techniques established, for example, in [48]. Moreover,
techniques are available that allow for further generalization
toward systems with slightly different local dynamics at each
node [87]. On the one hand, the master stability approach offers a
great tool to study the stability of the synchronous state
depending on the networks structure. On the other hand, this
approach allows for characterizing the network structures that
are, in some sense, optimal for synchronization [88, 89]. In this
regard, it remains an open question as to how plasticity optimizes

FIGURE 5 | Stability analysis of the synchronous state of system Eqs. 16, 17with plasticity rule Eqs. 18–20 and coupling structure Eq. 28. Panels (A, C) show the
minimum over all k ≠0<N of c2, seEq. 15, for two different values of α depending on themean value ξ and the standard deviation σ of the weight distribution. The minima
are displayed in color code. Panels (B, D) show the boundaries between stable and unstable regions in (σ, ξ)- plane for different values of α as given in the figure.
Parameters: (A) N � 400, α � −0.4π, (C) N � 400, α � 0.4π, (B, C) N � 200.
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the synchronizability of the network in a self-organized way. In
addition, recent studies have shown that there is a great interest in
synchronization phenomena to understand diseases such as
Parkinson’s disease [90–92] or epilepsy [29, 93] for the
development of proper therapeutic treatments. We believe that
our work provides an important step toward understanding
synchronization under realistic conditions.
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Coherence Resonance in Random
Erdös-Rényi Neural Networks:
Mean-Field Theory
A. Hutt 1*, T. Wahl1, N. Voges2, Jo Hausmann3 and J. Lefebvre4

1Team MIMESIS, INRIA Nancy Grand Est, Strasbourg, France, 2ILCB and INT UMR 7289, Aix Marseille Université, Marseille,
France, 3R&D Department, Hyland Switzerland Sarl, Geneva, Switzerland, 4Krembil Research Institute, University Health Network,
Toronto, ON, Canada

Additive noise is known to tune the stability of nonlinear systems. Using a network of two
randomly connected interacting excitatory and inhibitory neural populations driven by
additive noise, we derive a closed mean-field representation that captures the global
network dynamics. Building on the spectral properties of Erdös-Rényi networks, mean-
field dynamics are obtained via a projection of the network dynamics onto the random
network’s principal eigenmode. We consider Gaussian zero-mean and Poisson-like noise
stimuli to excitatory neurons and show that these noise types induce coherence
resonance. Specifically, the stochastic stimulation induces coherent stochastic
oscillations in the γ-frequency range at intermediate noise intensity. We further show
that this is valid for both global stimulation and partial stimulation, i.e. whenever a subset of
excitatory neurons is stimulated only. The mean-field dynamics exposes the coherence
resonance dynamics in the γ-range by a transition from a stable non-oscillatory equilibrium
to an oscillatory equilibrium via a saddle-node bifurcation. We evaluate the transition
between non-coherent and coherent state by various power spectra, Spike Field
Coherence and information-theoretic measures.

Keywords: coherence resonance, phase transition, stochastic process, excitable system, mean-field, random
networks

1 INTRODUCTION

Synchronization is a well characterized phenomenon in natural systems [1]. A confluence of
experimental studies indicate that synchronization may be a hallmark pattern of self-
organization [2–4]. While various mechanisms are possible, synchronization may emerge
notably through an enhancement of internal interactions or via changes in external stimuli
statistics. A specific type of synchronization can occur due to random external perturbations,
leading to a noise-induced coherent activity. Such a phenomenon is called coherence resonance (CR)
and has been found experimentally in solid states [5], nanotubes [6] and in neural systems [7, 8].
Theoretical descriptions of CR have been developed for single excitable elements [9, 9, 10], for
excitable populations [11] and for clustered networks [12].

In general, stimulus-induced synchronization is well-known in neural systems [2].
Synchronization has been observed intracranially in the presence of noise between single
neurons in specific brain areas [13, 14] and between brain areas [15–17]. The source of these
random perturbations is still under debate. In this context, it is interesting to mention that [18] have
found that the ascending reticular arousal system (ARAS) affects synchronization in the visual
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cortex. The ARAS provides dynamic inputs to many brain areas
[19–21]. It has thus been hypothesized that synchronization in
the visual system represents a CR effect triggered by ARAS-
mediated drive. This hypothesis has been supported recently by
[22] showing in numerical simulations that an intermediate
intensity of noise maximizes the interaction in a neural
network of Hodgkin-Huxley neurons. Furthermore, recent
theoretical work [21] has provided key insights on how
human occipital electrocorticographic γ-activity (40–120 Hz)
commonly observed with open eyes [21] is closely linked to
CR. Coherence resonance has further been associated with states
of elevated information processing and transfer [22], which are
difficult to assess in the absence of mean-field descriptions. For
illustration, Figure 1 (upper panel) shows average network
activity for increasing noise intensities D1 and one observes a
jump from non-oscillatory to oscillatory activity. Moreover, the
figure presents very low coherence in the network under study for
weak and strong noise intensities D1, whereas high coherence
emerges for intermediate noise intensities (bottom panel). In the
present work, we will explain this noise-induced coherence by a
mean-field description.

To better understand the mechanisms underlying CR and its
impact on information processing, we consider a simple two-
population Erdös-Rényi network of interconnected McCullogh-
Pitts neurons. Our goal is to use this model to provide some
insight into the emergence of stimulus-induced synchronization
in neural systems and its influence on the neural network’s
information content. The neural network under study has
random connections, a simplification inspired from the lack

structure neural circuits possess at microscopic scales. Previous
studies [23] have shown that such systems are capable of noise-
induced CR. Building on these results, we here provide a rigorous
derivation of a mean-field equation based on an appropriate
eigenmode decomposition to highlight the role of the network’s
connectivity–Erdös-Rényi more specifically eigenspectrum in
supporting accurate mean-field representations. We extend
previous results by further considering both global (all
neurons are stimulated) and partial (some neurons are
stimulated) stochastic stimulation and its impact on CR
similar to some previous studies [24–26]. This partial
stimulation is both more general and realistic than global
stimulation as considered in most previous studies [11, 23,
27]. We apply our results to both zero-mean Gaussian and
Poisson-like stochastic stimuli, and derive the resulting mean-
field description. It is demonstrated rigorously that partial
stochastic stimulation shifts the system’s dynamic topology
and promotes CR, compared to global stimulation. We
confirm and explore the presence of CR using various
statistical measures.

2 MATERIALS AND METHODS

We first introduce the network model under study, motivate the
mean-field description, mentions the nonlinear analysis
employed and provides details on the statistical evaluation.

2.1 The Network Model
Generically, biological neuronal networks are composed of
randomly connected excitatory and inhibitory neurons, which
interact through synapses with opposite influence on post-
synaptic cells. We assume neural populations of excitatory E
and inhibitory I neurons with N neurons in each population.
Excitatory neurons in E excite each other through the connectivity
matrix F, and excite inhibitory neurons in I through the
connectivity matrix M. Similarly, neurons in I inhibit each
other by F and inhibit excitatory neurons through the
connectivity matrix M. Hence, F and M represent the intra-
population and inter-population synaptic connections,
respectively. Mathematically, such neural population interactions
are described by a 2N dimensional non-linear dynamical system
governing the evolution of the state variable vectors V,W ∈ RN ,

τe
dV
dt

� −V + FS1[V] −MS2[W] + eIe + ξe(t)

τi
dW
dt

� −W +MS1[V] − FS2[W] + eIi + ξi(t).
(1)

This formulation is reminiscent of many rate-based models
discussed previously [28], where it is assumed that neuronal
activity is asynchronous and synaptic response functions are of
first order. The state variables V and W represent excitatory and
inhibitory dendritic currents, respectively. The terms ξe,i

represent respective stochastic inputs from various sources,
such as ion channel fluctuations, stochastic input from other
brain areas or external stimuli not directly accounted for in the

FIGURE 1 | Synchronization dependent on noise intensity as a marker of
coherence resonance. The top panel shows the network average of V in Eq. 1
and the bottom panel provides the Spike Field Coherence (SFC) in the Θ−
(red), α− (green), β− (orange) and c− (blue) frequency range. For low
noise intensityD1/τe there is no SFC, intermediate noise intensity yields strong
SFC while large noise intensities diminish SFC again. To gain the SFC values,
we have integrated in time the model system with 104 time steps while
increasing the noise variance according to (Eq. 7). For illustration reasons, the
SFC-values have been averaged by a sliding window of length
Δ(D1/τe) � 0.004. Definitions are given in section 2 and parameters are the
same as in Figure 4 with q � 1.
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model [29]. More specifically, we assume noise ξe,i ∈ RN , constant
input Ie,i with e � (1, . . . , 1)t . The connectivity matrices are
defined by F,M ∈ RN×N while the nonlinear transfer function is
given by S1,2[u] ∈ RN with (S1[u])n � H0S(un),
(S2[u])n � S(un), H0 > 0 and the scalar transfer function
S(u)> 0 ∀u ∈ R. Specifically, we will consider the transfer
function S(u) � Θ(u) with the Heaviside function
Θ(u) � 0 ∀u< 0,Θ(u) � 1 ∀u≥ 0. In addition, the synaptic time
scales are τe,i.

The present work considers directed Erdös-Rényi networks
(ERN) with connection probability density c � 0.95, i.e. both
neuron populations exhibit intra-population and inter-
population non-sparse random connections. Let us assume
F � AF0, M � AM0 and A is the non-symmetric adjacency
matrix of the ERN for which (A)nm � 0 with probability 1 −
c and (A)nm � 1/cN with probability c. At first, let A � S + U

with the symmetric matrix S � (A + At)/2, the antisymmetric
matrix U � (A − At)/2 and the eigenvalues λA and λS of the
matrix A and S, respectively. Then Re(λA) � λS, i.e. the real
part of the eigenvalue spectrum in the directed (i.e. non-
symmetric) and non-directed (i.e. symmetric) random
matrix A and S is identical. Moreover, for non-directed
ERNs with symmetric adjacency matrix and N→∞ its edge
spectrum contains the maximum eigenvalue λ1 � 1 with
eigenvector v1 � (1, 1, . . . , 1)t [30–33] and the bulk spectrum
has the maximum eigenvalue

λ2 � 2σ
��
N

√
cN

� 2
����
1 − c

√
���
cN

√ ,

(2)

FIGURE 2 | Eigenvalue spectrum of an Erdös-Rényi adjency matrix A under study and its eigenbasis. (A) The plot shows the eigenvalues in the complex plane
demonstrating a clear spectral gap between the first eigenvalue λ1 and the other eigenvalues λn>1. (B) The panels show the real (top) and imaginary (bottom) part of all
unit-normalized eigenvectors for illustration. They appear to be random reflecting the random network topology. (C) The normalized eigenvectorΦ1 ≈ (1, . . . , 1)/ ��

N
√

with
maximum eigenvalue λ1 ≈ 1 plotted in complex plane together with the eigenvector Φ2 of the second largest eigenvalue λ2 � 0.015 + i0.0006. Each dot
corresponds to a complex-numbered vector entry in the complex plane. This result confirms the choice Φ1 ≈ (1, . . . , 1) in Eq. 9.
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with the corresponding Bernoulli distribution variance
σ2 � c(1 − c). It is obvious that λ2 ≪ λ1 and λ2 ≈ 0 for large
mean degree cN . Since Re(λA) � λS, the finite-size non-
symmetric connectivity matrix F (M) has a maximum
eigenvalue λ1 ≈ F0 and λn>1 ≈ 0 (λ1 ≈ M0, λn>1 ≈ 0). If c
decreases, then λ2 increases, i.e. the spectral gap decreases, and
this approximation does not hold anymore. The Supplementary
Appendix illustrates the limits of this approximation in
numerical simulations. Figure 2A shows the single maximum
eigenvalue λ1 of A representing the edge spectrum and the other
very small eigenvalues of the bulk spectrum. Hence, the matrix F
has maximum eigenvalue F0 and the other eigenvalues vanish.
The same holds for matrixM � M0Awith a maximum eigenvalue
M0. Figure 2B shows the real and imaginary part of the
eigenvectors. The eigenvectors of the bulk spectrum (i> 1)
have uniformly distributed elements in good accordance with
theory of symmetric ER networks [34]. The eigenvector of the
edge spectrum is Φ1 � (1, . . . , 1)t , see Figure 2C.

Moreover, we assume that each noise process at
inhibitory neurons (ηi)n � ηin at network node n is Gaussian
distributed with zero mean, noise intensity D2 and uncorrelated
in time

〈ξin(t)ξim(τ)〉 � 2D2δnmδ(t − τ),
Conversely each noise process at excitatory neurons ξen belongs to
a certain class Gm,m � 1, . . . ,M of M classes [23]. Noise
processes in a specific class Gm, i.e. n ∈ Gm, share their mean
ξ
e
m and variances Dm

1 , i.e.

〈ξek(t)ξil(τ)〉 � 2Dm
1 δklδ(t − τ), k, l ∈ Gm,

In the following, we assume two classes M � 2 with ξ
e
1 ≠ 0,D

1
1 �

D1 and ξ
e
2 � 0,D2

1 � 0, i.e. only a subset of nodes n ∈ G1 are
stimulated. Hence we consider a partial stimulation at number of
nodes N1 � |G1|.

In biological neural systems, the input to a
neural population is well-described by incoming spike
trains that induce dendritic currents at synaptic receptors.
According to renewal theory, neurons emit spike trains whose
interspike interval obeys a Poisson distribution [35].
Then incoming spike trains at mean spike rate r induce
random responses at excitatory synapses with time constant
τin. This random process Iin(t) has the ensemble mean E[Iin] �
winrτin and ensemble variance Var[Iin] � w2

inrτin/2 [36]
assuming the synaptic coupling weight win. Since a Poisson
distribution converges to a Gaussian distribution for large
enough mean, we implement this input current as a
Gaussian random process with mean E[Iin] and variance
Var[Iin] while ensuring the validity of this approximation
by a large enough input firing rate λin. It is important to
point out that for Poisson noise, in contrast to the zero-mean
Gaussian noise, both mean and variance are proportional to
the input firing rate.

2.2 Conventional Mean-Field Analysis
To compare mesoscopic neural population dynamics to
macroscopic experimental findings, it is commonplace to

describe the network activity by the mean population
response, i.e. the mean-field dynamics [37–39]. A naive mean-
field approach was performed in early neuroscience studies
[40–42], in which one blindly computes the mean network
activity to obtain

τe
dE[V]
dt

� −E[V] + fS1[V] −mS2[W] + eIe

τi
dE[W]
dt

� −E[W] +mS1[V] − fS2[W] + eIi,

(3)

with the network average E[x] � ∑kxk/N and (f )k �
∑lF lk/N , (m)k � ∑lMlk/N assuming zero-mean external noise

with ∑k(ξe,i)k � 0. In addition, one may assume identical
network interactions with (f )k � f 0/N � const, (m)k � m0/N �
const and the simplifying but questionable linear assumption.

E[S1,2(x)] � S1,2(E[x]). (4)

Combined, these assumptions lead to mean-field equations.

τe
dE[V]
dt

� −E[V] + f0S1[E[V]] −m0S2[E[W]]
+ eIe

τi
dE[W]
dt

� −E[W] +m0S1[E[V]] − f0S2[E[W]].
+ eIi (5)

In this approximate description, additive noise does not affect
the system dynamics. The assumption (Eq. 4) is very strong and
typically not valid. In a more reasonable ansatz.

E[S1,2(x)] � E⎡⎣S1,2(x0) +∑∞
n�1

1
n!
S(n)1,2 (x − x0)n⎤⎦

� S1,2(x0) +∑∞
n�1

1
n!
S(n)1,2 E[(x − x0)n]

� F(E[x], E[x2], E[x3], . . . ), (6)

with S(n)1,2 � zSn1,2(x)/zxn computed at an arbitrary point x � x0
and a function F 1,2 ∈ R. Hence the dynamics of the mean-field
E[V] depends on the higher-order statistical orders E[Vn] via the
nonlinear function E[S1,2(V)]. This is called the closure problem
that is solvable in specific cases only [43].

Motivated by previous studies on stochastic bifurcations
[44–53], in which additive noise may tune the stability close to
the bifurcation point, the present work shows how additive noise
strongly impacts the nonlinear dynamics of the system for arbitrary
noise intensity and away from the bifurcation. Previous ad-hoc
studies have already usedmean-field approaches [23, 54, 55] which
circumvents the closure problem (Eq. 6) through a different mean-
field ansatz. These motivational studies left open a more rigorous
derivation. This derivation will be given in the present work:
presenting in more detail its power and its limits of validity.

2.3 Equilibria, Stability and Quasi-Cycles
The dynamic topology of a model differential equation system
may be described partially by the number and characteristics of its
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equilibria. In general, for the non-autonomous differential
equation system

_z � Az + N(z) + I(t),
with state variable z ∈ RN , the driving force I ∈ RN , the nonlinear
vector N ∈ RN and the matrix A ∈ RN×N , it is insightful to
consider the equilibria of the corresponding autonomous
system z0 with _z � 0 yielding the implicit condition

Az0 � −N(z0),
The stability of an equilibrium z0 is given by the eigenvalue
spectrum of the corresponding Jacobian

J � A + ∇N0,

where (∇N0)ij � zNi(z)/zzj computed at z0. The eigenvalues {λk}
of J can be written as λk � ak + i2π]k with the damping ak and the
eigenfrequency ]k. Asymptotically stable equilibria have
R(λk)< 0, e.g. stable foci have ak < 0, ]k ∈ R. Linear response
theory tells that noise-driven linear systems, whose deterministic
dynamics exhibit a stable focus, exhibit quasi-cycles with a
spectral power peak close to the eigenfrequency, see e.g. [51,
56, 57]. The smaller the noise intensity, the closer is the spectral
peak frequency to the eigenfrequency. Hence, the eigenfrequency
]k provides a reasonable estimate of the quasi-cycle spectral peak.

2.4 Numerical Simulations
The Langevin Eq. 1 have been integrated over time utilizing the
Euler-Maruyama scheme [58]. Table 1 presents the parameters
used. In certain cases, the noise variance has been changed over
time t according to

D1(t) � Dmin + Dmax − Dmin

T
t, (7)

with the maximum integration time T and the maximum and
minimum noise variance values Dmax and Dmin, respectively.

2.5 Numerical Spectral Data Analysis
Since prominent oscillations of the networkmean activity indicates
synchronized activity in the population, we have computed the
power spectrum of the network mean activity
V(t) � ΣN

n�1(Vn(t)/N) employing the Bartlett-Welch method

with overlap rate 0.8. To gain a power spectrum with frequency
resolution Δf , the Bartlett-Welch segments were chosen to the
length 1/Δf and the time series had a duration of 5 s for the
zero-mean Gaussian noise and 8 s for the Poisson noise stimulation.

In addition to the power spectrum, the synchronization
between single neuron spike activity and the dendritic current
reflects the degree of coherence in the system. To this end, we
have computed the Spike Field Coherence (SFC) [59]. To estimate
the SFC, we have chosen a time window of 5s for zero-mean
Gaussian stimulation and 8s for Poisson stimulation and
computed the spike-triggered average and power spectra in
these time windows to compute the SFC for each frequency.
Then we have averaged the SFC in the Θ− (4–8 Hz), α−
(8–12 Hz), β− (12–20 Hz) and c− (25–60 Hz) frequency band
to gain an average SFC in the corresponding band. This standard
measure estimates the coherence between spikes, that occur if
H[Vn](t) � 1, and their corresponding dendritic currents Vn(t)
at the same cell averaged over all cells in the excitatory population.
Significant differences of SFC at different noise intensities are
evaluated by an unpaired Welch t-test with α � 0.05.

2.6 Information Measures
Coherence quantifies the degree of mutual behavior of different
elements. Interestingly, recent studies of biological neural systems
have shown that synchronization and information content are
related [60, 61]. For instance, under general anesthesia
asynchronous cortical activity in conscious patients is
accompanied by less stored information and much available
information whereas synchronous cortical activity in
unconscious patients exhibits more stored information and
less available information [19, 20, 62–64]. We are curious how
much information is stored and available in coherence resonance
described in the present work. The result may indicate a strong
link between coherence and information content. To this end, we
compute the amount of stored information in the excitatory
population as the predictable information and the amount of
available information as the population’s entropy, cf [64].

The predictable information in the excitatory population is
computed as the Active Information Storage AIS [65, 66] utilizing
the Gaussian Copula Mutual Information (GCMI) estimation
[67]. Assuming a single time series Vi(t)

AISi � MI(Vi(t);V(k)
iΔ ),

V(k)
iΔ � (Vi(t − Δ),Vi(t − 2Δ), . . .Vi(t − kΔ)),

(8)

where MI is the mutual information [64, 68], k is the embedding
dimension and Δ is the embedding delay. The value AISi
describes how much the dendritic current Vi(t) in excitatory
neuron i is influenced by its past. To gain an estimate of stored
information in the excitatory population, we evaluate the average
stored information in the population and its variance

AIS � 1
N

∑N
i�1

AISi

σ2
AIS �

1
N − 1

∑N
i�1

(AISi − AIS)2,

TABLE 1 | Parameter set of model (1).

Parameter Description Value

τe Exc. synaptic time constant 5 ms
τ i Inhib. synaptic time constant 20 ms
F0 Intra-population conn. weight 2.17
M0 Inter-population conn. weight 3.87
c Connection probability 0.95
N Number of network nodes 200
Ie Constant exc. Input 1.1
Ii Constant inhib. Input 0.4
D2 Inhib. noise variance 0.2
win Poisson input weight 2.1
τ in synaptic time scale of input 5 ms
Δt Numerical integration step 0.5 ms

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 6979045

Hutt et al. Coherence Resonance in Neural Networks

120

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


withN � 200. Significant AIS differences at different noise intensities
are evaluated by an unpaired Welch t-test with α � 0.05.

Moreover, we compute the available information in
the excitatory cortex of the dendritic current Vi(t)
at excitatory neuron i as its entropy Hi utilizing
the GCMI estimation. Its population average and variance
reads

H � 1
N

∑N
i�1

Hi

σ2H � 1
N
∑
i�1

N

(Hi −H)2,

and entropy differences at different noise intensities are
evaluated statistically by an unpaired Welch t-test with α �
0.05.

In subsequent sections, we have computed AIS and H for
embedding dimension k ∈ [1; 60] and Δ ∈ {Δt, 2Δt, 5Δt} with
kΔ � 60 and find consistent significance test results.
Specifically, we have chosen Δ � Δt and k � 1 in the shown
results.

3 RESULTS

The subsequent section shows the derivation of the mean-field
equations, before they are applied to describe network dynamics
for two types of partial stimulation.

3.1 Mean-Field Description
To derive the final equations, we first introduce the idea of a mode
projection before deriving the mean-field equations as a
projection on the principal mode. The extension to partial
stimuli extends the description.

Mode Decomposition
In the model (1), the system activity V ∈ U in space U
may be expanded into a
mode basis {Φe

n}, n � 1, . . . ,N ,Φe
n ∈ CN ,

V � ∑N
n�1

anΦ
e
n,

with complex mode amplitude an ∈ C and a biorthogonal basis
{Ψe

n},Ψe
n ∈ CN and

Ψe†
k Φ

e
n � δkn , k, n � 1, . . . ,N ,

Here, † denotes the transpose complex conjugate. The same holds
for W with the basis {Φi

n}, n � 1, . . . ,N ,Φi
n ∈ CN ,

W � ∑N
n�1

bnΦ
i
n,

with the complex mode amplitude bn ∈ C and the biorthogonal
basis {Ψi

n},Ψi
n ∈ CN and

Ψi†
k Φ

i
n � δkn , k, n � 1, . . . ,N ,

Projecting V,W onto the respective basis {Ψe
k} and {Ψi

k}, we
obtain amplitude equations

τe
dak
dt

� −ak +Ψe†
k FS1[V] −Ψe†

k MS2[W]
+ Ie +Ψe†

k ξ
e(t)

τ i
dbk
dt

� −bk +Ψi†
k MS1[V] −Ψi†

k FS2[W]
+ Ii +Ψi†

k ξ
i(t),

Now let us assume that Ψe
k,Φ

e
k are eigenvectors of F with

eigenvalue λek ∈ C

FΦe
k � λekΦ

e
k

Ψe†
k F � λekΨ

e†
k ,

and Ψi
k,Φ

i
k are eigenvectors of M with eigenvalue λikC

MΦi
k � λikΦ

i
k

Ψi†
k M � λikΨ

i†
k ,

Then

λe1 � F0 ,Φe
1 � e,Ψe

1 �
e
N

λen ≈ 0, n � 2, . . . ,N ,
(9)

cf. section 2.1, where we have utilized the bi-orthogonality of the
basis. Equivalently,

λi1 � M0 ,Φ
i
1 � e,Ψi

1 �
e
N

λin ≈ 0, n � 2, . . . ,N ,

We observe that Ψi†
1 � Ψe†

1 and Φe
1 � Φi

1. The vector space U
can be decomposed into complement subspaces Z,Z⊥ with
U � Z ⊕Z⊥ and Ψe

1,Ψ
i
1 ∈ Z. Then Ψe

k>1,Ψ
i
k>1 ∈ Z⊥. Each

vector Ψi
k>1 can be described in the basis Ψe

k>1 in Z⊥ and
one gains

Ψi†
k>1F � ∑N

n�2
cnΨ

e†
n F

� ∑N
n�2

cnλ
e
nΨ

e†
n

� 0,

due to (Eq. 9) and equivalently

Ψe†
k>1M � ∑N

n�2
cnΨ

i†
nM

� ∑N
n�2

cnλ
i
nΨ

i†
n

� 0,

with some coefficients cn ∈ C. This yields

τe
da1
dt

� −a1 + λe1
N
etS1[V] − λi1

N
etS2[W]

+ Ie +me(t) (10)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 6979046

Hutt et al. Coherence Resonance in Neural Networks

121

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


τi
db1
dt

� −b1 + λi1
N
etS1[V] − λe1

N
etS2[W]

+ Ii +mi(t) (11)

τe
dak
dt

� −ak +Ψe†
k ξ

e(t) , k � 2, . . . ,N (12)

τ i
dbk
dt

� −bk +Ψi†
k ξ

i(t) , k � 2, . . . ,N , (13)

with me,i(t) � etξe,i(t)/N .

The Mean-Field Equations
Equations 12, 13 describe an Ornstein-Uhlenbeck process with
solution

ak(t) � ∫t
−∞

e−(t−τ)/τeΨe†
k ξ

e(τ)dτ

bk(t) � ∫t
−∞

e−(t−τ)/τiΨi†
k ξ

i(τ)dτ,
(14)

for t→∞. In Eqs 10, 11 the terms V ,W can be written as

V � ∑N
n�1

an(t)Φe
n � a1Φ

e
1 + ∑N

n�2
an(t)Φe

n

W � ∑N
n�1

bn(t)Φi
n � b1Φ

i
1 + ∑N

n�2
bn(t)Φi

n .
(15)

Inserting expressions in Eq. 14 into these expressions
leads to

∑N
n�2

an(t)Φe
n� ∫t

−∞
e−(t−τ)/τe ∑N

n�2
Φe

nΨ
e†
n ξ(τ)dτ.

∑N
n�2

bn(t)Φi
n� ∫t

−∞
e−(t−τ)/τi ∑N

n�2
Φi

nΨ
i†
n ξ(τ)dτ.

(16)

By virtue of the completeness of the basis, it is

∑N
n�2

Φe
nΨ

e†
n � I −Φe

1Ψ
e†
1

∑N
n�2

Φi
nΨ

i†
n � I −Φi

1Ψ
i†
1 ,

with the unity matrix I ∈ RN×N . Then inserting these identities
into (Eq. 16)

∑N
n�2

an(t)Φe
n � ∫

t

−∞
e−(t−τ)/τeξe(τ)dτ − ∫

t

−∞
e−(t−τ)/τeΦe

1me(τ)dτ

∑N
n�2

bn(t)Φi
n � ∫

t

−∞
e−(t−τ)/τiξi(τ)dτ − ∫

t

−∞
e−(t−τ)/τiΦi

1mi(τ)dτ,

(17)

We define ηe,i(t) � ξe,i(t) − ξe,i0 , etηe,i(t) � Nρe,i(t) with
ρe,i ∼ N (0,D1,2/N) and temporally constants ξe,i0 , i.e. ρ

e,i are
finite size fluctuations with variance D1,2/N and ρe,i → 0 for
N→∞. With the definitions

we,i(t) � ∫
−∞

t

e−(t−τ)/τe,iηe,i(τ)dτ (18)

se,i(t) � τe(ξe,i0 − eξ0
e,i) − e ∫

t

−∞
e−(t−τ)/τe,iρe,i(τ)dτ, (19)

with ξ
e,i
0 � ∑N

n�1
(ξe,i0,n/N) and inserting Eq. 17 into Eq. 15

V(t)� a1(t)e + se(t) + we(t)
W(t)� b1(t)e + si(t) + wi(t) . (20)

and the mean-field equations can the be written as

τe
da1
dt

� −a1 + F0
N
etS1[a1(t)e + se(t) + we(t)]

−M0

N
etS2[b1(t)e + si(t) + wi(t)]

+ Ie + ξ
e

0 + ρe(t)

τ i
db1
dt

� −b1 +M0

N
etS1[a1(t)e + se(t) + we(t)]

−F0
N
etS2[b1(t)e + si(t) + wi(t)]

+ Ii + ξ
i

0 + ρi(t),

(21)

By virtue of the finite-size fluctuations over time ρe,i(t) the
system’s mean-field obeys stochastic dynamics.

Equation 14 describe an Ornstein-Uhlenbeck process of mode
k and thus we,i(t) describes a multivariate Ornstein-Uhlenbeck
process over time. In addition, we,i(t) is stationary over time and,
since all modes k share identical properties, it is stationary over the
network. Consequently, the process is ergodic and the stationary
probability density function p(we,i) of ωe,i can be computed over
the network yielding

1
N
etS1[xe + w] � 1

N
∑N
n�1

S[x + wn]

≈ ∫
∞

−∞
S(x + w)pe(w)dw

� G1(x),

(22)

where the approximation is good for large N. Specifically, for
Gaussian zero-mean uncorrelated noise ξe with variance D [69]

pe(w) � 1���
2π

√
σ
e−ω

2/2σ2 , σ2 � D
τe
.

Similarly,

1
N
etS2[xe + w] ≈ ∫

∞

−∞
S(x + w)pi(ω)dw

� G2(x),
(23)

Moreover, if the mean input is ξe,i0 � αe,ie and N→∞, then se,i �
0 and ρe,i � 0 and consequently the mean-field equation
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τe
da1
dt

� −a1 + F0G1(a1) −M0G2(b1) + Ie + αe

τi
db1
dt

� −b1 +M0G1(a1) − F0G2(b1) + Ii + αi

, (24)

obeys deterministic dynamics. However, the above formulation
depends implicitly on the additive noise through the convolution
of the transfer function.

Partial Stimuli
Each noise baseline stimulus at inhibitory neurons (ξi)n � ξin
at network node n is Gaussian distributed with zero mean and
variance D2 (cf. section 2.1). Then ξ

i
0 � 0, si(t) �

ρi(t) ∼ N (0,D2/τiN) and, considering Eq. 18, the
corresponding probability density function in Eq. 23 is
pi(w) � N (0,D2/τi). Here N (0, σ2) denotes a normal
distribution with zero mean and variance σ2 .Additionally,
stochastic stimuli driving excitatory neurons in class G1 are
ergodic (cf. section 2.1). Then the mean and variance of class
G1 is

ξ
e

1 �
1
N1

∑
n∈G1

ξen

D1� 1
N1

∑
n∈G1

(ξen)2,
(25)

Using Eq. 18 and Eq. 19 and assuming N→∞, then

we(t) + se(t) � ∫
−∞

t

e−(t−τ)/τe(ηe(τ) + Δξ)dτ,
whose probability density function pe(w) is [23].

pe(w) � ∑2
m�1

qmN (ξem,Dm
1 /τe)

� qN (ξe1,D1/τe)[w] + (1 − q)δ(w),
(26)

with q � N1/N , q1 � q, q2 � 1 − q. Here, Δξ � (1 − q, 1 −
q, . . . ,−q,−q)ξe1 with terms 1 − q of number N1 and
assuming that the nodes n � 1, . . . ,N1 receive stochastic
input. In addition the constant input in the mean-field
equation is ξ

e
0 � qξe1.

Then, utilizing Eqs 22, 23 and specifying S to a step function
(cf. section 2.1), the mean-field transfer functions in Eq. 24
read

G1(a1) � H0q
2

[1 − erf( − a1������
2D1/τe

√ )] + (1 − q)Θ(a1)

G2(b1) � 1
2
[1 − erf( − b1������

2D2/τi
√ )],

(27)

Here, Θ(·) denotes the Heaviside step function. Figure 3 shows
examples for pe and G1.

Essentially, the mean-field obeys

τe
da1
dt

� −a1 + F0G1(a1) −M0G2(b1) + Ie + ρe(t)

τ i
db1
dt

� −b1 +M0G1(a1) − F0G2(b1) + Ii + ρi(t)
(28)

utilizing (Eq. 27).

3.2 Zero-Mean Gaussian Partial Stimulation
At first, we consider the case of a partial noise stimulation with
zero network mean, i.e. etξ

e � 0 and se(t) ∼ N (0,D1/τeN1) and
ξe1 � ξ

e
0 � 0. Then D1 parametrizes the noise intensity only.

Figure 4 shows the network evolution of V(t) for increasing
noise intensities, cf. Equation 7. Starting from a high activity
state, increasing the noise intensity yields a phase transition of the
system to a network state at lower activity. This occurs for global
(q � 1.0) and partial stimulation (q � 0.8, q � 0.6 and q � 0.5).
Please re-call that, for instance, q � 0.5 reflects a stimulation
where 50% of the network nodes are stimulated. These stimulated
network nodes have been randomly chosen from a uniform
distribution.

Figure 5 shows the respective power spectra of the network
mean V(t), which provides insights about the system’s
synchronization at low and high noise intensity. High noise
intensity induces strong oscillations in the γ-frequency band,
whereas the low noise intensity states does not - in contrast, this
state shows a decaying low-pass power spectral density that is
expected from a non-oscillatory stochastic process.

Stronger power spectral density at a given frequency is the
signature of a coherent network, as seen in Figure 5. Since the
neurons in our network model emit spikes and exhibit synaptic
input currents, noise-induced coherence may be visible in the
coherence between spiking and synaptic activity as well. In
fact, in Figure 6A one observes a significant strongly enhanced
Spike Field Coherence at high noise intensities for both global
and partial stimulation. Hence, in sum the system exhibits
coherence resonance in the sense that strong noise induces
coherent oscillations that are not present at low noise
intensities.

Coherence resonance is supposed to be linked to information
processing in neural systems. Thus we investigate the relationship
between stimulus noise intensity and information in the system
across frequency bands. Figure 6B shows how much information
is stored in the networks (AIS) and how much information is
available (H). We observe that significantly more information is
stored (AIS) and available (H) at high noise intensities for global
stimulation q � 1.0, whereas high noise partial stimulation with
q � 0.8 diminishes the stored active information and available
information significantly. For more sparse stimulation with q �
0.6 the finding in information measures is heterogeneous and no
interpretation consistent with the results for larger q is possible.

To understand this noise-induced coherence, we take a closer
look at the dynamic topology of the mean-field Eq. 28. Their
equilibria (cf. section 2.3) for negligible finite-size fluctuations
ρe,i(t)≪ 1 are shown in Figure 7 together with simulated mean-
field activity V(t) for illustrative purposes. Low noise intensity
induces a bistable regime with a stable node as upper equilibrium
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and a focus as lower equilibrium. For global stimulation (q � 1.0),
this lower focus is unstable at very low noise intensity and stable
at larger noise intensities. Moreover, the lower equilibrium is a
stable focus at all noise intensities for partial (q< 1.0) stimulation.
The center branch is always a saddle node. For larger noise
intensity, the upper equilibrium branch merges with the center
branch via a saddle-node bifurcation and the lower stable focus is
preserved as noise is further increased. This finding remains valid
for both global (q � 1.0) and partial (q< 1.0) stimulation as
shown in Figure 7 for q ranging within the interval
0.5≤ q≤ 1.0. One can see that for smaller q (i.e. less excitatory
neurons are stimulated) the bifurcation point moves to larger
noise intensities. Hence thinning out the stimulation of excitatory
neurons increases the noise intensity interval at which bistability
occurs. Moreover, we point out that the bifurcation points

predicted by the mean-field description and shown in
Figure 7 show very good accordance to the values of D1/τe in
Figure 4, where the system transitions from the upper to the
lower state.

The mean-field solution involves finite-size fluctuations that
affect the solutions principal oscillation frequency and
magnitude. By construction, these mean-field solutions
converge to the network average for increasing network size
N. Figure 8 compares the time series of mean-field solutions
and network averages for increasing network sizes and affirms the
convergence and thus the validity of the mean-field description. It
is interesting to note that, besides the mean-field dynamics, the
network’s dynamical properties change with increasing N as well.
Figure 8 provides the principal oscillation frequencies for both
solutions for the given network size: the network speeds up with

FIGURE 3 | The probability density function p (Eq. 26) and the resulting transfer function G (Eq. 27). For q � 1.0 D1/τe � 0.15 and for q � 0.5 D1/τe � 0.5.

FIGURE 4 | Enhanced zero-mean Gaussian noise induces phase transitions in spatiotemporal dynamics. The panels show the network activity V(t) according to
Eq. 1 with temporally increasing noise variances D1/τe for different stimulus ratios q.
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increasing size and its frequency converges to the mean-field
principal frequency that remains about the same value. However,
we point out that the mean-field solution remains still slightly
different even for very large N since it implies the approximation
of negligible connectivity matrix bulk spectra. Figure 9 affirms
this finding by comparing simulation trials of the transitions from
the non-oscillatory to the oscillatory coherent state. We observe
that the transition values of D1/τe of the network mean and the

mean-field are closer to each other for larger network size. The
mean-field description (Eq. 28) with (Eq. 27) assumes vanishing
finite-size fluctuations and these are reduced for larger network
size N, i.e. the effective noise level (the finite-size fluctuations) is
reduced and thus deterministic mean-field and stochastic
network activity transition are closer to each other.

The frequency range of oscillations observed for steady
states located within the lower branch (see Figure 7) is a

FIGURE 5 | Enhanced noise yields strong power of the global mode V(t) in the γ-frequency range. The panels show the power spectra of V for the stimulus ratios
q � 0.5 (D1/τe � 0.35 (black) and D1/τe � 0.55 (red)), q � 0.6 (D1/τe � 0.25 (black) and D1/τe � 0.33 (red)), q � 0.8 (D1/τe � 0.20 (black) and D1/τe � 0.25 (red)) and
q � 1.0 (D1/τe � 0.15 (black) and D1/τe � 0.20 (red)). Power spectra at lower noise intensities are computed on the respective upper branch of the bistable system.

FIGURE 6 | High zero-mean Gaussian noise enhances the Spike Field Coherence in all frequency bands and affects heterogeneously Active Information Storage
(AIS) and differential entropy (H). (A) The differences between high noise intensity (grey-colored) and low noise intensity (black-colored) is significant (p<0.001) for both
global and partial stimulation. (B) For global stimulation (q � 1.0), high noise intensity induces states of significantly enhanced stored active information (AIS) and
available information (H), whereas partial stimulation with q � 0.8 diminishes both AIS and H significantly. Results for q � 0.6 are not consistent and difficult to
interpret. In all panels, vertical bars denote the standard deviation, p <0.001 and parameters are identical to the parameters used in Figure 5.
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consequence of both network connectivity and neuronal
properties and is further tuned by additive noise. Figure 10
shows the maximum eigenvalue real part for the upper (A) and
the lower branch (B, top opanel) and the eigenfrequency (cf.
section 2.3) of the equilibrium at the lower branch (B, lowel
panel). We observe that increasing noise intensity decreases
slightly the eigenfrequency in the c− frequency range and
decreases the negative maximum eigenvalue real part. This
means that additive noise increases the damping of the
response of the system to perturbations - including noise.
This increased noise-induced damping leads to magnitude
changes in quasi-cycle solutions - which is manifested in the
power spectral density distribution. Indeed, the power spectral
density distribution widens as noise intensity increases, leading
to the spectra as seen in Figure 10C. This broad spectral power
distribution is the signature of suppressed coherence. As a

corollary, our analysis demonstrates that coherent band-
limited oscillations emerge for intermediate noise intensities
only. This is a known feature of coherence resonance. For
additional illustration, Figure 1 shows the typical bell-shape of
coherence (here Spike Field Coherence) in different frequency
bands. We observe that the coherence effect is strongest in the
c− frequency range.

3.3 Poisson Partial Stimulation
Synaptic receptors respond to afferent Poisson-distributed input
spike trains, whose properties differ substantially from the
Gaussian noise processes we considered so far. To generalize
our results to more physiological stimuli statistics, we considered
a partial Poisson noise stimulation with dependent mean and
variance. Specifically, afferent spike trains at spike rate rin induce
random responses at excitatory synapses with time constant τin
and synaptic weight win. Then

se(t) � τeΔξ + ρe(t)
ξe1 � winrinτ in
D1 � winξ0/2
ξ
e

0 � qξe1,

and finite-size fluctuations ρe(t) ∼ N (0,D1/N1). Figure 11A
illustrates the temporal network activity for a low and high
stimuli firing rates rin. Increasing rin induces a transition from
a high-activity to a low activity state for both global and
partial stimulation - similarly as in the Gaussian noise case.
The high-activity state is non-oscillatory while the low-
activity state is oscillatory, with frequency found in the c−
frequency range (Figure 11B). In addition, the low-activity
state induced by high Poisson input rate exhibits a strong
Spike Field Coherence in contrast to the high-activity state
(Figure 11C). Moreover, high stimulation noise increases the
stored information and the available information for global
stimulation with q � 1.0, cf. Figure 11D. Information
measures for partial stimulation (q � 0.6) are
heterogeneous and an interpretation of results for AIS and
H is difficult.

FIGURE 7 | Equilibria and representative time series of the global mode
V(t) for the zero-mean partial stimulation. There is a bistability and saddle-
node bifurcation from a stable node to an stable focus at enhanced noise
intensity. The numbers denote the values of the stimulus ratio q. Solid
(dashed) lines mark stable (unstable) states. The time series V results from the
time-varying noise intensity according to Eq. 7.

FIGURE 8 | Comparison of network average and mean-field solution for different network sizes. The network average (black) and mean-field solutions (red)
resemblesmore andmore the larger the network of sizeN. This holds for themagnitude and frequency (provided in panels) of both solutions. The initial value of the mean-
field activity has been chosen to the initial value of the network average. Simulations consider zero-mean Gaussian simulations with q � 1 and D1/τe � 0.2.
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These results can be understood by taking a closer look at the
dynamic topology of the system. Figure 12 reveals that, for global
stimulation (q � 1.0), the system has two unstable equilibria and
one stable equilibrium at lower noise intensities. The top branch
is a stable node, the center branch a saddle node and the lower
branch an unstable focus. There is a very small noise intensity
interval at which the top and bottom branch are both stable.
Increasing the Poisson stimuli firing rate leads to a sudden
suppression of high-activity equilibria through a saddle-node
bifurcation. Consequently, the transition observed in
Figure 11A is a jump from the stable node on the top
bifurcation branch to the stable focus on the bottom branch
similar to the effect shown in Figure 4. For partial stimulation
(q � 0.6), the lower branch exhibits a stable focus for much lower
input firing rates. The saddle-node bifurcation is delayed, leading
to an increased noise intensity interval of bistability. Hence, the
system exhibits coherence resonance for Poisson noise as well.

4 DISCUSSION

This study presents a rigorous derivation of mean-field equations
for two nonlinearly coupled non-sparse Erdös-Rényi networks
(ERN) that are stimulated by additive noise. This mean field
representation is made possible through spectral separation: the
eigenspectrum of ERN networks exhibits a large spectral gap
between the eigenvalue with largest real part and the rest of the
spectrum. We show that the projection of the network dynamics
onto the leading eigenmode represents the mean-field. Its
dynamics are shaped by eigenmodes located in the
complement subspace spanned by non-leading eigenmodes. In
our model, the subspace dynamics are governed and influenced

by additive noise statistics and they obey an Ornstein-Uhlenbeck
process.

We extended the mean-field derivation to various types of
additive noise, such as global and partial noise stimuli (i.e.
when only a fraction of the excitatory neurons are
stimulated) and for both zero-mean Gaussian and
Poisson-like noise. Collectively, our analysis shows that
additive noise induces a phase transition from a non-
oscillatory state to an oscillatory coherent state. Such
noise-induced coherence is known as coherence resonance
(CR). This phase transition has been shown to occur not only
for Gaussian zero-mean noise but also for Poisson-like noise.

FIGURE 9 | Comparison of transitions in network and mean-field for
different network sizes. The network average (dashed line) and mean-field
solutions (solid line) resemble more for larger network size N. This is explained
by reduced finite-size fluctuations for larger networks. The initial value of
the mean-field activity has been chosen to the initial value of the network
average. Simulations consider zero-mean Gaussian simulations with q � 1.

FIGURE 10 | Eigenvalues at the top and bottom branch in Figure 7 and
corresponding power spectra. (A) maximum eigenvalue of equilibria on the
top branch in Figure 7. (B)maximum real part r of the eigenvalue r + i2π] (top
panel) and the corresponding eigenfrequency frequency ]. The numbers
denote the values of the stimulus ratio q in all panels. (C) Power spectra of V(t)
about the lower branch for q � 0.6 for different noise intensities D1/τe.
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To the best of our knowledge, CR has not been found yet for
such Poisson-like noise. The general underlying mechanism
is a noise-induced multiplicative impact of additive
stimulation via the nonlinear coupling of different modes.

This multiplicative effect modifies the net transfer function
of the network and thus enlarges its dynamical repertoire.
This resembles the impact of additive noise in stochastic
bifurcations [51, 52, 70, 71].

FIGURE 11 | Poisson noise induces transitions from a non-oscillatory to an oscillatory state for both global and partial stimulation. (A) Network activity Vn(t) for low
input firing rate (r � 0.04 for q � 1.0 and r � 0.09 for q � 0.6) and high input firing rate (r � 0.14 for q � 1.0 and r � 0.19 for q � 0.6). For the low (high) input rate the system
evolves about an upper (lower) state. (B) Power spectra of the network mean V(t) showing c− activity for the large input rate. (C) The high input firing rate (grey-colored)
induces a state of large Spike Field Coherence compared to the state for low input firing rate (black-colored) for both global and partial stimulation (p< 0.01). (D) For
global stimulation (q � 1.0), high input firing induces a state of significantly enhanced stored active information (AIS) and available information (H). This is not consistent to
results for partial stimulation (q � 0.6). Here is p< 0.01.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org July 2021 | Volume 7 | Article 69790413

Hutt et al. Coherence Resonance in Neural Networks

128

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Embedding into Literature
Our results build on previous studies from the authors [23, 54, 55]
to provide a rigorous derivation of the mean-field description,
whereas previous work have motivated heuristically the mean-
field reduction and, e.g., failed to show in detail whether the
mean-field equation is the only solution for any given additive
stimuli. Several other previous studies have presented mean-field
descriptions in stochastically driven systems. For instance,
Bressloff et al. [28] have derived rigorously mean-field
equations for stochastic neural fields considering, inter alia,
finite-element fluctuations by utilizing a Master equation and
van Kampen’s volume expansion approach. We note here that we
also took into account finite-size fluctuations resulting from a
non-negligible variance of statistical mean values. Moreover [28],
do not specify the network type and results in a rather opaque
description, whereas we assume an ERN and thus exploit its
unique eigenspectrum structure. This yields directly to a mean-
field description, whose dependence of stochastic forces is
obvious and avoids its implicit closure problem known from
mean-field theories [43]. This is possible since the ERN
considered share many properties with Izing models, that are
known to permit an analytically treatable solution of the closure
problem, see e.g. [72].

Moreover, several technical analysis steps in the present work
have been applied in previous studies in a similar context. In a
work on stochastic neural mean-field theory, Faugeras and others

[27] have assumed that the system activity fluctuations obey a
normal probability distribution and have derived an effective
nonlinear interaction in their Proposition 2.1 similar to our Eq.
22. Further, the authors have shown how the fluctuation
correlation function, i.e. the system activity’s second moment,
determine the mean-field dynamics. This is in line with our result
(Eq. 22) showing how themean and variance of the additive noise
tunes the system’s stability. However, the authors have not
considered in detail the random nature of the system
connectivity, whereas we have worked out the interaction of
external stimulation and the ERN. This interaction yields directly
the mean-field and its dependence of the external stimulus that is
not present in [27]. Moreover, the present work also shows how
the mean-field fluctuations affect the mean-field dynamics by
deriving the fluctuation’s probability density function that
describes all higher moments.

Noise-induced synchronization has been found recently in a
system of stochastically driven linearly coupled FitzHugh-Nagumo
neurons by Touboul and others [73]. The authors have found a
minimum ratio of activated neurons that are necessary to induce
global oscillatory synchronization, i.e. CR in the sense presented in
our work. This question has been considered in the present work
as well by asking how the mean-field dynamics, and thus how
noise-induced synchronization, changes when modifying the ratio
of stimulated excitatory neurons q while retaining the stimulation
of inhibitory neurons. We find that global stimulation, i.e.
stimulation of all excitatory neurons, yields a finite critical
noise intensity below which the system is bistable and exhibits
CR. Partial stimulation shifts this critical noise intensity to larger
values and enlarges the bistability parameter space and thus
promotes CR.

Several previous studies of mean-field dynamics in neural
systems have applied the master equation formalism [74–76].
This works nicely in completely irregular networks and the
asynchronous activity regime and has been applied
successfully to neural populations considering biological
neuron models [77–80]. However, the analysis of more regular
networks will be very difficult to develop with the Master
equation since the implicit integration over system states
would be more complex. Conversely, our presented approach
may consider regular structures by a corresponding matrix
eigenvalue decomposition.

At last, we mention the relation to theMaster stability function
[81, 82]. This function describes the stability of identical
synchronization of complex networks in a synchronization
manifold and this manifold corresponds to the mean-field in
our study. Although theMaster stability function has been proven
to be powerful, to the best of our knowledge it does not allow to
reveal coherence resonance as the current work.

Limits and Outlook
The present work proposes to describe mean-field dynamics in a
topological network by projection onto the networks eigenmodes.
This works well for non-sparse random ERN with large
connectivity probability. This network does not exhibit a
spatial structure. However, less connected ERN networks show
different dynamics, cf. the Supplementary Appendix. Moreover,

FIGURE 12 | Equilibria of the mean-field V(t) for the Poisson partial
stimulation. For global stimulation q � 1.0, the system is always monostable
with three equilibria at low input firing rates and a single equilibrium at large
input firing rates. Increasing the input firing rate from low to large firing
rates, the system jumps from the upper stationary state (stable node) to a
stable focus on the lower stationary state via a saddle-node bifurcation. For
partial stimulation q � 0.6, the system is monostable with three equilibria at
low input firing rates. For larger input rates, the system is bistable and passes a
saddle-node bifurcation inducing a transition from a stable node to an stable
focus at enhanced input firing rate r. Solid (dashed) linesmark stable (unstable)
states, black- and blue-colored lines denote equilibria for global and partial
stimulation, respectively. The bifurcation diagram of the mean-field W(t) is
equivalent.
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biological networks are not purely random but may exhibit
distance-dependent synaptic weights [83] or spatial clusters
[84]. Our specific analysis applies for networks with a large
spectral gap in their eigenspectra and it might fail for
biological networks with smaller spectral gaps (as shown in
the Supplementary Appendix). Future work will attempt to
utilize the presented approach to derive mean-field dynamics
for heterogeneous networks that exhibit a smaller spectral gap,
such as scale-free networks [84].

Moreover, the single neuron model in the present work
assumes a simple static threshold firing dynamics
(McCullough-Pitts neuron) while neglecting somatic dynamics
as described by Hodgkin-Huxley type models or the widely used
FitzHugh-Nagumo model [11, 73]. Future work will aim at
reinforcing the biological relevance of neurons coupled
through ERN. This will be possible by extending the trivial
transfer function from a step function to sigmoidal shapes for
type I or type II neurons [76, 85, 86].

Our results show that noise-induced CR emerges in the c−
frequency range. This frequency band is thought to play an
important role in visual information processing [13–17].
Experimental studies have shown that the degree of this
γ-synchronization in primary cortical areas may be modulated
by attention [59, 87–89]. Since attention is known to affect the
ARAS activity [90] and specifically the brain stem as part of the
ARAS [91] and ARAS, in turn, provides input to the cortex [92].
We conclude that it is possible that attention modulates the

cortical input activity, i.e. the Poisson firing rate in our model. In
this picture, attention-modulated enhanced ARAS activity
induces c− coherence and may enhance stored information
[93], as shown in Figures 6, 11. Future more detailed brain
models including the cortico-thalamic feedback and cortical
interactions [21, 57] will provide further evidence whether
coherence resonance is present in visual processing.
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Synchronization between neuronal populations is hypothesized to play a crucial role in

the communication between brain networks. The binding of features, or the association

of computations occurring in spatially segregated areas, is supposed to take place when

a stable synchronization between cortical areas occurs. While a direct cortico-cortical

connection typically fails to support this mechanism, the participation of a third area,

a relay element, mediating in the communication was proposed to overcome this

limitation. Among the different structures that could play the role of coordination

during the binding process, the thalamus is the best placed region to carry out

this task. In this paper we study how information flows in a canonical motif that

mimics a cortico-thalamo-cortical circuit composed by three mutually coupled neuronal

populations (also called the V-motif). Through extensive numerical simulations, we found

that the amount of information transferred between the oscillating neuronal populations

is determined by the delay in their connections and the mismatch in their oscillation

frequencies (detuning). While the transmission from a cortical population is mostly

restricted to positive detuning, transmission from the relay (thalamic) population to the

cortical populations is robust for a broad range of detuning values, including negative

values, while permitting feedback communication from the cortex at high frequencies,

thus supporting robust bottom up and top down interaction. In this case, a strong

feedback transmission between the cortex to thalamus supports the possibility of robust

bottom-up and top-down interactions in this motif. Interestingly, adding a cortico-cortical

bidirectional connection to the V-motif (C-motif) expands the dynamics of the system

with distinct operation modes. While overall transmission efficiency is decreased, new

communication channels establish cortico-thalamo-cortical association loops. Switching

between operation modes depends on the synaptic strength of the cortico-cortical

connections. Our results support a role of the transthalamic V-motif in the binding of

spatially segregated cortical computations, and suggest an important regulatory role of

the direct cortico-cortical connection.

Keywords: delay-coupled neuronal circuits, information transmission, synchronization, V and circular motifs,

feature binding problem, thalamo-cortical circuit
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1. INTRODUCTION

The synchronization of neuronal populations is a ubiquitous
phenomenon in the brain circuits. The correlated activity of
neurons in local networks gives rise to the appearance of brain
oscillations over different frequency ranges (Başar et al., 2000;
Pfurtscheller et al., 2000; Başar, 2012; Jensen et al., 2019). Based
on the coherence and phase relations between oscillations in
different brain regions, it has been proposed that information
transmission and even directionality can be modulated (Eckhorn

et al., 1988; Pfurtscheller et al., 2000; Gross et al., 2001; Fries,
2015; Maris et al., 2016). As a consequence, coherent activity
in brain networks is hypothesized to underlie several cognitive
phenomena such as features binding (Singer, 2007; Opitz, 2010;
Coll et al., 2018), attention (Borisyuk et al., 1999; Niebur, 2002;
Doesburg et al., 2008), working memory (Baddeley, 1992, 2010;
Baddeley and Hitch, 2010) and motor function (Feige et al., 2000;
Baker et al., 2003; Denker et al., 2007), among others.

An interesting case of the synchrony between different

brain regions is the zero-lag synchronization, which can be
observed even between distant cortical areas (Chawla et al.,
2001; Vicente et al., 2008; Viriyopase et al., 2012; Esfahani
and Valizadeh, 2014; Gollo et al., 2014), representing a suitable
mechanism for the binding of sensory features into integrated
and coherent perception. This phenomenon has been subject
of controversial debate for many years: how two distant brain

areas can synchronize at (almost) zero-lag despite the presence
of non-negligible delays in their connections (Vicente et al.,
2008; Viriyopase et al., 2012). However, a relatively simple
and widespread motif found in neural circuits, a chain of
three mutually delay-coupled oscillatory populations has been
shown to support zero-lag synchronization (Fischer et al.,
2006; Uhlhaas et al., 2009; Gollo et al., 2014). The biological
relevance of such connectivity pattern, usually called V-motif,
is justified for instance in the cortico-thalamic loops. The V-
motif can determine a cortico-thalamo-cortical circuit in which
the thalamus plays the role of the intermediate element (higher
order relay) indirectly connecting two cortical regions (Save
and Poucet, 2000; Uhlhaas et al., 2009; Sherman, 2012; Sysoeva
et al., 2016). The V-motif circuit attracted much interest in
recent years and several studies have been devoted to the
exploration of its dynamical properties, either considering single
neurons/oscillators or neural populations (Sporns and Kötter,
2004; Fischer et al., 2006; Esfahani and Valizadeh, 2014; Mirasso
et al., 2017).

The addition of a cortico-cortical connection, that is known to
play an important role in cortical circuits, transforms the V-motif
into a circular motif (C-motif). In fact, this extension of the V-
motif finds a counterpart in biological cortico-thalamic circuits
(Sherman, 2016). Indeed, interaction between the direct cortico-
cortical and the indirect transthalamic pathways, which converge
onto individual postsynaptic cells in layer 4 of the cortex (Lee and
Sherman, 2008; De Pasquale and Sherman, 2011), is hypothesized
to have an important role in information transfer between areas
(Sherman, 2016).

Although the structure of the adult brain does not change
in short time scales, the efficacy of the synaptic connections

and the excitation/inhibition balance are subject to continuous
change and can evolve almost instantaneously, enabling the brain
to flexibly exploit the fixed structure in a multiplex of tasks
(Friston, 1994, 2011; Deco et al., 2008; Hutchison et al., 2013;
Avena-Koenigsberger et al., 2018) According to communication
through coherence (CTC) theory, the synchrony and phase
relationship between neuronal populations can modulate the
effective connectivity between brain areas and the direction of
the information transfer in brain circuits (Fries, 2015). This
means that a change in the phase difference due to changes in
the network parameters affects the effective connectivity, a fact
that has been shown in several computational studies in two-
component networks (Barardi et al., 2014; Sancristóbal et al.,
2014; Kirst et al., 2016; Palmigiano et al., 2017; Pariz et al., 2018,
2021). It is natural then to explore the effective connectivity in
the proposed cortico-thalamic-cortical circuit since its structure
influences the phase relationships between the regions. It is
known that the arrangement of the three neural populations in
a V-motif favors the state of zero-lag synchronization between
outer populations. However, the effective connectivity in this
network is poorly understood and we did not find studies that
address how information is transmitted in this neural population
network, as well as in other three-component networks. In fact,
most studies of functional connectivity have focused on two-
component motifs, as mentioned before, and the consequences
of pairwise communication on patterns transferred in larger
networks (Barardi et al., 2014; Sancristóbal et al., 2014; Kirst et al.,
2016; Palmigiano et al., 2017; Pariz et al., 2018, 2021). Since the
CTC theory predicts the modulation of the effective connectivity
due to changes in the phase relationships, we wonder how
communication is affected in the V-motif, as well as in the
C-motif, due to frequency detuning and communication delays.

In this study, we address the previous question by considering
a network of three mutually delay-coupled neural populations
arranged in a V-motif. We further analyze how a direct and
reciprocal cortico-cortical connection affects on our results. We
systematically explored the effect that a change in the connections
delay and detuning between the natural oscillation frequencies
of the populations have in the transmission of signals in these
particular motifs. Our results show in the case of the V-motif
that for small delays, an efficient transmission is achieved when
the sender population oscillates faster than the receiver ones,
in a good agreement with previous results (Barardi et al., 2014;
Sancristóbal et al., 2014; Kirst et al., 2016; Pariz et al., 2018, 2021).
For intermediate delays and when the sender population is the
relaying node, a good transmission quality is obtained even if its
oscillation frequency is slower than that of the receiver. However,
the picture drastically changes when the signal is added to one of
the outer populations. In this case, an efficient transmission only
happens, for any delay, for positive values of the detuning, i.e.,
when the sender population oscillates with a higher frequency
than the others. We discuss these results in the context of the
known anatomy of the cortico-thalamo-cortical loop and its
hypothesized functions.

The paper is organized as follows. In section 2 we present the
material and methods used to model our system. In section 3 we
describe the tools we used to analyze the results obtained, which
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are presented in detail in section 4. Finally, in section 5 we discuss
some of the main results and highlight some conclusions.

2. MATERIALS AND METHODS

2.1. Neural Model
Our neural population model is similar to the one used in Pariz
et al. (2018) which employs the Hodgkin-Huxley neuron model
(Hodgkin and Huxley, 1952). This model describes the evolution
of the membrane potential and the gate variables as follows

C
dv

dt
= −gKn

4(v− Ek)− gNam
3h(v− ENa)

− gL(v− EL)+ Iext + Isyn + Inoise,

dn

dt
= αn(v)(1− n)− βn(v),

dm

dt
= αm(v)(1−m)− βm(v),

dh

dt
= αh(v)(1− h)− βh(v).

(1)

The functions αx and βx, x = n,m, h, are define as

αn(v) =
(v+ 55)/100

1− exp(−(v+ 55)/100)
,

αm(v) =
(v+ 40)/10

1− exp(−(v+ 40)/100)
,

αh(v) = 0.07 exp

(

−(v+ 65)

20

)

,

βn(v) =
1

80
exp

(

−(v+ 65)

80

)

,

βm(v) = 4 exp

(

−(v+ 65)

18

)

,

βh(v) =
1

1+ exp(−(v+ 35)/10)
,

(2)

where Iext, Isyn and Inoise are the injected input current,
the synaptic current and the gaussian white noise current,
respectively. The values the parameters used in our calculations
are shown in Table 1 (Pariz et al., 2021).

The synaptic current Isyn,i of the i-th post-synaptic neuron is
modeled as

Isyn,i =
∑

j

gijSij(t)(vi − Esyn,j),

Sij(t) =
1

A

[

exp

(

−(t − t∗j − τij)

τr

)

− exp

(

−(t − t∗j − τij)

τd

)]

,

A =

(

τr

τd

)
τr

τd−τr

−

(

τr

τd

)

τd
τd−τr

,

(3)
where vi is the membrane potential of the post-synaptic neuron
and Esyn,j is the reversal synaptic potential of the post-synaptic

TABLE 1 | Parameters of the model.

C 1 µF/cm2 Capacitance

gK 36 µS/cm2 K conductance

gNa 120 µS/cm2 Na conductance

gL 0.3 µS/cm2 Leak conductance

EK –77 mV K reversal potential

ENa 50 mV Na reversal potential

EL –54.4 mV Leak reversal potential

Esyn,E 0 mV Excitatory reversal potential

Esyn,I –80 mV Inhibitory reversal potential

τinter 0–14 ms Inter population delay

τintra 0.5 ms Intra population delay

τd 3 ms Synaptic decay time

τr 0.5 ms Synaptic rise time

Iext 10–12 µA/cm2 Injected current

µ 0 µA/cm2 Median of the gaussian

white noise

σ 0.5 µA/cm2 Standard Deviation of the

gaussian white noise

gEE 3.75 µS/cm2 Synaptic weight: excitatory

→ excitatory

gEI 7.5 µS/cm2 Synaptic weight: excitatory

→ inhibitory

gIE 15 µS/cm2 Synaptic weight: inhibitory

→ excitatory

gII 15 µS/cm2 Synaptic weight: inhibitory

→ inhibitory

neuron. The dynamics of Sij is described by a double-exponential
function, modeling the efficacy of AMPA and GABAa chemical
synapses (Pariz et al., 2021). Variable t∗j represents the time at

which the j-th pre-synaptic neuron spikes and τij is the axonal
delay between the pre- and post-synaptic neurons. The values of
the synaptic parameters are also given in Table 1.

2.2. Population Architecture
Each population is composed of 100 neurons described by
the Hodgkin-Huxley equations, where 80 are considered as
excitatory and 20 as inhibitory. Each neuron is randomly
connected to 10% (5%) of neurons in the same (different)
population. The intra-population delay is set to 0.5 ms and
the inter-population delay τ is varied from 0 to 14 ms.
While the intra-population connections are both excitatory and
inhibitory, the inter-population connections are assumed to be
only excitatory. In Figure 1 we schematically represent the three
populations and their connections.

Each neuron receives an external constant injection current,
bias current, that varies between 10 and 12µA/cm2. Additionally,
each neuron receives a Gaussian white noise current with zero
mean (µ = 0 µA/cm2), and standard deviation σ = 0.5 µA/cm2.
Since the level of coherency and synchronization is very high
(Pariz et al., 2021) we can consider each population as a collective
oscillator with a well-defined frequency. For the values of the
parameters we have chosen and depending on the bias current,
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FIGURE 1 | Schematic representation of the circuit. Neural populations 1 and

3 would represent cortical areas and the population 2 the thalamus. Excitatory

and inhibitory neurons (as well as their synaptic projections) are shown in blue

and red, respectively. Inter-population connections are only excitatory and,

depending on the case of interest, their synaptic weights are modified. If the

connections between populations 1 and 3 are absent, then we call it a V-motif

circuit. Otherwise, the circuit is a circular motif (C-motif).

the oscillation frequency varies linearly from 68 to 73 Hz (see
Supplementary Figure 1).

We define the detuning or the frequency mismatch as the
difference of the natural oscillation frequency of an isolated
population with respect to those of the other populations. In our
simulations, we drive the sender by external current I, and the
other two populations by I0 = 11µA/cm2, where their difference
1I = I − I0, sets the frequency detuning. When we apply
a frequency mismatch to a certain population, we do it by
changing the bias current of all the neurons in that population
and keeping that of the neurons of the other populations fixed at
I0. To measure the transmission of signals we apply two types of
perturbations, a slow (5 Hz) aperiodic signal and a fast pulsating
signal (∼ 70 Hz).

2.3. Simulations
For the numerical implementation we used the Mil’shtein

algorithm (Milshtein, 1975) with a time step 1t = 0.01 ms.
The total simulation time used to analyze the transmission

quality of a signal was different depending on whether the

applied modulation was slow or fast. We used 6 s for the case
of the slow signal-modulation and 4.2 s for fast signals. We
varied the inter-population delay τ between populations and the
detuning or frequency mismatch 1ν (or equivalently 1I) of the
sender population. All the simulations were performed in Brian
simulator (Goodman and Brette, 2009) written in the Python
programming language.

3. ANALYSIS

Our analysis was done using an approximation of the firing rate
r(t). We computed first the multi unit activity s(t) as the total
number of spikes that occur between t and t + 1t. For each
neural population, the firing rate r was computed as follows

(Dayan and Abbott, 2001),

r(t) =
1

N1t

∫ ∞

−∞

s(t − t′)w(t′)dt′, (4)

where N is the total number of neurons in the population. This
integral is called linear filter, and the window function w(t) is
called the filter kernel which is considered here as a Gaussian
function. We used σ = 2 ms and σ = 100 ms when fast and slow
signals are injected to the system, respectively. In the absence of
an external signal, σ = 2 ms was also considered to compute the
firing rate.

3.1. Phase Difference
The phase of each neural population was computed from its
collective oscillatory firing rate by the interpolation

θ(t) = 2π

(

t − tmax,k

tmax,k+1 − tmax,k

)

, (5)

for tmax,k ≤ t < tmax,k+1, where {tmax,k, k = 1, ..., kmax} are the
relative maxima of the time series. So tmax,k denotes the initial
time of the k-th oscillation cycle of the firing rate. This definition
works independently of the periodicity of the time series. This
approximated phase adapts to possible variations in the cycle
duration. The phase difference between two populations, i and
j, is then given by

θij(t) = mod[θi(t)− θj(t), 2π], (6)

which was further shifted to be defined in the interval [−π ,π).
Then, the representative phase difference between the oscillations
of a given pair of populations was set to be the median of the time
series θij(t).

3.2. Phase Locking
To quantify the phase locking between two populations,
we estimated how the phase difference distribution {pθij ,k}

approximated the perfect locked distribution, i.e., a delta-Dirac
function. To this end we computed the Bhattacharyya coefficient
(Kailath, 1967). Given two discrete probability distributions {qk}
and {hk} (k = 1, 2, . . . , n), this coefficient is defined by

B({qk}, {hk}) =

n
∑

k=1

√

qkhk. (7)

Note that when the two distributions are identical B = 1 while
two orthogonal distributions have B = 0.

In our analysis, the perfect locked distribution was defined as

δk =

{

1 if k = k∗: pθij ,k∗ = maxk (pθij ,k)

0 otherwise
(8)

So, considering equation (8), we defined our phase-locking
index as

Dij = 1− B({pθij ,k}, {δk}) = 1−
√

max
k

(θij,k). (9)
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Therefore, perfect locking implies D = 0 and the maximum
value is 1 − 1/

√
n when the distribution is uniform. This index

allowed us to estimate the stable-unstable region frontiers. When
D is approximately 0.35 phase-drift effects start to appear in the
dynamics, and so, we used this value to delimit these frontiers.

3.3. Time-Delayed Mutual Information
For slow modulation, we measured the information shared by
the populations considering their firing rates. Specifically, this
information transfer was computed via the time-delayed mutual
information dMI of populations i and j (Kirst et al., 2016; Pariz
et al., 2021). The dMI considers the instantaneous firing rates
xi(t) and the lagged firing rate xj(t + δ), being δ the time lag. The
dMI expression is given by

dMIij(δ) =

∫ ∫

pij(δ) (t) log

(

pij(δ) (t)

pi(t)pj(t)

)

dxi(t)dxj(t + δ), (10)

where pa(t) is the probability distribution of xa(t), with a =

i, j, and pi,j(δ) (t) the joint distribution between xi(t) and xj(t +

δ). Asymmetries in dMIi,j(δ) indicate a dominant direction in
which the information is shared or transferred between the
populations. Therefore, we quantified these asymmetries by using
the difference

1MIij = MIi→j −MIj→i,

MIi→j =

∫ ∞

0
dMIij(δ)dδ,

MIj→i =

∫ 0

−∞

dMIij(δ)dδ.

(11)

If 1MIij is positive, the information is mainly transferred from
the population i to j, while a negative value indicates the opposite
direction. Additionally, the higher this quantity, the better the
transmission, and vice versa.

The number of bins of the probability distributions were
computed by the algorithm described in Hacine-Gharbi et al.
(2012). Themaximum lag we considered for computing the time-
delayedmutual information was 200mswhich is the period of the
slow modulation (5 Hz).

For each value of the difference 1MIi,j computed, we
determined whether or not it is statistically significant. To
check this, we obtained the null-hypothesis distribution (lack
of functional coupling). We generated 5,000 surrogates by
a permutation technique of the time-series to build this
distribution. After that, 1MIi,j values whose p-values were more
than 0.05 were removed as an indicative of no statistically
significance. For plot representation, we further applied a
clustering algorithm to remove outliers that appeared.

3.4. Cross-Covariance
The cross-covariance quantifies the similarity between two time
series as a function of the relative time distance between them.
We used this quantity to determine the similarity between the
firing rate of the receiving population with the external slow
modulation. We assumed that the quality of the transmission
is better if the firing rate follows the signal. We considered the

non-normalized zero-lag cross-covariance (ZLC) to also detect
differences in amplitude between the signals.

3.5. Phase Response Curve of the
Population
Whenwe considered the transmission of a fast signal, we used the
phase response curve of the oscillating populations to quantify
the quality of the transmitted signal. The phase response curve
(PRC) is defined as the phase shift of an oscillation resulting
from the application of an external perturbation with respect
to the unperturbed case, as a function of the time at which the
perturbation is applied (Ko and Ermentrout, 2009). This quantity
is usually defined considering an isolated oscillator. However, in
our system, each population (a collective oscillator) is coupled to
one or two populations. To measure the response of a population
to an injected pulse, we should proceed in a different way as it is
usually done in the isolated case. Recent studies have proposed to
measure information directionality based on the PRCs in a circuit
of two mutually coupled oscillators under the weak coupling
condition (Dumont and Gutkin, 2019).

The effect of an external perturbation in the sender population
is quantified by the local phase response curve (lPRC), while
that in the receiver populations is characterized by the non-
local phase response curve (nPRC). The nPRC is defined as the
response of an oscillator to a non-local perturbation (Schultheiss,
2012; Pariz et al., 2021). The process of finding the nPRC is
similar to the PRC process, first we compute the positions of
the peaks of the firing rate of all populations before applying the
perturbation. Then, the perturbation pulse is applied at different
phases (β) on all excitatory neurons of the first population,
producing a change in the period of the oscillations. The effect
of these phase changes, will propagate to the other populations,
affecting the period of their oscillations. An important aspect
is the axonal delay time between the populations. The response
of the first population to the applied pulse will take an axonal
delay time (τ ) to reach the second population. By subtracting the
periods of oscillation of the second and third populations, with
and without the injected perturbation on the first population,
gives the nPRC. In our study, we went one step further.
Instead of applying the pulse at different phases and repeating
the simulation to find the nPRC, we distributed the phase of
the injected pulse along the oscillating period of the receiver
population, considering the perturbation as a fast applied signal.
The width of each pulse was taken as 2 ms and the amplitude
as 0.25 µA/cm2.

We then quantified the information transmission Zi as

Zi =

∫ 2π

0
|nPRCi(β)|dβ , (12)

where the nPRC measurements were first fitted to a 4th-order
Fourier series function.

4. RESULTS

In this section we study how a signal injected in population 1
or 2 is transmitted to the rest of the populations in the circuit.
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We mainly analyze the transmission when there is a frequency
detuning between the oscillation frequencies of the populations
and the transmission time of the signal between populations is
non-zero. We consider two particular circuits: the V-motif and
the C-motif (see Figure 1).

4.1. Synchronization and Phase-Locking in
the V-Motif Circuit
We start showing our results for the case of the V-motif, i.e., when
the cortico-cortical connections were neglected. (g13 = g31 = 0
µS/cm2). We assume here that the coupling strengths between
populations are symmetric, i.e. g12 = g21 =g23 = g32 (results for
asymmetric cases are shown in the Supplementary Material).
As we mentioned before (see Methods), each isolated neural
population exhibits a high synchronized behavior which is
also kept when they are coupled (see Pariz et al., 2018). This
fact allows us to determine the phase difference between the
oscillations of the populations. Since we are interested in studying
the information transmission from one outer population or
from the relay population to the others, we must consider two
situations for the analysis of the locking regions: when the
frequency mismatch is applied to population 1 (or equivalently
to population 3) and when it is applied to population 2. When
analyzing the phase-locking regions, estimated by computing
the phase-locking index (see Methods), with respect to our
control parameters (τ and 1I), three regions are generally
found delimited by two non-locked regions (see Figures 2A,E

and Supplementary Figures 2–5). The shape of the non-locked
regions (and consequently of the phase-locking regions) changes
as a function of the synaptic weight g and the induced frequency
mismatch. However, the emergence of these regions is a general
property of delay-coupled dynamical systems (Mirasso et al.,
2017).

The locking regions between populations 1 and 2 (1 and 3)
are shown in the 1I vs. τ phase space in of Figure 2E when
the detuning 1I is applied in the population 1 and in Figure 4

when applied in population 2. As expected, these locking regions
are slightly larger between populations 1 and 2 than between
populations 1 and 3 although a high value for the phase index
is found in both cases. The phase at which the oscillations of
populations 1 and 2 (1 and 3) lock are shown in Figures 2B, 4F.
In the absence of frequency mismatch 1I = 0, we observe the
expected zero-lag synchronization between population 1 and 3.
Also for small and high (close to the oscillation period) values
of the delay, populations 1 and 2 are almost in-phase. However,
for intermediate values they exhibit an anti-phase dynamics, as
previously observed (Vicente et al., 2008; Esfahani and Valizadeh,
2014; Mirasso et al., 2017). Examples of the activity of the three
populations and their firing rates can be seen in Figures 3A–C

for differents values of the detuning when the connection delay is
6 ms. For 1I 6= 0 and for small or large delays, the locking phase
is no longer zero but it is positive (delayed synchronization) for
positive detuning and negative (anticipated synchronization) for
negative detuning (Mirasso et al., 2017). It is worth mentioning
that analysis considering different values of the coupling strength

were undertaken obtaining qualitatively similar results to those
shown in Figure 2 (see Supplementary Material).

4.2. Information Transmission in the
V-Motif Circuit
Depending on whether we analyze the transmission of a slow
(modulation) or fast (chain of pulses) signal, we use different
tools. The effect of the slow signal is translated into a modulation
of the firing rate, keeping oscillation frequency of the population
constant (in those cases where phase locking occurs), while each
pulse of the fast signal modifies the period of an oscillation cycle.
Therefore, these two effects occur at different time scales that
require different tools to quantify them.

For the first case, as explained in the material and methods
section, we used two different measurements: the zero-lag
cross-covariance (ZLC) between the firing rate of the receiving
population and the injected signal, and the difference 1MIij
computed from the time-delayed mutual information between
the firing rates of the sender and receiver populations.

We show in Figure 2 panels C and G, the results for the
1MIij when the population 1 (cortical area) acts as the sender
and a slow modulation signal is injected (locking areas from
panel A and E are also included here with dashes lines). Also
in the Supplementary Figure 7 we have shown the results for
asymmetric cases. The corresponding ZLC results are shown in
Supplementary Figure 6.

Generally, regions with high values of 1MIij in Figure 2 and
with high values of ZLC in Supplementary Figure 6 qualitatively
match despite the fact that they quantify different properties. The
covariance determines the similarity of the activity between two
populations, while the difference 1MIij indicates directionality
and strength of the transmission. However, we checked that
these two quantities are more correlated the closer the
phase-locking index tends to zero, i.e., perfect locking (see
Supplementary Figures 12–14). Moreover, we found that in the
cases where the values of 1MIij and cross-covariance are the
highest, the phase-locking index is very close or to zero, or
equivalently, there is a constant well-defined phase relation. This
result is in a good agreement with the Communication Through
Coherence hypothesis (Fries, 2015), where a well-defined phase
relation is required to enhance the communication between
neural populations.

As it can be observed, the optimal way to transmit a slow
modulation signal from 1 to 2 and then to 3 is by imposing
a positive frequency mismatch (positive 1I; higher oscillation
frequency) in the sender population since for negative values of
the frequency mismatch the transmission is very poor. These
findings are in a good agreement with previous results (Pariz
et al., 2018, 2021). Yellow points in Figures 2C,G refer to
the selected values of the detuning 1I which characterize the
temporal series shown in Figures 3D–F for a delay τ = 6
ms. For those points that lie within the red region in Figure 3,
the firing rate of the receiver populations follows quite well
the injected signal, while those outside the red regions do not.
The fact that the 1MI1,2 is high reflects the similarity between
the slow variations in the firing rates of the two populations,
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FIGURE 2 | Population 1 as the sender in the V-motif. Phase locking index Dij (A,E). Phase difference θij (B,F). Difference 1MIij (C,G) when a slow modulation is

injected. Integral of the absolute value of the nPRC Zi (D,H) when a fast signal is injected. All of them as a function of the delay and the frequency mismatch 1I in

population 1.

at a time scale which is much longer than that of the gamma
oscillations. Interestingly, for some cases of negative detuning the
time evolution of the firing rates are quite similar to each other,
however, none of them follow the injected signal (not shown).

Similar results were obtained when we injected a fast pulsating
signal instead of the slow signal. For the fast signal injection,
we computed the integral of the absolute value of the non-
local phase response curve (nPRC) of the receiving populations
(see Methods). The results are shown in Figures 2D,H where
it can be observed that the regions where a better transmission
occurs match quite well with those of the slow modulation case.
For these colormaps, we impose Zi = 0 when the resultant
dynamics does not exhibit a PRC shape-like, assuming that
there is no signal transmission. We also show some examples in
Figures 3G–I of the lPRC of the sender population (blue) and
the nPRCs of the receiving populations (orange and green) for
the values of the parameters indicated in yellow in Figures 2G,H.
For the points laying outside the locking areas, an analytical

expression for the fitting cannot be obtained. In general we
observed the information transmission, either rate or spike
coding, changes with the strength g, improving as g increases (see
Supplementary Figure 8).

The situation drastically changes when the sender is
population 2 (the thalamus in our cortico-thalamic-cortical
assumption) and the system maintains symmetry even when a
frequency mismatch is applied.

The information transmission of a slow signal to both
populations 1 and 3 are equivalent, as it can be seen in
Figures 4C,G (see Supplementary Figure 10 for asymmetric
cases and Supplementary Figure 9 for ZLC). Furthermore, the
transmission is possible in this case even for negative values
of the frequency mismatch for intermediate and long delays.
This result is equivalent to the case of two mutually-coupled
neural population reported in Pariz et al. (2021) and is a direct
consequence of the symmetry of the system. However, we found
that the capability of the signal transmission over this condition
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FIGURE 3 | V-motif. Examples of the activity of the three populations and their corresponding firing rate for different values of 1I in the absence of an external signal

(A–C). Examples of firing rates of the three populations for different values of the frequency mismatch 1I when a slow arbitrary signal (black line, arbitrary units) is

applied to population 1 (D–F). Examples of local and non-local phase response curves of the sender and receiving populations, respectively, for the same different

values of frequency mismatch 1I when a fast pulsating signal is applied in population 1 (G–I). Note that the scale of lPRC and nPRC are different for a better

visualization. Delay τ = 6 ms in all cases.

is reduced, as expected, as the cortico-thalamic synaptic strength
increases (results not shown).

A similar behavior is observed when a fast arbitrary signal
is injected, as it can be seen in Figures 4D,H where the
patterns of Zi are shown (see Supplementary Figure 6 for
asymmetric cases).

4.3. Synchronization and Phase-Locking in
the Circular Motif Circuit
With the addition of a cortico-cortical connection, the circuit
has now a ring topology. We considered four different values
of the synaptic strength g′ between the outer populations (=
g13 = g31): 0.05g0, 0.25g0, 0.50g0, 0.75g0, always weaker than
the cortico-thalamic and the thalamo-cortical connections. The
results presented in this section account only for two of these
values, g=0.25 g0 (low) and g=0.75 g0 (high). Results for the
other g’s values are included in the Supplementary Material.
The strength of the thalamo-cortical and the cortico-thalamic
synapses is kept constant and equal to g0. We proceed in the same
way as before, analyzing first the phase differences distributions
and the conditions of phase-locking in the parameter space. We
show in Figures 5, 6 the phase-locking index and the phase
differences for low and high values of cortico-cortical synaptic
conductance g′ when the detuning is applied in population 1
and 2, respectively (see Supplementary Figures 15–18 for all the
different values of g′).

According to the coupled oscillators theory, in the absence
of frequency mismatch, two identical and mutually coupled
oscillators with delay in their connections can only be in two
regimes of synchronization: in-phase and anti-phase (DHuys

et al., 2008). Consequently, the addition of the third connection
to our V-motif rises the competition between the V-motif
dynamics and the dynamics preferred by the mutual coupling
of the external populations. While the V-motif structure tends
to synchronize populations 1 and 3 at zero-phase (or close
to zero-phase) independently of the connection delay, the
additional direct connection between populations 1 and 3 tends
to synchronize them in anti-phase at intermediate delay values.

In our circular motif and for small values of the synaptic
strength g′ the effect of the new connections is very small, as
it can be seen in Figures 5A,B,E,F,H. However, as soon as we
increase g′, its effect becomes noticeable in the phase differences
and in the locking regions that reduced their size, as it can be
seen in Figures 5C,D,G,H. The competition between the zero
(or almost zero) phase locking of the V motif and the π (or
almost π) phase locking of the mutually coupled populations
only occurs in the interval of intermediate values of the delay,
since for small and large delay values both systems exhibit in-
phase dynamics. We observed, in this delay window, that the
phase-locking index increased as the synaptic strength g′ was
increased (results not shown).

4.4. Information Transmission in the
Circular Motif Circuit
As a consequence of the mentioned competition, the efficiency
of the information transmission in the circuit is expected to be
affected. Again, we explored the propagation of slow and fast
signals when the sender was the population 1 or the population
2. The differences 1MIij when the slow modulation was injected
in population 1 are shown in Figures 7A,E for small g′ and

Frontiers in Systems Neuroscience | www.frontiersin.org 8 July 2021 | Volume 15 | Article 705371140

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Sánchez-Claros et al. Information Transmission in Neuronal Circuits

FIGURE 4 | Population 2 as the sender in the V-motif. Phase locking index Dij (A,E). Phase difference θij (B,F). Difference 1MIij (C,G) when a slow modulation is

injected. Integral of the absolute value of the nPRC Zi (D,H) when a fast signal is injected. All of them as a function of the delay and the frequency mismatch 1I in

population 2.

Figures 7C,G for large g′ (see Supplementary Figure 20 for all
the values considered for g′ and Supplementary Figure 19 for
the correspondant ZLC results). As it can be seen, the effect of
the cortico-cortical connection is noticeable for g′ = 0.75g0.
Comparing with the case in which g′ = 0.25g0, the shapes of
the regions where the transmission is good for the intermediate
delay values have changed, and the values of 1MIij (strength
and directionality of the transmission) become smaller. However,
the situation is very different with respect to the case of the
V-motif, since now the transmission is enhanced for negative
detuning (negative values of the current mismatch 1I) both for
populations 1 or 2 and 1 and 3. Furthermore, this effect is also
noticeable for high values of delay. We observed in this case
that the communication for negative detunings improves as the
synaptic weight g′ is increased (results not shown).

When we considered the injection of a fast arbitrary signal,
the situation was similar to those of the case of slow signals as
it can be seen in Figures 7B,D,F,H for low an high values of

the conductance g′, respectively. For g′ = 0.75 and intermediate
values of the delay, the transmission is moderately enhanced for
negative values of the detuning in contrast to the V-motif case.
Furthermore, for high values of the delay, the transmission in
general enhanced but without an important effect for negative
values of the frequency mismatch (see Supplementary Figure 21

for different values of g′).
As for the case of slow signal modulation, important changes

in the behavior of the system occur in the intermediate region
when the sender is the population 2, as it can be seen in Figure 8

(see Supplementary Figure 21 for the different values of g′).
Again the regions of signal transmission depend less on the
detuning and the delay.

In general, our results indicate that the quality of the signal
transmission does not depend much on whether the external
modulation is slow or fast, neither for the V-motif nor for
the circular motif. What significantly affects transmission is the
addition of the cortico-cortical link between populations 1 and
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FIGURE 5 | C-motif: Phase locking Dij for g
′ =0.25g0 (A,E) and g′ =0.75g0 (C,G). Phase difference θij for g

′ =0.25g0 (B,F) and g′ =0.75g0 (D,H). All of them as a

function of the delay τ and the frequency mismatch induced by a change 1I in population 1.

3. In this case, transmission becomes, unexpectedly, less robust
and effective, but allowing information transmission also for
negative detunings.

5. DISCUSSION

In this paper we have studied transmission of signals in
neuronal circuits considering two different canonical motifs:
the V-motif that consists of a chain of three bidirectionally
coupled neural populations and the circular motif, which
results from adding bidirectional connection between the
populations at the end of the chain. These simple neural
motifs are inspired in the cortico-thalamo-cortical network
and allow us to address open questions about the condition
for efficient information transmission in this circuit. We

identify two operation modes that can be dynamically switched
by modulating the strength of the direct cortico-cortical
connection. When this connection is weak, the V-motif
dynamics predominate supporting robust transmission from
the thalamus to the cortex as well as in feedback cortico-
thalamic direction. When the strength of cortico-cortical
connection increases, C-motif dynamics facilitate the coexistence
of the above canonical thalamo-cortical transmission with a
cortico-thalamo-cortical association loop. Thus, direct cortico-
cortical and indirect transthalamic communication cooperate in
cortical computations. We hypothesize that the first operation
mode supports unimodal sensory transmission and the second
multimodal integration and feature binding.

To investigate information transmission in the above system,
we systematically explored the consequences of varying two
important parameters, detuning or frequency mismatch between
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FIGURE 6 | C-motif: Phase locking Dij for g
′ =0.25g0 (A and E) and g′ =0.75g0 (C and G). Phase difference θij for g

′ =0.25g0 (B and F) and g′ =0.75g0 (D and H).

All of them as a function of the delay τ and the frequency mismatch induced by a change 1I in population 2.

the populations (produced through a change in the bias current
1I applied to one population, the sender), and the delay
(τ ) in the connections between populations. The first would
be dynamically controlled by modulating the afferent synaptic
strengths, neuronal excitability or the excitation/inhibition
balance in the networks, and the second is hardwired in the
system and depends on the axonal length and conduction
velocities. From previous works, it is known that applying a
positive detuning (resulting in a higher oscillation frequency)
to the sender population, enhances the communication in the
network (Sancristóbal et al., 2014; Kirst et al., 2016; Palmigiano
et al., 2017; Pariz et al., 2018, 2021). However, this is true when
we consider small values of the delay τ . For larger delay values, it
is the combination of the detuning and the delay that determine
the efficacy and the preferred direction of the signal transmission
(Pariz et al., 2021).

Based on the theory provided by Pariz et al. (2021), phase
relations between pair of the bidirectionally coupled oscillators
can determine the amount of signal/information transfered
between them, once their PRCs are known. For symmetric
bidirectionally coupled oscillators both 0 and π phase difference
can be stable depending on the delay time and their PRCs. In
the three network motifs, the organization of the connections
can also affect the phase relation. In the absence of the cortico-
cortical connections, and depending on the delay, each pair of
adjacent nodes can take 0 or π phase, and in either case the outer
populations favor the zero phase lag (Gollo et al., 2010, 2014;
Mirasso et al., 2017). In a symmetric circular motif, a new state
emerges where the three populations tend to lock at 2π /3 phase
difference compatible with the symmetry of the motif. For small
values of the cortico-cortical connection the former states have
larger basin of attraction while this latter state only appears for
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FIGURE 7 | Population 1 as the sender in C-motif: Difference 1MIij for g
′ =0.25g0 (A and E) and g′ =0.75g0 (C and G) when a slow modulation is injected. Integral

of the absolute value of the nPRC Zi for g
′ =0.25g0 (B and F) and g′ =0.75g0 (D and H) when a fast signal is injected. All of them as a function of the delay τ and the

frequency mismatch induced by a change 1I in population 1.

large enough values of the cortico-cortical connection strength.
In this case, the pattern of information transfer deviates from that
of the relay motif.

As it is shown in Pariz et al. (2021), the amount of signal
transmission between the neuronal populations depends on the
slope of the phase response curve of the receiver population
(nPRC) at the time that it receives the spiking activity of the
sender population. In this way not only the phase relation
between the two populations and the delay time, but also the PRC
of the populations are important in the pattern of information
transmission between neuronal populations. Population PRCs
are shown to depend on the mechanism of the generation of
the oscillations in the excitatory-inhibitory networks (Dumont
and Gutkin, 2019) and consequently, the internal dynamical
properties of the EI networks also affect the information transfer

in brain circuits. Moreover, the preference of the system for a
positive detuning as compared to the negative one is due to
the asymmetric shape of phase response curve of the realistic
neurons (Sadeghi and Valizadeh, 2014) and neuronal populations
(Dumont and Gutkin, 2019), as is shown in Pariz et al. (2021).
The same results seen for the three neurons motifs in this
study, confirm that the shape of the PRC and in particular
its symmetry properties can fundamentally affect information
transfer in the brain.

In agreement with previous findings, our results show that
in general positive detuning enhances transmission between
populations. However, there are cases in which a good
transmission is feasible even for negative detuning values. In the
V-motif, this happens when the intermediate population (the
thalamic relay) acts as the sender population. When the signal
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FIGURE 8 | Population 2 as the sender in C-motif: Difference 1MIij for g
′ =0.25g0 (A,E) and g′ =0.75g0 (C,G) when a slow modulation is injected. Integral of the

absolute value of the nPRC Zi for g
′ =0.25g0 (B,F) and g′ =0.75g0 (D,H) when a fast signal is injected. All of them as a function of the delay τ and the frequency

mismatch induced by a change 1I in population 2.

is injected in one of the external populations (cortical), good
transmission always requires positive values of the detuning,
that is, higher frequencies in the cortical vs. the thalamic
population. Following the biological analogy, our results suggest
that the canonical thalamo-cortical sensory transmission would
be preserved for a broad range of thalamic frequencies (positive
and negative detuning), thus facilitating the coexistence of top-
down and bottom-up computations required for proper sensory
integration (Hirsch et al., 2015). Cortico-thalamic transmission
(top-down) in the V-motif would be restricted to positive
detuning (when cortical frequency is higher than that of the
thalamus). This operation mode is compatible with the canonical
view of the thalamic function (Sherman, 2016).

Interestingly, different operation modes appear by adding a
direct link between the outer populations (cortico-cortical

connection generating the C-motif). In this condition,
higher cortico-cortical synaptic weights (g′) facilitate effective
communication in the indirect cortico-thalamo-cortical pathway
for negative detuning values, a communication channel that
did not exist in the V-motif. Accordingly, for small values of
cortico-cortical connection, the dynamics is mainly governed
by that of the V-motif. Therefore, the strength of the cortico-
cortical connection may control switching between distinct
dynamic modes.

Quantitatively, the V-motif (or the C-motif with low
cortico-cortical connection strength) is a better configuration
for efficient signal transmission but, on the other hand,
the circular motif with higher cortico-cortical connectivity
allows new channels of communication, although with lower
overall efficiency. The later generates cortical associative loops
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in which both, the direct cortico-cortical and the indirect
transthalamic pathways, play distinct but fundamental
roles. We hypothesize that the first operation mode
supports the canonical function of the thalamus in sensory
transmission and the second would be ideally suited for the
integration of cortically segregated computations and feature
binding (Singer, 2007; Uhlhaas et al., 2009; Gollo et al.,
2010).

Our study has some limitations. All these results have been
obtained in a highly coherent and synchronized regime.
The intrinsic dynamics of each population exhibited a
single oscillation frequency which cannot fully represent
the realistic dynamics of cortical networks. It is well known
that brain functions are associated with different frequency
bands, and synchronization occurs in short periods from
a weakly coherent scenario (Xing et al., 2012). Previous
studies have proposed neural network models to reproduce
this complex dynamics (Tort et al., 2013; Palmigiano et al.,
2017) and others suggested the important role of slow
synapses (Cannon et al., 2014), not considered in our model.
Therefore, further work must be done considering richer neural
dynamics which will help to further explain the underlying
circuit mechanisms of information transmission between
brain areas.

In conclusion, signal propagation in V- and C-motifs
resembling those found in the thalamo-cortical system
was systematically studied. Complex but distinct operation
modes emerge in this relatively simple system with three
neuronal populations and two main variables, connection
delay and frequency detuning. An important modulatory
role was identified for the cortico-cortical connection
strength in the selection between operation modes. In a
neurobiological thalamo-cortical context, modes switching
would flexibly support the alternation between computations
with a predominant sensory processing function, with robust
thalamo-cortical transmission and top-down cortico-thalamic

modulation (i.e., attentional modulation), with feature binding,
and cortical integrative computation.
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Başar, E. (2012). Brain Function and Oscillations, Vol. I, Brain Oscillations.

Principles and Approaches. Berlin Heidelberg: Springer.
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Coll, S. Y., Ceravolo, L., Fŕ’uhholz, S., and Grandjean, D. (2018). The behavioral

and neural binding phenomena during visuomotor integration of angry facial

expressions. Sci. Rep. 8, 1–13. doi: 10.1038/s41598-018-25155-8

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and

Mathematical Modeling of Neural Systems. Computational Neuroscience Series.

doi: 10.1086/421681

Frontiers in Systems Neuroscience | www.frontiersin.org 14 July 2021 | Volume 15 | Article 705371146

https://www.frontiersin.org/articles/10.3389/fnsys.2021.705371/full#supplementary-material
https://doi.org/10.1038/nrn.2017.149
https://doi.org/10.1126/science.1736359
https://doi.org/10.1016/j.cub.2009.12.014
https://doi.org/10.4249/scholarpedia.3015
https://doi.org/10.1152/jn.00832.2002
https://doi.org/10.1371/journal.pcbi.1003723
https://doi.org/10.1016/S0167-8760(99)00047-1
https://doi.org/10.1111/ejn.12453
https://doi.org/10.1016/S0893-6080(01)00043-0
https://doi.org/10.1038/s41598-018-25155-8
https://doi.org/10.1086/421681
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Sánchez-Claros et al. Information Transmission in Neuronal Circuits

De Pasquale, R., and Sherman, S. M. (2011). Synaptic properties of corticocortical

connections between the primary and secondary visual cortical areas in

the mouse. J. Neurosci. 31, 16494–16506. doi: 10.1523/JNEUROSCI.3664-

11.2011

Deco, G., Jirsa, V. K., Robinson, P. A., Breakspear, M., and Friston, K. (2008). The

dynamic brain: from spiking neurons to neural masses and cortical fields. PLoS

Comput. Biol. 4:e1000092. doi: 10.1371/journal.pcbi.1000092

Denker, M., Roux, S., Timme, M., Riehle, A., and Grün, S. (2007).

Phase synchronization between lfp and spiking activity in motor

cortex during movement preparation. Neurocomputing 70, 2096–2101.

doi: 10.1016/j.neucom.2006.10.088

DHuys, O., Vicente, R., Erneux, T., Danckaert, J., and Fischer, I. (2008).

Synchronization properties of network motifs: Influence of coupling delay and

symmetry. Chaos 18, 037116. doi: 10.1063/1.2953582

Doesburg, S. M., Roggeveen, A. B., Kitajo, K., and Ward, L. M. (2008). Large-scale

gamma-band phase synchronization and selective attention. Cereb. Cortex 18,

386–396. doi: 10.1093/cercor/bhm073

Dumont, G., and Gutkin, B. (2019). Macroscopic phase resetting-curves determine

oscillatory coherence and signal transfer in inter-coupled neural circuits. PLoS

Comput. Biol. 15:e1007019. doi: 10.1371/journal.pcbi.1007019

Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., and

Reitboeck, H. (1988). Coherent oscillations: a mechanism of feature linking in

the visual cortex? Biol. Cybern. 60, 121–130. doi: 10.1007/BF00202899

Esfahani, Z. G., and Valizadeh, A. (2014). Zero-lag synchronization

despite inhomogeneities in a relay system. PLoS ONE 9:e112688.

doi: 10.1371/journal.pone.0112688

Feige, B., Aertsen, A., and Kristeva-Feige, R. (2000). Dynamic synchronization

between multiple cortical motor areas and muscle activity in phasic voluntary

movements. J. Neurophysiol. 84, 2622–2629. doi: 10.1152/jn.2000.84.5.2622

Fischer, I., Vicente, R., Buldú, J. M., Peil, M., Mirasso, C. R., Torrent, M., and

García-Ojalvo, J. (2006). Zero-lag long-range synchronization via dynamical

relaying. Phys. Rev. Lett. 97, 123902. doi: 10.1103/PhysRevLett.97.123902

Fries, P. (2015). Rhythms for cognition: communication through coherence.

Neuron 88, 220–235. doi: 10.1016/j.neuron.2015.09.034

Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: a

synthesis. Hum. Brain Map. 2, 56–78. doi: 10.1002/hbm.460020107

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connect.

1, 13–36. doi: 10.1089/brain.2011.0008

Gollo, L. L., Mirasso, C., Sporns, O., and Breakspear, M. (2014). Mechanisms of

zero-lag synchronization in cortical motifs. PLoS Comput. Biol. 10:e1003548.

doi: 10.1371/journal.pcbi.1003548

Gollo, L. L., Mirasso, C., and Villa, A. E. (2010). Dynamic control for

synchronization of separated cortical areas through thalamic relay.Neuroimage

52, 947–955. doi: 10.1016/j.neuroimage.2009.11.058

Goodman, D. F., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3:26.

doi: 10.3389/neuro.01.026.2009

Gross, J., Kujala, J., Hämäläinen, M., Timmermann, L., Schnitzler, A., and

Salmelin, R. (2001). Dynamic imaging of coherent sources: studying neural

interactions in the human brain. Proc. Natl. Acad. Sci. U.S.A. 98, 694–699.

doi: 10.1073/pnas.98.2.694

Hacine-Gharbi, A., Ravier, P., Harba, R., and Mohamadi, T. (2012). Low bias

histogram-based estimation of mutual information for feature selection.

Pattern Recogn. Lett. 33, 1302–1308. doi: 10.1016/j.patrec.2012.02.022

Hirsch, J. A., Wang, X., Sommer, F. T., and Martinez, L. M. (2015). How

inhibitory circuits in the thalamus serve vision. Ann. Rev. Neurosci. 38,

309–329. doi: 10.1146/annurev-neuro-071013-014229

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. physiol. 117,

500. doi: 10.1113/jphysiol.1952.sp004764

Hutchison, R. M., Womelsdorf, T., Allen, E. A., Bandettini, P. A.,

Calhoun, V. D., Corbetta, M., et al. (2013). Dynamic functional

connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378.

doi: 10.1016/j.neuroimage.2013.05.079

Jensen, O., Spaak, E., and Zumer, J. M. (2019). “Human brain

oscillations: from physiological mechanisms to analysis and cognition,”

in Magnetoencephalography: From Signals to Dynamic Cortical

Networks, eds S. Supek and C. J. Aine (Heidelberg: Springer),

471–517.

Kailath, T. (1967). The divergence and bhattacharyya distance measures

in signal selection. IEEE Trans. Commun. Technol. 15, 52–60.

doi: 10.1109/TCOM.1967.1089532

Kirst, C., Timme, M., and Battaglia, D. (2016). Dynamic information routing

in complex networks. Nat. Commun. 7, 1–9. doi: 10.1038/ncomms

11061

Ko, T.-W., and Ermentrout, G. B. (2009). Phase-response curves of

coupled oscillators. Phys. Rev. E 79, 016211. doi: 10.1103/PhysRevE.79.

016211

Lee, C. C., and Sherman, S. M. (2008). Synaptic properties of thalamic and

intracortical inputs to layer 4 of the first-and higher-order cortical areas

in the auditory and somatosensory systems. J. Neurophysiol. 100, 317–326.

doi: 10.1152/jn.90391.2008

Maris, E., Fries, P., and van Ede, F. (2016). Diverse phase relations among

neuronal rhythms and their potential function. Trends Neurosci. 39, 86–99.

doi: 10.1016/j.tins.2015.12.004

Milshtein, G. (1975). Approximate integration of stochastic differential equations.

Theory Probab. Appl. 19, 557–562. doi: 10.1137/1119062

Mirasso, C. R., Carelli, P. V., Pereira, T., Matias, F. S., and Copelli, M. (2017).

Anticipated and zero-lag synchronization in motifs of delay-coupled systems.

Chaos 27, 114305. doi: 10.1063/1.5006932

Niebur, E. (2002). Electrophysiological correlates of synchronous neural

activity and attention: a short review. Biosystems 67, 157–166.

doi: 10.1016/S0303-2647(02)00102-8

Opitz, B. (2010). Neural binding mechanisms in learning and memory. Neurosci.

Biobehav. Rev. 34, 1036–1046. doi: 10.1016/j.neubiorev.2009.11.001

Palmigiano, A., Geisel, T., Wolf, F., and Battaglia, D. (2017). Flexible information

routing by transient synchrony. Nat. Neurosci. 20, 1014. doi: 10.1038/nn.

4569

Pariz, A., Esfahani, Z. G., Parsi, S. S., Valizadeh, A., Canals, S., and Mirasso,

C. R. (2018). High frequency neurons determine effective connectivity in

neuronal networks.Neuroimage 166, 349–359. doi: 10.1016/j.neuroimage.2017.

11.014

Pariz, A., Fischer, I., Valizadeh, A., and Mirasso, C. (2021). Transmission

delays and frequency detuning can regulate information flow between

brain regions. PLoS Comput. Biol. 17, e1008129. doi: 10.1371/journal.pcbi.

1008129

Pfurtscheller, G., Neuper, C., Pichler-Zalaudek, K., Edlinger, G., and da Silva,

F. H. L. (2000). Do brain oscillations of different frequencies indicate

interaction between cortical areas in humans? Neurosci. Lett. 286, 66–68.

doi: 10.1016/S0304-3940(00)01055-7

Sadeghi, S., and Valizadeh, A. (2014). Synchronization of delayed coupled

neurons in presence of inhomogeneity. J. Comput. Neurosci. 36, 55–66.

doi: 10.1007/s10827-013-0461-9

Sancristóbal, B., Vicente, R., and Garcia-Ojalvo, J. (2014). Role of frequency

mismatch in neuronal communication through coherence. J. Comput. Neurosci.

37, 193–208. doi: 10.1007/s10827-014-0495-7

Save, E., and Poucet, B. (2000). Hippocampal-parietal cortical

interactions in spatial cognition. Hippocampus 10, 491–499.

doi: 10.1002/1098-1063(2000)10:4<491::AID-HIPO16>3.0.CO;2-0

Schultheiss, N. W. (2012). “Continuum of type i somatic to type ii dendritic

prcs; phase response properties of a morphologically reconstructed globus

pallidus neuron model,” in Phase Response Curves in Neuroscience, eds N. W.

Schultheiss, and A. A. Prinz (New York, NY: Springer), 307–325.

Sherman, S. M. (2012). Thalamocortical interactions. Curr. Opin. Neurobiol. 22,

575–579. doi: 10.1016/j.conb.2012.03.005

Sherman, S. M. (2016). Thalamus plays a central role in ongoing cortical

functioning. Nat. Neurosci. 19, 533–541. doi: 10.1038/nn.4269

Singer, W. (2007). Binding by synchrony. Scholarpedia. 2:1657.

doi: 10.4249/scholarpedia.1657

Sporns, O., and Kötter, R. (2004). Motifs in brain networks. PLoS Biol. 2:e369.

doi: 10.1371/journal.pbio.0020369

Sysoeva, M., Sitnikova, E., and Sysoev, I. (2016). Thalamo-cortical mechanisms

of initiation, maintenance and termination of spike-wave discharges at

wag/rij rats. Zh. Vyssh. Nerv. Deiat. Im. I. P. Pavlova 66, 103–112.

doi: 10.1016/j.eplepsyres.2010.02.011

Tort, A. B., Scheffer-Teixeira, R., Souza, B. C., Draguhn, A., and Brankačk,
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Dynamics underlying epileptic seizures span multiple scales in space and time, therefore,

understanding seizure mechanisms requires identifying the relations between seizure

components within and across these scales, together with the analysis of their dynamical

repertoire. In this view, mathematical models have been developed, ranging from single

neuron to neural population. In this study, we consider a neural mass model able to

exactly reproduce the dynamics of heterogeneous spiking neural networks. We combine

mathematical modeling with structural information from non invasive brain imaging, thus

building large-scale brain network models to explore emergent dynamics and test the

clinical hypothesis. We provide a comprehensive study on the effect of external drives on

neuronal networks exhibiting multistability, in order to investigate the role played by the

neuroanatomical connectivity matrices in shaping the emergent dynamics. In particular,

we systematically investigate the conditions under which the network displays a transition

from a low activity regime to a high activity state, which we identify with a seizure-like

event. This approach allows us to study the biophysical parameters and variables leading

to multiple recruitment events at the network level. We further exploit topological network

measures in order to explain the differences and the analogies among the subjects

and their brain regions, in showing recruitment events at different parameter values. We

demonstrate, along with the example of diffusion-weighted magnetic resonance imaging

(dMRI) connectomes of 20 healthy subjects and 15 epileptic patients, that individual

variations in structural connectivity, when linked with mathematical dynamic models,

have the capacity to explain changes in spatiotemporal organization of brain dynamics,

as observed in network-based brain disorders. In particular, for epileptic patients, by

means of the integration of the clinical hypotheses on the epileptogenic zone (EZ), i.e.,

the local network where highly synchronous seizures originate, we have identified the
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sequence of recruitment events and discussed their links with the topological properties

of the specific connectomes. The predictions made on the basis of the implemented set

of exact mean-field equations turn out to be in line with the clinical pre-surgical evaluation

on recruited secondary networks.

Keywords: neural mass model, quadratic integrate-and-fire neuron, patient-specific brain network model,

epileptic seizure-like event, topological network measure

1. INTRODUCTION

Epilepsy is a chronic neurological disorder characterized by the
occurrence and recurrence of seizures and represents the third
most common neurological disorder affecting more than 50
million people worldwide (World Health Organization, 2005).
Anti-epileptic drugs are the first line of treatment for epilepsy,
and they provide sufficient seizure control in around two-thirds
of cases (Kwan and Brodie, 2000). However, about 30–40% of
epilepsy patients do not respond to drugs, a percentage that has
remained relatively stable despite significant efforts to develop
new anti-epileptic medication over the past decades. For drug-
resistant patients, a possible treatment is the surgical resection of
the brain tissue responsible for the generation of seizures.

As a standard procedure, epilepsy surgery is preceded by a
qualitative assessment of different brain imaging modalities to
identify the brain tissue responsible for seizure generation, i.e.,
the epileptogenic zone (EZ) (Rosenow and Lüders, 2001), which
in general represents a localized region or a network where
seizures arise, before recruiting secondary networks, called the
propagation zone (PZ) (Talairach and Bancaud, 1966; Bartolomei
et al., 2001; Spencer, 2002; Richardson, 2012). Outcomes are
positive whenever the patient has become seizure-free after
surgical operation.

Intracranial electroencephalography (iEEG) is commonly
used during the presurgical assessment to find the seizure onset
zone (Rosenow and Lüders, 2001; David et al., 2011; Duncan
et al., 2016), the assumption being that the region where seizures
emerge, is at least part of the brain tissue responsible for seizure
generation. As a part of the standard presurgical evaluation
with iEEG, stereotactic EEG (SEEG) is used to help correctly
delineating the EZ (Bartolomei et al., 2002). SEEG employs
penetrating depth electrodes that are implanted through small
burr holes in the skull and are positioned using stereotactic
guidance (Talairach and Bancaud, 1966), thus allowing for
the measurement of neural activity in deeper structures of
the brain. Alternative imaging techniques such as structural
Magnetic Resonance Imaging (MRI), magneto- or electro-
encephalography (M/EEG), and positron emission tomography
(PET) help the clinician estimate the position of the EZ. Recently,
diffusion MRI (dMRI) started being evaluated as well, thus
giving the possibility to infer the connectivity between different
brain regions by computing in-vivo fiber tract trajectories in-
coherently organized brain white matter pathways (Basser et al.,
2000). dMRI has revealed a quantitative decrease of regional
connectivity around the EZ that is associated with a network
reorganization and cognitive impairment (Leyden et al., 2015). In

particular, it has revealed reduced fractional anisotropy (Ahmadi
et al., 2009; Bernhardt et al., 2013) and structural alterations in
the connectome of epileptic patients (Bonilha et al., 2012; Besson
et al., 2014; DeSalvo et al., 2014). However, epilepsy surgery is
often unsuccessful and the long-term positive outcome may be
lower than 25% in extra-temporal cases (De Tisi et al., 2011; Najm
et al., 2013), thus meaning that the EZ has not been correctly
identified or that the EZ and the seizure onset zone may not
coincide (Lopes et al., 2019).

To quantitatively examine clinical data and to determine
targets for surgery, many computational models have been
recently proposed (Freestone et al., 2013; Hutchings et al., 2015;
Goodfellow et al., 2016; Khambhati et al., 2016; Lopes et al., 2017;
Sinha et al., 2017; Karoly et al., 2018), that use MRI or iEEG
data acquired during presurgical workup to infer structural or
functional brain networks. Taking advantages of recent advances
in the understanding of epilepsy, that indicate that seizures may
arise from distributed ictogenic networks (Richardson, 2012;
Bartolomei et al., 2017; Besson et al., 2017), phenomenological
models of seizure transitions are used to compute the escape
time, i.e., the time that each network node takes to transit from
a normal state to a seizure-like state. Nodes with the lowest
escape time are then considered as representative of the seizure
onset zone and, therefore, candidates for surgical resection, by
assuming seizure onset zone as a proxy for the EZ (Hutchings
et al., 2015; Sinha et al., 2017). Alternatively, different possible
surgeries are simulated in silico to predict surgical outcomes
(Goodfellow et al., 2017; Lopes et al., 2017, 2019) by making use
of synthetic networks and phenomenological network models of
seizure generation. Further attention has been paid to studying
how network structure and tissue heterogeneities underpin the
emergence of focal and widespread seizure dynamics in synthetic
networks of phase oscillators (Lopes et al., 2019, 2020).

More in general there is a vast and valuable literature
on computational modeling in epilepsy, where two classes of
models are used: (1) mean-field (macroscopic) models and (2)
detailed (microscopic) network models. Mean-field models are
often preferred over the more detailed models since they have
fewer parameters and, thus, simplify the study of transitions
from interictal to ictal states and the subsequent EEG analysis
of data from patients with epilepsy. This is justified as the
macroelectrodes used for EEG recordings represent the average
local field potential arising from neuronal populations. Indeed,
much effort has been made so far to explain the biophysical
and dynamical nature of seizure onsets and offsets by employing
neural mass models (Da Silva et al., 1974; Wendling et al.,
2002; Kalitzin et al., 2010; Touboul et al., 2011; Baier et al.,
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2012; Goodfellow et al., 2012; Kramer et al., 2012; Jirsa et al.,
2014; Karoly et al., 2018). Mechanistic interpretability of the
mean-field parameters is lost, as many physiological details
are absorbed in few degrees of freedom. Since the mean-field
models remain relatively simple, they can also be employed to
describe epileptic processes occurring in “large-scale” systems,
e.g., the precise identification of brain structures that belong to
the seizure-triggering zone (epileptic activity often spreads over
quite extended regions and involves several cortical and sub-
cortical structures). However, only recently, the propagation of
epileptic seizures was started to be studied using brain network
models and was limited to a small number of populations (Terry
et al., 2012) or absence seizures (Taylor et al., 2013), while partial
seizures have been reported to propagate at the mesoscopic scale
through cortical columns (Kramer et al., 2007; Goodfellow et al.,
2011) and at the macroscopic scale through large-scale networks
in humans (Bartolomei et al., 2013) and animal models (Toyoda
et al., 2013). All in all, even though neural mass models are
in general easier to analyze numerically because relatively few
variables and parameters are involved, they drastically fail to
suggest molecular and cellular mechanisms of epileptogenesis.

On the other hand, detailed network models are best
suited for understanding the molecular and cellular bases of
epilepsy and, thus, they may be used to suggest therapeutics
targeting molecular pathways (Destexhe and Sejnowski, 1995;
Van Drongelen et al., 2005; Turrigiano, 2008; Cressman
et al., 2009; Ullah et al., 2009). Due to the substantial
complexity of neuronal structures, relatively few variables and
parameters can be accessed at any time experimentally. Although
biophysically explicit modeling is the primary technique to
look into the role played by experimentally inaccessible
variables in epilepsy, the usefulness of detailed biophysical
models is limited by constraints in computational power,
uncertainties in detailed knowledge of neuronal systems, and the
required simplification for the numerical analysis. Therefore, an
intermediate “across-scale” approach, establishing relationships
between sub-cellular/cellular variables of detailed models and
mean-field parameters governing macroscopic models, might
be a promising strategy to cover the gaps between these two
modeling approaches (Brocke et al., 2016; Lindroos et al., 2018;
Schirner et al., 2018).

In view of developing a cross-scale approach, it is important
to point out that a large-scale brain network models emphasize
the network character of the brain and merge structural
information of individual brains with mathematical modeling,
thus constituting in-silico approaches for the exploration of
causal mechanisms of brain function and clinical hypothesis
testing (Proix et al., 2017, 2018; Olmi et al., 2019). In particular,
in brain network models, a network region is a neural mass
model of neural activity, connected to other regions via a
connectivity matrix representing fiber tracts of the human brain.
This form of virtual brain modeling (Fuchs et al., 2000; Jirsa
et al., 2002, 2010) exploits the explanatory power of network
connectivity imposed as a constraint upon network dynamics and
has provided important insights into the mechanisms underlying
the emergence of asynchronous and synchronized dynamics
of wakefulness and slow-wave sleep (Goldman et al., 2020)

while revealing the whole-brain mutual coupling between the
neuronal and the neurotransmission systems to understand the
flexibility of human brain function despite having to rely on
fixed anatomical connectivity (Kringelbach et al., 2020). Recent
studies have pointed out the influence of individual structural
variations of the connectome upon the large-scale brain network
dynamics of the models, by systematically testing the virtual
brain approach along with the example of epilepsy (Proix et al.,
2017, 2018; Olmi et al., 2019). The employment of patient-
specific virtual brain models derived from dMRI may have
a substantial impact on personalized medicine, allowing for
an increase in predictivity concerning the pathophysiology of
brain disorders, and their associated abnormal brain imaging
patterns. More specifically a personalized brain network model
derived from non-invasive structural imaging data would allow
for testing of clinical hypotheses and exploration of novel
therapeutic approaches.

To exploit the predictive power of personalized brain
network models, we have implemented, on subject-specific
connectomes, a next-generation neural mass model that,
differently from the previous applied heuristic mean-field models
(Proix et al., 2017, 2018; Olmi et al., 2019), is exactly derived
from an infinite size network of quadratic integrate-and-fire
neurons (Montbrió et al., 2015), that represent the normal
form of Hodgkin’s class I excitable membranes (Ermentrout
and Kopell, 1986). This next generation neural mass model
can describe the variation of synchrony within a neuronal
population, which is believed to underlie the decrease or
increase of power seen in given EEG frequency bands while
allowing for a more direct comparison with the results of
electrophysiological experiments like local field potential, EEG,
and event-related potentials (ERPs), thanks to its ability to
capture the macroscopic evolution of the mean membrane
potential. Most importantly, the exact reduction dimension
techniques at the basis of the next-generation neural mass model
have been developed for coupled phase oscillators (Ott and
Antonsen, 2008) and allow for an exact (analytical) moving
upward through the scales: While keeping the influence of
smaller scales on larger ones, they level out their inherent
complexity. In this way it is, therefore, possible to develop
an intermediate “across-scale” approach exploiting the 1:1
correspondence between the microscopic and mesoscopic level
that allows for more detailed modeling parameters and for
mapping the microscopic results to the relative ones in the
regional mean-field parameters.

The next-generation neural mass model developed by
Montbrió et al. (2015), has been recently extended to take into
account time-delayed synaptic coupling (Pazó and Montbrió,
2016; Devalle et al., 2018), and when integrated with a large-
scale brain network, time delays in the interaction between the
different brain areas, due to the finite conduction speed along
fiber tracts of different lengths (Rabuffo et al., 2020). The time
delay, together with the effective stochasticity of the investigated
dynamics give rise, both on structural connectivity matrices
of mice and healthy subjects, to preferred spatiotemporal
pattern formation (Jirsa, 2008; Petkoski and Jirsa, 2020) and
short-lived neuronal cascades that form spontaneously and
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propagate through the network under conditions of near-
criticality (Rabuffo et al., 2020). The largest neuronal cascades
produce short-lived but robust co-fluctuations at pairs of regions
across the brain, thus contributing to the organization of the
slowly evolving spontaneous fluctuations in brain dynamics at
rest. The introduction of extrinsic or endogenous noise sources
in the framework of exact neural mass models is possible in terms
of (pseudo)-cumulants expansion in Tyulkina et al. (2018) and
Goldobin et al. (2021).

In this paper, we have built brain network models for
a cohort of 20 healthy subjects and 15 epileptic patients,
implementing for each brain region the neural mass model
developed by Montbrió et al. (2015). As paradigms for testing the
spatiotemporal organization, we have systematically simulated
the individual seizure-like propagation patterns, looking for
the role played by the individual structural topologies in
determining the recruitment mechanisms. Specific attention has
been devoted to the analogies and differences among the self-
emergent dynamics in healthy and epilepsy-affected subjects.
Furthermore, for epileptic patients, we have validated the model
against the presurgical SEEG data and the standard-of-care
clinical evaluation. More specifically the Methods section is
devoted to the description of the implemented model and the
applied methods. In section Healthy Subjects are reported the
results specific for healthy subjects, while in section Epileptic
Patients is reported a detailed analysis performed on epileptic
patients. Finally, a discussion on the presented results is reported
in section Discussion.

2. METHODS

2.1. Network Model
The membrane potential dynamics of the i-th quadratic
integrate-and-fire (QIF) neuron in a network of size N can be
written as

τmV̇i = V2
i (t)+ ηi + IB + IS(t)+ τm

1

N

N
∑

j=1

J̃ij(t)Sj(t) ,

i = 1, . . . ,N (1)

where τm = 20 ms is the membrane time constant and J̃ij(t) the
strength of the direct synapse from neuron j to i that we assume
to be constant and all identical, i.e., J̃ij(t) = J. The sign of J
determines if the neuron is excitatory (J > 0) or inhibitory (J <

0); in the following, we will consider only excitatory neurons.
Moreover, ηi represents the neuronal excitability, IB a constant
background DC current (in the following we assume IB = 0),
IS(t) an external stimulus, and the last term on the right-hand side
the synaptic current due to the recurrent connections with the
pre synaptic neurons. For instantaneous post synaptic potentials
(corresponding to δ-spikes), the neural activity Sj(t) of neuron j
reads as

Sj(t) =
∑

tj(k)<t

δ(t − tj(k)), (2)

where Sj(t) is the spike train produced by the j-th neuron and
tj(k) denotes the k-th spike time in such sequence. We have
considered a fully coupled network without autapses, therefore,
the post-synaptic current will be the same for each neuron.

In the absence of synaptic input, external stimuli, and IB = 0,
the QIF neuron exhibits two possible dynamics, depending on
the sign of ηi. For negative ηi, the neuron is excitable and for
any initial condition Vi(0) <

√
−ηi, it reaches asymptotically

the resting value −
√
−ηi. On the other hand, for initial values

larger than the excitability threshold, Vi(0) >
√
−ηi, the

membrane potential grows unbounded and a reset mechanism
has to be introduced to describe the spiking behavior of a neuron.
Whenever Vi(t) reaches a threshold value Vp, the neuron i
delivers a spike and its membrane potential is reset to Vr, for the
QIF neuronVp = −Vr = ∞. For positive ηi, the neuron is supra-
threshold and it delivers a regular train of spikes with frequency
ν0 =

√
ηi/π .

2.2. Neural Mass Model
For the heterogeneous QIF network with instantaneous synapses
(Equations 1, 2), an exact neural mass model has been derived
by Montbrió et al. (2015). The analytic derivation is possible
for QIF spiking networks using the Ott-Antonsen Ansatz (Ott
and Antonsen, 2008) applicable to phase-oscillator networks,
whenever the natural frequencies are distributed according to
a Lorentzian distribution. In the case of the QIF network, this
corresponds to a distribution of the excitabilities {ηi} given by,

g(η) =
1

π

1

(η − η̄)2 + 12
, (3)

which is centered in η̄ and has half width at half maximum
(HWHM) 1 (1 = 1 throughout this study). In particular, this
neural mass model allows for an exact macroscopic description
of the population dynamics, in the thermodynamic limit N →

∞, in terms of only two collective variables, namely the
mean membrane voltage potential v(t) and the instantaneous
population rate r(t), as follows

τmṙ(t) =
1

τmπ
+ 2r(t)v(t) (4a)

τmv̇(t) = v2(t)+ η̄ + IB + IS(t)−
[

πτmr(t)
]2

+ τm J̃(t)r(t) ;

(4b)

where the synaptic strength is assumed to be identical for all
neurons and instantaneous synapses in absence of plasticity
J̃(t) = J. However, by including a dynamical evolution for
the synapses and, therefore, additional collective variables, this
neural mass model can be extended to any generic post synaptic
potential, as shown in e.g., Devalle et al. (2017) for exponential
synapses or Coombes and Byrne (2019) for conductance-based
synapses with α-function profile. In the following, we will
consider an extension of the original model (Equations 4) to
a complex topology, where multiple nodes interact with each
other. By considering instantaneous post-synaptic potentials and
neglecting synaptic features, we then focus on the role played by
the topology in enhancing the emergence of complex dynamics.
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2.3. Multipopulation Neural Mass Model
The neural mass model can be easily extended to account
for multiple interconnected neuronal populations Npop. In the
following, we consider personalized brain models derived from
structural data of Magnetic Resonance Imaging (MRI), Diffusion
Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI),
thus implementing different structural connectivity matrices for
healthy subjects and epileptic patients. For healthy subjects
cortical and volumetric parcellations were performed using the
Automatic Anatomical Atlas 1 (AAL1) (Tzourio-Mazoyer et al.,
2002) withNpop = 90 brain regions: each region will be described
in terms of the presented neural mass model. For epileptic
subjects, cortical and volumetric parcellations were performed
using the Desikan-Killiany atlas with 70 cortical regions and
17 subcortical regions (Desikan et al., 2006) (one more empty
region is added in the construction of the structural connectivity
for symmetry). In this case, the structural connectivity matrix is
composed, for each patient with epileptic, by 88 nodes equipped
with the presented region-specific neural mass model capable of
demonstrating epileptiform discharges.

The corresponding multi-population neural mass model can
be straightforwardly written as

τmṙk =
1k

τmπ
+ 2rk(t)vk(t) k = 1, 2, . . . ,Npop (5a)

τmv̇k = v2k(t)+ η̄(k) + IB + I
(k)
S (t)− (πτmrk(t))

2 + τm

Npop
∑

l=1

Jklrl(t),

(5b)

where {Jkl} is the connectivity matrix, representing the synaptic
weights among the populations. Diagonal entries Jkk denote
intra-population and non-diagonal entries Jkl, k 6= l inter-
population connections. In this study, we have assumed that
the neurons are globally coupled both at the intra- and inter-
population levels, hence removing the dependency on the
neuron indices.

The connectivity matrix entries Jkl are determined via a
secondmatrix {J̃kl}, which represents the topology extracted from
empirical DTI. The values of {J̃kl} are normalized in the range
[0, 1] via rescaling with themaximal entry value, and have J̃kk = 0
on the diagonal. To account for strong intra-coupling (recurrent
synapses) and intermediate inter-coupling, we choose the entries
of each structural connectivity as

Jkl = σ

{

5 J̃kl if k 6= l
20 if k = l,

(6)

where σ is a rescaling factor common to all synapses, that we
assume to be constant and equal to 1, apart from few cases where
we investigate the dependence on the synaptic weights. Hence,
the synaptic weights for k 6= l are in the range Jkl ∈ [0, 5], while
the intra coupling is set to Jkk = 20 (apart from when specified
otherwise). This choice of the rescaling factor ensures that the
single brain region finds itself in a bistable regime, thus being
able to switch from a low-activity to a high-activity regime. The

time-dependent stimulus current I
(k)
S (t) is population-specific,

and a single population at a time is generally stimulated during

a numerical experiment. The applied stimulus I
(k)
S (t) consists of a

rectangular pulse of amplitude IS and duration tI ; the dependence
on these parameters is studied in this paper to support the
generality of the results.

2.4. Topologies
As the first set of data, we have selected 20 diffusion-weighted
MRI connectomes of healthy subjects (mean age 33 years, SD
5.7 years, 10 females, 2 left-handed) that participated in a study
on schizophrenia as a control group (Melicher et al., 2015).
Throughout the study we refer to the healthy subjects as H1–
H20. All subjects were recruited via local advertisements and had
none of the following conditions: Personal lifetime history of any
psychiatric disorder or substance abuse established by the Mini-
International Neuropsychiatric Interview (MINI) (Lecrubier
et al., 1997), and any psychotic disorder in first or second-degree
relatives. Further exclusion criteria included current neurological
disorders, lifetime history of seizures or head injury with altered
consciousness, intracranial hemorrhage, neurological sequelae,
history of intellectual disability, history of substance dependence,
and any contraindication for MRI scanning.

The scans were performed on a 3T Siemens scanner in
the Institute of Clinical and Experimental Medicine in Prague,
employing a spin-echo EPI sequence with 30 diffusion gradient
directions, TR = 8, 300ms, TE = 84ms, 2×2×2mm3 voxel size,
and b-value 900 s/mm2. The diffusion-weighted images (DWI)
were analyzed using the Tract-Based Spatial Statistics (TBSS)
(Smith et al., 2006), part of FMRIB Software Library (FSL) (Smith
et al., 2004). Image conversion fromDICOM toNIfTI format was
accomplished using dcm2nii. With FMRIB’s Diffusion Toolbox
(FDT), the fractional anisotropy (FA) images were created by
fitting a tensor model to the raw diffusion data and then,
using the Brain Extraction Tool (BET) (Smith, 2002), brain-
extracted. FA identifies the degree of anisotropy of a diffusion
process, and it is a measure often used in diffusion imaging
where it is thought to reflect fiber density, axonal diameter, and
myelination in white matter. A value of zero means that diffusion
is isotropic, i.e., it is unrestricted (or equally restricted) in all
directions, while a value of one means that diffusion occurs only
along one axis and is fully restricted along all other directions.
Subsequently, the FA images were transformed into a common
space by nonlinear registration IRTK (Rueckert et al., 1999). A
mean FA skeleton, representing the centers of all tracts common
to the group, was obtained from the thinned mean FA image.
All FA data were projected onto this skeleton. The resulting
data was fed into voxel-wise cross-subject statistics. Prior to
analysis in SPM, the FA maps were converted from NIfTI format
to Analyze.

The brains were segregated into 90 brain areas according
to the AAL1 (Tzourio-Mazoyer et al., 2002). The anatomical
names of the brain areas for each index k are shown in the
Supplementary Table 1. In each brain network, one AAL brain
area corresponds to a node of the network. The weights between
the nodes were estimated through the measurement of the
preferred diffusion directions, given by a set of ns = 5, 000
streamlines for each voxel. The streamlines are hypothesized to
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correlate with the white-matter tracts. The ratio of streamlines
connecting area l and area k is given by the probability coefficient
plk. Then, the adjacency matrix Jkl is constructed from this
probability coefficient. The DTI processing pipeline has been
adopted from Cabral et al. (2013).

Besides the healthy connectomes, we selected 15 connectomes
(9 females, 6 males, mean age 33.4, range 22–56) of patients with
different types of partial epilepsy that underwent a presurgical
evaluation. The scans were performed at the Centre de Résonance
Magnétique et Biologique et Médicale (Faculté de Médecine de
la Timone) in Marseille. Throughout the study, we refer to the
epileptic patients as E1–E15. dMRI images were acquired on
a Siemens Magnetom Verio 3T MR-scanner using a DTI-MR
sequence with an angular gradient set of 64 directions, TR =

10, 700 ms, TE = 95 ms, 2 × 2 × 2 mm3 voxel size, 70 slices,
and b-value 1, 000 s/mm2.

The data processing pipeline (Schirner et al., 2015; Proix
et al., 2016) made use of various tools such as FreeSurfer
(Fischl, 2012), FSL (Jenkinson et al., 2012), MRtrix3 (Tournier,
2010), and Remesher (Fuhrmann et al., 2010), to reconstruct
the individual cortical surface and large-scale connectivity. The
surface was reconstructed using 20,000 vertices. Cortical and
volumetric parcellations were performed using the Desikan-
Killiany atlas with 70 cortical regions and 17 subcortical regions
(Desikan et al., 2006). The final atlas consists of 88 regions
since one more empty region is added in the construction of
the structural connectivity for symmetry. After correction of the
diffusion data for eddy-currents and head motions using eddy-
correct FSL functions, the fiber orientation was estimated using
constrained spherical deconvolution (Tournier et al., 2007) and
improved with anatomically constrained tractography (Smith
et al., 2012). For tractography, 2.5 × 106 fibers were used
and, for correction, spherical-deconvolution informed filtering
of tractograms (Smith et al., 2013) was applied. Summing
track counts over each region of the parcellation yielded the
adjacencymatrix. In this study, the AAL2 was employed for brain
segregation leading to 88 brain areas for each patient, as shown in
Supplementary Table 2.

2.5. EEG and SEEG Data
All 15 drug-resistant patients, mentioned in the previous section,
affected by different types of partial epilepsy accounting for
different EZ localizations, underwent a presurgical evaluation (as
shown in Supplementary Tables 3, 4). For each patient, a first
non invasive evaluation procedure is foreseen, which comprises
of the patient clinical record, neurological examinations, PET,
and EEG along with video monitoring. Following this evaluation,
potential EZs are identified by the clinicians. Further elaboration
on the EZ is done in a second, invasive phase, which consists of
positioning SEEG electrodes in or close to the suspected regions.
These electrodes are equipped with 10–15 contacts that are 1.5
mm apart. Each contact has a length of 2 mm and measures 0.8
mm in diameter. Recordings were obtained using a 128 channel
DeltamedTM system with a 256 Hz sampling rate and band-
pass filtered between 0.16 and 97 Hz by a hardware filter. Precise
electrode positioning was performed by either a computerized
tomography or MRI scan after implanting the electrodes. All

patients showed seizures in the SEEG, starting in one or several
localized areas (EZ), before recruiting distant regions, identified
as the PZ. It is worth noticing that, among the operated patients,
four of them showed a worthwhile improvement but without
resulting completely seizure-free since surgery (Engel’s score III),
while two resulted almost seizure-free, showing rare disabling
seizures since surgery (Engel’s score II), thus suggesting that the
EZ was correctly identified in a subset of patients only.

Two methods were used for the identification of the PZ (as
shown in Supplementary Table 4). First, the clinicians evaluated
the PZs subjectively based on of the EEG and SEEG recordings
gathered throughout the two-step procedure (non invasive and
invasive). Second, the PZs were identified automatically based on
the SEEG recordings: For each patient, all seizures were isolated
in the SEEG time series. The bipolar SEEG was considered
(between pairs of electrode contacts) and filtered between 1 and
50 Hz using a Butterworth band-pass filter. An area was defined
as a PZ if its electrodes detected at least 30% of the maximum
signal energy over all contacts, and if it was not in the EZ.
In the following, we call the PZs identified by the subjective
evaluation of clinicians PZClin and the PZs identified through
SEEG data PZSEEG.

2.6. Network Measures
The topological properties of a network can be examined
by using different graph measures that are provided by the
general framework of graph theory. These graph metrics can
be classified in terms of measures that cover three main
aspects of the topology: segregation, integration, and centrality.
The segregation accounts for the specialized processes that
occur inside a restricted group of brain regions, usually
densely connected, and it eventually reveals the presence of
a dense neighborhood around a node, which results to be
fundamental for the generation of clusters and cliques capable to
share specialized information. Among the possible measures of
segregation, we have considered the clustering coefficient, which
gives the fraction of triangles around a node and it is equivalent
to the fraction of neighbors of the node that are neighbors of each
other as well. In particular, the average clustering coefficient C of
a network gives the fraction of closed triplets over the number
of all open and closed triplets, where a triplet consists of three
nodes with either two edges (open triplet) or three edges (closed
triplet). The weighted clustering coefficient cwi (Barrat et al., 2004)
considers the weights of its neighbors:

cwi =
1

si(ki − 1)

∑

j,h

wij + wih

2
aijaihajh, (7)

where si is the node strength (to be defined below), ki the node
degree,wij the weight of the link, and aij is 1 if the link i → j exists
and 0 if node i and j are not connected. The average weighted
clustering coefficient CW is the mean of all weighted clustering
coefficients: CW = 1

N

∑

i ci.
The measures of integration refer to the capacity of the

network to rapidly combine specialized information from not
nearby, distributed regions. Integration measures are based on
the concept of communication paths and path lengths, which
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estimate the unique sequence of nodes and links that can carry
the transmission flow of information between pairs of brain
regions. The shortest path dij between two nodes is the path with
the least number of links. The average shortest path length of node
i of a graph G is the mean of all shortest paths from node i to
all other nodes of the network: L(G, i) = 1

N−1

∑

j∈N,j 6=i dij. The

average shortest path length of all nodes is the mean of all shortest
paths (Boccaletti et al., 2006): L(G) = 1

N−1

∑

i,j∈N,i6=j dij. In a

weighted network, distance and weight have a reciprocal relation.
If a weight between two adjacent nodes is doubled, their shortest

path is cut by half: L(G) = 1
N−1

∑

i,j∈N,i6=j
dij
wij

.

Centrality refers to the importance of network nodes and
edges for network functioning. The most intuitive index of
centrality is the node degree, which gives the number of links
connected to the node; for this measure, connection weights are
ignored in calculations. In this study, we employ the network
measure node strength si, which corresponds to the weighted
node degree of node i and equals the sum of all its weights: si =
∑

j∈N wij. Accordingly, the average node strength S corresponds

to the mean of all node strengths S = 1
N

∑

i si. All finite networks
have a finite number of shortest paths d(i, j) between any pair of
nodes i, j. The betweenness centrality cB(s) of node s is equal to all
pairs of shortest paths that pass through s divided by the number

of all shortest paths in the network: cB(s) =
∑

i,j∈N
d(i,j|s)
d(i,j)

. For

the weighted betweenness centrality, the weighted shorted paths
are used.

2.7. Spectrogram Estimation
To generate the spectrograms, the signal package, part of the
SciPy library (Virtanen et al., 2020), is used. The subroutine
stft (short-time Fourier transform, STFT) generates Fourier
transforms F[s(t)](t, f ) of a signal s(t) within a running time
window of length 1Twin at time t. The STFT is performed
using overlapping windows (95% overlap) throughout this study.
The window length is set to 1Twin = 0.2 s, leading to a
sufficiently fine resolution in time and frequency. The colors in
the spectrograms code the normalized power spectral density
|F[vk(t)](t, f )|

2/(max |F[vk(t)](t, f )|
2) obtained from voltage

signals vk of different populations. For a better visibility, a log10
scale is used and values<10−2 are set to 10−2. Fourier transforms
of the individual voltage signals vk of different populations are
first calculated giving rise to individual power spectral densities
that are subsequently averaged over the populations to obtain
the data favg shown in Figures 2, 9. Finally, the spectrograms
are shifted to the right by 0.1 s to preserve causality in
correspondence of the stimulus onset.

3. RESULTS

The epileptic attractor is commonly described in terms of a
self-sustained limit cycle that comes from the destabilization
of the physiological activity while multiple types of transitions
allow for the accessibility of seizure activity, status epilepticus,
and depolarization block, that coexist, as verified experimentally
in El Houssaini et al. (2020). The single-population firing rate

(Equation 4) shows, in the absence of forcing, only fixed points
as attractors. As it will become clear in the following section,
a stable node and a stable focus are observable, separated by
a bistability region between a high- and a low-activity state,
whose boundaries are the locus of a saddle-node bifurcation
(for more details see Montbrió et al., 2015). In this context
are not observable self-sustained oscillations but only damped
oscillations at the macroscopic level that reflect the oscillatory
decay to the stable fixed point. This oscillatory decay will be
considered as the representative of a seizure-like event, not being
able to observe a stable limit cycle to describe the emergence of
a fully developed seizure, as shown in other phenomenological
mathematical models (Jirsa et al., 2014; Chizhov et al., 2018),
commonly used to describe a detailed taxonomy of seizures.
In particular, seizure-like events will be used as a paradigm to
investigate the propagation of seizure-like activity in the network.
A detailed comparison with the taxonomy of seizures described
by other phenomenological models (Jirsa et al., 2014; Saggio
et al., 2017; Chizhov et al., 2018) and the possible extension
of the single-population firing rate (Equation 4) to show self-
emergent periodic and bursting dynamics at the macroscopic
level is reported in section 1 in the Supplementary Material.

3.1. Healthy Subjects
3.1.1. Phase and Bifurcation Diagrams
The analysis of the single-population firing rate Equations (4),
performed in Montbrió et al. (2015), has revealed that there are
three distinct regions, when considering the phase diagram of the
system as a function of the external drive η̄ and synaptic weight
J, in absence of time-dependent forcing [I(t) = 0]: (1) a single
stable node equilibrium corresponding to a low-activity state, (2)
a single stable focus (spiral) generally corresponding to a high-
activity state, and (3) a region of bistability between low and high
firing rates. In particular, in the region where the stable focus
is observable, the system undergoes damped oscillatory motion
toward this fixed point. The presence of damped oscillations at
the macroscopic level reflects the transitory synchronous firing of
a fraction of the neurons in the ensemble. While this behavior is
common in networkmodels of spiking neurons, it is not captured
by traditional firing-rate models (Schaffer et al., 2013; Devalle
et al., 2017; Taher et al., 2020).

When considering the multipopulation neural mass model
(5) with homogeneously set η̄(k) = η̄, the corresponding phase
diagram (shown in Figures 1B,C) is qualitatively the same as the
one shown in Figure 1 in Montbrió et al. (2015), since the same
attractors are observable. In the original model, these attractors
are single-population states, while they reflect multipopulation
states in the present case. Single-population low-activity (LA)
and high-activity (HA) states translate into network LA and
HA states. In the former, all populations have low, in the
latter high firing rates. We observe that the single-population
bistability accurately reflects the hysteretic transition in the
network when changing η̄. In the following, we will address how
this relation between single-node and multipopulation phase
diagram occurs.

The network bifurcation diagrams shown in Figures 1A1–A3

for increasing σ values are obtained by performing an adiabatic
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FIGURE 1 | Phase and bifurcation diagrams for subject H1. (A1–A3) Equilibrium firing rates
〈

r*
〉

vs. η̄ for the up sweep (blue dots) and down-sweep (orange squares).

For each η̄ ∈ [−50, 10] in steps of 1η̄ = 1.5, the system is initialized using the final state of the previous run and evolves for 2 s after which the average network firing

rate in the equilibrium state is determined. Different panels correspond to different σ values: σ = 1.5 (A1), σ = 1 (A2), and σ = 0.5 (A3). The solid (dashed) black line

corresponds to the stable (unstable) equilibria in the single-node case. Maps of regimes as a function of σ and η̄ showing the network average
〈

r*
〉

color-coded for up-

(B) and down-sweep (C), obtained by following the same procedure as in (A1–A3) for σ ∈ [0, 2] in steps of 1σ = 0.05. The black line indicates the single-node map

of regimes like in Montbrió et al. (2015). In panels (B,C) the cyan square and triangle mark η̄ = −6.3,−9.54, respectively. Parameter values: Npop = 90, τm = 20 ms,

1 = 1, Jkk = 20, Jkl = 5J̃kl , ∀k 6= l.

analysis along with two different protocols such as up sweep and
down-sweep. Following the up-sweep protocol, the state variables
rk, vk of the system are initialized at η̄ = −50 with the values
rk = 0, vk = 0; then the excitability is increased in steps
1η̄ = 1.5 until the maximal value η̄ = 10 is reached. At
each step, the initial conditions for mean firing rates and mean
membrane potentials correspond to the final state obtained for
the previous η̄ value. Note, that the average firing rate increases
for increasing η̄ values, both for the single node and the network.
Once the maximum η̄ value is reached, the reverse procedure is
performed, thus following the down-sweep protocol. This time
the initial conditions correspond to the high-activity state at
η̄ = 10, while the excitability is adiabatically decreased in steps
1η̄ = 1.5 until a low-activity state at η̄ = −50 is approached. For
both protocols, the investigation of the nature of the dynamics
emerging at each η̄-step is done by using the same procedure:
the system is simulated for a transient time T = 2 s until it has
reached an equilibrium state. At this time, the firing rate averaged
over-all populations 〈r∗〉 is calculated and the next η̄ iteration is
started, using this final state as initial conditions.

The transition from LA to HA network dynamics is hysteretic:
the system does not follow the same path during the up sweep
and the down-sweep protocol. When the system is initialized
in the low activity regime, it remains there until a critical
excitability value η̄HA is reached. For further increase of the
excitability, the average firing rate exhibits a rapid jump to higher
values. However, when the system is initialized in the high-
activity regime, this regime survives for a large η̄ interval until it

collapses toward a low-activity state at η̄ < η̄LA, where η̄LA <

η̄HA. There is a considerable difference between the critical
excitability values required to lead the system to a high-activity or
a low-activity regime and the difference increases for increasing
coupling strength σ . While the up-sweep protocol (blue dots)
is well approximated by the bifurcation diagram of the single
population, represented in Figures 1A1–A3 by the black (dashed
and continuous) curve, this is no more true for the down-sweep
protocol, where the coupling plays a role in determining the
transition at the multipopulation level (orange squares). This
results in different phase diagrams for the two protocols: the
maps of regimes are dominated by the low-activity (high-activity)
state when following the up-sweep (down-sweep) protocol.
Merging these results, we observe that the region of bistability
between LA and HA network dynamics is still identifiable by the
original boundaries found for the single population in Montbrió
et al. (2015) (black curve in Figures 1B,C), even though, for the
multipopulation system, the region is wider.

We can make further use of the single-population bifurcation
diagram to understand the hysteretic transition of the
multipopulation model in more detail. First of all, the weight
matrix {Jkl} has its largest components on the diagonal (Jkk = 20),
reflecting recurrent synapses. This means that synaptic inter
coupling plays a minor role, as long as the firing rates of the
adjacent populations are small. During the up-sweep protocol,
this condition is fulfilled, as all populations are initialized in a
low activity regime. Under these conditions, the dynamics of all
nodes are rendered identical and equal, approximately, to the
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single population dynamics. Consequently, the single-population
LA branch describes the multipopulation LA behavior (in terms
of 〈r∗〉) accurately as a function of η̄. Second, as soon as the
single-population LA state vanishes for large enough η̄ > η̄HA,
the individual nodes of the multipopulation system all transit to
the HA state.

In this HA regime, deviations of the network bifurcation
diagramwith respect to the single-population curve are observed.
The populations in the system have large firing rates, such that
the inter-coupling becomes a relevant contribution to the total
current on each node. This explains why the LA branch of the
network is located at higher firing rates with respect to the black
single-population curve: The populations in the network behave,
approximately, as decoupled, irrespectively of being subject, in
the HA regime, to an additional current due to the inter-coupling.
This effectively shifts the single-population bifurcation diagram
toward smaller η̄. Moreover, this shift occurs for each population
individually, depending on the matrix {Jkl}. During the down-
sweep protocol, due to the population-dependent shift, the HA
population states vanish at different values of η̄. Accordingly,
whenever this occurs, the network average 〈r∗〉 decreases by
a small amount, such that the network LA state is reached
via various intermediate states. We can infer, using the same
type of argument, that single-population LA states disappear for
increasing η̄ in a region around η̄HA. They are not observed in
this study, due to the nature of the up-sweep protocol and the
initialization procedure of rk, vk.

From the reversed viewpoint, we can hypothesize, that
stable single-population HA states may take form near η̄LA for
increasing η̄ and stable LA states for decreasing η̄ near η̄HA.
This implies that the network possesses complex multistability
between many network states in the region η̄LA < η̄ <

η̄HA. For these states, the existence of LA and HA states of
individual populations are interdependent: Whether or not any
given population can be in the LA or HA state is conditioned by
the LA-HA configuration of all other populations. This not only
demonstrates how multistability emerges in the multipopulation
system but also influences the response of the network towards
transient input in such a setting. Most importantly, if such
an input recruits one population into high activity, other
populations might follow, leading to a cascade of recruitments.

3.1.2. Seizure-Like Recruitment in Dependence of

Perturbation Site and η̄

To analyze the response of the multipopulation system to
transient current, we stimulate one population with a step
function IS(t) of amplitude IS = 10 and duration tI = 0.4 s.
By setting η̄ = −9.54, the system is placed in the multistable
regime (cyan triangle in Figure 1C), but, due to the low η̄

value, it only allows for LA-HA configurations with most of the
populations in LA. The stimulation with an external current IS(t)
allows the system to reach a configuration with more populations
in the HA. This corresponds to choosing equivalently, in the
model, a higher excitability value for the single node such that
it crosses the bistability region, thus reaching the HA regime.
We start by initializing all nodes in the low-activity state and
stimulating a single node (Figure 2A). During the stimulation

(Figure 2A1), the stable states of the network change, due to
the strong additional current (Figure 2A2). More specifically,
the initial equilibrium vanishes and a new focus equilibrium of
the system appears as the only stable network state. This focus
is characterized by an LA-HA configuration for which only the
stimulated node finds itself in HA while the rest remains in
the LA regime; the focus is approached via damped oscillations
in the time interval 0 < t < 0.4 s (Figures 2A3,A4). Due
to the multistability in absence of stimulation, an identical LA-
HA configuration exists. Thus, when the current is removed, the
system is able to maintain the LA-HA configuration. However,
the position of the focus equilibrium is shifted in absence of the
transient input and is reached again, via damped oscillations for
t > 0.4 s.

When the perturbation of a single node has no consequences
on the dynamics of the other populations, as shown in
Figures 2A2–A4, we are in the presence of an asymptomatic
seizure-like event, where the activity is limited to the EZ
represented by the stimulated node and no propagation takes
place. For higher excitability values (η̄ = −6.3, marked by a
cyan rectangle in Figure 1B), the perturbation of a single node
gives rise to different response dynamics. In this case, other
brain areas are “recruited” and not only the perturbed node
but also other populations reach the high-activity regime by
showing damped oscillations (see Figures 2B2–B4). In terms
of pathological activity, the seizure-like event originates in the
EZ (as a result of the stimulation) and propagates to the PZ,
identified by the other regions which rapidly propagate the
oscillatory activity. The recruitment of the regions in the PZ can
happen either by independent activation of the single areas or by
activating multiple areas at the same time, in a domino-like effect
(Creaser et al., 2020), until the propagation involves almost all
populations (generalized seizure-like event).

The transition of a single population to the HA regime,
upon stimulus onset, is characterized by a transient activity
in the α − β band (10–14 Hz) and a sustained activity in
the γ band (40–80 Hz), present throughout the stimulation,
as shown in Figures 2A5,A6. In this study, the spectrograms
show time-varying power spectral densities (PSD) of the mean
membrane potentials averaged over the network (Figure 2A5)
and for the single stimulated population (Figure 2A6). When
more populations are recruited at higher excitability values,
in addition to the former activity, it is possible to observe γ

activity at higher frequencies (as shown in Figures 2B5,B6).
High-frequency oscillations, between 80 and 500 Hz, can be
recorded with EEG and reflect the seizure-generating capability
of the underlying tissue, thus being used as markers of the EZ
(Jacobs et al., 2012). Moreover, even for the generalized seizure-
like case, the low-frequency band activity is evoked whenever
a brain area gets recruited, leading to a sustained signal in
the time interval 1.1 s < t < 1.8 s, where a majority of
the populations approaches the HA state. Similar results have
been obtained for all the other investigated subjects (results
not shown).

In the following, we report a wide analysis of the impact
of the perturbation site on the recruitment effect, for different
excitability values. As before, we use a step current IS(t), with
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FIGURE 2 | Spectrograms of mean membrane potentials for healthy subject H1. (A1, B1) Stimulation current I
(k)
S , (A3, B3) population firing rates rk , and (A4, B4)

mean membrane potentials vk for the EZ (orange) and other populations (black). The blue curves show the network average firing rate and membrane potential.

Non-stimulated node dynamics are plotted as transparent gray curves: some of the nodes adapt their voltage to the stimulation of the EZ and change during

stimulation. (A2, B2) Space-time plots of the population firing rates rk , color-coding the value of the firing rate of each node, as a function of time. (A5, B5)

Spectrogram of the network average membrane potential and (A6, B6) of the vk of the EZ. Column A shows an asymptomatic seizure-like event for η̄(k) = η̄ = −9.54,

column B shows a generalized seizure-like event for η̄(k) = η̄ = −6.3. In both cases, the EZ node 46 is stimulated. Parameter values: Npop = 90, τm = 20 ms, 1 = 1,

Jkk = 20, σ = 1, Jkl = 5J̃kl , ∀k 6= l.

fixed amplitude IS = 10 and duration tI = 0.4 s, to excite a
single population. In each run, the stimulating current targets
a different brain area and the number of recruitments, i.e., the
number of populations that pass from the LA state to the HA state

is counted. The Npop = 90 brain areas are targeted, one at a time,
in 90 individual simulations. We repeat the procedure varying η̄

in a range [−15,−4], with steps of 1η̄ = 0.1. The results for five
exemplary subjects are shown in Figures 3A1–E1).
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FIGURE 3 | Number of recruited brain areas as a function of the excitability parameter η̄ for five exemplary healthy subject connectomes (A–E). Color coding is the

following: blue corresponds to the asymptomatic threshold (one area in HA regime); red represents 90 areas in HA regime (generalized threshold); cyan to purple

indicate intermediate recruitment values, white marks no recruitment. When performing a vertical cut, all nodes are characterized by the same η̄ for panels (A1–E1).

On the contrary, in panels (A2–E2), η̄G represents the mean value of a Gaussian distribution with standard deviation 0.1. Therefore, when perturbing one brain area at

a time, excitabilities are distributed and not uniform in the latter case; the results are averaged over 10 repetitions with different Gaussian excitability distributions.

(A–E) correspond to subjects H1, H5, H12, H16, and H19. Parameters: Npop = 90, 1 = 1, σ = 1, IS = 10, tI = 0.4 s.

FIGURE 4 | (A) Number of recruited brain areas as a function of the excitability parameter η̄, as shown in Figures 3A1–E1, averaged across all subjects. (B) η̄

threshold values for asymptomatic and generalized seizure-like events. Gray dots show the thresholds for each brain area and each subject. Blue and red dots show

the average over η̄
(k)
asy and η̄

(k)
gen across all subjects. The blue and red cross at the bottom shows the average value and its standard deviation for both thresholds

across all subjects and all areas. Parameters as in Figure 3.

If the perturbed area jumps back to the LA state when the
stimulation is removed and no further recruitment takes place,
then the total number of recruited areas is zero, the color is coded

in white. If the perturbed area remains in the HA state without
recruiting other areas, we are in presence of an asymptomatic
seizure-like event (blue regions). For every further recruited
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brain area, the color code changes from cyan to purple. If all brain
areas are recruited, we observe a generalized seizure-like event
(coded as red). For η̄ < −9, most of the targeted brain areas goes
back to the LA state, when the perturbation ends, while for η̄ ≈

−9, we generally observe asymptomatic seizure-like events for all
the subjects and most of the perturbation sites. For increasing η̄

values, the probability for larger recruitment cascades increases,
until the system exhibits generalized seizure-like events for η̄ >

−6. However, some notable differences between brain areas and
among the different subjects are observable. Brain area 72, for
example, corresponding to the rh-CAU, exhibits asymptomatic
seizure-like events at η̄ > −11 for most of the subjects, thus
suggesting that the rh-CAU favors pathological behavior with
respect to other brain areas. On the other hand, some brain
areas are less likely to cause generalized seizure-like events, when
stimulated, than others: brain area 40, for example, the rh-PHIP1,
causes no generalized seizure-like events for any η̄ > −5.
Note that, for very large η̄ values, the system does not exhibit
multistability anymore, but instead has only one stable state,
namely the network HA state, corresponding to the high firing
rate of all populations. Approximately, this happens for η̄ ∈

[−5.7,−4.9], with small variations among the subjects.
The scenario remains unchanged when we take into account

heterogeneous excitabilities η̄(k), as shown in Figures 3A2–E2.
In this case, η̄(k) is drawn from a Gaussian distribution with
mean η̄G, thus mimicking the variability among different
brain areas present in a real brain. The populations are
stimulated, as before, one at a time in individual simulation
runs. However, this time the procedure is repeated for varying
η̄G ∈ [−15,−4], while keeping the standard deviation of the
Gaussian distribution fixed at 0.1. Larger standard deviation
(≥ 1) hinder the rich multistability of the network, by
eliminating the bistability between LA and HA for individual
populations, due to excessively small or large η̄(k), thus impeding
the analysis of the impact of the stimulation, as shown in
the Supplementary Figure 1. In particular, for larger standard
deviation, an increasing amount of nodes reaches the stable
focus regime, thus being able to recruit other brain areas
before the stimulation is applied, while nodes whose effective
excitability turns out to be very small, are too far from the
bistability region to be able to reach the HA regime. The
results shown in Figure 3 are obtained averaging over 10
Gaussian distribution realizations of the η̄ parameter; slightly
more variability becomes apparent especially when considering
the threshold in η̄ to observe generalized seizures. Indeed, the
excitability threshold to observe generalized seizures is the most
drastically affected as the standard deviation increases, as shown
in Supplementary Figure 1.

An overview over all the investigated subjects is possible when
looking at Figure 4A, where is reported the average, over-all
subjects, of the data shown in Figures 3A1–E1 for five exemplary

1While the actual role of the specific regions might in reality be affected by other

factors, not captured by the used structural connectivity estimate and the details

of the current model, this highlights the effect of network structure on propensity

to seizure-like events. The (para)hippocampal region is, in fact, one of the most

commonly affected by epilepsy.

subjects only. The averaging operation smears out the transition
contours, and while the region of generalized seizure-like events
shrinks, it becomes wider in the region of accessibility of partial
seizure-like events, where a small percentage of nodes (∼ 20%)

are recruited. In Figure 4B we report η̄
(k)
asy (η̄

(k)
gen), i.e., the smallest

η̄ value for which an asymptomatic (generalized) seizure-like
event occurs when stimulating population k. Gray dots indicate

the individual thresholds η̄
(k)
asy and η̄

(k)
gen for each of the 20 subjects

and 90 brain areas; the averages over all subjects are denoted
by blue and red circles, respectively, for each k ∈ [1, 90].
Averaging these thresholds over all subjects and brain areas yields
an asymptotic threshold of η̄asy = −9.36±0.43 and a generalized
threshold of η̄gen = −6.04 ± 0.38. Brain areas 72, 73, 67, and 3
have lower thresholds for asymptomatic seizure-like events, areas
40, 86, and 82 have larger thresholds for generalized seizure-like
events and do not fall within a standard deviation. The variability

in the response among the different areas is more evident for η̄
(k)
gen

values compared to the η̄
(k)
asy ones: the threshold values to obtain

an asymptomatic seizure-like events are very similar among the
areas and among the subjects, while the threshold values to
obtain a generalized seizure-like event strongly depend on the
stimulated area and on the subject.

3.1.3. The Role Played by Brain Area Network

Measures on Enhancing Recruitment

As shown in Figure 4B, η̄
(k)
asy does not vary significantly among

the subjects and among the brain areas; it mainly occurs in

the range η̄
(k)
asy ∈ [−10,−9], with just few nodes (k ∈

[72, 73, 67, 3]) showing smaller values. Since each brain area
is characterized by its network measure, the first hypothesis
that we aim to test, is the role played in the identification
of the threshold, by the different network measures. We will
verify in the following that connection strength and shortest

path length are determinants to identify the threshold η̄
(k)
gen:

Generalized seizure-like events are enhanced by nodes forming
a clique that rapidly communicate through a dense subgraph.

In particular, we investigate the dependency of η̄
(k)
asy on the

node strength, clustering coefficient, shortest path length, and
betweenness centrality of the corresponding brain area, as shown
in Figure 5. A very strong correlation between asymptomatic
threshold and node strength becomes apparent: Brain areas
that are strongly connected, need smaller excitability to pass
from the LA to the HA regime (Figure 5A1). The same holds
for the clustering coefficient, even though the relationship is
less sharp (Figure 5B1). Moreover, it is possible to observe

a direct correlation between η̄
(k)
asy and shortest path length

(i.e., shortest is the path and smallest is the threshold value),
while betweenness is smaller for higher threshold values
(Figures 5C1,D1, respectively).

When considering the threshold for generalized seizure-like
events, we face a higher variability among different nodes (as

shown in Figure 4B, η̄
(k)
gen varies mainly between −6.5 and

−5.5). The dependency of η̄
(k)
gen on the node strength reveals

a strong correlation: Areas with very small node strengths
are characterized by large thresholds and are less likely to
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FIGURE 5 | Thresholds η̄
(k)
asy for asymptomatic seizure-like events (A1–D1) and η̄

(k)
gen for generalized seizure-like events (A2–D2) as a function of node measures: (A)

Node strength, (B) clustering coefficient, (C) average shortest path length, and (D) betweenness centrality. For each panel, the thresholds η̄
(k)
asy, η̄

(k)
gen are calculated for

all k ∈ [1, 90] brain areas and averaged over all 20 subjects. Parameters as in Figure 3.

cause generalized seizure-like events. On the other hand, for

large node strengths, η̄
(k)
gen saturates at a value ≈ −6.5 (as

shown in Figure 5A2). The clustering coefficient, shown in
Figure 5B2), shows a similar relationship as the node strength,
even though more scattered. This is not surprising since node
strength and clustering coefficient are strongly correlated with
each other (the Pearson correlation coefficient, in this case, is
r = 0.75, as shown in Supplementary Figure 2), thus explaining
the similarity between the analyses reported in Figures 5A,B.
Moreover, regarding the integration measure, it turns out that

the average shortest path length correlates positively with η̄
(k)
gen

(as shown in Figure 5C2). Brain areas that are characterized, on
average, by a short path to all the other areas are more likely
to cause generalized seizure-like events. Finally, the betweenness

centrality correlates negatively with η̄
(k)
gen (Figure 5D2). This

means that brain areas that are crossed by many shortest path
lengths (large betweenness centrality) are more likely to cause
generalized seizure-like events. For increasing node strength,
clustering coefficient, and betweenness centrality, we observe a

saturation toward η̄
(k)
gen ≈ −6.5, that corresponds to the critical

excitability value, during the up-sweep simulation, at which the
system jumps to the HA network state (Figure 1A2).

To explore the causal mechanisms of brain dynamics and
understand the sequential mechanism of node recruitment
in more detail, we investigate the timing at which different
brain areas are recruited. For this, the excitability parameter η̄,

common to all populations, is set to the threshold value η̄
(k)
gen

of the perturbed brain area k, ensuring complete recruitment

of all populations, when perturbing populations k ∈ [1, 90].
The results shown in Figure 6 are obtained by averaging over k
and the different subjects: in 90 individual simulations for each
subject, a single brain area k = 1, . . . , 90 is stimulated with an
external step current IS(t), characterized by an amplitude IS = 10
and a duration tI = 0.4 s. For each k, the recruitment time of
all the other areas is registered. The stimulated brain area stands
in for the EZ. The brain areas and corresponding node measures
are sorted by the recruitment time in ascending order. The values
for recruitment time (Figure 6A), the weight of a connection
between a single area and the EZ (Figure 6B) and shortest path
(Figure 6C) is finally obtained averaging over all the stimulated
nodes and all the subjects (i.e., the average is performed over
1, 800 simulations across all 90 brain area perturbations times
for all 20 subjects). The same averaging procedure has been
employed to obtain the data shown in Figures 6D–G. However,
in this case, the node measures are evaluated over all the
connections of the recruited node minus the connection to
the EZ. While ignoring the link to the exciting area (EZ), the
overall network measure for connection weights (Figure 6D),
clustering coefficient (Figure 6E), shortest path (Figure 6F), and
betweenness centrality (Figure 6G) are reported.

On average, the first recruited brain area (labeled as 1) is
connected to the EZ with a weight equal to 0.25 (1/4 of the
maximum possible weight), and it is characterized by an average
shortest path length to the EZ of <4.7. Moreover, the area is
recruited within an average time of <156 ms (calculated after
the onset of the external perturbation current). However, the
first recruited area has, not only the strongest weight and the
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FIGURE 6 | (A) Recruitment times reported in descending order: Brain area 1 is the brain area that is recruited first and brain area 90 is the last recruited brain area.

(B) Connection weights between the recruited brain area and the EZ, ordered according to their recruitment time, thus following the indexing of (A). (C) Shortest path

between the recruited area and the EZ, ordered according to their recruitment time. (D) Connection weights between the recruited brain area and all the nodes except

EZ, ordered according to their recruitment time. (E) Clustering coefficient between the recruited brain area and all the nodes except EZ, ordered according to their

recruitment time. (F) Shortest path between the recruited area and all the other nodes except EZ, ordered according to their recruitment time. (G) Betweenness

centrality between the recruited brain area and all the nodes except EZ, ordered according to their recruitment time. The excitability η̄(k) is set to the subject-specific

threshold η̄
(k)
gen, according to Figure 3B for each subject separately. Data are averaged over all subjects and all the stimulated areas. Parameters: Npop = 90, 1 = 1,

σ = 1, IS = 10, tI = 0.4 s as in Figure 3.

shortest path to the EZ but also has, in general, the largest
node strength, largest clustering coefficient, shortest average
path length, and largest betweenness centrality. The seizure-like
event spreads rapidly along with the brain areas with strongest
connection weights outgoing from the EZ; the stronger weights
are associated with the shortest paths from the EZ. Overall, a
region well connected is a region well recruited; this is related
to the log-normal distribution of the weights (as shown in
Supplementary Figure 3): few connections per node have a
strong weight, thus allowing for fast recruitment. Note that the
results for one exemplary subject and just one perturbed brain
area per time (i.e., not averaged over all the brain areas and
over all subjects) are comparable, even though the corresponding
relationships are characterized by more variability (data not
shown).

If we vary the amplitude IS of the perturbation current, the
recruitment time will vary accordingly, decreasing for increasing
IS. In particular, in Figure 7we show an exemplary case, obtained
from the stimulation of one brain area (45), for a specific
subject (results are similar for other trials). Irrespectively of the
recruitment order, the time needed by the first 10 recruited brain
areas to pass from the LA to the HA state decreases slightly for
increasing amplitude. However, this decrease reaches saturation
at a current value IS ≈ 40 already. The order of recruitment varies
little: we observe some exchanges between the 4-th and 5-th and
between the 9-th and 10-th recruited areas. For example, for an
amplitude IS = 15, the 9th recruited area (dark blue circles) gets
recruited earlier than the 10th area (pink dots), while, for very
strong currents (IS = 100), the 9th area gets recruited latest. On
the other hand, we do not observe a significant change in the
recruitment time and order if we increase the duration tI of the
stimulation (as shown in Supplementary Figure 4).

FIGURE 7 | Recruitment times of the first 10 recruited areas as a function of

the input current IS. The strength of the input current is varied between 0 and

100 on the x-axis. The order of the recruitment is color-coded for each current

strength, and it changes slightly with different current strengths. Parameters:

Npop = 90, 1 = 1, σ = 1, tI = 0.4 s, η̄(k) = η̄ = −6, stimulation site: brain area

k = 45 of subject H1.

3.2. Epileptic Patients
3.2.1. Phase and Bifurcation Diagrams
In this section, the structural connectivity matrices of epileptic
patients are employed and an analysis, analogous to the one
in section 3.1.1, is provided. We present the phase and
bifurcation diagrams for the multipopulation neural mass model,
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employing the structural connectivity matrices of epileptic
patients. As detailed before, the bifurcation diagrams shown
in Figures 8A1–A3, for different σ values, are obtained by
performing an adiabatic scan along η̄(k) = η̄, following the up-
and down-sweep protocols.

As for the healthy subjects, the transition is hysteretic with
η̄LA < η̄HA. However, in this case, the width of the hysteretic
transition is bigger, especially for larger σ values, as testified
by the comparison with the dotted red curve, reported in
Figures 8A1–A3, that represents the results shown in Figure 1.
This increased width can be translated in terms of the extension
of the multistability region in the phase diagram (as shown in
Figures 8B,C), which turns out to be slightly larger than before.
Also in this case, the results for a healthy subject are reported
for a better comparison (continuous red curve in Figures 8B,C).
The increase in size mainly occurs due to a shift of η̄LA, i.e., of
the left boundary of the multistability regime. In this region, the
transition from HA to LA, following the down-sweep, is more
smooth and elongates toward smaller η̄ values. This implies that,
in this transition region, more single population HA states exist
for epileptic patients than for healthy subjects. In other words,
brain areas of epileptic subjects are more prone to recruitment2.

While the phase diagram is obtained in the absence of time-
varying input, we investigate the response of the multipopulation
system to transient stimulation in the following. As for the
healthy subjects, a single population is excited by injecting a step
current IS(t) of amplitude IS = 10 and duration tI = 0.4 s.
Initially (t < 0), the system is in a multistable regime, starting
in the low-activity network state. For small η̄ values (η̄ = −14,
identified by the triangle in Figure 8C), when a single node is
stimulated, the system reacts analogously to the healthy subject
case: during the stimulation, only one stable network state exists,
i.e., a focus equilibrium with an LA-HA configuration for which
only the stimulated node is in HA (Figure 9A2). This focus is
approached via damped oscillations (0 s < t < 0.4 s). When
the stimulation is removed, the network maintains the LA-HA
configuration, but approaches the new location of the focus
again via damped oscillations (Figures 9A3,A4). As a result, the
stimulated node has large firing activity, while the remaining
network is in a LA regime. For higher excitability values (η̄ =

−7.5, identified by the square in Figure 8B), the perturbation
of a single node gives rise to a cascade of recruitments, where
other brain areas, initially not perturbed, reach the HA regime by
showing damped oscillations (Figures 9B2–B4). With respect to
the recruitment features shown in Figure 2, we observe in this
study a faster emergence of the generalized seizure-like event:
once a brain area is stimulated, the others react, in-substantial
number, quite immediately.

Looking at the spectrograms, the transition of the stimulated
population to the HA regime is characterized by a transient
activity at low frequency (< 20 Hz) and a sustained activity in

2Please note that, irrespectively of the numerical results, any difference observed

between the structural connectivity matrices obtained from the cohort of healthy

subjects and epileptic patients may be (at least partially) ascribed to the different

acquisition and processing procedures in the two research centers rather than due

to disease-related causes.

the γ band (50–180 Hz), observable throughout of the stimulus,
as shown in Figure 9A6, where the spectrogram for the single
stimulated population is reported. Regarding the spectrogram
of the mean membrane potentials averaged over the network
populations (Figure 9A5), it turns out that the low-frequency
activity in the δ, θ bands is present, while the activity at high
frequency simply reflects the activity of the stimulated area.
Activity in the δ band, together with multiple types of α-like
rhythms have been recently found in a network of two Jansen-
Rit neural mass models, representing two cortical regions, as a
result of input changes in the other region (Ahmadizadeh et al.,
2018), thus confirming that the range of possible activity varies
with changes in the external inputs and interconnectivity gains.

In the case of large recruitment events, at larger excitability
values, it is possible to observe γ activity at higher frequencies
(as shown in Figures 9B5,B6), which is enhanced with respect
to the situation where an asymptomatic seizure-like event is
present. Moreover, comparing the spectrograms in Figure 9

and those reported in Figure 2, we see that the activity takes
place at higher frequency ranges when considering structural
connectivity matrices of epileptic patients and the activity is
mainly concentrated in the EZ. A further comparison is possible,
looking at Figures 9A8–B8, where the spectrograms for the
healthy subject H2 are reported.With respect to the case shown in
Figure 2, the excitability parameter has been increased to observe
a faster domino-like effect, on the same temporal scale as for
the epileptic patients. While high-frequency oscillations (>200
Hz) are observable for the epileptic patient case, they are not
detectable in Figure 9B8 for the healthy subject case. The last
statement may be qualified, however, by recent studies proposing
high-frequency oscillations (80–500 Hz) recorded not only at
seizure onset but also between seizures (the interictal period),
as a putative new marker of the epileptogenic focus (Jacobs
et al., 2012). More specifically fast cortical ripples superimposed
to interictal epileptiform discharges were correlated with the
seizure onset zone and primary propagation area in neocortical
epilepsy (Khadjevand et al., 2017). Neocortical ripples were also
found to be more specifically confined to the seizure onset and
propagation regions, and thus a better marker compared to
interictal epileptiform discharges alone (Wang et al., 2013). High-
frequency oscillations, as obtained via numerical experiments
and shown in Figures 9B5,B6, are much more frequent in the
seizure-like onset zone than outside, where they are often totally
absent. The rather empty spectrograms of mean membrane
potentials for patient E6 are a result of rather rapid recruitment
of a majority of nodes, thus giving rise to a strong signal
change, immediately upon recruitment, which suppresses the
rest of the signal in the spectrogram. At the same time, the
damped oscillations are all compressed within a narrow time
window, and not very elongated in time, as it happens for
healthy subjects (as shown in Figure 2). In other words, if the
generalized seizure-like event is rapid, all the signals overlap,
and this is especially clear looking at the strong low-frequency
bands. A fast generalized seizure-like event, in absence of high-
frequency oscillations outside the EZ, can be obtained for
healthy subjects only increasing the excitability parameter: for
higher η̄ values, the recruitment is more sudden, as shown
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FIGURE 8 | Phase and bifurcation diagrams for patient E6. (A1–A3) Equilibrium firing rates
〈

r*
〉

vs. η̄ for the up sweep (blue dots) and down-sweep (orange squares).

For each η̄ ∈ [−50, 10] in steps of 1η̄ = 1.5, the system is initialized using the final state of the previous run and evolves for 2 s after which the average network firing

rate in the equilibrium state is determined. Different panels correspond to different σ values: σ = 1.5 (A1), σ = 1 (A2), and σ = 0.5 (A3). The solid (dashed) black line

corresponds to the stable (unstable) equilibria in the single-node case. The dotted red line depicts the results for the healthy subject H1 reported in Figure 1. Maps of

regimes as a function of σ and η̄ showing the network average
〈

r*
〉

color-coded for up- (B) and down-sweep (C), obtained by following the same procedure as in

(A1–A3) for σ ∈ [0, 2] in steps of 1σ = 0.05. The black line indicates the single-node map of regimes like in Montbrió et al. (2015). The red solid line indicates the

boundaries of the map of regimes previously as shown in Figure 1 for the healthy subject H1. In (B,C) the cyan square and triangle mark η̄ = −7.5,−14, respectively.

Parameter values: Npop = 88, τm = 20 ms, 1 = 1, Jkk = 20, Jkl = 5J̃kl , ∀k 6= l.

in Figure 9B8). A difference between the signals obtained by
numerically simulating the multipopulation exact neural mass
model and the high-frequency oscillations observed in human
intracranial EEG studies can be found in the different oscillation
amplitudes: high-frequency oscillations recorded during pre-
surgical evaluation in patients, both at the seizure onset and
during the interictal period, are characterized by a low amplitude
(Allen et al., 1992; Traub et al., 2001; Worrell et al., 2004;
Zijlmans et al., 2012), while this is not the case in this study. We
can conjecture that higher amplitudes are related to the nature
of the coupling, which we have chosen globally coupled and
fully excitatory.

3.2.2. Temporal Recruitment of Clinically and SEEG

Predicted PZs
In the following, we test the clinical predictions for epileptic
patients, by choosing the EZs, identified by clinical doctors
via presurgical invasive evaluation, as perturbation sites. We
investigate the recruitment times of different brain areas
following such a perturbation and compare the order of
recruitment with the experimental data given for each subject. A
general overview of the recruitment times of all brain areas, for all
patients, is shown in Figure 10. As perturbation sites, the clinical
EZs are used for all patients. For patients with several nodes
detected in the EZ, all areas were stimulated simultaneously. The
perturbation step current (IS = 10, tI = 0.4 s) is applied,
to each perturbation site, in correspondence with the dashed

vertical black line. The parameters are identical for almost all
patients and are chosen such that at least 90% of the brain areas
are recruited while still allowing multistability among various
LA-HA configurations, including the network LA state. For
each patient (identified via his/her number on the y-axis), the
recruitment time of each brain area is reported: the gray dots
represent the time values for each brain area. Superimposed
on the gray dots are orange and blue dots that identify the
brain areas belonging to the PZ, according to the non-invasive
(PZClin) or invasive (PZSEEG) presurgical evaluation, respectively.
The recruitment time-averaged over all brain areas is identified,
for each patient, by a green vertical line, while the boxes
contain the second and third quartile of the distribution, and
the whiskers have 1.5 the length of the interquartile range
(IQR) from the upper or lower quartiles. A one-sided Mann
Whitney U-test has been performed to estimate the statistical
significance of PZSEEG and PZclin recruitment times, as shown
in Supplementary Figure 5. Remarkably, the propagation zones
PZClin and PZSEEG turn out to be among the first recruited brain
areas for all patients in the numerical experiments. However,
the temporal dynamics vary for all patients, with E8 and E1
having late recruitments. Looking at the set of the first 10
recruited brain areas for each patient (reported in detail in
Supplementary Tables 5–7), we notice that most of the areas,
identified by clinicians as belonging to the PZ, are actually within
this set: for patients E4, E5, E6, E9, and E15, all the areas
belonging to PZClin are among the first 10 recruited areas, while
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FIGURE 9 | Spectrograms of mean membrane potentials for patient E6. (A1, B1) Stimulation current I
(k)
S , (A3, B3) population firing rates rk , and (A4, B4) mean

membrane potentials vk for the EZ (orange) and other populations (black). The blue curves show the network average firing rate and membrane potential. (A2, B2)

Space-time plots of the population firing rates rk , color-coding the value of the firing rate of each node, as a function of time. (A5, B5) Spectrogram of the network

average membrane potential and (A6, B6) of the vk of the EZ. Column A shows an asymptomatic seizure-like event for η̄ = −14, column B shows a generalized

seizure-like event for η̄ = −7.5. The EZ node 77 (rh-PrG) is stimulated. Parameter values: Npop = 88, τm = 20 ms, 1 = 1, σ = 1.25, Jkk = 20, Jkl = 5J̃kl , ∀k 6= l. For

comparison are shown the space-time plots of the population firing rates rk (A7, B7) and the spectrogram of the network average membrane potential (A8, B8) for

healthy subject H2. In accordance with the above panels, column A shows an asymptomatic seizure-like event (for η̄ = −9.20), column B shows a generalized

seizure-like event (for η̄ = −5.3). The EZ node 46 is stimulated. Parameter values: Npop = 90, τm = 20 ms, 1 = 1, Jkk = 20, σ = 1, Jkl = 5J̃kl , ∀k 6= l.
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FIGURE 10 | Recruitment times of all brain areas for the cohort of epileptic

patients: The recruitment time, reported on the x-axis, identifies the time

needed by a brain area to jump to the HA regime after the application of the

perturbation current. The boxplots consist of the recruitment times of all brain

areas for each patient. Patients are identified according to their numbers on

the y-axis. The median is represented as a green vertical line while the boxes

contain the second and third quartile of the distribution. The whiskers are

chosen with a maximum length of 1.5 × IQR (interquantile range) and show

the most extreme observed values that are within 1.5 × IQR from the upper or

lower quartiles. The gray dots represent the recruitment times for each brain

area. The orange dots show the recruitment of a brain area clinically predicted

to be part of the PZClin. The blue dots represent the recruitment of a brain area

that is part of the PZ according to the SEEG measurements PZSEEG.

Parameters: Npop = 88, 1 = 1, σ = 1.25, IS = 10, tI = 0.4 s, η̄(k) = η̄ = −7.5

[except for patients E1 (η̄ = −6) and E11 (η̄ = −6.5)].

the same holds for patients E2, E3, and E6 if we consider the
areas identified by the SEEG analysis as belonging to the PZSEEG.
In general, a large number of the first 10 recruited areas, as
revealed by the simulations, coincides with the areas that are
supposed to be crucial in the seizure spreading according to the
medical doctors (e.g., for patients E2, E3, E10, E12, E13, and
E14). Moreover, the predictability of the model is higher if we
compare the results with the predictions PZClin, while brain areas
belonging to the PZs, are in general recruited before the median
recruitment time. However, the model predictions are not good
for the following cases: for patients E1, E8, E11, and E14, the
areas belonging to the PZSEEG are only occasionally identified
(half or less than half of the times), while for patients E1, E8, and
E11, other nodes are generally recruited before those belonging
to the PZClin, that are identified with a percentage <50%. In all
the former bad cases, the EZ has not been correctly identified,
as results from the relative surgical outcomes (as shown in
Supplementary Table 3). Therefore, the incorrect identification
of the origin of seizure-like events may lead to a misleading
identification of the PZ: in other words, a different potential EZ

will lead to a different recruitment order, possibly closer to the
experimental data.

To evaluate the dependence of the shown results on the
chosen parameters, with the idea in mind of going toward
a more biologically realistic framework, we have repeated the
previous numerical experiment by employing a randomGaussian
distribution of the excitability parameter η̄(k) (as shown in
Figure 11). The distribution is centered at η̄G = −7.5 with
standard deviation 0.1 for all patients except E1 and E11. For the
latter patients, we shifted the center toward larger values, to get
a sufficient number of recruitments when the EZ is stimulated.
In all cases, the results are averaged over 10 different random
realizations of the distribution. More details on the impact of
different realizations of η̄(k) are given, for one exemplary patient,
in Supplementary Figure 6. For sufficiently larger standard
deviation than the one employed (≥ 1), a too large fraction of the
populations would not be able to exhibit bistability between LA
and HA, highlighting the system sensitivity to finite parameter
changes. However, for the chosen distribution, the results are
comparable with the ones obtained with identical η̄(k) = η̄,
shown in Figure 10. For patients E2, E3, E4, E5, E6, and E9 the
predicted PZ are always the first ones to be recruited. Moreover,
most of the areas are usually recruited in the first half of the
recruitment process, rapidly increasing in number, once the areas
in the PZ have been recruited (thus giving rise to a peak in the
histogram). As a general remark, in view of the distributed nature
of the excitabilities, recruitments at later times, with respect to the
former case with homogeneous η̄(k) = η̄, may now take place.

For patients with many nodes in the EZ, the recruitment
process may result to be more complex, as it happens for
patients E14 and E10, for which the histograms are less narrow,
but instead widely distributed. However, this cannot be taken
as a general rule, since comparable histograms are obtained
for patients E13 (one node in the EZ) and E8 (two nodes in
the EZ), while for E15 and E12 (with both four nodes in the
EZ) the histograms result to be very narrow, thus implying
a fast recruitment process of most of the brain areas. The
differences among the histograms can be partially justified by
the fact that patients have specific connectomes with individual
characteristics and by the analysis that we have proposed by
choosing similar η̄ values for all the patients. In this way, we
have preferred to have a general look at the multiple self-
emergent dynamics in a group of patients, instead of fine-tuning
the excitability parameter to obtain similar collective behaviors.
What we observe in this study is strongly related to what we
have presented in Figure 9: The recruitment speed depends on
the excitability parameter and the individual network structure.
Faster recruitment events may be obtained for different subjects
by increasing the excitability value. In the following section, we
try to understand, based on network topological measures, the
origin of the discrepancies among the clinical prediction of PZs
and the first recruited areas predicted by the presented model.

3.2.3. Relationship Between DTI Network Structure

and Temporal Seizure Recruitment
To understand the mechanism underlying the recruitment
events, we evaluate the relationship between the network
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FIGURE 11 | Histograms of recruitment times for all patients with epileptic. For each patient (identified by his/her number), the recruitment times of all the brain areas

are collected, once the EZ is stimulated. If several areas were identified in the EZ, they are all stimulated simultaneously. The EZ is chosen according to the presurgical

evaluation (as shown in Supplementary Table 4) and vary from one patient to the other. Parameters as in Figure 10 except for η̄(k) = −7.5± 0.1 (for E1

η̄(k) = −6± 0.1, for E11 η̄(k) = −6.5± 0.1). Results are averaged over 10 repetitions of different random Gaussian distributions.

structure, in terms of topological measures, and the recruitment
times of the first 10 recruited brain areas, as obtained
through numerical experiments. For simplicity, we consider
in this study patients with only one brain area in the EZ
and we report, in Figure 12, the potential EZ (yellow circle)
and the first 10 recruited areas in a graph representation.
The results relative to all the other patients are reported in
the Supplementary Figures 7–9. The first recruited areas are
ordered according to their recruitment times in clockwise order.
Moreover, we indicate in blue the areas belonging to the PZ,
as identified according to the presurgical invasive evaluation
(PZSEEG). Black lines identify the weighted connections between

all areas and their thickness is proportional to their weight. The
sizes of the circles representing each brain area are proportional
to their inverse recruitment time (Figures 12A1–D1), to their
weight connecting each area to the EZ (Figures 12A2–D2), and
to their inverse shortest path length between each node and the
EZ (Figures 12A3–D3), while the size of the yellow EZ circle
remains fixed.

Since in (Figures 12A1–D1) the node size is proportional
to the inverse recruitment time, large circles indicate early
recruitment while small circles indicate late recruitments;
hence, the circles become smaller clockwise. In panels
(Figures 12A2–D2) the node size is proportional to the
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FIGURE 12 | Graph plot of the first 10 recruited areas, ordered clockwise according to their recruitment times, as found via numerical experiments. Node circle size

corresponds to the inverse recruitment time (A1–D1), to the connection strength to the EZ (A2–D2), and the inverse shortest path length to the EZ (A3–D3). The size

of the yellow EZ remains fixed. Blue dots distinguish a recruited area to belong to the PZSEEG, i.e., the PZ identified according to the presurgical invasive evaluation.

Results are obtained for patients E2 (A1–A3), E3 (B1–B3), E6 (C1–C3), and E13 (D1–D3). Parameters as in Figure 10.

weight connecting each area to the EZ and it turns out that, for
all patients, the first recruited area has the strongest connecting
weight. However, after a few recruitments, this does not hold
anymore. There are many examples in which areas with a strong
weight to the EZ (as shown in e.g., area 46 or 48 for patient E6)
are recruited much later than areas with very small weights (e.g.,
area 83 for FB). The seizure-like event propagates as a chain
reaction and, therefore, the strongest connecting weight to the
EZ is only decisive for the very first recruited area. Later, strong
connections to other early recruited areas play a decisive role,
as it is the case for area 83 in E6 which has a weak connection
weight to the EZ. However, through its strong connection to
area 74, its weighted shortest path length to the EZ is quite short,
thus meaning that the weighted shortest path length to the EZ
cannot be underestimated to find the recruitment order. Indeed,
in (Figures 12A3–D3) one can see the good predictability of the
shortest path: the node size, proportional to the inverse shortest
path length to EZ, decreases in general with later recruitment.
This is expected, given the fact that the average shortest path
to the EZ considers all connections in the network, not just
the connections subgraph outgoing the EZ. An example of the
high predictability of the shortest path is given by node 38 in
patient E2, which has a shorter path length to the EZ than node

18. Node 38 is recruited before node 18 irrespectively of its
strong connection to node 16 and a connection strength to the
EZ comparable with the one of node 38. However, it is worth
noticing that, in general, the nodes that are recruited before
the areas belonging to the PZ, show either stronger connecting
weights, or shortest path length to EZ.

For later recruitments, the prediction becomes even more
difficult because one needs to account for the temporal order
of the seizing brain areas. As shown before, the area which is
first recruited is the one with the strongest connection to the
EZ. However, depending on the strength of the connection,
the recruitment time changes and it increases for decreasing
strength. In the case of patient E2, the recruitment of the second
area is determined, more by the strength of the connections to
the EZ (i.e., area 20) than by the connection to area 16, while
for the recruitments of the third and fourth areas, the strong
connections of node 18 to 16 and of node 17–38, i.e., the first
and second recruited nodes, are fundamental. On the other
hand, when the first recruited areas have strong connections
to the EZ, for example area 74 in patient E6, the successive
recruitments are strongly influenced by the first recruited area,
whose outgoing graph reveals areas that are recruited with high
probability. Thus, the connection to area 74 turns out to be, for
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FIGURE 13 | Relationship between network measure and recruitment time, as found via numerical experiments. (A) Shortest path to EZ; (B) Logarithmic value of the

weight to the EZ for the four patients with a single-node EZ. In (A) all four EZs are shown at (0, 0), while in (B) the EZs are omitted. The recruitment time is calculated in

seconds after the perturbation current has started. In (C,D) the recruitment time values are plotted according to their order, as a function of the shortest path to EZ (C)

and weight to EZ (D) for all 15 patients. In (D) the x-axis was inverted for better comparison. (E) Recruitment times trec of the areas belonging to PZSEEG and (F) PZClin

as a function of the shortest path length to EZ, for all 15 patients. For patients with several nodes detected in the EZ, all areas were stimulated simultaneously.

Parameters as in Figure 10.

the second, third, and fourth recruitment almost as important as
the connection to the EZ (i.e., area 76). Finally, if we compare two
late recruited areas that are characterized by the same shortest
path length to the EZ but with a path to the EZ that crosses very
different nodes, we observe that the area with the path going
through earlier recruited nodes is recruited earlier. The longer
the seizure-like event propagates, the less important the shortest
path length to the EZ becomes and the more important the
path lengths to other recruited nodes become. This underlines
the difficulty of predicting the seizure propagation in complex
networks, however, it is possible to summarize some findings
that hold for almost all patients (including those shown in
the Supplementary Figures 7–9): The first recruited node is,
in general, the one with the strongest connection to the EZ
and the shortest path; strong connections to early recruited
areas are fundamental to determine the recruitment order;

nodes belonging to the PZSEEG, that are not identified by the
simulations as first recruited nodes, show intermediate values of
connection strength and shortest path, while the nodes that are
recruited before are either more strongly connected the EZ or to
the previously recruited nodes.

To confirm the importance of the shortest path length
and the strength of the connections outgoing the EZ in
determining recruitment events, we report in Figure 13 the
recruitment time values as a function of the shortest path and
the connection weights for the patients with a single node as
potential EZ (Figures 13A,B) and for all 15 epileptic patients
(Figures 13C,D). While in Figure 13B, the recruitment time
is plotted over the logarithm of the weight, in Figures 13C,D

the values of the recruitment time, plotted as a function of
the shortest path (connection weight), are ordered according to
their recruitment order. In particular, the order for recruitment,
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shortest path, and weight to EZ is ascending from small values
to large values. This means that, in Figure 13D, the areas with
the strongest weights (87th, 86th, etc.) correspond to the areas
that are recruited earliest (1st, 2nd, etc.). The ordering has
been preferred to the specific values of the shortest path and
connection weight when reporting data for all 15 patients, to
obtain a better visualization. For patients E2, E3, E13, and E6,
the recruitment time grows almost linearly with the shortest
path, while it decreases for increasing weights. This analysis is
confirmed in Supplementary Figure 10, where a regression fit is
performed over the data shown in Figure 13A, thus underlying
the approximately linear relationship between the shortest path
length and the recruitment time for larger trec. The relationship
is not anymore so evident when we consider different cases
of potential EZs, that is composed of more that one area.
However, in this case, it is still possible to affirm than the earliest
recruitments are associated with the shortest path lengths and the
strongest weights, while the nodes corresponding to PZSEEG or
PZClin that, according to the simulations, were recruited late, have
very long shortest path lengths to the EZs or very small weights.

In general, the recruitment mechanism is not completely
defined by the shortest path length and the connection weight,
therefore, it is not possible to match the pre-surgical predictions
in terms of PZSEEG and PZClin if we try to identify the nodes
belonging to the PZ by calculating the first recruited nodes
according to their shortest paths length or their connection
weights. In particular, it turns out that the PZSEEG areas are well
predicted by the investigated model if the shortest path length
between the predicted PZ and the EZ is short, as shown in
Figure 13E. However, for patients E8 and E10, the recruitments
of the nodes belonging to PZSEEG happen much later when
compared to brain areas of other patients with a similar shortest
path length. Equivalently in Figure 13F it is possible to observe
that, for short values of the shortest path length (<5), there
is a linear correspondence between short recruitment times
and PZClin areas that are characterized by small values of the
shortest path. However, the areas belonging to PZClin are still not
identifiable, in terms of topological measures, for patient E8.

To conclude this section on the influence of single
connectome topology in determining activity spreading and area
recruitment, we elaborate the data reported in Figure 10 by
sorting, from top to bottom, the patients according to their
median shortest path length, calculated on all areas with respect
to the EZ. In Figure 14 are shown the recruitment times of all
brain areas for all patients. Since patients are ordered according
to their median shortest path length, the brain areas of E4 have,
on average, the shortest paths to the EZ and the areas of E1 the
longest. In general, it is possible to detect a slight trend, for the
overall recruitment events, to delay with longer average shortest
path lengths. More in detail, E10 and E8 show both very long
and very short recruitment times, thus confirming the results
obtained in Figure 11 for Gaussian-distributed excitabilities. The
scattering of the recruitment times for these patients reflects that,
on average, their recruitment times are longer with respect to
the other patients. However, the mean recruitment times are
comparable with those of E11, E1, which show comparatively
late recruitments irrespectively of the fact that are characterized

FIGURE 14 | Recruitment times of all brain areas and all patients. The patients

are sorted from top to bottom according to their median shortest path length,

calculated by listing all the shortest path lengths of all areas to the EZ and then

locating the number in the center of that distribution. Gray dots and diamonds

show individual recruitments (we use two different symbols to highlight those

values that are beyond the boxplot whiskers); boxes cover the 2nd and 3rd

quartile and whiskers extend 1.5 times the IQR (whiskers are asymmetric,

comprising the most extreme observed values that are within 1.5×IQR from

the upper or lower quartiles). Parameters as in Figure 10.

by a longer median shortest path. A common characteristic
that brings together patients E10, E8, E11, and E1 is the
weak connection among the EZ and the first recruited area,
that slows down the recruitment time (as already mentioned
when discussing Figure 12), thus suggesting that is the interplay
between connection strength and shortest path to determine
the efficacy of seizure spreading and not the single topology
measure alone.

3.2.4. The Impact of the Input Current Strength on the

Recruitment Time
Following the same approach used to obtain the results shown
in Figure 7 for a healthy subject, we present here an analysis
on the impact of the stimulation strength on the recruitment
mechanism. Figure 15 displays the recruitment times of the
first 10 recruited areas using different amplitudes IS of the
step current IS(t), while fixing the duration tI = 0.4 s. The
analysis has been performed for patients E2 (Figure 15A), E3
(Figure 15B), E6 (Figure 15C), and E13 (Figure 15D), thus
integrating the information on the dependency on topological
measures presented in the previous section. As expected, the
recruitment times decrease for larger amplitudes. However, the
order of recruitment does not substantially change. This implies
that, whenever we increase the amplitude, the recruitment
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FIGURE 15 | Recruitment times of the first 10 recruited areas as a function of the input current IS for the epileptic patients (A) E2, (B) E3, (C) E6, and (D) E13. The

strength of the input current is varied between 0 and 100 on the x-axis, while its duration is kept unchanged at tI = 0.4 s with respect to the previous numerical

experiments. The order of the recruitment is color-coded for each current strength (i.e., blue dots indicate the recruitment of the EZ, green dots indicate the first

recruited area, red the second, etc.), and it holds the same for all investigated patients. Parameters as in Figure 10.

mechanism remains unaffected: the same populations are
involved in the seizure spreading and in the same order. What
changes is the speed of the spreading and the time necessary
to observe a generalized seizure-like event, which is smaller for
stronger currents. As a general remark, the brain areas that are
recruited after the first ones (i.e., the 5th, 6th,...,10th recruited
areas), tend to be recruited more simultaneously for increasing
IS, thus leading to possible changes in the recruitment order. This
can be appreciated especially for patient E2: for an amplitude
IS = 10, for example, the 10th brain area (pink) gets recruited
later than the 9th area (dark blue), while for very strong currents
(IS = 100), the dark blue area gets recruited latest whereas the
pink area gets recruited earlier.

On the other hand, if we vary the step current duration
tI keeping the amplitude IS = 15 fixed, we do not
observe any change in the recruitment times of the first
10 recruited areas, analogously to the healthy subject case
presented in Supplementary Figure 4. Results are shown in the
Supplementary Figure 11.

4. DISCUSSION

Neural mass models have been actively used since the 1970s
to model the coarse-grained activity of large populations of

neurons and synapses (Wilson and Cowan, 1972; Zetterberg
et al., 1978). They have proven especially useful in understanding
brain rhythms (Da Silva et al., 1974, 1976; Sotero et al., 2007),
epileptic dynamics (Jirsa et al., 2014; Wendling et al., 2016), brain
resonance phenomena (Spiegler et al., 2011), resting state (Ghosh
et al., 2008; Deco et al., 2011), task activity (Huys et al., 2014;
Kunze et al., 2016), and neurological and psychiatric disorders
(Bhattacharya and Chowdhury, 2015) and are very popular in
the neuroimaging community (Valdes-Sosa et al., 2009; Moran
et al., 2013). Moreover, the desire to understand large scale
brain dynamics as observed using EEG, MEG, and fMRI has
prompted the increasing use of computational models (Bojak
and Breakspear, 2014). Large-scale simulators such as The Virtual
Brain (Sanz-Leon et al., 2015) and research infrastructures such
as EBRAINS (http://ebrains.eu) make heavy use of networks
of interconnected neural mass models and enable non-expert
users to gain access to expert state-of-the-art brain network
simulation tools.

Althoughmotivated by neurobiological considerations, neural
mass models are phenomenological in nature, and cannot hope
to recreate some of the rich repertoires of responses seen in
real neuronal tissue. In particular, their state variables track
coarse-grained measures of the population firing rate or synaptic
activity. At best they are expected to provide appropriate levels of
description for many thousands of near, identical interconnected
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neurons with a preference to operate in synchrony, but they
cannot reproduce the variation of synchrony within a neuronal
population which is believed to underlie the decrease or increase
of power seen in given EEG frequency bands. Importantly, unlike
its phenomenological counterpart, the next-generation neural
mass model we have implemented in this study, is an exact
macroscopic description of an underlying microscopic spiking
neurodynamics, and is a natural candidate for use in future
large scale human brain simulations. In addition to this, the
inability of a single neural mass model to support event-related
desynchronization/synchronization (Pfurtscheller and Da Silva,
1999) or to capture the onset of synchronous oscillations in
networks of inhibitory neurons (Devalle et al., 2017), reminds us
that these phenomenological models could be improved upon.
While building more detailed biophysically realistic models of
neurons would increase the computational complexity and the
difficulties to interpret the behavior of very high dimensional
models in a meaningful way, the next-generation neural mass
models applied in this study, are very much in the original
spirit of neural mass modeling, yet importantly they can be
interpreted directly in terms of an underlying spikingmodel. This
exact derivation is possible for networks of quadratic integrate-
and-fire neurons, representing the normal form of Hodgkin’s
class I excitable membranes (Ermentrout and Kopell, 1986),
thanks to the analytic techniques developed for coupled phase
oscillators (Ott and Antonsen, 2008). This new generation of
neural mass models has been recently used to describe the
emergence of collective oscillations in fully coupled networks
(Devalle et al., 2017; Laing, 2017; Coombes and Byrne, 2019;
Dumont and Gutkin, 2019) and in balanced sparse networks
(di Volo and Torcini, 2018). Furthermore, it has been successfully
employed to reveal the mechanisms at the basis of theta-nested
gamma oscillations (Ceni et al., 2020; Segneri et al., 2020) and
the coexistence of slow and fast gamma oscillations (Bi et al.,
2020). Finally, it has been recently applied to modeling electrical
synapses (Montbrió and Pazó, 2020), working memory (Taher
et al., 2020), the influence of transcranial magnetic stimulation
on brain dynamics (Byrne et al., 2020), and brain resting state
activity (Rabuffo et al., 2020).

In this, we have extended the single next-generation neural
mass model derived in Montbrió et al. (2015) to a network
of interacting neural mass models, where the topology is
determined by structural connectivity matrices of healthy and
epilepsy-affected subjects. In this way, we can take into account
both the macroscopic dynamics, self-emergent in the system due
to the interactions among nodes, and the differences related to the
patient-specific analyses. However, the single population neural
mass model does not take into account neither the synaptic
kinetics nor the dynamics of the synaptic field characterizing
the considered synapses, which is simply modeled as the linear
superposition of δ-shaped post-synaptic potentials. Moreover,
when extending the (excitatory) neural mass model derived
in Montbrió et al. (2015) to a multipopulation network, we
have considered only excitatory coupling to build a minimal
model for the investigation of topologically-induced dynamical
features. Therefore, the presented neural mass model is not able
to reproduce depth-EEG epileptic signals, which represents one

of the best successes of heuristic neural mass models (Wendling
et al., 2002).

In absence of external forcing, the phase diagram of the system
as a function of the mean external drive η̄ and synaptic strength
σ resembles that of the single neural mass model, since the
same distinct regions can be observed: (1) a single stable node
corresponding to a low-activity state, (2) a single stable focus
(spiral) generally corresponding to a high-activity state, and (3) a
region of bistability between low and high firing rates. However,
when the system is subject to a transient external current, the
scenario changes and is ruled by the interactions among different
nodes. In this case, for low excitability values, a single stimulated
node abandons the bistable region due to the applied current and
it approaches, with damped oscillations, the high-activity state,
which is a stable focus. On the other hand, for sufficiently high
excitabilities, the single node stimulation leads to the recruitment
of other brain areas that reach, as the perturbed node, the high-
activity regime by showing damped oscillations. This activity
mimicks a seizure-like event and enables the modeling of
propagation and recruitment: the seizure-like event originates in
the EZ (as a results of the stimulation) and propagates to the
PZ, identified by the other regions where fast propagates the
oscillatory activity. It is distinct from an actual seizure, which
would require the emergence of self-sustained activity in the
high-activity state (Jirsa et al., 2014; Saggio et al., 2017, 2020).

However, transient activity, like the proposed seizure-like
events, can play a potentially important role in localizing
tissue involved in the generation of seizure activity, if read in
the framework of stimulation of human epileptic tissue with
consequent induction of rhythmic, self-terminating responses
on the EEG or electrocorticogram (ECoG) (Valentin et al.,
2002; Flanagan et al., 2009; Jacobs et al., 2010). From the
dynamical systems perspective, one can hypothesize that complex
stimulus responses are due to a space-dependent induction of
self-terminating, spatio temporal transients that are caused by
brief perturbations in an excitable medium (Goodfellow et al.,
2012). Accordingly, considering epileptic seizure dynamics as
spatio-temporal patterns (Goodfellow et al., 2011; Baier et al.,
2012) shifts attention on the self-organizing capabilities of
spatio temporal brain networks, thus proposing an alternative
explanatory framework for epileptiform EEG to the time-
dependentmodulation in system parameters (Kramer et al., 2005;
Breakspear and Jirsa, 2007; Kim et al., 2009; Marten et al., 2009;
Lopour and Szeri, 2010).

Moreover, perturbation experiments, like the stimulation of
human tissue, turns out to be fundamental in the context of
functional brain mapping, as an integral part of contemporary
neurosurgery (Sagar et al., 2019). Surgical planning of the
resection procedure depends substantially on the delineation of
abnormal tissue, e.g., epileptic foci or tumor tissue, and on the
creation of a functional map of eloquent cortex in the area close
to the abnormal tissue. Traditionally, different methodologies
have been used to produce this functional map: electrical cortical
stimulation (Hara et al., 1991; Ojemann, 1991; Uematsu et al.,
1992), functional MRI (Chakraborty and McEvoy, 2008), PET
(Bittar et al., 1999; Meyer et al., 2003), magnetoencephalography
(Ganslandt et al., 1999), evoked potentials (Dinner et al.,
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1986), or passive recordings of electrocorticographic signals
(Brunner et al., 2009). In particular, ECoG activity recorded
from subdural electrodes, placed during surgical protocols, reflect
task-related changes (Crone et al., 1998a,b, 2001; Aoki et al.,
1999, 2001; Sinai et al., 2005; Leuthardt et al., 2007; Miller
et al., 2007): ECoG amplitudes in specific frequency bands carry
substantial information about movement or language tasks and
they usually increase with the task in the gamma (>40 Hz) band.
Extending the presented multipopulation model, via the addition
of synaptic dynamics and an inhibitory pool, to reproduce task-
related change in ECoG activity, would be essential to extend its
predictive power.

The spectrogram analysis has revealed that the recruitment
process is characterized by high frequency γ oscillations, thus
reproducing the high-frequency (γ -band) EEG activity typical
of electrophysiological patterns in focal seizures of human
epilepsy. Many hypotheses have been formulated on the origin
of this fast activity: (i) the behavior of inhibitory interneurons
in hippocampal or neocortical networks in the generation of
gamma frequency oscillations (Jefferys et al., 1996; Whittington
et al., 2000); (ii) the nonuniform alteration of GABAergic
inhibition in experimental epilepsy (reduced dendritic inhibition
and increased somatic inhibition) (Cossart et al., 2001; Wendling
et al., 2002); (iii) the possible depression of GABAA,fast circuit
activity by GABAA,slow inhibitory postsynaptic currents (Banks
et al., 2000; White et al., 2000); (iv) the out of phase
patterns of depolarizing GABAergic post-synaptic potentials
onto pyramidal cells, generated by feed-forward activation of
cortical interneurons (Shamas et al., 2018). In any case, high-
frequency EEG waves originating from one or several brain
regions are the most characteristic electrophysiological pattern
in focal seizures of human epilepsy and can be observed, in the
numerical experiments, both for healthy subjects and epileptic
patients, though with a distinction: for the same excitability value,
the activity takes place at higher frequency ranges in epileptic
patients and it is mainly concentrated in the EZ. Moreover,
high-frequency γ oscillations (>200 Hz) are observable in the
spectrogram of epileptic patients only. Even though it is not
possible to exclude discrepancies partially imputable to the
different scanning and preparation procedure of the structural
connectivity matrices for the cohort of healthy and epilepsy-
affected subjects, it turns out that the recruitment process is faster
in epileptic patients, for which it is possible to observe generalized
seizure-like events for smaller values of the excitability parameter
η̄. In particular, when comparing the results obtained for healthy
subjects and epileptic patients, it turns out that the time necessary
to recruit areas in the PZ is usually smaller for epileptic patients.
However, the first recruited area is, in general, the area with the
stronger connection to the EZ, independently of the considered
structural connectivity matrix. The recruitment time in both
cases is influenced by the strength of the external perturbation
IS, and decreases for increasing strength, while no dependence is
shown on the duration of the external perturbation.

More specifically for healthy subjects, we have investigated the
dependence of the recruitment mechanism on the single subject,
in terms of the position of the eventual EZ and the topological
measures of the single connectome. Brain network models

of healthy subjects comprise 90 nodes equipped with region-
specific next-generation neural mass models and each subject
is characterized by a specific structural large-scale connectivity
amongst brain areas. The smallest excitability values for which

an asymptomatic seizure-like event occurs (η̄
(k)
asy) do not vary

significantly from one subject to the other and do not show a
relevant dependence on the stimulated area, while the smallest
excitability values for which a generalized seizure-like event

occurs, (η̄
(k)
gen), show fluctuations in the interval (−7,−5) for all

stimulated nodes and for all the subjects. Nonetheless, we have
foundmany similarities at the level of topological measures, since

there is always a strong correlation between η̄
(k)
asy (η̄

(k)
gen) and node

strength, clustering coefficient and shortest path, thus meaning
that a region well connected is a region well recruited.

For epileptic patients, we have systematically simulated the

individual seizure-like propagation patterns and validated the

numerical predictions of the PZ against clinical diagnosis and
SEEG signals. Patient-specific brain network models of epileptic

patients comprise 88 nodes equipped with region-specific next-
generation neural mass models, and for this set up, we have
studied the role of the large-scale connectome based on dMRI,

in predicting the recruitment of distant areas through seizure-
like events originating from a focal epileptogenic network. We
have demonstrated that simulations and analytical solutions
approximating the large-scale brain network model behavior

significantly predict the PZ as determined by SEEG recordings
and clinical expertise, with performances comparable to previous
analyses on this set of data (Proix et al., 2017; Olmi et al., 2019),
thus confirming the relevance of using a large-scale network
modeling to predict seizure recruitment networks. However,
some false positives are still observable, where populations not
belonging to PZSEEG or PZClin are first recruited. In these cases,
the analysis on topological properties has revealed that nodes
are easily recruited whenever they show strong connections

to the EZ or too early recruited areas and that are closer to
the EZ in terms of the shortest path length. Therefore, nodes
belonging to the PZSEEG (PZClin), that are not identified by

the simulations as first recruited nodes, are characterized by
intermediate values of connection strength and shortest path.
Predictions are particularly not good for those patients whose

EZ has not been correctly identified, as results from the relative
surgical outcomes reported in Supplementary Table 3. For these
patients, the incorrect identification of the origin of seizure-
like events may lead to a misleading identification of the PZ,

since we are not able to identify, numerically, the recruitment of
nodes not directly connected with the real EZ. Finally, comparing

the results obtained for epileptic patients with those for healthy
subjects, we infer a strong correlation between fast recruitment
events and node strength, which is due to the fact that structural
connectomes, both for healthy subjects and epileptic patients,
are characterized by a log-normal distribution of the weights,
where some connections, for each node, have a much stronger
weight than the others. Moreover, the strong correlation between
fast recruitment and clustering coefficient/shortest path suggests
that we are in the presence of hierarchical connectivities, which
are important for the spreading of activity (Kaiser et al., 2007;
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Luccioli et al., 2014) and the enhancement of the network
susceptibility to seizure activity (Morgan and Soltesz, 2008).

Most computational models of seizure propagation focus on
small continuous spatial scales (Ursino and La Cara, 2006; Kim
et al., 2009; Hall and Kuhlmann, 2013) or population of neurons
(Miles et al., 1988; Golomb and Amitai, 1997; Compte et al., 2003;
Bazhenov et al., 2008; Chouzouris et al., 2018; Lopes et al., 2019;
Gerster et al., 2020), while only small networks are commonly
used to investigate the role of the topology and localization
of the EZ (Terry et al., 2012). However, functional, volumetric
and electrographic data suggest a broad reorganization of the
networks in epileptic patients (Lieb et al., 1987, 1991; Cassidy
and Gale, 1998; Rosenberg et al., 2006; Bettus et al., 2009),
thus laying the foundations for a different approach based on
large-scale connectomes to identify the recruitment networks.
The large-scale character of partial seizure propagation in the
human brain has been only recently investigated, using patient-
specific dMRI data to systematically test the relevance of the
large-scale network modeling, in predicting seizure recruitment
networks (Proix et al., 2014, 2017, 2018; Olmi et al., 2019).
In this framework of large-scale network modeling we can
also place the results presented in this study, since we have
confirmed the importance of patient-specific connectomes to
identify the recruitment process. As shown above, the topological
characteristics of connection strength and shortest path play
a non-trivial role in determining the spreading of seizure-
like events, together with the localization of the EZ, while
the next-generation neural mass model, employed for the first
time to study seizure spreading, allows us to construct patient-
specific brain models via a multiscale approach: the variability
of brain regions, as extracted from the human brain atlas, can
be introduced in the mean-field parameters, thanks to the exact
correspondence between microscopic and macroscopic scales
guaranteed by the model itself. The possibility to exactly move
through the scales has not been fully exploited in this study, since
we have focused the analysis on the extension of the single neural
mass model to a multipopulation model, without adding other
relevant features to the original model. However, it is possible
to easily introduce, in the multipopulation model, biologically
relevant characteristics, keeping intact the exact correspondence
between microscopic and macroscopic scales, such as short-term
synaptic plasticity (Taher et al., 2020), synaptic delays (Devalle
et al., 2018), electrical coupling via gap junctions (Montbrió
and Pazó, 2020), chemical synapses (Coombes and Byrne, 2019),
and extrinsinc and endogenous noise (Goldobin et al., 2021).
By adding short-term synaptic plasticity we expect to be able
to reproduce the emergence of self-sustained activity in the
high-activity state and, therefore, to describe a fully developed
seizure. The introduction of synaptic delays and noise guarantees
the possibility to observe chaotic dynamics, therefore, allowing
for the reproduction of more complex signals, like depth-EEG
epileptic signals. Improving the predictive power of the model
by the means of more biologically relevant characteristics and
anatomical data (3D T1-weighted images, high angular and
spatial dMRI data, ion, and energetic and neurotransmitter
measurements available e.g., in the BigBrain and human brain
atlas) will be the scope of further research.
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Department of Physics and Centre for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada

Neural circuits operate with delays over a range of time scales, from a few milliseconds

in recurrent local circuitry to tens of milliseconds or more for communication between

populations. Modeling usually incorporates single fixed delays, meant to represent the

mean conduction delay between neurons making up the circuit. We explore conditions

under which the inclusion of more delays in a high-dimensional chaotic neural network

leads to a reduction in dynamical complexity, a phenomenon recently described as multi-

delay complexity collapse (CC) in delay-differential equations with one to three variables.

We consider a recurrent local network of 80% excitatory and 20% inhibitory rate model

neurons with 10% connection probability. An increase in the width of the distribution of

local delays, even to unrealistically large values, does not cause CC, nor does adding

more local delays. Interestingly, multiple small local delays can cause CC provided there

is a moderate global delayed inhibitory feedback and random initial conditions. CC then

occurs through the settling of transient chaos onto a limit cycle. In this regime, there is a

form of noise-induced order in which the mean activity variance decreases as the noise

increases and disrupts the synchrony. Another novel form of CC is seen where global

delayed feedback causes “dropouts,” i.e., epochs of low firing rate network synchrony.

Their alternation with epochs of higher firing rate asynchrony closely follows Poisson

statistics. Such dropouts are promoted by larger global feedback strength and delay.

Finally, periodic driving of the chaotic regime with global feedback can cause CC; the

extinction of chaos can outlast the forcing, sometimes permanently. Our results suggest

a wealth of phenomena that remain to be discovered in networks with clusters of delays.

Keywords: dynamical system, transient chaos, delayed differential equation, synchrony, neural network, neural

dynamics

1. INTRODUCTION

Biological neural networks can involve delays below the millisecond time scale up to several
tens of milliseconds (Madadi Asl et al., 2018). A wide array of delays are involved in inter-
areal communication (Deco et al., 2009). A redundancy cancellation circuit in the cerebellum
of the weakly fish involves delay distributions between 10 and 70 ms (Bol et al., 2011). Local
circuitry also involves delays, which are often neglected in modeling studies due to the added
dynamical complexity they bring to the problem. But they have been shown to promote oscillations
(Belair et al., 1996; Brunel and Hakim, 1999; Bimbard et al., 2016), and play important roles in
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synchronization phenomenon (Coombes and Laing, 2009) and
learning phenomenon (Gerstner et al., 1996). They are of course
omnipresent in large scale neural control systems where they can
reach many hundreds of milliseconds, e.g., in reflex arcs (Longtin
et al., 1990).

What are the dynamical consequences of the existence of
multiple delays, either centered around a single mean delay, or
clustered into different groups? There is widespread belief that
systems with many delays can be treated as ones with a single
distribution of delays, i.e., a delay-differential equation with
discrete delays can be replaced by an integro-differential equation
with a suitably chosen delay or memory kernel. Accordingly, the
presence of many delays with a sufficiently broad distribution
should decrease the dynamical complexity (Longtin, 1990; Jirsa
and Ding, 2004; Eurich et al., 2005; Tavakoli and Longtin, 2020).

Recently it has been shown, using numerical experiments of
simple model physical systems along with a novel Lyapunov
spectrum estimation method for multi-delay non-linear systems,
that this complexity reduction can happen quite abruptly, and
therefore be more aptly named complexity collapse (Tavakoli
and Longtin, 2020). The effect has been investigated by adding
delays to standard one-delay systems in one variable, such as
the Mackey-Glass equation and the electro-optic model, or the
three-variable Lang-Kobayashi laser model. Our work here raises
and provides first answers to the question of whether this multi-
delay complexity collapse (MDCC) can occur in chaotic neural
networks with multiple neurons, i.e., with many state variables.

Note that we are distinguishing here between the number of
state variables that describe the time-varying quantities in these
models, and the infinite number of variables that relate to the
delay per se; all differential-delay systems are infinite-dimensional
by definition, regardless of the number of delays. Beyond this
distinction, it therefore remains to be seen how a cluster of delays
around somemean delay affects the chaotic properties of a neural
network, and whether additional clusters further cause increases
or decreases in dynamical complexity. While our previous study
allowed for a more precise diagnostic of attractor properties,
using permutation entropy and Lyapunov spectrum estimation,
here the large number of state variables (around 1,000) make
such computations prohibitively expensive. We thus resort to
other simpler metrics that focus on the time-dependent mean
and standard deviation of the activity variable averaged across
the network.

Of particular interest to us is the question of under which
conditions and with respect to which phenomena do delays
matter in realistic neural systems. The particular aspect of
this question that we focus on is the distribution of discrete
delays. Such delays, even acting alone, are notorious for causing
simple oscillations and, with the right shape and strength of
non-linearities, chaotic fluctuations; yet distributed delays are
known to counteract some effects of non-linearity (Longtin, 1990;
Herrmann et al., 2016). At which point should one think in
terms of continuous delay distributions, and what is expected
in the remaining vast domain between single and distributed
delays? And how are these issues at play in chaotic neural nets?
One expects that bifurcations can occur, but also novel forms of
multistability and susceptibility to rhythms impinging from other

FIGURE 1 | Network architectures. The solid lines provide the schematic of

the basic excitatory-inhibitory (EI) network in which the connections can have

multiple smaller delays (denoted here by τ ) characteristic of local circuitry. The

dashed lines account for an extra global inhibitory feedback with longer delay

T from population I to itself and to the E population.

brain areas. Such effects are indeed highlighted in the results
presented below, along with their robustness to noise.

In section 2, we introduce the model of interest, namely, a
standard 80/20 excitatory-inhibitory (EI) model that has often
been used to mimic the cortex. It has local delays between the
E and I cells, but can also account for a global delayed inhibitory
feedback to both populations with a larger delay (see Figure 1,
dashed lines). This global feedback mimics a longer route for
inhibition that possibly involves other populations that are not
explicitly modeled. It is considered here because the complexity
collapse phenomenon (CC) does not occur in the EI network on
its own, but does in this slightly more complex dynamical system
with two delay clusters. In the section 3, we thus first probe how
a single delay within and between these sub-populations affect
the dynamics. In this network, neurons behave in a much more
complex manner as the time delay becomes smaller. Next, we
examine the activity and complexity of dynamics generated by
neurons under the influence of the global inhibitory feedback
term.Wewill present a novel form of behavior that is reminiscent
of a chimera (Larger et al., 2013; Majhi et al., 2019; Sawicki et al.,
2019), but with space replaced by time. In order words, we report
an alternation of asynchronous and synchronous epochs which
seem to follow Poisson statistics. We further show a paradoxical
effect in which the activity fluctuations are more constrained
the higher the noise is, which is a form of noise-induced order
(Matsumoto and Tsuda, 1983). As a consequence of the inclusion
of the additive noise with sufficiently large intensity, synchronous
activity can be suppressed.

We further provide preliminary observations of the effect
of periodic driving of the excitatory sub-population during
synchronous epochs, finding that it can alter the dynamics of the
whole network. Post-stimulation dynamics can be unpredictable,
leading either to transient high-frequency oscillations followed
by a return to chaotic dynamics with synchronous epochs, or to
CC with periodic behavior. The possibility of observing CC in
the presence of the global inhibitory feedback and external
stimuli led us to finally study the dynamics of these sub-networks
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in the presence of multiple local time delays. The non-linear
characteristic of this network prevents CC in the absence of the
global inhibitory delayed feedback. However, this non-linearity is
seemingly weaker when distributed delays in the local recurrent
EI circuitry co-occur with a global delay. For a larger width of
the distribution of delays, the transient chaos is replaced by a
simple oscillation.

Note that, for the sake of brevity, none of the phenomena
reported here are analyzed individually in great detail. We
have rather opted for a presentation of a few novel effects
related to CC that will hopefully guide future studies; all our
results are linked by the existence of multiple delays in various
clustered configurations.

2. MODELS AND METHODS

We consider an excitatory and an inhibitory sub-network of
rate model neurons, each coupled within itself and to the other
sub-network. The architecture corresponding to this network
is shown in Figure 1. The potential of an excitatory neuron is
designated as u, and an inhibitory neuron as v. A similar model
without local delay and global inhibitory feedback delay has been
studied in Rich et al. (2020). In parts of our work, we go beyond
this model by assuming that each of these sub-networks is also
affected by global delayed inhibitory feedback from the inhibitory
cells, with a global feedback strength κ ; this global feedback
delay is made longer than the local recurrent feedback delay. The
delayed feedback aspects of our model are similar to those in
Herrmann et al. (2016) and Hutt et al. (2016). The dynamical
equations for the potential of each unit in the network are:

α−1
e

duj

dt
= −uj +

1

ne

1

M

M
∑

l=1

Ne
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wee
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1
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1
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1
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∑

k=1
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κ
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φ(vk(t − T))

+ σξI (1b)

where the τl’s are the local conduction delays which may all
be the same, or be taken from a discrete probability density.
ξE,I(t) denote Gaussian white noises, chosen for simplicity here
as having the same strength σ =

√
2D with < ξE,I(t) > = 0 and

< ξi(t)ξj(t
′) > =δijδ(t − t′).

The firing rate function φ follows a sigmoidal function defined
as:

φ(u) =
1

1+ e−βu
. (2)

TABLE 1 | Parameters of the two-population model.

Symbol Definition A Value

Ne Number of excitatory units 800

Ni Number of inhibitory units 200

αi Dendritic rate constant—inhibitory 200 Hz

αe Dendritic rate constant—excitatory 100 Hz

β Response function gain 100

ne Number of excitatory connections for each neuron 80

ni Number of inhibitory connections for each neuron 20

wee e → e Synaptic connection strength 15

wei e → i Synaptic connection strength 15

wie i → e Synaptic connection strength −15.375

wii i → i Synaptic connection strength −15.375

κ Global feedback strength Variable

M Number of delays Variable

D Intrinsic noise level Variable

dt Integration timestep 0.1 ms

All parameters are described in Table 1. Some of our last results
consider the effect of a periodic input S(t) of different frequencies
to the excitatory population. In some of our simulations below,
we will consider multiple delays chosen from a discrete density.
This means that each unit is connected to all other units with
these multiple delays.

We assume that there are Ne = 800 excitatory units and
Ni = 200 inhibitory units in the whole network, and that the
probability of connection of any two neurons is 10%. Thus each
neuron is connected on average to 100 other neurons. The weight
matrix can be seen in Figure 2 in which the excitatory connection
weights are fixed at 15 and the inhibitory weights at −15.375
(the mean of the network and mean of the non-zero connections
in the network are approximately zero). The initial conditions
are picked randomly from a Gaussian distribution with zero
mean and unit variance. This choice of values gives a slightly
unbalanced network: there are 4 times more excitatory neurons
than inhibitory neurons, but the inhibitory weight divided by

the number of inhibitory connections (w
ii

ni
= wie

ni
) is 4.1

times the excitatory weight divided by the number of excitatory

connections (w
ei

ne
= wee

ne
). We have checked that the phenomena

reported here are robust in the sense that they are qualitatively
the same when the network is set up with similar weight ratios,
and in particular for the balanced case where the ratio is equal
to 4, i.e., with wii = wie = −15. The results below are also
qualitatively similar for the case where elements of the weight
matrices are picked randomly from Gaussian distributions such
that the mean of the excitatory neurons is 15 and the mean
of the inhibitory neurons is −15.375. Also, in the absence of
any delays, our network is in a chaotic state, as it is with small
local delays in the absence of global feedback and noise. In the
thermodynamic limit, the complexity of the dynamics decreases;
however, complex dynamics can still be observed provided that
smaller delay values are used (at least for the parameters N =

10000, ne = 800, and ni = 200 that we tested).

Frontiers in Systems Neuroscience | www.frontiersin.org 3 November 2021 | Volume 15 | Article 720744182

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles


Tavakoli and Longtin Complexity Collapse in Neural Networks

FIGURE 2 | Network connectivity. Only 10 percent of the weights are non-zero.

3. RESULTS

The mean of the activity of the excitatory sub-network for

different time delays between interacting neurons can be seen in

Figure 3. For τ = 2 ms, chaotic behavior can be observed, with

no clear peak in the power spectrum, which in fact has power-

law characteristics. As the time delay increases to 5 ms, a peak

arises in the power spectrum at 70 Hz. This peak further shifts
toward the lower frequency of 55 Hz as the delay increases. When
the time delay between neurons in the local recurrent circuitry
is increased to 10 ms, chaotic dynamics can no longer be seen,
and harmonics appear in the power spectrum at integer multiples
of 25.6 Hz. For this latter case, when the dynamic is affected by
noise, one can use the mean-field method introduced in Hutt
et al. (2016) to study the dynamical property of the network. It
can be concluded that in this system, a larger delay leads to more
coherence between the neurons’ activities. We should mention
that when we increase connection numbers ne to 800 and ni
to 200, and the total number of units to 10, 000 for this set of
parameters, the dynamical behavior becomes simpler; but chaotic
behavior can still be achieved for smaller time delays.

In the next step, we examined how delayed global inhibitory
feedback from inhibitory units influences network dynamics.
In Figure 4, the dynamical behavior of the excitatory network
for different global feedback time delays and the smaller fixed
local time delay is shown. Without local delayed interactions,
the activity is a regular oscillation as is expected from purely
inhibitory networks with delay. Here we took the local time delay
τ = 2 ms and did the simulation for the fixed value of the
global feedback coefficient κ = −5 and variable global feedback
time delay T. The global feedback tends to align the dynamical
behavior of all units together, while the influence of the local time
delays leads to chaotic fluctuations.

The existence of the global feedback, along with the small
local delay, causes the appearance of a pattern of very low

activity punctuated by random, sudden and brief jumps to larger
values. We call these behaviors “dropout activities.” They can
be characterized by the time-dependent standard deviation (SD)
of the activity across the units in the excitatory sub-network
(Figure 4, middle panels). A stronger global feedback tends to
weaken the chaotic nature of the units. Each time that the
dynamics enter the state of deficient firing rate activity, the
standard deviation becomes very close to zero, meaning that
the whole network is highly synchronized in this low activity
state. Below we will see the paradoxical implications of this
behavior for spiking activity using a spiking rule on top of the
activities; spikes will be associated with the state of lower mean
activity because they are caused by strong fluctuations, i.e., it is a
fluctuation-driven spiking regime.

We can gain more insight by looking at the mean of the power
spectrum of the excitatory sub-network’s activity. As a result
of increasing the global feedback time delay, we can observe
that the peak around the 3–8 Hz low-frequency component
becomes sharper, and thus that there is enhanced more regular
low-frequency activity, a feature that stands out from the time
series. Furthermore, it can be seen in the insets that these
dropout activities are associated with high-frequency oscillations
with very low amplitude, which are also evident in the power
spectrum. As the global feedback time delay increases, the higher
frequency components become more prominent, such that for
T = 30 ms there are more high-frequency peaks that are
positioned approximately 30− 40 Hz from each other.

We illustrate in Figure 5 the influence of the global feedback
strength and assume that the local and global feedback time
delays are fixed. As for the previous case where the delay
was increased, we observe that increasing the strength of the
global feedback also promotes synchrony between units. In the
power spectra, similar to the case of increasing delay, the high-
frequency components become more evident as the units are
more synchronized. The enhanced standard deviation outside
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FIGURE 3 | Local dynamics alone. The left column shows the mean activity of the excitatory sub-network, and the right column plots the corresponding power

spectrum averaged over the activities in this sub-network. From top to bottom, the local time delay corresponds to (A,B) 2 ms, (C,D) 5 ms, (E,F) 7 ms, and (G,H) 10

ms.

dropouts raises the possibility for spiking, a fact that will be
confirmed below.

So far, we have seen that either increasing the delay or
the strength of the global feedback, the degree of complexity
decreases. One difference between the two cases is that at large
global feedback coupling, the dynamic will be stuck in a regime of
high-frequency low-amplitude oscillation (not shown), while for
large global feedback time delay, oscillation with low frequency is
the dominant behavior of the sub-networks. The phase diagram
for different κ and different global feedback time delayT is shown
in Figure 6. For this computation, we counted the number of
activity drop-outs during 35 s following a 2-s transient, repeating
the simulation for different κ − T pair.

The pattern of sudden low activities caused by the global

feedback appears to be highly vulnerable as it can not be

sustained in most cases, and asynchronous fluctuations may

be reinstated. In Figure 7, these patterns are still found for

small noise intensities, while the standard deviation fluctuations

in these cases are more constrained. As the noise intensity

increases, these dropouts are less likely to occur. It can be
noticed that for significant noise intensity, the variations of
the time-dependent standard deviation become more confined

around 0.5; thus at higher noise, both the mean and the
standard deviation seem to stabilize. This appears to be a form
of noise-induced order from a chaotic state (Matsumoto and
Tsuda, 1983). A simple picture here is that the noise in fact
breaks up the synchronous periods and makes the dynamics
more homogeneously asynchronous. Despite the decreasing
occurrence of activity dropouts, the power spectrum still shows
peaks around the high-frequency component, although they are
reduced in size. The power spectrum at low frequency also
becomes flatter as D increases, with a clear transition to a power-
law regime at higher frequencies.

From the raster plots in Figure 8, we can understand better
the dynamics of all the neurons in the two different sub-networks
for different cases. In the absence of the global feedback (left
column), the mean network activity fluctuates more around the
zero value, and it occurs with higher amplitude. In this case, high
spiking activity can be observed, where this spiking activity of
individual neurons is based on the assumption that firing follows
an inhomogeneous Poisson process with the rate φ(x) (x is either
u or v) and the probability of firing in an interval (t, t + dt) is
given by (Rich et al., 2020):

p(x) = 1− e−φ(x(t))dt . (3)
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FIGURE 4 | Higher global feedback delay causes activity dropouts. Mean of the excitatory sub-network activity (A–D), the standard deviation of the activities of its

units (E–H), and the power spectrum averaged over the units in the excitatory sub-network (I–L) in the presence of global inhibitory feedback with fixed strength

κ = −5 without noise. From left to right, the global feedback time delay T equals 5, 10, 20, and 30 ms. The pulse-like epochs in the solution correspond to “activity

dropouts” where the sub-network is synchronized with a low firing probability. Paradoxically, between these dropouts, the time-dependent mean activity is lower but

its time-dependent fluctuations are stronger. Insets in the figures in the first row show the high-frequency low-amplitude oscillations that occur during the dropouts.

The more regular pulsing in (D) is associated with a low frequency peak and its harmonics riding on top of the broadband background.

By taking into account the global delayed feedback (three right
columns), activity dropouts can be seen in yellow bars in the
activity rasters at the top. With a strong enough global feedback
coefficient, and sufficiently long delay, the amplitude of the
fluctuations decreases and the mean of network activity shifts
down to more negative values. This makes sense given that the
global feedback is inhibitory. As a consequence, the network
spiking activity decreases. We can see clearly that the dropouts
are associated with epochs of high mean activity but low standard
deviation of activity—hence the name “dropout.” For stronger
noise intensity, the probability of dropouts decreases, resulting
in slightly more widespread spiking activity.

In themiddle row, it can be seen that for this set of parameters,
spiking activity is slightly higher in the inhibitory sub-network
compared to the excitatory sub-network, and there would rarely
be a spike during an epoch of dropout. With the decreasing of the
amplitude of the fluctuations of the standard deviation through
increasing noise intensity, we see that somehow the spiking
activity spreads out, especially in the inhibitory sub-network.

The histogram of the time difference between the two dropout
activities is shown in Figure 9. The statistic is calculated in the
following way. We first take the arbitrary threshold value of 0.06

for the standard deviation. We store the data for a duration
between the time the standard deviation falls below 0.06 and the
time that it rises above 0.1. During this interval, we record the
time corresponding to the minimum value of standard deviation.
This process is repeated up to t = 1, 500 s.

First, we only varied the global feedback strength κ from −4
to −6, and the effect of noise was only considered in the last
panel of Figure 9. Increasing the impact of global feedback on the
dynamics coincides with the increase in the probability of these
events in a shorter interval, and the statistic tends to be more
Poissonian. Due to the noise, the fluctuation around the arbitrary
threshold value increases and consequently, the time difference
between these events decreases significantly. In general, however,
greater noise levels tend to suppress dropout activity.

Externally applied stimuli can have a wide range of dynamical
effects, including suppression of chaos, entrainment, etc (Rajan
et al., 2010; Park et al., 2018). Of particular interest is the effect
of external periodic stimuli (chosen here with an amplitude of
0.2) on the dynamics in the presence of dropout activities. In
Figure 10, the noise is turned off, and only the sinusoidal external
input with different frequencies is applied for a duration of 1 s.
It can be seen that after a low-frequency stimulus such as 5
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FIGURE 5 | Higher global feedback strength causes activity dropouts. Mean (A–D) and standard deviation (E–H) of the excitatory sub-network activities, with the

corresponding mean power spectrum (I–L) in the presence of global inhibitory feedback without noise. From left to right the global feedback strength κ equals −1,

−2, −4, and −6 and in all cases, the global feedback time delay is T = 10 ms. Higher feedback strength causes more dropouts. As for the increased delay case,

between dropouts the standard deviation increases.

FIGURE 6 | Activity drop-out phase diagram in κ-T space. Red squares correspond to the cases where at least one activity drop-out was observed during 35 s, and

blue squares for the cases with no activity drop-out. Stronger and/or longer delay global feedback are seen to promote drop-outs.

Hz ceases, the chaotic network activity prior to stimulation is
replaced by a high frequency oscillation of 130 Hz. The duration
of these simplified dynamics beyond the stimulation is found to

vary as a function of stimulation frequency. For example, for a
15Hz stimulus, the duration elongates a little, but eventually the
system recovers its natural dynamical properties. As seen third
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FIGURE 7 | Noise suppresses activity dropouts. Mean activity (A–D), standard deviation (E–H), and power spectrum (I–L) averaged over the excitatory sub-network

for increasing noise intensity D and fixed global inhibitory feedback with time delay T = 10 ms and strength κ = −5. From left to right, D = 10−5, 5× 10−5, 10−4 and

5× 10−4. The dropouts seen in Figure 4B are no longer seen, and the fluctuations of the standard deviation decrease at higher noise intensity.

column in Figure 10, when the stimulation frequency is relatively
higher, the chaotic dynamics may not be recovered at all, or at
least not for a much longer time. Because timing and duration of
stimulation are crucial in applications, how the network responds
to stimulation appears highly complex, and a full investigation is
beyond the scope of this paper.

It has been shown (Tavakoli and Longtin, 2020) for many
dynamical systems from lasers to biological feedback system that
upon adding a sufficient number of delays to the dynamics,
a transition from chaos to simpler behavior such as periodic
motion, or even fixed-point behavior, can occur, provided that
the range of delays is sufficiently broad. In Figure 11, we show
the behavior of the network activity when multiple local delays
are included. Here we set the noise to zero, as well as the
periodic stimulation and the global feedback. We assume that the
minimum delay is equal to 2 ms, and more delays added at 1τ =

0.2ms increments up to a maximum delay of [2+0.2(M−1)] ms.
We carried out the simulation for M = 6, M = 11,

M = 16, and M = 21. Figure 11 shows that, in contrast to
the aforementioned delayed dynamical systems, the dynamical
properties are not affected so drastically upon adding more
delays. This is likely due to the fact that the local EI recurrent
dynamics have sufficient intrinsic non-linearity to support chaos
without relying on the delay. Our simulations for unrealistically
large local delays (with large spacing between delays, and up to a
largest delay of 242 ms for 21 delays) revealed no dropout activity

or complexity collapse when there was no delayed global feedback
(not shown).

It is interesting that for a single delay case, as we
saw in Figure 3, and for large enough delay, dynamics are
simple oscillatory. However, the presence of smaller local
delays makes the oscillatory dynamics chaotic. As we saw
earlier, global feedback delay can decrease the degree of
complexity in the chaotic dynamics. Therefore, we consider
the dynamics of the network with multiple local delays in
the presence of the global delayed feedback to see whether
we can observe the complexity reduction with multiple delays.
Parameters used in Figure 12 are the same as those used for
Figure 11.

A key finding is that in the presence of both local
recurrent delayed feedback and global inhibitory delayed
feedback, the dynamics are significantly affected by the
multiple local delay times. Indeed, Figure 12 reveals that,
as the distribution of the time delays broadens, the system
manifests transient chaos, which eventually converges to
a periodic limit cycle attractor with the low amplitude
oscillations. Hence, in the presence of a global inhibitory
delayed feedback, the system exhibits CC; but it requires
a longer delay inhibition to occur. The new feature with
respect to the previously reported MDCC is that here
the transition to simpler dynamical behavior involves
transient chaos.
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FIGURE 8 | Effect of noise on chaotic global activity dropouts. Top: Raster plots of neuron activities from simulations of Equations (1a) and (1b). Middle: Raster plots

of neuron spiking obtained by applying the Poisson spiking rule Equation (3) to simulations in the top row. Bottom: time-dependent mean and standard deviation of

the activities of units in the excitatory sub-network. In the left column, the noise and the global feedback are set to zero. In the second column, the global inhibitory

feedback is added, leading to the random occurrence of epochs of strong synchrony due to activity dropouts. The last two columns correspond to the cases with

additive weak and strong noise on the dynamics of the units. The global inhibitory feedback delay T is 10 ms and its strength κ is −5. The top rows show that the

inhibitory sub-network exhibits qualitatively the same behavior as the excitatory one, but with a slightly higher spiking rate.

FIGURE 9 | Frequency of chaotic activity dropouts increases with stronger feedback. The probability of intervals between successive low firing activity dropout events.

In the first three columns (A–C), the noise strength is D = 0 and the global feedback strength κ changes from −4 to −5 to −6. In (D), separate noise terms, each with

intensity D = 10−5, are added to the excitatory and inhibitory dynamics. In all cases the global feedback time delay T is 10ms.

4. DISCUSSION

We have focused on the properties of a rate-based neural
network with a small number of short delays in the local sparsely

connected EI recurrent circuitry, and how this is altered by
a longer delay that acts globally through all-to-all feedback

inhibition. Our goal was to investigate under which conditions,
if any, a broadening of the local delay distribution can lead to a
simplification of the chaotic dynamics seen for a single delay. By
construction, the setup of this problem also allows a preliminary
analysis of the effect of clusters of delays on local recurrent EI
dynamics, although we have limited our study to two clusters,

one of which contains only a single delay. But the means of these
clusters are related by a factor of 2-3. Apart from being relevant to
neural circuitry, the inclusion of the global feedback was found to
be necessary to see CC in a chaotic EI neural network, if the local
delays are not allowed to take on values that are too large.

Specifically, we first showed that an increase in the local
time delay could lead to a drastic change in the deterministic
dynamics. When this delay is unique and is increased from 2
ms to 10 ms, chaotic dynamics are abruptly replaced by regular
periodic synchronized network firing (Figure 3). This is a first
instance in which the complexity collapses in our network,
although in a manner that does not rely on the inclusion of
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FIGURE 10 | Frequency-dependent complexity collapse. Network dynamics when an external sinusoidal stimulation is activated for 1 s from t = 5.1 s until t = 6.1 s.

Here the global feedback strength is κ = −5 and the corresponding time delay is 10 ms.

FIGURE 11 | Broadening the local recurrent delay distribution has little effect in the absence of global delayed inhibition. Mean excitatory sub-network activity for

different number of delays M. From top to bottom, M = 6 (A,B), 11 (C,D), 16 (E,F), and 21 (G,H). Here the global feedback and the noise are set to zero. The delays

are confined to the interval [2+ 0.2(M− 1)] ms. No complexity collapse is seen, and the spectra are difficult to tell apart.

more delays (Tavakoli and Longtin, 2020); rather it appears to
simply arise from a bifurcation when the single delay parameter
is increased.

Adding a delayed global inhibitory feedback can however
lead to different interesting phenomena. The main one, show
in Figures 4, 5, features chaotic dynamics that exhibit sudden
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FIGURE 12 | Broadening the local delay distribution initiates complexity collapse in the presence of global delayed feedback. Mean excitatory sub-network activity for

different numbers M of local delays. From top to bottom, M = 6 (A,E), 11 (B,F), 16 (C,G), and 21 (D,H). The global feedback time delay T is 10ms and the feedback

strength κ is −4. The delays are confined to the interval [2+ 0.2(M− 1)] ms. The CC occurs faster the stronger the delay is.

pulses which we have termed “activity dropouts.” This effect
is more pronounced when the global feedback is strong or its
delay is large. Interestingly it is also associated with a power law
behavior of the mean activity over three orders of magnitude
(only 2.5 orders are shown). These activities contain a high-
frequency component that is embedded possibly an unstable
orbit in the chaotic attractor due to the local time delay. This
property becomes essential when other simplification factors
are added to the system, such as increasing the number of
local delayed interactions (Figure 12) or correlated input. While
adding uncorrelated input, such as white noise, does not destroy
this component completely, it helps maintain the activity’s
chaotic nature due to the recurrent local interaction (Figure 7).
But paradoxically, additive noise on the dynamics also leads to
a reduction in the size of the fluctuations in the time-varying
standard deviation. This is a form of noise-induced order from
a chaotic state first reported by Matsumoto and Tsuda (1983).

The activity dropouts are interesting because the global
feedback makes the standard deviation (SD) of the solution
on the attractor vary randomly (in fact, Poisson-distributed—
see Figure 9). The mean of the activity is higher during the
periods of low SD, yielding minimal spikes—thus the term
“dropout.” During the periods of high SD, the mean activity is
even lower, but the few cells that fluctuate the most are able to fire
during the higher portions of these fluctuations, and their spikes
drive the whole network activity. Note that the model does not
explicitly run on spiking; the spikes are a derived quantity from
Equation (3).

The more regularly aspects of the activity that involves
dropouts is reminiscent of the stabilization of unstable periodic
orbits using delayed feedback (Pyragas control), although the
precise form of the global feedback used here differs from the
one used in that chaos-control scheme. Nevertheless this global
feedback may create or reveal an underlying slower rhythm
embedded in the chaos and which becomes manifest as a lower
frequency peak and its harmonics in the power spectra (see
Figure 4L).

Complexity collapse in the sense of that in Tavakoli and
Longtin (2020) does appear in our work through the broadening
of the local delay distribution as seen in Figure 12; but for the
parameter range where we found this effect, the global inhibitory
feedback with longer delay must be present. It is possible that
other regimes occur in which CC does not rely on the presence
of this global feedback.

The novel behavior in Figure 8 is striking in that there
is a temporally random appearance of epochs of dropouts.
The time between these dropouts are reminiscent of up-
states seen experimentally in neuroscience, and the dropouts
as down states. This appears to be a novel deterministic
behavior that is synchronized across the network, i.e., it is
not a chimera. It survives the presence of moderate noise.
There is a sense in which the global inhibitory feedback
introduces longer time scales in the network dynamics - the
stronger it is, the less power there is at low frequencies
(Figure 5). This might share features and origins with the
long time scales that arise from introducing population
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clusters—instead of delay clusters as done here - into EI networks
in Litwin-Kumar and Doiron (2012).

Delayed inhibitory feedback has also been reported to elicit
transitions between quasi-periodic partial synchronization and
collective chaos (Pazó and Montbrió, 2016). Our dynamics here
appear to differ from that scenario in that the collective behavior
here is not periodic (our network also has E and I coupling).
Another point of comparison is the work in Luccioli et al.
(2019) where inhibition with long delay can bring on collective
oscillations as we see here in Figures 4, 5; it remains to be seen
whether a winner-take-all mechanism is at work in our system as
reported there.

The final point of interest is the fact that the broadening of
the local delay distribution brings on a collapse from chaos to
simple (limit cycle) dynamics in a time inversely proportional
to the width of that distribution (Figure 12). This is a form of
transient chaos in neural networks (Zillmer et al., 2009) that
relies here on delay clusters. It warrants a deeper investigation,
especially of its dependence on the initial state of the network.
It reflects special properties of the underlying attractor that
are emphasized also in response to external inputs. Indeed we
have uncovered a frequency-dependent silencing of the network
activity, or frequency-dependent CC that can be temporary or
even likely permanent, depending on the frequency. It is a
different form of persistence from stimulation reported in Park
et al. (2018); in particular, the silencing time seems to depend
on the timing of when the stimulus is applied (not shown). This

will be investigated elsewhere. This may bear on the reaction of
the activity of a neural network with delay clusters to extraneous
rhythms or artificial stimulation.
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Dynamic excitatory-inhibitory (E-I) balance is a paradigmatic mechanism invoked to

explain the irregular low firing activity observed in the cortex. However, we will show that

the E-I balance can be at the origin of other regimes observable in the brain. The analysis

is performed by combining extensive simulations of sparse E-I networks composed of

N spiking neurons with analytical investigations of low dimensional neural mass models.

The bifurcation diagrams, derived for the neural mass model, allow us to classify the

possible asynchronous and coherent behaviors emerging in balanced E-I networks with

structural heterogeneity for any finite in-degree K. Analytic mean-field (MF) results show

that both supra and sub-threshold balanced asynchronous regimes are observable in

our system in the limit N >> K >> 1. Due to the heterogeneity, the asynchronous

states are characterized at the microscopic level by the splitting of the neurons in to

three groups: silent, fluctuation, and mean driven. These features are consistent with

experimental observations reported for heterogeneous neural circuits. The coherent

rhythms observed in our system can range from periodic and quasi-periodic collective

oscillations (COs) to coherent chaos. These rhythms are characterized by regular or

irregular temporal fluctuations joined to spatial coherence somehow similar to coherent

fluctuations observed in the cortex over multiple spatial scales. The COs can emerge due

to two different mechanisms. A first mechanism analogous to the pyramidal-interneuron

gamma (PING), usually invoked for the emergence of γ -oscillations. The second

mechanism is intimately related to the presence of current fluctuations, which sustain

COs characterized by an essentially simultaneous bursting of the two populations.

We observe period-doubling cascades involving the PING-like COs finally leading to

the appearance of coherent chaos. Fluctuation driven COs are usually observable in

our system as quasi-periodic collective motions characterized by two incommensurate

frequencies. However, for sufficiently strong current fluctuations these collective rhythms

can lock. This represents a novel mechanism of frequency locking in neural populations

promoted by intrinsic fluctuations. COs are observable for any finite in-degreeK, however,

their existence in the limit N >> K >> 1 appears as uncertain.

Keywords: balanced spiking neural populations, sparse inhibitory-excitatory networks, asynchronous dynamics,

collective oscillations, neural mass model, quadratic integrate and fire neuron, structural heterogeneity, coherent

chaos
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1. INTRODUCTION

Cortical neurons are subject to a continuous bombardment
from thousands of presynaptic neurons, mostly pyramidal ones,
evoking postsynaptic potentials of sub-millivolt or millivolt
amplitudes (Destexhe and Paré, 1999; Bruno and Sakmann,
2006; Lefort et al., 2009). This stimulation would induce an
almost constant depolarization of the neurons leading to a
regular firing, However, cortical neurons fire quite irregularly
and with low firing rates (Softky and Koch, 1993). This apparent
paradox can be solved by introducing the concept of a balanced

network, where excitatory and inhibitory synaptic currents are
approximately balanced and the neurons are kept near their firing
threshold crossing it at random times (Shadlen and Newsome,
1994, 1998). However, the balance should naturally emerge in the

network without fine-tuning of the parameters and the highly
irregular firing observed in vivo should be maintained also for
a large number of connections (in-degree) K >> 1. This
is possible by considering a sparse excitatory-inhibitory (E-I)
neural network composed of N neurons and characterized by an
average in-degree K << N and by synaptic couplings scaling

as 1/
√
K (van Vreeswijk and Sompolinsky, 1996). This scaling

as well as many other key predictions of the theory developed
in (van Vreeswijk and Sompolinsky, 1996) have been recently
confirmed by experiments on a neural culture (Barral and Reyes,
2016). Furthermore, Barral and Reyes (2016) have shown that
the major predictions of the seminal theory (van Vreeswijk and
Sompolinsky, 1996) also hold under conditions far from the
asymptotic limits where K and N are large.

The dynamics usually observable in balanced neural networks
is asynchronous and characterized by irregular neural firing
joined to stationary firing rates (van Vreeswijk and Sompolinsky,
1996; Monteforte and Wolf, 2010; Renart et al., 2010; Litwin-
Kumar and Doiron, 2012; Ullner et al., 2020). However,
other asynchronous regimes characterized by sub-Poissonian
and super-Poissonian statistics have been reported in balanced
homogenous and heterogeneous networks (Lerchner et al.,
2006; Ullner et al., 2020). Furthermore, regular and irregular
collective oscillations (COs) have been shown to emerge in
balanced networks composed of rate models (van Vreeswijk
and Sompolinsky, 1996) and of spiking neurons (Brunel, 2000;
Ostojic, 2014; di Volo and Torcini, 2018; Ullner et al., 2018; Bi
et al., 2020). The balanced asynchronous irregular state has been
experimentally observed both in vivo and in vitro (Shu et al.,
2003; Haider et al., 2006) and dynamic balance of excitation and
inhibition is observable in the neocortex across all states of the
wake-sleep cycle, in both human and monkey (Dehghani et al.,
2016). However, this is not the unique balanced state observable
in neural systems. In particular, balancing of excitation and
inhibition appears to be crucial for the emergence of cortical
oscillations (Okun and Lampl, 2008; Isaacson and Scanziani,
2011; Le Van Quyen et al., 2016) as well as for the instantaneous
modulation of the frequency of gamma oscillations in the
hippocampus (Atallah and Scanziani, 2009).Moreover, balancing
of excitation and inhibition is essential for the generation of
respiratory rhythms in the brainstem (Ramirez and Baertsch,
2018) and the rhythmic activity of irregular firing motoneurons
in the spinal cord of the turtle (Berg et al., 2007, 2019).

In this work, we characterize in detail the asynchronous
regimes and the emergence of COs (population rhythms) in E-
I balanced networks with structural heterogeneity. In particular,
we consider sparse random networks of quadratic integrate-
and-fire (QIF) neurons (Ermentrout and Kopell, 1986) pulse
coupled via instantaneous post synaptic potentials. We compare
numerical findings with analytical results obtained in the mean-
field (MF) limit by employing an effective low-dimensional
neural mass model recently developed for sparse QIF networks
(Montbrió et al., 2015; di Volo and Torcini, 2018; Bi et al., 2020).

In the asynchronous regime, our analytical MF predictions
are able to reproduce the mean membrane potentials and the
population firing rates of the structurally heterogeneous network
for any finite K value. Furthermore, in the limit N >> K >> 1,
we analytically derive the asymptoticMF values of the population
firing rates and the effective input currents. This analysis shows
that the system always achieves balanced dynamics, whose supra
or sub-threshold nature is determined by the model parameters.
Detailed numerical investigations of the microscopic dynamics
allow identifying three different groups of neurons, whose
activity is essentially controlled by their in-degrees and by the
effective input currents.

In the balanced network, we have identified three types of
COs depending on the corresponding solution displayed by the
neural mass model. The first type, termed OP emerges in the MF
via a Hopf bifurcation (HB) from a stable focus solution. These
COs gives rise to collective chaos via a period-doubling sequence
of bifurcations. Another type of CO, already reported for pure
inhibitory networks (di Volo and Torcini, 2018), denoted as
OF corresponds in the MF to a stable focus characterized by
relaxation oscillations toward the fixed point which in the sparse
network become noise sustained oscillations due to fluctuations
in the input currents. The last type of COs identified in the
finite network are named OS and characterized by abnormally
synchronized dynamics among the neurons, and the high level
of synchronization prevents their representation in the MF
formulation (Montbrió et al., 2015).

OP and OS emerge as sustained oscillations in the network via
amechanism resembling that invoked for pyramidal-interneuron
gamma (PING) rhythms (Whittington et al., 2011) despite the
frequency of these oscillations is not restricted to the γ band.
Excitatory neurons start to fire followed by the inhibitory ones
and the peak of activity of the excitatory population precedes
that of the inhibitory one of a time delay 1t. Furthermore, 1t
tends to vanish when the amplitude of the current fluctuations in
the network increases. Indeed, for OF oscillations, which cannot
emerge in absence of current fluctuations, no delay has been
observed between the activation of excitatory and inhibitory
populations. The last important question that we tried to address
in our study was whether the COs, observable for any finiteK, are
still present in the limit N >> K >> 1.

The study is organized as follows. Section 2 is devoted to the
introduction of the network model and of the corresponding
effective neural mass model, as well as of the microscopic and
macroscopic indicators employed to characterize the neural
dynamics. In the same section, the stationary solutions for the
balanced neural mass model are analytically obtained as finite
in-degree expansion and their range of stability is determined.
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The macroscopic dynamical regimes emerging in our network
are analyzed in section 3. In particular, we report bifurcation
phase diagrams obtained from the neural mass model displaying
the possible dynamical states and network simulations. The focus
of this section is on the analysis of the asynchronous balanced
state for structurally heterogeneous networks and the emergence
of the different types of COs observable at finite in-degrees. A
discussion of the obtained results and conclusions are reported
in section 4.

2. MODELS AND DYNAMICAL
INDICATORS

2.1. Network Model
We consider two sparsely coupled excitatory and inhibitory
populations composed of N(e) and N(i) QIF neurons,
respectively (Ermentrout and Kopell, 1986). The evolution

equation for the membrane potentials v
(e)
j and v

(i)
j of the

excitatory and inhibitory neurons can be written as:

τmv̇
(e)
j =

(

v
(e)
j

)2
+ I(e) + 2τm

[

g(ee)
∑

l|t
(n)
l

<t

ǫ
(ee)
jl

δ(t − t
(n)
l

)

−g(ei)
∑

k|t
(m)
k

<t

ǫ
(ei)
jk

δ(t − t
(m)
k

)

]

(1a)

τmv̇
(i)
j =

(

v
(i)
j

)2
+ I(i) + 2τm

[

g(ie)
∑

l|t
(n)
l

<t

ǫ
(ie)
jl

δ(t − t
(n)
l

)

−g(ii)
∑

k|t
(m)
k

<t

ǫ
(ii)
jk

δ(t − t
(m)
k

)

]

(1b)

where τm = 20 ms is the membrane time constant that
we set identical for excitatory and inhibitory neurons, I(e)

(I(i)) is the external direct current (DC) acting on excitatory
(inhibitory) population, g(αβ) represents the synaptic coupling
strengths between post synaptic neurons in the population α

and pre synaptic ones in population β , with α,β ∈ {e, i}. The

elements of the adjacency matrices ǫ
(αβ)
jk

are equal to 1 (0) if

a connection from a pre synaptic neuron k of population β

toward a post synaptic neuron j of population α, exists (or

not). Furthermore, k
(αβ)
j =

∑

k ǫ
(αβ)
jk

is the number of pre

synaptic neurons in the population β connected to neuron j
in population α, or in other terms, its in-degree restricted to
population β . The emission of the n-th spike emitted by neuron

l of the population α occurs at time t
(n)
l

whenever the membrane

potential v
(α)
l

(t
(n)
l

−
) → ∞, while the reset mechanism is

modeled by setting v
(α)
l

(t
(n)
l

+
) → −∞ immediately after the

spike emission. The postsynaptic potentials are assumed to be δ-
pulses and the synaptic transmissions to be instantaneous. The

Equations (1) can be formally rewritten as

τmv̇
(e)
j =

(

v
(e)
j

)2
+ i

(e)
eff ,j

, τmv̇
(i)
j =

(

v
(i)
j

)2
+ i

(i)
eff ,j

;

(2)

where i
(e)
eff ,j

(i
(i)
eff ,j

) represents the instantaneous excitatory

(inhibitory) effective currents, which include the external
DC current and the synaptic currents due to the
recurrent connections.

We consider the neurons within the excitatory and inhibitory
populations as randomly connected, with in-degrees k(αα)

distributed according to a Lorentzian distribution

P(k(αα)) =
1

(αα)
k

(k(αα) − K(αα))2 + 1
(αα)
k

2
·
1

π
(3)

peaked at K(αα) and with a half-width half-maximum (HWHM)

1
(αα)
k

, this latter parameter measures the level of structural

heterogeneity in each population. For simplicity, we set K(ee) =

K(ii) ≡ K. Furthermore, we assume that also neurons from a
population α are randomly connected to neurons of a different
population β 6= α. However, in this case, we consider no
structural heterogeneity with in-degrees fixed to a constant value
K(ei) = K(ie) = K. We have verified that by considering Erdös-
Renyi distributed in-degrees K(ei) and K(ie) with average K does
not modify the observed dynamical behavior.

The DC current and the synaptic coupling are rescaled with

the median in degree as I(α) =
√
KI

(α)
0 and g(αβ) = g

(αβ)
0 /

√
K,

as done in previous studies to obtain a self-sustained balanced
dynamics for N >> K >> 1 (van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010; Litwin-Kumar and Doiron, 2012;
Kadmon and Sompolinsky, 2015). The structural heterogeneity

parameters are rescaled as 1
(αα)
k

= 1
(αα)
0

√
K in analogy to

Erdös-Renyi networks. The choice of the Lorentzian distribution
for the k(αα) is needed in order to obtain an effective MF
description for the microscopic dynamics (di Volo and Torcini,
2018; Bi et al., 2020) as detailed in the next section.

The microscopic activity can be analyzed by considering the
inter-spike interval (ISI) distribution as characterized by the
coefficient of variation cvi for each neuron i, which is the ratio
between the SD and the mean of the ISIs associated with the
train of spikes emitted by the considered neuron. To characterize
the macroscopic dynamics of each population α, we measure

the average coefficient of variation CV(α) =
∑N(α)

i=1 cvi/N
(α), the

mean membrane potential V(α)(t) =
∑N(α)

i=1 v
(α)
i (t)/N(α), and

the population firing rate R(α)(t), corresponding to the number
of spikes emitted within the population α per unit of time and
per neuron.

Furthermore, the level of coherence in the neural activity of
the population α can be quantified in terms of the following
indicator (Golomb, 2007),

ρ(α) =

(

σ 2
V(α)

∑N(α)

i=1 σ 2
i /N(α)

)1/2

(4)
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where σV(α) is the SD of the mean membrane potential, σ 2
i =

〈

(v
(α)
i )2

〉

−

〈

v
(α)
i

〉2
and 〈· 〉 denotes a time average. A perfect

synchrony corresponds to ρ(α) = 1, while an asynchronous

dynamics to a vanishing small ρ(α) ≈ O(1/
√
N(α)).

The frequencies associated with collective motions can be
identified by measuring the power spectra S(ν) of the mean
membrane potentials V(t) of the whole network. In the case of
a periodic motion, the position of the main peak νCO represents
the frequency of the COs, while for quasi-periodic motions, the
spectrum is characterized by many peaks that can be obtained
as a linear combination of two fundamental frequencies (ν1, ν2).
The spectra obtained in the present case, always exhibit a
continuous background due to the intrinsic fluctuations present
in the balanced network. The power spectra have been obtained
by calculating the temporal Fourier transform of V(t) sampled
at time intervals of 10 ms. Time traces composed of 10,000
consecutive intervals have been considered to estimate the
spectra, which are obtained at a frequency resolution of 1ν =

0.01 Hz. Finally, the power spectra have been averaged over five
independent realizations of the random network.

The network dynamics are integrated by employing an Euler
scheme with time step dt = 0.0001 ms, while time averages and
fluctuations are usually estimated on time intervals Ts ≃ 100
s, after discarding transients Tt ≃ 10 s. Usually, we consider
networks composed of N(e) = 10, 000 excitatory and N(i) =

2, 500 inhibitory neurons.

2.2. Effective Neural Mass Model
In this sub-section, we derive a low dimensional effective neural
mass formulation for the spiking network (Equation 1) by
following Montbrió et al. (2015). In such an article, the authors
obtained an exactMFmodel for a globally coupled heterogeneous
population of QIF neurons by generalizing to neural systems
using a reduction methodology previously developed for phase-
coupled oscillators by Ott and Antonsen (2008). In particular,
the neural mass model can be obtained by performing a rigorous
mathematical derivation from the original spiking network in the
limit N → ∞ by assuming that the heterogeneity present in the
network, which can be either neuronal excitabilities or synaptic
couplings, are distributed as Lorentzians. This MF reduction
methodology gives rise to a neural mass model written in terms
of only two collective variables: the mean membrane potential V
and the instantaneous population rate R. For sufficiently large
network size, the agreement between the simulation results and
the neural mass model is impressive as shown in Montbrió et al.
(2015) and in several successive publications.

The detailed derivation of the neural mass models from the
corresponding spiking networks can be found in Montbrió et al.
(2015), in this study, we limit to report its expression for a fully
coupled homogeneous network of QIF neurons with synaptic
couplings randomly distributed according to a Lorentzian:

τmṘ = 2RV +
Ŵ

π
R (5a)

τmV̇ = V2 + I + ḡτmR− (πτmR)
2 (5b)

where ḡ is the median and Ŵ the HWHM of the Lorentzian
distribution of the synaptic couplings.

Such formulation can be applied to the random sparse
network studied in this article, in this paper. Indeed, as shown
for a single sparse inhibitory population (di Volo and Torcini,
2018; Bi et al., 2020), the quenched disorder associated to the in-
degree distribution can be rephrased in terms of random synaptic
couplings. Namely, each neuron i in population α is subject to

currents of amplitude g
(αβ)
0 k

(αβ)
i R(β)/(

√
K) proportional to their

in-degrees k
(αβ)
i , with β ∈ {e, i}. Therefore, we can consider

the neurons as fully coupled but with random values of the

couplings distributed as Lorentzian of median g
(αβ)
0

√
K and

HWHM g
(αβ)
0 1

(αβ)
0 .

The neural mass model corresponding to the spiking network
(Equation 1) can be written as follows:

τmṘ
(e) = R(e)

[

2V(e) + g
(ee)
0

1
(ee)
0

π

]

(6a)

τmV̇
(e) =

[

V(e)
]2

−

[

πR(e)τm

]2

+
√
K
[

I
(e)
0 + (g

(ee)
0 R(e) − g

(ei)
0 R(i))τm

]

(6b)

τmṘ
(i) = R(i)

[

2V(i) + g
(ii)
0

1
(ii)
0

π

]

(6c)

τmV̇
(i) =

[

V(i)
]2

−

[

πR(i)τm

]2

+
√
K
[

I
(i)
0 + (g

(ie)
0 R(e) − g

(ii)
0 R(i))τm

]

; (6d)

where we have set 1
(ei)
0 = 1

(ie)
0 = 0, since we have assumed

that the connections among neurons of different populations are
random but with a fixed in-degree K(ei) = K(ie) = K.

2.2.1. Stationary Solutions

The stationary solutions {V
(e)
,V

(i)
,R

(e)
,R

(i)
} of Equation (6) can

be explicitly obtained for the mean membrane potentials as

V
(e)

= −
g
(ee)
0 1

(ee)
0

2π
, V

(i)
= −

g
(ii)
0 1

(ii)
0

2π
; (7)

while the instantaneous population rates are the solutions of the
following quadratic system

g
(ee)
0 R

(e)
τm − g

(ei)
0 R

(i)
τm = −I

(e)
0 + ε

{

[

πR
(e)

τm

]2
−

[

V
(e)
]2
}

(8a)

g
(ie)
0 R

(e)
τm − g

(ii)
0 R

(i)
τm = −I

(i)
0 + ε

{

[

πR
(i)

τm

]2
−

[

V
(i)
]2
}

(8b)

where ε = 1/
√
K is a smallness parameter taking in to account

finite in-degree corrections. It is interesting to notice that the

parameters controlling the structural heterogeneity 1
(ii)
0 and

1
(ee)
0 fix the stationary values of the mean membrane potentials
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reported in Equation (7). The solutions of Equation (8) can
be exactly obtained and the associated bifurcations analyzed
by employing the software XPP AUTO developed for orbit
continuation (Ermentrout, 2007).

For sufficiently large K, one can obtain analytic
approximations of the solution of Equation (8) by expanding the
population rates as follows:

R
(α)

= R
(α)
0 + εR

(α)
1 + ε2R

(α)
2 + ε3R

(α)
3 + . . . α ∈ {e, i}, (9)

by inserting these expressions in Equation (8), and finally by
solving order by order in ε.

The solutions at any order can be written as follows:

R
(e)
k τm =

N
(e)
k
g
(ii)
0 − N

(i)
k
g
(ei)
0

g
(ei)
0 g

(ie)
0 − g

(ee)
0 g

(ii)
0

,

R
(i)
k τm =

N
(e)
k
g
(ie)
0 − N

(i)
k
g
(ee)
0

g
(ei)
0 g

(ie)
0 − g

(ee)
0 g

(ii)
0

; (10)

where,

N
(α)
0 = I

(α)
0 , N

(α)
1 =

[

V
(α)
]2

−

[

πR
(α)
0 τm

]2
(11a)

N
(α)
2j = −2 [πτm]

2

j
∑

k=1

[

R
(α)
k−1R

(α)
2j−k

]

(11b)

N
(α)
2j+1 = −2 [πτm]

2











j
∑

k=1

R
(α)
k−1R

(α)
2j+1−k



+
1

2

[

R
(α)
j

]2







for j ≥ 1 (11c)

The systems (Equation 10) with parameters given by Equation
(11) can be resolved recursively for any order and the final
solution obtained from the expression (Equation 9). The zeroth-
order approximation, valid in the limit K → ∞, corresponds
to the usual solution found for rate models in the balanced state
(van Vreeswijk and Sompolinsky, 1996; Rosenbaum and Doiron,
2014), such solution is physical whenever one of the following
inequalities is satisfied

I
(e)
0

I
(i)
0

>
g
(ei)
0

g
(ii)
0

>
g
(ee)
0

g
(ie)
0

,
I
(e)
0

I
(i)
0

<
g
(ei)
0

g
(ii)
0

<
g
(ee)
0

g
(ie)
0

; (12)

which ensure the positive sign of R
(e)
0 and R

(i)
0 . The zeroth-order

solution does not depend on the structural heterogeneity, since
the ratio 1(αα)/K vanishes in the limit K → ∞. It should be
stressed that this ratio does not correspond to the coefficient
of variation introduced in Landau et al. (2016) to characterize
the in-degree distribution. This is because we are considering
a Lorentzian distribution, where the average and the SD are
not even defined. Moreover, already the first-order corrections

depend on 1
(αα)
0 .

To characterize the level of balance in the system, one usually

estimates the values of the effective input currents i
(e)
eff ,j

and i
(i)
eff ,j

driving the neuron dynamics. These at a population level can be
rewritten as

I
(e)
eff

=
√
K
[

I
(e)
0 + τm(g

(ee)
0 R(e) − g

(ei)
0 R(i))

]

,

I
(i)
eff

=
√
K
[

I
(i)
0 + τm(g

(ie)
0 R(e) − g

(ii)
0 R(i))

]

. (13)

In a balanced state, these quantities should not diverge with
K, instead, they should approach some constant value. For an
asynchronous state we can estimate analytically, within our MF
formulation, the values of the effective currents in the limit K →

∞. These read as

I(e)a = τm

[

g
(ee)
0 R

(e)
1 − g

(ei)
0 R

(i)
1

]

,

I(i)a = τm

[

g
(ie)
0 R

(e)
1 − g

(ii)
0 R

(i)
1

]

. (14)

It should be noticed that these asymptotic values depend on the
first-order corrections to the balanced solution (Equation 10).

Therefore, they depend not only on the synaptic couplings g
(αβ)
0

and on the external DC currents but also on the parameters1
(αα)
0

controlling the structural heterogeneities.

Depending on the parameter values, the currents I
(α)
a can

be positive or negative, thus, indicating a balanced dynamics
where most parts of the neurons are supra or below the
threshold, respectively. Usually, in order to obtain a stationary
state characterized by a low rate and a Poissonian statistic, as
observed in the cortex, one assumes that the excitation and
inhibition nearly cancel. So that the mean membrane potential
remains slightly below the threshold, and the neurons can fire
occasionally due to the input current fluctuations (van Vreeswijk
and Sompolinsky, 1996; Brunel, 2000). However, as pointed out
in Lerchner et al. (2006), this is not the only possible scenario
for a balanced state. In particular, the authors have developed
a self-consistent MF theory for balanced Erdös-Renyi networks
made of heterogeneous Leaky Integrate-and-Fire (LIF) neurons.
In this context, they have shown that Poisson-like dynamics
are visible only at intermediate synaptic couplings. While mean
driven dynamics are expected for low couplings, and at large
couplings bursting behaviors appear in the balanced network.
Recently, analogous dynamical behaviors have been reported also
for a purely inhibitory heterogeneous LIF network (Angulo-
Garcia et al., 2017). These findings are consistent with the
results in Lerchner et al. (2006), where the inhibition is indeed
predominant in the balanced regime.

2.2.2. Lyapunov Analysis
To analyze the linear stability of generic solutions of Equation (6),
we have estimated the corresponding Lyapunov spectrum
(LS) {λk} (Pikovsky and Politi, 2016). This can be done by
considering the time evolution of the tangent vector δ =
{

δR(e), δV(e), δR(i), δV(i)
}

, that is ruled by the linearization of the
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Equation (6), namely

τmδṘ(e) =

[

2V(e) + g
(ee)
0

1
(ee)
0

π

]

δR(e) + 2R(e)δV(e) (15a)

τmδV̇(e) = 2V(e)δV(e) − 2(πτm)
2R(e)δR(e)

+
√
Kτm

[

g
(ee)
0 δR(e) − g

(ei)
0 δR(i)

]

(15b)

τmδṘ(i) =

[

2V(i) + g
(ii)
0

1
(ii)
0

π

]

δR(i) + 2R(i)δV(i) (15c)

τmδV̇(i) = 2V(i)δV(i) − 2(πτm)
2R(i)δR(i)

+
√
Kτm

[

g
(ie)
0 δR(e) − g

(ii)
0 δR(i)

]

. (15d)

In this case, the LS is composed of four Lyapunov exponents
(LEs) {λk} with k = 1, . . . , 4, which quantify the average
growth rates of infinitesimal perturbations along the orthogonal
manifolds. The LEs can be estimated as follows:

λk = lim
t→∞

1

t
log

|δk(t)|

|δk(0)|
, (16)

where the tangent vectors δk aremaintained ortho-normal during
the time evolution by employing a standard technique introduced
in Benettin et al. (1980). The autonomous system will be chaotic
for λ1 > 0, while a periodic (two frequency quasi-periodic)
dynamics will be characterized by λ1 = 0 (λ1 = λ2 = 0) and
a fixed point by λ1 < 0.

In order to estimate the LS for the neural mass model, we have
integrated the direct and tangent space evolution with a Runge-
Kutta 4th order integration scheme with dt = 0.01 ms, for a
duration of 200 s, after discarding a transient of 10 s.

2.2.3. Linear Stability of Stationary Solutions
The linear stability of the stationary solutions

{V
(e)
,V

(i)
,R

(e)
,R

(i)
} can be analyzed by solving the eigenvalue

problem for the linear Equations (15) estimated for
stationary values of the mean membrane potentials and of
the population firing rates. This approach gives rise to a fourth-
order characteristic polynomial of the complex eigenvalues

3(k) = 3
(k)
R + i3

(k)
I with k = 1, . . . , 4. The stability of the fixed

point is controlled by the maximal 3
(k)
R , whenever it is positive

(negative), the stationary solution is unstable (stable). The nature

of the fixed point is determined by 3
(k)
I , if the imaginary parts

of the eigenvalues are all zero, we have a node, otherwise a
focus. Due to the fact that the coefficients of the characteristic
polynomial are real, the eigenvalues are real or if complex they

appear in complex conjugates couples 3
(j)
R ± i3

(k)
I . Therefore,

the relaxation toward the fixed point is characterized by one

or two frequencies νk = 3
(k)
I /(2π). These latter quantities, as

discussed in detail in the following, can give good predictions for
the frequencies νCO of fluctuation driven COs observable for the
same parameters in the network dynamics.

In the limit K >> 1, we can approximate the linear stability
(Equations 15) as follows:

τmδṘ(e) = 2R
(e)
0 δV(e) (17a)

τmδV̇(e) =
√
Kτm

[

g
(ee)
0 δR(e) − g

(ei)
0 δR(i)

]

(17b)

τmδṘ(i) = 2R
(i)
0 δV(i) (17c)

τmδV̇(i) =
√
Kτm

[

g
(ie)
0 δR(e) − g

(ii)
0 δR(i)

]

; (17d)

where we have considered the zeroth-order approximation for

the population rates R
(e)
0 and R

(i)
0 .

In this case, the complex eigenvalues 3(k) are given by the
following expression:

[

3(k)
]2

=

√
K

τm

[

(

g
(ee)
0 R

(e)
0 − g

(ii)
0 R

(i)
0

)

±

√

(

g
(ee)
0 R

(e)
0 + g

(ii)
0 R

(i)
0

)2
− 4g

(ei)
0 g

(ie)
0 R

(e)
0 R

(i)
0

]

. (18)

From Equation (18), it is evident that 3(k) ∝ (K)1/4, and by

assuming I
(i)
0 ∝ I

(e)
0 , as we will do in this study, we also have

that 3(k) ∝ (I
(e)
0 )1/2. Therefore, for a focus solution, we will have

the following scaling relation for the relaxation frequencies for
sufficiently large K:

νRk =
3

(k)
I

2π
∝

√

I
(e)
0 K1/2 ; (19)

This scaling is analogous to that found for purely inhibitory
QIF networks in di Volo and Torcini (2018). In van Vreeswijk
and Sompolinsky (1996), it has been found that the eigenvalues,
characterizing the stability of the asynchronous state, scale
proportionally to

√
K, therefore, the convergence (divergence)

from the stationary stable (unstable) solution is somehow slower
with K in our model. This is due to the presence in our MF of an
extra macroscopic variable, the mean membrane potential, with
respect to the usual rate models.

3. RESULTS

3.1. Phase Diagrams
In this sub-section, we will investigate the possible dynamical
regimes emerging in our model by employing its neural mass
formulation. In particular, the dynamics of the neural mass
model (Equation 6) take place in a four-dimensional space
{

R(e),V(e),R(i),V(i)
}

and it depends on nine parameters, namely

on the four synaptic coupling strengths
{

g
(ee)
0 , g

(ei)
0 , g

(ii)
0 , g

(ie)
0

}

,

the two external stimulation currents
{

I
(e)
0 , I

(i)
0

}

, the median

in-degree K, and the HWHM of the two distributions of the

in-degrees
{

1
(ee)
0 ,1

(ii)
0

}

.

However, in order to reduce the space of parameters to
investigate and at the same time to satisfy the inequalities
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(Equation 12) required for the existence of a balanced state in the

large K limit, we fix the inhibitory DC current as I
(i)
0 = I

(e)
0 /1.02

and the synaptic couplings as g
(ee)
0 = 0.27, g

(ii)
0 = 0.953939,

g
(ie)
0 = 0.3, and g

(ei)
0 = 0.96286 analogously to what was done

in Monteforte and Wolf (2010). Therefore, we are left with four

control parameters, namely 1
(ee)
0 , 1

(ii)
0 , I

(e)
0 , and K, that we will

vary to investigate the possible dynamical states.
Three bidimensional bifurcation diagrams for the neural mass

model (Equation 6) are reported in Figure 1 for the couple of

parameters (I
(e)
0 ,1

(ee)
0 ), (K,1

(ee)
0 ), and (1

(ii)
0 ,1

(ee)
0 ). From the

bifurcation analysis, we have identified five different dynamical
states for the excitatory population: namely, (I) an unstable focus;
(II) a stable focus coexisting with an unstable limit cycle (LC);
(III) a stable node; (IV) a stable limit cycle coexisting with
an unstable focus; and (V) a chaotic regime. For the analysis
reported in the following, it is important to remark that the
stable foci are usually associated with four complex eigenvalues
arranged in complex conjugate couples, therefore, the relaxation
toward a stable focus is characterized by two frequencies (ν1, ν2)
corresponding to the complex parts of the eigenvalues. In region
(III), the macroscopic fixed point is characterized by two real
eigenvalues and a couple of complex conjugated ones. Thus, the
relaxation toward the macroscopic node is, in this case, guided
by a single relaxation frequency. The inhibitory population,
reveals the same bifurcation structure as the excitatory one, apart
from an important difference: the inhibitory population never
displays stable nodes. Therefore, the region (III) for the inhibitory
population is also a region of type (II).

As shown in Figures 1A,B, for fixed 1
(ii)
0 and for low values

of the structural heterogeneity 1
(ee)
0 and of the excitatory DC

current I
(e)
0 , one observes a stable node (III) that becomes a stable

focus (II) by increasing 1
(ee)
0 , these transitions are signaled as

green solid lines in Figure 1. By further increasing the degree of

heterogeneity 1
(ee)
0 , the stable focus gives rise to COs (IV) via

a super-critical HB (blue solid lines). Depending on the values

of K and I
(e)
0 , one can have the emergence of chaotic behaviors

(V) via a period doubling (PD) cascade (yellow solid lines). For

sufficiently large 1
(ee)
0 , the COs disappear via a saddle-node (SN)

bifurcation of limit cycles (LC) (red solid lines) and above the SN
line, the only remaining solution is an unstable focus (I).

As shown in Figure 1A, for fixed structural heterogeneities,

the increase of I
(e)
0 leads to the disappearance of the stable focus

(II) via a sub-critical HB (dashed blue line). The dependence
of the observed MF solutions on the in-degree K is reported in

Figure 1B for a current I
(e)
0 = 0.001, and it is not particularly

dramatic apart from for the emergence of a chaotic region (V)
from a CO regime (IV).

In order to observe the emergence of COs (IV) from the
destabilization of a node solution (III), we should vary the

structural inhibitory heterogeneity 1
(ii)
0 , as shown in Figure 1C.

Indeed, for sufficiently low 1
(ii)
0 and 1

(ee)
0 , we can observe a

super-critical bifurcation line from a node to a stable LC. From
this analysis, it emerges that the excitatory heterogeneity has
an opposite effect with respect to the inhibitory one, indeed

by increasing 1
(ee)
0 , the value of ρ(e) increases indicating the

presence of more synchronized COs. This effect is due to

the fact that the increase of 1
(ee)
0 leads to more and more

neurons with large k
(ee)
j >> K, therefore, receiving higher and

higher levels of recurrent excitation. These neurons are definitely
supra-threshold and drive the activity of the network toward
coherent behaviors.

In order to understand the limits of our MF formulation, it is
of particular interest to compare the network simulations with
the MF phase diagram. To this aim, we report in Figure 1C,
the coherence indicator ρ(e) (Equation 4) estimated from the
network dynamics. The indicator ρ(e) reveals that no COs are
present in the region (III), where the MF displays a stable
node, however, COs emerge in all the other MF regimes for

sufficiently low 1
(ii)
0 < 1. The presence of COs is expected

from the MF analysis only in the regions (IV) and (V), but
neither in (II) where the MF forecasts the existence of a stable
focus nor in (I) where no stable solutions are envisaged. The
origin of the discrepancies among the MF and the network
simulations in the region (II) is due to the fact that the
considered neural mass neglects the dynamical fluctuations in
the input currents present in the original networks, which
can give rise to noise induced COs (Goldobin et al., 2021).
However, as shown in di Volo and Torcini (2018) and Bi
et al. (2020) for purely inhibitory populations, the analysis of
the neural mass model can still give relevant information on
the network dynamics. In particular, the frequencies of the
fluctuation induced COs observable in the network simulations
can be well estimated from the frequencies (ν1, ν2) of the
relaxation oscillations toward the stable MF focus. The lack
of agreement between MF and network simulations in the
region (I) is due to finite size effects, indeed in this case, the
system tends to fully synchronize. Therefore, in the network, one
observes highly synchronized COs characterized by population
firing rates that diverge for increasing K and N and the MF is
unable to reproduce these unrealistic solutions (Montbrió et al.,
2015).

On the basis of these observations, we can classify the COs
observable in the network in three different types accordingly to
the corresponding MF solutions: OP, when in the MF we observe
periodic, quasi-periodic, or chaotic collective solutions in regions
(IV) and (V); OF, when the MF displays relaxation oscillations
toward the stable focus in regions (II) and (III), that in the sparse
network become noise sustained oscillations due to fluctuations
in the input currents; OS, when the MF fully synchronizes as in
region (I).

In the following sub-sections, we will analyze the macroscopic
dynamics of the E-I network of QIF neurons in order to test the
predictions of the effective neural mass mode for asynchronous
and coherent dynamics. In this latter case, we will focus on the
three types of identified COs: namely, OP, OF, and OS. These can
manifest as periodic, quasi-periodic, and chaotic solutions as we
will see by examining two main scenarios indicated as dashed
horizontal lines in Figure 1A corresponding to the transition
to chaos (black dashed line) and the emergence of abnormal
synchronization from a stable focus (purple dashed line).
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FIGURE 1 | Bifurcation diagrams of the neural mass model. The bifurcation diagrams concern the dynamical state exhibited by the excitatory population in the

bidimensional parameter spaces (I
(e)
0 ,1

(ee)
0 ) (A), (K,1

(ee)
0 ) (B), and (1

(ii)
0 ,1

(ee)
0 ) (C). The regions marked by Roman numbers correspond to the following collective

solutions: (I) an unstable focus; (II) a stable focus coexisting with an unstable limit cycle (LC); (III) a stable node; (IV) an unstable focus coexisting with a stable LC; (V) a

chaotic dynamics. The green solid line separates the regions with a stable node (III) and a stable focus (II). The blue solid (dashed) curve is a line of super-critical

(sub-critical) Hopf bifurcations (HBs), and the red one of saddle-node (SN) bifurcations of LCs. The yellow curve denotes the period doubling (PD) bifurcation lines. In

(C), we also report the coherence indicator ρ (e) (Equation 4) estimated from the network dynamics with N(e) =10,000 and N(i) = 2,500. The dashed lines in (A) indicate

the parameter cuts we will consider in Figures 4, 5 (black) and Figure 7 (purple), while the open circles in (A,B) denote the set of parameters employed in Figure 11.

In the three panels, the inhibitory DC current and the synaptic couplings are fixed to I
(i)
0 = I

(e)
0 /1.02, g

(ee)
0 = 0.27, g

(ii)
0 =0.953939, g

(ie)
0 = 0.3, g

(ei)
0 =0.96286; other

parameters: (A) K =1,000, 1
(ii)
0 = 0.3, (B) I

(e)
0 =0.001, 1

(ii)
0 = 0.3, (C) K = 1,000, and I

(e)
0 = 0.1.

3.2. Asynchronous Regimes
We will first consider a situation where the network dynamics
remains asynchronous for any value of the median in-
degree K, this occurs for sufficiently high structural inhibitory

heterogeneities 1
(ii)
0 and external DC currents as shown in

Figures 1B,C for E-I networks and as reported in di Volo
and Torcini (2018) for purely inhibitory populations. If the
population dynamics are asynchronous, we expect that at an
MF level, the system will converge toward a stationary state
corresponding to a stable equilibrium. Therefore, we have
compared the results of the network simulations with the

stationary rates (R
(e)
,R

(i)
) solutions of Equation (6). As shown

in Figures 2A,B, the macroscopic activity of the excitatory and
inhibitory populations is well reproduced by the fixed point
solutions (Equation 8) in a wide range of values of the in-degrees
10 ≤ K ≤ 104. This is particularly true for the inhibitory
population, while at low K < 100, the excitatory firing rate is

slightly underestimated by the macroscopic solution R
(e)
. Due

to our choice of parameters, the average inhibitory firing rate is
larger than the excitatory one for K > 100. This is consistent
with experimental data reported for the barrel cortex of behaving
mice (Gentet et al., 2010) and other cortical areas (Mongillo et al.,
2018). Moreover, the rates have a non-monotonic behavior with
K with a maximum at K ≃ 450 (K ≃ 2,500) for excitatory
(inhibitory) neurons. As expected, the balanced state solutions

R
(e)
0 = 3.18 Hz and R

(i)
0 ≃ 11.28 Hz (dashed horizontal lines) are

approached only for sufficiently large K >> 1. In Figures 1A,B

are reported also the first (second) order approximation R
(e)
0 +

εR
(e)
1 (R

(e)
0 + εR

(e)
1 + ε2R

(e)
2 ) given by Equation (10). These

approximations reproduce quite well the complete solutions
already at K ≥ 104.

Let us now consider the effective input currents (Equation
13), these are reported in Figure 2C vs. the median in-degree.

As expected, for increasing K, the MF estimations of the
effective currents (solid lines) converge to the asymptotic

values I
(e)
a ≃ 0.0284 and I

(i)
a ≃ 0.4791 (dashed lines) for

our choice of parameters. For the excitatory population, the
asymptotic value of the effective input current is essentially
zero, while for the inhibitory population it is positive. These
results suggest that for the considered choice of parameters
the dynamics of both populations will be balanced, since the

quantities I
(e)
a and I

(i)
a do not diverge with K, however, at

a macroscopic level, the excitatory population will be at the
threshold, while the inhibitory one will be supra-threshold. For

comparison, we have estimated I
(α)
eff

also from the direct the

network simulations (circles) for 16 ≤ K ≤ 16,384. These
estimations disagree with the MF results already for K > 1,000.
This is despite the fact that the population firing rates in the
network are very well captured by the MF estimations at large
K, as shown in Figures 2A,B. These large differences in the
effective input currents are the effect of small discrepancies at
the level of firing rates enhanced by the multiplicative factor√
K appearing in Equations (13). However, from the network

simulations, we observe that the effective currents approach

values smaller than the asymptotic ones I
(e)
a and I

(i)
a obtained

from the neural mass model. In particular, despite the fact
that from finite K simulations, it is difficult to extrapolate the

asymptotic behaviors, it appears that I
(e)
eff

approaches a small

negative value for K >> 1, while I
(i)
eff

converges to some

finite positive value. In the following, we will see the effect of
these different behaviors on microscopic dynamics. The origin
of the reported discrepancies should be related to the presence
of current fluctuations in the network that are neglected in the
MF formulation.

The relevance of the current fluctuations for the network
dynamics can be appreciated by estimating their amplitudes
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FIGURE 2 | Asynchronous dynamics: Instantaneous population rate R(e) (R(i))

of excitatory (inhibitory) neurons in function of the median in-degree K are

shown in (A,B). The effective input currents I
(e)
eff (I

(i)
eff ) given by Equations (13) are

reported in (C) and the fluctuations of the input currents 1I
(e)
eff (1I

(i)
eff ), as

obtained from Equations (20), in (D). Red (blue) color refers to excitatory

inhibitory population. The solid continuous lines represent the value obtained

by employing the exact MF solutions R
(x)

of Equation (8), the dotted

(dash-dotted) lines correspond to the first (second) order approximation

R
(x)

0 + εR
(x)

1 (R
(x)

0 + εR
(x)

1 + ε2R
(x)

2 ) and the dashed horizontal lines to the

zeroth-order one R
(x)

0 in (A,B,D), and to I
(x)
a in (C) with x = e, i. The circles

correspond to data obtained from numerical simulations of N(e) = N(i) =10,000

neurons for K < 4,096, N(e) = N(i) =20,000 for K =4,096,8,192 and

N(e) = N(i) =30,000 for K > 8, 192, averaging the population rates over a

window of T = 40 s, after discarding a transient of T = 60 s. The error bars in

(A,B) are obtained as the SD (over the time window T ) of the population rates,

while the average CV of neurons is around 0.15 for all the reported

simulations. Synaptic couplings and the ratio between the currents are fixed as

stated in sub-section 3.1, other parameters are 1
(ii)
0 = 1, 1

(ee)
0 = 2.5, and

I
(e)
0 = 0.2. The values of the asymptotic solutions (dashed lines) are : in (A,B)

R
(e)

0 = 3.18 Hz and R
(i)

0 = 11.28 Hz, respectively; in (C) I
(e)
a = 0.0284 and

I
(i)
a ≃ 0.4791; in (D) 1I

(e)
eff = 0.4623 and 1I

(i)
eff = 0.4593.

within a Poissonian approximation, as follows

1I
(e)
eff

=

√

τm

[

(

g
(ee)
0

)2
R(e) +

(

g
(ei)
0

)2
R(i)
]

1I
(i)
eff

=

√

τm

[

(

g
(ie)
0

)2
R(e) +

(

g
(ii)
0

)2
R(i)
]

(20)

These have been evaluated by assuming that each neuron receives
on average K excitatory and inhibitory spike trains characterized
by Poissonian statistics with average rates R(e) and R(i). However,
we have neglected in the above estimation the variability of
the in-degrees of each neuron. As shown in Figure 2D, these
fluctuations are essentially identical for excitatory and inhibitory
neurons and coincide with the MF results. In the limit K >>

1, they converge to the asymptotic values 1I
(e)
eff

≃ 0.4623 and

1I
(i)
eff

≃ 0.4593 (green dashed lines). It is evident that already for

K > 1,000, the amplitudes of the fluctuations are of the same
order or larger than the effective input currents. Thus, suggesting
that the fluctuations have indeed a relevant role in determining

the network dynamics and that one would observe Poissonian

or sub-Poissonian dynamics for the neurons, whenever I
(α)
a is

sub-threshold or supra-threshold (Lerchner et al., 2006).
In order to understand how the in-degree heterogeneity

influences the network dynamics at a microscopic level, we
examine the dynamics of active neurons in the function of their

total in-degree k
(tot)
j . This is defined for excitatory (inhibitory)

neurons as k
(tot)
j = k

(ee)
j + k

(ei)
j (k

(tot)
j = k

(ii)
j + k

(ie)
j ).

Furthermore, a neuron is considered as active if it has fired at
least once during the whole simulation time Tt + Ts = 100 s,
therefore, if it has a firing rate larger than 0.01 Hz. As shown
in Figures 3A,B, the probability distribution function (PDF) of

active neurons is skewed toward values k
(tot)
j > 2K (k

(tot)
j < 2K)

for excitatory (inhibitory) neurons. These results reflect the fact
that the excitatory (inhibitory) neurons with low (high) recurrent

in-degrees k
(ee)
j << K (k

(ii)
j >> K) are driven below the

threshold by the inhibitory activity, that is predominant in the

network since R(i) > R(e), g
(ei)
0 > g

(ee)
0 , and g

(ii)
0 > g

(ie)
0 . The

number of silent neurons for K >1,024 is of the order of 6-
10% for both inhibitory and excitatory populations, in agreement
with experimental results for the barrel cortex of mice (O’Connor
et al., 2010), where a fraction of 10% of neurons was identified
as silent with a firing rate slower than 0.0083 Hz. It should be
remarked that all the population averages we report include the
silent neurons.

Let us now examine how the firing rates of active neurons
will modify by increasing the value of the median in-degree K.
The single neuron firing rates as a function of their total in-

degrees k
(tot)
j are reported in Figures 3C,D for K =1,024, 4,096

and 16,384. A common characteristic is that the bulk neurons,
those with k

(tot)
j ≃ 2K, tend to approach the firing rate values

(R
(e)
0 ,R

(i)
0 ) (magenta dashed lines) corresponding to the expected

solutions for a balanced network in the limit N >> K → ∞

(van Vreeswijk, 1996). This is confirmed by the analysis of their
coefficient of variations cvj, whose values are of order one, as
expected for fluctuation driven dynamics. On the other hand,

the outlier neurons, i.e., those with k
(tot)
j far from 2K, are all

characterized by low values of the coefficient of variation cvj
indicating a mean driven dynamics. However, there is a striking
difference between excitatory and inhibitory neurons. For the
excitatory ones, we observe that the firing rates of the outliers

with k
(tot)
j >> 2K decrease for increasing K, while for the

inhibitory population the increase of K leads to the emergence

of outliers at k
(tot)
j << 2K with higher and higher firing rates

(refer to the inset in Figure 3D). This difference can be explained

by the different values measured for I
(e)
eff

and I
(i)
eff

in the network

(refer to Figure 2C). The increase of K leads for the excitatory
(inhibitory) population to the emergence of neurons with very

large k
(ee)
j >> K (very small k

(ii)
j << K) whose dynamics

should be supra-threshold. However, this is compensated in the

excitatory case by the rapid drop of I
(e)
eff

toward zero or negative

values, while for the inhibitory population I
(i)
eff

remains positive

even at the largest K we have examined.
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FIGURE 3 | Asynchronous dynamics: Probability distribution functions (PDFs) of the total in-degrees k
(tot)
j for excitatory (A) and inhibitory (B) active neurons for

K = 16, 384. (C,D) Firing rates of the excitatory (inhibitory) neurons r
(e)
j (r

(i)
j ) vs. their total in-degrees k

(tot)
j − 2K symbols refer to K =1,024 (red), K =4,096 (blue), and

K =16,384 (green). The inset in (D) is an enlargement of the panel displaying the firing rates over the entire scale k
(tot)
j − 2K. The magenta dashed lines in (C,D)

represent the balanced state solution (R
(e)

0 ,R
(i)

0 ). (E,F) PDF of the excitatory (inhibitory) firing rates r
(e)
j (r

(i)
j ) for K = 16, 384, the solid (dashed) line refers to the MF results

R
(x)

(R
(x)

0 ) with x = e, i. The red (blue) solid line refers to a log-normal fit to the excitatory (inhibitory) PDF with mean 8.8 Hz (17.5 Hz) and SD of 3.8 Hz (2.3 Hz). The

parameters are the same as in Figure 1, the firing rates have been estimated by simulating the networks for a total time Ts = 60 s, after discarding a

transient Tt = 40 s.

These outliers seem to have a negligible influence on the
population dynamics, as suggested by the fact that the mean
firing rates are reasonably well approximated by the balanced

solutions R
(e)
0 and R

(i)
0 and as also confirmed by examining

the PDFs of the firing rates for K =16,384. As shown in
Figures 3E,F, the excitatory (inhibitory) PDF can be well fitted
by a log-normal distribution with a mean 8.8 Hz (17.5 Hz) and
SD of 3.8 Hz (2.3 Hz). This is considered a clear indication
that the network dynamics is fluctuation driven (Roxin et al.,
2011) as confirmed by recent investigations in the hippocampus
and the cortex (Wohrer et al., 2013; Buzsáki and Mizuseki,
2014; Mongillo et al., 2018), as well as in the spinal motor
networks (Petersen and Berg, 2016). However, the relative
widths of our distributions are narrower than those reported in
Mongillo et al. (2018). This difference can find an explanation
in the theoretical analysis reported in Roxin et al. (2011),
where the authors have shown that quite counter intuitively
a wider distribution of the synaptic heterogeneities can lead
to a narrower distribution of the firing rates. Indeed, in this
study, we consider Lorentzian distributed in-degrees, while in
Mongillo et al. (2018) Erdös-Renyi networks have been analyzed.
As a further aspect, we have estimated the number of inhibitory
neurons firing faster than a certain threshold νth, this number
does not depend on the median in-degree for sufficiently large
K >5,000, however, it grows proportionally to N. In the
considered cases, the fraction of these neurons is ≃ 1% for
νth = 50 Hz.

From this analysis, we can conclude that at any finite K and
for finite observation times, we have at a macroscopic scale
an essentially balanced regime sustained by the bulk of active
neurons, whose dynamics are fluctuation-driven. Furthermore,
we also have a large body of silent neurons and a small fraction
of mean driven outliers. These should be considered as typical
features of finite heterogeneous neural circuits as shown in
various experiments (O’Connor et al., 2010; Landau et al., 2016).
Moreover, in the present case, we report quite different behaviors
for outliers whosemacroscopic effective input currents are supra-
or sub-threshold.

3.3. Collective Oscillations
We will now characterize the different types of COs observable
by first following a route to coherent chaos for the E-I balanced
network and successively we will examine how oscillations
exhibiting an abnormal level of synchronization, somehow
similar to those observable during an ictal state in the brain
(Lehnertz et al., 2009), can emerge in our system. Furthermore,
we will consider the phenomenon of quasi-periodicity and
frequency locking occurring for fluctuation driven oscillations.
As the last issue, the scaling of the frequencies and amplitudes
of COs with the in-degree and as a function of the external DC
current is reported.

3.3.1. A Period Doubling Route to Coherent Chaos
As a first case, we will follow the path in the parameter space
denoted as a dashed black line in Figure 1A. In particular,
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FIGURE 4 | Coherent chaos. (a,b) First (red) λ1 and second λ2 (blue) (LEs) for

the MF vs. the DC current I
(e)
0 for the parameter cut corresponding to the

dashed black line in Figure 1A. The dashed vertical lines in (a) indicate a

super-critical Hopf bifurcation (HB) from a stable focus to periodic COs and the

region of the period doubling (PD) cascade. The symbols denote three

different types of MF solutions: namely, stable focus (green triangle); periodic

oscillations (blue square) and chaotic oscillations (red circle). (c,d) Bifurcation

diagrams for the same region obtained by reporting the maximal value of the

instantaneous firing rate R(e) measured from MF simulations. The parameters

are the same as in Figure 1, other parameters set as 1
(ii)
0 = 0.3, 1

(ee)
0 = 2.0, K

= 1,000.

in order to characterize the different dynamical regimes, we
have estimated the LS {λi} associated the MF equations. As
shown in Figure 4, this analysis has allowed us to identify a
period doubling cascade toward a chaotic region, characterized
by periodic and chaotic windows. In particular, we observe a

focus region (II) for 0.0015 < I
(e)
0 < 50.6105, the focus loses

stability via a super-critical HB at Ie0 ≃ 0.0015 giving rise
to COs. One observes a period doubling cascade [regime (V)]

taking place in the interval I
(e)
0 ∈ [0.00006177; 0.00047297]

followed by a regime of COs at lower values of I
(e)
0 . The

chaotic dynamics refer to the MF evolution, and it can be,
therefore, definitely identified as collective chaos (Nakagawa
and Kuramoto, 1993; Shibata and Kaneko, 1998; Olmi et al.,
2011). A peculiar aspect of this period doubling cascade is that
the chaotic dynamics remain always confined in four distinct
regions without merging in a unique interval as it happens
e.g., for the logistic map at the Ulam point (Ott, 2002). This
is due to the fact that the population dynamics display period
four oscillations characterized by four successive bursts, whose

amplitudes (measured by R
(e)
max) varies chaotically but each

one remains restricted in an interval not overlapping with the
other ones.

Let us now examine the network dynamics for the three
peculiar MF solutions indicated in Figure 4a corresponding
to a stable focus (II) characterized by LE (λ1 = λ2 =

−0.0299, λ3 = λ4 = −0.101) for I
(e)
0 = 0.006

(green triangle), to a stable oscillation (IV) with (λ1 =

0.0, λ2 = −0.0343, λ3 = −0.0555, λ4 = −0.1732) for

I
(e)
0 = 0.0009 (blue square), and to collective chaos (v)
with (λ1 = 0.0033, λ2 = 0.0, λ3 = −0.0809, λ4 =

−0.1855) for I
(e)
0 = 0.00021 (red circle). As shown in

Figure 5, for all these three cases, the network dynamics is
always characterized by oscillations: namely, OP for the regimes
(IV) and (V) and fluctuation induced OF for to the stable
MF focus.

A typical feature of the OP oscillations is that the excitatory
neurons start to fire followed by the inhibitory ones, furthermore,
the peak of activity of the excitatory population usually precedes
that of the inhibitory neurons of a time interval 1t. Then the
inhibitory burst silences the excitatory population for the time
needed to recover toward the firing threshold. This recovering
time sets the frequency νCO of the COs. In our set-up, the
excitatory bursts are wider than the inhibitory ones due to the fact

that 1
(ee)
0 > 1

(ii)
0 . All these features are quite evident from the

population firing rates shown in Figures 5a1,b1 and the raster
plots in panels Figures 5a3,b3. These are typical characteristics
of a PING-like mechanism reported for the generation of
γ oscillations in the cortex (Tiesinga and Sejnowski, 2009),
despite the fact that the frequencies of the COs shown in
panels (a) and (d) are of the order of few Hz. Fluctuation
driven oscillations OF emerging in the network are radically
different, as shown in Figure 5c1, in this case, the excitatory
and inhibitory populations deliver almost simultaneous bursts.
Further differences among OP and OF oscillations can be
identified at the level of single neuron activity. These can be
appreciated by considering the PDFs of the excitatory firing

rates r
(e)
j reported in the fourth column of Figure 5. As shown

in Figure 5c4 these firing rates are log-normally distributed for
OF oscillations, thus, confirming their fluctuation driven origin
(Roxin et al., 2011; Petersen and Berg, 2016). On the other
hand, for OP oscillations, we observe with respect to a log-
normal distribution an excess of high firing neurons and a
lack of low firing ones (refer to Figures 5a4,b4). This seems
to indicate the presence of a larger number of mean driven

excitatory neurons. Indeed this is the case, for I
(e)
0 = 0.00021

and I
(e)
0 = 0.0009, the percentage of active excitatory neurons

driven by average effective currents supra-threshold i
(e)
eff ,j

is

≃ 1.7 − 1.2%, while for I
(e)
0 =0.006, it drops to ≃ 0.6%.

The percentage of active inhibitory neurons on average supra-
threshold is quite limited in both cases being of the order of
0.25–0.13%. Another interesting feature distinguishing the two
kinds of oscillations is the fact that for OP, the excitatory supra-

threshold neurons have a firing rate r
(e)
j > νCO and that the

few neurons with firing rates locked to νCO are on average

exactly balanced, i.e., they have i
(e)
eff ,j

≃ 0. The situation is

different for the OF oscillations, where we observe a group of sub-
threshold excitatory and inhibitory neurons firing locked with
the population bursts. In both cases, most parts of neurons are
definitely sub-threshold firing at frequencies smaller than νCO,
as expected for an E-I balanced network displaying fast network
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FIGURE 5 | Different types of collective oscillations(COs). Row (a) refers to the chaotic state observable for I
(e)
0 = 0.00021 in the MF denoted by a red circle in

Figure 4a; row (b) to the oscillatory state of the MF observable for I
(e)
0 = 0.0009 denoted by a blue square in Figure 4a; row (c) to the stable focus for the MF

observable for I
(e)
0 = 0.006 denoted by a green triangle in Figure 4a. The first column displays the population firing rates vs. time obtained from the network dynamics,

the second, the corresponding MF attractors in the planes identified by (R(e),V (e) ) and (R(i),V (i)), the third, the raster plots, and the fourth, the PDFs of the excitatory

firing rates r
(e)
j . Red (blue) color refers to excitatory (inhibitory) populations, the solid vertical lines in column 4 to the mean firing rate and the blue solid line to a fit to a

log-normal distribution. Parameters as in Figure 2, apart from 1
(ii)
0 = 0.3, 1

(ee)
0 = 2.0, K =1,000. For the estimation of the firing rates we employed N(e)=40,000 and

N(i)=10,000, while for the raster plots, N(e)=10,000 and N(i)=2,500. The total integration time has been of 120 s after discarding a transient of 80 s.

oscillations associated with irregular neural discharges (Brunel
and Wang, 2003).

In order to understand the differentmechanisms at the basis of
OP and OF oscillations, let us examine how the delay 1t between
excitatory and inhibitory bursts, observed for OP oscillations,
modifies as a function of the membrane time constant of the
inhibitory population τ

(i)
m . An increase of τ

(i)
m of ≃ 5 ms has

the effect of reducing the delay of almost a factor six from
1t ≃ 28 ms to 1t ≃ 5 ms, as shown in Figure 6A. The

increase of τ
(i)
m leads to an enhanced inhibitory action since

the integration of the inhibitory membrane potentials occurs
on longer time scales, and this promotes a higher activity of
the inhibitory population. Indeed, this is confirmed from the
drop of the effective input currents from an almost balanced

situation where the average I
(e)
eff

and I
(i)
eff

are almost zero to a

situation where they are definitely negative (refer to Figure 6B).

Thus, for increasing τ
(i)
m , the percentage of neurons below

threshold also increases and as a consequence the dynamics
become more and more noise driven, as testified by the increase

of the current fluctuations 1I
(e,i)
eff

as shown in Figure 6C. In

summary, the delay is due to the fact that despite the effective
inhibitory and excitatory currents are essentially equal, as shown
in Figure 6B, the wider distribution of the excitatory in-degrees
promotes the presence of excitatory neurons supra-threshold that
are the ones igniting the excitatory burst before the inhibitory
one. The delay 1t decreases whenever the number of these
supra-threshold neurons decreases, and it will vanish when the
dynamics will become essentially fluctuation driven as in the case
of OF oscillations.

3.3.2. From Fluctuation Driven to Abnormally

Synchronized Oscillations
As the second range of parameters, we consider the cut in the
parameter plane shown in Figure 1A as a purple dashed line. For
these parameters, we report in Figures 7a,b the average in time
of the excitatory and inhibitory population rate as a function of

the excitatory DC current I
(e)
0 . In particular, we compare network

simulations (red and blue circles) with the MF results (red and

blue lines). These predict a stable focus (solid lines) up to I
(e)
0 =

74.1709, where a sub-critical HB destabilizes such solution giving
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FIGURE 6 | Pyramidal-interneuron gamma (PING)-like OP COs. (A) Firing delays 1t between the excitatory population peak and the inhibitory one vs. τ
(i)
m . Effective

mean input currents (Equation 13) (B) and current fluctuations (Equation 20) (C) vs. τ
(i)
m , the excitatory (inhibitory) population are denoted by red (blue) circles. All the

data reported in this study refer to MF simulations. The parameters are I
(e)
0 = 0.0009, 1

(ii)
0 = 0.3, 1

(ee)
0 = 2.0, K =1,000, and τ

(e)
m = 20 ms.

rise to an unstable focus (dashed lines). In panel (a), and (b), we
have also reported as green dot-dashed lines the extrema of R(e)

and R(i) corresponding to the unstable oscillations emerging at
the HB. For currents below the HB, we observe a good agreement
among the average network activity and the MF results.

In particular, below the HB, while the MF predicts only
the existence of a stable focus, the network dynamics reveals
quite interesting features. As shown in Figure 7d1, the system
dynamics is indeed asynchronous for intermediate current

values, in this study, I
(e)
0 = 1.024, however, at lower currents,

we observe fluctuation driven oscillations OF as evident from the
raster plot displayed in Figure 7c1 for I

(e)
0 = 0.128. As shown

in Figures 7c2,d2, both these regimes are characterized by log-
normal distributions of the firing rates, thus, indicating that the
dynamics are fluctuation driven.

As reported in Montbrió et al. (2015), when the network
dynamics become strongly synchronous (as expected for very
high excitatory DC external current), the MF formulation fails
since the population rates predicted within the MF formulation
diverge. However, as shown in Figures 7e1,e2, due to finite size
effects, we observe in the network a strong synchronous COs of
type OS corresponding to the MF region (I) where the MF model
predicts no stable solution. These abnormally synchronized
oscillations are also characterized by a quite fast frequency of
oscillation νCO ≃ 800−1,000 Hz. Furthermore, similarly to the
OP oscillations, they emerge due to a PING-like mechanism. This
is evident from the raster plot in Figure 7e1, where excitatory
neurons fire almost synchronously followed, after an extremely
short delay, by the inhibitory ones whose activity silence all the
network until the next excitatory burst. Quite astonishingly, the
mean population rates measured in the network are reasonably
well captured by the MF solutions associated with the unstable
focus even beyond the HB, despite the network is now displaying
COs (as shown in Figures 7a,b).

The emergence of COs in the network can be characterized
in terms of the coherence indicator ρ (Equation 4) for the whole
population of neurons. This indicator is reported in Figure 8A

as a function of I
(e)
0 for the same parameters previously discussed

in Figure 7 and for two different values of the median in-degree

: K = 100 (red circles) and K =4,000 (blue circles). For both
values of K, we observe an almost discontinuous transition in
the value of the coherence indicator at the sub-critical HB from
ρ ≃ 1/

√
N, expected for an asynchronous dynamics, to values

ρ ≃ 1 corresponding to full synchronization. This discontinuous
transition leads to the emergence of abnormally synchronized
oscillations OS in the network. Moreover, at sufficiently high in-
degrees, we observe the emergence of a new coherent state for

low DC currents I
(e)
0 < 1.024 characterized by a finite value

of the coherence indicator, namely, ρ ≃ 0.3. The origin of
these oscillations can be better understood by examining the
coefficient of variation CV averaged over the whole population,
this is reported in Figure 8C for the same interval of excitatory
DC current and the same in-degrees as in Figure 8A. It is
evident that the CV assumes finite values only for small input

currents, namely I
(e)
0 < 1.024, indicating the presence of not

negligible fluctuations in the network dynamics. Furthermore, by
increasing K, these fluctuations, as measured by the CV , increase
as expected for a balanced network. This analysis suggests that
these oscillations cannot exist in absence of fluctuations in the
network, and therefore, they are of the OF type. Furthermore,
the network should be sufficiently connected in order to sustain
these COs, as one can understand from Figures 8B,D, where ρ

and CV are reported as a function of K for three different values

of I
(e)
0 . Indeed, for these parameter values, no OF oscillation is

observable for K < 400, even in presence of finite values of
the CV .

As previously discussed in di Volo and Torcini (2018), the
balance between excitation and inhibition generates endogenous
fluctuations that modify the collective dynamics with respect
to that predicted by the MF model, where the heterogeneity
of the input currents, due to distributed in-degrees, is taken
in account only as a quenched form of disorder and not as a
dynamical source of the noise. However, also from this simplified
MF formulation, one can obtain relevant information on the
OF oscillations, indeed as we will see in the next sub-section,
the relaxation frequencies toward the stable MF focus represent
a good estimation of the oscillation frequencies measured in
the network. This suggests that the fluctuations present at the
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FIGURE 7 | From fluctuation driven to abnormally synchronized oscillations. Firing rates R(e) (a) and R(i) (b) as a function of I
(e)
0 for E-I network (circles) and neural mass

model (lines) for the parameter cut corresponding to the dashed purple line in Figure 1A. For the neural mass model: solid (dashed) line shows stable (unstable) focus

solution R
(e)

and R
(i)
; green dot-dashed lines refer to the extrema of R(e)(R(i)) for the unstable LC present in region (II). The unstable LC emerges at the sub-critical HB

for I
(e)
0 = 74.1709 separating region (II) from (I), where the focus becomes unstable. Raster plots and PDFs of the excitatory firing rates r

(e)
j are reported for specific

cases: namely, I
(e)
0 = 0.128 (c1,c2), I

(e)
0 = 1.024 (d1,d2), and I

(e)
0 = 100 (e1,e2). The solid vertical lines in (c2,d2,e2) refer to the mean firing rate. Parameters as in

Figure 1, other parameters are set as 1
(ii)
0 = 0.3, 1

(ee)
0 = 1.58, K =1,000 N(e) =10,000, and N(i) =2,500.

network level can sustain COs by continuously exciting the focus
observed in the effective MF model with quenched disorder.

3.3.3. Fluctuation Driven Oscillations: From

Quasi-Periodicity to Frequency Locking
As announced, this sub-section will be devoted to the
characterization of the fluctuation driven oscillations OF

emerging in the region (II) reported in Figure 1. As the MF
is now characterized by a stable focus with two couples of
complex conjugate eigenvalues, there are two frequencies that
can be excited by the irregular firing of neurons. Accordingly, as
reported in di Volo and Torcini (2018), we expect the collective
dynamics to be characterized by quasi-periodic dynamics with
two (incommensurable) frequencies. These frequencies can be
estimated by computing the power spectrum S(ν) of global
quantities, e.g., the mean membrane potential V(t). In the case
of periodic dynamics, S(ν) is characterized by one main peak
in correspondence of the CO frequency and minor peaks at its
harmonics, while in the quasi-periodic case, the power spectrum
shows peaks located at the two fundamental frequencies and
all their linear combinations. Indeed, as shown in Figure 9A,
the power spectrum exhibit several peaks over a continuous
profile and the peak frequencies can be obtained as a linear
combination of two fundamental frequencies (ν1, ν2). As already
mentioned, the noisy background is due to the fluctuations
present in the balanced network. It is evident from Figure 9B,
that these two fundamental frequencies are well reproduced by
the two relaxation frequencies νR1 and νR2 toward the MF focus, in

particular for I
(e)
0 ≥ 0.256. At smaller currents, while the first

frequency is well reproduced by νR1 , the second one is under-
estimated by νR2 . This is due to the phenomenon of frequency
locking among the two collective rhythms present in the system:
when the two frequencies become commensurable, we observe
a common periodic CO. The locking order can be estimated
by plotting the ratio between the two frequencies, indeed for
low currents and K = 8, 192, the ratio is almost constant and
equal to four denoting a 1:4 frequency locking (see Figure 9C).

Furthermore, by fixing I
(e)
0 = 0.128 and by varying K the ratio

ν1/ν2 can display different locked states, passing from locking of
type 1 : 2 at low K, to 1 : 4 at larger values, as shown in the inset of
Figure 9C.

As evident from Figures 9B,C, the locking phenomenon arises
only in the network simulations and is not captured by the MF
model. Furthermore, frequency locking occurs at low currents

I
(e)
0 < 0.1 where the dynamics of the neurons are driven by the
intrinsic current fluctuations present in the network but not in
the MF. Indeed for low DC currents the level of synchronization

within the populations measured by ρ decreases with I
(e)
0 ,

while the CV increases (as shown in Figure 9D). These features
suggest that this phenomenon is somehow similar to what was
reported in Meng and Riecke (2018) for two coupled inhibitory
neural populations subject to external uncorrelated noise. Meng
and Riecke (2018) observed an increase of the locking region
among collective rhythms by increasing the amplitude of the
additive noise terms, this joined to a counter-intuitive decrease
of the level of synchronization among the neurons within each
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FIGURE 8 | From fluctuation driven to abnormally synchronized oscillations.

Coherence indicator ρ (Equation 4) for the whole network of excitatory and

inhibitory neurons vs. the excitatory DC current I
(e)
0 (A) and the median

in-degree K (C). Coefficient of variation CV for the whole network vs. I
(e)
0 (B)

and K (D). In (A,C), the symbols refer to different values of the median

in-degree:namely, K = 100 (red circles) and K=4,000 (blue circles). In (B,D),

the symbols refer to different excitatory DC currents: namely, I
(e)
0 = 0.01 (green

circles), I
(e)
0 = 0.1 (purple circles), and I

(e)
0 = 1.0 (orange circles). Parameters as

in Figure 1, other parameters 1
(ii)
0 = 0.3, 1

(ee)
0 = 1.58, N(e) =40,000, and

N(i) =10,000.

FIGURE 9 | From quasi-periodicity to frequency locking. (A) Power spectra

S(ν) of the mean membrane potential obtained from network simulations. (B)

The two fundamental frequencies ν1(ν2) vs. I
(e)
0 . (C) Frequency ratio ν1/ν2 vs.

I
(e)
0 , in the inset ν1/ν2 is shown vs. K. (D) Coherence parameter ρ vs. I

(e)
0 , in the

inset the corresponding CV is reported. In (B,C), the symbols (solid lines) refer

to ν1 and ν2 as obtained from the peaks of the power spectra S(ν) for V (t)

obtained from the network dynamics (to the two relaxation frequencies νR1 and

νR2 associated to the stable focus solution for the MF). Parameters as in

Figure 1, other parameters are set as 1
(ii)
0 = 0.3, 1

(ee)
0 = 1.58,N(e) =80,000,

N(i) =20,000, K =8,192, and I
(e)
0 = 0.128 in the inset of (C).

population. However, in Meng and Riecke (2018), the neurons
are subject to independent external noise sources, while in our
case, the sources of fluctuations are intrinsic to the system and

FIGURE 10 | Frequencies and amplitudes of OF oscillations. The two

fundamental frequencies ν1 and ν2 vs. I
(e)
0 (A) and K (C) and the average firing

rates vs. I
(e)
0 (B) and K (D) for the excitatory (red) and inhibitory (blue)

populations. In the inset in (C), the effective mean input currents I
(e)
eff (I

(i)
eff ) of the

excitatory (inhibitory) population are shown vs. K. The dashed line in (A,C)

corresponds to a power law-scaling ∝ I
(e)
0

1/2
(∝ K1/4) for the frequencies of the

COs. The solid red (blue) line in (B,D) denotes the asymptotic MF result R
(e)

(R
(i)
). Network (MF) simulations are denoted as stars (circles). The MF data

refer to the stable focus, in particular, in (A,C), these are the two relaxation

frequencies νR1 and νR2 . Parameters as in Figure 1, other parameters: (A,B)

K = 1, 000, 1
(ee)
0 = 1.58, 1

(ii)
0 = 0.3; (C,D) I

(e)
0 = 0.001, 1

(ee)
0 = 1.3, 1

(ii)
0 = 0.3;

for the network simulations, we employed N(e) =80,000 and N(i) =20,000.

induced by the structural heterogeneity. Due to the network
sparseness, the current fluctuations experienced by each neuron
can be assumed to be indeed uncorrelated (Brunel and Hakim,
1999). Therefore, we are facing a new phenomenon that we can
identify as a frequency locking of collective rhythms promoted
by self-induced uncorrelated fluctuations. Indeed, the locking

disappears for increasing external DC currents I
(e)
0 > 0.1, when

the coherence parameter ρ displays an abrupt jump toward
higher values and the CV ≃ 0, thus, indicating that in this
regime, the neuron dynamics becomes essentially mean driven
and highly synchronized.

3.3.4. Features of COs for Large In-degrees and DC

Currents
The dynamics of balanced networks are usually characterized
in the limit N >> K >> 1 by the emergence of a self-
sustained asynchronous regime. However, LC solutions have
been already reported for balanced networks in the seminal
article van Vreeswijk and Sompolinsky (1996). These solutions
can be either unbalanced or balanced, however, in this latter
case, they were characterized by oscillations of vanishing small
amplitude. van Vreeswijk and Sompolinsky (1996) have shown
that balanced COs are not observable in their model in the limit
N >> K → ∞ but only for finite K. Therefore, it is important
to address in our case if COs can still be observable in the limit
N >> K >> 1. Thus, in the following, we will investigate the
dependence of COs features on the median in-degree K and the
external DC currents.
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Let us first consider fluctuation driven OF oscillations, in
this case, we have an analytical prediction (Equation 19) for the
scaling of the fundamental frequencies νR

k
associated with the

relaxation toward the macroscopic focus, which should grow

proportionally to
√
I(e). As shown in Figures 10A,C, indeed this

scaling is observable for sufficiently large K and I
(e)
0 . It is also

evident the extreme good agreement between results obtained
from the network simulations and the theoretical predictions
(Equation 19), at least for the values of K reachable with our
simulations. Furthermore, the frequencies of COs cover an
extremely large range of values from few Hz to KHz, and this
range of frequencies can be spanned by varying either K or the

external DC current I
(e)
0 as shown in Figures 10A,C.

To better characterize these regimes, we have also evaluated
the average firing rates R(e) and R(i). These quantities are
displayed for OF oscillations in Figures 10B,D as a function of

I
(e)
0 and K, respectively. From the network simulations (stars),

we observe that R(e) and R(i) grow with I
(e)
0 , and they are

astonishingly quite well reproduced by the MF data (circles)
for sufficiently large DC currents, despite the MF results refer
to a stable focus and not to COs. Instead, at smaller currents
(namely, I

(e)
0 = 0.001), the network data overestimates the

MF results and the excitatory and inhibitory firing rates for
K >> 1 seem to converge to a common constant value larger
than those corresponding to the asynchronous regimes. For
sufficiently large K, due to the prevalence of inhibition over
excitation in the present model, we expect that the system will be
sub-threshold, since the average excitatory and inhibitory firing
rates are essentially coincident. Indeed this is confirmed by the

analysis of the mean effective input currents I
(e)
eff

and I
(i)
eff

shown

in the inset of Figure 10C. While for the MF focus, the dynamics
appear as almost exactly balanced for all the considered median

in-degree K since I
(e)
eff

≃ I
(i)
eff

≃ 0, for the network dynamics

I
(e)
eff

and I
(i)
eff

are definitely negative for K > 1, 000. This does not

prevent the emergence of COs driven by fluctuations at large K,
as indeed observed.

These results seem to indicate that for N >> K → ∞,
the network will not converge in this case toward a balanced
regime characterized by constant effective input currents. On
the contrary from our analysis, it emerges that the system will
become more and more sub-threshold for increasing K > 1,000.
However, the system always exhibits fluctuation driven dynamics,
since we measured CV ≃ 0.6-0.8 at least in the range K ≃

100− 10000 accessible to network simulations.
Let us now examine the OP oscillations. As shown in

Figures 11A,C, the frequencies νCO as estimated from the
MF model (open circles) reveal an almost perfect increase

proportional to
√
I(e) analogous to the one reported for OF

oscillations. The data obtained from network simulations (stars)

converge toward the MF results for sufficiently large K and I
(e)
0 .

The mean firing rates R(e) and R(i) grow with I
(e)
0 for fixed K

and appear to converge toward a constant value for sufficiently

large K for fixed I
(e)
0 , refer to Figures 11B,D. Moreover, the

network simulations (stars) approach the MF results (open

FIGURE 11 | Frequencies and amplitudes of OP oscillations. COs’ frequency

νCO vs. I
(e)
0 (A) and K (C) and mean firing rates vs. I

(e)
0 (B) and K (D) for the

excitatory (red) and inhibitory (blue) populations. The dashed line in (A,C)

corresponds to a power law-scaling ∝ I
(e)
0

1/2
(∝ K1/4) for the frequencies. In

the inset in (c), the effective mean input currents I
(e)
eff (I

(i)
eff ) of the excitatory

(inhibitory) population are shown vs. K. The solid red (blue) line in (B,D)

denotes the asymptotic MF result R
(e)

(R
(i)
). The data obtained from network

(MF) simulations are denoted as stars (circles). The data reported in (A–D) refer

to the open circles in Figures 1A,B, respectively. For network simulations, we

employed N(e) =80,000 and N(i) =20,000.

circles) at large DC currents and median in-degrees. However,
while in the MF the asymptotic values of R(e) and R(i) remain
distinct even at large K, these seem to become identical in the
network simulations. This reflects in the fact that while the MF
is perfectly balanced in the whole range of examined in-degrees,

since I
(e)
eff

≃ I
(i)
eff

≃ 0, the network simulations reveal almost

balanced effective input currents up to K ≃ 1,000 and above such
median in-degree a prevalence of the inhibitory drive (refer to
inset of Figure 11C).

For both kinds of COs, we observe that while νCO diverges
with K, the mean firing rates approach a constant value, thus,
suggesting that the percentage of neurons participating in each
population burst should vanish in the limit K → ∞. This result
indicates that COs will finally disappear, however, more refined
analyses are needed to derive the asymptotic behavior of the
system in the large K limit, ref to di Volo et al. (2021) for a
detailed discussion of this aspect for purely inhibitory networks.

4. DISCUSSION

We have extensively characterized the macroscopic regimes
emerging in a sparse balanced E-I network made of spiking QIF
neurons with Lorentzian distributed in-degrees. The considered
neuronal model joined to the peculiar choice of the distribution
has allowed us to derive an exact low dimensional neural mass
model describing theMF dynamics of the network in terms of the
meanmembrane potentials and of the population rates of the two
populations (Montbrió et al., 2015; di Volo and Torcini, 2018).
The low-dimensionality of the MF equations enabled us to study
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analytically the stationary solutions and their stability as well as
to obtain the bifurcation diagrams associated with the model and
to identify the possible macroscopic states.

4.1. Asynchronous Regimes
The stationary solutions of the MF correspond to the
asynchronous regime, which is the regime usually analyzed in the
context of balanced dynamics (van Vreeswijk and Sompolinsky,
1996; Renart et al., 2010; Litwin-Kumar and Doiron, 2012). In
the present case, we have analytically obtained the stationary
solutions for the mean membrane potentials and average firing
rates for Lorentzian distributed in-degrees for any finite value of

the median K and an HWHM scaling as 1
(αα)
k

= 1
(αα)
0 (K)η

with η = 1/2. The MF estimations for the population firing
rates are pretty well reproduced by the network simulations in
the examined range of in-degrees K. Furthermore, from the
analytic expression of the stationary firing rates (Equation 8),
it is evident that for K >> 1, the asymptotic rates would
not depend on the structural heterogeneity and correspond to
those usually found for balanced homogeneous or Erdös-Renyi
networks (vanVreeswijk and Sompolinsky, 1996;Monteforte and

Wolf, 2010). This is due to the fact that the ratio
(

1
(αα)
k

)2
/K

remains constant for K → ∞. The final scenario will depend
on the scaling exponent η, in particular, by assuming η =

3/4, the asymptotic firing rates R
(α)
0 will explicitly depend on

the parameters 1
(αα)
0 controlling the structural heterogeneity.

Whenever η > 3/4, the balanced state breaks down, and we face
a situation similar to those investigated in Landau et al. (2016)
and Pyle and Rosenbaum (2016)1.

However, despite the system approaching a balanced state,
as testified by the fact that the effective input currents converge

to finite values I
(α)
a , and the current fluctuations stay finite

for K → ∞, the balanced regime is not necessarily a sub-
threshold one. Indeed, we have observed that we can have
either sub-threshold or supra-threshold situations depending on
the model parameters in agreement with the results previously
reported in Lerchner et al. (2006). Moreover, the excitatory
and inhibitory populations can achieve balanced regimes

characterized by different asymptotic dynamics, where I
(i)
a and

I
(e)
a have opposite signs.
While at a macroscopic level, the population activity for

N >> K >> 1 approach is essentially that of a homogeneous
balanced system, as shown in Figures 2A,B, the structural
heterogeneity has a large influence on the single neuron
dynamics, at least at finite K and finite investigation times. In
particular, in analogy with experiments (Gentet et al., 2010;
Mongillo et al., 2018), we considered a situation where the
inhibitory drive prevails on the excitatory one. In this condition,
microscopically the neural populations split into three groups:
silent neurons, definitely sub-threshold; bulk neurons, which
are fluctuation driven; and mean driven outlier neurons. In

1In such cases, balance has been recovered either by rewiring the post-synaptic

connections (Pyle and Rosenbaum, 2016) or by introducing some sort of

homeostatic plasticity or of spike-frequency adaptation (Landau et al., 2016).

particular, excitatory (inhibitory) neurons with low (high) intra-
population in-degrees are silenced due to the prevalence of
synaptic inhibition. The silent neurons represent 6-10% of the
whole population in agreement with experimental results for
the mice cortex (O’Connor et al., 2010). Bulk neurons have in-
degrees in the proximity of the median, and their firing rates

approach the MF solution R
(α)
0 for increasing K. Outlier neurons

represent a minority group almost disconnected from their own
population, whose asymptotic behavior for K >> 1 is controlled
by the sign of the effective mean input current.

4.2. Coherent Dynamics
The emergence of COs is observable in this balanced network
whenever the level of heterogeneity in the inhibitory population
is not too large, thus, suggesting that the coherence among
inhibitory neurons is fundamental to support collective rhythms
(Whittington et al., 2000). Indeed we observed two main
mechanisms leading to COs: one that can be identified as
PING-like and another one as fluctuation driven. The PING-
like mechanism is present whenever the excitatory neurons are
able to deliver an almost synchronous excitatory volley that in
turn elicits a delayed inhibitory one. The period of the COs
is determined by the recovery time of the excitatory neurons
from the stimulus received from the inhibitory population. This
mechanism is characterized by a delay between the firing of
the pyramidal cells and the interneuronal burst as reported
also in many experiments (Buzsáki and Wang, 2012). We have
shown that this delay tends to vanish when the inhibitory action
increases leading the system from a balanced situation to a
definitely sub-threshold condition where the neural activity is
completely controlled by fluctuations. In this latter case, the
excitatory and inhibitory neurons fire almost simultaneously
driven by the current fluctuations. These transform the relaxation
dynamics toward a stable focus, observable in the MF, to
sustained COs via a mechanism previously reported for
inhibitory networks (di Volo and Torcini, 2018; Bi et al., 2020).

The PING-like COs undergo period doubling cascades

by varying K and/or I
(e)
0 finally leading to collective chaos

(Nakagawa and Kuramoto, 1993; Shibata and Kaneko, 1998).
The nature of this chaotic behavior is definitely macroscopic
since it is captured by the neural mass model obtained within
the MF formulation, as shown by analyzing the corresponding
LS. This kind of chaos implies irregular temporal fluctuations
joined to coherence at the spatial level over a large part of the
network resembling coherent fluctuations observed across spatial
scales in the neocortex (Smith and Kohn, 2008; Volgushev et al.,
2011; Okun et al., 2012; Achermann et al., 2016). Collective (or
coherent) chaos has been previously shown to be a ubiquitous
feature for balanced random spiking neural networks massively
coupled, where K is proportional to N (Politi et al., 2018; Ullner
et al., 2018). In this study, we have generalized such results to
balanced random networks with sparse connectivity, where K is
independent byN. Recently, it has been claimed that the presence
of structured feed-forward connectivity in a random network is
needed to observe coherent chaos (Landau and Sompolinsky,
2018). However, as evident from our results and those reported
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in Ullner et al. (2018) and Politi et al. (2018), coherent chaos can
naturally emerge in a recurrent neural network in absence of any
structured connectivity introduced ad hoc to promote collective
behaviors. Furthermore, we have shown that collective chaos
can emerge in random balanced networks with instantaneous
synapses and the absence of any delay, refer to Ullner et al. (2018).

Fluctuation driven COs are usually observable in our
system as quasi-periodic collective motions characterized by two
incommensurate frequencies. However, whenever the current
fluctuations become sufficiently strong, the two frequencies can
lock and give rise to a collective periodic motion. Furthermore,
the locking region is characterized by a low level of synchrony
in the network. These results resemble those reported in Meng
and Riecke (2018) for two interconnected inhibitory neural
networks subject to external uncorrelated noise. In particular,
the authors have shown that uncorrelated noise sources enhance
synchronization and frequency locking among the COs displayed
by the two networks, despite the reduced synchrony among
neurons within each network. At variance with Meng and Riecke
(2018), in our case, the noise sources are intrinsic to the neural
dynamics, but they can be as well considered as uncorrelated
due to the sparseness in the connections (Brunel and Hakim,
1999; Brunel, 2000). Therefore, we are reporting a new example
of frequency locking among collective rhythms promoted by
self-induced uncorrelated fluctuations.

According to analytical arguments, the frequencies of the
COs grow proportionally to the square root of the excitatory
DC current. This on one side allows simply by varying

the parameters I
(e)
0 or K, to cover with our model a

broad range of COs’ frequencies analogous to those found
experimentally in the cortex (Chen et al., 2017). On another
side, it implies that the frequencies of COs diverge as
K1/4, while the average firing rates seem to converge to a
common value for sufficiently large K. These results seem to
indicate that for large K, the network will become more and
more unbalanced, with a prevalence of inhibition, while the
amplitude of COs will tend to vanish. However, this analyses
is not conclusive and more detailed analysis are required to
capture the asymptotic behavior of the system in the limit
N >> K >> 1.

4.3. Future Developments
The examined neural mass model has been derived by taking
into account the random fluctuations due to the sparseness in the

network connectivity only as a quenched disorder affecting the
distribution of the effective synaptic couplings (Montbrió et al.,
2015; di Volo and Torcini, 2018). The current fluctuations can
be correctly incorporated in an MF formulation by developing
a Fokker-Planck formalism for the problem, however, this will
give rise to high (infinite) dimensional MF models (Brunel
and Hakim, 1999; Brunel, 2000). We are currently developing
reduction formalisms for the Fokker-Planck equation to obtain
low dimensional neural mass models which will include the
intrinsic current fluctuations (di Volo et al., 2021; Goldobin et al.,
2021).

Relevant topics to investigate in the future to assess the
generality of the reported results are their dependence on the
chosen spiking neuron model and network architecture. In
particular, for random networks, it is important to understand
the role played by the distribution of the in-degrees, this is also in
view of the recent findings reported in Klinshov et al. (2021).
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